
Synthese
https://doi.org/10.1007/s11229-021-03318-x

ORIG INAL RESEARCH

Calculus as method or calculus as rules? Boole and Frege on
the aims of a logical calculus

David Waszek1 · Dirk Schlimm1

Received: 1 February 2021 / Accepted: 15 July 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
By way of a close reading of Boole and Frege’s solutions to the same logical problem,
we highlight an underappreciated aspect of Boole’s work—and of its difference with
Frege’s better-known approach—which we believe sheds light on the concepts of
‘calculus’ and ‘mechanization’ and on their history.Boole has a clear notion of a logical
problem; for him, thewhole point of a logical calculus is to enable systematic and goal-
directed solutionmethods for such problems. Frege’sBegriffsschrift, on the other hand,
is a visual tool to scrutinize concepts and inferences, and is a calculus only in the thin
sense that every possible transition between sentences is fully and unambiguously
specified in advance. While Frege’s outlook has dominated much of philosophical
thinking about logical symbolism, we believe there is value—particularly in light of
recent interest in the role of notations in mathematics and logic—in reviving Boole’s
idea of an intrinsic link between, as he put it, a ‘calculus’ and a ‘directive method’ to
solve problems.
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Introduction

The main contrast this paper aims at drawing is the following: Boole was looking for a
systematic, goal-directed method to solve logical problems, and saw this as essential
to the very idea of a logical calculus. For Frege, on the other hand, such a method
was neither possible nor desirable; his idea of a calculus, though perhaps sharper in
requiring fully explicit transformation rules, was also much thinner. As Mark Wilson
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put it, ‘to Boole [. . .], the very phrase “logical method” implies a “heuristic”, not the
less structured forms of non-algorithmic specification (like axiom schemes or natu-
ral deduction systems) that are usually called “logics” today.’1 Genealogically, this
makes Boole closer in outlook to twentieth-century computer science and automated
theorem-proving than are the more canonical forefathers of modern logic. Philosoph-
ically, it draws attention to a phenomenon that the main orientations of mathematical
logic, whose debt to Frege is significant, tend to relegate to the background—and
that, despite some recent interest in the philosophy of mathematical practice, remains
largely unstudied: in practice, what makes a symbolic language or notation valuable
is not merely the availability of formal transformation rules, nor just the totality of
what can be derived from these, but the practical problem-solving methods that the
language lends itself to.

Our contrast between Boole and Frege is usually obscured by two tendencies in the
historiography of nineteenth-century logic. The first is an inclination to view Boole’s
work through the lens of our propositional calculus. Once stripped of its irrelevant
algebraic dress—so the story goes—Boole’s calculus is but a limited part of Frege’s
much more encompassing quantificational logic, which should thus be able to achieve
everything the former can. In other words, Frege’s logic is taken to do strictly more
than Boole’s. What we shall point out, however, is that Frege’s broader scope goes
hand in hand with a retreat from Boole’s ambitions of a systematic method; moreover,
shifting from Boole’s notation to Frege’s or contemporary ones—thereby eliminating
the link with algebra—makes Boole’s methods, even in their limited domain, down-
right unintelligible. In this sense, the greater expressivity of Frege’s logic comes with
a loss in computational power, albeit in a limited domain.

A second, more sophisticated obstacle is the opposition deployed by Frege himself,
then reinterpreted and popularized by Van Heijenoort (1967), according to which
Boole’s logic is merely a ‘calculus ratiocinator’ while Frege’s is not just that, but
also a ‘lingua characteri(sti)ca’.2 Whatever the merits of this contrast to point to
differences between Frege and the Booleans, the problem for us is that it suggests
that, on the ‘calculus’ side, Frege and Boole’s systems are similar: both would allow
treating inferences as potentially mechanizable computations on signs—if anything,
Frege is assumed to do it better than Boole, as he spells out his formal rules muchmore
explicitly. This is misleading, as we shall show. The sense of ‘calculus’ (and hence the
kind of mechanization) that is implicit in such discussions is different from the one
that mattered most to Boole. Representing elementary inferences by symbol-pushing
was not his central goal at all; rather, he sought a method that, starting from a given
logical problem to be solved, indicated which elementary inferences to use and how
they should be strung together.

1 Wilson (2006, p. 523).
2 These expressions should be approached with caution, as they have been used for various purposes and
interpreted in numerous different ways; for further discussion, see Sect. 6 below, in particular note 50. Note
that Frege generally writes lingua characterica, but that other authors typically use lingua characteristica
instead. Nothing much hinges on this, but for reference, here is the source of the discrepancy: Leibniz, who
coined the phrase, actually used the latter spelling; the former (mistaken) spelling comes from a spurious
title for one of Leibniz’s manuscripts introduced by a much-circulated eighteenth-century edition (Raspe
1765), which was then used by Trendelenburg (1856), Frege’s main source on the topic. We thank an
anonymous reviewer for this remark.
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One possible way to approach our contrast between Boole and Frege is to look
back on it, anachronistically, from the vantage point of later logic. As was proved in
the 1930s, while modern logics comparable to Boole’s system (propositional logic
and monadic first-order logic) are decidable, systems as expressive as Frege’s are not:
there is no algorithmic procedure to determine whether a given sentence is logically
valid. This can suggest the following (too) neat story. Earlier logicians, who had
not grappled with the intricacies of relational, quantified logic, could still think that
devising a logical calculus (in the sense of setting up symbols and manipulation rules
on the model of algebra) and obtaining algorithmic methods to solve logical problems
(on the model of the solution of simple algebraic equations) would go hand in hand;
Frege, being the first to go far enough to see the full complexity of the problem, realized
how inaccessible a general method to find the proof of a given proposition was. On
this account, what is at stake in the gap between Boole and Frege is the emergence
of a typical twentieth-century predicament: modern logic makes checking the validity
of a fully formalized proof mechanical, but only highlights the difficulty of finding a
proof given the sought-after conclusion.

Such an anachronistic reading obscures matters, however. Historically, it does not
seem accurate to say that Frege retreated fromBoole’s grander ambitions just because,
seeing further than Boole had, he realized they were out of reach in interesting cases.
His goals were different from the start: rather than a systematic problem-solving
method, what he sought were tools to improve mathematical concepts and clarify
mathematical inferences. More importantly, recent work by Jamie Tappenden has
unearthed that a salient motivation of Frege’s work was to fight against a ‘mechanical’
view of arithmetic, and mathematics in general. From this point of view, Frege’s
vaunted ‘formalization’ of inference paradoxically comes to be seen as a way to push
back against mechanization and confine it to a limited, subordinate role.

On the Boolean side, too, there is more to be learnt. Boole’s conception of a cal-
culus is not just a failed dream, historically doomed to fall apart when faced with
the complexities of full predicate logic. It draws our attention to a theme that Frege’s
project obscured, but that is still highly relevant today: an important part of the practi-
cal value of a symbolic notation is its suitability to guide us effectively to the solution
of problems.

To bring out our contrast between Boole and Frege, our strategy is to compare
their solutions to the same logical problem; along the way, we reconstruct Boole’s
conception of what a logical problem is and highlight the goal-directedness of his
solution method. Initially introduced by Boole in his Laws of Thought, the problem
we focus on is one of the more sophisticated examples he considers in his book, and
as such attracted the attention of a number of later authors eager to prove that their
own system was at least as powerful as his.3 Among them, Frege—despite repeatedly
putting the value of this kind of problems in doubt—spent several pages developing
a solution from the perspective of his Begriffsschrift, thereby offering us a revealing
point of comparison.

Sections 1–3 describe Boole’s overall conception of what a logical problem is,
introduce the sample problem we shall study, and sketch Boole’s solution of it. Sec-

3 See below, especially footnote 14, p. 7.
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tion 4 briefly goes over the reception of Boole’s conception of logic in order to prepare
our discussion, in Sect. 5, of Frege’s solution of the same problem. Sections 6–8 then
draw lessons from the comparison of Boole and Frege’s solutions: we explore how
they testify to different conceptions of what a calculus is, how they relate to different
forms ofmechanization, andwhat we can learn from reviving Boole’s outlook. Finally,
Sect. 9 tentatively sketches some further historical developments, mostly in Schröder
and Peirce, so as to place our main contrast in a broader perspective.

1 Boole’s conception of the problem of logic

To understand the goal-directed nature of Boole’s logical method, we first need to
explain what the problems are that his method is intended to solve. As it happens,
Boole believed that there is a general form common to all logical problems. The
easiest way to grasp this form is as a broad generalization of syllogistic, which was
Boole’s starting point. Accordingly, this section builds up to his conception of logical
problems through successive generalizations from a simple syllogistic case.

Take two sentences in Aristotelian subject-predicate form, for example ‘All horses
are mammals’ and ‘All mammals are animals’, that have a term in common (here
‘mammals’). The standardproblemof syllogistic inference (asBoole construes it)4 is to
find what relation, if any, follows between ‘horses’ and ‘animals’, eliminating the term
‘mammals’ which is already present in both premises. (In this instance, the conclusion
sought is ‘All horses are animals.’) Importantly, this does not amount to finding all
possible consequences of the initial sentences, of which there are many others, such
as ‘Some mammals are horses’: we are only interested in ‘horses’ and ‘animals’. Nor
would just any consequence do as long as it relates ‘horses’ and ‘animals’: neither
‘Everything that is a horse but not an animal does not exist’ nor ‘Some horses are
animals’ would do, the first because it lacks the expected Aristotelian form, the second
because it is not as strong as possible. Syllogistic inference, in short, comes with a
constrained specification of the expected solution. Boole’s problems do likewise, but
in a broader setting.

