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Preface

Many different mathematical methods and concepts are used in classical
mechanics: differential equations and phase flows, smooth mappings and
manifolds, Lie groups and Lie algebras, symplectic geometry and ergodic
theory. Many modern mathematical theories arose from problems in
mechanics and only later acquired that axiomatic-abstract form which
makes them so hard to study.

In this book we construct the mathematical apparatus of classical
mechanics from the very beginning; thus, the reader is not assumed to have
any previous knowledge beyond standard courses in analysis (differential
and integral calculus, differential equations), geometry (vector spaces,
vectors) and linear algebra (linear operators, quadratic forms).

With the help of this apparatus, we examine all the basic problems in
dynamics, including the theory of oscillations, the theory of rigid body
motion, and the hamiltonian formalism. The author has tried to .show the
geometric, gualitative aspect of phenomena. In this respect the book is
closer to courses in theoretical mechanics for theoretical physicists than to
traditional courses in theoretical mechanics as taught by mathematicians.

A considerable part of the book is devoted to variational principles and
analytical dynamics. Characterizing analytical dynamics in his *“ Lectures on
the development of mathematics in the nineteenth century,” F. Klein wrote
that **. . . a physicist, for his problems, can extract from these theories only
very little, and an engineer nothing.”” The development of the sciences in the
following years decisively disproved this remark. Hamiltonian formalism
lay at the basis of quantum mechanics and has become one of the most often
used tools in the mathematical arsenal of physics. After the significance of
symplectic structures and Huygens’ principle for all sorts of optimization
problems was realized, Hamilton’s equations began to be used constantly in
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Preface

engineering calculations. On the other hand, the contemporary development
of celestial mechanics, connected with the requirements of space exploration,
created new interest in the methods and problems of analytical dynamics.
The connections between classical mechanics and other areas of mathe-
matics and physics are many and varied. The appendices to this book are
devoted to a few of these connections. The apparatus of classical mechanics
is applied to: the foundations of riemannian geometry, the dynamics of
an ideal fluid, Kolmogorov's theory of perturbations of conditionally
periodic motion, short-wave asymptotics for equations of mathematical

physics, and the classification of caustics in geometrical optics.
These appendices are intended for the interested reader and are not part

of the required general course. Some of them could constitute the basis of
special courses (for example, on asymptotic methods in the theory of non-
linear oscillations or on quasi-classical asymptotics). The appendices also
contain some information of a reference nature (for example, a list of normal
forms of quadratic hamiltonians). While in the basic chapters of the book the
author has tried to develop all the proofs as explicitly as possible, avoiding
references to other sources, the appendices consist on the whole of summaries
of results, the proofs of which are to be found in the cited literature.

The basis for the book was a year-and-a-half-long required course
in classical mechanics, taught by the author to third- and fourth-year
mathematics students at the mathematics-mechanics faculty of Moscow
State University in 1966-1968.

The author is grateful to I. G. Petrovsky, who insisted that these lectures
be delivered, written up, and published. In preparing these lectures for
publication, the author found very helpful the lecture notes of L. A. Buni-
movich, L. D. Vaingortin, V. L. Novikov, and especially, the mimeographed
edition (Moscow State University, 1968) organized by N. N. Kolesnikov. The
author thanks them, and also all the students and colleagues who communi-
cated their remarks on the mimeographed text; many of these remarks were
used in the preparation of the present edition. The author is grateful to
M. A. Leontovich, for suggesting the treatment of connections by means of a
limit process, and also to I. I. Vorovich and V. I. Yudovich for their detailed
review of the manuscript.

V. ARNOLD

The translators would like to thank Dr. R. Barrar for his help in reading
the proofs. We would also like to thank many readers, especially Ted Courant,
for spotting errors in the first two printings.

Berkeley, 1981 K. VOGTMANN
A. WEINSTEIN
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Preface to the second edition

The main part of this book was written twenty years ago. The ideas and
methods of symplectic geometry, developed in this book, have now found
many applications in mathematical physics and in other domains of applied
mathematics, as well as in pure mathematics itself. Especially, the short-wave
asymptotical expansions theory has reached a very sophisticated level, with
many important applications to optics, wave theory, acoustics, spectroscopy,
and even chemistry; this development was parallel to the development of the
theories of Lagrange and Legendre singularities, that is, of singularities of
caustics and of wave fronts, of their topology and their perestroikas (in
Russian metamorphoses were always called “perestroikas,” as in “Morse
perestroika” for the English “Morse surgery”; now that the word perestroika
has become international, we may preserve the Russian term in translation
and are not obliged to substitute “metamorphoses” for “perestroikas”™ when
speaking of wave fronts, caustics, and so on),

Integrable hamiltonian systems have been discovered unexpectedly in many
classical problems of mathematical physics, and their study has led to new
results in both physics and mathematics, for instance, in algebraic geometry.

Symplectic topology has become one of the most promising and active
branches of “global analysis.” An important generalization of the Poincaré
“geometric theorem” (see Appendix 9) was proved by C. Conley and
E. Zehnder in 1983. A sequence of works (by M. Chaperon, A. Weinstein, J.-C.
Sikorav, M. Gromov, Ja. M. Eliashberg, Ju. Tchekanov, A. Floer, C. Viterbo,
H. Hofer, and others) marks important progress in this very living domain.
One may hope that this progress will lead to the proof of many known
conjectures in symplectic and contact topology, and to the discovery of new
results in this new domain of mathematics, emerging from the problems of
mechanics and optics.
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Preface to the second edition

The present edition includes three new appendices. They represent the
modern development of the theory of ray systems (the theory of singularity
and of perestroikas of caustics and of wave fronts, related to the theory of
Coxeter reflection groups), the theory of integrable systems (the geometric
theory of elliptic coordinates, adapted to the infinite-dimensional Hilbert
space generalization), and the theory of Poisson structures (which is a general-
ization of the theory of symplectic structures, including degenerate Poisson
brackets).

A more detailed account of the present state of perturbation theory may be
found in the book, Mathematical Aspects of Classical and Celestial Mechanics
by V. 1. Arnold, V. V. Kozlov, and A. I. Neistadt, Encyclopaedia of Math. Sci,,
Vol. 3 (Springer, 1986); Volume 4 of this series (1988) contains a survey
“Symplectic geometry” by V. I. Arnold and A. B. Givental’, an article by
A. A. Kirillov on geometric quantization, and a survey of the modern theory
of integrable systems by S. P. Novikov, I. M. Krichever, and B. A. Dubrovin.

For more details on the geometry of ray systems, see the book Singularities
of Differentiable Mappings by V. L. Arnold, S. M. Gusein-Zade, and A. N.
Varchenko (Vol. 1, Birkhiduser 1985; vol. 2, Birkhduser, 1988). Catastrophe
Theory by V. 1. Arnold (Springer, 1986) (second edition) contains a long
annotated bibliography.

Surveys on symplectic and contact geometry and on their applications may
be found in the Bourbaki seminar (D. Bennequin, “Caustiques mystiques”,
February, 1986) and in a series of articles (V. I. Arnold, First steps of symplectic
topology, Russian Math. Surveys, 41 (1986); Singularities of ray systems,
Russian Math. Surveys, 38 (1983); Singularities in variational calculus,
Modern Problems of Math., VINITI, 22 (1983) (translated in J. Soviet Math.);
and O. P. Shcherbak, Wave fronts and reflection groups, Russian Math.
Surveys, 43 (1988)).

Volumes 22 (1983) and 33 (1988) of the VINITI series, “Sovremennye
problemy mathematiki. Noveishie dostijenia,” contain a dozen articles on the
applications of symplectic and contact geometry and singularity theory to
mathematics and physics.

Bifurcation theory (both for hamiltonian and for more general systems)
is discussed in the textbook Geometrical Methods of the Theory of Ordinary
Differential Equations (Springer, 1988) (this new edition is more complete than
the preceding one). The survey “Bifurcation theory and its applications in
mathematics and mechanics” (XVIIth International Congress of Theoretical
and Applied Mechanics in Grenoble, August, 1988) also contains new infor-
mation, as does Volume 5 of the Encyclopaedia of Math. Sci. (Springer, 1989),
containing the survey “Bifurcation theory” by V. I. Arnold, V. S. Afraimovich,
Ju. S. Iljashenko, and L. P. Shilnikov. Volume 2 of this series, edited by
D. V. Anosov and Ja. G. Sinai, is devoted to the ergodic theory of dynamical
systems including those of mechanics.

The new discoveries in all these theories have potentially extremely wide
applications, but since these results were discovered rather recently, they are
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Preface to the second edition

discussed only in the specialized editions, and applications are impeded by
the difficulty of the mathematical exposition for nonmathematicians. I hope
that the present book will help to master these new theories not only to
mathematicians, but also to all those readers who use the theory of dynamical
systems, symplectic geometry, and the calculus of variations——in physics,
mechanics, control theory, and so on. The author would like to thank Dr.
T. Tokieda for his help in correcting errors in previous printings and for
reading the proofs.

December 1988 V.1 Arnold
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Translator’s preface to the second edition

This edition contains three new appendices, originally written for inclusion in
a German edition. They describe work by the author and his co-workers on
Poisson structures, elliptic coordinates with applications to integrable sys-
tems, and singularities of ray systems. In addition, numerous corrections to
errors found by the author, the translators, and readers have been incorpo-
rated into the text.
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PART 1
NEWTONIAN MECHANICS

Newtonian mechanics studies the motion of a system of point masses
in three-dimensional euclidean space. The basic ideas and theorems of
newtonian mechanics (even when formulated in terms of three-dimensional
cartesian coordinates) are invariant with respect to the six-dimensional®
group of euclidean motions of this space.

A newtonian potential mechanical system is specified by the masses
of the points and by the potential energy. The motions of space which leave
the potential energy invariant correspond to laws of conservation.

Newton’s equations allow one to solve completely a series of important
problems in mechanics, including the problem of motion in a central force

fieid.

' And also with respect to the larger group of galilean transformations of space-time.






Experimental facts

In this chapter we write down the basic experimental facts which lie at the
foundation of mechanics: Galileo’s principle of relativity and Newton’s
differential equation. We examine constraints on the equation of motion
imposed by the relativity principle, and we mention some simple examples.

1 The principles of relativity and determinacy

In this paragraph we introduce and discuss the notion of an inertial coordinate system. The
mathematical statements of this paragraph are formulated exactly in the next paragraph.

A series of experimental facts is at the basis of classical mechanics.? We
list some of them.
A Space and time

Our space is three-dimensional and euclidean, and time is one-dimensional.

B Galileo’s principle of relativity
There exist coordinate systems (called inertial) possessing the following
two properties:

1. All the laws of nature at all moments of time are the same 1n all inertial

coordinate systems.
2. All coordinate systems in uniform rectilinear motion with respect to an

inertial one are themselves inertial.

2 All these “experimental facts” are only approximately true and can be refuted by more exact
experiments. In order to avoid cumbersome expressions, we will not specify this from now on
and we will speak of our mathematical models as if they exactly described physical phenomena.

3



1: Experimental facts

In other words, if a coordinate system attached to the earth is inertial,
then an experimenter on a train which is moving uniformly in a straight line
with respect to the earth cannot detect the motion of the train by experiments
conducted entirely inside his car.

In reality, the coordinate system associated with the earth is only approxi-
mately inertial. Coordinate systems associated with the sun, the stars, etc.
are more nearly inertial.

C Newton’s principle of determinacy

The initial state of a mechanical system (the totality of positions and
velocities of its points at some moment of time) uniquely determines all of
its motion.

It is hard to doubt this fact, since we learn it very early. One can imagine
a world in which to determine the future of a system one must also know the
acceleration at the initial moment, but experience shows us that our world

is not like this.

2 The galilean group and Newton’s equations

In this paragraph we define and investigate the galilean group of space-time transformations.
Then we consider Newton’s equation and the simplest constraints imposed on its right-hand side
by the property of invariance with respect to galilean transformations.?

A Notation

We denote the set of all real numbers by R. We denote by R"” an n-dimen-
sional real vector space.

a a+b
———
Figure 1 Parallel displacement

Affine n-dimensional space A" is distinguished from R" in that there is
“no fixed origin.” The group R" acts on A" as the group of parallel displace-
ments (Figure 1):

a—a-+b, ac A" beR" a+ be A"

[Thus the sum of two points of A" is not defined, but their difference is defined
and is a vector in R".]

3 The reader who has no need for the mathematical formulation of the assertions of Section |
can omit this section.

4



2. The galilican group and Newton’s equations

A euclidean structure on the vector space R" is a positive definite symmetric
bilinear form called a scalar product. The scalar product enables one to
define the distance

p(x, ¥) = lIx — ¥l = J/(x — y, x — y)

between points of the corresponding affine space A”. An affine space with this
distance function is called a euclidean space and is denoted by E”.

B Galilean structure

The galilean space-time structure consists of the following three elements:

1. The universe—a four-dimensional affine* space A*. The points of 4%
are called world points or events. The parallel displacements of the universe
A* constitute a vector space R%.

2. Time—a linear mapping t: R* - R from the vector space of parallel
displacements of the universe to the real “time axis.” The time interval
from event a € A* to event b € A% is the number t(b — a) (Figure 2). If
t(b — a) = 0, then the events a and b are called simultaneous.

A3

i 4 o |
hal |

Figure 2 Interval of time ¢

The set of events simultaneous with a given event forms a three-
dimensional affine subspace in 4%, It is called a space of simultaneous
events A°>.

The kernel of the mapping ¢ consists of those parallel displacements of
A* which take some (and therefore every) event into an event simultaneous
with it. This kernel is a three-dimensional linear subspace R? of the vector
space R*,

The galilean structure includes one further element.
3. The distance between simultaneous events
pla,b) = la — bl = /(a—b,a—b) abeA’

is given by a scalar product on the space R>. This distance makes every
space of simultaneous events into a three-dimensional euclidean space E3.

* Formerly, the universe was provided not with an affine, but with a linear structure (the geo-
centric system of the universe).



1: Experimental facts

A space A%, equipped with a galilean space-time structure, is called a
p quip P

galilean space.

One can speak of two events occurring simultaneously in different places,
but the expression “two non-simultaneous events a, be A* occurring at
one and the same place in three-dimensional space” has no meaning as long
as we have not chosen a coordinate system.

The galilean group is the group of all transformations of a galilean space
which preserve its structure. The elements of this group are called galilean
transformations. Thus, galilean transformations are affine transformations
of A* which preserve intervals of time and the distance between simultaneous
events.

ExaMpLE. Consider the direct product® R x R? of the ¢ axis with a three-
dimensional vector space R?*; suppose R? has a fixed euclidean structure.
Such a space has a natural galilean structure. We will call this space galilean

coordinate space.
We mention three examples of galilean transformations of this space.

First, uniform motion with velocity v:
gt x) =, x +vt) VieR xeR3
Next, translation of the origin:
g, X) = (@ +s,x+8) VieR xeR.
Finally, rotation of the coordinate axes:
gs(t, x) = (¢, Gx), Vie R, x € R3,

where G: R* —» R? is an orthogonal transformation.

PROBLEM. Show that every galilean transformation of the space R x R3
can be written in a unique way as the composition of a rotation, a translation,
and a uniform motion (g = g, ° g, ° g3) (thus the dimension of the galilean
groupisequalto 3 + 4 + 3 = 10).

PROBLEM. Show that all galilean spaces are isomorphic to each other®
and, in particular, isomorphic to the coordinate space R x R3.

Let M be a set. A one-to-one correspondence ¢,: M —» R x R? is called
a galilean coordinate system on the set M. A coordinate system ¢, moves
uniformly with respect to @, if ¢,-¢;':R x R® 5> R x R?® is a galilean
transformation. The galilean coordinate systems ¢, and ¢, give M the same
galilean structure.

® Recall that the direct product of two sets 4 and B is the set of ordered pairs (a, b), where
a € Aand b € B. The direct product of two spaces (vector, affine, euclidean) has the structure of a

space of the same type.

® That is, there is a one-to-one mapping of one to the other preserving the galilean structure.

6



2: The gahlean group and Newton’s equations

C Motion, velocity, acceleration

A motion in RN is a differentiable mapping x: I — R", where [ is an interval
on the real axis.
The derivative

dx

X(to) = ar

is called the velocity vector at the point ¢, € I.
The second derivative

x(to + h) — x(ty) c
h

RN

= lim
t=1io h—0

d*x

i(l’o) = W

f=to

is called the acceleration vector at the point t,.
We will assume that the functions we encounter are continuously differ-

entiable as many times as necessary. In the future, unless otherwise stated,
mappings, functions, etc. are understood to be differentiable mappings,
functions, etc. The image of a mapping x: I — R" is called a trajectory or
curve in RN,

PROBLEM. Is it possible for the trajectory of a differentiable motion on the
plane to have the shape drawn in Figure 3? Is it possible for the acceleration
vector to have the value shown?

ANSWER. Yes. No.

Figure 3 Trajectory of motion of a point

We now define a mechanical system of n points moving in three-dimensional
euclidean space.

Let x: R — R® be a motion in R>, The graph’ of this mapping is a curve
in R x R3,

A curve in galilean space which appears in some (and therefore every)
galilean coordinate system as the graph of a motion, is called a world line

(Figure 4).

" The graph of a mapping f: A — B is the subset of the direct product A x B consisting of all
pairs (a, f(a)) with g € A.
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\

- R

Figure 4 World lines

A motion of a system of n points gives, in galilean space, n world lines.
In a galilean coordinate system they are described by n mappings x;: R — R3,
i=1,...,n

The direct product of n copies of R? is called the configuration space
of the system of n points. Our n mappings x;: R — R3 define one mapping

x:R - RV N = 3n

of the time axis into the configuration space. Such a mapping is also called
a motion of a system of n points in the galilean coordinate system on R x R3

D Newton’s equations

According to Newton’s principle of determinacy (Section 1C) all motions
of a system are uniquely determined by their initial positions (x(ty) € R™)
and initial velocities (X(t5) € R™).

In particular, the initial positions and velocities determine the acceleration.
In other words, there is a function F: RY x RY x R — R" such that

(1) x = F(x, X, 1).

Newton used Equation (1) as the basis of mechanics. It is called Newton’s
equation.

By the theorem of existence and uniqueness of solutions to ordinary
differential equations, the function F and the initial conditions x(¢¢) and
%(1,) uniquely determine a motion.?

For each specific mechanical system the form of the function F is deter-
mined experimentally. From the mathematical point of view the form of F
for each system constitutes the definition of that system.

E Constraints imposed by the principle of relativity

Galileo’s principle of relativity states that in physical space-time there is a
selected galilean structure (“the class of inertial coordinate systems”)
having the following property.

8 Under certain smoothness conditions, which we assume to be fulfilled. In general, a motion
is determined by Equation (1) only on some interval of the time axis. For simplicity we will
assume that this interval is the whole time axis, as is the case in most problems in mechanics.
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Figure 5 Galileo’s principle of relativity

If we subject the world lines of all the points of any mechanical system?®
to one and the same galilean transformation, we obtain world lines of the
same system (with new initial conditions) (Figure 5).

This imposes a series of conditions on the form of the right-hand side of
Newton’s equation written in an inertial coordinate system: Equation (1)
must be invariant with respect to the group of galilean transformations.

EXAMPLE 1. Among the galilean transformations are the time translations.
Invariance with respect to time translations means that “the laws of nature
remain constant,” i.e., if x = @(¢) is a solution to Equation (1), then for any
se R, x = ¢(t + s)is also a solution.

From this it follows that the right-hand side of Equation (1) in an inertial
coordinate system does not depend on the time:

x = d(x, x).

Remark. Differential equations in which the right-hand side does depend
on time arise in the following situation.

Suppose that we are studying part I of the mechanical system I + IL
Then the influence of part II on part I can sometimes be replaced by a time
variation of parameters in the system of equations describing the motion of
part I. For example, the influence of the moon on the earth can be ignored in
investigating the majority of phenomena on the earth. However, in the study of
the tides this influence must be taken into account; one can achieve this by
introducing, instead of the attraction of the moon, periodic changes in the
strength of gravity on earth.

? In formulating the principle of relativity we must keep in mind that it is relevant only to
closed physical (in particular, mechanical) systems, i.e., that we must include in the system all
bodies whose interactions play a role in the study of the given phenomena. Strictly speaking, we
should include in the system all bodies in the universe. But we know from experience that one
can disregard the effect of many of them: for example, in studying the motion of planets around
the sun we can disregard the attractions among the stars, etc.

On the other hand, in the study of a body in the vicinity of earth, the system is not closed
if the earth is not included; in the study of the motion of an airplane the system is not closed if
it does not include the air surrounding the airplane, etc. In the future, the term “mechanical
system ™ will mean a closed system in most cases, and when there is a non-closed system in
question this will be explicitly stated (cf., for example, Section 3).
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Equations with variable coefficients can appear also as the result of formal
operations in the solution of problems.

ExXAMPLE 2. Translations in three-dimensional space are galilean trans-
formations. Invariance with respect to such translations means that space
is homogeneous, or “has the same properties at all of its points.” That is,
if x, = @{t)(i = 1, ..., n) is a motion of a system of n points satisfying (1),
then for any r € R> the motiong@ (t) + r(i = 1,. .., n) also satisfies Equation
(1).

From this it follows that the right-hand side of Equation (1) in the inertial
coordinate system can depend only on the “relative coordinates™ X; — X;.

From invariance under passage to a uniformly moving coordinate system
(which does not change X; or x; — x,, but adds to each x; a fixed vector v) it
follows that the right-hand side of Equation (1) in an inertial system of
coordinates can depend only on the relative velocities

ii=fi({xj_xk,ij—ik}), Ljk=1 ..., n

ExaMPLE 3. Among the galilean transformations are the rotations in three-
dimensional space. Invariance with respect to these rotations means that
space is isotropic; there are no preferred directions.

Thus, if @;: R — R*i = 1,..., n) is a motion of a system of points satis-
fying (1), and G: R* — R? is an orthogonal transformation, then the motion
Go;: R - R3(, ..., n) also satisfies (1). In other words.

F(Gx, G x) = GF(x, x),

where Gx denotes (Gx4, ..., Gx,), x; € R3.

PrROBLEM. Show that if a mechanical system consists of only one point, then
its acceleration in an inertial coordinate system is equal to zero (“Newton’s
first law ™).

Hint. By Examples 1 and 2 the acceleration vector does not depend on
X, X, or t, and by Example 3 the vector F is invariant with respect to rotation.

PROBLEM. A mechanical system consists of two points. At the initial moment
their velocities (in some inertial coordinate system) are equal to zero. Show
that the points will stay on the line which connected them at the initial
moment,

PRrROBLEM. A mechanical system consists of three points. At the initial moment
their velocities (in some inertial coordinate system) are equal to zero.
Show that the points always remain in the plane which contained them at the
mitial moment.

PrROBLEM. A mechanical system consists of two points. Show that for any
initial conditions there exists an inertial coordinate system in which the
two points remain in a fixed plane.

10



3: Examples of mechanical systems

PROBLEM. Show that mechanics “through the looking glass” is identical

to ours.
Hint. In the galilean group there is a reflection transformation, changing

the orientation of R3,
PROBLEM. Is the class of inertial systems unique?

ANSWER. No. Other classes can be obtained if one changes the units of length
and time or the direction of time.

3 Examples of mechanical systems

We have already remarked that the form of the function F in Newton's equation (1) is determined
experimentally for each mechanical system. Here are several examples.

In examining concrete systems it is reasonable not to include all the objects of the universe
in a system. For example, in studying the majority of phenomena taking place on the earth we
can ignore the influence of the moon. Furthermore, it is usually possible to disregard the effect
of the processes we are studying on the motion of the earth itself; we may even consider a coordi-
nate system attached to the earth as “fixed.” It is clear that the principle of relativity no longer
imposes the constraints found 1n Section 2 for equations of motion written in such a coordinate
system. For example, near the earth there is a distinguished direction, the vertical.

A Example 1. A stone falling to the earth

Experiments show that
(2) X = —g, where g ~ 9.8 m/s? (Galileo)*

where x is the height of a stone above the surface of the earth.
If we introduce the “potential energy” U = gx, then Equation (2) can
be written in the form

. dU
X=——.

If U: EY — R s a differentiable function on euclidean space, then we will
denote by dU/dx the gradient of the function U. If EN = E™ x ... x E™
is a direct product of euclidean spaces, then we will denote a point x € E¥
by (X,, ..., X;), and the vector dU/ox by (AU/éx,, ..., U /dx,). In particular,
if x,,..., xy are cartesian coordinates in E", then the components of the
vector dU/0x are the partial derivatives dU/dx,, ..., dU/dxy.

Experiments show that the radius vector of the stone with respect to
some point 0 on the earth satisfies the equation

oUu
3 X — ———— h = —
(3) X F where U (g, x)

* In this and other sections, the mass of a particle is taken to be 1.

11



1: Experimental facts

The vector in the right-hand side is directed towards the earth. It is called
the gravitational acceleration vector g. (Figure 6.)

g

TS

Figure 6 A stone falling to the earth

B Example 2 : Falling from great height

Like all experimental facts, the law of motion (2) has a restricted domain of
application. According to a more precise law of falling bodies, discovered
by Newton, acceleration is inversely proportional to the square of the distance
from the center of the earth:

where r = ry + x (Figure 7).

ro

O~

Figure 7 The earth’s gravitational field

This equation can also be written in the form (3), if we introduce the
potential energy

U= —-  k=grj,
r
inversely proportional to the distance to the center of the earth.

PROBLEM. Determine with what velocity a stone must be thrown in order that
it fly infinitely far from the surface of the earth.'®

ANSWER. > 11.2 km/sec.

10 This is the so-called second cosmic velocity v, . Qur equation does not take into account the
attraction of the sun. The attraction of the sun will not let the stone escape from the solar system
if the velocity of the stone with respect to the earth is less than 16.6 km/sec.

12



3: Examples of mechanical systems

C Example 3: Motion of a weight along a line
under the action of a spring

Experiments show that under small extensions of the spring the equation
of motion of the weight will be (Figure 8)

N
Figure 8 Weight on a spring

This equation can also be written in the form (3) if we introduce the
potential energy

o?x?

U=2

If we replace our one weight by two weights, then it turns out that, under
the same extension of the spring, the acceleration is half as large.

It is experimentally established that for any two bodies the ratio of the
accelerations X,/X, under the same extension of a spring is fixed (does not
depend on the extent of extension of the spring or on its characteristics, but
only on the bodies themselves). The value inverse to this ratio is by definition
the ratio of masses:

X4 _m;

X2 (3

For a unit of mass we take the mass of some fixed body, e.g., one liter of
water. We know by experience that the masses of all bodies are positive. The
product of mass times acceleration mX does not depend on the body, and
1s a characteristic of the extension of the spring. This value is called the

force of the spring acting on the body.
As a unit of force, we take the “newton.” If one liter of water is suspended

on a spring at the surface of the earth, the spring acts with a force of 9.8
newtons (=1 kg).

D Example 4: Conservative systems

Let E®" = E*® x ... x E? be the configuration space of a system of »n points
in the euclidean space E°. Let U: E*" — R be a differentiable function and

let m,, ..., m, be positive numbers.

13



1: Experimental facts

Definition. The motion of n points, of masses m,, ..., m,, in the potential
field with potential energy U is given by the system of differential equations

. ou .
(4) mX;, = — i=1,...,n
0x;

1

The equations of motion in Examples 1 to 3 have this form. The equations
of motion of many other mechanical systems can be written in the same form.
For example, the three-body problem of celestial mechanics is problem (4)

in which
mym, mom; msym,
Ix;, — x| Ix, — xsll |x3 — x1||'

U=
Many different equations of entirely different origin can be reduced to

form (4), for example the equations of electrical oscillations. In the following
chapter we will study mainly systems of differential equations in the form (4).

14



Investigation of the equations
of motion

In most cases (for example, in the three-body problem) we can neither solve
the system of differential equations nor completely describe the behavior
of the solutions. In this chapter we consider a few simple but important
problems for which Newton’s equations can be solved.

4 Systems with one degree of freedom

In this paragraph we study the phase flow of the differential equation (1). A look at the graph of
the potential energy is enough for a qualitative analysis of such an equation. In addition, Equation
(1) is integrated by quadratures.

A Definitions
A system with one degree of freedom is a system described by one differential
equation

(1) ¥=f(x) xeR
The kinetic energy is the quadratic form™
T = ix2.

The potential energy is the function

Wﬂ=—ff@ﬂ.

The sign in this formula is taken so that the potential energy of a stone is
larger if the stone is higher off the ground.

Notice that the potential energy determines f. Therefore, to specify a
system of the form (1) it is enough to give the potential energy. Adding a
constant to the potential energy does not change the equation of motion (1).

* see footnote on p. 11,
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2: Investigation of the equations of motion

The total energy is the sum
E=T+ U.
In general, the total energy is a function, E(x, x), of x and x.

Theorem (The law of conservation of energy). The total energy of points
moving according to the equation (1) is conserved: E(x(t), X(t)) is independent

of t.

PrOOF.
d . dU B
E(T+U)—xx+d—xx—x(x f(x)) =0. 4
B Phase flow
Equation (1) is equivalent to the system of two equations:
(2) x=y y=f(x).

We consider the plane with coordinates x and y, which we call the phase plane
of Equation (1). The points of the phase plane are called phase points. The
right-hand side of (2) determines a vector field on the phase plane, called the

phase velocity vector field.

A solution of (2) is a motion ¢: R — R? of a phase point in the phase
plane, such that the velocity of the moving point at each moment of time is
equal to the phase velocity vector at the location of the phase point at that

moment.!!
The image of ¢ is called the phase curve. Thus the phase curve is given by
the parametric equations

x = @(t) y = @(t).

PrROBLEM. Show that through every phase point there is one and only one

phase curve.
Hint. Refer to a textbook on ordinary differential equations.

We notice that a phase curve could consist of only one point. Such a
point is called an equilibrium position. The vector of phase velocity at an
equilibrium position is zero.

The law of conservation of energy allows one to find the phase curves
easily. On each phase curve the value of the total energy is constant. Therefore,

each phase curve lies entirely in one energy level set E(x, y) = h.

C Examples
ExaMPLE 1. The basic equation of the theory of oscillations is

X = —x.

! Here we assume for simplicity that the solution ¢ is defined on the whole time axis R.

16



4: Systems with one degree of freedom

X
Figure 9 Phase plane of the equation X = —x
In this case (Figure 9) we have:
.2 2 -2 2
X x b'd X
T="" U="_ E="_4+ .
2 2 2 v 2

The energy level sets are the concentric circles and the origin. The phase
velocity vector at the phase point (x, y) has components (y, —x). It is
perpendicular to the radius vector and equal to it in magnitude. Therefore,
the motion of the phase point in the phase plane is a uniform motion around
O:x = rgcos{pg — 1), y = ro sin(p, — t). Each energy level set is a phase
curve.

ExXAMPLE 2. Suppose that a potential energy is given by the graph in Figure
10. We will draw the energy level sets 1y® + U(x) = E. For this, the following
facts are helpful.

1. Any equilibrium position of (2) must lie on the x axis of the phase plane.
The point x = &, y = 0 is an equilibrium position if £ is a critical point
of the potential energy, i.e,, if (OU/0x)|,-: = 0.

2. Each level set is a smooth curve in a neighborhood of each of its points
which is not an equilibrium position (this follows from the implicit
function theorem). In particular, if the number E is not a critical value of
the potential energy (i.e., is not the value of the potential energy at one of
its critical points), then the level set on which the energy is equal to E
i1s a smooth curve.

It follows that in order to study the energy level curve, we should turn
our attention to the critical and near-critical values of E. It is convenient
here to imagine a little ball rolling in the potential well U.

For example, consider the following argument: “Kinetic energy is
nonnegative. This means that potential energy is less than or equal to the
total energy. The smaller the potential energy, the greater the velocity.”
This translates to: “The ball cannot jump out of the potential well, rising

17



2: Investigation of the equations of motion

-

Figure 10 Potential energy and phase curves

higher than the level determined by its initial energy. As it falls into the well,
the ball gains velocity.” We also notice that the local maximum points of the
potential energy are unstable, but the minimum points are stable equilibrium

positions.

PrROBLEM. Prove this.

PrOBLEM. How many phase curves make up the separatrix (figure eight)
curve, corresponding to the level E, ?

ANSWER. Three.
PrROBLEM. Determine the duration of motion along the separatrix.
ANSWER. It follows from the uniqueness theorem that the time is infinite.

PrROBLEM. Show that the time it takes to go from x,; to x, (in one direction)
is equal to

J‘xz dx
2 — 1 = .
x 2E — U(x))

t

18



4: Systems with one degree of freedom

(a) (b)

Figure 11 Potential energy

PrROBLEM. Draw the phase curves, given the potential energy graphs in
Figure 11.

ANSWER. Figure 12,

m
_/"\—’\’\_
I —
\-../—\/—\4/—_

(a) (b)

Figure 12 Phase curves

PrOBLEM. Draw the phase curves for the “equation of an ideal planar
pendulum™: X = —sin x.

ProBLEM. Draw the phase curves for the “equation of a pendulum on a
rotating axis”: X = —sin x + M.

Remark. In these two problems x denotes the angle of displacement of the
pendulum. The phase points whose coordinates differ by 2z correspond to
the same position of the pendulum. Therefore, in addition to the phase plane,
it is natural to look at the phase cylinder {x(mod 2r), y}.

ProBLEM. Find the tangent lines to the branches of the critical level corre-
sponding to maximal potential energy E = U({) (Figure 13).

ANSWER. y = + / —U"(E)(x — &).
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2: Investigation of the equations of motion

U
4
R
£ - X
¥
A
3
— X

Figure 13 Ciritical energy level lines

PrROBLEM. Let S(E) be the area enclosed by the closed phase curve cor-
responding to the energy level E. Show that the period of motion along
this curve is equal to

_dS

T__d-f'

PROBLEM. Let E, be the value of the potential function at a minimum point
&. Find the period Ty = limg_ g, T(E) of small oscillations in a neighbor-
hood of the point &.

ANSWER, 2n/./ U"(&).

PrROBLEM. Consider a periodic motion along the closed phase curve corre-
sponding to the energy level E. Is it stable in the sense of Liapunov?!'?

ANSWER. No.13

D Phase flow

Let M be a point in the phase plane. We look at the solution to system (2)
whose initial conditions at t = O are represented by the point M. We assume
that any solution of the system can be extended to the whole time axis. The
value of our solution at any value of t depends on M. We denote the resulting
phase point (Figure 14) by
M(t) = g'M.

In this way we have defined a mapping of the phase plane to itself,

g': R? — R2. By theorems in the theory of ordinary differential equations,

12 For a definition, see, e.g., p. 155 of Ordinary Differential Equations by V. 1. Arnold, MIT Press,
1973.

13 The only exception is the case when the period does not depend on the energy.
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4: Systems with one degree of freedom

MO o+ 6

Figure 14 Phase flow

the mapping g’ is a diffeomorphism (a one-to-one differentiable mapping
with a differentiable inverse). The diffeomorphisms g', t € R, form a group:
g'** = g' o g°. The mapping g° is the identity (g°M = M), and g~ ' is the
inverse of g'. The mapping g: R x R? —» R2?, defined by g(t, M) = g'M is
differentiable. All these properties together are expressed by saying that the
transformations g° form a one-parameter group of diffeomorphisms of the phase
plane. This group is also called the phase flow, given by system (2) (or
Equation (1)).

ExaMPLE. The phase flow given by the equation ¥ = —x is the group ¢
of rotations of the phase plane through angle ¢ around the origin.

PROBLEM. Show that the system with potential energy U = —x* does not
define a phase flow.

ProBLEM. Show that if the potential energy is positive, then there is a phase

flow.
Hint. Use the law of conservation of energy to show that a solution can

be extended without bound.

PROBLEM. Draw the image of the circle x? + (y — 1)? < 1 under the action
of a transformation of the phase flow for the equations (a) of the “inverse
pendulum,” ¥ = x and (b) of the “nonlinear pendulum,” X = —sin x.

ANsSWER. Figure 15.

(a) {b)

Figure 15 Action of the phase flow on a circle
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2: Investigation of the equations of motion

5 Systems with two degrees of freedom

Analyzing a general potential system with two degrees of freedom is beyond the capability
of modern science. In this paragraph we look at the simplest examples.

A Definitions

By a system with two degrees of freedom we will mean a system defined by
the differential equations

(1) % = f(x), x € E2,

where f is a vector field on the plane.

A system is said to be conservative if there exists a function U: E2 - R
such that f = —oU/dx. The equation of motion of a conservative system
then has the form!* X = —9U/ox.

B The law of conservation of energy

Theorem. The total energy of a conservative system is conserved, i.e.,

% =0, where E = 1%x? + U(x), x? = (x, X).
PrROOF. dE/dt = (%, X) + (U/0x, X) = (X + (8U/0x), X) = O by the equation
of motion. ]

Corollary. If at the initial moment the total energy is equal to E, then all
trajectories lie in the region where U(X) < E, i.e., a point remains inside
the potential well U(x4, x,) < E for all time.

Remark. In a system with one degree of freedom it is always possible to
introduce the potential energy

UGx) = - f T F(o)de.

For a system with two degrees of freedom this is not so.

PROBLEM. Find an example of a system of the form X = f(x), x € E?, which is
not conservative.

C Phase space
The equation of motion (1) can be written as the system:

Xy =W X; =Y2
(2) , oU _ oU
Vi = — a—xl Y2 = — a_xz
!4 In cartesian coordinates on the plane E?, ¥, = —8U/dx, and ¥, = —dU/0x,.
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5: Systems with two degrees of freedom

The phase space of a system with two degrees of freedom is the four-
dimensional space with coordinates x,, x,, y,, and y,.

The system (2) defines the phase velocity vector field in four space as well
as!® the phase flow of the system (a one-parameter group of diffeomorphisms
of four-dimensional phase space). The phase curves of (2) are subsets of four-
dimensional phase space. All of phase space is partitioned into phase curves,
Projecting the phase curves from four space to the x,;, x, plane gives the
trajectories of our moving point in the x,, x, plane. These trajectories are
also called orbits. Orbits can have points of intersection even when the phase
curves do not intersect one another. The equation of the law of conservation

of energy
E="2 + Ux) =272 4 U(xy, x,)
2 2
defines a three-dimensional hypersurface in four space: E(xy, X5, V1, ¥2)} =
E,; this surface, n;,, remains invariant under the phase flow: g'n, = np,.
One could say that the phase flow flows along the energy level hypersurfaces.
The phase velocity vector field is tangent at every point to ng, . Therefore,

ng, is entirely composed of phase curves (Figure 16).

Va2
I Y

TE

» M

'Yl
X>

Figure 16 Energy level surface and phase curves

ExAMPLE 1 (“small oscillations of a spherical pendulum™). Let U = 3(x? + x32).
The level sets of the potential energy in the x,, x, plane will be concentric

circles (Figure 17).

The equations of motion, ¥, = —x,, X, = —Xx,, are equivalent to the
system
X1 =W X2 = )2
Vi = —X; Y2 = —X3.

This system decomposes into two independent ones; in other words,
each of the coordinates x; and x, changes with time in the same way as in
a system with one degree of freedom.

!5 With the usual limitations.
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2: Investigation of the equations of motion

X2

Xy

Figure 17 Potential energy level curves for a spherical pendulum

A solution has the form
X, =C,COSt + c,8int X, = C3COSL + Cc48INt
Y1 = —cysint + ¢, cost Y2 = —cC3Sint + ¢, cos t.
It follows from the law of conservation of energy that
E = 3(yi + ¥3) + 3(x] + x3) = const,

i.e., the level surface ng  is a sphere in four space.

PROBLEM. Show that the phase curves are great circles of this sphere. (A
great circle is the intersection of a sphere with a two-dimensional plane
passing through its center.)

PROBLEM. Show that the set of phase curves on the surface ng, forms a two-
dimensional sphere. The formula w = (x; + iy,)/(x, + iy,) gives the “Hopf
map” from the three sphere mg, to the two sphere (the complex w-plane
completed by the point at infinity). Our phase curves are the pre-images
of points under the Hopf map.

ProOBLEM. Find the projection of the phase curves on the x,, x, plane (i.e.,
draw the orbits of the motion of a point).

ExAMPLE 2 (“ Lissajous figures). We look at one more example of a planar
motion (“small oscillations with two degrees of freedom™):

il = —-X; .‘56'2 = —CUZXZ.

The potential energy is

From the law of conservation of energy it follows that, if at the initial
moment of time the total energy is

%(X.% + x-%) + U(xls xZ) = Ew

then all motions will take place inside the ellipse U(x,, x,) < E.
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5: Systems with two degrees of freedom

Our system consists of two independent one-dimensional systems. There-
fore, the law of conservation of energy is satisfied for each of them separately,
i.c., the following quantities are preserved

E; =% +3x7  E;=33+30°x3 (E=E, + Ey).
Consequently, the variable x, is bounded by the region |x,| < A4,, A; =

< 2E1(0), and x, oscillates within the region |x,| < A,. The intersection
of these two regions defines a rectangle which contains the orbits (Figure 18).

X2
3

N Y

——/

Figure 18 Theregions U < E, U, < Eand U, < E

ProBLEM. Show that this rectangle is inscribed in the ellipse U < E.

The general solution of our equations is x; = A; sin(t + @), x, =
A, sin{wt + ¢,); a moving point independently performs an oscillation
with frequency 1 and amplitude 4, along the horizontal and an oscillation
with frequency @ and amplitude A, along the vertical.

Consider the following method of describing an orbit in the x;, x, plane.
We look at a cylinder with base 24, and a band of width 24,. We draw on
the band a sine wave with period 2nA4,/w and amplitude 4, and wind the
band onto the cylinder (Figure 19). The orthogonal projection of the sinusoid

Az
xg

Az

Ay

Figure 19 Construction of a Lissajous figure
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2: Investigation of the equations of motion

wound around the cylinder onto the x,, x, plane gives the desired orbit,
called a Lissajous figure.

Lissajous figures can conveniently be seen on an oscilloscope which dis-
plays independent harmonic oscillations on the horizontal and vertical axes.

The form of a Lissajous figure very strongly depends on the frequency w.
If w = 1 (the spherical pendulum of Example 1), then the curve on the
cylinder i1s an ellipse. The projection of this ellipse onto the x;, x, plane
depends on the difference ¢, — ¢, between the phases. For ¢, = ¢, we get
a segment of the diagonal of the rectangle; for small ¢, — ¢; we get an
ellipse close to the diagonal and inscribed in the rectangle. For ¢, — ¢, = =/2
we get an ellipse with major axes x,;, x,; as @, — ¢, increases from n/2
to m the ellipse collapses onto the second diagonal; as ¢, — ¢, increases
further the whole process is repeated from the beginning (Figure 20).

X2

- X

Figure 20 Series of Lissajous figures with w = 1

Now let the frequencies be only approximately equal: w =~ 1. The segment
of the curve corresponding to 0 < t < 27 is very close to an ellipse. The next
loop also reminds one of an ellipse, but here the phase shift ¢, — ¢, is
greater than in the original by 2n(w — 1). Therefore, the Lissajous curve
with w ~ 1 1s a distorted ellipse, slowly progressing through all phases
from collapsed onto one diagonal to collapsed onto the other (Figure 21).

If one of the frequencies is twice the other (w = 2), then for some particular
phase shift the Lissajous figure becomes a doubly traversed arc (Figure 22).

X2

Xr

Figure 21 Lissajous figure with w ~ 1
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5: Systems with two degrees of freedom

PrROBLEM. Show that this curve is a parabola. By increasing the phase shift
¢, — @, we get in turn the curves in Fig. 23.

In general, if one of the frequencies is n times bigger than the other (w = n),
then among the graphs of the corresponding Lissajous figures there is the
graph of a polynomial of degree n (Figure 24); this polynomial is called a
Chebyshev polynomial.

-
Lo

\ )
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Figure 22 Lissajous figure with @w = 2
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Figure 23  Series of Lissajous figures with w = 2
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Figure 24 Chebyshev polynomials
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2: Investigation of the equations of motion

PRrROBLEM. Show that if w = m/n, then the Lissajous figure is a closed algebraic
curve; but if w is irrational, then the Lissajous figure fills the rectangle every-
where densely. What does the corresponding phase trajectory fill out?

6 Conservative force fields

In this section we study the connection between work and potential energy.

A Work of a force field along a path

Recall the definition of the work by a force F on a path S. The work of the
constant force F (for example, the force with which we lift up a load) on the

M

M
Figure 25 Work of the constant force F along the straight path S

path S = M, M, is, by definition, the scalar product (Figure 25)
A= (F,S) = |F||S]:cos ¢.

Suppose we are given a vector field F and a curve [ of finite length. We
approximate the curve [ by a polygonal line with components AS; and denote
by F, the value of the force at some particular point of AS;; then the work of
the field F on the path ! is by definition (Figure 26)

A= lim Y (F, AS).

In analysis courses it is proved that if the field is continuous and the path
rectifiable, then the limit exists. It is denoted by |, (F, dS).

Figure 26 Work of the force field F along the path {
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6: Conservative force fields

B Conditions for a field to be conservative

Theorem. A vector field F is conservative if and only if its work along any
path M ;M , depends only on the endpoints of the path, and not on the shape
of the path.

PROOF. Suppose that the work of a field F does not depend on the path. Then

M
UM)= — | (F,dS)
Mo
is well defined as a function of the point M. It is easy to verify that
ou
F—_—
ox’

i.e.,, the field is conservative and U is its potential energy. Of course, the
potential energy is defined only up to the additive constant U(M,), which

can be chosen arbitrarily.
Conversely, suppose that the field F is conservative and that U is its
potential energy. Then it is easily verified that

M
(F,dS) = —UM) + UM,),

Mo
i.e., the work does not depend on the shape of the path. O
PROBLEM. Show that the vector field F, = x,, F, = —Xx; is not conservative

(Figure 27).

Figure 27 A non-potential field

ProBLEM. Is the field in the plane minus the origin given by F; = x,/(x{ + x3),
F, = —x,/(x? + x3) conservative? Show that a field is conservative if and
only if its work along any closed contour is equal to zero.

C Central fields

Definition. A vector field in the plane E? is called central with center at 0,
if it is invariant with respect to the group of motions'® of the plane
which fix 0.

16 Including reflections.
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2: Investigation of the equations of motion

PROBI.EM. Show that all vectors of a central field lie on rays through 0, and
that the magnitude of the vector field at a point depends only on the distance
from the point to the center of the field.

It is also useful to look at central fields which are not defined at the point 0.

ExAMPLE. The newtonian field F = —k(x/|r)?) is central, but the field in
the problem in Section 6B is not.

Theorem. Every central field is conservative, and its potential energy depends
only on the distance to the center of the field, U = U(r).

PROOF. According to the previous problem, we may set F(r) = D(r)e,,
where r is the radius vector with respect to 0, r is its length and the unit
vector e, = r/|r| its direction. Then

M, r(M3;)
f (F, dS) = f ®(r)dr,
M, r(M,)

and this integral is obviously independent of the path. O

ProBLEM. Compute the potential energy of the newtonian field.

Remark. The definitions and theorems of this paragraph can be directly
carried over to a euclidean space E” of any dimension.

7 Angular momentum

We will see later that the invariance of an equation of a mechanical problem with respect to some
group of transformations always implies a conservation law. A central field is invariant with
respect to the group of rotations. The corresponding first integral is called the angular momen-
tum.

Definition. The motion of a material point (with unit mass) in a central field
on a plane is defined by the equation
i: = Q(r)er?

where r is the radius vector beginning at the center of the field 0, r is
its length, and e, its direction. We will think of our plane as lying in three-
dimensional oriented euclidean space.

Definition. The angular momentum of a material point of unit mass relative
to the point O is the vector product

M = [r,r]

The vector M is perpendicular to our plane and is given by one number:
M = Mn, where n = [e, e,] is the normal vector, e, and e, being an

oriented frame in the plane (Figure 28).
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7: Angular momentum

AM
n4 e

Qi
0

er

Figure 28 Angular momentum

Remark. In general, the moment of a vector a “applied at the point r”
relative to the point O is [r, a]; for example, in a school statics course one
studies the moment of force. [The literal translation of the Russian term for
angular momentum is “kinetic moment.” (Trans. note)]

A The law of conservation of angular momentum

Lemma. Let a and b be two vectors changing with time in the oriented euclidean
space R3. Then

d .
;i—; [a, b] = [a.s b] + [a, b]
PrOOF. This follows from the definition of derivative. O

Theorem (The law of conservation of angular momentum). Under motions
in a central field, the angular momentum M relative to the center of the
field 0 does not change with time.

PrROOF. By definition M = [r, i]. By the lemma, M = [¥, ¥] + [r, ¥]. Since
the field is central it is apparent from the equations of motton that the vectors
¥ and r are collinear. Therefore M = 0. O

B Kepler’s law

The law of conservation of angular momentum was first discovered by
Kepler through observation of the motion of Mars. Kepler formulated this
law in a slightly different way.

We introduce polar coordinates r, ¢ on our plane with pole at the center
of the field 0. We consider, at the point r with coordinates (|¥| = r, @),
two unit vectors: e,, directed along the radius vector so that

r =re,,
and e,, perpendicular to it in the direction of increasing ¢. We express the
velocity vector f in terms of the basis e,, e, (Figure 29).

Lemma. We have the relation

P = re, + roe,.
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2: Investigation of the equations of motion

0
Figure 29 Decomposition of the vector r in terms of the basis e, , e,
ProoF. Clearly, the vectors e, and e, rotate with angular velocity @, i.e.,
€, = e, e, = —¢e,.
Differentiating the equality r = re, gives us
i =re, + ré = re, + roe,. ]
Consequently, the angular momentum is
M = [r, £] = [r, re,] + [r, rpe,] = rop[r, e,] = r?¢[e,, e,].

Thus, the quantity M = r’¢ is preserved. This quantity has a simple
geometric meaning.

Figure 30 Sectorial velocity

Kepler called the rate of change of the area S(t) swept out by the radius
vector the sectorial velocity C (Figure 30):

_dS

C_E'

The law discovered by Kepler through observation of the motion of the
planets says: in equal times the radius vector sweeps out equal areas, so
that the sectorial velocity is constant, dS/dt = const. This is one formulation
of the law of conservation of angular momentum. Since

AS = S(t + At) — S(t) = 1ripAt + o(Ar),
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8: Investigation of motion in a central field

this means that the sectorial velocity

ds
C=—=12.=1M
dr e =3

is half the angular momentum of our point of mass 1, and therefore constant.

ExAMPLE. Some satellites have very elongated orbits. By Kepler’s law such
a satellite spends most of its time in the distant part of its orbit, where the
magnitude of ¢ is small.

8 Investigation of motion in a central field

The law of conservation of angular momentum lets us reduce problems about motion in a
central ficld to problems with one degree of freedom. Thanks to this, motion in a central field can

be completely determined.

A Reduction to a one-dimensional problem
We look at the motion of a point (of mass 1) in a central field on the plane:
r= — E’ U = U(r).

It is natural to use polar coordinates r, @.
By the law of conservation of angular momentum the quantity M =
@(t)r?(t) is constant (independent of t).

Theorem. For the motion of a material point of unit mass in a central field
the distance from the center of the field varies in the same way as r varies
in the one-dimensional problem with potential energy

2

M
Vir)=U@) + 252

Proor. Differentiating the relation shown in Section 7 (f = rfe, + r¢e,),
we find

f = @F — rpe, + (2r¢p + rd)e,.
Since the field is central,
o _au,
or or "
Therefore the equation of motion in polar coordinates takes the form

. ) oU ) -
r—r(p2=——a—r— 2F¢p + rep = 0.

33




2: Investigation of the equations of motion

But, by the law of conservation of angular momentum,
M

¢ =
r2’

where M is a constant independent of ¢, determined by the initial conditions.
Therefore,

. U M? . oV M?
r:—a—r+r? or r=—a—r, WhereV=U+2—rE.
The quantity V{(r) is called the effective potential energy. O

Remark. The total energy in the derived one-dimensional problem

';2

El =‘2—+ V(r)

is the same as the total energy in the original problem
=2

r
E=— U{r),
>+ (r)
since
l'.Z r'.Z rZ(PZ ".2 M2
- = + _— + —2
2 2 2 2 2r

B Integration of the equation of motion

The total energy in the derived one-dimensional problem is conserved.
Consequently, the dependence of r on ¢ is defined by the quadrature

F = J2(E — V() fdt = f \/2(Ed—r V(r)

Since ¢ = M/r?, do/dr = (M/r?)//2(E — V(r)), and the equation of the
orbit in polar coordinates is found by quadrature,

0 Mptar
*=) AE=voy

C Investigation of the orbit

We fix the value of the angular momentum at M. The variation of r with time
is easy to visualize, if one draws the graph of the effective potential energy
V(r) (Figure 31).

Let E be the value of the total energy. All orbits corresponding to the given
E and M lie in the region V(r) < E. On the boundary of this region, V' = E,
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8: Investigation of motion in a central field

>~ r

"'min Tmax

Figure 31 Graph of the effective potential energy

te, 7 = 0. Therefore, the velocity of the moving point, in general, is not equal
to zero since ¢ # 0 for M # 0.
The inequality V(r) < E gives one or several annular regions in the plane:

Ogrmingrsrmaxsw'

0 < rpin < Fmax < 90, then the motion is bounded and takes place inside
the ring between the circles of radius r,,;, and r,,,,.

Pericenter

Apocenter

Figure 32 Orbit of a point in a central field

The shape of an orbit is shown in Figure 32. The angle ¢ varies mono-
tonically while r oscillates periodically between r,;, and r,,.. The points
where r = r,,;, are called pericentral, and where r = r_,,, apocentral (if the
center is the earth—perigee and apogee; if it is the sun—perihelion and
aphelion; if it is the moon—perilune and apolune).

Each of the rays leading from the center to the apocenter or to the peri-
center is an axis of symmetry of the orbit.

In general, the orbit is not closed: the angle between the successive
pericenters and apocenters is given by the integral

rmax M /r? dr
@ = :
Lm V2UE — V()

The angle between two successive pericenters is twice as big.
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2: Investigation of the equations of motion

Figure 33 Orbit dense in an annulus

The orbit is closed if the angle ® is commensurable with 2x, ie., if ® =

2n(m/n), where m and n are integers.

It can be shown that if the angle ® is not commensurable with 2x, then the
orbit is everywhere dense in the annulus (Figure 33).

If rin = Fimaxs 1€ E is the value of V" at a minimum point, then the annulus
degenerates to a circle, which is also the orbit.

ProBLEM. For which values of « is motion along a circular orbit in the field
with potential energy U = r*, —2 < a < oo, Liapunov stable?

ANSWER. Only for o = 2.

For values of E a little larger than the minimum of ¥V the annulus
Foin < 7 < Fmax Will be very narrow, and the orbit will be close to a circle.
In the corresponding one-dimensional problem, r will perform small oscilla-
tions close to the minimum point of V.

ProBLEM. Find the angle @ for an orbit close to the circle of radius r.
Hint. Cf. Section D below.

We now look at the case r,, = oo. If lim,, U(r) = lim,_, V(r) =
U, < o0, then it is possible for orbits to go off to infinity. If the initial energy
E is larger than U, then the point goes to infinity with finite velocity 7, =
' 2(E — U,). We notice that if U(r) approaches its limit slower than r™?,
then the effective potential ¥V will be attracting at infinity (here we assume that
the potential U is attracting at infinity).

If, as r —» 0, |U(r)| does not grow faster than M?/2r?, then r_;, > 0 and
the orbit never approaches the center. If, however, U(r) + (M?/2r*) > — 0
as r — 0, then it is possible to “fall into the center of the field.” Falling into
the center of the field is possible even in finite time (for example, in the field
U@r) = —1/r).

ProsLEM. Examine the shape of an orbit in the case when the total energy
is equal to the value of the effective energy V at a local maximum point.
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8: Investigation of motion in a central field

D Central fields in which all bounded orbits are
closed

It follows from the following sequence of problems that there are only two
cases in which all the bounded orbits in a central field are closed, namely,

U = ar?, a=>0
and

PrOBLEM 1. Show that the angle ® between the pericenter and apocenter
is equal to the semiperiod of an oscillation in the one-dimensional system
with potential energy W(x) = U(M/x) + (x?/2).

Hint. The substitution x = M/r gives

q) _ Jxmax dx
xmin /2(E — W)

PrROBLEM 2. Find the angle ® for an orbit close to the circle of radius r.

ANSWER. @ ~ @, = n(M/r2 /V"(r)) = n /U'/BU + rU").

ProBLEM 3. For which values of U is the magnitude of ®_;, independent of the
radius r?

ANSWER. U(r) = ar* (6 > —2,aa # 0)and U(r) = b log r.

It follows that ®., = n/./a + 2 (the logarithmic case corresponds to
o = 0). For example, for « = 2 we have @, = n/2, and for « = — 1 we have
D, = n

cir

PROBLEM 4. Let in the situation of problem 3 U(r) - o as r — oo. Find
limg_, ®(E, M).

ANSWER. 1/2.

Hint. The substitution x = yx,,,, reduces @ to the form

1 dy
seain /20W*(1) — WH*(y))’

®=

2 M
W) = 5 + = U(y )

xmax xmax

As E — oo we have x,,,, » o0 and y_,;, — 0, and the second term in W* can
be discarded.
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2: Investigation of the equations of motion

PROBLEM 5. Let U(r) = —kr~*,0 < B < 2. Find @, = limg_, _, ®.

ANSWER. @y = [} dx/\/x*? — x* = n/(2 — B). Note that @, does not depend
on M.

ProBLEM 6. Find all central fields in which bounded orbits exist and are all
closed.

ANSWER. U = ar? or U = —k/r.

Solution. If all bounded orbits are closed, then, in particular, @, =
2n(m/n) = const. According to Problem 3, U = ar®(a = —2),or U =blInr
(o« = 0). In both cases @,, = n/./a + 2. If & > 0, then according to Problem
4, limg_, ®(E, M) = n/2. Therefore, ®_,, =mn/2, a=2. If a <0, then
according to Problem 5, limg._, ™E, M) = n/(2 + a). Therefore,
/(2 + a) = n/ﬁﬂ, o« = —1. In the case a = 0 we find @, = n/ﬁ,
which is not commensurable with 2n. Therefore, all bounded orbits can be

closed only in fields where U = ar? or U = —k/r. In the field U = ar?,
a > 0, all the orbits are closed (these are ellipses with center at 0, cf. Example
1, Section 5). In the field U = —k/r all bounded orbits are also closed and

also elliptical, as we will now show.

E Kepler's problem

This problem concerns motion in a central field with potential U = —k/r
and therefore V(r) = —(k/r) + (M?/2r?) (Figure 34).
By the general formula

_ M/r? dr
Y f V2AE = V()

-~ r

\ 7

Figure 34 Effective potential of the Kepler problem
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8: Investigation of motion in a central field

Integrating, we get

M k

r M
¢ = arc cos e

2E+W

To this expression we should have added an arbitrary constant. We
will assume it equal to zero; this is equivalent to the choice of an origin of
reference for the angle ¢ at the pericenter. We introduce the following

notation:
M? 2EM?
K TP T+ ==

Now we get ¢ = arc cos ((p/r) — 1)/e, i1.e.,

p

r=_—.
1 +ecos @

This is the so-called focal equation of a conic section. The motion is bounded
(Figure 35) for E < 0. Then ¢ < 1, i.e., the conic section is an ellipse. The
number p is called the parameter of the ellipse, and e the eccentricity. Kepler’s
first law, which he discovered by observing the motion of Mars, consists
of the fact that the planets describe ellipses, with the sun at one focus.

I —e r
1 +e

Figure 35 Keplerian ellipse

If we assume that the planets move in a central field of gravity, then
Kepler’s first law implies Newton’s law of gravity: U = —(k/r) (cf. Section

2D above).
The parameter and eccentricity are related with the semi-axes by the

formulas

p p 2p
2= —
a 1—e+1+e 1 — &%’
e,
a= p
I — e’

e = c/a = ./a* — b%/a, where ¢ = ae is the distance from the center to
the focus (cf. Figure 35).
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2: Investigation of the equations of motion

Remark. An ellipse with small eccentricity is very close to a circle.!”
If the distance from the focus to the center is small of first order, then the

difference between the semi-axes is of second order: b = a. /1 — &> =
a(l — Le?). For example, in the ellipse with major semi-axes of 10 cm and
eccentricity 0.1, the difference of the semi-axes is 0.5 mm, and the distance
between the focus and the center is 1 cm.

The eccentricities of planets’ orbits are very small. Therefore, Kepler
originally formulated his first law as follows: the planets move around the
sun in circles, but the sun is not at the center.

Kepler’s second law, that the sectorial velocity is constant, is true in any
central field.

Kepler’s third law says that the period of revolution around an elliptical
orbit depends only on the size of the major semi-axes.

The squares of the revolution periods of two planets on different elliptical
orbits have the same ratio as the cubes of their major semi-axes.'®

PrOOF. We denote by T the period of revolution and by S the area swept
out by the radius vector in time 7. 28 = MT, since M/2 is the sectorial
velocity. But the area of the ellipse, S, is equal to mab, so T = 2rab/M. Since

g MZ/kZ: k
2FE|%5" 2|E|
(from a = p/(1 — e?)), and
oM 1 M
©saE Y VRIE
then T = 2n(k/(ﬂ)3); but 2|E| = k/a,so T = 2na* 2k~ V2. O

We note that the total energy E depends only on the major semi-axis a
of the orbit and is the same for the whole set of elliptical orbits, from a circle
of radius a to a line segment of length 2a.

PrOBLEM. At the entry of a satellite into a circular orbit at a distance 300 km
from the earth the direction of its velocity deviates from the intended direction
by 1° towards the earth. How is the perigee changed?

ANsweR. The height of the perigee is less by approximately 110 km.

17 Let a drop of tea fall into a glass of tea close to the center. The waves collect at the symmetric
point. The reason is that, by the focal definition of an ellipse, waves radiating from one focus of
the ellipse collect at the other.

¥ By planets we mean here points in a central field.
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8: Investigation of motion in a central field

Figure 36 An orbit which is close to circular

Hint. The orbit differs from a circle only to second order, and we can dis-
regard this difference. The radius has the intended value since the initial
energy has the intended value. Therefore, we get the true orbit (Figure 36)
by twisting the intended orbit through 1°.

ProBLEM. How does the height of the perigee change if the actual velocity
1s 1 m/sec less than intended ?

ProBLEM. The first cosmic velocity is the velocity of motion on a circular
orbit of radius close to the radius of the earth. Find the magnitude of the

first cosmic velocity v, and show that v, = ﬁvl (cf. Section 3B).

ANSWER. 8.1 km/sec.

ProBLEM.!'® During his walk in outer space, the cosmonaut A. Leonov threw
the lens cap of his movie camera towards the earth. Describe the motion of
the lens cap with respect to the spaceship, taking the velocity of the throw
as 10 m/sec.

ANsWER. The lens cap will move relative to the cosmonaut approximately
in an ellipse with major axis about 32 km and minor axis about 16 km. The
center of the ellipse will be situated 16 km in front of the cosmonaut in his
orbit, and the period of circulation around the ellipse will be equal to the
period of motion around the orbit.

Hint. We take as our unit of length the radius of the space ship’s circular
orbit, and we choose a unit of time so that the period of revolution around this
orbit is 2n. We must study solutions to Newton’s equation
r

»
r3

P= —

close to the circular solution with r, = 1, @, = . We seek those solutions
in the form

r=rg+r, @ = @y + @, ry<lo €1

'? This problem is taken from V. V. Beletskii’s delightful book. ** Notes on the Motion of Celestial
Bodies,” Nauka, 1972.
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2: Investigation of the equations of motion

By the theorem on the differentiability of a solution with respect to its
initial conditions, the functions r;(t) and ¢,(¢) satisfy a system of linear
differential equations (equations of variation) up to small amounts which
are of higher than first order in the initial deviation.

By substituting the expressions for r and ¢ in Newton’s equation, we get,
after simple computation, the variational equations in the form

;1 = 31‘1 + 2¢1 (ﬁl = —2’:1.

After solving these equations for the given initial conditions (ry0) =
¢,(0) = ¢,(0) = 0, 7,(0) = —(1/800)), we get the answer given above.

Disregarding the small quantities of second order gives an effect of under
1/800 of the one obtained (i.e., on the order of 10 meters on one loop).
Thus the lens cap describes a 30 km ellipse in an hour-and-a-half, returns
to the space ship on the side opposite the earth, and goes past at the distance
of a few tens of meters.

Of course, in this calculation we have disregarded the deviation of the orbit

from a circle, the effect of forces other than gravity, etc.

9 The motion of a point in three-space

In this paragraph we define the angular momentum relative to an axis and we show that, for

motion in an axially symmetric field, it is conserved.
All the results obtained for motion in a plane can be easily carried over to motions in space.

A Conservative fields
We consider a motion in the conservative field

oUu

P=—
or’

where U = U(x), r € E>.
The law of conservation of energy holds:

E
‘fi—t = 0, where E = 3% + U(r).

B Central fields

For motion in a central field the vector M = [r, i] does not change: dM/dt =

0.
Every central field is conservative (this is proved as in the two-dimensional

case), and

%l\td—= ff,¥] + [r,¥] =0,
since F = —(8U/dr), and the vector dU/dr is collinear with r since the field is

central.

42



9: The motion of a point in three-space

Corollary. For motion in a central field, every orbit is planar.

PrOOF. (M, r) = ([r, ¥], r) = O; therefore r(z) L M, and since M = const.,
all orbits lie in the plane perpendicular to M.2° [J

Thus the study of orbits in a central field in space reduces to the planar
problem examined in the previous paragraph.

PROBLEM. Investigate motion in a central field in n-dimensional euclidean
space.

C Axially symmetric fields

Definition. A vector field in E> has axial symmertry if it is invariant with
respect to the group of rotations of space which fix every point of some
axis.

PROBLEM. Show that if a field is axially symmetric and conservative, then its
potential energy has the form U = U(r, z), where r, ¢, and z are cylindrical
coordinates.

In particular, it follows from this that the vectors of the field lie in planes
through the z axis.

As an example of such a field we can take the gravitational field created
by a solid of revolution.

e b
F
Oaé /
o'

Figure 37 Moment of the vector F with respect to an axis

Let z be the axis, oriented by the vector e, in three-dimensional euclidean
space E*; F a vector in the euclidean linear space R?; 0 a point on the z axis:
r = x — 0 € R the radius vector of the point x € E? relative to 0 (Figure 37).

Definition. The moment M, relative to the z axis of the vector F applied
at the point r is the projection onto the z axis of the moment of the vector
F relative to some point on this axis:

M, = (e, [r, F]).
2% The case M = 0 is left to the reader.
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2: Investigation of the equations of motion

The number M, does not depend on the choice of the point 0 on the
2z axis. In fact, if we look at a point 0 on the axis, then by properties of the
triple product, M, = (e,, [r', F]) = ([e,,r'], F) = ([e,,r],F) = M,.

Remark. M, depends on the choice of the direction of the z axis: if we change
e, to —e,, then M, changes sign.

Theorem. For a motion in a conservative field with axial symmetry around the
z axis, the moment of velocity relative to the z axis is conserved.

PrOOF. M, = (e_, [r, i]). Since ¥ = F, it follows that r and r lie in a plane

passing through the z axis, and therefore [r, F] is perpendicular to e, .
Therefore,

M, = (e, [£, £]) + (e, [r, £]) = 0. O

Remark. This proof works for any force field in which the force vector F
lies in the plane spanned by r and e, .

10 Motions of a system of n points

In this paragraph we prove the laws of conservation of energy, momentum, and angular momen-
tum for systems of material points in E3.

A Internal and external forces

Newton’s equations for the motion of a system of n material points, with
masses m; and radius vectors r; € E3 are the equations

mi, = F, i=1,2..,n

The vector F; is called the force acting on the i-th point.

The forces F; are determined experimentally. We often observe in a
system that for two points these forces are equal in magnitude and act
in opposite directions along the straight line joining the points (Figure 38).

Fyj Fj;

| G el

Figure 38 Forces of interaction

Such forces are called forces of interaction (example: the force of universal
gravitation).

If all forces acting on a point of the system are forces of interaction, then
the system is said to be closed. By definition, the force acting on the i-th
point of a closed system 1s

Fi == Z FU

J=1
JFi

44



10: Motions of a system of n points

The vector F;; is the force with which the j-th point acts on the i-th.

Since the forces F;; and F; are opposite (F;; = —F},), we can write them
in the form F;; = f;;e;;, where f;; = f}; is the magnitude of the force and e;;
is the unit vector in the direction from the i-th point to the j-th point.

If the system is not closed, then it is often possible to represent the forces
acting on it in the form

F,=YF,; +F,

where F; are forces of interaction and F(r;) is the so-called external force.

Figure 39 Internal and external forces

ExaMPLE. (Figure 39) We separate a closed system into two parts, I and 1I.
The force F; applied to the i-th point of system I is determined by forces of
interaction inside system I and forces acting on the i-th point from points
of system 11, i.e.,

F,= Y F,; + F,.
jel
J#i

F; is the external force with respect to system I.

B The law of conservation of momentum

Definition. The momentum of a system is the vector

Theorem. The rate of change of momentum of a system is equal to the sum
of all external forces acting on points of the system.

PROOF. dP/dt = Z?=1 m;t; = Z?=1 F, = Zi.j Fij + Z:’ F, = Zi Fi; Zi.j Fij =
0, since for forces of interaction F; = —F i 4

Corollary 1. The momentum of a closed system is conserved.

Corollary 2. If the sum of the exterior forces acting on a system is perpendicular
to the x axis, then the projection P, of the momentum onto the x axis is

conserved: P, = const.
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2: Investigation of the equations of motion

Definition. The center of mass of a system is the point

r=zmiri
2mi

PrROBLEM. Show that the center of mass is well defined, i.e., does not depend
on the choice of the origin of reference for radius vectors.

The momentum of a system is equal to the momentum of a particle lying at
the center of mass of the system and having mass > m;.

In fact, 3 m)r = Y (m;r), from which it follows that G mk = mii;.

We can now formulate the theorem about momentum as a theorem about
the motion of the center of mass.

Theorem. The center of mass of a system moves as if all masses were concen-
trated at it and all forces were applied to it.

Proof. (3. m)t = P. Therefore, (3 m)i = dP/dt = 3. F,. 3

Corollary. If a system is closed, then its center of mass moves uniformly
and linearly.

C The law of conservation of angular momentum

Definition. The angular momentum of a material point of mass m relative to the
point 0, is the moment of the momentum vector relative to O:

M = [r, mi].

The angular momentum of a system relative to( is the sum of the angular
momenta of all the points in the system:

M= i [r;, m;E].

i=1

Theorem. The rate of change of the angular momentum of a system is equal
to the sum of the moments of the external forces*' acting on the points of
the system.

PrOOF. dMydr = S7_, [#;, mi¥] + Y7y [r;, m;f;]. The first terr1 is equal

to zero, and the second is equal to

> [r F = _i [r (Z Fi; + F)] ~ Yir. F],

i=1 i=1 i#*j i=1
by Newton’s equations.

21 The moment of force is also called the torque [Trans. note].
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10: Motions of a system of n points

The sum of the moments of two forces of interaction is equal to zero since

F;,;=— F;, so [r., F:‘j] + [rj: Fji] = [(r; — l'j), Fij] = 0.

ij
Therefore, the sum of the moments of all forces of interaction is equal
to zero:

> [ri, > FU] = Q.
i=1 P j
Therefore, dMy/dt = > 7_, [r;, F{]. O

Corollary 1 (The law of conservation of angular momentum). If the system
is closed, then M = const.

We denote the sum of the moments of the external forces by N =

Z?: 1 [, Fil.
Then, by the theorem above, dM/dt = N, from which we have

Corollary 2. If the moment of the external forces relative to the z axis is
equal to zero, then M, is constant.

D The law of conservation of energy
Definition. The kinetic energy of a point of mass m is

52
mr
T="".
2

Definition. The kinetic energy of a system of mass points is the sum of the
kinetic energies of the points:

mil‘.x?

1 2

M:s

T =

i

where the m; are the masses of the points and ¥, are their velocities.

Theorem. The increase in the kinetic energy of a system is equal to the sum of
the work of all forces acting on the points of the system.

PROOF,
aT - .. L. . - .
- = Z my(¥f;, ;) = Z (f;, mty) = Z @, Fy).
e =5 i=1 i=1
Therefore,
'dT n d n
T(t) — T(t,) = J. Edt = > | (&, F)dt = > A, O
to i=1 Jio i=1

47




2: Investigation of the equations of motion

The configuration space of a system of n mass points in E? is the direct
product of neuclidean spaces: E3* = E* x -.- x E3 It hasitself the structure
of a euchdean space.

Let r = (ry, ..., r,) be the radius vector of a point in the configuration
space,and F = (F,, ..., F,)the force vector. We can write the theorem above
in the form

r(ty)

T(t,) — T(to) = f (F, dr) = f n(f, F)dt.

r{to)

In other words:
The increase in kinetic energy is equal to the work of the “force™ F

on the “path” r(t) in configuration space.

Definition. A system is called conservative if the forces depend only on the
location of a point in the system (F = F(r)), and if the work of F along
any path depends only on the initial and final points of the path:

M2
(F’ dr) - (D(Mla MZ)

M,
Theorem. For a system to be conservative it is necessary and sufficient that
there exist a potential energy, i.e., a function U(r) such that

ouU

ProoF. Cf. Section 6B. O

Theorem. The total energy of a conservative system (E = T + U) is preserved
under the motion: E(t;) = E(t,).

PrOOF. By what was shown earlier,
r(ty)
T(t) ~ To) = | (F,dr) = Ulelto)) = UG(1,) m

r(to)

Let all the forces acting on the points of a system be divided into forces of
interaction and external forces:

F, = ZFij+F;a

i#f

Where FU’ = _Fjl = —f;.le!.l'

Proposition. If the forces of interaction depend only on distance, f;; =
Si{Ix; — r;|), then they are conservative.
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10: Motions of a system of n points

ProoF. If a system consists entirely of two points i and j, then, as is easily
seen, the potential energy of the interaction is given by the formula

Uij(r) = j' fij(P)dP-

We then have

_anj(lri i l'j|) - “alri - rjl
or; Yoo o

= f:_,e”.
Therefore, the potential energy of the interaction of all the points will be

U@ = 2, Uillr; — ). .

i>j

If the external forces are also conservative, i.e., F; = —(0U}/or;), then
the system is conservative, and its total potential energy is

Ur)= > U, + ) Uj.
P> i
For such a system the total mechanical energy

i

E=T+U=22+ZUU+ZU;'
i i>j i

is conserved.
If the system is not conservative, then the total mechanical energy is not

generally conserved.

Definition. A decrease in the mechanical energy E(t,) — E(r,) is called an
increase in the non-mechanical energy E':

E'(t11) — E'(to) = E(to) — E(ty).

Theorem (The law of conservation of energy). The total energy H = E + E’
is conserved.

This theorem is an obvious corollary of the definition above. Its value lies
in the fact that in concrete physical systems, expressions for the size of the
non-mechanical energy can be found in terms of other physical quantities
(temperature, etc.).

E Example.: The two-body problem

Suppose that two points with masses m,; and m, interact with potential U,
so that the equations of motion have the form

.. oU . oUu
mr, = —51:— msyr, = — —a';'”, U= U(Il'l —_ I'ZI).
1 2
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2: Investigation of the equations of motion

Theorem. The time variation of ¥ = r, —r, in the two-body problem is the
same as that for the motion of a point of mass m = mym,/(m; + m,) in a
field with potential U(|r|).

We denote by r, the radius vector of the center of mass: ry, =
(m,r; + m,ry)/(m; + m,). By the theorem on the conservation of momentum,
the point r, moves uniformiy and linearty.

We now look at the vector r = r; — r,. Multiplying the first of the
equations of motion by m,, the second by m,, and computing, we find that
mym,f¥ = —(m; + my)(@U/ér), where U = U(|r, — r;|) = U(|r|).

In particular, in the case of a Newtonian attraction, the points describe
conic sections with foci at their common center of mass (Figure 40).

N

i

ny

Figure 40 The two body problem

PrROBLEM. Determine the major semi-axis of the ellipse which the center of
the earth describes around the common center of mass of the earth and the
moon. Where is this center of mass, inside the earth or outside? (The mass
of the moon is 1/81 times the mass of the earth.)

11 The method of similarity

In some cases it is possible to obtain important information from the form of the equations of
motion without solving them, by using the methods of similarity and dimension. The main idea
in these methods is to choose a change of scale (of time, length, mass, etc.) under which the
equations of motion preserve their form.

A Example
Let r(r) satisfy the equation m(d?r/dt?) = —(8U/or). We set t; = ar and
m, = o«®m. Then r(z,) satisfies the equation m, - (d*r/dt}) = —(@U/dr). In

other words:
If the mass of a point is decreased by a factor of 4, then the point can travel

the same orbit in the same force field twice as fast.??

22 Here we are assuming that 7 does not depend on m. In the field of gravity, the potential
energy U is proportional to m, and therefore the acceleration does not depend on the mass m

of the moving point.
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11: The method of similarity

B A problem

Suppose that the potential energy of a central field is a homogeneous function
of degree v:

U(ar) = «'U(r) for anya > 0.

Show that if a curve y is the orbit of a motion, then the homothetic
curve a7 is also an orbit (under the appropriate initial conditions). Determine
the ratio of the circulation times along these orbits. Deduce from this the
isochronicity of the oscillation of a pendulum (v = 2) and Kepler’s third law
(v= —1).

PROBLEM. If the radius of a planet is o times the radius of the earth and its
mass S times that of the earth, find the ratio of the acceleration of the force
of gravity and the first and second cosmic velocities to the corresponding
quantities for the earth.

ANSWER. 7y = Ba™ 2,8 = /fB/a.

For the moon, for example, « = 1/3.7 and = 1/81. Therefore, the accel-
eration of gravity is about 1/6 that of the earth (y =~ 1/6), and the cosmic
velocities are about 1/5 those for the earth (6 ~ 1/4.7).

PrOBLEM.2? A desert animal has to cover great distances between sources of
water. How does the maximal time the animal can run depend on the size

L of the animal?

ANSWER. It is directly proportional to L.

Solution. The store of water is proportional to the volume of the body,
i.e., L?; the evaporation is proportional to the surface area, i.e., L. Therefore,
the maximal time of a run from one source to another is directly proportional

to L.
We notice that the maximal distance an animal can run also grows

proportionally to L (cf. the following problem).

PrOBLEM. 2* How does the running velocity of an animal on level ground
and uphill depend on the size L of the animal?
ANSwWER. On level ground ~ L%, uphill ~ L1,

23 J. M. Smith, Mathematical Ideas in Biology. Cambridge University Press, 1968.
24 Ibid.
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2: Investigation of the equations of motion

Solution. The power developed by the animal is proportional to L2
(the percentage used by muscle is constant at about 25 9;, the other 759, of
the chemical energy is converted to heat; the heat output is proportional
to the body surface, i.e., L?, which means that the effective power is pro-
portional to L2).

The force of air resistance is directly proportional to the square of the
velocity and the area of a cross-section; the power spent on overcoming
it is therefore proportional to v2L2v. Therefore, v*°L? ~ L2, so v ~ L% In
fact, the running velocity on level ground, no smaller for a rabbit than for
a horse, in practice does not specifically depend on the size.

The power necessary to run uphill is mgv ~ L>v;since the generated power
is ~ L%, we find that v ~ L™ *. In fact, a dog easily runs up a hill, while a
horse slows its pace.

PROBLEM. 24® How does the height of an animal’s jump depend on its size?

ANSWER. ~ L°.

Solution. For a jump of height h one needs energy proportional to LA,
and the work accomplished by muscular strength F is proportional to FL.
The force F is proportional to L? (since the strength of bones is proportional
to their section). Therefore, L*h ~ L°L, i.e., the height of a jump does not
depend on the size of the animal. In fact, a jerboa and a kangaroo can jump
to approximately the same height.

249 Ibid.
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PART II
LAGRANGIAN MECHANICS

Lagrangian mechanics describes motion in a mechanical system by means of
the configuration space. The configuration space of a mechanical system has
the structure of a differentiable manifold, on which its group of diffeo-
morphisms acts. The basic ideas and theorems of lagrangian mechanics are
invariant under this group,?> even if formulated in terms of local coordinates.

A lagrangian mechanical system is given by a manifold (“configuration
space”) and a function on its tangent bundle (“the lagrangian function™).

Every one-parameter group of diffeomorphisms of configuration space
which fixes the lagrangian function defines a conservation law (i.e., a first
integral of the equations of motion).

A newtonian potential system is a particular case of a lagrangian system
(the configuration space in this case is euclidean, and the lagrangian function
is the difference between the kinetic and potential energies).

The lagrangian point of view allows us to solve completely a series of
important mechanical problems, including problems in the theory of small
oscillations and in the dynamics of a rigid body.

23 And even under larger groups of transformations, which also affect time.







Variational principles

In this chapter we show that the motions of a newtonian potential system
are extremals of a variational principle, “Hamilton’s principle of least
action.”

This fact has many important consequences, including a quick method
for writing equations of motion in curvilinear coordinate systems, and a
series of qualitative deductions—for example, a theorem on returning to a
neighborhood of the initial point.

In this chapter we will use an n-dimensional coordinate space. A vector
in such a space is a set of numbers x = (x,, ..., x,,). Stmilarly, df/0x means
f/ox,, ..., df/éx,), and (a,b) = a, by + -+ + a,b,.

12 Calculus of variations

For what follows, we will need some facts from the calculus of variations. A more detailed
exposition can be found in “A Course in the Calculus of Vartations™ by M. A. Lavrentiev and
L. A. Lusternik, M. L., 1938, or G. E. Shilov, “Elementary Functional Analysis,” MIT Press,

1974.

The calculus of variations is concerned with the extremals of functions
whose domain is an infinite-dimensional space: the space of curves. Such
functions are called functionals.

An example of a functional is the length of a curve in the euclidean plane:
ify = {(t, x): x(t) = X, 1o <t < t,}, then ®(p) = ;! /1 + x%dt.

In general, a functional is any mapping from the space of curves to the
real numbers.

We consider an “approximation” y’ to v, v = {(t, x): x = x(t) + h(t)}.
We will call it ¥ = y + h. Consider the increment of ®©, ®(y + h) — O(y)
(Figure 41).
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3: Variational principles

Xg Y

to Iy -1

Figure 41 Variation of a curve

A Variations

Definition. A functional @ is called differentiable?® if ®(y + h) — O(y) =
F + R, where F depends linearly on h (i.e., for a fixed y, F(h, + h,) =
F(h,) + F(h,) and F(ch) = cF(h)), and R(h, y) = O(h?) in the sense that,
for |h] < ¢ and [dh/dt| < &, we have |R| < Ce?. The linear part of the
increment, F(h), is called the differential.

It can be shown that if @ is differentiable, its differential is uniquely
defined. The differential of a functional is also called its variation, and h is
called a variation of the curve.

EXAMPLE. Let y = {(t, x): x = x(1),to <t < t,} be acurve in the (¢, x)-plane;

X = dx/dt; L = L(a, b, ¢) a differentiable function of three variables. We
define a functional @ by

[ 51
) = | LG, 5(0), e
to
In case L = /1 + b?, we get the length of y.

Theorem. The functional ®(y) = |;} L(x, X, t)dt is differentiable, and its
derivative is given by the formula

“ oL d oL oL
F(h)—J;o [a—agg]hdt +(&h)

D(y + h) — O(y) = ftl[L(x + h, % + h, t) — L(x, x, t)]dt

[ 5]

fo

PROOF.

8L oL .
=f P+ L hlde + O = F(h) + R,
w | 0x ox

26 We should specify the class of curves on which ® is defined and the linear space which con-
tains h. One could assume, for example, that both spaces consist of the infinitely differentiable

functions.
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12: Calculus of variations

where

w (L oL, ,
F(h)—J:O (Eh+gh)dt and R = O(h?).

Integrating by parts, we find that

T oL . “ d (0L oL
[ Geha= [ 'n(S)ar+ (n55)

o

L

: O

fo

B Extremals

Definition. An extremal of a differentiable functional ®(y)is a curve y such that
F(h) = O for all h.
(In exactly the same way that y is a stationary point of a function if the

differential is equal to zero at that point.)

Theorem. The curve y:x = x(t) is an extremal of the functional ¥(y) =
|8 L(x, %, t)dt on the space of curves passing through the points x(t,) = X,
and x(t,) = x, if and only if

d (OL oL
o (5;) ~ s O along the curve x(t).

Lemma. If a continuous function f(t), to <t < t, satisfies }i} f(t)h(t)dt = O
for any continuous®” function h(t) with h(t,) = h(t,) = 0, then f(¢t) = 0.

h

t*—d r* t*+d

L J

1
] a 4
2

Figure 42 Construction of the function A

PROOF OF THE LEMMA. Let f(t*) > O for some r*, t, < t* < 1t,. Since f is
continuous, f(t) > ¢ in some neighborhood A of the point ¢t*: ¢, < t* —
d<t<t*+d<t,. Let h(t) be such that A(t) = 0 outside A, h(t) > 0 in A,
and h(t) =1 in A/2 (ie., for t s.t. t* — 3d <t < t* + 1d). Then, clearly,
e f(Oh(t) = dc > O (Figure 42). This contradiction shows that f(t*) = 0
for all t* ¢, < t* < t,. .

