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Abstract

A causal approach to biological information is outlined. There are two

aspects to this approach: information as determining a choice between a set of

alternatives, and information as determining the construction of a single object.

The first aspect has been developed in earlier work to yield a quantitative

measure of biological information that can be used to analyse biological

networks. This paper explores the prospects for a measure based on the second

aspect, and suggests some applications for such a measure. These two aspects

are not suggested to exhaust all the facets of biological information.
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1 Introduction

Biological development is classically assumed to reflect the expression of information

accumulated in the genome during evolution (Mayr 1961; Jacob 1970). Major

textbooks and popular science presentation of biology rely on this picture (e.g.

Alberts et al. 2013). Leading biologists are also attracted to this view (Williams 1992,

p. 10; Maynard Smith and Szathmary 1995; 2000; Jablonka 2002). On closer scrutiny

however, the role of information in biology seems purely instrumental: it serves either

as a metaphor or as a tool for big data analyses; biology does not yet have a theory of

life as an information-processing phenomenon (Sarkar 1996; Godfrey-Smith 2000).

The aim of this paper is to offer some scientific substance to such a theory.

Several theoretical and philosophical approaches have interpreted living systems

as information-processing systems. One tradition identifies information with meaning,

interpretation, and intentionality (Barbieri 2007; Shea 2007). A second tradition,

which we espouse here, identifies information with patterns of association between

objects (Dretske 1981).

We start from the sense of information introduced by Crick in his sequence

hypothesis and central dogma of molecular biology, which was to become massively

influential in biology: ‘Information . . . means the precise determination of

sequence. . . ’ (Crick 1958, p. 153; see Kay 2000). Information here is causal (Šustar

2007). Crick introduced this conception in an attempt to understand how dna and

rna carry biological specificity for the synthesis of proteins, an idea which parallels

the modern contrast philosophers draw between specific causes and other necessary,

background factors to obtain an effect (Woodward 2010). Griffiths and Stotz (2013,

Ch. 4) have argued that Crick’s sense of information vindicates the idea that factors

other than dna are also sources of information for biomolecules, a phenomenon they
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called ‘distributed specificity’. This idea needs substantiation.

We explore here this idea and develop an approach to biological information as a

measurable and distinctive aspect of biological systems. Our approach has two facets,

inspired from respectively Shannon’s and Kolmogorov’s approaches in information

theory. On the one hand, we have a measure of the relative control exercised by

several causes of the same event (Section 2). This concerns the choice between a set

of alternative objects, and is blind to the information content of each object. This

approach has been extensively discussed and applied elsewhere. On the other hand,

we have measures of the complexity of a single cause or a single effect, independently

of any particular set of alternatives (Section 3). These can measure the information

inherent to a biomolecule and the quantity of information in a molecule that can be

attributed to a particular source. The computability of these latter measures,

however, is problematic; in practice, tentative measures ought to be used. The role of

randomness in creating information is outlined (Section 4). We sketch potential

developments for a Kolmogorov-inspired approach (Section 5), and argue that it is a

potentially fruitful yet challenging biological research program (Section 6). The two

approaches are not straightforwardly reducible to one another, and are not suggested

to exhaust all aspects of biological information.

2 Causal specificity: information as choice

Recent work has defined an information-theoretic measure of the ‘specificity’ of a

cause for an effect, the extent to which a cause precisely determines an effect, and

applied this measure to biological problems (Griffiths et al. 2015; Calcott et al. 2017;

Weber 2017; Pocheville et al. 2017). This work develops earlier, qualitative

discussions of ‘causal specificity’ in philosophy (Woodward 2010) and converges with
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formal work on causation in complex systems theory (see Footnote 1).

Causal specificity is measured using Shannon information theory, which conceives

information as a reduction in uncertainty (Shannon 1948; Cover and Thomas 2006).

Uncertainty, measured in bits, is the average number of binary (yes/no) questions

that are required to determine the value of an unknown variable. A variable is said to

share mutual information with another variable when it reduces our uncertainty

about that variable. Mutual information measures the overlap, or redundancy, in the

probability distributions of two variables: the more two variables are associated, the

more each of them answers questions about the value of the other. Causal specificity

can be measured by the mutual information between values of a cause variable set by

an intervention and the value of a putative effect variable (Griffiths et al. 2015,

p. 538). Formally, the causal specificity of C for E when controlling for a putative

background B is given by the following formula (Pocheville et al. 2017):1

I(Ĉ;E | B̂) =
∑

b

p(̂b)
∑

c

p(ĉ | b̂)
∑

e

p(e | ĉ, b̂) log
2

p(e | ĉ, b̂)

p(e | b̂)
.