First, Boole’s propositions are more general than the Aristotelian subject-predicate
forms, and are expressed as symbolic equations rather than in natural language. This
aspect ofBoole’swork iswell-known, sowe shall be quick. Let us startwith an example
Boole discusses repeatedly in his Investigation of the Laws of Thought, namely the
definition of wealth offered by the economist William Nassau Senior:

Wealth consists of things transferable, limited in supply, and either productive
of pleasure or preventive of pain.5

To express this definition symbolically, Boole introduces letters that denote classes
of things; in our case, he writes w for wealth, t for things transferable, s for things
limited in supply, p for things productive of pleasure, and r for things preventive of
pain. He then uses operations analogous to those of algebra to express combinations of

4 We are here glossing on Boole’s own account (see in particular (Boole 1854, ch. XV, pp. 226–242), and
not aiming for a historically accurate rendition of the goals of syllogistic.
5 Boole (1854, p. 59).

123



Synthese

these classes. The juxtaposition of two class symbols, akin to algebraic multiplication,
denotes the class of things common to both (in contemporary terms, their intersection),
so that st denotes things both limited in supply and transferable. The addition of two
class symbols expresses the class formed by taking the elements of both together
(today called their union), except that Boole only allows this operation on classes that
are disjoint, that is, have no elements in common. Thus, if nothing is both productive
of pleasure and preventive of pain, p + r would correspond to things that are either
one or the other. The subtraction of two class symbols x − y expresses the class of
elements of x that are not elements of y, where it is assumed that y is included in
x . Finally, the symbol 1 denotes the universe of discourse, so that for instance 1 − p
denotes things not productive of pleasure. (Boole sometimes abbreviates 1− p as p̄.)
This allows Boole to express Senior’s definition as:

w = st{p + r(1 − p)}
or in words: wealth is things that are at the same time limited in supply, transferable,
and either productive of pleasure, or preventive of pain and not productive of pleasure
(the complexity of this last clause being required by Boole’s restriction that addition
can only be performed on disjoint classes). One last device that Boole introduces is
‘indefinite’ class symbols (which he often writes v, but sometimes with other letters
as well, such as q), that is symbols denoting an unspecified class. These allow him to
represent inclusions like ‘All horses are mammals’ in the form of equalities, such as
h = vm (where h stands for the class of horses, m for that of mammals and v for an
indefinite class); such equations can also be understood as ‘conditionals’ rather than
inclusions, e.g., as ‘If something is a horse, then it is a mammal.’6

Second, Boole admits not just two premises involving three terms, as in syllogistic
inference, but any number of premises involving any number of terms. The problem
analogous to syllogistic inference then becomes that of finding a relation—or more
precisely, the strongest possible relation—among any number of terms selected among
those appearing in the premises. One example Boole discusses is a piece of reasoning
from Aristotle’s Nicomachean Ethics.7 Aristotle asks whether virtue is a passion, a
faculty, or a habit. The six premises, as reconstructed by Boole, express various prop-
erties of virtue as well as of passions, faculties, and habits, involving several auxiliary
properties, for instance ‘things according to which we are praised or blamed’ (accord-
ing to Aristotle, we can be praised for our virtue, but not for our inborn faculties). The
goal here, in Boole’s terms, is to find the relation between virtue, passions, faculties,
and habits, eliminating all other terms—the conclusion, as it turns out, being that virtue
is a habit, but not a faculty nor a passion.

6 In fact, Boole uses indefinite class symbols ambiguously, a difficulty that we shall point out here but
ignore in the sequel, as it does not bear on our main points. In most settings, he takes such symbols to be
absolutely indefinite, that is, to denote a class that can be empty, equal to the full universe of discourse,
or anything in between. But Boole also translates the Aristotelian form ‘Some A is B’ as va = vb, in
which—if the traditional interpretation of such forms is to be preserved—v has to be interpreted as an
indefinite non-empty class. For a careful discussion written from a Boolean perspective, see Venn (1881,
ch. VI–VII).
7 Boole (1854, pp. 134–137). We follow Boole’s rendition of Aristotle; the passage in question is Nico-
machean Ethics II.5 (1105b20–1106a15).
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Third, the broader range of possible propositional forms in Boole’s system allows
him to put further constraints on the conclusion that is sought. In the syllogistic case,
it is simply expected that the conclusion will be in one of the Aristotelian forms (‘All
A is B’, ‘Some A is B’, or their negations).8 Boole is able to be more specific. In the
example of virtue, what is expected—and can be provided by Boole’s method—is not
just any equation linking virtue (denoted by v) with passions (p), faculties ( f ), and
habits (h), but rather an equation of the form v = . . . (in which the right-hand side
only contains p, f and h). This is the simplest and most common case, but other forms
can also be requested (and obtained). Returning to Senior’s definition of wealth, one
could for instance ask about what can be concluded about ‘wealth that is preventive of
pain’ in terms of ‘things transferrable’ and ‘things limited in supply’—in other words,
ask for a conclusion of the form wr = . . ., where the right-hand side only contains s
and t .9 In Boole’s words, the relation sought is ‘that full relation which, in virtue of
the premises, connects any elements selected out of the premises at will, and which,
moreover, expresses that relation in any desired form and order.’10

We have focused so far on what Boole calls ‘primary propositions’, in which sym-
bols denote classes. His system can also treat ‘secondary propositions’, in which the
symbols already denote propositions; it is this ‘secondary’ part of his system that
is closest to our contemporary propositional calculus. Boole derives his secondary
propositions from his primary class-based ones by introducing, for a given proposi-
tion X , a class symbol x denoting ‘that portion of time for which the proposition X
is true.’11 This extensional account of propositions allows treating relations between
propositions just like relations between classes. The only differences lie in the inter-
pretation of equations: in this new context, x = 0 and x = 1 mean that the proposition
X is (always, i.e., ‘throughout the whole duration of the time to which our discourse
refers’12) true and (always) false, respectively; equations containing an indefinite class
symbol, such as x = vy, are interpreted as implications (‘If X , then Y ’). As far as
the general formulation of logical problems is concerned, however, the move to ‘sec-
ondary’ propositions changes very little: premises are still expressed by equations,

8 In traditional tables of the canonical syllogistic forms, there are other restrictions, which Boole neglects
(it is expected that the major term will come first, for instance). The discrepancy arises because Boole does
not fully do justice to traditional logic: he takes syllogistic’s classification of inference forms as a full-
fledged theory of reasoning, whereas traditional textbooks would also contain a broader theory exploring
how non-canonical pieces of reasoning are to be brought into one of the standard forms. This need not
detain us further, as we are only concerned with Boole’s own portrayal of syllogistic.
9 There is yet another form that can be requested of the conclusion: one may want the list of those com-
binations of the selected terms that are excluded by the premises, i.e., that correspond to classes that the
premises force to be empty (for more on this, see Sect. 4 below). In Boole’s system, this amounts to seeking
an equation of the form V = 0, in which V is a sum of combinations of class symbols or their negations;
such an equation is equivalent to having each of the members of the sum be separately equal to 0. This
form is the most exhaustive, being equivalent to the premises (or to the premises once elimination has been
performed, if some terms have been eliminated), whereas equations of the form x = . . . will usually be
weaker.
10 Boole (1854, p. 10). Note that Boole uses the word ‘premise’ to refer to the data, or given relations, of
the kind of logical problems he considers; the word thus takes on a broader meaning than may be usual
(i.e., it does not refer merely to the starting points of some individual inference).
11 Boole (1854, p. 165).
12 Boole (1854, pp. 168–169)
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and the goal is again to obtain an equation of a specified form relating a subset of the
symbols appearing in the premises.13

2 A sample problem

Let us now turn to the sample problem that our comparison of Boole and Frege will
focus on below. Among the examples discussed by Boole in his Investigation of the
Laws of Thought, this problem is of particular interest, not just because it is one of the
most intricate, but also because—for this very reason—it was repeatedly addressed
by later authors, including Schröeder, McColl, and Frege,14 to show that their system
was able to do as much as Boole’s. Its formulation is quite abstract. It is about a class
of ‘natural productions’ (which, in this particular case, will serve as the universe of
discourse) whose members can display five properties A, B, C , D and E , with three
relations between them that will serve as premises.

Before turning to the premises, a caveat is in order. Symbolically, Boole writes x
for the property A, y for B, and so on. Strictly speaking, as we shall see below, follow-
ing his method largely does not require referring back to the meaning of the symbols
(except when initially translating the premises into symbols and when interpreting
the final equation), so the discrepancy between the names of the properties and the
corresponding symbols is tolerable. Moreover, this discrepancy is justified by Boole’s
algebraic model, in which it is customary, since Descartes, to write the unknowns
using letters from the end of the alphabet and the knowns (such as coefficients) using
letters from the beginning. Nevertheless, since later authors—in particular Schröder
and through him Frege, which we shall discuss at length—revert to the more straight-
forward convention of writing a for property A, etc., keeping Boole’s notation would
make the discussion below exceedingly confusing. In breach of the spirit of our paper,
which strives to be faithful to the algebraic spirit of Boole’s method, we therefore
decided to alter his choice of symbols here. We also chose to effect a minor change
in Schröder’s notation: in this problem, Boole writes the negation of a symbol a as ā,
while Schröder writes it a1—we chose to write ā throughout. All other notations are
unchanged.