PROOF OF THE THEOREM. By the preceding theorem,

it d /L oL oL
Fh) = — f [a (a) - a]" dt + (5;-; h)

27 Or even for any infinitely differentiable function h.

i1

to

57




3: Variational principles

The term after the integral is equal to zero since h(ty) = h(t;) = 0. If y is an
extremal, then F(h) = O for all h with h(ty) = h(t,) = 0. Therefore,

| " f ot = o,

d [OL JL

f(t)=;i‘£(5;) T o
for all such A. By the lemma, f(t) = 0. Conversely, if f(t) = O, then clearly
F(h) = 0. |

where

ExaMpPLE. We verify that the extremals of length are straight lines. We have:

— oL JL bs d b
— 1 v 2 —_— —_— — ] =
L X ox 0 ox 1 + *%2 dt( /1 + xl) 0
X

1+ X2

C The Euler—Lagrange equation

d oL\ oL _
dt\ox) ~ ox

is called the Euler—Lagrange equation for the functional

= X =rc, X = ¢t + c;.

Definition. The equation

51
D = f L(x, x, t)dt.

Now let x be a vector in the n-dimensional coordinate space R", y =
{(t, x): x =x(t),to <t <t;} a curve in the (n + 1)-dimensional space
R x R”, and L: R® x R” x R — R a function of 2n + 1 variables. As before,
we show:

Theorem. The curve y is an extremal of the functional ®(y) = §;} L(x, X, t)dt
on the space of curves joining (to, Xo) and (ty, X,), if and only if the Euler—
Lagrange equation is satisfied along 7.

This is a system of n second-order equations, and the solution depends on
2n arbitrary constants. The 2n conditions x(z,) = X4, X(t,) = X, are used
for finding them.

PrROBLEM. Cite examples where there are many extremals connecting two
given points, and others where there are none at all.
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13: Lagrange’s equations

D An important remark

The condition for a curve y to be an extremal of a functional does not depend
on the choice of coordinate system.

For example, the same functional —length of a curve—is given in cartesian
and polar coordinates by the different formulas

1 571 tq
b, = f x3 + x3dt O, = f F? + r*¢? dr.
t

s} to
The extremals are the same—straight lines in the plane. The equations of
lines in cartesian and polar coordinates are given by different functions:

Xy = xl(t), X = x2(t), and ¥ = f(t), @ = (p(t).
However, both these vector functions satisfy the Euler—Lagrange
equation

only, in the first case, when x_,. = x;, x, and L., = /X7 + %3, and in

the second case when x,,, = r, ¢ and L, = /F* + r?¢>
In this way we can easily describe in any coordinates a differential equa-

tion for the family of all straight lines.

ProBLEM. Find the differential equation for the family of all straight lines
in the plane in polar coordinates.

13 Lagrange’s equations

Here we indicate the variational principle whose extremals are solutions of Newton’s equations
of motion in a potential system.
We compare Newton’s equations of dynamics

d
() RGIORS

with the Euler-Lagrange equation

A Hamilton’s principle of least action

Theorem. Motions of the mechanical system (1) coincide with extremals of
the functional

[ 51
d(y) = f Ldt, whereL=T—U

is the difference between the kinetic and potential energy.
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3: Variational principles

ProOF. Since U = U(r) and T = Y m, ¥?/2, we have dL/d¢; = 3T/oF; = m;¥;
and aL/al‘i - —aU/al',-. D

Corollary. Let (q,, ..., ga,) be any coordinates in the configuration space of
a system of n mass points. Then the evolution of q with time is subject to the
Euler-Lagrange equations

d (0oL oL
a(ﬁ)—%—o, where L = T — U.

PrOOF. By the theorem above, a motion is an extremal of the functional
§{ L dr. Therefore, in any system of coordinates the Euler-Lagrange equation
written in that coordinate system is satisfied. L]

Definition. In mechanics we use the following terminology: 1{q,4.t) =T — U
is the Lagrange function or lagrangian, g, are the generalized coordinates,
g; are generalized velocities, 0L/0g; = p; are generalized momenta,
OL/dq; are generalized forces, |;i L(q.q, t)dt is the action, (d(8L/9¢;)/dr)
—(0L/0q;) = 0 are Lagrange’s equations.

The last theorem is called “Hamilton’s form of the principle of least

motion” because in many cases the action q(¢) is not only an extremal but

is also a minimum value of the action functional ;2 L dt.

B The simplest examples

ExaMPLE 1. For a free mass point in E3,

in cartesian coordinates g; = r; we find
m . . .
L =3 (d% + 43 + 43).

Here the generalized velocities are the components of the velocity vector,
the generalized momenta p; = mq; are the components of the momentum
vector, and Lagrange’s equations coincide with Newton’s equations
dp/dt = 0. The extremals are straight lines. It follows from Hamilton’s
principle that straight lines are not only shortest (i.e., extremals of the length

i1 /42 + 43 + 4% dr) but also extremals of the action % (43 + ¢3 + ¢3)dt.

PROBLEM. Show that this extremum iS a minimum.

ExXAMPLE 2. We consider planar motion in a central field in polar coordinates
q, = r,q; = @. From the relation ¥ = fe, + ¢re, we find the kinetic energy
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14: Legendre transformations

T = Imi? = Im(F* + r*¢?) and the lagrangian L(q, §) = T(q, §) — U(q),
where U = U(qg,).
The generalized momenta will be p = 6L/04q, i.e.,

p, = mr p, = mri¢.
The first Lagrange equation p;, = JdL/0q, takes the form
. ., oU
mr = mr¢p° — ——.
Or

We already obtained this equation in Section 8.

Since g, = ¢ does not enter into L, we have dL/dq, = 0. Therefore, the
second Lagrange equation will be p, = 0, p, = const. This is the law of
conservation of angular momentum.

In general, when the field is not central (U = U(r, ¢)), we find p, =
— U /.

This equation can be rewritten in the form d(M, e,)/dt = N, where
N = ([r, Fl,e,) and F = —3U/dr.(The rate of change in angular momentum
relative to the z axis is equal to the moment of the force F relative to the
Z axis.)

In fact, we have dU = (8U /ér)dr + (60U /0p)de = —(F, dr) = —(F, e, )dr —
r(F, e, )dg; therefore, —dU/0¢ = r(F, e;) = r([e,, K], e,) = ([r, F}, e,).

This example suggests the following generalization of the law of con-
servation of angular momentum.

Definition. A coordinate q; is called cyclic if it does not enter into the
lagrangian: dL/0g; = 0.

Theorem. The generalized momentum corresponding to a cyclic coordinate is
conserved: p; = const.

Proor. By Lagrange’s equation dp;/dt = dL/dq; = O. ]

14 Legendre transformations

The Legendre transformation is a very useful mathematical tool: it transforms functions on a
vector space to functions on the dual space. Legendre transformations are related to projective
duality and tangential coordinates in algebraic geometry and the construction of dual Banach
spaces in analysis. They are often encountered in physics (for example, in the definition of
thermodynamic quantities).

A Definition

Let y = f(x) be a convex function, f"(x) > 0.

The Legendre transformation of the function f is a new function g of a
new variable p, which is constructed in the following way (Figure 43). We
draw the graph of f in the x, y plane. Let p be a given number. Consider the
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3: Variational principles

‘ f(x)

g(p)

- X

x(p)

Figure 43 Legendre transformation

straight line y = px. We take the point x = x(p) at which the curve is farthest
from the straight line in the vertical direction: for each p the function px —
f(x) = F(p, x) has a maximum with respect to x at the point x(p). Now we

define g(p) = F(p, x(p)).
The point x(p) is defined by the extremal condition dF/dx = 0, ie.,

J'(x) = p. Since f is convex, the point x(p) is unique.?®
PROBLEM ., Show that the domain of g can be a point, a closed interval, or a ray if fis defined

on the whole x axis. Prove that if f is defined on a closed interval, then g is defined on the whole p
axis.

B Examples
ExaMpLE 1. Let f(x) = x2. Then F(p, x) = px — x2, x(p) = 1p, g(p) = 1p2.
ExAMPLE 2. Let f(x) = mx5/2. Then g(p) = p?/2m.

EXAMPLE 3. Let f(x) = x*/a. Then g(p) = p?/B, where (1/x) + (1/8) =1
(a>1,> 1)

P

2 3
1 e
Po . ! / -p
PVZ i
1

Figure 44 Legendre transformation taking an angle to a line segment

EXAMPLE 4. Let f(x) be a convex polygon. Then g(p) is also a convex polygon,
in which the vertices of f(x) correspond to the edges of g(p), and the edges of
J(x) to the vertices of g(p). For example, the corner depicted in Figure 44 is
transformed to a segment under the Legendre transformation.

28 Jf it exists.

62



14: Legendre transformations

C Involutivity

Let us consider a function f which is differentiable as many times as necessary,
with f"(x) > 0. It is easy to verify that a Legendre transformation takes
convex functions to convex functions. Therefore, we can apply it twice.

Theorem. The Legendre transformation is involutive, i.e., its square is the
identity: if under the Legendre transformation f is taken to g, then the
Legendre transform of g will again be f.

Proor. In order to apply the Legendre transform to g, with variable p, we
must by definition look at a new independent variable (which we will call x),

construct the function
G(x, p) = xp — g(p),

and find the point p(x) at which G attains its maximum: ¢G/dp = 0, i.e.,
g(p) = x. Then the Legendre transform of g(p) will be the function of x
equal to G(x, p(x)).

We will show that G(x, p(x)) = f(x). To this end we notice that G(x, p) =
xp — g(p) has a simple geometric interpretation: it is the ordinate of the
point with abscissa x on the line tangent to the graph of f(x) with slope p

Figure 45 Involutivity of the Legendre transformation

(Figure 45). For fixed p, the function G(x, p) is a linear function of x, with
0G/0x = p, and for x = x(p) we have G(x,p) = xp — g(p) = f(x) by the
definition of g(p).

Let us now fix x = x4 and vary p. Then the values of G(x, p) will be the
ordinates of the points of intersection of the line x = x, with the line tangent
to the graph of f(x) with various slopes p. By the convexity of the graph it
follows that all these tangents lie below the curve, and therefore the maximum
of G(x, p) for a fixed x(po) is equal to f(x) (and is achieved for p = p(x,) =

S (x0))- O
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gp)

J(x)

X

Figure 46 Legendre transformation of a quadratic form

Corollary.2® Consider a given family of straight lines y = px — g(p). Then
its envelope has the equation y = f(x), where f is the Legendre transform

of g.

D Young’s inequality

Definition. Two functions, f and g, which are the Legendre transforms of
one another are called dual in the sense of Young.

By definition of the Legendre transform, F(x,p) = px — f(x) is less
than or equal to g(p) for any x and p. From this we have Young’s inequality:
px < f(x) + g(p).

ExaMPpLE 1. If f(x) = $x2, then g(p) = 5p* and we obtain the well-known

inequality px < 4x2 + 4p? for all x and p.

ExaMPLE 2. If f(x) = x*/a, then g(p) = p?/B, where (1/a) + (1/8) = 1, and
we obtain Young's inequality px < (x*/o) + (p¥/B) for all x > 0, p > 0,
«a>1,8> 1,and (1/o) + (1/8) = 1.

E The case of many variables

Now let f(x) be a convex function of the vector variable x = (x,, ..., Xp)
(i.e., the quadratic form ((8?f/0x?)dx, dx) is positive definite). Then the
Legendre transform is the function g(p) of the vector variable p = (py, ..., pa).

defined as above by the equalities g(p) = F(p, x(p)) = max, F(p, X), where
F(p, x) = (p,x) — f(x) and p = 8//0x.

All of the above arguments, including Young’s inequality, can be carried
over without change to this case.

PrOBLEM. Let f: R" —» R be a convex function. Let R"* denote the dual vector
space. Show that the formulas above completely define the mapping
g : R™ — R (under the condition that the linear form df |, ranges over all of
R"* when x ranges over R").

2% One can easily see that this is the theory of “Clairaut’s equation.”
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15: Hamilton’s equations

PrOBLEM. Let f be the quadratic form f(x) =) f,x,x;. Show that its
Legendre transform is again a quadratic form g(p) = }_ g;;p:p;, and that the
values of both forms at corresponding points coincide (Figure 46):

fx@)) = g(@) and g(P(x)} = f(x).

15 Hamilton’s equations

By means of a Legendre transformation, a lagrangian system of second-order differential
equations is converted into a remarkably symmetrical system of 2n first-order equations called
a hamiltonian system of equations (or canonical equations).

A FEgquivalence of Lagrange’s and Hamilton’s
equations

We consider the system of Lagrange’s equations p = JL/dq, where p =
J0L/04q, with a given lagrangian function L : R" x R" x R — R, which we will
assume to be convex3® with respect to the second argument q.

Theorem. The system of Lagrange’s equations is equivalent to the system of
2n first-order equations (Hamilton’s equations)

. 0H
P 5
_9H
q ap)

where H(p, q, t) = pd — L(q, q, t) is the Legendre transform of the lagrang-
ian function viewed as a function of q.

ProoF. By definition, the Legendre transform of L(q, q, t) with respect to ¢
is the function H(p) = pq — L(q), in which § is expressed in terms of p
by the formula p = dL/8q, and which depends on the parameters q and t.
This function H is called the hamiltonian.

The total differential of the hamiltonian

cH oH 0H

dH = Edp + Edq + awdt
is equal to the total differential of pq — L for p = JL/0q:
dH = ('Jdp—w%dq —%dt.
Both expressions for ¢ H must be the same. Therefore,
. OH éH oL oH JL
"% W "am a @

*® In practice this convex function will often be a positive definite quadratic form.
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3: Variational principles

Applying Lagrange’s equations p = 0L/0q, we obtain Hamilton’s equa-
tions.

We have seen that, if g(¢) satisfies Lagrange’s equations, then (p(t), q(¢))
satisfies Hamilton’s equations. The converse is proved in an analogous

manner. Therefore, the systems of Lagrange and Hamilton are equivalent.
]

Remark. The theorem just proved applies to all variational problems, not
just to the lagrangian equations of mechanics.
B Hamilton’s function and energy

EXAMPLE. Suppose now that the equations are mechanical, so that the
lagrangian has the usual form L. = T — U, where the kinetic energy T is a
quadratic form with respect to q:

T =43 a;4:,9;, wherea;; =a;{q,t)and U = U(q).

Theorem. Under the given assumptions, the hamiltonian H is the total energy
H=T+U.

The proof is based on the following lemma on the Legendre transform of
a quadratic form.

Lemma. The values of a quadratic form f(x) and of its Legendre transform
g(p) coincide at corresponding points: f(x) = g(p).

ExaMPLE. For the form f(x) = x? this is a well-known property of a tangent
to a parabola. For the form f(x) = tmx®> we have p = mx and g(p) =
p*/2m = mx?*/2 = f(x).

PROOF OF THE LEMMA By Euler’s theorem on homogeneous functions
(0f/0x)x = 2f. Therefore, g(p(x)) = px — f(x) = (3f/ox)x — f = 2f(x) —
f(x) = f(x). O

PROOF OF THE THEOREM. Reasoning as in the lemma, we find that H = p4 —
L=2T—(T—-U)=T+ U. O

ExaMmprLE. For one-dimensional motion

q:—a.

In this case T = 442, U = U(q), p = ¢, H = 3p* + U(g) and Hamilton’s
equations take the form

g=1p
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15: Hamilton’s equations

This example makes it easy to remember which of Hamilton’s equations
has a minus sign.

Several important corollaries follow from the theorem on the equivalence
of the equations of motion to a hamiltonian system. For example, the law of
conservation of energy takes the simple form:

Corollary 1. dH/dt = 6H/0t. In particular, for a system whose hamiltonian
Junction does not depend explicitly on time (0H /0t = 0), the law of conserva-
tion of the hamiltonian function holds: H(p(t), q(t)) = const.

PROOF. We consider the variation in H along the trajectory H(p(t), q(1), t).
Then, by Hamilton’s equations,

dH__aH( aH) O0HOH 0H 0H 0

i~ \ ") g Tw T

C Cyclic coordinates

When considering central fields, we noticed that a problem could be reduced
to a one-dimensional problem by the introduction of polar coordinates. It
turns out that, given any symmetry of a problem allowing us to choose a
system of coordinates q in such a way that the hamiltonian function is
independent of some of the coordinates, we can find some first integrals and
thereby reduce to a problem in a smaller number of coordinates.

Definition. If a coordinate ¢, does not enter into the hamiltonian function
HPi, P2y s Pnsd1s -5 ns ), 1€, 0H/0g, = 0, then it is called cyclic
(the term comes from the particular case of the angular coordinate in a
central field).

Clearly, the coordinate g, is cyclic if and only if it does not enter into the
lagrangian function (6L/0q, = 0). It follows from the hamiltonian form of
the equations of motion that:

Corollary 2. Let g, be a cyclic coordinate. Then p, is a first integral. In this
case the variation of the remaining coordinates with time is the same as in a
system with the n — 1 independent coordinates q,, . . ., q, and with hamilton-
ian function

H(st c-+3 Pn> Q2:""q"’ts C),
depending on the parameter ¢ = p;.

Proor. We set p' = (p,,...,p,) and q = (g,,..., g,). Then Hamilton’s
equations take the form

d ,_0H d _0oH
T oy de 1 = op,
d  _ _oH d4
a?” " oq aPrT%
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3: Variational principles

The last equation shows that p, = const. Therefore, in the system of equations
for p’ and ¢’, the value of p, enters only as a parameter in the hamiltonian
function. After this system of 2n — 2 equations 1s solved, the equation for g,
takes the form

d d -

— ¢y = f(t), where f(1) = z— H(p,, P'(1), (1), )

dt op,

and is easily integrated. O
Almost all the solved problems in mechanics have been solved by means

of Corollary 2.

Corollary 3. Every closed system with two degrees of freedom (n = 2) which has
a cyclic coordinate is integrable.

PrOOF. In this case the system for p’ and ¢’ is one-dimensional and is im-
mediately integrated by means of the integral H(p', ¢') = c. O

16 Liouville’s theorem

The phase flow of Hamilton’s equations preserves phase volume. It follows, for example, that a
hamiltonian system cannot be asymptotically stable.

For simplicity we look at the case in which the hamiltonian function does
not depend explicitly on the time: H = H(p, q).

A The phase flow
Definition. The 2n-dimensional space with coordinates p,, ..., Py; 915 ---54n
is called phase space.

ExAMPLE. In the case n = 1 this is the phase plane of the system X = —dU/0x,
which we considered in Section 4.

Just as in this simplest example, the right-hand sides of Hamilton’s
equations give a vector field: at each point (p, q) of phase space there is a
2n-dimensional vector (—JH/8q, H/dp). We assume that every solution of
Hamilton’s equations can be extended to the whole time axis.*!

Definition. The phase flow is the one-parameter group of transformations
of phase space

g': (p(0), q(0)) — (p(1), q(2)),

where p(t) and q(¢t) are solutions of Hamilton’s system of equations
(Figure 47).

ProBLEM . Show that {g'} is a group.
31 For this it is sufficient, for example, that the level sets of H be compact.
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16: Liouville’s theorem

f

gt
(p(r), q(1))

(p(0). q(0))

>

Figure 47 Phase flow

B Liouville’s theorem
Theorem 1. The phase flow preserves volume: for any region D we have (Figure

48}
volume of g'D = volume of D.

We will prove the following slightly more general proposition also
due to Liouville.

Figure 48 Conservation of volume

Suppose we are given a system of ordinary differential equations

x =f(x), x = (xy, ..., Xx,), whose solution may be extended to the whole
time axis. Let {g'} be the corresponding group of transformations:
(1) g'(x) = x + f(x)t + O(t?), (t — 0).

Let D(0) be a region in x-space and v(0) its volume;
v(t) = volume of D(t) D(t) = g*'D(0).

Theorem 2. If div f = O, then g' preserves volume: v(t) = v(0).

C Proof

Lemmal. (dv/dt)l,_o = [pe, dividx (dx = dx, -- - dx,).

PROOF. For any ¢, the formula for changing variables in a multiple integral
gives

8g'x
1) = j det dx.
o D(0) ox

Calculating dg’x/0x by formula (1), we find

0g'x of 2
ox -E+5;t-|—0(t ) ast—O0.
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3: Variational principles

We will now use a well-known algebraic fact:
Lemma 2. For any matrix A = (a;;),
det(E + At) =1 + t tr A + O(t?), t—0,

where tr A = ) 1_, ay; is the trace of A (the sum of the diagonal elements).

(The proof of Lemma 2 is obtained by a direct expansion of the deter-
minant: we get 1 and n terms in ¢; the remaining terms involve 2, 3, etc.)
Using this, we have

og' of
gx=1+ttr—+0(t2).

det 5% ox

But tr of/ox = > 7, 0f,/0x, = divf. Therefore,
o) = | [1 + tdivl + O@?)]dx,

b(0)

which proves Lemma 1. (1

PROOF OF THEOREM 2. Since t = t,, is no worse than ¢t = 0, Lemma 1 can be
written in the form
du(t)
dt

= f div f dx,
t=1o Dito)

and ifdivf = 0, dv/dt = 0. ]

In particular, for Hamilton’s equations we have

0 oH o {0H
div ap( aq)*éq(ép)

This proves Liouville’s theorem (Theorem 1). O

ProBLEM. Prove Liouville’s formula W = Wye'" 4% for the Wronskian
determinant of the linear system x = A(t)x.

Liouville’s theorem has many applications.

PrOBLEM. Show that in a hamiltonian system it is impossible to have
asymptotically stable equilibrium positions and asymptotically stable limit
cycles in the phase space. -

Liouville’s theorem has particularly important applications in statistical
mechanics.
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16: Liouville’s theorem

Liouville’s theorem allows one to apply methods of ergodic theory®? to
the study of mechanics. We consider only the simplest example:

D Poincaré’s recurrence theorem

Let g be a volume-preserving continuous one-to-one mapping which maps
a bounded region D of euclidean space onto itself: gD = D.

Then in any neighborhood U of any point of D there is a point x € U
which returns to U, i.e., g"x € U for some n > 0.

Figure 49 The way a ball will move in an asymmetrical cup is unknown; however
Poincaré’s theorem predicts that it will return to a neighborhood of the original position.

This theorem applies, for example, to the phase flow g' of a two-dimen-
sional system whose potential U(x,, x,) goes to infinity as (x,, x,) — o0; in
this case the invariant bounded region in phase space is given by the condition
(Figure 49)

D={pqT+ U< E}.

Poincaré’s theorem can be strengthened, showing that almost every
moving point returns repeatedly to the vicinity of its initial position. This is
one of the few general conclusions which can be drawn about the character
of motion. The details of motion are not known at all, even in the case

oU

et where x = (x;, x,).

X =

The following prediction is a paradoxical conclusion from the theorems
of Poincare and Liouville: if you open a partition separating a chamber
containing gas and a chamber with a vacuum, then after a while the gas
molecules will again collect in the first chamber (Figure 50).

The resolution of the paradox lies in the fact that “a while” may be longer
than the duration of the solar system’s existence.

*2 Cf, for example, the book: Halmos, Lectures on Ergodic Theory, 1956 (Mathematical Society
of Japan. Publications. No. 3).

71
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Figure 50

Figure 51 Theorem on returning

PROOF OF POINCARE’s THEOREM. We consider the images of the neighborhood
U (Figure 51):

U,gU,g?U,...,g"U, ...

All of these have the same volume. If they never intersected, D would have
infinite volume. Therefore, for some k¥ > Oand ! > 0, with k > [,

g*U n g'U # &.

Therefore, g* ‘U n U # . If y is in this intersection, then y = ¢g"x, with
xeUm=k—1).Thenxe Uand g"xe Un =k — D). |

E Applications of Poincaré’s theorem

ExaMPLE 1. Let D be a circle and g rotation through an angle o. If o =
27(m/n), then g” is the identity, and the theorem is obvious. If « is not commen-
surable with 2z, then Poincaré’s theorem gives

Vé > 0,3n:|g"x — x| <o (Figure 52).

gx

Figure 52 Dense set on the circle
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16: Liouville’s theorem

It easily follows that

Theorem. If o # 2n(m/n), then the set of points g“x is dense®? on the circle
=1,2..)

PrROBLEM. Show that every orbit of motion in a central field with U = r* is
either closed or densely fills the ring between two circles.

ExaMPLE 2. Let D be the two-dimensional torus and ¢, and ¢, angular
coordinates on it (longitude and latitude) (Figure 53).

L)

w7

Figure 53 Torus

Consider the system of ordinary differential equations on the torus
P = oy Py = d3.
Clearly, div f = 0 and the corresponding motion
9" (@1, P2) = (@ + o1, @y + a51)

preserves the volume d¢, d¢,. From Poincare’s theorem it is easy to deduce

Theorem. If o, /x, is irrational, then the “ winding line” on the torus, (¢, @),
is dense in the torus.

PrROBLEM. Show that if w is irrational, then the Lissajous figure (x = cos ¢,
¥ = cos wt) is dense in the square |[x| < 1, |y| < 1.

ExampLE 3. Let D be the n-dimensional torus 7", i.c., the direct product3*
of n circles:
D=S'"xS!'x---x St =1"

e
n

A point on the n-dimensional torus is given by n angular coordinates
¢ =(P1,...,9,) Leta = (2, ...,,), and let g* be the volume-preserving

transformation
g: T - T" P — @+ at

3? Aset Ais dense in B if there is a point of 4 in every neighborhood of every point of B.

34 The direct product of the sets A, B, . . . is the set of points (a, b, .. .), withac A, be B, . . ..
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ProeLEM. Under which conditions on a are the following sets dense : (a) the
trajectory {g'e}; (b) the trajectory {g*@} (¢ belongs to the group of real
numbers R, k to the group of integers 7).

The transformations in Examples 1 to 3 are closely connected to
mechanics. But since Poincaré’s theorem is abstract, it also has applications
unconnected with mechanics.

ExXAMPLE 4. Consider the first digits of the numbers 2": 1,2, 4,8, 1, 3,6, 1, 2,
51,2,4,....

ProBLEM. Does the digit 7 appear in this sequence? Which digit appears
more often, 7 or 8? How many times more often?
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Lagrangian mechanics on manifolds

In this chapter we introduce the concepts of a differentiable manifold and
its tangent bundle. A lagrangian function, given on the tangent bundle,
defines a lagrangian “holonomic system™ on a manifold. Systems of point
masses with holonomic constraints (e.g., a pendulum or a rigid body) are
special cases.

17 Holonomic constraints

In this paragraph we define the notion of a system of point masses with holonomic constraints.

A Example

Let y be a smooth curve in the plane. If there is a very strong force field in a
neighborhood of y, directed towards the curve, then a moving point will
always be close to y. In the limit case of an infinite force field, the point must
remain on the curve y. In this case we say that a constraint is put on the
system (Figure 54).

To formulate this precisely, we introduce curvilinear coordinates g, and
g, on a neighborhood of y; g, is in the direction of y and g, is distance from

the curve.
We consider the system with potential energy

Uy = Ng3 + Uo(g1, q3),

depending on the parameter N (which we will let tend to infinity) (Figure 55).
We consider the initial conditions on y:

7:0)=4q7 40 =47 ¢,(00=0  §,0)=0.
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4: Lagrangian mechanics on manifolds

Figure 54 Constraint as an infinitely strong field

Up

Figure 55 Potential energy Uy

Denote by ¢; = ¢(z, N) the evolution of the coordinate g, under a motion
with these initial conditions in the field Uy.

Theorem. The following limit exists, as N — o0
lim @(t, N) = (1)

N—=w

The limit g, = y(t) satisfies Lagrange’s equation

d (0L,\ 0L,

dt\dq,) 0q,’
where L,(d1,41) = Tlp=g—0 — Uolg,=0 (T is the kinetic energy of
motion along 7).

Thus, as N — oo, Lagrange’s equations for ¢; and g, induce Lagrange’s
equation for g, = y(z).

We obtain exactly the same result if we replace the plane by the 3n-
dimensional configuration space of n points, consisting of a mechanical
system with metric ds? = Y 7_, m, dr} (the m; are masses), replace the curve y
by a submanifold of the 3n-dimensional space, replace g, by some coordinates
q, on y, and replace g, by some coordinates g, in the directions perpendicular
to 7. If the potential energy has the form

U = Uylq,, q;) + Nq3,

then as N — o0, a motion on y is defined by Lagrange’s equations with the
lagrangian function

L, = quz=dz=0 - UO|(|2=O‘
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18: Differentiable manifolds

B Definition of a system with constraints

We will not prove the theorem above,33 but neither will we use it. We need
it only to justify the following.

Definition. Let y be an m-dimensional surface in the 3n-dimensional con-

figuration space of the points r,,..., r, with masses m,, ..., m,. Let
q=1(4s;,-.--,49n) be some coordinates on y:r; = ri(q). The system
described by the equations

d 0L OL

4t o4~ oq L=3%Y mil + U@Q)

is called a system of n points with 3n — m ideal holonomic constraints.

The surface y is called the configuration space of the system with constraints.
If the surface y is given by k = 3n — m functionally independent

equations fi(r) = 0, ..., f;(r) = 0, then we say that the system is con-

strained by the relations f; = 0,..., f, = 0.

Holonomic constraints also could have been defined as the limiting case
of a system with a large potential energy. The meaning of these constraints in
mechanics lies in the experimentally determined fact that many mechanical
systems belong to this class more or less exactly.

From now on, for convenience, we will call ideal holonomic constraints
simply constraints. Other constraints will not be considered in this book.

18 Differentiable manifolds

The configuration space of a system with constraints is a differentiable manifold. In this para-
graph we give the elementary facts about differentiable manifolds.

A Definition of a differentiable manifold

A set M is given the structure of a differentiable manifold if M is provided
with a finite or countable collection of charts, so that every point is represented
in at least one chart.

A chartis an open set U in the euclidean coordinate space q = TR )
together with a one-to-one mapping ¢ of U onto some subset of M,
@:U - oU < M.

We assume that if points p and p’ in two charts U and U’ have the same
image in M, then p and p’ have neighborhoods ¥V = U and V' = U’ with the
same image in M (Figure 56). In this way we get a mapping @'~ 'o: V — V.

This 1s a mapping of the region V of the euclidean space q onto the region
V' of the euclidean space q', and it is given by n functions of n variables,

** The proof is based on the fact that, due to the conservation of energy, a moving point cannot
move further from y than ¢N ™'/, which approaches zero as N — co.
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4: Lagrangian mechanics on manifolds

Figure 56 Compatible charts

q = ¢'(q), (9 = q(q)). The charts U and U ' are called compatible if these
functions are differentiable.’®

An atlas is a union of compatible charts. Two atlases are equivalent if
their union is also an atlas.

A differentiable manifold is a class of equivalent atlases. We will consider
only connected manifolds.>” Then the number n will be the same for all
charts: it is called the dimension of the manifold.

A neighborhood of a point on a manifold is the image under a mapping
@: U — M of a neighborhood of the representation of this point in a chart U.
We will assume that every two different points have non-intersecting
neighborhoods.

B Examples

ExampLE 1. Euclidean space R" is a manifold, with an atlas consisting of one chart.

ExameLe 2. The sphere §2 = {(x, y, 2): x* + y*> + z2 = 1} has the structure of a manifold. with
atlas, for example, consisting of two charts (U;, @, i = 1, 2)in stereographic projection (Figure
57). An analogous construction applies to the n-sphere

" = {(Xq4s..or Xpar1)i 2 xF = 1}

"4
Amz/’/
Y
A S
rd

Figure 57 Atlas of a sphere

ExaMpLE 3. Consider a planar pendulum. Its configuration space —the circle $' —is a manifold.
The usual atlas is furnished by the angular coordinates ¢: R!' -8\ U, =(-nmnm), U, =(0,2r)
(Figure 58).

ExampiLe 4. The configuration space of the “spherical™ mathematical pendulum is the two-
dimensional sphere $? (Figure 58).

36 By differentiable here we mean r times continuously differentiable; the exact value of r
(1 < r < ) is immaterial (we may take r = x, for example).

37 A manifold is connected if it cannot be divided into two disjoint open subsets.
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18: Differentiable manifolds

‘p. ¥2

Figure 58 Planar, spherical and double planar pendulums

ExampLE 5. The configuration space of a *“ planar double pendulum” is the direct product of two
circles, i.c., the two-torus T2 = §' x §! (Figure 58).

ExaMPLE 6. The configuration space of a spherical double pendulum is the direct product of
two spheres, §2 x §2.

ExampLE 7. A rigid line segment in the (g,. g,)-plane has for its configuration space the mani-
fold R? x S', with coordinates g,, g,, g3 (Figure 59). It is covered by two charts.

4q,

Figure 59 Configuration space of a segment in the plane

ExaMPLE 8. A rigid right triangle O AB moves around the vertex Q. The position of the triangle
is given by three numbers: the direction OA € §? is given by two numbers, and if 04 is given,
one can rotate OB € S' around the axis 04 (Figure 60).

Connected with the position of the triangle OAB is an orthogonal right-handed frame,
e, = 0A/|0A|.e; = OB/|OB|, e; = [e,, e,]. The correspondence is one-to-one; therefore the
position of the triangle is given by an orthogonal three-by-three matrix with determinant 1.

/ °
Figure 60 Configuration space of a triangle

The set of all three-by-three matrices is the nine-dimensional space R®. Six orthogonality
conditions select out two three-dimensional connected manifolds of matrices with determinant
+ 1 and —1. The rotations of three-space (determinant + 1) form a group, which we call SO(3).

Therefore, the configuration space of the triangle O AB is SO(3).

PROBLEM. Show that SO(3) is homeomorphic to three-dimensional real projective space.
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4: Lagrangian mechanics on manifolds

Definition. The dimension of the configuration space is called the number of
degrees of freedom.

ExaMpLE 9. Consider a system of k rods in a closed chain with hinged joints.

ProBLEM. How many degrees of freedom does this system have?

ExAMPLE (). Embedded manifolds. We say that M is an embedded k-dimensional sub-manifold of
euclidean space R" (Figure 61) if in a neighborhood U of every point x € M there are n — k func-
tionsf1: U >R, [5:U—>R,...,[,_: U— Rsuch that the intersection of U/ with M is given by
the equations f; =0, ..., f,_, = 0, and the vectors grad f,, ..., grad f,_, at x are linearly
independent.

Xn

M

- X}

Figure 61 Embedded submanifold

Itis easy to give M the structure of a manifold, i.e., coordinates in a neighborhood of x (how?).
It can be shown that every manifold can be embedded in some euclidean space. In Example 8,

SO(3) is a subset of R°.

PrOBLEM. Show that SO(3) is embedded in R®, and at the same time, that SO(3) is a manifold.

C Tangent space

If M is a k-dimensional manifold embedded in E”", then at every point X
we have a k-dimensional tangent space T M, . Namely, T M is the orthogonal
complement to {grad f;,..., grad f,_;} (Figure 62). The vectors of the
tangent space T M, based at x are called tangent vectors to M at X. We can
also define these vectors directly as velocity vectors of curves in M:

@(t) — ¢(0)

X = lim where @(0) = x, @(t) € M.

t—0

M,

E”

Figure 62 Tangent space
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18: Diffcrentiable manifolds

The definition of tangent vectors can also be given in intrinsic terms,
independent of the embedding of M into E™".

We will call two curves x = @(t) and x = ¥(¢) equivalent if @(0) = y(0) = x
and lim,_, 4 (¢(¢z) — Y(t))/t = 0 in some chart. Then this tangent relationship
is true in any chart (prove this!).

Definition. A tangent vector to a manifold M at the point x is an equivalence

class of curves ¢(r), with ¢(0) = x.

It is easy to define the operations of multiplication of a tangent vector
by a number and addition of tangent vectors. The set of tangent vectors
to M at x forms a vector space TM . This space is also called the tangent

space to M at x.

For embedded manifolds the definition above agrees with the previous
definition. Its advantage lies in the fact that it also holds for abstract
manifolds, not embedded anywhere.

Definition. Let U be a chart of an atlas for M with coordinates ¢, ..., g,.
Then the components of the tangent vector to the curve q = @(z) are the
numbers &,,...,¢,, where &; = (do,;/dt)],—o-

D The tangent bundle

The union of the tangent spaces to M at the various points, | )y TM,, has
a natural differentiable manifold structure, the dimension of which is twice
the dimension of M.

This manifold is called the tangent bundle of M and is denoted by TM. A
point of TM is a vector §, tangent to M at some point x. Local coordinates
on TM are constructed as follows. Let q,,..., g, be local coordinates on
M, and &,, ..., &, components of a tangent vector in this coordinate system.
Then the 2n numbers (g4, ..., g,. &1, ..., &,) give a local coordinate system
on TM. One sometimes writes dg; for &;.

The mapping p: TM — M which takes a tangent vector § to the point
x € M at which the vector is tangent to M (§ € TM ), is called the natural
projection. The inverse image of a point x € M under the natural projection,
p~ 1(x), is the tangent space TM,. This space is called the fiber of the tangent
bundle over the point X.

E Riemannian manifolds

If M is a manifold embedded in euclidean space, then the metric on euclidean
space allows us to measure the lengths of curves, angles between vectors,
volumes, etc. All of these quantities are expressed by means of the lengths of
tangent vectors, that is, by the positive definite quadratic form given on
every tangent space TM, (Figure 63):

TM,—->R  &§—<§&.
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4: Lagrangian mechanics on manifolds

Figure 63 Riemannian metric

For example, the length of a curve on a manifold is expressed using this form as I(;) =
<1/ {dx, dx>. or, if the curve is given parametrically, y: [1o.1,] = M.t = x(t) € M. then

1) = iy /<%, X0t

Definition. A differentiable manifold with a fixed positive definite quadratic
form <&, &> on every tangent space T M, is called a Riemannian manifold.
The quadratic form is called the Riemannian metric.

Remark. Let U be a chart of an atlas for M with coordinates ¢4, ..., g,.
Then a Riemannian metric is given by the formula

n

ds* = ) a;{(q)dq; dq; a;j = Qji,

i,j=1

where dg, are the coordinates of a tangent vector.
The functions a;;(q) are assumed to be differentiable as many times as
necessary.

F The derivative map

Let f: M — N be a mapping of a manifold M to a manifold N. f is called
differentiable if in local coordinates on M and N it is given by differentiable
functions.

Definition. The derivative of a differentiable mapping f: M — N at a point
x € M is the linear map of the tangent spaces
Jex: TM, — TNy,

which is given in the following way (Figure 64):

Let ve TM, . Consider a curve @: R - M with @(0) = x, and velocity
vector (dg/dt)|,-o = v. Then f, v is the velocity vector of the curve
fe@:R— N,

furV = 3| S@@).
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19: Lagrangian dynamical systems

Figure 64 Derivative of a mapping
PROBLEM. Show that the vector f,,v does not depend on the curve @, but only on the vector v.

PROBLEM. Show that the map f,,.: TM, — TN, is linear.

PROBLEM. Let x = (x,, ..., x,,) be coordinates in a neighborhood of xe M, and y = (y,..., V,)
be coordinates in a neighborhood of y € N, Let § be the set of components of the vector v, and
N the set of components of the vector f,,v. Show that

oy;
Ox;

dy .
n= Ax & te, n= ; ;.

Taking the union of the mappings f,, for all x, we get a mapping of the whole tangent
bundle

Jo:TM - TN Jo¥ = fux¥ forve TM, .

PrOBLEM. Show that f, is a differentiable map.

PROBLEM. Let M — N,g: N > K,andh =g - f: M - K.Show that h, = g, f,.

19 Lagrangian dynamical systems

In this paragraph we define lagrangian dynamical systems on manifolds. Systems with holonomic
constraints are a particular case.

A Definition of a lagrangian system

Let M be a differentiable manifoid, TM its tangent bundle,and L: TM - R
a differentiable function. A map y: R — M is called a motion in the lagrangian
system with configuration manifold M and lagrangian function L if ¥y is an
extremal of the functional

@(y) = f L(pt,

o
where 7 is the velocity vector (1) e TM .

ExampLE. Let M be a region in a coordinate space with coordinates q = (¢,,....4,} The
lagrangian function L: TM — R may be written in the form of a function L(q, q) of the 2n
coordinates. As we showed in Section 12, the evolution of coordinates of a point moving with
time satisfies Lagrange's equations.

&3

T ———
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4: Lagrangian mechanics on manifolds

Theorem. The evolution of the local coordinatesq = (q4, - . ., q,) of a point ¥(t)
under motion in a lagrangian system on a manifold satisfies the Lagrange
equations

d OL 0L

dt o4 oq’
where L(q,q) is the expression for the function L: TM — Rinthe coordinates
qand qon TM.

We often encounter the following special case.

B Natural systems

Let M be a Riemannian manifold. The quadratic form on each tangent space,
=_.%:<v5 v> VETMX’

1s called the kinetic energy. A differentiable function U: M — R is called a
potential energy.

Definition. A lagrangian system on a Riemannian manifold is called natural
if the lagrangian function is equal to the difference between kinetic and
potential energies: L = T — U.

ExampPLE. Consider two mass points m, and m, joined by a linc scgment of length [/ in the
(x, y)-plane. Then a configuration space of three dimensions
M=R? x §t =« R? x R?

is defined in the four-dimensional configuration space R? x R? of two free points (x,, y,) and
(x2. y2) by the condition \/(xl — x3)? + (v, — v,)? = I (Figure 65).

¥
4

m\nz

- X

Figure 65 Segment in the plane

There is a quadratic form on the tangent space to the four-dimensional space (x;, X3, ¥y, ¥2):
my(xf + 1) + my(53 + ¥3).

Our three-dimensional manifold, as it is embedded in the four-dimensional one, is provided with
a Riemannian metric. The holonomic system thus obtained is called in mechanics a line segment
of fixed length in the (x, v)-plane. The kinetic energy is given by the formula
4, %+

2 o2

T=m,
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19: Lagrangian dynamical systems

C Systems with holonomic constraints

In Section 17 we defined the notion of a system of point masses with holo-
nomic constraints. We will now show that such a system is natural.

Consider the configuration manifold M of a system with constraints as
embedded in the 3n-dimensional configuration space of a system of free
points. The metric on the 3n-dimensional space is given by the quadratic
form Y 7_, m;¥}. The embedded Riemannian manifold M with potential
energy U coincides with the system defined in Section 17 or with the limiting
case of the system with potential U + Nq3, N — oo, which grows rapidly
outside of M.

D Procedure for solving problems with constraints

1. Determine the configuration manifold and introduce coordinates
g1, ..., g, (in a neighborhood of each of its points).

2. Express the kinetic energy T = ) 4m;i} as a quadratic form in the
generalized velocities

T = % Z aij(‘])‘iiéj-

3. Construct the lagrangian function L = T — U(q) and solve Lagrange’s
equations.

ExAaMPLE. We consider the motion of a point mass of mass 1 on a surface of revolution in three-
dimensional space. It can be shown that the orbits are geodesics on the surface. In cylindrical
coordinates r, ¢, z the surface is given (locally) in the form r = r(z) or z = z(r). The kinetic
energy has the form (Figure 66)

T =} + 37 + 2 = 3 + rDE + r(2)¢%]
in coordinates ¢ and z, and
T =337 + p? + %) = 3[(1 + )P + r’¢?]

in coordinates r and ¢. (We have used the identity X2 + 1% = 7> + r?¢?.)
The lagrangian function L is equal to T. In both coordinate systems ¢ is a cyclic coordinate.
The corresponding momentum is preserved; p, = r?¢ is nothing other than the z-component of

zZ

Figure 66 Surface of revolution
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angular momentum. Since the system has two degrees of freedom, knowing the cyclic coordinate
¢ 1s sufficient for integrating the problem completely (cf. Corollary 3, Section 15).
We can obtain more easily a clear picture of the orbits by reasoning slightly differently.

Denote by = the angle of the orbit with a meridian. We have r¢p = |v|sin %, where |v| is the mag-
nitude of the velocity vector (Figure 66).
By the law of conservation of energy, H = L = T is preserved. Therefore, i¢v| = const, so

the conservation law for p,, takes the form
r sin & = const

(" Clairaut’s theorem’).

This relationship shows that the motion takes placein theregion|sin x| < l,ie..r = rg sin %,.
Furthermore, the inclination of the orbit from the meridian increases as the radius r decreases.
When the radius reaches the smallest possible value, r = ry sin x4, the orbit is reflected and
returns to the region with larger r (Figure 67).

r=rgsin &

r =rgsin &g
Figure 67 Geodesics on a surface of revolution

PrROBLEM. Show that the geodesics on a convex surface of revolution are divided into three
classes: meridians, closed curves, and geodesics dense in a ring r > c.

PROBLEM. Study the behavior of geodesics on the surface of a torus ((r — R)? + 22 = p?).

E Non-autonomous systems

A lagrangian non-autonomous system differs from the autonomous systems,
which we have been studying until now, by the additional dependence of the

lagrangian function on time:
L:TM xR-R L =1L(q,4q,t1)

In particular, both the kinetic and potential energies can depend on time in a
non-autonomous natural system:

TTMxR—-R UMxR—-R T=7T(@4q1t U=Ulqgt.

A system of n mass points, constrained by holonomic constraints depen-
dent on time, is defined with the help of a time-dependent submanifold of the
configuration space of a free system. Such a manifold is given by a mapping

itM x R—> E3" i(q, 1) = X,
which, for any fixed ¢ € R, defines an embedding M — E*". The formula of

section D remains true for non-autonomous systems.
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N
(P

Figure 68 Bead on a rotating circle

ExampLE. Consider the motion of a bead along a vertical circle of radius r (Figure 68) which
rotates with angular velocity w around the vertical axis passing through the center 0 of the
circle. The manifold M is the circle. Let g be the angular coordinate on the circle, measured from
the highest point.

Let x, 3, and z be cartesian coordinates in E* with origin 0 and vertical axis z. Let ¢ be the
angle of the plane of the circle with the plane x0z. By hypothesis, ¢ = wt. The mapping
i'M x R — E?is given by the formula

i{g, t) = (r sin g cos wt, r sin g sin Wi, r COS ¢).
From this formula (or, more simply, from an “infinitesimal right triangle™) we find that

m - 13
T = E(o:uzr2 sin? g + r2g?) U = mgr cos q.
In this case the lagrangian function L. = T — U turns out to be independent of ¢, although the
constraint does depend on time. Furthermore, the lagrangian function turns out to be the same

as in the one-dimensional system with kinetic energy

M
o= @ M =mr?
and with potential energy
;2 o202
V= Acosq — Bsin- g, A=mgr,B=2mr.

The form of the phase portrait depends on the ratio between A and B. For 2B < A (ie., for a
rotation of the circle slow enough that w?r < g), the lowest position of the bead (g = =) is

Figure 69 Effective potential energy and phase plane of the bead
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stable and the characteristics of the motion are generally the same as in the case of a mathematical
pendulum (w = 0).

For 2B > A, i.e., for sufficiently fast rotation of the circle, the lowest position of the bead
becomes unstable: on the other hand, two stable positions of the bead appear on the circle,
where cos ¢ = — A/2B = — g/w?r. The behavior of the bead under all possible initial conditions
is clear from the shape of the phase curves in the (g, §)-plane (Figure 69).

20 E. Noether’s theorem

Various laws of conservation (of momentum, angular momentum, etc.) are particular cases of
one general theorem: to every one-parameter group of difffomorphisms of the configuration
manifold of a lagrangian system which preserves the lagrangian function, there corresponds a
first integral of the equations of motion.

A Formulation of the theorem

Let M be a smooth manifold, L: TM — R a smooth function on its tangent
bundle TM. Let h: M — M be a smooth map.

Definition. A lagrangian system (M, L) admits the mapping h if for any tangent
vector ve TM,
L(h,v) = L(v).

EXAMPLE. Let M = {(x,, x,. x3)}, L = (m/2)(%3 + %2 + %3) — U(x,, x3). The system admits
the translation h: (x,, x5, x3) = (x; + S, X, x3) along the x, axis and does not admit, generally
speaking, translations along the x, axis.

Noether’s theorem. If the system (M, L) admits the one-parameter group of
diffeomorphisms h*: M — M, s € R, then the lagrangian system of equations
corresponding to L has a first integral I: TM — R.

In local coordinates q on M the integral I is written in the form

_ 3L dr¥(a)
B 6('] ds s———O.

I(q, 9)

B Proof

First, let M = R" be coordinate space. Let ¢: R — M, q = ¢(t) be a solution
to Lagrange’s equations. Since hj, preserves L, the translation of a solution,
h* o @: R — M also satisfies Lagrange’s equations for any 5.°®

We consider the mapping®: R x R —» R" given by q = ®(s,t) = h*(p(t))
(Figure 70).

We will denote derivatives with respect to t by dots and with respect to s
by primes. By hypothesis
_ 6L(<D,<D)_6_L_(D, +6_I:,¢,,

(1) o Os T oq oq

38 The authors of several textbooks mistakenly assert that the converse is also true, i.e., that if
h* takes solutions to solutions, then hj, preserves L.
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q(¢)

q(s, 1) =k (q(t))

A (q)
Figure 70 Noether’s theorem

where the partial derivatives of L are taken at the point q = ®(s, 1), 4 =
D(s, ).
As we stated above, the mapping ®|,—on: R — R” for any fixed s
satisfies Lagrange’s equation
d | L . cL .
— (D o = _—— (P (] .
[ a4 (D(s, ), (s, t))] aq (PC(s, 1), (s, 1))

ot

We introduce the notation F(s, t) = (OL/oq)(®P(s, 1), (s, t)) and substitute
dF/ot for dL/dq in (1).
Writing q’ as dq’/dt, we get

o (47, L OL(d \_d(oL \ _dl 5
“laraq)Y Tag\a V) T @ qu Cdt

Remark. The first integral I = (JL/0q)q’ is defined above using local
coordinates q. It turns out that the value of I(v) does not depend on the choice
of coordinate system q.

In fact, I is the rate of change of L(v) when the vector v € T M, varies inside
TM, with velocity (d/ds)|,- o h*x. Therefore, I(v) is well defined as a function
of the tangent vector ve TM,. Noether’s theorem is proved in the same way
when M is a manifold.

C Examples
ExampLE 1. Consider a system of point masses with masses m;:
.2

X:
L = Z m:‘?[ — U(x) X; = x;;€; + X;2€; + X;3€3,

constrained by the conditions f{x) = 0. We assume that the system admits
translations along the e, axis:

h*:x; = x; + se; foralli

In other words, the constraints admit motions of the system as a whole
along the e, axis, and the potential energy does not change under these.
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4: Lagrangian mechanics on manifolds

By Noether’s theorem we conclude: If a system admits translations along
the e, axis, then the projection of its center of mass on the e; axis moves
linearly and uniformly.

In fact, (d/ds)|,=oh°x; = €,. According to the remark at the end of B, the
quantity

JL .
I = Zﬁel =) m X,

is preserved, i.e., the first component P; of the momentum vector is pre-
served. We showed this earlier for a system without constraints.

ExaAMPLE 2. If a system admits rotations around the e, axis, then the angular
momentum with respect to this axis,

Ml = Z ([xis mi)‘(i]s el)

is conserved.
It is easy to verify that if #° is rotation around the e; axis by the angle s,
then (d/ds)| - o h°x; = [€;, X;], from which it follows that

5]
I = Za—f [e,, x;] = Zl: (mix;, [e1, xi]) = Z!: ([x:, m;X,], e;).

PrROBLEM 1. Suppose that a particle moves in the field of the uniform helical line x = cos ¢.
y = sin ¢, = = c¢@. Find the law of conservation corresponding to this helical symmetry.

ANSWER. In any system which admits helical motions leaving our helical line fixed, the quantity
I = ¢P3; + Mj; is conserved.

PROBLEM 2. Suppose that a rigid body is moving under its own inertia. Show that its center of
mass moves linearly and uniformly. If the center of mass is at rest, then the angular momentum
with respect to it is conserved.

ProBLEM 3. What quantity is conserved under the motion of a heavy rigid body if it is fixed at
some point 0?7 What if, in addition, the body is symmetric with respect to an axis passing
through 0?

ProBLEM 4. Extend Noether’s theorem to non-autonomous lagrangian systems.
Hint. Let M, = M x R be the extended configuration space (the direct product of the
configuration manifold M with the time axis R).
Define a function L,: TM,; - Rby
dt

d_l' .
i.e.. in local coordinates q, t on M, we define it by the formula
dq dr dg/d dt
Ll(q‘[,—q’—)zL(q,y,[ .
dt’ dt dt/dt dt
We apply Noether's theorem to the lagrangian system (M, L;).
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21: D’Alembert’s principle

If L, admits the transformations h*: M, —» M. we obtain a first integral /,: TM, - R.
Since | £.dr = | L, dx. this reduces to a first integral /: TM x R — R of the original system.
If.in local coordinates (g, t) on M ;, we have I, = I,(q,t,dq/dt,dijdt). then [{q.q.1) = 1,(q,£,4,]).

in particular, if L does not depend on time, L., admits translations along time, #°(q. 1) =
(q.t + s). The corresponding first integral I is the energy integral.

21 D’Alembert’s principle

We give here a new definition of a system of point masses with holonomic constraints and prove
its equivalence to the definition given in Section 17.

A Example
Consider the holonomic system (M, L), where M is a surface in three-
dimensional space {x}:

L = imx? — U(x).
In mechanical terms, * the mass point X of mass m must remain on the smooth
surface M.”

Consider a motion of the point, x(¢). If Newton’s equations mx + (60U /0x)
= 0 were satisfied, then in the absence of external forces (U = 0) the tra-
jectory would be a straight line and could not lie on the surface M.

From the point of view of Newton, this indicates the presence of a new
force “forcing the point to stay on the surface.”

Definition. The quantity

R = mx —_—
+6x

is called the constraint force (Figure 71).

R

x(t)

3

Figure 71 Constraint force

If we take the constraint force R(¢) into account, Newton’s equations are
obviously satisfied:
oU

mx = — —
15) ¢

+ R.

The physical meaning of the constraint force becomes clear if we consider our system with
constraints as the limit of systems with potential energy U + NU,; as N — x, where U,(x) =
p?(x, M). For large N the constraint potential NU, produces a rapidly changing force
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F = — N dU,/éx; when we pass to the limit (N — =) the average value of the force F under
oscillations of x near M is R. The force F is perpendicular to M. Therefore. the constraint
force R is perpendicular to M: (R, §) = O for every tangent vector &,

B Formulation of the D’ Alembert-Lagrange

principle
In mechanics, tangent vectors to the configuration manifold are called
virtual variations. The D’Alembert-Lagrange principle states:

. oU
(mx + a—x, g) =0

Jor any virtual variation §, or stated differently, the work of the constraint force
on any virtual variation is zero.

For a system of points x; with masses m; the constraint forces R, are defined
by R; = m;X, + (0U/dx,), and D’Alembert’s principle has the form Y (R;, &)
= 0, or > ((m;X; + (8U/dx,), E;) = 0, i.e., the sum of the works of the con-
straint forces on any virtual variation {§;} ¢ TM, is zero.

Constraints with the property described above are called ideal.

If we define a system with holonoemic constraints as a limit as N — x, then the D’Alembert -
Lagrange principle becomes a theorem: its proof is sketched above for the simplest case.

It is possible, however, to define an ideal holonomic constraint using the D’Alembert-
Lagrange principle. In this way we have three definitions of holonomic systems with constraints:

1. The limit of systems with potential energies U + NU, as N — x.

2. A holonomic system (M, L), where M is a smooth submanifold of the configuration space
of a system without constraints and L is the lagrangian.

3. A system which complies with the D’Alembert- Lagrange principle.

All three definitions are mathematically equivalent.
The proof of the implications (1) = (2) and (1) = (3) is sketched above and will not be given
in further detail. We will now show that (2) < (3).

C The equivalence of the D’ Alembert—Lagrange
principle and the variational principle

Let M be a submanifold of euclidean space, M < R" and x: R — M a curve,
with x(t,) = Xq, X(¢;) = x,.

Definition. The curve x is called a conditional extremal of the action functional

T . 2
O = f 0 {"7 - U(x)}dt,

if the differential d® is equal to zero under the condition that the variation
consists of nearby curves?®® joining x, to x, in M.

*9 Strictly speaking, in order to define a variation 8®, one must define on the set of curves near x
on M the structure of a region in a vector space. This can be done using coordinates on M ;
however, the property of being a conditional extremal does not depend on the choice of a co-

ordinate system.
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We will write

(1) Su® = 0.

Clearly, Equation (1) is equivalent to the Lagrange equations
d 0L JOL x?
—_ = — L -_ — — ==
33 = 7a S - U x = x(@),

in some local coordinate system q on M.

Theorem. A curve x: R > M < RN is a conditional extremal of the action
(i.e., satisfies Equation (1)) if and only if it satisfies D'A lembert’s equation

. oU
) (x + = g) -0, VEeTM,.

Lemma. Let f: {t:t, <t < t;} = R" be a continuous vector field. If, for every
continuous tangent vector field &, tangent to M along x (i.e., E(t) € TM,,,
with E(t) = O fort = t,, ty), we have

[ "fE@dL = O,

then the field £(t) is perpendicular to M at every point x(t) (i.e., d#@),h) =0
for every vector he TM ) (Figure 72).

(1)

x(t)
£(1)

Figure 72 Lemma about the normal field

The proof of the lemma repeats the argument which we used to derive the
Euler- Lagrange equations in Section 12.

PROOF OF THE THEOREM. We compare the value of ® on the two curves x(t)
and x(¢) + E&(t), where E(t,) = &(¢,) = 0. Integrating by parts, we obtain

b = J“ (y‘x&—%%t:,)dt: —f“ (i+%%)&_,dt.
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4: Lagrangian mechanics on manifolds

It is obvious from this formula*® that Equation (1), §,,® = 0, is equivalent
to the collection of equations

3) f (i+g—f)§dt=0.

for all tangent vector fields §(s) € TM,, with E(t,) = E(z,) = 0. By the
lemma (where we must set f = X + (U /0x)) the collection of equations (3)

is equivalent to the D’Alembert-Lagrange equation (2). UJ
D Remarks

Remark 1. We derive the D’Alembert—Lagrange principle for a system of n
points x;€ R3, i = 1, ... n, with masses m;, with holonomic constraints,

from the above theorem
In the coordmates X = {X; = \/m;x;}, the kinetic energy takes the form
1 2
Y mx? =
By the theorem the extremals of the principle of least action satisfy the

condition

(the D’Alembert—Lagrange principle for points in R3": the 3n-dimensional
reaction force is orthogonal to the manifold M in the metric T). Returning
to the coordinates x;, we get

0—(\/—x+ N fé) (m:&-*—g—z,ﬁi),

i.e., the D’Alembert—Lagrange principle in the form indicated earlier: the
sum of the work of the reaction forces on virtual variations is zero.

Remark 2. The D’Alembert—Lagrange principle can be given in a slightly
different form if we turn to statics. An equilibrium position is a point X, which

is the orbit of a motion: x(t) = x,.
Suppose that a point mass moves along a smooth surface M under the

influence of the force f = —aU/ox.

Theorem. The point X, in M is an equilibrium position if and only if the force
is orthogonal to the surface at X, : (f(x,), &) = O for all Ee TM,,

This follows from the D’Alembert-Lagrange equations in view of the
fact that X = 0.

Definition. — mxX is called the force of inertia.

4% The distance of the points x(t) + &(r) from M is small of second-order compared with &(t).
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21: D’Alembert’s principle

Now the D’Alembert—Lagrange principle takes the form:

Theorem. If the forces of inertia are added to the acting forces, x becomes an
equilibrium position.

ProOF. D’Alembert’s equation

expresses the fact, as in the preceding theorem, that x is an equilibrium
position of a system with forces —mxX + f. U

Entirely analogous statements are true for systems of points: If x = {x;}
are equilibrium positions, then the sum of the work of the forces acting on the
virtual variations is equal to zero. If the forces of inertia —m;X,(t) are added
to the acting forces, then the position x(t) becomes an equilibrium position.

Now a problem about motions can be reduced to a problem about
equilibrium under actions of other forces.

Remark 3. Up to now we have not considered cases when the constraints
depend on time. All that was said above carries over to such constraints

without any changes.

ExaMPLE. Consider a bead sliding along a rod which is tilted at an angle «
to the vertical axis and is rotating uniformly with angular velocity w around

zZ

00
Figure 73 Bead on a rotating rod

this axis (its weight is negligible). For our coordinate g we take the distance
from the point 0 (Figure 73). The kinetic energy and lagrangian are:

L =T =im? = img? + Imw?r?,
r = gsina.
Lagrange’s equation: mg = mw?q sin? a.

The constraint force at each moment is orthogonal to virtual variations
(ie., to the direction of the rod), but is not at all orthogonal to the actual

trajectory.
Remark 4. It is easy to derive conservation laws from the D’Alembert-—

Lagrange equations. For example, if translation along the x, axis §; = e, is
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4: Lagrangian mechanics on manifolds

among the virtual variations, then the sum of the work of the constraint forces
on this variation is equal to zero:

Z(R,-, e)=C R, e)=0.

If we now consider constraint forces as extérnal forces, then we notice that the
sum of the first components of the external forces is equal to zero. This means
that the first component, P,, of the momentum vector is preserved.

We obtained this same result earlier from Noether’s theorem.

Remark 5. We emphasize once again that the holonomic character of some
particular physical constraint or another (to a given degree of exactness) is a
question of experiment. From the mathematical point of view, the holonomic
character of a constraint is a postulate of physical origin; it can be introduced
in various equivalent forms, for example, in the form of the principle of least
action (1) or the D’Alembert-Lagrange principle (2), but, when defining
the constraints, the term always refers to experimental facts which go beyond
Newton’s equations.

Remark 6. Our terminology differs somewhat from that used in mechantcs
textbooks, where the D’Alembert-Lagrange principle is extended to a wider
class of systems (“non-holonomic systems with ideal constraints™). In this
book we will not consider non-holonomic systems. We remark only that one
example of a non-holonomic system is a sphere rolling on a plane without
slipping. In the tangent space at each point of the configuration manifold of a
non-holonomic system there is a fixed subspace to which the velocity vector
must belong.

Remark 7. If a system consists of mass points connected by rods, hinges,
etc., then the need may arise to talk about the constraint force of some partic-
ular constraint.

We defined the total “constraint force of all constraints” R, for every mass
point m;. The concept of a constraint force for an individual constraint is
impossible to define, as may be already seen from the simple example of a beam
resting on three columns. If we try to define constraint forces of the columns,
R,, R,, R; by passing to a limit (considering the columns as very rigid
springs), then we may become convinced that the result depends on the
distrtbution of rigidity.

Figure 74 Constraint force on a rod
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21: D’Alembert’s principle

Problems for students are selected so that this difficulty does not arise.

PROBLEM. A rod of weight P, tilted at an angle of 60° to the plane of a table, begins to fall
with initial velocity zero (Figure 74). Find the constraint force of the table at the initial moment,
considering the table as (a) absolutely smooth and (b) absolutely rough. (In the first case, the
holonomic constraint holds the end of the rod on the plane of the table, and in the second case,
at a given point.)
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Oscillations

Because linear equations are easy to solve and study, the theory of linear
oscillations is the most highly developed area of mechanics. In many non-
linear problems, linearization produces a satisfactory approximate solution.
Even when this is not the case, the study of the linear part of a problem is
often a first step, to be followed by the study of the relation between motions
in a nonlinear system and in its linear model.

22 Linearization

We give here the definition of small oscillations.

A Equilibrium positions

Definition. A point X, is called an equilibrium position of the system

dx
1 =1 "
(1) 0 (x), X €
if x(¢) = x, is a solution of this system. In other words, f(x,) = 0, ie,

the vector field f(x) is zero at x,.

ExaMpLE. Consider the natural dynamical system with lagrangian function
L(q,q) = T — U,where T =} a,{@)4;4; = 0and U = U(q):

d oL L

(2) 'd-g‘a_('l_“_gaa q=(q139qn)

Lagrange’s equations can be written in the form of a system of 2n first-
order equations of form (1). We will try to find an equilibrium position:
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22: Linearization

Theorem. The point Q = q,, 4 = 4, will be an equilibrium position if and only
ifqo = Oand q, is a critical point of the potential energy, i.e.,

oU
3 —1! =0.
) aq Go

PrROOF. We write down Lagrange’s equations

ddT 8T aU
dt 0q4  Oq oq

From (2) it is clear that, for ¢ = 0, we will have dT/dq = 0 and ¢T/d4 = O.
Therefore, @ = q, is a solution in case (3) holds and only in that case. J

B Stability of equilibrium positions

We will now investigate motions with initial conditions close to an equi-
librium position.

Theorem. If the point q is a strict local minimum of the potential energy U,
then the equilibrium q = q, is stable in the sense of Liapunov.

PrROOF. Let U(q,) = h. For sufficiently small ¢ > 0, the connected com-
ponent of the set {q: U(q) < h + ¢} containing ¢, will be an arbitrarily
small neighborhood of q, (Figure 75). Furthermore, the connected com-
ponent of the corresponding region in phase space p, q, {p, q: E(p, qQ) <
h + ¢}, (where p = 0T/dq is the momentum and E = T + U is the total
energy) will be an arbitrarily small neighborhood of the pointp =0, q == q,.

But the region {p,q: E < h + ¢} is invariant with respect to the phase
flow by the law of conservation of energy. Therefore, for initial conditions
p{0), q(0) close enough to (0, q,), every phase trajectory (p{t), q(¢)) is close to

(©, 90). 0
U
4
h+e_m

A

-4
P

E<h+e
q

Figure 75 Stable equilibrium position
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5: Oscillations

PROBLEM. Can an equilibrium position @ = q,. p = 0 be asymptotically stable?

PROBLEM. Show that in an analytic system with one degree of freedom an equilibrium position
q, which is not a strict local minimum of the potential energy is not stable in the sense of
Liapunov. Produce an example of an infinitely differentiable system where this is not true.

Remark. It seems likely that in an analytic system with n degrees of
freedom, an equilibrium position which is not a minimum point is unstable:
but this has never been proved for n > 2.

C Linearization of a differential equation

We now turn to the general system (1). In studying solutions of (1) which are
close to an equilibrium position x,, we often use a linearization. Assume that
x, = O (the general case is reduced to this one by a translation of the co-
ordinate system). Then the first term of the Taylor series for f is linear:

I

of
x| and R, = O(x?),

where the linear operator A is given in coordinates x, ..., x, by the matrix

f(x) = Ax + R,(x), A

of;
A(X)i = Zauxj; di; = ”a—li“‘

i
Definition. The passage from system (1) to the system

d
@ T4y (xeR,yeTR})

is called the linearization of (1).

ProBLEM. Show that linearization is a well-defined operation: the operator
A does not depend on the coordinate system.
The advantage of the linearized system is that it is linear and therefore

casily solved:
2,2

y(t) = e?'y(0), where e = E + At + >7 + e
Knowing the solution of the linearized system (4), we can say something
about solutions of the original system (1). For small enough x, the difference
between the linearized and original systems, R,(x), is small in comparison
with x. Therefore, for a long time, the solutions y(¢), x(¢) of both systems
with initial conditions y(0) = x(0) = X, remain close. More explicitly, we
can easily prove the following:

Theorem. For any T > 0 and for any ¢ > O there is a 6 > O such that if
|x(0)| < 8, then |x(t) — y(1)| < &b for all t in the interval 0 <t < T.
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22: Linearization

D Linearization of a lagrangian system

We return again to the lagrangian system (2) and try to linearize it in a
neighborhood of the equilibrium position q = q,. In order to simplify the
formulas, we choose a coordinate system so that q, = O.

Theorem. In order to linearize the lagrangian system (2) in a neighborhood of
the equilibrium position q = 0, it is sufficient to replace the kinetic energy
T = %au(q)q",q."] by its value at q = 0,
T, = %Za:‘jéi‘ip a;; = a;}0),
and replace the potential energy U(q) by its quadratic part
o*U
U, =3 bjaqaq; b;; = .
2 2 Z J J J aqian a=0
PRrROOF. We reduce the lagrangian system to the form (1) by using the canonical
variables p and q:

cH . OH

aq 1= ap’
Since p = q = 01s an equilibrium position, the expansions of the right-hand
sides in Taylor series at zero begin with terms that are linear in p and q.
Since the right-hand sides arc partial derivatives, these linear terms are
determined by the quadratic terms H, of the expansion for H(p, q). But
H, is precisely the hamiltonian function of the system with lagrangian
L, =T, — U,,since, clearly, H, = T,(p) + U,(q). Therefore, the linearized
equations of motion are the equations of motion for the system described
in the theorem with L, = T, — U,. ]

H(p,q)=T+ U.

ExaMpPLE. We consider the system with one degree of freedom:
T = }a(q)q>, U = U(g).

Letg = g, be a stable equilibrium position:(dU/8q)|,— 5, = 0,(3?U/3¢?)|4= 4,
> 0 (Figure 76).

U;

@)
\\»”

Figure 76 Linearization
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5: Osciliations

As we know from the phase portrait, for initial conditions close to g = g,
p = 0, the solution is periodic with period T depending, generally speaking,
on the initial conditions. The above two theorems imply

Corollary. The period t of oscillations close to the equilibrium position q,
approaches the limit 1, = 2njw,, (Where w3 = bja, b = (02U /3g*) ;= 4>
and a = a(q,)) as the amplitudes of the oscillations decrease.

ProoF. For the linearized system, T, = $a¢? and U, = }bq’ (taking g, = 0).
The solutions to Lagrange’s equation § = —w}gq have period 17, = 2n/w,:

g = ¢y COS Wot + €5 SIn Wyl

for any initial amplitude. ]

E Small oscillations

Definition. Motions in a linearized system (L, = T, — U,) are called small
oscillations*! near an equilibrium q = q,. In a one-dimensional problem
the numbers 7, and w, are called the period and the frequency of small
oscillations.

PrROBLEM. Find the period of small oscillations of a bead of mass 1 on a wire y = U(x) in a
gravitational field with g = 1, near an equilibrium position x = x, (Figure 77).

U V
l

mg

N X0

Figure 77 Bead on a wire

> X

Solution. We have

dU\?
T=1m? = %l:l + (__) ].\"2.
ox

Let x, be a stable equilibrium position: {(¢U/dx)|,, = 0: (02U /0x%) |, > 0. Then the frequency
of small oscillations, w, is defined by the formula

257
o= (25)
0x? ) lxe
since. for the linearized system, 7; = $4% and U, = {w’g” (g = x — x,).

41 If the equilibrium position is unstable, we will talk about “unstable small oscillations™
even though these motions may not have an oscillatory character.
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23: Small osciliations

PROBLEM. Show that not only a small oscillation, but any motion of the bead is equivalent to a
motion in some one-dimensional system with lagrangian function L = 142 — V(g).
Hinr. Take length along the wire for g.

23 Small oscillations

We show here that a lagrangian system undergoing small oscillations decomposes into a direct
product of systems with one degree of freedom.

A A problem about pairs of forms

We will consider in more detail the problem of small oscillations. In other
words, we consider a system whose kinetic and potential energies are
quadratic forms

(1) T = }(Aq, 4) = 3(Bg, q) qe R% 4 R™
The kinetic energy is a positive definite form.

In order to integrate Lagrange’s equations, we will make a special choice

of coordinates.
As we know from linear algebra, a pair of quadratic forms (Aq, q), (Bq, q),
the first of which is positive definite, can be reduced to principal axes by a

linear change of coordinates:*2
Q=Cq Q:(Ql""aQn)'
In addition, the coordinates Q can be chosen so that the form (Aq, q) de-

composes into the sum of squares (Q, Q). Let Q be such coordinates; then,
since Q = Cq, we have

I n . 1 n
(2) T"___XlQi2 U=—Z/1.-Qi2-

25 2.9

The numbers A, are called the eigenvalues of the form B with respect to A.

PROBLEM. Show that the eigenvalues of B with respect to A4 satisfy the char-
acteristic equation

(3) det|B — 44| = 0,

all the roots of which are, therefore, real (the matrices 4 and B are symmetric
and A > 0).

B Characteristic oscillations

In the coordinates Q the lagrangian system decomposes into »n independent
equations

S Qi = —A4Q:.

42 If one wants to, one can introduce a euclidean structure by taking the first form as the scalar
product, and then reducing the second form to the principal axes by a transformation which is
orthogonal with respect to this euclidean structure.
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5: Oscillations

Therefore we have proved:

Theorem. A system performing small oscillations is the direct product of n one-
dimensional systems performing small oscillations.

For the one-dimensional systems, there are three possible cases:
Case 1: 2 = w? > 0; the solutionis ¢ = C, cos wt + C, sin wt (oscillation)
Case 2: A = 0: the solution is Q = C; + C,t (neutral equilibrium)
Case 3: A = —k? < 0; the solution is Q = C, cosh kt + C, sinh kt
(instability)

Corollary. Suppose one of the eigenvalues of (3) is positive: A = w? > 0. Then
system (1) can perform a small oscillation of the form

&) q(t) = (C, cos wt + C, sin wr)§,
where & is an eigenvector corresponding to A (Figure 78):
BE = A4&.
q
Q2 ’
2
- ql

Figure 78 Characteristic oscillation

This oscillation is the product of the one-dimensional motion Q; =
C, cos w;t + C, sin w;t and the trivial motion @; = 0 (j # i)

Definition. The periodic motion (5) is called a characteristic oscillation of
system (1), and the number w is called the characteristic frequency.

Remark. Characteristic oscillations are also called principal oscillations
or normal modes. A nonpositive A also has eigenvectors; we wili also call the
corresponding motions “characteristic oscillations,” although they are not
periodic; the corresponding “characteristic frequencies” are imaginary.

PROBLEM. Show that the number of independent real characteristic oscil-
lations is equal to the dimension of the largest positive definite subspace for

the potential energy 3(Bq, q).
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23: Small oscillations

Now the result may be formulated as follows:

Theorem. The system (1) has n characteristic oscillations, the directions of
which are pairwise orthogonal with respect to the scalar product given by
the kinetic energy A.

Proor. The coordinate system Q is orthogonal with respect to the scalar
product (Aq, q) by (2). J

C Decomposition into characteristic oscillations

It follows from the above theorem that:
Corollary. Every small oscillation is a sum of characteristic oscillations.

A sum of characteristic oscillations is generally not periodic (remember

the Lissajous figures!).

To decompose a motion into a sum of characteristic oscillations, it is
sufficient to project the initial conditions q, § onto the characteristic direc-
tions &; and solve the corresponding one-dimensional problems (4).

Therefore, the Lagrange equations for system (1) can be solved in the
following way. We first look for characteristic oscillations of the form
q = ¢"*&. Substituting these into Lagrange’s equations

d
—Aq = —
74 Bq,

we find
(B — w?A)E = 0.

From the characteristic equation (3) we find n eigenvalues 4, = w2. To these
there correspond n pairwise orthogonal eigenvectors E,. A general solution
in the case A # 0 has the form

q(t) = Re ). C, e"™E,.
k=1
Remark. This result is also true when some of the A are multiple eigen-

values.
Thus, in a lagrangian system, as opposed to a general system of linear

differential equations, resonance terms of the form ¢ sin wt, etc. do not arise,
even in the case of multiple cigenvalues.

D Examples

ExampLE |. Consider the system of two identical mathematical pendulums of length!, =1/, =1
and mass m; = m; = 1 in a gravitational field with g = 1. Suppose that the pendulums are
connected by a weightless spring whose length is equal to the distance between the points of
suspension (Figure 79). Denote by ¢, and g, the angles of inclination of the pendulums. Then
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5: Oscillations

A

—

q;

SRVRVRIVRVR VR

Figure 79 Identical connected pendulums

for small oscillations, T = 4(¢> + ¢3) and U = 3(¢? + ¢q% + a(q, — g2)?), where Ja(q, — 42)*
is the potential energy of the elasticity of the spring. Set

+ —
Q1=QI q: and Q1=ql CIz.

ﬁ ﬁ
Then
0, +0Q; Q- 0,
g, = ———— and g, = ———
ﬁ ﬁ
and both forms are reduced to principal axes:
T =401 +0) U =4HwiQl + i)

where w, = 1 and w, = /1 + 2o (Figure 80). So the two characteristic oscillations are as
follows (Figure 81):

L)

1. @, = 0, i, ¢, = q,: both pendulums move in phase with the original frequency 1, and the
spring has no effect;
2. 0, =0, ie, g, = —q2: the pendulums move in opposite phase with increased frequency

@, > 1 due to the action of the spring.

b

v i1+ 2a

Figure 80 Configuration space of the connected pendulums

N i

Figure 81 Characteristic oscillations of the connected pendulums
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23: Small oscillations

Now let the spring be very weak: » < 1. Then an interesting effect called exchange of energy
occurs.

ExAMPLE 2. Suppose that the pendulums are at rest at the initial moment, and one of them is
given velocity ¢, = v. We will show that after some time T the first pendulum will be almost
stationary, and all the energy will have gone to the second.

It follows from the initial conditions that Q,(0) = Q,(0) = 0. Therefore, @, = ¢, sin r, and

Q, = ¢, sin wr with w = \/f+ 20~ 1 + % (x < 1). But 0,(0) = 0,(0) = v/ﬁ. Therefore,
cy = 1-/\/2_ and ¢, = L'/(U\/E, and our solution has the form

d; = — |sint + — sin wt g, = - |sint — — sin wt
2 w 2 w

or, disregarding the term v(1 — (1/w))sin wr, which is small since x is.

U . . : ,
qg; = = (sint + sin wr) = v cos &t sin w't,

v ) L
g2 zz(smt—mnwt): — U COS W't sin &,
w —1 x , w+ 1
&= —/— T - W =-——=1
2 2 2

The quantity e ~ /2 is small, since « is; therefore g, undergoes an oscillation of frequency
o' x 1 with slowly changing amplitude v cos &t (Figure 82).

After time T = m/2¢ & n/x, essentially only the second pendulum will be oscillating; after
2T, again only the first, etc. (“beats™) (Figure 83).

q,

T

q,

Figure 82 Beats: trajectories in the configuration space

a, 92
3

Figure 83 Beats
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5: QOscillations

Figure 85 Potential energy of strongly connected pendulums

ExaMmPLE 3. We investigate the characteristic oscillations of two different pendulums (m, # m,,
I, # l,,g = 1), connected by a spring with energy $o(q, — q,)* (Figure 84). How do the charac-
teristic frequencies behave asa > Qorasa — o?

We have

T = Hm, 1347 + m;1%43)
qi q3

o
U=ml 5 + mz’z; +§(‘h — g2)%

Therefore (Figure 85),

4— mi? 0 B - ml, +a —a
0 m,2 —o myl, +a

and the characteristic equation has the form

ml, + o — im 1} —a —0
—a myl, +a — Amy13

det(B — 1A4) = (

or
ad? — (bg + bya)Ad + (co + c,&0) = 0,
where
a=mm,I33
by = myl my (1, + 13) b, =m 1% + my13
co = mymayl, !, ¢, = myly + myl;.

This is the equation of a hyperbola in the (x, 4)-plane (Figure 86). As « — 0 (weak spring) the
frequencies approach the frequencies of free pendulums (w$ , = I1}); as « — . one of the
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23: Small oscillations

w;z w?, w%

Figure 86 Dependence of characteristic frequencies on the stiffness of the spring

~

iy
Figure 87 Limiting case of pendulums connected by an infinitely stiff spring

frequencies tends to ., while the other approaches the characteristic frequency w,. of a pendu-
Ium with two masses on one rod (Figure 87):

R ml, + m,i,
) S5

m, l'% + m, lg )
PROBLEM. Investigate the characteristic oscillations of a planar double pendulum (Figure 88).

ProBLEM. Find the shape of the trajectories of the small oscillations of a point mass on the plane,
sitting inside an equilateral triangle and connected by identical springs to the vertices (Figure 89).

7

ugi

2

hiy

Figure 88 Double pendulum

Figure 89 System with an infinite set of characteristic oscillations

109




5: Osciliations

Solution. Under rotation by 120° the system is mapped onto itself. Consequently, all direc-
tions are characteristic, and both characteristic frequencies are the same: U = Lw?(x?* + y).
Therefore, the trajectories are ellipses (cf. Figure 20).

24 Behavior of characteristic frequencies

We prove here the Rayleigh-Courant-Fisher theorem on the behavior of characteristic fre-
quencies of a system under increases in rigidity and under imposed constraints.

A Behavior of characteristic frequencies under a

change in rigidity
Consider a system performing small oscillations, with kinetic and potential
energies

T=.444,4) >0 and U = 4(Bq,q) >0 forallq,q#0.

Definition. A system with the same kinetic energy, and a new potential energy
U', is called more rigid if U' = X(B'q,q) = 3(Bq,q) = U for all q.

We wish to understand how the characteristic frequencies change under
an increase in the rigidity of a system.

ProBLEM. Discuss the one-dimensional case.

Theorem 1. Under an increase in rigidity, all the characteristic frequencies
are increased, i.e.,if 0, < W, < --- < w, are the characteristic frequencies
of the less rigid system, and ©) < @5 < --- < w, are the characteristic
frequencies of the more rigid system, then w; < w}; W < Wy .. .50, < W,

This theorem has a simple geometric meaning. Without loss of generality
we may assume that 4 = E, i.e,, that we are considering the euclidean struc-
ture given by the kinetic energy T = 3(4, q). To each system we associate the
ellipsoids E:(Bq, q) = 1 and E': (B'q,q) = 1.

It is clear that

Lemma 1. If the system U’ is more rigid than U, then the corresponding
ellipsoid E’ lies inside E.

1t is also clear that

Lemma 2. The major semi-axes of the ellipsoid are the inverses of the char-
acteristic frequencies w;: w; = 1/a;.

Therefore, Theorem 1 is equivalent to the following geometric proposition
(Figure 90).
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24: Behavior of characteristic frequencies

’ 1]
aj az

Figure 90 The semi-axes of the inside ellipse are smaller.

Theorem 2. If the ellipsoid E with semi-axes a, = a, = --- > a, contains the
ellipsoid E' with semi-axes a) = a5 = +-+ = a,, both ellipses having the
same center, then the semi-axes of the inside ellipsoid are smaller :

a, =>aj,a; =a,,...,a, = a,.

ExaMpLE. Under an increase in the rigidity a of the spring connecting the pendulums of Example
3, Section 23, the potential energy grows, and by Theorem 1, the characteristic frequencies grow:

dw,/da > 0,

Now consider the case when the rigidity of the spring approaches infinity, * = oc. Then in
the limit the pendulums are rigidly connected and we get a system with one degree of freedom
the limiting characteristic frequency w,, satisfies w, < w, < w,.

B Behavior of characteristic frequencies under the
imposition of a constraint

We return to a general system with n degrees of freedom, and let T = 1(q, )
and U = ¥(Bq, q) (g € R") be the kinetic and potential energies of a system
performing small oscillations.

‘ (Bq,q) =1
Rn—l

Figure 91 Linear constraint

Let R""! = R" be an (n — 1)-dimensional subspace in R" (Figure 91).
Consider the system with n — 1 degrees of freedom (q € R"~!) whose kinetic
and potential energies are the restrictions of T and U to R"~!. We say that
this system is obtained from the original by imposition of a linear constraint.

Let w, < w, < --- < w, be the n characteristic frequencies of the original
system, and

r

) S0y << W,

the (n — 1) characteristic frequencies of the system with a constraint.
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Figure 92 Separation of frequencies
Theorem 3. The characteristic frequencies of the system with a constraint
separate the characteristic frequencies of the original system (Figure 92):
W W W, KW, S Wy KWy SO,

By Lemma 2 this theorem is equivalent to the following geometric propo-
sition.

Theorem 4. Consider the cross-section of the n-dimensional ellipsoid E =
{q:(Bq, qQ) = 1} with semi-axes a, > a, = --- = a, by a hyperplane R"™1
through its center. Then the semi-axes of this (n — 1)-dimensional ellip-
soid—the cross-section E'—separate the semi-axes of the ellipsoid E’
(Figure 93):

a,=zay=a,=a,= -=0a, , =4a, 1= da,.

m
~ail]

Figure 93 The semi-axes of the intersection separate the semi-axes of the ellipsoid

C Extremal properties of eigenvalues

Theorem 5. The smallest semi-axis of any cross-section of the ellipsoid E with
semi-axes a; = a, = --- > a, by a subspace R* is less than or equal to a,:

a, = max min [/x]||
(R} xeR<kNE

(the upper bound is attained on the subspace spanned by the semi-axes
a, =a, = - Zak).

PrOOF.*? Consider the subspace R"** ! spanned by the axesa; > @, = ---
> a,. Its dimension is n — k + 1. Therefore, it intersects R*, Let x be a point
of the intersection lying on the ellipsoid. Then ||x| < a,, since x e R*~**1,

#3 It is useful to think of the casen = 3, k = 2.
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25: Parametric resonance

Since ! < ||x||, where [ is the length of the smallest semi-axis of the ellipsoid
E ~ R* ! must be no larger than a,. O

PROOF OF THEOREM 2. The smallest semi-axis of every k-dimensional
section of the inner ellipsoid R* n E’ is less than or equal to the smallest
semi-axis of R* n E. By Theorem 5,
a; = max min ||x|] < max min [X|| = a,. O
{R¥} xeR*E’ {R* xeR<NE
PROOF OF THEOREM 4. The inequality a; < g, follows from Theorem 5,
since in the calculation of g, the maximum is taken over a larger set. To prove
the inequality a; > a,,, we intersect R"~! with any k + 1-dimensional
subspace R** ! The intersection has dimension greater than or equal to k.
The smallest semi-axis of the ellipsoid E' n R**! is greater than or equal to
the smallest semi-axis of E » R** 1. By Theorem 5,

a, = max min [x| > max min || x|
fRx c R"~ 1} xe Rk~ E’ fR +1 c Rn} xeRk*1 ~ E
> max min  ||x| = ax4,- O

{[Rk+l Pt Rn} xeRk+1 A E
Theorems 1 and 3 follow directly from those just proven.

