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CHAPTER 1

INTRODUCTION

BABY SET THEORY

We shall begin with an informal discussion of some basic concepts of set
theory. In these days of the “new math,” much of this material will be
already familiar to you. Indeed, the practice of beginning each mathematics
course with a discussion of set theory has become widespread, extending
even to the elementary schools. But we want to review here elementary-
school set theory (and do it in our notation). Along the way we shall be able to
point out some matters that will become important later. We shall not, in
these early sections, be particularly concerned with rigor. The more serious
work will start in Chapter 2.

A setis a collection of things (called its members or elements), the collection
being regarded as a single object. We write “t € A” to say that ¢ is a member
of 4, and we write “t ¢ A” to say that t is not a member of A.

For example, there is the set whose members are exactly the prime
numbers less than 10. This set has four elements, the numbers 2, 3, 5, and 7.
We can name the set conveniently by listing the members within braces
(curly brackets):

2,3, 5, 7



relation (€). If we want to know whether A € B, we look at the set 4 as a
single object, and we check to see if this single object is among the members
of B. By contrast, if we want to know whether A < B, then we must open up
the set A, examine its various members, and check whether its various
members can be found among the members of B.

Examples 1. (< Q, but & ¢ .

2. {}e{{}} but {F} & {{D}}. {T} is not a subset of {{ZF}} because
there is a member of {7}, namely ¥, that is not a member of {{(¥}}.

3. Let Us be the set of all people in the United States, and let Un be
the set of all countries belonging to the United Nations. Then

John Jones € Us € Un.
But John Jones ¢ Un (since he is not even a country), and hence Us & Un.

Any set A will have one or more subsets. (In fact, if 4 has n elements,
then A has 2" subsets. But this is a matter we will take up much later.) We
can gather all of the subsets of 4 into one collection. We then have the set
of all subsets of 4, called the power® set 24 of A. For example,

P23 ={},
P2} = {2, {2
2{0, 1} = {@, {0}, {1}, {0, 1}}.

A very flexible way of naming a set is the method of abstraction. In t_l}ié":':
method we specify a set by giving the condition—the entrance requirement—

that an object must satisfy in order to belong to the set.” In this way we
obtain the set of all objects x such that x meets the entrance requirement.
The notation used for the set of all objects x such that the condition
__x__holds is
fef —x_k
For example:
1. PA is the set of all objects x such that x is a subset of 4. Here “x

is a subset of A” is the entrance requirement that x must satisfy in order to
belong to #A. We can write

P4 = {x|xis a subset of A}
={x|x < 4}

! The reasons for using the word “power” in this context are not very convincing, but the
usage is now well established.

2. A n Bis the set of all objects y such that ye 4 and y e B. We can
write .
AnB={y|yeAand ye B}.

[13% 1]

It is unimportant whether we use “x” or “y” or another letter as the

‘symbol (which is used as a pronoun) here.

3. The set {z|z# z} equals (J, because the entrance requirement
“z # z” is not satisfied by any object z.
4. The set {n|nis an even prime number} is the same as the set {2}.

There are, however, some dangers inherent in the abstraction method.
For certain bizarre choices of the entrance requirement, it may happen that
there is no set containing exactly those objects meeting the entrance
requirement. There are two ways in which disaster can strike.

One of the potential disasters is illustrated by

{x | x is a positive integer definable in one line of type}.

The tricky word here is “definable.” Some numbers are easy to define in one
line. For example, the following lines each serve to define a positive integer:

12,317, :

the millionth prime number,

the least number of the form 22" + 1 that is not prime,
the 23rd perfect? number.

Observe that there are only finitely many possible lines of type (because
there are only finitely many symbols available to the printer, and there is a
limit to how many symbols will fit on a line). Consequently

{x | x is a positive integer definable in one line of type}

is only a finite set of integers. Consider the least positive integer not in this
set; that is, consider

the least positive integer not definable in one line of type.

