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Abstract 

In our work, a numerical method optimizing the five energy coefficients of the semi 

empirical mass formula is presented. This method is based on the least-squares adjustments 

method on the atomic masses of 2550 different nuclides from the last update of the atomic 

mass evaluation, AME2020 published in February 2021. This lead to the resolution of a linear 

system which is solved by iterations according to the Gauss-Seidel method. 

The obtained set of formula coefficients allowed us to reproduce most of the 

experimental values with a very good agreement for A>50, yielding relative errors that 

oscillate between less than 0.05% and 1.5%.  

Keywords: Semi Empirical Mass Formula, AME2020, Least-squares adjustment, Gauss- 

Seidel, Data Fitting. 

Résumé 

Dans notre travail, une méthode numérique optimisant les cinq coefficients d'énergie 

de la formule semi-empirique de masse est présentée. Cette méthode est basée sur la méthode 

des ajustements des moindres carrés sur les masses atomiques de 2550 différents nucléides 

de la dernière mise à jour de l'évaluation de la masse atomique, AME2020 publiée en février 

2021. Cela conduit à un système linéaire qui était résolu par itérations selon à la méthode de 

Gauss-Seidel. 

L'ensemble de coefficients de formule obtenu nous a permis de reproduire la plupart 

des valeurs expérimentales avec un très bon accord pour A>50, donnant des erreurs relatives 

qui oscillent entre moins de 0.05% et 1.5%. 

Mots clés :  La formule semi-empirique de masse, AME2020, l’ajustement des moindres 

carrés, Gauss-Seidel, ajustement des données. 

 ملخص

في عملنا هذا، تم تقديم طريقة عددية لتحسين معاملات الطاقة الخمسة لصيغة الكتلة شبه التجريبية. تعتمد هذه 
لتقييم مأخوذة من التحديث الأخير  ةمختلف يداتنو  2550على الكتل الذرية لـ  الطريقة على تعديل المربعات الصغرى 

ريقة طي عن طريق التكرارات وفق أدى ذلك إلى حل نظام خط. 2021 المنشور في فبراير AME2020 الكتلة الذرية،
 .Gauss-Seidelزايدل -غوس

 لمن اجسمحت لنا معاملات الصيغة التي تم الحصول عليها بإعادة إنتاج معظم القيم التجريبية باتفاق جيد جدًا 
A> 50  ، 1.5٪ و 0.05 أخطاء نسبية تتأرجح بين أقل منونتج عنها.٪ 

 .زايدل، توفيق البيانات-تعديل المربعات الصغرى، غوس، AME2020، صيغة الكتلة شبه التجريبية كلمات مفتاحية:
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Introduction 

One of the main aims of researches in nuclear physics is to describe the ground-state 

properties of all nuclei. A variety of models hence were introduced to study nuclear structure. 

These models with certain validity, can explain a limited number of certain properties. Between 

those theories, the liquid drop model (LDM) has been used with success despite its simplicity; 

it can describe for example the fission, fusion and α decay potential barriers quite well.  

Based on the LDM with some modifications, the Semi-Empirical Mass Formula (SEMF), 

usually known as Bethe–Weizsäcker formula has been developed as a good tool to describe the 

binding energy of any given nucleus at the ground level. By combining physical hypotheses 

with experimental data, the SEMF consists of different terms with specific coefficients. The 

accurate determination of these coefficients can provide theoretical predictions concerning a 

number of features of nuclei and their behaviors.  

The aim of this work is to adjust the masses of 2550 nuclides using the latest update of 

the nuclear masses table (AME2020), to obtain a new set of the SEMF energy coefficients. A 

numerical code based on the least squares adjustments method was developed.   

In the first chapter, we will explain the most fundamental nuclear properties, such as mass, 

binding energy and radii. We will focus on the atomic mass for being one of the most decisive 

factors governing nuclear stability, presenting the different methods used for accurate mass 

measurements, and then the Atomic Mass Evaluation AME; one of the most trusted resource 

for the experimented atomic mass values of all known nuclei today. 

The second chapter will be devoted to present the Liquid Drop Model, then derive the 

Semi-Empirical Mass Formula with it five terms, giving an explanation to each of them. We 

will briefly talk about the limits of the SEMF and some other models as well. 

In the third chapter, we will present the results of the five coefficients obtained after the 

adjustment of the experimental data by the least squares method. After that, an analysis, 

interpretation and comparison of the results obtained with the experimental ones will also be 

presented. 
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Chapter 1 

Nuclear structure 

One of the central challenges in nuclear physics is to come to a basic understanding of 

the structure and dynamics of nuclei. It is the key to understand the universe.  

Nuclear structure studies the properties of nuclei in isolation such as nuclear mass, 

characteristic energy levels, and radioactive decay modes. This chapter aims to present a brief 

description of the general aspects of nuclear structure, particularly describing the most 

fundamental properties of a nucleus: nuclear mass and binding energy and how we can 

measure it. 

1.1. Atomic nuclei  

Atomic nuclei are quantum bound states of particles called nucleons of which there are 

two types, the positively charged proton p and the uncharged neutron n [1]. Their main 

properties are summarized in Table 1.1.  

A nucleus is therefore characterized by N number of neutrons, and by Z number of 

protons. The mass number A is the total number of nucleons, i.e. A = Z + N. A nucleus can be 

denoted as:  

.A A A

Z Z NX X X   

Where X is the chemical symbol.  

Some particular sequences of nuclei have special names:  

 Isotopes: have the same charge Z, but different N. The corresponding atoms have 

practically identical chemical properties, but very different nuclear properties. 

  Isobars: have the same mass number A. Different isobars frequently have similar 

nuclear properties. 

 Isotones: for nuclei of the same N, but different Z. 

 Isomers: two nuclei are isomeric if they contain the same number of protons Z and the 

same number of neutrons N, but they are in different energy states. 
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Property Proton p Neutron n 

Mass (kg) 1.67262192369(51)×10−27 1.67492749804(95)×10−27 

Mass  (MeV/c2) 938.27208816(29) 939.56542052(54) 

Method of mass 

measurement 
Mass spectroscopy 

n-p difference from 

nuclear reactions 

Electric charge (C) 1.602176634×10−19 0 

Spin 
1/2 1/2 

Composition  

uud udd 

Magnetic moment (J⋅T−1) 1.4106067873(97)×10−26 −9.6623647(23)×10−27 

 

Table 1.1. The main properties of the nucleons [2].  

 

1.2. Nuclear mass 

The mass is a fundamental property of atomic nuclei and it reflects directly so many 

other properties. In general, the nuclear mass  A

ZM X can be calculated from the atomic one 

MA; the mass of an atom at rest.   