The ‘̂’ (hat) on a variable is an operator indicating that its value is set by an

intervention, rather than observed (Pearl 2009).2 This operator transforms the

1This measure has been previously proposed in cognitive sciences (Tononi et al.

1999) and in computational sciences (Korb et al. 2009). Closely related measures have

been proposed by Ay and Polani (2008) and Janzing et al. (2013). Transfer entropy

is another ‘information as choice’ measure – although correlational in character, not

causal (Lizier and Prokopenko 2010) – which has been applied to the study of the

origins of life (Walker et al. 2017).
2As an anonymous reviewer noticed, the term p(ĉ | b̂) implies that the intervention

on C be potentially dependent on a previous intervention on B, which seems to contra-
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symmetrical mutual information, representing observed association, into an

asymmetric measure of causal influence, representing how much experimentally

intervening on C whilst controlling for B affects E. If C is not a cause of E, then

I(Ĉ;E | B̂) = 0. Reciprocally, if C is a cause of E, then there exists at least one set

of background variables B (which can be empty) such that I(Ĉ;E | B̂) > 0

(Pocheville in prep.[a]).

This measure of causal specificity seems to capture one aspect of Crick’s, and the

above cited biologists’, conception of information as ‘precise determination’. It can be

used to compare the causal contributions of genetic and epigenetic causes to the

production of biomolecules (Griffiths et al. 2015). It can be applied to objects other

than biomolecules, and is a practical tool for the analysis of biological networks

(Tononi et al. 1999; Calcott et al. 2017; Pocheville in prep.[b]).

There is, however, a blindspot in Shannon information theory: it is silent about

the information content of the objects themselves. For example, it makes no

difference to the amount of information that dna carries about rna whether the dna

strands are 3 or 1416 nucleotides long. What matters is only the number of values

that the variable ‘dna’ can take and the probability distribution over those values.

Arguably, the longer the sequences, the greater the number of possible alternatives,

thus the greater the potential causal specificity of these alternatives.3 Still, in an

dict the very idea of an intervention. In chosen applications however, one may decide

that interventions are independent, and that p(ĉ | b̂) = p(ĉ). When the terms differ,

the intervention on C can be thought of as a partial intervention, breaking all causal

links pointing to C but some stemming from B.
3The Shannon entropy of a source emitting sequences of length l asymptotically

tends towards the expected Kolmogorov complexity (see next section) of the sequences

as l → ∞. Potential causal specificity and expected Kolmogorov complexity thus go
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actual case, the number of alternatives can be zero, and a very long dna sequence

can therefore have null causal specificity for its own transcript. Causal specificity

represents a sense of information which enables us (or causes the system) to choose

between a set of well-defined alternatives with a well-defined probability distribution.

This is ‘information as choice’. If what we are interested in is the information content

of a single object, another branch of information theory, Kolmogorov complexity, is

more appropriate. It is to this second aspect of information that we now turn.

3 Kolmogorov meets Crick: information as

construction

Kolmogorov complexity can measure the complexity of a single object (Grünwald and

Vitányi 2003; Li and Vitanyi 2013). The intuitive idea is that the more complex the

object, the longer its description needs to be. The Kolmogorov complexity is the

length of the shortest description enabling one to reconstruct the object using a

computer (or more precisely a universal Turing machine).4 Kolmogorov complexity

also provides a measure of the amount of information in an object about another

object. This is measured by the algorithmic mutual information: it is the amount of

program length that one saves when describing one object given a description of the

other object for free. Algorithmic mutual information is symmetrical.

hand in hand. We leave to future work to make this connection more explicit (see

Grünwald and Vitányi 2003, p. 518; Balduzzi 2011; Li and Vitanyi 2013, p. 142).
4A Turing machine consists of a finite program capable of manipulating a linear list

of cells (each containing a symbol, from a finite set of symbols), accessing one cell at

a time. A universal Turing machine is one that can imitate any other Turing machine

(Li and Vitanyi 2013, p. 22).
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Obviously, the length of the shortest description will depend not only on the

object at stake, but also on the language (the description method) used to write the

program generating the object. However, the lengths of the shortest descriptions in

two different languages will be the same up to a given translation constant,

independent of the object itself. This is because the translation from one language to

another can be described by a program, of which the length is fixed (which gives the

constant of translation). In this sense, the Kolmogorov complexity is an objective

property of the object.