PrROBLEM. Show that if we increase the kinetic energy of a system without
decreasing the potential energy (for example, we increase the mass on a given
spring), then every characteristic frequency decreases.

PROBLEM. Show that under the orthogonal projection of an ellipsoid lying in one subspace of
euclidean space onto another subspace, all the semi-axes are decreased.

PROBLEM. Suppose that a quadratic form A(¢) on euclidean space R” is a continuously differen-
tiable function of the parameter . Show that every characteristic frequency depends differen-
tiably on g, and find the derivatives.

ANSWER. Let A, ..., 4, be the eigenvalues of A(0). To every eigenvalue A, of multiplicity v; there
corresponds a subspace R*. The derivatives of the eigenvalues of A{g) at 0 are equal to the
eigenvalues of the restricted form B = (dA/de)|,-, on R™.

In particular, if all the eigenvalues of A(0) are simple, then their derivatives are equal to the
diagonal elements of the matrix B in the characteristic basis for 4(0).

It follows from this problem that when a form is increased, its eigenvalues grow. In this way
we obtain new proofs of Theorems 1 and 2.

ProBLEM. How does the pitch of a bell change when a crack appears in the bell?

25 Parametric resonance

If the parameters of a system vary periodically with time, then an equilibrium position can be
unstable, even if it is stable for each fixed value of the parameter. This instability is what makes it
possible to swing on a swing.
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5: Oscillations

A Dynamical systems whose paramelers vary
periodically with time

EXAMPLE 1. A swing: the length of the equivalent mathematical pendulum
I(t) varies periodically with time: I(t + T) = I(t) (Figure 94).

7

/

Figure 94 Swing

ExAMPLE 2. A pendulum in a periodically varying gravitational field (for
example, the moon) is described by Hill’s equation:

(1) = —w’(t)g ot + T) = (1)

ExaMPLE 3. A pendulum suspended from a point which periodically oscillates
vertically is also described by an equation of the form (1).

For systems with periodically varying parameters the right-hand side of
the equations of motion are periodic functions of t. The equations of motion
can be written in the form of a system of first-order ordinary differential

equations
(2) x = f(x, 1) f(x,t + T) = f(x, t), x € R"

with periodic right-hand sides. For example, Equation (1) can be written as
the system
Xy = X3

() . , }a)(t £ T) = o)

x2= — xl

B The mapping at a period
Recall the general properties of the system (2). We denote by g': R" — R” the
mapping taking x € R” to the value at time ¢, g’x = @(¢), of the solution ¢ of
system (2) with initial conditions @(0) = x (Figure 95).

The mappings g* do not form a group: in general,

gI+S # gtgs :’-é gsgt.

PROBLEM. Show that {g'} is a group if and only if the right-hand sides fdo not
depend on t.

PrROBLEM. Show that, if T is the period of f, then g7 ** = g°*-g” and, in
particular, g"T = (g7)", so that the mappings g"” (n an integer) form a group.
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q
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o
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0 T
Figure 95 Mapping at a period

The mapping g7: R" - R” plays an important role in what is to come; we
will call it the mapping at a period and will denote it by

A:R"—> R" Ax(0) = x(T).

ExaMPLE. For the systems

{5‘1 = X2 {’.‘1 = X3

X, = —X, X, - X3,

which can be considered periodic with any period T, the mapping A is a rotation or a hyper-
bolic rotation (Figure 96).

X2z X2
[ 4;

Xt - X;

Figure 96 Rotation and hyperbolic rotation

Theorem.

1. The point X4 is a fixed point of the mapping A{(AX, = X,) if and only if the
solution with initial conditions x{0) = X, is periodic with period T.

2. The periodic solution x(t) is Liapunov stable (asymptotically stable) if and
only if the fixed point x, of the mapping A is Liapunov stable (asymptoti-
cally stable).**

3. If the system (2) is linear, i.e., f(x, t) = f(1)x is a linear function of X,
then A is linear.

4. If the system (2) is hamiltonian, then A preserves volume: det A, = 1.

44 A fixed point x, of the mapping A is Liapunov stable (respectively, asymptotically stable) if
Ve > 0, 36 > O such that if |x — xo| < 4, then | A" — A"X,| < € for all 0 < n < x (respec-

tively, A"x — A"xy — 0 as n — o).
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PROOF. Assertions (1) and (2) follow from the relationship g" ** = g*A.
Assertion (3) follows from the fact that a sum of solutions of a linear system
is again a solution. Assertion (4) follows from Liouville’s theorem. ]

We apply the theorem above to the mapping A of the phase plane {(x,, x,}}
onto itself, corresponding to the equation (1) and the system (3). Since (3) is
linear and hamiltonian (H = 1w?x? + 3x3), we get:

Corollary. The mapping A is linear, and preserves area (det A = 1). The trivial
solution of Equation (1) is stable if and only if the mapping A is stable.

PrOBLEM. Show that a rotation of the plane is a stable mapping, and a
hyperbolic rotation is unstable.

C Linear mappings of the plane to itself which
preserve area

Theorem. Let A be the matrix of a linear mapping of the plane to itself which
preserves area (det A = 1). Then the mapping A is stable if |tr A| < 2, and
unstable if [tr A| > 2 (tr A = a,;; + a,).

ProoOF. Let A, and A, be the cigenvalues of 4. They satisfy the characteristic
equation A? — (tr A)A + 1 = 0 with real coefficients A, + A, = tr A and
A, -4, = det A = 1. The roots 4, and A, of this real quadratic equation are
real for |[tr A| > 2 and complex conjugate for [tr 4] < 2.

In the first case one of the eigenvalues has absolute value greater than 1,
and one has absolute value less than 1; the mapping A is a hyperbolic
rotation and is unstable (Figure 97).

Figure 97 Eigenvalues of the mapping 4

In the second case the eigenvalues lie on the unit circle (Figure 97):
1=4-4; = ’11'11 = |'11|2-

The mapping A is equivalent to a rotation through angle a (where 4, ; =
et j.e. it may be reduced to arotation by means of an appropriate choice of
coordinates on the plane. Therefore, it is stable. |

In this way, every question about the stability of the trivial solution of an
equation of the form (1) is reduced to computation of the trace of the matrix
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25: Parametric resonance

A. Unfortunately, the calculation of this trace can be done explicitly only in
special cases. It is always possible to find the trace approximately by numeri-
cally integrating the equation on the interval O < ¢ < T. In the important
case when w(t) is close to a constant, some simple general arguments can help.

D Strong stability

Definition. The trivial solution of a hamiltonian linear system is strongly
stable if it is stable, and if the trivial solution of every sufficiently close
linear hamiltonian system is also stable.*>

The two theorems above imply:

Corollary. If |tr A| < 2, then the trivial solution is strongly stable.

PrOOF. If [tr A| < 2, then a mapping A’ corresponding to a sufficiently close
system will also have [tr A'| < 2. ™

Let us apply this to a system with almost constant (only slightly varying)
coeflicients. Consider, for example, the equation

(4) X = —w?*(1l + ea(t))x, e<€1

where a(t + 2n) = a(t), e.g., a(t) = cos t (Figure 98) (a pendulum whose
frequency oscillates near w with small amplitude and period 2r).4¢

w%’ébt‘

Figure 98 Instantaneous frequency as a function of time

st 4

We will represent each system of the form (4) by a point in the plane of
parameters &, @ > 0. Clearly, the stable systems with [tr 4] < 2 form an
open set in the (w, ¢)-plane; so do the unstable systems with |tr 4| > 2
(Figure 99).

The boundary of stability is given by the equation |tr A| = 2.

Theorem. All points on the w-axis except the integers and half-integers
w=k/2,k =0,1,2,...correspond to strongly stable systems (4).

45 The distance between two linear systems with periodic coeflicients, x = B, (t)x, X = B,(r)x,
is defined as the maximum over 1 of the distance between the operators B, (t) and B,(t).

4% In the case a(¢) = cos t, Equation (4) is called Mathieu's equation.
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(V][
N,
[\

€ €]/ - ()

Figure 99 Zones of parametric resonance

Thus, the set of unstable systems can approach the w-axis only at the
points w = k/2. In other words, swinging a swing by small periodic changes
of the length is possible only in the case when one period of the change in
length is close to a whole number of half-periods of characteristic oscillations
—a result well known experimentally.

The proof of the theorem above is based on the fact that for ¢ = 0, Equation
(4) has constant coefficients and is clearly solvable.

ProBLEM. Calculate the matrix of the transformation A after period T = 2=
in the basis x, x for system (4) with ¢ = 0.

Solution. The general solution is:
X = ¢, COS Wt + ¢, Sin wt.
The solution with initial conditions x = 1, X = 0 is:
X = COS wt X = — sin wt.

The solution with initial conditions x = 0, x = 1 is:

1
x = — sin wt X = coSs wt.
(53]
ANSWER.
|
cos 2nw — sin 2nw
A= w
—w sin 2w COS 27w
Therefore, [tr A| = |2 cos 2wn| < 2 if w # k/2, k=0, 1, ..., and the

theorem follows from the preceding corollary.

A more careful analysis*’ shows that in general (and for a(t) = cost)
the region of instability (shaded in Figure 99) in fact approaches the w-axis
near the points w = k/2, k=1,2,....

47 Cf., for example, the problem analyzed beiow.
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25: Parametric resonance

Thus, for @ =~ k/2, k = 1, 2, ..., the lowest equilibrium position of the
idealized swing (4) is unstable and it swings under an arbitrarily small
periodic change of length. This phenomenon is called parametric resonance.
A characteristic property of parametric resonance is that it is strongest when
the frequency of the variation of the parameter v (in Equation (4), v = 1)
is twice the characteristic frequency w.

Remark. Theoretically, parametric resonance can be observed for the
infinite collection of cases w/v = k/2, k = 1, 2, .... In practice, it is usually
observed only when k is small (k = 1, 2, and more rarely, 3). The reason is
that:

1. For large k the region of instability approaches the w-axis in a very narrow
“tongue” and the resonance frequencies w must satisfy very rigid bounds
(~ 0%, where 8 € (0, 1) depends on the width of the analyticity band for the
function a(t) in (4)).

2. The instability itself is weak for large k, since {tr 4| — 2 is small and the
eigenvalues are close to 1 for large k.

3. If there is an arbitrarily small amount of friction, then there is a minimal
value g, of the amplitude in order for parametric resonance to begin (for ¢
less than this the oscillation dies out). As k grows, g, grows quickly (Figure
100).

\,

|

Figure 100 Influence of friction on parametric resonance

We also notice that for Equation (4) the size of x grows without bound in
the unstable case. In real systems, oscillations attain only finite amplitudes,
since for large x the linear equation (4) itself loses influence, and we must
consider the nonlinear effects.

PrROBLEM. Find the shape of the region of stability in the ¢.«w-plane for the system described by
the equations
w + & O<t<nm

¥= —fAx [ = { ¢ <

W — n<t<2n
f(t + 2m) = f(1)
Solution. It follows from the solution of the preceding problem that 4 = A, A,, where
1
A, = Ci — 5
— WS O

) = COS MWy, 8§ = SIN w,, W, ; = W + &
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Therefore, the boundary of the zone of stability has the equation

w; @,
2cic3 — | — + ~—=]5:5,
W, W,

= 2.

(5) ltr A| =

Since ¢ < 1, we have w,/w, = (w + &)/(w — &) = 1. We introduce the notation

)y w;
— 4+ —= = 2(1 + A).
w,  w,

Then, as is easily computed, A = (2e2/w?) + O(e*) < 1. Using the relations 2c,c; =
cos 2ne + cos 2nw and 25,5, = cos 2ne — cos 2nw, we rewrite Equation (5) in the form

—Acos 2re + (2 + A)os 2w = +2

or
2 + Acos2ne
(6a) cos 2y = ——
2+ A
—2 + Acos2n
{6b) cos 2ne = £
2+ A
In the first case cos 2nw = 1. Therefore, we set
w=k+alal €1 cos 2nw = cos 2na = 1 — 2n2a® + O(a*).

We rewrite Equation (6a) in the form

(1 — cos 2ne)

os 2w = 1 —
¢ i 24+ A

or 2n2a? + O(a*) = An?e? + O(sY).
Substituting in the value A = (2¢?/w?) + O(g*), we find

2 2

&
a=+— +o(?), ie, w=k= e + o(e?).

Equation (6b) is solved analogously; for the result we get

1 €
=k +—-—4+ —— + o).
w 27wk + %) ®

Therefore the answer has the form depicted in Figure 101.

-

(N1
Pt
ol
39

Figure 101 Zones of parametric resonance for f = w + ¢
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25: Parametric resonance

E Stability of an inverted pendulum with vertically
oscillating point of suspension

ProBLEM. Can the topmost, usually unstable, equilibrium position of a
pendulum become stable if the point of suspension oscillates in the vertical
direction (Figure 102)?

mg

gaI

ba Parabola

o

Figure 102 Inverted pendulum with oscillating point of suspension

Let the length of the pendulum be I, the amplitude of the oscillation of the
point of suspension be a < [, the period of oscillation of the point of suspen-
sion 2z, and, moreover, in the course of every half-period let the acceleration
of the point of suspension be constant and equal to + ¢ (then ¢ = 8a/7?). It
turns out that for fast enough oscillations of the point of suspension (t < 1)
the topmost equilibrium becomes stable.

Solution. The equation of motion can be written in the form ¥ = (w? + d?)x (the sign changes
after time 1), where w? = g/l and d? = ¢/I. If the oscillation of the suspension is fast enough,
then d? > w? (d* = 8a/l<?).

As in the previous problem, A = 4, A;, where

1 1
chktr —shkr cos Qt — sin Qt
A, = k A, = Q
kshkt chkt —QsinQr  cos Q1
k? = d? + w?, Q? = d% — w

The stability condition [tr 4] < 2 therefore has the form

E Q
(N 2ch ktcos Q1 + (5-~ E)Sh kT sin Qt| < 2

We will show that this condition is fulfilled for sufficiently fast oscillations of the point of
suspension, i.e., when ¢ > g. We introduce the dimensionless variables ¢, p:

a
-[-=.92<<l g=u2<l.
P
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Then

kr=2\/§£,/1+y2 Qr=2\/§£,/1—,u2

kK Q 1+ p? |
RO — = 2u? + O@u*).
O &k NIZ22 NixgeE—* (15

Therefore, for small ¢ and p we have the following expansion with error o(g* + u*):

chkt =1+ 431 + p?) + §c* + -~ cos Qr =1 — 4e(1 — p?) + §e* + - --
k Q . 2 2
2 sh kT sin Qt = 166°u* + ---

so the stability condition (7) takes the form
2(1 — 16e* + 3fe* 4 Be2u? + --) + 1662u? < 2,

i.e., disregarding the small higher-order terms, $16¢* > 32,22 or u < £./2/3, or g/c < 2a/3L
This condition can be rewritten as

Nz= 3 l~022’
= 620);~ . (I)a,

where N = 1/27 is the number of oscillations of the point in one unit of time. For example, if the
length of the pendulum !is 20 ¢cm, and the amplitude of the oscillation of the point of suspension

ais I cm, then

/980
N > 0.22 E 20 = 31 (oscillations per second).

For example, the topmost position is stable if the frequency of oscillation of the point of
suspension is greater than 40 per second.
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Rigid bodies

In this chapter we study in detail some very special mechanical problems.
These problems are traditionally included in a course on classical mechanics,
first because they were solved by Euler and Lagrange, and also because we
live in three-dimensional euclidean space, so that most of the mechanical
systems with a finite number of degrees of freedom which we are likely to
encounter consist of rigid bodies.

26 Motion in a moving coordinate system
In this paragraph we define angular velocity.

A Moving coordinate systems

We look at a lagrangian system described in coordinates q, t by the lagrangian
function L(q, q, t). It will often be useful to shift to a moving coordinate
system Q = Q(q, 1).

To write the equations of motion in a moving system, it is sufficient to
express the lagrangian function in the new coordinates.

Theorem. If the trajectory y: q = @(t) of Lagrange’s equations d(6L/0q)/dt =
¢L/éq is written as y: Q = ®(t) in the local coordinates Q, t (where Q =
Q(q, t)), then the function ®(t) satisfies Lagrange’s equations d(3L /9Q)/dt =
oL’ /0Q, where L'(Q, Q, t) = L{q.q, t).

ProOF. The trajectory y is an extremal: 6[, L(q, q, t)dt = 0. Therefore,
8, L'(Q, Q, t)dt = 0 and ®(z) satisfies Lagrange’s equations. O
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6: Rigid bodies

B Motions, rotations, and translational motions

We consider, in particular, the important case where q is the cartesian radius
vector of a point relative to an inertial coordinate system k (which we will
call stationary), and Q is the cartesian radius vector of the same point relative
to a moving coordinate system K.

Definition. Let k and K be oriented euclidean spaces. A motion of K relative
to k is a mapping smoothly depending on ¢:

D,:K — k,

which preserves the metric and the orientation (Figure 103).

| ¥
\Lﬁ’ P

Figure 103 The motion D, decomposed as the product of a rotation B, and transla-
tion C,

Definition. A motion D, is called a rotation if it takes the origin of K to the
origin of k, i.e., if D, is a linear operator.

Theorem. Every motion D, can be uniquely written as the composition of a
rotation B,: K — k and a translation C,: k — k:
D, = C,B,,
where C,q = q + 1(t), (q, re k).
ProoF. We set r{(t) = D,0, B, = C, 'D,. Then B,0 = 0. U

Definition. A motion D, is called translational if the mapping B,: K — k
correspondingto it doesnotdependont: B, = B, = B,D,Q = BQ + r(1).

We will call k a stationary coordinate system, K a moving one, and
q{t) € k the radius-vector of a point moving relative to the stationary system;
if
(1) q(1) = D, Q1) = B, Q1) + r(x)

(Figure 104), Q(r) is called the radius vector of the point relative to the moving
system.

Warning. The vector B,Q(t) € k should not be confused with Q(r) e K—
they lie in different spaces!
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X B Q1)
F‘Q’(f)
Q)

r()

1 K

Figure 104 Radius vector of a point with respect to stationary (q) and moving (Q)
coordinate systems

C Addition of velocities

We will now express the “absolute velocity” q in terms of the relative motion
Q(1) and the motion of the coordinate system, D,. By differentiating with
respect to ¢ in formula (1) we find a formula for the addition of velocities
() q= BQ + BQ + .

In order to clarify the meaning of the three terms in (2), we consider the
following special cases.

The case of translational motion (B = 0)
In this case Equation (2) gives q = BQ + . In other words, we have shown

Theorem. If the moving system K has a translational motion relative to k, then
the absolute velocity is equal to the sum of the relative velocity and the
velocity of the motion of the system K:

3) V=V + v,
where

v = q €k is the absolute velocity,

v = BQ €k is the relative velocity (distinct from QeK

v, = I € k is the velocity of motion of the moving coordinate system.

D Angular velocity

In the case of a rotation of K the relationship between the relative and ab-
solute velocities is not so simple. We first consider the case when our point is
at rest in K (i.e, Q = 0) and the coordinate system K rotates (i€, r = 0).
In this case the motion of the point q(¢) is called a transferred rotation.

EXAMPLE. Rotation with fixed angular velocity m e k. Let U(t): k — k be the
rotation of the space k around the w-axis through the angle {®|t. Then
B(t) = U(r)B(0) is called a uniform rotation of K with angular velocity o.
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o
Figure 105 Angular velocity

Clearly, the velocity of the transferred motion of the point q in this case is
given by the formula (Figure 105)

q=[mw,q]

We now turn to the general case of a rotation of K (r = 0, Q = 0).

Theorem. At every moment of time t, there is a vector w(t) € k such that the
transferred velocity is expressed by the formula

4) q=[mw q], Vqek.

The vector w is called the instantaneous angular velocity; clearly, it is
defined uniquely by Equation (4).

Corollary. Suppose that a rigid body K rotates around a stationary point 0 of
the space k. Then at every moment of time there exists an instantaneous axis
of rotation—the straight line in the body passing through O such that the
velocity of its points at the given moment of time is equal to zero. The
velocity of the remaining points is perpendicular to this straight line and is
proportional to the distance from it.

The instantaneous axis of rotation in k is given by its vector ®; in K the
corresponding vector is denoted by Q@ = B lw € K ; Q is called the vector of
angular velocity in the body.

ExaMmpLE. The angular velocity of the earth is directed from the center to the North Pole; its
length is equal to 27/3600-24 sec™ =~ 7.3- 107 % sec™ ',

PROOF OF THE THEOREM. By (2) we have

i = BQ.

Therefore, if we express Q in terms of q, we get § = BB~ !q = Aq, where
A = BB ':k — k is a linear operator on k.
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Lemma 1. The operator A is skew-symmetric: A* + A = 0.

PROOF. Since B: K — k is an orthogonal operator from one euclidean space
to another, its transpose is its inverse: B' = B~ !: k — K. By differentiating
the relationship BB' = E with respect to t, we get

BB' + BB =0 BB™' + (BB~ 'y = 0. O

Lemma 2. Every skew-symmetric operator A on a three-dimensional oriented
euclidean space is the operator of vector multiplication by a fixed vector:

Aq = [o,q] for all e R>.

PrOOF. The skew-symmetric operators from R?* to R? form a linear space.
Its dimension is 3, since a skew-symmetric 3 x 3 matrix is determined by its
three elements below the diagonal.

The operator of vector multiplication by e is linear and skew-symmetric.
The operators of vector multiplication by all possible vectors e in three-
space form a linear subspace of the space of all skew-symmetric operators.

The dimension of this subspace is equal to 3. Therefore, the subspace of
vector multiplications is the space of all skew-symmetric operators. [l

CONCLUSION OF THE PROOF OF THE THEOREM. By Lemmas 1 and 2,
q=Aq = [0, q]. L

In cartesian coordinates the operator A is given by an antisymmetric
matrix; we denote its elements by +w; , 3:

0 — sy
A= (£ 7Y 0 —wy
—w, W 0

In this notation the vector ® = w,e; + w,e, + wie; will be an eigenvector
with eigenvalue 0. By applying 4 to the vector 4 = gq,€, + g,€, + gses,
we obtain by a direct calculation

Aq = [w, q].

E Transferred velocity

T he case of purely rotational motion

Suppose now that the system K rotates (r = 0), and that a point in K
is moving (Q # 0). From (2) we find (Figure 106)

g=BQ + BQ =[w,q] +V.

In other words, we have shown
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Un

o
Figure 106 Addition of velocities

Theorem. If a moving system K rotates relative to 0 €k, then the absolute
velocity is equal to the sum of the relative velocity and the transferred

velocity:
v=V 4+ v,
where
v = { € k is the absolute velocity
(5) v = BQ €k is the relative velocity

v, = BQ = [o, q] € k is the transferred velocity of rotation.

n

Finally, the general case can be reduced to the two cases above, if we
consider an auxiliary system K; which moves by translation with respect to
k and with respect to which K moves by rotating around O€ K;. From
formula (2) one can see that

v=vVv 4+ v, + Vg,
where
v = ( € k is the absolute velocity,
v = BQ €k is the relative velocity,
v, = BQ = [w, q — r] € k is the transferred velocity of rotation,

and
v, = rek is the velocity of motion of the moving coordinate system.

PrOBLEM. Show that the angular velocity of a rigid body does not depend on
the choice of origin of the moving system K in the body.

ProBLEM. Show that the most general movement of a rigid body is a helical
movement, i.e., the composition of a rotation through angle ¢ around some

axis and a translation by h along it.

PROBLEM. A watch lies on a table. Find the angular velocity of the hands of the watch: (a) relative
to the earth, (b) relative to an inertial coordinate system.
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27: Inertial forces and the Coriohs force

Hin:. 1f we are given three coordinate systems k. K,, and K,. then the angutar velocity of K,
relative to k is equal to the sum of the angular velocities of K, relative to k and of K, relative

to K, since

(E+ Ayt + - NE+ Ayt + ) =E + (A, + A0t + .

27 Inertial forces and the Coriolis force

The equations of motion in a non-inertial coordinate system differ from the equations of motion
in an inertial system by additional terms called inertial forces. This allows us to detect experi-
mentally the non-inertial nature of a system (for example, the rotation of the earth around its

axis).

A Coordinate systems moving by translation

Theorem. In a coordinate system K which moves by translation relative to an
inertial system k, the motion of a mechanical system takes place as if the
coordinate system were inertial, but on every point of mass m an additional
“inertial force” acted: ¥ = —mf, wheret is the acceleration of the system K.

Proor. If Q = q — r(1), then mQ = m§ — mfk. The effect of the translation of
the coordinate system is reduced in this way to the appearance of an addi-
tional homogeneous force field —mW, where W is the acceleration of the

origin. [l
1

mg —r)

77T\
TI777777 77777

Figure 107 Overload

ExAMPLE 1. At the moment of takeoff, a rocket has acceleration ¥ directed upward (Figure 107).
Thus, the coordinate system K connected to the rocket is not inertial, and an observer inside can
detect the existence of a force field mW and measure the inertial force. for example. by means of
weighted springs. In this case the inertial force is called overload *

ExAMPLE 2. When jumping from a loft, a person has acceleration g, directed downwards. Thus,
the sum of the inertial force and the force of gravity is equal to zero: weighted springs show that
the weight of any object is equal to zero, so such a state is called weightlessness. In exactly the
same way, weightlessness is observed in the free ballistic flight of a satellite since the force of
inertia is opposite Lo the gravitational force of the earth.

ExaMpLE 3. If the point of suspension of a pendulum moves with acceleration W(¢), then the
pendulum moves as if the force of gravity g were variable and equal to g — W(r).

* Translator’s note. The word overload is the literal translation of the Russian term peregruzka.
There does not seem to be an English term for this particular kind of inertial force.
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6: Rigid bodies

B Rotating coordinate systems

Let B,: K — k be a rotation of the coordinate system K relative to the sta-
tionary coordinate system k. We will denote by Q(z) € K the radius vector of
a moving point in the moving coordinate system, and by q(t) = B,Q(t) € k
the radius vector in the stationary system. The vector of angular velocity in
the moving coordinate system is denoted, as in Section 26, by £2. We assume
that the motion of the point q in k is subject to Newton’s equation m{ =

f(q, 9).
Theorem. Motion in a rotating coordinate system takes place as if three addi-

tional inertial forces acted on every moving point Q of mass m:

1. the inertial force of rotation: m[£2, Q],
2. the Coriolis force: 2m[S2, Q], and
3. the centrifugal force: m{£Q, [£2, Q]].

Thus
mQ) = F — m[Q, Q] — 2m[R, Q] — m[£2, [, Q1],
where

BF(Q, Q) = f(BQ, (BQ) ).

The first of the inertial forces is observed only in nonuniform rotation.
The second and third are present even in uniform rotation.

Figure 108 Centrifugal force of inertia

The centrifugal force (Figure 108) is always directed outward from the
instantaneous axis of rotation € it has magnitude |€2|*r, where r is the
distance to this axis. This force does not depend on the velocity of the relative
motion, and acts even on a body at rest in the coordinate system K.

The Coriolis force depends on the velocity Q. In the northern hemisphere
of the earth it deflects every body moving along the earth to the right, and
every falling body eastward.
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27: Inertial forces and the Coriolis force

PROOF OF THE THEOREM. We notice that for any vector X e K we have
BX = B[, X]. In fact, by Section 26, BX = [®, x] = [BQ, BX]. This is
equal to B[, X] since the operator B preserves the metric and orientation,
and therefore the vector product.

Since q = BQ we see that 4 == BQ + BQ = B(Q + [Q, Q]). Differenti-
ating once more, we obtain

Q= BQ + [£2.0D + B@ + [€,Q] + [2. Q]
= B(E_ﬂ, (Q + [, QD] + Q + [ Q] + [, QD
= B(Q + 2[, Q] + [, [, Q1] + [£2, Q). -

(We again used the relationship BX = B[, X]; this time X = Q +
(€2, Q1)

We will consider in more detail the effect of the earth’s rotation on laboratory experiments.
Since the earth rotates practically uniformly, we can take £ = 0. The centrifugal force has its
largest value at the equator, where it attains 3%p/g ~ (7.3 x 107%)2.6.4 x 105/9.8 =~ 3/1000
the weight. Within the limits of a laboratory it changes little, so to observe it one must travel
some distance. Thus, within the limits of a laboratory the rotation of the earth appears only in
the form of the Coriolis force: in the coordinate system Q associated to the earth, we have, with
good accuracy,

d . .
o mQ = mg + 2m[Q, Q2]
(the centrifugal force is taken into account in g).
ExXaMPLE 1. A stone is thrown (without initial velocity) into a 250 m deep mine shaft at the

latitude of Leningrad. How far does it deviate from the vertical?
We solve the equation

Q=g +2[Q Q]
by the following approach, taking £ < 1. We set (Figure 109)
Q=0Q, +Q,,
where Q,(0) = Q,(0) = O and Q, = Q,(0) + gr?/2. For Q,, we then get
. [3 2{ tZ
Q- 20 21+ 0@) Qx5 [e@~Iha] h-2
Q, ) Q
AN
E
g
Q, )

Figure 109 Displacement of a falling stone by Coriolis force
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6: Rigid bodies

From this it is apparent that the stone lands about
2t 2-7
glhllﬂlcosl x> —?-250-7-]0_5-%m = dcm
to the east.

PrOBLEM. By how much would the Coriclis force displace a missile fired vertically upwards at
Leningrad from falling back onto its launching pad, if the missile rose 1 kilometer?

EXAMPLE 2 (The Foucault pendulum). Consider small oscillations of an ideal pendulum, taking
into account the Coriolis force. Let e, e,, and e, be the axes of a coordinate system associated
to the earth, with e, directed upwards, and e, and ¢, in the horizontal plane (Figure 110). In

Ly

X

Figure 110 Coordinate system for studying the motion of a Foucault pendulum

the approximation of small oscillations, Z = 0 {in comparison with % and y): therefore, the
horizontal component of the Coriolis force will be 2myS2. e, — 2mx€).e,. From this we get the
equations of motion
{J‘r‘ = —w?x + 2yQ,, (Q, = || sin 4,, where 4, is the Jatitude)
j = —wly - 2%Q,
If we set x + iy = w, then W = X + iy, w = ¥ + i, and the two equations reduce to cne

complex equation

w + 2Q.% + w?w = 0.

We solveit: w = e*, 22 + 2iQA + w? = 0,4 = —iQ, + i/Q? + w? But Q? < w?’. Therefore,
Q2 + 0 = w + O(Q?). from which it follows. by disregarding QZ, that

Ax —iQ + iw

or, to the same accuracy.

Wwe=oe" lﬂ,l((,lermt + ¢, e—:ml)_

For Q. = 0 we get the usual harmonic oscillations of a spherical pendulum. We see that the
effect of the Coriolis force reduces to a rotation of the whole picture with angular velocity —€,.
where [£,| = |€2| sin 4,.

In particular, if the initial conditions correspond to a planar motion (3(0) = ¥(0) = 0), then
the plane of oscillation will be rotating with angular velocity —€. with respect to the earth’s
coordinate system (Figure 111).

At a pole, the plane of oscillation makes one turn in a twenty-four-hour day (and is fixed
with respect to a coordinate system not rotating with the earth). At the latitude of Moscow (567)
the plane of oscillation turns 0.83 of a rotation in a twenty-four-hour day. i.e., 12.5° in an hour.
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Figure 111 Trajectory of a Foucault pendulum

PrOBLEM. A river flows with velocity 3 km/hr. For what radius of curvature of a river bend is the
Coriolis force from the carth’s rotation greater than the centrifugal force determined by the flow
of the river?

ANswer. The radius of curvature must be least on the order of 10 km for a river of medium

width.

The solution of this probiem explains why a large river in the northern hemisphere (for
example, the Volga in the middle of its course), undermines the base of its right bank, while a
river like the Moscow River, with its abrupt bends of small radius, undermines either the left or
right (whichever is outward from the bend) bank.

28 Rigid bodies

In this paragraph we define a rigid body and its inertia tensor, inertia ellipsoid. moments of
inertia, and axes of inertia.

A The configuration manifold of a rigid body

Definition. A rigid body is a system of point masses, constrained by holonomic
relations expressed by the fact that the distance between points is constant:

(1) |x; — x;| = r;; = const.

Theorem. The configuration manifold of a rigid body is a six-dimensional
manifold, namely, R?® x SO(3) (the direct product of a three-dimensional
space R* and the group SO(3) of its rotations), as long as there are three
points in the body not in a straight line.

PRrROOF. Let x,, X,, and x; be three points of the body which do not lie in a
straight line. Consider the right-handed orthonormal frame whose first
vector is in the direction of x, — x,, and whose second is on the X, side in the
X,X, X3-plane (Figure 112). It follows from the conditions |X; — X;| = ry;
(i = 1, 2, 3), that the positions of all the points of the body are uniquely
determined by the positions of X,, X,, and X,, which are given by the position
of the frame. Finally, the space of frames in R? is R x SO(3), since every
frame is obtained from a fixed one by a rotation and a translation.*8 (]

8 Strictly speaking, the configuration space of a rigid body is R* x O(3), and R?® x SO(3) is
only one of the two connected components of this manifold, corresponding to the orientation of
the body.
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€2

Xz

[
X7 X2 !

€3

Figure 112 Configuration manifold of a rigid body

ProBLEM. Find the configuration space of a rigid body, all of whose points lie on a line.

ANSWER. B3 x §2.

Definition. A rigid body with a fixed point O is a system of point masses con-
strained by the condition x, = O in addition to conditions (1)}.

Clearly, its configuration manifold is the three-dimensional rotation
group SO(3).

B Conservation laws

Consider the problem of the motion of a free rigid body under its own inertia,
outside of any force field. For an (approximate) example we can use the
rolling of a spaceship.

The system admits all translational displacements: they do not change
the lagrangian function. By Noether’s theorem there exist three first integrals:
the three components of the vector of momentum. Therefore, we have shown

Theorem. Under the free motion of a rigid body, its center of mass moves
uniformly and linearly.

Now we can look at an inertial coordinate system in which the center of
inertia is stationary. Then we have

Corollary. A free rigid body rotates about its center of mass as if the center of
mass were fixed at a stationary point O.

In this way, the problem is reduced to the problem, with three degrees of
freedom, of the motion of a rigid body around a fixed point 0. We will study
this problem in more detail (not necessarily assuming that O is the center of
mass of the body).

The lagrangian function admits all rotations around O. By Noether’s
theorem there exist three corresponding first integrals: the three components
of the vector of angular momentum. The total energy of the system, E = T,
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is also conserved (here it is equal to the kinetic energy). Therefore, we have
shown

Theorem. In the problem of the motion of a rigid body around a stationary point
O, in the absence of outside forces, there are four first integrals: M,, M,
M. and E.

From this theorem we can get qualitative conclusions about the motion
without any calculation.

The position and velocity of the body are determined by a point in the
six-dimensional manifold TSO(3)—the tangent bundle of the configuration
manifold SO(3). The first integrals M,, M,, M, and E are four functions on
TSO(3). One can verify that in the general case (if the body does not have any
particular symmetry) these four functions are independent. Therefore, the
four equations

Mx=C1 My=C2 Mz:C3 E=C4>O

define a two-dimensional submanifold V. in the six-dimensional manifold
TSO(3).

This manifold is invariant: if the initial conditions of motion give a point
on V,, then for all time of the motion, the point in TSO(3) corresponding to
the position and velocity of the body remains in V..

Therefore, V. admits a tangent vector field (namely, the field of velocitics
of the motion on TSO(3)); for C, > O this field cannot have singular points.
Furthermore, it is easy to verify that V, is compact (using E) and orientable
(since TSO(3) is orientable).*®

In topology it is proved that the only connected orientable compact two-
dimensional manifolds are the spheres with n handles, n > 0 (Figure 113).
Of these, only the torus (n = 1) admits a tangent vector field without singular
points. Therefore, the invariant manifold ¥, is a two-dimensional torus (or
several tori).

We will see later that one can choose angular coordinates ¢,, @5, (mod 2n)
on this torus such that a motion represented by a point of V, is given by the
equations ¢@; = w(c), ¢, = w,(c).

4® The following assertions are easy to prove:

1. Let f;,.... fi: M — R be functions on an oriented manifold M. Consider the set V given by
the equations f, = ¢, ..., fy = ¢;,. Assume that the gradients of fi, ..., f, are linearly
independent at each point. Then V is orientable.

The direct product of orientable manifoids is orientable.

3. The tangent bundle TSO(3) is the direct product R* x SO(3). A manifold whose tangent
bundle is a direct product is called parallelizable. The group SO(3) (like every Lie group) is
parallelizable.

4. A parallelizable manifold is orientable.

N

It follows from assertions 1-4 that SO(3), TSO(3), and V. are orientable.
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(B Ce

Figure 113 Two-dimensional compact connected orientable manifolds

In other words, a rotation of a rigid body is represented by the super-
position of two periodic motions with (usually) different periods: if the
frequencies @, and w, are non-commensurable, then the body never returns
to its original state of motion. The magnitudes of the frequencies w, and w,
depend on the initial conditions C.

C The inertia operator>°

We now go on to the quantitative theory and introduce the following
notation. Let k be a stationary coordinate system and K a coordinate system
rotating together with the body around the point O: in K the body is at rest.

w
1 m

o

Figure 114 Radius vector and vectors of velocity, angular velocity and angular
momentum of a point of the body in space

Every vector in K is carried over to k by an operator B. Corresponding
vectors in K and k will be denoted by the same letter; capital for K and lower
case for k. So, for example (Figure 114),

q € k is the radius vector of a point in space;

Q € K is its radius vector in the body, q = BQ;

v = q € k is the velocity vector of a point in space;

V € K is the same vector in the body, v = BV

o € k is the angular velocity in space;

Q e K is the angular velocity in the body, ® = BQ;

m € k is the angular momentum in space;

M € K is the angular momentum in the body, m = BM.

Since the operator B: K — k preserves the metric and orientation, it
preserves the scalar and vector products.

50 Often called the inertia tensor (translator’s note).
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By definition of angular velocity (Section 26),
v =l q]

By definition of the angular momentum of a point of mass m with respect
to O,
m = [q, mv] = m[q, [, q]].

Therefore,
M = m[Q, [, Q]].
Hence, there is a linear operator transforming € to M:
A:K - K AQ = M.
This operator still depends on a point of the body (Q) and its mass (m).

Lemma. The operator A is symmetric.

PROOF. In view of the relation ([4, b], ¢) = ([c, al, b) we have, for any X and
Y in K,

(4X,Y) = m([Q, [X, QI1, Y) = m(LY, Q], [X, QD),

and the last expression is symmetric in X and Y. L]

By substituting the vector of angular velocity € for X and Y and noticing
that [©2, Q] = V2 = v2, we obtain

Corollary. The kinetic energy of a point of a body is a quadratic form with
respect to the vector of angular velocity €2, namely:

The symmetric operator A is called the inertia operator (or tensor) of the
point Q.

If a body consists of many points Q, with masses m;, then by summing we
obtain

Theorem. T he angular momentum M of a rigid body with respect to a stationary
point O depends linearly on the angular velocity Q, i.e., there exists a linear
operator A:K — K, AQ = M. The operator A is symmetric.

The kinetic energy of abody is a quadratic form with respect to the angular
velocity £2,
T = (A9, ) = (M, Q).

PRrROOF. By definition, the angular momentum of a body is equal to the sum
of the angular momenta of its points:

M=>YM=> 4,Q=AQ, where 4 = Y A;.
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Since by the lemma the inertia operator A4; of every point is symmetric,
the operator A is also symmetric. For kinetic energy we obtain, by definition,

T =3 T =Y HM, Q) = §M, D) = H4Q, Q). ]

D Principal axes

Like every symmetric operator, A has three mutually orthogonal char-
acteristic directions. Let e,, e,, and e, € K be their unit vectors and I,, I,,
and I, their eigenvalues. In the basis e;, the inertia operator and the kinetic
energy have a particularly simple form:

M,: = II-Q,-

The axes e, are called the principal axes of the body at the point O.

Finally, if the numbers I,, I,, and I, are not all different, then the axes e,
are not uniquely defined. We will further clarify the meaning of the eigen-
values I, I,, and 1.

Theorem. For a rotation of a rigid body fixed at a point O, with angular velocity
Q = Qe (Q = |Q|) around the e axis, the kinetic energy is equal to

= 31,02, wherel, = Z m;r?
and r, is the distance of the i-th point to the e axis (Figure 115).

Q= Qe

Figure 115 Kinetic energy of a body rotating around an axis
PROOF. By definition T = £ Y m;vZ; but |v;| = Qr;,so0 T = 3O m;r})Q>.
The number I, depends on the direction e of the axis of rotation £ in the
body.

Definition. /, is called the moment of inertia of the body with respect to the

e axis:
_ 2
I, = Z m;ri.
i
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By comparing the two expressions for T we obtain:

Corollary. The eigenvalues I; of the inertia operator A are the moments of
inertia of the body with respect to the principal axes e;.

E The inertia ellipsoid

In order to study the dependence of the moment of inertia I, upon the direc-
tion of the axis e in a body, we consider the vectors e/\/i, where the unit
vector e runs over the unit sphere.

Theorem. The vectors e/\/f; Jorm an ellipsoid in K,

PROOF. If = e/\/I_e, then the quadratic form T = 3(A€Q, ) is equal to 1.
Therefore, {£2} is the level set of a positive definite quadratic form, i.e., an
ellipsoid. ]

One could say that this ellipsoid consists of those angular velocity vectors
Q whose kinetic energy is equal to 3.

Definition. The ellipsoid {: (AL, Q) = 1} is called the inertia ellipsoid of the
body at the point 0 (Figure 116).

Body

Ellipsoid of inertia

Figure 116 Ellipsoid of inertia

In terms of the principal axes e;, the equation of the inertia ellipsoid has
the form
1,QF + 1,02 + 1,02 = 1.

Therefore the principal axes of the inertia ellipsoid are directed along the
principal axes of the inertia tensor, and their lengths are inversely proportional

to \/Tl

Remark. If a body is stretched out along some axis, then the moment of
inertia with respect to this axis is small, and consequently, the inertia el-
lipsoid is also stretched out along this axis; thus, the inertia ellipsoid may
resemble the shape of the body.

If a body has an axis of symmetry of order k passing through O (so that it
coincides with itself after rotation by 2n/k around the axis), then the inertia
ellipsoid also has the same symmetry with respect to this axis. But a triaxial
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ellipsoid does not have axes of symmetry of order k > 2. Therefore, every axis
of symmetry of a body of order k > 2 is an axis of rotation of the inertia
ellipsoid and, therefore, a principal axis.

ExaMmpLE. The inertia ellipsoid of three points of mass m at the vertices of an equilateral triangle
with center O is an ellipsoid of revolution around an axis normal to the plane of the triangle
(Figure 117).

Figure 117 Ellipsoid of inertia of an equilateral triangle

If there are several such axes, then the inertia ellipsoid is a sphere, and any
axis is principal.

PrOBLEM. Draw the line through the center of a cube such that the sum of the squares of its
distances from the vertices of the cube is: (a) largest, (b) smallest.

We now remark that the inertia ellipsoid (or the inertia operator or the
moments of inertia I,, I,, and I;) completely determines the rotational
characteristics of our body: if we consider two bodies with identical inertia
ellipsoids, then for identical initial conditions they will move identically (since
they have the same lagrangian function L = T).

Therefore, from the point of view of the dynamics of rotation around O,
the space of all rigid bodies is three-dimensional, however many points com-
pose the body.

We can even consider the “solid rigid body of density p(Q),” having in
mind the limit as AQ — 0 of the sequence of bodies with a finite number of
points Q; with masses p(Q;)AQ; (Figure 118) or, what amounts to the same
thing, any body with moments of inertia

L= [[[r@r@a

where r is the distance from Q to the e axis.

|

Q.
1\?\_ ° /

Ve

AQ,

\.;_/
Figure 118 Continuous solid rigid body
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ExaMPLE. Find the principal axes and moments of inertia of the uniform planar plate |x| < a,
|yl < b, z = 0 with respect to 0.

Solution. Since the plate has three planes of symmetry, the inertia ellipsoid has the same planes
of symmetry and, therefore, principal axes x, y, and z. Furthermore,

a b maz
I, =f j x2pdxdy = .
' —a ¥ -5 3

In the same way

Clearly, I, = I, + 1,.

PROBLEM. Show that the moments of inertia of any body satisfy the triangle inequalities
I,<1I,+1, I, <I,+1I; and I, <1, + I,,

and that equality holds only for a planar body.

PrROBLEM. Find the axes and moments of inertia of a homogeneous ellipsoid of mass m with
semiaxes a, b, and c relative to the center 0.
Hine. First look at the sphere.

PROBLEM. Prove Steiner’s theorem: The moments of inertia of any rigid body
relative to two parallel axes, one of which passes through the center of mass,
are related by the equation

I =1, + mr?

where m is the mass of the body, r is the distance between the axes, and I,
is the moment of inertia relative to the axis passing through the center of
mass,

Thus the moment of inertia relative to an axis passing through the center
of mass is less than the moment of inertia relative to any parallel axis.

PrOBLEM. Find the principal axes and moments of inertia of a uniform tetrahedron relative to
its vertices.

PrOBLEM. Draw the angular momentum vector M for a body with a given inertia ellipsoid
rotating with a given angular velocity Q.

ANSWER. M is in the direction normal to the inertia ellipsoid at a point on the £ axis (Figure 119).

Q2

Figure 119 Angular velocity, ellipsoid of inertia and angular momentum
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Figure 120 Behavior of moments of inertia as the body becomes smaller

PROBLEM. A piece is cut off a rigid body fixed at the stationary point 0. How are the principal
moments of inertia changed ? (Figure 120).

ANSWER. All three principal moments are decreased.
Hint. Cf. Section 24,

PROBLEM. A small mass ¢ is added to a rigid body with moments of inertia I, > I, > I3 at the
point Q = x,€, + Xx,€, + x3e3. Find the change in I, and e, with error O(¢?).

Solution. The center of mass is displaced by a distance of order &. Therefore, the moments of
inertia of the old body with respect to the parallel axes passing through the old and new centers
of mass differ in magnitude of order &%. At the same time, the addition of mass changes the
moment of inertia relative to any fixed axis by order &. Therefore, we can disregard the displace-
ment of the center of mass for calculations with error O(e?).

Thus, after addition of a small mass the kinetic energy takes the form

T =T, + $e[€2, Q) + O(?),

where T, = (I, Q2 + 1,Q3} + I,Q3) is the kinetic energy of the original body. We look for the
eigenvalue I,(¢) and eigenvector e, (€) of the inertia operator in the form of a Taylor series in &.
By equating coefficients of ¢ in the relation A(e)e,(¢) = I,(e)e,(g), we find that, within error
O(&?):

I(e) = I, + &(x + x3) and e(c) ~e + s( XXz e, + XiX e3).
I, — 1, I; — 1,

From the formula for I,(g) it is clear that the change in the principal moments of inertia (to the
first approximation in &) is as if neither the center of mass nor the principal axes changed. The
formula for e,(¢) demonstrates how the directions of the principal axes change: the largest
principal axis of the inertia ellipsoid approaches the added point, and the smallest recedes from
it. Furthermore, the addition of a small mass on one of the principal planes of the inertia
ellipsoid rotates the two axes lying in this plane and does not change the direction of the third
axis. The appearance of the differences of moments of inertia in the denominator is connected
with the fact that the major axes of an ellipsoid of revolution are not defined. If the inertia
ellipsoid is nearly an ellipsoid of revolution (i.e., I, = 1,) then the addition of a small mass could
strongly turn the axes e, and e, in the plane spanned by them.

29 Euler’s equations. Poinsot’s description of the motion

Here we study the motion of a rigid body around a stationary point in the absence of outside
forces and the similar motion of a free rigid body. The motion turns out to have two frequencies.

A Euler’s equations

Consider the motion of a rigid body around a stationary point O. Let M be
the angular momentum vector of the body relative to O in the body, € the
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29: Euler’s equations. Poinsot’s description of the motion

angular velocity vector in the body, and A4 the inertia operator (4£2 = M);
the vectors £2 and M belong to the moving coordinate system K (Section 26).
The angular momentum vector of the body relative to O in space, m = BM,
is preserved under the motion (Section 28B).

Therefore, the vector M in the body (M € K) must move so thatm = B,M(t)
does not change when t changes.

Theorem
dM

ProoOF. We apply formula (5), Section 26 for the velocity of the motion of
the “point™ M(t) € K with respect to the stationary space k. We get

m = BM + [w, m] = B(M + [, M]).

But since the angular momentum m with respect to the space is preserved
(m=0) M+ [ M] =0 Ml

Relation (1) is called the Euler equations. Since M = A€, (1) can be
viewed as a differential equation for M (or for ). If
QZQlel +QZCZ+Q3C3 and M=M1el +M282+M3e3
are the decompositions of £ and M with respect to the principal axes at O,
then M; = I,; and (1) becomes the system of three equations

dM dM dM
@) o =aMMy,  —E=aMiM, 2

wherea; = (I; — I3)/I315,a, = (I; — 1,)/I31,anday = (I, — I,)/1,1,,o0r,
in the form of a system of three equations for the three components of the
angular velocity,

= a3M1M2,

dQ

I, dtl = (Iz - 13)9293,
dQ

=2 =5 — 1),
dQ

13 Tts = (Il - 12)9192-

Remark. Suppose that outside forces act on the body, the sum of whose
moments with respect to O is equal to n in the stationary coordinate system
and N in the moving system (n = BN). Then

’ m=n
and the Euler equations take the form

dM
i N.
T [M, Q] +
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6: Rigid bodies

B Solutions of the Euler equations

Lemma. The Euler equations (2) have two quadratic first integrals

M2 M3 M3
=1 7273 and M?2=M?+ MZI+ M3

2E
I, I Iy

PROOF. E is preserved by the law of conservation of energy, and M? by the
law of conservation of angular momentum m, since m? = M? = M~ O

Thus, M lies in the intersection of an ellipsoid and a sphere. In order to
study the structure of the curves of intersection we will fix the ellipsoid
E > 0 and change the radius M of the sphere (Figure 121).

€2

€}

€3

Figure 121 Trajectories of Euler’s equation on an energy level surface

We assume that I, > I, > I,. The semiaxes of the ellipsoid will be
2EI, > /2EI, > ﬁEh. If the radius M of the sphere is less than the

smallest semiaxes or larger than the largest (M < /2EI;or M > (/2El,),
then the intersection is empty, and no actual motion corresponds to such

values of E and M. If the radius of the sphere is equal to the smallest semi-
axes, then the intersection consists of two points. Increasing the radius, so

that \/EEI_,, < M < /2EI,, we get two curves around the ends of the small-
est semiaxes. In exactly the same way, if the radius of the sphere is equal
to the largest semiaxes we get their ends, and if it is a little smaller we get
two closed curves close to the ends of the largest semiaxes. Finally, if
M = . /2EI,, the intersection consists of two circles.

Each of the six ends of the semiaxes of the ellipsoid is a separate trajectory
of the Euler equations (2)—a stationary position of the vector M. It corre-
sponds to a fixed value of the vector of angular velocity directed along one
of the principal axes e;; during such a motion, £ remains collinear with M,
Therefore, the vector of angular velocity retains its position @ in space
collinear with m: the body simply rotates with fixed angular velocity around
the principal axis of inertia e;, which is stationary in space.
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29: Euler’s equations. Poinsot’s description of the motion

Definition. A motion of a body, under which its angular velocity remains
constant (w = const, £ = const) is called a stationary rotation.

We have proved:

Theorem. A rigid body fixed at a point O admits a stationary rotation around
any of the three principal axes e, €,, and e;.

If, as we assumed, I, > I, > I, then the right-hand side of the Euler
equations does not become 0 anywhere else, i.e., there are no other stationary

rotations.
We will now investigate the stability (in the sense of Liapunov) of solu-

tions to the Euler equations.

Theorem. The stationary solutions M = M e, and M = M,e; of the Euler
equations corresponding to the largest and smallest principal axes are
stable, while the solution corresponding to the middle axis (M = M ,e,)
is unstable.

ProoOF. For a small deviation of the initial condition from M e, or M;e,,
the trajectory will be a small closed curve, while for a small deviation from
M e, it will be a large one. O

PROBLEM. Are stationary rotations of the body around the largest and smallest principal axes
Liapunov stable?

ANSwWER. No.

C Poinsot’s description of the motion

It is easy to visualize the motion of the angular momentum and angular

velocity vectors in a body (M and )—they are periodic if M # /2EI,.
In order to see how a body rotates in space, we look at its inertia ellipsoid.

E={Q:(4Q, Q) = 1} c K,

where 4: Q2 — M is the symmetric operator of inertia of the body fixed

at O.
At every moment of time the ellipsoid E occupies a position B, E in the

stationary space k.

Theorem (Poinsot). The inertia ellipsoid rolls without slipping along a station-
ary plane perpendicular to the angular momentum vector m (Figure 122).

Proor. Consider a plane © perpendicular to the momentum vector m and
tangent to the inertia ellipsoid B, E. There are two such planes, and at the
point of tangency the normal to the ellipsoid is parallel to m.
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6: Rigid bodies

Figure 122 Rolling of the ellipsoid of inertia on the invariable plane

But the inertia ellipsoid E has normal grad(A4€, Q) = 24Q = 2M at the
point Q. Therefore, at the points +& = w/./2T of the @ axis, the normal to
B,E is collinear with m.

So the plane = is tangent to B, E at the points + ¢ on the instantaneous
axis of rotation. But the scalar product of £ with the stationary vector m is
equal to +(1//2T)(m, ®) = +./2T, and is therefore constant. So the
distance of the plane n from O does not change, i.c., n is stationary.

Since the point of tangency lies on the instantaneous axis of rotation, its
velocity is equal to zero. This implies that the ellipsoid B, E rolls without
slipping along 7. ]

Translator’s remark: The plane n is sometimes called the invariable plane.

Corollary. Under initial conditions close to a stationary rotation around the
large (or small) axis of inertia, the angular velocity always remains close
to its initial position, not only in the body (£X) but also in space (m).

We now consider the trajectory of the point of tangency in the stationary
plane 7. When the point of tangency makes an entire revolution on the ellip-
soid, the initial conditions are repeated except that the body has turned
through some angle a around the m axis. The second revolution will be
exactly like the first; if & = 2n(p/q), the motion is completely periodic; if
the angle is not commensurable with 2n, the body will never return to its
initial state.

In this case the trajectory of the point of tangency is dense in an annulus
with center O’ in the plane (Figure 123).

PrOBLEM. Show that the connected components of the invariant two-
dimensional manifold V, (Section 28B) in the six-dimensional space TSO(3)
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29: Euler's equations. Poinsot’s description of the motion

<~
Ja

©

Figure 123 Trajectory of the point of contact on the invariable plane

are tori, and that one can choose coordinates ¢, and ¢, mod 2z on them so
that ¢o; = w;(c) and ¢, = w,(c).
Hint. Take the phase of the periodic vartation of M as ¢;.

We now look at the important special case when the inertia ellipsoid is
an ellipsoid of revolution:

12=I3#11.

In this case the axis of the ellipsoid B,e,, the instantaneous axis of rotation
o, and the vector m always lie in one plane. The angles between them and the
length of the vector @ are preserved; the axes of rotation (@) and symmetry
(B,e;) sweep out cones around the angular momentum vector m with the
same angular velocity (Figure 124). This motion around m is called pre-
cession.

ProBLEM. Find the angular velocity of precession.
ANSWER. Decompose the angular velocity vector ® into components in the directions of the

angular momentum vector m and the axis of the body B.e,. The first component gives the angular
velocity of precession, w,, = M/I,.

Figure 124 Rolling of an etlipsoid of revolution on the invariable plane

147




6: Rigid bodies

Hint. Represent the motion of the body as the product of a rotation around the axis of
momentum and a subsequent rotation around the axis of the body. The sum of the angular
velocity vectors of these rotations is equal to the angular velocity vector of the product.

Remark. In the absence of outside forces, a rigid body fixed at a point O is represented by a
lagrangian system whose configuration space is a group, namely SO(3), and the lagrangian
function is invariant under left translations. One can show that a significant part of Euler’s theory
of rigid body motion uses only this property and therefore holds for an arbitrary left-invariant
lagrangian system on an arbitrary Lie group. In particular, by applying this theory to the group
of volume-preserving diffefomorphisms of a domain D in a riemannian manifold, one can obtain
the basic theorems of the hydrodynamics of an ideal fluid. (See Appendix 2.)

30 Lagrange’s top

We consider here the motion of an axially symmetric rigid body fixed at a stationary point in a
uniform force field. This motion is composed of three periodic processes: rotation, precession,
and nutation.

A Euler angles

Consider a rigid body fixed at a stationary point O and subject to the action
of the gravitational force mg. The problem of the motion of such a “heavy
rigid body” has not yet been solved in the general case and in some sense is
unsolvable.

In this problem with three degrees of freedom, only two first integrals
are known: the total energy E = T + U, and the projection M, of the
angular momentum on the vertical. There is an important special case in
which the problem can be completely solved—the case of a symmetric top. A
symmetric or lagrangian top is a rigid body fixed at a stationary point O
whose inertia ellipsoid at O is an ellipsoid of revolution and whose center of
gravity lies on the axis of symmetry e; (Figure 125). In this case, a rotation

€z I’y

\( ; zg =lcos O

mg
(9

Il

Figure 125 Lagrangian top

around the e, axis does not change the lagrangian function, and by Noecther’s
theorem there must exist a first integral in addition to E and M, (as we will
see, it turns out to be the projection M, of the angular momentum vector on
the e; axis).

If we can introduce three coordinates so that the angles of rotation around
the z axis and around the axis of the top are among them, then these co-
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30: Lagrange’s top

ordinates will be cyclic, and the problem with three degrees of freedom will
reduce to a problem with one degree of freedom (for the third coordinate).

Such a choice of coordinates on the configuration space SO(3) is possible;
these coordinates ¢, . 0 are called the Euler angles and form a local co-
ordinate system in SO(3) similar to geographical coordinates on the sphere:
they exclude the poles and are multiple-valued on one meridian.

c3 1\

Axis of Vertical

the top

Projection of
the top’s axis

Horizontal plane

Nodatl line
Figure 126 Euler angles

We introduce the following notation (Figure 126):

e, e,, and e, are the unit vectors of a right-handed cartesian stationary
coordinate system at the stationary point O;

e,;, e,, and e; arc the unit vectors of a right moving coordinate system
connected to the body, directed along the principal axes at O;

I, = I, # I; are the moments of inertia of the body at O;

ey is the unit vector of the axis [e., e;], called the “line of nodes”
(all vectors are in the “stationary space” k).

In order to carry the stationary frame (e,, e, e,) into the moving frame
(e,, e,, e3), we must perform three rotations:

1. Through an angle ¢ around the e, axis. Under this rotation, e, remains
fixed, and e, goes to ey.

2. Through an angle 8 around the e, axis. Under this rotation, e, goes to
e;, and ey remains fixed.

3. Through an angle ¥ around the e; axis. Under this rotation, ey goes to
e,, and e, stays fixed.

After all three rotations, e, has gone to e,, and e, to e;; therefore, e,
goes to e, .
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6: Rigid bodies

The angles ¢, ¥, and 6 are called the Euler angles. It is easy to prove:

Theorem. To every triple of numbers @, 0,  the construction above associates
a rotation of three-dimensional space, B(, 0, ¥)e SO(3), taking the
frame (e, e, e,) into the frame (e, e,,€3). In addition, the mapping
(o, 6, ¥) = B(@, 8, ) gives local coordinates

0< ¢ <2n O0<y <2xm O0<fl<nm

on SO(3), the configuration space of the top. Like geographical longitude,
@ and  can be considered as angles mod 2n; for 8 = 0 or 6 = n the map
(¢, 8, ) = B has a pole-type singularity.

B Calculation of the lagrangian function

We will express the lagrangian function in terms of the coordinates ¢, 0,
and their derivatives.
The potential energy, clearly, is equal to

U= fffzg dm = mgz, = mglcos 0,

where z, is the height of the center of gravity above 0 (Figure 125).
We now calculate the kinetic energy. A small trick is useful here: we
consider the particular case when ¢ = = 0.

Lemma. The angular velocity of a top is expressed in terms of the derivatives
of the Euler angles by the formula

@ = Oe, + (¢ sin O)e, + (Y + ¢ cos O)e;,
if @ =y =0.

PrROOF. We look at the velocity of a point of the top occupying the position
r at time ¢. After time dt this point takes the position (within (dr)?)

B(p + do, 6 + dO,y + dy)B™ (9,0, y)r,

where dp = ¢ dt, d8 = fdt and dy = t// dt.
Consequently, to the same accuracy the displacement vector is the sum
of the three terms

B(p + do, 6, y)B™ (@, 0,y — 1 = [0,, rldt,
B(p, 8 + d0, y)B~ (@, 6, y)r — 1 = [y, r]dt,
B(p,0,¢ + dy)B~ (9, 0,y — r = [, rldt

(the angular velocities @, y, and wy, are defined by these formulas).
Therefore, the velocity of the point r is v = [@, + @y + ©,, 1], so the
angular velocity of the body is

0 =0, + 0y + O,

where the terms are defined by the formulas above.
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30: Lagrange’s top

It remains to decompose the vectors ®,, ®,, and o, with respect to
e, e,, and e;. We have not yet used the fact that ¢ = y = 0. If @ = ¥ = 0,

then
B(p + de, 6,y)B™ (o, 0,¥)

is simply a rotation around the axis e, through an angle do, so
w0, = @€,.
Furthermore, B(p, 0 + d6, y)B~ (@, 0, ¥) is simply a rotation around the
axis ey = e, = e, through an angle df in the case ¢ = ¥ = 0, so
(1)9 = éel.
Finally, B(g, 0, + dy)B~ (g, 0, ) is a rotation through an angle dy
around the axis €5, SO .
(!).[, = l,be3.
In short, for ¢ = ¥ = 0 we have
o = ¢e, + éel + lﬁeg,.
But, clearly, for ¢ = ¢ = 0
e, = e;cos O + e, sin 6.

So the components of the angular velocity along the principal axes e, €,,
and e, are
w, =0 w, = @sin b w3 =Y + ¢ cosb. ]

Since T = (1,0} + I,w: + [,w3), the kinetic energy for ¢ = Y = 0 is
given by the formula

I Iy
T =71(92 + @2 sin® 0) + 53(111 + ¢ cos 8).
But the kinetic energy cannot depend on ¢ and ¥: these are cyclic co-
ordinates, and by a choice of origin of reference for ¢ and y which does not

change T we can always make ¢ = 0 and ¢ = 0. Thus the formula we got

for the kinetic energy is true for all ¢ and .
In this way we obtain the lagrangian function

. |
L=I—21(t92 + @2 sin? 6) +73(l/; + ¢ cos 8)? — mglcos@.

C Investigation of the motion
To the cyclic coordinates ¢ and ¢ there correspond the first integrals

— =M, = ¢(I,;sin* 0 + I;cos? 0) + l/;I3COSH
ol = M, = ¢lycos8 + J/Is.
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6: Rigid bodies

Theorem. The inclination 0 of the axis of the top to the vertical changes with
time in the same way as in the one-dimensional system with energy

5 07 + Uen(9),

El

where the effective potential energy is given by the formula

(M, — M;cos 0)?
N 21, sin* 0

U.s + mglcos 6.

ProOF. Following the general theory, we express ¢ and ¥ in terms of M 3
and M,. We get the total energy of the system as

I - M3 (M, — M, cos 0)?
E=—-06*+_22 0 : >
5 O+ 5p, Tmalcost+ 50

and

(b _ Mz — M3C059
I, sin?#

The number M3/2I, = E — E’, independent of 0, does not affect the
equation for 0. O

In order to study the one-dimensional system above it is convenient to
make the substitutioncos 0 =u(—1 < u < 1).
We also write
M M 2F 2mgl

LY 1, r, —F>0

Then we can rewrite the law of conservation of energy E’ as

u? = f(u),

where f(u) = (« — pu)(1 — u?) — (a — bu)?, and the law of variation of
the azimuth ¢ as

., _a— bu
=1
We notice that f(u) is a polynomial of degree 3, f(+ ) = + 00, and
f(+1) = —(aF b)*> <0 if a# +b. On the other hand, actual motions
correspond to constants a, b, @, and B for which f(u) = 0 for some
—1 < u < 1. Thus f(u) has exactly two real roots u; and u, on the interval
—1 < u <1 (and one for u > 1, Figure 127). Therefore, the inclination 6
of the axis of the top changes periodically between two limit values 0, and ¢,
(Figure 128). This periodic change in inclination is called nutation.
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30: Lagrange’s top

1’ / N\ '/

/( ) “2\/

Figure 127 Graph of the function f(u)

We now consider the motion of the azimuth of the axis of the top. The
point of intersection of the axis with the unit sphere moves in the ring between
the parallels 8, and #,. The variation of the azimuth of the axis is determined
by the equation

,_a—bu
CET LT

If the root u’ of the equation a = bu lies outside of (1, u,), then the angle ¢
varies monotonically and the axis traces a curve like a sinusoid on the unit
sphere (Figure 128(a)). If the root u’ of the equation a = bu lies inside
(u,, uy), then the rate of change of ¢ is in opposite directions on the parallels
#, and 0,, and the axis traces a looping curve in the sphere (Figure 128(b)).

If the root u’ of a = bu lies on the boundary (e.g., u' = u,), then the axis
traces a curve with cusps (Figure 128(c)).

The last case, although exceptional, is observed every time we release
the axis of a top launched at inclination 8, without initial velocity; the top
first falls, but then rises again.

The azimuthal motion of the top is called precession. The complete
motion of the top consists of rotation around its own axis, nutation, and
precession. Each of the three motions has its own frequency. If the frequencies
are incommensurable, the top never returns to its initial position, although
it approaches it arbitrarily closely.

8,

(a) (b) (c)
Figure 128 Path of the top’s axis on the unit sphere
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31 Sleeping tops and fast tops

The formulas obtained in Section 30 reduce the solution of the equations of motion of a top to
elliptic integrals. However, qualitative information about the motion is usually easy to obtain

without turning to quadrature,
In this paragraph we investigate the stability of a vertical top and give approximate formulas

for the motion of a rapidly spinning top.

A Sleeping tops

We consider first the particular solution of the equations of motion in
which the axis of the top is always vertical (6 = 0) and the angular velocity
1s constant (a “sleeping” top). In this case, clearly, M, = M; = I yw,
(Figure 129),

o
o

-’

Figure 129 Sieeping top

PrOBLEM. Show that a stationary rotation around the vertical axis is always Liapunov unstable.

We will look at the motion of the axis of the top, and not of the top itself.
Will the axis of the top stably remain close to the vertical, i.e., will 8 remain
small? Expressing the effective potential energy of the system

(M, — M;cos )’

U
off 21, sin2 0 + mgl cos 8
as a power series in 8, we find
13 w3(6%/4) 6?
=272 1= 4= C 4+ AB? cee
Ueﬁ' 21192 mgl P + + +
2[2
A= wil; mgl_

81, 2

If A > 0, the equilibrium position § = 0 of the one-dimensional system
is stable, and if 4 < 0 it is unstable. Thus, the condition for stability has the

form
4mg i 1

w3 > —5—.
3
I3
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31: Sleeping tops and fast tops

When friction reduces the velocity of a sleeping top to below this limit, the
top wakes up.

PROBLEM. Show that, for w? > 4mgl1,/1%, the axis of a sleeping top is stable with respect to
perturbations which change the values of M_ and M ;, as well as 6.

B Fast tops

A top is called fasr if the kinetic energy of its rotation is large in comparison
with its potential energy:

11,03 > myl.

It is clear from a similarity argument that multiplying the angular velocity
by N is exactly equivalent to dividing the weight by N2.

Theorem. If, while the initial position of a top is preserved, the angular velocity
is multiplied by N, then the trajectory of the top will be exactly the same as
if the angular velocity remained as it was and the acceleration of gravity
g were divided by N?. In the case of large angular velocity the trajectory
clearly goes N times faster.>?

In this way we can study the case g — 0 and apply the results to study
the case w — 0.

To begin, we consider the case g = 0, i.e., the motion of a symmetric
top in the absence of gravity. We compare two descriptions of this motion:
Lagrange’s (Section 30C) and Poinsot’s (Section 29C).

We first consider Lagrange’s equation for the variation of the angle of
inclination 8 of the top’s axis.

Lemma. In the absence of gravity, the angle 0 satisfying M, = M3 cos 8,
is a stable equilibrium position of the equation of motion of the top’s axis.
The frequency of small oscillations of 0 near this equilibrium position is
equal to

I3,

wnut - I *
1

ProOF. In the absence of gravity the effective potential energy reduces to

(M, — M, cos 0)?

Usre =
fr 21, sin? @

This nonnegative function has the minimum value of zero for the angle # = 0 determined by
the condition M, = M, cos 8, (Figure 130). Thus, the angle of inclination &, of the top’s axis

! Denote by ¢,(t, &) the position of the top at time ¢ with initial condition § € TSO(3) and
gravitational acceleration g. Then the theorem says that

(pg(ts Ng) = (pN_zg(Nt9 g)
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Uc ff

O, =0

Figure 130 Effective potential energy of a top

to the vertical is stably stationary: for small deviations of the initial angle # from ,, there will
be periodic oscillations of @ near 0, (nutation). The frequency of these oscillations is easily
determined by the following general formula: the frequency ¢ of small oscillations in a one-
dimensional system with energy

=2

ax
E = 5 + U(x), U(xg) = min U(x)

is given (Section 22D) by the formula

The energy of the one-dimensional system describing oscillations of the inclination of the top’s
axis is

I
— 62 + Ux.
2 eff

For 6 = 8, + x we find M. — M, cos 8 = M,(cos 0, — cos(f, + x)) = M;x sin 8, + O(x?)

M2 x2-sin? 8, 13w
Uy = +o(x?)==""xt+---,
fr 21, sin? @, ) 21,

from which we obtain the expression for the frequency of nutation

Iy
Woue = 2 3~ a
I

From the formula ¢ = (M, — Mjcos 8)/I, sin” @ it is clear that, for
0 = 0,, the azimuth of the axis does not change with time: the axis is
stationary. The azimuthal motion of the axis under small deviations of &
from 8, could also be studied with the help of this formula, but we will deal
with it differently.

The motion of a top in the absence of gravity can be considered in
Poinsot’s description. Then the axis of the top rotates uniformly around the
angular momentum vector, preserving its position in space. Thus, the axis
of the top describes a circle on the sphere whose center corresponds to the
angular momentum vector (Figure 131).

Remark. Now the motion of the top’s axis, which according to Lagrange was called nutation,
is called precession in Poinsot’s description of motion.
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e
o
N

™

Figure 131 Comparison of the descriptions of the motion of a top according to
Lagrange and Poinsot

This means that the formula obtained above for the frequency of a small
nutation, w,,, = I3w;/I,, agrees with the formula for the frequency of
precession w = M/I, in Poinsot’s description: when the amplitude of
nutation approaches zero, I;w; —> M.

C A top in a weak field

We go now to the case when the force of gravity is not absent, but is very
small (the values of M, and M are fixed). In this case a term mgl cos 6,
small together with its derivatives, is added to the effective potential energy.
We will show that this term slightly changes the frequency of nutation.

Lemma. Suppose that the function f(x) has a minimum at x = 0 and Taylor expansion f(x) =
Ax%/2 + ..., A > 0. Suppose that the function h(x) has Taylor expansion h(x)=B+ Cx + ---.
Then, for sufficiently small €, the function f(x) = f(x) + eh(x) has a minimum at the point
(Figure 132)

Ce O
Xg = — —(— + £,
A
which is close to zero. In addition, f[(x,) = A + O(g).

PROOF. We have f/(x) = Ax + Ce¢ + O(x?) + O(ex), and the result is obtained by applying the
implicit function theorem to f/(x). O

P

fix)
Je(x)

eh(x)

- X

Xe

Figure 132 Displacement of the minimum under a small change of the function
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By the lemma, the effective potential energy for small g has a minimum
6, close to 0, and at this point U” differs slightly from U"(8,). Therefore, the
frequency of a small nutation near 0, is close to that obtained for g = 0:

) I,
lim w,,, = A Ws.

g—0 1

D A rapidly thrown top

We now consider the special initial conditions when we release the axis of
the top without an initial push from a position with inclination 8, to the
vertical.

Theorem. If the axis of the top is stationary at the initial moment (¢ = 6 =0)
and the top is rotating rapidly around its axis (w5 — o0), which is inclined
from the vertical with angle 0,(M, = M- cos 0,), then asymptotically, as
(1)3 —» 00,

1. the nutation frequency is proportional to the angular velocity;

2. the amplitude of nutation is inversely proportional to the square of the
angular velocity;

3. the frequency of precession is inversely proportional to the angular
velocity;

4. the following asymptotic formulas hold (as w3 — °0):

I, I,mgl . mgl

nut I_wS Anue ™~ Igwg sin 90 Wpree ™ 13603
1

«w

(here f(w3) ~ glws) if lim,,, ., (f/g) = 1).

For the proof, we look at the case when the initial angular velocity is
fixed, but g — 0. Then by interpreting the formulas with the aid of a similarity
argument (cf. Section B), we obtain the theorem.

We already know from Section 30C that under our initial conditions the axis of the top traces
a curve with cusps on the sphere.

Uers
1

Xg

_=6

P ¢

Figure 133 Definition of the amplitude of nutation
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31: Sleeping tops and fast tops

We apply the lemma to locate the minimum point €, of the effective potential energy. We
set (Figure 133)

8=0,+x cos @ =cosfy, — xsinf, + ---

Then we obtain, as above, the Taylor expansion in x at 6,

Bwi :
Uetlg=0 = Y X4 mglcos 8@ = mgl cos 8, — xmgl sin 8, + -+ .
1

Applying the lemma to f = Ugl,=0. 9 = & h = ml cos(8, + x), we find that the minimum of the
effective potential energy U, is attained at angle of inclination

{,ml sin ¢
0,= 00+ x, x,=—5—>—4g+ Og?).
I3 w3

Thus theinclination 8 of the top’s axis will oscillate near 8, (Figure 134). But, at the initial moment,

Figure 134 Motion of a top’s axis

l = 8, and & = 0. This means that 6, corresponds to the highest position of the axis of the top.
Thus, for small g, the amplitude of nutation is asymptotically equal to

Iymisin 0,
nye ~ X, ~ W g (g — 0).

We now find the precessional motion of the axis. From the general formula

M, — M;cos#@
I, sin? @

q’)-_—

for M, = M3cos §,and 8 = 8 + x,we find that M, — M;cos 8 = Myxsinfy + ---;so

M,

= x+--
® I, sin 8,

But x oscillates harmonically between 0 and 2x, (up to O(g?)). Therefore, the average value of
the velocity of precession over the period of nutation is asymptotically egual to

- M, mgl
@ Il sin 00 xg 130'-)3 (g )
PrOBLEM. Show that
o) — @(0) _

lim lim
g—=0t—+00 Imgl/I3co3
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PART III
HAMILTONIAN MECHANICS

Hamiltonian mechanics 1s geometry in phase space. Phase space has the
structure of a symplectic manifold. The group of symplectic diffeomorphisms
acts on phase space. The basic concepts and theorems of hamiltonian
mechanics (even when formulated in terms of local symplectic coordinates)
are invariant under this group (and under the larger group of transformations
which also transform time).

A hamiltonian mechanical system is given by an even-dimensional mani-
fold (the “phase space™), a symplectic structure on it (the “Poincaré¢ integral
invariant™) and a function on it (the “hamiltonian function™). Every one-
parameter group of symplectic diffeomorphisms of the phase space pre-
serving the hamiltonian function is associated to a first integral of the
equations of motion.

Lagrangian mechanics is contained in hamiltonian mechanics as a special
case (the phase space in this case is the cotangent bundle of the configuration
space, and the hamiltonian function is the Legendre transform of the lagrang-
ian function).

The hamiltonian point of view allows us to solve completely a series of
mechanical problems which do not yield solutions by other means (for
example, the problem of attraction by two stationary centers and the problem
of geodesics on the triaxial ellipsoid). The hamiltonian point of view has
even greater value for the approximate methods of perturbation theory
(celestial mechanics), for understanding the general character of motion
in complicated mechanical systems (ergodic theory, statistical mechanics)
and in connection with other areas of mathematical physics (optics, quantum
mechanics, etc.).






Differential forms

Exterior differential forms arise when concepts such as the work of a field
along a path and the flux of a fluid through a surface are generalized to higher

dimensions.

Hamiltonian mechanics cannot be understood without differential forms.
The information we need about differential forms involves exterior multi-
plication, exterior differentiation, integration, and Stokes’ formula.

32 Exterior forms

Here we define exterior algebraic forms

A Il-forms

Let R” be an n-dimensional real vector space.5? We will denote vectors in this
space by &, 0, .

Definition. A form of degree 1 (or a 1-form)is a linear function w: R" - R, ie.,

(A€ + A282) = A 1o(&)) + A, (&), A, AeRand §,, &, e R

We recall the basic facts about 1-forms from linear algebra. The set of all
1-forms becomes a real vector space if we define the sum of two forms by

(0 + 03)(&) = 0,(E) + w,(§),

and scalar multiplication by
(Aw)(E) = Awx(§).

32 It is essential to note that we do not fix any special euclidean structure on R". In some examples
we use such a structure; in these cases this will be specifically stated (*euclidean R*™),
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7: Differential forms

The space of 1-forms on R" is itself n-dimensional, and is also called the dual
space (R")*.

Suppose that we have chosen a linear coordinate system xg, ..., x, on R".
Each coordinate x; is itself a 1-form. These n 1-forms are linearly independent.
Therefore, every 1-form w has the form

W =a;x, +- -+ a,X,, a; € R.
The value of @ on a vector § is equal to
@) = a;x; () + -+ + anxu(8):
where x,(&), ..., x,(&) are the components of § in the chosen coordinate

system.

ExaMpLE. If a uniform force field F is given on euclidean R3, its work A on the displacement &
is a 1-form acting on & (Figure 135).

F (force)

w(® =(F. 9

¢ (displacement)

Figure 135 The work of a force is a I-form acting on the displacement.

B 2-forms

Definition. An exterior form of degree 2 (or a 2-form) is a function on pairs of
vectors @?: R" x R" —» R, which is bilinear and skew symmetric:

WA, + 4,8,,83) = L,02(E,83) + 4, w*&,;, &3)
w?@&,, &) = —w?(&;, &),
Vi, A, eR &, &, 8 R

ExaMpLE 1. Let S(&,, &,) be the oriented area of the parallelogram constructed on the vectors
£, and &, of the oriented euclidean plane R?, ie.,

éll 612
621 622

with e,, e, a basis giving the orientation on R?.
It is easy to see that S(&,, &,) is a 2-form (Figure 136).

, where&, = ¢&;,e, + &,,€,,8; = (5,8, + §5ze,,

S(&1,82) =

EXAMPLE 2. Let v be a uniform velocity vector field for a fluid in three-dimensional oriented
euclidean space (Figure 137). Then the flux of the fluid over the area of the parallelogram
£,, &, is a bilinear skew symmetric function of §, and &,, i.e., a 2-form defined by the triple scalar

product
w*(E, &) = (v, &, &,).
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32: Exterior forms

Figure 136 Oriented area is a 2-form.

Figure 137 Flux of a fluid through a surface is a 2-form.

ExaMPLE 3. The oriented area of the projection of the parallelogram with sides &, and &, on
the x,, x;-plane in euclidean R? is a 2-form.

PROBLEM 1. Show that for every 2-form w? on R" we have

w?(E, &) = 0, V& e B",
Solution. By skew symmetry, w?(E, &) = —w?(E, E).

The set of all 2-forms on R" becomes a real vector space if we define the
addition of forms by the formula

(w1 + 0:)&1,8;) = w,(&,, &) + w,(84, &)

and multiplication by scalars by the formula

(Aw)(&4, &) = Aw(E,, &)

ProOBLEM 2. Show that this space is finite-dimensional, and find its dimension.
ANSWER. n{n — 1)/2: a basis is shown below.

C k-forms

Definition. An exterior form of degree k, or a k-form, is a function of k vectors
which is k-linear and antisymmetric:

(A8 + 4,81, 85, ..., 8) = 4, w@E, &, ..., 8) + A,w(E], &, ..., &)
(S, -5 85) = (— )&y, ..., &),
where
. {0 if the permutation i,, ..., i, 1S even;

1 if the permutation i, ..., i, is odd.

165



7: Differential forms

£s

£
£

Figure 138 Oriented volume is a 3-form.

ExaMPLE 1. The oriented volume of the parallelepiped with edges &, .. ., &, in oriented euclidean
space R" is an n-form (Figure 138).

St - Cin
V(élv"'vgn) =
énl érm
where &, = &, e, +--- + &,e,and e,, ..., e, are a basis of R".

ExaMPLE 2. Let R* be an oriented k-plane in n-dimensional euclidean space R”. Then the
k-dimensional oriented volume of the projection of the parallelepiped with edges &, &5, ...,
£, € R" onto R* is a k-form on R".

The set of all k-forms in R" form a real vector space if we introduce
operations of addition

(@, + 0,)(E) = w,(E) + v,(&), £ = {Cim che E.;k}, gj e R”,

and multiplication by scalars

(Aw)(8) = Aw(E).

PROBLEM 3. Show that this vector space is finite-dimensional and find its dimension.
ANSWER. C¥: a basis is shown below.

D The exterior product of two 1-forms

We now introduce one more operation: exterior multiplication of forms.
If * is a k-form and @' is an I-form on R", then their exterior product w* A '
will be a k + I-form. We first define the exterior product of 1-forms, which
associates to every pair of 1-forms w,, w, on R" a 2-form w; A w, on R".

Let & be a vector in R". Given two 1-forms w,; and w,, we can define a
mapping of R” to the plane R x R by associating to & € R" the vector «(&)
with components «,(€) and w,(&) in the plane with coordinates w,, w,
(Figure 139).

Definition. The value of the exterior product @, A w, on the pair of vectors
E,, &, € R"is the oriented area of the image of the parallelogram with sides
w(&,) and w(§,) on the w,, w,-plane:

w(&,) wy(&;)

(W A @8, 83) = w,(E3) @5, |
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32: Exterior forms

w(§;)

o100

Figure 139 Definition of the exterior product of two 1-forms

PROBLEM 4. Show that w; A w, really is a 2-form.

PrROBLEM 5. Show that the mapping
(w19 wZ) — Wy A Wy

is bilinear and skew symmetric:
W, AWy = —Wy Ay,
(Awy + A"wi) A wy, = Aw] A w, + V0] A w,.

Hint. The determinant is bilinear and skew-symmetric not only with respect to rows, but
also with respect to columns.

Now suppose we have chosen a system of linear coordinates on R", i.e., we
are given n independent 1-forms x, ..., x,. We will call these forms basic.

The exterior products of the basic forms are the 2-forms x, A x;. By skew-
symmetry, x; A x; = 0and x; A x; = —x; A x;. The geometric meaning of
the form x; A x;is very simple: its value on the pair of vectors &,, &, is equal
to the oriented area of the image of the parallelogram &,, &, on the coordinate
plane x;, x; under the projection parallel to the remaining coordinate
directions.

PROBLEM 6. Show that the C7 = n(n — 1)/2 forms x, A x{i < j) are linearly independent.

In particular, in three-dimensional euclidean space (x,, x,, x3), the area
of the projection on the (x,, x,)-plane is x; A x,, on the (x,, x3)-plane it is
X, A X3, and on the (x3, x,)-plane itis x5 A x;.

PROBLEM 7. Show that every 2-form in the three-dimensional space (x,, x,, x,) is of the form

P.\')_ A Xg +QX3 A Xy +RX1 N X,
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7: Differential forms

PrOBLEM 8. Show that every 2-form on the n-dimensional space with coordinates x,,....x,
can be uniquely represented in the form

w? = Y a;x; A x;.
* 1<y

Hint. Let g; be the i-th basis vector, i.e, x(e;) = 1, x{e;) = Ofori # j. Look at the value of
the form w? on the pair e;, e;. Then

a;; = w?(e;, e;).

E Exterior monomials

Suppose that we are given k 1-forms w,, ..., @, We define their exterior
product @w; A --- A .

Definition. Set

wi(&) - w(&y)
(w; A A 0)Ey, -, 8) = .

w (&) - wul&)

In other words, the value of a product of 1-forms on the parallelepiped

£.,...,&,is equal to the oriented volume of the image of the parallelepiped
in the oriented euclidean coordinate space R* under the mapping & —

(wl(g)s rrrs wk(g))

PrROBLEM 9. Show that w,; A --- A @, is a k-form.

PROBLEM 10. Show that the operation of exterior product of 1-forms gives a multi-linear skew-
symmetric mapping

(Wy,...,0p) > W@y A .. A Q.
In other words,
Ve, + V0D A wy A Ay =AWy AWy A-os Ao+ "0 A wy A Ay

and

W oA coA W, = (1o A Ay,
where

B {O if the permutation i, .. ., i is even,

Y 1 if the permutation i, ..., i, is odd.