 

1.2.1. Mass units  

1.2.1.1. The Unified atomic mass unit 

The atomic mass unit is a purely microscopic unit defined, since 1960 [3], as one 

twelfth of the mass of one free atom of 12C in its atomic and nuclear ground state and in its 

rest coordinate system [4]: 

121  /12.( )u M C  

Before 1960, there were two mass units: the physical one M(16O)/16, and the chemical 

one, which considered one sixteenth of the average mass of a standard mixture of the three 

stable isotopes of oxygen [3]. Physicists could not convince the chemists to drop their unit 

because the change meant millions of dollars lost in sales. Joseph H. E. Mattauch, Truman P. 

Kohman and Aaldert H. Wapstra then calculated that, if M(12C)/12 was chosen, the change 

would be ten times smaller for them. That led to unification. 'u' stands therefore, officially, for 

'unified mass unit' [5]. 

https://en.wikipedia.org/wiki/Spin_(physics)
https://en.wikipedia.org/wiki/Particle#Composition
https://en.wikipedia.org/wiki/Joule
https://en.wikipedia.org/wiki/Tesla_(unit)
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It is worth mentioning that the chemical mass-spectrometry community (e.g. 

biochemistry, polymer chemistry) widely uses the Dalton unit (symbol Da, named after John 

Dalton) which is an alternative name for the same unit and allows to express the number of 

nucleons in a molecule [4]. 

 

1.2.1.2. The electron volt  

Mass measurement can be obtained by establishing an energy relation between the mass 

we want to determine and a well-known mass; as we will explain later. This energy relation is 

then expressed in electron-volts (eV). The eV is defined as the kinetic energy of an electron 

after being accelerated from rest through a potential difference of one volt [1].  

The choice of the volt in the unit is not evident: it can be expressed in VSI, which is 

based on the internationally accepted definition (SI) or the one as maintained V90 by the 

Bureau International de Poids et Measures (BIPM) [6]; V90 was defined in 1990 by             

2e/h =
90483597.9 /GHz V [4]. 

It was demonstrated [4], that the energy would be expressed more precisely in the 

maintained volt than in the standard volt [5]. The relation between the two defined volts and 

their relations with the atomic mass unit can be expressed as:  

 90 1.000 000 106 66 [ ]SIV     V 4  

 ]1 931494.10242 [0.0002 SIu  keV  4  

 ]1 931494.0038 0. 4 [000 90u  keV  5  

 

1.2.1.3. The kilogram  

The kilogram is a macroscopic unit, being defined as the mass of a certain Platinum-

Iridium bar housed in Sevres, a suburb of Paris. Atomic masses on the kilogram scale can be 

found by assembling a known (macroscopic) number of atoms and comparing the mass of the 

assembly with that of the bar [1]. 

In the current SI, the kilogram is defined by taking the fixed numerical value of the 

Planck constant h to be 6.62607015.10-34 J.s, which is equal to Kg.m2.s-1, where the meter and 

the second are defined by the fixed values of the speed of light in vacuum and frequency of 
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the ground-state Cesium hyperfine splitting [6]. With the new SI definition, the mass of an 

atom can be expressed in ‘Kg’ with higher precision [4]. 

 

1.2.2. Mass Defect 

The actual nuclear mass is less than the masses of it components, because when a 

nucleus is formed, some of the mass is converted to energy and this results in the mass defect. 

The mass defect ΔM is thus defined as the difference between the actual nuclear mass and the 

predicted mass calculated by adding the mass of protons and neutrons present in the nucleus:  

   ( )A

p n ZM Zm A Z m M X      (1.1)  

 

1.2.3. Mass Excess  

The Mass excess M of a nuclide is defined as the difference between its actual mass 

and its mass number in atomic mass units (u).  

 ( )A

ZM M X A    (1.2) 

The nuclear masses in atomic mass units are very close to the mass number A. This is 

the reason why usually the mass excess is used. 

 

1.2.4. Atomic mass measurement  

The history of atomic-mass measurements is as old as nuclear physics. We can consider 

that this activity begun with J.J. Thomson's studies on nuclei, when in 1897, he measured the 

charge-to-mass ratio using electric and magnetic fields by tracking the trajectories of cathode 

rays containing electrical charges. Soon after by 1907 Thomson built what is considered the 

first spectrograph, and by 1918, Arthur Jeffrey Dempser, at the University of Chicago, built 

the first mass spectrometer [3]. Thanks to the constant developments of mass spectrometry 

and spectrographs, the experimental knowledge of atomic masses is rapidly expanding. 

Two methods are used in atomic mass measurements: the "direct method" where the 

inertial masses are determined by means of mass spectrometry, and the "indirect method" 

where a reaction energy, is determined using a nuclear reaction or a decay process. 

 

https://en.wikipedia.org/wiki/Mass_number
https://en.wikipedia.org/wiki/Atomic_mass_units
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1.2.4.1. Direct Methods 

The mass (expressed in u) can be measured directly from its movement in an 

electromagnetic field; mass spectrometry. Using techniques based on the measurement of 

quantities proportional to the mass/charge (m/q) ratio of ions [3]: 

 
B m

v q


  (1.3) 

Where Bρ is the magnetic rigidity of the charged ion, υ the velocity, γ the Lorentz factor, m 

the rest mass and q the charge state. 

However, such absolute measurements are limited by the precision of the devices and 

are usually not practical. To avoid the direct measurements of the absolute values of the 

apparatus, a delicate calibration is imperative [5]. 

 

a) Time of flight 

The atomic mass of an ion can be deduced from the equation (1.3) by measuring the 

time of flight (TOF); the time it takes to travel a fixed distance [7]: 

 
m L

B
q TOF

 
 

  
 

 (1.4) 

where L is the flight length. Usually, the time of flight can be measured precisely while the 

magnetic rigidity and flight length are unknown. The mass of an ion of interest can be 

determined by using well-known masses as calibrants [5]. 

This technique offers a good opportunity to map a wide range of exotic and short-lived 

nuclides (down to 1µs) [7].  However, it cannot in most cases separate a ground state from an 

eventual (long-lived) isomeric state of a nuclide. Moreover, neither the magnetic rigidity nor 

the flight length can be measured with sufficient precision, which means that an unknown 

mass is usually deduced from a complex calibration function using as many reference 

nuclides as possible. This could lead to erroneous results [5]. 
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b) Cyclotron frequency 

This technique is used especially in a Penning trap spectrometry. The principle of 

Penning-trap mass spectrometry is to measure the cyclotron angular frequency ωc of an ion in 

a magnetic field B, which is related to its mass-to-charge ratio by the following equation [5]: 

 c

q
B

m
   (1.5) 

For better precision, high cyclotron frequency caused by highly charged state or strong 

magnetic field, and long observation time are desirable [5]. 

