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small as the number of S’s, then every P is an S. For if, in counting the P’s,
we begin with the S’s (which are a part of them), and having counted all the
S’s arrive at the number n, there will remain over no P’s not S’s. For if there
were any, the number of P’s would count up to more than n. From this we
deduce the validity of the following mode of inference:

Every Texan kills a Texan,
Nobody is killed by but one person,
Hence, every Texan is killed by a Texan,

supposing Texans to be a finite lot. For, by the first premise, every Texan killed
by a Texan is a Texan killer of a Texan. By the second premise, the Texans
killed by Texans are as many as the Texan killers of Texans. Whence we con-
clude that every Texan killer of a Texan is a Texan killed by a Texan, or, by
the first premise, every Texan is killed by a Texan. This mode of reasoning is
frequent in the theory of numbers.

D. ON THE ALGEBRA OF LOGIC: A
CONTRIBUTION TO THE
PHILOSOPHY OF NOTATION
(PEIRCE 1885)

Peirce’s next two papers, the brief note /883 and the longer article, ‘On the
algebra of logic’ (1885), presented his discovery of the quantifiers. Gottlob
Frege, in his Begriffschrift (1879), had already made the same discovery (and
had carried the analysis of number further than Peirce was to do); and Peirce’s
student O.H. Mitchell (/883) had, under Peirce’s guidance, in effect developed
a system of monadic quantification theory. But these discoveries had little
impact at the time. It was Peirce’s /885 that successfully launched upon the
world the theory of quantification via the three volumes of Schréder’s Vorle-
sungen iiber die Algebra der Logik (1890, 1891, 1895). (These Vorlesungen were
for some years the standard reference work in mathematical logic, and were
largely based on Peirce’s discoveries.)

‘On the algebra of logic’ is noteworthy for other reasons as well. It begins
with an important passage (§2) on the propositional calculus, containing the
first explicit use of two truth-values.? Peirce then describes a decision pro-
cedure for the truth of any formula of the sentential calculus: ‘[T]o find whether
a formula is necessarily true substitute f and v for the letters and see whether

# Truth-values and truth-tables have their roots in the work of George Boole (/854, pp. 72-6).
They are implicit in the work of Venn and Jevons (see the discussion in Lewis /918, pp. 74 and
175 ff.). Truth-tables are also implicit in §5 of the Begriffschrift, although Frege did not introduce
‘The True’ and ‘The False’ until his /89/. For further references on this topic, see Post 1921,
reproduced in van Heijenoort 1967, pp. 264-83.
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it can be supposed false by any such assignment of values.” He also gives a lucid
defence of material implication, and shows how to define negation in terms of
implication and a special symbol « for absurdity. Next (§3) Peirce treats first-
order quantification theory. He coins the term ‘quantifier’ (probably derived
from Sir William Hamilton’s terminology of ‘quantifying the predicate’); the
propositional matrix of a quantified formula he calls its ‘Boolian’. He uses the
symbols L and II to represent the existential and universal quantifiers. This
felicitous notation—like his use of the Boolean sentential connectives—was a
major advantage of his system, and enabled Peirce to discuss the rules for
transforming a quantified formula into prenex normal form.? Peirce next (§4)
proceeds to second-intentional logic. (Following the Schoolmen, he clearly dis-
tinguishes first-intentional logic from second-intentional.) He states the modern
second-order definition of identity, avoiding Leibniz’s confusion of use and men-
tion.® The paper closes with his definition of a finite set as one which cannot be
put into a one-to-one correspondence with any proper subset. (Dedekind’s later
independent definition of an infinite collection in his /888 is equivalent to
Peirce’s.)

References to Peirce 1885 should be to the section numbers, which appear in
the original text.

I.—THREE KINDS OF SIGNS

Any character or proposition either concerns one subject, two subjects, or a
plurality of subjects. For example, one particle has mass, two particles attract
one another, a particle revolves about the line joining two others. A fact concern-
ing two subjects is a dual character or relation; but a relation which is a mere com-
bination of two independent facts concerning the two subjects may be called
degenerate, just as two lines are called a degenerate conic. In like manner a plural
character or conjoint relation is to be called degenerate if it is a mere compound
of dual characters.

A sign is in a conjoint relation to the thing denoted and to the mind. If this
triple relation is not of a degenerate species, the sign is related to its object only

® The Peircean notation was standard in the work of the Polish set-theoretic logicians of the 1920s
and 1930s: see the papers of Kuratowski or Sierpinski, or any volume of Fundamenta mathematicae
from that period. Léwenheim and Skolem continued to use the Peirce-Schroder notation well into
the twentieth century; and as late as his ‘Einkleidung der Mathematik in Schroderschen Relativkalkiil’
(Lowenheim 1940), Lowenheim was urging the superiority of the Peirce-Schréder notation to that
of Peano and Russell.

¢ Leibniz’s definition of identity was as follows: ‘Those things are the same of which one can be
substituted for the other salva veritate’—‘Eadem sunt quorum unum potest substitui alteri salva
veritate’ (Leibniz 1875-90, Vol. vii, pp. 228, 236). Quine observes that Aristotle and Aquinas had
already given a similar definition (Quine 1960, p. 116).



610 Charles Sanders Peirce (1839-1914)

in consequence of a mental association, and depends upon a habit. Such signs
are always abstract and general, because habits are general rules to which the
organism has become subjected. They are, for the most part, conventional or
arbitrary. They include all general words, the main body of speech, and any mode
of conveying a judgment. For the sake of brevity I will call them rokens.

But if the triple relation between the sign, its object, and the mind, is
degenerate, then of the three pairs

sign object
sign mind
object mind

two at least are in dual relations which constitute the triple relation. One of the
connected pairs must consist of the sign and its object, for if the sign were not
related to its object except by the mind thinking of them separately, it would not
fulfil the function of a sign at all. Supposing, then, the relation of the sign to its
object does not lie in a mental association, there must be a direct dual relation
of the sign to its object independent of the mind using the sign. In the second
of the three cases just spoken of, this dual relation is not degenerate, and the sign
signifies its object solely by virtue of being really connected with it. Of this nature
are all natural signs and physical symptoms. I call such a sign an index, a pointing
finger being the type of the class.

