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Foreword

S.J. Patterson

There are few books which remain in print and in constant use for over a century; “Whittaker
and Watson” belongs to this select group. In fact there were two books with the title “A
Course in Modern Analysis”, the first in 1902 by Edmund Whittaker alone, a textbook with
a very specific agenda, and then the joint work, first published in 1915 as a second edition.
It is an extension of the first edition but in such a fashion that it becomes a handbook for
those working in analysis. As late as 1966 J.T. Whittaker, the son of E.T. Whittaker, wrote in
his Biographical Memoir of Fellows of the Royal Society (i.e. obituary) of G.N. Watson that
there were still those who preferred the first edition but added that for most readers the later
edition was to be preferred. Indeed the joint work is superior in many different ways.

The first edition was written at a time when there was a movement for reform in mathe-
matics at Cambridge. Edmund Whittaker’s mentor Andrew Forsyth was one of the driving
forces in this movement and had himself written a Theory of Functions (1893) which was,
in its time, very influential but is now scarcely remembered. In the course of the nineteenth
century the mathematics education had become centered around the Mathematical Tripos, an
intensely competitive examination. Competitions and sports were salient features of Victo-
rian Britain, a move away from the older system of patronage and towards a meritocracy. The
reader familiar with Gilbert and Sullivan operettas will think of the Modern Major-General
in The Pirates of Penzance. The Tripos had become not only a sport but a spectator sport,
followed extensively in middle-class England'. The result of this system was that the colleges
were in competition with one another and employed coaches to prepare the talented students
for the Tripos. They developed the skills needed to answer difficult questions quickly and
accurately — many Tripos questions can be found in the exercises in Whittaker and Watson.
The Tripos system did not encourage the students to become mathematicians and separated
them from the professors who were generally very well informed about the developments
on the Continent. It was a very inward-looking, self-reproducing system. The system on the
Continent, especially in the German universities, was quite different. The professors there
sought contact with the students, either as note-takers for lectures or in seminar talks, and
actively supported those by whom they were most impressed. The students vied with one an-
other for the attention of the professor, a different and more fruitful form of competition. This

' Some idea of this may be gleaned from G.B. Shaw’s play Mrs Warren’s Profession, written in 1893 but held
back by censorship until 1902. In this play Mrs Warren’s daughter Vivie has distinguished herself in
Cambridge — she tied with the third Wrangler, described as a “magnificent achievement” by a character who
has no mathematical background. She herself could not be ranked as a Wrangler as she was female. She would
have been a contemporary of Grace Chisholm, later Grace Chisholm Young, whose family background was by
no means as colourful as that of the fictional Vivie Warren.
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system allowed the likes of Weierstrass and Klein to build up groups of talented and highly
motivated students. It had become evident to Andrew Forsyth and others that Cambridge was
missing out on the developments abroad because of the concentration on the Tripos system?.

It is interesting to read what Whittaker himself wrote about the situation at the end of
the nineteenth century in Cambridge and so of the conditions under which Whittaker and
Watson was written. We quote from his Royal Society Obituary Notice (1942) of Andrew
Russell Forsyth:

He had for some time past realized, as no one else did, the most serious
deficiency of the Cambridge school, namely its ignorance of what had
been and was being done on the continent of Europe. The college lecturers
could not read German, and did not read French.

The schools of Gottingen and Berlin to a great extent ignored each other
(Berlin said that Gottingen proved nothing, and Goéttingen retorted that
Berlin had no ideas) and both of them ignored French work.

But Cambridge had hitherto ignored them all: and the time was ripe
for Forsyth’s book. The younger men, even undergraduates, had heard in
his lectures of the extraordinary riches and beauty of the domain beyond
Tripos mathematics, and were eager to enter into it. From the day of its
publication in 1893, the face of Cambridge was changed: the majority of
the pure mathematicians who took their degrees in the next twenty years
became function-theorists.

and further

As head of the Cambridge school of mathematics he was conspicuously
successful. British mathematicians were already indebted to him for the
first introduction of the symbolic invariant-theory, the Weierstrassian ellip-
tic functions, the Cauchy—Hermite applications of contour-integration, the
Riemannian treatment of algebraic functions, the theory of entire func-
tions, and the theory of automorphic functions: and the importation of
novelties continued to occupy his attention. A great traveller and a good
linguist, he loved to meet eminent foreigners and invite them to enjoy
Trinity hospitality: and in this way his post-graduate students had oppor-
tunities of becoming known personally to such men as Felix Klein (who
came frequently), Mittag-Lefller, Darboux and Poincaré. To the students
themselves, he was devoted: young men fresh from the narrow examina-
tion routine of the Tripos were invited to his rooms and told of the latest
research papers: and under his fostering care, many of the wranglers of the
period 1894-1910 became original workers of distinction.

The two authors were very different people. Edmund Whittaker (1874—-1956) went on
from Cambridge in 1906 to become the Royal Astronomer in Ireland (then still a part of the

2 For his arguments see A. Forsyth: Old Tripos Days at Cambridge, Math. Gazette 19 162—-179 (1935). For a
dissenting opinion see K. Pearson: Old Tripos Days at Cambridge, as seen from another viewpoint, Math.
Gazette 20 27-36 (1936).
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United Kingdom) and Director of Dunsink Observatory, thereby following in the footsteps
of William Rowan Hamilton. In 1985, on the occasion of the bicentenary of Dunsink, the
then Director, Patrick A. Wayman, singled out Whittaker as the greatest director aside from
Hamilton and one who, despite his relatively short tenure of office, 1906-1912, had achieved
most for the Observatory?. This appointment brought out his skills as an administrator.
Following this he moved to Edinburgh where he exerted his influence to guide mathematics
there into the new century. Some indication of the success is given by the fact that it was
W.V.D. Hodge, a student of his, who, at the International Congress of Mathematicians in
1954, invited the International Mathematical Union to hold the next Congress in Edinburgh.
Whittaker himself did not live to experience the event which reflected the status in which
Edinburgh was held at the end of his life.

George Neville Watson (1886—1965) on the other hand was a retiring scholar who, after
leaving Cambridge, at least in the flesh, spent four years (1914-1918) in London, and then
became professor in Birmingham where he remained for the rest of his life*, living a relatively
withdrawn life devoted to his mathematical work and with stamp-collecting and the study
of the history of railways as hobbies. His early work was very much in the direction of
E.W. Barnes and A.G. Greenhill. After Ramanujan’s death he took over from Hardy the
analysis of many of Ramanujan’s unpublished papers, especially those connected with the
theory of modular forms and functions, and of complex multiplication. It is worth remarking
that Greenhill, a student and ardent admirer of James Clerk Maxwell and primarily an
applied mathematician, concerned himself with the computation of singular moduli, and it
was probably he who aroused Ramanujan’s interest in this topic. Watson’s work in this area
is, besides his books, that for which he is best remembered today.

Both authors wrote other books that are still used today. In Whittaker’s case these are his
A Treatise on the Analytical Dynamics of Particles & Rigid Bodies, reprinted in 1999, with
a foreword by Sir William McCrea in the CUP series “Cambridge Mathematical Library”, a
source of much mathematics which is difficult to find elsewhere, and his History of Theories
of the Aether and Electricity which, despite some unconventional views, is an invaluable
source on the history of these parts of physics and the associated mathematics.

Watson, on the other hand, wrote his A Treatise on the Theory of Bessel Functions,
published in 1922, which like Whittaker and Watson has not been out of print since its
appearance. On coming across it for the first time as a student I was taken aback by such
a thick book being devoted to what seemed to be a very circumscribed subject. One of the
Fellows of my college, a physicist, replying to a fellow student who had made a similar
observation, declared that it was a work of genius and he would have been proud to have
written something like it. In the course of the years I have had recourse to it over and over
again and would now concur with this opinion.

Watson’s Bessel Functions, like Whittaker and Watson, despite being somewhat old-
fashioned, has retained a freshness and relevance that has made both of them classics. Unlike
many other books of this period the terminology, although not the style, is that of today. It
is less a Cours d’Analyse and more of a Handbuch der Funktionentheorie. Perhaps my own
experiences can illuminate this. My copy was given to me in 1967 by my mathematics teacher,

3 Irish Astronomical Journal 17 177-178 (1986).
4 Tt is worth noting that from 1924 on E.W. Barnes was a disputative Bishop of Birmingham.
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Mr Cecil Hawe, after I had been awarded a place to study mathematics in Cambridge. He had
bought it 20 years earlier as a student. During my student years the textbook on second year
analysis was J. Dieudonné’s Foundations of Modern Analysis. People then were prone to be
a bit supercilious at least about the “modern” in the title of Whittaker and Watson.> At that
time it lay on my bookshelf unused. Five years later I was coming to terms with the theory
of non-analytic automorphic forms, especially with Selberg’s theory of Eisenstein series. At
this point I discovered how useful a book it was, both for the treatment of Bessel functions
and for that of the hypergeometric function. It also has a very useful chapter on Fredholm’s
theory of integral equations which Selberg had used. In the years since then several other
chapters have proved useful, and ones I thought I knew became useful in novel ways. It
became a constant companion. This was mainly in connection with doing mathematics but
it also proved its worth in teaching — for example the chapter on Fourier series gives very
useful results which can be obtained by relatively elementary methods and are suitable for
undergraduate lectures. Dieudonné’s book is tremendous for the university teacher; it gives
the fundamentals of analysis in a concentrated form, something very useful when one has an
overloaded syllabus and a limited number of hours to teach it in. On the other hand it is much
less useful as a “Handbuch” for the working analyst, at least in my experience. Nor was it
written for this purpose. Whittaker and Watson started, in the first edition, as such a book for
teaching but in the second and later editions became that book which has remained on the
bookshelves of generations of working mathematicians, be they formally mathematicians,
natural scientists or engineers.

One aspect that probably contributed to the long popularity of Whittaker and Watson is
the fact that it is not overloaded with many of the topics that are within range of the text.
Thus, for example, the authors do not go into the arithmetic theory of the Riemann zeta-
function beyond the Euler product over primes. Whereas they discuss the 24 solutions to
the hypergeometric equation in terms of the hypergeometric series from Riemann’s point of
view they do not go into H.A. Schwarz’ beautiful solution of Gauss’ problem as to which
of these functions is algebraic. Schwarz’ theory is covered in Forsyth’s Function Theory.
The decision to leave this out must have been difficult for Whittaker for it is a topic close to
his early research. Finally they touch on the theory of Hilbert spaces only very lightly, just
enough for their purposes. On the other hand Fredholm’s theory, well treated here, has often
been pushed aside by the theory of Hilbert spaces in other texts and it is a topic about which
an analyst should be aware.

So, gentle reader, you have in your hands a book which has been useful and instructive to
those working in mathematics for well over a hundred years. The language is perhaps a little
quaint but it is a pleasure to peruse. May you too profit from this new edition.

3 B.L. v.d. Waerden’s Moderne Algebra became simply Algebra from the 1955 edition on; with either name it
remains a great text on algebra.
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In 1896 Edmund Whittaker was elected to a Fellowship at Trinity College, Cambridge.
Amongst other duties, he was employed to teach students, many of whom would later
become distinguished figures in science and mathematics. These included G.H. Hardy,
Arthur Eddington, James Jeans, J.E. Littlewood and a certain G. Neville Watson. His course
on mathematical analysis changed the way the subject was taught, and he decided to write
a book. So was born A Course of Modern Analysis, which was first published in 1902. It
introduced students to functions of a complex variable, to the ‘methods and processes of
higher mathematical analysis’, much of which was then fairly modern, and above all to special
functions associated with equations that were used to describe physical phenomena. It was
one of the first books in English to describe material developed on the continent, mostly in
France and Germany. Its breadth and depth of coverage were unparalleled at the time and it
became an instant classic. A second edition was called for, but in 1906 Whittaker had left
Cambridge, moving first to Dublin, and then in 1912 to Edinburgh. His various duties, and
no doubt, the moves themselves, impeded work on the new edition, and Whittaker gratefully
accepted the offer from Watson to help him. A greatly expanded second edition duly appeared
in 1915. The third edition, published five years later, was also enlarged by the addition of
chapters, but the fourth edition was not much more than a corrected reprint with added
references. I do not know if a fifth edition was ever planned. Both authors remained active
for many years (Watson wrote, amongst other publications, the definitive Treatise on Bessel
Functions), but perhaps they had nothing more to say to warrant a new edition. Nevertheless,
the book remained a classic, being continually in print and reissued in paperback, first in
1963, and again, in 1996, as a volume of the Cambridge Mathematical Library. It never lost
its appeal and occupied a unique place in the heart and work of many mathematicians (in
particular, me) as an indispensable reference.

The original editions were typeset using ‘hot metal’, and over the years successive reprint-
ings led to the degrading of the original plates. Photographic printing methods slowed this
decline, but David Tranah at Cambridge University Press had the idea to halt, indeed reverse,
the degradation, by rekeying the book and at the same time updating it with new references
and commentary. He spoke to me about this, and we agreed that if he arranged for the rekey-
ing into LaTeX, I would do the updating. I did not need much persuading: it has been a labor
of love. So much so that I have preserved the archaic spelling of the original, along with
the Peano decimal system of numbering paragraphs, as described by Watson in the Preface
to the fourth edition! This will make it straightforward for users of this fifth edition to refer
to the previous one. I have however decided to create a complete reference list and to refer
readers to that rather than to items in footnotes, items that were often hard to identify. Many

XXi



XXii Preface to the Fifth Edition

of these items are now available in digital libraries and so for many people will be easier to
access than they were in the authors’ time.

I have made no substantial changes to the text: in particular, the original idea of adding
commentaries on the text was abandoned. I have checked and rechecked the mathematics, and
I have added some additional references. I have also written an introduction that describes
what’s in the book and how it may be used in contemporary teaching of analysis. I have also
provided summaries of each chapter, and, within them, make mention of more recent work
where appropriate.

As 1 said, preparing this edition has been a labor of love. I have also learned a lot of
mathematics, evidence of the enduring quality and value of the original work. It has been
a rewarding experience to edit A Course of Modern Analysis: 1 hope that it will be equally
rewarding for readers.

Victor H. Moll
2020, New Orleans



Preface to the Fourth Edition

Advantage has been taken of the preparation of the fourth edition of this work to add a few
additional references and to make a number of corrections of minor errors.

Our thanks are due to a number of our readers for pointing out errors and misprints, and
in particular we are grateful to Mr E. T. Copson, Lecturer in Mathematics in the University
of Edinburgh, for the trouble which he has taken in supplying us with a somewhat lengthy
list.

E.T.W.
G.N. W.
June 18, 1927

The decimal system of paragraphing, introduced by Peano, is adopted in this work. The
integral part of the decimal represents the number of the chapter and the fractional parts are
arranged in each chapter in order of magnitude. Thus, e.g., on pp. 187, 1885, §9.632 precedes
§9.7 [because 9.632 < 9.7.]

G.N.W.
July 1920

6 in the fourth edition
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Preface to the Third Edition

Advantage has been taken of the preparation of the third edition of this work to add a chapter
on Ellipsoidal Harmonics and Lamé’s Equation and to rearrange the chapter on Trigonometric
Series so that the parts which are used in Applied Mathematics come at the beginning of the
chapter. A number of minor errors have been corrected and we have endeavoured to make
the references more complete.

Our thanks are due to Miss Wrinch for reading the greater part of the proofs and to the
staff of the University Press for much courtesy and consideration during the progress of the
printing.

E. T. W.
G.N. W.
July, 1920
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Preface to the Second Edition

When the first edition of my Course of Modern Analysis became exhausted, and the Syndics
of the Press invited me to prepare a second edition, I determined to introduce many new
features into the work. The pressure of other duties prevented me for some time from carrying
out this plan, and it seemed as if the appearance of the new edition might be indefinitely
postponed. At this juncture, my friend and former pupil, Mr G. N. Watson, offered to share
the work of preparation; and, with his cooperation, it has now been completed.

The appearance of several treatises on the Theory of Convergence, such as Mr Hardy’s
Course of Pure Mathematics and, more particularly, Dr Bromwich’s Theory of Infinite Series,
led us to consider the desirability of omitting the first four chapters of this work; but we finally
decided to retain all that was necessary for subsequent developments in order to make the
book complete in itself. The concise account which will be found in these chapters is by no
means exhaustive, although we believe it to be fairly complete. For the discussion of Infinite
Series on their own merits, we may refer to the work of Dr Bromwich.

The new chapters of Riemann Integration, on Integral Equations, and on the Riemann
Zeta-Function, are entirely due to Mr Watson: he has revised and improved the new chapters
which I had myself drafted and he has enlarged or partly rewritten much of the matter which
appeared in the original work. It is therefore fitting that our names should stand together on
the title-page.

Grateful acknowledgement must be made to Mr W. H. A. Lawrence, B.A., and Mr C. E.
Winn, B.A., Scholars of Trinity College, who with great kindness and care have read the
proof-sheets, to Miss Wrinch, Scholar of Girton College, who assisted in preparing the index,
and to Mr Littlewood, who read the early chapters in manuscript and made helpful criticisms.
Thanks are due also to many readers of the first edition who supplied corrections to it; and
to the staff of the University Press for much courtesy and consideration during the progress
of the printing.