Now consider a coordinate system on R" given by the basic iorms x4, ...,
x,. The exterior product of k basic forms

Xig Nt A X, 1 <i,, <n,

is the oriented volume of the image of a k-parallelepiped on the k-plane
(xi,> ---», X;) under the projection parallel to the remaining coordinate
directions.
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32: Exterior forms

PROBLEM 11. Show that, if two of the indices i, .. ., i, are the same, then the form Xip A A X,
is zero.

PrROBLEM 12. Show that the forms

Xig Ao A X where ]l < i, <i, <...<i <n,

i1 [

are linearly independent.
The number of such forms is clearly C;. We will call them basic k-forms.

PROBLEM 13. Show that every k-form on R” can be uniquely represented as a linear combination
of basic forms:

k __
W= Z Qi Xy NN X,

. Lk
Hint. a;, ;, = o¥e; ., ... e,).

It follows as a result of this problem that the dimension of the vector space
of k-forms on R" is equal to Cf. In particular, for k = n, Ck = 1, from which
follows

Corollary. Every n-form on R" is either the oriented volume of a parallelepiped
with some choice of unit volume, or zero:

W =a-x; A A X,
PROBLEM 14. Show that every k-form on R” with k > n is zero.

We now consider the product of a k-form w* and an I-form ' First,
suppose that we are given two monomials

k

W'=w; A Aw, and o' =wp A A Wy,

where w,, ..., @, are 1-forms. We define their product o* A @' to be the
monomial

(Wy Ao A ) Ay Ao AWy yy)
=(1)1 A e A C{Jk Awk+1 A "‘/\wk+l.

PROBLEM 15. Show that the product of monomials is associative:
{0 A ') A 0™ = F A (A ™)
and skew-commutative:
wt A o = (— D¥O! A o
Hint. In order to move each of the ! factors of «' forward, we need k inversions with the

k factors of w*.

Remark. Tt is useful to remember that skew-commutativity means commutativity only if
one of the degrees k and ! is even, and anti-commutativity if both degrees k and [ are odd.
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7: Differential forms

33 Exterior multiplication

We define here the operation of exterior multiplication of forms and show that it is skew-
commutative, distributive, and associative,

A Definition of exterior multiplication

We now define the exterior multiplication of an arbitrary k-form w* by an
arbitrary I-form '. The result w* A ' will be a k + I-form. The operation of
multiplication turns out to be:

1. skew-commutative: o* A ©' = (— 1Mol A ©F;
2. distributive: (1,0% + A, 05) A o' = 1,0 A o + 04 A @F;
3. associative: (w* A @) A @™ = * A (@' A ™).

Definition. The exterior product w* A @' of a k-form «* on R" with an
I-form o' on R" is the k + I-form on R" whose value on the k + [ vectors

S S T &c+1€ R"is cqual to
(1) (wk A wl)(gl,' "’§k+l) = Z (— l)vwk(gila- . '&éik)wl(gj,s“-aéj,)a

wherei; < --- < jyandj, <--- < j1i(i1s -+ -5 dksJ1s - - - »J1) 1S @ permutation
of the numbers (1,2, ...,k + I); and

1 if this permutation is odd;
Vv = . . .
0 if this permutation 1s even.

In other words, every partition of the k + [ vectors &, ..., &, into two
groups (of k and of I vectors) gives one term in our sum (1). This term is equal
to the product of the value of the k-form @* on the k vectors of the first group
with the value of the I-form &' on the I vectors of the second group, with sign
+ or — depending on how the vectors are ordered in the groups. If they are
ordered in such a way that the k vectors of the first group and the [ vectors of
the second group written in succession form an even permutation of the
vectors &, &,, ..., Ex+1, then we take the sign to be +, and if they form an
odd permutation we take the sign to be —.

EXAMPLE. If k = I = 1, then there are just two partitions: &,, &, and &, &;.
Therefore,

(0, A 0y, &) = w,(E1)w(82) — @,(&;)w;1(8>),

which agrees with the definition of multiplication of 1-forms in Section 32.

PROBLEM 1. Show that the definition above actually defines a k + I-form (i.e., that the value of
(0% A WE,,...,E 1) depends linearly and skew-symmetrically on the vectors &).
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33: Exterior multiplication

B Properties of the exterior product

Theorem. The exterior multiplication of forms defined above is skew-com-
mutative, distributive, and associative. For monomials it coincides with the
multiplication defined in Section 32.

The proof of skew-commutativity is based on the simplest properties of
even and odd permutations (cf. the problem at the end of Section 32) and will

be left to the reader.
Distributivity follows from the fact that every term in (1) is linear with

respect to w* and w'.
The proof of associativity requires a little more combinatorics. Since the

corresponding arguments are customarily carried out in algebra courses for
the proof of Laplace’s theorem on the expansion of a determinant by column

minors, we may use this theorem.’?
We begin with the following observation: if associativity is proved for the
terms of a sum, then it is also true for the sum, i.e.,

W, AWy Ay =07 A (W, A @ , X
( ’1 2) 3 ’1’ ( 2 3) lmplles
(0] A wy) A w3 = ] A (W A @3)
(w7 + @) A W) A w3 = (W] + ©)) A (@ A ;).
For, by distributivity, which has already been proved, we have

(wy + O7) A wy) A w3 = (W) A @) A @3) + (O] A W) A w3),
(] + 07} A @y A w3) = (0] A (0, A ©3)) + (@] A (w3 A w3)).

We already know from Section 32 (Problem 13) that every form on R” is a
sum of monomials; therefore, it is enough to show associativity for multi-

plication of monomials.

Since we have not yet proved the equivalence of the definition in Section
32 of multiplication of k 1-forms with the general definition (1), we will
temporarily denote the multiplication of k 1-forms by the symbol A, so that
our monomials have the form

W*=w A--Aw and o' =
where wy, ..., w,,, are 1-forms.

>3 A direct proof of associativity (also containing a proof of Laplace’s theorem) consists of
checking the signs in the identity

((w* A (Ul) A wME, ..., Evviem) = Z * wk(‘gi,, Cee s gik)wl(&:jn s ‘tsj,)wm@h.a RN 0 )

where i} < - <, j, <---<j,hy <--- < hpi iy, ..., h,) is a permutation of the numbers
(L....k+1+m).
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7: Differential forms

Lemma. The exterior product of two monomials is a monomial.

A Wyyy)

=CU1 K"'?\_(X)kxwk_'.l /_\"'Kwk+‘.

(0, Ao Aaw) Ay A

PROOE. We calculate the values of the left and right sides on k + ! vectors
E,,...,E +i The value of the left side, by formula (1), is equal to the sum of
the products
Z + det |wf(E;.)]- det |wi(§j'..)|
1<i<k k<i<k+!

of the minors of the first k columns of the determinant of order k + ! and the
remaining minors. Laplace’s theorem on the expansion by minors of the
first k columns asserts exactly that this sum, with the same rule of sign choice
as in Definition (1), is equal to the determinant det|w(&))|. 0

It follows from the lemma that the operations A and A coincide: we get,
in turn,

Wy AWy = Wy N Wy,

0)1 Ka)z K A /\a)k=(--'((a)1 /\(1)2)/\(1)3)/\ L Awk).

The associativity of A -multiplication of monomials therefore follows from
the obvious associativity of A -multiplication of 1-forms. Thus, in view of the
observation made above, associativity is proved in the general case.

PROBLEM 2. Show that the exterior square of a 1-form, or, in general. of a form of odd order, is
equal to zero: w* A w* = 0if k is odd.

ExampLE 1. Consider a coordinate system p,...., Prv Groee-s 4, on R?" and the 2-form

wr=3"p A4,

| Geometrically, this form signifies the sum of the oriented areas of the projection of a paral-

lelogram on the n two-dimensional coordinate planes (p;. q). - . (P qn)- Later, we will see
that the 2-form @? has a special meaning for hamiltonian mechanics. It can be shown that every
nondegenerate®* 2-form on R?" has the form w? in some coordinate system (py,. ... g,).]

PrROBLEM 3. Find the exterior square of the 2-form w?,

ANSWER.
wr A= =23 piAPA 4 N4

1>

ProsLEM 4. Find the exterior k-th power of @”.

ANSWER.

W AWEA A = 4k! Y p A APLAG, A Al

" < o Ik

k

s+ A bilinear form w? is nondegenerate if V& # 0, 3n: w?(§, w) # 0. See Section 41B.
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33: Exterior multiplication

In particular,
W' A A @ = dalp A AP A A A Un
—

n

is, up to a factor, the volume of a 2n-dimensional parallelepiped in R2".
ExaMpLE 2. Consider the oriented euclidean space R*. Every vector A € R3 determines a 1-form
wy, by wi(8) = (A, &) (scalar product) and a 2-form w? by
wi(€. &) = (A&, E)) (triple scalar product).
PROBLEM 5. Show that the maps A — w) and A — w2 establish isomorphisms of the linear space

R* of vectors A with the linear spaces of 1-forms on R® and 2-forms on R3. If we choose an
orthonormal oriented coordinate system (x,, x,. x;) on R?, then

(UJI‘ = Alxl + Azxz —+ A3X3
and
WF = A;Xy3 A X3+ Ayxy A Xy + Asx, A Xy,
Remark. Thus the isomorphisms do not depend on the choice of the orthonormal oriented
coordinate system (x,, x,, x3). But they do depend on the choice of the euclidean structure

on R, and the isomorphism A — w3 also depends on the orientation (coming impticitly in the
definition of triple scalar product).

PrOBLEM 6. Show that, under the isomorphisms established above, the exterior product of
1-forms becomes the vector product in R3, i.e., that
WA A wy = wh g forany A. B e R3.

In this way the exterior product of 1-forms can be considered as an extension of the vector
product in R* to higher dimensions. However, in the n-dimensional case, the product is not a
vector in the same space: the space of 2-forms on R" is isomorphic to R” only for n = 3.

ProBLEM 7. Show that, under the isomorphisms established above, the exterior product of a
I-form and a 2-form becomes the scalar product of vectors in R3:

WA A ©f = (A, B)X; A x, A x;.

C Behavior under mappings

Let f:R™ —» R" be a linear map, and o* an exterior k-form on R". Then
there is a k-form f*w* on R™, whose value on the k vectors &,,...,E, eR™
is equal to the value of w* on their images:

(f*wk)(gp e &) = wk(fE.m o S8

PrROBLEM 8. Verify that /*w* is an exterior form.

PROBLEM 9. Verify that f* is a linear operator from the space of k-forms on R" to the space of
k-forms on R™ (the star superscript means that / * acts in the opposite direction from ).

ProsLEM 10. Let f: R™ — R” and g: R" — RP. Verify that (g o f)* = f*« g*.
PROBLEM 11. Verify that f* preserves exterior multiplication: f*(w* A ') = (f*o*)y A (f*oh).
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34 Differential forms

We give here the definition of differential forms on differentiable manifolds,

A Differential 1-forms

The simplest example of a differential form is the differential of a function.

ExaMpLE. Consider the function y = f(x) = x? Its differential df = 2x dx depends on the
point x and on the “increment of the argument,” i.e., on the tangent vector & to the x axis. We
fix the point x. Then the differential of the function at x, df |, depends linearly on &. So, if x =1
and the coordinate of the tangent vector & is equal to 1, then df = 2, and if the coordinate of
& is equal to 10, then df = 20 (Figure 140).

df

£

X

Figure 140 Differential of a function

Let f: M — R be a differentiable function on the manifold M (we can
imagine a “function of many variables” f: R" — R). The differential df |,
of fat x is a linear map

df,: TM, > R

of the tangent space to M at x into the real line. We recall from Section 18F the

definition of this map:
Let &€ e TM, be the velocity vector of the curve x(¢): R — M; x(0) = x
and x(0) = &. Then, by definition,

s = 5| SO

T
ProsLEM 1. Let & be the velocity vector of the plane curve x{(r) = cost, v(t) =sintatt =0
Calculate the values of the differentials dx and dy of the functions x and y ¢n the vector g
{Figure 141).

ANSWER, dxli.0/(8) = 0, dyly. 08 = 1

Note that the differential of a function fat a point X € M is a 1-form df, on
the tangent space TM,.
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.

— X

Figure 141 Problem 1

The differential df of f on the manifold M is a smooth map of the tangent
bundle TM to the line

df: TM — R (TM = TM,).
This map is differentiable and is linear on each tangent space T M, « TM.

Definition. 4 differential form of degree 1 (or a 1-form) on a manifold M is a
smooth map
w: TM - R

of the tangent bundle of M to the line, linear on each tangent space TM,,.

One could say that a differential 1-form on M is an algebraic I-form on
TM, which is “differentiable with respect to x.”

ProBLEM 2. Show that every differential 1-form on the line is the differential of some function.

PrOBLEM 3. Find differential 1-forms on the circle and the plane which are not the differential
of any function.

B The general form of a differential 1-form on R"

We take as our manifold M a vector space with coordinates x, ..., x,.
Recall that the components £, ..., &, of a tangent vector & € TR" are the
values of the differentials dx,, ..., dx, on the vector &. These n 1-forms on

TR are linearly independent. Thus the 1-forms dx;, . . ., dx, form a basis for
the n-dimensional space of 1-forms on TR?, and every 1-form on TR” can
be uniquely written in the form a, dx, + --- + a, dx,,, where the a; are real
coefficients. Now let @ be an arbitrary differential 1-form on R". At every
point X it can be expanded uniquely in the basis dx,, . . . ,dx,. From this we get:

Theorem. Every differential 1-form on the space R" with a given coordinate
system x,, . .., x, can be written uniquely in the form

W = al(x)dxl + --- + an(x)dxn’

where the coefficients a(x) are smooth functions.
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X2
L
£ £
2 2 3
1
£
0 i 2 ER
Figure 142 Problem 4
PrOBLEM 4. Calculate the value of the forms @, = dx,, w, = x,;dx,,andwy = dr’(r* = x7 + x3)
on the vectors &,, ., and &; (Figure 142).
ANSWER.
51 E..z ‘53
w, | 0 —1 1
w,| 0 -2 =2
w;| 0 -8 0
PROBLEM 5. Let x4, . . ., x, be functions on a manifold M forming a local coordinate system in

some region. Show that every !-form on this region can be uniquely written in the form
w=a,{(x)dx, + - + a,(x)dx,.

C Differential k-forms

Definition. A differential k-form w*|, at a point X of a manifold M is an exterior
k-form on the tangent space TM, to M at X, i.e., a k-linear skew-symmetric
function of k vectors &, . .., &, tangent to M at X.

If such a form «w*|, is given at every point x of the mantfold M and if it 1s
differentiable, then we say that we are given a k-form w* on the manifold M.

PROBLEM 6. Put a natural differentiable manifold structure on the set whose elements are k-tuples
of vectors tangent to M at some point x.

A differential k-form is a smooth map from the manifold of Problem 6 to
the line.

PrOBLEM 7. Show that the k-forms on M form a vector space (infinite-dimensional if k does not
exceed the dimension of M).

Differential forms can be multiplied by functions as well as by numbers.
Therefore, the set of C™ differential k-forms has a natural structure as a
module over the ring of infinitely differentiable real functions on M.
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D The general form of a differential k-form on R"

Take as the manifold M the vector space R" with fixed coordinate functions

X1, ..., X, R" = R. Fix a point x. We saw above that the n 1-forms dx,, ...,

dx, form a basis of the space of 1-forms on the tangent space TR}.
Consider exterior products of the basic forms:

dx; A - A dxg,

il < vve L ik'
In Section 32 we saw that these CX k-forms form a basis of the space of exterior
k-forms on TR:. Therefore, every exterior k-form on TR} can be written
uniquely in the form
Y oag, o dxg, A A dxg,.
il LR LR 4 .l.k

Now let w be an arbitrary differential k-form on R”". At every point X it

can be uniquely expressed in terms of the basis above. From this follows:

Theorem. Every differential k-form on the space R" with a given coordinate
system Xy, . . ., X, can be written uniquely in the form

k
W = Z ail,...,ik(x)dxil A A dxl'k,
il <...<ik
where the a;, ., (X) are smooth functions on R".
PrOBLEM 8. Calculate the value of the forms w, = dx; A dx,, w, = x;dx, A dx, — x;dx; A
dx,, and w; = rdr ~ dp (where x; = r cos ¢ and x, = rsin ¢) on the pairs of vectors (§,,n,),

(§2.My). and (&3, m;) (Figure 143).

ANSWER.

&;.m) (Ezx.m2) (Es,ma)

w, 1 1 -1
W, 2 1 -3
W0y 1 | —1

Figure 143 Problem 8
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ProBLEM 9. Calculate the value of the forms @, = dx,; A dx;, ®w; = X, dxs A dx,, and
w; = dxs A dr? (r? = x? + x2 4+ x3), on the pair of vectors & = (1, 1, 1), n = (1, 2, 3) at the
point x = (2, 0, 0).

ANSWER. i3y = 1, wy = —2, w3 = — 8,

ProBLEM 10. Let x,, ..., x,; M — R be functions on a manifold which form a local coordinate
system on some region. Show that every differential form on this region can be written uniquely in
the form

wk = Z a..,.‘._.-k(x) dx,-, Aeeoadx;,.

< <y

ExamprLE. Change of variables in a form. Suppose that we are given two
coordinate systems on R3: x,, x,, x3 and y,, y», ¥3. Let w be a 2-form on R?.
Then, by the theorem above, w can be written in the system of x-coordinates
as w = X,dx, A dxy; + X,dx; A dx, + X3dx, A dx,, where X,, X,
and X, are functions of x,, x,, and x;, and in the system of y-coordinates as
w=Y dy, Adys + Y,dys Ady, + Ysdy, A dy,, where Y;, Y, and Y3
are functions of y,, y,, and y,.

PROBLEM 11, Given the form written in the x-coordinates (i.e., the X,) and the change of variables
formulas x = x(¥), write the form in y-coordinates, i.¢., find Y.
Solution. We have dx; = (Cx;/0y;) dy, + (Ex;/@y3) dys + (€x;/éy3) dy;. Therefore,

Ex Ox Ox x ¢ 3x
dxz A dX3 = (,‘ 2 d}’1 + ,‘72 d}‘z -+ 2 dy‘}) Fal (.13 dy; + ﬁ d_}z + Lﬂ d_\«’})a
ey, )2 Cys ¥y Cy, Cys

from which we get

D(x;, x;)
D(yy, ¥2)

D(x, x3)

D(x,, x3)
D(yl-» yZ)

D(yy, ¥2)

Y3 = Xl 3 etc.

>

Z ‘

E Appendix. Differential forms in three-dimensional spaces

Let M be a three-dimensional oriented riemannian manifold (in all future
examples M will be euclidean three-space R?). Let x, x,, and x; be local
coordinates, and let the square of the length element have the form

dSZ — El dx% + E2 dx% + E3 dx%

(i.e., the coordinate system is triply orthogonal).

ProBLEM L2. Find E,, E,, and E, for cartesian coordinates x, y, z, for cylindrical coordinates
r. @, = and for spherical coordinates R, @,  in the euclidean space R (Figure 144).

ANSWER.

ds? = dx? + dy? + dz? = dr* + rPde? + dz? = dR? + R?cos? 6dp? + R? d0*.

We let e,, e,, and e, denote the unit vectors in the coordinate directions.
These three vectors form a basis of the tangent space.
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X

L 2
Figure 144 Problem 12

ProsLEM 13. Find the values of the forms dx,, dx,, and dx, on the vectors e, e,, and e;.

ANSWER. dx(e;) = 1/\/Ei, the rest are zero. In particular, for cartesian coordinates dx(e,) =
dy(e,) = dz(e,) = 1: for cylindrical coordinates dr(e,) = dz(e,) = 1 and deg(e,} = 1/ (Figure
145), for spherical coordinates dR{eg) = 1, dp(e,) = 1/R cos # and dtie;) = 1/R.

The metric and orientation on the manifold M furnish the tangent space
to M at every point with the structure of an oriented euclidean three-dimen-
sional space. In terms of this structure, we can talk about scalar, vector, and
triple scalar products.

PrOBLEM 14, Calculate [e,, e,], (¢g,e,), and (e_, e . e ).

ANSWER. €3, 0, 1.

In an oriented euclidean three-space every vector A corresponds to a
1-form w) and a 2-form w3, defined by the conditions

0B = (A 8) wiEm=Agn, §neR

The correspondence between vector fields and forms does not depend on
the system of coordinates, but only on the euclidean structure and orienta-
tion. Therefore, every vector field A on our manifold M corresponds to a
differential 1-form w! on M and a differential 2-form wZ on M.

X

¥ r
Figure 145 Problem 13
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The formulas for changing from fields to forms and back have a different
form in each coordinate system. Suppose that in the coordinates x;, x,, and
x5 described above, the vector field has the form

A - Alel + A2e2 + A3e3

(the components A4; are smooth functions on M). The corresponding 1-form
w, decomposes over the basis dx;, and the corresponding 2-form over the
basis dx; A dx;.

ProOBLEM 5. Given the components of the vector field A, find the decompositions of the 1-form

wj and the 2-form w3.
Solution. We have wji(e;)) = (A, e;)=A4,. Also, (a,dx, + a,dx, + a; dx,)(e;) =

a, dx,(e;) = a,//E,. From this we get that ¢, = 4,./E,, so that

wh = A, JE dx; + Ay /E, dx; + Ay E;dx;.

In the same way, we have wi(e,, e;) = (A, e,, e;) = A,. Also,

(‘11 de FaN dX3 + &y dX3 Fa dXI + oy dxl A dx2Xe2,e3) =0y V.
E;E;

Hence, oy = A, ./E,E,, ie,
wi = A,\/E—;._E—3 dxy A dxy + Ay /E3E dxy A dx, + A3 /E E; dx, A dx;.
In particular, in cartesian, cylindrical, and spherical coordinates on R? the vector field
A= A.e, + Aye, + Ace, = A, e, + A,e, + A,e, = Ageg + A e, + A€,
corresponds to the 1-form
WA = Acdx + A, dy + A;dz = A, dr + rA,dep + A,dz = AgdR + Rcos 04,de + RA,dP
and the 2-form

w3 = A,dy Adz + Ay dz A dx + A, dx A dy
=rA,dp Andz+ Adz ~Adr +rA,dr A do
= R?*cos 0Ag dg A df + RA,dO A dR + Rcos0A.dR A de.

An example of a vector field on a manifold M is the gradient of a function
f: M — R. Recall that the gradient of a function is the vector field grad [
corresponding to the differential:

Wgaay = df, ie, df(§) =(grad f, &) V&

PrROBLEM 16. Find the components of the gradient of a function in the basis e;, e, e;.
Solution. We have df = (0f/0x,)dx, + (&f/0x,}dx, + (&f/éx3}dx,. By the problem above

gradf-:_l_;ie +41_.‘Aaie +_Lfie
JE 01 JE x0T JE, 8x3
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35: Integration of differential forms

In particular, in cartesian, cylindrical, and spherical coordinates

of of of  of 1éf of
df=_"— - -~ =_ - =
grad f 6xex-'.6yey+62'3z are'+r6(pe¢+azez
of 1 af 1cf
= — - . + —_
6ReR+RcosBc3(pe" Roo¢

-

35 Integration of differential forms

We define here the concepts of a chain, the boundary of a chain, and the integration of a form

over a chain.
The integral of a differential form is a higher-dimensional generalization of such ideas as the

flux of a fluid across a surface or the work of a force along a path.

A The integral of a I-form along a path
We begin by integrating a 1-form w! on a manifold M. Let
»[0<t<li]-M

be a smooth map (the “path of integration”). The integral of the form
w' on the path y is defined as a limit of Riemann sums. Every Riemann sum
consists of the values of the form @' on some tangent vectors &; (Figure 146):

n
fcol = lim ) w!(&).
¥ A—=0 i=1
The tangent vectors &; are constructed in the following way. The interval
0 <t < lisdivided into parts A;:t; < t < t;, ; by the points t;. The interval
A; can be looked at as a tangent vector A,; to the ¢ axis at the point ¢;. Its
image in the tangent space to M at the point y(¢;) is

& = dyl,(A)e TM,q,.

The sum has a limit as the largest of the intervals A; tends to zero. It is

called the integral of the 1-form ! along the path y.
The definition of the integral of a k-form along a k-dimensional surface
follows an analogous pattern. The surface of integration is partitioned into

Figure 146 Integrating a 1-form along a path
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Figure 147 Integrating a 2-form over a surface

small curvilinear k-dimensional parallelepipeds (Figure 147); these paral-
lelepipeds are replaced by parallelepipeds in the tangent space. The sum of the
values of the form on the parallelepipeds in the tangent space approaches
the integral as the partition is refined. We will first consider a particular case.

B The integral of a k-form on oriented euclidean space R*

Let x,, ..., x; be an oriented coordinate system on R*. Then every k-form
on R* is proportional to the form dx; A --- A dx,, i.e., it has the form
w* = @p(x)dx, A --- A dx,, where @(x) is a smooth function.

Let D be a bounded convex polyhedron in R* (Figure 148). By definition,
the integral of the form w* on D is the integral of the function ¢:

fw" - fqo(x)dxl,...,dxk,
D D

where the integral on the right is understood to be the usual limit of Riemann

sums.
Such a definition follows the pattern outlined above, since in this case the
tangent space to the manifold is identified with the manifold.

PROBLEM 1. Show that [, w* depends linearly on w*.

PROBLEM 2. Show that if we divide D into two distinct polyhedra D, and D,, then

J-w"=f w"+f .
D Dy D2

In the general case (a k-form on an n-dimensional space) it is not so easy
to identify the elements of the partition with tangent parallelepipeds; we will
consider this case below.

|-

Figure 148 Integrating a k-form in k-dimensional space
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C The behavior of differential forms under maps

Let f: M — N be a differentiable map of a smooth manifold M to a smooth
manifold N, and let @ be a differential k-form on N (Figure 149). Then, a
well-defined k-form arises also on M: it is denoted by f*w and is defined by

the relation

(f*o)Ey, -, 8) = (£, &1, - .-, f480)

for any tangent vectors &, ..., § € TM,. Here f, is the differential of the
map f. In other words, the value of the form f*w on the vectors §,, ..., &, is
equal to the value of w on the images of these vectors.

R

J*ew

Figure 149 A form on N induces a form on M.

ExampLE. If y = f(x,, x;) = x? + x% and w = dy, then

f*w = le dxl + 2)(2 de.

PROBLEM 3. Show that f*w is a k-form on M.

PROBLEM 4. Show that the map f* preserves operations on forms:
Aoy + Ayw,) = 4 fMw,) + 45 fH(w,),
SHwy A ;) = (f*oy) A (f*w,y).

PROBLEM 5. Let g: L — M be a differentiable map. Show that (fg)* = g*/*.

ProsLEM 6. Let D, and D, be two compact, convex polyhedra in the oriented k-dimensional
space R* and f: D, — D, a differentiable map which is an orientation-preserving diffeomor-
phism?*? of the interior of D, onto the interior of D,. Then, for any differential k-form w* on D,,

J-le* k= szw“.

Hint. This is the change of variables theorem for a multiple integral:

a(yl!"-syn) _
'[D, A(x1. .. x) e(y(x)dx, ---dx, = fDZ¢(y)dy1 - dy,.

55 je.. one-to-one with a differentiable inverse.
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D Integration of a k-form on an n-dimensional manifold

Let @ be a differential k-form on an n-dimensional manifold M. Let D be a
bounded convex k-dimensional polyhedron in k-dimensional euclidean
space R* (Figure 150). The role of “path of integration” will be played by a

| @*é

( Or R*

Figure 150 Singular k-dimensional polyhedron

k-dimensional cell®® o of M represented by a triple ¢ = (D, f, Or) consisting
of

1. a convex polyhedron D < R,
2. a differentiable map f: D - M, and
3. an orientation on R*, denoted by Or.

Definition. The integral of the k-form w over the k-dimensional cell ¢ is the
integral of the corresponding form over the polyhedron D

J;co = fD [ *o.

PRrROBLEM 7. Show that the integral depends linearly on the form:

J‘ llwl '+' lzﬂ)z = lll J‘(Dl + /12 J‘wz.

The k-dimensional cell which differs from o only by the choice of orienta-
tion is called the negative of o and is denoted by — o or —1 - o (Figure 151).

VONY/ON

Figure 151 Problem 8

PrOBLEM 8. Show that, under a change of orientation, the integral changes sign:
J‘ w= — J‘m.

56 The cell o is usually called a singular k-dimensional polyhedron.
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E Chains

The set f(D) is not necessarily a smooth submanifold of M. It could have
“self-intersections” or “folds™ and could even be reduced to a point. How-
ever, even in the one-dimensional case, it is clear that it is inconvenient to
restrict ourselves to contours of integration consisting of one piece: it is
useful to be able to consider contours consisting of several pieces which can
be traversed in either direction, perhaps more than once. The analogous
concept in higher dimensions is called a chain.

Definition. A chain of dimension k on a manifold M consists of a finite collection
of k-dimensional oriented cells ¢,, ..., 5, in M and integers m;, ..., m,,
called multiplicities (the multiplicities can be positive, negative, or zero).
A chain is denoted by

Ck = mldl + - + m,,O',.

We introduce the natural identifications
m;oc + myo = (m; + m,)o
mo, + myo, = m,0, + m;o, Oc =0 ¢ + 0 =c,.
PROBLEM 9. Show that the set of all k-chains on M forms a commutative group if we define the

addition of chains by the formula

(mo, +---+m0a,)+ (Mo, + -+ mo)=rmo, +- - +ma, +maoy + -+ ma,.

F Example: the boundary of a polyhedron

Let D be a convex oriented k-dimensional polyhedron in k-dimensional
euclidean space R*. The boundary of D is the (k — 1)-chain dD on R* defined
in the following way (Figure 152).

The cells o; of the chain éD are the (k — 1)-dimensional faces D; of the
polyhedron D, together with maps f;: D; - R* embedding the faces in R* and
orientations Or; defined below ; the multiplicities are equal to 1:

oD =Y o, o =D, f,Or).

Rule of orientation of the boundary. Let e, ..., €, be an oriented frame in
R*. Let D, be one of the faces of D. We choose an interior point of D; and there

Figure 152 Oriented boundary
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construct a vector n outwardly normal to the polyhedron D. An orienting
frame for the face D; will be a frame f,, ..., f,_, on D, such that the frame
(m, f,, ..., f._)isoriented correctly (i.e.,the same way as theframee,, ..., €,).

The boundary of a chain is defined in an analogous way. Let ¢ = (D, f, Or)
be a k-dimensional cell in the manifold M. Its boundary J¢ is the (k — 1)
chain: do = Z o, consisting of the cells ¢, = (D;, f;, Or;), where the D; are
the (k — 1)-dimensional faces of D, Or, are orientations chosen by the rule
above, and f; are the restrictions of the mapping f: D — M to the face D,.

The boundary dc, of the k-dimensional chain ¢, in M is the sum of the
boundaries of the cells of ¢, with multiplicities (Figure 153):

dc, = dmyo6, + --- + m,0,) = m, 06, + --- + m, 00,.

Obviously, dc, is a (k — 1)-chain on M.37

€2
Figure 153 Boundary of a chain
ProBLEM 10. Show that the boundary of the boundary of any chain is zero: doc, = 0.
Hint. By the linearity of & it is enough to show that 86D = 0 for a convex polyhedron D. It

remains to verify that every (k — 2)-dimensional face of D appears in d0D twice, with opposite
signs. It is enough to prove this for k = 2 (planar cross-sections).

G The integral of a form over a chain

Let w* be a k-form on M, and ¢, a k-chain on M, ¢, = ) m,0,. The integral
of the form w* over the chain c, is the sum of the integrals on the cells, counting

multiplicities:
f CUk == Z m,- wk.
Cik ai

PrROBLEM 11. Show that the integral depends linearly on the form:

f@+@=f@+f@.
Ck Clc Ci

PrOBLEM 12, Show that integration of a fixed form o* on chains ¢, defines a homomorphism from
the group of chains to the line.

57 We are taking k > 1 here. One-dimensional chains are included in the general scheme if we
make the following definitions: a zero-dimensional chain consists of a collection of points with
multiplicities; the boundary of an oriented interval ABis B — A (the point B with multiplicity 1
and A with multiplicity — 1); the boundary of a point is empty.
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35: Integration of differential forms

ExaMPLE 1. Let M be the plane {(p, ¢)}, &»! the form pdqg, and ¢, the chain consisting of one cell ¢
with multiplicity 1:

(0<t<2n]LH(p=cost,g=sint).
Then |, pdq = = In general, if a chain ¢, represents the boundary of a region G (Figure 154), then

{., pdq is equal to the area of G with sign + or — depending on whether the pair of vectors
(outward normal, oriented boundary vector) has the same or opposite orientation as the pair

(p axis, g axis).

&

oY A pdag

—

Figure 154 The integral of the form p dg over the boundary of a region is equal to the
area of the region.

-2

ExAMPLE 2. Let M be the oriented three-dimensional euclidean space R?. Then every 1-form on
M corresponds to some vector field A (@' = wy), where

wi(8) = (A, E).

The integral of w} on a chain ¢, representing a curve [ is called the circulation of the field A

otver the curve .
j m) = j(A, dan.
€1 ]

Every 2-form on M also corresponds to some field A (w? = wf, where wi(§, n) = (A, &, n)).
The integral of the form w3 on a chain ¢, representing an oriented surface § is called the

Sflux of the field A through the surface §:
f w} = I(A, dn).
2 S

ProBLEM 13. Find the flux of the fielkd A = (1/R?)eg over the surface of the sphere x? + y* + z? =
1, oriented by the vectors e, e, at the point z = 1. Find the flux of the same ficld over the surface

of the ellipsoid (x2/a?) + (¥*/b?) + z? = 1 oriented the same way.
Hint. Cf. Section 36H.

PROBLEM 14, Suppose that, in the 2n-dimensional space R" = {{(p,..., Pn: 91, - -, qu)}, WeE are
given a 2-chain ¢, representing a two-dimensional oriented surface S with boundary /. Find

J dpl N dql + -+ dprr N dqn and fpldQI + -+ pndQn'
c2 !

ANSWER. The sum of the oriented areas of the projection of S on the two-dimensional coordinate

planes p;, g;.
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36 Exterior differentiation

We define here exterior differentiation of k-forms and prove Stokes’ theorem: the integral of the
derivative of a form over a chain is equal to the integral of the form itself over the boundary of

the chain.

A Example: the divergence of a vector field

The exterior derivative of a k-form @ on a manifold M is a (k + 1)-form dw
on the same manifold. Going from a form to its exterior derivative is analo-
gous to forming the differential of a function or the divergence of a vector
field. We recall the definition of divergence.

Y oell £,

Figure 155 Definition of divergence of a vector field

Let A be a vector field on the oriented euclidean three-space R?, and let S
be the boundary of a parallelepiped Il with edges §,, &, and &3 at the vertex x
(Figure 155). Consider the (“outward”™) flux of the field A through the

surface S:

FAI) = L(A, dn).

If the parallelepiped IT is very small, the flux F is approximately propor-
tional to the product of the volume of the parallelepiped, V = (&, &,, &3),
and the “source density” at the point x. This is the limit
. F(eIT)

11“; eV
where &¢I1 is the parallelepiped with edges €§,, £§;, £é€5. This limit does not
depend on the choice of the parallelepiped IT but only on the point x, and is
called the divergence, div A, of the field A at x.

To go to higher-dimensional cases, we note that the “flux of A through a
surface element” is the 2-form which we called w?. The divergence, then,
is the density in the expression for the 3-form

w® =divAdx A dy A dz,
w3(§1: §2’ gS) = le A- V(éls §23 §3)s

characterizing the “sources in an elementary parallelepiped.”
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The exterior derivative dw* of a k-form w* on an n-dimensional manifold
M may be defined as the principal multilinear part of the integral of w* over
the boundaries of (k¢ + 1)-dimensional parallelepipeds.

B Definition of the exterior derivative

We define the value of the formdwon k + 1 vectors§, ..., & tangentto M
at x. To do this, we choose some coordinate system in a neighborhood of x
on M, i.e., a differentiable map f of a neighborhood of the point 0 in euclidean
space R" to a neighborhood of x in M (Figure 156).

Figure 156 The curvilinear parallelepiped I1.

The pre-images of the vectors §,, ..., ., € TM, under the differential
of f lie in the tangent space to R" at 0. This tangent space can be naturally
identified with R”, so we may consider the pre-images to be vectors

& ..., Bk €RY

We take the parallelepiped IT* in R" spanned by these vectors (strictly
speaking, we must look at the standard oriented cube in R**! and its linear
map onto IT*, taking the edges ey, ..., €., to &}, ..., &F,,asa (k + 1)-
dimensional cell in R"). The map f takes the parallelepiped IT* to a (k + 1)-
dimensional cell on M (a “curvilinear parallelepiped ). The boundary of the
cell I is a k-chain, oI1. Consider the integral of the form w* on the boundary
oIl of IT:

FE&y, ....&+1) = w*.

oIl

ExAMPLE . We will call a smooth function ¢: M — R a 0-form on M. The integral of the O-form ¢
on the 0-chain ¢q = Z m; A, (where the m; are integers and the 4; points of M) is

f @ =Y me(A).

<

Then the definition above gives the “increment” F(&;) = @(x,) — @(x) (Figure 157) of the
function ¢, and the principal linear part of F(§,) at O is simply the differential of ¢.

PrOBLEM 1. Show that the function F(&,, ..., B, ) is skew-symmetric with respect to &,

It turns out that the principal (k + 1)-linear part of the “increment”
F(&,, ..., E+1) is an exterior (k + 1)-form on the tangent space TM, to M
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Figure 157 The integral over the boundary of a one-dimensional paralielepiped is the
change in the function.

at x. This form does not depend on the coordinate system that was used to
define the curvilinear parallelepiped Il. It is called the exterior derivative, or
differential, of the form w* (at the point x) and is denoted by dw*.

C A theorem on exterior derivatives
Theorem. There is a unique (k + 1)-form Q on TM, which is the principal

(k + 1)-linear part at O of the integral over the boundary of a curvilinear
parallelepiped, F(&,, ..., &, ), ie.,

(1) F(e&y, ..., 88,4,) = 3k+lﬂ(§1s---,§k+1) + o(e** 1) (¢ = 0).

The form ) does not depend on the choice of coordinates involved in the
definition of F. If, in the local coordinate system x., ..., x, on M, the form
w* is written as

k
W = Za,-h___,,-k dx Ao A dxik,

3]

then € is written as

(2) Q=do*= > da;, ., Adx; A Adx.

We will carry out the proof of this theorem for the case of a form w! =
a(x,, x,)dx; on the x;, x, plane. The proof in the general case is entirely
analogous, but the calculations are somewhat longer.

We calculate F(&, 1), i.e., the integral of ! on the boundary of the paral-
lelogram IT with sides § and i and vertex at O (Figure 158). The chain oI is

X2
A

n+ &t

£t

- X}

Figure 158 Theorem on exterior derivatives
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36: Exterior differentiation

given by the mappings of the interval 0 <t < 1 to the plane t —» &t, t —
E + nt,t — nt,and t — v + & with multiplicities 1, 1, — 1, and — 1. Therefore,

w! = f [a(Er) — aEt + W)1E; — [atn) — aut + E)In, dt

oIl
where &, = dx,(§), 7, = dx,(w), &, = dx,(8), and 7, = dx,(n) are the
components of the vectors § and . But

da da
algt + W) — a€) = = -1, + 5 -1z + O W)
1 2

(the derivatives are taken at x; = x, = 0). In the same way
da da
amt + &) — a(nyt) = e, ¢y + B &, + O, ).
Xt X2
By using these expressions in the integral, we find that

da

FEW) = | o' == (&m — &im) + o0& ).
ar X2

The principal bilinear part of F, as promised in (1), turns out to be the value

of the exterior 2-form

Q= a dx, A dx,
aX2

on the pair of vectors &, . Thus the form obtained is given by formula (2),
since

% 0 d
da ~ dx, =£dx, A dx, +£dx2 A dx, =5;—2de A dx,.
1 2

Finally, if the coordinate system x,, x, is changed to another (Figure 159),
the parallelogram IT is changed to a nearby curvilinear parallelogram IT’, so
that the difference in the values of the integrals, {,; ®! — [;n @' will be
small of more than second order (prove it!). O

—\

Figure 159 Independence of the exterior derivative from the coordinate system
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7: Differential forms

PrOBLEM 2. Carry out the proof of the theorem in the general case.

PROBLEM 3. Prove the formulas for differentiating a sum and a product:
d{w, + w;) = dw, + dw,.
and
d(w* A o) = dw* A o + (— DFe* A do,

PRrROBLEM 4. Show that the differential of a differential is equal to zero: dd = 0.

PROBLEM 5. Let f: M — N be a smooth map and w a k-form on N. Show that f*(dw) = d({ *w).

D Stokes’ formula

One of the most important corollaries of the theorem on exterior derivatives
is the Newton-Leibniz-Gauss-Green-Ostrogradskii-Stokes-Poincaré for-
mula:

3) Lccu == J;dco,

where c is any (k + 1)-chain on a manifold M and w is any k-form on M.

To prove this formula it is sufficient to prove it for the case when the chain
consists of one cell 0. We assume first that this cell ¢ is given by an oriented
parallelepiped [T =« R**! (Figure 160).

Figure 160 Proof of Stokes’ formula for a parallelepiped

We partition IT into N**! small equal parallelepipeds IT; similar to I1.
Then, clearly,

Nk+l
fa): > F;, where F, = w.
arl

i=1 ert,
By formula (1) we have
F;=dw}, ..., &, ) + o(N~*+1),

where &}, ..., EL,, are the edges of IT;. But >~ dwx(&i, ..., ,,) is a
Riemann sum for | dw. It is easy to verify that o(N ~** V) is uniform, so

Nk+l Nk+l
lim ) F,= lim } dw(gi,...,§i+l)=fdw.
N—w i=1 N—a i=1 n
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36: Exterior differentiation

Finally, we obtain

w =) F,= lim ZF,-=fda).
arn N-r o I

Formula (3) follows automatically from this for any chain whose polyhedra
are parallelepipeds.

To prove formula (3) for any convex polyhedron D, it is enough to prove
it for a simplex,®® since D can always be partitioned into simplices (Figure
161):

D=YD, D=7 0D,

Figure 161 Division of a convex polyhedron into simplices

Figure 162 Proof of Stokes’ formula for a simplex

We will prove formula (3) for a simplex. Notice that a k-dimensional
oriented cube can be mapped onto a k-dimensional simplex so that:

1. The interior of the cube goes diffeomorphically, with its orientation
preserved, onto the interior of the simplex;

2. The interiors of some (k — 1)-dimensional faces of the cube go diffeo-
morphically, with their orientations preserved, onto the interiors of the
faces of the simplex; the images of the remaining (k — 1)-dimensional
faces of the cube lie in the (k — 2)-dimensional faces of the simplex.

For example, for k = 2 such a map of the cube 0 < x,;, x, < | onto the

triangle is given by the formula y, = x,;, y, = x;x, (Figure 162). Then,

%% A two-dimensional simplex is a triangle, a three-dimensional simplex is a tetrahedron, a
k-dimensional simplex is the convex hull of k¥ + 1 points in R" which do not lie in any k — 1-
dimensional plane.

ExaMpLE: {x e R*:x; > Oand Y *_, x, < 1}.
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7: Differential forms

formula (3) for the simplex follows from formula (3) for the cube and the
change of variables theorem (cf. Section 35C).

ExaMpPLE 1. Consider the 1-form
w' =p,dq, + -+ p,dqg, = pdq

on R2?" with coordinates py, ..., Pu» 41»- - -» 4n- Thendw' = dp; ~ dg, + -
+ dp, A dg, = dp A dq, so

Jj dp A dq = f P dq.
2 6c2

In particular, if ¢, is a closed surface (éc, = 0), then [{., dp A dq = 0.

E Example 2— Vector analysis

In a three-dimensional oriented riemannian space M, every vector field A
corresponds to a 1-form w} and a 2-form wj3 . Therefore, exterior differentia-

tion can be considered as an operation on vectors.
Exterior differentiation of 0-forms (functions), 1-forms, and 2-forms cor-
respond to the operations of gradient, curl, and divergence defined by the

relations

df = wéradf da)}\ = wzurlA da)i = (div A)CU3

(the form w? is the volume element on M). Thus, it follows from (3) that

Jf» =S = flgradfdl ifol =y — x

JA dl = ffcurlA-dn if s =1
! s

.USA dn = ff (div A)w® ifoD = S.
D

div[A, B] = (curl A, B) — (curl B, A),

PrOBLEM 6. Show that

curl aA = [grad a, A] + acurl A,
div aA = (grad a, A) + adiv A.

Hint. By the formula for differentiating the product of forms,
d(w[zA,n]) = d(w) A wk) = dw) A wh — wi A dwk.

PROBLEM 7. Show that curl grad = div curl = 0.
Hint. dd = 0.
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36: Exterior differentiation

F Appendix 1. Vector operations in triply orthogonal systems

Let x;, x,, x3 be a triply orthogonal coordinate system on M, ds? =
E, dx} + E, dx} + E; dx3 and e; the coordinate unit vectors (cf. Section

34E).

ProBLEM 8. Given the components of a vector field A = 4,e;, + A,e, + A,e,, find the compo-
nents of its curl.
Solution. According to Section 34E

Wy = Al\/IT, dx, + AZ\/ITZ dx, + /13,\/};?3 dx,.

Therefore,

desh, = (Q“L’Ea _ A VE,

dx, Adxs+ - = w2 ..
sz ax3 ) 2 3 carl A

According to Section 34E, we have

vV Eie E;e, \/E;ea
0

LA i (6A3\/E‘3 aAz\/Ez) . 1 0 é
curl A = — e, + = — — - —
\/EI:TJ 0x, 0x5 VEESE; 0x, 0x; OX3

A, E, A,JE, A,JE,

In particular, in cartesian, cylindrical, and spherical coordinates on R?,

) . oA, an)
e, - — €
¥ Ox oy} *°
A

curl A

I

dA, 0A, A, 0A,
Jdy Oz Cz éx
1 {0A. orA, oA, : 1 ford, A,

== —=]e, + — e, +— — — e,
r\dp oz dz or r\ or dp

1 0A, 0A,cosd 1 /04y 0ORA, 1 {ORA, 1 JAg
Rcos 0\ dop ad R oR cos @ Jp

Q)

a0 ZR

+
R

ProBLEM 9. Find the divergence of the field A = 4,e, + A,e, + A e,.

Solution. wi = A\/E;E3dx, A dx; + ---. Therefore,
¢
dwi = 3 (A, JE;E3)dx; A dxy; Andxs + ---.
X4

By the definition of divergence,
dwi = div A JE E,Eydx, A dx, A dx,y.

This means

As\/ﬁ).

div A =

aA EE+8A EE+a
axllzsaxzz 3lax3

=
VEIEEy
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7. Differenttal forms

In particular, in cartesian, cylindrical, and spherical coordinates on R*:

0A, . 0A, N eA4, 1 (arA, 6Aq,) + DA,
ox oy dz  r\ Or + o dz

1 (6R2 cos 84 @RA, ORcos (JAH)
p— _ + [

divA =

- R%*cos ¥ R dp T

PrOBLEM 10. The Laplace operator on M is the operator A = div grad. Find its expression in the
coordinates Xx;.

ANSWER.

1 d /E E, ©
Af: G _[7( 2 3-:£)+-..]_
VEEZE; 0xy E, &x,
In particular, on R’

oY f 9 o 19f 134 &
A=t 2 52 52 oY St
4 ox?  oy*  o0z2 or? + ror + r? dp? * oz?

v o (oo )+ 2 (o e) 5 (0 %9)]
=— | — s g -— — — — =11.
R? cos 8 1OR COS ¥ 3R J¢ \cos 0 dp 08 oS Y 50

G Appendix 2: Closed forms and cycles

The flux of an incompressible fluid (without sources) across the boundary
of a region D is equal to zero. We will formulate a higher-dimensional
analogue to this obvious assertion. The higher-dimensional analogue of an
incompressible fluid is called a closed form. The field A has no sources if
divA = 0.

Definition. A differential form @ on a manifold M is closed if its exterior
derivative is zero: dw = 0.

In particular, the 2-form w? corresponding to a field A without sources
is closed. Also, we have, by Stokes’ formula (3):

Theorem. The integral of a closed form w* over the boundary of any (k + 1)-
dimensional chain c, ,  is equal to zero:

f W =0 ifdo* =0.
dck + 1

ProBLEM 11. Show that the differential of a form is always closed.

On the other hand, there are closed forms which are not differentials. For
example, take for M the three-dimensional euclidean space R* without O:
M = R3 — 0, with the 2-form being the flux of the field A = (1/R?)eg
(Figure 163). It is easy to convince oneself that div A = 0, so that our 2-form
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36: Exterior differentiation

Figure 163 The field A

w3 is closed. At the same time, the flux over any sphere with center O is equal
to 4n. We will show that the integral of the differential of a form over the
sphere must be zero.

Definition. A cycle on a manifold M is a chain whose boundary is equal to
Zero.

The oriented surface of our sphere can be considered to be a cycle. It
immediately follows from Stokes’ formula (3) that

Theorem. The integral of a differential over any cycle is equal to zero:

f do* =0 ifdc,., =0.
Cic+ 1

Thus, our 2-form @3 is not the differential of any 1-form.

The existence of closed forms on M which are not differentials is related
to the topological properties of M. One can show that every closed k-form
on a vector space is the differential of some (k — 1)-form (Poincaré’s lemma).

PROBLEM 12. Prove Poincaré’s lemma for t-forms.
Hint. Consider %! o' = o(x,).

PROBLEM 13. Show that in a vector space the integral of a closed form over any cycle is zero.
Hint. Construct a (k + 1)-chain whose boundary is the given cycle (Figure 164).

Figure 164 Cone over a cycle
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7: Differential forms

Namely, for any chain ¢ consider the “cone over ¢ with vertex 0.” If we denote the operation
of constructing a cone by p, then

doep+peod=1 {the identity map).

Therefore, if the chain c is closed, d(pc) = c.

PROBLEM. Show that every closed form on a vector space is an exterior derivative.
Hint. Use the cone construction. Let * be a differential k-form on R". We define a (k — 1)-
form (the “co-cone over @”) pw* in the following way: for any chain ¢,
k

J pw"‘=j w.
[ P -1

It is easy to see that the (k — 1)-form pw* exists and is unique: its value on the vectors
E,. ..., &1, tangent to R" at x, is equal to

P&y, ..., &) = I(’) w, (%, 1§y, ..., t&,— )dt.

k-1

It is easy to see that
dop+ pod=1 (the identity map).

Therefore, if the form * is closed, d(pw*) = w*.

ProBLEM. Let X be a vector field on M and w a differential k-form. We define a differential
(k — 1)-form ixw (the interior derivative of w by X) by the relation

(ixw)Ey, ..., By) = X, By, o, B y)
Prove the homotopy formula
ixd + dix = Lx,

where Ly is the differentiation operator in the direction of the field X.
[The action of Ly on a form is defined, using the phase flow {g'} of the field X, by the relation

d
(Lxw)(E) = +| (gl8).

de 1=0

Ly is called the Lie derivative or fisherman’s derivative: the flow carries all possible differential-
geometric objects past the fisherman, and the fisherman sits there and differentiates them.]

Hint. We denote by H the “homotopy operator” associating to a k-chain y: o — M the
(k + 1)-chain Hy: (I x ¢} = M according to the formula (Hy)(t, x) = g'y(x) (where I = [0, 1]).
Then

g'y — v = &(Hy) + H(d7).
PROBLEM. Prove the formula for differentiating a vector product on three-dimensional euclidean
space (or on a riemannian manifold):
curl[a,b] = {a,b} + adivb — bdiva

(where {a, b} = L,b is the Poisson bracket of the vector fields, cf. Section 39).
Hint. If 7 is the volume element, then

icurtja,b)T = diainT diva=di,t and {a,b} = L.b;

by using these relations and the fact that dr = 0, it is easy to derive the formula for curl[a, b] from
the homotopy formula.
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36: Exterior differentiation

H Appendix 3. Cohomology and homology

The set of all k-forms on M is a vector space, the closed k-forms a sub-
space and the differentials of (k — 1)-forms a subspace of the subspace of
closed forms. The quotient space

(closed forms)
(differentials)

= H¥M, R)

is called the k-th cohomology group of the manifold M. An element of this
group is a class of closed forms differing from one another only by a differ-
ential.

PrROBLEM 14. Show that for the circle S§' we have H'(§', R) = R.

The dimension of the space H*(M, R) is called the k-th Betti number of M.

ProBLeM 5. Find the first Betti number of the torus 72 = S§! x §!.

The flux of an incompressible fluid (without sources) over the surfaces of
two concentric spheres is the same. In general, when integrating a closed form

d

Figure 165 Homologous cycles

over a k-dimensional cycle, we can replace the cycle with another one pro-
vided that their difference is the boundary of a (k + 1)-chain (Figure 165):

Jw*: fw"
a b
ifa — b = dc;,, and do* = 0.

Poincare called two such cycles a and b homologous.
With a suitable definition®® of the group of chains on a manifold M and its

*? For this our group {c¢,} must be made smaller by identifying pieces which differ only by the
choice of parametrization f or the choice of polyhedron D. In particular, we may assume that
D is always one and the same simplex or cube. Furthermore, we must take every degenerate
k-cell (D, f, Or)tobezero,ie,(D, f. Or) = 0if f = f, - f;.where f,: D — D’ and D’ has dimension
smaller than k.
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7- Differential forms

subgroups of cycles and boundaries (i.e., cycles homologous to zero), the
quotient group

(cycles)
(boundaries) H(M)

is called the k-th homology group of M.
An element of this group is a class of cycles homologous to one another.
The rank of this group is also equal to the k-th Betti number of M (“De

Rham’s Theorem ™).
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Symplectic manifolds

A symplectic structure on a manifold is a closed nondegenerate differential
2-form. The phase space of a mechanical system has a natural symplectic

structure.
On a symplectic manifold, as on a riemannian manifold, there is a natural

isomorphism between vector fields and 1-forms. A vector field on a sym-
plectic manifold corresponding to the differential of a function is called a
hamiltonian vector field. A vector field on a manifold determines a phase
flow, i.e., a one-parameter group of diffeomorphisms. The phase flow of a
hamiltonian vector field on a symplectic manifold preserves the symplectic

structure of phase space.
The vector fields on a manifold form a Lie algebra. The hamiltonian

vector fields on a symplectic manifold also form a Lie algebra. The operation
in this algebra is called the Poisson bracket.

37 Symplectic structures on manifolds

We define here symplectic manifolds, hamiltonian vector fields, and the standard symplectic
structure on the cotangent bundle.

A Definition

Let M?>" be an even-dimensional differentiable manifold. A symplectic
structure on M?" is a closed nondegenerate differential 2-form w? on M?":

dw?* =0 and V& # 0:w?E,m) #0 &, neTM,).

The pair (M?", w?) is called a symplectic manifold.
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8: Symplectic manifolds

ExAMPLE. Consider the vector space R2” with coordinates p,, g; and let w? =Y dp; A dg;.

PROBLEM. Verify that (R?", »?) is a symplectic manifold. For n =1 the pair (R?, ®?) is the pair
(the plane, area).

The following example explains the appearance of symplectic manifolds
in dynamics. Along with the tangent bundle of a differentiable manifold, it is
often useful to look at its dual—the cotangent bundle.

B The cotangent bundle and its symplectic structure

Let V be an n-dimensional differentiable manifold. A 1-form on the tangent
space to V at a point X is called a cotangent vector to V at x. The set of all
cotangent vectors to V at x forms an n-dimensional vector space, dual to
the tangent space T V,. We will denote this vector space of cotangent vectors
by T*V, and call it the cotangent space to V at X.

The union of the cotangent spaces to the manifold at all of its points is
called the cotangent bundle of V and is denoted by T*V. The set T*V has a
natural structure of a differentiable manifold of dimension 2n. A point of
T*V is a 1-form on the tangent space to V at some point of V. 1f q is a choice
of n local coordinates for points in ¥, then such a form is given by its n com-
ponents p. Together, the 2n numbers p, q form a collection of local coordinates
for points in T*V.

There is a natural projection f: T*V — V (sending every l1-formon TV, to
the point x). The projection f is differentiable and surjective. The pre-image
of a point x € ¥ under f is the cotangent space T*V,.

Theorem. T he cotangent bundle T*V has a natural symplectic structure. In the
local coordinates described above, this symplectic structure is given by the
formula

w? = dp A dq = dp; A dgy + -+ + dp, A dq,.

Proor. First, we define a distinguished 1-form on T*V. Let Ee T(T*V),be
a vector tangent to the cotangent bundle at the point p € T*V, (Figure 166).
The derivative f, : T(T*V) — TV of the natural projection f: T*V — V takes
& to a vector f, & tangent to V at x. We define a 1-form w' on T*V by the
relation w'(€) = p(f,.&). In the local coordinates described above, this form
is w! = p dq. By the example in A, the closed 2-form w? = dw' is non-
degenerate. O

Remark. Consider a lagrangian mechanical system with configuration manifold ¥ and
lagrangian function L. It is easy to sec that the lagrangian “ generalized velocity” q is a tan-
gent vector to the configuration manifold V., and the “generalized momentum™ p = 0L/0q
is a cotangent vector. Therefore, the “p, " phase space of the lagrangian system is the cotangent
bundle of the configuration manifold. The theorem above shows that the phase space of a
mechanical problem has a natural symplectic manifold structure.
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g
m d

Figure 166 The 1-form p dq on the cotangent bundle

PROBLFM. Show that the Legendre transform does not depend on the coordinate system: it
takes a function L: T}~ - R on the tangent bundle to a function H: T*V — R on the cotangent

bundle.

C Hamiltonian vector fields

A riemannian structure on a manifold establishes an isomorphism between
the spaces of tangent vectors and 1-forms. A symplectic structure establishes

a similar isomorphism.

Definition. To each vector &, tangent to a symplectic manifold (M?*", »?) at
the point x, we associate a 1-form w} on TM, by the formula

wi(n) = w’(n, &) Ve TM,.

PROBLEM. Show that the correspondence § — ¢ is an isomorphism between the 2n-dimensional
vector spaces of vectors and of 1-forms.

ExaMmpLE. In R2" = {(p, q)} we will tdentify vectors and 1-forms by using the euclidean structure
(x. x) = p? + q2. Then the correspondence & — w{ determines a transformation R?* — R2~

PROBLEM. Calculate the matrix of this transformation in the basis D q.

ANSWER.( 0 E
—E ¢

We will denote by I the isomorphism I: T*M, — T M, constructed above.
Now let H be a function on a symplectic manifold M2". Then dH is a differ-
ential 1-form on M, and at every point there is a tangent vector to M as-
sociated to it. In this way we obtain a vector field I dH on M.

Definition. The vector field I dH is called a hamiltonian vector field; H is
called the hamiltonian function.

203



8: Symplectic manifolds

ExaMPLE. If M2" = R2" = {(p, q)}, then we obtain the phase velocity vector field of Hamilton’s
canonical equations:

. _ oH '
X =[1dH(X) <> p = i and q=5;,

38 Hamiltonian phase flows and their integral
invariants

Liouville's theorem asserts that the phase flow preserves volume. Poincaré found a whole
series of differential forms which are preserved by the hamiltonian phase flow.

A Hamiltonian phase flows preserve the symplectic structure

Let (M 3", ®?) be a symplectic manifold and H: M 2n _, R a function. Assume
that the vector field I dH corresponding to H gives a 1-parameter group of
diffeomorphisms g*: M?" —» M?":

d

—_— t —
A 1 dH(x).

The group ¢ is called the hamiltonian phase flow with hamiltonian function H.

Theorem. A hamiltonian phase flow preserves the symplectic structure:

(gr)*wz —_ wz.

In the case n = 1, M?" = R2, this theorem says that the phase flow g
preserves area (Liouville’s theorem).

For the proof of this theorem, it is useful to introduce the following nota-
tion (Figure 167).

Let M be an arbitrary manifold, ¢ a k-chain on M and g M — M aone-
parameter family of differentiable mappings. We will construct a (k + 1)-
chain Jc on M, which we will call the track of the chain c under the homotopy
g.0o<t <t

Let (D, f, Or) be one of the cells in the chain c. To this cell will be associated
a cell (D', f*, Or’) in the chain Jc, where D' = I x D is the direct product of
the interval 0 <t <t and D; the mapping f': D'—> M is obtained from
f:D — M by the formula f'(z, x) = g'f(x); and the orientation Or’ of the

g'c ~E W
) s2¢ D ”ac
dc ' S—

c

k=2 k=1
Figure 167 Track of a cycle under homotopy
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space R** ! containing D’ is given by the frame e,, e,, . . ., e,, where €, is the
unit vector of the ¢ axis, and e;, ..., €, is an oriented frame for D.

We could say that Jc is the chain swept out by ¢ under the homotopy g,
0 <t < 7. The boundary of the chain Jc consists of “end-walls” made up
of the initial and final positions of ¢, and “side surfaces” filled in by the

boundary of c.
It is easy to verify that under the choice of orientation made above,

(1) a(.]ck) = gtck — Ci _'J ack.

Lemma. Let y be a 1-chain in the symplectic manifold (M?", w?). Let g' be a
phase flow on M with hamiltonian function H. Then

4 w? ———f dH.
dt Jy g7y

ProOOF. It is sufficient to consider a chain y with one cell f: [0, 1] - M. We
introduce the notation
af’ of’

f(s, 1) = ¢g'f(s), E = Ds and n = BT € TM,,.

By the definition of the integral

1 T
w? = f f w?(E, n)dt ds.
Jy o (0]

But by the definition of the phase flow, % is a vector (at the point (s, t)) of
the hamiltonian field with hamiltonian function H. By definition of a hamil-

tonian field, w?(§, n) = dH(E). Thus

w? ZJ (j dH)dt. 1
Jy o gty

Corollary. If the chain y is closed (8y = 0), then {,, ®* = 0.
Proor. [, dH = {,, H = 0. O

PROOF OF THE THEOREM. We consider any 2-chain ¢. We have

Oéfdwzé cozé(f —f—f)wzéfwz—fwz
Je aJe g'c c Jaéc g’c c

(1 since w? is closed, 2 by Stokes’ formula, 3 by formula (1), 4 by the corollary
above with y = dc). Thus the integrals of the form w? on any chain ¢ and on
its image g°c are the same. ]

PROBLEM. [s every one-parameter group of diffeomorphisms of M 2" which preserves the sym-
plectic structure a hamiltonian phase flow?
Hint. Cf. Section 40.
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B Integral invariants

Let g: M — M be a differentiable map.

Definition. A differential k-form w is called an integral invariant of the map g
if the integrals of » on any k-chain ¢ and on its image under g are the same:

Jw=fm
gc c

ExaMmpLE. If M = R? and w? = dp A dq is the area element, then w? is an integral invariant of
any map g with jacobian 1.

PROBLEM. Show that a form w* is an integral invariant of a map g if and only if g*w* = o*,

ProOBLEM. Show that if the forms w* and o' are integral invariants of the map g, then the form
w* A w'is also an integral invanant of g.

The theorem in subsection 4 can be formulated as follows:

Theorem. The form w? giving the symplectic structure is an integral invariant
of a hamiltonian phase flow.

We now consider the exterior powers of w?,
(0?)? = w? A W? (0?)? = w2 A w2 AW, ...
Corollary. Each of the forms (©?)?, (0?)?, (0?)*, .. . is an integral invariant of a

hamiltonian phase flow.

PROBLEM. Suppose that the dimension of the symplectic manifold (M?", w?) is 2n. Show that
(w?)* = O for k > n, and that (w?)" is a nondegenerate 2n-form on M2,

We define a volume element on M?" using (w?)". Then, a hamiltonian
phase flow preserves volume, and we obtain Liouville’s theorem from the
corollary above.

ExampLE. Consider the symplectic coordinate space M?" = R?>" = {(p, 9)},
w? = dp A dq = ¥ dp; A dg;. In this case the form (w?)" is proportional to
the form

w** = Z dpil.A".Adpik/\dqil/\.-./\dql'k'
i) < <ik

The integral of w?* is equal to the sum of the oriented volumes of projections
onto the coordinate planes (p;,, - - ., Pic> Qiys - -+ » Qis)-

A map g: R?" — R?"is called canonical if it has w? as an integral invariant.
A canonical map is generally called a canonical transformation. Each of the
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38: Hamiltonian phase flows and their integral invariants

forms w*, w®, ..., ®*" is an integral invariant of every canonical transforma-
tion. Therefore, under a canonical transformation, the sum of the oriented areas
of projections onto the coordinate planes (p;;, ..., Pi» Qi -+ > 95), 1 < k < n,
is preserved. In particular, canonical transformations preserve volume.

The hamiltonian phase flow given by the equations p = —JH/dq, q =

J0H /0p consists of canonical transformations g'.
The integral invariants considered above are also called absolute integral

invariants.

Definition. A differential k-form w is called a relative integral invariant of the
mapg: M - M if [, ® = |, w for every closed k-chain c.

Theorem. Let w be a relative integral invariant of a map g. Then dw is an ab-
solute integral invariant of g.

PROOF. Let ¢ be a k + 1-chain. Then

1 2 3 4
de = f w = w = w = dw.
c éc goc dge gc

(1 and 4 are by Stokes’ formula, 2 by the definition of relative invariant, and
3 by the definition of boundary). OJ

EXAMPLE. A canonical map g: R*" — R?" has the 1-form

n
w! = pdq = ) p;dq, as a relative integral invariant.
i=1

In fact, every closed chain ¢ on R?" is the boundary of some chain ¢, and we find

1 2 4 ]}
fw‘:J-wl-—- wléfdwl=fdw1=fw1%fwl;
gc gfa ige go a do <

(1 and 6 are by definition of 5, 2 by definition of 4, 3 and 5 by Stokes’ formula, and 4 since g
is canonical and dw! = d(p dg) = dq ~ dg = w?).

PROBLEM. Let do)* be an absolute integral invariant of the map g : M — M. Does it follow that
* is a relative integral invariant?

ANSWER. No, if there is a closed k-chain on M which is not a boundary.

C The law of conservation of energy

Theorem. The function H is a first integral of the hamiltonian phase flow with
hamiltonian function H.

ProOOF. The derivative of H in the direction of a vector n is equal to the value
of dH on n. By definition of the hamiltonian field n = I dH we find

dHm) = ©’(n,1dH) = v’ m) = 0. L]

PrROBLEM. Show that the 1-form dH is an integral invariant of the phase flow with hamiltonian
function H.
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8: Symplectic manifolds

39 The Lie algebra of vector fields

Every pair of vector fields on a manifold determines a new vector field, called their Poisson
bracket.®® The Poisson bracket operation makes the vector space of infinitely differentiable
vector fields on a manifold into a Lie algebra.

A Lie algebras

One example of a Lie algebra is a three-dimensional oriented euclidean
vector space equipped with the operation of vector multiplication. The
vector product is bilinear, skew-symmetric, and satisfies the Jacobi identity

([4, B], C] + [[B, C], A] + [[C, 4], B} = 0.

Definition. A Lie algebra is a vector space L, together with a bilinear skew-
symmetric operation L x L — L which satisfies the Jacobi identity.

The operation is usually denoted by square brackets and called the
commutator.

PrROBLEM. Show that the set of n x »n matrices becomes a Lie algebra if we define the commutator
by [4, B] = AB — BA.

B Vector fields and differential operators

Let M be a smooth manifold and A a smooth vector field on M: at every
point xe M we are given a tangent vector A(x)e TM,. With every such
vector field we associate the following two objects:

1. The one-parameter group of diffeomorphisms or flow A': M — M for which
A is the velocity vector field (Figure 168):"

Ax = A(x).
a x = A(x)

=0

2. The first-order differential operator L, . We refer here to the differentiation
of functions in the direction of the field A: for any function ¢: M — R
the derivative in the direction of A is a new function L, ¢, whose value
at a point x is

p(A'x).

1=0

d
(Law)(x) = 7

60 Or Lie bracket [Trans. note].

61 By theorems of existence, uniqueness, and differentiability in the theory of ordinary dif-
ferential equations, the group A' is defined if the manifold M is compact. In the general case
the maps A’ are defined only in a neighborhood of x and only for small £; this is enough for the
following constructions.
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39: The Lie algebra of vector fields

Figure 168 The group of diffeomorphisms given by a vector field

ProBiLEM. Show that the operator L, is linear:

La(di0, + ,05) = A Lo, + L, L, o, (4,, 1, e R).

Also, prove Leibniz's formula L, (@,¢;) = @ La@; + @2 LA ¢p,.

ExaMmpLE. Let (x, .- ., x,) be local coordinates on M. In this coordinate system the vector A(x)
is given by its components (A4,(x), ..., A,(x)); the flow A" is given by the system of differential

equattons
x-t = Al(x);>",x.n = An(x)

and, therefore, the derivative of ¢ = @(x,. ..., x,) in the direction A is
Co Felry)
Lip = Alax—1+ s 4 An@x,,
We could say that in the coordinates (x,, ... . x,) the operator L, has the form
¢ ¢
L, = AIE(—]+ R A,,(T(".

this 1s the general form of a first-order linear differential operator on coordinate space.

PrROBLEM. Show that the correspondences between vector fields A, flows A, and differentiations
L, are one-to-one.

C The Poisson bracket of vector fields

Suppose that we are given two vector fields A and B on a manifold M. The
corresponding flows A' and B* do not, in general, commute: A'B* £ BSA'

(Figure 169).

ProOBLEM. Find an exampie.
Solution. The fields A = e,;, B = x,e, on the (x,, x,) plane.

5
&x A'Bx
B B*A'x
A
x
A'x

Figure 169 Non-commutative flows
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8: Symplectic manifolds

To measure the degree of noncommutativity of the two flows 4’ and B* we
consider the points A'B°x and B*A‘x. In order to estimate the difference
between these points, we compare the value at them of some smooth function
@ on the manifold M. The difference

A(t; s; x) = @(A'B*x) — @p(B°A'x)

is clearly a differentiable function which is zero for s = 0 and for t = 0.
Therefore, the first term different from O in the Taylor series in s and ¢ of A
at O contains st, and the other terms of second order vanish. We will calculate
this principal bilinear term of A at 0.

Lemma 1. The mixed partial derivative 0°A/ds ét at 0 is equal to the com-
mutator of differentiation in the directions A and B:
aZ
ds Ot
PROOF. By the definition of L,,

{@(A'B°x) — (p(BSA'x)} = (LgLap — LALg®) (x).

s=t=0

-

¢(A'B°x) = (L, ¢)(B’x).

t=0

If we denote the function L, ¢ by, then by the definition of Ly

5% s=ol/’(Bsx) = (Le¥)x.
Thus,
62
a5t |, PABX) = (LuLao)x. -

We now consider the commutator of differentiation operators Lyl —
La L. At first glance this is a second-order differential operator.

Lemma 2. The operator LgyLy, — Ly Ly is a first-order linear differential
operator.

PROOF. Let (A, ..., A,) and (B,, ..., B,) be the components of the fields
A and B in the local coordinate system (x, ..., x,) on M. Then
n 0 n o n 0A. ¢ n 2(0
L = ,— A.— @ = B. = B. A )
LB A @ iZ;BtaxiE;I JaXJ L;;I ! axiBXj¢-+L?;1 ' Jaxian

If we subtract L,Lgo, the term with the second derivatives of ¢ vanishes,
and we obtain

n oA, 6B\ &
(LgLa — LaLg)o = Y, (B i_ A ’)—(P 0

i 21\ ox "0x;) 0x;
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39: The Lie algebra of vector fields

Since every first-order linear differential operator is given by a vector
field, our operator Lg L, — L, Ly also corresponds to some vector field C.

Definition. The Poisson bracket or commutator of two vector fields A and
B on a manifold M®2 is the vector field C for which

LC = LBLA - LALB-
The Poisson bracket of two vector fields is denoted by

C = [A, B].

PrOBLEM. Suppose that the vector ficlds A and B are given by their components A4;, B; in coor-
dinates x;. Find the components of the Poisson bracket.

Solution. In the proof of Lemma 2 we proved the formula
é ¢B;

" A.
A, B = Bt SR A" .
[ ]l :gl axl' C‘axi

PrOBLEM. Let A, be the linear vector field of velocities of a rigid body rotating with angular
velocity @, around 0. and A, the same thing with angular velocity w,. Find the Poisson bracket
(A A;)

D The Jacobi identity

Theorem. The Poisson bracket makes the vector space of vector fields on a
manifold M into a Lie algebra.

PROOF. Linearity and skew-symmetry of the Poisson bracket are clear. We
will prove the Jacobi identity. By definition of Poisson bracket, we have

Liam.c) = LeLia sy — Lia.mLe
= LCLBLA - LCLALB + LALBLC - LBLAL(:.
There will be 12 terms in all in the sum L[[A,B},C] + L[[B,C},A] + L[[C, Al.B]-
O

Each term appears in the sum twice, with opposite signs.

E A condition for the commutativity of flows
Let A and B be vector fields on a manifold M.

Theorem. The two flows A' and B® commute if and only if the Poisson bracket
of the corresponding vector fields [ A, B] is equal to zero.

PrOOF. If A'B° = B°A’, then [A, B] = 0 by Lemma 1. If [A, B] = O, then,
by Lemma 1,

@P(A'BSx) — @(B’A'x) = o(s?® + t?), s—=0and:t -0

®2 In many books the bracket is given the opposite sign. Qur sign agrees with the sign of the
commutator in the theory of Lie groups (cf. subsection F).
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8: Symplectic manifolds

for any function ¢ at any point x. We will show that this implies ¢(A4'B*x) =
@(B°A'x) for sufficiently small s and ¢. If we apply this to the local coordinates
(¢ = x4,..., @ = X,), Wwe obtain A’B* = B°A".

Consider the rectangle 0 < t < ty, 0 < s < s, (Figure 170) in the 7, s-plane. To every path
going from (0, 0) to (¢, 5¢) and consisting of a finite number of intervals in the coordinate direc-
tions, we associate a product of transformations of the flows A’ and B®. Namely, to each interval
t, <t < t, we associate A2~ "' and to each interval 5; < s < s, we associate B** *'; the trans-
formations are applied in the order in which the intervals occur in the path, beginning at (0, 0).
For example, the sides (0 <t < to, s = 0)and (t = 15, 0 < 5 < 5,) corresponds to the product
B4 and the sides ( = 0,0 < s < sp)and (s = sy, 0 < t < t,) to the product AB*.

fo.So

So

-7
0 ]

Figure 170 Proof of the commutativity of flows

Figure 171 Curvilinear quadrilateral fyoex

In addition, we associate to each such path in the (z, s)-plane a path on the manifold M
starting at the point x and composed of trajectories of the flows A' and B* (Figure 171). If a
path in the (s, s)-plane corresponds to the product AUBY ... A"B* then on the manifold M
the corresponding path ends at the point 4*'B*' --- A"B™x. Our goal will be to show that all
these paths actually terminate at the one point A""B*x = B*A4"x.

We partition the intervals 0 <t < 1, and 0 < 5 < 5, into N equal parts, so that the whole
rectangle is divided into N2 small rectangles. The passage from the sides (0, 0) — (£o, 0) — (£o. So)
to the sides (0, 0) — (0, s,) — (to, o) can be accomplished in N? steps, in each of which a pair
of neighboring sides of a small rectangle is exchanged for the other pair (Figure 172). In general,
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39 The Lie algebra of vector fields

Mo

Figure 172 Going from one pair of sides to the other,

this small rectangte corresponds to a non-closed curvilinear quadrilateral fydea on the manifold
M (Figure 171). Consider the distance®’ between its vertices x and 8 corresponding to the largest
values of 5 and 1. As we saw earlier, p(a, f) < C,N "> (where the constant C, > 0 does not
depend on N). Using the theorem of the differentiability of solutions of differential equations
with respect to the initial data, it is not difficult to derive from this a bound on the distance
between the ends o’ and §° of the paths xév88 and xdeae’ on M: p(a’, f) < C, N3, where the
constant C, > 0 again does not depend on N. But we broke up the whole journey from B*A4'"x
to A°B*x into N? such pieces. Thus, p(A°B*x, B*A'"x) < N1C, N~ *VN. Therefore,

A"Bx = B®A'x. 0

F Appendix: Lie algebras and Lie groups

A Lie group is a group G which is a differentiable manifold, and for which the
operations (product and inverse) are differentiable maps G x G - G and
G- G.

The tangent space, TG,, to a Lie group G at the identity has a natural
Lie algebra structure; it is defined as follows:

Foreachtangent vector A € TG, there is a one-parameter subgroup A* = G
with velocity vector A = (d/dt)|,-,A".

The degree of non-commutativity of two subgroups A‘ and B' is measured
by the product A'B*A~‘B~°. It turns out that there is one and only one
subgroup C" for which

p(A'B*'A'B™5, C*) = o(s? +t2) assandt — 0.

The corresponding vector C = (d/dr)|,_oC" is called the Lie bracket
C = [A, B] of the vectors A and B. It can be verified that the operation of
Lie bracket introduced in this way makes the space TG, into a Lie algebra
(i.e, the operation is bilinear, skew-symmetric, and satisfies the Jacobi
identity). This algebra is called the Lie algebra of the Lie group G.

ProsLEM. Compute the bracket operation in the Lie algebra of the group SO(3) of rotations in
three-dimensional euclidean space.

Lemma 1 shows that the Poisson bracket of vector fields can be defined
as the Lie bracket for the “infinite-dimensional Lie group” of all diffeo-
morphisms®* of the manifold M.

3 In some riemannian metric on M.
%4 Our choice of sign in the definition of Poisson bracket was determined by this correspondence.
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8: Symplectic manifolds

On the other hand, the Lie bracket can be defined using the Poisson
bracket of vector fields on a Lie group G. Let g € G. Right translation R, is
the map R,: G — G, R,h = hg. The differential of R, at the point e maps
TG, into TG,. In this way, every vector A€ TG, corresponds to a vector
field on the group: it consists of the right translations (R,), A and is called a
right-invariant vector field. Clearly, a right-invariant vector field on a group
is uniquely determined by its value at the identity.

PrOBLEM. Show that the Poisson bracket of right-invariant vector fields on a
Lie group G is a right-invariant vector field, and its value at the identity of
the group is equal to the Lie bracket of the values of the original vector fields
at the identity.

40 The Lie algebra of hamiltonian functions

The hamiltonian vector ficlds on a symplectic manifold form a subalgebra of the Lie algebra of
all fields. The hamiltonian functions also form a Lie algebra: the operation in this algebra is
called the Poisson bracket of functions. The first integrals of a hamiltonian phase flow form a
subalgebra of the Lie algebra of hamiltonian functions.

A The Poisson bracket of two functions

Let (M?" w?) be a symplectic manifold. To a given function H: M?" > R
on the symplectic manifold there corresponds a one-parameter group
gl : M?" — M?" of canonical transformations of M?"—the phase flow of the
hamiltonian function equal to H. Let F: M?" — R be another function on M?".

Definition. The Poisson bracket (F, H) of functions F and H given on a
symplectic manifold (M 2", w?) is the derivative of the function F in the
direction of the phase flow with hamiltonian function H:

d
(F, () = 3| Flgh(x),

Thus, the Poisson bracket of two functions on M is again a function on M.
Corollary 1. A function F is a first integral of the phase flow with hamiltonian

function H if and only if its Poisson bracket with H is identically zero:
(F, Hy= 0.

We can give the definition of Poisson bracket in a slightly different form
if we use the isomorphism I between 1-forms and vector fields on a symplectic
manifold (M 2", w?). This isomorphism is defined by the relation (cf. Section
37)

w*(m, Iw') = o'().
The velocity vector of the phase flow gy is I dH. This implies
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40: The Lie algebra of hamiltonian functions

Corollary 2. The Poisson bracket of the functions F and H is equal to the
value of the 1-form dF on the velocity vector 1 dH of the phase flow with
hamiltonian function H:

(F, H) = dF(I dH).

Using the preceding formula again, we obtain

Corollary 3. The Poisson bracket of the functions F and H is equal to the
“skew scalar product” of the velocity vectors of the phase flows with hamil-
tonian functions H and F:

(F, H) = w*(1 dH, 1 dF).

It is now clear that

Corollary 4. The Poisson bracket of the functions F and H is a skew-symmetric
bilinear function of F and H :

(F,H)= —(H, F)
and
(H, A Fy + A,F5) = A (H, F) + A,(H, F;) (4; € R).

Although the arguments above are obvious, they lead to nontrivial
deductions, including the following generalization of a theorem of E. Noether.

Theorem. If a hamiltonian function H on a symplectic manifold (M?*", »?)
admits the one-parameter group of canonical transformations given by a
hamiltonian F, then F is a first integral of the system with hamiltonian
Junction H.

PrOOF. Since H is a first integral of the flow g, (H, F} = 0 (Corollary 1).
Therefore, (F, H) = 0 (Corollary 4) and F is a first integral (Corollary 1). 3

ProBLEM 1. Compute the Poisson bracket of two functions F and H in the canonical coordinate
space R** = {(p, @)}, w?*(&. n) = (IE, ).
Solution. By Corollary 3 we have

" 6HE&F éH OF
(FFHYy= 3 —— — -
r=1 CP: 04, cq, ¢p,

(we use the fact that I is symplectic and has the form
0 —-E
AV
E 0

ProBLEM 2. Compute the Poisson brackets of the basic functions p, and g,.
Solution. The gradients of the basic functions form a “symplectic basis": their skew-scalar
products are

in the basis (p, q)).

(r..p)=1(p..q,) =(q,.q,) =0 (ifi #j) (g..p) = —(p..q) =1L
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8: Symplectic manifolds

PROBLEM 3. Show that the map 4: R*" —» R2" sending (p, q) — (P(p, q). Q(p, q)) is canonical if
and only if the Poisson brackets of any two functions in the variables (p, q) and (P, Q) coincide:

(F. H) _6H6F BHBF_BHBF 6H6F_(F H)
e T 50 09 aqop PAQ aQoP Y

Solution. Let A be canonical. Then the symplectic structures dp ~ dqand dP A dQ coincide.
But the definition of the Poisson bracket (F, H) was given invariantly in terms of the symplectic
structure; it did not involve the coordinates. Therefore,

(F,H)y g = (F,H) = (F, H)p 4.
Conversely, suppose that the Poisson brackets (P;, Q,), 4 have the standard form of Problem 2.
Then, clearly, dP A dQ = dp A dq, i.e., the map A4 is canonical.
PROBLEM 4. Show that the Poisson bracket of a product can be calculated by Leibniz’s rule:
(F,F,.H) = F(F,, H) + Fy(F,, H).

Hint. The Poisson bracket (F,F,, H) is the derivative of the product F,F, in the direction
of the field I dH.
B The Jacobi identity

Theorem. The Poisson bracket of three functions A, B, and C satisfies the
Jacobi identity:

((4, B), C) + ((B,C), 4) + ((C, 4), B) = 0.

Corollary (Poisson’s theorem). The Poisson bracket of two first integrals

F,, F, of a system with hamiltonian function H is again a first integral.
PROOF OF THE COROLLARY. By the Jacobi identity,

((Fy,F3),H) = (F,(F, H)) + (F3,(H,F)) =0+ 0,

as was to be shown. Ll

In this way, by knowing two first integrals we can find a third, fourth, etc.
by a simple computation. Of course, not all the integrals we get will be
essentially new, since there cannot be more than 2n independent functions

on M?". Sometimes we may get functions of old integrals or constants,
which may be zero. But sometimes we do obtain new integrals.

ProBLEM. Calculate the Poisson brackets of the components p,, ps, pa, M, M,, M5 of the
linear and angular momentum vectors of a mechanical system.

ANSWER, (M, M;) = M3, (M, p;) = 0, (M, p;) = p3s, (M, p3) = —p>. This implies

Theorem. If two components, M, and M ,, of the angular momentum of some mechanical problem
are conserved, then the third component is also conserved.

PROOF OF THE JACOBI IDENTITY. Consider the sum
(4, B),C) + ((B,C), A) + ((C, A), B).
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40: The Lie algebra of hamiltonian functions

This sum is a “linear combination of second partial derivatives” of the
functions A4, B, and C. We will compute the terms in the second derivatives
of A:

((4,B), C) + ((C, A), B) = (LcLs — LaLo)A4,

where L is differentiation in the direction of § and F is the hamiltonian
field with hamiltonian function F.

But, by Lemma 2, Section 39, the commutator of the differentiations
LcLg — LgLc is a first-order differential operator. This means that none
of the second derivatives of A are contained in our sum. The same thing is
true for the second derivatives of B and C. Therefore, the sum is zero. ]

Corollary S. Let B and C be hamiltonian fields with hamiltonian functions
B and C. Consider the Poisson bracket [B,C] of the vector fields. This
vector field is hamiltonian, and its hamiltonian function is equal to the
Poisson bracket of the hamiltonian functions (B, C).

PrOOE. Set (B, C) = D. The Jacobi identity can be rewritten in the form
(4, D) = (4, B), C) — (4, C), B),
Lp = LeLg — LgL¢ Lp = L[B,C]a
as was to be shown. ]

C The Lie algebras of hamiltonian fields,
hamiltonian functions, and first integrals

A linear subspace of a Lie algebra is called a subalgebra if the commutator

of any two elements of the subspace belongs to it. A subalgebra of a Lie
algebra is itself a Lie algebra. The preceding corollary implies, in particular,

Corollary 6. The hamiltonian vector fields on a symplectic manifold form a
subalgebra of the Lie algebra of all vector fields.