Nowadays this method, provides the most accurate and precise data in atomic mass 

measurements: 7 × 10−12 for stable nuclei [8], and up to 10−7 for short-lived nuclides [5]. 

 

1.2.4.2. Indirect methods  

These methods establish an energy relation between two or more nuclides through 

reactions or decays, expressed in electron-volt (eV).  

However, the indirect methods are much useful in the case of stable nuclei than for 

exotic nuclei with short life-times because the information on their structure (energy levels, 

decay modes, etc.) is often scarce [3]. 

 

a) Nuclear reaction energy [5] 

From Einstein’s Mass-Energy Equation E = mc2, we know that the released energy in 

a reaction is directly related to the involved masses. For a nuclear reaction type A(a,b)B, the 

released (absorbed) energy is defined as: 

 A a b BQ M M M M   
 (1.6) 

Where the masses of the target A, the projectile a, and the ejectile b are well known. Hence 

the mass of the fragment B can be derived by the measured Q-value based on reaction 

kinematics. Generally, the target, the projectile, and the ejectile are stable or very close to 

stability, and the fragment will not be very exotic. 
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b) Nuclear decay energy 

In nuclear-decay experiments, the decay energy is often measured to determine an 

unknown mass if the mass of its decay-companion is known.  

 β-decay: Since The β-decay spectrum has continuous distribution, the decay energy 

is obtained from the maximum energy so-called the endpoint energy. This 

spectrometry has long been used as a powerful tool to study the properties of nuclei 

not too far from stability [5].  

 α-decay: The measurement of the α-decay energy Qα yields the mass of a heavy 

nuclide. If the α- decay chain ends up with a nuclide with known mass, then we can 

deduce all the masses along the chain from the succession of α lines. For even-even 

nuclei, ground state to ground state transitions dominate and the assignment 

is usually reliable. For odd-odd nuclei, on the contrary, their α decay does not 

go directly to the ground state for most of the cases [9]. 

 proton radioactivity: The masses of nuclides between Z = 50 and Z = 80 have 

been obtained mainly from proton radioactivity [10]. This special decay mode 

allows to investigate the properties of proton-rich nuclei. 

 

Type of decay Q-value 

 

 1( ) ( )A A

Z ZQ M X M X
    

 

 
2

1( ) ( ) 2A A

Z Z eQ M X M X m c
      

Electronic capture EC 1( ) ( )A A

EC Z ZQ M X M X   

  
4 4

2 2( ) ( ) ( )A A

Z ZQ M X M X M He



    

 

Table 1.2: Q-value calculations of common types of decay [5]. 

 

 

 

 

 

 



Chapter 1                                                                                                          Nuclear structure. 

 

17 

 

1.3. Mass Evaluation 

Scientists have accumulated a huge amount of data on a large number of nuclides. 

These nuclear data are of two classes [11]: one class is for data related to nuclides at rest 

(static) such as nuclear ground-state masses, radii, magnetic moments…etc. Whereas the 

other class is for those related to nuclidic dynamics, e.g. reaction properties and mechanisms. 

The evaluation of atomic masses is subject to special ways of treating data because, as 

explained before, all mass measurements are relative measurements, which makes obtaining 

the best value for masses from numerous data hard [5]. For this purpose, several collections 

were published, each with specific data treatment. 

 

1935 H. Bethe Evaluation and table 1n-17O 

1937 M.S. Livingston and H.A. Bethe Combined evaluation: energies +masses 

1946 G. Seaborg The plutonium project table 

1948 A.H. Wapstra Table of atomic nuclei 

1955 A.H. Wapstra and J.R. Huizenga Isotopic masses 

1960 F. Everling et al. Relative nuclidic masses 

1971 A.H. Wapstra and M.B. Gove The 1971 atomic mass evaluation 

1977 A.H. Wapstra and K. Bos The 1977 atomic mass evaluation 

1993 G. Audi and A.H. Wapstra The 1993 atomic mass evaluation 

2003 G. Audi et al. The AME 2003 atomic mass evaluation 

2016 G. Audi et al. The AME 2016 atomic mass evaluation 

2021 G. Audi et al. The AME 2020 atomic mass evaluation 

 

Table 1.3: Different evaluations of atomic masses throughout nuclear history [3]. 

 

1.3.1. The Atomic Mass Evaluation 

In the early 1950’s it was found that the many mass measurement techniques (direct 

and indirect) overdetermined the mass value of many nuclides. Aaldert H. Wapstra 

established a procedure using a least-squares method to solve the problem of over-

determination [3]. Since then, Wapstra has carried on the evaluation of the experimental 

masses of nuclei in what we call the Atomic Mass Evaluation AME [5]. 
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AME is a horizontal evaluation; it means a unique nuclear property is being considered 

across the whole chart of nuclides, here the ground-state masses. Only such a structure allows 

to encompass all types of connections among nuclides [12]. 

The AME evaluators work primarily on three steps: 

- The first step is to make a compilation, i.e., collect all available data. 

Up to the publication of AME2016, 24 different kinds of physics journals and 

conference proceedings were scanned [5].  

- The second step is the critical reading process by making judgment on 

several parts [12]: calibration procedure, spectra examination and comparing the 

new results with the previous ones. 

- The last step is to enter the new data in the AME database. 

 

1.3.2. NUBASE evaluation  

AME faced a problem of identifying - in some difficult cases - which state is the 

ground-state [4]. Up to the 1993 mass table, the AME was not concerned with all known 

cases of isomerism, but only in those that were relevant to the determination of the ground 

state masses. In AME 95 it was decided, to include all isomers. This was one of the main 

reasons for setting up a collaboration with NUBASE evaluation, leading to a thorough 

examination and evaluation of those ground state and isomeric properties that can help in 

identifying which state is the ground state and which states are involved in a mass 

measurement [12]. 

By evaluating all available experimental mass data, AME together with NUBASE 

serves the research community with the most reliable source for comprehensive information 

related to the atomic masses. For this reason, we will be using the latest AME2020 (published 

in February 1st, 2021 [4]) together with the NUBASE2020 in our work instead of other 

evaluations.  
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1.4. Stability of Nuclei 

Nuclear stability means that the nucleus of an element is stable and thus it does not 

decay spontaneously emitting any kind of radioactivity. 