The index asserts nothing; it only says “There!” It takes hold of our eyes, as
it were, and forcibly directs them to a particular object, and there it stops.
Demonstrative and relative pronouns are nearly pure indices, because they denote
things without describing them; so are the letters on a geometrical diagram, and
the subscript numbers which in algebra distinguish one value from another
without saying what those values are.

The third case is where the dual relation between the sign and its object is
degenerate and consists in a mere resemblance between them. I call a sign which
stands for something merely because it resembles it, an icon. Icons are so com-
pletely substituted for their objects as hardly to be distinguished from them. Such
are the diagrams of geometry. A diagram, indeed, so far as it has a general
signification, is not a pure icon; but in the middle part of our reasonings we forget
that abstractness in great measure, and the diagram is for us the very thing. So
in contemplating a painting, there is a moment when we lose the consciousness
that it is not the thing, the distinction of the real and the copy disappears, and
it is for the moment a pure dream,—not any particular existence, and yet not
general. At that moment we are contemplating an icon.

I have taken pains to make my distinction* of icons, indices, and tokens clear,
in order to enunciate this proposition: in a perfect system of logical notation signs
of these several kinds must all be employed. Without tokens there would be no
generality in the statements, for they are the only general signs; and generality

* See Proceedings American Academy of Arts and Sciences, Vol. VII, p. 294, May 14, 1867.
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is essential to reasoning. Take, for example, the circies by which Euler represents
the relations of terms. They well fulfil the function of icons, but their want of
generality and their incompetence to express propositions must have been felt by
everybody who has used them. Mr. Venn has, therefore, been led to add shading
to them; and this shading is a conventional sign of the nature of a token. In
algebra, the letters, both quantitative and functional, are of this nature. But
tokens alone do not state what is the subject of discourse; and this can, in fact,
not be described in general terms; it can only be indicated. The actual world can-
not be distinguished from a world of imagination by any description. Hence the
need of pronouns and indices, and the more complicated the subject the greater
the need of them. The introduction of indices into the algebra of logic is the
greatest merit of Mr, Mitchell’s system.* He writes £, to mean that the proposi-
tion F'is true of every object in the universe, and F, to mean that the same is true
of some object. This distinction can only be made in some such way as this. Indi-
ces are also required to show in what manner other signs are connected together.
With these two kinds of signs alone any proposition can be expressed; but it can-
not be reasoned upon, for reasoning consists in the observation that where certain
relations subsist certain others are found, and it accordingly requires the exhibi-
tion of the relations reasoned with in an icon. It has long been a puzzle how it
could be that, on the one hand, mathematics is purely deductive in its nature, and
draws its conclusions apodictically, while on the other hand, it presents as rich
and apparently unending a series of surprising discoveries as any observational
science. Various have been the attempts to solve the paradox by breaking down
one or other of these assertions, but without success. The truth, however, appears
to be that all deductive reasoning, even simple syllogism, involves an element of
observation; namely, deduction consists in constructing an icon or diagram the
relations of whose parts shall present a complete analogy with those of the parts
of the object of reasoning, of experimenting upon this image in the imagination,
and of observing the result so as to discover unnoticed and hidden relations
among the parts. For instance, take the syllogistic formula,

AllM is P
S is M
.S is P.

This is really a diagram of the relations of S, M, and P. The fact that the middle
term occurs in the two premises is actually exhibited, and this must be done or
the notation will be of no value. As for algebra, the very idea of the art is that
it presents formulae which can be manipulated, and that by observing the effects
of such manipulation we find properties not to be otherwise discerned. In such
manipulation, we are guided by previous discoveries which are embodied in
general formulae. These are patterns which we have the right to imitate in our
procedure, and are the icons par excellence of algebra. The letters of applied

* Studies in Logic, by members of the Johns Hopkins University. Boston: Little & Brown, 1883.
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algebra are usually tokens, but the x, y, z, etc. of a general formula, such as
(x +y)z =xz + yz,

are blanks to be filled up with tokens, they are indices of tokens. Such a formula
might, it is true, be replaced by an abstractly stated rule (say that multiplication
is distributive); but no application could be made of such an abstract statement
without translating it into a sensible image.

In this paper, I purpose to develope an algebra adequate to the treatment of
all problems of deductive logic, showing as I proceed what kinds of signs have
necessarily to be employed at each stage of the development. I shall thus attain
three objects. The first is the extension of the power of logical algebra over the
whole of its proper realm. The second is the illustration of principles which
underlie all algebraic notation. The third is the enuneration of the essentially dif-
ferent kinds of necessary inference; for when the notation which suffices for
exhibiting one inference is found inadequate for explaining another, it is clear
that the latter involves an inferential element not present to the former. Accord-
ingly, the procedure contemplated should result in a list of categories of reason-
ing, the interest of which is not dependent upon the algebraic way of considering
the subject. I shall not be able to perfect the algebra sufficiently to give facile
methods of reaching logical conclusions: I can only give a method by which any
legitimate conclusion may be reached and any fallacious one avoided. But I can-
not doubt that others, if they will take up the subject, will succeed in giving the
notation a form in which it will be highly useful in mathematical work. I even
hope that what I have done may prove a first step toward the resolution of one
of the main problems of logic, that of producing a method for the discovery of
methods in mathematics.

II.—NON-RELATIVE LOGIC

According to ordinary logic, a proposition is either true or false, and no further
distinction is recognized. This is the descriptive conception, as the geometers say;
the metric conception would be that every proposition is more or less false, and
that the question is one of amount. At present we adopt the former view.