Poisson’s theorem on first integrals can be re-formulated as

Corollary 7. The first integrals of a hamiltonian phase flow form a subalgebra
of the Lie algebra of all functions.

The Lie algebra of hamiltonian functions can be mapped naturally onto
the Lie algebra of hamiltonian vector fields. To do this, to every function H
we associate the hamiltonian vector field H with hamiltonian function H.

Corollary 8. The map of the Lie algebra of functions onto the Lie algebra of
hamiltonian fields is an algebra homomorphism. Its kernel consists of the
locally constant functions. If M?" is connected, the kernel is one-dimensional
and consists of constants.
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PROOF. Our map is linear. Corollary 5 says that our map carries the Poisson
bracket of functions into the Poisson bracket of vector fields. The kernel
consists of functions H for which I dH = 0. Since I is an isomorphism,
dH = 0 and H = const. L]

Corollary 9. The phase flows with hamiltonian functions H, and H, commute
if and only if the Poisson bracket of the functions H, and H, is (locally)
constant.

PrOOF. By the theorem in Section 39, E, it is necessary and sufficient that
[H,, H,] = 0, and by Corollary 8 this condition is equivalent to d(H,, H,)
= 0. O

We obtain yet another generalization of E. Noether’s theorem: given a
flow which commutes with the one under consideration, one can construct
a first integral.

D Locally hamiltonian vector fields

Let (M?", w?) be a symplectic manifold and g': M?" — M?" a one-parameter group of diffeo-
morphisms preserving the symplectic structure. Will g‘ be a hamiltonian flow?

ExaMpPLE. Let M2” be a two-dimensional torus T2, a point of which is given by a pair of co-
ordinates (p, g)mod 1. Let w? be the usual area element dp A dq. Consider the family of trans-
lations g(p, q) = (p + t, @) (Figure 173). The maps g' preserve the symplectic structure (i.e.,
area). Can we find a hamiltonian function corresponding to the vector field (p = 1,4 = 0)?
Ifp = —0H/dgand § = dH/dp, we would have 0H/0p = Oand dH/6q = —1,ie,H = —q + C.
But g is only a local coordinate on T2; there is no map H: T? — R for which ¢H/0p = 0 and
JH/dq = 1. Thus g' is not a hamiltonian phase flow.

P

q
Figure 173 A locally hamiltonial field on the torus

Definition. A locally hamiltonian vector field on a symplectic manifold (M?", w?) is the vector
field Iw?, where w! is a closed 1-form on M?*".

Locally, a closed 1-form is the differential of a function, ' = dH. However, in attempting
to extend the function H to the whole manifold M?" we may obtain a “many-valued hamiltonian
function,” since a closed 1-form on a non-simply-connected manifold may not be a diflerential
(for example, the form dgq on T?2). A phase flow given by a locally hamiltonian vector field is called
a locally hamiltonian flow.

PrROBLEM. Show that a one-parameter group of diffecomorphisms of a symplectic manifold pre-

serves the symplectic structure if and only if it is a locally hamiltonian phase flow.
Hint. Cf. Section 38A.
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PrOBLEM. Show that in the symplectic space R?" every one-parameter group of canonical
diffeomorphisms (preserving dp A dq) is a hamiltonian flow.
Hint. Every closed 1-form on R2" is the differential of a function.

PrROBLEM. Show that the locally hamiltonian vector fields form a sub-algebra of the Lie algebra
of all vector fields. In addition, the Poisson bracket of two locally hamiltonian fields is actually
a hamiltonian field, with a hamiltonian function uniquely®’ determined by the given fields &
and 1 by the formula H = «?(€, n). Thus, the hamiltonian fields form an ideal in the Lie algebra
of locally hamiltonian fields.

41 Symplectic geometry

A euclidean structure on a vector space is given by a symmetric bilinear form, and a symplectic
structure by a skew-symmetric one. The geometry of a symplectic space is different from that of

a euclidean space, although there are many similarities.

A Symplectic vector spaces

Let R?" be an even-dimensional vector space.

Definition. A symplectic linear structure on R?" is a nondegenerate®® bi-
linear skew-symmetric 2-form given in R?". This form is called the
skew-scalar product and is denoted by [§,n] = —[n,&]. The space R?",
together with the symplectic structure [ , ], is called a symplectic vector
space.

EXAMPLE. Let (p,, ..., Pn.4d1--- -4, be coordinate functions on R?*", and
w? the form

w2 =p; Aqgy+ -+ Py A G

Since this form is nondegenerate and skew-symmetric, it can be taken for a
skew-scalar product: [§,] = @?(&,n). In this way the coordinate space
R2" = {(p,q)} receives a symplectic structure. This structure is called the
standard symplectic structure. In the standard symplectic structure the
skew-scalar product of two vectors § and n is equal to the sum of the oriented
areas of the parallelogram (&, 1) on the n coordinate planes (p;, ¢;}.

Two vectors & and n in a symplectic space are called skew-orthogonal
(§ < n) if their skew-scalar product is equal to zero.

PrROBLEM. Show that & < &: every vector is skew-orthogonal to itself.

The set of all vectors skew-orthogonal to a given vector n is called the
skew-orthogonal complement to n.

55 Not just up to a constant.
66 A 2-form [ , ]on R?"is nondegenerate if ([, n] = 0, V) = (£ = 0).
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PrOBLEM. Show that the skew-orthogonal complement to 1y is a 2n — 1-dimensional hyperplane
containing 1.
Hint. If all vectors were skew-orthogonal to 3, then the form [, ] would be degenerate.

B The symplectic basis

A euclidean structure under a suitable choice of basis (it must be ortho-
normal) is given by a scalar product in a particular standard form. In exactly
the same way, a symplectic structure takes the standard form indicated
above in a suitable basis.

PrOBLEM. Find the skew-scalar product of the basis vectorse, ande, (i = 1 ..., n)intheexample
presented above.
Solution. The relations

) Le, €] = [e,, 6,1 = [e,,€,] =0 [e,,€,]=1

follow from the definitionof p; A gy + -+ - + pp A ga-

We now return to the general symplectic space.

Definition. A symplectic basis is a set of 2n vectors, e, , e, (i=1,...,n)
whose scalar products have the form (1).

In other words, every basis vector is skew-orthogonal to all the basis
vectors except one, associated to it; its product with the associated vector

1s equal to + 1.

Theorem. Every symplectic space has a symplectic basis. Furthermore, we can
take any nonzero vector e for the first basis vector.

Proofr. This theorem 1s entirely analogous to the corresponding theorem in
euclidean geometry and is proved in almost the same way.

Since the vector e is not zero, there is a vector f not skew-orthogonal to it
(the form [ , 7] is nondegenerate). By choosing the length of this vector, we
can insure that its skew-scalar product with e is equal to 1. In the case n = 1,
the theorem is proved.

If n > 1, consider the skew-orthogonal complement D (Figure 174) to
the pair of vectors e, f. D is the intersection of the skew-orthogonal comple-
ments to e and f. These two 2n — 1-dimensional spaces do not coincide,

Figure 174 Skew-orthogonal complement
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since e is not in the skew-orthogonal complement to f. Therefore, their inter-
section has even dimension 2n — 2.

We will show that D is a symplectic subspace of R?", i.e., that the skew-
scalar product [ , ] restricted to D is nondegenerate. If a vector £€ D
were skew-orthogonal to the whole subspace D, then since it would also be
skew-orthogonal to € and to f, § would be skew-orthogonal to R2" which
contradicts the nondegeneracy of [ , ] on R?". Thus D?"~? is symplectic.

Now if we adjoin the vectors e and f to a symplectic basis for D?*" % we
get a sympletic basis for R?", and the theorem is proved by induction on n.

]

Corollary. All symplectic spaces of the same dimension are isomorphic.

If we take the vectors of a symplectic basis as coordinate unit vectors,
we obtain a coordinate system p;, g; in which [ , ] takes the standard
form p, A g, + - + Pan A G,- Such a coordinate system is called sym-
plectic.

C The symplectic group

To a euclidean structure we associated the orthogonal group of linear map-
pings which preserved the euclidean structure. In a symplectic space the
symplectic group plays an analogous role.

Definition. A linear transformation S: R2?" — R?" of the symplectic space
R2" to itself is called symplectic if it preserves the skew-scalar product:

[SE, Sq] =[E.n], V& meR™

The set of all symplectic transformations of R*" is called the symplectic
group and is denoted by Sp(2n).

It is clear that the composition of two symplectic transformations is
symplectic. To justify the term symplectic group, we must only show that a
symplectic transformation is nonsingular; it is then clear that the inverse 1s
also symplectic.

PROBLEM. Show that the group Sp(2) is isomorphic to the group of real two-by-two matrices
with determinant 1 and is homeomorphic to the interior of a solid three-dimensional torus.

Theorem. A transformation S:R*" — R?" of the standard symplectic space
(p, Q) is symplectic if and only if it is linear and canonical, i.e., preserves the
differential 2-form

w? =dp, Adgy + - +dp, A dq,.

PrROOF. Under the natural identification of the tangent space to R?" with
R2" the 2-form w? goesto [ , ] O
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Corollary. The determinant of any symplectic transformation is equal to 1.

ProoF. We already know (Section 38B) that canonical maps preserve the
exterior powers of the form w?. But its n-th exterior power is (up to a constant
multiple) the volume element on R?". This means that symplectic trans-
formations S of the standard R?" = {(p, q)} preserve the volume element,
so det S = 1. But since every symplectic linear structure can be written down
in standard form in a symplectic coordinate system, the determinant of a
symplectic transformation of any symplectic space is equal to 1. ]

Theorem. A linear transformation S: R*" — R?" is symplectic if and only if it
takes some (and therefore any) symplectic basis into a symplectic basis.

ProoF. The skew-scalar product of any two linear combinations of basis vec-
tors can be expressed in terms of skew-scalar products of basis vectors. If the
transformation does not change the skew-scalar products of basis vectors,
then it does not change the skew-scalar products of any vectors. ]

D Planes in symplectic space

In a euclidean space all planes are equivalent: each of them can be carried into
any other one by a motion. We will now look at a symplectic vector space
from this point of view.

PROBLEM. Show that a nonzero vector in a symplectic space can be carried into any other non-
zero vector by a symplectic transformation.

ProBLEM. Show that not every two-dimensional plane of the symplectic space R?" can be
obtained from a given 2-plane by a symplectic transformation.
Hint. Consider the planes (p,, p;) and (p,, q,).

Definition. A k-dimensional plane (i.e., subspace) of a symplectic space is
called null®’ if it is skew-orthogonal to itself, i.e., if the skew-scalar product
of any two vectors of the plane is equal to zero.

ExampLE. The coordinate plane {p,...., p) in the symplectic coordinate system p, q is null.
(Prove it!)

PROBLEM. Show that any non-null two-dimensional plane can be carried into any other non-
null two-plane by a symplectic transformation.

For calculations in symplectic geometry it may be useful to impose some
euclidean structure on the symplectic space. We fix a symplectic coordinate
system p, q and introduce a euclidean structure using the coordinate scalar
product

(x, x) = Z ,p.-2 + qiz, where x = Z pi€, + g:€,,.

67 Null planes are also called isotropic, and for k = n, lagrangian.
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41: Symplectic geometry

The symplectic basis e,, e, is orthonormai in this euclidean structure. The
skew-scalar product, like every bilinear form, can be expressed in terms of
the scalar product by

(2) [En] = (& w)

where I: R*" — R?" is some operator. It follows from the skew-symmetry of
the skew-scalar product that the operator / is skew-symmetric.

ProBLEM. Compute the matrix of the operator / in the symplectic basis e, . e, .

e o)

ANSWER.

where E is the n ¥ nidentity matrix.

Thus, for n = 1 (in the p, g-plane), [ is simply rotation by 90°, and in the
general case I is rotation by 90° in each of the n planes p;, g;.

PROBLEM. Show that the operator [ is symplectic and that [ = —E,,.

Although the euclidean structures and the operator I are not invariantly
associated to a symplectic space, they are often convenient.
The following theorem follows directly from (2).

Theorem. A plane 7t of a symplectic space is null if and only if the plane In is
orthogonal to m.

Notice that the dimensions of the planes = and I'n are the same, since I 1s
nonsingular. Hence

Corollary. The dimension of a null plane in R2" is less than or equal to n.

This follows since the two k-dimensional planes n and Im cannot be
orthogonal if k > n.

We consider more carefully the n-dimensional null planes in the symplectic
coordinate space R2". An example of such a plane is the coordinate p-plane.
There are in all C%, n-dimensional coordinate planes in R*" = {(p, q)}.

PROBLEM. Show that there are 2" null planes among the %}, n-dimensional coordinate planes:
to each of the 2" partitions of the set (1. .. .. n) into two parts (i, ..., B Cige e Jn—x) WE asso-
ciate the null coordinate plane p,,. ..., Poslyen 7 I

In order to study the generating functions of canonical transformations
we need
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8: Symplectic manifolds

Figure 175 Construction of a coordinate plane ¢ transversal to a given plane =.

Theorem. Every n-dimensional null plane n in the symplectic coordinate space
R2" is transverse®® to at least one of the 2" coordinate null planes.

PROOE. Let P be the null plane p,, ..., p, (Figure 175). Consider the inter-
section T = m N P. Suppose that the dimension of tis equalto k,0 < k < n.
Like every k-dimensional subspace of the n-dimensional space, the plane 7 is
transverse to at least one (n — k)-dimensional coordinate plane in P, let us

say the plane
n= @y, --»Pi, )> T+n=P1tnn=0
We now consider the null n-dimensional coordinate plane
0= (Diys- s Dip s> Dirs > D) n=onPkP,
and show that our plane = is transverse to o:
o =0
We have

TCRARNT<A=T=<T (r + )4( ma):»Pf—( A &)
= (T y/A F(4 .
ncCo,0<0=n=<0 1

But P is an n-dimensional null plane. Therefore, every vector skew-orthogonal
to P belongs to P (cf. the corollary above). Thus (z n o) < P. Finally,

nno=EmNP)N(cNnP)=1nn =20,

as was to be shown. ]

PROBLEM. Let 7, and 7, be two k-dimensional planes in sympiectic R?". Is it always possible to
carry 7, to m, by a symplectic transformation? How many classes of planes are there which
cannot be carried one into another?

ANSWER. [k/2] + 1, ifk < n; [(2n — k)/2] + L ifk = n

E Symplectic structure and complex structure

Since I? = — E we can introduce into our space R*" not only a symplectic
structure [ , ] and euclidean structure ( , ), but also a complex structure,

by defining multiplication by i = ./ —1 to be the action of I. The space R*"

58 Two subspaces L, and L, of a vector space L are transverse if L, + L, = L. Two n-dimen-
sional planes in R?" are transverse if and only if they intersect only in 0.
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42: Parametric resonance in systems with many degrees of freedom

is identified in this way with a complex space C" (the coordinate space with
coordinates z; = p, + ig,). The linear transformations of R*" which preserve
the euclidean structure form the orthogonal group O(2n); those preserving
the complex structure form the complex linear group GL(n, C).

ProOBLEM. Show that transformations which are both orthogonal and symplectic are complex,
that those which are both complex and orthogonal are symplectic, and that those which are
both symplectic and complex are orthogonal: thus that the intersection of two of the three
groups is equal to the intersection of all three:

O@2n) n Sp(2n) = Sp(2n} N GL(n, C) = GL{n, C)n O(2n).

This intersection is called the unitary group U(n).

Unitary transformations preserve the hermitian scalar product (€, n) +
i[E, n]; the scalar and skew-scalar products on R2” are its real and imaginary

parts.

42 Parametric resonance in systems with many degrees
of freedom

During our investigation of oscillating systems with periodically varying parameters (cf. Section
2%), we explained that parametric resonance depends on the behavior of the eigenvalues of a
certain linear transformation (“the mapping at a period ). The dependence consists of the fact
that an equilibrium position of a system with periodically varying parameters is stable if the
eigenvalues of the mapping at a period have modulus less than 1, and unstable if at least one of
the eigenvalues has modulus greater than 1.

The mapping at a period obtained from a system of Hamilton’s equations with periodic
coefficients is symplectic. The investigation in Section 25 of parametric resonance in a system
with one degree of freedom relied on our analysis of the behavior of the eigenvalues of symplectic
transformations of the plane. In this paragraph we will analyze, in an analogous way, the behavior
of the eigenvalues of symplectic transformations in a phase space of any dimension. The results
of this analysis (due to M. G. Krein} can be applied to the study of conditions for the appearance
of parametric resonance in mechanical systems with many degrees of freedom.

A Symplectic matrices

Consider a linear transformation of a symplectic space, S: R?" - R?". Let
P1s---» Pni 91> - - - » g, be a symplectic coordinate system. In this coordinate
system, the transformation is given by a matrix S.

Theorem. A4 transformation is symplectic if and only if its matrix S in the sym-
plectic coordinate system (p, qQ) satisfies the relation

SIS =1,

=2 76)

where

and S’ is the transpose of S.
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8: Symplectic manifolds

ProOF. The condition for being symplectic ([ S&, Sn] = [&,n] for all § and n)
can be written in terms of the scalar product by using the operator I, as

follows:

(ISE, Sm) = (I&, ), VEm
or

(S'ISE, m) = (g, w), Ve, n,

as was to be shown. ]

B Symmetry of the spectrum of a symplectic
transformation

Theorem. The characteristic polynomial of a symplectic transformation

p(j) = det(S — AE)
is reflexive,®® i.e., p(A) = A2"p(1/A).

PrROOF. We will use the facts thatdet S =det I = 1,I? = —E,and det A’ =
det A. By the theorem above, S = — IS~ 'I. Therefore,
p(A) = det(S — AE) = det(—IS'~'I — AE) = det(—S'"! + AE)
= det(—E + AS)

1 1
_ 2n I — 2n _
= A det(S Z.E) A p(A)' O

Corollary. If A is an eigenvalue of a symplectic transformation, then 1/4 is also
an eigenvalue.

On the other hand, the characteristic polynomial is real; therefore, if A4
is a complex eigenvalue, then /A is an eigenvalue different from A. It follows
that the roots A of the characteristic polynomial lie symmetrically with
respect to the real axis and to the unit circle (Figure 176). They come in
4-tuples,

A, A, (Al # 1, Im A4 # 0),

doff =

1
l,
and pairs lying on the real axis,

A=1

69 A reflexive polynomial is a polynomial aqx™ + a,x™~! + --- + a,, which has symmetric
coefficients ap, = a,,. @) = Ap— 1, -+ - -
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; A
x:% X
A=A
. On =
— 0 1
7\=i 1
A ) )
A

Figure 176 Distribution of the eigenvalues of a symplectic transformation

or on the unit circle,

1

S
A A

It is not hard to verify that the multiplicities of all four points of a 4-tuple (or
both points of a pair) are the same.

A=

C Stability

Definition. A transformation S is called stable if

Ve > 0,38 > 0: x| < §=|SNx| < ¢, VN > 0.

ProBLEM. Show that if at least one of the eigenvalues of a symplectic transformation S does not
lie on the unit circle, then § is unstable.

Hint. In view of the demonstrated symmetry, if one of the eigenvalues does not lie on the
unit circle, then there exists an eigenvalue outside the unit circle 4| > 1; in the corresponding
invariant subspace, § is an “expansion with a rotation.”

PrROBLEM. Show that if all the eigenvalues of a linear transformation are distinct and lie on the
unit circle, then the transformation is stable.
Hint. Change to a basis of eigenvectors,

Definition. A symplectic transformation S is called strongly stable if every
symplectic transformation sufficiently close’® to S is stable.

In Section 25 we established that S: R? — R? is strongly stable if 4, , =
ef*and 4, # A,.

Theorem. If all 2n eigenvalues of a symplectic transformation S are distinct
and lie on the unit circle, then S is strongly stable.

PROOF. We enclose the 2n eigenvalues A in 2n non-intersecting neighborhoods,
symmetric with respect to the unit circle and the real axis (Figure 177). The
2n roots of the characteristic polynomial depend continuously on the ele-
ments of the matrix of S. Therefore, if the matrix S, is sufficiently close to S,

79 8, is “sufficiently close” to S if the elements of the matrix of §, in a fixed basis differ from the
elements of the matrix of S in the same basis by less than a sufficiently small number .
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Figure 177 Behavior of simple eigenvalues under a small change of the symplectic
transformation

exactly one eigenvalue 4, of the matrix of S, will lie in each of the 2n neigh-
borhoods of the 2n points of A. But if one of the points 4, did not lie on the
unit circle, for example, if it lay outside the unit circle, then by the theorem in
subsection B, there would be another point 2,,|4,| < 1 in the same neighbor-
hood, and the total number of roots would be greater than 27, which is not

possible.
Thus all the roots of S, lie on the unit circle and are distinct, so S, is
stable. ]

We might say that an eigenvalue 4 of a symplectic transformation can
leave the unit circle only by colliding with another eigenvalue (Figure 178);
at the same time, the complex-conjugate eigenvalues will collide, and from
the two pairs of roots on the unit circle we obtain one 4-tuple (or pair of

N

Figure 178 Behavior of multiple eigenvalues under a small change of the symplectic
transformation

It follows from the results of Section 25 that the condition for parametric
resonance to arise in a linear canonical system with a periodically changing
hamilton function is precisely that the corresponding symplectic transforma-
tion of phase space should cease to be stable. It is clear from the theorem
above that this can happen only after a collision of eigenvalues on the unit
circle. In fact, as M. G. Krein noticed, not every such collision is dangerous.

It turns out that the eigenvalues A with | 4| = 1 are divided into two classes:
positive and negative. When two roots with the same sign collide, the roots
“go through one another,” and cannot leave the unit circle. On the other
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hand, when two roots with different signs collide, they generally leave the

unit circle.
M.G. Krein’s theory goes beyond the limits of this book ; we will formulate

the basic results here in the form of problems.

PrOBLEM. Let 4 and / be simple (multiplicity 1) eigenvalues of a symplectic transformation §
with |A| = 1. Show that the two-dimensional invariant plane n; corresponding to 4, 4, is non-

null.
Hint. Let &, and &, be complex eigenvectors of § with eigenvalues /4, and 4,. Thenif 4,4, # 1,

the vectors &, and &, are skew-orthogonal: [E,,&,] = 0.

Let § be a real vector of the plane n,;, where Im A > 0 and || = 1. The eigenvalue 1 is called
positive if [SE, £] > 0.

PrOBLEM. Show that this definition is correct, i.e., it does not depend on the choice of § # 0 in

the plane =;.
Hint. If the plane n; contained two non-collinear skew-orthogonal vectors, it would be null.

In the same way, an eigenvalue A of multtiplicity k with | 4| = 1 is of definite sign if the quad-
ratic form [SE, §] is (positive or negative) definite on the invariant 2k-dimensional subspace

corresponding to 4, 4.

PrOBLEM. Show that § is strongly stable if and only if all the eigenvalues 1 lie on the unit circle

and are of definite sign.
Hint. The quadratic form [SE, &] is invariant with respect to S.

43 A symplectic atlas

In this paragraph we prove Darboux’s theorem, according to which every symplectic manifold
has local coordinates p, q 1n which the symplectic structure can be written in the simplest way:
w? =dp A dq.

A Symplectic coordinates

Recall that the definition of manifold includes a compatibility condition for
the charts of an atlas. This is a condition on the maps ¢, '¢; going from one
chart to another. The maps ¢, ! ¢; are maps of a region of coordinate space.

Definition. An atlas of a manifold M2" is called symplectic if the standard
symplectic structure w? = dp A dq is introduced into the coordinate
space R2" = {(p, q)}, and the transfer from one chart to another is realized
by a canonical (i.e., w?-preserving) transformation”® ¢; Lg;.

PROBLEM. Show that a symplectic atlas defines a symplectic structure on M?",

The converse is also true: every symplectic manifold has a symplectic
atlas. This follows from the following theorem.

'l Complex-analytic manifolds, for example, are defined analogously ; there must be a complex-
analytic structure on coordinate space, and the transfer from one chart to another must be

complex analytic.
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B Darboux’s theorem

Theorem. Let w? be a closed nondegenerate differential 2-form in a neighbor-
hood of a point x in the space R*". Then in some neighborhood of x one can
choose a coordinate system (py, ..., Pns Q1s - - - » dn) Such that the form has the
standard form:

w? = Y dp; A dg,.

i=1

This theorem allows us to extend to all symplectic manifolds any assertion
of a local character which is invariant with respect to canonical transforma-
tions and is proven for the standard phase space (R*", w* = dp A dq).

C Construction of the coordinates p, ard q,

For the first coordinate p, we take a non-constant linear function (we could
have taken any differentiable function whose differential is not zero at the
point x). For simplicity we will assume that p,(x) = 0.

Let P, = I dp, denote the hamiltonian field corresponding to the function
p, (Figure 179). Note that P (x) # O; therefore, we can draw a hyperplane
N2"~1 through the point x which does not contain the vector P,(x) (we
could have taken any surface transverse to P(x) as N2~y

Figure 179 Construction of symplectic coordinates

Consider the hamiltonian flow P{ with hamiltonian function p,. We
consider the time t necessary to go from N to the point z = Pi(y) (Ye N)
under the action of P as a function of the point z. By the usual theorems in
the theory of ordinary differential equations, this function is defined and
differentiable in a neighborhood of the point x € R?". Denote it by q,. Note
that g, = 0 on N and that the derivative of g, in the direction of the field P,
is equal to 1. Thus the Poisson bracket of the functions g, and p, we con-
structed is equal to 1:

(g:-pP)) = L

9
'
<
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D Construction of symplectic coordinates by
induction on n

If n = 1, the construction is finished. Let n > 1. We will assume that Dar-
boux’s theorem is already proved for R?"~ 2. Consider the set M given by the
equations p, = q, = 0. The differentials dp, and dq, are linearly independent
at x since w?(I dp,, Idq,) = (g,, py) = 1. Thus, by the implicit function
theorem, the set M is a manifold of dimension 2n — 2 in a neighborhood of
x; we will denote it by M2" 2,

Lemma. The symplectic structure w* on R*" induces a symplectic structure on
some neighborhood of the point x on M?" 2,
Proor. For the proof we need only the nondegeneracy of w? on TM,.
Consider the symplectic vector space TRZ". The vectors P;(x) and Q,(x)
of the hamiltonian vector fields with hamiltonian functions p, and g, belong
to TRZ". Let &€ TM,. The derivatives of p, and ¢, in the direction & are
equal to zero. This means that dp,(§) = w?(&, P,) = 0 and dq,(§) = 03, Q,)
= 0. Thus TM, is the skew-orthogonal complement to P,(x), Q,(x). By
Section 41B, the form w? on TM, is nondegenerate. O

By the tnduction hypothesis there are symplectic coordinates in a neigh-
borhood of the point x on the symplectic manifold (M2"~ 2, w?|,,). Denote
thembyp,.q, (t = 2,..., n). We extend the functions p,, . .., ¢, to a neighbor-
hood of x in R?” in the following way. Every point z in a neighborhood of
x in R*" can be uniquely represented in the form z = P,Q3w, where
we M?" % and s and t are small numbers. We set the values of the coor-
dinates p,, ..., g, at z equal to their values at the point w (Figure 179). The
2n functions py, ..., p,, 44, . ... q, thus constructed form a local coordinate
system in a neighborhood of x in R2".

E Proof that the coordinates constructed are
symplectic

Denote by Piand Q (i = 1, ..., n) the hamiltonian flows with hamiltonian
functions p, and ¢;, and by P; and Q; the corresponding vector fields. We will
compute the Poisson brackets of the functions p,, ..., q,. We already saw in
C that (g,, p,) = 1. Therefore, the flows P} and Q) commute: P\ Q3 = Q3 P..

Recalling the definitions of p,, .. ., g, we see that each of these functions is
invariant with respect to the flows P} and QY. Thus the Poisson brackets of
p; and q, with all 2n — 2 functions p,, q; (i > 1) are equal to zero.

The map P Q5 therefore commutes with all 2n — 2 flows P!, Q5 (i > 1).
Consequently, it leaves each of the 2n — 2 vector fields P;, Q; (i > 1) fixed.
P4 Q7 preserves the symplectic structure w? since the flows P, and Q3 are
hamiltonian; therefore, the values of the form w? on the vectors of any two
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of the 2n — 2 fields P,, Q, (i > 1) are the same at the pointsz = P{Qwe R*"
and w e M2"~ 2, But these values are equal to the values of the Poisson brack-
ets of the corresponding hamiltonian functions. Thus, the values of the
Poisson bracket of any two of the 2n — 2 coordinates p;, g; (i > 1) at the
points z and w are the same if z = P1Q7w.

The functions p, and g, are first integrals of each of the 2n — 2 flows
P!, Qi (i > 1). Therefore, each of the 2n — 2 fields P;, Q, is tangent to the
level manifold p, = g, = 0. But this manifold is M?"~?. Therefore, each of
the 2n — 2 fields P;, Q; (i > 1) is tangent to M?"~ 2. Consequently, these
fields are hamiltonian fields on the symplectic manifold (M?"~ 2, w?|y), and
the corresponding hamiltonian functions are p;ly, gils (i > 1). Thus, in the
whole space (R2", ?), the Poisson bracket of any two of the 2n — 2 co-
ordinates p;, g; (i > 1) considered on M?*"~? is the same as the Poisson
bracket of these coordinates in the symplectic space (M2"~ 2, w?|p).

But, by our induction hypothesis, the coordinates on M2 2 (Dilms Gilaes
i > 1) are symplectic. Therefore, in the whole space R2" the Poisson brackets
of the constructed coordinates have the standard values

(P> P) = (Pi»4) =(4:9;) =0 and (g, p) =1

The Poisson brackets of the coordinates p, ¢ on R*” have the same form if
® = Y dp; A dg;. But a bilinear form ® is determined by its values on
pairs of basis vectors. Therefore, the Poisson brackets of the coordinate
functions determine the shape of w? uniquely. Thus

w? =dp, Adgq, + --- + dp, A dq,,

and Darboux’s theorem is proved. ]
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Canonical formalism

The coordinate point of view will predominate in this chapter. The technique
of generating functions for canonical transformations, developed by
Hamilton and Jacobi, is the most powerful method available for integrating
the differential equations of dynamics. In addition to this technique, the
chapter contams an “odd-dimensional” approach to hamiltonian phase
flows.

This chapter is independent of the previous one. It contains new proofs
of several of the results in Chapter 8, as well as an explanation of the origin
of the theory of symplectic manifolds.

44 The integral invariant of Poincaré—Cartan

In this section we look at the geometry of !-forms in an odd-dimensional space.

A A hydrodynamical lemma

Let v be a vector field in three-dimensional oriented euclidean space R3,
and r = curl v its curl. The integral curves of r are called vortex lines. If v,
is any closed curve in R> (Figure 180), the vortex lines passing through the
points of y, form a tube called a vortex tube.

Let y, be another curve encircling the same vortex tube, so thaty, — y, =
0a, where o is a 2-cycle representing a part of the vortex tube. Then:

Stokes’ lemma. The field v has equal circulation along the curves vy, and y,:

§ vdl = fﬁ v dl
Yi V2
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9: Canonical formalism

Figure 180 Vortex tube

PROOF. By Stokes’ formula, |, vdl — f, vdl = [{,curl vdn =0, since curl v
is tangent to the vortex tube. O]

B The multi-dimensional Stokes’ lemma

It turns out that Stokes’ lemma generalizes to the case of any odd-dimensional
manifold M2"*1 (in place of R?®). To formulate this generalization we replace
our vector field by a differential form.

The circulation of a vector field v is the integral of the l-form w'
(WM E) = (v, ). To the curl of v there corresponds the 2-form w? = dw’
(dw'(E,m) = (r, &, ). It is clear from these formulas that there is a direction

n

Figure 181 Axis invariantly connected with a 2-form in an odd-dimensional space

at every point (namely, the direction of r, Figure 181), having the property
that the circulation of v along the boundary of every “infinitesimal square”
containing r is equal to zero:

dwl(r,qn) =0, v

In fact, dw'(r,n) = (r,r,n) = 0.

Remark. Passing from the 2-form w? = dw' to the vector field r = curl ¥
is not an invariant operation: it depends on the euclidean structure of R>.
Only the direction’? of r is invariantly associated with w? (and, therefore,
with the 1-form w?). It is easy to verify that, if r # 0, then the direction of r
is uniquely determined by the condition that w?(r, m) = 0 for alln.

72 [ e.. the unoriented line in TR? with direction vector r.
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44: The integral invartant of Poincaré-Cartan

The algebraic basis for the multi-dimensional Stokes’ lemma is the
existence of an axis for every rotation of an odd-dimensional space.

Lemma. Let w? be an exterior algebraic 2-form on the odd-dimensional vector
space R*"* 1. Then there is a vector & # O such that

w?E,n) = 0, Vne R
PROOF. A skew-symmetric form w? is given by a skew-symmetric matrix 4
w*(E,n) = (4§, n)
of odd order 2n + 1. The determinant of such a matrix is equal to zero, since
A= —A4 det 4 =det A" =det(—A4) = (—1)?"* 1 det 4 = —det A4.

Thus the determinant of 4 is zero. This means A has an eigenvector & # 0
with eigenvalue 0, as was to be shown. L]

A vector & for which w?(&, n) = 0, Vn is called a null vector for the form w?.
The null vectors of w? clearly form a linear subspace. The form w? is called
nonsingular if the dimension of this space is the minimal possible (i.e., 1
for an odd-dimensional space R?"*! or O for an even-dimensional space).

PROBLEM. Consider the 2-form w® =dp, A dq, + --- + dp, ~ dg, on an even-dimensional
space R*" with coordinates p;, ..., p,. q,,...,q,. Show that »? is nonsingular.
PrOBLEM. On an odd-dimensional space R?"*! with coordinates p,. .. .. PniGys-. ., G, 1, CON-

sider the 2-form @? =} dp; » dg; — o' A dr, where ! is any 1-form on R2"* !, Show that w? is
nonsingular.

If w? is a nonsingular form on an odd-dimensional space R?"*! then
the null vectors § of w? all lie on a line. This line is invariantly associated to

the form w?.
Now let M2"*! be an odd-dimensional differentiable manifold and w?

a I-form on M. By the lemma above, at every point x € M there is a direction
(i.e, a straight line {cg} in the tangent space TM,) having the property
that the integral of w' along the boundary of an “infinitesimal square
containing this direction” is equal to zero:

dw'(g,n) =0, YneTM,.

Suppose further that the 2-form dw' is nonsingular. Then the direction &
is uniquely determined. We call it the “vortex direction” of the form w!.
The integral curves of the field of vortex directions are called the vortex
lines (or characteristic lines) of the form w!.
Let 7, be a closed curve on M. The vortex lines going out from points
of 7, form a “vortex tube.” We have
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9: Canonical formalism

The multi-dimensional Stokes’ lemma. The integrals of a 1-form w’ along any
two curves encircling the same vortex tube are the same: § .., w' = {,,0,
if . — 7, = 00, where o is a piece of the vortex tube.

PrOOF. By Stokes’ formula

§wl—§w‘= w‘=fda)1.
Y1 2 da o

But the value of dw! on any pair of vectors tangent to the vortex tube is equal
to zero. (These two vectors lie in a 2-plane containing the vortex direction,
and dw' vanishes on this plane.) Thus, {, do' = 0. [

C Hamilton’s equations

All the basic propositions of hamiltonian mechanics follow directly from

Stokes’ lemma.
For M2"*1 we will take the “extended phase space R*"*!” with co-

ordinates py, ..., Pni 41> - -+ 4n; . SUppPOSe WE are given a function H =
H(p, q, t). Then we can construct’? the 1-form

w' = pdq— Hdt  (pdq = pydq, + -~ + Prdqy).
We apply Stokes’ lemma to @' (Figure 182).

Figure 182 Hamiltonian field and vortex lines of the form p dq — H dt.

Theorem. The vortex lines of the form w' = pdq — Hdt on the 2n + 1-
dimensional extended phase space P, Q, t have a one-to-one projection onto
the t axis, i.e., they are given by functions p = p(t),q = q(?). These functions
satisfy the system of canonical differential equations with hamiltonian
Sfunction H:

0 dp_ _oH  du_oH
dt oq’ dt op’

In other words, the vortex lines of the form p dq — H dt are the trajectories
of the phase flow in the extended phase space, i€, the integral curves of the
canonical equations (1).

73 The form w' seems here to appear out of thin air. In the following paragraph we will see how
the idea of using this form arose from optics.
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44: The integral invariant of Poincaré-Cartan

PrOOF. The differential of the form p dq — H dt is equal to

n oH oH
d 1= di d . d : —_
w Z(pf\ %= o pi A dt —

i=1

t

dq; ~ dt).

It is clear from this expression that the matrix of the 2-form dw! in the
coordinates p, q, t has the form

0 —E H,

A= E 0 Hq ]

—H, —H, 0
where
1
e gy _0H  _oH
- 1 b p apa q aq
L J

(verify this!).

The rank of this matrix is 2n (the upper left 2n-corner is non-degenerate);
therefore, dw' is nonsingular. It can be verified directly that the vector
(—H,, H,, 1) is an eigenvector of 4 with eigenvalue 0 (do it!). This means
that it gives the direction of the vortex lines of the form pdq — H dt. But the
vector (—H_, H,, 1) is also the velocity vector of the phase flow of (1). Thus
the integral curves of (1) are the vortex lines of the form p dq — H dt, as was
to be shown. ]

D A theorem on the integral invariant of
Poincare—Cartan

We now apply Stokes’ lemma. We obtain the fundamental

Theorem. Suppose that the two curves v, and y, encircle the same tube of
Phase trajectories of (1). Then the integrals of the form pdq — H dt along
them are the same:

3Gpdq—Hdt= fﬁ pdq — H dr.
T

Y2
The form p 4q — H dt is called the integral invariant of Poincaré—Cartan.”*

Proof. The phase trajectories are the vortex lines of the form p dq — H dt,
and the integrals along closed curves contained in the same vortex tube are
the same by Stokes’ lemma. ]

% In the calculus of variations | p dq — H dt is called Hilbert’s invariant integral.
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9: Canonical formalism

lg £

Figure 183 Poincaré’s integral invariant

We will consider, in particular, curves consisting of simultaneous states,
i.e., lying in the planes ¢t = const (Figure 183). Along such curves, dt =0
and § pdq — H dt = § pdq. From the preceding theorem we obtain the
important:

Corollary 1. The phase flow preserves the integral of the form pdq =
p; dg, + -+ + p,dq, on closed curves.

PROOF. Let git: R?" — R?" be the transformation of the phase space P, Q)
realized by the phase flow from time ¢, to ¢, (i€, gi.(Po> qo) is the solution
to the canonical equations (1) with initial conditions p(zo) = Po, q(ty) = q0)-
Let 7 be any closed curve in the space R>" = R*"*! (¢t = to). Then g,y
is a closed curve in the space R2?" (t = t,), contained in the same tube of
phase trajectories in R?"*!. Since dt = 0 on y and on g;)y we find by the

preceding theorem that f., pdq = fg,ly p dq, as was to be shown. ]

The form p dq is called Poincaré’s relative integral invariant. It has a
simple geometric meaning. Let o be a two-dimensional oriented chain and
v = do. Then, by Stokes’ formula, we find

§ pdq=ff dp A dq.
b g

Thus we have proved the important:

Corollary 2. The phase flow preserves the sum of the oriented areas of the
projections of a surface onto the n coordinate planes (p;, q;):

ffdpAdq=f dp ~ dq.
a 4.,

In other words, the 2-form w? = dp A dq is an absolute integral invariant
of the phase flow.

ExaMpLE. For n = 1, »? is area, and we obtain Liouville’s theorem: the
phase flow preserves area.

238



44: The integral invariant of Poincaré-Cartan

E Canonical transformations
Let g be a differentiable mapping of the phase space R?*" = {(p, q)} to R?".

Definition. The mapping g is called canonical, or a canonical transformation,
if g preserves the 2-form w? = Y dp; A dg;.

It is clear from the argument above that this definition can be written
in any of three equivalent forms:

1. g*w? = w? (g preserves the 2-form Y dp; A dq,);
2. [{, w* = {[,, w* Vo (g preserves the sum of the areas of the projections

of any surface);
3. §,pdq = § v P dq (the form p dq is a relative integral invariant of g).

PrOBLEM. Show that definitions (1) and (2) are equivalent to (3) il the domain of the map in
question is a simply connected region in the phase space R?"; in the general case 3 = 2 <= 1.

The corollaries above can now be formulated as:

Theorem. The transformation of phase space induced by the phase flow is
canonical.”?

Let g: R?" — R?" be a canonical transformation: g preserves the form w?.
Then g also preserves the exterior square of w?:
g*(@? A @) = w? A w? and g*w?))* = (@)
The exterior powers of the form Y dp; A dg, are proportional to the forms

w* = Z dp; A dp; A dg; A dgj,

i<j

w?** = Z dp;, Ao ndp, Adg A A dg,, .

i< <ik
Thus we have proved

Theorem. Canonical transformations preserve the integral invariants
2n
w®, ..., o

Geometrically, the integral of the form w?* is the sum of the oriented

volumes of the projections onto the coordinate planes (p;, .. ., Pi., Gi,> - - - » Gi)-
In particular, w?" is proportional to the volume element, and we obtain:

Corollary. Canonical transformations preserve the volume element in phase
space:
the volume of gD is equal to the volume of D, for any region D.

75 The proof of this theorem which is presented in the excellent book by Landau and Lifshitz
(Mechanics, Pergamon, Oxford, 1960) is incorrect.
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9: Canonical formalism

In particular, applying this to the phase flow we obtain

Corollary. The phase flow (1) has as integral invariants the forms
w?, wt, ..., W

The last of these invariants is the phase volume, so we have again proved
Liouville’s theorem.

45 Applications of the integral invariant of

Poincaré—Cartan
In this paragraph we prove that canonical transformations preserve the form of Hamilton’s
equations, that a first integral of Hamilton's equations allows us to reduce immediately the order

of the system by two and that motion in a natural lagrangian system proceeds along geodesics
of the configuration space provided with a certain riemannian metric.

A Changes of variables in the canonical equations

The invariant nature of the connection between the form p dq — H dt and
its curl lines gives rise to a way of writing the equations of motion in any
system of 2n + 1 coordinates in extended phase space {(p, q, 1)}.

p.a,t X[y - X2n+1

A EANEN

s

Figure 184 Change of variables in Hamilton’s equations

Let (x4, ..., X2,4+ ) be coordinate functions in some chart of extended
phase space (considered as a manifold M>"* !, Figure 184). The coordinates
(p, q, t) can be considered as giving another chart on M. The form w! =
p dq — H dt can be considered as a differential 1-form on M. Invariantly
associated (not depending on the chart) to this formis a family of ineson M —
the vortex lines. In the chart (p, q, t), these lines are represented as the tra-
jectories of the phase flow

e dp _ _OH dq _0H
dt  9q dt  op

with hamiltonian function H(p, q, ?).
Suppose that in the coordinates (x,, ..., X,,+ ) the form w' is written as

pdq_Hdt:Xl dxl + - +X2n+ldx2n+1.
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45: Applications of the integral invariant of Poincarée-Cartan

Theorem. In the chart (x,), the trajectories of (1) are represented by the vortex
lines of the form Y X;dx;.

ProoF. The curl lines of the forms Y X, dx; and pdq — H dt are the images
in two different charts of the vortex lines of the same form on M. But the
integral curves of (1) are the vortex lines of p dq — H dt. Thus, their images
in the chart (x;) are the vortex lines of the form ) X, dx;. ]

Corollary. Let (P,,...,P,:Qy,...,Q,; T) be a coordinate system on the
extended phase space (p,q,t) and K(P,QT) and S(P,Q, T) functions
such that

pdq — Hdt = PdQ — K dT + dS

(the left- and right-hand sides are forms on extended phase space).
Then the trajectories of the phase flow (1) are represented in the chart
(P, Q, T) by the integral curves of the canonical equations

5 P 0K dQ JK

2) dT ~  8Q dT  oP’
PROOF. By the theorem above, the trajectories of (1) are represented by the
vortex lines of the form PdQ — K dT + dS. But dS has no influence on
the vortex lines (since ddS = 0). Therefore, the images of the trajectories of (1)
are the vortex lines of the form P dQ — K dT. According to Section 44, C,
the vortex lines of such a form are integral curves of the canonical equations

(2). U

In particular, let g: R*" — R2” be a canonical transformation of phase
space taking a point with coordinates (p, q) to a point with coordinates
(P, Q). The functions P(p, q) and Q(p, q) can be considered as new co-
ordinates on phase space.

Theorem. In the new coordinates (P, Q) the canonical equations (1) have
the canonical form’®
3) dP 0K dQ 0K
dt  0Q dt ~ oP

with the same hamiltonian function: K(P, Q, t) = H(p, q, t).

¢ In some textbooks the property of preserving the canonical form of Hamilton's equations is
taken as the definition of a canonical transformation. This definition is not equivalent to the
generally accepted one mentioned above. For example, the transformation P = 2p, Q = g,
which is not canonical by our definition, preserves the hamiltonian form of the equations of
motion. This confusion appears even in the excellent textbook by Landau and Lifshitz{Mechanics,
Oxford, Pergamon, 1960); in Section 45 of this book they show that every transformation which
preserves the canonical equations is canonical in our sense.
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9: Canonical formalism

Pi.4q;

Po,4q¢

P
Figure 185 Closedness of the form p dq — P dQ

Proor. Consider the 1-form pdq — P dQ on R?". For any closed curve y
we have (Figure 185)

ﬁpdq—PdQ= fﬁypdq— iPdQ=O

since g is canonical. Therefore, (5. a. P dg — P dQ = S does not depend on
the path of integration but only on the endpoint (p,, q;) (for a fixed initial
point (Py,qo)). Thus dS = pdq — P dQ. Consequently, in the extended
phase space, we have

pdq — Hdt = PdQ — Hdt + dS.
Thus, the theorem above is applicable, and (2) is transformed to (3). ]

ProBLEM. Let g(r): R?" — R?" be a canonical transformation of phase space depending on the
parameter 1, g(t)(p, Q) = (P(p, q, 1), Q(p. q, 1)). Show that in the variables P, Q, t the canonical
equations (1) have the canonical form with new hamiltonian function

lGAY .
K(P,Q 1) =H(p.q.t) +— + PO,

where

Pt. Q1
S(p.4q:.t) = J. pdq — P JdQ

Po. Qo

B Reduction of order using the energy integral

Suppose now that the hamiltonian function H(p, q) does not depend on time.
Then the canonical equations (1) have a first integral: H(p(t), q(t)) = const.
It turns out that by using this integral we can reduce the dimension (2n + 1)
of the extended phase space by two, thereby reducing the problem to in-
tegration of a system of canonical equations in a (2n — 1)-dimensional space.

We assume that (in some region) the equation h = H(p,,...,Pniqys- - qn)
can be solved for p,:

Py = K(Ps Qs Ta h)s
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45: Applications of the integral invariant of Poincaré—Cartan

where P = (p2, ..., Pn); Q = (92,-..,9,); T = —q,. Then we find
pdq— Hdt =PdQ — KdT — d(Ht) + t dH.

Now let y be an integral curve of the canonical equations (1) lying on the
2n-dimensional surface H(p, Q) = h in R?>"* . Then vy is a vortex line of the
formp dq — H dt (Figure 186). We project the extended phase space R2"*! =
{(p, q, 1)} onto the phase space R*" = {(p, q)}. The surface H = h is pro-
jected onto a (2n — 1)-dimensional manifold M?"~1: H(p, q@) = h in R?",
and y is projected to a curve y lying on this submanifold. The variables
P, Q, T form local coordinates on M2"~ 1,

‘MZH —/

Figure 186 Lowering the order of a hamiltonian system

PrOBLEM. Show that the curve ¥ is a vortex line of the formpdq = PdQ — K dT on M2 1,
Hint. d(Ht) does not affect the vortex lines, and dH is zero on M.

But the vortex lines of P dQ — K dT satisfy Hamilton’s equations (2).
Thus we have proved

Theorem. The phase trajectories of the equations (1) on the surface M*" ™!,
H = h, satisfy the canonical equations

dp. oK da.: oK
Pi _ 4 _ (i=2,...,m),

dq, 0q; dq,  dp

where the function K(p,, ..., Pni 42, -- -, qn; T, h) is defined by the equation
H(K:pz’-"apn; —"'T;qla'--:qu) = h’

C The principle of least action in phase space

In the extended phase space {(p, q, t)}, we consider an integral curve of the
canonical equations (1) connecting the points (p,, 4o, o) and (py, 4;, £,)-

Theorem. The integral j pdq — H dt has y as an extremal under variations
of y for which the ends of the curve remain in the n-dimensional subspaces
(t=1tr,4=qo)and (t = t;,q = q).

ProOF. The curve y is a vortex line of the form pdq — H dt (Figure 187).
Therefore, the integral of p dq — H dt over an “infinitely small parallelogram
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v

g, 90

-/

Figure 187 Principle of least action in phase space

passing through the vortex direction” is equal to zero. In other words, the
increment {,. — [, pdq — H dt is small to a higher order in comparison with
the difference of the curves y and y’, as was to be shown.

If this argument does not seem rigorous enough, it can be replaced by the
computation

oH oH
af(pq—H)dr= f(‘i5p+l’5¢i—ﬁép—aéq)dt

1 0H oH
+ i — — )dp — | p + = |oq |dt.
[ (6= 5= (4 %))

We see that the integral curves of Hamilton’s equations are the only
extremals of the integral { pdq — H dr in the class of curves y whose ends
lie in the n-dimensional subspaces (t =145,q =q¢) and (t =t;,q = q,)
of extended phase space. ]

= p oq

Remark. The principle of least action in Hamilton’s form is a particular case of the principle
considered above. Along extremals, we have

11,41 ] fy
f pdq — H dt = f (pq— H)de = J. L dt
0. Qo 1o io

(since the lagrangian L and the hamiltonian H are Legendre transforms of one another). Now
let ¥ (Figure 188) be the projection of the extremal y onto the q. ¢ plane. To any nearby curve ¥’
connecting the same points (5. q) and (¢, q,) in the q, ¢ plane we associate a curve 7" in the

P
1 v

g ;.9

(J
fo.qp

4

Figure 188 Comparison curves for the principles of least action in the configuration
and phase spaces
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phase space (p, q. 1) by setting p = ¢L/3q. Then, along 3", too, j pdq — Hdr = {,. L dr. But
by the theorem above, d |, p dq — H dt = Ofor any variation curve y (with boundary conditions
(t = ty.9 =qg)and {r = t,, g = q,). In particular, this is true for variations of the special form

taking ; to 7" Thus , is an extremal of | L dr, as was to be shown.

In the theorem above we are allowed to compare y with a significantly
wider class of curves y’ than in Hamilton’s principle: there are no restrictions
placed on the relation of p with §. Surprisingly, one can show that the two
principles are nevertheless equivalent: an extremal in the narrower class of
variations (p = JL/0q) is an extremal under all variations. The explana-
tion is that, for fixed q, the value p = dL/dq is an extremal of pg — H (cf. the
definition of the Legendre transform, Section 14).

D The principle of least action in the
Maupertuis—Euler—Lagrange—-Jacobi form

Suppose now that the hamiltonian function H(p, q) does not depend on time.
Then H(p, q) is a first integral of Hamilton’s equations (1). We project the
surface H(p, q) = h from the extended phase space {(p.q, t)} to the space
{(p,q)}. We obtain a (2n — 1)-dimensional surface H(p,q) = h in R?"
which we already studied in subsection B and which we denoted by M?2"~ 1,

The phase trajectories of the canonical equations (1) beginning on the
surface M?"~! lie entirely in M?"~ !, They are the vortex lines of the form
pdq =P dQ — K dT (in the notation of B) on M?"~ !, By the theorem in
subsection C, the curves (1) on M?"™ ! are extremals for the variational
principle corresponding to this form. Therefore, we have proved

Theorem. If the hamiltonian function H = H(p, qQ) does not depend on time,
then the phase trajectories of the canonical equations (1) lying on the surface
M?*"~1:H(p,q) = h are extremals of the integral | p dq in the class of
curves lying on M?"~ ! and connecting the subspaces @ = Qo and q = q;.

We now consider the projection onto the q-space of an extremal lying
on the surface M?"~': H(p, q) = h. This curve connects the points q, and
q.. Let y be another curve connecting the points q, and q, (Figure 189).
The curve y is the projection of some curve y on M?" . Specifically, we

P
4

=2)

Figure 189 Maupertuis’ principle
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parametrize y by 7, a < 7 < b, ¥(a) = q,, Y(b) = q,. Then at every point q
of y there is a velocity vector § = dy(t)/dt, and the corresponding momentum
p = JL/9q. If the parameter 7 is chosen so that H(p, q) = h, then we obtain
a curve 9:q = y(1), p = L/dq on the surface M>"~'. Applying the theorem
above to the curve 9 on M2"~ !, we obtain

Corollary. Among all curves q = y(T) connecting the two points qo and q, on
the plane q and parametrized so that the hamiltonian function has a fixed
value H(PL/04, Q) = h, the trajectory of the equations of dynamics (1) is
an extremal of the integral of “reduced action”

fpdq—qudr—f ~ (1)d(2) d.

This is also the principle of least action of Maupertuis (Euler-Lagrange-
Jacobi).”” It is important to note that the interval a < 7 < b parametrizing
the curve y is not fixed and can be different for different curves being com-
pared. On the other hand, the energy (the hamiltonian function) must be
the same. We note also that the principle determines the shape of a trajectory
but not the time: in order to determine the time we must use the energy
constant.

The principle above takes a particularly simple form in the case when the
system represents inertial motion on a smooth manifold.

Theorem. A point mass confined to a smooth riemannian manifold moves along
geodesic lines (i.e., along extremals of the length | ds).

PROOF. In this case,

1 [ds\? aL ds

Therefore, in order to guarantee a fixed value of H = h, the parameter must

be chosen proportional to the length dtv = ds/./2h. The reduced action
integral is then equal to

—qdrzf\/ hds = 2hfds;
Y

therefore, extremals are geodesics of our manifold. ]

In the case when there is a potential energy, the trajectories of the equa-
tions of dynamics are also geodesics in a certain riemannian metric.

77 «In almost all textbooks, even the best, this principle is presented so that it is impossible to
understand.” (K. Jacobi, Lectures on Dynamics, 1842—1843). I do not choose to break with
tradition. A very interesting * proof ” of Maupertuis” principle is in Section 44 of the mechanics
textbook of Landau and Lifshitz (Mechanics, Oxford, Pergamon, 1960).
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Let ds? be a riemannian metric on configuration space which gives the
kinetic energy (so that T = 1(ds/dt)*). Let h be a constant.

Theorem. In the region of configuration space where U(qQ) < h we define
a riemannian metric by the formula

dp = /h — U(q) ds.

Then the trajectories of the system with kinetic energy T = i(ds/dt)?,
potential energy U(q), and total energy h will be geodesic lines of the metric
dp.

PROOF. In this case L=T—U, H=T+ U, and (OL/d4)q=2T =
(ds/dt)* = 2(h — U). Therefore, in order to guarantee a fixed value of
H = h, the parameter t must be chosen proportional to length: dr =

ds//2(h — U). The reduced action integral will then be equal to

J\——th—f\/i(h—ids—\/ﬁj‘dp

By Maupertuis’ principle, the trajectories are geodesics in the metric dp,
as was to be shown. il

Remark 1. The metric dp is obtained from ds by a “stretching” depending
on the point q but not depending on the direction. Therefore, angles in the
metric dp are the same as angles in the metric ds. On the boundary of the
region U < h the metric dp has a singularity: the closer we come to the
boundary, the smaller the p-length becomes. In particular, the length of any
curve lying in the boundary (U = h) is equal to zero.

Remark 2. If the initial and endpoints of a geodesic y are sufficiently close,
then the extremum of length is a minimum. This justifies the name “principle
of least action.” In general, an extremum of the action is not necessarily a
minimum, as we see by considering geodesics on the unit sphere (Figure 190).
Every arc of a great circle is a geodesic, but only those with length less than =«
are minimal: the arc NS'M is shorter than the great circle arc NSM.

- )

Sl

Figure 190 Non-minimal geodesic
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Remark 3. If his larger than the maximum value of U on the configuration
space, then the metric dp has no singularities; therefore, we can apply
topological theorems about geodesics on riemannian manifolds to the study
of mechanical systems. For example, we consider the torus T2 with some
riemannian metric. Among all closed curves on T2 making m rotations

Figure 191 Periodic motion of a double pendulum

around the parallel and n around the meridian, there exists a curve of shortest
length (Figure 191). This curve is a closed geodesic (for a proof see books
on the calculus of variations or “Morse theory”). On the other hand, the
torus T2 is the configuration space of a planar double pendulum. Therefore,

Theorem. For any integers m and n there is a periodic motion of the double
pendulum under which one segment makes m rotations while the other

segment makes n rotations.

Furthermore, such periodic motions exist for any sufficiently large values
of the constant h (h must be larger than the potential energy at the highest
position).

As a last example we consider a rigid body fastened at a stationary point
and located in an arbitrary potential field. The configuration space (SO(3))
is not simply connected : there exist non-contractible curves in it. The above
arguments imply

Theorem. In any potential force field, there exists at least one periodic motion
of the body. Furthermore, there exist periodic motions for which the total
energy h is arbitrarily large.

46 Huygens' principle

The fundamental notions of hamiltonian mechanics (momenta, the hamiltonian function H,
the form p dq — H dt and the Hamilton-Jacobi equations, all of which we will be concerned
with below) arose by the transforming of several very simple and natural notions of geometric
optics. guided by a particular variational principle —that of Fermat, into general variational
principles (and in particular into Hamilton’s principte of stationary action, o { Ldt=0).
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46: Huygens’ principle

A Wave fronts

We consider briefly 78 the fundamental notions of geometric optics. According
to the extremal principle of Fermat, light travels from a point q, to a point
q, in the shortest possible time. The speed of the light can depend both on the
point q (an “inhomogeneous medium”) and on the direction of the ray
(in an *“‘anisotropic medium,” such as a crystal). The characteristics of a
medium can be described by giving a surface (the “indicatrix”) in the tangent
space at each point q. To do this, we take in every direction the velocity vector
of the propagation of light at the given point in the given direction (Figure
192).

Figure 193 Envelope of wave fronts

Now let t > 0. We look at the set of all points q to which light from a given
point q, can travel in time less than or equal to t. The boundary of this set,
@, (1), is called the wave front of the point q, after time t and consists of points
to which light can travel in time ¢ and not faster.

There is a remarkable relation, discovered by Huygens, between the wave
fronts corresponding to different values of . (Figure 193)

78 We will not pursue rigor here, and will assume that all determinants are different from zero,
etc. The proofs of the subsequent theorems do not depend on the semi-heuristic arguments of

this paragraph.
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9: Canonical formalism

Huygens’ theorem. Let @, (1) be the wave front of the point q, after time t.
For every point q of this front, consider the wave front after time s, ®(s).
Then the wave front of the point q, after time s + t, @, (s + t), will be the
envelope of the fronts @ (s), q € @, (1).

ProOF. Let q,, ; € @, (¢t + s). Then there exists a path from q, to q, ., along
which the time of travel of light equals ¢t + s, and there is none shorter. We
look at the point q, on this path, to which light travels in time ¢t. No shorter
path from q, to q, can exist; otherwise, the path q,q,,, would not be the
shortest. Therefore, the point q, lies on the front ®, (¢). In exactly the same
way light travels the path q,q, ., in time s, and there is no shorter path from
q, to q,. .. Therefore, the point q,, , lies on the front of the point q, at time s,
®,.(s). We will show that the fronts @, (s) and @, (t + s) are tangent. In
fact, if they crossed each other (Figure 194), then it would be possible to
reach some points of @, (t + s) from gq, in time less than s, and therefore
from q, in time less than s + z. This contradicts the definition of ®g (¢ + s);
and so the fronts @, (s} and @, (¢ + s) are tangent at the point q, ,,, as was
to be proved. O

O N Q{+S

¢'q ) ¢'q”(s + 1)
4

Figure 194 Proof of Huygens’ theorem

The theorem which has been proved is called Huygens’ principle. 1t is
clear that the point q, could be replaced by a curve, surface, or, in general,
by a closed set, the three-dimensional space {q} by any smooth manifold,
and propagation of light by the propagation of any disturbance transmitting
itself “locally.”

Huygens’ principle reduces to two descriptions of the process of prop-
agation. First, we can trace the rays, i.e., the shortest paths of the propagation
of light. In this case the local character of the propagation is given by a
velocity vector q. If the direction of the ray is known, then the magnitude
of the velocity vector is given by the characteristics of the medium (the
indicatrix).

On the other hand, we can trace the wave fronts. Assuming that we are
given a riemannian metric on the space {q}, we can talk about the velocity
of motion of the wave front. We look, for example, at the propagation of
light in a medium filling ordinary euclidean space. Then one can characterize
the motion of the wave front by a vector p perpendicular to the front, which
will be constructed in the following manner.

250



46: Huygens’ principle

Direction of the ray
q

p =grad §
Direction of motion
of the front

Front
S(J'o (q) =t

Figure 195 Direction of a ray and direction of motion of the wave front

For every point q, we define the function S, (q) as the optical length of
the path from q, to q, 1.e., the least time of the propagation of light from q,
to q. The level set {q: S,,(q) = ¢} is nothing other than the wave front ®, ()
(Figure 195). The gradient of the function S (in the sense of the metric
mentioned above) is perpendicular to the wave front and characterizes the
motion of the wave front. In this connection, the bigger the gradient, the
slower the front moves. Therefore, Hamilton called the vector

S
= %4
the vector of normal slowness of the front.

The direction of the ray q and the direction of motion of the front p do not
coincide in an anisotropic medium. However, they are related to one another
by a simple relationship, easily derived from Huygens’ principle. Recall
that the characteristics of the medium are at every point described by a
surface of velocity vectors of light—the indicatrix.

P

Definition. The direction of the hyperplane tangent to the indicatrix at the
point v is called conjugate to the direction v (Figure 196).

Theorem. The direction of the wave front ®,(t) at the point q, is conjugate
to the direction of the ray q.

ProoOF. We look (Figure 197) at points q, of theray q,q,,0 < t <. Take ¢
very small. Then the front @, (¢) differs by quantities of order O(&?) from
the indicatrix at the point q,, contracted by &. By Huygens’ principle, this
front ®,, (&) istangent to the front @, (z) at the point q,. Passing to the limit
as ¢ — 0, we obtain the theorem. O

v
- Conjugate
direction

Figure 196 Conjugate hyperplane
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g, (1)

Indicatrix of

the point 4 Direction of the ray

Direction of motion
of the front

Front ®4,(0)

Figure 197 Conjugacy of the direction of a wave and of the front

If the auxiliary metric used to define the vector p is changed, the natural
velocity of the motion of the front, i.e. both the magnitude and direction of
the vector p, will be changed. However, the differential form pdq = dS
on the space {q} = R? is defined in a way which is independent of the
auxiliary metric; its value depends only on the chosen fronts (or rays). On the
hyperplane conjugate to the velocity vector of a ray, this form is equal to
zero, and its value on the velocity vector is equal to 1.7°

B The optical-mechanical analogy

We return now to mechanics. Here the trajectories of motion are also
extremals of a variational principle, and one can construct mechanics as
the geometric optics of a many-dimensional space, as Hamilton did ; we will
not develop this construction in full detail, but will only enumerate those
optical concepts which led Hamilton to basic mechanical concepts.

Optics Mechanics
Optical medium Extended configuration space {(q, 1)}
Fermat’s principle Hamilton’s principle  { L dt = 0
Rays Trajectories q(r)
Indicatrices Lagrangian L
Normal slowness vector p Momentum p
of the front
Expression of p in terms of Legendre transformation
the velocity of the ray, q
1-form p dq l-formpdq — H dt

7% In this way, the vectors p corresponding to various fronts passing through a given point are not
arbitrary, but are subject to one condition: the permissible values of p fill a hypersurface in
{p}-space which is dual to the indicatrix of velocities.
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46: Huygens’ principle

The optical length of the path S, (q) and Huygens’ principle have not yet
been used. Their mechanical analogues are the action function and the
Hamilton—Jacobi equation, to which we now turn.

C Action as a function of coordinates and time

Definition. The action function S(q, t) is the integral

Seo 1> 1) = JL dt
Y

along the extremal y connecting the points (qo, t,) and (q, ?).

In order for this definition to be correct, we must take several precautions:
we must require that the extremals going from the point (qo, o) do not inter-
sect elsewhere, but instead form a so-called “central field of extremals”
(Figure 198). More precisely, we associate to every pair (4o, t) a point (q,t)
which is the end of the extremal with initial condition q(0) = q,, 4(0) = q,.
We say that an extremal y is contained in a central field if the mapping
(4o, t) — (q, t) is nondegenerate (at the point corresponding to the extremal
» under consideration, and therefore in some neighborhood of it).

q
4

f.q

o, qg

-1
Figure 198 A central field of extremals

It can be shown that for |t — 1, |small enough the extremal y is contained in

a central field.®°
We now look at a sufficiently small neighborhood of the endpoint (q, t)

of our extremal. Every point of this neighborhood is connected to (g, to)
by a unique extremal of the central field under consideration. This extremal
depends differentiably on the endpoint (q, t). Therefore, in the indicated
neighborhood the action function is correctly defined

Seo. 15 1) = fL dt.
Y

In geometric optics we were looking at the differential of the optical
length of a path. It is natural here to look at the differential of the action
function.

80 proBLEM. Show that this is not true for large t — t,. Hint. = —q (Figure 199).
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Figure 199 Extremal with a focal point which is not contained in any central field

Theorem. The differential of the action function (for a fixed initial point) is
equal to

dS =pdq — H dt

where p = 0L/0q and H = pq — L are defined with the help of the terminal
velocity q of the trajectory 7.

PROOF. We lift every extremal from (q, t)-space to the extended phase space
{(p, q, 1)}, setting p = JL/4q, i.e., replacing the extremal by a phase trajectory.
We then get an n + 1-dimensional manifold in the extended phase space
consisting of phase trajectories, i.e., characteristic curves of the form
pdq — H dt. We now give the endpoint (q, t) an increment (Aq, At), and
consider the set of extremals connecting (q,, t,) with points of the segment
q + 6Aq,t + 8A1,0 < 6 < 1 (Figure 200). In phase space we get a quadrangle
o composed of characteristic curves of the form p dq — H dt, the boundary
of which consists of two phase trajectories y, and y,, a segment of a curve «
lying in the space (@ = q,, t = t,), and a segment of a curve f projecting
to the segment (Aq, At). Since o consists of characteristic curves of the
form p dq — H dt, we have

0—f d(pdq — H dt) = pdq—Hdt

f f f [pia—ra

But, on the segment a, we have dq = 0, dt = 0. On the phase trajectories y, and
v,,Ppdq — H dt = L dt (Section 45C). So, the difference |,, — {,, pdq — Hdt

At, Ag

to, qo L q

4

Figure 200 Calculation of the differential of the action function
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is equal to the increase of the action function, and we find
Lp dq — Hdr = S(q + Aq, t + At) — S(q, t).
If now Aq — 0, At — O, then
J;p dq — H dt = pAq — HAt + o(At, Aq)
which proves the theorem. ]

The form p dq — H dt was formerly introduced to us artificially. We see
now, by carrying out the optical-mechanical analogue, that it arises from
examining the action function corresponding to the optical length of a path.

D The Hamilton—-Jacobi equation

Recall that the “vector of normal slowness p” cannot be altogether arbitrary:
it is subject to one condition, p4 = 1, following from Huygens’ principle.
An analogous condition restricts the gradient of the action function S.

Theorem. The action function satisfies the equation

oS oS
(1) o H(a—q, a t) _o

This nonlinear first-order partial differential equation is called the
Hamilton—Jacobi equation.

ProOE. It is sufficient to notice that, by the previous theorem,

oS oS

= _H(paqs t) P =56' D

ot

The relation just established between trajectories of mechanical systems
(“rays”) and partial differential equations (“wave fronts”) can be used in
two directions.

First, solutions of Equation (1) can be used for integrating the ordinary
differential equations of dynamics. Jacobi’s method of integrating Hamilton’s
canonical equations, presented in the next section, consists of just this.

Second, the relation of the ray and wave points of view allows one to
reduce integration of the partial differential equations (1) to integration
of a hamiltonian system of ordinary differential equations.

Let us go into this in a little more detail. For the Hamilton—Jacobi
equation (1), the Cauchy problem is

oS oS
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9: Cancnical formalism

In order to construct a solution to this problem, we look at the hamiltonian
system

. OH . _COH
We consider the initial conditions (Figure 201):
08,
t —3 - — .
q(t,) = Qo p(to) 2q |,

The solution corresponding to these equations is represented in (q, t)-space
by the curve ¢ = q(t), which is the extremal of the principle & {Ldt=0
(where the lagrangian L(q, q, t) is the Legendre transformation with respect
to p of the hamiltonian function H(p, q,?)). This extremal is called the
characteristic of problem (2), emanating from the point q,.

If the value ¢, is sufficiently close to t,, then the characteristics emanating
from points close to q, do not intersect for to <t <t;, |[q — qo| < R.
Furthermore, the values of q, and ¢ can be taken as coordinates for points
in the region |q — qox| < R, t, <t < t, (Figure 201).

q

— [

to t; > I3
Figure 201 Characteristics for a solution of Cauchy’s problem for the Hamilton-
Jacobi equation

We now construct the “action function with initial condition S,”:

A

3) S(4) = So(qo) + L(q, 4, t)dt

q0. Lo

(integrating along the characteristic leading to 4).

Theorem. The function (3) is a solution of problem (2).

ProoF. The initial condition is clearly fulfilled. The fact that the Hamilton-
Jacobi equation is satisfied is verified just as in the theorem on differentials

of action functions (Figure 202).

By Stokes’ lemma, [., — [., + {, — [, pdq — H dt = 0. Buton 2, Hdr = 0 and p = &5,/dq,
so

Jp dq — Hdt = fp dq = f dSo = So(qe + AQ) — So(q).
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4
[0 4
o B
Y;
I A+ AA
q At, Ag
to.dqo L q

!

Figure 202 The action function as a solution of the Hamilton-Jacobi equation

Further, 7, and y, are phase trajectories, so

J. pdq~Hdt=f L d:.

i1,

So
fpdq — Hdt = [So(q0 + Aq) + f Ldt] — [So(qo) + J‘ Ldl]
B S2 ¥t
=5(A4 + AA) — S(A).
For At, Aq — 0, we get 8S/0t = — H, 35/8q = p, which proves the theorem. |

PrOBLEM. Show the uniqueness of the sclution to problem (2).
Hinr. Differentiate S along the characteristics.

PROBLEM. Solve the Cauchy problem (2) for

ProBLEM. Draw a graph of the multiple-valued "functions” S(g) and p(q) for t = £, (Figure 201).

AnsweR. Cf. Figure 203.

ol

Figure 203 A typical singularity of a solution of the Hamilton—Jacobi equation
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The point of self-intersection of the graph of S corresponds on the graph of p to the Maxwell
line: the shaded areas are equal. The graph of S(g. t) has a singularity called a swallow's tail at the
point (0, t,).

47 The Hamilton-Jacobi method for integrating
Hamilton’s canonical equations

In this paragraph we define the generating function of a free canonical transformation.

The idea of the Hamilton—Jacobi method consists of the following. Under
canonical changes of coordinates, the canonical form of the equations of
motion is preserved, as is the hamiltonian function (Section 45A). Therefore,
if we succeed in finding a canonical transformation which reduces the
hamiltonian function to a form such that the canonical equations can be
integrated, then we can also integrate the original canonical equations. It
turns out that the problem of constructing such a canonical transformation
reduces to the determination of a sufficiently large number of solutions to
the Hamilton—Jacobi partial differential equation. The generating function
of the desired canonical transformation must satisfy this equation.

Before turning to the apparatus of generating functions, we remark
that it is unfortunately noninvariant and it uses, in an essential way, the co-
ordinate structure in phase space {(p, q)}. It is necessary to use the apparatus
of partial derivatives, in which even the notation is ambiguous.?!

A Generating functions

Suppose that the 2n functions P(p, q) and Q(p, q) of the 2n variables p and q
give a canonical transformation g: R*" — R?*". Then the 1-form p dg — P dQ
is an exact differential (Section 45A):

(1) pdq — PdQ = dS(p, q).

PROBLEM. Show the converse: if this form is an exact differential, then the transformation 1s
canonical.

We now assume that, in a neighborhood of some point (p,, 4,), we can
take (Q, q) as independent coordinates. In other words, we assume that
the following jacobian is not zero at (p,, 4o):

Q0 _ 00,

det —— =
a(p, 9 ap

81 It is important to note that the quantity du/¢x on the x, y-plane depends not only on the
function which is taken for x, but also on the choice of the function y: in new variables (x. z)
the value of éu/Cx will be different. One should write

cu c

=

T
=

-
CX vy = conat z = const
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47: The Hamilton-Jacobi method

Such canonical transformations will be called free. In this case, the function S
can be expressed locally in these coordinates:

S(p, @) = 5,(Q, @).

Definition. The function S,(Q, q) is called a generating function of our
canonical transformation g.

We emphasize that S, is not a function on the phase space R?": it is a
function on a region in the direct product Ry x Rg of two n-dimensional
coordinate spaces, whose points are denoted by q and Q. It follows from (1)
that the “partial derivatives” of S, are

2) %53133’ Y_p and _aslég, V_ _p

Conversely, every function S; gives a canonical transformation g by

formulas (2).

Theorem. Let S,(Q, q) be a function given on a neighborhood of some point
(Qo- 90) of the direct product of two n-dimensional euclidean spaces. If

0%,

aQ aq Qo. 90

then S, is a generating function of some free canonical transformation.

det # 0,

PrOOF. Consider the equation for the Q coordinates:
05:(Q. @) _
dq

By the implicit function theorem this equation can be solved to determine a
function Q(p, q) in a neighborhood of the point

35,(Q,
(100 = (P

(with Q(po, 9p) = Q). In fact, the determinant we need here is
4’5,(Q, )
det (—6 Q oq

and this is different from zero by hypothesis.
We now consider the function

b
Qo.q0

P,(Q,q) = — g%sl(q 9,

and set
P(p, q) = P,(Q(p, q), 9.
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Then the local map g: R?" - R2" sending the point (p,q) to the point
(P(p, 9), Q(p, q)) will be canonical with generating function §,, since by
construction

05,Q @ , . 95.(Q. 9

It is free, since det(Q/dp) = det(8%5,(Q, 9)/0Q dq)~ ' # 0. 0

The transformation g:R?" — R2" is given in general by 2n functions of
2n variables. We see that a canonical transformation is given entirely by
one function of 2n variables—its generating function. It is easy to see how
useful generating functions are in all calculations related to canonical trans-
formations. This becomes even more so as the number of variables, 2n,
becomes large.

B The Hamilton—Jacobi equation for generating functions

We notice that canonical equations in which the hamiltonian function
depends only on the variable Q are easy to integrate. If H = K(Q, 1), then the
canonical equations have the form

. . oK
(3) Q =0 P = m
from which we have immediately
' oK
QN =QO) P =PO) + j .
Q| qc0)

We will now look for a canonical transformation reducing the hamiltonian
H(p, q) to the form K(Q). To this end we will look for a generating function
of such a transformation, S(Q, q). From (2) we obtain the condition

as .
@ (B2 o) - k@0
q

where after differentiation we must substitute q(P, Q) for q. We notice that
for fixed Q, Equation (4) has the form of the Hamilton-Jacobi equation.

Jacobi’s theorem. If a solution S(Q, q) is found to the Hamilton-Jacobi equa-
tion (4), depending on n parameters®? Q, and such that det(8°S/0Qdq) # 0,
then the canonical equations

H
(5) p=—%§ and { = —

can be solved explicitly by quadratures. The functions Q(p, Q) determined
by the equations 65(Q, qQ)/0q = p are first integrals of the equation (5).

82 An n-parameter family of solutions of (4) is called a complete integral of the equation.
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ProoF. Consider the canonical transformation with generating function
S(Q. q). By (2) we have p = (dS/0q)(Q, q), from which we can determine
Q(p, 9). We calculate the function H(p, @) in the new coordinates P, Q.
We have H(p, q) = H((0S/0q)(Q, q), q). In order to find the hamiltonian
function in the new coordinates we must substitute into this expression
(after differentiation) for q its expression in terms of P and Q. However,
by (4), this expression does not depend on q at all, so we have simply

H(p, ) = K(Q).

Thus, in the new variables, Equation (5) has the form (3), from which Jacobi’s
theorem follows directly. d

Jacobi’s theorem reduces solving the system of ordinary differential
equations (5) to finding a complete integral of the partial differential equation
(4). It may appear surprising that this “reduction” from the simple to the
complicated provides an effective method for solving concrete problems.
Nevertheless, it turns out that this is the most powerful method known for
exact integration, and many problems which were solved by Jacobi cannot be
solved by other methods.

C Examples

We consider the problem of attraction by two fixed centers. Interest in this
problem has grown recently in connection with the study of the motion of
artificial earth satellites. It is fairly clear that two close centers of attraction
on the z-axis approximate attraction by an ellipsoid slightly extended along
the z-axis. Unfortunately, the earth is not prolate, but oblate. To overcome
this difficulty, one must place the centers at imaginary points at distances + i¢
from the origin along the z-axis. Analytic formulas for the solution are true,
of course, in the complex region. In this way we obtain an approximation
to the earth’s field of gravity, in which the equations of motion can be exactly
integrated and which is closer to reality than the keplerian approximation
in which the earth is a point.

For simplicity we will consider only the planar problem of attraction by
two fixed points with equal masses. The success of Jacobi’s method is based
on the adoption of a suitable coordinate system, called elliptic coordinates.
Suppose that the distance between the fixed points O, and O, is 2¢ (Figure

Figure 204 Elliptical coordinates

261



9: Canonical formalism

Figure 205 Confocal ellipses and hyperbolas

204), and that the distances of a moving mass from them are r, and r,, re-
spectively. The elliptic coordinates &, # are defined as the sum and difference
of the distances to the points O, and O,:  =r; + 13, =r; — ;.

PROBLEM. Express the hamiltonian function in elliptic coordinates.
Solution. The lines & = const are ellipses with fociat O, and O, : the lines y = const are hyper-

bolas with the same foci (Figure 205). They are mutually orthogonal; therefore,
ds? = a® d&* + b* dn*.

We will find the coefficients @ and b. For motion along an ellipse we have dr; = ds cos x and
dr, = —dscos %, so dy = 2 cos xds. For motion along a hyperbola we have dr, = dssin x
and dr, = ds sin «, s0 d¢ = 2 sin 2 ds. Thus a = (2 sin 2)~'and b = (2 cos %)~ . Furthermore,
from the triangle O, MO, we find r? + r} + 2r,r, cos 2a = 4c?, which implies

. 4¢2 — rf — r%
2 2
cos?a —sinfy = —————=,

2r.r,
2)‘1}‘2

cos? x + sin? a = ,
2ryr,y

2 2 2 .2
5 4¢* — (ry — ry) - (r, + ry)* — 4c
cos? o = sin® o« =
4r1r2 4)‘,1‘2

But if ds? = Y af dg?, then
2 2
rT=Ya¥l p=at¢.n=Y"+u
2 2a?

Thus,
H = p? (ry + ry)? — 4c? 4t —(ry — 1)) kk
”

2ryr, 2ryr; ry rsy
Butr, +r, =& ry —r, = 5, 4r;r, = £ — p? Therefore, finally,

2 £2 — 4¢2 4¢? — p? aké

H=2p om0 ¥ 2P im0 o

e o -
We will now solve the Hamilton-Jacobi equation.

Definition. If, in the equation

o8 oS
o (22, 2. 4. .. . q)=0,
l(aql 6q" q, q)
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the variable g, and derivative dS/8q, appear only in the form of a combina-
tion ¢(dS/dq,, q,), then we say that the variable q, is separable.

In this case it is useful to look for a solution of the equation of the form

S =841 + 52, ..., 4n)-

By setting ¢(0S,/9q,, q,) = ¢, in this equation, we obtain an equation for S’
with a smaller number of variables

o8’ a8’ «)—o
2aq2,...,aq",q2,...,q", 1 = U.
Let §" = S8(q,,....4.;c1,¢) be a family of solutions to this equation

depending on the parameters c;. The functions S,(q,, ¢,) + S’ will satisfy
the desired equation if S, satisfies the ordinary differential equation
©(0S,/8q,, q,) = ¢,. This equation is easy to solve; we express 8S,/dq,
in terms of g, and ¢, to obtain dS,/dq, = ¥(q,, c,), from which S, =

% ¥(q,, c,)dq;.
If one of the variables, say g,, is separable in the new equation (with ®,)

we can repeat this procedure and (in the most favorable case) we can find
a solution of the original equation depending on n constants

Si(Ql;Cl) + S.(g,5; ¢y, cy)+ -+ S,,(q,,; Ciyeevs Cp)

In this case we say that the variables are completely separable.

If the variables are completely separable, then a solution depending on n
parameters of the Hamilton-Jacobi equation, ®,(3S/dq, q) = 0, is found by
quadratures. But then the corresponding system of canonical equations can
also be integrated by quadratures (Jacobi’s theorem).

We apply the above to the problem of two fixed centers. The Hamilton—

Jacobi equation (4) has the form

as s
(aé) (&% — 4ac?) + (611) (4c* — %) = K(& — n?) + 4ke.

We can separate variables by, for instance, setting

o8 2 2y . 2 _
(aa) (&% — 4c¢*) — 4ké K& = ¢,
and

dS\?
(5';) (4c? —n*) + Kn? = —c,.

Then we find the complete integral of Equation (4) in the form

2 4+ 4k —
SE, n; cl,cz)—f\/““ffz S f\/ 462_6;" dn.
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Jacobi’s theorem now gives an explicit expression, in terms of elliptic
integrals, for motion in the problem of two fixed centers. A more detailed
investigation of this motion can be found in Charlier’s book * Die Mechanik
des Himmels,” Berlin, Leipzig, W. de Gruyter & Co., 1927.

Another application of the problem of the attraction of two fixed centers is
the study of motion with fixed pull in a field with one attracting center.

This is a question of the motion of a point mass under the action of a
newtonian attraction of a fixed center and one more force (“pull™) of con-
stant magnitude and direction. This problem can be looked at as the limiting
case of the problem of attraction by two fixed centers. In the passage to
the limit, one center goes off to infinity in the direction of the thrust force
(during which its mass must grow proportionally to the square of the distance
moved in order to guarantee constant pull).

This limiting case of the problem of the attraction of two fixed centers
can be integrated explicitly (in elliptic functions). We can convince ourselves
of this by passing to a limit or by directly separating variables in the problem
of motion with constant pull in a field with one center. The coordinates
in which the variables are separated in this problem arc obtained as the
limit of elliptic coordinates as one of the centers approaches infinity. They
are called parabolic coordinates and are given by the formulas

H=r—Xx v=r + X

(the pull is directed along the x-axis).

A description of the trajectories of a motion with constant pull (many
of which are very intricate) can be found in V. V. Beletzkii’s book “Sketches
of motions of celestial bodies,” Nauka, 1972,

As one more example we consider the problem of geodesics on a triaxial
ellipsoid.?> Here Jacobi’s elliptical coordinates 4,, 4,, and 4; are helpful,

where the A, are the roots of the equation
x3 x3 x3

+ =1, A, > A, > Ay,
al+A a2+i+a3+l ! 2 3

x,, X, and x; are cartesian coordinates. We will not carry out the computa-
tions showing that the variables are separable (they can be found, for example,
in Jacobi’s “Lectures on dynamics”), but will mention only the result: we
will describe the behavior of the geodesics.

The surfaces A, — const, 4, = const, and A; = const are surfaces of
second degree, called confocal quadrics. The first of these is an ellipsoid, the
second a hyperboloid of one sheet, and the third a hyperboloid of two sheets.
The ellipsoid can degenerate into the interior of an ellipse, the one-sheeted
hyperboloid either into the exterior of an ellipse or into the part of a plane

83 The problem of geodesics on an ellipsoid and the closely related problem of ellipsoidal
billiards have found application in a series of recent results in physics connected with laser
devices.
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47: The Hamilton-Jacobi method

between the branches of a hyperbola, and the two-sheeted hyperboloid
either into the part of a plane outside the branches of a hyperbola or into a
plane.

Suppose that the ellipsoid under consideration is one of the ellipsoids
in the family with semiaxes a > b > c. Each of the three ellipses x, = 0,
x; = 0, and x3 = 0 is a closed geodesic. A geodesic starting from a point
of the largest ellipse (with semiaxes a and b) in a direction close to the
direction of the ellipse (Figure 206), is alternately tangent to the two closed
lines of intersection of the ellipsoid with the one-sheeted hyperboloid of our
family A = const.®* This geodesic is either closed or is dense in the area

\\

Figure 206 Geodesic on a triaxial ellipsoid

Figure 207 Geodesics emanating from an umbilical point

between the two lines of intersection. As the slope of the geodesic increases,
the hyperboloids collapse down to the region “inside” the hyperbola which
intersects our ellipsoid in its four “umbilical points.” In the limiting case
we obtain geodesics passing through the umbilical points (Figure 207).