The three premises of Boole’s problem, then, are the following:15

i. ‘That in whichsoever of these productions the properties A and C are missing, the
property E is found, together with one of the properties B and D, but not with
both.’ In symbols,

āc̄ = qe(bd̄ + db̄)

13 Boole (1854, pp. 178–179).
14 Schröder (1877, pp. 25–28), Lotze (1884, pp. 219–221) = Lotze (1912, pp. 265–267), Wundt (1880,
vol. 1, pp. 356–357), Frege (1979, pp. 39–45) = Frege (1969, pp. 45–51), Venn (1881, pp. 280–281), and
McColl (1878, pp. 23–25). That this single problem has been solved by logicians of various outlooks whose
solutions would repay further comparison has already been noted by Gabriel (1989, p XXIII).
15 See Boole (1854), pp. 146–147.
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whereq is an indefinite class symbol,which canbe read equivalently as an inclusion
(‘the class of productions without properties A and C is a certain part of the class
of productions with property E etc.’) or as a conditional (‘if a production lacks
properties A and C , then it has property E etc.’).

ii. ‘That wherever the properties A and D are foundwhile E is missing, the properties
B and C will either both be found, or both be missing.’ In symbols,

adē = q(bc + b̄c̄).

iii. ‘That wherever the property A is found in conjunction with either B or E , or both
of them, there either the property C or the property D will be found, but not both
of them. And conversely, wherever the property C or D is found singly, there the
property A will be found in conjunction with either B or E , or both of them.’
This premise is formulated as an equivalence (double implication); Boole thus
translates it as an equality without indefinite class symbols:

ab + ab̄e = c̄d + cd̄.

It may seem more straightforward to write this as Schröder later does:

a(b + e) = c̄d + cd̄

The reason for the difference is that Boole’s ‘+’ only allows for the addition of
disjoint classes: writing ab̄e guarantees that it is disjoint from ab. Schröder, who
adopts an inclusive interpretation of ‘+’, can accordingly dispense with this extra
factor.

Now, Boole asks for the relation between the properties A, B, C , and D,—thus
eliminating E16—and this in two different forms. First, with interest for ‘what may
be concluded from the ascertained presence of the property A, with reference to the
properties B,C , and D’, the relation is sought in the form a = . . .; second, looking for
‘what may be concluded in like manner respecting the property B, and the properties
A, C , and D’, the relation is sought in the form b = . . ..

Additionally, Boole asks for ‘whether any relations exist independently among the
properties B,C , and D’ (which are those that A is to be expressed in terms of in the first
half of the problem) and likewise among the properties A, C , and D. While these two
questions can be seen as instances of the general problem of logic (the first amounts
to eliminating both A and E from the premises, the second both B and E , but with
no particular form prescribed for the relation sought between the remaining terms),
their presence here is somewhat peculiar. One way of reading them is as asking for
what information has had to be discarded about the relation between—taking the first
case as an example—A, B, C and D in order to express it under the particular form

16 As Boole puts it, ‘It will be observed, that in each of the three data, the information conveyed respecting
the properties A, B, C , and D, is complicated with another element, E , about which we desire to say
nothing in our conclusion. It will hence be requisite to eliminate the symbol representing the property E
[. . .]’ (Boole 1854, p. 146).
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a = . . .. The main reason why they appear here, however, may just be that Boole’s
method for obtaining the solution a = . . . gives this further relation for free, as we
shall see.

3 Boole’s solution

In order to bring to the fore the goal-directedness of Boole’s method, we now briefly
describe how he applied it to the foregoing problem. (We briefly discuss Schröder’s
modified treatment, too, because Frege referred to it as well.) A synopsis will have to
suffice for our purposes, but readers should be warned that we are skimming over the
entire substance of Boole’s system, going so far as to omit every proof and justification.

Here, then, is how Boole and Schröder proceed:

i. Transform and bring together the premises, so as to obtain a single equation of the
form � = 0.17

ii. Eliminate the terms that should not appear in the solution (in our case e). This
leads to a new equation �′ = 0, where �′ does not contain e.

iii. If the desired solution is of the form a = . . . (say), first factor the preceding
equation by a and ā, yielding in our case

(cd + bc̄d̄)a + (c̄d + cd̄ + b̄c̄d̄)ā = 0, (1)

then expand ā as 1 − a and proceed as if algebraically solving for a:

a = c̄d + cd̄ + b̄c̄d̄

c̄d + cd̄ + b̄c̄d̄ − cd − bc̄d̄
.

As is the case here, this typically results in division signs of rather unclear meaning
on the right-hand side. Schröder, whose solution follows Boole’s up to this point
(in broad outline at least), avoids this murky division and stops at equation (1)
above.

iv. At this stage, Boole and Schröder split ways. Boole performs a process he calls
‘development’ to get rid of the fraction he has just introduced; generically, this
gets the right-hand side into the strange-looking form

U + 0

0
V + 1

0
W ,

where U , V and W are sums of terms: for our problem,

a = cd̄ + c̄d + b̄c̄d̄ (i.e., V = W = 0), (2)

b = āc̄d̄ + 0

0
(ācd + ac̄d + acd̄) + 1

0
(acd + āc̄d + ācd̄). (3)

17 Note that � is our own notation to denote some arbitrary algebraic expression.
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Equation (2) has nounusual symbols, hence straightforwardly answers the question
(in words, property A is to be found exactly when one but not both of properties
C and D are found, or when none of B, C and D are found). In cases where,
as in equation (3), V and W do not vanish, Boole does two things: he interprets
0
0 as an indeterminate class symbol and splits off the term 1

0W into a separate
equation W = 0. His interpretation of (3), then, is that B has the same extension
as the class expressed by U plus part of the class expressed by V (remember
that indeterminate class symbols are used for inclusions), and that the equation
W = 0 expresses the independent relations between A, C and D (asked for in the
statement of the problem, above).
Schröder, for his part, avoids Boole’s perplexing symbolic manipulations by way
of a general theorem, which allows jumping straight from equations like (1) to
solutions equivalent to Boole’s. In essence (taking for instance the first question,
aiming at a = . . .), from an equation of the form

Sa + T ā = 0,

Schröder directly expresses our U , V and W above in terms of S and T :

U = T , V = S̄, W = ST

so that one gets the full solution a = T + uS̄ (with u an indeterminate class
symbol) and the independent relation ST = 0.18

For simplicity, we described Boole’s method in the context of a particular problem,
but its outline is general, with minor variants to cover special cases.19 On this basis,
the two features of Boole’s approach we want to highlight are that it is systematic and
goal-directed. As shown in the previous section, Boole delineates a well-defined class
of problems, and the method just sketched allows for the systematic solution of any
of them, guided by the particular problem to be solved. In the synopsis above, steps
2 and 3 are where this goal-dependence appears: the elimination of unwanted terms
depends on the particular relation sought, as do the algebraic manipulations of step
3, where preexisting experience with first-degree algebraic equations points us to the
transformations needed in order to solve for a particular variable.

18 In our case, we indeed getU = T = c̄d + cd̄ + b̄c̄d̄ and W = ST = 0 (it is easy to see that the product
ST vanishes, because each combination of a summand from S and a summand from T multiplies out to
a term containing both a symbol and its negation, e.g. c and c̄, and thus to zero), but on the face of it, we
obtain a nonzero term for V = S̄. However, one can also see that S̄T̄ = 0, which means that VŪ = 0: in
terms of classes, V is included in U , so that in the solution a = U + uV , where u is an indefinite class
term, V is redundant and can be discarded—thereby correctly falling back on Boole’s solution (Schröder
1877, p. 27).
19 For instance, as discussed in the previous section, one might ask for the expression of ab in terms of c
and d, that is, seek a relation of the form ab = . . . instead of the simpler a = . . . or b = . . .. Boole would
then introduce an auxiliary term t with an additional premise t = ab, then eliminate a and b as well as
other unwanted terms and proceed as above, seeking a solution of the form t = . . ., where t can ultimately
be replaced by ab again (Boole 1854, pp. 140–142).
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4 A combinatorial problem?

Before turning to Frege’s solution, and in preparation for tackling it, it is useful to dwell
a little on a remark made repeatedly by followers of Boole as well as by critics. The
point, as we would phrase it nowadays, is that problems like the above are at bottom
combinatorial. Some, like Jevons and Venn, emphasized this in order to offer other
methods to complement Boole’s algebraic machinery or even replace it altogether.
Others, including Frege, concluded that Boole’s logical problemswere of little interest.

The discussion focuses on logical problems that, like the above, only have universal
propositions as premises. (In practice, Boole had some trouble dealing with existential
propositions—like the Aristotelian ‘Some As and Bs’—and most of his immediate
successors preferred to leave those aside.20) As Boole already noted, any universal
premise amounts to the assertion that certain combinations of classes are empty: for
instance, ‘All As are Bs’ is equivalent to ab̄ = 0, i.e., the class of things that are both
A and not-B is empty. More generally, take a problem involving n classes. Each class
divides the universe into two parts (those elements in it, and those not in it), so that the
problem determines 2n subdivisions overall—e.g., for two classes denoted by a and b,
we get ab, ab̄, āb and āb̄. Each (universal) premise is then equivalent to what Boole
calls ‘a system of denials’:21 the assertion that a certain number of these combinations
are empty.