Let propositions be represented by quantities. Let v and f be two constant
values, and let the value of the quantity representing a proposition be v if the pro-
position is true and be f if the proposition is false. Thus, x being a proposition,
the fact that x is either true or false is written

(x-1)(v—-x) =0.
So (x=f)(v—y)=0

will mean that either x is false or y is true. This may be said to be the same as
‘if x is true, y is true’. A hypothetical proposition, generally, is not confined to
stating what actually happens, but states what is invariably true throughout a
universe of possibility. The present proposition is, however, limited to that one
individual state of things, the Actual.
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We are, thus, already in possession of a logical notation, capable of working
syllogism. Thus, take the premises, ‘if x is true, y is true’, and ‘if y is true, z is
true’. These are written

(x=f)(v-y)=0
(y-f)(v-2)=0.
Multiply the first by (v — z) and the second by (x — f) and add. We get
(x—f)(v-1)(v-2) =0,
or dividing by v — £, which cannot be 0,
(x—=f)(v—-2) =0

and this states the syllogistic conclusion, “if x is true, z is true”.

But this notation shows a blemish in that it expresses propositions in two
distinct ways, in the form of quantities, and in the form of equations; and the
quantities are of two kinds, namely those which must be either equal to f or to
v, and those which are equated to zero. To remedy this, let us discard the use of
equations, and perform no operations which can give rise to any values other than
fand v.

Of operations upon a simple variable, we shall need but one. For there are but
two things that can be said about a single proposition, by itself; that it is true and
that it is false,

x=vandx =f.

The first equation is expressed by x itself, the second by any function, ¢, of x,
fulfilling the conditions

¢v="Ff of=v.
The simplest solution of these equations is
dx=Ff+v-—x

A product of n factors of the two forms (x — f) and (v — y), if not zero equals

(v — £)". Write P for the product. Then v — — isthe simplest function

P

(v—1)
of the variables which becomes v when the product vanishes and f when it does
not. By this means any proposition relating to a single individual can be
expressed.

If we wish to use algebraical signs with their usual significations, the mean-
ings of the operations will entirely depend upon those of f and v. Boole chose
v = 1, f = 0. This choice gives the following forms:

f+v—x=1~-x

which is best written Xx.
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_Sx_—:‘__)_(_‘;__i)=1_x+xy—_——7—
(v-x)(v-y)
V_—_—

=x+y—xy
v—f

v—x)(v-— v—-2
O Lol )=x+y+z_xy—xz—yz+xyz

(v—f£)?
_Gene-n
v—f

It appears to me that if the strict Boolian system is used, the sign + ought
to be altogether discarded. Boole and his adherent, Mr. Venn (whom I never
disagree with without finding his remarks profitable), prefer to write x + Xy in
place of Xy. I confess I do not see the advantage of this, for the distributive
principle holds equally well when written

Xyz = Xzyz

Xy7=X2.5%.
The choice of v =1, f = 0, is agreeable to the received measurement of pro-
babililies. But there is no need, and many times no advantage, in measuring
probabilities in this way. I presume that Boole, in the formation of his algebra,
at first considered the letters as denoting propositions or events. As he presents
the subject, they are class-names; but it is not necessary so to regard them.

Take, for example, the equation
t=n+ hf,

which might mean that the body of taxpayers is composed of all the natives,
together with householding foreigners. We might reach the signification by
either of the following systems of notation, which indeed differ grammatically
rather than logically.

Signification Signification
Sign 1st System 2nd System

t Taxpayer He is a Taxpayer

n  Native He is a Native

h  Householder He is a Householder
f  Foreigner He is a Foreigner

There is no index to show who the “He” of the second system is, but that makes
no difference. To say that he is a taxpayer is equivalent to saying that he is a
native or is a householder and a foreigner. In this point of view, the constants
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1 and O are simply the probabilities, to one who knows, of what is true and
what is false; and thus unity is conferred upon the whole system.

For my part, I prefer for the present not to assign determinate values to f
and v, nor to identify the logical operations with any special arithmetical ones,
leaving myself free to do so hereafter in the manner which may be found most
convenient. Besides, the whole system of importing arithmetic into the subject
is artificial, and modern Boolians do not use it. The algebra of logic should
be self-developed, and arithmetic should spring out of logic instead of reverting
to it. Going back to the beginning, let the writing of a letter by itself mean that
a certain proposition is true. This letter is a token. There is a general under-
standing that the actual state of things or some other is referred to. This under-
standing must have been established by means of an index, and to some extent
dispenses with the need of other indices. The denial of a proposition will be
made by writing a line over it.

I have elsewhere shown that the fundamental and primary mode of relation
between two propositions is that which we have expressed by the form

(x —f)(v—-y)
v—f )

We shall write this
x=<y,

which is also equivalent to
(x-f)(v-y)=0.

It is stated above that this means ““if x is true, y is true”. But this meaning is
greatly modified by the circumstance that only the actual state of things is refer-
red to.

To make the matter clear, it will be well to begin by defining the meaning
of a hypothetical proposition, in general. What the usages of language may be
does not concern us; language has its meaning modified in technical logical for-
mulae as in other special kinds of discourse. The question is what is the sense
which is most usefully attached to the hypothetical proposition in logic? Now,
the peculiarity of the hypothetical proposition is that it goes out beyond the
actual state of things and declares what would happen were things other than
they are or may be. The utility of this is that it puts us in possession of a rule,
say that “‘if A is true, B is true’’, such that should we hereafter learn something
of which we are now ignorant, namely that A is true, then, by virtue of this
rule, we shall find that we know something else, namely, that B is true. There
can be no doubt that the Possible, in its primary meaning, is that which may
be true for aught we know, that whose falsity we do not know. The purpose
is subserved, then, if, throughout the whole range of possibility, in every state
of things in which A is true, B is true too. The hypothetical proposition may
therefore be falsified by a single state of things, but only by one in which A4
is true while B is false. States of things in which A is false, as well as those
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in which B is true, cannot falsify it. If, then, B is a proposition true in every
case throughout the whole range of possibility, the hypothetical proposition,
taken in its logical sense, ought to be regarded as true, whatever may be the
usage of ordinary speech. If, on the other hand, A is in no case true, throughout
the range of possibility, it is a matter of indifference whether the hypothetical
be understood to be true or not, since it is useless. But it will be more simple
to class it among true propositions, because the cases in which the antecedent
is false do not, in any other case, falsify a hypothetical. This, at any rate, is
the meaning which I shall attach to the hypothetical proposition in general, in
this paper.