E.T. Whittaker
July 1915
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Preface to the First Edition

The first half of this book contains an account of those methods and processes of higher
mathematical analysis, which seem to be of greatest importance at the present time; as will
be seen by a glance at the table of contents, it is chiefly concerned with the properties
of infinite series and complex integrals and their applications to the analytical expression
of functions. A discussion of infinite determinants and of asymptotic expansions has been
included, as it seemed to be called for by the value of these theories in connexion with linear
differential equations and astronomy.

In the second half of the book, the methods of the earlier part are applied in order to
furnish the theory of the principal functions of analysis — the Gamma, Legendre, Bessel,
Hypergeometric, and Elliptic Functions. An account has also been given of those solutions
of the partial differential equations of mathematical physics which can be constructed by the
help of these functions.

My grateful thanks are due to two members of Trinity College, Rev. E. M. Radford, M. A.
(now of St John’s School, Leatherhead), and Mr J. E. Wright, B.A., who with great kindness
and care have read the proof-sheets; and to Professor Forsyth, for many helpful consultations
during the progress of the work. My great indebtedness to Dr Hobson’s memoirs on Legendre
functions must be specially mentioned here; and I must thank the staff of the University Press
for their excellent cooperation in the production of the volume.

E. T. WHITTAKER
Cambridge
1902 August 5
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Introduction

The book is divided into two distinct parts. Part I. The Processes of Analysis discusses
topics that have become standard in beginning courses. Of course the emphasis is in concrete
examples and regrettably, this is different nowadays. Moreover the quality and level of the
problems presented in this part is higher than what appears in more modern texts. During the
second part of the last century, the tendency in introductory Analysis texts was to emphasize
the topological aspects of the material. For obvious reasons, this is absent in the present text.
There are 11 chapters in Part 1.

For a student in an American university, the material presented here is roughly distributed
along the following lines:

Chapter 1 (Complex Numbers)

Chapter 2 (The Theory of Convergence)

Chapter 3 (Continuous Functions and Uniform Convergence)
Chapter 4 (The Theory of Riemann Integration)

are covered in Real Analysis courses.

e Chapter 5 (The Fundamental Properties of Analytic Functions; Taylor’s, Laurent’s and
Liouville’s Theorems)

e Chapter 6 (The Theory of Residues, Applications to the Evaluations of Definite Integrals)

e Chapter 7 (The Expansion of Functions in Infinite Series)

are covered in Complex Analysis. These courses usually cover the more elementary aspects
of

e Chapter 12 (The Gamma-Function)

appearing in Part II.
Most undergraduate programs also include basic parts of

e Chapter 9 (Fourier Series and Trigonometric Series)
e Chapter 10 (Linear Differential Equations)

and some of them will expose the student to the elementary parts of

o Chapter 8 ( Asymptotic Expansions and Summable Series)
e Chapter 11 (Integral Equations)

The material covered in Part II is mostly absent from a generic graduate program. Students
interested in Number Theory will be exposed to some parts of the contents in

XXvii
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e Chapter 12 (The Gamma-Function)
e Chapter 13 (The Zeta-Function of Riemann)
e Chapter 14 (The Hypergeometric Function)

and a glimpse of

e Chapter 17 (Bessel Functions)

e Chapter 20 (Elliptic Functions. General Theorems and the Weierstrassian Functions)
e Chapter 21 (The Theta-Functions)

o Chapter 22 (The Jacobian Elliptic Functions).

Students interested in Applied Mathematics will be exposed to

e Chapter 15 (Legendre Functions)
e Chapter 16 (The Confluent Hypergeometric Function)
e Chapter 18 (The Equations of Mathematical Physics)

and some parts of

e Chapter 19 (Mathieu Functions)
e Chapter 23 (Ellipsoidal Harmonics and Lamé’s Equation)

It is perfectly possible to complete a graduate education without touching upon the topics
in Part II. For instance, in the most commonly used textbooks for Analysis, such as Royden
[565] and Wheeden and Zygmund [666] there is no mention of special functions. On the
complex variables side, in Ahlfors [13] and Greene—Krantz [260] one finds some discussion
on the Gamma function, but not much more.

This is not a new phenomenon. Fleix Klein [377] in 1928 (quoted in [91, p. 209]) writes
‘When I was a student, Abelian functions were, as an effect of the Jacobian tradition,
considered the uncontested summit of mathematics, and each of us was ambitious to make
progress in this field. And now? The younger generation hardly knows Abelian functions.

During the last two decades, the trend towards the abstraction is being complemented by
a group of researchers who emphasize concrete examples as developed by Whittaker and
Watson. Among the factors influencing this return to the classics one should include’ the
appearance of symbolic languages and algorithms producing automatic proofs of identities.
The work initiated by Wilf and Zeilberger, described in [518], shows that many identities
have automatic proofs. A second influential factor is the monumental work by B. Berndt,
G. Andrews and collaborators to provide context and proofs of all results appearing in
S. Ramanujan’s work. This has produced a collection of books, starting with [60] and
currently at [25]. The third example in this list is the work developed by J. M. Borwein and
his collaborators in the propagation of Experimental Mathematics. In the volumes [88, 89]
the authors present their ideas on how to transform mathematics into a subject, similar in
flavor to other experimental sciences. The point of view expressed in the three examples
mentioned above has attracted a new generation of researchers to get involved in this point
of view type of mathematics. This is just one direction in which Whittaker and Watson has
been a profound influence in modern authors.

7 This list is clearly a subjective one.
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The remainder of this chapter outlines the content of the book and a comparison with
modern practices.

The first part is named The Processes of Analysis. It consists of 11 chapters. A brief
description of each chapter is provided next.

Chapter 1: Complex Numbers. The authors begin with an informal description of positive
integers and move on to rational numbers. Stating that from the logical standpoint it is
improper to introduce geometrical intuition to supply deficiencies in arithmetical arguments,
they adopt Dedekind’s point of view on the construction of real numbers as classes of rational
numbers, later called Dedekind’s cuts. An example is given to show that there is no rational
number whose square is 2. The arithmetic of real numbers is defined in terms of these
cuts. Complex numbers are then introduced with a short description of Argand diagrams.
The current treatment offers two alternatives: some authors present the real number from a
collection of axioms (as an ordered infinite field) and other approach them from Cauchy’s
theory of sequences: a real number is an equivalence class of Cauchy sequences of rational
numbers. The reader will find the first point of view in [304] and the second one is presented
in [599].

Chapter 2. The Theory of Convergence. This chapter introduces the notion of convergence
of sequences of real or complex numbers starting with the definition of lim x,, = L currently

n—oo

given in introductory texts. The authors then consider monotone sequences of real numbers
and show that, for bounded sequences, there is a natural Dedekind cut (that is, a real number)
associated to them. A presentation of Bolzano’s theorem a bounded sequence of real numbers
contains a limit point and Cauchy’s formulation of the completeness of real numbers; that
is, the existence of the limit of a sequence in terms of elements being arbitrarily close,
is discussed. These ideas are then illustrated in the analysis of convergence of series. The
discussion begins with Dirichlet’s test for convergence: Assume a, is a sequence of complex

P
numbers and f;, is a sequence of positive real numbers. If the partial sums ), a, are uniformly
n=1

bounded and f,, is decreasing and converges to 0, then Z an f converges. This is used to give
=1
examples of convergence 0 of Fourier series (dlscussed 1n detail in Chapter 9). The convergence

of the geometric series Z x" and the series Z -5, for real s, are presented in detail. This
=1 =1

last series defines the Rlemann zeta function g“ (s), discussed in Chapter 13. The elementary

ratio test states that Z a, converges if hm |a,s1/a,] < 1 and diverges if the limit is strictly
=1
above 1. A dlscusswn of the case when the limit is 1 is presented and illustrated with the

convergence analysis of the hypergeometric series (presented in detail in Chapter 14). The
chapter contains some standard material on the convergence of power series as well as some
topics not usually found in modern textbooks: discussion on double series, convergence of
infinite products and infinite determinants. The final exercise® in this chapter presents the
evaluation of an infinite determinant considered by Hill in his analysis of the Schrodinger

8 1In this book, Examples are often what are normally known as Exercises and are numbered by section, i.e.,
‘Example a.b.c’. At the end of most chapters are Miscellaneous Examples, all of which are Exercises, and
which are numbered by chapter: thus ‘Example a.b’. This is how to distinguish them.
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equation with periodic potential (this is now called the Hill equation). The reader will find
in [451] and [536] information about this equation.

Chapter 3. Continuous Functions and Uniform Convergence. This chapter also discusses
functions f(x,y) of two real variables as well as functions of one complex variable g(z).
The notion of uniform convergence of a series is discussed in the context of the limiting
function of a series of functions. This is normally covered in every introductory course in
Analysis. The classical M-test of Weierstrass is presented. The reader will also find a test for
uniform convergence, due to Hardy, and its application to the convergence of Fourier series.
The chapter also contains a discussion of the series

1
8() = mz; (z + 2mw; + 2nw,)?

which will be used to analyze the Weierstrass g-function: one of the fundamental elliptic
functions (discussed in Chapter 20). The chapter contains a discussion on the fact that
a continuous function defined of a compact set (in the modern terminology) attains its
maximum/minimum value. This is nowadays a standard result in elementary analysis courses.

Chapter 4. The Theory of Riemann Integration. The authors present the notion of the Riemann
integral on a finite interval [a, b], as it is currently done: as limiting values of upper and lower
sums. The fact that a continuous function is integrable is presented. The case with finite
number of discontinuities is given as an exercise. Basic results, such as integration by parts,
differentiation with respect to the limits of integration, differentiation with respect to a
parameter, the mean value theorem for integrals and the representation of a double integral
as iterated integral are presented. This material has become standard. The chapter also
contains a discussion on integrals defined on an infinite interval. There is a variety of tests to
determine convergence and criteria that can be used to evaluate the integrals. Two examples
of integral representations of the beta integral (discussed in Chapter 12) are presented. A
basic introduction to complex integration is given at the end of the chapter; the reader is
referred to Watson [650] for more details. This material is included in basic textbooks in
Complex Analysis (for instance, see [13, 26, 155, 260, 455, 552]).

Chapter 5. The Fundamental Properties of Analytic Functions; Taylor’s, Laurent’s and
Liowville’s Theorems. This chapter presents the basic properties of analytic functions that
have become standard in elementary books in complex analysis. These include the Cauchy—
Riemann equations and Cauchy’s theorem on the vanishing of the integral of an analytic
function taken over a closed contour. This is used to provide an integral representation as
L [ fE)
J@)=>— i-¢ dé§

where I' is a closed contour containing ¢ in its interior. This is then used to establish
classical results on analytic functions such as bounds on the derivatives and Taylor theorem.
There is also a small discussion on the process of analytic continuation and many-valued
functions. This chapter contains also basic properties on functions having poles as isolated
singularities: Laurent’s theorem on expansions and Liouville’s theorem on the fact that every
entire function that is bounded must be constant (a result that plays an important role in
the presentation of elliptic functions in Chapter 20). The Bessel function J,, defined by its
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integral representation
1 2n
Jo(x) = — / cos(nf — x sin 0) d6
2 0

makes its appearance in an exercise. This function is discussed in detail in Chapter 17. The
chapter also contains a proof of the following fact: any function that is analytic, including
at oo, except for a number of non-essential singularities, must be a rational function. This
has become a standard result. It represents the most elementary example of characterizing
functions of rational character on a Riemann surface. This is the case of P!, the Riemann
sphere. The next example corresponds to the torus C/L, where L is a lattice. This is the
class of elliptic functions described in Chapters 20, 21 and 22. The reader is referred to
[461, 553, 600, 665] for more details.

Chapter 6. The Theory of Residues: Application to the Evaluation of Definite Integrals. This
chapter presents application of Cauchy’s integral representation of functions analytic except
for a certain number of poles. Most of the material discussed here has become standard.
One of the central concepts is that of the residue of a function at a pole z = z;, defined
as the coefficient of (z — z;)™! in the expansion of f near z = z;. As a first sign of the
importance of these residues is the statement that the integral of f(z) over the boundary of a
domain € is given by the sum of the residues of f inside €, the so-called argument principle
which gives the difference between zeros and poles of a function as a contour integral. This
chapter also presents methods based on residues to evaluate a variety of definite integrals
including rational functions of cos @, sin@ over [0,27x], integrals over the whole real line
via deformation of a semicircle, integrals involving some of the kernels such as 1/(e*"* — 1)
(coming from the Fermi—Dirac distribution in Statistical Mechanics) and 1/(1—2a cos x +a?)
related to Legendre polynomials (discussed in Chapter 15). An important function makes its
appearance as Exercise 17:

00

b= ), e,

n=-—oo

introduced by Poisson in 1823. The exercise outlines a proof of the transformation rule

w(t) = 1"2y(1/t)

known as Poisson summation formula. It plays a fundamental role in many problems in
Number Theory, including the proof of the prime number theorem. This states that, for x > 0,
the number of primes up to x, denoted by 7(x), has the asymptotic behavior 7(x) ~ x/log x
as x — oo. The reader will find in [492] how to use contour integration and the function ()
to provide a proof of the asymptotic behavior of ¥ (¢). This function reappears in Chapter 21
in the study of theta functions.

Chapter 7. The Expansion of Functions in Infinite Series. This chapter begins with a result
of Darboux on the expansion of an analytic function defined on a region Q. For points a, x,
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with the segment from a to x contained in Q, one has the expansion

") f(2) - £(0)] = Z(—l)k"(z = a) [¢" () f"(2) - ¢"(0) f V()]
k=1

1
+(=1)"(z = a)"! /0 ¢(0) " a +1(z - a)) dr,

for any polynomial ¢. The formula is then applied to the Bernoulli polynomials currently
defined by the generating function

tez’ B (z)
-1 ZO n!

(The text employs the notation ¢,,(¢) without giving the value for n = 0.) Darboux’s theorem
then becomes the classical Euler-MacLaurin summation formula

Lp/2]

Zf(f) /f(x)d S + £(0) f(O) Z(f/?;v [F2D(n) — £ (0)]

+(_1)p—1/ f(p)( )(p—l-xJ)

The quantity x — | x| is the fractional part of x, denoted by {x}. This formula is used to
estimate partial sums of series of values of an analytic function in terms of the corresponding
integrals. The important example of the Riemann zeta function £ (s) is presented in Chapter 13.

The chapter contains a couple of examples of expansions of one function in terms of
another one. The first one, due to Biirmann, starts with an analytic function ¢(z) defined on
aregion and ¢(a) = b with ¢’'(a) # 0. Define ¥(z) = (z — @)/ (¢(2) — a), then one obtains the
expansion

n-1 k
CRUTEIS ) ravt@l +x,

=1

where the error term has the integral representation

n-1 , ,
e [ / #(2) - b] fOQ
" 2nmi pt)=b|  $(1) - d(z)
where vy is a contour in the 7-plane, enclosing @ and ¢ and such that, for any yu interior to vy,
the equation ¢(¢) = ¢(u) has a unique solution # = u. The discussion also contains results of
Teixeira on conditions for the convergence of the series for f(z) obtained by letting n — oo.
This type of result also contains an expansion of Lagrange for solutions of the equation

u = a + tp(u), for analytic function ¢ satisfying |¢¢(z)| < |z — a|. The theorem states that
any analytic function f of the solution y can be expanded as

© n-1
o=@+ 3 5 (5] sl

da
n=1

This expansion has interesting applications in Combinatorics; see [681] for details. The
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last type of series expansion described here corresponds to the classical partial fraction
expansions of a rational function and its extensions to trigonometric functions.
The results of this chapter are then used to prove representations of an entire function f

in the form
f(2) = £(0) ]‘[ {[1-2)e}”

where a,, is a zero of f of multiplicity m,, and G(z) is an entire function. The function g,(z) is
a polynomial, introduced by Weierstrass, which makes the product converge. An application
to 1/I'(z) is discussed in Chapter 12.

Chapter 8. Asymptotic Expansions and Summable Series. This chapter presents an intro-
duction to the basic concepts behind asymptotic expansion. The initial example considers
fx) = / t'e*" dt. A direct integration by parts shows that the sum S,(x) = 3, (—;zt]kz
x k=0
satisfies, for fixed x, the inequality | f(x) — S,(x)| < n!/x"*!. Therefore, for x > 2n, one
obtains |f(x) — S,(x)| < 1/n*2™*! It follows that the integral f can be evaluated with great
accuracy for large values of x by computing the partial sum of the divergent series S,(x).

This type of behavior is written as f(x) ~ >, A,x™" and the series is called the asymptotic
n=0

expansion of f.

The chapter covers the basic properties of asymptotic series: such expansions can be
multiplied and integrated but not differentiated. Examples of asymptotic expansions of
special functions appear in later chapters: for the Gamma function in Chapter 12 and for the
Bessel function in Chapter 17.