Accordingly, one can solve a problem like the one we worked through above by
(i) going through each of the possible combinations of classes and checking it against
every premise to determinewhether it has to be empty; then (ii) inspecting the resulting
list of denials to answer the question. This is basically the method offered by Jevons
(1864), who famously went on to design a machine automating step (i).22 Step (ii) is
more delicate, as the simplest way to summarize a given list of denials may not be easy
to see. Jevons tried drawing up exhaustive tables in which solutions could be looked
up; Venn suggested that the best approach was to use ‘tact and judgment, aided by
graphical methods’, that is, his well-known diagrams, which were supposed to make
the denials more surveyable and potential patterns among them clearer.23 In either
case, a good amount of the goal-directedness of Boole’s method gets lost: instead of
a systematic procedure building up to a conclusion of a specified form, say a = . . .,
we get techniques for enumerating and surveying all elementary denials that follow
from given premises.

Despite emphasizing (what we might call) ‘combinatorial’ aspects of it, Boole’s
English followers—like Jevons or Venn—still largely celebrated his general concep-
tion of the problem of logic: according to Jevons, Boole was the ‘first to set forth
in its full extent the problem of logic’24 and ‘it will probably be allowed that [he]

20 See note 6 above.
21 See Boole (1854, p. 84): ‘Every primary proposition can thus be resolved into a series of denials of the
existence of certain defined classes of things, and may, from that system of denials, be itself reconstructed.’
22 See Jevons (1870). For an introduction and further references, see Gardner (1958, ch. 5).
23 See Jevons (1874, in particular p. 135 and ch. VII); Venn (1881, pp. 255–260) discusses Jevons’ table,
then compares it with his diagrams.
24 Jevons (1874, p. 130); Jevons (1887, p. 113).
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discovered the true and general form of logic.’25 Venn, for his part, wrote that ‘[t]he
general solution of this problem was probably first conceived, and almost certainly
first effected, by Boole [. . .]. It cannot often be the lot of any one to conceive and so
completely to carry out such a generalization in an old and well-studied subject.’26

Boole’s German reception was markedly different. Hermann Lotze, discussing the
very problem presented above, noted that tailor-made algebraic methods seemed quite
unnecessary and proceeded to offer a combinatorial solution, somewhat reminiscent of
Jevons’s (who for his part kept to simpler cases and never tackled this one).27 But,while
Lotze basically started from the same observation as Jevons—that Boolean problems
are merely about recombining fragments delineated by already-defined classes—he
came to a starkly different conclusion: for him, such problems were ultimately of little
interest. Such, too, was Frege’s opinion:28 Boole’s problems, he wrote, ‘mostly seem
to have been invented only for the purpose of being solved by his formulas’29 and
‘will seldom, if ever, occur in science.’30

Both Lotze and Frege’s criticisms of Boolean problems rely on a broader discussion
of concept formation (see Heis 2013). Let us concentrate on Frege, whose views are
the most important for us here. His argument is that interesting new concepts are not
formedmerely by assuming as given ‘a systemof concepts, or speakingmetaphorically,
a network of lines’ and then by ‘[using] the lines that are already there in a new way
to fully describe the boundary of pieces of area.’31 Focusing on such limited cases,
Frege forcefully argues, can only be sterile:

It is the fact that attention is principally given to thisway of forming new concepts
from old ones, while other more fruitful ones are neglected, which surely is
responsible for the impression one easily gets in logic that for all our to-ing and
fro-ing, we never really leave the same spot.32

The apparatus of function-argument analysis and of quantification is, of course, what
allowed Frege to offer a new and fruitful view of what concept formation can be.
Nevertheless, he sought to prove that his Begriffsschrift could tackle Boole’s problems
anyway. Let us now turn to his solution.

25 Jevons (1887, p. 113); this sentence is missing from the 1874 edition.
26 Venn (1881, p. 301).
27 See Lotze (1884, pp. 219–221) = Lotze (1912, pp. 265–267). This solution is included in a ‘Note on the
Logical Calculus’ that Lotze only added to the second, 1880 edition of his Logic.
28 For a fuller discussion of Lotze’s outlook on this point as well as of parallels with Frege, see Heis (2013)
as well as Gabriel (1989). Note that Frege, although he knew Lotze’s book, may not have been aware that
the second edition contained an addendum treating the very problem he chose to discuss in his manuscript
on Boole; see Gabriel, op. cit, p. XX and XXIII.
29 Frege (1993b, p. 97).
30 Frege (1979, p. 46).
31 Frege (1979, p. 34, translation altered) = Frege (1969, p. 38). The ‘metaphor’ here refers to something
like Euler diagrams, described by Frege earlier, that represent concepts by the area inside a circle or closed
curve.
32 Ibid. Frege makes a similar point, but framed as a criticism of Kant, in theGrundlagen, §88 (Frege 1884,
pp. 99–101) = (Frege 1953, pp. 99–101).
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5 Frege’s solution

At the end of a manuscript comparing his Begriffsschrift with Boole’s system, Frege
tackles the very problem discussed above in order to show that ‘if in fact science were
to require the solution of such problems, the concept-script would be able to cope with
them without any difficulty.’33 Yet as we shall see, his solution is rather haphazard,
and is much more akin to an exhaustive (though intelligent) search through the space
of all possible proofs from the premises than to Boole’s algebraic method.

As a preliminary, we need to dispose of two slight complications. First, Frege
changes notations a little: he uses the Greek capital letters A, B, �, �, E to refer
to the presence of the properties A, B, C , D, E respectively. To avoid needlessly
complicating the comparison, we decided to revert to Roman capitals. Second, as
pointed out by the editors of Frege’s manuscript, some mistakes in his premises—
partly due to his following Schröder, whose initial phrasing of the problem contains
a minor misprint—appear to put his solution in jeopardy, even though he gets to the
right conclusions (unsurprisingly, given that he had the correct answer at hand). This,
however, is inessential: Frege’s solution can be corrected and carried through with
only minor changes, and we shall proceed assuming such amendments (spelled out in
footnotes below).

Frege starts his solution by decomposing Boole’s three premises into as many as
thirteen;34 as he puts it, ‘whereas the dominant procedure in Boole is the unification
of different judgements into a single expression, I analyse the data into simple judge-
ments.’35 To understand what Frege’s ‘simple’ judgements are, we need to briefly
review his notation, which we shall do through a few examples.36

In Frege’s Begriffsschrift notation, the formulas below stand for, respectively, (a)
the proposition A; (b) the negation of A; (c) the material conditional we would write
as B → A, which is Frege’s only device for combining different propositions into
more complex ones (conjunction and disjunction being obtained using the conditional
together with negation).37

(a) A (b) A (c) A

B

(d) A

B

Frege explicates the conditional (c) as the proposition that one cannot have that B is
asserted and A denied; this parallels the truth-functional analysis of the conditional
as excluding a single one of the four possible combinations of truth-values for A and

33 Frege (1979, p. 45) = Frege (1969, p. 51).
34 This is assuming his solution is corrected as per footnote 42 below; his own version has only twelve
premises.
35 Frege (1979, p. 45) = Frege (1969, p. 51).
36 For a quick introduction to Frege’s Begriffsschrift notation, see for instance von Plato (2017, ch. 4) or
Schlimm (2018, pp. 54–65).
37 Frege (1993a, pp. 11–12) = Frege (1972a, pp. 121–122); see also Schlimm (2018).
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B (but phrased in terms of ‘assertion’ and ‘denial’ rather than of truth and falsity).38

In fact, in his manuscript on Boole, Frege argues that it is precisely because the
conditional only excludes one out of four such combinations that it is ‘simpler’ than
Boole’s equality sign (indeed, a Boolean equality a = b, which in today’s notation
corresponds to two conditionals A → B and B → A, excludes not just one but two
possible combinations).39 Finally, a thick vertical stroke to the left of a proposition, as
in (d), turns it into a judgement, that is, means that the proposition is asserted. Putting
everything together, (d) thus stands for the judgement that ‘A and B cannot both be
denied’.40

What Frege calls ‘simple’ judgements in the context of our problem are formed from
conditionals like in (c) or (d), but nested. Take for example Boole’s premise (ii), that
‘wherever the properties A and D are foundwhile E is missing, the properties B andC
will either both be found, or both be missing’, which he wrote ēad = q(bc+ b̄c̄). The
indefinite class symbol q on the right-hand side allows translating this as a conditional,
namely, in contemporary notation,

(¬E ∧ A ∧ D) → ((B ∧ C) ∨ (¬B ∧ ¬C)).

To understand Frege’s translation, notice, first, that the consequent states that B and C
always go together, and so is equivalent to the conjunction of B → C and¬B → ¬C .
Splitting this consequent, this leads to the two formulas

(¬E ∧ A ∧ D) → (B → C) and (¬E ∧ A ∧ D) → (¬B → ¬C).

Finally, a conjunctive antecedent like¬E∧A∧D can be replaced by nested condition-
als (the order of nesting being indifferent); hence Frege’s translations (the numbering
is his):

(4) C

B

A

D

E

(5) C

B

A

D

E

.