 

1.4.1. Binding energy 

As we have mentioned before, when a nucleus is formed, some of it mass is converted 

into energy. This energy is the binding energy BE, also defined as the energy that must be 

supplied to a nucleus at rest to dissociate it into its constituent nucleons. 

The binding energy of a given nucleus is obtained based on Einstein’s mass-energy 

equation ΔE = Δmc2:  

 
2( ) ( ( ))A A

Z p n ZBE X Zm Nm M X c     (1.7) 

Where mp, mn denote the proton and neutron mass respectively, and  A

ZM X is the actual 

nuclear mass.  

Since the binding energy is responsible for holding the nucleons in the nucleus. 

Nuclear stability is proportional to the nuclear binding energy. The more the binding energy 

per nucleon the greater is the nuclear stability. 

Note: We often talk about the binding energy per nucleon which is the binding energy of the 

nucleus divided by it mass number BE / A. 

 

1.4.2. Separation energy 

In the nucleus, nucleons pile up according to the laws of quantum physics in quantum 

layers (energy levels). The energy needed to remove a nucleon (the least bound one) is called 

separation energy and can be calculated as follows: 

 
1 2( ) ( ( ) ( ))A A A

n Z Z n ZS X M X m M X c     (1.8) 

 
1 2

1( ) ( ( ) ( ))A A A

p Z Z p ZS X M X M M X c

     (1.9) 
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Or by using binding energies as: 

      1A A A

n Z Z ZS X BE X BE X   (1.10) 

      1

1

A A A

p Z Z ZS X BE X BE X

   (1.11) 

 

1.4.3. Stability criteria 

Out of all the currently identified nuclides, only 252 are known to be stable. we can add 

34 very long-lived nuclides to it. We then got 286 stable or practically stable nuclei [13]. The 

two main factors that determine nuclear stability are the neutron/proton ratio and the total 

number of nucleons A in the nucleus: 

- For light elements the ratio of neutrons to protons is approximate to unity, 

therefore light elements are much more stable than heavy ones. 

- Nuclides of even number of protons and/or neutrons are much more stable than 

those of odd Z and/or N. This was first pointed out by Harkin and has been 

confirmed by X-ray analysis [14]. 

- It was observed that the most stable nuclei have a number of protons or neutrons 

equal to: 2, 8, 20, 50, 82 or 126. These numbers are called magic numbers. 

Similarly, nuclei with 14, 28, & 40 nucleons are slightly less stable but more stable 

than the rest. These numbers are called semi magic numbers. 



Chapter 1                                                                                                          Nuclear structure. 

 

21 

 

 
 

Figure 1.1: Band of stability [1]. 

 

1.5. Other properties 

1.5.1. Radii 

The volume V of a nucleus is, to a good approximation, proportional to the number of 

nucleons A, with each nucleon occupying a volume of the order of: 

 
3

0 7.2V fm  (1.12) 

In approximation, stable nuclei are spherical, so a volume of V = AV0 implies a radius: 

 
1/3

0r r A  (1.13) 

 0 with 1.2 .r fm 1   

The experimental access to obtain information on nuclear radii comes from scattering 

particles off the atomic nucleus with appropriate energy to map out the nuclear matter 
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distributions. Electron scattering off nuclei is, for example, one of the most appropriate 

methods to deduce radii [15]. 

nucleus r fm fm 1/3r/A nucleus r fm r/A1/3 fm 

1 H  
1.0 1.0 12C  

3.04 1.33 

4 He  
2.08 1.31 16O  

3. 41 1.35 

6 Li  
2.8 1.56 24 Mg  3. 84 1.33 

7 Li  
2. 8 1.49 40Ca  

4.54 1.32 

9 Be  
2. 84 1.37 122 Sb  

5.97 1.2 

 

Table 1.4:  Radii of selected nuclei as determined by electron–nucleus scattering [1]. 

1.5.2. Density [1] 

We can determine the spatial distribution of nucleons inside a nucleus by scattering 

electrons off the nucleus. Electrons can penetrate inside the nucleus so their trajectories are 

sensitive to the charge distribution. This allows one to reconstruct the proton density. 

Assuming the neutron and proton densities are the same, we find a nucleon density inside 

3

0 .nuclei of  0.15 .nucleons fm   

As shown in figure 1.2: 

- For A > 40 the charge density, therefore the proton density, is roughly constant 

inside these nuclei. It is independent of the nucleus under consideration and it is 

roughly 0.075 protons per fm3.  

- Nuclear densities do not increase with increasing A, implying that a nucleon does 

not interact with all the others inside the nucleus, but only with its nearest 

neighbours. This phenomenon is the first aspect of a very important property 

called the saturation of nuclear forces. 

- For nuclei with A < 20, charge densities are not flat but rather peaked near the 

centre. For such light nuclei, there is no well-defined radius and eq.(1.13) does not 

apply.  
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Figure 1.2: Experimental charge density (e fm-3) according to r (fm) as determined in elastic 

electron–nucleus scattering [1]. 

 

Conclusion  

In this chapter we have presented the most fundamental nuclear properties that are needed for 

understanding the nuclear structure, focusing mostly on the nuclear mass: mass measurement, 

mass evaluation and it relation to the binding energy and the stability of nuclei.   
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Chapter 2 

The Liquid Drop Model (LDM) and the Semi-Empirical Mass Formula 

(SEMF) 

It is impossible to obtain the properties of nuclei starting from its constituents and their 

interactions alone. Therefore, there is a need to use models that represent their structure and 

internal motion. 

Current models are essentially of two classes:  

 Collective models: these models assume that the nucleons interact strongly with each 

other and thus they study phenomena that involve the nucleus as a whole [16]. The 

Liquid Drop model belongs to this first class. 

 Independent particle models [16]: on the other hand, the models belonging to this 

class assume that the nucleons move independently in an overall potential, because 

the Pauli principle restricts the collisions of the nucleons inside the nuclear matter. 

The several forms of Shell models belong to this class. 

In this chapter we will present the Liquid Drop Model: a collective model that represents 

the nucleus as a charged spherical drop. Then show how it was applied to formulate a semi-

empirical mass formula that is successfully used to determine several properties of nuclei with 

good estimations. 

2.1. The Liquid Drop Model 

The Liquid Drop Model (LDM) was historically the first model to describe nuclear 

properties. It was first proposed by George Gamow and then developed by Niels Bohr and John 

Archibald Wheeler [15] [17]. 