The range of possibility is in one case taken wider, in another narrower; in
the present case it is limited to the actual state of things. Here, therefore, the
proposition

a=<b

is true if a is false or if b is true, but is false if a is true while b is false. But
though we limit ourselves to the actual state of things, yet when we find that
a formula of this sort is true by logical necessity, it becomes applicable to any
single state of things throughout the range of logical possibility. For example,
we shall see that from x —< y we can infer z —< x. This does not mean that
because in the actual state of things x is true and y false, therefore in every state
of things either z is false or x true; but it does mean that in whatever state of
things we find x true and y false, in that state of things either z is false or x
is true. In that sense, it is not limited to the actual state of things, but extends
to any single state of things.
The first icon of algebra is contained in the formula of identity

x << X.

This formula does not of itself justify any transformation, any inference. It only
justifies our continuing to hold what we have held (though we may, for
instance, forget how we were originally justified in holding it).

The second icon is contained in the rule that the several antecedents of a con-
sequentia may be transposed; that is, that from

x < (y=<z)
we can pass to
y =< (x <z).
This is stated in the formula
x<(=<))l=<lr<((kx=<z}.
Because this is the case, the brackets may be omitted, and we may write
y<x-=<z.

By the formula of identity
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(x <y) < (x=<y)
and transposing the antecedenis
x =< {{(x <y) <y}
or, omitting the unnecessary brackets
x < (x=<y)=<y.

This is the same as to say that if in any state of things x is true, and if the pro-
position “if x, then y” is true, then in that state of things y is true. This is the
modus ponens of hypothetical inference, and is the most rudimentary form of
reasoning.

To say that (x —< x) is generally true is to say that it is so in every state of
things, say in that in which y is true; so that we may write

y < (x <x),
and then, by transposition of antecedents,

x < (y < x),

or from x we may infer y < x.
The third icon is involved in the principle of the transitiveness of the copula,
which is stated in the formula

rx=<y)<(y=<z)=<x=<z

According to this, if in any case y follows from x and z from y, then z follows
from x. This is the principle of the syllogism in Barbara.

We have already seen that from x follows y —< x. Hence, by the transitiveness
of the copula, if from y —< x follows z, then from x follows z, or from

(y <x) <z
follows
x <z
or

[(y <x) <z} <x—=<z

The original notation x —< y served without modification to express the pure
formula of identity. An enlargement of the conception of the notation so as
to make the terms themselves complex was required to express the principle of
the transposition of antecedents; and this new icon brought out new proposi-
tions. The third icon introduces the image of a chain of consequence. We must
now again enlarge the notation so as to introduce negation. We have already
seen that if g is true, we can write x —< @, whatever x may be. Let b be such
that we can write b —< x whaever x may be. Then b is false. We have here
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a fourth icon, which gives a new sense to several formulz. Thus the principle
of the interchange of antecedents is that from

x =< (y=<2z)
we can infer
y=<(x—=<z).

Since z is any proposition we please, this is as much as to say that if from the
truth of x the falsity of y follows, then from the truth of y the falsity of x
follows.

Again the formula

x < {(x <y) <y}

is seen to mean that from x we can infer that anything we please follows from
that things [sic|] following from x, and a fortiori from everything following
from x. This is, therefore, to say that from x follows the falsity of the denial
of x; which is the principle of contradiction.

Again the formula of the transitiveness of the copula, or

fx <y} <y <2) < (x<2)}
is seen to justify the inference
x<<y
S X
The same formula justifies the modus tollens,
X<y
y
X,
So the formula
{(r<x) <z} < (x<2)

shows that from the falsity of y —< x the falsity of x may be inferred.

All the traditional moods of syllogism can easily be reduced to Barbara by
this method.

A fifth icon is required for the principle of excluded middle and other pro-
positions connected with it. One of the simplest formulae of this kind is

{(x<y) <x} <ux

This is hardly axiomatical. That it is true appears as follows. It can only be
false by the final consequent x being false while its antecedent (x < y) < x
is true. If this is true, either its consequent, x, is true, when the whole formula



D. On the Aigebra of Logic (Peirce 1885) 619

would be true, or its antecedent x —<< y is false. But in the last case the antece-
dent of x —< y, that is x, musi be true.*
From the formula just given, we at once get

{(x <y) <a} <ux,

where the o is used in such a sense that (x < y) < o means that from
(x < y) every proposition fcllows. With that understanding, the formula
states the principle of excluded middle, that from the falsity of the denial of
x follows the truth of x.

The logical algebra thus far ceveloped contains signs of the following kinds:

1st, Tokens; signs of simple propositions, as ¢ for ‘He is a taxpayer’, etc.

2d, The single operative sigrn —<; also of the nature of a token.

3d, The juxtaposition of the letters to the right and left of the operative sign.
This juxtaposition fulfils the function of an index, in indicating the connections
of the tokens.

4th, The parentheses, subserving the same purpose.

5th, The letters «, B, etc. which are indices of no matter what tokens, used
for expressing negation.

6th, The indices of tokens, v, y, 2, etc. used in the general formulee.

7th, The general formulze themselves, which are icons, or exemplars of alge-
braic proceedings.

8th, The fourth icon which affords a second interpretation of the general
formulze.