It is interesting to note that all the geodesics starting at an umbilical
pont again converge at the opposite umbilical point, and all have the same
length between the two umbilical points. Only one of these geodesics is closed,
namely, the middle ellipse with semiaxes a and c. If we travel along any
other geodesic passing through an umbilical point in any direction, we will
approach this ellipse asymptotically.

Finally, geodesics which intersect the largest ellipse even more “steeply”
(Figure 208) are alternately tangent to the two lines of intersection of our

®4 These lines of intersection of the confocal surfaces are also lines of curvature of the ellipsoid.
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9: Canonical formalism

Figure 208 Geodesics of an ellipsoid which are tangent to a two-sheeted hyperboloid

ellipsoid with a two-sheeted hyperboloid.®® In general, they are dense in the
region between these lines. The small ellipse with semiaxes b and ¢ is among
these geodesics.

“The main difficulty in integrating a given differential equation lies in
introducing convenient variables, which there is no rule for finding. There-
fore, we must travel the reverse path and after finding some noticeable
substitution, look for problems to which it can be successfully applied.”
(Jacobi, “Lectures on dynamics™).

A list of problems admitting separation of variables in spherical, elliptical,
and parabolic coordinates is given in Section 48 of Landau and Lifshitz’s
“Mechanics” (Oxford, Pergamon, 1960).

48 Generating functions

In this paragraph we construct the apparatus of generating functions for non-free canonical
transformations.

A The generating function S, (P, q)

Let f/: R?" - R?" be a canonical transformation with g(p, q) = (P, Q). By
the definition of canonical transformation the differential form on 2"

pdq — PdQ = dS

is the total differential of some function S(p, q). A canonical transformation is
free if we can take q, Q as 2n independent coordinates. In this case the
function S expressed in the coordinates q and Q is called a generating function
S.(q, Q). Knowing this function alone, we can find all 2r functions giving the
transformation from the relations

1(q3 ) l( ) )

= _éSQ P=— Méqu_

p and

It is far from the case that all canonical transformations are free. For

example, in the case of the identity transformation q and Q = q are depen-
dent. Therefore, the identity transformation cannot be given by a generating

(1)

85 These are also lines of curvature.
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48: Generating functions

function S,(q, Q). We can, however, obtain generating functions of another
form by means of the Legendre transformation. Suppose, for instance,
that we can take P, q as independent local coordinates on R?" (i.e., the
determinant det(o(P, q)/9(p, q)) = det(éP/dp) is not zero). Then we have

Pdq — PdQ =dS and pdq + QdP = d(PQ + S).

The quantity PQ + §, expressed in terms of (P, q), is also called a generating
function

5:(P.q) = PQ + S(p, 9).

For this function, we find

_ 0S,(P, q) _ 3S,(P, @)
(2) p= g and Q= P
Conversely, if S,(P, q) is any function for which the determinant
9%S,(P, q)
det ( aq opP Py.q0

is not zero, then in a neighborhood of the point

_ aSZ(Ps q)
(Po B ( aq ) Po,‘lo, qO)

we can solve the first group of equations (2) for P and obtain a function
P(p. q) (where P(p,, q,) = P,). After this, the second group of equations (2)
determine Q(p, q), and the map (p, q) — (P, Q) is canonical (prove this!).

ProsLEM. Find a generating function S, for the identity map P = p, Q = q.
ANSWER. Pq.

Remark. The generating function S,(P, q) is convenient also because there are no minus
signs in the formulas (2), and they are easy to remember if we remember that the generating
function of the identity transformation is Pq.

B 2" generating functions
g q

Unfortunately, the variables P, q cannot always be chosen for local co-
ordinates either; however, we can always choose some set of n new co-
ordinates

Pi=(Pi,a---»Pik) Qj=(Qj19"'an,.-k)

so that together with the old q we obtain 2n independent coordinates.
Here (iy, ..., 4)(j;, ..., Ja—s) 1S any partition of the set (1,..., n) into
two non-intersecting parts; so there are in all 2" cases.

267



9: Canonical fermalism

Theorem. Let g: R?" — R2" be a canonical transformation given by the
functions P(p, @) and Q(p,q). In a neighborhood of every point (Po, qo) at
least one of the 2" sets of functions (P;, Q;, q) can be taken as independent
coordinates on R*":

a(P'is Qja q) — det a(Pis QJ)
é(p;s Pj» Q) o(p;:, Py)

In a neighborhood of such a point, the canonical transformation g can be
reconstructed from the function

det # 0.

5P Q;, @) = (P.Q) + f pdq — P dQ

by the relations

_ 95 s _ a5

- aq’ oP;’ aQ;

Conversely, if S3(P;, Q;,q) is any function for which the determinant

det(02S,/0P 8q)|p, o, (P = Pi, Q) is not zero, then the relations (3) give a
canonical transformation in a neighborhood of the point Po, 4o-

(3) Q; = and P; =

PrOOF. The proof of this theorem is almost the same as the one carried out
above in the particular case k = n. We need only verify that the determinant
det[(3(P;, Q,)/d(p;. p;))] is not zero for one of the 2".sets (P;, Q;, q).

We consider the differential of our transformation g at the point (po, qo). By identifying the
tangent space to R2" with R?", we can consider dg as a symplectic transformation S : R?" —» R?".

Consider the coordinate p-plane P in R2" (Figure 209). This is a null n-plane, and its image SP
is also a null plane. We project the plane SP onto the coordinate plane ¢ = {(p;, q;)} parallel to
the remaining coordinate axes, i.e., in the direction of the n-dimensional null coordinate plane
& = {(p,. q,)}. We denote the projection operator by TS: P — 0.

The condition det(2(P;, Q;)/0(p;, P;)) # Omeansthat T:SP — o is nonsingular. The operator
S is nonsingular. Therefore, TS is nonsingular if and only if T: SP — o is nonsingular. In other
words, the null plane SP must be transverse to the null coordinate plane &. But we showed in

\S\ SP

./

Figure 209 Checking non-degeneracy

268

rinsdoad b

SRRV W



48: Generating functions

Section 41 that at least one of the 2" null coordinate planes is transverse to SP. This means that
one of our 2" determinants is nonzero, as was to be shown. O

PROBLEM. Show that this system of 2" types of generating functions is minimal: given any one of
the 2" determinants, there exists a canonical transformation for which only this determinant is

nonzero.%¢

C Infinitesimal canonical transformations

We now consider a canonical transformation which is close to the identity.
Its generating function can be taken close to the generating function Pq
of the identity. We look at a family of canonical transformations g. depending
differentiably on the parameter ¢, such that the generating functions have

the form

oS

oS
4 Pq + &SP, q; ¢) p—P+aé—a Q—q+88_l;'

An infinitesimal canonical transformation is an equivalence class of families
d., two families g, and h, being equivalent if their difference is small of hi gher

than first order, |g, —~ h,| = O(g?), ¢ — 0.

Theorem. An infinitesimal canonical transformation satisfies Hamilton's
differential equations

| _ _oH Q| _on
dS =0 B aq dE £E=0 B ap
with hamiltonian function H(p, q) = S(p, q, 0).
PRrOOF. The result follows from formula (4): P — pas ¢ — 0. ]

Corollary. A one-parameter group of transformations of phase space R*"
satisfies Hamilton’s canonical equations if and only if the transformations
are canonical.

- P

Figure 210 Geometric meaning of Hamilton’s function

#¢ The number of kinds of generating functions in different textbooks ranges from 4 to 4"
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9- Canonical formalism

The hamiltonian function H is called the “generating function of the
infinitesimal canonical transformation.” We notice that unlike the generating
function S, the function H is a function of points of phase space, invariantly
associated to the transformation.

The function H has a simple geometric meaning. Let x and y be two points
in R2" (Figure 210), y a curve connecting them, and dy = y — x. Consider
the images of the curve y under the transformations g,, 0 < 7 < ¢; they
form a band o(g). Now consider the integral of the form w? =Y dp; A dg;
over the 2-chain o, using the fact that é0 = g,y — ¥ + g.X — g.)-

ProOBLEM. Show that

.1
lim —
e—+0 &

f @ = HG) ~ H)

exists and does not depend on the representative of the class g,.
From this result we once more obtain the well-known

Corollary. Under canonical transformations the canonical equations retain
their form, with the same hamiltonian function.

ProoE. We computed the variation of the hamiltonian function using only
an infinitesimal canonical transformation and the symplectic structure of
R2"—the form w?. O

270



Introduction to perturbation theory

Perturbation theory consists of a very useful collection of methods for finding
approximate solutions of “perturbed” problems which are close to com-
pletely solvable “non-perturbed” problems. These methods can be easily
justified if we are investigating motion over a small interval of time. Relatively
little is known about how far we can trust the conclusions of perturbation
theory in investigating motion over large or infinite intervals of time.

We will see that the motion in many “non-perturbed” integrable problems
turns out to be conditionally periodic. In the study of unperturbed problems,
and even more so in the study of the perturbed problems, special symplectic
coordinates, called “action-angle” variables, are useful. In conclusion, we
will prove a theorem justifying perturbation theory for single-frequency
systems and will prove the adiabatic invariance of action variables in such
systems.

49 Integrable systems

In order to integrate a system of 2n ordinary differential equations, we must know 2n first
integrals. It turns out that if we are given a canonical system of differential equations, it is often
sufficient to know only » first integrals —each of them allows us to reduce the order of the system
not just by one, but by two.

A Liowville’s theorem on integrable systems

Recall that a function F is a first integral of a system with hamiltonian
function H if and only if the Poisson bracket

(H,F) =0
is identically equal to zero.
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10: Introduction to perturbation theory

Definition. Two functions F, and F, on a symplectic manifold are in involution
if their Poisson bracket is equal to zero.

Liouville proved that if, in a system with n degrees of freedom (i.e., with
a 2n-dimensional phase space), n independent first integrals in involution
are known, then the system is integrable by quadratures.

Here is the exact formulation of this theorem: Suppose that we are given n
functions in involution on a symplectic 2rn-dimensional manifold

Fls"')Fn (FI’FJ)509 i,j:1,2,...,n.

Consider a level set of the functions F;
Mf = {XIF,(X) = f;,l= 1,...,"}.

Assume that the n functions F; are independent on M; (i.e., the n 1-forms
dF; are linearly independent at each point of M,). Then

1. M, is a smooth manifold, invariant under the phase flow with hamiltonian
function H = F,.

2. If the manifold M, is compact and connected, then it is diffecomorphic
to the n-dimensional torus

T" = (¢4, ..., @, )mod 27}.

3. The phase flow with hamiltonian function H determines a conditionally
periodic motion on My, ie., in angular coordinates @ = {(®;,-.., @)
we have

-49 = ® o = of).
dt ’

4. The canonical equations with hamiltonian function H can be integrated
by quadratures.

Before proving this theorem, we note a few of its corollaries.

Corollary 1. If, in a canonical system with two degrees of freedom, a first
integral F is known which does not depend on the hamiltonian H, then the
system is integrable by quadratures; a compact connected two-dimensional
submanifold of the phase space H = h, F = f is an invariant torus, and
motion on it is conditionally periodic.

PROOE. F and H are in involution since F is a first integral of a system with
hamiltonian function H. U

As an example with three degrees of freedom, we consider a heavy sym-
metric Lagrange top fixed at a point on its axis. Three first integrals are
immediately obvious: H, M,, and M. It is easy to verify that the integrals
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49: Integrable systems

M and M, are in involution. Furthermore, the manifold H = h in the phase
space i1s compact. Therefore, we can immediately say, without any calcula-
tions, that for the majority of initial conditions®’ the motion of the top is
conditionally periodic: the phase trajectories fill up the three-dimensional
torus H = ¢y, M, = ¢,, M3 = ¢3. The corresponding three frequencies are
called frequencies of fundamental rotation, precession, and nutation.

Other examples arise from the following observation: if a canonical
system can be integrated by the method of Hamilton-Jacobi, then it has n
first integrals in involution. The method consists of a canonical transformation
(p, q) — (P, Q) such that the Q; are first integrals. But the functions Q;
and Q; are clearly in involution.

In particular, the observation above applies to the problem of attraction
by two fixed centers. Other examples are easily found. In fact, the theorem
of Liouville formulated above covers all the problems of dynamics which
have been integrated to the present day.

B Beginning of the proof of Liouville’s theorem

We turn now to the proof of the theorem. Consider the level set of the
integrals:

Mf={x:Fl'=ﬁ,i= 1,...,”}.

By hypothesis, the n 1-forms dF; are linearly independent at each point of
M, ; therefore, by the implicit function theorem, M, is an n-dimensional

submanifold of the 2n-dimensional phase space.

Lemma 1. On the n-dimensional manifold M, there exist n tangent vector
fields which commute with one another and which are linearly independent
at every point.

Proor. The symplectic structure of phase space defines an operator / taking
1-forms to vector fields. This operator / carries the 1-form dF; to the field
I dF; of phase velocities of the system with hamiltonian function F;. We
will show that the n fields I dF; are tangent to M., commute, and are inde-
pendent.

The independence of the I dF; at every point of M, follows from the inde-
pendence of the dF; and the nonsingularity of the isomorphism I. The
fields I dF; commute with one another, since the Poisson brackets of their
hamiltonian functions (F,;, F;) are identically 0. For the same reason, the
derivative of the function F; in the direction of the field I dF; is equal to zero
foranyi,j = 1, ..., n. Thus the fields I dF,; are tangent to M,, and Lemma 1
is proved. L

®7 The singular level sets, where the integrals are not functionally independent, constitute the
exception.
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10: Introduction to perturbation theory

We notice that we have proved even more than Lemma 1:

1’. The manifold M, is invariant with respect to each of the n commuting
phase flows g! with hamiltonian functions F;: gig$ = g}gi.
1”. The manifold M, is null (i.e., the 2-form w? is zero on TM|,).

This is true since the n vectors I dF,] , are skew-orthogonal to one another
((F;, F;) = 0) and form a basis of the tangent plane to the manifold M, at

the point x.

C Manifolds on which the action of the group

R" is transitive
We will now use the following topological proposition (the proof is completed
in Section D).

Lemma 2. Let M" be a compact connected differentiable n-dimensional mani-
fold, on which we are given n pairwise commutative and linearly independent
at each point vector fields. Then M" is diffeomorphic to an n-dimensional
torus.

ProOOF. We denote by gt, i = 1, ..., n, the one-parameter groups of diffeo-
morphisms of M corresponding to the n given vector fields. Since the fields
commute, the groups g} and g5 commute. Therefore, we can define an actiong
of the commutative group R" = {t} on the manifold M by setting
gM—->M g =gt gy, (@A=(@,....,1)eR)
Clearly, g*™® = g'g®% t, s € R". Now fix a point xo, € M. Then we have a map
g R"> M g(t) = g'x,-

(The point x, moves along the trajectory of the first flow for time ¢,, along
the second flow for time ¢,, etc.)

PROBLEM 1. Show that the map g (Figure 211) of a sufficiently small neighborhood V of the
point 0 € R” gives a chart in a neighborhood of x4: every point xo, € M has a neighborhood
U (x, € U < M) such that g maps V diffeomorphically onto U.

Hint. Apply the implicit function theorem and use the linear independence of the fields at x;.

ProBLEM 2. Show that g: R" —» M is onto.

Figure 211 Problem 1
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49: Integrable systems

Figure 212 Problem 2

Hint. Connect a point x € M with x, by a curve (Figure 212), cover the curve by a finite
number of the neighborhoods U of the preceding problem and define t as the sum of shifts t;

corresponding to pieces of the curve.

We note that the map g: R" - M" cannot be one-to-one since M" is
compact and R" is not. We will examine the set of pre-images of x, € M".

Definition. The stationary group of the point x, is the set I" of points t € R"
for which g*x, = x,.

PrOBLEM 3. Show that I is a subgroup of the group R”, independent of the point x,.
Solution. If g, = xo and g'xy, = x4, then g**"'x, = g%'xq = g°xo = X, and g 'x, =
g 'g'xo = xo. Therefore, I is a subgroup of R". If x = g'x, and te I', then g*'x = g' " xp =

g'd'xo = g'xg = x.

In this way the stationary group I' is a well-defined subgroup of R”
independent of the point x,. In particular, the point t = O clearly belongs
tol.

PrROBLEM 4. Show that, in a sufficiently small neighborhood V of the point 0 € R", there is no
point of the stationary group other thant = 0.
Hint. The map g: V — U is a diffeomorphism.

PROBLEM 5. Show that, in the neighborhood t + V of any point t e I' = R", there is no point of
the stationary group I' other than t. (Figure 213)

Thus the points of the stationary group I' lie in R" discretely. Such sub-
groups are called discrete subgroups.

Figure 213 Problem 5
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10: Introduction to perturbation theory

Figure 214 A discrete subgroup of the plane

ExXAMPLE. Let e,, ..., ¢, be k linearly independent vectors in R*, 0 < k < n.
The set of all their integral linear combinations (Figure 214)

m1e1+“'+mkek’ miEZ=(,..,—2,—1,0,1,...)

forms a discrete subgroup of R". For example, the set of all integral points
in the plane is a discrete subgroup of the plane.

D Discrete subgroups in R"

We will now use the algebraic fact that the example above includes all discrete
subgroups of R”. More precisely, we will prove

Lemma 3. Let T be a discrete subgroup of R". Then there exist k (0 < k < n)
linearly independent vectors e, ..., e, € I such that I is exactly the set of
all their integral linear combinations.

Proor. We will consider R" with some euclidean structure. We always
have OeI. If I’ = {0} the lemma is proved. If not, there is a point e, €T,
e, # 0 (Figure 215). Consider the line Re,. We will show that among the
elements of I on this line, there is a point e, which is closest to 0. In fact,
in the disk of radius | e, | with center O, there are only a finite number of points
of I" (as we saw above, every point x of I has a neighborhood V of standard
size which does not contain any other point of I'). Among the finite number
of points of I" inside this disc and lying on the line Re,, the point closest to O
will be the closest point to 0 on the whole line. The integral multiples of this
point e, (me;, m € Z) constitute the intersection of the line Re, with I

Figure 215 Proof of the lemma on discrete subgroups
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In fact, the points me, divide the line into pieces of length |e, |. If there were
a point ec [ inside one of these pieces (me,, (m + 1)e;), then the point
e — me; € I would be closer to 0 than e;.

If there are no points of I off the line Re,, the lemma is proved. Suppose
thereis a pointe € I', e ¢ Re,. We will show that there is a point e, € I closest
to the line Re; (but not lying on the line). We project e orthogonally onto Re;.
The projection lies in exactly one interval A = {de }, m</i<m+ 1.
Consider the right circular cylinder C with axis A and radius equal to the
distance from A to e. In this cylinder lie a finite (nonempty) number of points
of the group I'. Let e, be the closest one to the axis Re; not lying on the axis.

PrOBLEM 6. Show that the distance from this axis to any point e of [ not lying on Re, is greater
than or equal to the distance of e, from Re,.
Hint. By a shift of me, we can move the projection of € onto the axis interval A.

The integral linear combinations of e, and e, form a lattice in the plane
Re, + Re,.

PrOBLEM 7. Show that there are no points of I' on the plane Re; + Re, other than integral

linear combinations of e, and e;.
Hint. Partition the plane into parallelograms (Figure 216) A = {i,e, + A e;},
m; < A; < m; + 1. Ifthere werean e € Awithe # m,e, + m,e,,thenthepointe — m,e, — m,e,

would be closer to Re, thane,.
A

€2

€;
Figure 216 Problem 7

If there are no points of I outside the plane Re, + Re,, the lemma is
proved. Suppose that there is a point e € I outside this plane. Then there exists
a point e; eI’ closest to Re; + Re,; the points m,e; + m,e; + mye;
exhaust I' in the three-dimensional-space Re; + Re, + Re;. If I" is not
exhausted by these, we take the closest point to this three-dimensional

space, etc.

ProsLEM 8. Show that this closest point always exists.
Hine. Take the closest of the finite number of points in a “cylinder™ (.

Note that the vectors e,, €5, €5, ... are linearly independent. Since they all
lie in R", there are k < n of them.
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10: Introduction to perturbation theory

PrOBLEM 9. Show that I' is exhausted by the integral linear combinations of e, .. ., €,.

Hint. Partition the plane Re, + --- + Re, into parallelepipeds A and show that there cannot
be a point of " in any A. If there is an e € I outside the piane Re;, + --- + Re,, the construction
is not finished.

Thus Lemma 3 is proved. O

It is now easy to prove Lemma 2: M, is diffeomorphic to a torus 7"
Consider the direct product of k circles and n — k straight lines:

Tk X R"_k = {((Pla'-"qok;yls-"’yn—k)}a ‘med 27I,

together with the natural map p: R?" —» T* x R*7X,

p(®, y) = (¢ mod 2=, y).

The points f,, ..., f, € R* (f; has coordinates ¢; = 27, ¢; = 0, y = 0} are
mapped to O under this map.

Let e,,..., e, €I = R" be the generators of the group I' (cf. Lemma 3).
We map the vector space R = {(¢, y)} onto the space R" = {t} so that the
vectors f; go to e;. Let 4: R" — R" be such an isomorphism.

We now note that R” = {(¢, y)} gives charts for T x R" 7% and R" = {t}
gives charts for our manifold M,.

PrROBLEM 10. Show that the map of charts A4:R"—» R" gives a diffefomorphism
AT x R"% = M,,

R = {(@,y)} —A— R" = {1}

P Y

T x Rré ——d , ap,

But, since the manifold M, is compact by hypothesis, k = n and M, is an
n-dimensional torus. Lemma 2 is proved. O

In view of Lemma 1, the first two statements of the theorem are proved.
At the same time, we have constructed angular coordinates @, . . ., ¢, mod 2xn
on Mf .

PROBLEM 1 1. Show that under the action of the phase flow with hamiltonian H the angular
coordinates ¢ vary uniformly with time

H, = uy w; = wif) ¢(r) = @(0) + .

In other words, motion on the invariant torus M is conditionally periodic.
Hint.@ = A™'t.

Of all the assertions of the theorem, only the last remains to be proved:
that the system can be integrated by quadratures.
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50 Action-angle variables

We show here that, under the hypotheses of Liouville’s theorem, we can find symplectic co-
ordinates (I, @) such that the first integrals F depend only on 1, and ¢ are angular coordinates

on the torus M,.

A Description of action-angle variables

In Section 49 we studied one particular compact connected level manifold
of the integrals: M, = {x:F(x) = f}; it turned out that M, was an n-di-
mensional torus, invariant with respect to the phase flow. We chose angular
coordinates ¢; on M so that the phase flow with hamiltonian function H = F,

takes an especially simple form:

d
Lol o0 =e0) +or.

We will now look at a neighborhood of the n-dimensional manifold M,
in 2n-dimensional phase space.

PrOBLEM. Show that the manifold M, has a neighborhood diffeomorphic to the direct product
of the n-dimensional torus T" and the disc D" in n-dimensional euclidean space.

Hint. Take the functions F; and the angles ¢; constructed above as coordinates. In view of
the linear independence of the dF;, the functions F;and ¢, (i = I, ..., n) give a diffeomorphism
of a neighborhood of M; onto the direct product 77 x D"

In the coordinates (F, ¢) the phase flow with hamiltonian function H = F,
can be written in the form of the simple system of 2n ordinary differential
equations

F
dF 0 de

(1) ST Fr o(F),
which is easily integrated: F(t) = F(0), ¢{t) = @(0) + o(F(0)):.

Thus, in order to integrate explicitly the original canonical system of
differential equations, it is sufficient to find the variables ¢ in explicit form.
It turns out that this can be done using only quadratures. A construction of
the variables @ is given below.

We note that the variables (F, @) are not, in general, symplectic co-
ordinates. It turns out that there are functions of F, which we will denote
by I = I(F), I = ({,,...,1,), such that the variables (I, @) are symplectic
coordinates: the original symplectic structure w? is expressed in them by
the usual formula

w? =Y dI; A do,.
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10: Introduction to perturbation theory

The variables I are called action variables;®® together with the angle variables
@ they form the action-angle system of canonical coordinates in a neighbor-

hood of M,.
The quantities I, are first integrals of the system with hamiltonian function

H = F,,since they are functions of the first integrals F ;. In turn, the variables
F; can be expressed in terms of I and, in particular, H = F; = H(I). In
action-angle variables the differential equations of our flow (1) have the form

@) % —0o _ s

PROBLEM. Can the functions (1) in (2) be arbitrary?

Solution. In the variables (I. @), the equations of the flow (2) have the canonical form with
hamiltonian function H(I). Therefore, a(I) = ¢H/JI; thus if the number of degrees of freedom
is n = 2. the functions w(I) are not arbitrary, but satisfy the symmetry condition dw,;/¢I; =

dw; ;.

Action-angle variables are especially important for perturbation theory;
in Section 52 we will demonstrate their application to the theory of adiabatic

invariants.

B Construction of action-angle variables in the
case of one degree of freedom

A system with one degree of freedom in the phase plane (p, q) is given by the
hamiltonian function H(p, g).

ExampLE 1. The harmonic oscillator H = 3p? + $g*; or, more generally,
H = 3a’p* + 3b*q%

ExaMpPLE 2. The mathematical pendulum H = 3p? — cos q. In both cases
we have a compact closed curve M, (H = h), and the conditions of the
theorem of Section 49 for n = 1 are satisfied.

In order to construct the action-angle variables, we will look for a
canonical transformation (p, g) — (I, ¢) satisfying the two conditions:

1. I = I(h),

(3)
2. dop = 2n.

Mpy
ProBLEM. Find the action-angle variables in the case of the simple harmonic oscillator
H =3p® + 19"
Solution. If r. ¢ are polar coordinates, then dp A dq = rdr n do = d(+?/2) A de. There-
fore. I = H = (p? + ¢%)/2.

88 1t is not hard to see that I has the dimensions of action.
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50: Action-angle variables

In order to construct the canonical transformation p,q — I, ¢ in the
general case, we will look for its generating function S(/, g):

JS(, oS, oS(1,
@ =Tl o= H( S(a’q"),q) — h(1).

We first assume that the function h(I) is known and invertible, so that every
curve M, is determined by the value of I (M, = M,). Then for a fixed
value of I we have from (4)

dS|I=consl =P dq

This relation determines a well-defined differential 1-form dS on the curve
Integrating this 1-form on the curve M, we obtain (in a neighborhood
of a point q,) a function

q
sty = [ pdq

q0
This function will be the generating function of the transformation (4) in
a neighborhood of the point (I, g,). The first of the conditions (3) is satisfied
automatically: I = I(h). To verify the second condition, we consider the
behavior of S(I, ¢) “in the large.” After a circuit of the closed curve M, the
integral of p dq increases by

ash=$  pdg
Mucn
equal to the area I1 enclosed by the curve M, ,. Therefore, the function S
is a “multiple-valued function” on M,,: it is determined up to addition
of integral multiples of I'l. This term has no effect on the derivative 6S(I, q)/dq;
but it leads to the multi-valuedness of ¢ = 3S/dI. This derivative turns out
to be defined only up to multiples of d AS(I)/d1. More precisely, the formulas
(4) define a 1-form d¢ on the curve M, ,,, and the integral of this form on
M, is equal to d AS(1)/dlI.
In order to fulfill the second condition, § ,,, d¢ = 27, we need that

d AS 11

where I1 = §,, pdgq is the area bounded by the phase curve H = h.

Definition. The action variable in the one-dimensional problem with
hamiltonian function H(p, q) is the quantity I(h) = (1/27)IT1(h).

Finally, we arrive at the following conclusion. Let dI1/dh # 0. Then the
inverse I(h) of the function k(1) is defined.
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10: Introduction to perturbation theory

Theorem. Set S(I,q) = |2, pdqly—-nyy- Then formulas (4) give a canonical
transformation p, q -+ 1, @ satisfying conditions (3).

Thus, the action-angle variables in the one-dimensional case are con-
structed.

ProeLEM. Find S and I for a harmonic oscillator.

ANSWER. If H = 1a%p? + 1b%g*® (Figure 217), then M, is the ellipse bounding the

area [(h) = n(/2h/a)(/2h/b) = 2rh/ab = 2nk/w. Thus for a harmonic oscillator the action
variable is the ratio of energy to frequency. The angle variable ¢ is, of course, the phase of
oscillation.

f=1hn

Figure 217 Action variable for a hamonic oscillator

PROBLEM. Show that the period T of motion along the closed curve H = h on the phase plane
p, g is equal to the derivative with respect to h of the area bounded by this curve:
dII(h)

dh

Solution. In action-angle variables the equations of motion (2) give
. éH (dl)‘1 5 (dH)“ T 2n dll
— —_— i | — = — = —
C= %1 " \on dh @ dh

C Construction of action-angle variables in R*"

We turn now to systems with n degrees of freedom given in R*" = {(p, q)}
by a hamiltonian function H(p, q) and having n first integrals in involution
F,=H,6F,,..., F,. We will not repeat the reasoning which brought us to
the choice of 2nl = § p dq in the one-dimensional case, but will immediately
define n action variables L.

Let y,, ..., v, be a basis for the one-dimensional cycles on the torus M;
(the increase of the coordinate ¢; on the cycle y; is equal to 2r if i = j and
0if i # j). We set

1
) 1O =5 § pda.
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50: Action-angle variables

Figure 218 Independence of the curve of integration for the action variable

ProBLEM. Show that this integral does not depend on the choice of the curve vy, representing
the cycle (Figure 218).

Hint. In Section 49 we showed that the 2-form w? = ¥ dp; A dg; on the manifold M, is
equai.to zero. By Stokes’ formula,

§ - ria-[fanra-o

where g = 7 — .

Definition. The n quantities I,(f) given by formula (5) are called the action
variables.

We assume now that, for the given values f; of the » integrals F;, the n
quantities I; are independent: det(é1/f)|; # 0. Then in a neighborhood
of the torus M, we can take the variables 1, @ as coordinates.

Theorem. The transformation p, q — L, @ is canonical, i.e.,

Y dp; A dg; =) dl; A do,.

We outline the proof of this theorem. Consider the differential 1-form
p dq on M,. Since the manifold M, is null (Section 49) this 1-form on M,
is closed: its exterior derivative w? = dp A dq is identically equal to zero
on M,. Therefore (Figure 219),

am=fpmm,

X0

Figure 219 Independence of the path for the integral of pdq on M,
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10: Introduction to perturbation theory

does not change under deformations of the path of integration (Stokes’
formula). Thus S(x) is a “multiple-valued function™ on M,, with periods
equal to

AiS = f dS = 27‘511-.
Yi

Now let x, be a point on M;, in a neighborhood of which the n variables
q are coordinates on My, such that the submanifold My = R?" is given by n
equations of the formp = p(L, q), q(x;) = qo . Ina simply connected neighbor-
hood of the point q, a single-valued function is defined,

SA, q) = f "1, g)da,

40

and we can use it as the generating function of a canonical transformation
pa—-Leo:
_ oS 0
P=% *~ar

It is not difficult to verify that these formulas actually give a canonical
transformation, not only in a neighborhood of the point under consideration,
but also “in the large” in a neighborhood of M,. The coordinates ¢ will be
multiple-valued with periods

s @ 8
O Y ASs="Lon1 =2
a1, = ar, ™S = ap, 2 = 20

ifs

Ai(Pj =A
as was to be shown. O

We now note that all our constructions involve only “algebraic”
operations (inverting functions) and “quadrature”—calculation of the
integrals of known functions. In this way the problem of integrating a
canonical system with 2n equations, of which n first integrals in involution
are known, is solved by quadratures, which proves the last assertion of
Liouville’s theorem (Section 49). O

Remark 1. Even in the one-dimensional case the action-angle variables
are not uniquely defined by the conditions (3). We could have taken
I' = I + const for the action variable and ¢’ = ¢ + ¢(I) for the angle
variable.

Remark 2. We constructed action-angle variables for systems with phase
space R2". We could also have introduced action-angle variables for a system
on an arbitrary symplectic manifold. We restrict outselves here to one simple
example (Figure 220).
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51: Averaging

Figure 220 Action-angle variables on a symplectic manifold

We could have taken the phase space of a pendulum (H = 4p? — cos q)
to be, instead of the plane {(p, q)}, the surface of the cylinder R! x §!
obtained by identifying angles g differing by an integral multiple of 2.

The critical level lines H = =1 divide the cylinder into three parts,
A, B, and C, each of which is diffeomorphic to the direct product R' x S'.
We can introduce action-angle variables into each part. In the bounded part
(B) the closed trajectories represent the oscillation of the pendulum; in
the unbounded parts they represent rotation.

Remark 3. In the general case, as in the example analyzed above, the
equations F; = f; cease to be independent for some values of f;, and M, ceases
to be a manifold. Such critical values of f correspond to separatrices dividing
the phase space of the integrable problem into parts corresponding to the
parts 4, B, and C above. In some of these parts the manifolds M, can be
unbounded (parts 4 and C in the plane {(p, 9)}); others are stratified into
n-dimensional invariant tori M,; in a neighborhood of such a torus we
can introduce action-angle variables.

51 Averaging

In this paragraph we show that time averages and space averages are equal for systems under-
going conditionally-pericdic motion.

A Conditionally-periodic motion

In the earlier sections of this book. we have frequently encountered con-
ditionally-periodic motion: Lissajous figures, precession, nutation, rotation
of a top, etc.

Definition. Let T" be the n-dimensional torus and ¢ = (¢,, ..., ¢,) mod 2n
angular coordinates. Then by a conditionally-periodic motion we mean a
one-parameter group of diffeomorphisms 7" — T" given by the dif-
ferential equations (Figure 221):

P = O, o = (w,, ..., w,) = const.
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2
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Figure 221 Conditionally-periodic motion

These differential equations are easily integrated:
@(1) = ¢(0) + ot.

Thus the trajectories in the chart {¢} are straight lines. A trajectory on the
torus is called a winding of the torus.

EXAMPLE. Let n = 2. If <0, /v, = k,/k,, the trajectories are closed; if w,/w, is irrational, then
trajectories on the torus are dense (cf. Section 16).

The quantities w,, ..., w, are called the frequencies of the conditionally-
periodic motion. The frequencies are called independent if they are linearly
independent over the field of rational numbers: if k € Z"®° and (k, ®) = 0,
thenk = 0.

B Space average and time average

Let f(@) be an integrable function on the torus T".

Definition. The space average of a function f on the torus T” is the number

7=@n f - f:“f(q»)dgol - do,

Consider the value of the function f (@) on the trajectory ¢(t) = ¢, + wt.
This is a function of time, f (¢, + ®t). We consider its average.

Definition. The time average of the function f on the torus T”" is the function
1

T
1o = lim 7. | £y + wodr

(defined where the limit exists).

Theorem on the averages. The time average exists everywhere, and coincides
with the space average if f is continuous (or merely Riemann integrable)
and the frequencies w; are independent.

89 k = (ky,.- ., k,) with integral k;.
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PROBLEM. Show that if the frequencies are dependent, then the time average can differ from the
space average.

Corollary 1. If the frequencies are independent, then every trajectory {@(t)}
is dense on the torus T".

PrROOF. Assume the contrary. Then in some neighborhood D of some point
of the torus, there is no point of the trajectory @(t). It is easy to construct a
continuous function f equal to zero outside D and with space average equal
to 1. The time average f*(@,) on the trajectory @(¢) is equal to 0 # 1.
This contradicts the assertion of the theorem. OJ

Corollary 2. If the frequencies are independent, then every trajectory is
uniformly distributed on the torus T".

This means that the time the trajectory spends in a neighborhood D is
proportional to the measure of D.

More precisely, let D be a (Jordan) measurable region of T". We denote
by 7,(T) the amount of time that the interval 0 < t < T of the trajectory
@(t) is inside of D. Then
tp(T) mes D

T (o)

lim
T—ow
ProOF. We apply the theorem to the characteristic function f of the set D
(f is Riemann integrable since D is Jordan measurable). Then [g f(e(t))dt =
1(T), and f = (2n) " mes D, and the corollary follows immediagely from
the theorem. ]

Corollary, In the sequence
,2,4,8,1,3,6,1,2,5,1,2,...

of first digits of the mumbers 2", the number 7 appears (log 8 — log 7)/(log 9 — log 8) times as
often as 8.

The theorem on averages may be found implicitly in the work of Laplace,
Lagrange, and Gauss on celestial mechanics; it is one of the first “ergodic
theorems.” A rigorous proof was given only in 1909 by P. Bohl, W. Sierpinski,
and H. Weyl in connection with a problem of Lagrange on the mean motion
of the earth’s perihelion. Below we reproduce H. Weyl’s proof.

C Proof of the theorem on averages
Lemma 1. The theorem is true for exponentials f = ¢'®®) k e Z".

ProoOF. Ifk = 0, then f = f = f* = 1 and the theorem is obvious. Ifk # 0,
then f = 0. On the other hand,

T ei(k, Y 1
f ei(k-‘Pu + wt) dt — ei(k.lpo) .

0 l(ks (!))
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Therefore, the time average is
'k ®o) ik, T __

lim = 0. O
T—oo l(k, (’)) T

Lemma 2. The theorem is true for trigonometric polynomials

f= Z fkei(k’m-
k| <N
PRrOOF. Both the time and space averages depend linearly on f, and therefore
agree by Lemma 1. ]

Lemma 3. Let f be a real continuous (or at least Riemann integrable) function.
Then, for any € > 0, there exist two trigonometric polynomials P, and P,
such that P, < f < P, and (1/(2n)") [1-(P> — P,)de < .

PRrROOF. Suppose first that f is continuous. By the Weierstrass theorem, we
can approximate f by a trigonometric polynomial P with | f — P| < &
The polynomials P, = P — 1eand P, = P + }¢ are the ones we are looking
for.

If f is not continuous but Riemann integrable, then there are two continu-
ous functions f, and f, such that f; < f < foand 2n) ™" [ (f, — fi)do < 3¢
(Figure 222 corresponds to the characteristic function of an interval).
By approximating f; and f, by polynomials P, < fi < f, < P,,
QRr) " [ (P, — fo)de < e, 2m) " [ (fi — P)d@ < }e, we obtain what we
need. Lemma 3 is proved. ]

VA )

Figure 222 Approximation of the function f by trigonometric polynomials P, and P,

It is now easy to finish the proof of the theorem. Let ¢ > 0. Then,
by Lemma 3, there are trigonometric polynomials P, < f < P, with
(ZTI)_" j (P2 - Pl)d(p < E.

For any T, we then have

T 1 T 1 T
7 | P < £ [ s < 7 | Paatonr
By Lemma 2, for T > Ty(¢),

,P} — % fo Plo)dt| <e (G =1,2).
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Furthermore, P, < f< P, and P, — P, < & Therefore, P, — f < ¢ and
f — P, < g; therefore, for T > Ty(e),

= f " f(oodt — f‘ <2,

as was to be proved. ]

PrOBLEM. A two-dimensional oscillator with kinetic energy T = $%? + 3% and potential

energy U = 1x? + y? performs an oscillation with amplitudes a, = 1 and a, = 1. Find the
time average of the kinetic energy.

PrOBLEM.®? Let w, be independent, a, > 0. Calculate

1 3
lim — arg > a,e

l—'aot k=1

gt

ANSWER. (W%, + w,%, + w3x3)/n, where a,, 2,, and 25 are the angles of the triangle with
sides a, (Figure 223).

Figure 223 Problem on mean motion of perihelia

D Degeneracies

So far we have considered the case when the frequencies @ are independent.
An integral vector k € Z" is called a relation among the frequencies if

k, w) = 0.

ProBLEM. Show that the set of all relations between a given set of frequencies @ is a subgroup
I" of the lattice Z*,

We saw in Section 49 that such a subgroup consists entirely of linear
combinations of r independent vectors k;, 1 < r < n. We say that there are
r (independent) relations among the frequencies.”!

90 Lagrange showed that the investigatiqn of the average motion of the perihelion of a planet
reduces to a similar problem. The solution of this problem can be found in the work of H. Weyl.
The eccentricity of the earth’s orbit varies as the modulus of an analogous sum. Ice ages appear
to be related to these changes in eccentricity.

91 Show that the number r does not depend on the choice of independent vectors k;.
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PrOBLEM. Show that the closure of a trajectory {@(t) = @, + ot} {on T") is a torus of dimen-
sion n — r if there are r independent relations among the frequencies @; in this case the motion
on T" ™" is conditionally-periodic with n — r independent frequencies.

We turn now to the integrable hamiltonian system given in action-angle
variables 1, ¢ by the equations

i=0 ¢ =o), whereo(l) = %f:__

Every n-dimensional torus I = const in the 2n-dimensional phase space is
invariant, and motion on it is conditionally-periodic.

Definition. A system is called nondegenerate if the determinant

Jw 0°H
det Ei— = det W

i1s not zero.

ProBLEM. Show that, if a system is nondegenerate, then in any neighborhood of any point there
is a conditionally-periodic motion with » frequencies, and also with any smaller number of

frequencies.
Hint. We can take the frequencies @ themselves instead of the variables 1 as local coordinates.

In the space of collections of frequencies, the set of points @ with any number of relations
r(0 < r < n)1s dense.

Corollary. If a system is nondegenerate, then the invariant tori 1 = const
are uniquely defined, independent of the choice of action-angle coordinates
1, @, the construction of which always involves some arbitrariness.®?

PRrROOF. The tori I = const can be defined as the closures of the phase tra-
jectories corresponding to the independent ®. O

We note incidentally that, for the majority of values I, the frequencies
o will be independent.

ProOBLEM. Show that the set of I for which the frequencies w(I) in a nondegenerate system are
dependent has Lebesgue measure equal to zero.
Hint. Show first that

mes {w:3k # 0, (w, k) =0} = 0.

On the other hand, in degenerate systems we can construct systems of
action-angle variables such that the tori I = const will be different in dif-
ferent systems. This is the case because the closures of trajectories in a
degenerate system are tori of dimension k < n, and they can be contained
in different ways in n-dimensional tori.

92 For example, we can always write the substitution I'=1, @ =¢ + S,(b. or I,.1;:
@@, =0 + 1), I 0,9, — @)
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52: Averaging of perturbations

ExaMPLE 1. The planar harmonic oscillator X = —x; n = 2, k = 1. Separa-
tion of variables in cartesian and polar coordinates leads to different action-
angle variables and different tori.

ExampLE 2. Keplerian planar motion (U = —1/r), n =2, kK = 1. Here,
too, separation of variables in polar and in elliptical coordinates leads to
different L.

52 Averaging of perturbations

Here we show the adiabatic invariance of the action variable in a system with one degree of
freedom.

A Systems close to integrable ones

We have considered a great many integrable systems (one-dimensional
problems, the two-body problem, small oscillations, the Euler and Lagrange
cases of the motion of a rigid body with a fixed point, etc.). We studied the
characteristics of phase trajectories in these systems: they turned out to be
“windings of tori,” densely filling up the invariant tori in phase space; every
trajectory is uniformly distributed on this torus.

One should not conclude from this that integrability is the typical
situation. Actually, the properties of trajectories in many-dimensional
systems can be highly diverse and not at all similar to the properties of
conditionally-periodic motions. In particular, the closure of a trajectory
of a system with n degrees of freedom can fill up complicated sets of dimension
greater than n in 2n-dimensional phase space; a trajectory could even be
dense and uniformly distributed on a whole (2n — 1)-dimensional manifold
given by the equation H = h.?? One may call such systems “nonintegrable”
since they do not admit single-valued first integrals independent of H.
The study of such systems is still far from complete; it constitutes a problem
in “ergodic theory.”

One approach to nonintegrable systems is to study systems which are
close to integrable ones. For example, the problem of the motion of planets
around the sun is close to the integrable problem of the motion of non-
interacting points around a stationary center; other examples are the prob-
lem of the motion of a slightly nonsymmetric heavy top and the problem of
nonlinear oscillations close to an equilibrium position (the nearby integrable
problem is linear). The following method is especially fruitful in the in-
vestigation of these and similar problems.

B The averaging principle
Let I, ¢ be action-angle variables in an integrable (“nonperturbed”) system

with hamiltonian function H ,(I):

: OH
i=0 ¢ = o(l) o(l) = al".

93 For example, inertial motion on a manifold of negative curvature has this property.

291



10: Introduction to perturbation theory

As the nearby “perturbed” system we take the system
(1) ¢ =ol)+ 0 ¢ 1=cgd ¢,

where ¢ < 1.

We will ignore for a while that the system is hamiltonian and consider
an arbitrary system of differential equations in the form (1) given on the direct
product T* x G of the k-dimensional torus T* = {@ = (¢,, ..., ¢;) mod 2n}
and a region G in I-dimensional space G = R' = {I = (I, ..., I))}. For
¢ = 0 the motion in (1) is conditionally-periodic with at most k frequencies
and with k-dimensional invariant tori.

The averaging principle for system (1) consists of its replacement by
another system, called the averaged system:

. 2n 2n
@ J=—a@ dH=en* f f g(J, @)ps, - . .. dpy

in the I-dimensional region G = R' = {J = (Jy, ..., JD}

We claim that system (2) is a “good approximation” to system (1).

We note that this principle is neither a theorem, an axiom, nor a definition,
but rather a physical proposition, i.e., a vaguely formulated and, strictly
speaking, untrue assertion. Such assertions are often fruitful sources of
mathematical theorems.

This averaging principle may be found explicitly in the work of Gauss
(in studying the perturbations of planets on one another, Gauss proposed
to distribute the mass of each planet around its orbit proportionally to time
and to replace the attraction of each planet by the attraction of the ring so
obtained). Nevertheless, a satisfactory description of the connection between
the solutions of systems (1) and (2) in the general case has not yet been found.

In replacing system (1) by system (2) we discard the term eg(l, @) =
eg(1, @) — «g(I) on the right-hand side. This term has order ¢ as does the
remaining term &g. In order to understand the different roles of the terms
g and g in g, we consider the simplest example.

PrROBLEM. Consider the case k = [ = 1,
p=w#0 I=-eg(p).
Show that for 0 <t < 1/e,
[I1(t) — J(t)| < ce, where J(t) = I(0) + &gt.

Solution

t t ot

&
Sgdt‘i—af

£
F@)dp = &gt + — h(wr)
0 w

eg(po + wt)dt = f
0

I@t) — I(0) = f

0

where h(¢p) = [¢ §(¢)do is a periodic, and therefore bounded, function.
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Figure 224 Evolution and oscillation

Thus the variation in I with time consists of two parts: an oscillation of
order ¢ depending on § and a systematic “evolution” with velocity &g
(Figure 224).

The averaging principle is based on the assertion that in the general
case the motion of system (1) can be divided into the “evolution” (2) and
small oscillations. In its general form, this assertion is invalid and the principle
itself is untrue. Nevertheless, we will apply the principle to the hamiltonian
system (1):

3, . a
¢=—HM +eH L) 1= %(Ho(l) + eH (1, @)).

For the right-hand side of the averaged system (2) we then obtain
2n

J
'=(zn—~f = H,(L, ¢)do = 0.
g ) P (L, @)do

In other words, there is no evolution in a nondegenerate hamiltonian system.
One variant of this entirely nonrigorous deduction leads to the so-
called Laplace theorem: The semi-major axes of the keplerian ellipses of

the planets have no secular perturbations.

The discussion above suffices to convince us of the importance of the
averaging principle; we now formulate a theorem justifying this principle
in one very particular case—that of single-frequency oscillations (kK = 1).
This theorem shows that the averaging principle correctly describes evolution
over a large interval of time (0 < t < 1/¢).

C Averaging in a single-frequency system
Consider the system of I + 1 differential equations

@ = () + & (1, p) @ mod 2n e S1,
I = egd, @) IleGc R,

where f(I, ¢ + 2n) = f(L, ¢) and g, ¢ + 2xr) = g(I, @), together with the
“averaged ” system of / equations

(1)

2n

. 1
(2) J = £g(J), where g(J) = 3, | &8 @)do.
0
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G —d

Figure 225 Theorem on averaging

We denote by I(r), ¢(t) the solution of system (1) with initial conditions
1(0), ¢(0), and by J(¢) the solution of system (2) with the same initial con-
ditions J(0) = I(0) (Figure 225).

Theorem. Suppose that:

1. the functions w, f, and g are defined for 1 in a bounded region G, and in
this region they are bounded, together with their derivatives up to second

order:
lew, f, Bllczgxsy < €13

2. in the region G, we have
w() > ¢ > 0;

3. for0 <t < 1/e, aneighborhood of radius d of the point J(t) belongsto G:
J)eG —d.

Then for sufficiently small ¢ (0 < € < &)

o | -
N

[I{t) — J(t)| < cge, forallt,0 <t <
where the constant cq > 0 depends on ¢, ¢, and d, but not on .

Some applications of this theorem will be given below (“adiabatic in-
variants™). We remark that the basic idea of the proof of this theorem
(a change of variables diminishing the perturbation) is more important than
the theorem itself; this is one of the basic ideas in the theory of ordinary
differential equations; it is encountered in elementary courses as the “method
of variation of constants.”

D Proof of the theorem on averaging
In place of the variables I we will introduce new variables P

3) P =1 + kI, ¢),

where the function k, 2n-periodic in ¢, will be chosen so that the vector P
will satisfy a simpler differential equation.
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52: Averaging of perturbations

By (1) and (3), the rate of change of P(¢) is

- -~
.

. k. k & 8 C
4) P=I+8(I+£C—(b=£[g(l,(p)+£—kw(l)]+82(5¥g+82%f.

) | op oo
We assume that the substitution (3) can be inverted, so that
(9) I =P+ ch(P, ¢, ¢)

(where the functions h are 2n-periodic in ¢).
Then (4) and (5) imply that P(¢) satisfies the system of equations

. ok
(6) P = S[g(P, @) + 30 w(P)] + R,
where the “remainder term” R is small of second order with respect to e:
(7 IR| < ¢, &2, cz(c1, €3, €4) > 0,
if only
(8) lolic: <ey Nfllce<er lgliez <e; Ikllez < ¢ hilc: < c,.

We will now try to choose the change of variables (3) so that the term

involving ¢ in (6) becomes zero. For k we get the equation
ck 1
dp &

In general, such an equation is not solvable in the class of functions k
periodic in ¢. In fact, the average value (with respect to ¢) of the left-hand side
is always equal to 0, and the average value of the right-hand side can be
different from 0. Therefore, we cannot choose k in such a way as to kill the
entire term involving ¢ in (6). However, we can kill the entire “ periodic”

part of g,
g(P, ) = g(P, ) — &(P),
by setting

o
©) K(P, 0) = — fo gg;i;;’) do.

So we define the function k by formula (9). Then, by hypotheses 1. and
2. of the theorem, the function k satisfies the estimate |[k|jc. < c3, where
c3(cy, ¢) > 0. In order to establish the inequality (8), we must estimate h.
For this we must first show that the substitution (3) is invertible.

Fix a positive number o.

Lemma. If ¢ is sufficiently small, then the restriction of the mapping (3)%*
[>T+ ck, where |k|c2q, < c3,
¢ For any fixed value of the parameter ¢.
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10: Introduction to perturbation theory

to the region G — a (consisting of points whose a-neighborhood is contained
in G) is a diffeomorphism. The inverse diffeomorphism (5) in the region
G — 2u satisfies the estimate ||h||c: < ¢4 with some constant c4(a, ¢3) > 0.

ProoF. The necessary estimate follows directly from the implicit function
theorem. The only difficulty is in verifying that the map I — I + ¢k is one-
to-one in the region G — «. We note that the function k satisfies a Lipschitz
condition (with some constant L(x, c3)) in G — «. Consider two points
I,, I, in G — a. For sufficiently small ¢ (namely, for Le < 1) the distance
between ck(I;) and ¢k(I,) will be smaller than I, — I,|. Therefore,
I, + ckd,) # I, + ¢k(,). Thus the map (3) is one-to-one on G — a, and
the lemma is proved. 1

It follows from the lemma that for ¢ small enough all the estimates (8)
are satisfied. Thus the estimate (7) is also true.
We now compare the system of differential equations for J

(2) J = eg(J)
and for P; the latter, in view of (9), takes the form
(6" P =:(P) + R

Since the difference between the right sides is of order < &? (cf. (7)), for time
t < 1/e the difference |P — J| between the solutions is of order ¢ (Figure 226).
On the other hand, |I — P| = ¢|k| < & Thus, for 1 < l/¢, the difference
|1 — J| is of order <&, as was to be proved. L]

Figure 226 Proof of the theorem on averaging

To find an accurate estimate, we introduce the quantity
(10) z(t) = P(t) — J(1).
Then (6") and (9) imply
cg
:= (g(P) - 8N+ R=s 7+ R
[
where |R’| < ¢,€% + cs&lz] if the segment (P, J) lies in G — «. Under this assumption we find

(1 |z] < cqelz] + c 82 (where ce = ¢5 + ¢4)
[Z(0)| < c3e&.
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52: Averaging of perturbations

Lemma. If |z| < a|z| + band |2(0)| < d for a, b, d, t > O, then |z(1)|] < (d + bt)e®.
PROOF. |z(1r)| is no greater than tpe solutiop w(¢t) of the equation ' = ay + b, y(0) = d. Solving
this equation, we find y = Ce*, Ce™ = b, C = e b, C(0) = d, C < d + bt. )
Now from (11) and the assumption that the segment (P, J) lies in G — a(Figure 226), we have
|Z(1)] < (c38 + ¢, &%),
From this it follows that, for 0 <t < 1/,
1z(t)| < c5& c; = (3 + ¢y)ec.

We see that, if @ = d/3 and ¢ is small enough, the entire segment (P(z), J(1))(r < 1/e) lies inside
G — « and, therefore,

M|

IP(t) — J(1)| < cge forall0 <t <

On the other hand, [P(t} — 1(t)| < |ek| < ¢3¢. Thus, for all t with 0 < 1 < 1/g,
'I([)_J(t)l <C9£ g = Cg +('3 >0

and the theorem is proved. O

E Adiabatic invariants

Consider a hamiltonian system with one degree of freedom, with hamiltonian
function H(p, q; A) depending on a parameter 1. As an example, we can take

a pendulum:
2

2
as the parameter A we can take the length [ or the acceleration of gravity g.
Suppose that the parameter changes slowly with time. It turns out that in
the limit as the rate of change of the parameter approaches O, there is a
remarkable asymptotic phenomenon: two quantities, generally independent,
become functions of one another.

Assume, for example, that the length of the pendulum changes slowly
(in comparison with its characteristic oscillations). Then the amplitude
of its oscillation becomes a function of the length of the pendulum. If we
very slowly increase by a factor of two the length of the pendulum and then
very slowly decrease it to the original value, then at the end of this process
the amplitude of the oscillation will be the same as it was at the start.

Furthermore, it turns out that the ratio of the energy H of the pendulum
to the frequency w changes very little under a slow change of the parameter,
although the energy and frequency themselves may change a lot. Quantities
such as this ratio, which change little under slow changes of parameter,
are called by physicists adiabatic invariants.

It is easy to see that the adiabatic invariance of the ratio of the energy
of a pendulum to its frequency is an assertion of a physical character, i.e., it is
untrue without further assumptions. In fact, if we vary the length of a
pendulum arbitrarily slowly, but chose the phase of oscillation under which

H —

297



10: Introduction to perturbation theory

) %
/
e

Figure 227 Adiabatic change in the length of a pendulum

the length increases and decreases, we can set the pendulum swinging
(parametric resonance). In view of this, physicists have suggested formulating
the definition of adiabatic invariance as follows: the person changing the
parameters of the system must not see what state the system is in (Figure 227).
Giving this definition a rigorous mathematical meaning is a very delicate
and as yet unsolved problem. Fortunately, we can get along with a surrogate.
The assumption of ignorance of the internal state of the system on the part
of the person controlling the parameter may be replaced by the requirement
that the change of parameter must be smooth, ie., twice continuously
differentiable.

More precisely, let H(p, q; A) be a fixed, twice continuously differentiable
function of A. Set A = & and consider the resulting system with slowly
varying parameter A = &t:

0H . _@8H

* y = — —
™) 3q q a3’

H = H(p, q; &t).

Definition. The quantity I(p, g; 1) is an adiabatic invariant of the system (*)
if for every k > O there is an g, > O such that if 0 < & < & and 0 <t < 1l/g,
then

[I(p(t), g(1); et) — I(p(0), 4(0); 0)| < k.

Clearly, every first integral is also an adiabatic invariant. It turns out that
every one-dimensional system (*) has an adiabatic invariant. Namely, the
adiabatic invariant is the action variable in the corresponding problem
with constant coeflicients.

Assume that the phase trajectories of the system with hamiltonian
H(p, q; A) are closed. We define a function I(p, 4; 4) in the following way.
For fixed A there is a phase portrait corresponding to the hamiltonian function
H(p, q; A) (Figure 228). Consider the closed phase trajectory passing through
a point (p, q). It bounds some region in the phase plane. We denote the area
of this region by 2nl(p, gq;A). I = const on every phase trajectory (for
given A). Clearly, / is nothing but the action variable (cf. Section 50).

Theorem. If the frequency w(l, A) of the system (*) is nowhere zero, then
I(p, q; A) is an adiabatic invariant.
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52: Averaging of perturbations

7’
4

A fixed

P,y

Figure 228 Adiabatic invariant of a one-dimensional system

F Proof of the adiabatic invariance of action

For fixed A we can introduce action-angle variables I, ¢ into the system (*)
by a canonical transformation depending on A:p,q — I, ¢; ¢ = w(l, 1),
I =0;w(I, X)) = 6H,/01, Hy = H(I, A).

We denote by S(I, q; 1) the (multiple-valued) generating function of this
transformation:

_ 08 __ oS
P= Oq C=3r
Now let A = &t. Since the change from variables p, g to variables I, ¢ is now

performed by a time dependent canonical transformation, the equations of
motion in the new variables I, ¢ have the hamiltonian form, but with

hamiltonian function (cf. Section 45A)

os as
K=Ho+= =Ho+e=.

PROBLEM. Show that d5(1, 4. A)/04 is a single-valued function on the phase plane.
Hint. S is determined up to the addition of multiples of 2xf.

In this way we obtain the equations of motion in the form

_ 328

, Ry
I'=¢g(1, ;2 = =
g, ¢; 2) g 30 34
A=c¢
Since w # 0, the averaging theorem (Section 52C) is applicable. The
averaged system has the form

J = &g A=c

But g = (6/0¢)(8S/0A), and 8S/8A is a single-valued function on the circle
I = const. Therefore, g = (2n) ™! [ g dp = 0, and in the averaged system J
does not change at all: J(t) = J(0).
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By the averaging theorem, |I(t) — I(0)| < ce for all ¢ with 0 <t < 1/g,
as was to be proved. O

ExaMpPLE. For a harmonic oscillator (cf. Figure 217),

a’ b? 1 S2h /S 2h h
H = _— p? — g2 = —— N o = =
2 P + 2 1 I " a b w’ @ = ab,

i.e., the ratio of energy to frequency is an adiabatic invariant.

U

e

o

W4

Figure 229 Adiabatic invariant of an absolutely elastic ball between slowly changing
walls

ProBLEM. The length of a pendulum is slowly doubled (I = lo(1 + et),
0 < t < 1/¢). How does the amplitude g,,,, of the oscillations vary?
Solution. I = 1%%g''%q2,,; therefore,

10)) >4
Gon(®) = Grnon(®) (,-((t—;) .

As a second example, consider the motion of a perfectly elastic rigid ball
of mass 1 between perfectly elastic walls whose separation [ slowly varies
(Figure 229). We may consider that a point is moving in an infinitely deep
rectangular potential well,” and that the phase trajectories are rectangles
of area 2vl, where v is the velocity of the ball. In this case the product vl
of the velocity of the ball and the distance between the walls turns out to be
an adiabatic invariant.®® Thus if we make the walls twice as close together,
the velocity of the ball doubles, and if we separate the walls, the velocity
decreases.

95 This does not formally follow from the theorem, since the theorem concerns smooth systems
without shocks. The proof of the adiabatic invariance of vl in this system is an instructive elemen-
tary problem,
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Appendix 1: Riemannian curvature

From a sheet of paper, one can form a cone or a cylinder, but it is impossible
to obtain a piece of a sphere without folding, stretching, or cutting. The reason
lies in the difference between the “intrinsic geometries” of these surfaces: no
part of the sphere can be isometrically mapped onto the plane.

The invariant which distinguishes riemannian metrics is called riemannian
curvature. The riemannian curvature of a plane is zero, and the curvature of
a sphere of radius R is equal to R~ 2. If one riemannian manifold can be iso-
metrically mapped to another, then the riemannian curvature at correspond-
ing points is the same. For example, since a cone or cylinder is locally iso-
metric to the plane, the riemannian curvature of the cone or cylinder at any
pointis equal to zero. Therefore, no region of a cone or cylinder can be mapped
isometrically to a sphere.

The riemannian curvature of a manifold has a very important influence
on the behavior of geodesics on it, i.e, on motion in the corresponding
dynamical system. If the riemannian curvature of a manifold is positive (as
on a sphere or ellipsoid), then nearby geodesics oscillate about one another
in most cases, and if the curvature is negative (as on the surface of a hyper-
boloid of one sheet), geodesics rapidly diverge from one another.

In this appendix we define riemannian curvature and briefly discuss the
properties of geodesics on manifolds of negative curvature. A further treat-
ment of riemannian curvature can be found in the book, “Morse Theory”
by John Milnor, Princeton University Press, 1963, and a treatment of
geodesics on manifolds of negative curvature in D. V. Anosov’s book,
“Geodesic flows on closed riemannian manifolds with negative curvature,”
Proceedings of the Steklov Institute of Mathematics, No. 90 (1967), Am.
Math. Soc., 1969.

A Parallel transiation on surfaces

The definition of riemannian curvature is based on the construction of parallel
translation of vectors along curves on a riemannian manifold.

We begin with the case when the given riemannian manifold is two-
dimensional, i.e., a surface, and the given curve is a geodesic on this surface.
[See Carmo, Manfredo Perdigao do, Differential Geometry of Curves and
Surfaces, Prentice-Hall, 1976. (Translator’s note)]

Parallel translation of a vector tangent to the surface along a geodesic on
this surface is defined as follows: the point of origin of the vector moves along
the geodesic, and the vector itself moves continuously so that its angle with
the geodesic and its length remain constant. By translating to the endpoint
of the geodesic all vectors tangent to the surface at the initial point, we obtain
a map from the tangent plane at the initial point to the tangent plane at the
endpoint. This map is linear and isometric.

We now define parallel translation of a vector on a surface along a broken
line consisting of several geodesic arcs (Figure 230). In order to translate a
vector along a broken line, we translate it from the first vertex to the second
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Figure 230 Parallel translation along a broken geodesic

along the first geodesic arc, then translate this vector along the second arc
to the next vertex, etc.

PROBLEM. Given a vector tangent to the sphere at one vertex of a spherical triangle with three
right angles, translate this vector around the triangle and back to the same vertex.

ANSWER. As a result of this translation the tangent plane to the sphere at the initial vertex will
be turned by a right angle.

Finally, parallel translation of a vector along any smooth curve on a surface
is defined by a limiting procedure, in which the curve is approximated by
broken lines consisting of geodesic arcs.

ProsLEM. Translate a vector directed towards the North Pole and located at Leningrad (latitude
A = 60°) around the 60th parallel and back to Leningrad, moving Lo the east.

ANsWER. The vector turns through the angle 2n (1 — sin 4), i.e., approximately 50° to the west.
Thus the size of the angle of rotation is proportional to the area bounded by our parallel, and
the direction of rotation coincides with the direction the origin of the vector is going around the
North Pole.

Hint. 1t is sufficient to translate the vector along the same circle on the cone formed by the
tangent lines to the meridian, going through all the points of the parallel (Figure 231). This cone
then can be unrolled onto the plane, after which parallel translation on its surface becomes
ordinary parallel translation on the plane.

Figure 231 Parallel translation on the sphere
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ExaMpLE. We consider the upper half-plane y > 0 of the plane of complex numbers z = x + iy
with the metric

_dx? 4+ dy?

y2

ds?

It is easy to compute that the geodesics of this two-dimensional riemannian manifold are circles
and straight lines perpendicular to the x-axis. Linear fractional transformations with real
coefficients

az + b
N

cz +d

z
are isometric transformations of our manifold, which is called the Lobachevsky plane.

PrROBLEM. Translate a vector directed along the imaginary axis at the point z = i to the point
z =1t + i along the horizontal line (dy = 0) (Figure 232).

ANSWER. Under translation by r the vector turns ¢ radians in the direction from the y-axistowards
the x-axis.

- X

Figure 232  Parallel translation on the Lobachevsky plane

B The curvature form

We will now define the riemannian curvature at each point of a two-dimen-
sional riemannian manifold (i.e., a surface). For this purpose, we choose an
orientation of our surface in a neighborhood of the point under consideration
and consider parallel translation of vectors along the boundary of a small
region D on our surface. It is easy to calculate that the result of such a trans-
lation is rotation by a small angle. We denote this angle by (D) (the sign of the
angle is fixed by the choice of orientation of the surface).

If we divide the region D into two parts D, and D,, the result of parallel
translation along the boundary of D can be obtained by first going around
one part, and then the other. Thus,

@(D) = ¢(D,) + ¢(D3),

i.e.,, the angle ¢ is an additive function of regions. When we change the direc-
tion of travel along the boundary, the angle ¢ changes sign. It is natural
therefore to represent ¢(D) as the integral over D of a suitable 2-form. Such
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a 2-form in fact exists; it is called the curvature form, and we denote it by Q.
Thus we define the curvature form € by the relation

(1) o(D) = f Q
D

The value of Q on a pair of tangent vectors &, 1 in TM, can be defined in the
following way. We identify a neighborhood of the point 0 in the tangent space
to M at x with a neighborhood of the point x on M (using, for example,
some local coordinate system). We can then construct on M the parallelogram
I1, spanned by the vectors &, &, at least for sufficiently small .

Now the value of the curvature form on our vectors is defined by the
formula

@ Q. n) = lim 270,

e—0

In other words, the value of the curvature form on a pair of tangent vectors
is equal to the angle of rotation under translation along the infinitely small
parallelogram determined by these vectors.

ProBLEM. Find the curvature forms on the plane, on a sphere of radius R, and on the Lobachevsky
plane.

ANSWER. Q =0, Q = R~ 2dS, Q = —dS, where the 2-form dS is the area element on our
oriented surface.

PROBLEM. Show that the function defined by formula (2)is really a differential 2-form, independent
of the arbitrary choice involved in the construction, and that the rotation of a vector under
translation along the boundary of a finite oriented region D is expressed, in terms of this form,
by formula (1).

PROBLEM. Show that the integral of the curvature form over any convex surface in three-dimen-
sional euclidean space is equal to 4.

C The riemannian curvature of a surface

We note that every differential 2-form on a two-dimensional oriented
riemannian manifold M can be written in the form pdS, where dS is the
oriented area element and p is a scalar function uniquely determined by the

choice of metric and orientation.
In particular, the curvature form can be written in the form

Q = KdS,

where K: M — R is a smooth function on M and dS is the area element.
The value of the function K at a point x is called the riemannian curvature
of the surface at x.

PrOBLEM. Calculate the riemannian curvature of the euclidean space, the sphere of radius R,
and the Lobachevsky plane.
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ANSWER. K =0, K = R 2, K = —1.

PrOBLEM. Show that the riemannian curvature does not depend on the orientation of the mani-
fold, but only on its metric.
Hint. The 2-forms  and 4S both change sign under a change of orientation.

PROBLEM. Show that, for surfaces in ordinary three-dimensional euclidean space, the riemannian
curvature at every point is equal to the product of the inverses of the principal radii of curvature
(with minus sign if the centers of curvature lie on opposite sides of the surface).

We note that the sign of a manifold’s curvature at a point does not depend
on the orientation of the manifold; this sign may be defined without using the
orientation at all.

Namely, on manifolds of positive curvaturc, a vector parallel translated
around the boundary of a small region turns around its origin in the same
direction as the point on the boundary goes around the region; on manifolds
of negative curvature the direction of rotation is opposite.

We note further that the value of the curvature at a point is determined
by the metric in a neighborhood of this point, and therefore is preserved
under bending: the curvature is the same at corresponding points of iso-
metric surfaces. Hence, riemannian curvature is also called intrinsic curvature.

The formulas for computing curvature in terms of components of the
metric in some coordinate system involve the second derivatives of the metric
and are rather complicated: cf. the problems in Section G below.

D Higher-dimensional parallel transiation

The construction of parallel translation on riemannian manifolds of di-
mension greater than two is somewhat more complicated than the two-
dimensional construction presented above. The reason is that in these
dimensions the direction of the vector being translated is no longer determined
by the condition that the angle with a geodesic be invariant. In fact, the vector
could rotate around the direction of the geodesic while preserving its angle
with the geodesic.

The refinement which we must introduce into the construction of parallel
translation along a geodesic is the choice of a two-dimensional plane passing
through the tangent to the geodesic, which must contain the translated vector.
This choice is made in the following (unfortunately complicated) way.

At the initial point of a geodesic the needed plane is the plane spanned by
the vector to be translated and the direction vector of the geodesic. We look
at all geodesics proceeding from the initial point, in directions lying in this
plane. The set of all such geodesics (close to the initial point) forms a-smooth
surface which contains the geodesic along which we intend to translate the
vector (Figure 233).

Consider a new point on the geodesic at a small distance A from the initial
point. The tangent plane at the new point to the surface described above
contains the direction of the geodesic at this new point. We take this new
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A

Figure 233 Parallel translation in space

point as the initial point and use its tangent plane to construct a new surface
(formed by the bundle of geodesics emanating from the new point). This
surface contains the original geodesic. We move along the original geodesic
again by A and repeat the construction from the beginning.

After a finite number of steps we can reach any point of the original geo-
desic. As a result of our work we have, at every point of the geodesic, a tangent
plane containing the direction of the geodesic. This plane depends on the
length A of the steps in our construction. As A — 0 the family of tangent
planes obtained converges (as can be calculated) to a definite limit. As a
result we have a field of two-dimensional tangent planes along our geodesic
containing the direction of the geodesic and determined in an intrinsic
manner by the metric on the manifold.

Now parallel translation of our vector along a geodesic is defined as in the
two-dimensional case: under translation the vector must remain in the planes
described above; its length and its angle with the direction of the geodesic
must be preserved. Parallel translation along any curve is defined using
approximations by geodesic polygons, as in the two-dimensional case.

PrOBLEM, Show that parallel translation of vectors from one point of a riemannian manifold
to another along a fixed path is a linear isometric operator from the tangent space at the first
point to the tangent space at the second point.

PROBLEM. Parallel translate any vector along the line
x, =1 x, =0 y=1 0 <r <7}

in a Lobachevsky space with metric

_ dxi + dx3 + dy?

_V2

ds?

ANSWER. Vectors in the directions of the x,; and v axes are rotated by angle t in the plane spanned
by them (rotation is in the direction from the y-axis towards the x,-axis): vectors in the x,-direc-
tion are carried parallel to themselves in the sense of the euclidean metric.

E The curvature tensor

We now consider, as in the two-dimensional case, parallel translation along
small closed paths beginning and ending at a point of a riemannian manifold.
Parallel translation along such a path returns vectors to the original tangent
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space. The map of the tangent space to itself thus obtained is a small rotation
(an orthogonal transformation close to the identity).

In the two-dimensional case we characterized this rotation by one number—the angle of rotation
. In higher dimensions a skew-symmetric operator plays the role of (. Namely, any orthogonal
operator 4 which is close to the identity can be written in a natural way in the form

2
A=e°—E+CD+£+-~
= 5 )

where @ is a small skew-symmetric operator.

ProeLEM. Compute @ if 4 is a rotation of the piane through a small angle «.

COS ¢»  SIN 0
4 = ) 7 I ® — P '
—sin ¢ Ccos ¢ —¢ 0
Unlike in the two-dimensional case, the function @ is not generally additive (since the
orthogonal group of n-space for n > 2 is not commutative). Nevertheless, we can construct a
curvature form using @, describing the “infinitely small rotation caused by parallel translation

around an infinitely small parallelogram™ in the same way as in the two-dimensional case, i.e.,
using formula (2).

ANSWER.

Thus, let £ and  in TM, be vectors tangent to the riemannian manifold
M at the point x. Construct a small curvilinear parallelogram I, on M (the
sides of the parallelogram I1, are obtained from the vectors £ and ey by a
coordinate identification of a neighborhood of zero in T M, with a neighbor-
hood of x in M). We will look at parallel translation along the sides of the
parallelogram IT, (we begin the circuit at &).

The result of translation will be an orthogonal transformation of TM,
close to the identity. It differs from the identity transformation by a quantity
of order ¢ and has the form

A& n) = E + £2Q + o(e?),

where Q is a skew-symmetric operator depending on & and 5. Therefore, we
can define a function Q of pairs of vectors ¢, n in the tangent space at x with
values in the space of skew-symmetric operators on T M, by the formula

As(éa '7) — E
5 .

Q(&E, ) = lim

e—0

PROBLEM. Show that the function Q is a differential 2-form (with values in the skew-symmetric
operators on TM,) and does not depend on the choice of coordinates we used to identify TM

and M.

The form Q is called the curvature tensor of the riemannian manifold.
We could say that the curvature tensor describes the infinitesimal rotation
in the tangent space obtained by parallel translation around an infinitely
small parallelogram.
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F Curvature in a two-dimensional direction

Consider a two-dimensional subspace L in the tangent space to a riemannian
manifold at some point. We take geodesics emanating from this point in
all the directions in L. These geodesics form a smooth surface close to our
point. The surface constructed lies in the riemannian manifold and has an
induced riemannian metric.

By the curvature of a riemannian manifold M in the direction of a 2-plane
L in the tangent space to M at a point x, we mean the riemannian curvature at
x of the surface described above.

ProBLEM. Find the curvatures of a three-dimensional sphere of radius R and of Lobachevsky
space in all possible two-dimensional directions.

ANSWER. R™2%, —1.

In general, the curvatures of a riemannian manifold in different two-
dimensional directions are different. Their dependence on the direction is
described by formula (3) below.

Theorem. The curvature of a riemannian manifold in the two-dimensional
direction determined by a pair of orthogonal vectors &, nj of length 1 can be
expressed in terms of the curvature tensor Q by the formula

(3) K = <& m¢ >,

where the brackets denote the scalar product giving the riemannian metric.

The proof is obtained by comparing the definitions of the curvature tensor and of curvature
in a two-dimensional direction. We will not go into it in a rigorous way. It is possible to take
formuta (3) for the definition of the curvature K.

G Couvariant differentiation

Connected with parallel translation along curves in a riemannian manifold
is a particular differential calculus—so-called covariant differentiation, or
the riemannian connection. We define this differentiation in the following
way.

Let £ be a vector tangent to a riemannian manifold M at a point x, and v
a vector field given on M in a neighborhood of x. The covariant derivative
of the field v in the direction & is defined by using any curve passing through x
with velocity &. After moving along this curve for a small interval of time ¢,
we find ourselves at a new point x(¢). We take the vector field v at this point
x(t) and parallel translate it backwards along the curve to the original point
x. We obtain a vector depending on ¢ in the tangent space to M at x. For
t = 0O this vector is v(x), and for other t it changes according to the non-
parallelness of the vector field v along our curve in the direction &.
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Consider the derivative of the resulting vector with respect to t, evaluated
at t = 0. This derivative is a vector in the tangent space TM,. It is called the
couvariant derivative of the field v along £ and is denoted by V;v. It is easy to
verify that the vector Vv does not depend on the choice of curve specified in
the definition, but only on ¢ and v.

PrROBLEM L. Prove the following properties of covariant differentiation:

1. V.u is a bilinear function of £ and v.
2. Vo fv = (L:f ) + f(x)V,., where [ is a smooth function and L, f is the derivative of f in the

direction of the vector ¢ inTM .
30 Lo, wy = Ve, w(x)> + {v(x), Vaw). .
4 V,ow — Voot = [w,v](x) (where L, ,, = L, L, — L,L,).

PROBLEM 2. Show that the curvature tensor can be expressed in terms of covariant differentiation
in the following way:

<o, M0)s0 = —V VI + V, V0 + Vg0,

where &, n, { are any vector fields whose values at the point under consideration are &,, 15, and g .

PrOBLEM 3. Show that the curvature tensor satisfies the following identities:
QS ML+ QAn, )+ QLM =0
UL, M, B = KXa, BYE, ).

PROBLEM 4, Suppose that the riemannian metric is given in local coordinates x,, ..., x, by the
symmetric matrix g, ;:

dsz = Z gudx,dx_,.

Denote by e,, ..., e, the coordinate vector fields (so that differentiation in the direction e, is
d; = 0/0x,). Then covariant derivatives can be calculated using the formulas in Problem 1 and
the following formulas:

V.e, =Y Tle, =3 4094 + dgu — 019:)9™,
k i

where (g™) is the inverse matrix to (gg).
By using the expression for the curvature tensor in terms of the connection in Problem 2,

we also obtain an explicit formula for the curvature. The numbers R, = {{de,, ¢;)e,, ¢;> are
called the components of the curvature tensor.

H The Jacobi equation

The riemannian curvature of a manifold is closely connected with the be-
havior of its geodesics. In particular, let us consider a geodesic passing
through some point.in some direction, and alter slightly the initial conditions,
L.e.,, the initial point and initial direction. The new initial conditions determine
a new geodesic. At first this geodesic differs very little from the original geo-
desic. To investigate the divergence it is useful to linearize the differential
equation of geodesics close to the original geodesic. The second-order linear

309



Appendix |: Riemannian curvature

differential equation thus obtained (“the variational equation” for the equa-
tion of geodesics) is called the Jacobi equation; it is convenient to write
it in terms of covariant derivatives and curvature tensors.

We denote by x(z) a point moving along a geodesic in the manifold M
with velocity (of constant magnitude) v(t) € TM . If the initial condition
depends smoothly on a parameter «, then the geodesic also depends smoothly
on the parameter. Consider the motion corresponding to a value of a. We
denote the position of a point at time ¢ on the corresponding geodesic by
x(t, ) € M. We will assume that the initial geodesic corresponds to the zero
value of the parameter, so that x(t, 0) = x(t).

The vector field of geodesic variation is the derivative of the function
x(t, &) with respect to «, evaluated at o« = 0; the value of this field at the point
x(t) is equal to

4 x(t, o) = E(1)e TM .
da a=0

To write the variational equation, we define the covariant derivative with
respect to t of a vector field {(z) given on the geodesic x(t). To define this, we
take the vector (¢ + h), parallel translate it from the point x(t + h) to
x(t) along the geodesic, differentiate the vector obtained in the tangent space
TM,,, with respect to h and evaluate at h = 0. The result is a vector in
TM ,,, which is called the covariant derivative of the field {(z) with respect
to t, and denoted by D{/Dt.

Theorem T he vector field of geodesic variation satisfies the second-order linear
differential equation
D?*¢
4) Dz - Q(v, O,

where Q is the curvature tensor, and v = v(t) is the velocity vector of motion
along the original geodesic.

Conversely, every solution of the differential equation (4) is a field of
variation of the original geodesic.

Equation (4) is called the Jacobi equation.
PROBLEM. Prove the theorem above.

PrOBLEM. Let M be a surface, y(1) the magnitude of the component of the vector &(r) in the direc-
tion normal to a given geodesic, and let the length of the vector v(r) be equal to 1. Show that ¥
satisfies the differential equation

(5 y= —Ky,

where K = K(r) is the riemannian curvature at the point x(t)

ProsLEM. Using Equation (5). compare the behavior of geodesics close to a given one on the
sphere (K = + R~ ?) and on the Lobachevsky plane (K = —1).
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I Investigation of the Jacobi equation

In investigating the variational equations, it is useful to disregard the trivial
variations, i.e., changes of the time origin and of the magnitude of the initial
velocity of motion. To this end we decompose the variation vector £ into
components parallel and perpendicular to the velocity vector v. Then (since
(v, v) = 0 and since the operator Q(v, &) is skew-symmetric) for the normal
component we again get the Jacobi equation, and for the parallel component
we get the equation

DZ
D,
Dt
We now note that the Jacobi equation for the normal component can be
written in the form of “Newton’s equation™

b dU

—— = —grad U,

Dt? g

where the quadratic form U of the vector & is expressed in terms of the curva-
ture tensor and is proportional to the curvature K in the direction of the

(&, v) plane:

U(&) = 3, O, &> = 3KLE, &> <o, v).

Thus the behavior of the normal component of the variation vector of a
geodesic with velocity 1 can be described by the equation of a (non-autono-
mous) linear oscillator whose potential energy is equal to the product of the
curvature in the direction of the plane of velocity vectors and variations with
the square of the length of the normal component of the variation.

In particular we consider the case when the curvature is negative in all
two-dimensional directions containing the velocity vector of the geodesic
(Figure 234). Then the divergence of nearby geodesics from the given one in

K>0

Figure 234 Nearby geodesics on manifolds of positive and negative curvature
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the normal direction can be described by the equation of an oscillator with
negative definite (and time-dependent) potential energy. Therefore, the
normal component of divergence for nearby geodesics behaves like the di-
vergence of a ball, located near the top of a hill, from the top. The equilibrium
position of the ball at the top is unstable. This means that geodesics near the
given geodesic will diverge exponentially from it.

If the potential energy of the newtonian equation we obtained did not depend on time, our
conclusion would be rigorous. Let us assume further that the curvature in the different direc-
tions containing v is in the interval

—u? < K < —b?, where0 < b <a.

Then solutions to the Jacobi equation for normal divergence will be linear combinations of
exponential curves with exponent + 2, where the positive numbers A, are between a and b.

Therefore, every solution to the Jacobi equation grows at least as fast as ¢”"! as either

t - +x ort — — = : most solutions grow even faster, with rate ¢*'.

The instability of an equilibrium position under negative definite potential
energy is intuitively obvious also in the non-autonomous case. It can be
proven by comparison with a corresponding autonomous system. As a
result of such a comparison we may convince ourselves that under motion
along a geodesic, all solutions of the Jacobi equation for normal divergence
on a manifold of negative curvature grow at least as fast as an exponential
function of the distance traveled, whose exponent is equal to the square
root of the absolute value of the curvature in the two-dimensional direction
for which this absolute value is minimal. In fact, most solutions grow even
faster, but we cannot now assert that the exponent of growth for most solu-
tions is determined by the direction in which the absolute value of the nega-
tive curvature is largest.

In summary, we can say that the behavior of geodesics on a manifold of
negative curvature is characterized by exponential instability. For numerical
estimates of this instability, it is useful to define the characteristic path length
s as the average path length on which small errors in the initial conditions
are increased e times.

More precisely, the characteristic path length s can be defined as the inverse
of the exponent A which characterizes the growth of the solution to the Jacobi
equation for normal divergence from the geodesic proceeding with velocity 1:

A = lim —max max In|&(t)| s = -.
T-o I <1 |20)=1

In general, the exponent 4 and the path s depend on the initial geodesic.

If the curvature of our manifold in all two-dimensional directions is
bounded away from zero by the number — b?, then the characteristic path
length is less than or equal to »~!. Thus as the curvature of a manifold gets
more negative, the characteristic path length s, on which the instability of
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geodesics is reduced to e-fold growth of error, gets smaller. In view of the
exponential character of the growth of error, the course of a geodesic on a
manifold of negative curvature is practically impossible to predict.

Assume, for example, that the curvature is negative and bounded away
from zero by —4m~ 2. The characteristic path length is less than or equal to
half a meter, i.e., on a geodesic arc five meters long the error grows by approxi-
mately e!® ~ 10*. Therefore, an error of a tenth of a millimeter in the initial
conditions shows up in the form of a one-meter difference at the end of the

geodesic.

J Geodesic flows on compact manifolds of
negative curvature

Let M be a compact riemannian manifold whose curvature at every point
in every two-dimensional direction is negative. (Such manifolds exist.)
Consider the inertial motion of a point of mass 1 on M, without any external
forces. The lagrangian function of this system is equal to the kinetic energy,
which is equal to the total energy and is a first integral of the equations of
motion.

If M has dimension n, then each energy level manifold has dimension
2n — 1. This manifold is a submanifold of the tangent bundle of M. For
example, we can fix the value of the energy at 4 (which corresponds to initial
velocity 1). Then the velocity vector of the point has length constantly equal
to 1, and our level manifold turns out to be the fiber bundle

TM = TM

consisting of the unit spheres in the tangent spaces to M at every point.

Thus, a point of the manifold T, M is represented as a vector of length
1 at a point of M. By the Maupertuis—Jacobi principle, we can describe the
motion of a point mass with fixed initial conditions in the following way:
the point moves with velocity 1 along the geodesic determined by the indi-
cated vector.

By the law of conservation of energy the manifold 73 M is an invariant
manifold in the phase space of our system. Therefore, our phase flow de-
termines a one-parameter group of diffeomorphisms on the (2n — 1)-
dimensional manifold T, M. This group is called the geodesic flow on M.
The geodesic flow can be described as follows: the transformation at time t
carries the unit vector £ € T{ M located at the point x, to the unit velocity
vector of the geodesic coming from x in the direction &, located at the point
at distance t from x. We note that there is a naturally defined volume element
on T; M and that the geodesic flow preserves it (Liouville’s theorem).

Up to now we have not used the negative curvature of the manifold M.
But if we investigate the trajectories of the geodesic flow, it turns out that the
negative curvature of M has a strong impact on the behavior of these tra-
jectories (this is related to the exponential instability of geodesics on M).
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Here are some properties of geodesic flows on manifolds of negative
curvature (for further details, see the book of D. V. Anosov cited earlier).