This model is based on the hypothesis that the nucleus has behaviour identical to that of a 

liquid, due mainly to the fact of the occurrence, in both cases, of saturation of forces between its 

constituents [16]. And therefore it assimilates the nucleus to an incompressible charged liquid 

drop based on the following assumptions [1]: 

1) The nucleus is a sphere of radius r, such that: 1/3

0r r A , r0 is the length of the order of 

average inter-particle distance. 
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2) The density of all nuclei is constant. 

3) The volumetric charge density is constant: the protons are evenly distributed in the 

volume of the nucleus. 

4) The nuclear force is identical for each nucleon. It does not depend on the nature of the 

nucleon (proton or neutron).  

5) The Nuclear forces are short-range.  

 

2.1.1. Saturation density [18] 

The nuclear radius observed in various experiments is found to be proportional to the cube 

root of the mass number i.e. 1/3

0r r A , which implies that the nuclear volume 34

3
V r is 

proportional to A and, hence, the average nucleon density in the nucleus is approximately 

constant, irrespective of the mass number A of the nucleus for all stable nuclei: 

 3

0 3

0

3
0.17

4

A
fm

V r




    (2.1) 

0  is called the saturation density. 

 

2.1.2. Saturation of the binding energy  

If the nucleon-nucleon interaction were the same for all possible nucleon pairs, the total 

binding energy would be proportional to the total number of pairs, which is equal to 

  21 / 2 / 2.A A A   Therefore, the binding energy per nucleon would be proportional to A. The 

fact that this energy is constant is due to the short range of nuclear force, leading to the 

interaction of a nucleon with its neighbours [16]. 

 8 0.5
BE

E MeV
A

    (2.2) 

E is called the saturation of binding energy in atomic nuclei [18]. 
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Figure 2.1. Binding energy per nucleon of each isotope according to the mass number A. [19] 

 

The figure above shows that the A-dependence is not really negligible. However, this dependence 

is smooth almost everywhere except for the region of the lightest nuclei [20]. 

 

2.2. The Semi-Empirical Mass Formula 

There are many elaborate fits to the binding energies that use a large number of parameters 

[20]. An excellent parametrization of the binding energies of nuclei in their ground state was 

proposed in 1935 by Bethe and Weizsäcker. It is known as the Bethe-Weizsäcker Semi-Empirical 

Mass Formula (SEMF) [17]. The SEMF is reasonably successful in describing data around the 

line of stability and in predicting binding energies of new isotopes away from this line (although 

not very far away) [21]. 

As the name suggests, this formula is based partly on theory and partly on empirical 

measurements. The theory is based on the LDM which can account for most of the terms in the 

formula [17], but it also incorporates two quantum ingredients [1]. Although refinements have 

been made to the coefficients over the years, the structure of the formula remains the same today 

[21] [22].  
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The current formula which we will use in the next chapter is written as: 

 

1/2

2
2/3 1/3

1/2

, for both  and  even

            ,for  odd and  even

,for  even and  od

( 2 )
( , ) ( 1) / / 0

d

P

a
V S C

P

a A
a A Z

B Z

A Z

A ZE A Z a A a A a Z A A
A

a A A Z






 

      



 (2.3) 

 

Where , , , ,v s c a pa a a a a  are the coefficients of the mass formula with dimension of energy 

contributing in: a volume term, a surface term, an electrostatic coulomb term, an asymmetry term 

and a pairing term. 

 

2.2.1. The volume term  

This volume term (or volume energy) expresses the fact that the nuclear force is saturated 

and thus, a certain part of the nuclear interior represents a given binding energy contribution [15]. 

Therefore, it is of the form:  

 
V vE a A  (2.4) 

 

2.2.2. The surface term  

The following term was a correction since a deficit of binding energy for surface nucleons 

is expected, due to the fact that those nucleons have fewer near neighbours than deep within the 

nuclear matter [23].  

This surface energy term takes that into account and is therefore negative and is 

proportional to the surface area [17]:
2 2 2/3

04 4r r A  . The surface energy is therefore written as: 

 
2/3

S SE a A 
 (2.5) 
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Figure 2.2. Pictorial representation of nuclear surface effects on binding energy. [15] 

 

This energy gives the largest correction for the smallest A.  

 

2.2.3. The Coulomb term  

The electric repulsion between each pair of protons in a nucleus contributes toward 

decreasing its binding energy [17]. This force is long range and so every proton affects every 

other proton in the nucleus. We can evaluate this contribution as follows [15]: 

We calculate the Coulomb energy using the assumption that the total nuclear charge Ze is spread 

uniformly throughout the spherical nuclear volume: 

 
34

3

c

Ze

r







 

(2.6) 

The Coulomb energy needed to add a spherical shell, to the outside of the sphere with radius r’, 

to give an increment dr’ becomes: 

 

3 '

'

0

2

0

4
'

1 3

'

4

'
4

c cr

c

r r

E dr
r

  


   (2.7) 

Using the charge density (2.6), the integral becomes: 

 

2 2
'

0

3

5 4
c

e Z
E

r
  (2.8) 
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Above we have smoothed out the charge of Z nucleons over the whole nucleus, however 

the single proton should not have any contribution to the Coulomb energy and hence Coulomb 

self-energy contribution by each of Z protons should be removed: 

 
34

3

p

e

r







 

(2.9)

 

And a self-Coulomb energy for Z protons is; 

 

2
''

0

3

5 4
c

e Z
E

r


 

(2.10)

 

The total coulomb energy correction becomes: 

 
 ' ''

0

13 1

5 4
c c c

Z Z
E E E

r


    (2.11) 

Thus, the third term is: 

 
1/3

( 1)
C C

Z Z
E a

A


   (2.12) 

 
0 0

3
 With the coefficient is :

20
ca

r
 .  

Note: The Coulomb energy correction is relatively weak but its influence grows very fast for 

heavy nuclei [20]. 

 

2.2.4. The asymmetry term  

The fourth term also called Pauli Energy is an empirical quantum mechanical term that 

accounts for the fact that if N Z , the energy of the nucleus increases and the binding energy 

decreases because of the exclusion principle. We can explain that as follows [15]: 

a. The binding energy of nuclei is maximum when nucleons occupy the lowest possible 

orbitals. The Pauli principle, however, prevents the occupation of a certain orbital by 

more than two identical nucleons with opposite intrinsic spin orientations. The symmetric 

distribution Z = N = A/2 proves be the energetically most favoured but is impossible due 

to the Coulomb energy. Any other repartition, N = A/2+n and Z = A/2+n will involve 
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lifting particles from occupied into empty orbitals. If the average energy separation 

between adjacent orbitals amounts to Δ, replacing n nucleons will cost an energy loss of: 

 2

n
BE n

 
   

   
(2.13)

 

           and with   / 2, this becomes:n N Z   

  
21

8
BE N Z   

 (2.14) 

b. The potential depth describing the nuclear well does not vary much with changing mean 

number and thus, the average energy spacing between the single particles, delta, should 

vary inversely proportionally to A.  