The final part of the chapter deals with summation methods, concentrating on methods
assigning a value to a function given by a power series outside its circle of convergence D.
The first example, due to Borel, starts with the identity

Z a,7" / e ¢(tz) dt where ¢(u) = Z —u valid for z € D.

n=0

The series Z a,z" is said to be Borel summable if the integral on the right converges for z

outside D. For such z, the Borel sum of the series is assigned to be the value of the integral.
The discussion continues with Cesdro summability, a notion to be discussed in the context
of Fourier series in Chapter 9. Extensions by Riesz and Hardy are mentioned. More details
on asymptotic expansions can be found in [468, 508].

Chapter 9. Fourier Series and Trigonometric Series. The authors discuss trigonometrical
series defined as series of the form

1
an + Z (a, cosnx + b, sinnx)

n=1

for two sequences of real numbers {a,} and {b,}. Such series are named Fourier series if
there is a function f, with finite integral over (—x, 7r), such that the coefficients are given by

1 4 l s
= —/ f(t)cosntdt and b, = —/ f(t)sinnt dt.
T Jr T J_x
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The chapter contains a variety of results dealing with conditions under which the Fourier
series associated to a function f converges to f. These include Dirichlet’s theorem stating
that, under some technical conditions, the Fourier series converges to % [f(x+0)+ f(x-0)].
This is followed by Fejer’s theorem that the Fourier series is Césaro summable at all points
where the limits f(x+0) exist. The proofs are based on the analysis of the so-called Dirichlet—
Féjer kernel. Examples are provided where there is not a single analytic expression for the
Fourier series. The notion of orthogonality of the sequence of trigonometric functions makes
an implicit appearance in all the proofs. The so-called Riemann-Lebesgue theorem, on the
behavior of Fourier coefficients, is established. This result states that if /(6) is integrable

b
on the interval (a, b), then lim / ¥ (6) sin(16) d6 = 0. The chapter contains results on the

function f which imply pointwise convergence of the Fourier series. The results of Dini and
Jordan, with conditions on the expressions f(x + 26) — f(x £+ 0) near § = 0, are presented.
The reader will find more information about convergence of Fourier series in [368] and in
the treatise [690]. The results of Kolmogorov [381, 382] on an integrable function with a
Fourier series diverging everywhere, as well as the theorem of Carleson [118] on the almost-
everywhere convergence of the Fourier series of a continuous function, are some of the high
points of this difficult subject.

The chapter also includes a discussion on the uniqueness of the representation of a Fourier
series for a function f and also of the Gibbs phenomenon on the behavior of a Fourier series
in a neighborhood of a point of discontinuity of f.

Chapter 10. Linear Differential Equations. This chapter discusses properties of solutions of
second order linear differential equations

d’u
dz?
where p, g are analytic functions of z except for a finite number of points. The discussion
is local; that is, in a neighborhood of a point ¢ € C. The points ¢ are classified as ordinary,

where the functions p, g are assumed to be analytic at ¢ and otherwise singular.

The question of existence and uniqueness of solutions of the equation is discussed. The
2

d
equation is transformed first into the form d_‘; + J(z)v = 0, by an elementary change of
Z

du
+ p(Z)d—Z +q(z)u =0,

variables. Existence of solutions is obtained from an integral equation equivalent to the
original problem. An iteration process is used to produce a sequence of analytic functions
{v,}. Then it is shown that, in a neighborhood of an ordinary point, this sequence converges
uniformly to a solution of the equation. Uniqueness of the solution comes also from this
process.

The solutions near an ordinary point are presented in the case of an ordinary singular
point. These are points ¢ € C where p or ¢ have a pole, but (z — ¢)p(z) and (z — ¢)*q(z) are
analytic functions in a deleted neighborhood of z = c. The so-called method of Frobenius is
then used to seek formal series solutions in the form

u(z) =(z-c)* [1 + Z a,(z — c)"l .

n=1

The so-called indicial equation a® + (py — 1)a + gy = 0 and its roots @, @, control the
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properties of these formal power series. The numbers py, g are the leading terms of (z—c)p(z)
and (z — ¢)?q(z), respectively. It is shown that if @, @, do not differ by an integer, there are
two formal solutions and these series actually converge and thus represent actual solutions.
Otherwise one of the formal series is an actual solution and there is a procedure to obtain a
second solution containing a logarithmic term. The reader will find in [151] all the details.

It is a remarkable fact that the behavior of the singularities determines the equation itself.
For example, the most general differential equation of second order which has every point
except aj, a,, az, a4 and oo as ordinary points and these five points as regular points, must be
of the form

d*u S 1-a, -8, | du
d_zz+{z—z—ar &z

r=1
Z a, B, A2+ Bz+C u=0
G-a)  G-a)c-am)-aNc-a)|" "

for some constants «,, B,, A, B, C. F. Klein [376] describes how all the classical equations
of Mathematical Physics appear in this class. Six classes, carrying the names of their discov-
erers (Lamé, Mathieu, Legendre, Bessel, Weber—Hermite and Stokes) are discussed in later
chapters.

The chapter finally discusses the so-called Riemann P-function. This is a mechanism used
to write a solution of an equation with three singular points and the corresponding roots
of the indicial equation. Some examples of formal rules on P, which allow to transform a
solution with expansion at one singularity to another are presented. The chapter concludes
showing that a second order equation with three regular singular points may be converted to
the hypergeometric equation. This is the subject of Chapter 14.

The modern theory of this program, to classify differential equations by their singularities,
is its extension to nonlinear equations. A singularity of an ordinary differential equation
is called movable if its location depends on the initial condition. An equation is called a
Painlevé equation if its only movable singularities are poles. Poincaré and Fuchs proved
that any first-order equation with this property may be transformed into the Ricatti equation
or it may be solved in terms of the Weierstrass elliptic function. Painlevé considered the
case of second order, transformed them into the form u” = R(u,u’,z), where R is a rational
function. Then he put them into 50 canonical forms and showed that all but six may be
solved in terms of previously known functions. The six remaining cases gave rise to the six
Painlevé functions Pr,. .., Pyr. See [261, 310, 336] for details. It is a remarkable fact that
these functions, created for an analytic study, have recently appeared in a large variety of
problems. See [37] and [562] for their appearance in combinatorial questions, [76, 636] for
their relations to classical functions, [640] for connections to orthogonal polynomials, [632]
for their appearance in Statistical Physics. The reader will find in [212] detailed information
about their asymptotic behavior.

Chapter 11. Integral Equations. Given a function f, continuous on an interval [a,b] and
a kernel K(x,y), say continuous on both variables or in the region a < y < x < b and
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vanishing for y > x, the equation

b
6(x) = f(x) + 4 / K y)6(y) dy

for the unknown function ¢, is called the Fredholm integral equation of the second kind. The
solution presented in this chapter is based on the construction of functions D(x,y, 1) and
D(2), both entire in A, as a series in which the nth-term consists of determinants of order
n X n based on the function K(x,y). The solution is then expressed as

1 b
00 = £+ s / D(x &) f(€) dé.

In particular, in the homogeneous case f = 0, there is a unique solution ¢ = 0 for those
values of A with D(Q) # 0. A process to obtain a solution for those values of A2 with D(1) = 0
is also described.

Volterra introduced the concept of reciprocal functions for a pair of functions K(x, y) and
k(x,y; A) satisfying the relation

b
K(xy) + k(xy:d) = 4 / k(x.& DK (E. y)dE.

a

Then the solution to the Fredholm equation is given by

b
F) = 60 + 2 / k(x.&: DO(E)dE.

The last part of the chapter discusses the equation

b
O(x) = f(x) + 4 / K(x,)0(E) dé

a

and the solution is expressed as a series in terms of a sequence of orthonormal functions and
the sequence {4, } of eigenvalues of the kernel K(x, y). In detail, if f(x) = b, ¢,(x), then
the solution @ is given by ®(x) = ﬁjﬂ" @n(x).

The Fredholm equation is written formally as ® = f+K® and this gives ® = f+K f+K>®.

Iteration of this process gives the so-called Neumann series ® = }, K" f, expressing the
n=0
unknown @ in terms of iterations of the functional defined by the kernel K.

The study of Fredholm integral equations is one of the beginnings of modern Functional
Analysis. The reader will find more details in P. Lax [415]. The ideas of Fredholm have
many applications: the reader will find in H. P. McKean [460] a down-to-earth explanation
of Fredholm’s work and applications to integrable systems (such as the Korteweg—de Vries
equation u; = U, + 6uu, and some special solutions called solitons), to the calculations of
some integrals involving Brownian paths (such as P. Lévy’s formula for the area generated by
a two-dimensional Brownian path) and finally to explain the appearance of the so-called sine
kernel in the limiting distribution of eigenvalues of random unitary matrices. This subject has
some mysterious connections to the Riemann hypothesis as described by B. Conrey [154].

The second part of the book is called The Transcendental Functions and it consists of
12 chapters. A brief description of them is provided next.
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Chapter 12. The Gamma-Function. This function, introduced by Euler, represents an exten-
sion of factorials n! from positive integers to complex values of n. The presentation begins
with the infinite product

= z
o ]+ e
(z) = ze 1_[ 1+ )e
n=1
wherey = lim (1 + 1 + - -+ + 1 —logn) is nowadays called the Euler-Mascheroni constant.

The product is an entire function of z € C and the Gamma function is defined by I'(z) =
1/P(z). Therefore I'(z) is an analytic function except for simple poles at z = 0,—1,2,. ... The
constant vy is identified as —I'’(1). The fact that I is a transcendental function is reflected by the
fact, mentioned in this chapter, that I does not satisfy a differential equation with coefficients
being rational functions of z. The chapter contains proofs of a couple of representations by

Euler
1~ 1\* z\"!
z 1+=] (1+2
I(re2) (03)
o (n—-1)! "
n—eo z(z+1)---(z+n-1)

I'(z)

The functional equation I'(z+ 1) = zI'(z) follows directly from here. Using the value I'(1) = 1,
this leads to I'(n) = (n — 1)! for n € N, showing that I" interpolates factorials.
The chapter also presents proofs of the reflection formula

Il -z = pr—

leading to the special value F(%) = +/mr. There is also a discussion of the multiplication
Sformula due to Gauss

n-1
k
F(HZ) — (27r)—(n—l)/2n—l/2+nz l_[ r (Z + _)

k=0 n

and the special duplication formula of Legendre
1
[(2z) = —=2%"'T(7)T(z + 1).
(22) N (2T(z + 3)

This may be used to derive the relation T'($)I'(3) = % Arithmetical properties of these values
are difficult to establish. The reader is referred to [92] and [166] for an elementary presentation
of the Gamma function, and to [106] for an introduction to issues of transcendence.

There are several integral representations of the Gamma function established in this
chapter. Most of them appear in the collection of integrals by Gradshetyn and Ryzhik [258].

The first one, due to Euler, is
I'(z)= / e dt,
0

valid for Re z > 0. This may be transformed to the logarithmic scale

-1

1 zZ
F(Z):./o (log %) dx.
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There is also a presentation of Hankel’s contour integral

1
I'(z) = —=— /(—I)Z_]e_’ dt, z¢Z
2isinnz Jo

where C is a thin contour enclosing the positive real axis.
The chapter also contains a discussion of two functions related to I': its logarithm log I'(z)
and the digamma function, ¥(z) = T'(2)/T'(z) = (logT'(z))’. Integral representations for (z)

include
&) eft efzt
= —_— - dt
V(@) ‘/0 ( t 1-e? )

_ a -x 1 dx .
‘A(e_u+mJ7’

the first one is due to Gauss and the second one to Dirichlet. The chapter also contains a
multi-dimensional integral due to Dirichlet that can be reduced to a single variable problem:

fltr+- -+t ad -,
R"

_ F(al) r(an) / f( )Tu1+ - l

F(al + -0+ a,,)

Other multi-dimensional integrals appear in the modern literature. For a description of a
remarkable example due to Selberg, the reader is referred to [214].
The properties of log I'(z) presented in this chapter include a proof of the identity

d?
pE logl'(z +1) = Z (Z+k)2’

showing that I'(z+1) is log-convex. This property, the functional equation and the value I'(1) =
1 characterize the Gamma function. The reader will also find two integral representations
due to Binet

1 1 “ (1 1 1 e’z
logT'(z) = [z - = |logz -z + = log2 —— -
ogI'(z) (z 2)ogz z+20g 7r+/O (2 t+e’—1) dt
and
logI'(z) = 1 logz — +1102 +2‘/00 an_l(é)dt
gz—zzgzzzgﬂ Aol

Integrals involving log I'(z) present interesting challenges. The value

1
/ log I'(z) dz = log V2r
0

due to Euler, may be obtained from the reflection formula for I'(z). The generalization of the
previous evaluation to

u=£a%nwa

is discussed next. The value of L, is presented in [196] as an expression involving the
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Riemann zeta function and its derivatives. The values of L; and L, were obtained in [38] and
they involve more advanced objects: multiple zeta values. At the present time an evaluation
of L, forn > 5, is an open question.

The chapter also contains a discussion of the asymptotic behavior of log I'(z), as a gener-
alization of Stirling’s formula for factorials and also a proof of the expression for the Fourier
series of logI'(z) due to Kummer. The Barnes G-function, an important generalization of
I'(z), appears in the exercises at the end of this chapter. A detailed presentation of these and
other topics may be found in [20].

Chapter 13. The Zeta-Function of Riemann. For s = o + it € C, the function
!
{(s) = Z pry
n=1

is the Riemann zeta function. This had been considered by Euler for s € R. For § > 0, the
series defines an analytic function of s on the half-plane o = Res > 1 + ¢. The function
admits the integral representation

£(s) = F()/ di

Euler produced the infinite product
(o) =[Ja-po"
p

where the product extends over all prime numbers. This formula shows that £(s) has no zeros
in the open half-plane Re s > 1. The auxiliary function

£65) = 57 Psts = 1 () €9

is analytic and satisfies the identity £(s) = £(1 — s). This function now shows that £(s) has
no zeros for Re s < 0, aside for the so-called trivial zeros at s = =2, —4, —6, . .. coming from
the poles of I'(s/2). Thus all the non-trivial zeros lie on the strip 0 < Re s < 1. The Riemann
hypothesis states that all the roots of {(s) = 0 are on the critical line Re s = % At the end of
§13.3 the authors state that:

It was conjectured by Riemann, but it has not yet been proved, that all the zeros of {(s) in this
strip lie on the line o = %; while it has quite recently been proved by Hardy [279] that an
infinity of zeros of {(s) actually lie on o = % It is highly probable that Riemann’s conjecture
is correct, and the proof of it would have far-reaching consequences in the theory of Prime
Numbers.

The reader will find in [93, 153, 458] more information about the Riemann hypothesis. In
a remarkable new connection, it seems that the distribution of the zeros of /(s) is related to
the eigenvalues of random matrices [367, 369].

This chapter establishes the identity

(-1)""' By, (27)*"
2(2n)!

where n € N and B,, is the Bernoulli number. This is a generalization of the so-called Basel

{(2n) =
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problem {(2) = n*/6. The solution of this problem won the young Euler instant fame. It
follows that £(2n) is a rational multiple of 72", therefore this is a transcendental number.
The arithmetic properties of the odd zeta values are more difficult to obtain. Apéry proved
in 1979 that £(3) is not a rational number; see [27, 72, 689]. It is still unknown whether
£(5) is irrational, but Zudilin [688] proved that one of the numbers £(5), £(7), £(9), £(11) is
irrational. It is conjectured that all odd zeta values are irrational.

The literature contains a large variety of extensions of the Riemann zeta function. The
chapter contains information about some of them: the Hurwitz zeta function

(o] 1 )
L(s,a) = Z(; o with 0 <a < 1

with integral representation

(o= F()/ l—e

The chapter establishes the values of {(—m,a) in terms of derivatives of the Bernoulli
polynomials and presents a proof of Lerch’s theorem

d (T
%g(s,a)‘szo = IOg (\/T_ﬂ-) .

The chapter mentions two further generalizations: one introduced by Lerch (see [414] for
details)

Zmnx

$(x.a;5) = Z (n+a)’

and another one by Barnes [43, 44, 45, 46]

s,wildp,...,d = Z .
gN( s | 1> > N) 4 (W+I’l1a1 ++nNaN)Y
N

The reader will find in [566] more recent information on this function.