The preceding line defines a positive integer in one line, but that number is,
by its construction, not definable in one line! So we are in trouble, and the
trouble can be blamed on the entrance requirement of the set, ie., on the
phrase “is a positive integer definable in one line of type.” While it may have

2 A positive integer is perfect if it equals the sum of its smaller divisors, e.g.,
6 =142+ 3. It is deficient (or abundant) if the sum of its smaller divisors is less than (or
greater than, respectively) the number itself. This terminology is a vestigial trace of
numerology, the study of the mystical significance of numbers. The first four perfect numbers
are 6, 28, 496, and 8128.



appeared originally to be a meaningful entrance requirement, it now appears
to be gravely defective. (This example was given by G. G. Berry in 1906.
A related example was published in 1905 by Jules Richard.)

There is a second disaster that can result from an overly free-swinging
use of the abstraction method. It is exemplified by

{x|x¢x},

this is, by the set of all objects that are not members of themselves. Call
this set A4, and ask “is A a member of itself?” If 4 ¢ 4, then 4 meets the
entrance requirement for A, whereupon 4 € 4. But on the other hand, if
A€ A, then 4 fails to meet the entrance requirement and so 4 ¢ A. Thus
both “A4e€ A” and “A ¢ A” are untenable. Again, we are in trouble. The
phrase “is not a member of itself” appears to be an illegal entrance require-
ment for the abstraction method. (This example is known as Russell’s
paradox. It was communicated by Bertrand Russell in 1902 to Gottlob
Frege, and was published in 1903. The example was independently
discovered by Ernst Zermelo.)

These two sorts of disaster will be blocked in precise ways in our
axiomatic treatment, and less formally in our nonaxiomatic treatment. The
first sort of disaster (the Berry example) will be avoided by adherence
to entrance requirements that can be stated in a totally unambiguous form,
to be specified in the next chapter. The second sort of disaster will be
avoided by the distinction between sets and classes. Any-collection of sets

will be a class. Some collections of sets (such-as the collections ¥ ang:

{&}) will be sets. But some collections of sets (such as the collection of-all
sets not members of themselves) will be too large to allow as sets. These
oversize collections will be called proper classes. The distinction will be
discussed further presently.

In practice, avoidance of disaster will not really be an oppressive or

onerous task. We will merely avoid ambiguity and avoid sweepingly vast
sets. A prudent person would not want to do otherwise.

Exercises

“ ”

1. Which of the following become true when is inserted in place of the
blank ? Which become true when “<=” is mserted"
(& — {2, {2}
b) {&} {2, {T}}}

(

(

@ (@) — {2 (@)
) {oy—{o {2 (T}

2. Show that no two of the three sets &, {¢J}, and {{J}} are equal to each
other.

3. Show that if B < C, then B < 2C.
4. Assumethatxand yare members ofa set B. Show that {{x}, {x, y}} € #2B.

SETS—AN INFORMAL VIEW

We are about to present a somewhat vague description of how sets are
obtained. (The description will be repeated much later in precise form.)
None of-our later work will actually depend on this informal description,
but we hope it will illuminate the motivation behind some of the things
we will do.

\ b g
Ry,
o R ! /

Av X 0 7

Fig.2. V, is the set A of atoms.

First we gather together all those things that are not themselves sets but
that we want to have as members of sets. Call such things atoms. For
example, if we want to be able to speak of the set of all two-headed
coins, then we must include all such coins in our collection of atoms.
Let A4 be the set of all atoms; it is the first set in our description.

We now proceed to build up a hierarchy

VO = V1 < V2 (S
of sets. At the bottom level (in a vertical arrangement as in Fig. 2) we take
V, = 4, the set of atoms. The next level will also contain all sets of atoms:

V1=VOUQ’VO=Au9A.



The third level contains everything that is in a lower level, plus all sets of
things from lower levels:

V,=V, v 2V,.
And in general
Vi =Vvov.

Thus we obtain successively Vo, Vs V,, . But even this infinite
hierarchy does not include enough sets. For example, e V,, {Z} eV,
{g}} € ,, etc, but we do not yet have the infinite set

{@. {2}, {2}, - -
To remedy this lack, we take the infinite union
Vm — Vo U V1 UREEH

and thenlet V. =V o 2V ,and we continue. In general for any «,

V1 =V, V2V,

and this goes on “forever.” Whenever you might think that the construction
is finished, you instead take the union of all the levels obtained so far, take
the power set of that union, and continue. .