A drawback of Kolmogorov complexity is that it is provably uncomputable – there

is no computer program which, given any string as an input, returns its Kolmogorov

complexity as an output. In itself, this is an interesting negative result: if what we

are interested in is complexity in this sense, then what we want to know is simply

uncomputable. In practice, one can bound the complexity of binary objects using

diverse lossless compression methods (e.g. those used in the ZIP file format). Indeed,

the compressed object is a (hopefully shorter) description enabling one, together with

a decompression program, to reconstruct the initial object. The length of description

is then the length of the compressed file plus a constant, the length of the

decompression program. This measurement is tentative, not definitive, as other,

potentially unknown compression methods might compress the object more. For the

sake of the argument, we assume for the moment that we are given a reasonable

compression method.

Kolmogorov complexity can be used to explore what Crick meant when he

described the determination of proteins by nucleic acids as the “detailed

residue-by-residue transfer of sequential information” (Crick 1970, p. 561), where

nucleotides would form a quaternary alphabet and amino-acids a vigesimal one. Two

kinds of questions can be addressed: about how much information there is in a given
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biological object, and, closer to Crick’s thinking, about how much information in an

object comes from another.5

The complexity of a strand of dna, for instance, can be approached by measuring

the length of the compressed sequence. Telomeres provide an interesting limit-case.

They are nucleotide sequences at the end of chromosomes, consisting of a repetitive

pattern (e.g. ttaggg in humans, and many other species). Telomeres are elongated

by an enzyme, called telomerase, which embeds an rna-sequence as a template

(Hiyama et al. 2009). It is not difficult to come up with a program describing a given

telomeric sequence in a compact way. Whatever the length of a telomere, it can be

described by a template for the repeated pattern and the number of repeats

(Figure 1, Algorithm 1). A naive observer would surely think that telomeres do not

contain much information, and in particular not much sequential information. The

intuition here coincides with the low Kolmogorov complexity of these sequences.

The situation looks quite different for coding sequences. There does not seem to

be, at first sight, as easy a way to compress these sequences as we did with telomeres,

and their Kolmogorov complexity is probably substantially higher: a program to

reconstruct a coding sequence may have to spell it out explicitly – or at least to spell

out significant aspects of the sequence (Fig. 1, Alg. 2). This lower compressibility

coincides with the intuition that coding sequences carry sequential information – and

even that it is their function to carry sequential information. However, coding

sequences do not carry a maximal amount of sequential information: as an

anonymous reviewer noticed, coding sequences are structured, and are thus expected

5On the algorithmic approach in biology, see e.g. Yockey (2005, p. 170) and espe-

cially Chaitin (1979; 2012), and the discussion by Artmann (2008, pp. 32-37). We lack

space to review the independent convergences and divergences of the here proposed

account.
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to be compressible to some extent – as are non-coding, so-called ‘junk’ dna-sequences

containing a significant number of repetitive elements and duplications.6 Note that

the intrinsic amount of information in a sequence is independent of whether the

sequence is inserted in a region which will actually undergo transcription. Arguably,

even a coding sequence carries no information about any transcript if it is not

transcribed, but it nevertheless carries sequential information tout court.

We now turn to the second question, asking how much information there is in an

object about another object. For the sake of the argument, we suppose that the world

is as Crick supposed in 1958: the accuracy of information transfers is high, which we

idealize by assuming that transcription (of dna into rna) and translation (of rna

into polypeptides) are error-free, deterministic processes. We ignore splicing and other

post-transcriptional processes, which will be treated elsewhere. As described above,

one can estimate the amount of information in dna about rna by their algorithmic

mutual information, that is: I(DNA : RNA) = K(RNA)−K(RNA | DNA∗).7 The

shared information between dna and rna is substantial: the transcription process is

all about replacing the nucleotides by their complementary ones, with the proviso

that As in the coding dna-sequence are complementary to Us (not T s) in the

rna-sequence. To see this sharing of information, compare the lengths of an

algorithm spelling out the rna explicitly (similar to Alg. 2) and one treating

transcription generically (Fig. 1, Alg. 3). The difference in length would increase with

sequence length. This corresponds to the fact that sequential information is

transferred from dna to rna through transcription. If transcription is errorless, the

sequential information in rna which does not come from dna, measured by the
6Whether the compressibility of sequences is an inevitable aspect of their biological

function is precisely a question we wish to address in the long term.
7Where DNA

∗ is the shortest program generating DNA.
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remainder complexity K(RNA | DNA∗), is a constant, independent of the sequence.