We might dispense with the fifth and eighth species of signs—the devices by

* It is interesting to observe that this reasoning is dilemmatic. In fact, the dilemma involves the
fifth icon. The dilemma was only introduced into logic from rhetoric by the humanists of the
renaissance; and at that time logic was studied with so little accuracy that the peculiar nature of
this mode of reasoning escaped notice. I was thus led to suppose that the whole non-relative logic
was derivable from the principles of the ancient syllogistic, and this error is involved in Chapter
11 of my paper in the third volume of this Journal. My friend, Professor Schréder, detected the
mistake and showed that the distributive formulae

(x+y)z < xz+yz
(x+2) (b +2) <xy+z2

could not be deduced from syllogistic principles. I had myself independently discovered and vir-
tually stated the same thing. (Studies in Logic, p. 189). There is some disagreement as to the defini-
tion of the dilemma (see Keynes’s excellent Formal Logic, p. 241); but the most useful definition
would be a syllogism depending on the above distribution formule. The distribution formulz

xz+yz =< (x+y)z
xw4z=<(x+2)(y+z)

are strictly syllogistic. DeMorgan’s add2d moods are virtually dilemmatic, depending on the princi-
ple of excluded middie.
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which we express negation—by adopting a second operational sign —=, such
that

X<y
should mean that x = v, y = f. With this we should require new indices of con-
nections, and new general formulae. Possibly this might be the preferable nota-
tion. We should thus have two operational signs but no sign of negation. The
forms of Boolian algebra hitherto used, have either two operational signs and

a special sign of negation, or three operational signs. One of the operational
signs is in that case superfluous. Thus, in the usual notation we have

showing two modes of writing the same fact. The apparent balance between the
two sets of theorems exhibited so strikingly by Schroder, arises entirely from
this double way of writing everything. But while the ordinary system is not so
analytically fitted to its purpose as that here set forth, the character of
superfluity here, as in many other cases in algebra, brings with it great facility
in working.

The general formulae given above are not convenient in practice. We may
dispense with them altogether, as well as with one of the indices of tokens used
in them, by the use of the following rules. A proposition of the form

x <y

is true if x = for y = v. It is only false if y = f and x = v. A proposition written
in the form

X<y
is true if x = v and y = f, and is false if either x = f or y = v. Accordingly,
to find whether a formula is necessarily true substitute f and v for the letters

and see whether it can be supposed false by any such assignment of values.
Take, for example, the formula

(x=<y)=<{ly=<z) =< (xr=<2)}.
To make this false we must take
(x=<y)=v
{0=<z2) <(x=<2)} =t

The last gives (y <z)=v, (x<z)=f, x=v, z=f.
Substituting these values in

(x=<y)=v (y=<z2)=v
we have (v=<y)=v (y=<f)=v,

which cannot be satisfied together.
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As another example, requirzd the conclusion from the following premises.
Any one I might marry would be either beautiful or plain; any one whom 1
might marry would be a woman; any beautiful woman would be an ineligible
wife; any plain woman would be an ineligible wife. Let

m be anv one whom I might marry,
b, beautiful,

p, plain,

w, woman,

i, ineligible.

Then the premises are

m—< (b=<f) <p,
m-<w,
w—<b-<Ii,
w—<p—<|i.

Let x be the conclusion. Then
[m<(b<f)=<p]l<(m=<w) <(w—<b-=<i)
< (w=<p—<i)<x

is necessarily true. Now if we suppose m = v, the proposition can only be made
false by putting w = v and either b or p = v. In this case the proposition can
only be made false by puttin;z i = v, If therefore, x can only be made f by
putting m = v, i = f, that is if x = (m —<< i) the proposition is necessarily true.

In this method, we introduce the two special tokens of second intention f and
v, we retain two indices of tokens x and y, and we have a somewhat complex
icon, with a special prescription for its use.

A better method may be fcund as follows. We have seen that

x =< (y=<z)
may be conveniently written

x=<y=<z
while

(x<y) <z

ought to retain the parenthesis. Let us extend this rule, so as to be more general,
and hold it necessary a/ways to include the antecedent in parenthesis. Thus, let
us write

(x) <y

instead of x —< y. If now, we merely change the external appearance of two
signs; namely, if we use the vinculum instead of the parenthesis, and the sign
+ in place of —<, we shall have
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X<y written X+
x<y-—=<z " X+y+z
(x<y) <z 7  X+y+z, et

We may further write for x = y, ¥ + y implying that x+y is an antecedent
for whatever consequent may be taken, and the vinculum becomes identified
with the sign of negation. We may also use the sign of multiplication as an
abbreviation, putting

Xy=X+y=x-<y.

This subjects addition and multiplication to all the rules of ordinary algebra,
and also to the following:

y+xk=y yx+x)=y
x+x=v xx=f
xy+z=(x+2)(y+2z).

To any proposition we have a right to add any expression at pleasure; also
to strike out any factor of any term. The expressions for different propositions
separately known may be multiplied together. These are substantially Mr Mit-
chell’s rules of procedure. Thus the premises of Barbara are

X+ yandy + z.

Multiplying these, we get (X + y) (J + z2) = XV + yz.
Dropping ¥ and y we reach the conclusion ¥ + z.

III.—FIRST-INTENTIONAL LOGIC OF RELATIONS

The algebra of Boole affords a language by which anything may be expressed
which can be said without speaking of more than one individual at a time. It
is true that it can assert that certain characters belong to a whole class, but only
such characters as belong to each individual separately. The logic of relatives
considers statements involving two and more individuals at once. Indices are
here required. Taking, first, a degenerate form of relation, we may write x;y;
to signify that x is true of the individual i while y is true of the individual j.
If z be a relative character z; will signify that / is in that relation to /. In this
way we can express relations of considerable complexity. Thus, if

1, 2, 3,
4’ 5’ 6’
7, 8 9,

are points in a plane, and /;,; signifies that 1, 2, and 3 lie on one line, a well-
known proposition of geometry may be written

hso < by < by <l < lysg < lyg9 < 1133 < lys¢ —< lygg.
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In this notation is involved a sixth icon.

We now come to the distinction of some and all, a distinction which is
precisely on a par with that between truth and falsehood; that is, it is descrip-
tive, not metrical.