Chapter 14. The Hypergeometric Function. This function is defined by the series

F(Cl b:c, )_Z (a) (b)n "

(¢)an!

provided c is not a negative integer. Here («),, = ['(u + n)/I'(u) is the Pochhammer symbol.
The series converges for |z| < 1 and on the unit circle |z| = 1 if Re(c —a — b) > 0. Many
elementary functions can be expressed in hypergeometric form, for instance

1
F(l’l;l;Z) = 1_—2 and ¢° = l}im F(l,b;l;%) .

The chapter begins with Gauss’ evaluation F(a, b; c; 1) in the form

I'(c)['(c—a-b)

F(d,b;C; 1) = m
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The function F satisfies the differential equation
d? d
= s le—@+b+ D] —abu=0
dz? dz

This equation has 0, 1, oo as regular singular points and every other point is ordinary. The
generalization to singular points at a, b, ¢ with exponents given by {a,a’}, {88}, {v.¥'},
respectively, is the Riemann differential equation

d*w [l—a—a'+1—ﬁ—ﬁ’ 1—y- y]dw

d_z2+ z—a z—-b z—c dz
+[aa’(a—b)(a—C)+ﬂﬁ'(b—0)(b—a)+w’(c—a)(c—b)] w _
z—a z—0b z—c (z=—a)z-b)(z-c)
It is shown that
z—a\" (z-cY . . (z=a)(c-b)
(Z—b) (Z—_b) Fla+B+v,a+p +y,l+a—a),—(z_b)(c_a)

solves the Riemann differential equation. Using the invariance of this equation with respect
to some permutations of the parameters (for example, the exchange of a and «’) produces
from F(a, b; c; z) Kummer’s 24 new solutions of Riemann’s equation, for example

(1-2)“F (a,c—b;c; £ ) and (1 -2)7bF (c—a,b;c; £ ) .

z—1 z—1
Since the solutions of a second-order differential equation form a two dimensional vector
space, this type of transformation can be used to generate identities among hypergeomet-
ric series. The reader will find in [20, 339, 534, 641] more details on these ideas. The
corresponding equation with four regular singular points at 0, 1, oo, a is called the Heun
equation

d’u |y ) e | du aBfx—q
| |5+ [l -0

ﬁ+ x x-1 x-a x(x = 1D(x -

The corresponding process on the symmetries of the equation now gives 192 solutions. These
are described in [452]. The reader will find in [190] an example of the appearance of Heun’s
equation in integrable systems.

The chapter also contains a presentation of Barnes’ integral representation

1 /"°° [(a + $)T'(b + s)['(=s)

Fla.bic;z) = 27i I'(c+5s)

(=2)*ds

and its use in producing an analytic continuation of the hypergeometric series. Finally, the
identities of Clausen

[F(a,b;a+b+ %;x)]2 =3FQ2a,a + b,2b;a+ b + %,Za + 2b; x)

where 3 F; is the analog of the hypergeometric series, now with three Pochhammer symbols
on top and two in the bottom of the summand and Kummer’s quadratic transformation

FQ2a,2b,a+ b+ %;x) =F(a,b;a+ b+ L1;4x(1 - x))
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appear as exercises in this chapter. The reader will find in [20] a detailed analysis of these
topics.

Chapter 15. Legendre Functions. This chapter discusses Legendre polynomials P,(z) and
some of their extensions. These days, the usual starting point for these functions is defining
them as orthogonal polynomials on the interval (-1, 1); that is,

1
/ Pn(Z)Pm(Z) dZ =0 ifn=+ m,
-1

plus some normalization in the case n = m. The starting point in this chapter is the generating
function

(1=2zh+ )2 = 3" P(o)h".

n=0

It is established from here that

]
3 , (2n = 2r)!
Pu(2) = ;(_1) 2l —n)i(n— 201"

showing that P,(z) is a polynomial of degree n with leading coefficient 27" (2:)
The properties of these polynomials established in this chapter include

n-2r

Rodriguez formula

d n
P,(z) = 2"1n! (d_z) (-1

Legendre’s differential equation The polynomials P,(z) are solutions of the differential
equation
d*u du
2 _

(1-z )d—zz—sz—Z+n(n+ Du = 0.
In the new scale x = z?, this equation takes its hypergeometric form
d’y
1 - x)—2

x(1-2)3

1 d 1
>+ 5(1 - 3x)d—u + Zn(n + u =0.
X X

The (more convenient) hypergeometric form P,(z) = ,Fi(n + 1,-n; 1; %(1 —z)is
also established.
Recurrences The chapter presents proofs of the recurrences

(n+ 1)P,1(z) — 2n+ 1)zP,(2)zPn(z) — nzP,(z) =0
and

P, (z) = zP(z) = (n + 1)P,(z) = 0.

Integral representations A variety of integral representations for the Legendre polynomials
are presented:
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o Schldfli:

1 -1y
P”(Z) = ; n n+l
2ri Jo 27(t - 2)

where C is a contour enclosing z. This is then used to prove the orthogonality

relation
! 0 ifnsm
[ Parataraz - |
-1 2/2n+1) if n =m.
e Laplace:

1 [” n
P.(z) = ;/ [z + (22— )% cos 9] de
0

o Mehler-Dirichlet:

1 r° et 3)ip J
P, 0)=— .
(cos 6) by [9 (2cos ¢ —2cos 6)!/2 4

The formula of Schléfli given above is then used to extend the definition of P, (z) forn ¢ N.
In order to obtain a single-valued function, the authors introduce a cut from —1 to —co in the
domain of integration.

Since the differential equation for the Legendre polynomials is of second order, it has a
second solution independent of P, (z). This is called the Legendre function of degree n of the
second type. It is denoted by Q,,(z). The chapter discusses integral representations and other
properties similar to those described for P,(z). For example, one has the hypergeometric
expression

r 1 1 1 3
Qn(z):ﬁ(—nJFS) 1 P Lt 22,
21T (n+3) 2 2’2 2
One obtains from here
1 z+1
=1
Qo(z) = 5 log —
1 +1
01(z) = =zlog o~ — 1.
2 z—1

In general Q,,(z) = A,(z) + B,(z) log % for polynomials A,,, B,,.

The chapter also includes further generalizations of the Legendre functions introduced by
Ferrer and Hobson. These are called associated Legendre functions. Some of their properties
are presented. There is also a discussion of the addition theorem for Legendre polynomial,
as well as a short section on the Gegenbauer function. The reader will find in the Digital
Library of Mathematical Functions developed at NIST [443] more information about these
functions.

Chapter 16. The Confluent Hypergeometric Function. This chapter discusses the second-order
differential equation with singularities at {0,00,c} and corresponding exponents
{{% +m, L —m}),{-c,0},{c - k,k}} in the limiting situation ¢ — oo. This is the case
of confluent singularities (the limiting equation now has only two singularities: 0 and oo,
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with 0 remaining regular and co becomes an irregular singularity). After a change of variables
to eliminate the first derivative term, the limiting equation becomes

d_z2+ ——+—+

2w 1 k ;-m?
4 z z?

Jw-o

This is called Whittaker equation.
The authors introduce the functions
3
%+m—k - (%+m—k)(§ +tm—k) ,
1'2m+1)" 212m+ 1)2m+2)

Mk,m(Z) — Z1/2+mefz/2 (1 +

and show that, when 2m ¢ N, the functions My ,,,(z) and My _,,,(z) form a fundamental set of
solutions.

It turns out that it is more convenient to work with the functions Wy ,,,(z) defined by the
integral representation

k —k/2 ) ¢ k—1/2+m .
e dt.

<e —k—1/2+m
Wim(z) = ——— [ ¢ 1+ -
em(2) L3 —k+m)Jo ( Z

The reader is referred to [59, Chapter 6] for a readable description of the basic properties of
these functions, called Whittaker functions in the literature.

The chapter also presents a selection of special functions that can be expressed in terms
of Wi »(z). This includes the incomplete gamma function

X
v(a,x) = / 7 le™ dt
0
that can be expressed as

y(a,x) = T(a) = x“D2e™Pw; 1 (x),

z(a—l),za
as well as the logarithmic integral function, defined by
)= [ 2 = ~(-loga) W, (~log2)
o logt —2:0 '

This function appears in the description of the asymptotic behavior of the function
7(x) = number of primes p < x.

The prime number theorem may be written as 7(x) ~ li(x) as x — oo. See [191] for details.
The final example is the function

2
Dn(Z) = 2n/2+l/4z_1/2Wn 1 1 (Z_) s
27373\ 2
related in a simple manner to the Hermite polynomials, defined by

2 d " 2
H,(z) = (=1)"e*/? (—) e v,
dz

See [20] for information on this class of orthogonal polynomials.
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Chapter 17. Bessel Functions. This chapter discusses the Bessel functions defined, for n € Z,

by the expansion
b4 1 X
~lt—=||= Ja(2)t".
ww(3e-3))= 2400

n=—o0o

Some elementary properties of J,,(z) are derived directly from this definition, such as J_,(z) =
(=1)"Ju(z), the series

Jn(Z)Z i& (Z)n+2r,

rl(n+r)! 2
and the addition theorem

3+ = D In()nm(2).

m=—oo

The Cauchy integral formula is then used to produce the representation

()= =

Z\" -n-1_t-z%/4t
h t dr,
2ri (2) jé ¢

where C is a closed contour enclosing the origin. From here it is possible to extend the
definition of J,,(z) to values n ¢ Z and produce the series representation

ha (_1)rzn+2r
J.(2) = .
(2) ; 227 T(n+r + 1)

This function is called the Bessel function of the first kind of order n. The integral repre-
sentation of J,(z) is then used to show that y(z) = J,(z) is a solution of the differential
equation

d’y ldy n’

—+-—+|1-=|y=0,

dz?  zdz 2)”
called the Bessel equation. In the case n ¢ Z, the functions J,(z) and J_,(z) form a basis for
the space of solutions. In the case n € Z a second solution, independent of J,,(z), is given by

Jn+8(Z) COS(”(” + 3)) - Jf(nJrg)(Z)
sin2r(n + €))

Y,(z) = lim 2e™ ")
-0

The functions Y,(z) are called the Bessel functions of the second kind.
This chapter also contains some information on some variations of the Bessel function
such as

1(2) = 7,(02) and  K,(2) = 5 [14(2) = L(2)] cot(en).
Among the results presented here one finds

Recurrences such as
2n
Jn—l(z) + Jn+1(Z) = ?‘]n(z)»

J(2) = gln(z) ~ Ju1(2)
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and

1d
T M (2) = == — [27"u(2)]
zdz

which produces relations of Bessel functions of consecutive indices.

Zeros of Bessel functions it is shown that between any two non-zero consecutive roots of
J.(2) = 0 there is a unique root of J,,1(z) = 0.

Integral representations such as

1 [~ sin © .
Ju(2) = = / cos(nf — zsin @) do — il / e 0-zsinh gg.
T Jo s 0
where, for n € Z, the second term vanishes.

Hankel representation in the form

_TG=m 2y [ n-1/2
Ju(z) = W (E) L(l -1) cos(zt) dt

where C is a semi-infinite contour on the real line.
Evaluation of definite integrals such as one due to Mahler

C ot
K = ——Jo(tx) dt
)= [ i)

and an example due to Sonine giving an expression for

/oo X7 J(ax)J(bx)J,(cx) dx.
0

A large selection of integrals involving Bessel functions may be found in [105],
[258] and [544].

Series expansion The chapter also contains information about expansions of a function f(z)
in a series of the form

F@) =D anda(@) or f(@) =) and(na).
n=0 n=0

The reader will find in [20] and [59] more information on these functions at the level
discussed in this chapter. Much more appears in the volume [653].

There are many problems whose solutions involve the Bessel functions. As a current
problem of interest, consider the symmetric group Sy of permutations 7 of N symbols.
An increasing sequence of length k is a collection of indices 1 < i; < --- < iy < N such
that 7(i;) < (i) < --- < 7m(i;). Define on Sy a uniform probability distribution; that is,
P(7r) = 1/N! for each permutation 7. Then the maximal length of an increasing subsequence
of 7 is a random variable, denoted by €y (), and its distribution is of interest. This is the
Ulam problem. Introduce the centered and scaled function

tn(m) = 2VN

XN(”) = Nl/G
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Baik-Deift-Johannson [36] proved that l\l}im P(xn(m) £ x) = F(x), where F(x), the so-called
Tracy—Widom distribution, is given by

F(x) = exp (— / (v = 0u*(y) dy) :

Here u(x) is the solution of the Painlevé Pr; equation u”(x) = 2u*(x) + xu(x), with
asymptotic behavior u(x) ~ Ai(x) as x — oo. The Airy function Ai(x) is defined by
Ai(x) = VxKi3 (%x” 2) /nV3. The reader will find in [37] an introduction to this fasci-
nating problem.

Chapter 18. The Equations of Mathematical Physics. This chapter contains a brief description

of methods of solutions for the basic equations encountered in Mathematical Physics. The
results are given for Laplace’s equation

LV VW

av=224,27 .20
c’)x2+6y2+ 072

on a domain Q C R?. The chapter has a presentation on the physical problems modeled by
this equation.
The results include the integral representation of the solution

V(x,y,2) = / f(z+ixcosu+iysinu,u)du

as the 3-dimensional analog of the form V(x,y) = f(x + iy) + g(x — iy) valid in the 2-
dimensional case as well as an expression for V(x, y, z) as a series with terms of the form

s
/ (z+ixcosu+iysinu)" (
-7

CcoS mu
sin mu

This series is then converted into one of the form

V= Z " {AnPn(cos 0) + Z (Aglm) cosm¢ + B sin m¢) P (cos 0)}
m=1

n=0

where P) is Ferrer’s version of the associated Legendre function.
The chapter also contains similar results for Laplace’s equation on a sphere. For this type
of domain, the authors obtain the formula

2_ 2 T Vs , , . , , ,
V(r,9,¢)=%/ /0 ; f(6',¢") sin0’ do’ d¢

2 —2ar{cos 6 cos @’ + sin@sin 6’ cos(¢ — ¢’)} + a2]¥/?’

and refer to Thompson and Tait [628] for further discussions on the theory of Green’s
functions. A similar analysis for an equation on a cylinder also appears in this chapter. In
that case the Legendre functions are replaced by Bessel functions. Some of the material
discussed in this chapter has become standard in basic textbooks in Mathematical Physics;
see for instance [476].

Chapter 19. Mathieu Functions. This chapter discusses the wave equation V,; = ¢*?AV and
assuming a special form V(x, y,t) = u(x, y) cos(pt + £) of the unknown V in a special system
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of coordinates (£,7) (introduced by Lamé) yields an equation for u(x, y). Using the classical
method of separation of variables (u * x,y) = F(£)G(n) produces the equation

d2
ary, (a + 16g cos(2z))y = 0.
dz?

This is called Mathieu’s equation. The value of a is determined by the periodicity condition
G(n+2n) = G(n) and q is determined by a vanishing condition at the boundary. This type of
equation is now called Hill’s equation, considered by Hill [306] in a study on lunar motion.
Details about this equation appear in [451] and connections to integrable systems appear in
[459, 462, 463].

The authors show that G(n) satisfies the integral equation

s

G(U) — /l‘/ ekcosucosHG(g) do
-7

and this A must be a characteristic value as described in Chapter 11.

A sequence of functions, named Mathieu functions, are introduced from the study of
Mathieu’s equation. In the case ¢ = 0, the solutions are {1, cos nz, sin nz},y, and via Fourier
series the authors introduce functions {cey(z, ¢), ce,(z, q), se,(z,q)}, - reducing to the pre-
vious set as ¢ — 0. Some expressions for the first coefficients in the Fourier series of these
functions are produced (it looks complicated to obtain exact expressions for them).

The authors present basic aspects of Floquet theory (more details appear in [451]). One
looks for solution of Mathieu’s equation in the form y(z) = e"*¢(z), with ¢ periodic. The
values of u producing such solutions are obtained in terms of a determinant (called the Hill
determinant). The modern theory yields these values in terms of a discriminant attached
to the equation. The chapter also discusses results of Lindemann, transforming Mathieu’s
equation into the form

46(1 — e +2(1 = 26’ + (a — 16 + 32¢&)u = 0.

This equation is not of hypergeometric type: the points 0, 1 are regular, but co is an irregular
singular point. Finally, the chapter includes some description of the asymptotic behavior of
Mathieu functions. More details appear in [34] and [509].

Chapter 20. Elliptic Functions. General Theorems and the Weierstrassian Functions. Con-
sider two complex numbers w;, w, with non-real ratio. An elliptic function is a doubly-
periodic functions: f(z+2w) = f(z+2w,) = f(z) where its singularities are at worst poles.
The chapter discusses basic properties of the class & of elliptic functions. It is simple to
verify that & is closed under differentiation and that the values of f € & are determined by
its values on the parallelogram with vertices 0, 2w;, 2w; + 2w;, 2w;. (Observe the factor
of 2 in the periods.) This is called a fundamental cell and is denoted by L. One may always
assume that there are no poles of the function on the boundary of the cell. The first type of
results deal with basic properties of an elliptic function:

(1) the number of poles is always finite; the same is true for the number of solutions of
f(z) = c. This is independent of ¢ € C and is called the degree of the function f.