Algorithmic mutual information between biological sequences has been used in the

past decade with various aims, such as the building of phylogenetic trees according to

the amount of information needed to transform one dna sequence into another (e.g.

Chen et al. 2000; Li et al. 2001; Chen et al. 2002; Vinga 2013, for a review).

Since the ‘true’ Kolmogorov complexity is uncomputable, an algorithmic approach

relies on a bet – that the language of description and compression methods capture

interesting and relevant aspects of the object at stake. This is not to say that the

approach is necessarily entirely arbitrary: once these methods are agreed upon,

researchers can agree on the measures obtained for finite sequences. If a particular

language gives particularly interesting results (e.g. saving biological appearances,

leading to new questions, predictions and generalizations), then this language

becomes a theoretical entity worth discussing in its own rights. In the remainder of

the paper, we outline what we deem desirable features for such a language, and

substantially develop the algorithmic approach to take into account the fact that

biological systems are not, strictly speaking, deterministic, universal Turing

machines. What we aim at is not an application of conventional algorithmic

information theory to biology, but a specifically biological approach to information

inspired by the Kolmogorov branch of information theory.

Copyright The Philosophy of Science Association 2018. Preprint (not copyedited or formatted). 
Please use DOI when citing or quoting. DOI: 10.1086/699832

This content downloaded from 139.184.014.150 on July 29, 2018 00:11:01 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



Algorithm 1: Function synthesizing a
telomeric sequence of a defined length.

Function SynthesizeTelomere(n,
RNA-template)

input : n: number of iterations,
RNA-template:
‘CCCAAUCCC’

output : a given telomere
for i← 1 to n do

apply telomerase using

RNA-template
end

end

Algorithm 2: Function synthesizing a
given (bit of) coding DNA from scratch.

Function SynthesizeCodingSequence
input : none
output : a given coding sequence
synthesize ‘. . .GCAGTAGAATT
CCGAGCAACTGAACGAGCA
GTAGAA. . . ’

end

Algorithm 3: Function synthesizing a
RNA given a DNA as an input.

Function SynthesizeRNA(DNA)
input : a given DNA
output : a given RNA
while in DNA do

transcribe nucleotide
move forward one nucleotide

end
end

Algorithm 4: Function spelling out
transcription in (some) details.

Function Transcribe(nucleotide)
input : nucleotide
output : corresponding nucleotide
if A then return U
else if C then return G
else if G then return C
else if T then return A

end

Figure 1: Four algorithms illustrating an algorithmic approach to biological functioning.

4 Randomness as the source of information

We made several idealising assumptions in the previous sections. Let us now relax the

assumption that cellular processes are deterministic. Our argument here will remain

theoretical: we lack room to take sides on whether, and how, randomness is actually

realized in biology.8

8Doing so properly would require developing an account of measurement in biology,

as those developed for deterministic chaos and quantum indeterminacy. In determin-

istic chaos, any finite measurement of the initial condition will leave aside information

(the amount of which is infinite) which will manifest itself after a certain time in the
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Random events, by definition, cannot be determined in advance by an algorithm.

This means that randomness in the generation of a sequence creates information de

novo. In biological terms, this means that any random point mutation, any error of

transcription, etc., if they are genuinely random, can create information in the

Kolmogorov sense. As we have seen in the previous section, this also means that

randomly generated sequences contain more information than highly structured

sequences. From an algorithmic point of view, randomness is, ultimately, the only

way to create information.

This information need not always be functional, that is, of any use to the cell.

That it may sometimes be so, however, is a reasonable assumption. There are several

biological examples suggesting that randomness plays a key role in biological

functioning (Kupiec 1983; Heams 2014). Gene shuffling in the immune system of

jawed vertebrates provides one such example regarding biological sequences. It

enables a great variety of antibodies to be produced, orders of magnitude more

numerous than the genes producing them, increasing the chance of matching

potentially threatening antigens (Cooper and Alder 2006).