All attempts to introduce this distinction into the Boolian algebra were more
or less complete failures until Mr. Mitchell showed how it was to be effected.
His method really consists in making the whole expression of the proposition
consist of two parts, a pure Boolian expression referring to an individual and
a Quantifying part saying what individual this is. Thus, if ¥ means ‘he is a king’,
and A, ‘he is happy’, the Boolian

(k + h)

means that the individual spoken of is either not a king or is happy. Now, apply-
ing the quantification, we may write

Any (k + h)
to mean that this is true of any individual in the (limited) universe, or
Some (k + k)
to mean that an individual exists who is either not a king or is happy. So
Some (kh)
means some king is happy, and
Any (kh)

means every individual is both a king and happy. The rules for the use of this
notation are obvious. The two propositions

Any (x) Any (»)
are equivalent to
Any (xy).
From the two propositions
Any (x) Some (y)
we may infer

Some (xy).*

* 1 will just remark, quite out of order, that the quantification may be made numerical; thus pro-
ducing the numerically definite inferences of DeMorgan and Boole. Suppose at least 2 of the
company have white neckties and at least % have dress coats. Let w mean ‘he has a white necktie’,
and d ‘he has a dress coat’. Then, the two propositions are

2 (w) and § ().
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Mr. Mitchell has also a very interesting and instructive extension of his notation
for some and all, to a two-dimensional universe, that is, to the logic of relatives.
Here, in order to render the notation as iconical as possible we may use L for
some, suggesting a sum, and II for a/l, suggesting a product. Thus £,x; means
that x is true of some one of the individuals denoted by i or

E,-xi = X, + Xj + xk 4+ etc.
In the same way, II,x; means that x is true of all these individuals, or
ILx; = x;x;x, etc.

If x is a simple relation, ILIL;x; means that every i is in this relation to every
J» L;Ilx; that some one / is in this relation to every j, II,L;x; that to every j
some i or other is in this relation, E,L;x; that some / is in this relation to some
J. It is to be remarked that X,x; and II,x; are only similar to a sum and a pro-
duct; they are not strictly of that nature, because the individuals of the universe
may be innumerable.

At this point, the reader would perhaps not otherwise easily get so good a
conception of the notation as by a little practice in translating from ordinary
language into this system and back again. Let /; mean that / is a lover of j,
and b; that / is a benefactor of j. Then

ILE ;b

i=jti
means that everything is at once a lover and a benefactor of something; and
ILE; ;b
that everything is a lover of a benefactor of itself.
LI JIL(; + by)

means that there are two persons, one of whom loves everything except benefac-

These are to be multiplied together. But we must remember that xy is a mere abbreviation for
,FT)?, and must therefore write

ITw+Id
Now 73_ is the denial of > 5 w, and this denial may be written (> yw, or more than % of the

universe (the company) have not white necthes So 7 = (> )d. The combined premises thus
become

(>3)w+(>})a.
Now(>%)ﬁ'+(>4l)z;gives Maybe(%+})( )
Th have
us we hav May be (lzx )
and this is (Atteast %) (w + 4),

which is the conclusion.
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tors of the other (whether he loves any of these or not is not stated). Let g;
mean that / is a griffin, and ¢; that i is a chimera, then

Einj(gilij + CTJ)
means that if there be any chimeras there is some griffin that loves them all;
while

Llg (l; + &)
means that there is a griffin and he loves every chimera that exists (if any exist).
On the other hand,

ILEg(l; + ¢)
means that griffins exist (one, at least), and that one or other of them loves
each chimera that may exist; and

ILE (gl + &)

means that each chimera (if there is any) is loved by some griffin or other.

Let us express: every part of the world is either sometimes visited with
cholera, and at others with small-pox (without cholera), or never with yellow
fever and the plague together. Let

c; mean the place i has cholera at the time j.
S ” ” ” small-pox n o
Yij " ” n yellow fever ~ ~
Py ” ’ " plague .

Then we write
ILEE 0 (cyiCusic + 7y + D) -

Let us express this: one or other of two theories must be admitted, 1st, that
no man is at any time unselfish or free, and some men are always hypocritical,
and at every time some men are friendly to men to whom they are at other times
inimical, or 2d, at each moment all men are alike either angels or fiends. Let

u; mean the man / is unselfish at the time j,

fi ” ” free "o
hy ” " hypocritical ~ » ~
a; 7 " " an angel ”on
d, ” " a fiend v
Pix " " " friendly » » to the man Kk,

e;x the man / is an enemy at the time j to the man k;
1,, the two objects j and m are identical.

Then the proposition is
L,Z, 05 B 2, I, L, X0, (2 fyApDij€ims Lim + @pn + da).

We have now to consider the procedure in working with this calculus. It is
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far from being true that the only problem of deduction is to draw a conclusion
from given premises. On the contrary, it is fully as important to have a method
for ascertaining what premises will yield a given conclusion. There are besides
other problems of transformation, where a certain system of facts is given, and
it is required to describe this in other terms of a definite kind. Such, for exam-
ple, is the problem of the 15 young ladies, and others relating to synthemes.
I shall, however, content myself here with showing how, when a set of premises
are given, they can be united and certain letters eliminated. Of the various
methods which might be pursued, I shall here give the one which seems to me
the most useful on the whole.

1st. The different premises having been written with distinct indices (the same
index not used in two propositions) are written together, and all the II’s and
L’s are to be brought to the left. This can evidently be done, for

H,-X,-.Hjxj = H,HJXI.XJ
):,-X,-.Hjxj= E,H!x,xj
Eix".Eij= E,-ij,-xj.

2d. Without deranging the order of the indices of any one premise, the II’s
and I’s belonging to different premises may be moved relatively to one another,
and as far as possible the £’s should be carried to the left of the II’s. We have

ILILix; = ILIE
LEx;=L;Ex;
and also
EILxy;= ILLxy;.

But this formula does not hold when the i/ and / are not separated. We do have,
however,

It will, therefore, be well to begin by putting the I’s to the left, as far as possi-
ble, because at a later stage of the work they can be carried to the right but
not to the left. For example, if the operators of the two premises are IT,Z;II,
and L,IL.EL,, we can unite them in either of the two orders

0L L ILE I,
£ ILEL,ILE T,

and shall usually obtain different conclusions accordingly. There will often be
room for skill in choosing the most suitable arrangement.