A better explanation of the “forever” idea.must be delayed until we
discuss (in Chapter 7) the “numbers” being used as subscripts in the
preceding paragraphs. These are the so-called “ordidal numbers.” The
ordinal numbers begin with 0, 1, 2, ...; then there is the infinite number w,
then w + 1, w + 2, ...; and this goes on “forever.”

A fundamental principle is the following: Every set appears somewhere
in this hierarchy. That is, for every set a there is some « with ae V f i
That is what the sets are; they are the members of the levels of our
hierarchy.

Examples  Suppose that a and b are sets. Say thatae V,,, and be V;
and suppose that 7 p1 is “higher” in the hierarchy than V " +1- Then both
aand b are in V}, ,, since each level includes all lower levels. Consequently.
in V,, , we have the pair set {a, b}. On the other hand at no point do we
obtain a set of all sets, i.e., a set having all sets as members. There simply
is no such set.

There is one way in which we can simplify our picture. We were very
indefinite about just what was in the set 4 of atoms. The fact of the matter

is that the atoms serve no mathematically necessary purpose, so we banish
them; we take A = ¢¥. In so doing, we lose the ability to form sets of flowers
or sets of people. But this is no cause for concern; we do not need set theory
to talk about people and we do not need people in our set theory. But we
definitely do want to have sets of numbers, e.g., {2, 3 + in}. Numbers do not
appear at first glance to be sets. But as we shall discover (in Chapters 4 and
5), we can find sets that serve perfectly well as numbers.

Our theory then will ignore all objects that are not sets (as interesting
and real as such objects may be). Instead we will concentrate just on “pure”
sets that can be constructed without the use of such external objects. In

V,

[

Fig. 3. The ordinals are the backbone of the universe.

particular, any member of one of our sets will itself be a set, and each of its
members, if any, will be a set, and so forth. (This does not produce an
infinite regress, because we stop when we reach ¢.)

Now that we have banished atoms, the picture becomes narrower
(Fig. 3). The construction is also simplified. We have defined V ' to be
V., U 2V . Now it turns out that this is the same as 4 U 2V (see Exercise
6) With 4 = J, we have simply V., =2V .

Exercises

5. Define the rank of a set ¢ to be the least « such that ¢ = V. Compute
the rank of {{Z}}. Compute the rank of {&¥, {&}, {&, {T}}}-
6. We have stated that V| = 4 U 2V . Prove this at least for « < 3.

7. List all the members of V,. List all the members of V,. (It is to be
assumed here that there are no atoms.)



CLASSES

Thereis no “set of all sets,” i.e., there is no set having all sets as members.
This is in accordance with our informal image of the hierarchical way sets
are constructed. Later, the nonexistence of a set of all sets will become a
theorem (Theorem 2A), provable from the axioms.

Nonetheless, there is some mild inconvenience that results if we forbid
ourselves even to speak of the collection of all sets. The collection cannot be
a set, but what status can we give it? Basically there are two alternatives:

The Zermelo-Fraenkel alternative The collection of all sets need have
no ontological status at all, and we need never speak of it. When tempted
to speak of it, we can seek a rephrasing that avoids it.

The von Neumann—Bernays alternative The collection of all sets can be
called a class. Similarly any other collection of sets can be called a class.
In particular, any set is a class, but some classes are too large to be sets.
Informally, a class A is a set if it is included in some level V. of our hierarchy
(and then is a member of ¥ _ ). Otherwise it is not a set, ‘and can never be
a member of a set.

For advanced works in set theory, the Zermelo-Fraenkel alternative
seems to be the better of the two. It profits from the siinplicity of having
to deal with only one sort of object (sets) instead of two (classes and sets).
And the circumlocutions it requires (in order to avoid reference to classes
that are not sets) are things to which set-theorists learn early to adapt.