Let us consider a more intricate example, namely Boole’s premise (iii), which he
wrote ab + aeb̄ = dc̄ + cd̄ . Taking + in a non-exclusive sense, as Schröder and later
authors do, it can be rewritten ab + ae = dc̄ + cd̄ . This has the form of an equation
without indefinite class symbols, so that in modern terms, it is an equivalence and first
needs to be split into two implications. The first half can then be translated as

38 Frege (1993a, p. 5) = Frege (1972a, pp. 114–115). Note that we are discussing the Begriffsschrift here;
in the later system of the Grundgesetze, Frege is able to define his conditional directly in terms of truth and
falsity (Frege 1893, §12).
39 Frege (1979, p. 36) = Frege (1969, p. 40).
40 Frege (1993a, pp. 10–11) = Frege (1972a, p. 121).
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((A ∧ B) ∨ (A ∧ E)) → ((D ∧ ¬C) ∨ (C ∧ ¬D)).

As above, the consequent may be broken down into D → ¬C and ¬D → C . But in
this case, the disjunction in the antecedent also requires splitting up, namely into the
judgements that the consequent holds given A and B, and that it holds given A and E .
All in all, the first implication of Boole’s (iii) yields four different judgements:

(6) C

D

A

B

(7) C

D

A

B

(8) C

D

A

E

(9) C

D

A

E

The second implication of (iii)—Frege’s mistakes aside—also yields four judgements,
which makes eight in total for a single Boolean equation.

In what sense does Frege see his version of the premises as ‘simple’? Remember
that he dubbed the conditional ‘simple’ because it excluded a single combination of
assertions and denials of the terms involved. The same can be said here, onlywithmore
propositions. For instance, (7) excludes that B, A, D be asserted and the negation of
C denied, that is, excludes that B, A, D, and C all be asserted together. In this sense,
Frege’s premises are similar to the ‘atomic denials’ into which the ‘combinatorial’
solutions discussed above broke down the data of the problem. The main difference
is that Frege’s simple judgements do not always contain all five of the terms involved,
as shown by formulas (6)–(9); still, they can easily be used to generate the full list of
combinations excluded by the premises. Frege, however, uses the data in a strikingly
differentway: aswill appear presently, his approach could bedescribed as an inferential
recasting of the combinatorial solutions.

To solve the problem from his list of ‘simple judgements’, Frege essentially uses
two kinds of transformations, which we may call contraposition and cut. First, con-
traposition: in a nested conditional, the consequent (written on the top line) may be
switched with any antecedent (written on any of the other lines) while negating both.
For instance, Frege transforms formula (5) above into (15) (the numbering is still his):

(5) C

B

A

D

E

� (15) E

C

B

A

D
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(As mentioned already, the order of antecedents does not matter in such formulas:
lines other than the top one can be reordered freely.41 Strictly speaking, this could be
considered as a third transformation Frege uses.) Second, a rule akin tomodus ponens,
or more precisely, cut: two conditionals can be combined when the consequent of one
is among the antecedents of the other, as E (shown in green) is in (15) and (9) above:

(15) E

C

B

A

D

, (9) C

D

A

E

� C

D

A

C

B

A

D

Here, the antecedents of E in (15), shown in red, have been plugged into (9) at the place
of E . The result can then be simplified, using contraposition to switch the consequent

C with B and eliminating redundant antecedents; hence, still using Frege’s
own numbering,

(16) B

C

A

D

.

With these tools in hand, we can tackle Boole’s first question, namely to find what
follows from A regarding B, C and D. Frege’s strategy is to search for every possible
judgement inferrable from the premises that has A as antecedent and does not contain
E . Two such judgements (to wit, (6) and (7) above) are already found among the
premises. For the rest, since Frege relies (in this context) on a single inference rule
that allows combining different judgements, the problemboils down to surveying every
possible application of it. This is exactly what he does: he looks for every possible
application of his cut-like rule that would eliminate E from some premises. In order
to do this efficiently and systematically, Frege first uses his contraposition-like rule

41 Note that this is only true because of the specific form of the nested conditionals Frege uses here; if there
were, say, negation signs anywhere else on the top line than just before the letter, this would cease to hold.
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to rewrite the premises so that E never appears negated—he thus transforms (5) into
(15), as shown above, and proceeds similarly for (4).

At this stage, the premises can be sorted into three groups, according to the
occurence of E : those that have E as an antecedent, those that have it as conse-
quent, and those in which it does not occur at all. Members of the third group are
either already part of the solution, if they contain A, like (6) and (7), or are of no use
if they do not. As for the rest, cut allows combining every premise of the first group
with every premise of the second group. Most of these combinations yield judgements
which, in Frege’s words, hold ‘independently of the contents’—that is, tautologies
(this can happen either because the consequent is already among the antecedents, or
because two of the antecedents contradict each other, like B and B). As it
happens, in our case, ten combinations have to be surveyed,42 and the only fruitful
one is the combination of (9) and (15) shown above, which yields (16). In the end,
the full solution is given by (6), (7), and (16).43 (In passing, note that Frege’s solution
is, in fact, weaker than Boole’s: in contemporary terms, the latter—being an equation
with no indefinite class terms—corresponds to a biconditional of which the former is
only the first half.)

The nature of Frege’s solution should be clear by now: it is, essentially, a systematic
search through a space of possible proofs. Despite the superficial similarities, noted
above, of his ‘simple judgements’ with combinations of terms excluded by Boole’s
premises, the spirit of his solution is inferential rather than combinatorial: his goal
is, essentially, to show that Boole’s problem can be solved through simple logical

42 This is assuming that Frege’s mistakes are corrected. For the record, here is how this should be done.
The editors (see Frege 1979, note 1 p. 41) suggest adding a premise (10)′ and replacing Frege’s premise
(12) by their (12)′ (shown below). Additionally, the following amendments are required. First, one should
introduce equivalent variants of (10)′ and (12)′, namely (10)′′ and (12)′′:

(10)′ B

E

C

D

(10)′′ E

B

C

D

(12)′ B

E

C

D

(12)′′ E

B

C

D

.

Second, in Frege’s solution of the first question, one should check that combining either of (10)′′ or (12)′′
with either of (8) or (9) only produces tautologies. Third, in the list at the top of p. 44, all occurences of
‘(17)’ should be replaced by ‘(19)’.
43 In fact, Frege notices that a further simplification is possible: B can be eliminated by cut from (7) and
(16), yielding

(17) C

D

A

,

so that (6) and (17) together contain the full solution to Boole’s first question.
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inferences, with no tailor-made method and, as he puts it, ‘practically no theoretical
preparation at all’.44

Admittedly, approaching the Begriffsschrift through the lens of Boole’s problem
may seem unfair. After all, before offering his own solution, Frege writes that ‘it would
not be surprising, and I would have no reluctance to concede the point, if Boolean
logic were better suited than my concept-script to solve the kind of problems it was
specifically designed for, or that were specifically invented for it’ (though, he adds,
‘perhaps not even this is the case’).45 Among the points he makes in his comparison
with Boole, he even describes the fact that his system can handle such problems just
as well as Boole’s as ‘the point to which I attach least importance’ (since in his eyes
they are of little use anyway).46

Yet approaching Frege’s system on its own terms only confirms that it contains
nothing comparable to Boole’s conception of what a logical problem is. In fact, as the
rest of Frege’s paper on Boole makes abundantly clear, the Begriffsschrift is not meant
to solve problems at all: rather, it is a visual tool to scrutinize concepts and inferences.
In the famous formulation of theGrundlagen, theBegriffsschrift ‘is intended to achieve
greater economy and surveyability of expression and to be used in a few fixed forms
in the manner of a calculus, so that no transition is permitted that is not in accord with
the rules that are laid down once and for all.’47

6 Two conceptions of ‘calculus’

We now come to our main claim, which is that the striking difference we described
between Boole and Frege’s solution methods—the former offering a goal-directed
algorithm, the latter an exhaustive search through possible proofs—reflects broader
philosophical conceptions: the two logicians hold very different views ofwhat a logical
‘calculus’ should be.

Start with Boole: his main goal, as we have explained, was to find a general method
to solve logical problems, and he says so explicitly. The point comes out particularly
clearly in a passage of the introduction to the Laws of Thought in which he discusses
the shortcomings of Aristotelian logic. After disputing that the traditional rules of
syllogism and conversion48 are the ‘ultimate processes’ of logic, he argues that even
if all inference were in fact reducible to Aristotelian forms, a general method would
still be needed:

If all inference were reducible to [syllogism and conversion], there would still
exist the same necessity for a general method. For it would still be requisite to
determine in what order the processes should succeed each other, as well as their
particular nature, in order that the desired relation should be obtained. [. . .] If we

44 Frege (1979, p. 44) = Frege (1969, p. 49).
45 Frege (1979, p. 39, translation altered) = Frege (1969, p. 44).
46 Frege (1979, p. 46) = Frege (1969, p. 52).
47 See §91; Frege (1884, p. 103) = Frege (1953, p. 103), translation from Beaney (1997, p. 124).
48 In Aristotelian logic, ‘converting’ means inverting subject and predicate, e.g., going from ‘Some A is
B’ to ‘Some B is A’ or from ‘All A are B’ to ‘Some B are A’.
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may judge from the mathematical sciences, which are the most perfect examples
of method known, this directive function of Method constitutes its chief office
and distinction. The fundamental processes of arithmetic, for instance, are in
themselves but the elements of a possible science. To assign their nature is the
first business of its method, but to arrange their succession is its subsequent and
higher function. In the more complex examples of logical deduction [. . .] the aid
of a directive method, such as a Calculus alone can supply, is indispensable.49

To take a geographical metaphor, suppose logical problem-solving is a journey from a
city A (the premises) to a city B (the ‘relation’ sought between certain terms appearing
in the premises, under a given form—see Sect. 1). Merely knowing the ‘fundamental
processes’ of logic is like seeing a number of roads in front of us that we could try,
but with no signposts telling us which one leads to our destination. A logical method,
for Boole, tells us which road to take. In the same way, just knowing that addition and
multiplication are associative and commutative, or that one can add a number to both
sides of an equality, is going to be of little help to solve even the simplest of algebraic
equations: one needs some idea of how to string together such simple rules in order
to reach the solution, which is precisely what algebra is all about (e.g., to solve for an
unknown x , we learn to add or subtract the same quantities on each side of the equation
until all x’s are on the same side, to factor by x , and then to divide each side by the
coefficient of x). What Boole calls a ‘directive’ method does just that. Moreover, as
the last sentence in the quote above indicates, he sees such a method as an integral
part of the very idea of a ‘calculus’—an idea that deserves deeper discussion, which
we shall postpone until Sect. 8.