(2) any elliptic function without poles must be constant.
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This result is used throughout the chapter to establish a large number of identities. The

fundamental example
1 1 1
= — + _—
) = 5 Z ( EEnE wz)

where the sum runs over all non-zero w = 2nw, + 2mw,, was introduced by Weierstrass. It
is an elliptic function of order 2. It has a double pole at z = 0. It is an even function, so its
zeros in the fundamental cell are of the form +zp mod L. A remarkably recent formula for z,
is given by Eichler and Zagier [192]. The g function satisfies a differential equation

(d 9(2)

2
y ) =49(z)’ - £20(2) — g5,
Z

where g,, g3 are the so-called invariants of the lattice L. This function is then used to
parametrize the algebraic curve y> = 4x* + ax + b, for a, b € C with a® + 27b*> # 0. The
subject is also connected to differential equation by showing that if y = ¢(z), then the inverse
z = 9~ }(y) (given by an elliptic integral) can be written as the quotient of two solutions of

L (350 ey -3 o-en|v=0
- N —e, - — — e, v =U.
ay " \16 44 g7 1 IV

Here e, are the roots of the cubic polynomial appearing in the differential equation for p(z).
The addition theorem

N T2
1P31i32 — 9(2) - 9()

ESAR Y s ey

is established by a variety of methods. One presented by Abel deals with the intersection
of the cubic curve y?> = 4x* + ax + b and a line and it is the basis for an addition on
the elliptic curve, as the modern language states. Take two points a, b on the curve and
compute the line joining them. This line intersects the cubic at three points: the third is
declared —a @ b. The points on the curve now form an abelian group: this is expected since
the cubic may be identified with a torus C/L. The remarkable fact is that the addition of
points preserves points with rational coordinates, so this set is also an abelian group. A
theorem of Mordell and Weil states that this group is finitely generated. More information
about the arithmetic of elliptic curves may be found in [331, 461, 592, 593]. The chapter
also contains some information about two additional functions: the Weierstrass ¢-function,
defined by ¢’(z) = —p(z) with llir(l) {(z) — 1/z = 0 and the Weierstrass o -function, defined

by (log o(z)) = {(z) with lir% 0(z)/z = 1. These are the elliptic analogs of the cotangent
Véand

and sine functions. The chapter contains some identities for them, for instance one due to
Stickelberger: if x + y + z = 0, then

[£(0) + L) +L@P + () + () + L'(2) =0,
as well as the identity

o(z+y)o(z-y)
a2(z)a?(y)

P(z) —p(y) = -
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just to cite two of many. Among the many important results established in this chapter, we
select three:

(1) any elliptic function f can be written in the form R, (p)+ Rx(9)¢’(z), with Ry, R, rational
functions;

(2) every elliptic function f satisfies an algebraic differential equation;

(3) any curve of genus 1 can be parametrized by elliptic functions.

The chapter contains a brief discussion on the uniformization of curves of higher genus. This
problem is discussed in detail in [7, 12, 477].

Chapter 21. The Theta-Functions. The study of the function

Naq) = ) (-1)'q e

n=—o0o

with g = exp(it) and Im 7 > 0 was initiated by Euler and perfected by Jacobi in [349]. This
is an example of a theta function. It is a non-constant analytic function of z € C, so it cannot
be elliptic, but it has a simple transformation rule under z — z + 7. This chapter considers ,
relabelled as ), as well as three other companion functions #,, ©#; and 4. These functions
have a single zero in the fundamental cell L and since they transform in a predictable manner
under the elements of L, it is easy to produce elliptic functions from them. This leads to a
remarkable series of identities such as

9z, q) = 9322, ¢*) + 9,22, ¢*)
and
95(0,q) + 93(0,q) = 95(0,q)

that represents a parametrization of the Fermat projective curve x* + y* = z*. The chapter
also discusses the addition theorem

93z + ))B(z = »)I5(0) = KD (2) + B9 (2)
(where the second variable g has been omitted) as well as an identity of Jacobi
31(0) = 92(0)83(0)I4(0).
This corresponds to the triple product identity, written as

[Ja-aa+a ' pHa+gm"p2=> ¢°p™,
n=1

using the representation of theta functions as infinite products. The literature contains a
variety of proofs of this fundamental identity; see Andrews [19] for a relatively simple one,
Lewis [433] and Wright [683] for enumerative proofs and [311] for more general information
on the so-called g-series. The chapter also shows that a quotient of theta functions £ satisfies
the differential equation

2
(Z—f) = (83(0) = £283(0)) (93(0) - £293(0)) .
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This is Jacobi’s version of the differential equation satisfied by the Weierstrass p-function.
The properties of solutions of this equation form the subject of the next chapter.

The reader will find in Baker [39, 40] a large amount of information on these functions
from the point of view of the 19th century, Mumford [478, 479, 480] for a more modern point
of view and [208, 209] for their connections to Riemann surfaces. Theta functions appeared
scattered in the magnificent collection by Berndt [60, 61, 62, 63, 64] and Andrews—Berndt
[21, 22, 23, 24, 25] on the formulas stated by Ramanujan.

Chapter 22. The Jacobian Elliptic Functions. Each elliptic function f has a degree attached
to it. This is defined as the number of solutions to f(z) = ¢ in a fundamental cell. Constants
have degree 0 and there are no functions of degree 1. A function of degree 2 either has
a double pole (say at the origin) or two simple poles. The first case corresponds to the
Weierstrass ¢ function described in Chapter 20. The second case is discussed in this chapter.
The starting point is to show that any such function y = y(1) may be written as a quotient of
theta functions. From here the authors show that y must satisfy the equation

(&) =0y -

where k € C is the modulus. An expression for k as a ratio of null-values of theta functions
is provided. Then y = y(u) is seen to come from the inversion of the relation

y
u=/ (1= (1=K ar
0

and, following Jacobi, the function y is called the sinus amplitudinus and is denoted by
y = sn(u, k). This function becomes the trigonometrical y = sinu when £k — 0. Two
companion functions cn(u, k) and dn(u, k) are also introduced. These functions satisfy a
system of nonlinear differential equations

X=YZ Y=-ZX, Z7=-k*XY,
and they are shown to parametrize the curve £2 = (1 — n?)(1 — k%n?).
The chapter also contains an addition theorem for these functions, such as

snucnvdnv +snvcnu dnu
sn(u +v) =

1 — k?sn?u sn?v
and other similar expressions.

The complete elliptic integral of the first kind K (k) (and the complementary one K'(k))
appears here from sn(K(k), k) = 1. The authors establish an expression for K (k) in terms of
theta values, prove Legendre’s identity

d dK

— k(K'Y —] = kK,

dk ( (k) dk )
and present a discussion of the periods of the (Jacobian elliptic) functions sn, cn, dn in terms
of elliptic integrals. The reader will find details of these properties in [90, 461]. Other results
appearing here include product representations of Jacobi functions, the Landen transforma-
tion and several definite integrals involving these functions. There is also a discussion on
the so-called singular values: these are special values of the modulus k such that the ratio
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K'(k)/K(k) has the form (a + byn)/(c + d+/n) with a, b, ¢, d and n € Z. These values of
k satisfy polynomial equations with integer coefficients. The authors state that the study of
these equation lies beyond the scope of this book. The reader will find information about
these equations in [90].

Chapter 23. Ellipsoidal Harmonics and Lamé’s Equation. This chapter presents the basic
theory of ellipsoidal harmonics. It begins with the expression

B X2 y2 Z2

= + + —
p 2 2 2
a*+6, b*+6, +6,

where a > b > c are the semi-axis of the ellipsoid ®, = 0. A function of the form
I1,,(®) = O, ---0,, is called an ellipsoidal harmonic of the first species. The chapter de-
scribes harmonic functions (that is, one satisfying Au = 0) of this form. It turns out that
every such function (with n even) has the form

n/2 2 2 2
X z
| |( 2 + 2y ) _1)
\a*+6, b+0, c+6,

p=

where 0y,. . ., 6, are zeros of a polynomial A() of degree n/2. This polynomial solves the
Lamé equation

4+(a® + 0)(B? + 0)(c + 9)% [\/(a2 +0)(b* + 0)(c2 + 9)’2—2} = [n(n + 1)0 + C] A(6).

The value C is constant and it is shown that there are %n + 1 possible choices. There are three
other types of ellipsoidal harmonics with a similar theory behind them.
The chapter contains many versions of Lamé’s equation: the algebraic form

A 1( 1 Lo Lo L YA [+ DA+ CIA
at+A1 PP+d +A]dr 4@+ DB+ (2 + )

— +
2z 2
as well as the Weierstrass elliptic form
d’A
— = [n(n + Dp(u) + B]A
du?
and finally the Jacobi elliptic form
d*A
w7 = [n(n + Dk*sn’a + A] A.
These equations are used to introduce Lamé functions. These are used to show that there are
2n + 1 ellipsoidal harmonics that form a fundamental system of the harmonic functions of
degree n.
The chapter contains a brief comment on work by Heun [300, 301] mentioning the study
of an equation with four singular points. The reader will find in Ronveaux [563] more
information about this equation.
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The Process of Analysis






1

Complex Numbers

1.1 Rational numbers

The idea of a set of numbers is derived in the first instance from the consideration of the
set of positive integral numbers, or positive integers; that is to say, the numbers 1,2,3,4,. . ..
(Strictly speaking, a more appropriate epithet would be, not positive, but signless.) Positive
integers have many properties, which will be found in treatises on the Theory of Integral
Numbers; but at a very early stage in the development of Mathematics it was found that
the operations of Subtraction and Division could only be performed among them subject to
inconvenient restrictions; and consequently, in elementary Arithmetic, classes of numbers
are constructed such that the operations of subtraction and division can always be performed
among them.

To obtain a class of numbers among which the operation of subtraction can be performed
without restraint we construct the class of integers, which consists of the class of positive inte-
gers (in the strict sense) (+1, +2, +3,. . .) and of the class of negative integers (-1,-2,-3,...)
and the number 0.

To obtain a class of numbers among which the operations both of subtraction and of
division can be performed freely, with the exception of division by the rational number O,
we construct the class of rational numbers. Symbols which denote members of this class are
%, 3,0, —%. We have thus introduced three classes of numbers, (i) the signless integers, (ii)
the integers, (iii) the rational numbers.

It is not part of the scheme of this work to discuss the construction of the class of integers
or the logical foundations of the theory of rational numbers. Such a discussion, defining a
rational number as an ordered number-pair of integers in a similar manner to that in which a
complex number is defined in §1.3 as an ordered number-pair of real numbers, will be found
in Hobson [315, §1-12].

The extension of the idea of number, which has just been described, was not effected
without some opposition from the more conservative mathematicians. In the latter half of
the eighteenth century, Maseres (1731-1824) and Frend (1757-1841) published works on
Algebra, Trigonometry, etc., in which the use of negative numbers was disallowed, although
Descartes had used them unrestrictedly more than a hundred years before.

A rational number x may be represented to the eye in the following manner: If, on a straight
line, we take an origin O and a fixed segment OP; (P; being on the right of O), we can
measure from O a length O P, such that the ratio OP,. /O P, is equal to x; the point P, is taken
on the right or left of O according as the number x is positive or negative. We may regard

3
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either the point Py or the displacement OP, (which will be written OPy) as representing the
number x.

All the rational numbers can thus be represented by points on the line, but the converse is
not true. For if we measure off on the line a length OQ equal to the diagonal of a square of
which OP; is one side, it can be proved that Q does not correspond to any rational number.

Points on the line which do not represent rational numbers may be said to represent irra-
tional numbers; thus the point Q is said to represent the irrational number V2 = 1.414213 - - -
But while such an explanation of the existence of irrational numbers satisfied the mathemati-
cians of the eighteenth century and may still be sufficient for those whose interest lies in the
applications of mathematics rather than in the logical upbuilding of the theory, yet from the
logical standpoint it is improper to introduce geometrical intuitions to supply deficiencies
in arithmetical arguments; and it was shewn by Dedekind [169] in 1858 that the theory of
irrational numbers can be established on a purely arithmetical basis without any appeal to
geometry.

1.2 Dedekind’s theory of irrational numbers

The geometrical property of points on a line which suggested the starting point of the
arithmetical theory of irrationals was that, if all points of a line are separated into two classes
such that every point of the first class is on the right of every point of the second class, there
exists one and only one point at which the line is thus severed. The theory, though elaborated
in 1858, was not published before the appearance of Dedekind’s tract [169]. Other theories
are due to Weierstrass (see [642]) and Cantor [116].

Following up this idea, Dedekind considered rules by which a separation or section of
all rational numbers into two classes can be made. This procedure formed the basis of the
treatment of irrational numbers by the Greek mathematicians in the sixth and fifth centuries
B.c. The advance made by Dedekind consisted in observing that a purely arithmetical theory
could be built up on it.

These classes, which will be called the L-class and the R-class, or the left class and the
right class, being such that they possess the following properties:

(i) At least one member of each class exists.
(ii) Every member of the L-class is less than every member of the R-class.

It is obvious that such a section is made by any rational number x; and x is either the
greatest number of the L-class or the least number of the R-class. But sections can be made
in which no rational number x plays this part. Thus, since there is no rational number! whose
square is 2, it is easy to see that we may form a section in which the R-class consists of
the positive rational numbers whose squares exceed 2, and the L-class consists of all other
rational numbers.

Then this section is such that the R-class has no least member and the L-class has no greatest

2 )
member; f07r, it: x be any positive rational fraction, and y = xgzig), theny —x = 2;;222:(2) and
yi-2= ((3); 2122);2, so x2, y? and 2 are in order of magnitude; and therefore given any member

! For if p/q be such a number, this fraction being in its lowest terms, it may be seen that 2g — p)/(p — q) is
another such number, and 0 < p — g < g, so that p/q is not in its lowest terms. The contradiction implies that
such a rational number does not exist.
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x of the L-class, we can always find a greater member of the L-class, or given any member
x" of the R-class, we can always find a smaller member of the R-class, such numbers being,
for instance, y and y’, where y’ is the same function of x” as y of x.

If a section is made in which the R-class has a least member A,, or if the L-class has a
greatest member A, the section determines a rational-real number; which it is convenient
to denote by the same symbol A, or A;. This causes no confusion in practice.

If a section is made, such that the R-class has no least member and the L-class has no
greatest member, the section determines an irrational-real number.

Note B. A. W. Russell [567] defines the class of real numbers as actually being the class of
all L-classes; the class of real numbers whose L-classes have a greatest member corresponds
to the class of rational numbers, and though the rational-real number x which corresponds to
a rational number x is conceptually distinct from it, no confusion arises from denoting both
by the same symbol.

If x, y are real numbers (defined by sections) we say that x is greater than y if the L-class
defining x contains at least two members of the R-class defining y. If the classes had only
one member in common, that member might be the greatest member of the L-class of x and
the least member of the R-class of y.

Let @,p,... be real numbers and let Aj, By,... be any members of the corresponding
L-classes while A,, B,,. .. are any members of the corresponding R-classes. The classes of
which Ay, A, . .. are respectively members will be denoted by the symbols (A)), (A,),. ...

Then the sum (written @ + ) of two real numbers @ and 3 is defined as the real number
(rational or irrational) which is determined by the L-class (A; + B;) and the R-class (A, + B,).

It is, of course, necessary to prove that these classes determine a section of the rational
numbers. It is evident that A; + B; < A, + B, and that at least one member of each of the
classes (A; + By), (A, + B,) exists. It remains to prove that there is, at most, one rational
number which is greater than every A; + B; and less than every A, + B,; suppose, if possible,
that there are two, x and y, (y > x). Let @; be a member of (A,) and let @, be a member of
(Ay); and let N be the integer next greater than (a; — ay)/ {%(y — x)}. Take the last of the
numbers a; + %(az — ay), (where m = 0,1,...,N), which belongs to (A,) and the first of
them which belongs to (A,); let these two numbers be ¢y, ¢;. Then

1 1
CG—C = N(Olz -a) < E(y - X).
Choose di, d, in a similar manner from the classes defining §; then
C2+d2—C1—d1 <y-—Xx.

Butc, + dy > y, ¢; + d; < x, and therefore ¢; + d, — ¢; — d; = y — x; we have therefore
arrived at a contradiction by supposing that two rational numbers x, y exist belonging neither
to (A; + By) nor to (A, + B).

If every rational number belongs either to the class (A; + B;) or to the class (A; + B,),
then the classes (A; + B;),(A, + B,) define an irrational number. If one rational number x
exists belonging to neither class, then the L-class formed by x and (A; + By) and the R-class
(A, + B,) define the rational number-real x. In either case, the number defined is called the
sum a + 5.
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The difference @ — 8 of two real numbers is defined by the L-class (A; — B,) and the R-class
(A2 = By).

The product of two positive real numbers «, 3 is defined by the R-class (A,B,) and the
L-class of all other rational numbers.

The reader will see without difficulty how to define the product of negative real numbers
and the quotient of two real numbers; and further, it may be shewn that real numbers may be
combined in accordance with the associative, distributive and commutative laws.

The aggregate of rational-real and irrational-real numbers is called the aggregate of real
numbers; for brevity, rational-real numbers and irrational-real numbers are called rational
and irrational numbers respectively.

1.3 Complex numbers

We have seen that a real number may be visualised as a displacement along a definite straight
line. If, however, P and Q are any two points in a plane, the displacement PQ needs two
real numbers for its specification; for instance, the differences of the coordinates of P and Q
referred to fixed rectangular axes. If the coordinates of P be (£,7) and those of Q(& + x,n+y),
the displacement PO may be described by the symbol [x,y]. We are thus led to consider
the association of real numbers in ordered pairs. The order of the two terms distinguishes
the ordered number-pair [x, y] from the ordered number-pair [y, x]. The natural definition of
the sum of two displacements [x, y], [x’,y’] is the displacement which is the result of the
successive applications of the two displacements; it is therefore convenient to define the sum
of two number-pairs by the equation

e y]+[x, ¥ =[x + X",y + ']
The product of a number-pair and a real number x’ is then naturally defined by the equation
x' X [x,y] = [x'x,x"y].