For introductory works in set theory (such’as this book), the chmcé

between the two alternatives is less clear. The prohibition against mentlonmg
any class that fails to be a set seems unnatural and pos51bly unfair. Desiring
to have our cake and eat it too, we will proceed as follows. We officially
adopt the Zermelo-Fraenkel alternative. Consequently the axioms and
theorems shall make no mention of any class that is not a set. But in the
expository comments, we will not hesitate to mention, say, the class of all
sets if it appears helpful to do so. To avoid confusion, we will reserve upper-
case sans serif letters (A, B, ...) for classes that are not guaranteed to be sets.

AXIOMATIC METHOD

In this book we are going to state the axioms of set theory, and we
are going to show that our theorems are consequences of those axioms. The
great advantage of the axiomatic method is that it makes totally explicit
just what our initial assumptions are.

It is sometimes said that “mathematics can be embedded in set theory.”
This means that mathematical objects (such as numbers and differentiable

functions) can be defined to be certain sets. And the theorems of mathematics
(such as the fundamental theorem of calculus) then can be viewed as state-
ments about sets. Furthermore, these theorems will be provable from our
axioms. Hence our axioms provide a sufficient collection of assumptions
for the development of the whole of mathematics—a remarkable fact. (In
Chapter 5 we will consider further the procedure for embedding mathematics
in set theory.)

The axiomatic method has been useful in other subjects as well as in set
theory. Consider plane geometry, for example. It is quite possible to talk
about lines-and triangles without using axioms. But the advantages of
axiomatizing geometry were seen very early in the history of the subject.

The nonaxiomatic approach to set theory is often referred to as “naive
set theory,” a terminology that does not hide its bias. Historically, set theory
originated in nonaxiomatic form. But the paradoxes of naive set theory (the
most famous being Russell’s paradox) forced the development of axiomatic
set theory, by showing that certain assumptions, apparently plausible, were
inconsistent and hence totally untenable. It then became mandatory to give
explicit assumptions that could be examined by skeptics for possible
inconsistency. Even without the foundational crises posed by the paradoxes
of naive set theory, the axiomatic approach would have been developed to
cope with later controversy over the truth or falsity of certain principles,
such as the axiom of choice (Chapter 6). Of course our selection of
axioms will be guided by the desire to reflect as accurately as possible our
informa] (preaxiomatic) ideas regarding sets and classes.

It is nonetheless quite possible to study set theory from the nonaxiomatic
viewpoint. We have therefore arranged the material in the book in a “two-
tier” fashion. The passages dealing with axioms will henceforth be marked
by a stripe in the left margin. The reader who omits such passages and
reads only the unstriped material will thereby find a nonaxiomatic
development of set theory. Perhaps he will at some later time wish to look at
the axiomatic underpinnings. On the other hand, the reader who omits
nothing will find an axiomatic development. Notice that most of the
striped passages appear early in the book, primarily in the first three
chapters. Later in the book the nonaxiomatic and the axiomatic approaches
largely converge.

Our axiom system begins with two primitive notions, the concepts of
“set” and “member.” In terms of these concepts we will define others,
but the primitive notions remain undefined. Instead we adopt a list of
axioms concerning the primitive notions. (The axioms can be thought of
as divulging partial information regarding the meaning of the primitive
notions.)



Having adopted a list-of axioms, we will then proceed to derive
sentences that are logical consequences (or theorems) of the axioms. Here
a sentence ¢ is said to be a logical consequence of the axioms if any
assignment of meaning to the undefined notions of set and member
making the axioms true also makes o true.

We have earlier sketched, in an informal and sometimes vague way,
what “set” and “member” are intended to mean. But for a sentence to
be a logical consequence of the axioms, it must be true whatever “set”
and “member” mean, provided only that the axioms are true. The
sentences that appear, on the basis of our informal viewpoint, as if they
ought to be true, must still be shown to be logical consequences of the
axioms before being accepted as theorems. In return for adopting this
restriction, we escape any drawbacks of the informality and vagueness
of the nonaxiomatic viewpoint.

(There is an interesting point here concerning the foundations of
mathematics. If ¢ is a logical consequence of a list of axioms, is there
then a finitely long proof of o from the axioms? The answer is affirmative,
under a very reasonable definition of “proof.” This is an important result
in mathematical logic. The topic is treated, among other places, in our
book A Mathematical Introduction to Logic, Academic Press, 1972.)