In Frege, the concept of calculus is still at the forefront, but takes on a decidedly
thinner meaning. To get clearer on it, we need to briefly review his all too well-known
opposition between calculus ratiocinator and lingua characterica. This contrast has
been much written about, mostly because it has been used as a way to oppose, not just
Frege and Boole (or the ‘Booleans’), but two broader lineages in the history of logic.50

We shall sidestep these debates here: our only concern is the way Frege himself used
the phrases. As it happens, he only deployed them when positioning his work with
respect to competing programs, and this in three polemical pieces, two on Boole and
one on Peano.51

When discussing Boole, Frege is very clear that he meant his system to be both
calculus and lingua:

49 Boole (1854, pp. 10–11). (Emphasis in the original.)
50 The idea to use these phrases to describe distinct traditions in logic goes back, as far as we know, to Philip
Jourdain in his preface to Couturat (1914); it was sharpened and popularized by Van Heijenoort (1967),
then taken up by various authors to shed light on other aspects of the history of logic (for further references,
see for instance Kusch 1989, notes 5 and 6 p. 289). A further complication is that already in Frege’s time,
the phrases (which ultimately come from Leibniz through the reconstruction by Trendelenburg 1856) were
used in senses quite different from his, most notably by Schröder in his review of the Begriffsschrift. For
discussion, see Sluga (1987) and Peckhaus (2004).
51 The two papers on Boole (the long, only posthumously-published manuscript containing the solution
discussed in Sect. 5, and a much briefer version that Frege managed to get published) are Frege (1979) =
Frege (1969) and Frege (1972b) = Frege (1993b); the one on Peano is Frege (1984) = Frege (1897).
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In fact, I wished to produce, not a mere calculus ratiocinator, but a lingua
characterica in the Leibnizian sense. In doing so, however, I recognize that a
deductive calculus of the former sort is a necessary part of a conceptual notation.
If this was misunderstood, perhaps it is because I let the abstract logical aspect
stand too much in the foreground.52

So what exactly is this ‘calculus’ feature that Frege thought his system had in common
with Boole’s? Helpful here are his remarks on Peano’s notation, which he thought
lacking because of ‘the absence of rules of inference.’53 In this respect, writes Frege,
‘we can recognize a closer affinity between Boolean logic andmy conceptual notation,
in as much as the main emphasis is on inference, which is not stressed so much in
the Peano logical calculus’, so that ‘Boole’s logic is a calculus ratiocinator but not a
lingua characterica; Peano’s mathematical logic is mainly a lingua characterica, and
secondarily also a calculus ratiocinator; whereas my conceptual notation is both with
equal emphasis.’54 In the same article, he also explains unambiguously, by contrast
with Peano’s, the sense in which his own system is a calculus:

In my conceptual notation inference is conducted like a calculation. I do not
mean this in the narrow sense, as if it were subject to an algorithm the same as or
similar to that of ordinary addition and multiplication, but only in the sense that
there exists an algorithm at all, i.e. a totality of rules which govern the transition
from one sentence or from two sentences to a new one in such a way that nothing
happens except in conformity with these rules.55

This reflects the fact that for Frege, the ‘chief purpose’ of the Begriffsschrift is ‘to
test in the most reliable manner the validity of a chain of reasoning’:56 it is a calculus
merely in the sense that the transformation rules are fully specified, in away thatmakes
the validity of any given inference easily surveyable (see also the end of Section 5
above). Actual algorithms (in today’s customary sense of the word) for solving certain
kinds of logical problems or finding the proofs of sentences are altogether absent from
the picture.

The contrast should be clear by now. For Boole, the value of a logical calculus
lies in the solution methods it affords access to, whereas for Frege, what matters is
merely that inference rules be fully and formally specified, so that inferences can be
scrutinized rigorously.

7 Enablingmechanization and fighting it

From a contemporary point of view, it is tempting to read both Boole and Frege as
making progress toward some kind of mechanization of logic. Of course, retrospective

52 Frege (1972b, p. 91, translation altered) = Frege (1993b, p. 98).
53 Frege (1984, p. 238) = Frege (1897, p. 366). As noted by von Plato (2017, pp. 55–56), one should not
overstate this criticism: appropriate rules can easily be supplied. See also Schlimm (2021).
54 Frege (1984, p. 242, translation altered) = Frege (1897, pp. 370–371).
55 Frege (1984, p. 237, translation altered) = Frege (1897, pp. 364–365).
56 Frege (1972a, p. 104) = Frege (1993a, p. IV).
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judgements of this kind are anachronistic in nature, and indeed, we shall see that in
their historical context, both authors explicitly wrote against mechanization. In and of
itself, though, this is no objection: we can describe the mechanical potential of their
work whatever their own views. Yet closer examination makes such a retrospective
reading difficult to defend. On the one hand, even insofar as both authors can be read
as advancing some kind of mechanization, it would not be the same kind in both cases,
nor one straightforwardly reducible to today’s use of the word. On the other hand, such
a retrospective reading underestimates howmuch Frege’s entire project amounted, in a
sense, to using formalization against mechanization. Charting the complex relation of
Boole and Frege to mechanization in light of their conceptions of ‘calculus’, discussed
above, is the goal of this section.

Our discussion until now already makes clear that Boole and Frege’s contrast-
ing conceptions of what a logical calculus should do—afford algorithmic methods
for solving problems or allow for the rigorous inspection of individual inferential
steps—would lead to very different things being mechanized: in Boole’s case, entire
problem-solving processes; in Frege’s, the verification of (already given) proofs. It is
hard to escape the feeling that the latter goal is distinctly less ambitious. As it turns
out, this is no coincidence. First, as has been shown by Jamie Tappenden’s recent
recontextualization efforts, much of Frege’s enterprise was positioned against compu-
tational or mechanical views of mathematics. Second, on the basis of our comparison
with Boole, we want to argue further that Frege did not merely have anti-mechanical
motivations, but actually managed to shift the focus away from mechanization and
push it into a secondary role.

Before turning to Frege, we need to say a few words about Boole, who, regarding
mechanization, had an ambiguous attitude of his own. Historian Ivor Grattan-
Guinness, comparing him to Babbage, went so far as to say that Boole ‘would not
have welcomed the association of his logic with the repetitive actions of comput-
ing; whether Babbagean mechanical or modern electrical’57 and even that ‘he would
have found repellent the mechanical aspects of Babbage’s engines.’58 The case, we
believe, should be approached with caution. The main piece of evidence for it comes
from Boole’s first foray into logic, The Mathematical Analysis of Logic (Boole 1847),
more precisely from the preface and introduction (quoted below). However, such pre-
liminary texts deserve careful contextualization: we should keep in mind that Boole’s
main concern there would have been to forestall the immediate hostility his ‘mathe-
matical’ approach to logic was likely to provoke among more traditional practitioners
of the field. Of particular relevance are the complex debates going on in Britain at the
time about the respective educational value of mathematics and logic, a large topic that
we can only hint at here (see Durand-Richard 2000). In a nutshell, that Boole’s use of
algebra in logic could be understood as a form of ‘mechanization’ went without saying
for his contemporaries,59 but he saw this as a threat rather than a selling point: he was
at pains to counter the charge that he was reducing logic (then praised by some as a

57 Grattan-Guinness (1997, p. xliv), his emphasis.
58 Grattan-Guinness (1992, p. 44).
59 A good reference point here is John Stuart Mill, whom Boole quotes at the beginning of his first logical
tract (see below). Mill argues that the language of algebra is prototypically mechanical: ‘The complete or
extreme case of the mechanical use of language, is when it is used without any consciousness of a meaning
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tool to train the highest faculties) to a mere matter of mechanical rote, liable to deaden
the mind rather than improve it. Since he could hardly deny that he was offering a
symbol-pushing method for solving logical problems, his overall strategy was to shift
the question: the real intellectual exercise, he argued, lay not in solving individual
problems, but in coming to understand the workings and general applicability of his
symbolic method itself—and this, he claimed, offered an intellectual discipline much
higher than any in the traditional logic.