This tension between information and function is why it is crucial to distinguish

them. One might be interested in how information flows in biological systems without

committing oneself to a particular account of biological function. More importantly, if

one is interested in whether and how information leads to function, a concept of

biological information as necessarily biologically functional will beg the question.

system (Montévil 2018, § 2.1, 2.3). Quantum indeterminism represents another entry to

a physicalist view of the appearance of information (Stamos 2001, and the responses).
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5 A language for the cell

Kolmogorov complexity allowed us to flesh out the idea of information as

construction. Now we need to kick that ladder away and ask what information as

construction actually looks like in living systems. We suggest that it ought to be

measured using a particular programming language: the language of the cell itself, in

which available programming functions mimic actual operations by which molecules

are produced. It goes without saying that what we evoke here is not the ‘true’

language, but a model of a language of the cell.

The idea of a language of the cell takes us away from treating cells as universal

Turing machines and from the genuine Kolmogorov complexity K, to consider a more

biological algorithmic complexity, the Kolmogorov complexity in the chosen biological

language (hereafter denoted KB). For instance, algorithmic mutual information is

symmetric – there is as much information in dna about rna as there is in rna about

dna, i.e. I(RNA : DNA) = I(DNA : RNA). But not all operations are possible in a

cell. A central feature of molecular biology is that flows of information are

asymmetrical. Crick’s ‘central dogma’ (still widely held today) states which flows of

information between biomolecules are possible and which are not. If no

reverse-transcriptase is present, for instance, no information can flow from rna to

dna. In ‘biologically’ algorithmic terms, this means that a biological program aiming

at reconstructing a dna-sequence being given an rna-sequence as an input would

fare no better than a program being given no input, and we would obtain

KB(DNA | RNA
∗) = KB(DNA). This means that we would get, as for a biological

analog of algorithmic mutual information,

IB(RNA→ DNA) = KB(DNA)−KB(DNA | RNA
∗) = 0. (The subscript ‘B’ again

denotes that the measure is defined using the chosen biological language, and the
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arrow now reflects that it can be asymmetric.9) The reciprocal, as we have seen

above, is very different: when dna is transcribed into rna, KB(RNA | DNA
∗) = C,

where C is a constant not depending on the sequences. Assuming, for the sake of

presentation, that KB(RNA) = KB(DNA), we would obtain

IB(DNA→ RNA) = KB(RNA)−KB(RNA | DNA
∗) = KB(DNA)− C. Thus,

contrary to its genuine counterpart, biological algorithmic mutual information would

not be expected to be always symmetrical, reflecting the directionality of possible

information flows.

In the same vein, not all sequences can be produced by a given cell. In

algorithmic information theory, a universal Turing machine can emulate any other

Turing machine, which means that there is no sequence that a particular machine can

produce that a universal machine cannot produce. By contrast, if the cell lacks a

programming function, for instance, if it lacks a nucleic acid template, or if some

nucleotides do not belong to its alphabet, then some sequences may be impossible to

produce. In this case, the information needed to produce an impossible sequence is

ill-defined, in other words, the amount of information needed to produce the sequence

is indefinite. Even on an evolutionary time-scale, the amount of information needed

to acquire the programming function (if it is acquired) and produce the

previously-impossible sequence could be orders of magnitude greater than the length

of the sequence.

Granted that some operations are impossible, how are we to describe the set of

primitive programming functions which, by contrast, are possible?

As we have seen above, the complexity of an object depends on the language used

to describe it. An example will flesh out this idea. Assume, say, that ‘Transcribe’ is
9We follow the notation used for one asymmetrical, causal version of Shannon mu-

tual information (Ay and Polani 2008).
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given for free by the language, and that the description of the function is short: say,

just a few letters. Contrast this with a dna sequence of several kilobases. This dna

sequence appears much more informational than the function ‘Transcribe’.10 Now,

imagine that ‘Transcribe’ is not given for free by the language, but that one has to

write a program for this function, using other, more primitive, available functions.

We exemplify such a program in Alg. 4 (Fig. 1) – it could be made much longer by

describing explicitly the dynamics of chemical bonds in a binary manner (assuming

for the sake of the argument that this would be feasible). Conversely, the description

of a long dna-sequence can be very short. For instance, nominal genes are usually

described, not by their full sequence, but by a nickname like ‘p53’. This nickname is

enough, on most occasions, for biologists to communicate about the processes at

stake. A language can lack the function ‘Transcribe’ but have a built-in function

‘P53’ dedicated to returning the full sequence of the gene. In such a language,

descriptions of transcription would be complex (informational) and that of dna

simple. Thus, one needs to be cautious about the language of description before

assigning any particular object a privileged informational role – much in the same

way as one needs to be cautious about specifying the probability distributions when

using Shannon information theory.