For example, the first of our axioms is the axiom of extensionality,
which is almost as follows: Whenever A and B are sets such that exactly
the same things are members of one as are members of the other, then
A = B. Imagine for the moment that this were our only axiom. We

can then consider some of the logical consequences of this one axion”” -

For a start, take the sentence: “There cannot be two different~sets,
each of which has no members.” This sentence is a logical consequence
of extensionality, for we claim that any assignment of meaning to “set”
and “member” making extensionality true also makes the above sentence
true. To prove this, we argue as follows. Let 4 and B be any sets, each
of which has no members. Then exactly the same things belong to A4
as to B, since none belong to either. Hence by extensionality, 4 = B.
(The validity of this argument, while independent of the meaning of
“set” or “member,” does depend on the meaning of the logical terms
such as “each,” “no,” “equal,” etc.)

On the other hand, consider a simple sentence such as o: “There are
two sets, one of which is a member of the other.” This sentence is not
a logical consequence of extensionality. To see this, let the word “set”
mean “a number equal to 2,” and let “member of” mean “unequal to.”
Under this interpretation, extensionality is true but ¢ is false. Of course
we will soon add other axioms of which ¢ will be a logical consequence.

NOTATION

To denote sets we will use a variety of letters, both lowercase (a, b, o)
uppercase (4, B, ...), and even script letters and Greek letters. Where
feasible, we will attempt to have the larger and fancier letters denote sets
higher in our hierarchy of levels than those denoted by smaller and plainer
letters. In addition, letters can be embellished with subscripts, primes, and
the like. This assures us of an inexhaustible supply of symbols for sets. In
other words, when it comes to naming sets, anything goes.

It will often be advantageous to exploit the symbolic notation of
mathematical logic. This symbolic language, when used in judicious amounts
to replace the English. language, has the advantages of both conciseness
(so that expressions are shorter) and preciseness (so that expressions are
less ambiguous).

The following symbolic expressions will be used to abbreviate the
corresponding English expressions:

Vx for every set x

dx . there exists a set x such that

= not

& and .

or or (in the sense “one or the other or both™)

= implies (“__ = __” abbreviates “if __, then __”)
< if and only if, also abbreviated “iff”

You hdve probably seen these abbreviations before; they are discussed in
more detail in the Appendix.

We also have available the symbols € and = (and ¢ and #, although
we could economize by eliminating, e.g., “a ¢ B” in favor of “—ae B”).
With all these symbols, variables (a, b, ...), and parentheses we could avoid
the English language altogether in the statement of axioms and theorems.
We will not actually do so, or at least not all at once. But the fact that
we have this splendid formal language available is more than a theoretical
curiosity. When we come to stating certain axioms, the formal language will
be a necessity.

Notice that we read Vx as “for all sets x,” rather than “for all things x.”
This is due to our decision to eliminate atoms from our theory. A result
of this elimination is that everything we consider is a set; e.g., every member
of a set will itself be a set.

Example The principle of extensionality can be written as

VA VB[(4 and B have exactly the same members) = A = B].



Then “A4 and B have exactly the same members” can be written as
Vx(xe A < xeB)
so that extensionality becomes
VAVB[Vx(xe A < xeB) = A=B]
Example “There is a set to which nothing belongs” can be written
dB Vx x ¢ B.

These two examples constitute our first two axioms. It is not really
necessary for us to state the axioms in symbolic form. But we will seize
the opportunity to show how it can be done, on the grounds that the
more such examples you see, the more natural the notation will become
to you.

HISTORICAL NOTES

The concept of a set is very basic and natural, and has been used in
mathematical writings since ancient times. But the theory of abstract sets,
as objects to be studied for their own interest, was originated largely by
Georg Cantor (1845-1918). Cantor was a German mathematician, and his
papers on set theory appeared primarily during the period from 1874 t
1897. )

Cantor was led to the study of set theory in a very indirect way. He
was studying trigonometric series (Fourier series), e.g., series of the form**

.

a, sin x + a, sin 2x + a, sin 3x + 1. .