In this light, let us have a closer look at Boole’s remarks on calculation and mech-
anization. In the aforementioned preface to The Mathematical Analysis of Logic, he
quotes the following passage by Mill, implying that logical problems can indeed be
solved mechanically and that he is offering a (symbolic) language to do just that:

Whenever the nature of the subject permits the reasoning process to be with-
out danger carried on mechanically, the language should be constructed on as
mechanical principles as possible; while in the contrary case it should be so con-
structed, that there shall be the greatest possible obstacle to a mere mechanical
use of it.60

But Boole immediately qualifies, adding that this is not his main purpose:

In one respect, the science of Logic differs from all others; the perfection of its
method is chiefly valuable as an evidence of the speculative truth of its principles.
To supersede the employment of common reason, or to subject it to the rigour
of technical forms, would be the last desire of one who knows the value [of]
intellectual toil [. . .].61

In other words, the main point of his method is not to actually replace ordinary rea-
soning by mindless calculations: what is most valuable is not its actual use to solve
problems, but the understanding of how andwhy it works in general. A few pages later,
in the introduction, Boole makes this more explicit, and links it with the educational
debates we hinted at earlier:

In discussing the [. . .] question of the influence of the use of symbols upon the
discipline of the intellect [. . .] it is of most material consequence, whether those
symbols are used with a full understanding of their meaning [. . .] or whether
they are mere unsuggestive characters, the use of which is suffered to rest upon
authority. [. . .] In the former case an intellectual discipline of a high order is
provided, an exercise not only of reason, but of the faculty of generalization. In
the latter case there is no mental discipline whatever. (Boole 1847, p. 10)

[. . .]. This extreme case is nowhere realized except in the figures of arithmetic, and still more, the symbols
of algebra [. . .]. Its perfection consists in the completeness of its adaptation to a purely mechanical use. The
symbols are mere counters [. . .]. There is nothing, therefore, to distract the mind from the set of mechanical
operations which are to be performed upon the symbols [. . .].’ (Mill 1974, pp. 707–708.) But he goes on to
argue that such a mechanical language is in fact radically inappropriate outside of arithmetic: ‘On all other
subjects, instead of contrivances to prevent our attention from being distracted by thinking of the meaning
of our signs, we ought to wish for contrivances to make it impossible that we should ever lose sight of that
meaning even for an instant.’ (Ibid, p. 710.)
60 Mill (1974, p. 707), quoted in Boole (1847, p. 2).
61 Boole (1847, p. 2).
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Nevertheless, these quotations—and accordingly, Boole’s opposition to mecha-
nization, in so far as he could conceive of it—should not be overinterpreted. There is
no reason to doubt that Boole, as mathematician, was more interested in the general
method itself than in the individual calculations it permitted; nor that, from an educa-
tional point of view, he would have wanted to impart to students a full understanding
of the method rather than the mere mastery of computational tricks. But his insistence
on these themes at this particular juncture—the beginning of his very first publication
on logic—should be approached with caution, particularly as hardly anything of the
kind is to be found in his more expansive Investigation into the Laws of Thought a
few years later. While he likely did not believe that the entirety of human thinking
was captured by his system or could be made mechanical62 (and may well have found
‘repellent’ indeed the prospect of such a complete mechanization), he certainly valued
the algorithmic aspect of his logical method; moreover, remarks by his friend Joseph
Hill—recently published byMacHale and Cohen in their biographical volume—make
it quite probable that Boole was aware of the potential in his work for the eventual
construction of logical machines, and was not particularly disturbed by the idea.63

Boole, then, may have written against mechanization in specific contexts, but his
work nevertheless fosters it, in the particular sense of providing algorithmic solution
methods for a class of problems—something he likelywould not have disputed. Frege’s
opposition to mechanization, on the other hand, seems quite deep-seated.

For a start, Jamie Tappenden has recently emphasized that a motivating—though
oblique—theme of Frege’s Grundlagen is, roughly speaking, a polemic against views
of arithmetic as mechanical or computational.64 The context here, in a way remi-
niscent of Boole, are contemporaneous discussions about the value of mathematics,
in particular for education: when Frege, in his introduction, allusively criticizes the
(now forgotten) view of Kuno Fischer that computation is nothing but ‘aggregative,
mechanical thinking’,65 he is in fact—as Tappenden shows—defending mathematics
against the idea that it is of little educational worth because it is a matter of mere
mechanical rote. Frege’s argumentative strategy is to show, by way of his conceptual
notation, that ‘one has to recognize to the concept of number a finer structure than
most of the concepts of the other sciences, even though it is still one of the simplest
in arithmetic.’66 In other words, he aims at using what we might call ‘formalization’
to reveal the exquisite intricacies of thought that make up the simplest arithmetical
concepts—and so to display the worth of mathematical thinking.

This general picture of (some of) Frege’s motivations in the Grundlagen ties in
with his remarks on concept formation in his posthumously-published piece on Boole,
which were already briefly discussed above (see Sect. 4). After arguing that there is
little to be gained by mere extensional recombination of already given concepts—as
opposed to the real work of forming and scrutinizing concepts using the apparatus

62 As Grattan-Guinness points out, Boole credits the mind with a capacity to grasp ‘general laws from
particular cases’, for instance, which appears to be outside the scope of his system (Grattan-Guinness 1997,
p. xliv).
63 See Machale (2018, pp. 182–184).
64 See Tappenden (2020, 2021).
65 Frege (1884, p. iii) = Frege (1953, p. xv, translation altered).
66 Frege (1884, p. iv) = Frege (1953, p. xvi, translation altered).
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of the Begriffsschrift—Frege goes on to claim that it is precisely because Boole only
plays around with already given concepts without looking into their formation that he
is able to (spuriously) mechanize inference:

I believe almost all errorsmade in inference to have their roots in the imperfection
of the concepts. Boole presupposes logically perfect concepts as ready to hand,
and hence the most difficult part of the task as having been already discharged;
he can then draw his inferences from the given assumptions by a mechanical
process of computation. Stanley Jevons has in fact invented a machine to do this.
But if we have perfect concepts whose content we do not need to refer back
to, we can easily guard ourselves from error, even without computation. [. . .]
Boolean formula-language only represents a part of our thinking; our thinking as
a whole can never be coped with by a machine or replaced by purely mechanical
activity.67

In other words, the actual work of thinking is about clarifying the underlying structure
of concepts—something Frege’s Begriffsschrift allows making explicit and visible.
But this work cannot be made mechanical. We thus see how Frege uses his more
sophisticated symbolic language against the idea that mathematics is mechanical.68

This is not to say that, for Frege, there is no mechanical potential at all in the
rule-bound use of symbols, or that such a ‘mechanism’ is entirely bad. Although
Frege insists that symbols should never be used in a fully thoughtless way, he grants
that symbol-pushing can offer important advantages; as he writes in a (later) letter to
Hilbert:

A mere mechanical operation with formulas is dangerous (1) for the truth of the
results and (2) for the fruitfulness of the science. The first danger can probably
be avoided almost entirely by making the system of signs logically perfect. As
far as the second danger is concerned, science would come to a standstill if the
mechanism of formulas were to become so rampant as to stifle all thought. Yet
I would not want to regard such a mechanism as completely useless or harmful.
On the contrary, I believe that it is necessary. The natural course of events seems
to be as follows: what was originally saturated with thought hardens in time
into a mechanism which partly relieves the scientist from having to think. [. . .]
I should like to compare this to the process of lignification. Where a tree lives
and grows it must be soft and succulent. But if what was succulent did not in
time turn into wood, the tree could not reach a significant height. On the other
hand, when all that was green has turned into wood, the tree ceases to grow.69

Importantly, though, not only is there a part of mathematical thinking that is not
and cannot be made mechanical, but also, as discussed above, such non-mechanical
aspects are mademore visible precisely by the very specific kind of symbolic language
that the Begriffsschrift offers, with its ability to unveil the richness of mathematical
concept-formation.

67 Frege (1979, pp. 34–35) = Frege (1969, p. 39).
68 For further discussion on this, see Rohr (2020, section 1.5).
69 Letter to Hilbert, dated 1 October 1895 (Frege 1980, p. 33 = Frege 1976, pp. 58–59).

123



Synthese

In any case, insofar as Frege’s work could be taken (from an anachronistic per-
spective) to be conducive to mechanization, it would only be to that of the checking
of proofs—or possibly, though this is more of a stretch, that of the systematic search
through the space of possible proofs defined by given inference rules. The distance
with the kind of problem-solving mechanization sought by the Booleans is obvious,
and indeed, the literature on ‘logical machines’ tends to ignore Frege completely (see,
e.g., Gardner 1958).

8 Calculus, notations, and ‘directivemethod’

The previous sections compared and contrasted Boole’s and Frege’s solutions to the
same problem, as well as their broader outlooks on logic, computation, and mecha-
nization. We now want to dwell on a particular feature of Boole’s view: the intrinsic
link that he establishes (and Frege breaks) between the concepts of ‘calculus’ and of
‘directive method’:

In the more complex examples of logical deduction [. . .] the aid of a directive
method, such as a Calculus alone can supply, is indispensable.70

At first sight, Boole’s remark may seem commonplace, even trite: of course—one
might think—calculi (or in other words, symbolic notations) like that of algebra are
very useful in problem-solving. Yet further thought makes it puzzling. Why, indeed,
is symbolic language so useful? A simple answer would be that it makes simple
operations easy and fast by allowing one to perform them without thinking, by mere
symbol-pushing. Notice, though, that this is not what Boole says. What he points to
here is not that a calculusmakes individual steps easier, but that it helps tomethodically
identify which steps to take next.