We are at liberty to define the product of two number-pairs in any convenient manner;
but the only definition, which does not give rise to results that are merely trivial, is that
symbolised by the equation

[, I X [, y'] = [xx” = yy', xy" + x'y].

It is then evident that

[x, 0] X [x", y'] = [xx”, xy"] = x X [x',y']
and
[0.y] % [x", y'T = [-yy', x'y] = y x [y, x'].

The geometrical interpretation of these results is that the effect of multiplying by the
displacement [x, 0] is the same as that of multiplying by the real number x; but the effect of
multiplying a displacement by [0, y] is to multiply it by a real number y and turn it through
a right angle.

It is convenient to denote the number-pair [x, y] by the compound symbol x + iy; and a

number-pair is now conveniently called (after Gauss) a complex number; in the fundamental
operations of Arithmetic, the complex number x + i0 may be replaced by the real number x
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and, defining i to mean [0, 1], we have i> = [0,1] x [0, 1] = [-1,0]; and so i> may be replaced
by —1.

The reader will easily convince himself that the definitions of addition and multiplication
of number-pairs have been so framed that we may perform the ordinary operations of algebra
with complex numbers in exactly the same way as with real numbers, treating the symbol i
as a number and replacing the product ii by —1 wherever it occurs.

Thus he will verify that, if a, b, ¢ are complex numbers, we have

a+b=>b+a,
ab = ba,
(a+b)+c=a+(b+c),
(ab)c = a(bc),
a(b+c) =ab+ac,

and if ab is zero, then either a or b is zero.

It is found that algebraical operations, direct or inverse, when applied to complex numbers,
do not suggest numbers of any fresh type; the complex number will therefore for our purposes
be taken as the most general type of number.

The introduction of the complex number has led to many important developments in
mathematics. Functions which, when real variables only are considered, appear as essentially
distinct, are seen to be connected when complex variables are introduced: thus the circular
functions are found to be expressible in terms of exponential functions of a complex argument,
by the equations

cos X = 1 (e™ +e™™), sinx = % (™ —e™™).

Again, many of the most important theorems of modern analysis are not true if the numbers
concerned are restricted to be real; thus, the theorem that every algebraic equation of degree n
has n roots is true in general only when regarded as a theorem concerning complex numbers.

Hamilton’s quaternions furnish an example of a still further extension of the idea of
number. A quaternion

w+xi+yj+zk

is formed from four real numbers w, x, y, z, and four number-units 1, i, j, k, in the same way
that the ordinary complex number x + iy might be regarded as being formed from two real
numbers x, y, and two number-units 1, i. Quaternions however do not obey the commutative
law of multiplication.

1.4 The modulus of a complex number

Let x + iy be a complex number, x and y being real numbers. Then the positive square root
of x? + y? is called the modulus of (x + iy), and is written

| x+iy].

Let us consider the complex number which is the sum of two given complex numbers,
x +iyand u + iv. We have

x+iy)+@+iv)=(x+u)+i(y +v).
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The modulus of the sum of the two numbers is therefore
{x+u) + o+ )2 = {7+ yD) + @ +v?) + 20xu + yv)
But
{(x+iy|+|u+iv|}*={x*+ )"+ W +vH)"?)?
= (2 + )+ V) + 207 + ) P + v
= (22 + 9D + (1 +v2) + 2 {(xu + yv)® + (xv — yu)*}',
and this latter expression is greater than (or at least equal to)
(% + y) + W? +v?) + 2(xu + yv).
We have therefore
|x +iy| + lu+iv] = [(x +iy) + (u +iv)],

i.e. the modulus of the sum of two complex numbers cannot be greater than the sum of their
moduli; and it follows by induction that the modulus of the sum of any number of complex
numbers cannot be greater than the sum of their moduli.

Let us consider next the complex number which is the product of two given complex
numbers, x + iy and u + iv, we have

(x +iy)u+iv) = (xu—yv)+i(xv + yu),
and so

|Gx + iy)(u + )] = {(xu — yv)? + (xv + yu)*}2
= {(x% + y))? +v))?
= |x +iy||lu+iv].

The modulus of the product of two complex numbers (and hence, by induction, of any number
of complex numbers) is therefore equal to the product of their moduli.

1.5 The Argand diagram

We have seen that complex numbers may be represented in a geometrical diagram by taking
rectangular axes Ox,Oy in a plane. Then a point P whose coordinates referred to these
axes are x,y may be regarded as representing the complex number x + iy. In this way, to
every point of the plane there corresponds some one complex number; and, conversely, to
every possible complex number there corresponds one, and only one, point of the plane. The
complex number x + iy may be denoted by a single letter z. It is convenient to call x and y
the real and imaginary parts of z respectively. We frequently write x = Re z, y = Im z. The
point P is then called the representative point of the number z; we shall also speak of the
number z as being the affix of the point P.

If we denote (x> + y2)'/2 by r and choose 6 so that r cos@ = x, r sin@ = y, then r and @
are clearly the radius vector and vectorial angle of the point P, referred to the origin O and
axis Ox.

The representation of complex numbers thus afforded is often called the Argand diagram.
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It was published by J. R. Argand [33]; it had however previously been used by Gauss [235]
in his Helmstedt dissertation in 1799, who had discovered it in Oct. 1797 [375]; and Caspar
Wessel had discussed it in a memoir presented to the Danish Academy in 1797 and published
by that Society in 1798-9 [664]. The phrase complex number first occurs in [237, p. 102].

By the definition already given, it is evident that r is the modulus of z. The angle 6 is
called the argument or phase, of z. We write 6 = arg z.

From geometrical considerations, it appears that (although the modulus of a complex
number is unique) the argument is not unique (see the Appendix, §A.521) if 6 be a value of
the argument, the other values of the argument of a complex number are comprised in the
expression 2nm + 6 where n is any integer, not zero. The principal value of the argument of
a complex number value of arg z is that which satisfies the inequality -7 < argz < 7.

If P, and P, are the representative points corresponding to values z; and z, respectively
of z, then the point which represents the value z; + z; is clearly the terminus of a line drawn
from P, equal and parallel to that which joins the origin to P,.

To find the point which represents the complex number z,z,, where z; and z, are two given
complex numbers, we notice that if

z1 = ri(cos 0y + i sin6;),
Zo = 12(cos @, + i sin6,)
then, by multiplication,
2120 = rira{cos(0; + 6,) + isin(0; + 6,)}.

The point which represents the number z;z, has therefore a radius vector measured by
the product of the radii vectors of P; and P, and a vectorial angle equal to the sum of the
vectorial angles of P; and P;.

1.6 Miscellaneous examples

Example 1.1 Shew that the representative points of the complex numbers 1 + 4i, 2 + 7i,
3 + 10i, are collinear.

Example 1.2 Shew that a parabola can be drawn to pass through the representative points
of the complex numbers

241, 4+4i, 6+9i, 8+ 161, 10 + 25i.

Example 1.3 (Math. Trip. 1895). Determine the nth roots of unity by aid of the Argand

diagram; and shew that the number of primitive roots (roots the powers of each of which

give all the roots) is the number of integers (including unity) less than n and prime to it.
Prove that if 81, 6,, 65, . . . be the arguments of the primitive roots, ' cos pf = 0 when p is

n
a positive integer less than PV where a, b, c, . . ., k are the different constituent primes
a c “ ..
of n; and that, when
n (=" n
= —— then Zcos 0= —F——,
p abc---k p abc---k

where y is the number of constituent primes.
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The Theory of Convergence

2.1 The definition of the limit of a sequence

Let 71,22, 23, . . . be an unending sequence of numbers, real or complex. Then, if a number £
exists such that, corresponding to every positive! number &, no matter how small, a number
no can be found, such that | z, — €| < & for all values of n greater than ny, the sequence (z,,)
is said to tend to the limit € as n tends to infinity. A definition equivalent to this was first
given by John Wallis in 1655 [645, p. 382].

Symbolic forms of the statement,‘the limit of the sequence (z,), as n tends to infinity, is
{’ are:

limz,=¢ limz,=¢ z,—{ as n— oo.

n—-oo

The arrow notation is due to Leathem (see [416]).

If the sequence be such that, given an arbitrary number N (no matter how large), we can
find ny such that |z,,| > N for all values of n greater than n,, we say that ‘|z, | tends to infinity
as n tends to infinity’, and we write |z,| — oo. In the corresponding case when —x, > N
when n > ny we say that x,, — —co. If a sequence of real numbers does not tend to a limit or
to co or to —co, the sequence is said to oscillate.

2.11 Definition of the phrase ‘of the order of’

If (£,) and (z,) are two sequences such that a number ng exists such that | (£,/z,) | < K
whenever n > ng, where K is independent of n, we say that ¢, is ‘of the order of” z,,, and we
write £, = O(z,); thus 3252 = O (). This notation is due to Bachmann [35, p. 401] and
Landau [405, p. 61].

Note If lim g— = 0, we write £, = 0(z,).

2.2 The limit of an increasing sequence

sequence tends to a limit or else tends to infinity (and so it does not oscillate).
Let x be any rational-real number; then either:

Let (x,) be a sequence of real numbers such that x,,; > x, for all values of n; then the

(i) x, = x for all values of n greater than some number n, depending on the value of x; or
(ii) x, < x for every value of n.

' The number zero is excluded from the class of positive numbers.

10
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If (ii) is not the case for any value of x (no matter how large), then x,, — oo.

But if values of x exist for which (ii) holds, we can divide the rational numbers into two
classes, the L-class consisting of those rational numbers x for which (i) holds and the R-class
of those rational numbers x for which (ii) holds. This section defines a real number «, rational
or irrational.

And if € be an arbitrary positive number, a — %s belongs to the L-class which defines «,
and so we can find n; such that x,, > a — %8 whenever n > ny; and a + %s is a member of the
R-classand so x,, < a + %8. Therefore, whenever n > ny, | @ — x, | < . Therefore x, — «.

Corollary 2.2.1 A decreasing sequence tends to a limit or to —oo.

Example 2.2.1 Iflimz, = ¢, limz), = ¢/, then lim(z,, + z,,) =€ + {".

For, given &, we can find n and n’ such that

(i) whenm > n, |z,, — £] < %8;
(i) whenm > n’, |z}, - U'| < 1e.

Let n; be the greater of n and n’; then, when m > n,,

|Gz + 2,) = (£ + )

< |(zm = O +|(z, =€)
<e¢g;

)

and this is the condition that lim(z,, + z,,) = € + {'.

Example 2.2.2 Prove similarly that lim(z,, — z,,)) = € — ', lim(z,,,z,,,)) = €¢’, and, if £’ # 0,
lim(z,/z,,) = £/C.

Example 223 IfO<x<1,x" = 0.Forifx =(1+a)™',a >0, and

1 1
0<x"= < ,
* (1+a)* 1l4+na

by the binomial theorem for a positive integral index. And it is obvious that, given a positive
number &, we can choose 7 such that (1 + na)™' < & when n > ng; and so x — 0.

2.21 Limit-points and the Bolzano—Weierstrass theorem

This theorem, frequently ascribed to Weierstrass, was proved by Bolzano [81]. It seems to
have been known to Cauchy.

Let (x,) be a sequence of real numbers. If any number G exists such that, for every positive
value of &, no matter how small, an unlimited number of terms of the sequence can be found
such that

G-e<x,<G+esg,

then G is called a limit-point, or cluster-point of the sequence.

Theorem 2.2.2 (Bolzano) IfA < x, < p, where A, p are independent of n, then the sequence
(x,,) has at least one limit-point.
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To prove the theorem, choose a section in which (i) the R-class consists of all the rational
numbers which are such that, if A be any one of them, there are only a limited number of
terms x,, satisfying x,, > A; and (ii) the L-class is such that there are an unlimited number of
terms x,, such that x,, > « for all members « of the L-class.

This section defines a real number G; and, if £ be an arbitrary positive number, G — %s
and G + %8 are members of the L- and R-classes respectively, and so there are an unlimited

number of terms of the sequence satisfying
1 1
G—8<G—§8S)Cn SG+58<G+8,

and so G satisfies the condition that it should be a limit-point.

2.211 Definition of ‘the greatest and the least of the limits’

The number G obtained in §2.21 is called ‘the greatest of the limits of the sequence (x,,).’
The sequence (x,) cannot have a limit-point greater than G; for if G’ were such a limit-point,
and € = %(G’ — G), G’ — £ is a member of the R-class defining G, so that there are only
a limited number of terms of the sequence which satisfy x,, > G’ — ¢. This condition is
inconsistent with G’ being a limit-point. We write

G = mxn.

n—oo

The ‘least of the limits’ L, of the sequence (written lim x,,) is defined to be

n—oo

—1lim (=x,,).

n—oo

2.22 Cauchy’s theorem on the necessary and sufficient condition for the existence of
a limit [120, p. 125]

‘We shall now shew that the necessary and sufficient condition for the existence of a limiting
value of a sequence of numbers z,2;,23,. .. is that, corresponding to any given positive
number g, however small, it shall be possible to find a number n such that

|Zn+p - an <é&

for all positive integral values of p. This result is one of the most important and fundamental
theorems of analysis. It is sometimes called the Principle of Convergence.

First, we have to shew that this condition is necessary, i.e. that it is satisfied whenever
a limit exists. Suppose then that a limit ¢ exists; then (§2.1) corresponding to any positive
number &, however small, an integer n can be chosen such that

2. — €] < e, |zn+p —€| < ie,
for all positive values of p; therefore

[anep = 2l = [(21p = €) = (20 = 0|
< |Zn+p _£| + IZn _£| <é&,
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which shews the necessity of the condition
|Zn+p - Zn| <eg,

and thus establishes the first half of the theorem.

Second, we have to prove that this condition is sufficient, i.e. that if it is satisfied, then a
limit exists. This proof is given in Stolz—Gmeiner [613, p. 144].

(D Suppose that the sequence of real numbers (x,,) satisfies Cauchy’s condition; that is to
say that, corresponding to any positive number &, an integer n can be chosen such that

\x,,ﬂ, — xn| <e¢

for all positive integral values of p.
Let the value of n, corresponding to the value 1 of &, be m. Let 4, p; be the least and
greatest of x1, Xp,. . ., X,,; then

/11—1<Xn<p1+1,

for all values of n; write 4; — 1 =4, p; + 1 = p.

Then, for all values of n, 1 < x,, < p. Therefore by Theorem 2.2.2, the sequence (x,) has
at least one limit-point G.

Further, there cannot be more than one limit-point; for if there were two, G and H(H < G),
take £ < }t(G — H). Then, by hypothesis, a number » exists such that |x,, — x,,| < ¢ for
every positive value of p. But since G and H are limit-points, positive numbers g and r exist
such that

\G—xn+q|<s, | H— x,4r| < &.

Then | G = x,44 | + | Xpig = Xn | + | Xp = Xpyr | + | Xuyr — H | < 4e. But, by §1.4, the sum on
the left is greater than or equal to | G — H |. Therefore G — H < 4g, which is contrary to
hypothesis; so there is only one limit-point. Hence there are only a finite number of terms of
the sequence outside the interval (G — 8§, G + &), where ¢ is an arbitrary positive number; for,
if there were an unlimited number of such terms, these would have a limit-point which would
be a limit-point of the given sequence and which would not coincide with G; and therefore
G is the limit of (x,,).

(IT) Now let the sequence (z,,) of real or complex numbers satisfy Cauchy’s condition; and
let z,, = x, + iy,, where x,, and y, are real; then for all values of n and p

|xn+p_xn|S|Z"+P_Zn y"+I’_y"|S|Z”+/’_Z"|'

b

Therefore the sequences of real numbers (x,,) and (y,,) satisfy Cauchy’s condition; and so,
by (I), the limits of (x,) and (y,) exist. Therefore, by Example 2.2.1, the limit of (z,,) exists.
The result is therefore established.

2.3 Convergence of an infinite series

Let uy,up,us,. . .,u,,. .. be a sequence of numbers, real or complex. Let the sum
u +u+---+u,

be denoted by S,,.
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Then, if S, tends to a limit S as » tends to infinity, the infinite series
U +uy +uz+ug+---

is said to be convergent, or to converge to the sum S. In other cases, the infinite series is said
to be divergent. When the series converges, the expression S — S,,, which is the sum of the
series

Upsl + Upy2 T Upz + 000,

is called the remainder after n terms, and is frequently denoted by the symbol R,,. The sum
Upsl + Upsr + -+ + Upyp Will be denoted by S, .

It follows at once, by combining the above definition with the results of the last paragraph,
that the necessary and sufficient condition for the convergence of an infinite series is that,
given an arbitrary positive number &, we can find »n such that | Su.p | < g for every positive
value of p.