Such series had been studied throughout the nineteenth century as solutions
to differential equations representing physical problems. Cantor’s work on
Fourier series led him to consider more and more general sets of real
numbers. In 1871 he realized that a certain operation on sets of real numbers
(the operation of forming the set of limit points) could be iterated more
than a finite number of times; starting with a set P one could form
Pss by s Pz w1s; g By P ..»---- In December of 1873 Cantor
proved that the set of all real numbers could not be put into one-to-one
correspondence with the integers (Theorem 6B); this result was published
in 1874. In 1879 and subsequent years, he published a series of papers
setting forth the general concepts of abstract sets and “transfinite numbers.”

Cantor’s work was well received by some of the prominent mathe-
maticians of his day, such as Richard Dedekind. But his willingness to
regard infinite sets as objects to be treated in much the same way as finite
sets was bitterly attacked by others, particularly Kronecker. There was no

objection to a “potential infinity” in the form of an unending process, but
an “actual infinity” in the form of.a completed infinite set was harder
to accept.

About the turn of the century, attempts were made to present the
principles of set theory as being principles of logic—as self-evident truths
of deductive thought. The foremost work in this direction was done by
Gottlob Frege. Frege was a German mathematician by training, who
contributed to both mathematics and philosophy. In 1893 and 1903 he
published a two-volume work in which he indicated how mathematics
could ‘be developed from principles that he regarded as being principles
of logic’ But just as the second volume was about to appear, Bertrand
Russell informed Frege of a contradiction derivable from the principles
(Russell’s paradox).

Russell’s paradox had a tremendous impact on the ideas of that time
regarding the foundations of mathematics. It was not, to be sure, the
first paradox to be noted in set theory. Cantor himself had observed
that some collections, such as the collection of all sets, had to be regarded
as “inconsistent totalities,” in contrast to the more tractable “consistent
totalities,” such as the set of numbers. In this he foreshadowed the
distinction between proper classes and sets, which was introduced by John
von Neumann in 1925. Also in 1897, Cesare Burali-Forti had observed a
paradoxical predicament in Cantor’s theory of transfinite ordinal numbers.
But the simplicity and the directness of Russell’s paradox seemed to destroy
utterly .the attempt to base mathematics on the sort of set theory that
Frege had proposed.

The first axiomatization of set theory was published by Ernst Zermelo
in 1908. His axioms were essentially the ones we state in Chapters 2 and 4.
(His Aussonderung axioms were later made more precise by Thoralf Skolem
and others.) It was observed by several people that for a satisfactory theory
of ordinal numbers, Zermelo’s axioms required strengthening. The axiom of
replacement (Chapter 7) was proposed by Abraham Fraenkel (in 1922) and
others, giving rise to the list of axioms now known as the “Zermelo-
Fraenkel” (ZF) axioms. The axiom of regularity or foundation (Chapter 7)
was at least implicit in a 1917 paper by Dmitry Mirimanoff and was
explicitly included by von Neumann in 1925.

An axiomatization admitting proper classes as legitimate objects was
formulated by von Neumann in the 1925 paper just mentioned. Some of
his ideas were utilized by Paul Bernays in the development of a more
satisfactory axiomatization, which appeared in a series of papers published
in 1937 and later years. A modification of Bernays’s axioms was used by
Kurt Godel in a 1940 monograph. This approach is now known as “von
Neumann-Bernays” (VNB) or “Gédel-Bernays” (GB) set theory.



The use of the symbol € (a stylized form of the Greek epsilon) to denote
membership was initiated by the Italian mathematician Giuseppe Peano
in 1889. It abbreviates the Greek word éoti, which means “is.” The under-
lying rationale is illustrated by the fact that if B is the-set of all blue objects,
then we write “x € B” in order to assert that x is blue.

Present-day research in set theory falls for the most part into two
branches. One branch involves investigating the consequences of new and
stronger axioms. The other branch involves the “metamathematics” of set
theory, which is the study not of sets but of the workings of set theory
itself: its proofs, its theorems, and its nontheorems.

CHAPTER 2

AXIOMS AND OPERATIONS

In.this chapter we begin by introducing the first six of our ten axioms.
Initially the axiomatization might appear to be like cumbersome
machinery to accomplish simple tasks. But we trust that it will eventually
prove itself to be powerful machinery for difficult tasks. Of course the
axioms are not chosen at random, but must ultimately reflect our informal
ideas about what sets are.