To make the question sharper and better understand the value of Boole’s remarks,
let us briefly survey the recent literature on why symbolic languages can be so useful
in mathematics and logic. Much of it has taken a psychological route, focusing on
externalization and extended cognition. Two ideas stand out. One is that symbolic
languages allow recruiting powerful ‘perceptual and sensorimotor’ abilities in the
service of problem-solving:71 symbols are not mere clothing for reasoning processes
that somehow happen in the mind independently of the symbols, but the reasoning
is done through the sensorimotor manipulation of physical or imagined inscriptions
and nowhere else. In essence, this line of research gives experimental psychology
substance to the old idea that symbolic languages are about replacing thinking by
symbol-pushing, except that contemporary proponents tend to suspect that there is no
pure thinking beforehand to be replaced, or that if there is, externalization transforms
it into something substantially different.72 The other idea goes further: by offloading
problem-solving to sensorimotor abilities, we are not merely making it more efficient
(or even possible in practice), but we are actually avoiding biases built into our more

70 Boole (1854, p. 11).
71 See for instance Landy et al. (2014), which also surveys some of the relevant experimental literature.
72 See for instance Vold and Schlimm (2020).
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spontaneous internal reasoning processes. In the case of logic, such a point has recently
been made by Dutilh Novaes (2012), who argued that formalization—by shifting our
attention to symbols whose meaning we are able to disregard—allows us to bypass
our widespread ‘belief bias’ (that is, the fact that we automatically bring previous
knowledge to bear when reasoning). This is basically a recasting in the language of
psychology of Frege’s idea that formal languages help us avoid smuggling assumptions
or intuitions unnoticed.

Can these lines of research helpmake sense ofBoole’s hints?What needs explaining
is the way symbolic languages offer systematic help in identifying which steps to
take next when engaged in problem-solving. There is indeed a way in which the
aforementioned research could account for this: if, say, sensorimotor skills make us
proficient at imagining algebraic symbols moving around, we may be able to quickly
see which steps are likely to be helpful and which will bring no benefit (presumably
because, consciously or not, we are performing them mentally without having to try
them out on paper), in a way we could never match without recourse to symbolic tools.
On this account, the use of symbols affords us a mere gain in efficiency, but this is
enough to make it seem as though we are better at finding our way forward—even
though, in fact, we are no better at orientation, but just quicker at systematically trying
out various paths.

But Boole’s remarks surely point to something more fundamental than psychology.
First, while there can be no doubt that our particular sensorimotor faculties are what
makes the particular symbolic languages we use suitable and appropriate, this psy-
chological advantage presupposes a non-psychological fact, namely that calculi codify
possible steps toward a solution in the form of a limited number of symbol-pushing
moves—thus making it possible to survey possible problem-solving strategies. This,
however, is true of Frege’s system just as much as of Boole’s. The comparison between
their solutions to the same problem suggests a second and more important point: what
makes a calculus valuable is not merely the fact that it fully codifies possible moves
and that the solution of any problem can, in principle, be derived from it. Rather, what
matters is that the calculus gives us easy access, in some sense to be clarified, to the
moves appropriate for solving the problems we care about. Indeed, as we have seen,
while Frege’s system can solve Boole’s problems, it only does so in a much clumsier
fashion—and, in fact, it appears that Boole’s ‘directive method’ would stop making
much sense if translated into Frege’s Begriffsschrift, as it is closely bound up with
Boole’s notation.

While we are not proposing to embark on a philosophical study of such notational
differences here, we believe that Boole’s insight usefully points to the task that such a
discussion should accomplish: explore how particular symbolic languages or notations
can organize the space of possible expressions, so to speak, in such a way as to make
solution strategies for certain kinds of problems accessible in practice.

9 Broader developments

Although we can offer no more than tentative hints here, we believe that the contrast
we have drawn between Boole and Frege is useful to think about the broader history
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of logic in the late 19th and early 20th centuries. First, the problem-solving approach
pioneered by Boole shaped large parts of what is often called the ‘algebra of logic’
tradition, including in settings we would now call ‘first-order’, like Schröder’s work
on relatives and Skolem’s results on quantifier elimination. Second, a shift intriguingly
parallel to Frege’s—away from the algebraic, problem-solving approach to logic and
toward a focus on analysis and inference—seems to have happened inside the ‘algebra
of logic’ tradition too, in the work of Peirce.

As alreadyhinted in the introduction, one false impressiononemight take away from
the foregoing is that our contrast between Boole and Frege tracks that between decid-
able propositional logic and undecidable first-order logic. Later work in the Boolean
tradition disproves this misapprehension. As a preliminary, it should be kept in mind
that quantificationwas also introduced by authorsworking in a broadlyBoolean frame-
work, namely by Peirce and his students Christine Ladd-Franklin and O.H.Mitchell;
that their ideas were brought together in Schröder’s calculus of relatives, which makes
up the third volume of his expansive Lectures on the Algebra of Logic;73 and that
this line of inquiry—and not Frege’s work, nor Russell’s—was the actual point of
departure of crucial work on quantification by Löwenheim and Skolem.74 Now, what
matters for our purposes is that Schröder built his calculus of relatives around what
he called ‘solution-problems’ (‘Auflösungsprobleme’), essentially a relational analog
to Boole’s logical problems.75

Interestingly, something akin to Frege’s criticism of Boole’s approach to logic
is also found in Peirce: although Peirce’s starting-point was Boolean, he moved
toward an understanding of logic as having to do with analysis rather than with
the calculational solution of logical problems.76 Against Schröder’s aforementioned
‘solution-problems’, Peirce objected:77

Professor Schröder chiefly occupies himself with what he calls “solution-
problems” [. . .]. While I am not at all disposed to deny that [such problems],
consisting in the ascertainment of the general forms of relatives which satisfy
given conditions, are often of considerable importance, I cannot admit that the
interest of logical study centres in them. I hold that it is usually much more to
the purpose to express in the simplest way what a given premise discloses in
regard to the constitution of a relative [. . .].78

In other words, what matters most is not to methodically solve well-defined problems,
but to provide a logical analysis of premises and display this analysis in the most
conspicuous way possible.

More broadly, Peirce later wrote in an encyclopedia entry on ‘Logic (exact)’:

73 See Schröder (1895).
74 See Brady (2000), in particular ch. 8 and 9.
75 See Schröder (1895), in particular the fifth lecture; for a synopsis, see Brady (2000, pp. 152–153).
76 On Peirce’s view of analysis as the main task of logic, see for instance Pietarinen (2016).
77 Incidentally, Peirce also developed technical criticisms of Schröeder’s approach of the topic, on which
see Brady (2000, pp. 153–155).
78 Peirce (1897, pp. 193–194).
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There are those, not merely outside the ranks of exact logic, but even within it,
who seem to suppose that the aim is to produce a calculus, or semi-mechanical
method, for performing all reasoning, or all deductive inquiry; but there is no
reason to suppose that such a project [. . .] can ever be realized. The real aim is
to find an indisputable theory of reasoning by the aid of mathematics.79

Right after this passage, he warns that the use of algebra in logic ‘is open to the danger
of degenerating into idle trifling’—which may well refer to complex and artificial
problems of the kind we discussed above, since he then defends his own logical
graphs by saying that they ‘cannot, it is true, be applied to cases of great complexity;
but for that very reason they are less liable to serve the purposes of the logical trifler.’ In
Peirce’s views, if algebra is good for something in logic, it is not for its problem-solving
advantages, but because it forces us ‘to reason explicitly and definitely, if at all’ so that
‘it may afford very considerable aid to analysis.’80 A shift in emphasis comparable
to Frege’s, albeit without the logicist ambitions and the focus on arithmetic, clearly
seems at work here.

Conclusion

Histories of logic often present Boole and Frege as two steps—Frege usually the bigger
one—on the road to formalization, and hence to mechanization. Such a retrospective
view distorts the historical record considerably. While both authors do, in some sense,
offer a ‘calculus’ for logic, the word takes on very different meanings in each: for
Boole, the value of a calculus lies in its offering the proper kind of guidance for
problem-solving; for Frege, designing a calculus merely means codifying elementary
inferences symbolically, so that the correctness of proofs can be checked visually. This
is why isolating elementary inferences and codifying them as rules was not central for
Boole—what mattered to him was the overall architecture of his solution methods—
while Frege, conversely, had no notion of logical problem-solving at all; insofar as
his system lends itself (anachronistically speaking) to any kind of mechanization, it
can only be that of the checking of proofs, and no longer of the methodical solution of
problems, asBoole’s did (a shift in emphasiswhich, incidentally, dovetailswith Frege’s
explicit positioning of his work in opposition to ‘mechanical’ views of arithmetic, and
mathematics more broadly). This contrast comes out clearly, as we have shown, in
Frege’s attempt to solve one of Boole’s logical problems using the Begriffsschrift: in
place of Boole’s sophisticated and goal-directed symbolic methods, what Frege offers
is essentially a systematic proof-search—a method only in the thinnest of senses.

A view of the role of symbolic notations closer to Frege had an outsize influence
on logic and analytic philosophy. In effect, his focus on the strict codification of
elementary inferences (as well as, on the lingua side, on the analysis of concepts)
drew attention away from the kind of reflections developed by Boole earlier on the
value of symbolic languages for methodical problem-solving. We believe, however,
that Boole’s outlook—which establishes an intrinsic link between a ‘calculus’ and the

79 Peirce (1902, p. 24).
80 Ibid.
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systematic problem-solving methods it lends itself to—deserves to be revived, and
can pave the way for a better understanding of the role of notations, and of symbolic
languages in general, in mathematics and logic.
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