The final result becomes: 

 

2 2( ) ( 2 )
a a a

N Z A Z
E a a

A A

 
   

 
(2.15)

 

 

2.2.5. The pairing term  

The last term is an empirical one as well, that arises from the tendency of the nucleons to 

form pairs (proton pairs, neutron pairs) in the nucleus under the influence of the short-range 

nucleon-nucleon attractive force.  

This occurs because of the different overlap of wave functions for pairs of nuclei in various 

states. For two identical nucleons in the same spatial state, with opposite spins to be 

antisymmetric as required, then the spatial wave functions are effectively identical and have 

maximal overlap. Because of the short range force, this gives more of a binding energy for this 

particular pair. This effect occurs for all nucleons except potentially the ones in the highest 

occupied energy level for each type of nucleon, where there is either one or two nucleons of that 

type. Hence, the nucleus will be more strongly bound for ones with an even number of nucleons 

of either type [17] [23]. We introduce the pairing term as follows: 

 

 for even-even nuclei,

0    for odd nuclei,

 for odd-odd nuclei.

PE








 
  

(2.16)
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- Even-even meaning an even number of both protons and neutrons, and hence even A. This 

has both pairs strongly bound. 

- Odd-odd meaning an odd number of both protons and neutrons, and hence also even A. 

This is the least strongly bound. 

- Even-odd meaning an even number of one type and an odd number of the other, and 

hence odd A. This has one strongly bound pair and so should be half way in between the 

previous two; equalling to zero. 

1/2.Empirically it was found pa A    

The following table gives the number of stable nuclei classified according to the parity or 

the oddness of Z and N: 

Z-N E-E O-O E-O O-E Total 

Stable 146 5 53 48 252 

Long-lived 21 4 4 5 34 

All primordial 167 9 57 53 286 

 

Table 2.1: Number of stable nuclei according to the parity or oddness of their Z and N [13]. 
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Figure 2.3. Contributions to the binding energy per nucleon according to A, from each term in 

the semi-empirical mass formula. [15]. 

 

2.3. Determining the SEMF coefficients 

The coefficients of the terms in the SEMF can be evaluated using theoretical calculations 

and hundreds of experimental data fitness that is obtained by various methods such as:  

 The measurement of atomic masses by the mass spectrometer 

 The balance measurement of nuclear reactions. 

 The study of the stability of nuclei vis-à-vis.  

 Beta radioactivity. 

In the next chapter we will show how we can use theoretical calculations to fit hundreds of 

experimental mass data to calculate these coefficients with a good precision.  
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2.4. The limits of the SEMF and the LDM and their improvements  

So far the current SEMF is accepted, giving us not only an appropriate estimation for 

atomic masses and the binding energies, but also providing theoretical predictions concerning a 

number of features of nuclei and their behaviour.  However, as we will see in the third chapter, 

this model does not perform well with light nuclei. It also fails to explain the appearance of 

magic numbers and the extra binding energy and measure of stability that are associated with 

these numbers of nucleons.  

For these reasons, many papers and research has been dedicated to the improvement of the 

SEMF. Some terms have been extended or modified over the years and new terms have been 

proposed using different methods of corrections such as [24]: microscopic corrections for shell 

behaviour, deformation, nuclear incompressibility, nucleon pairing… etc. We will mention some 

of the most important corrections. 

 

2.4.1. Surface and Coulomb energy corrections [15]. 

For nuclei, which deviate from a spherical shape, both the surface and Coulomb energy 

corrections will change in a specific way. If we denote the nucleus with its lowest deformation 

multipoles via the  ,   expansion: 

 
 0 2 2 4 41 cos cosr r P P     

 (2.17) 

Where P2, P4 are Legendre’s polynomials. 

Correction functions for surface energy g (α2, α4) and for Coulomb energy f (α2, α4) appear in the 

expression for the BE i.e. we obtain a result : 

 
     2/3 1/3

2 4 2 4, , 1s c s cE E a g A a f Z Z A        
 (2.18) 

A simple illustration of the above modification is obtained for an ellipsoidal deformation 

and, retaining a constant volume for the deformation, we get the major axis  1a r  and the 

minor axis  
1/2

1b r


  where 
2

2
1

b

a

 
   

 
 is the deformation parameter . 

 

 



Chapter 2           The Liquid Drop Model (LDM) and the Semi-Empirical Mass Formula (SEMF). 

34 
 

Using the parameter of deformation  , the surface and Coulomb energy terms become: 

 

2/3

2

1/3

2
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1
( 1) (1 )
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s s

C

E a A

E a Z Z A

 


  


 

(2.19)

 

0 corresponds to the spherical nucleus.  

 

2.4.2. Shell corrections 

There exist different ways of implementing shell corrections to the LDM, with large 

differences between the shell correction energy in various approaches (closed-shell nuclei, mid-

shell…) [25]. 

A simple method was proposed based on counting the number of valence nucleons, as 

suggested by the interacting boson model (IBM) [26]. This “shell” correction is linear and 

quadratic in the total number of valence nucleons [25]: 

 
2

1 2( , ) ( ) ( )shell V V V VE N Z b n z b n z   
 (2.20) 

where nv and zv are the numbers of valence neutrons and protons and bi are parameters.  

Inclusion of these two terms in the LDM mass formula reduces the rms deviation [25]. 

 

2.4.3. Corrections on the radii [25] 

In addition to the binding energies, charge radii of nuclei provide valuable information on 

how ground-state properties of nuclei vary with N and Z. The simple parametrization r = r0A
1/3 

provides only a very rough and qualitative description of charge radii. To obtain a quantitative 

description in a generalized LDM approach, one needs to take into account an isovector term; 

furthermore, it is necessary to include shell effects.  

A good fit to charge radii of closed shell nuclei was obtained with: 

 

2
1/3 /

4 30 / 2

( ) ( )
(1 ) g A

p

N Z N Z
r r A e

A A
 

 
  

 (2.21) 

Where v and ω are parameters. The small correction eg/A (with g ≈ 1.04) accounts for the larger 

radii of light nuclei. 
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For open shell nuclei the inclusion of a shell correction was found to be necessary. 

