
Multipole Expansion (Few comments)  

• More terms can be added if greater accuracy is required 

• It is an exact expression, not an approximation. 

• At large 𝒓𝒓, the potential can be approximated by the first non-zero term. 

• A particular term in the expansion is defined by its 𝒓𝒓 dependence  

10 

+
1

4𝜋𝜋𝜖𝜖0𝑟𝑟2
� 𝑟𝑟′(cos𝛼𝛼)𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ +

1
4𝜋𝜋𝜖𝜖0𝑟𝑟3

� 𝑟𝑟′ 2 3
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1
2

𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ 

+⋯ 

V 𝐫𝐫  

=
1

4𝜋𝜋𝜖𝜖0𝑟𝑟
�𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ 

Monopole potential 
( 1/𝑟𝑟 dependence) 

Dipole potential 
( 1/𝑟𝑟2 dependence) 

Quadrupole potential 
( 1/𝑟𝑟3 dependence) 



Questions 1: 

Q: In this following configuration, is the “large 𝐫𝐫” limit 
valid, since the source dimensions are much smaller than 𝐫𝐫? 

Ans: No. The “large 𝐫𝐫” limit essentially mean 𝐫𝐫 ≫ |𝐫𝐫′|. 
In majority of the situations, the charge distribution is 
centered at the origin and therefore the “large 𝐫𝐫” limit is 
the same as source dimension being smaller than 𝐫𝐫.  
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Vmono 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
1
𝑟𝑟
�𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ 

Monopole term: 

=
1

4𝜋𝜋𝜖𝜖0
𝑄𝑄
𝑟𝑟

 

• 𝑄𝑄 = ∫𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ is the total charge 
• If 𝑄𝑄 = 0, monopole term is zero. 
• For a collection of point charges 

Dipole term: 

Vdip 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
1
𝑟𝑟2
� 𝑟𝑟′(cos𝛼𝛼)𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ 

𝛼𝛼 is the angle between 𝐫𝐫 and 𝐫𝐫′. 

Vdip 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
1
𝑟𝑟2
𝐫𝐫� ⋅ � 𝐫𝐫′𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ 

• 𝐩𝐩 ≡ ∫ 𝐫𝐫′𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ is called the dipole 
moment of a charge distribution 

Vdip 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
𝐩𝐩 ⋅ 𝐫𝐫�
𝑟𝑟2

 

• If 𝐩𝐩 = 0, dipole term is zero. 

• For a collection of point charges. 

Multipole Expansion (Monopole and Dipole terms)  

𝑄𝑄 = �𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

𝐩𝐩 = �𝐫𝐫𝐢𝐢′𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

So,  𝑟𝑟′ cos𝛼𝛼 = 𝐫𝐫� ⋅ 𝐫𝐫𝐫 
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Monopole term: 

Example: A three-charge system 

𝑄𝑄 = �𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 = −𝑞𝑞 

𝐩𝐩 = �𝐫𝐫𝐢𝐢′𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 = 𝑞𝑞𝑞𝑞 𝒛𝒛� + −𝑞𝑞𝑞𝑞 − 𝑞𝑞 −𝑎𝑎 𝒚𝒚� = 𝑞𝑞𝑞𝑞 𝒛𝒛� 

Therefore the system will have both monopole and dipole contributions 
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Multipole Expansion (Monopole and Dipole terms)  

Dipole term: 

→
1

4𝜋𝜋𝜖𝜖0
𝐩𝐩 ⋅ 𝐫𝐫�
𝑟𝑟2

 

𝑄𝑄 = �𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

𝐩𝐩 = �𝐫𝐫𝐢𝐢′𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Vmono 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
1
𝑟𝑟
�𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ →

1
4𝜋𝜋𝜖𝜖0

𝑄𝑄
𝑟𝑟

 

Vdip 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
1
𝑟𝑟2
� 𝑟𝑟′(cos𝛼𝛼)𝜌𝜌 𝐫𝐫′ 𝑑𝑑𝜏𝜏′ 

(for point 
charges) 

(for point 
charges) 



The electric field of pure dipole ( 𝑸𝑸 = 𝟎𝟎 )  

Vdip 𝐫𝐫 =
1

4𝜋𝜋𝜖𝜖0
𝐩𝐩 ⋅ 𝐫𝐫�
𝑟𝑟2

 =
1

4𝜋𝜋𝜖𝜖0
𝑝𝑝𝐳𝐳� ⋅ 𝐫𝐫�
𝑟𝑟2

 =
1

4𝜋𝜋𝜖𝜖0
𝑝𝑝cos𝜃𝜃
𝑟𝑟2

 

𝐄𝐄 𝐫𝐫 = −𝛁𝛁V 

𝐸𝐸𝑟𝑟 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
2𝑝𝑝cos𝜃𝜃
4𝜋𝜋𝜖𝜖0𝑟𝑟3

 

𝐸𝐸𝜃𝜃 = −
1
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝑝𝑝sin𝜃𝜃
4𝜋𝜋𝜖𝜖0𝑟𝑟3

 

𝐸𝐸𝜙𝜙 = −
1

𝑟𝑟sin𝜃𝜃
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 

𝐄𝐄dip 𝐫𝐫 =
𝑝𝑝

4𝜋𝜋𝜖𝜖0𝑟𝑟3
(2cos𝜃𝜃 𝐫𝐫� + sin𝜃𝜃 𝜃̂𝜃) 
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𝑄𝑄 = 0  Assume 𝐩𝐩 = 𝑝𝑝𝐳𝐳� 𝐩𝐩 ≠ 0 And 





 