In addition to the introduction of basic concepts, this chapter provides
practice in using the symbolic notation introduced in Chapter 1. Finally
the chapter turns to the standard results on the algebra of sets.

AXIOMS
The first of our axioms is the principle of extensionality.

Extensionality Axiom If two sets have exactly the same members,
then they are equal:

VAVB[Vx(xe A < xeB) = A=B]

1T



Call this set 4. And let B be the set of all solutions to the polynomial
equation

x* —17x® + 101x2 — 247x + 210 = 0.

Now it turns out (as the industrious reader can verify) that the set B has
exactly the same four members, 2, 3, 5, and 7. For this reason 4 and B are
the same set, i.e, 4 = B. It matters not that 4 and B were defined in
different ways. Because they have exactly the same elements, they are
equal; that is, they are one and the same set. We can formulate the general
principle:

Principle of Extensionality If two sets have exactly the same members,
_then they are equal.

Here and elsewhere, we can state things more concisely and less
ambiguously by utilizing a modest amount of symbolic notation. Also we
abbreviate the phrase “if and only if” as “iff.” Thus we have the restatement:

Principle of Extensionality If A4 and B are sets such that for every
object t,
ted iff teB,
then 4 = B. .

For example, the set of primes less than 10 is the: same as the set of
solutions to the equation x* — 17x® + 101x2 — 247x + 210 = 0. And the set
{2} whose only member is the number 2 is the same as the set of even primes.

Incidentally, we write “ A = B” to mean that 4 and B are the same object#

That is, the expression “A” on the left of the equality symbol namesthé
same object as does the expression “B” on the right: If 4 = B, then
automatically (i.e., by logic) anything that is true of the object 4 is also true
of the object B (it being the same object). For example, if 4 = B, then it is
automatically true that for any object ¢, t € A iff t € B. (This is the converse
to the principle of extensionality.) As usual, we write “4 # B” to mean that
it is not true that 4 = B. /

A small set would be a set {0} having only one member, the number 0.
An even smaller set is the empty set . The set & has no members at all.
Furthermore it is the only set with no members, since extensionality tells us
that any two such sets must coincide. It might be thought at first that the
empty set would be a rather useless or even frivolous set to mention, but,
in fact, from the empty set by various set-theoretic operations a surprising
array of sets will be constructed.

For any objects x and y, we can form the pair set {x, y} having just the
members x and y. Observe that {x, y} = {y, x}, as both sets have exactly the
same members. As a special case we have (when x = y) the set {x, x} = {x}.

For example, we can form the set {&} whose only member is . Note
that {(F} # &, because S e {F} but & ¢ . The fact that (O} # T is
reflected in the fact that a man with an empty container is better off than a
man with nothing—at least he has the container. Also we can form {1,
{{{7}}}, and so forth, all of which are distinct (Exercise 2).

Similarly for any objects x, y, and z we can form the set {x, y, z}. More
generally, we have the set {x , ..., x } whose members are exactly the
objects x 12 +--» X, . For example,

@, {2}, {o)

is a three-element set.

(a) k (b)
Fig. 1. The shaded areas represent (a) A U B and (b) 4 n B.

Two other familiar operations on sets are union and intersection. The
union™of sets 4 and B is the set A U B of all things that are members of
A or B (or both). Similarly the intersection of A and B is the set A N B of all
things that are members of both 4 and B. For example,

{x iz ={xy17
and
{2,3,5,71n{1,2,3,4 ={2, 3}.

Figure 1 gives the usual pictures illustrating these operations. Sets 4 and B
are said to be disjoint when they have no common members, ie., when
An B=(.

A set A is said to be -a subset of a set B (written A < B) iff all the
members of 4 are also members of B. Note that any set is a subset of itself,
At the other extreme, (Jf is a subset of every set. This fact (that &5 < A4 for
any A) is “vacuously true,” since the task of verifying, for every member of
&, that it also belongs to 4, requires doing nothing at all.

If A = B, then we also say that A is included in B or that B includes A.
The inclusion relation (£) is not to be confused with the membership