Assuming charge symmetry, we find it convenient to decompose the radius into an isoscalar part 

R0 (representing the mass radius) and an isovector part R1, which changes sign under the 

interchange of neutrons and protons. If one allows in addition for a small charge symmetry–

breaking Coulomb correction, the following parametrization results: 

        0 1

1
, , , ,

2 2
i c

N Z
R N Z R N Z R N Z R N Z

A



    (2.22) 

where i = n,p and the upper (lower) sign applies to neutrons (protons). The explicit dependence of 

Ri (N, Z) on N and Z will be suppressed in the following. We parametrize the mass radius, 

 0  / 2n pR R R  , in the following simple way:  

 1/3 2/3 2 2

0 0 ( ) /R r A aA c N Z A     (2.23) 

 

2.5. Other Models 

Today we have a clear notion that the nucleus can exhibit both collective and independent 

particle phenomena, and therefore each class of models finds its usefulness in the explanation of 

a specific group of properties. There exist other models as well that treat the nucleus as a 

quantum system which are the only ones capable of giving a justification to some specific 

quantum problems [21]. 

Among these models we mention: 

 

 The Infinite Nuclear Matter (INM) model: in which the ground-state energy of a 

nucleus is considered to be equal to the energy of a perfect sphere made up of infinite 

nuclear matter plus the residual characteristic energy called the local energy [27]. This 

model has much better ability for predicting masses of nuclei in the unknown region far 

from stability [28]. 

 

 Duflo-Zuker’s model [29]: this model is based on the sequential filling of a pre-assumed 

shell structure where the monopole Hamiltonian represents an averaged mean field 

extracted from the interacting shell model.  



Chapter 2           The Liquid Drop Model (LDM) and the Semi-Empirical Mass Formula (SEMF). 

36 
 

 The Garvey-Kelson model (GK) [30]: The formalism of this model is based on local 

mass relations that are derived from a few simple physical principles (such as isospin 

symmetry) and a central assumption of a nuclear mean field and residual interaction that 

vary slowly with atomic number. 

 

 The Relativistic Mean Field theory (RMF): Relativistic mean-field theory is used to 

describe ground-state deformations of nuclei. The relativistic Hartree equations are 

solved by expansion of the nucleon wave functions and the meson field in a harmonic-

oscillator basis [31]. RMF received wide attention due to its many successes in 

describing lots of nuclear phenomena as well as successful applications in astrophysics 

[21]. 

We should note that these models and many others undergo constitutive corrections to 

improve their predictions. 

 

Conclusion     

In this chapter we have presented the Bethe-Weizsäcker Semi-Empirical Mass Formula that was 

based on the Liquid Drop Model of the nucleus. This formula has five terms with five 

coefficients that can be determined in a semi empirical method and therefore can be used to 

predict many nuclear properties.   
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Chapter 3 

Estimation of the Semi-Empirical Mass Formula Coefficients 

This chapter is devoted to obtain a new set of the SEMF coefficients based on an 

update of the nuclear masses table AME2020, which was processed using a numerical code 

that we have developed based on the least squares adjustments method. The obtained set of 

coefficients allowed us to reproduce the values of the atomic masses and the binding energies 

for each nucleus. Then we perform a comparison with those of the AME2020 on one hand, 

and those of previous works on the other hand. Finally, relative errors were calculated to 

confirm that the revisited formula is in good agreement with the experimental data. 

 

3.1. The Least Squares adjustment  

3.1.1. The method of the Least Squares 

As the name implies the method of Least Squares (LS) minimizes the sum of 

the squares of the estimated errors, frequently called residuals. It can be applied either in a 

simple form where all errors equally affect the solution or in an extended form when the 

contribution of each error is counted regarding its importance, this is called weight. The 

concept of weight is proportionally related to the precision of the corresponding measurement 

or inversely proportional to its uncertainty; larger weights are associated with more precise 

measurements [29]. 

This method can be expressed in mathematical terms as follows: 

The residual 
ir  is the difference between the actual value of a measurement 

iy
 
and the 

predicted value using the theoretical model  if x : 

   i i ir y f x   (3.1) 

The sum of the squares residuals is thus: 

   
2

1 1

2

i i

N N

i i iS r y f x
 

     (3.2) 

The function S can be thought of as a measure of the distance between the experimental data 

and the theoretical model that predicts this data for N number of measurements [32]. 
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The standard deviation   of the uncertainty is therefore: 

   
2

1

2 1
i

i

N

i

S
y f x

N N




    (3.3) 

To be at a minimum, the first derivative must admit a critical point, and the second-order 

direct partial derivatives must be positive [33]: 

 
2

0
ix





 and 

2 2

2
0

ix





 (3.4) 

 

3.2. Calculation of the Semi-Empirical Mass Formula Coefficients 

In this section, we aim to calculate the five coefficients of the SEMF using the LS 

adjustment. The standard deviation previously defined becomes:  

  
2

2

1

1 N
i i

ex

i

thM M
N




   (3.5) 

where N  is the number of nuclides, i

exM is the experimental atomic mass value of the 

nuclide i  and i

thM  is the theoretical  one obtained by the SEMF. 

The set of experimental nuclear masses are obtained from AME2020, the most recent 

evaluation database. Only measured nuclei are included into our consideration. The masses 

extrapolated from systematics and marked with the symbol # in the error column are not taken 

into account here. Therefore, we use only 2550 experimental nuclear masses, excluding the 

Hydrogen atom; The LDM cannot describe the binding energy of a nucleus with one nucleon, 

although including the Hydrogen atom does not influence the obtained values much. 

 

3.2.1. The theoretical atomic mass using the SEMF 

The atomic mass of an element is the sum of the masses of its nucleus  A

ZM X  and its 

electrons: 

   2

A e
th Z e

B
M M X Z m

c
    (3.6) 

Where 
eB  is the electronic binding energy.   
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An approximate formula for
eB can be found in the review of Lunney, Pearson and Thibault 

[4]: 

  6 2.39 12 5.3514.4381 10 1.55468 10eB Z Z MeV      (3.7) 

Using the binding energy eq (2.3), we get therefore the theoretical atomic mass of the SEMF: 
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 
(3.8) 

 

3.2.2. The linear equations 

By minimizing  2  for each coefficient we obtained a set of linear equations with five 

variables 
va , 

sa , 
ca , 

aa  and pa : 

  
2

1

2
0 0

N
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1
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i ex th

ip

A M M
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 




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  (3.13) 

The system formed by the five linear equations (3.9-3.13), can be writing in a matrix 

form as: 

 AX B  (3.14) 
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Where 
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 (3.15) 

The coefficients 
ija and 

ib are defined by: 
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3.2.3. Solution of the system of linear equations 

To solve a system of linear equations, it exists different direct methods or iterative 

methods. The efficiency of each method depends on the size and the structure of the 

coefficients of the matrix A. 