We propose that the primitive functions should be those which enable us to

understand the processes of interest. Assume, for instance, that our interest lies in

understanding the flows of sequential information between biological polymers. Then

assuming that ‘Transcribe’ and ‘Translate’ are given as primitive functions is fine: if

they are errorless, they are not difference-makers as regards the final sequences of the
10Many biologists and some philosophers routinely ascribe to dna a privileged in-

formational role. One way to reconstruct this idea is to consider that they implicitly

assume such a language.
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products (an assumption that we made in Alg. 3). Generally speaking, it makes sense

to consider as primitives those operations which are not difference-makers as regards

the outputs of interest, and as inputs those very difference-makers: the genericity for

functions, and the specificity for inputs. Incidentally, it is good algorithmic practice

to write functions for generic operations and give them specific variables as inputs.

This is not unlike causal specificity: once the generic functional relationships in the

causal model are set, information flows from difference-makers.

6 Payoff of the approach

The algorithmic approach sketched above may promote research on biological

systems, although not without significant challenges.

Even the best current specifically designed compression algorithm may

overestimate biological complexity. This is because the algorithm may not have

compressed the object sufficiently. On the positive side, compression algorithms may

actually tend to parallel the biological processes that have produced the sequences at

stake. For instance, if dna translocation is frequent, then an algorithm that pays due

attention to translocation should be more likely to compress a dna-sequence.

Conversely, considering that most strings are random in the algorithmic sense, it is

highly unlikely that a series of refined algorithms will converge, if they do

convergence, towards something other than the processes involved in producing the

sequences. It is highly unlikely that the cell will, by chance, produce a string which is

compressible by other means than some of its own means of production (or the

corresponding models of these means). In other words, improving these algorithms

may yield a better grasp of functions which are in fact available in the language of

the cell.
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Just as an algorithm may overestimate complexity, however, it can also

underestimate biological complexity. Because cells are not universal Turing machines,

a biological sequence may be more complex than its algorithmic counterpart. For

instance, a cell may need a complex process to resist random perturbations when

duplicating a sequence, while a universal Turing machine, being deterministic, would

not. Similarly, a short sequence may require a complex machinery or a complex

evolutionary history to produce it. Just as biological complexity can shortcut

algorithmic complexity (when a cell generates randomness), it can also exceed it.

7 Conclusion

This paper aimed to give substance to the idea of biological information – an idea

which has grounded significant aspects of informal biological thought for the past fifty

years. Crick’s seminal use, in molecular biology, of the term ‘information’, meaning

the precise determination of sequence, is grounded on causation, not meaning or

representation. We inflected this idea in two ways, corresponding to two aspects of

information theory: the precise determination of a single output from a set of

alternatives (‘information as choice’), and the precise determination of the sequence

of a single output (‘information as construction’). These two aspects can be traced

back to Crick, whose idea of information as construction – to rephrase in our terms –

was an attempt to provide an explanation of information as choice, in the sense of

biological specificity (Crick 1958; Crick 1970). This suggests that Griffiths’ and

Stotz’s (2013) idea of distributed specificity is theoretically richer than initially

envisioned.

Information as choice is captured by causal specificity, proposed elsewhere to be

measured by the Shannon mutual information between values of a cause set by an
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intervention and observations of the effect. This measure can be applied to causal

graphs, such as those representing gene regulatory or animal signalling networks, and

has numerous potential applications in biology.

Information as construction is captured by the Kolmogorov complexity of a

sequence and the algorithmic mutual information between two sequences. These

measures capture the intuition that there is something in common between a program

generating a sequence and the biological processes of transcription and translation.

We insisted, however, that there is more to biology than discrete, deterministic

computing: randomness plays a central role in biological functioning. A similar point

could be made regarding the non-discrete nature of biological phenomena. From the

point of view of Kolmogorov complexity, randomness creates information. Such

information is not necessarily functional, and distinguishing between information and

function is a necessary step towards better understanding how information can lead

to function.

We proposed that biological algorithmic complexity ought to be measured using a

biologically relevant programming language – the language in which the cell performs

its own operations. In such a language, some operations, such as reverse-translation,

will be impossible. This means that the biological complexity of a sequence can far

exceed its own length – making it very different from non-biological algorithmic

complexity. In planned future work, we will take up the challenge of fleshing out the

‘language of the cell’, and articulating the choice and construction aspects of

biological information.
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