3d. It is next sometimes desirable to manipulate the Boolian part of the
expression, and the letters to be eliminated can, if desired, be eliminated now.
For this purpose they are replaced by relations of second intention, such as
“other than”, etc. If, for example, we find anywhere in the expression
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Ay s
this may evidently be replaceable by
(ny + ny + ny,)

where, as usual, n means not or other than. This third step of the process is
frequently quite indispensable, and embraces a variety of processes; but in
ordinary cases it may be altogether dispensed with.

4th. The next step, which will also not commonly be needed, consists in mak-
ing the indices refer to the same collections of objects, so far as this is useful.
If the quantifying part, or Quantifier, contains E,, and we wish to replace the
x by a new index i, not already in the Quantifier, and such that every x is an
i, we can do so at once by simply multiplying every letter of the Boolian having
x as an index by x;. Thus, if we have “some woman is an angel” written in
the form I, a, we may replace this by Z,(a;w;). It will be more often useful
to replace the index of a II by a wider one; and this will be done by adding
X; to every letter having x as an index. Thus, if we have “all dogs are animals,
and all animals are vertebrates” written thus

Hdad Ha Ug,s

where ¢ and « alike mean animal, it will be found convenient to replace the
last index by i/, standing for any object, and to write the proposition

H,’(C?,' + Ui).

5th. The next step consists in multiplying the whole Boolian part, by the
modification of itself produced by substituting for the index of any IT any other
index standing to the left of it in the Quantifier. Thus, for

5L,
we can write Y00,

6th. The next step consists in the re-manipulation of the Boolian part, con-
sisting, 1st, in adding to any part any term we like; 2d, in dropping from any
part any factor we like, and 3d, in observing that

xx = f, xX+Xx=v,
so that xky+z=z (x+X+y)z=2z

7th. II’s and X’s in the Quantifier whose indices no longer appear in the
Boolian are dropped.

The fifth step will, in practice, be combined with part of the sixth and
seventh. Thus, from E.II;/; we shall at once proceed to E;/; if we like.

The following examples will be sufficient.

From the premises L;q;b;, and IIj(Ej + ¢;), eliminate b. We first write

LILab,(b; + ;).
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The distributive process gives
LILa(bb, + bic)).
But we always have a right to drop a factor or insert an additive term. We thus get
LilLa;(b;b; + c;).

By the third process, we can, if we like, insert n; for b,b_j. In either case, we
identify j with / and get the conclusion

Lac,.
Given the premises
ZoILE I (o + sjklji)

LT, (& + $50b0)

Required to eliminate s. The combined premise is
LI LD ILIL I, (o + Siclii) (€0 + $50b0y) -
Identify & with v and y with j, and we get
LI L I (o, + Siul;) (€4 + $iubyy).

The Boolian part then reduces, so that the conclusion is

Eu Ev Eh I-Ii 2:jIIx ( Upiy eujx + Oy bux + £ujx [jl) .

IV.—SECOND-INTENTIONAL LOGIC

Let us now consider the logic of terms taken in collective senses. Our notation,
so far as we have developed it, does not show us even how to express that two
indices, i and j, denote one and the same thing. We may adopt a special token
of second intention, say 1, to express identity, and may write 1,;. But this rela-
tion of identity has peculiar properties. The first is that if / and j are identical,
whatever is true of / is true of j. This may be written

ILIL{ 1, + X + x;}.

The use of the general index of a token, x, here, shows that the formula is
iconical. The other property is that if everything which is true of i is true of
J, then / and j are identical. This is most naturally written as follows: Let the
token, g, signify the relation of a quality, character, fact, or predicate to its
subject. Then the property we desire to express is

ILILE (1 + Guaw)-
And identity is defined thus
1, = I (qugy; + §uidy)-

That is, to say that things are identical is to say that every predicate is true of
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both or false of both. It may seem circuitous to introduce the idea of a quality
to express identity; but that impression will be modified by reflecting that
Qriqy; merely means that / and j are both within the class or collection k. If we
please, we can dispense with the token ¢, by using the index of a token and
by referring to this in the Quantifier just as subjacent indices are referred to.
That is to say, we may write

The properties of the token ¢ must now be examined. These may all be
summed up in this, that taking any individuals i, i,, i;, etc., and any indivi-
duals, j;, /,, /3, etc., there is a collection, class, or predicate embracing all the
I’s and excluding all the j’s except such as are identical with some one of the
I’s. This might be written

(Hani,,) (Hﬂnjﬂ)zk(naxi’“)nl le(,(q_kjﬁ + i, 4y, t ‘7/:",,‘7//,,),

where the /’s and the i”’s are the same lot of objects. This notation presents
indices of indices. The II II; shows that we are to take any collection
whatever of i’s, and then any i of that collection. We are then to do the same
with the j’s. We can then find a quality & such that the i taken has it, and also
such that the j taken wants it unless we can find an / that is identical with the
J taken. The necessity of some kind of notation of this description in treating
of classes collectively appears from this consideration: that in such discourse
we are neither speaking of a single individual (as in the non-relative logic) nor
of a small number of individuals considered each for itself, but of a whole class,
perhaps an infinity of individuals. This suggests a relative term with an
indefinite series of indices as x;;,, . Such a relative will, however, in most, if
not in all cases, be of a degenerate kind and is consequently expressible as
above. But it seems preferable to attempt a partial decomposition of this defini-
tion. In the first place, any individual may be considered as a class. This is
written,

HiEkquki(‘ikj + lij) :

This is the ninth icon. Next, given any class, there is another which includes
all the former excludes and excludes all the former includes. That is,

ILE L (G + Gudai)-

This is the tenth icon.Next, given any two classes, there is a third which includes
all that either includes and excludes all that both exclude. That is

I, 2 0 g + GomiGei + TiGmiii) -

This is the eleventh icon. Next, given any two classes, there is a class which
includes the whole of the first and any one individual of the second which there
may be not included in the first and nothing else. That is,

ILIL, ILEIL{ g, + G + quilay + G;) ).
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This is the twelfth icon.
To show the manner in which these formula are applied let us suppose we
have given that everything is either true of / or false of j. We write

(g + Gi)-
The tenth icon gives
ILZ (GuGu + Gudii) (@4 + 394) -
Multiplication of these two formulae gives
2 (qudi + a;dy),
or, dropping the terms in &
(g + q;).
Mutliplying this with the original datum and identifying / with k£, we have
I (q1qy + Guidy;)-

No doubt, a much more direct method of procedure could be found.