Since u,+1 = Sp.1, it follows as a particular case that lim u,,.; = 0, in other words, the nth
term of a convergent series must tend to zero as n tends to infinity. But this last condition,
though necessary, is not sufficient in itself to ensure the convergence of the series, as appears
from a study of the series

1 1 1 1
In this series, S,., = P + P + 3 + -+ o The expression on the right is

diminished by writing (2n)~! in place of each term, and so S, , > 3. Therefore

SZnH = 1+Sl’1 +Sz,2+S4,4+S8,g +S1(,’16 + .- +S2n’2n
1
> §(n+3) — 00

so the series is divergent; this result was noticed by Leibniz in 1673.
There are two general classes of problems which we are called upon to investigate in
connexion with the convergence of series:

1. We may arrive at a series by some formal process, e.g. that of solving a linear differential
equation by a series, and then to justify the process it will usually have to be proved
that the series thus formally obtained is convergent. Simple conditions for establishing
convergence in such circumstances are obtained in §§2.31-2.61.

n
2. Given an expression S, it may be possible to obtain a development S = } u,, + R,, valid

m=1
for all values of n; and, from the definition of a limit, it follows that, if we can prove that

R, — 0, then the series ) u,, converges and its sum is S. An example of this problem
m=1

occurs in §5.4.

Infinite series were used by Lord Brouncker in [103, pp. 645-649], and the term con-
vergent was introduced by James Gregory, Professor of Mathematics at Edinburgh, in the
same year; the term divergent was introduced by N. Bernoulli in 1713. Infinite series were
used systematically by Newton [494, pp. 206-247], and he investigated the convergence of
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hypergeometric series (§14.1) in 1704. (See also the convergence of products in §2.7.) But
the great mathematicians of the eighteenth century used infinite series freely without, for the
most part, examining their convergence. Thus Euler gave the sum of the series

1 1 1
e e il e A A A P (a)
2z z
as zero, on the ground that
A s (b)
1-z
and
1 1 4
1+—+—2+--~=L (c)
zZ Zz z—1

The error of course arises from the fact that the series (b) converges only when |z| < 1,
and the series (c) converges only when |z| > 1, so the series (a) never converges.

For the history of researches on convergence, see Pringsheim and Molk [543] and Reiff
[551].

2.301 Abel’s inequality.

This appears in [1, pp. 311-339]. A particular case of Corollary 2.3.3 also appears in that
memoir.

Theorem 2.3.1 Let f, > f,+1 > O for all integer values of n. Then

m
D anfa| < AR
n=1
where A is the greatest of the sums
lai |, |lai+ar |, |ag+ay+az|,....|la1+a+---+a,]|.
For, writing a; + a, + - - - + a, = s,, we have

m

Danty=sifi+ (2= s0)f+ (55— ) fi+ oo+ (S = Smo)fon

n=1

=s1(fi - )+ 20— B+ -+ Sma(fnet = Sin) + SinSfon-

Since fi— f, fo— f3,. . . are not negative, we have, whenn = 2,3,...,m, |s,_1| (fu_1 — fn) <
A(fn-1 — fn) also |sy| fin < Afm, and so, summing and using §1.4, we get

D anfs| < AR
n=1
Corollary 2.3.2 (Hardy) Ifaj,a,,..., w1, Wa,...are any numbers, real or complex,
m m—1
Zanwn < A {Z |wn+1 - Wn| + Iwm|} 5
n=1 n=1

where A is the greatest of the sums |Z‘Z=1 an|, (p=12,...,m).
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2.31 Dirichlet’s test for convergence

This appears in [177, pp. 253-255]. Before the publication of the Second edition of Jordan’s
Cours d’Analyse [361], Dirichlet’s test and Abel’s test were frequently jointly described as
the Dirichlet—Abel test, see e.g. Pringsheim [537, p. 423].

P

2 an
n=1

Let < K, where K is independent of p. Then, if f, = fu+1 > 0 and lim f;, = 0,

a, f, converges.

i M3

In these circumstances, we say f,, — 0 steadily.

Proof For, since lim f;, = 0, given an arbitrary positive number &, we can find m such that
fin+1 < €/2K. Then

m+q m+q m
Z a, | < Z a, |+ Z a, | < 2K,
n=m+1 n=1 n=1

for all positive values of g; so that, by Abel’s inequality, we have, for all positive values of p,

m+p
Z anfn | < Afmsrs
n=m+1
where A < 2K.
Therefore mipl anfn| < 2K fiue1 < €; and so, by §2.3, § a, f, converges.
n=m+ n=1

Corollary 2.3.3 Abel’s test for convergence. If Y, a, converges and the sequence (u,,)
n=1
is monotonic (i.e. u,, > u,.1 always or else u,, < u,.1 always) and |u,| < k, where k is

(o]

independent of n, then ), a,u, converges.
n=1

For, by §2.2, u,, tends to a limit u; let | u — u,, | = f,. Then f, — 0 steadily; and therefore

an [, converges. But, if (u,) is an increasing sequence, f, = u — u,, and so Y (u — u,)a,
n=1

i M3

00

(o9
converges; therefore since ) ua, converges, ) u,a, converges. If (u,) is a decreasing
n=1 n=1

sequence f,, = u, — u, and a similar proof holds
Corollary 2.3.4 Taking a, = (—=1)""" in Dirichlet’s test, it follows that, if f, > fu+1 and
limf, =0,fi—fo+ fs— fa+ - converges.

p
>, sinnf

n=1

Example 2.3.1 Shew thatif 0 < 8 < 2, < cosec %0; and deduce that, if f, — 0

steadily, . f, sinn6 converges for all real values of 6, and that }; f; cosnf converges if 6
n=1 n=1

is not an even multiple of 7.

e8]

Example 2.3.2 Shew that, if f,, — 0 steadily, >, (—1)" f, cos nf converges if 8 is real and

n=1

not an odd multiple of 7 and Y, (—1)" f,, sin nf converges for all real values of 8. Hint. Write
n=1

7 + 0 for 6 in Example 2.3.1.
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2.32 Absolute and conditional convergence

In order that a series }; u, of real or complex terms may converge, it is sufficient (but not

n=1
(o]
necessary) that the series of moduli )} |u,| should converge. For, if 0, , = |up41| + |Upin] +

n=1

o0
+ \un+p| and if Z |u,| converges, we can find n, corresponding to a given number &, such

that 0, ,, < & for all values of p. But |S,, p| < oy, < &, and so Z u, converges.

The condltlon is not necessary; for, writing f, = 1/n in Corollary 2. 3 4, we see that
1—3+3—1+- - converges, though (§2.3) the series of moduli § + 1 + 1+ +- - is known
to diverge.

In this case, therefore, the divergence of the series of moduli does not entail the divergence
of the series itself.

Series which are such that the series formed by the moduli of their terms are convergent,
possess special properties of great importance, and are called absolutely convergent series.
Series which though convergent are not absolutely convergent (i.e. the series themselves

converge, but the series of moduli diverge) are said to be conditionally convergent.

2.33 The geometric series, and the series Y, | -

The convergence of a particular series is in most cases investigated, not by the direct con-
sideration of the sum §,, ,,, but (as will appear from the following articles) by a comparison
of the given series with some other series which is known to be convergent or divergent. We
shall now investigate the convergence of two of the series which are most frequently used as
standards for comparison.

(I) The geometric series. The geometric series is defined to be the series
l+z+22+27+74 4+
Consider the series of moduli
L+ 2]+ |z + 2P+ (2.1)
for this series

Sup = 12"+ 2" 4+ 2

:| |n+1 1- |Z|p
1—z]

Hence, if |z| < 1, then S, , < % for all values of p, and, by Example 2.2.3, given any
positive number &, we can find n such that

2" {1 =12} <.

Thus, given &, we can find n such that, for all values of p, S, , < &. Hence, by §2.22, the
series (2.1) is convergent so long as |z| < 1, and therefore the geometric series is absolutely
convergent if |z| < 1.
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When |z| > 1, the terms of the geometric series do not tend to zero as n tends to infinity,
and the series is therefore divergent.

n
Lo 1 1 1 1 ; . 1
(Il) The series {; + 5 + 35 + 35 + 57 + -+ -. Consider now the series S, = Zl —5, where s
=
is greater than 1. We have
1 1 2 1

— + — < ,
2s 3s 2s 2s—l
1 1 1 1 4 1

+ -t —+t =< —=—
4s 5s 65 7s 45 4s-1’°

and so on. Thus the sum of 27 — 1 terms of the series is less than

1 1 1 1 1 1

1s-1 + 2s-1 + 45-1 + 8s-1 Tt 2(p-1)(s=1) < 1 —=21=s’

and so the sum of any number of terms is less than (1 — 2'=*)~!. Therefore the increasing

n (o)
sequence ), m~* cannot tend to infinity; therefore, by §2.2, the series ), nls is convergent if
m=1 n=1

s > 1; and since its terms are all real and positive, they are equal to their own moduli, and so
the series of moduli of the terms is convergent; that is, the convergence is absolute.
If s = 1, the series becomes
1 1 1 1
s i I R
1 2 3 4
which we have already shewn to be divergent; and when s < 1, it is a fortiori divergent, since
the effect of diminishing s is to increase the terms of the series. The series ), nl is therefore

n=1
divergent if s < 1.

2.34 The comparison theorem

We shall now shew that a series u, + u, + us + - - - is absolutely convergent, provided that
lu,| is always less than C|v,|, where C is some number independent of n, and v, is the nth
term of another series which is known to be absolutely convergent.

For, under these conditions, we have

|un+1| + |un+2| R |un+p| <C {|vn+1| + |Vn+2| +-+ |Vn+p|} )

where n and p are any integers. But since the series ), v, is absolutely convergent, the series
> |v| is convergent, and so, given &, we can find # such that

|Vn+1|+|Vn+2|+"'+|vn+p|<8/cs
for all values of p. It follows therefore that we can find n such that
|un+l|+|Mn+2|+"'+|un+p|<87

for all values of p, i.e. the series Y, |u,|is convergent. The series Y u,, is therefore absolutely
convergent.
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Corollary 2.3.5 A series is absolutely convergent if the ratio of its nth term to the nth term
of a series which is known to be absolutely convergent is less than some number independent

of n.
Example 2.3.3 Shew that the series

1 1 1
cosz+?c0522+§c053z+4—2cos4z+...

is absolutely convergent for all real values of z.
When z is real, we have |cosnz| < 1, and therefore |C°Z#| < # The moduli of the terms
of the given series are therefore less than, or at most equal to, the corresponding terms of the

series
1 1 1 1

TEtETET
which by §2.33 is absolutely convergent. The given series is therefore absolutely convergent.
Example 2.3.4 Shew that the series
1 1 1 1
PG-m) PG-) Pe-m) -
where z, = ¢™, (n = 1,2,3,...) is convergent for all values of z that are not on the circle
lz| = 1.

The geometric representation of complex numbers is helpful in discussing a question of
this kind. Let values of the complex number z be represented on a plane; then the numbers
21,22, 23, - - - Will give a sequence of points which lie on the circumference of the circle whose
centre is the origin and whose radius is unity; and it can be shewn that every point on the
circle is a limit-point (§2.21) of the points z,,.

For these special values z, of z, the given series does not exist, since the denominator of
the nth term vanishes when z = z,,. For simplicity we do not discuss the series for any point
Z situated on the circumference of the circle of radius unity.

Suppose now that |z| # 1. Then for all values of n, |z — z,| > [{1 — |z|}| > ¢!, for some
value of ¢; so the moduli of the terms of the given series are less than the corresponding

terms of the series

C C C C

ErEtEtet

which is known to be absolutely convergent. The given series is therefore absolutely conver-
gent for all values of z, except those which are on the circle |z| = 1.

It is interesting to notice that the area in the z-plane over which the series converges is
divided into two parts, between which there is no intercommunication, by the circle |z| = 1.

Example 2.3.5 Shew that the series

ZSing+4sin§+8$in%+~'+2"sin3z—n+~--

converges absolutely for all values of z.

Since lim 3" sin(z/3") = z (this is evident from results proved in the Appendix), we can
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find a number k, independent of n (but depending on z), such that |3” sin(z/3")| < k; and

therefore
2 n
k=] .

Since ) k (%)" converges, the given series converges absolutely.

n=1

. Z
2" sin —

2.35 Cauchy’s test for absolute convergence
This appears in [120, p. 132-135].

If lim |u,|"™ < 1, then Y u, converges absolutely.
n—oo =1

1/n

For we can find m such that, when n > m, |u,| < p < 1, where p is independent of

n. Then, when n > m, |u,| < p"; and since Y, p" converges, it follows from §2.34 that
n=m+1

>, u, (and therefore ), u,) converges absolutely.

n=m+1 n=1

Note If lim |un|1/ " > 1, u, does not tend to zero, and, by §2.3, Y, u, does not converge.
n=1

2.36 D’Alembert’s ratio test for absolute convergence
This appears in [159, pp. 171-182]. We shall now shew that a series

U +uy+us+ug+---

is absolutely convergent, provided that for all values of n greater than some fixed value r, the

ratio | =t | is less than p, where p is a positive number independent of n and less than unity.

For the terms of the series

|ur+l |+|ur+2|+|ur+3|+”‘
are respectively less than the corresponding terms of the series
|t |(L 4 p+p" 407+,

which is absolutely convergent when p < 1; therefore }, u, (and hence the given series)
n=r+l1
is absolutely convergent.

A particular case of this theorem is that if lim |u,,;/u,| = € < 1, the series is absolutely
n—oo
convergent.
For, by the definition of a limit, we can find r such that

Un+1

-

1
< 5(1 —{), when n>r,

Up

and then

n 1
net <§(1+€)<1, when n>r.

n
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Note If lim |u,;/u,| > 1, then u, does not tend to zero, and, by §2.3, >, u, does not
n=1
converge.

Example 2.3.6 If |c| < 1, shew that the series

00
: : 2
Cn enZ

n=1

converges absolutely for all values of z. Hint. For u,,, Ju, = ¢ ez = 2+

n— oo, if |c| < 1.

et — 0, as

Example 2.3.7 Shew that the series
La=b), (@=bla=2b) , (a=bla=2b)a=3b) ,
2! 3! 4!
converges absolutely if |z| < [b|™'. Hint. For “=t = “nflb
condition for absolute convergence is |bz| < 1,i.e. |z| < |b|7".

7z — —bz, as n — oo; so the

-1

W converges absolutely if |z] < 1. Hint.

Example 2.3.8 Shew that the series Z
For, when | z | < 1,|z”—(1+n‘1)”| 2 (IT+nhHy' =" > 1+1+”2—_nl+~--—1 > 1,
so the moduli of the terms of the series are less than the corresponding terms of the series
Z n |z” 1| but this latter series is absolutely convergent, and so the given series converges

absolutely

Un+1
Un

=1

2.37 A general theorem on series for which lim

n—oo

It is obvious that if, for all values of n greater than some fixed value r, |u,,| is greater than
||, then the terms of the series do not tend to zero as n — oo, and the series is therefore

divergent. On the other hand, if is less than some number which is itself less than unity

Un+l
Un

and independent of n (when n > r), we have shewn in §2.36 that the series is absolutely

convergent. The critical case is that in which, as n increases, “;—*' tends to the value unity.
In this case a further investigation is necessary.
. . . . Un+1 .
We shall now shew that a series u; + uy + uz + - - -, in which lim | —— | = 1 will be
n—oo un

absolutely convergent if a positive number c exists such that

T n { - 1} - 1-e
This is the second (D’Alembert’s theorem given in §2.36 being the first) of a hierarchy of

theorems due to De Morgan. See Chrystal [146, p. xxvi] for an historical account of these
theorems.

Un+1

Uy

For, compare the series ), |u,| with the convergent series Y, v,,, where

1
.= An172¢



22 The Theory of Convergence

and A is a constant; we have

N —(1+ic 1
vn+1:( n )l+;c:(1+l)<+2):1_1+§C+0(l).

v, n+1 n n n?

Asn — oo, n {% - 1} - —-1- %c, and hence we can find m such that, when n > m,

Unyi

Un

< Vn+1
Vn

By a suitable choice of the constant A, we can therefore secure that for all values of n we
shall have

ltn| < vy

As Y, v, is convergent, Y, |u,| is also convergent, and so )’ u,, is absolutely convergent.

Corollary 2.3.6 If =1+ % +0 (#), where A, is independent of n, then the series
is absolutely convergent if A} < —1.

Un+l
Un

Example 2.3.9 Investigate the convergence of ), n” exp (—k

n=1

i %),whenr > k and when

m=1

r<k.

2.38 Convergence of the hypergeometric series

The theorems which have been given may be illustrated by a discussion of the convergence
of the hypergeometric series

a-b +a(a+1)b(b+1) , ala+1)a+2)b(b+1)(b+2) , .

1+ + +-,
¢ T2 cler D) © 123 -clct Dcr2) ©

which is generally denoted (see Chapter 14) by F(a, b; c; z).

If ¢ is a negative integer, all the terms after the (1 — ¢)th have zero denominators; and if
either a or b is a negative integer the series will terminate at the (1 — @)th or (1 — b)th term
as the case may be. We shall suppose these cases set aside, so that a, b, and ¢ are assumed
not to be negative integers. In this series

(a+n-1)Mb+n-1)
n(c+n-1)

Un+1

— |2/,

Un

as n — co. We see therefore, by §2.36, that the series is absolutely convergent when |z| < 1,
and divergent when |z| > 1.
When |z| = 1, we have?