1. Almost all phase trajectories are dense in the energy level manifold (the
exceptional non-dense trajectories form a set of measure zero).

2. Uniform distribution: the amount of time which almost every trajectory
spends in any region of the phase space T} M is proportional to the volume
of the region,

3. The phase flow ¢g' has the mixing property: if A and B are two regions, then

lim mes[(g‘4) ~ B] = mes A mes B

t— ao

(where mes denotes the volume, normalized by the condition that the
whole space have measure 1).

From these properties of trajectories in phase space follow analogous
statements about geodesics on the manifold itself. Physicists call these
properties “stochastic™: asymptotically for large r the trajectories behave as
if the point were random. For example, the mixing property means that the
probability of turning up in B at a time ¢ long after exiting from A is propor-
tional to the volume of B.

Thus, the exponential instability of geodesics on manifolds of negative
curvature leads to the stochasticity of the corresponding geodesic flow.

K Other applications of exponential instability

The exponential instability property of geodesics on manifolds of negative
curvature has been studied by many authors, beginning with Hadamard (and,
in the case of constant curvature, also by Lobachevsky), but especially by
E. Hopf. An unexpected discovery of the 1960s in this area was the surprising
stability of exponentially unstable systems with respect to perturbations of the
systems themselves.

Consider, for cxample, the vector field giving the geodesic flow on a com-
pact surface of negative curvature. As we showed above, the phase curves
of this flow are arranged in a complicated way: almost every one of them is
dense in the three-dimensional energy level manifold. The flow has infinitely
many closed trajectories, and the set of points on closed trajectories is also
dense in the three-dimensional energy level manifold.

We now consider a nearby vector field. It turns out that, in spite of the
complexity of the picture of phase curves, the entire picture with dense
phase curves and infinitely many closed trajectories hardly changes at all if
we pass to the nearby field. In fact, there is a homeomorphism close to the
identity transformation which takes the phase curves of the unperturbed
flow to the phase curves of the perturbed flow.

Thus our complicated phase flow has the same property of “structural
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stability” as a limit cycle, or a stable focus in the plane. We note that neither
a center in the plane nor a winding of the torus has this property of structural
stability: the topological type of the phase portrait in these cases changes
for arbitrarily small changes in the vector field.

The existence of structurally stable systems with complicated motions,
each of which is in itself exponentially unstable, is one of the basic discoveries
of recent years in the theory of ordinary differential equations (the con-
jecture that geodesic flows on manifolds of negative curvature are structurally
stable was made by S. Smale in 1961, and the proof was given by D. V.
Anosov and published in 1967; the basic results on stochasticity of these
flows were obtained by Ya. G. Sinai and D. V, Anosov, also in the 1960s).

Before these works most mathematicians believed that in systems of
differential equations in “general form”™ only the simplest stable limiting
behaviors were possible: equilibrium positions and cycles. If a system was
more complicated (for example, if it was conservative), then it was assumed
that after a small change in its equations (for example, after imposing small
non-conservative perturbations) complicated motions are “dispersed” into
simple ones. We now know that this is not so, and that in the function space
of vector fields there are whole regions consisting of fields with more com-
plicated behavior of phase curves.

The conclusions which follow from this are relevant to a wide range of
phenomena, in which “stochastic” behavior of deterministic objects is
observed.

Namely, suppose that in the phase space of some (non-conservative)
system there is an attracting invariant manifold (or set) in which the phase
curves have the property of exponential instability. We now know that
systems with such a property are not exceptional : under small changes of the
system this property must persist. What is seen by an experimenter observing
motions of such a system?

The approach of phase curves to an attracting set will be interpreted as
the establishment of some sort of limiting conditions. The further motion of a
phase point near the attracting set will involve chaotic, unpredictable changes
of “phase” of the limiting behavior, perceptible as “stochasticity™ or
“turbulence.”

Unfortunately, no convincing analysis from this point of view has yet
been developed for physical examples of a turbulent character. A primary
example is the hydrodynamic instability of a viscous fluid, described by the
so-called Navier-Stokes equations. The phase space of this problem is
infinite-dimensional (it is the space of vector fields with divergence O in the
domain of fluid flow), but the infinite-dimensionality of the problem is
apparently not a serious obstacle, since the viscosity extinguishes the high
harmonics (small vortices) faster and faster as the harmonics are higher and
higher. As a result, the phase curves from the infinite-dimensional space
seem to approach some finite-dimensional manifold (or set), to which the
limit regime also belongs.
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For large viscosity, we have a stable attracting equilibrium position in the
phase space (“stable stationary flow ™). As the viscosity decreases it loses sta-
bility; for example, a stable limit cycle can appear in phase space (“periodic
flow™) or a stable equilibrium position of a new type (“secondary stationary
flow™). %% As the viscosity decreases further, more and more harmonics come
into play, and the limit regime can become ever higher in dimension.

For small viscosity, the approach to a limit regime with exponentially
unstable trajectories seems very likely. Unfortunately, the corresponding
calculations have not yet been carried out due to the limited capacity of
existing computers. However, the following general conclusion can be drawn
without any calculations: turbulent phenomena may appear even if solutions
exist and are unique; exponential instability, which is encountered even in
deterministic systems with a finite number of degrees of freedom, is sufficient.

As one more example of an application of exponential instability we men-
tion the proof announced by Ya. G. Sinai of the “ergodic hypothesis” of
Boltzmann for systems of rigid balls. The hypothesis is that the phase flow
corresponding to the motion of identical absolutely elastic balls in a box with
elastic walls is ergodic on connected energy level sets. (Ergodicity means that
almost every phase curve spends an amount of time in every measurable
piece of the level set proportional to the measure of that piece.)

Boltzmann’s hypothesis allows us to replace time averages by space
averages, and was for a long time considered to be necessary to justify
statistical mechanics. In reality, Boltzmann’s hypothesis (in which it is a
question of a limit as time approaches infinity) is not necessary for passing
to the statistical limit (the number of pieces approaches infinity). However,
Boltzmann’s hypothesis inspired the entire analysis of the stochastic proper-
ties of dynamical systems (so-called ergodic theory), and its proof serves as a
measure of the maturity of this theory.

The exponential instability of trajectories in Boltzmann’s problem arises
as a result of collisions of the balls with one another, and can be explained
in the following way. For simplicity, we will consider a system of only two
particies in the plane, and will represent a square box with reflection off the
walls by the planar torus {(x, y)mod 1}. Then we can consider one of the par-
ticles as stationary (using the conservation of momentum); the other particle
can be considered as a point.

In this way we arrive at the model problem of motion of a point on a toral
billiard table with a circular wall in the middle from which the point is re-
flected according to the law “the angle of incidence is equal to the angle of
reflection” (Figure 235).

To investigate this system we look at an analogous billiard table bounded
on the outside by a planar convex curve (e.g., the motion of a point inside an
ellipse). Motion on such a billiard table can be considered as the limiting
case of the geodesic flow on the surface of an ellipsoid. Passage to the limit

26 A more delailed account of loss of stability ts given in “Lectures on bifurcations and versal
families,” Russian Math. Surveys 27, no. 5 (1972), 55-123,
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Figure 235 Torus-shaped billiard table with scattering by a circular wall

consists of decreasing the smallest axis of the ellipsoid to zero. As a result,
geodesics on the ellipsoid become billiard trajectories on the ellipse. We
discover from this that the ellipse can reasonably be thought of as two-sided
and that, under every reflection, the geodesic goes from one side of the ellipse
to the other.

We now return to our toral billiard table. Motion on it can be looked at as
the limiting case of the geodesic flow on a smooth surface. This surface is
obtained from looking at the torus with a hole as a two-sided surface, giving
it some thickness and slightly smoothing the sharp edge. As a result we have a
surface with the topology of a pretzel (a sphere with two handles).

After blowing up the ellipse into the ellipsoid we obtain a surface of
positive curvature; after blowing up the torus with a hole we get a surface of
negative curvature (in both cases the curvature is concentrated close to the
edge, but the blowing up can be done so that the sign of the curvature does
not change). Thus motion in our toral billiard table can be looked at as the
limiting case of motion along geodesics on a surface of negative curvature.

Now, to prove Boltzmann’s conjecture (in the simple case under con-
sideration) it is sufficient to verify that the analysis of stochastic properties
of geodesic flows on surfaces of negative curvature holds in the indicated
limiting case.

A more detailed presentation of the proof turns out to be very complicated;
it has been published only for the case of systems of two particles (Ya. G.
Sinai, Dynamical systems with elastic reflections, Russian Mathematical
Surveys, 25, no. 2 (1970), 137-189).
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and the hydrodynamics of ideal fluids

Eulerian motion of a rigid body can be described as motion along geodesics
in the group of rotations of three-dimensional euclidean space provided with
a left-invariant riemannian metric. A significant part of Euler’s theory
depends only upon this invariance, and therefore can be extended to other
groups.

Among the examples involving such a generalized Euler theory are motion
of a rigid body in a high-dimensional space and, especially interesting, the
hydrodynamics of an ideal (incompressible and inviscid) fluid. In the
latter case, the relevant group is the group of volume-preserving diffeo-
morphisms of the domain of fluid flow. In this example, the principle of least
action implies that the motion of the fluid is described by the geodesics in the
metric given by the kinetic energy. (If we wish, we can take this principle to be
the mathematical definition of an ideal fluid.) It is easy to verify that this
metric is (right) invariant.

Of course, extending results obtained for finite-dimensional Lie groups
to the infinite-dimensional case should be done with care. For example, in
three-dimensional hydrodynamics an existence and uniqueness theorem for
solutions of the equations of motion has not yet been proved. Nevertheless,
it is interesting to see what conclusions can be drawn by formally carrying
over properties of geodesics on finite-dimensional Lie groups to the infinite-
dimensional case. These conclusions take the character of a priori statements
(identities, inequalities, etc.) which should be satisfied by all reasonable
solutions. In some cases, the formal conclusions can then be rigorously
justified directly, without infinite-dimensional analysis.

For example, the Euler equations of motion for a rigid body have as their
analogue in hydrodynamics the Euler equations of motion of an ideal fluid.
Euler’s theorem on the stability of rotations around the large and small axes
of the inertia ellipsoid corresponds in hydrodynamics to a slight generaliza-
tion of Rayleigh’s theorem on the stability of flows without inflection points
of the velocity profile.

It is also easy to extract from Euler’s formulas an explicit expression for
the riemannian curvature of a group with a one-sided invariant metric.
Applying this to hydrodynamics we find the curvature of the group of dif-
feomorphisms preserving the volume element. It is interesting to note that in
sufficiently nice two-dimensional directions, the curvature turns out to be
finite and, in many cases, negative. Negative curvature implies exponential
instability of geodesics (cf. Appendix 1). In the case under consideration, the
geodesics are motions of an ideal fluid; therefore the calculation of the
curvature of the group of diffeomorphisms gives us some information on the
instability of ideal fluid flow. In fact, the curvature determines the character-
istic path length on which differences between initial conditions grow by e.
Negative curvature leads to practical indeterminacy of the flow: on a path
only a few times longer than the characteristic path length, a deviation in
initial conditions grows 100 times larger.
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In this appendix, we will briefly set out the results of calculations related
to geodesics on groups with one-sided (right- or left-) invariant metrics.
Proofs and further details can be found in the following places:

V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applica-
tions a I’hydrodynamique des fluides parfaits. Annales de I'Institut Fourier, XVI, no. 1
(1966), 319-361.

V. L. Arnold, An a priort estimate in the theory of hydrodynamic stability, izv. Vyssh. Uchebn.
Zaved. Matematicka 1966, no. 5 (54), 3-5. (Russian)

V. 1. Arnoid, The Hamiltonian nature of the Euler equations in the dynamics of a rigid body and
of an ideal fluid, Uspekhi Matematischeskikh Nauk, 24 (1969), no. 3 (147) 225-226.
{Russian)

L. A. Dikii, A remark on Hamiltonian systems connected with the rotation group, Functional
Analysis and Its Applications, 6:4 (1972) 326-327.

D. G. Ebin, J. Marsdex, Groups of diffeomorphisms and the motion of an incompressible fluid,
Annals of Math. 92, no. 1 (1970}, 102-163.

O. A. Ladyzhenskaya, On the local solvability of non-stationary problems for incompressible
ideal and viscous fluids and vanishing viscosity, Boundary problems in mathematical
physics, v. 5 (Zapiski nauchnikh seminarov LOMI, v. 21), * Nauka,” 1971, 65-78. (Russian)

A. S. Mishchenko, Integrals of geodesic flows on Lie groups, Functional Analysis and Its Ap-
plications, 4, no. 3 (1970), 232-235.

A. M. Obukhov, On integral invariants in systems of hydrodynamic type, Doklady Acad. Nauk.
184, no. 2 (1969). (Russian)

L. D. Faddeev, Towards a stability theory of stationary planar-parallel flows of an ideal fluid,
Boundary problems in mathematical physics, v. 5 (Zapiski nauchnikh seminarov LOMI,

v. 21), “Nauka,” 1971, 164-172. (Russian)

A Notation: The adjoint and co-adjoint representations

Let G be a real Lie group and g its Lie algebra, i.e., the tangent space to the
group at the identity provided with the commutator bracket operation

L, ]

A Lie group acts on itself by left and right translation: every element g
of the group G defines diffeomorphisms of the group onto itself:

L,:G—G L,h = gh R,=G—-G R,h = hg.
The induced maps of the tangent spaces will be denoted by
Lg*: TGh — TGgh and Rg*: TGh — Tth

for every h in G.

The diffeomorphism R,-: L, is an inner automorphism of the group. It
leaves the group identity element fixed. Its derivative at the identity is a
linear map from the algebra (i.e., the tangent space to the group at the
identity) to itself. This map is denoted by

Ad;:g —> g Ad, = (R,-1L,),.
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and 1s called the adjoint representation of the group. It is easy to verify that
Ad, 1s an algebra homomorphism, i.e., that

Ady[&, n] = [Ad,E, Adyn], i, neg.

It is also clear that Ad,, = Ad, Ad,.
We can consider Ad as a map of the group into the space of linear operators
on the algebra:

Ad(g) = Ad,.

The map Ad is differentiable. Its derivative at the identity of the group is a
linear map from the algebra g to the space of linear operations on g. This
map is denoted by ad, and its image on an element ¢ in the algebra by ad,.
Thus ad, is an endomorphism of the algebra space, and we have

d
ad = Ad,.: g - End g ady = I Adz,
=0

where e'¢ is the one-parameter group with tangent vector &. From the formula
written above it is easy to deduce an expression for ad in terms of the algebra
alone:

adgsn = (<, 7]

We now consider the dual vector space g* to the Lie algebra g. This is
the space of real linear functionals on the Lie algebra. In other words, g*
is the cotangent space to the group at the identity, g* = T*G,. The value
of an element £ of the cotangent space to the group at some point g on an
element #n of the tangent space at the same point will be denoted by round

brackets:
& neR, EeT*G,,neTG,.
Left and right translation induce operators on the cotangent space dual
to L,, and R,,. We denote them by
LY: T*G,, — T*G, and R7: T*G,, —» T*G,
for every h in G. These operators are defined by the identities
(Lgs, m) = (& Lg,m) and (RFE m) = (& Ryem).

The transpose operators Ady, where g runs through the Lie group G, form
a representation of this group, i.e., they satisfy the relations

AdY, = AdyAdE.

This representation is called the co-adjoint representation of the group and
plays an important role in all questions related to (left) invariant metrics on
the group.

Consider the derivative of the operator Ad} with respect to g at the identity.
This derivative is a linear map from the algebra to the space of linear operators
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on the dual space to the algebra. This linear map is denoted by ad*, and its
image on an element ¢ in the algebra is denoted by ad¥. Thus ad* is a linear
operator on the dual space to the algebra,

ad¥: g* — g*.
It is easy to see that ad¥ is the adjoint of ad,:
(adtn, {) = (n,ad;{) forallneg* {eg.
It is sometimes convenient to denote the action of ad* by braces:

ad¥n = {£,n}, whereeg,neg*

Thus braces mean the bilinear function from g x g* to g*, related to com-
mutation in the algebra by the identity

(&, 1} O = (. S, CD.

We consider now the orbits of the co-adjoint representation of the group
in the dual space of the algebra. At each point of an orbit we have a natural
symplectic structure (called the Kirillov form since A. A. Kirillov first used it
to investigate representations of nilpotent Lie groups). Thus, the orbits of
the co-adjoint representation are always even-dimensional. We also note
that we obtain a series of examples of symplectic manifolds by looking at
different Lie groups and all possible orbits.

The symplectic structure on the orbits of the co-adjoint representation is
defined by the following construction. Let x be a point in the dual space to
the algebra and £ a vector tangent at this point to its orbit. Since g* is a
vector space, we can consider the vector £, which really belongs to the tangent
space to g* at x, as lying in g*.

The vector ¢ can be represented (in many ways) as the velocity vector of
the motion of the point x under the co-adjoint action of the one-parameter
group e* with velocity vector a € g. In other words, every vector tangent to
the orbit of x in the co-adjoint representation of the group can be expressed
in terms of a suitable vector a in the algebra by the formula

¢ = {a, x}, aeg, x €g*

Now we are ready to define the value of the symplectic 2-form Q on a pair
of vectors &,, &, tangent to the orbit of x. Namely, we express £, and ¢, in
terms of algebra elements g, and a, by the formula above, and then obtain
the scalar

Q(&,, &2) = (x, [ay, az]), xeg*, a;€g.

It is easy to verify that (1) the bilinear form Q is well defined, i.e., its value does
not depend on the choice of a;; (2) Q is skew-symmetric and therefore gives
a differential 2-form Q on the orbit; and (3) Q is nondegenerate and closed
(the proofs can be found, for instance, in Appendix 5). Thus the form Qis a
symplectic structure on an orbit of the co-adjoint representation.
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B Left-invariant metrics

A riemannian metric on a Lie group G is called left-invariant if it is preserved
by all left translations L,, i.e., if the derivative of left translation carries every
vector to a vector of the same length.

It is sufficient to give a left-invariant metric at one point of the group, for
instance the identity; then the metric can be carried to the remaining points ‘
by left translations. Thus there are as many left-invariant riemannian metrics 1
on a group as there are euclidean structures on the algebra.

A euclidean structure on the algebra is defined by a symmetric positive
definite operator from the algebra to its dual space. Thus, let A:g — g™ be
a symmetric positive linear operator:

(A, n) = (An, &), forall {,ning.

(It is not very important that 4 be positive, but in mechanical applications
the quadratic form (A¢, &) is positive definite.)
We define a symmetric operator 4,: TG, - T*G, by left translation:

Agé = L;k—lALgvl* C:

We thus obtain the following commutative diagram of linear operators:

Acly
g TG
Lgfl-- g Rg"” g
A A,
* T* *
Ad¥

We will denote by angled brackets the scalar product determined by the
operator A,:

&y = (A8, m) = (Agn, ) = <1, Sy

This scalar product gives a riemannian metric on the group G, invariant under
left translations. The scalar product in the algebra will be denoted simply by
{ ,>. We define an operation B:g x g — g by the identity

{[a, b}, ¢> = {(B(c,a),by, forallbing.

Clearly, this operation B is bilinear, and for fixed first argument is skew-
symmetric in the second:

(B(c,a). by + {B(c,b),a> = 0.
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C Example

Let G = SO(3) be the group of rotations of three-dimensional euclidean
space, i.e. the configuration space of a rigid body fixed at a point. A motion
of the body is then described by a curve g = g(¢) in the group. The Lie algebra
of G is the three-dimensional space of angular velocities of all possible
rotations. The commutator in this algebra is the usual vector product.

A rotation velocity g of the body is a tangent vector to the group at the
point g. To get the angular velocity, we must carry this vector to the tangent
space of the group at the identity, i.e. to the algebra. But this can be done in
two ways: by left and right translation. As a result, we obtain two different
vectors in the algebra:

w€=Lg—1*geg and CUS:Rg-l*Q’EQ-

These two vectors are none other than the “angular velocity in the body” and
the “angular velocity in space.”

An element g of the group G corresponds to a position of the body obtained by the motion g
from some initial state (corresponding to the identity element of the group and chosen abritrar-
ily). Let @ be an element of the algebra.

Let ¢” be a one-parameter group of rotations with angular velocity w; w is the tangent
vector to this one-parameter group at the identity. Now we look at the displacement

ey, whereg =g(i)e G,weg.andt < 1,

obtained from the displacement g by a rotation with angular velocity w after a small time t.
If the vector g coincides with the vector

d wT
€ ’
dt =0 g

then w is called the angular velocity relative to space and is denoted by w,. Thus w, is obtained
from g by righr translation. In an analogous way we can show that the angular velocity in
the body is the left translate of the vector g in the algebra.

The dual space g* to the algebra in our example is the space of angular
momenta.

The kinetic energy of a body is determined by the vector of angular velocity
in the body and does not depend on the position of the body in space. There-
fore, kinetic energy gives a left-invariant riemannian metric on the group.
The symmetric positive definite operator 4,: TG, — T*G, given by this
metric is called the moment of inertia operator (or tensor). It is related to the
kinetic energy by the formula T = 3{g, §>, = {®w., 0> = H(Aw,, ®) =
3(A,9, g), where A:g — g* is the value of 4, for g = e. The image of the
vector g under the action of the moment of inertia operator A4, is called the
angular momentum and is denoted by M = A4,g. The vector M lies in the
cotangent space to the group at the point g, and it can be carried to the co-
tangent space to the group at the identity by both left and right translations.
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We obtain two vectors

M,=L;Meg*
and
M, = R*Meg*

These vectors in the dual space to the algebra are none other than the
angular momentum relative to the body (M,) and the angular momentum
relative to space (M,). This follows easily from the expression for kinetic
energy in terms of momentum and angular velocity:

T = {M., w) = XM, ).

By the principle of least action, the motion of a rigid body under inertia
(with no external forces) is a geodesic in the group of rotations with the left-
invariant metric described above.

We will now look at a geodesic of an arbitrary left-invariant riemannian
metric on an arbitrary Lie group as a motion of a “generalized rigid body™
with configuration space G. Such a “rigid body with group G is determined
by its kinetic energy, i.e., a positive definite quadratic form on the Lie algebra.
More precisely, we will consider geodesics of a left-invariant metric on a
group G given by a quadratic form {w, w) on the algebra as motions of a
rigid body with group G and kinetic energy {w, w>/2.

To every motion t — g(t) of our generalized rigid body we can associate
four curves:

t > wlt)eg t >wlt)eg
t - M(t)eg* t - M(t)e g*,

called motions of the vectors of angular velocity and momentum in the body
and in space. The differential equations which these curves satisfy were found
by Euler for an ordinary rigid body. However, they are true in the most general
case of an arbitrary group G, and we will call them the Euler equations for a
generalized rigid body.

Remark. In the ordinary theory of a rigid body six different three-dimen-
sional spaces R?, R3*, g, g*. TG,, and T*G, are identified. The fact that the
dimensions of the space R? in which the body moves and of the Lie algebra g
of its group of motions are the same is an accident related to the dimension 3;
in the n-dimensional case, g has dimension n(n — 1)/2.

The identification of the Lie algebra g with its dual space g* has a more
profound basis. The fact is that on the group of rotations there exists (and is
unique up to multiplication) a two-sided invariant riemannian metric. This
metric gives once and for all a preferred isomorphism of the vector spaces g
and g* (and also of TG, and T*G,). It allows us therefore to consider the
vectors of angular velocity and momentum as lying in the same euclidean
space. With this identification, the operation { , } is simply the commutator
of the algebra, taken with a minus sign.
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A two-sided invariant metric exists on any compact Lie group. Therefore,
to study motions of rigid bodies with compact groups we may identify the
spaces of angular velocities and momenta. However, we cannot make this
identification for applications to non-compact (or infinite-dimensional)
groups of diffeomorphisms.

D Euler’s equation

The results of Euler (obtained by him in the particular case G = SO(3)) can
be formulated as the following theorems on the motion of the vectors of
angular velocity and momentum of a generalized rigid body with group G.

Theorem 1. The vector of angular momentum relative to space is preserved
under motion:
dM;
dt

= 0.

Theorem 2. The vector of angular momentum relative to the body satisfies
Euler’s equation

dM.

dr = {wca MC}'

These theorems are proved for a generalized rigid body in the same way as
for an ordinary rigid body.

Remark I. The vector of angular velocity in the body, w,, can be expressed
linearly in terms of the vector of angular momentum in the body, M_, by
using the inverse of the inertia operator: w, = 4~ 'M_. Therefore, Euler’s
equation can be considered as an equation for the vector of angular mo-
mentum 1n the body alone; its right-hand side is quadratic in M,.

We can also express this result in the following way. Consider the phase
flow of our rigid body. (Its phase space T*G has dimension twice the dimen-
sion n of the group G or the space of angular momenta g*.) Then this phase
flow in a 2n-dimensional manifold factors over the flow given by Euler’s
equation in the n-dimensional vector space g*.

A factorization of a phase flow ¢’ on a manifold X over a phase flow f‘ on a manifold ¥
is a smooth mapping n of X onto ¥ under which motions g' are mapped to motions f”, so that
the following diagram commutes (i.e., ng' = f'n):
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In our case, X = T*G is the phase space of the body, ¥ = g* is the space of angular momenta.
The projection n: T*G — g* is defined by left translation (M = L¥M for M e T*G,), ¢g' is
the phase flow of the body under consideration on the 2n-dimensional space T*G, and fis the
phase flow of the Euler equation in the n-dimension space of angular momenta g*.

In other words, a motion of the vector of angular momentum relative to
the body depends only on the initial position of the vector of angular mo-
mentum relative to the body and does not depend on the position of the
body in the space.

Remark 2. The law of conservation of the vector of angular momentum
relative to space can be expressed by saying that every component of this
vector in some coordinate system on the space g* is conserved. We thus
obtain a set of first integrals of the equations of motion of the rigid body. In
particular, to every element of the Lie algebra g there corresponds a linear
function on the space g* and, therefore, a first integral. The Poisson brackets
of first integrals given by functions on g* are themselves functions on g*, as
can be seen easily. We thus obtain an (infinite-dimensional) extension of the
Lie algebra g, consisting of all functions on g*. g itself is included in this
extension as the Lie algebra of linear functions on g*. Of course, of all these
first integrals of the phase flow in a 2n-dimensional space only n are func-
tionally independent. As the n independent integrals we can take, for example,
n linear functions on g* which form a basis in g.

Because of possible infinite-dimensional applications, we would like to
avoid coordinates and formulate statements about first integrals intrinsically.
This can be done by reformulating Theorem 1 in the following way.

Theorem 3. The orbits of the co-adjoint representation of a group in the dual
space to the algebra are invariant manifolds for the flow in this space given
by Euler’s equation.

PROOF. M (1) is obtained from M(¢) by the action of the co-adjoint repre-
sentation, and M (t) remains fixed. O

ExaMPLE. In the case of an ordinary rigid body, the orbits of the co-adjoint
representation of the group in the space of momenta are the spheres
M? + M2 + M2 = const. In this case Theorem 3 is reduced to the law of
conservation of the length of the angular momentum. It consists of the fact
that, if the initial point M, lies on some orbit (i.e., in the given case on the
sphere M2 = const), then all the points of its trajectory under the action of
Euler’s equation lie on the same orbit.

We now return to the general case of an arbitrary group G and recall that
each orbit of the co-adjoint representation has a symplectic structure (cf.
subsection A). Furthermore, the kinetic energy of the body can be expressed
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in terms of the angular momentum relative to the body. As a result we obtain
a quadratic form on the space of angular momenta

T = XM, A~ 'M).

Let us fix some one orbit ¥ of the co-adjoint representation. We consider the
kinetic energy as a function on this orbit:

H: V>R,  HM,)=YXM, A 'M,).

Theorem 4. On every orbit V of the co-adjoint representation, Euler’s equation
is hamiltonian with hamiltonian function H.

ProOF. Every vector ¢ tangent to V at a point M has the form & = {f, M. where feq. In
particular, the vector field on the right side of Euler's equation can be written in the form
X = {dT, M} (here the differential of the function T at a point M of the vector space g* is
considered as a vector of the dual space to g*, i.e., as an element of the Lie algebra q). It follows
from the definitions of the symplectic structure Q and the operation { , } (cf. subsection A)

that for every vector ¢ tangent to V at M,
Q. X) = (M, [£,dT]) = (dT, { f, M}) = (dH. &). U

Euler’s equation can be carried over from the dual space of the algebra to
the algebra itself by inversion of the moment of inertia operator. As a result
we obtain the following formulation of Euler’s equation in terms of the

operation B (section B).

Theorem S. The motion of the vector of angular velocity in the body is deter-
mined by the initial position of this vector and does not depend on the initial
position of the body. The vector of angular velocity in the body satisfies an
equation with quadratic right-hand side:

w,. = B(w,, ).

We will call this equation Euler’s equation for angular velocity. We
notice that, under the action of the operator 4~ !: g* — g, the orbits of the
co-adjoint representation are carried to invariant manifolds of Euler’s
equation for angular velocity; these manifolds have symplectic structure, etc.
However, unlike orbits in g*, these invariant manifolds are not determined
by the Lie group G itself, but depend also on the choice of rigid body (i.e.,
moment of inertia operator).

From the law of conservation of energy we have

Theorem 6. Euler’s equations ( for momentum and angular velocity) have a
quadratic first integral, whose value is equal to the kinetic energy

T=4M,A M) =YHAov_, w,).
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E Stationary rotations and their stability

A stationary rotation of a rigid body is a rotation for which the angular
velocity in the body is constant (and thus also the an gular velocity in space;
it is easy to see that one implies the other). We know from the theory of an
ordinary rigid body in R? that stationary rotations are rotations around the
major axes of the moment of inertia ellipsoid. Below, we formulate a general-
ization of this theorem to the case of a rigid body with any Lie group. We note
that stationary rotations are geodesics of left-invariant metrics which are one-
parameter subgroups. We note also that the directions of the major axes of
the inertia ellipsoid can be determined by looking at the stationary points of
the kinetic energy on the sphere of vectors of momentum of fixed length.

Theorem 7. The angular momentum (respectively, angular velocity) of a
stationary rotation with respect to the body is a critical point of the energy
on the orbit of the co-adjoint representation (respectively on the image of the
orbit under the action of the operator A™'). Conversely, every critical point
of the energy on an orbit determines a stationary rotation.

The proof is a straightforward computation or application of Theorem 4.

We note that the partition of the space of momenta into orbits of the co-
adjoint representation cannot be so easily constructed in the case of an
arbitrary group as it was in the simple case of an ordinary rigid body; in that
case it was the partition of three-dimensional space into spheres with center
0 and the point O itself. In the general case, the orbits can have different
dimensions, and the partition into orbits at some points may not be a
fibering; such a singularity already appeared in the three-dimensional case
at the point O.

We call a point M of the space of angular momenta a regular point if the
partition of a neighborhood of M into orbits is diffeomorphic to a partition
of euclidean space into parallel planes (in particular, all orbits near the point
M have the same dimension). For example, for the group of rotations of
three-dimensional space all points of the space of angular momenta are
regular except the origin.

Theorem 8. Suppose that a regular point M of the space of angular momenta is
a critical point of the energy on an orbit of the co-adjoint representation,
and that the second differential of the energy d*H at this point is a (positive
or negative) definite form. Then M is a (Liapunov) stable equilibrium positior
of Euler’s equations.

PrOOF. It follows from the regularity of the orbits near this point that on
every neighboring orbit there exists near M a point which is a conditional
maximum or minimum of energy. [l
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Theorem 9. The second differential of the kinetic energy, restricted to the image
of an orbit of the co-adjoint representation in the algebra, is given at a
critical point w e g by the formula

2dH g = <B(w, f), B(w, [)> + L[ f, @], B(w, ),

where  is a tangent vector to this image, expressed in terms of f by the
formula

¢ = B(w, f), feaq.

F Riemannian curvature of a group with
left-invariant metric

Let G be a Lie group provided with the left-invariant metric given by a
scalar product { , > in the algebra. We note that the riemannian curvature
of the group G at any point is determined by the curvature at the identity
(since left translation maps the group to itself isometrically). Therefore, it is
sufficient to calculate the curvature for two-dimensional planes lying in the
Lie algebra.

Theorem 10. The curvature of a group in the direction determined by an
orthonormal pair of vectors &, n in the algebra is given by the formula

K*f."l = <6,0) + 2<OC, ﬂ> - 3<a9 ay — 4<B,:, Bn)a

where 26 = B({, n) + B(n, £), 28 = B(L,n) — B(n, &), 2o = [, ], 2B; =
B(¢, &), 2B, = B(n, n), and where B is the operation defined in section B.

The proof is a tedious but straightforward calculation. It is based on the
easily verified formula for covariant derivative

(Vem)e = 5([&, 1] — B(&, n) — B(n, £)),

where £ and 7 on the left are left-invariant vector fields and on the right are
their values at the identity.

Remark 1. In the case of a two-sided invariant metric, the formula for
curvature has the particularly simple form

K., = K[ 71, [ 71D

Remark 2. The formula for the curvature of a group with a right-invariant
riemannian metric coincides with the formula for the left-invariant case. In
fact, a right-invariant metric on a group is a left-invariant metric on the
group with the reverse multiplication law (g, * g, = ¢,¢,). Passage to the
reverse group changes the signs of both the commutator and the operation B
in the algebra. But, in every term of the formula for curvature, there is a
product of two operations changing the sign. Therefore, the formula for
curvature is the same in the right-invariant case.
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In Euler’s equation the right-hand side changes sign under passage to the
right-invariant case.

G Application to groups of diffeomorphisms

Let D be a bounded region in a riemannian manifold. Consider the group of
diffeomorphisms of D which preserve the volume element. We will denote
this group by SDiff D.

The Lie algebra corresponding to the group SDiff D consists of all vector
fields with divergence 0 on D, tangent to the boundary (if it is not empty). We
define the scalar product of two elements of this Lie algebra (i.e., two vector
fields) as

{v,, 05) = J;)(:;l Cv,)dX,

where (-) is the scalar product giving the riemannian metric on D, and dx
is the riemannian volume element.

We now consider the flow of a uniform ideal (incompressible, non-
viscous) fluid on the region D. Such a flow is described by a curve t — g, in
the group SDiff D. Namely, the diffeomorphism g, is the map which carries
every particle of the fluid from the place it was at time 0 to the place 1t is at
time t. It turns out that the kinetic energy of the moving fluid is a right-
invariant riemannian metric on the group of diffeomorphisms SDiffD.

Indeed, suppose that after time ¢ the flow of the fluid gives a diffeomorphism g,, and that
the velocity at this moment of time is given by the vector field v. Then the diffeomorphism
realized by the flow after time ¢ + t (where 7 is small) will be e""g, up to a quantity small in
comparison with 7 (here ™ is the one-parameter group with vector v, i.e., the phase flow of the
differential equation given by the field v). Therefore, the field of velocities v is obtained from the
vector § tangent to the group at the point g by right translation. This also implies the right-
invariance of the kinetic energy, which is by definition equal to

T = v, v

(we assume the density of the fluid to be 1).

The principle of least action (which in mathematical terms is the definition
of an ideal fluid) asserts that flows of an ideal fluid are geodesics in the right-
invariant metric just described on the group of difffomorphisms.

Strictly speaking, an infinite-dimensional group of difffomorphisms is not a manifold.
Therefore the exact formulation of the definition above requires additional work: we must
choose suitable functional spaces, provc a theorem on existence and uniqueness of solutions,
etc. Up to now this has been done only in the case when the dimension of the region of the flow D
is equal to 2. However, we will proceed as if these difficulties connected with infinite dimensions
did not exist. Thus the following arguments are heuristic in character. It turns out that many
of the results can be proved rigorously, independently of the theory of infinite-dimensional
manifolds.

We will now indicate the form that the general formulas introduced above
take in the case G = SDiffD, where D is a connected region with finite
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volume in a three-dimensional riemannian manifold. To do this we must
first describe explicitly the bilinear operation B:g x g — g defined in
section B by the formula

{{a, b], ¢> = {B(c, a), b>.

It 1s easy to verify that in the three-dimensional case the vector field
B(c, a) can be expressed in terms of the vector fields a and ¢ of our Lie algebra
by the formula

B(c,a) = (curl ¢) A a + grad «,

where A denotes the vector product, and « the single-valued function on D
which is uniquely (up to a constant summand) determined by the condition
B € g (i.e., the conditions div B = 0 and B is tangent to the boundary of D).

We note that the operation B does not depend on the choice of orientation,
since the vector product and curl both change sign with a change of orienta-
tion.

Stationary flows. Euler’s equation for “angular velocity” in the case
G = SDiff D has the form o = — B(v, v), since the metric is right-invariant.
Therefore, in the case of the group of difffomorphisms of three-dimensional
space, it takes the form of “the equations of motion in Bernoulli’s form”

v

a—t=v/\curlv+gradcx, dive = 0.

Euler’s equation for momentum is written in the form of the “vorticity

equation”
Jcurle

ot

In particular, the vorticity of a stationary flow commutes with the field of

velocities.
This remark leads quickly to a topological classification of stationary

flows of an ideal fluid in three-dimensional space.

= [v, curl v].

Theorem 11. Assume that the region D is bounded by a compact analytic surface,
and that the field of velocities is analytic and not everywhere collinear with
its curl. Then the region of the flow can be partitioned by an analytic sub-
manifold into a finite number of cells, in each of which the flow is constructed
in a standard way. Namely, the cells are of two types: those fibered into tori
invariant under the flow and those fibered into surfaces invariant under the
flow, diffeomorphic to the annulus R x S'. On each of these tori the flow
lines are either all closed or all dense, and on each annulus all the flow lines

are closed.

To prove this theorem we look at the “Bernoulli surfaces,” i.e., the level
surfaces of the function a. It follows from the condition for a flow to be
stationary (v A curl v = —grad «) that both the flow lines and the vortex
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lines lie on the Bernoulli surface. Since the fields of velocity and vorticity
commute, the group R? acts on the closed Bernoulli surface, and it must be a
torus (cf. the proof of Liouville’s theorem in Section 49). An analogous
calculation for the boundary conditions on the boundary of D shows that the
non-closed Bernoulli surfaces consist of annuli with closed flow lines.

Remark. The analyticity of the field of velocities is not very essential, but
it is important that the fields of velocity and vorticity not be collinear.
Computer experiments conducted by M. Henon show more complicated
behavior than described in the theorem for the flow lines of a stationary flow
on the three-dimensional torus; this field is given by the formulas

vy=Asinz + Ccosy v, = Bsin x + A cos z,
v, = Csin y + B cos x.

The formulas are selected so that the vectors v and curl v are collinear. The
results of Henon’s calculations suggest that some flow lines densely fill up a
three-dimensional region.

I Isovorticial fields

Two-dimensional hydrodynamics differs sharply from three-dimensional
hydrodynamics. The essence of this difference is contained in the difference
in the geometries of the orbits of the co-adjoint representation in the two-
and three-dimensional cases. In the two-dimensional case the orbits are in
some sense closed and behave, for example, like a family of level sets of a
function (more precisely of several functions: actually even an infinite number
of functions). In the three-dimensional case the orbits are more complicated;
in particular, they are unbounded (and perhaps dense). The orbits of the co-
adjoint representation of the group of diffeomorphisms of a three-dimensional
riemannian manifold can be described in the following way. Let v, and v, be
two vector fields of velocities of a non-compressible fluid in the region D.
We say that the fields v, and v, are isovorticial if there is volume-preserving
diffeomorphism g: D — D which carries every closed contour y in D to a new
contour such that the circulation of the first field along the original contour
is equal to the circulation of the second field along the new contour:

§ vl = Uz.
¥ gy

It is easy to verify that the image of an orbit of the co-adjoint representation
in the algebra (under the action of the inverse of the inertia operator, A~ ') is
none other than the set of fields isovorticial to the given field.

In particular, Theorem 3 now takes the form of the following law of con-
servation of circulation:

Theorem 12. The circulation of a field of velocities of an ideal fluid over a closed
fluid contour does not change when the contour is carried by the flow to a
new position.
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We note that if two fields of velocities of a three-dimensional ideal fluid
on D are isovorticial, then the corresponding diffeomorphism carries the curl
of the first field into the curl of the second:

g, curl v, = curl v,.

Furthermore, the isovorticity of two fields can be defined as the equivalence
of the fields of vorticity, if the region of the flow is simply-connected. Therefore,
the problem of the oribits of the co-adjoint representation in the three-
dimensional case includes the problem of classifying vector fields with
divergence zero up to volume-preserving diffeomorphisms. This last problem

in three dimensions is hopelessly difficult.

We now consider the two-dimensional case. First, we translate the basic
formulas into notation convenient for considering the two-dimensional case.
We assume that the region D of the flow is two-dimensional and oriented.
The metric and orientation give a symplectic structure on D: the vector field
of velocities has divergence zero and is therefore hamiltonian. Therefore, this
field is given by a hamiltonian function (many-valued, in general, if the region
D is not simply-connected). The hamiltonian function of a field of velocities
is called the stream function in hydrodynamics, and is denoted by 1. Thus

v =1 grad ¥,

where I is the operator of clockwise rotation by 90°.
The stream function of the commutator of two fields turns out to be the
Jacobian (or the Poisson bracket of hamiltonian formalism) of the stream

functions of the original fields

'1{/[01,:)2] = J(wls l//Z)

The vector field B(c, a) is given, in the two-dimensional case, by the formula
B = —(Ay)grad ¥, + grad «,

where v, and _ are the stream functions of the fields ¢ and ¢, and A =
div grad is the laplacian.

In the particular case of the euclidean plane with cartesian coordinates x
and y, the formulas for stream function, commutator and laplacian take the

particularly simple form

¥ W
Ty ¥ ox
l!/ . awvl al//vz _ a.ibvl ad’vz
te-e2l = ax dy dy 0Ox
02 02

A=— + —5.
axz T ay?

Uy
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The vorticity (or curl) of a two-dimensional field of velocities is the scalar
function r such that the integral around any oriented region ¢ in D of the
product of r with the oriented area element is equal to the circulation of the
field of velocities around the boundary of o

frdS= § v.
aT (il 4

It is easy to compute an expression for the vorticity in terms of the stream

function:
r= —Ay.

In the two-dimensional simply-connected case, isovorticity of fields v,
and v, means simply that the functions r; and r, (the vorticities of these
fields) are carried to one another under a suitable volume-preserving dif-
feomorphism.

Under such conditions the two functions r, and r, have the same distribu-

tion function, iL.e.,

mes{xeD:ri(x) < c} = mes{xeD:ry(x) < cl,

for any number ¢. Therefore, if two fields are in the image of the same orbit
of the co-adjoint representation, then a whole series of functionals are equal;
for example, the integrals of all powers of the vorticity

fr';d5=frgds.
D D

In particular, Euler’s equations of motion of a two-dimensional ideal fluid

9
a—':+uvu= _grad p  dive =0,

have an infinite collection of first integrals. For example, the integral of any
power of the vorticity of the field of velocities

_ dv,  Ov \*
L= ff (G -5 aon @

is such a first integral.

The existence of these first integrals (i.e., the relatively simple structure of
orbits of the co-adjoint representation) allows us to prove theorems on
existence and uniqueness, etc. in the two-dimensional hydrodynamics of ar
ideal (and also of a viscous) fluid; the complicated geometry of orbits of the
co-adjoint representation in the three-dimensional case (or, perhaps, in-
sufficient information about these orbits) makes the foundations of three-
dimensional hydrodynamics a very hard problem.

334

il



Appendix 2: Geodesics of left-invariant metrics on Lie groups

J Stability of planar stationary flows

Here we formulate general theorems about stationary rotations (Theorems
7, 8, and 9 above) for the case of a group of diffeomorphisms. We obtain in
this way the following assertions:

1. A stationary flow of an ideal fluid is distinguished from all flows iso-
vorticial to it by the fact that it is a conditional extremum (or critical point)
of the kinetic energy.

2. If (i) the indicated critical point is actually an extremum, i.e., a local con-
ditional maximum or minimum, (ii) it satisfies certain (generally satisfied)
regularity conditions, and (iti) the extremum is non-degenerate (the
second differential is positive- or negative-definite), then the stationary
flow is stable (i.e., is a Liapunov stable equilibrium position of Euler’s
equation).

3. The formula for the second differential of the kinetic energy, on the tangent
space to the manifold of fields which are isovorticial to a given one, has the
following form in the two-dimensional case. Let D be a region in the
euclidean plane with cartesian coordinates x and y. Consider a stationary
flow with stream function ¥ = Y(x, v). Then 2d?H = [[, (5v)? +
(AY/VAYYSr)? dx dy, where dv is the variation of the field of velocities
(i.e., a vector of the tangent space indicated above), and ér = curl dv.

We note that for a stationary flow, the gradient vectors of the stream
function and its laplacian are collinear. Therefore the ratio Viy/VAy makes
sense. Furthermore, in a neighborhood of every point where the gradient of
the vorticity is not zero, the stream function is a function of the vorticity
function.

The assertions introduced above lead to the conclusion that the positive
or negative definiteness of the quadratic form d?H is a sufficient condition
for stability of the stationary flow under consideration. This conclusion does
not formally follow from Theorems 7, 8, and 9 since the application of any of
our formulas in the infinite-dimensional case requires justification. Fortu-
nately, we can justify the final conclusion about stability without justifying
the intermediate constructions. Thus we can rigorously prove the following
a priori bounds (expressing the stability of a stationary flow in terms of small
perturbations of the initial velocity field).

Theorem 13. Suppose that the stream function of a stationary flow, Y = Y( x, y),
in aregion D is a function of the vorticity function (i.e., of the function Ayr) not
only locally, but globally. Suppose that the derivative of the stream function
with respect to the vorticity satisfies the inequality

vy

csmsc, where 0 < ¢ < C < 0.
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Let ¥ + @(x, vy, t) be the stream function of another flow, not necessarily
stationary. Assume that, at the initial moment, the circulation of the velocity
field of the perturbed flow (with flow function ¥ + @) around every boundary
component of the region D is equal to the circulation of the original flow (with
stream function ). Then the perturbation ¢ = @(x, y, t) at every moment
of time is bounded in terms of the initial perturbation ¢, = @(X, y, 0) by the
formula

ffb(v¢)2 + c(Ap)? dx dy < J‘L(V(pﬂ)’- + C(Apy)? dx dy.

If the stationary flow satisfies the inequality

Vy

- <
c = VAI//_

C, O<cec< C < w0,

then the perturbation ¢ is bounded in terms of @ by the formula

ffDC(AQ)Z (Vo) dx dy < f L)C(Aq,o)z — (Voo)? dx dy.

This theorem implies the stability of a stationary flow in the case of a
positive-definite quadratic form

\Y%
| L(ch)z + % (Ag)? dx dy

with respect to Vo (where ¢ is a constant function on every component of the
boundary of D whose gradient flow is zero over every boundary component),
and also in the case of a negative definite form

~UD(V'QD)Z + (max AVVII’W)(A@Z dx dy.

ExAMPLE 1. Consider a planar parallel flow in the strip ¥; < y < Y, in the
(x, y)-plane with velocity profile v(y) (i.e., with velocity field (v(y), 0)). Such
a flow is stationary for any velocity profile. To make the region of the flow
compact, we impose the condition that the velocity fields of all flows under
consideration be periodic with period X in the x-coordinate.

The conditions of Theorem 13 are fulfilled if the velocity profile has no
points of inflection (i.e., if d?v/dy* # 0). We come to the conclusion that
planar parallel flows of an ideal fluid with no inflection points in the velocity
profile are stable.

The analogous proposition in the linearized problem is called Rayleigh’s
theorem.
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We emphasize that in Theorem 13 it is not a question of stability “in a linear approxima-
tion,” but of actual strict Liapunov stability (i.e., with respect to finite perturbations in the
nonlinear probiem). The difference between these two forms of stability is substantial in this
case, since our problem has a hamiltonian character {cf. Theorem 4); for hamiltonian systems
asymptotic stability is impossible, so stability in a linear approximation is always neutral and
insufficient for a conclusion about the stability of an equilibrium position of the nonlinear
problem.

ExAMPLE 2. Consider the planar-parallel flow on the torus

{(x, ¥), x mod X, y mod 2n}

with velocity field v = (sin y, 0), parallel to the x-axis. This field is deter-
mined by the stream function ¥ = —cos y and has vorticity r = —cos y.
The velocity profile has two inflection points, but the stream function can
be expressed as a function of the vorticity. The ratio Viy/VAY is equal to
minus one. By applying Theorem 13 we can convince ourselves of the
stability of our stationary flow in the case when

2n X 2n X
f f (Ap)? dx dy > J f (Vo)? dx dy
o Jo 0o Yo

for all functions @ of period X in x and 2x in y. It is easy to calculate that the
last inequality is satisfied for X < 2n and violated for X > 2x.

Thus Theorem 13 implies the stability of a sinusoidal stationary flow on a
short torus, when the period in the direction of the basic flow (X)) is less than
the width of the flow (2m). On the other hand, we can directly verify that on a
long torus (for X > 2x) our sinusoidal flow is unstable.®” Thus, in this
example, the sufficient condition for stability from Theorem 13 turns out to
be necessary.

We should note that in general an indefinite quadratic form d?H does not imply instability
of the corresponding flow. In general, an equilibrium position of a hamiltonian system can be
stable even though the hamiitonian function at this position is neither a maximum nor a mini-
mum. The quadratic hamiltonian H = p + g{ — p3 — g% is the simplest example of this kind.

K Riemannian curvature of a group of diffeomorphisms

The expression for the curvature of a Lie group provided with a one-
sided-invariant metric, introduced in subsection E, makes sense also for the
group SDiff D of difftomorphisms of a riemannian domain D. This group is
the configuration space for an ideal fluid filling the domain D. The kinetic
energy defines a right-invariant metric on SDiff D. The number which we
obtain by formally applying the formula for the curvature of a Lie group to

#7 Cf., for example, the article of L. D. Meshalkin and Y. G. Sinai, “Investigation of the stability
of a stationary solution of a system of equations for the plane movement of an incompressible
viscous liquid.” J. Applied Math. Mech. 25 (1962), 1700-1705.
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this infinite-dimensional group is naturaily called the curvature of the group
SDiff D.

Calculation of the curvature of a group of difffomorphisms has been
carried out completely only in the case of a flow on the two-dimensional
torus with euclidean metric. Such a torus is obtained from the euclidean
plane R2 by identifying points whose difference lies in some lattice (a discrete
subgroup of the plane). An example of such a lattice is the set of points with
integral coordinates. In general, to obtain an arbitrary lattice I' we may
replace the square lying at the basis of this special lattice by any parallelogram.

Now consider the Lie algebra of vector fields with divergence zero on the
torus with a single-valued stream function. The corresponding group
So Diff T? consists of volume-preserving diffeomorphisms which leave the
center of mass of the torus fixed. It is embedded in the group SDiff T2 of all
volume-preserving diffeomorphisms as a totally geodesic submanifold (i.e.,
a submanifold such that each of its geodesics is a geodesic in the ambient
manifold).

The proof consists of the fact that if, at the initial moment, a velocity
field of an ideal fluid has a single-valued stream function, then at all other
moments of time the stream function will also be single-valued; this follows
from the law of conservation of momentum.

We will now investigate the curvature of the group S, Diff T2 in all pos-
sible two-dimensional directions passing through the identity of the group
(the curvature of the group SDiff T2 in every such direction is the same, since
the submanifold S, Diff T? is totally geodesic).

Choose an orientation on R2. Then elements of the Lie algebra of the
group S, Diff T? can be thought of as real functions on the torus having
average value zero (a field with divergence zero is obtained from such a
function by considering it to be a stream function). Therefore, a two-dimen-
sional direction in the tangent space to the group S, Diff T2 is determined by
a pair of functions on the torus with average value zero.

We will give such a function by the set of its Fourier coefficients. It is con-
venient to carry out all calculations with Fourier series in the complex do-
main. We let ¢, (where k, called a wave vector, is a point of the euclidean
plane) denote the function whose value at a point x of our plane is equal to
¢®™_Such a function determines a function on the torus if it is [-periodic,
i.e., if adding a vector from the lattice I" to x does not change the value of the
function.

In other words, the scalar product (k, x) must be a multiple of 2x for all
x € T. All such vectors k belong to a lattice ['* on R?. The functions e,, where
k e I'*, form a complete system in the space of complex functions on the torus.

We now complexify our Lie algebra, scalar product { , >, commutator
[ , ] and operation B in the algebra, as well as the riemannian connection
and curvature tensor £, so that all these functions become (multi-) linear in
the complex vector space of the complexified Lie algebra. The functions e,
(where ke T*, k # 0) form a basis of this vector space.
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Theorem 14. The explicit formulas for the scalar product, commutator, opera-
tion B, connection, and curvature of a right-invariant metric on the group

So Diff T? have the following form:
{ex,ep =0 fork +1%#0,
{ex, e_x> = k*S;
Lew. er] = (k A Deyyrs

kZ
Bley, ;) = by.1exy1, where by ; = (k A l)m;
Ve.er = dy k1841, where d, = w u;)g(u : v);

v

Riimn=0ifk+1+m+n#0:ifk+1+m+n=0,then Ry pn =
(alnakm — AuuQn)S, where a,,, = (u A v)2/|u + vl

In these formulas, S is the area of the torus, and u A v the area of the
parallelogram spanned by u and v (with respect to the chosen orientation of
R?). The parentheses denote the euclidean scalar product in the plane, and
angled brackets denote the scalar product in the Lie algebra.

The proof of this theorem is in the first article listed in the introduction to
this appendix.

The formulas above allow us to calculate the curvature in any two-
dimensional direction. These calculations show that in most directions the
curvature is negative, but in a few it is positive. Consider, for instance, some
fluid flow, i.e. a geodesic of our group. By Jacobi’s equations, the stability of
this geodesic is determined by the curvatures in the directions of all possible
two-dimensional planes passing through the velocity vector of the geodesic
at each of its points.

Assume now that the flow under consideration is stationary. Then the geo-
desic is a one-parameter subgroup of our group. From this it follows that the
curvatures in the directions of all planes passing through velocity vectors of
the geodesic at all of its points are equal to the curvatures in the corresponding
planes going through the velocity vector of this geodesic at the initial moment
of time (Proof: right translate to the identity element of the group). Thus the
stability of a stationary flow depends only on the curvatures in the directions
of those two-dimensional planes in the Lie algebra which contain the vector
of the Lie algebra which is the velocity field of the stationary flow.

Consider, for exampile, the simplest parallel sinusoidal stationary flow.
Such a flow is given by the stream function

et ey
¢ = >
Consider any other real vector of the algebra, n = ) x,e; (so x_, = x;). We

deduce easily from Theorem 14 that
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Theorem 15. The curvature of the group SoDiff T? in any two-dimensional
plane containing the direction & is non-positive. Namely,

Z af,l|xz + X420l

From this formula it follows, in particular, that

1. The curvature is equal to zero only for those two-dimensional planes which
consist of parallel flows in the same direction as £, so that [£, n] = 0;

2. The curvature in the plane defined by the flow functions { = cos kx,
n = cos Ix is

_k2+IZ
4S5

where S is the area of the torus, « is the angle between k and [, and f is the
angle between k + land k — [;

3. In particular, the curvature of the group of difftomorphisms of the torus
{(x, y)mod 2n} in directions determined by the velocity fields (sin y, 0)
(0, sin x) is equal to

K sin? o sin? B,

_ —1
~ 8r?’

K

L Discussion

It is natural to expect that the curvature of a group of diffeomorphisms is
related to the stability of geodesics in this group (i.e. to the stability of flows
of an ideal fluid) in the same way as the curvature of a finite-dimensional Lie
group is related to the stability of geodesics on it. Namely, negative curvature
causes exponential instability of geodesics. The characteristic path length
(the average path length in which errors in the initial conditions grow e
times) has order of magnitude 1/./ — K. Thus, knowing the curvatures of a
group of diffeomorphisms allows us to estimate the time for which we can
predict the development of the flow of an ideal fluid by means of an approxi-
mate initial velocity field before the error grows to a large order.

It should be emphasized that instability of a flow of an ideal fluid is here understood dif-
ferently than in section K it is a question of exponential instability of the motion of the Auid,
not of its velocity field. It is possible for a stationary flow to be a Liapunov stable solution of
Euler’s equation while the corresponding motion of the fluid is exponentially unstable. The
reason is that a small change in the velocity field of a fluid can induce an exponentially growing
change in the motion of the fluid. In such a case (stability of the solution of Euler’s equation
and negative curvature of the group) we can predict the velocity field, but we cannot predict
the motion of the fluid mass without a great loss of accuracy.

The formulas mentioned above for curvature can be used even for rough
estimates of the time over which a long-term dynamical prediction of the
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weather is impossible, if we agree to a few simplifying assumptions. These
simplifying assumptions consist of the following:

1. The earth has the shape of a torus obtained by factoring the plane by a
square lattice.

2. The atmosphere is a two-dimensional homogeneous non-compressible
non-viscous fluid.

3. The motion of the atmosphere is approximately a “tradewind current,”
parallel to the equator of the torus and having sinusoidal velocity profile.

To calculate the characteristic path length we must then estimate the
curvature of the group S, Diff T2 in directions containing the “tradewind
current” ¢ from Theorem 15. To do this we will look at T2 as {(x, y)mod 27},
k = (0, 1). In other words, we look at 2n-periodic flows on the (x, y)-plane
close to a stationary flow, parallel to the x-axis and with sinusoidal velocity
profile

v = (sin y, 0).

It is easy to see from the formula in Theorem 15 that the curvature of the
group S, Diff T? in the planes containing our tradewind current v varies
within the limits

2
— — < K <0, where S = 4r? is the area of the torus.

S
Here the lower limit is obtained by a rather crude estimate. However, a
direction with curvature K = —1/28 certainty exists, and there are many

other directions with curvature of approximately the same size. In order to
make a rough estimate of the characteristic path length, we make the rough
guess K, = — 1/28 as value of the “mean curvature.”

If we agree to start from this value K, of the curvature, we obtain the

characteristic path length

s=(/—Ko) '=./25

The velocity of motion with respect to the group which corresponds to
our tradewind current is equal to ﬁ/2 (since the average square value of
the sine is 3). Therefore, the time it takes for our flow to travel the characteristic
path length is equal to 2. The fastest particles of the fluid go a distance of 2 after
this time, i.e., 1/m of the entire orbit around the torus.

Thus, if we take our value of the mean curvature, then the error grows by
e™ x> 20 after the time of one orbit of the fastest particle. Taking the value
100 km/hr as the maximal velocity of the tradewind current, we get 400 hours
for the time of orbit, i.e., less than three weeks.

Thus, if at the initial moment the state of the weather was known with
small error g, then the order of magnitude of the error of prediction after n
months would be
0-24
400

10*"¢, where k =~ nlog,,e = 2.5.
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For example, to predict the weather two months in advance we must have
initial data with five more digits of accuracy than the prediction accuracy.
Practically, this means that calculating the weather for such a period is

impossible.
It is clear that the estimates mentioned here are not very sharp, and the

model we took is very simplified. The choice of the value of “mean curvature”
also requires justification.
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The symplectic manifolds of classical mechanics are most often phase spaces
of lagrangian mechanical systems, i.e., cotangent bundles of configuration
spaces.

An entirely different series of symplectic manifolds arises in algebraic
geometry.

For example, any smooth complex algebraic manifold (given by a system
of polynomial equations in complex projective space) has a natural symplectic
structure.

The construction of a symplectic structure on an algebraic manifold is
based on the fact that complex projective space itself has a particular sym-
plectic structure, namely the imaginary part of its hermitian structure.

A The hermitian structure of complex
projective space

Recall that n-dimensional complex projective space CP" is the manifold of all
complex lines passing through the point O in an (n + 1)-dimensional com-
plex vector space C"*!. To construct a symplectic structure on CP" we use
the hermitian structure in the corresponding vector space C"*1,

Recall that a hermitian scalar product (or hermitian structure) on a complex vector space
is a complex linear function on pairs of vectors, which (1) is linear in the first and anti-linear
in the second variable, (2) changes its value to the complex conjugate when the arguments are
interchanged, and (3) becomes a positive-definite real quadratic form if we take the arguments

equal:

AL > = A&, mcy=<L&m &¢>>0

for & # 0.
An example of a hermitian scalar product is

(1) Eom> =2 &l

where &, and #, are the coordinates of the vectors ¢ and » in some basis.
A basis for which a hermitian scalar product has the form (1) always exists, and is called a

hermitian-orthonormal basis.
The real and imaginary parts of a hermitian scalar product are real bilinear forms. The

first is symmetric, and the second skew-symmetric, and both are nondegenerate:
o> = m +ilE, n] (& n = (<) (&nl=—-[n<l

The quadratic form (&, ) is positive-definite.

Thus a hermitian structure < , > on a complex vector space gives it a euclidean structure
{ , )and a symplectic structure [ , ]. These two structures are related to the complex structure
by the relation

(s, 1] = (&, in).

We will now define a riemannian metric on complex projective space.
To do this, consider the unit sphere

S2n+1 — {ZEC""'I: z’z> — 1}

in the corresponding vector space C"*!. This sphere inherits the riemannian
metric from C"*!. Every complex line intersects our sphere in a great circle.
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Definition. The distance between two points of complex projective space 1s
the distance between the two corresponding circles on the unit sphere.

We note that these two circles are parallel in the sense that the distance
from any point of one of the circles to the other is the same (Proof: multiplica-
tion of z by €' preserves the metric on the sphere). This circumstance allows
us at once to write down an explicit formula (2) for the riemannian metric on
the complex projective space given by the construction defined above.

In fact, let p denote the mapping

p:C"*" N0 — CP”,

taking a point z # 0 of the vector space C"*' to the complex line passing
through 0 and =z.

Every vector { tangent to CP" at the point pz can be represented (in many
ways) as the image of a vector at the point z; under this map

{=p,&  EeTCIY

Theorem. The square of the length of a vector ( in the riemannian metric
defined above is given by the formula

<€= 6><Z9 Z> - <i’ Z> <Z: §>
<z, z)? ‘

PRrROOF. Assume first that the point z lies on the unit sphere

Decompose the vector & into two components: one in the complex line determined by the
vector z and the other in the hermitian-orthogonal direction. Note that hermitian-orthogonal
to the vector z means euclidean-orthogonal to the vectors z and iz. The vector z is a euclidean
normal vector to the sphere §2"*1 at z. The vector iz is a vector tangent to the circle in which
the sphere intersects the complex line passing through z. Thus the component #n of the vector &
which is hermitian-orthogonal to z is tangent to the sphere $*"*' and euclidean-orthogonal
to the circle in which the sphere intersects the line pz.

By the definition of the metric on CP", the riemannian square of the length of the vector <
is equal to the euclidean square length of the component # of  which is hermitian-orthogonal
to -.

We calculate the component y of &, hermitian-orthogonal to . We write our decomposition as

(2) ds?*({) =

Sln+1

& =c¢z+n where (2> =0

By hermitian multiplication with z, we find

o> =z,
SO
MRCEY S S
{z. 2

Calculating the hermitian square of the vector 5. we find {n. 7> = {n,¢> and
_La 246 - 462 8
(s, zp )
Thus, formula (2) is proved for points - of the unit sphere. The general case follows from looking
at the homothetic transformation =z — z/|z|. O

{mn>
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Note that our construction allows us to define not only a euclidean
structure (2), but also a hermitian structure on the tangent space to CP"
Consider the hermitian-orthogonal complement H to the direction of the
vector z in the space TC;'', where ze §?"*'. The map p,: H » T(CP"),,
maps H isomorphically (as we showed above) onto the tangent space to CP"
and carries over the hermitian structure from H.

It is clear that the scalar square defined by this hermitian structure is given
by formula (2). Therefore, the formula for the hermitian scalar product in
the tangent space to CP" can be written down without further calculations:

3 &y ) = (&4, €304z, Z)z—z><2§1, =<z, &5

for any vectors &, &, in TC.* ! satisfying the relation p, &, = {, € T(CP"),,.
We note that in formula (3) the point z does not necessarily lie on the unit
sphere.

The euclidean and hermitian structures (2) and (3) constructed on the
tangent spaces to CP" are not invariant under all projective transformations
of the manifold CP", but are invariant under those which are given by unitary
(preserving the hermitian structure) linear transformations of the vector

space C"* 1.

B The symplectic structure of complex
projective space

We consider the imaginary part of the hermitian form (3), taken with co-
efficient — 1/z (the reason for taking this coeflicient is explained in Problem 1,
Section C):

1
(4) Ly, Co) = — —ImdGy, 0o

Like the imaginary part of any hermitian form, the real bilinear form & on
the tangent space to complex projective space is skew-symmetric and non-
degenerate.

Theorem. The differential 2-form € gives a symplectic structure on complex
projective space.

PROOF. We need only verify that the form Q is closed.

Consider the exterior derivative d€2 of the form €. This differential 3-form on CP" is invariant
with respect to mappings induced by unitary transformations of the space C"* . It follows from
this that it is equal to zero.

To see this, we look at a hermitian-orthonormal basis e, ..., e, of the tangent space to
CP" at some point z. Then the vectors e, ..., e, ey, ..., ie, form a euclidean-orthonormal
R-basis. We will show that the value of the form df2 on any triple of these R-basis vectors is
equal to zero. (We assume that n > 1:for n = 1 there is nothing to prove.)

Note that in any triple of R-basis vectors at least one is hermitian-orthogonal to the two
others. Denote this vector by e. It is easy to construct a unitary transformation of the space C"*!
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inducing a motion on CP" which fixes the point z and the hermitian-orthogonal complement
to e, and changes the direction of e,

The value of the form dQ on our three vectors, e, f, and g is equal to its value on the triple
—e, f, and g by the invariance of the form €, and is hence equal to zero. O

Remark. Another method of constructing the same symplectic structure
on complex projective space consists of the following. Consider small oscil-
lations of a mathematical pendulum with an (n + 1)-dimensional configura-
tion space. We make use of the integral of energy to decrease by 1 the degree of
freedom of the system. The phase space obtained after this operation is CP",
and the symplectic structure on it agrees with the form Q described above up
to a factor.

One other method of constructing a symplectic structure on CP" uses the fact that this
space may be represented as one of the orbits of the co-adjoint representation of a Lie group,
and on every such orbit there is always a standard symplectic structure (cf. Appendix 2, Sec-
tion A). For the Lie group we can take the group of unitary (preserving the hermitian metric)
operators in an (n + 1)-dimensional complex space. The orbits of the co-adjoint representation
in this case are the same as of the adjoint representation. In the adjoint representation the operator
of reflection through a hypcrplane (which changes the sign of the first coordinate and leaves
the others fixed) has CP" as its orbit, since the reflection operator is uniquely determined by
the complex line orthogonal to the hyperplane.

C Symplectic structure on algebraic manifolds

We will now obtain a symplectic structure on any complex submanifold M
of complex projective space. Let j: M — CP" be an embedding of the complex
manifold M into complex projective space. The riemannian, hermitian, and
symplectic structures on projective space induce corresponding structures on
M. For example, the symplectic structure on M is given by the formula

QM == j*Q.

Theorem. T he differential form Q,, gives a symplectic structure on the manifold
M.

ProOF. The nondegeneracy of the 2-form Q,, follows from the fact that M
is a complex submanifold. In fact, the quadratic form

(&, &) = Qu(<, i)

is positive definite (it is induced by the riemannian metric on CP"). Therefore,
the bilinear form (&, n) = Q, (&, in) is nondegenerate. This means that the
form Q,, is also nondegenerate. The form Q,, is closed since the form Q is
closed. O

Remark. In the same way as for complex projective space, we define a
hermitian structure on the tangent spaces of its complex submanifolds; the
symplectic structure is the imaginary part.
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A complex manifold with a hermitian metric whose imaginary part is a
closed form (i.c. a symplectic structure) is called a Kdhler manifold and its
hermitian metric a Kdhler metric. Many important results have been
obtained in the geometry of Kihler manifolds; in particular, they have
remarkable topological properties (cf., for example, A. Weil, “Variétés
Kdahlériennes,” Hermann, 1958).

Not all symplectic manifolds admit a Kahler structure.

PrOBLEM |. Calculate the symplectic structure € in the affine chart w = z,: z,, of the projective
line CP*.

ANSWER. § = (1/m)(dx A dy)/(1 + x> + y*)?, where w = x + iy. The coefficient in the de-
finition of the form Q is chosen to obtain the usual orientation of the complex line (dx A dy)

and so that the integral of the form Q along the whole projective line is equal to 1.

PROBLEM 2. Show that the symplectic structure Q in the affine chart w, = z,z5'(k = 1,...,n)

_i_ 205k<!5n(wk dw, — widw, ) (W, dw, — w, dw,)

Q=
2n (Z?g:o (w Wk))z

By convention, wy, = 1.

Remark. Differential forms on a complex space with complex values (such as dw, and dw,)
are defined as complex linear functions of tangent vectors; if w, = x, + iy,, then

dw,‘ = dxk + idyk dwk = dxk - idy*

The space of such forms in C” has complex dimension 2n; the 2n forms dw,, dw, (k = 1, ..., n),
for example, form a C-basis, or the 2n forms dx,, dy, .
Exterior multiplication is defined in the usual way and obeys the usual rules. For example,

dw A dW = (dx + idy) A (dx — idy) = —2idx A dy.

Let f be a real-smooth function on C" (with complex values, in general). An example of
such a function is |w|? = %" w, w,. The differential of the function f is a complex I-form. There-
fore, it can be decomposed in the basis dw,, dw,. The coefficients of this decomposition are
called the partial derivatives “ with respect to w,” and “with respect to w,”:

aof af
df = —d -— dw.
If ™ w + % dw

In calculating exterior derivatives it is also convenient to separate into differentiation d’
with respect to the variable w and 4" with respect to the variable w, so thatd = 4’ + d”.
For example, for a function f

o of _
df = —d d’f = = dw.
' 2 W f aw w.
For the differential 1-form
w = Y a, dwy + by, dw,,
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the operators d’ and d” are defined analogously:
dw =Y da, A dw, + d'b, A dw,
d'w =7 da, n dw, + d"b, A dw,.

PROBLEM 3. Show that the symplectic structure  on the affine chart (w, = z,zg ')ofthe projective
space CP" is given by the formula

i n
Q=_—dd’1 i
21'[ n Z | wk[

k=0
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An odd-dimensional manifold cannot admit a symplectic structure. The
analogue of a symplectic structure for odd-dimensional manifolds is a little
less symmetric, but also a very interesting structure—the contact structure.

The source of symplectic structures in mechanics are phase spaces (i.€.,
cotangent bundles to configuration manifolds), on which there is always a
canonical symplectic structure. The source of contact structures are mani-
folds of contact elements of configuration spaces.

A contact element to an n-dimensional smooth manifold at some point is
an (n — 1)-dimensional plane tangent to the manifold at that point (i.e., an
(n — 1)-dimensional subspace of the n-dimensional tangent space at that
point).

The set of all contact elements of an n-dimensional manifold has a natural
smooth manifold structure of dimension 2n — 1. It turns out that there is an
interesting additional “contact structure” on this odd-dimensional manifold
(we describe this below).

The manifold of contact elements of a riemannian n-dimensional manifold
is closely related to the (2n — 1)-dimensional manifold of unit tangent vectors
of this riemannian n-dimensional manifold, or to the (2n — 1)-dimensional
energy level manifold of a point mass moving on the riemannian manifold
under inertia. The contact structures on these (2n — 1)-dimensional mani-
folds are closely related to the symplectic structure on the 2n-dimensional
phase space of the point (i.e., the cotangent bundle of the original n-dimen-
sional riemannian manifold).

A Definition of contact structure

Definition. A contact structure on a manifold is a smooth field of tangent
hyperplanes®® satisfying a nondegeneracy condition which will be formu-
lated later.

To formulate this condition we examine what a field of hyperplanes looks
like in general in a neighborhood of a point in an N-dimensional manifold.

ExaMpPLE. Let N = 2. Then the manifold is a surface and a field of hyper-
planes is a field of straight lines. Such a field in a neighborhood of a point is
always constructed very simply, namely, as a field of tangents to a family
of parallel lines in a plane. More precisely, one of the basic results of the local
theory of ordinary differential equations is that it is possible to change any
smooth field of tangent lines on a manifold into a ficld of tangents to a family
of straight lines in euclidean space by using a diffeomorphism in a sufficiently
small neighborhood of any point of the manifold.

If N > 2, then a hyperplane is not a line, and the question becomes
significantly more complicated. For example, most fields of two-dimensional

°8 A hyperplane in a vector space is a subspace of dimension 1 less than the dimension of the
space (i.e, the zero level set of a linear function which is not identically zero). A tangent hyper-
plane is a hyperplane in a tangent space.
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tangent planes in ordinary three-dimensional space cannot be diffeo-
morphically mapped onto a field of parallel planes. The reason is that there
exist fields of tangent planes for which it is impossible to find “integral sur-
faces,” i.e., surfaces which have the prescribed tangent plane at each point.

The nondegeneracy condition for a field of hyperplanes which enters into
the definition of contact structure consists of the stipulation that the field of
hyperplanes must be maximally far from a field of tangents to a family of
hyperplanes. In order to measure this distance, as well as to convince our-
selves of the existence of fields without integral hypersurfaces, we must make
a few constructions and calculations.®®

B Frobenius’ integrability condition

We will consider some point on an N-dimensional manifold and try to
construct a surface passing through this point and tangent to a given field
of (N — 1)-dimensional planes at each point (an integral surface).

To this end we introduce a coordinate system onto a neighborhood of
this point so that at the point itself one coordinate surface is tangent to a
plane of the field. We will call this plane the horizontal plane, and will call
the coordinate axis not lying in it the vertical axis.

Construction of an integral surface. An integral surface, if one exists, is the
graph of a function of N — 1 variables near the origin. To construct it, we
can take some smooth path on the horizontal plane. Then the vertical lines
over this path form a two-dimensional surface (cylinder); our field of planes
intersects its tangent planes in a field of tangent lines. The integral surface
we are looking for, if it exists, intersects this cylinder in an integral curve of the
field of lines, starting at the origin. Such an integral curve always exists
independent of whether an integral surface exists. Thus we can construct an
integral surface over the horizontal plane by moving along smooth curves in
the latter.

In order to obtain a smooth integral surface from all the integral curves
we need the result of our construction to be independent of the path, deter-
mined only by its endpoint. In particular, for a circuit of a closed path in a
neighborhood of the origin in the horizontal plane, the integral curve on the
cylinder must close up.

It 1s easy to construct examples of fields of planes for which such closure
does not take place and, therefore, for which an integral surface does not
exist. Such fields of planes are called nonintegrable.

Example of a nonintegrable field of planes. In order to give a field of planes
and measure numerically the deviation from closure, we introduce the follow-

ing notation. We note first of all that a ﬁe’l%l of hyperplanes can be given locally
by a differential 1-form; a plane in the tangent space gives a 1-form up to

%% From now on, we will omit the prefix “hyper-". If we wish, we may assume that we are in
three-dimensional space and a hypersurface is an ordinary surface. The higher-dimensional
case is analogous to the three-dimensional case.
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multiplication by a nonzero constant. We will choose this constant so that
the value of the form on the vertical basic vector is equal to 1.

This condition can be satisfied in some neighborhood of the origin since
the plane of the field at zero does not contain the vertical direction. This
condition determines the form uniquely (given the field of planes).

A field of planes in ordinary threesspace which does not have an integral
surface can be given, for example, by the 1-form

w=xdy + dz,

where x and y are the horizontal coordinates and z is the vertical. The proof
of the fact that this field of planes is nonintegrable will be given below.

Construction of a 2-form measuring nonintegrability. With the help of the
form giving the field, we can measure the degree of nonintegrability. This is
done using the following construction (Figure 236).

f

Figure 236 Integral curves constructed for a non-integrable field of planes

Consider a pair of vectors emanating from the origin and lying in the
horizontal plane of our coordinate system. Construct a parallelogram on
them. We obtain two paths from the origin to the opposite vertex. Over each
of these two paths we can construct an integral curve (with two sections) as
described above. As a result, in general, there arise two different points over
the vertex of the parallelogram opposite to the origin. The difference in the
heights of these points is a function of our pair of vectors. This function is
skew-symmetric and equal to zero if one of the vectors is equal to zero. Thus
the linear part of the Taylor series of this function is zero at zero, and the
quadratic part of its Taylor series is a bilinear skew-symmetric form on the
horizontal plane.

If the field is integrable, then this 2-form is equal to zero. Therefore, this
2-form can be considered as a measure of the nonintegrability of the field.

The 2-form is well defined. We constructed the 2-form above with the help
of coordinates. However, the value of our 2-form on a pair of tangent vectors
does not depend on the coordinate system, but only on the 1-form used to
give the field.

To convince ourselves of this, it is enough to prove the following.

Theorem. The 2-form defined above agrees with the exterior derivative of the
1-form w, dw|,, - o, on the null space of w.
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PrROOF. We will show that the difference in the heights of the two points obtained as a result
of our two motions along the sides of the parallelogram is the same as the integral of the 1-form w
over the four sides of the parallelogram, up to a quantity small of third order with respect to

the sides of the parallelogram.

To this end we note that the height of the rise of an integral curve along any path of length ¢
emanating from the origin has order ¢, since at the origin the plane of the field is horizontal.
Therefore, the integrals of the 2-form dw over all four vertical areas over the sides of the paral-
jelogram bounded by the integral curves and the horizontal plane, have order & if the sides

are of order &.
The integrals of the form w along integral curves are exactly equal to zero. Therefore, by

Stokes® formula, the increase in height along the integral curve lying over any of the sides of the
parallelogram is equal to the integral of the 1-form w along this side up to a quantity of third-

order smaliness.
Now the theorem follows directly from the definition of exterior differentiation. ]

Some arbitrariness remains in the choice of the 1-form «w which we used to
construct our 2-form. Namely, the form w is defined by the field of planes
only up to multiplication by a function f which is never zero. In other words,
we could have started with the form fw. Then we would have obtained the

2-form
dfw = fdw + df n w,

which, on our plane, differs from the 2-form dw by multiplication by the

nonzero number f(0).
Thus the 2-form constructed on the plane of the field is defined invariantly
up to multiplication by a nonzero constant.

Condition for integrability of a field of planes

Theorem. If a field of hyperplanes is integrable, then the 2-form constructed
above on a plane of the field is equal to zero. Conversely, if the 2-form con-
structed on every plane of the field is equal to zero, then the field is integrable.

PROOF, The first assertion of the theorem is clear by the construction of the 2-form. The proof
of the second assertion can be carried out by exactly the same reasoning we used to prove the
commutativity of phase flows for which the Poisson bracket of the velocity fields was equal to
zero. We can simply refer to this commutativity, applying it to the integral curves arising over
the lines of the coordinate directions in the horizontal plane. |

Theorem. The integrability condition for a field of planes,
do =0 for =0
is equivalent to the following condition of Frobenius:
w A dw = 0.
PrOOF. We consider the value of the 3-form above on any three distinct coordinate vectors.

Only one of these vectors can be the vertical. Therefore, of all the terms entering into the defini-
tion of the value of the exterior product of the three vectors, only one is nonzero: the product of
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the value of the form w on the vertical vector with the value of the form dw on the pair of
horizontal vectors. If the field given by the form is integrable, then the second factor is zero,
so our 3-form is zero on arbitrary triples of vectors.

Conversely, if the 3-form is equal to zero for any vectors, then it is equal to zero for any
triple of coordinate vectors, of which one is vertical and the other two horizontal. The value
of the 3-form on such a triple is equal to the product of the value of w on the vertical vector
with the value of dw on the pair of horizontal vectors. The first factor is not zero, so the second
must be zero, and thus the form dew is zero on a plane of the field. M

C Nondegenerate fields of hyperplanes

Definition. A field of hyperplanes is said to be nondegenerate at a point if the
rank of the 2-form dw|, -, in the plane of the field passing through this
point is equal to the dimension of the plane.

This means that for any nonzero vector in our plane, we can find another
vector in the plane such that the value of the 2-form on this pair of vectors

1S not zero.

Definition. A field of planes is called nondegenerate on a manifold if it is non-
degenerate at every point of the manifold.

Note that on an even-dimensional manifold there cannot be a nondegen-
erate field of hyperplanes; on such a manifold a hyperplane is odd-dimen-
sional, and the rank of every skew-symmetric bilinear form on an
odd-dimensional space is less than the dimension of the space (cf. Section 44).

Nondegenerate fields of hyperplanes do exist on odd-dimensional mani-
folds.

ExaMpLE. Consider a euclidean space of dimension 2m + 1 with coordinates
x, y, and z (where x and y are vectors in an m-dimensional space and z is a
number). The 1-form

w=xdy + dz

defines a field of hyperplanes. The plane of the field passing through the origin
has equation dz = 0. We take x and y as coordinates in this hyperplane.
Therefore, in this plane of the field our 2-form can be written in the form

doly,—o =dx A dy =dxy A dy, + - +dxpy A dyy,.

The rank of this form is 2m, so our field is nondegenerate at the origin, and
thus also in a neighborhood of the origin (in fact, this field of planes is
nondegenerate at all points of the space).

Now, finally, we can give the definition of a contact structure on a mani-
fold: a contact structure on a manifold is a nondegenerate field of tangent

hyperplanes.
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D The manifold of contact elements

The term “contact structure” stems from the fact that there is always such a
structure on a manifold of contact elements of a smooth n-manifold.

Definition. A hyperplane (dimension n — 1) tangent to a manifold at some
point is called a contact element, and this point the point of contact.

The set of all contact elements of an n-dimensional manifold has the struc-
ture of a smooth manifold of dimension 2n — 1.

In fact, the set of contact elements with a fixed point of contact is the set of all (n — 1)-dimen-
sional subspaces of an n-dimensional vector space, i.e., a projective space of dimension n — 1.
To give a contact element we must therefore give the n coordinates of the point of contact
together with the n — ! coordinates defining a point of an (n — l)-dimensional projective
space —2n — | coordinates in all.

The manifold of all contact elements of an n-dimensional manifold is a
fiber bundle whose base is our manifold and whose fiber is (n — 1)-dimen-
sional projective space.

Theorem. The bundle of contact elements is the projectivization of the cotangent
bundle: it can be obtained from the cotangent bundle by changing every
cotangent n-dimensional vector space into an (n — 1)-dimensional pro-
jective space (a point of which is a line passing through the origin in the
cotangent space).

PROOF. A contact element is given by a 1-form on the tangent space, for which this element is
a zero level set. This form is not zero, and it is determined up to multiplication by a nonzero
number. But a form on the tangent space is a vector of the cotangent space. Therefore. a
nonzero form on the tangent space, determined up to a multiplication by a nonzero number,
is a nonzero vector of the cotangent space, determined up to a multiplication by a nonzero
number, ie. a point of the projectivized cotangent space. L]

The contact structure on the manifold of contact elements. In the tangent
space to the manifold of contact elements there is a distinguished hyperplane.
It is called the contact hyperplane and is defined in the following way.

We fix a point of the (2n — 1)-dimensional manifold of contact elements
on an n-dimensional manifold. We can think of this point as an (n — 1)-
dimensional plane tangent to the original n-dimensional manifold.

Definition. A tangent vector to the manifold of contact elements at a fixed
point belongs to the contact hyperplane if its projection onto the n-
dimensional manifold lies in the (n — 1)-dimensional plane which is the
given point of the manifold of contact elements.
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In other words, a displacement of a contact element is tangent to the
contact hyperplane if the velocity of the point of contact belongs to this
contact element, no matter how the element turns.

ExaMpPLE. We take some submanifold of our n-dimensional manifold and
consider all (n — 1)-dimensional planes tangent to it (i.e., contact elements).
The set of all such contact elements forms a smooth submanifold of the
(2n — 1)-dimensional manifold of all contact elements. The dimension of
this submanifold is equal to n — 1, no matter what the dimension of the
original submanifold (which could be (n — 1)-dimensional, or have smaller
dimension, down to a curve or even a point).

This (n — 1)-dimensional submanifold of the (2n — 1)-dimensional
manifold of all contact elements is tangent at each of its points to the field of
contact hyperplanes (by the definition of contact hyperplane). Thus the
field of (2n — 2)-dimensional contact hyperplaneshasan (n — 1)-dimensional
integral manifold.

ProeLeM. Does this field of planes have integral manifolds of higher dimensions?

ANSWER. No.

PROBLEM. Is it possibie to give the field of contact hyperplanes by a differential I-form on the
manifold of all contact elements?

ANSWER, No, even if the underlying n-dimensional manifold is a euclidean space (for example,
the ordinary two-plane).

We will show below that the field of contact hyperplanes on the 2n — 1)-
dimensional manifold of all contact elements of an n-dimensional manifold is
nondegenerate. The proof uses the symplectic structure of the cotangent
bundle. The manifold of contact elements is related by a simple construction
to the space of the cotangent bundle (the projectivization of which is the
manifold of contact elements). Moreover, the nondegeneracy of the field of
contact planes of the projectivized bundle is closely related to the non-
degeneracy of the 2-form giving the symplectic structure of the cotangent
bundle.

The construction we are concerned with will be carried out below in a
somewhat more general situation. Namely, for any odd-dimensional mani-
fold with a contact structure we can construct its “symplectification”—a
symplectic manifold whose dimension is one larger. The inter-relation be-
tween these two manifolds—the odd-dimensional contact manifold and the
even-dimensional symplectic manifold —is the same as between the manifold
of contact elements with its contact structure and the cotangent bundle with
its symplectic structure.
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E Symplectification of a contact manifold

Consider an arbitrary contact manifold, i.e., a manifold of odd dimension N
with a nondegenerate field of tangent hyperplanes (ofeven dimension N — 1).
We will call these planes contact planes. Every contact plane is tangent to
the contact manifold at one point. We will call this point the point of contact.