Compared to direct solution methods, iterative methods become indispensable when the 

size of the system becomes large. Indeed, direct methods require a number of floating point 

operations of the order of n3 (n is the size of the system, i.e. the number of equations) tends to 

infinity which makes them slow for large values of n. In this case direct methods must be 

avoided and methods such as Jacobi’s, Gauss-Seidel and conjugate gradient must be 

preferred. For simplicity of programming, the Jacobi and Gauss-Seidel methods prevail over 

the conjugate gradient method. Compared to the method of Jacobi, the Gauss-Seidel method 

converges faster than that of Jacobi. [34] 

Our system of linear equations was thus solved using Gauss Seidel’s iterative method. 

The previous linear equations can be written as: 
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 (3.16) 

The Gauss-Seidel method consists of successive calculations and in each iteration the 

new value replaces the old value of the previous.  

In general, for k+1 iteration: 
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3.2.4. Calculation of the coefficients of the SEMF 

In order to apply the previous method on the system of equation (eq.3.16) we have 

developed a computer code. Its algorithm is based of three main steps: reading the atomic 

mass data for the nuclei from a file, calculating the different constant parameters of the 

system and finally solving the system using the Gauss Seidel’s method.  

The calculations performed using the dedicated code yielded the following values for 

the five coefficients of the mass formula in MeV: 

15.24658va   

16.32495sa   

0.68485ca   

22.09792aa   

10.60849pa   

 

3.2.4.1. Comparison with previous work 

Table 3.1 shows a compilation of different values of the coefficients that were 

calculated in previous works and our results. 

   Coefficients (MeV) 

Compilation year Ref Atoms number av as ac aa ap 

2022 
Present 

work 
2550 15.247 16.325 0.685 22.098 10.608 

2020 [33] 2497 14.930 15.058 0.661 21.609 10.174 

2018 [25] 2496 19.12 18.19 00.52 21.54 28.99 

2005 [35] - 15.78 18.34 00.71 23.21 12.00 

1958 [36] - 15.84 18.33 00.18 23.20 11.20 

 

Table 3.1: Comparison of our SEMF coefficients values to those of previous works 

based on AME data. 
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3.2.4.2. Comparison with AME2020 

a) Mass and binding energy 

Using our obtained set of coefficients in the SEMF allows us to reproduce the values of 

the atomic masses and the binding energies for each nucleus. A comparison of our mass 

excess results with the experimental ones (AME 2020) is represented as function of A in 

figure 3.1 and as function of N in figure 3.2. A similar comparison between our results and the 

AME ones of the binding energies per nucleon is represented as function of A and N in Figure 

3.3. 

From the figures 3.1 and 3.2, one can notice that the calculated masses have globally the 

same shape as the experimental ones. The figure 3.3 gives the same observation for the 

binding energies per nucleon. A good agreement for the mass numbers A>50 can be observed. 

However, the figure show discrepancy for light nuclei, particularly in the region of A<20. 

This was predicted because the SEMF is not precise for the light nuclei. 
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Fig 3.1: Variation of experimental [4] and calculated mass excess according to A. 
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Fig 3.2: Variation of experimental [4] and calculated mass excess according to the neutron 

number N. 
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Fig 3.3: 3D comparison of tabulated binding energy per nucleon data given by AME2020 [4] 

versus those predicted according to Z and A. 

 

 

b) Relative Error 

We calculated the relative error   between the predicted and tabulated values, it is 

presented versus A and Z in figs 3.4 and 3.5 respectively. We can show certain values of  

A and Z for which   is minimum. This behavior can be explained by the fact that the 

nuclei possess a particular stability around the magic numbers. Indeed, the nuclei having Z 

or N around these numbers have a spherical shape and their binding energy can be 

perfectly described by the liquid drop model. Every time we walk away from these 

numbers, the error increases during the adjustment of the experimental values of the mass 

by the present model. 
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Fig 3.4: Variation of relative error according to the mass number A. 
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Fig 3.5: Variation of relative error according to Z. 
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Four different categories of the average percentage errors are presented in table 3.2, 

according to several mass number intervals. The obtained values of   show that our set of 

values can be used as coefficients in the SEMF with very excellent precision in the region 

140<A<200, and with good accuracy in the region 50<A<140 and A>200. For A<50, it is not 

recommended to use the present model to estimate the atomic mass. 

 

 [A1,A2] A<50 50<A<140 140<A<200 A>200 

Relative error 
 (%) 

9.26173509 0.32157739 0.09942255 0.21141242 

 

Table 3.2: Different categories of percentage errors. 

 

To describe in a more precise way the behavior of the error of the adjustment around Z and N, 

the difference between the calculated and the experimental values is presented (in absolute 

value) in figure 3.6. The propagation of this difference is represented in color on a curve 

having the number of protons and neutrons as axes. This representation allows us to 

determine the regions with the maximum or minimum deviation. One can notice that along 

the whole region the average deviation is about 1 MeV. The regions having a relatively larger 

errors are for A<20. 
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Fig 3.6: Variation of   according to Z and N. 

 

Conclusion 

In this chapter, an adjustment of the experimental data by the liquid drop model has been 

made to find the SEMF coefficients. This adjustment is based on the atomic masses of 2550 

nuclides of the AME 2020 data. The obtained coefficients exhibited excellent agreement with 

the atomic masses and the binding energy of nuclei with A>50.  
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Conclusion 

In this work we have calculated the coefficients of the Semi-Empirical Mass formula: 

volume, surface, coulomb, asymmetry and pairing coefficient. An adjustment by the least 

square method of 2550 experimental masses extracted from the AME mass evaluation was 

carried out by minimizing 𝜎2 which is more appropriate since it reduces absolute errors.  

The obtained results were used to calculate the atomic masses and the binding energies 

of the nuclides and then compared with the experimental values. The calculated values were in 

great accordance with the experimental ones for A>50 yielding relative errors that oscillate 

between less than 0.05% and 1.5%. Since Bethe–Weizsäcker mass formula is based on a liquid 

drop model, it was indeed expected that it reproduces better results for medium and heavy nuclei 

than for light nuclei. The large discrepancy between the two values observed for light nuclei 

can be attributed to the deformation effects.  

The present work can be improved in the future by taking into account several effects such as 

the deformation of nuclei, shell correction. 

Finally, even though the SEMF is not considered as the complete expression to provide 

the binding energy for a given nucleus, it is a good indicator for first-level precision of 

calculations involving binding energy, especially to exclude heavy nuclei stability. In addition, 

this formula is still a fundamental keystone in nuclear physics with respect to teaching and 

research.  
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