Just as g signifies the relation of predicate to subject, so we need another
token, which may be written r, to signify the conjoint relation of a simple rela-
tion, its relate and its correlate. That is, r;; is to mean that i is in the relation
o to j. Of course, there will be a series of properties of r similar to those of
q. But it is singular that the uses of the two tokens are quite different. Namely,
the chief use of r is to enable us to express that the number of one class is at
least as great as that of another. This may be done in a variety of different ways.
Thus, we may write that for every a there is a b, in the first place, thus:

LILE LG + bry (Fp + @ + 1) ).
But, by an icon analogous to the eleventh, we have
Hanﬁzynunu(ruauruyv + ruﬂvruyv + r_uaur_uﬂuﬁzyv)-

From this, by means of an icon analogous to the tenth, we get the general
formula

HaHﬁEyHqu{ruavruﬂvruyu + 'Zyv(ﬁmv + ’TI v) } .

For r,g, substitute @, and multiply by the formula the last but two. Then, iden-
tifying «# with 4 and v with j, we have

LJILE I, {4 + biriui(Fan + 1))

a somewhat simpler expression. However, the best way to express such a pro-
position is to make use of the letter ¢ as a token of a one-to-one correspondence.
That is to say, ¢ will be defined by the three formulee,

HaHuHUI—IW((’Ta + ’TIGU + ﬁlaw + IUW)
HGHMHUHW(C?G + ﬁlaw + rvaw + luv)

HGEHEUEW(CH + ruavruaw 1UW + rMaWrUaW lul))'
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Making use of this token, we may write the proposition we have been consider-
ing in the form
LILL; c,(d@ + biriy;).

In an appendix to his memoir on the logic of relatives, DeMorgan enriched
the science of logic with a new kind of inference, the syllogism of transposed
quantity. DeMorgan was one of the best logicians that ever lived and unques-
tionably the father of the logic of relatives. Owing, however, to the imperfection
of his theory of relatives, the new form, as he enunciated it, was a down-right
paralogism, one of the premises being omitted. But this being supplied, the
form furnishes a good test of the efficacy of a logical notation. The following
is one of DeMorgan’s examples:

Some X is Y,
For every X there is something neither Y nor Z;
Hence, something is neither X nor Z.

The first premise is simply
Eaxaya .
The second may be written

Eanizj Ca(x.'i + rjai.}sz_j) .

From these two premises, little can be inferred. To get the above conclusion
it is necessary to add that the class of X’s is a finite collection; were this not
necessary the following reasoning would hold good (the limited universe con-
sisting of numbers); for it precisely conforms to DeMorgan’s scheme.

Some odd number is prime;
Every odd number has its square, which is neither prime nor even;
Hence, some number is neither odd nor even.*

Now, to say that a lot of objects is finite, is the same as to say that if we
pass through the class from one to another we shall necessarily come round to
one of those individuals already passed; that is, if every one of the lot is in any
one-to-one relation to one of the lot, then to every one of the lot some one is
in this same relation. This is written thus:

HﬁHuEvEsHI{CTﬂ + '\714 + Xulupy + xs()?/ + r_//is) }

Uniting this with the two premises and the second clause of the definition of
¢, we have

* Another of DeMorgan’s examples is this: “Suppose a person, on reviewing his purchases for the
day, finds, by his counterchecks, that he has certainly drawn as many checks on his banker (and
maybe more) as he has made purchases. But he knows that he paid some of his purchases in money,
or otherwise than by checks. He infers then that he has drawn checks for something else except
that day’s purchases. He infers rightly enough”. Suppose, however, that what happened was this:
He bought something and drew a check for it; but instead of paying with the check, he paid cash.
He then made another purchase for the same amount, and drew another check. Instead, however,
of paying with that check, he paid with the one previously drawn. And thus he continued without
cessation, or ad infinitum. Plainly the premises remain true, yet the conclusion is false.
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£, LI, I, T, S, 0L E 0L IL I I AL, X, v, ¢ (5 + 1725

(65 + %, + x,1up0 + X (X, + Fp) } (G + Fopg + o + 1)
We now substitute « for f# and for p, a for u and for e, j for ¢ and for f, v
for g. The factor in i is to be repeated, putting first s and then v for i, The
Boolian part thus reduces to

(.X’s + rjas)sz_j.')Caxayaraavxvrjavy}z—jlaj + rjusﬁfjxs)z}(fu + rjav.)sz_j)
('Tlau + ’7(11) + laj)’
which, by the omission of factors, becomes
Y. a-}Tj 1aj + sz_/
Thus we have the conclusion
L;%;%;.

It is plain that by a more iconical and less logically analytical notation this
procedure might be much abridged. How minutely analytical the present system
is, appears when we reflect that every substitution of indices of which nine were
used in obtaining the last conclusion is a distinct act of inference. The annulling

of (y,7;1,;) makes ten inferential steps between the premises and conclusion of
the syllogism of transposed quantity.

E. THE LOGIC OF MATHEMATICS IN
RELATION TO EDUCATION
(PEIRCE 1898)

The following article appeared in the Educational review; despite the concluding
declaration that the series was to be continued, no more articles appeared.

References to Peirce 1898 should be to the paragraph numbers, which have
been added in this edition.

§1 OF MATHEMATICS IN GENERAL

1] In order to understand what number is, it is necessary first to acquaint our-
selves with the nature of the business of mathematics in which number is
employed.

|2] I wish I knew with certainty the precise origin of the definition of mathe-
matics as the science of quantity. It certainly cannot be Greek, because the
Greeks were advanced in projective geometry, whose problems are such as
these: whether or not four points obtained in a given way lie in one plane;
whether or not four planes have a point in common; whether or not two rays
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