Definition. A contact form is a linear form on the tangent space at the point of
contact of the manifold such that its zero set is the contact plane.

It should be emphasized that the contact form is not a differential form
but an algebraic linear form on one tangent space.

Definition. The symplectification of a contact manifold is the set of all contact
forms on the contact manifold, provided with the structure of a sym-
plectic manifold as defined below.

We note first of all that the set of all contact forms on a contact manifold
has a natural structure of a smooth manifold of even dimension N + 1.
Namely, we can consider the set of all contact forms as the space of a bundle
over the original contact manifold. Projection onto the base is the mapping
associating the contact form to the point of contact.

The fiber of this bundle is the set of contact forms with a common point of
contact. All such forms are obtained from one another by multiplication by a
nonzero number (so that they determine the same contact plane). Thus the
fiber of our bundle is one-dimensional: it is the line minus a point,

We also note that the group of nonzero real numbers acts on the manifold
of all contact forms by the operation of multiplication, i.e., the product of a
contact form and a nonzero number is again a contact form. In this way the
group acts on our bundle, leaving every fiber fixed (upon multiplication of a
form by a number the point of contact is not changed).

Remark. So far we have not used the nondegeneracy of the field of planes.
Nondegeneracy is needed only to insure that the manifold obtained by
symplectification is symplectic.

ExampLE. Consider the manifold (of dimension 2n — 1) ofall contact elements
of an n-dimensional smooth manifold. On the manifold of elements there is a
field of hyperplanes (which we defined above and called the contact hyper-
planes). Therefore, we can symplectify the manifold of contact elements.

As a result of symplectification we obtain a 2n-dimensional manifold.
This manifold is the space of the cotangent bundle of the original n-dimen-
sional manifold without zero vectors. The action by the multiplicative group
of real numbers on the fiber reduces to multiplication of vectors of the co-
tangent space by a number.
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On the cotangent bundle there is a distinguished 1-form “p dq.” There is
an analogous 1-form on any manifold obtained by symplectification from a
contact manifold.

The canonical 1-form on the symplectified space

Definition. The canonical 1-form in the symplectified space of a contact
manifold is the differential 1-form « whose value on any vector & tangent
to the symplectified space at some point p (Figure 237) is equal to the value
on the projection of the vector & onto the tangent plane to the contact
manifold of the 1-form on this tangent plane which is the point p:

(&) = p(r, ),

where n i1s the projection of the symplectified space onto the contact
manifold.

Figure 237 Symplectification of a contact manifold

Theorem. T he exterior derivative of the canonical 1-form on the symplectified
space of a contact manifold is a nondegenerate 2-form.

Corollary. The symplectified space of a contact manifold has a symplectic
structure which is canonically (i.e., uniquely, without arbitrariness) deter-
mined by the contact structure of the underlying odd-dimensional manifold.

PROOF OF THEOREM. Since the assertions of the theorem are local, it is sufficient to prove it in
a small neighborhood of a point of the manifoid. In a small neighborhood of a point on a contact
manifold, a field of contact planes can be given by a differential form  on the contact manifold.
We fix such a 1-form w.

By the same token we can represent the symplectified space of the contact manifold over
our neighborhood as the direct product of the neighborhood and the line minus a point. Namely,
we associate to the pair (x, A)-—where x is a point of the contact manifold and A is a nonzero
number —the contact form given by the differential 1-form Aw on the tangent space at the point x.
Thus in the part of the symplectified space we are considering, we have defined a function A
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whose values are nonzero numbers, It should be emphasized that 4 is only a local coordinate on
the symplectified manifold and that this coordinate is not defined canonically; it depends on
the choice of differential 1-form . The canonical |-form x can be written in our notation as

% = AR*w
and does not depend on the choice of w. The exterior derivative of the 1-form « thus has the form

dxy = dA A n¥w + An*dw.

We will show that the 2-form d=x is nondegenerate, i.c., that for any vector { tangent to
the symplectification, we can find a vector y such that dx(&. n) # 0. We select from vectors
tangent to the symplectification. those of the following type. We call a vector & vertical if it
is tangent to the fiber. i.e.. if m,& = 0. We call the vector { horizontal if it is tangent 10 a level
surface of the function A. i.e.. if dA(&) = 0. We call the vector & a contact vector if its projection
onto the contact manifold lies in the contact plane, i.e., if o(m, &) = 0(in other words, if x(¢) = 0).

We calculate the value of the form dx on a pair of vectors (<, 1):

do(&, n) = (dA ~ *e)(E,n) + (Ar¥dw) (S, 1)

Assume that & is not a contact vector. For #, take a nonzero vertical vector, so that n,n = 0.
Then the second term is equal to zero, and the first term is equal to

—dA(nw(n,<)

which is not zero since 5 is a nonzero vertical vector and £ is not a contact vector. Thus if
is not a contact vector, we have found an »n for which dx(Z, n} # 0.

Now assume that ¢ is a contact vector and not vertical. Then for n we take any contact
vector. Now the first term is entirely zero, and the second (and therefore the sum) is reduced
to A dax(m, &, m, n). Since ¢ is not vertical, the vector =,  lying in the contact plane is not zero.
But the 2-form dw is nondegenerate on the contact plane (by the definition of contact structure).
Thus there is a contact vector # such that dexn, ¢, n,n) # 0. Since 4 # 0, we have found a
vector n for which dx(&, n) # 0.

Finally, if the vector & is nonzero and vertical, then for n we can take any vector which is
not a contact vector. O]

Remark. The constructions of the 1-form x and the 2-form dx are valid
for an arbitrary manifold with a field of hyperplanes, and do not depend on
the condition of nondegeneracy. However, the 2-form dax will define a
symplectic structure only in the case when the field of planes is nondegenerate.

PROOF. Assume that the field is degenerate, i.e.. that there exists a nonzero vector ¢’ in a plane
of the field such that daxX&’, ') = O for all vectors ' in this plane. For such a {', the quantity
dw(S', n') as a function of »’ is a linear form, identically equal to zero on the plane of the field.
Therefore there is a number u not dependent on »” such that

dw(Z', 0"y = pw(n’)

for all vectors ' of the tangent space.

We now take for ¢ a tangent vector to the symplectified manifold for which ¢ = <. Such
a vector ¢ is determined up to addition of a vertical summand, and we will show thatfora suitable
choice of this summand we will have

doe(S, ny = 0 for all .
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The first term of the formula for dx is equal to dA(E)(m e n) (since w(n, &) = 0). The second
termis equal to A deXm, C, o n) = Apeo(m, n). We choose the vertical component of the vector &

so that dA(S) = — Au. Then & will be skew-orthogonal to all vectors n.
Thus if do is a symplectic structure, then the underlying field of hyperplanes is a contact
structure. O

Corollary. The field of contact hyperplanes defines a contact structure on the
manifold of all contact elements of any smooth manifold.

PROOF. The symplectification of the (2n — 1)-dimensional manifold of all
contact elements on an n-dimensional smooth manifold, constructed with
help of the field of (2n — 2)-dimensional contact planes, is by construction
the space of the cotangent bundle of the underlying n-dimensional manifold
without the zero cotangent vectors. The canonical 1-form « on the sym-
plectification is, by its definition, the same 1-form on the cotangent bundle
that we called “p dg” and which is fundamental in hamilton mechanics (cf.
Section 37). Its derivative da is therefore the form “dp ~ dq” defining the
usual symplectic structure of a phase space. Therefore the form d« is non-
degenerate, and, by the preceding remark, the field of contact hyperplanes is
nondegenerate. [J

F Contact diffeomorphisms and vector fields

Definition. A diffeomorphism of a contact manifold to itself is called a
contact diffeomorphism if it preserves the contact structure, i.e., carries
every plane of a given structure of a field of hyperplanes to a plane of the
same field.

ExampiLE. Consider the (2n — 1)-dimensional manifold of contact elements
of an n-dimensional smooth manifold with its usual contact structure. To
each contact element we can ascribe a “positive side” by choosing one of the
halves into which this element divides the tangent space to the n-dimensional
manifold.

We will call a contact element with a chosen side a (transversall y) oriented
contact element.

The oriented contact elements on our n-dimensional manifold form a
(2n — 1)- dimensional smooth manifold with a natural contact structure (it
is a double covering of the manifold of ordinary nonoriented contact
elements).

Now assume that we are given a riemannian metric on the underlying
n-dimensional manifold. Then there is a “geodesic flow ”1°° on the manifold
of oriented contact elements. The transformation after time ¢ by this flow
is defined as follows. We go out from the point of contact of a contact element
along the geodesic orthogonal to it and directed to the side orienting the
element. In the course of time r we will move the point of contact along the

199 Strictly speaking, we need to require that the riemannian manifold be complete, i.c., geodesics
can be continued without limit.
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geodesic, keeping the element orthogonal to the geodesic. After time ¢ we
obtain a new oriented element. We have defined the geodesic flow of oriented
contact elements.

Theorem. The geodesic flow of oriented contact elements consists of contact
diffeomorphisms.

The proof of this theorem will not be presented since it is just a reformula-
tion in new terms of Huygens’ principle (cf. Section 46).

Definition. A vector field on a contact manifold is called a contact vector field
if it is the velocity field of a one-parameter (local) group of contact
diffeomorphisms.

Theorem. The Poisson bracket of contact vector fields is a contact vector field.
The contact vector fields form a subalgebra in the Lie algebra of all smooth
vector fields on a contact manifold.

The proof follows directly from the definitions.

G Symplectification of contact diffeomorphisms
and fields

For every contact diffeomorphism of a contact manifold there is a canonically
constructed symplectic diffefomorphism of its symplectification. This sym-
plectic diffeomorphism commutes with the action of the multiplicative group
of real numbers on the symplectified manifold and is defined by the following
construction.

Recall that a point of the symplectified manifold is a contact form on the
underlying contact manifold.

Definition. The image of a contact form p with point of contact x under the
action of a contact difffomorphism f of the contact manifold to itself 1s

the form

ﬁp = (ﬁ(x))_ 1p'

In simple terms, we carry the form p from the tangent space at the point x
to the tangent space at f(x) using the diffeomorphism f (whose derivative at
x determines an isomorphism between these two tangent spaces). The form
f.p is a contact form since the diffeomorphism f is a contact diffeomorphism.

Theorem. The mapping f. defined above of the symplectification of a contact
manifold to itself is a symplectic diffeomorphism which commutes with the
action of the multiplicative group of real numbers and preserves the canonical
1-form on the symplectification.
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PROOF. The assertion of the theorem follows from the fact that the canonical 1-form, the symp-
lectic 2-form, and the action of the group of real numbers are all determined by the contact
structure itself (for their construction we did not use coordinates or any other noninvariant
tools), and the diffeomorphism f preserves the contact structure. It follows from this that 1
preserves all that which was invariantly constructed using the contact structure, in particular
the 1-form g, its derivative da, and the action of the group.

Theorem. Every symplectic diffeomorphism of the symplectification of a contact
manifold which commutes with the action of the multiplicative group (1)
projects onto the underlying contact manifold as a contact diffeomorphism

and (2) preserves the canonical 1-form o.

Proor. Every diffeomorphism which commutes with the action of the multiplicative group
projects onto some difffomorphism of the contact manifold. To show that this is a contact
diffeomorphism it is sufficient to prove the second assertion of the theorem (since only those

vectors for which «(&) = O project onto the contact plane).
To prove the second assertion we express the integral of the form along any path y in terms

of the symplectic structure da:
fa = hm ff da,
¥ e—~0 a{£}

where the 2-chain o(¢) is obtained from y by multiplication by all numbers in the interval [& 1].

The boundary of & contains, besides y, two vertical intervals and the path £7. The integrals of «

over the vertical intervals are equal to zero, and the integral over ¢y approaches 0 as ¢ does.
Now from the invariance of the 2-form da and the commutativity of our diffeomorphism F

with multiplication by numbers it follows that for any path y

fa - [

P

O

and thus the difftomorphism F preserves the 1-form «.

Definition. The symplectification of a contact vector Sield is defined by the
following construction. Consider the field as a velocity field of a one-

parameter group of contact difffomorphisms. Symplectify the diffeomor-
phisms. Consider the velocity field of this group. It is called the sym-
plectification of the original field.

Theorem. The symplectification of a contact vector field is a hamiltonian vector
field. The hamiltonian can be chosen to be homogeneous of first order with
respect to the action of multiplication by the group of real numbers:

H(ix) = AH(x).

Conversely, every hamiltonian field on a symplectified contact manifold,
having a hamiltonian which is homogeneous of degree 1, projects onto the
underlying contact manifold as a contact vector field.
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PrROOF. The fact that symplectifications of contact difffomorphisms are
symplectic implies that the symplectification of a contact field is hamil-
tonian. The homogeneity of the hamiltonian follows from the homogeneity of
symplectic difffomorphisms (from commutativity with multiplication by 4).
Thus the first assertion of the theorem follows from the theorem on sym-
plectifications of contact difftomorphisms. The second part follows in the
same way from the theorem on homogeneous symplectic diffeomorphisms.

td

Corollary. Symplectification of vector fields is an isomorphic map of the Lie
algebra of contact vector fields onto the Lie algebra of all locally hamiltonian
vector fields with hamiltonians which are homogeneous of degree 1.

The proof is clear.

H Darboux’s theorem for contact structures

Darboux’s theorem is a theorem on the local uniqueness of a contact struc-
ture. It can be formulated in any of the following three ways.

Theorem. All contact manifolds of the same dimension are locally contact
diffeomorphic (i.e., there is a diffeomorphism of a sufficiently small neighbor-
hood of any point of one contact manifold onto a neighborhood of any point
of the other which carries the noted point of the first neighborhood to the
noted point of the second and the field of planes in the first neighborhood to
the field of planes in the second).

Theorem. Every contact manifold of dimension 2m — 1 is locally contact
diffeomorphic to the manifold of contact elements of m-dimensional space.

Theorem. Every differential 1-formdefining anondegenerate field of hyperplanes
on a manifold of dimension 2n + 1, can be written in some local coordinate
system in the “normal form”

w=xdy + dz,

where x = (Xqy ..., Xn), ¥ = (V15 - - - » yn) and z are the local coordinates.

It is clear that the first two theorems follow from the third. We will deduce
the third one from an analogous theorem of Darboux on the normal form of
the 2-form giving a symplectic structure (cf. Section 43).

PROOF OF DARBOUX’S THEOREM. We symplectify our manifold. On this new (2n + 2)-dimensional
symplectic manifold there are a canonical 1-form x, a nondegenerate 2-form dx, a projection 7
onto the underlying contact manifold and a vertical direction at every point.

The given differential 1-form e« on the contact manifold defines a contact form at every
point. These contact forms form a (2n + 1)-dimensional submanifold of the symplectic mani-
fold. The projection = maps this submanifold diffefomorphically onto the underlying contact
manifold, and the verticals intersect this submanifold at a nonzero angle.
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Consider a point in the surface just constructed (in the symplectic manifold) lying over the
point of the contact manifold we are interested in. In the symplectic manifold we can choose a
local system of coordinates near this point such that

dx = dpy ~ dgy + - - + dp, ~ dy,
and such that the coordinate surface p, = 0 coincides with our (2n + 1)-dimensional manifold
(cf. Section 43, where in the proof of the symplectic Darboux’s theorem the first coordinate may
be chosen arbitrarily).
We note now that the 1-form py dgy + - - - p, dg, has derivative dx. Thus, locally,
%X = podgy + -+ + p,dg, + dw,

where w is a function which can be taken to be zero at the origin. In particular. on the surface
po = 0 the form z takes the form

a|p0=0 = Pi dql + -+ pndqn + dw.

The projection 7 allows us to carry the coordinates p,, ..., p,:go:4,. ..., q, and the function
w onto the contact manifold. More precisely, we define functions x, y, and z by the formulas

xX(nA) = p{A) yi{mA) = g A) s(nAd) = w(A).

where A is a point on the surface p, = 0.
Then we obtain

= xdy + d-

and it remains only to verify that the functions (x,, ..., X,; yy...., »,: z) form a coordinate
system. For this it is sufficient to verify that the partial derivative of w with respect to do 18 nOt
zero, or in other words that the [-form x is not zero on a vector of the coordinate direction do-
The latter is equivalent to the 2-form dx being nonzero on the pair of vectors: the basic vector
in the direction of ¢, and the vertical vector.

But a vector in the coordinate direction ¢, is skew-orthogonal to all vectors of the coordinate
plane p, = 0. If it was also skew-orthogonal to the vertical vector, then it would be skew-
orthogonal to all vectors, which contradicts the nondegeneracy of da. Thus ew/cgqy # U, and the

theorem is proved. J

I Contact hamiltonians

Suppose that the contact structure of a contact manifold is given by a dif-
ferential 1-form w, and that this form is fixed.

Definition. The w-embedding of the contact manifold into its symplectification
is the map associating to a point of the contact manifold the restriction of
the form w on the tangent plane at this point.

Definition. The contact hamiltonian function of a contact vector field on a
contact manifold with fixed 1-form w is the function K on the contact
manifold whose value at each point is the value of the homogeneous
hamiltonian H of the symplectification of the field on the image of the
given point under the w-embedding:

K(4) = H(w|4).
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Theorem. The contact hamiltonian function K of a contact vector field X ona
contact manifold with a given 1-form w is equal to the value of the form w
on this contact field:

K = o(X).

PrROOF. We use the expression for the increment of the ordinary hamiltonian function over a
path in terms of the vector field and the symplectic structure (Section 48, C). For this we draw a
vertical interval {AB}. 0 < A < 1, through the point B of the symplectification at which we
want to calculate the hamiltonian function. The translations of this interval over small time T
under the action of the symplectified flow defined by our field X, fill out a two-dimensional
region (7). The value of the hamiltonian at the point B is equal to the limit

H(B) = lim 77! Ji[ dx,
=0 F{th

since H(AB) — 0 as A — 0. But the integral of the form dx over the region is the integral of
the 1-form a2 along the edge formed by the trajectory of the point B(the other parts of the boundary
give zero integrals). Therefore. the double integral is simply the integral of the 1-form 2 along
the interval of trajectories, and the limit is the value of x on the velocity vector Y of the symplec-
tified field. Thus K(zB) = H(B) = (Y) = w(X), as was to be shown. O

J Computational formulas

Suppose now that we make use of the coordinates in Darboux’s theorem in
which the form o has the normal form

w = xdy + dz, X =(X1s- 5 Xy Y= (1> Vn)

ProBLEM. Find the components of the contact field with a given contact
hamiltonian function K = K(x, y, 2)-

ANSwER. The equations of the contact flow have the form

x=—K, + xK;
y = K,
z =K — xK,.

Solution. A point of the symplectification can be given by the 2n + 2 numbers x;, y;., &,
and A. where (x, v, ) are the coordinates of a point of the contact manifold and 4 is the number
by which we must multiply @ to obtain the given point of the symplectificd space.

In these coordinates x = Ax dy + 4 dz. Therefore, in the coordinate system p. 4. where

P = (p. Po). p=Ax,po =4
¢ =1(4.90). d=)do= "
the form x takes the standard form:
x = pdq dx = dp ~ dq.
The action T, of the multiplicative group is now reduced to multiplication of p by a number:

TAp. @) = (pp. Q).
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The contact hamiltonian K can be expressed in terms of the ordinary hamiltonian
H = H(p. ¢. py. ¢o) by the formula

K(x.v.2) = H(x. y. 1.2,
The function H is homogeneous of degree | in p. Therefore, the partial derivatives of K at the

point (x, v, o) are related to the derivatives of H at the point (p=x.po=1.9=).¢4o=12)by

the relations
H,= K, H, =K.,

4

H,=K, H, = K — xK,

Hamilton’s equations with hamiltonian function H therefore have the following form at the
point under consideration:
X + XA = -K. ;,:—K_,

from which we obtain the answer above.

PrOBLEM. Find the contact hamiltonian of the Poisson bracket of two contact
fields with contact hamiltonians K and K.

ANSWER. (K, K') + K,EK' — K,EK, where the brackets denote Poisson
bracket in the variables x and y and E is the Euler operator EF = F — xF,.

Solution. In the notation of the solution of the preceding problem we must express the
ordinary Poisson bracket of the homogeneous hamiltonians H and H’' at the point
(p=x.pp = 1,4 =1y 29 = z)in terms of the contact hamiltonians K and K'. We have

(H, H') = HH}, — Hy,Hy = H,H, — H,H + H, Hyp, — H, Hy

Substituting the values of the derivatives from the preceding problem, we find at the point under
consideration
(H,H) = K.K, — KK, + KAK — xK}) — K(K — xK_).

K Legendre manifolds

The lagrangian submanifolds of a symplectic phase space correspond in the
contact case to an interesting class of manifolds which may be called Legendre
manifolds since they are closely related to Legendre transformations.

Definition. A Legendre submanifold of a (2n + 1)-dimensional contact mani-
fold is an n-dimensional integral manifold of the field of contact planes.

In other words, it is an integral manifold of the highest possible dimension
for a nondegenerate field of planes.

ExaMPLE 1. The set of all contact elements tangent to a submanifold of any
dimension in an m-dimensional manifold isan (m — 1)-dimensional Legendre
submanifold of the (2m — 1)-dimensional contact manifold of all contact

elements.
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ExampLE 2. The set of all planes tangent to the graph of a function f = @(x)
in an (n + 1)-dimensional euclidean space with coordinates (x, ..., X,; 0N
is a Legendre submanifold of the (2n + 1)-dimensional space of all non-
vertical hyperplane elements in the space of the graph (the contact structure
is given by the 1-form

® = p,;dx, + -+ + p,dx, — df;

the element with coordinates (p, x, f) passes through the point with co-
ordinates (x, f) parallel to the plane f = p;x; + -+ + PpX,)-

The Legendre transformation can be described in these terms in the
following way.

Consider a second (2n + 1)-dimensional contact space with coordinates
(P, X, F) and contact structure given by the form

Q= PdX — dF.

The Legendre involution is the map taking a point of the first space with
coordinates (p, x, f) to the point of the second space with coordinates

P=x X=p F=px—f

The Legendre involution, as can be easily calculated, carries the first
contact structure to the second. Clearly, we have

Theorem. A diffeomorphism of one contact manifold onto another which carries
contact planes to contact planes, carries every Legendre manifold to a
Legendre manifold.

In particular, under the action of the Legendre involution the Legendre
manifold of plane elements tangent to the graph of a function is carried into a
new Legendre manifold. This new manifold is called the Legendre transform
of the original manifold.

The projection of the new manifold onto the space with coordinates (X, F)
(parallel to the P-direction) is in general not a smooth manifold, but has
singularities. This projection is called the Legendre transform of the graph of
the function ¢.

If the function ¢ is convex, then the projection is itself the graph of a
function F = ®(X). In this case ® is called the Legendre transform of the
function .

As another example we consider the motion of oriented contact elements
under the action of the geodesic flow on a riemannian manifold. As the
“initial wave front” we take some smooth submanifold of our riemannian
manifold (the dimension of the submanifold is arbitrary). The oriented con-
tact elements tangent to this submanifold form a Legendre manifold in the
space of all contact elements. From the preceding theorem we obtain
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Corollary. The family of all elements tangent to a wave front is transformed
under the action of the geodesic flow after time t to a Legendre manifold of
the space of all contact elements.

It should be noted that this new Legendre manifold may not be the family
of all elements tangent to some smooth manifold, since a wave front may
develop singularities.

The Legendre singularities which arise in this way can be described in a
manner similar to lagrangian singularities (cf. Appendix 12). A Legendre
Sibration of a (2n + 1)-dimensional contact manifold is a fibration all of
whose fibers are n-dimensional Legendre manifolds. A Legendre singularity
1s a singularity of the projection of an n-dimensional Legendre submanifold
of a (2n + 1)-dimensional contact manifold onto the (n + 1)-dimensional
base of the Legendre fibration.

Consider the space R?"*' with contact structure given by the form
a = xdy + dz, where x = (x, ..., x,)and y = (y,, ..., y,). The projection
(x, vy, z) = (y, z) gives a Legendre fibration.

An equivalence of Legendre fibrations is a difftfomorphism of the total
spaces of the fibrations carrying the contact structure and fibers of the first
bundle to the contact structure and fibers of the second bundle. It can be
shown that every Legendre bundle is equivalent to the special bundle just
described in a neighborhood of every point of the space of the bundle.

The contact structure of the total space of fibration gives the fibers a local
structure of a projective space. Legendre equivalence preserves this structure,
1.e., defines locally projective fiber transformations.

The following theorem allows us to locally describe Legendre sub-
manifolds and maps by using generating functions.

Theorem. For any partition I + J of the set of indices (1, ..., n) into two dis-
joint subsets and for any function S(x;, y;) of n variables x;, i€ I, je J, the
Jformulas

_ oS __9 __g_,.9
%, YT T oy, 7 I ax,

define a Legendre submanifold of R*** 1. Conversely, every Legendre sub-
manifold of R*"* ' is defined inaneighborhood of every point by these formulas
Jor at least one of the 2" possible choices of the subset I.

The proofis based on the fact that, on a Legendre manifold,dz + xdy = 0,
sod(z + x;yp) = yrdx; — x;dy;. O

In the formulas of the preceding theorem, we replace S by a function from
the list of the simple lagrangian singularities given in Appendix 12. We
obtain Legendre singularities which are preserved under small deformations
of the Legendre mapping (x, y, z) = (y, z) (i.e., are carried to equivalent
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singularities for small deformations of the function §). Every Legendre
mapping for n < 6 can be approximated by a map, all of whose singularities
are locally equivalent to singularities from the list 4, (1 < k <6), Dy
4 <k<6)Eg.

In particular, we obtain a list of the singularities of a wave front in general
position in spaces of dimension less than 7.

In ordinary three-space this list is as follows:

A S = +xi Ay S = +x3 Ay: S = +xT + xiy,

where I = {1}, J = {2},and n = 2.

The projections of the Legendre manifolds indicated here onto the base
of the Legendre bundle (i.e., onto the space with coordinates y,, y,, and z)
are: a simple point in the case of A,, a cuspidal edge in the case of 4,,and a
swallowtail (cf. Figure 246) in the case of 4;.

Thus a wave front in general position in three-space has only cusps and
“swallowtail ” points as singularities. At isolated moments of time during the
motion of the front we can observe transitions of the three types 4,, Dy and
D} (cf. Appendix 12, where the corresponding caustics filled out by the
singularities of the front during its motion are drawn).

PROBLEM |. Lay out an interval of length ¢ on every interior normal to an ellipse in the plane.
Draw the curve obtained and investigate its singularities and its transitions as ¢ changes.

PROBLEM 2. Do the same thing for a triaxial ellipsoid in three-dimensional space.

L Contactification

Along with symplectification of contact manifolds, there is a contactification
of symplectic manifolds with symplectic structure cohomologous to zero.

The contactification E2"*1 of the symplectic manifold (M ", w?) is con-
structed as the space of a bundle with fiber R over M?". Let U be a sufficiently
small neighborhood of a point x in M, so that there is a canonical coordinate
system p,q on U with @ = dp A dgq. Consider the direct product U x R
with coordinates p, ¢, z. Let ¥V x R be the same kind of product constructed
on another (or the same) neighborhood V, with coordinates P, Q, Z;dP ~ dQ
= . If the neighborhoods U and V on M intersect, then we identify the
fibers above the points of intersection in both representations so that the
form dz + pdq = dZ + P dQ = « is defined on the whole (this is possible
since P dQ — p dq is a total differential on U n V).

It is easy to verify that after this pasting together we have a bundle E*"1
on M2" and that the form « defines a contact structure on E. The manifold E
is called the contactification of the symplectic manifold M. If the cohomology
class of the form w? is integral, then we can define a contactification with
fiber S'.
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M Integration of first-order partial differential equations

Let M?"*! be a contact manifold, and E?" a hypersurface in M2"*!, The
contact structure on M defines some geometric structure on E-—in particular,
the field of so-called characteristic directions. An analysis of this geometric
structure can reduce the integration of general first-order nonlinear partial
differential equations to the integration of a system of ordinary differential

equations.
We assume that the manifold E*" is transverse to the contact planes at all

its points. In this case, the intersection of the tangent plane to E2" at each of its
points with the contact plane has dimension 2n — 1, so that we have a field
of hyperplanes on E?". Furthermore, the contact structure on M2"*1 defines
on E*" a field of lines lying in these (2n — 1)-dimensional planes.

In fact, let « be a 1-form on M?"*! locally giving the contact structure;
let @ = dx and let R?"” be a contact plane at the point x in E2". Let ® = 0
be the local equation of E?" (so d® is not zero at x). The restriction of d® to
R2" defines a nonzero linear form on R2", The 2-form w gives R2" the structure
of a symplectic vector space and thus an isomorphism of this space with its
dual. The nonzero 1-form d®|z:. corresponds to a nonzero vector & of R?",
so that d®(-) = w(<&, -). The vector & is called the characteristic vector of the
manifold E?" at the point x. The characteristic vector ¢ lies in the inter-
section of R?” with the tangent plane to E2" so that d®(&) = O.

The vector ¢ is not uniquely defined by the manifold E?” and the contact
structure on M, but only up to multiplication by a nonzero number. In fact,
like the 2-form @ on R?", the 1-form d® on R2" is defined only up to multi-
plication by a nonzero number.

The direction of the characteristic vector (i.e., the linc containing it) is
determined uniquely by the contact structure at every point of the manifold
E. Thus we have a field of characteristic directions on the hypersurface E of
the contact manifold M. The integral curves of this field of directions are
called the characteristics.

Now suppose we are given an {n — 1)-dimensional submanifold I of our
hypersurface E*", which is integral for the contact field (so that the tangent
plane to I at each point is contained in the contact plane).

Theorem. If at a point x of I the characteristic on E*" is not tangent to I, then
in a neighborhood of the point x the characteristics on E*" passing through
points of I form a Legendre submanifold L™ in M?"+ 1,

PrOOF. Let ¢ be a vector field on E*" made up of characteristic vectors. By
the homotopy formula (cf. Section 36G) we have on E2"

L,:Ot = dl)’:a + l: da.

But i;a = 0 since the characteristic vector belongs to the contact plane.
Therefore, on E*" we have L.a = i;. But the 1-form i;® is zero on the
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intersection of the tangent plane to E*" with the contact plane (since on the
contact plane i. = d®, and on the tangent plane d® = 0). Therefore, on
the tangent plane to E*” we have i;w = ca. Thus on the hypersurface E,

Léa =

(where ¢ is a function smooth in a neighborhood of x).

Now let {g'} be the (local) phase flow of the field £ and # a vector tangent
to E2". Set n(t) = g'.n and y(t) = a(n(t)). Then the function y satisfies the
linear differential equation

dy
I c()y(t).

If #(0) is tangent to I, then y(0) = a(n(0)) = 0. This means (1) = a(n(t))
= 0, i.e,, for all r, n(¢) lies in the contact plane. Therefore, g'I is an integral
manifold of the contact field. Therefore the manifold formed by all {g'I} for
small ¢ is a Legendre manifold. ]

ExampLE. Consider R?"*! with coordinates xy, ..., X,} Py» - .-, Pps 4 With
contact structure defined by the 1-form o = du — p dx. A function ®(x, p, u)
defines a differential equation ®(x, du/0x, u) = 0 and a submanifold E =
@~ (0) in the space R?"*! (called the space of 1-jets of functions on R").

An initial condition for the equation ® = 0 is an assignment of a value f
to the function v on an (n — 1)-dimensional hypersurface I' in the n-dimen-
sional space with coordinates x,, ..., x,.

An initial condition determines the derivatives of u in the » — 1 indepen-
dent directions at each point of I'. The derivative in a direction transverse to
I" can generally be found from the equation; if the conditions of the implicit
function theorem are fulfilled, then the initial condition is called noncharacter-
istic.

A noncharacteristic initial condition defines an (n — 1)-dimensional inte-
gral submanifold I of the form x (the graph of the mappingu = f(x),p = p(x),
x € I). The characteristics on E intersecting I form a Legendre submanifold
of R2"*! the graph of the mapping u = u(x), p = Ju/0x. The function u(x)
is a solution of the equation ®(x, du/dx, u) = 0 with initial condition u|r = f.

Note that to find the function u we need only solve the system of 2n first-
order ordinary differential equations for the characteristics on E, and perform
a series of “algebraic™ operations.
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By the theorem of E. Noether, one-parameter groups of symmetries of a
dynamical system determine first integrals. If a system admits a larger group
of symmetries, then there are several integrals. Simultaneous level manifolds
of these first integrals in the phase space are invariant manifolds of the phase
flow. The subgroup of the group of symmetries mapping such an invariant
manifold into itself acts on the manifold. In many cases, we can look at the
quotient manifold of an invariant manifold by this subgroup. This quotient
manifold, called the reduced phase space, has a natural symplectic structure.
The original hamiltonian dynamical system induces a hamiltonian system
on the reduced phase space.

The partition of the phase space into simultaneous level manifolds
generally has singularities. An example is the partition of a phase plane into
energy level curves.

In this appendix we will briefly discuss dynamical systems in reduced
phase space and their relationship with invariant manifolds in the original
space. All these questions were investigated by Jacobi and Poincaré (“elimin-
ation of the nodes” in the many-body problem, “reduction of order” in
systems with symmetries, “stationary rotations™ of rigid bodies, etc.). A
detailed presentation in current terminology can be found in the following
articles: S. Smale, “Topology and mechanics,” Inventiones Mathematicae
10:4 (1970) 305-331, 11:1 (1970), 45-64; and J. Marsden and A. Weinstein,
“Reduction of sympiectic manifolds with symmetries,” Reports on Mathe-
matical Physics 5 (1974) 121-130.

A Poisson action of Lie groups

Consider a symplectic manifold (M?2", ®?) and suppose a Lie group G acts
on it as a group of symplectic diffeomorphisms. Every one-parameter sub-
group of G then acts as a locally hamiltonian phase flow on M. In many
important cases, these flows have single-valued hamiltonian functions.

ExaMPLE. Let V' be a smooth manifold and G some Lie group of diffeomorphisms of V. Since
every difftomorphism takes 1-forms on V to 1-forms, the group G acts on the cotangent bundle
M= T*V.

Recali that on the cotangent bundle there is always a canonical 1-form x (“pdg™) and a
natural symplectic structure «» = dx. The action of the group G on M is symplectic since it
preserves the 1-form x and hence also the 2-form da.

A one-parameter subgroup {g'} of G defines a phase flow on M. It is easy to verify that this
phase flow has a single-valued hamiltonian function. In fact, the hamiltonian function is given
by the formula from Noether’s theorem:

g'.\‘), where x € M.

H()—o:(d
R W

tli=o

We now assume that we are given a symplectic action of a Lie group G
on a connected symplectic manifold M such that, to every element a of the
Lie algebra of G, there corresponds a one-parameter group of symplectic
diffeomorphisms with a single-valued hamiltonian H,. These hamiltonians

371



Appendix 5: Dynamical systems with symmetries

are determined up to the addition of constants which can be chosen so that
the dependence of H, upon a is linear. To do this, it is sufficient to choose
arbitrarily the constants in the hamiltonians for a set of basis vectors of the
Lie algebra of G, and to then define the hamiltonian function for each element
of the algebra as a linear combination of the basis functions.

Thus, given a symplectic action of a Lie group G and a single-valued
hamiltonian on M, we can construct a linear mapping of the Lie algebra of
G into the Lie algebra of hamiltonian functions on M. The function Hy, 4
associated to the commutator of two elements of the Lie algebra is equal to
the Poisson bracket (H,, H,), or else it differs from this Poisson bracket by a
constant:

Hy s = (H,, Hy) + C(a, b).

Remark. The appearance of the constant C in this formula is a consequence of an interesting
phenomenon: the existence of a two-dimensional cohomology class of the Lie algebra of

(globally) hamiltonian fields.
The quantity C(a. b) is a bilinear skew-symmetric function on the Lic algebra. The Jacobi

identity gives us

C([a, b]. ) + C([b. c], a) + C([c, al. b) = 0.

A bilinear skew-symmetric function on a Lic algebra with this property is called a rwo-dimensional

cocycle of the Lie algebra.
If we choose the constants in the hamiltonian functions differently, then the cocycle C is

replaced by C’, where
C'(a, b) = Cla, b) + p([a, b])

where p is a linear function on the Lie algebra. Such a cocycle ' is said to be cohomologous to
the cocycle C. A class of cocycles which are cohomologous to one another 1s called a cohomology
class of the Lie algebra.

Thus, a symplectic action of a group G for which single-valued hamiltonians exist defines a
two-dimensional cohomology class of the Lie algebra of G. This cohomology class measures
the deviation of the action from one in which the hamiltonian function of a commutator can be
chosen equal to the Poisson bracket of the hamiltonian functions.

Definition. An action of a connected Lie group on a symplectic manifold is
called a Poisson action if the hamiltonian functions for one-parameter
groups are single-valued, and chosen so that the hamiltonian function
depends linearly on elements of the Lie algebra and so that the hamiltonian
function of a commutator is equal to the Poisson bracket of the hamil-
tonian functions:

H[a,b] = (Ha, Hb)-

In other words, a Poisson action of a group defines a homomorphism from
the Lie algebra of this group to the Lie algebra of hamiltonian functions.
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ExampLE. Let V' be a smooth manifold and G a Lie group acting on Vas a group of diffeo-
morphisms. Let M = T*} be the cotangent bundle of the manifold V' with the usual symplectic
structure 0 = dx. The hamiltonian functions of onc-parameter groups are defined as above:

d
(1) H. (x) = 1(67 g‘x). xe T*V.

t‘r:O

Theorem. This uction is Poisson,

Proor. By definition of the 1-form 2 the hamiltonian functions H, are linear “in p™ (i.e., on
every cotangent space). Therefore. their Poisson brackets are also linear. Thus the function
H, » — (H,, Hy)is linear in p. Since it is constant, it is equal to zero. ]

In the same way. we can show that the symplectification of any contact action is a Poisson
action.

ExaMmpLE. Let V' be three-dimensional euclidean space and G the six-dimensional group of its
motions. The following six one-parameter groups form a basis of the Lie algebra: the trans-
lations with velocity 1 along the coordinate axes ¢,, ¢,. and ¢, and the rotations with angular
velocity 1 around these axes. By formula (1), the corresponding hamiltonian functions are (in
the usual notation) p,, p,.ps: M,, M,. M,, where M, = ¢g,py — g3 p,. etc. The theorem im-
plics that the pairwise Poisson brackets of these six functions are equal to the hamiltonian
functions of the commutators of the corresponding one-parameter groups.

A Poisson action of a group G on a symplectic manifold M defines a
mapping of M into the dual space of the Lie algebra of the group

P: M — g*
That is, we fix a point x in M and consider the function on the Lie algebra

which associates to an element a of the Lie algebra the value of the Hamil-
tonian H, at the fixed point x:

pla) = H,(x).

This p, is a linear function on the Lie algebra and is the element of the dual
space to the algebra associated to x:

P(x) = ps.

Following Souriau (Structure des systemes Dynamiques, Dunod, 1970), we
will call the mapping P the momentum. Note that the value of the momentum
1s always a vector in the space g*.

EXAMPLE. Let V be a smooth manifold, G a Lie group acting on V as a group of diffeomorphisms,
M = T*V the cotangent bundle and H, the hamiltonian functions constructed above of the
action of G on M (cf. (1)).

Then the "momentum™ mapping P: M — g* can be described in the following way. Con-
sider the map ®: G — M given by the action of all the elements of G on a fixed point x in M
(so ®(g) = gx). The canonical 1-form » on M induces a 1-form ®*x on G. Its restriction to the
tangent spuace at the identity of G is a linear form on the Lie algebra.

Thus to every point x in M we have associated a linear form on the Lie algebra. It is easy
to verify that this mapping is the momentum of our Poisson action.
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In particular, if V is euclidean three-space and G 1s the group of rotations around the point 0.
then the values of the momentum are the usual vectors of angular momentum: if G is the group
of rotations around an axis, then the values of the momentum are the angular momenta relative
to this axis: if G is the group of parallel translations, then the values of the momentum are the
vectors of linear momentum.

Theorem. Under the momentum mapping P, a Poisson action of a connected
Lie group G is taken to the co-adjoint action of G on the dual space g* of its
Lie algebra (cf. Appendix 2), i.e., the following diagram commutes:

M— i
P P

i Ad*, J.

g* - g*

Corollary. Suppose that a hamiltonian function H: M — R is invariant under
the Poisson action of a group G on M. Then the momentum is a first integral
of the system with hamiltonian function H.

PROOF OF THE THEOREM The theorem asserts that the hamiltonian funcuon H, of the one-

parameter group ' is carried over by the diffeomorphism ¢ to the hamiltonian function H ,, ,

of the one-parameter group gh'g™"'.

Let g° be a one-parameter group with hamiltonian function H,. It is sufficient to show that
the derivatives with respect to s (for s = 0) of the functions H(¢*x) and H 4,,,.(x) are the same.
The first of these derivatives is the value at x of the Poisson bracket (H,, H,). The second 1s
H{, »(x). Since the action is Poisson, the theorem ts proved. 0

PROOF OF THE COROLLARY. The derivative, in the direction of the phase flow with hamiltonian
function H . of each component of the momentum is zero. since it is equal to the derivative of

function H in the direction of the phase fiow corresponding to a one-parameter subgroup of G.
0

B The reduced phase space

Suppose that we are given a Poisson action of a group G on a symplectic
manifold M. Consider a level set of the momentum, i.e., the inverse image of
some point p € g* under the map P. We denote this set by M, so that
(Figure 238)

M, = P !(p).

In many important cases the set M, is a manifold. For example, this will
be so if pisa regular value of the momentum, i.e., if the differential of the map P
at each point of the set M, maps the tangent space to M onto the whole
tangent space to g*.

In general, a Lie group G acting on M takes the sets M, into one another.
However, the stationary subgroup of a point p in the co-adjoint representa-
tion (i.e., the subgroup consisting of those elements g of the group G for
which Ad}¥p = p) leaves M, fixed. We denote this stationary subgroup by
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Figure 238 Reduced phase space

G,. The group G, is a Lie group, and it acts on the level set M, of the mo-
mentum.

The reduced phase space is obtained from M, by factoring by the action
of the group G, . In order for such a factorization to make sense, it is necessary
to make several assumptions. For example, it is sufficient to assume that

1. pis a regular value, so that M, is a manifold,
2. The stationary subgroup G, is compact, and
3. The elements of the group G, act on M, without fixed points.

Remark. These conditions can be weakened. For example, instead of compactness of the
group G, we can require that the action be proper (i.e., that the inverse images of compact sets
under the mapping (g, x) — (g(x). x) are compact). For example, the actions of a group on
itself by left and right translation are always proper.

If conditions (1), (2), and (3) are satisfied, then it is easy to give the set of
orbits of the action of G, on M, the structure of a smooth manifold. Namely,
a chart on a neighborhood of a point x € M, is furnished by any local trans-
versal to the orbit G,x, whose dimension is equal to the codimension of the
orbit.

The resulting manifold of orbits is called the reduced phase space of a
system with symmetry.

We will denote the reduced phase space corresponding to a value of the
momentum by F,. The manifold F ,is the base space of thebundlen: M, — F,
with fiber diffeomorphic to the group G,.

There is a natural symplectic structure on the reduced phase space F,.
Namely, consider any two vectors { and # tangent to F, at the point f. The
point f is one of the orbits of the group G, on the manifold M. Let x be
one of the points of this orbit. The vectors ¢ and 5 tangent to F, are obtained
from some vectors ¢’ and 7’ tangent to M, at some point x by the projection
n.M,—>F,.

Definition. The skew-scalar product of two vectors £ and n which are tangent
to a reduced phase space at the same point, is the skew-scalar product of
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the corresponding vectors &' and #’, tangent to the original symplectic
manifold M:

[E.nl, =[&,n].

Theorem.!%! The skew-scalar product of the vectors & and 1 does not depend
on the choices of the point x and representatives ¢' and 1, and gives a
symplectic structure on the reduced phase space.

Corollary. The reduced phase space is even-dimensional.

PROOF OF THE THEOREM. We look at the following two spaces in the tangent
space to M at x:

T(M ), the tangent space to the level manifold M, and
T(G,), the tangent space to the orbit of the group G.

Lemma. These two spaces are skew-orthogonal complements to one another
in TM.

PROOF. A vector ¢ lies in the skew-orthogonal complement to the tangent plane of an orbit of
the group G if and only if the skew-scalar product of the vector { with velocity vectors of the
hamiltonian flow of the group G is equal to zero (by definition). But these skew-scalar products
are equal to the derivatives of the corresponding hamiltonian functions in the direction <.
Therefore, the vector ¢ lies in the skew-orthogonal complement to the orbit of G 1f and only if
the derivative of the momentum in the direction ¢ is equal to zero, i.e., if { lies in T(M ). M

The representatives & and #° are defined up to addition of a vector from the tangent plane
to the orbit of the group G,. But this tangent plane is the mtersection of the tangent planes to
the orbit Gx and to the manifold M, (by the last theorem of part A). Consequently. the addition
to &' of a vector from T(G,x) does not change the skew-scalar product with any vector ' from
T(M,) (since by the lemma T(G,x) is skew-orthogonal to T(M ). Thus, we have shown the
independence from the representatives £’ and 7.

The independence of the quantity [Z, #], from the choice of the point x of the orbit [ follows
from the symplectic nature of the action of the group G on M and the invariance of M. Thus
we have defined a differential 2-form on F:

Q&) = [En],-

It is nondegenerate, since if [£, ], = 0 for every #. then the corresponding representative
& is skew-orthogonal to all vectors in T(M ). Therefore, I" must be the skew-orthogonal com-
plement to T(M ) in TM. Then by the lemma &' € T(Gx).ie. = 0.

The form Q, is closed. In order to verify this we consider a chart. 1.e . a piece of submanifold
in M. transversally intersecting the orbit of the group G, in one point.

The form €, is represented in this chart by a 2-form induced from the 2-form > which defines
the symplectic structure in the whole space M. by means of the embedding of the submanifold

piece. Since the form w is closed, the induced form 1s also closed. The theorem is proved. U

101 The theorem was first formulated in this form by Marsden and Weinstein. Many special
cases have been considered since the time of Jacobi and used by Poincare and his successors in
mechanics. by Kirillov and Kostant in group theory. and by Faddeev in the general theory of
relativity.
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ExAMPLE 1. Let M = R?" be euclidean space of dimension 2n with coordin-
ates py, g, and 2-form > dp, A dq,. Let G = S! be the circle, and let the
action of G on M be given by the hamiltonian of a harmonic oscillator

H=1Y (p? + q?).

Then the momentum mapping is simply H: R?" — R, a nonzero momen-
tum level manifold is a sphere S*"~ !, and the quotient space is the complex
projective space CP"~ 1.

The preceding theorem defines a symplectic structure on this complex
projective space. It is easy to verify that this structure coincides (up to a
multiple) with the one we constructed in Appendix 3.

ExAMPLE 2. Let V be the cotangent bundle of a Lie group, G the same group
and the action defined by left translation. Then M, is a submanifold of the
cotangent bundle of G, formed by those vectors which, after right translation
to the identity of the group, define the same element in the dual space to the
Lie algebra.

The manifolds M, are diffeomorphic to the group itself and are right-
invariant cross-sections of the cotangent bundle. All the values p are regular.

The stationary subgroup G, of the point p consists of those elements of
the group for which left and right translation of p give the same result. The
actions of elements different from the identity of G, on M, have no fixed
points (since there are none by right translation of the group onto itself).

The group G, acts properly (cf. remark above). Consequently, the space
of orbits of the group G, on M, is a symplectic manifold.

But this space of orbits is easily identified with the orbit of the point p
in the co-adjoint representation. Actually, we map the right-invariant
section M, of the cotangent bundle into the cotangent space to the group at
the identity with left translations. We get a mapping

n: M, — g*

The image of this mapping is the orbit of the point p in the co-adjoint
representation, and the fibers are the orbits of the action of the group G,.
The symplectic structure of the reduced phase space thus defines a symplectic
structure in the orbits of the co-adjoint representation.

It 1s not hard to verify by direct calculation that this is the same structure
which we discussed in Appendix 2.

ExampLF 3. Let the group G = S!, the circle, and let it act without fixed
points on a manifold V. Then there is an action of the circle on the cotangent
bundle M = T*V. We can define momentum level manifolds M, (of co-
dimension 1 in M) and quotient manifolds F, (the dimension of which is 2
less than the dimension of M).
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In addition, we can construct a quotient manifold of the configuration
space V by identifying the points of each orbit of the group on V. We denote
this quotient manifold by W.

Theorem. The reduced phase space F, is symplectic and diffeomorphic to the
cotangent bundle of the quotient configuration manifold W'.

PROOF. Let n: ¥V — W be the factorization map, and w € T*W a l-form on W at the point w = mv.
The form n*w on V at the point v belongs to M, and projects to a point in the quotient Fg.
Conversely, the elements of F, are the invariant 1-forms on V which are cqual to zero on the
orbits; they define 1-forms in W. We have constructed a mapping T*W — F,: it is easy to see
that this 1s a symplectic diffeomorphism.

The case p # 0 is reduced to the case p = 0 as follows. Consider a riemannian metric on
V., invariant with respect to G. The intersection of M, with the cotangent planc to V at the point v
is a hyperplane. The quadratic form defined by the metric has a unique minimum point S(v) in
this hyperplane. Subtraction of the vector S(v} carries the hyperplane M, T *V, into
M, ~ T*V,, and we oblain a possibly nonsymplectic diffeomorphism F, — F,.

The difference between the symplectic structures on T*W induced by that of F, and Fyis a
2-form, induced by a 2-form on W. O

C Applications to the study of stationary rotations
and bifurcations of invariant manifolds

Suppose that we are given a Poisson action of a group G on a symplectic
manifold M ; let H be a function on M invariant under G. Let F, be a reduced
phase space (we assume that the conditions under which this can be defined
are satisfied).

The hamiltonian field with hamiltonian function H is tangent to every
momentum level manifold M, (since momentum is a first integral). The
induced field on M, is invariant with respect to G, and defines a field on the
reduced phase space F,. This vector field on F, will be called the reduced

field.

Theorem. The reduced field on the reduced phase space is hamiltonian. The
value of the hamiltonian function of the reduced field at any point of the
reduced phase space is equal to the value of the original hamiltonian function
at the corresponding point of the original phase space.

ProOrF. The relation defining a hamiltonian field X, with hamiltonian ff on a manifold M
with form w

dH(&) = o(&, X)) forevery &

implies an analogous relation for the reduced field in view of the definition of the symplectic
structure on F . -

ExaMPLE. Consider an asymmetric rigid body, fixed at a stationary point,
under the action of the force of gravity (or any potential force symmetric
with respect to the vertical axis).
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The group S! of rotations with respect to a vertical line acts on the con-
figuration space SO(3). The hamilionian function is invariant under rota-
tions, and therefore we obtain a reduced system on the reduced phase space.

The reduced phase space is, in this case, the cotangent bundle of the
quotient configuration space (cf. Example 3 above). Factorization of the
configuration space by the action of rotations around the vertical axis was
done by Poisson in the following way.

We will specify the position of the body by giving the position of an ortho-
normal frame (e,, e,, ;). The three vertical components of the basic vectors
give a vector in three-dimensional euclidean space. The length of this vector
is 1 (why?). This Poisson vector'®? y determines the original frame up to
rotations around a vertical line (why ?).

Thus the quotient configuration space is represented by a two-dimensional
sphere S2, and the reduced phase space is the cotangent bundle T*S? with a
nonstandard symplectic structure. The reduced hamiltonian function on the
cotangent bundle is represented as the sum of the “kinetic energy of the
reduced motion,” which is quadratic in the cotangent vectors, and the
“effective potential ”’ (the sum of the potential energy and the kinetic energy of
rotation around a vertical line).

The transition to the reduced phase space in this case ts almost by “elimination of the cyclic
coordinate ¢.” The difference is that the usual procedure of elimination requires that the con-
figuration or phase space be a direct product by the circle, whereas in our case we have only a
bundle. This bundle can be made a direct product by decreasing the size of the configuration
space (i.e., by introducing coordinates with singularities at the poles); the advantage of the
approach above is that it makes it clear that there are no real singularities (except singularities
of the coordinate system) near the poles.

Definition. The phase curves in M which project to equilibrium positions in
the reduced system on the reduced phase space F, are called the relative
equilibria of the original system.

ExAMPLE. Stationary rotations of a rigid body which is fixed at its center of
mass are relative equilibria. In the same way, rotations of a heavy rigid body
with constant speed around the vertical axis are relative equilibria.

Theorem. A phase curve of a system with a G-invariant hamiltonian function is a
relative equilibrium if and only if it is the orbit of a one-parameter subgroup
of G in the original phase space.

Proor. 1t is clear that a phase curve which is an orbit projects to a point. If a phase curve x(t)

projects to a point, then it can be expressed uniquely in the form x(t) = g(#)x(0), and it is then
easy to see that {g(r)} is a subgroup. G

192 poisson showed that the equations of motion of a heavy rigid body can be written in terms
of y in a remarkably simple form, the “Euler-Poisson equations™:

aM

_ dy _
o~ Mel=uly,] =y el
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Corollary 1. An asymmetrical rigid body in an axially symmetric potential
field, fixed at a point on the axis of the field, has at least two stationary
rotations ( for every value of the angular momentum with respect to the axis
of symmetry).

Corollary 2. An axially symmetric rigid body fixed at a point on the axis of
symmetry, has at least two stationary rotations ( for every value of the angular
momentum with respect to the axis of symmetry).

Both corollaries follow from the fact that a function on the sphere has at
least two critical points.

Another application of relative equilibria is that they can be used to
investigate modifications of the topology of invariant manifolds under
changes of the energy and momentum values.

Theorem. The critical points of the momentum and energy mapping
Px HM->g* xR

on a regular momentum level set are exactly the relative equilibria.

ProoF. The critical points of the mapping P x H are the conditional extrema of H on the
momentum level manifold M, (since this level manifold is regular, ie., for every x in M,, we
have P, TM, = Tg}).

After factorization by G, the conditional extrema of H on M, define the critical points of
the reduced hamiltonian function (since H is invariant under G ). 3

The detailed study of relative equilibria and singularities of the energy-
momentum mapping is not simple and has not been completely carried out,
even in the classical problem of the motions of an asymmetrical rigid body
in a gravitational field. The case when the center of gravity lies on one of the
principal axes of inertia is treated in the supplement written by S. B. Katok
to the Russian translation'?? of the article by S. Smale cited in the beginning
of this appendix. In this problem the dimension of the phase space is six, and
the group is the circle; the reduced phase space T*S? is four-dimensional.

The nonsingular energy level manifolds in the reduced phase space are
(depending on the values of momentum and energy) of the following four
forms: S, §2 x S!, RP3, and a “pretzel” obtained from the three-sphere S3
by attaching two “handles” of the form

St x D? (D? = the disc {(x, y)|x* + y* < 1}).

103 Uspekhi Matematicheskikh Nauk 27, no. 2 (1972) 78-133.
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Appendix 6: Normal forms of quadratic hamiltonians

In this appendix we give a list of normal forms to which we can reduce a
quadratic hamiltonian function by means of a real symplectic transformation.
This list was composed by D. M. Galin based on the work of J. Willtamson
in “On an algebraic problem concerning the normal forms of linear dynamical
systems,” Amer. J. of Math. 58, (1936), 141-163. Williamson’s paper gives
the normal forms to which a quadratic form in a symplectic space over any
field can be reduced.

A Notation

We will write the hamiltonian as
H = 3(Ax, x),

where x = (py, ..., Pni 415> - - - » 4,) 1S @ vector written in a symplectic basis
and A is a symmetric linear operator. The canonical equations then have the
form

0 —E
x = 1A h = .
X x, where [ (E O)

By the eigenvalues of the hamiltonian we will mean the eigenvalues of the
linear infinitesimally-symplectic operator I 4. In the same way, by a Jordan
block we will mean a Jordan block of the operator 1 A4.

The eigenvalues of the hamiltonian are of four types: real pairs (a, —a),
purely imaginary pairs (ib, —ib), quadruples (+ a +ib), and zero eigenvalues.

The Jordan blocks corresponding to the two members of a pair or four
members of a quadruple always have the same structure.

In the case when the real part of an eigenvalue is zero, we have to dis-
tinguish the Jordan blocks of even and odd order. There are an even number of
blocks of odd order with zero eigenvalue and they can be naturally divided
into pairs.

A compiete list of normal forms follows.

B Hamiltonians

For a pair of Jordan blocks of order k with eigenvalues +a, the hamiltonian
18

k k—1
H= —a Z p;d; + Z Pidj+1-
i=1 ji=1
For a quadruple of Jordan blocks of order k with eigenvalues +a + bi
the hamiltonian is

2k—2

2k k
H= —a ZP;‘CI; + bZ(sz—sz - szCI2j—1) + Z Pidij+2-

i=1 i=1 j=1
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For a pair of Jordan blocks of order k with eigenvalue zero the hamiltonian
is
k=1
j=1

For a Jordan block of order 2k with eigenvalue zero, the hamiltonian is
of one of the following two inequivalent types:

1 k—1 k
H =+ 5 (ijpk—j_ 'Zlqjqk—j+l)
j=

ji=1

k—1
- Z Didj+1
j=1
(for k = 1 thisis H = + 1¢?).
For a pair of Jordan blocks of odd order 2k + 1 with purely imaginary
eigenvalues + bi, the hamiltonian is of one of the following two inequivalent

types:

1

k
H= + 2 > (b%p2ipak-2542 + d2i92k-2j+2)
i=1

k+1 2k
- Z (bZPZj— 1P2k-2j+3 t G2j—192k— 25+ 3)] - Z Pidj+1-
Jj=1 j=1
Fork = 0, H = +3(b%p? + g3).
For a pair of Jordan blocks of even-order 2k with purely imaginary eigen-
values + bi, the hamiltonian is of one of the following two inequivalent types:

1[ & 1
H= + ) Z ?Q2j—1Q2k—2j+l + G2iq2k-2j+2
“

k-1
- Z b2p2j+1p2k—2j+1 + p2j+2p2k—2j+2)]

Jj=1

k k
— b? ZPZj—quj + sz_fq2j—l

i=1 ji=1

1/1
(for k=1 H= + > (ﬁ qi + q%) — bzpﬂ: + qul)—

Williamson’s theorem. A real symplectic vector space with a given quadratic
Jform H can be decomposed into a direct sum of pairwise skew orthogonal real
symplectic subspaces so that the form H is represented as a sum of forms of
the types indicated above on these subspaces.

C Nonremovable Jordan blocks

An individual hamiltonian in “general position” does not have multiple
eigenvalues and reduces to a simple form (all the Jordan blocks are of first
order). However, if we consider not an individual hamiltonian but a whole
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family of systems depending on parameters, then for some exceptional
values of the parameters more complicated Jordan structures can arise. We
can get rid of some of these by a small change of the family; others are non-
removable and only slightly deformed after a small change of the family. If
the number [ of parameters of the family is finite, then the number of non-
removable types in [-parameter families is finite. The theorem of Galin
formulated below allows us to count all these types for any fixed 1.

We denote by n;(z) = ny(z) = - -- > nydz) the dimensions of the Jordan
blocks with eigenvalues z # 0, and by m; >m, > --- > m, and mi; >
ni, > - -+ > mi, the dimensions of the Jordan blocks with eigenvalues zero,
where the m; are even and the #i; are odd (of every pair of blocks of odd
dimension, only one is considered).

Theorem. In the space of all hamiltonians, the manifold of hamiltonians with
Jordan blocks of the indicated dimensions has codimension

1 s(z) 1 &
c = 5 -Z Z (2j — n(z) —- 1] + 5 Z 2 — )m;

#0 =1 i=1

+ Y20 — Iy, + 11+ 23 Y min{m,, ).

(Note that, if zero is not an eigenvalue, then only the first term in the sum
is not zero.)

Corollary. In l-parameter families in general position of linear hamiltonian
systems, the only systems which occur are those with Jordan blocks such that
the number ¢ calculated by the formula above is not greater than l: all
cases with larger ¢ can be eliminated by a small change of the family.

Corollary. In one- and two-parameter families, nonremovable Jordan blocks of
only the following 12 types occur:

I =1:(xa), (£ia)* 0?

(here the Jordan blocks are denoted by their determinants; for example,
(+a)* denotes a pair of Jordan blocks of order 2 with eigenvalues a and

—a, respectively;

I =2:(xa)? (+ai)?, (+a =+ bi)?, 0% (+a)*(£b)?*, (+ai)’*(+bi)?,
(Fa)’(+bi)?, (£a)?*0%, (+ai)’0?

(the remaining eigenvalues are simple).
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Galin has also computed the normal forms to which one can reduce any
family of linear hamiltonian systems which depend smoothly on parameters,
by using a symplectic linear change of coordinates which depends smoothly
on the parameters. For example, for the simplest Jordan square (+a)?, the
normal form of the hamiltonian will be

H(A) = —a(pid; + P2g2) + P1d> + A1P1dy + A2p24,

(4, and A, are the parameters).
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Appendix 7: Normal forms of hamiltonian systems near
stationary points and closed trajectories

In studying the behavior of solutions to Hamilton’s eguations near an
equilibrium position, it is often insufficient to look only at the linearized
equation. In fact, by Liouville’s theorem on the conservation of volume,
it is impossible to have asymptotically stable equilibrium positions for hamil-
tonian systems. Therefore, the stability of the linearized system is always
neutral: the eigenvalues of the linear part of a hamiltonian vector field at a
stable equilibrium position all lie on the imaginary axis.

For systems of differential equations in general form, such neutral
stability can be destroyed by the addition of arbitrarily small nonlinear
terms. For hamiltonian systems the situation is more complicated. Suppose,
for example, that the quadratic part of the hamiltonian function at an
equilibrium position (which determines the linear part of the vector field) is
(positive or negative) definite. Then the hamiltonian function has a maximum
or minimum at the equilibrium position. Therefore, this equilibrium position
is stable (in the sense of Liapunov, but not asymptotically), not only for the
linearized system but also for the entire nonlinear system.

On the other hand, the quadratic part of the hamiltonian function at a
stable equilibrium position may not be definite. A simple example is supplied
by the function H = p} + g — pZ — q%. To investigate the stability of
systems with this kind of quadratic part, we must take into account terms of
degree >3 in the Taylor series of the hamiltonian function (i.e., the terms of
degree >2 for the phase velocity vector field). It is useful to carry out this
investigation by reducing the hamiltonian function (and, therefore, the
hamiltonian vector field) to the simplest possible form by a suitable canonical
change of variables. In other words, it is useful to choose a canonical co-
ordinate system, near the equilibrium position, in which the hamiltonian
function and equations of motion are as simple as possible.

The analogous question for general (non-hamiltonian) vector fields can
be solved easily : there the general case is that a vector field in a neighborhood
of an equilibrium position is linear in a suitable coordinate system (the
relevant theorems of Poincaré and Siegel can be found, for instance, in the
book, Lectures on Celestial Mechanics, by C. L. Siegel and J. Moser,
Springer-Verlag, 1971.)

In the hamiltonian case the picture is more complicated. The first difficulty
is that reduction of the hamiltonian field to a linear normal form by a
canonical change of variables is generally not possible. We can usually kill
the cubic part of the hamiltonian function, but we cannot kill all the terms of
degree four (this is related to the fact that, in a linear system, the frequency of
oscillation does not depend on the amplitude, while in a nonlinear system it
generally does). This difficulty can be surmounted by the choice of a nonlinear
normal form which takes the frequency variations into account. As a result,
we can (in the “non-resonance” case) introduce action-angle variables near
an equilibrium position so that the system becomes integrable up to terms of
arbitrary high degree in the Taylor series.

385



Appendix 7: Normal forms of hamiltonian systems near stationary points

This method allows us to study the behavior of systems over the course of
large intervals of time for initial conditions close to equilibrium. However,
it is not sufficient to determine whether an equilibrium position will be
Liapunov stable (since on an infinite time interval the influence of the dis-
carded remainder term of the Taylor series can destroy the stability). Such
stability would follow from an exact reduction to an analogous normal form
which did not disregard remainder terms. However, we can show that
this exact reduction is generally not possible, and formal series for canonical
transformations reducing a system to normal form generally diverge.

The divergence of these series is connected with the fact that reduction
to normal form would imply simpler behavior of the phase curves (they
would have to be conditionally-periodic windings of tori) than that which
in fact occurs. The behavior of phase curves near an equilibrium position is
discussed in Appendix 8. In this appendix we give the formal results on nor-
malization up to terms of high degree.

The idea of reducing hamiltonian systems to normal forms goes back to
Lindstedt and Poincaré;'®* normal forms in a neighborhood of an equi-
librium position were extensively studied by G. D. Birkhoff (G. D. Birkhoff,
Dynamical Systems, American Math. Society, 1927).

Normal forms for degenerate cases can be found in the work of A. D.
Bruno, “Analytic forms of differential equations,” (Trudy Moskovskovo
matematischeskovo obschchestva, v. 25 and v. 26).

A Normal form of a conservative system near an
equilibrium position

Suppose that in the linear approximation an equilibrium position of a
hamiltonian system with n degrees of freedom is stable, and that all n charac-
teristic frequencies wy, . .., m, are different. Then the quadratic part of the
hamiltonian can be reduced by a canonical linear transformation to the

form
H = ¥w,(p? + g}) + - + 3w,p2 + q2))

(Some of the numbers w, may be negative).

Definition. The characteristic frequencies wy, ..., w, satisfy a resonance
relation of order K if there exist integers k; not all equal to zero such that

k1w1+"'+kn(l)n=0, 'k1f++|kn|:K
Definition. A Birkhoff normal form of degree s for a hamiltonian is a poly-

nomial of degree s in the canonical coordinates (P, Q,) which is actually
a polynomial (of degree [s/2]) in the variables 1, = (P{ + Q7)/2.

104 or H. Poincaré, Les Mérhodes Nouvelles de la Mécanique Céleste, Vol. 1, Dover, 1957.
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Forexample, for asystem with one degree of freedom the normal form of degree 2m(or2m + 1)
looks like

H,,=Hyni = a;T + a3t +--- + a, 1™, T = (P + 0%)/2,
and for a system with two degrees of freedom the Birkhoff normal form of degree 4 will be
Hy =7y + a3t + a7 + a3 1,7, + a,,13.

The coefficients «, and a, are characteristic frequencies, and the coefficients a;; describe the
dependence of the frequencies on the amplitude.

Theorem. Assume that the characteristic frequencies w; do not satisfy any
resonance relation of order s or smaller. Then there is a canonical co-
ordinate system in a neighborhood of the equilibrium position such that
the hamiltonian is reduced to a Birkhoff normal form of degree s up to terms

of order s + 1:
H(p,q) = H(P,Q) + R R =O(|P| + [Q]y""

ProOOF. The proof of this theorem is easy to carry out in a complex coordinatc system
o=+ g wy = p — g,

(upon passing to this coordinate system we must multiply the hamiltonian by — 2i). If the terms
of degree less than N entering into the normal form are not already killed, then the transformation
with generating function Pg + Sy(P. g) (where Sy is a homogeneous polynomial of degree N)
changes only terms of degree N and higher in the Taylor expansion of the hamiltonian function.

Under this transformation the coefficient for a monomial of degree N in the hamiltonian
function having the form

A zmwlteowin (@ et a kBt By = N)

is changed into the quantity
Szﬂ[;tI([)’l - d]) + -+ )"n(ﬁn - :xn)]'

where 4, = iw; and where s, is the coefficient for z*w” in the expansion of the function Sy(P, ¢)
in the variables = and w.

Under the assumptions about the absence of resonance, the coefficient of s,4 in the square
brackets is not zero, except in the case when our monomial can be expressed in terms of thc
product z;w, = 21, (i.e., when all the «, are equal to the f3,). Thus we can kill all terms of degree N
except those expressed in terms of the variables 7,. Setting N = 3.4, ..., s, we obtain the theorem.

0

To use Birkhoffs theorem, it is helpful to note that a hamiltonian in normal
form is integrable. Consider the “canonical polar coordinates” 1,, ¢,, i
which P, and Q, can be expressed by the formulas

PI = \/ 2‘[1 COS ¢, Ql = 2‘51 Sin Q.

Since the hamiltonian is expressed in terms of only the action variables 1,
the system is integrable and describes conditionally periodic notions on the
tori T = const with frequencies w = dH/dt. In particular, the equilibrium
position P = Q = O is stable for the normal form.
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B Normal form of a canonical transformation near a stationary point

Consider a canonical (i.e. area-preserving) mapping of the two-dimensional
plane to itself. Assume that this transformation leaves the origin fixed, and
that its linear part has eigenvalue A = e** (i.e., is a rotation by angle « in a
suitable symplectic basis with coordinates p, g). We will call such a trans-
formation elliptic.

Definition. A Birkhoff normal form of degree s for a transformation is a canon-
ical transformation of the plane to itself which is a rotation by a variable
angle which is a polynomial of degree not more than m = [s/2] — 1
in the action variable t of the canonical polar coordinate system:

(-c,(p)—>(r,(p+oc0+oc1‘c+---+amr"‘),

p=ﬁcosq) q=\/ErSin(p.

where

Theorem 2. If the eigenvalue A of an elliptic canonical transformation is not a
root of unity of degree s or less, then this transformation can be reduced by a
canonical change of variables to a Birkhoff normal form of degree s with
error terms of degree s + 1 and higher.

The multi-dimensional generalization of an elliptic transformation is the

direct product of n elliptic rotations of the planes (p,, q;) with eigenvalues
A; = e*® A Birkhoff normal form of degree s is given by the formula

oS
(z, ) — Lo+l

where S is a polynomial of degree not more than [s/2] in the action variables
Tiseres Tne

Theorem 3. If the eigenvalues 2, of a multi-dimensional elliptic canonical
transformation do not admit resonances

A e =1, ke + k] <05,

then this transformation can be reduced to a Birkhoff normal form of degree s
(with error in terms of degree s in the expansion of the mapping in a Taylor
series at the point p = q = 0).

C Normal form of an equation with periodic coefficients
near an equilibrium position

Let p = g = 0 be an equilibrium position of a system whose hamiltonian
function depends 2rn-periodically on time. Assume that the linearized equa-
tion can be reduced by a linear symplectic time-periodic transformation to an
autonomous normal form with characteristic frequencies w,, ..., @,.
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We say that a system is resonant of order K > 0 if there is a relation
kiw, + -+ ko, + ko =0
with integers kg, k¢, ..., k, for which |k, | + --- + |k,| = K.

Theorem. If a system is not resonant of order s or less, then there is a 2n-
periodic time-dependent canonical transformation reducing the system in a
neighborhood of an equilibrium position to the same Birkhoff normal form
of degree s as if the system were autonomous, with only the difference that
the remainder terms R of degree s + 1 and higher will depend periodically
on time.

Finally, suppose that we are given a closed trajectory of an autonomous
hamiltonian system. Then, in a neighborhood of this trajectory, we can
reduce the system to normal form by using either of the following two
methods:

1. Isoencrgetic reduction: Fix an energy constant and consider a neighbor-
hood of the closed trajectory on the (2n — 1)-dimensional energy level
manifold as the extended phase space of a system with n — 1 degrees of
freedom, periodically depending on time.

2. Surface of section: Fix an energy constant and value of one of the co-
ordinates (so that the closed trajectory intersects the resulting 2n — 2)-
dimensional manifold transversally). Then phase curves near the given
one define a mapping of this (2n — 2)-dimensional manifold to itself,
with a fixed point on the closed trajectory. This mapping preserves the
natural structure on our (2n — 2)-dimensional manifold, and we can
study it by using the normal form in Section B.

In investigating closed trajectories of autonomous hamiltonian systems,
a phenomenon arises which contrasts with the general theory of equilibrium
positions of systems with periodic coeflicients. The fact is that the closed
trajectories of an autonomous system are not isolated, but form (as a rule)
one-parameter families. The parameter of the family is the value of the energy
constant. In fact, assume that for some choice of the energy constant the
closed trajectory intersects transversally the (2n — 2)-dimensional manifold
described above in the (2n — 1)-dimensional energy level manifold. Then
for nearby values of the energy, there will exist a similar closed trajectory.
By the implicit function theorem we can even say that this closed trajectory
depends smoothly on the energy constant.

If we now wish to use the Birkhoff normal form to investigate a one-
parameter family of closed trajectories, we encounter the following difficulty.
As the parameter describing the family varies, the cigenvalues of the linearized
problem will generally change. Therefore, for some values of the parameter
we will inevitably encounter resonances, obstructing reduction to the normal

form.

389



Appendix 7: Normal forms of hamiltonian systems near stationary points

Especially dangerous are resonances of low order, since they influence
the first few terms of the Taylor series. If we are interested in a closed trajectory
for which the eigenvalues nearly satisfy a resonance relation of low order,
then the Birkhoff form must be somewhat modified. Namely, for resonance
of order N some of the expressions

kO_[a)l(ﬁl_a1)+"'+wn(ﬁn—an)]9 |a|+1ﬁ|=N,

by which we must divide to kill the terms of order N in the hamiltonian
function, may become zero. For non-resonant values of the parameter which
are close to resonance, this combination of characteristic frequencies is
generally not zero, but very small (this combination is therefore called a
“small denominator™).

Division by a small denominator leads to the following difficulties:

1. The transformation which reduces to normal form depends discon-
tinuously on the parameter (it has poles for resonant values of the param-
eter);

2. The region in which the Birkhoff normal form accurately describes the
system contracts to zero at resonance.

In order to get rid of these deficiencies, we must give up trying to annihilate
some of the terms of the hamiltonian (namely, those which become resonant
for resonance values of the parameter). Moreover, these terms must be
preserved not only for resonance, but also for nearby values of the param-
eter.!®5 The normal form thus obtained is somewhat more complicated than
the usual normal form, but in many cases it gives us useful information on
the behavior of solutions near resonance.

D Example: Resonance of order 3

As a simple example, we will study what happens to a closed trajectory of an
autonomous hamiltonian system with two degrees of freedom, for which
the period of oscillation (about the closed trajectory) of neighboring trajec-
tories is three times the period of the closed trajectory itself. By what we said
above, this problem may be reduced to an investigation of a one-parameter
system of non-autonomous hamiltonian systems with one degree of freedom,
2n-periodically depending on time, in a neighborhood of an equilibrium
position. This equilibrium position can be taken as the origin for all values of
the parameter (to achieve this we must make a change of variables depending
on the parameter).

Furthermore, the linearized system at the equilibrium position can be
converted into a linear system with constant coefficients by a 2n-periodically
time-dependent linear canonical change of variables. In the new coordinates
the phase flow of the linearized system is represented as a uniform rotation

105 The method indicated here is useful not only in investigating hamiltonian systems, but also
in the general theory of differential equations. Cf., for example, V. 1. Arnold, “Lectures on
bifurcations and versal families.” Russian Math. Surveys 27. No. 5, 1972, 54-123.
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around the equilibrium position. The angular velocity @ of this rotation
depends on the parameter.

At the resonance value of the parameter, w = 3 (i.e., after time 2, we have
gone one-third of the way around the origin). The derivative of the anguiar
velocity w with respect to the parameter is generally not zero. Therefore, we
can take as a parameter this angular velocity or, even better, its difference
from {. We will denote this difference by &. The quantity ¢ is called the
Jrequency deviation or detuning. The resonance value of the parameter is
¢ = 0, and we are interested in the behavior of the system for small e.

If we disregard the nonlinear terms in Hamilton’s equations and dis-
regard the frequency deviation ¢, then all trajectories of our system become
closed after making three revolutions (i.e., they have period 6m). We now
want to study the influence of the nonlinear terms and frequency deviation
on the behavior of the trajectories. It is clear that in the general case not all the
trajectories will be closed. To study their behavior, it is useful to look at
the normal form.

In the chosen coordinate system, z = p + iq,Z = p — ig, the hamiltonian
function has the form

+ a0

—2iH = —iwzZ + ) Y hgzifel™ 4 ...

x+B=3 k= —
where the dots indicate terms of order higher than three, and where @ =
G) + =
In the reduction to normal form we can kill all terms of degree three
except those for which the small denominator

e — B) + k

becomes zero at resonance. These terms can be described also as those
which are constant along trajectories of the periodic motion obtained by
disregarding the frequency deviation and nonlinearity. They are called the
resonant terms. Thus, for resonance @ = 4, the resonant terms are those for

which
o — B + 3k =0.

Of the terms of third order, only z% = and z3¢" turn out to be resonant.
Thus we can reduce the hamiltonian function to the form

—2iH = —iwzZ 4+ hz3e™" — hz3e" 4 ...
(the conjugacy of h and h corresponds to the fact that H is real).

Note that, in order to reduce the hamiltonian function to this normal
form, we made a 2n-periodic time-dependent smooth canonical transforma-
tion which depends smoothly on the parameter, even in the case of resonance.
This transformation differs from the identity only by terms that are small of
second order relative to the deviation from the closed trajectory (and its
generating function differs from the generating function of the identity only

by cubic terms).
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Further investigation of the behavior of solutions of Hamilton’s equations
proceeds in the following way. First, we throw out of the hamiltonian function
all terms of order higher than three and study the solutions of the resulting
truncated system. Then we must see how the discarded terms can affect the
behavior of the trajectories.

The study of the truncated system can be simplified by introducing a
coordinate system in the complex z-plane which rotates uniformly with
angular velocity 3, i.e.,, by the substitution z = Le™?. Then for the variable {
we obtain an autonomous hamiltonian system with hamiltonian function

—2iH, = —igll + h{® — hD?, where ¢ = w — (3).

The fact that, in a rotating coordinate system, the truncated system is autonomous is very
good luck. The total system of Hamilton’s equations (including terms of degree higher than three
in the hamiltonian) is not only not autonomous in a rotating coordinate system. but is not
even 2m-periodic (but only 67-periodic) in time. The autonomous system with hamiltonian H,
is essentially the result of averaging the original system over closed trajectories of the linear
system with ¢ = O (where we disregard terms of degree higher than three).

The coefficient 4 can be made real (by a rotation of the coordinate system).
Thus the hamiltonian function in the real coordinates (x, y) is reduced to
the form

£
Hy = 5 (x2 + y?) + a(x® — 3xy?).

The coefficient @ depends on the frequency deviation & as on a parameter.
For ¢ = O this coefficient is generally not zero. Therefore, we can make this
coefficient equal to 1 by a smooth change of coordinates depending on a
parameter. Thus we must investigate the dependence on the small parameter
¢ of the phase portrait of the system with hamilton function

£
Ho =5 (x2 + y?) + (x> — 3xy?)

in the (x, y)-plane.
It is easy to see that this dependence consists of the following (Fig. 239).

Figure 239 Passage through resonance 3:1
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For & = 0 the zero level set of the function H o consists of three straight lines
through O, intersecting at angles of 60°. Under a change of ¢ the level line
always consists of three straight lines, where these three lines are moved
forward as & changes, always forming an equilateral triangle with center at
the origin. The vertices of this triangle are saddle points of the hamiltonian
function. As ¢ passes through zero (i.e., upon passage through resonance),
the critical point at the origin changes from a minimum to a maximum.

Thus, for a system with hamiltonian function H,, the origin is a stable
equilibrium position for all values of the parameter except at resonance,
and at resonance the origin is unstable. For values of the parameter close to
resonance, the triangle close to the origin filled by closed phase curves is
small (of order ¢), so the “radius of stability” of the origin approaches zero as
¢ — 0: a small (of order &) perturbation of the initial condition is sufficient
to make a phase point move outside the triangle and begin to go away from
the equilibrium position.

Returning to the original problem of the periodic trajectory, we come to
the following conclusions (which, of course, are not proven, since we threw
out terms of degree higher than three, but which can be justified):

1. At the moment of passage through the resonance 3 : 1 a periodic trajectory
generally loses its stability.

2. For values of the parameter close to resonance there is an unstable periodic
trajectory near the periodic trajectory under consideration on the same
energy level manifold. It is closed after making three circulations along
the original trajectory and one revolution around it. F or the resonance
value of the parameter, this unstable trajectory merges with the original
one.

3. The distance of this unstable periodic trajectory from the original
decreases, as we approach resonance, to first order in the frequency
deviation (i.e., as the first order of the difference of the parameter from the
resonance value).

4. Through this unstable trajectory on the same three-dimensional energy
level manifold there pass two two-dimensional invariant surfaces,
filled with trajectories approximating this unstable periodic trajectory
as t — oo on one surface and as t - — o0 on the other.

5. The location of the separatrices is such that, by intersecting with a mani-
fold transversal to the original trajectory, we obtain a figure close to the
three sides of an equilateral triangle and their continuations. The vertices
of the triangle are the points of intersection of the unstable periodic
trajectory with the transversal manifold.

6. For initial conditions inside the triangle formed by the separatrices, a
phase point stays near the original periodic trajectory (at a distance of
order ¢) for a long time (of order not less than 1 /€), and for initial conditions
outside the triangle it goes off quite rapidly to a distance which is large in

comparison with .
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E Splitting of separatrices

In reality, the separatrices we talked about in statements 4, 5, and 6 above
have a very complicated structure (because of the influence of the terms
of order higher than three which we disregarded in our approximation). In
order to understand the situation, it is convenient to look at a two-dimen-
sional surface transversally intersecting the original closed trajectory at
some point on it (and lying entirely in one energy level manifold).}°® Trajec-
tories beginning on this surface intersect it again after a time close to the
time of circulation around the original closed trajectory. Thus we have a
mapping of a neighborhood of the point of intersection of the closed trajec-
tory with the surface onto a part of the surface. This mapping has a fixed
point (at the point where the closed trajectory intersects the surface) and is
approximately a rotation by 120° around this point, which we take for the
origin in our surface.

We now consider the third power of the mapping indicated above. This
is again a mapping of some neighborhood of the origin to a part of the sur-
face, leaving the origin fixed. But now this mapping is approximately rotation
by 360°, i.e, the identity: it is realized by the trajectories of our system after
approximately three periods of our closed trajectory.

The calculations above give nontrivial information about the structure
of this “mapping after three periods.” In fact, by throwing out the terms of
degree four and higher in the hamiltonian function, we change the terms of
degree three and higher of the mapping. Therefore, the mapping after three
periods which corresponds to the truncated hamiltonian function approxi-
mates (with cubic error) the actual mapping after three periods.

But we know the properties of the mapping after three periods correspond-
ing to the truncated hamiltonian function, since it is the mapping of the
phase flow of the system with hamiltonian function Hy(x, y) after time
67 (the proof is based on the fact that after time 67 our rotating coordinate
system returns to the original position). We now look at which of these
properties are preserved for perturbations of third-order smallness relative
to the distance from the fixed point, and which are not.

We let 4, denote the mapping after three periods for the truncated system,
and A the actual mapping after three periods.

1. The mapping A, is included in a flow: it is the transformation after time
67 in the phase flow with hamiltonian Hy,.
There is no reason to think that the mapping A is included in a flow.
2. The mapping A, is symmetric under a rotation by 120°: there is a non-
trivial diffeomorphism g for which g® = E and which commutes with 4,.
There is no reason to think that the mapping 4 commutes with any
nontrivial diffeomorphism g satisfying g> = E.

106 ere we have the following general phenomenon: it is easier to think about mappings after
a period, and easier to calculate with flows.
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3. The mapping A, has three unstable fixed points at a distance ¢ from the
origin, approximately the vertices of an equilateral triangle. For sufficiently
small deviations from resonance (i.e., for sufficiently small ¢) the mapping
A also has three unstable fixed points near the vertices of an equilateral
triangle. This follows from the implicit function theorem.

4. The separatrices of fixed points of the mapping A, form, for values of the
parameter close to (but not at) resonance, a figure approximating the
sides and extended sides of an equilateral triangle. If we begin with a
point on one of the sides of the triangle, then after repeated applications
of A, we obtain a sequence of points on the same side of the triangle
approaching one of the vertices bounding the side, say M,. Applying
Ay !, we obtain a sequence approaching the other vertex, which we will
denote by N,.

Each of the three unstable fixed points of the mapping A4 also has separa-
trices approximating the sides of a triangle (Figure 240). Namely, those points
of the plane which approach the fixed point M after applying the mappings
A", n — + o0, form a smooth curve I'* invariant under A, passing through
M and, near M, close to the side M, N, of the separatrices of Ay . The points
which approach N after applications of 4", where n — — oo, form another
smooth invariant curve I'~, passing through N and also near M o No near

No.

r+ r-

Figure 240 Splitting of separatrices

However the two curves I'* and I' 7, both near the line My N, are not at
all obligea to coincide. This is the phenomenon of splitting of separatrices,
which accounts for the differing behavior of the trajectories of the truncated

and total systems.

The magnitude of the splitting of separatrices is exponentially small for small ¢: therefore
1t 1s easy to overlook the phenomenon of splitting in calculations in one or another scheme of
“perturbation theory.” However, this phenomenon is very important in fundamental questions.
For example, its existence immediately implies the divergence of the series in numerous versions
of perturbation theory (since if the series converged, there would be no splitting).

In general. the divergence of series in perturbation theory (while a good approximation is
given by a few initial terms) is usually related to the fact that we are looking 