-1 -1 -1 1
fre e - e ()]
n n n n
:‘HMJrO(LZ)

n n

2 The symbol O(1/n?) does not denote the same function of n throughout. See §2.11.

Un+1
Up
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Let a, b, c be complex numbers, and let them be given in terms of their real and imaginary
parts by the equations
a=a +ia”, b=b+ib", c=c +ic”".
Then we have

Upy1
Un

7 b/_ /_1 . 124 b/l_ 144 1
a + c +i(a” + c )Jr 0( )
n

1/2
a+b—c -1\ a’+b" —c"\ 1
=\ l+——| +|———| +0|=
n n n

=]+a+b—c—1+0(l).

=‘1+

n n?
By Corollary 2.3.6, a condition for absolute convergence is
a +b - <0.
Hence when |z| = 1, a sufficient condition for the absolute convergence of the hypergeometric

series is that the real part of a + b — c shall be negative. The condition is also necessary. See
Bromwich [102, pp. 202-204].

2.4 Effect of changing the order of the terms in a series

In an ordinary sum the order of the terms is of no importance, for it can be varied without
affecting the result of the addition. In an infinite series, however, this is no longer the case?,
as will appear from the following example.

Let

1 1 1 1 1 1 1 1 1 1
T:1+§—z+§+§—z+§+ﬁ—g+“' andS:1—§+§—Z+§—€+---,

and let 7,, and S,, denote the sums of their first n terms. These infinite series are formed of
the same terms, but the order of the terms is different, and so 7,, and S,, are quite distinct
functions of 7.

Leto, = 1 + 3 +---+ 2, so that S, = 0, — 0. Then

1 1 1

1
T3n=I+

- 1 1
=04n = 5020 — 50n

(O4n = O2n) + 3(020 — 03)
= Sy + %Szn
Making n — oo, we see that T = S + %S; and so the derangement of the terms of S has
altered its sum.

o o
3 We say that the series ), v,, consists of the terms of ) u,, in a different order if a law is given by which
n=1 n=1
corresponding to each positive integer p we can find one (and only one) integer g and vice versa, and v is

taken equal to uy,. The result of this section was noticed by Dirichlet [173, p. 48]. See also Cauchy [125, p. 57].
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Example 2.4.1 (Manning) If in the series

11+11+
2 3 4

the order of the terms be altered, so that the ratio of the number of positive terms to the
number of negative terms in the first z terms is ultimately a?, shew that the sum of the series
will become log(2a).

2.41 The fundamental property of absolutely convergent series
We shall shew that the sum of an absolutely convergent series is not affected by changing the
order in which the terms occur.

LetS = u; + u +u3 + - - - be an absolutely convergent series, and let S’ be a series formed
by the same terms in a different order.
Let £ be an arbitrary positive number, and let n be chosen so that
1
|un+1| + |un+2| +e-F |un+p| < 58

for all values of p.
Suppose that in order to obtain the first n terms of S we have to take m terms of S’; then if
k > m,

S’ = S, + terms of S with suffices greater than n,

so that
S’ =8 =38,—8+ terms of S with suffices greater than n.
Now the modulus of the sum of any number of terms of S with suffices greater than n

does not exceed the sum of their moduli, and therefore is less than %8. Therefore S,; - S | <
IS, — S|+ %s. But

. 1
[S, =S| < lim {|”n+1| + |tpia| + -+ |un+p|} < -e&.
p—o 2

Therefore given & we can find m such that | S,; -5 | < & when k > m; therefore S, — S,
which is the required result.

If a series of real terms converges, but not absolutely, and if S, be the sum of the first p
positive terms, and if o, be the sum of the first n negative terms, then S, — 0,0, — —oo;
and lim(S,, + 0,) does not exist unless we are given some relation between p and #. It has, in
fact, been shewn by Riemann [558, p. 221], that it is possible, by choosing a suitable relation,
to make lim(S,, + 07,) equal to any given real number.

2.5 Double series

A complete theory of double series, on which this account is based, is given by Pringsheim
[541]. See further memoirs by that writer [542] and by London [442], and also Bromwich
[102], which, in addition to an account of Pringsheim’s theory, contains many developments
of the subject. Other important theorems are given by Bromwich [101].
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Let u,, , be a number determinate for all positive integral values of m and n; consider the
array

Upp Uip U3
U1 Uzp U3
Uz Uzp U33

Let the sum of the terms inside the rectangle, formed by the first 2 rows of the first n columns
of this array of terms, be denoted by S,,, ,,.

If a number S exists such that, given any arbitrary positive number ¢, it is possible to find
integers m and n such that | S, — S | < & whenever both ¢ > m and v > n, we say” that the
double series of which the general element is u,,, converges to the sum S, and we write

lim §,,=S.
H—00, V—>00

If the double series, of which the general element is |u, |, is convergent, we say that the
given double series is absolutely convergent.

Since u,,, = (S = Suv-1) = (Su-1,y = Su-1,-1), it is easily seen that, if the double series
is convergent, then

lim w,, =0.

JM—>00,V—00

Stolz’ necessary and sufficient condition for convergence. This condition, stated by
Stolz [612], appears to have been first proved by Pringsheim. A condition for conver-
gence which is obviously necessary (see §2.22) is that, given &, we can find m and n
such that |S,,+p,v+a — S,,’V| < & whenever u > m and v > n and p,o may take any of
the values 0,1,2,.... The condition is also sufficient; for, suppose it satisfied; then, when
u>m+n, | N S,,,,,| <e.

Therefore, by §2.22, S, ,, has a limit S; and then making p and o tend to infinity in such a
way that u + p = v + o, we see that |S - SH,V| < & whenever y > m and v > n; that is to say,
the double series converges.

Corollary 2.5.1 An absolutely convergent double series is convergent. For if the double
series converges absolutely and if t,, , be the sum of m rows of n columns of the series of
moduli, then, given g, we can find u such that, whenp > m > pandq > n > y, tp g—tm, < &.
But |S,,,q - Sm,,,| < tpg—tmnand so ‘S,,,q - Sm,n| <ewhenp>m> u, q>n> u and this
is the condition that the double series should converge.

2.51 Methods of summing a double series
These methods are due to Cauchy. Let us suppose that }; u,, converges to the sum S,,.
v=1

Then }; S, is called the sum by rows of the double series; that is to say, the sum by rows is
pu=1

> (Z uw,). Similarly, the sum by columns is defined as ), ( > uw,). That these two sums
1

p=1 \v= v=1 \u=1

4 This definition is practically due to Cauchy [120, p. 540].
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-y
are not necessarily the same is shewn by the example S, = 'UT in which the sum by
u+v

rows is —1, the sum by columns is +1; and S does not exist.
Theorem 2.5.2 (Pringsheim’s theorem) [541, p. 117]. If S exists and the sums by rows and
columns exist, then each of these sums is equal to S.
For since § exists, then we can find m such that |Sw, — S| < g, if u > m,yv > m. And
M
28, =S
p=1

u > m, and so (§2.22) the sum by rows converges to S. In like manner the sum by columns
converges to S.

< & when

therefore, since Vh_}rg Sy, €exists, (Vh_)n.}o S,,,V) -S ‘ < ¢; that is to say,

2.52 Absolutely convergent double series

We can prove the analogue of §2.41 for double series, namely that if the terms of an absolutely
convergent double series are taken in any order as a simple series, their sum tends to the
same limit, provided that every term occurs in the summation.

Let 0, , be the sum of the rectangle of u rows and v columns of the double series whose
general element is |u,,,v|; and let the sum of this double series be o-. Then given & we can find
m and n such that o — 0, , < & whenever both u > m and v > n.

Now suppose that it is necessary to take N terms of the deranged series (in the order in
which the terms are taken) in order to include all the terms of Sps41.p74+1, and let the sum of
these terms be ¢y .

Then tnx — Sar+1,m+1 consists of a sum of terms of the type u,, , in whichp > m, g > n
whenever M > m and M > n; and therefore

1
| IN = Sm+1,M41 | SO0 —O0Mm+1,M+1 < 3E.

Also, S—Spr+1,m+1 consists of terms u, , in which p > m, g > n;therefore |S — Sy p+1| <
O — Opmsi M+l < %s; therefore |S — 7| < &; and, corresponding to any given number &, we
can find N; and therefore ty — S.

Example 2.5.1 Prove that in an absolutely convergent double series, . u,, , exists, and
n=1

thence that the sums by rows and columns respectively converge to S. Hint. Let the sum of

rows of v columns of the series of moduli be 7, ,,, and let ¢ be the sum of the series of moduli.

Then X |”;1,v| <t,and so ), u,, converges; let its sum be b,; then
v=1 v=1
|bi] + 1B + - + |by| < lim 1, <1,
V—00

and so ) b, converges absolutely. Therefore the sum by rows of the double series exists, and
u=1
similarly the sum by columns exists; and the required result then follows from Pringsheim’s

theorem.
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Example 2.5.2 Shew from first principles that if the terms of an absolutely convergent
double series be arranged in the order

w4+ (o +urp) + (s + oo +ur3) + (Uay + - +ups) +-0-,

this series converges to S.

2.53 Cauchy’s theorem on the multiplication of absolutely convergent series

This appears in [120, Note VII]. We shall now shew that if two series
S=uy+up+us+--- and T=vi+v+v3+---
are absolutely convergent, then the series
P=wuyvi +uvi+uva+---,

formed by the products of their terms, written in any order, is absolutely convergent, and has
for sum ST.

Let

Sp=uy+uy+ -+ u,,

Tn:\/1+V2+"'+Vn.

Then ST = lim S, lim 7, = lim(S,,7;,) by Example 2.2.2. Now

ST, = vy + wvy + -+ u,v
+ wvy, + uyvy, + - + U,
+
+ wv, + uyv, + -+ U,

But this double series is absolutely convergent; for if these terms are replaced by their
moduli, the result is o, 7,, where

On = |M1|+|M2|+“‘+|Mn|,

Ty = Vil + o] + -+ vl

and 0,7, is known to have a limit. Therefore, by §2.52, if the elements of the double series,
of which the general term is u,,v,, be taken in any order, their sum converges to S7'.

Example 2.5.3 Shew that the series obtained by multiplying the two series

1+£+Z—2+£+Z—4+--- and 1+l+l+l+
2 22 23 24 z 22 Z3 ’

and rearranging according to powers of z, converges so long as the representative point of z
lies in the ring-shaped region bounded by the circles |z| = 1 and |z| = 2.
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2.6 Power series

The results of this section are due to Cauchy [120, Ch. IX]. A series of the type
a0+alz+a2z2+a3z3 +oee,

in which the coefficients ay, a,a,,as, . . . are independent of z, is called a series proceeding
according to ascending powers of z, or briefly a power series.

We shall now shew that if a power series converges for any value z of z, it will be absolutely
convergent for all values of z whose representative points are within a circle which passes
through z( and has its centre at the origin.

For, if z be such a point, we have |z| < |zo|. Now, since Z a,z;, converges, a,z, must tend
n=0

to zero as n — oo, and so we can find M (independent of n) such that |a,z;| < M. Thus

n

|anzn| <M|—
<0

Therefore every term in the series }; a,z" is less than the corresponding term in the
n=0

(o9

convergent geometric series ), M |z/zo|"; the series is therefore convergent; and so the
n=0

power series is absolutely convergent, as the series of moduli of its terms is a convergent

series; the result stated is therefore established

Let lim |a,|™"" = r; then, from §2.35, Z a,z" converges absolutely when |z| < r; if
n=0

|z| > r, a,z" does not tend to zero and so Y, a,z" diverges (§2.3). The circle |z| = r, which
n=0

includes all the values of z for which the power series
2 3
apg+ a1z +az” +azzg + -

converges, is called the circle of convergence of the series. The radius of the circle is called
the radius of convergence.

In practice there is usually a simpler way of finding r, derived from d’Alembert’s test
(§2.36); r is lim(a, /a,1) if this limit exists.

A power series may converge for all values of the variable, as happens, for instance, in the

case of the series®
2 N 2
ST TR
which represents the function sin z; in this case the series converges over the whole z-plane.
On the other hand, the radius of convergence of a power series may be zero; thus in the

case of the series
T+ Uz + 2122 + 3122 + 412 + - -
we have |u,./u,| = n|z|, which, for all values of n after some fixed value, is greater than

3 The series for e?, sin z, cos z and the fundamental properties of these functions and of log z will be assumed
throughout. A brief account of the theory of the functions is given in the Appendix.
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unity when z has any value different from zero. The series converges therefore only at the
point z = 0, and the radius of its circle of convergence vanishes.

A power series may or may not converge for points which are actually on the periphery of
the circle; thus the series

whose radius of convergence is unity, converges or diverges at the point z = 1 according as
s is greater or not greater than unity, as was seen in §2.33.

Corollary 2.6.1 If (a,) be a sequence of positive terms such that lim(a,,/a,) exists, this
limit is equal to lim a),"

2.61 Convergence of series derived from a power series

Let ay + a1z + a,z°> + a3z° + a4z* + - - - be a power series, and consider the series
ay + 2a2z + a3z + 4as + - -,

which is obtained by differentiating the power series term by term. We shall now shew that
the derived series has the same circle of convergence as the original series.

For let z be a point within the circle of convergence of the power series; and choose
a positive number r|, intermediate in value between |z| and r the radius of convergence.

Then, since the series ) a,r|' converges absolutely, its terms must tend to zero as n — oo;

n=
and it must therefore be possible to find a positive number M, independent of n, such that
la,| < Mr;" for all values of n.

|n—1

Then the terms of the series ) n|a,| |z are less than the corresponding terms of the

n=1
e

But this series converges, by §2.36, since |z| < r;. Therefore, by §2.34, the series

series

00

> nlagllzl™!

n=1
converges; that is, the series Y, na,z"~! converges absolutely for all points z situated within
n=1
the circle of convergence of the original series Z a,z". When |z| > r, a,z" does not tend to

zero, and a fortiori na,z" does not tend to zero; and so the two series have the same circle of
convergence.

Corollary 2.6.2 The series }, %z”“, obtained by integrating the original power series
n=0

[oe]

term by term, has the same circle of convergence as Y, a,z".
n=0
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2.7 Infinite products

We next consider a class of limits, known as infinite products. Let 1 + a;, 1 + a, 1 + as,. ..
be a sequence such that none of its members vanish. If, as n — oo, the product

A+a)A+a)1+a3) --(1+a,)

(which we denote by [],,) tends to a definite limit other than zero, this limit is called the
value of the infinite product

l—[:(l+a1)(1+az)(l+a3)...,

and the product is said to be convergent. (The convergence of the product in which a,_; =
—1/n? was investigated by Wallis as early as 1655.) It is almost obvious that a necessary
condition for convergence is that lima, = 0, since lim [],_; = lim[],, # 0. The limit of the
product is written [](1 + ay,).

n=1
Now

]_[(1 +a,) = exp (Z log(1 + an)) , 2.2)
n=1 n=1

and (see Appendix §A.2), exp ( lim um) = lim (exp u,,) if the former limit exists; hence

a sufficient condition that the product should converge is that Z log(1 + a,) should con-
=1

verge when the logarithms have their principal values. If this serles of logarithms converges
absolutely, the convergence of the product is said to be absolute.

The condition for absolute convergence is given by the following theorem: in order that
the infinite product

(1 + al)(l + az)(l + a3)~~'
may be absolutely convergent, it is necessary and sufficient that the series
a+a+az+---

should be absolutely convergent.
For, by definition, [ is absolutely convergent or not according as the series

log(1l + a;) + log(l + ay) +log(1 +az) + - - -

is absolutely convergent or not.
Now, since lim a,, = 0, we can find m such that, when n > m, |a,| < %; and then

» a, a’  a,’
|an 10g(1+an)—1|: —?+ e '
<11l
22 23 2
And thence, when n > m,
1 log(1 + a,) < E
2 an -2
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therefore, by the comparison theorem, the absolute convergence of )’ log(1 + a,,) entails that
of 3’ a, and conversely, provided that a, # —1 for any value of n. This establishes the result.

Note A discussion of the convergence of infinite products, in which the results are obtained
without making use of the logarithmic function, is given by Pringsheim [539], and also by
Bromwich [102, Ch. VI].

If, in a product, a finite number of factors vanish, and if, when these are suppressed, the
resulting product converges, the original product is said to converge to zero. But such a

product as [[(1 —n7') is said to diverge to zero.
n=2

Corollary 2.7.1 Since, if S, — €, exp(S,) — exp{, it follows from §2.41 that the factors of

an absolutely convergent product can be deranged without affecting the value of the product.

Example 2.7.1 Shew that if [](1+a,) converges, so does )’ log (1 +a,), if the logarithms
n=1 n=1
have their principal values.

Example 2.7.2 Shew that the infinite product

. o1 s 1 T
sinz Sin EZ sSin §Z S ZZ

1 1 1
< 5% 3% 1<
is absolutely convergent for all values of z. Hint. For (sin£) /(%) can be written in the

form 1 — /rl;_z where |1,| < k and k is independent of n; and the series /rl;_z is absolutely
n=1

convergent, as is seen on comparing it with # The infinite product is therefore absolutely

n=1

convergent.

2.71 Some examples of infinite products

Consider the infinite product

2 2 2
Z 4 <
(I_F) (1_22n2)(1_ﬁ)“"

which, as will be proved later (§7.5), represents the function %.
Z

In order to find whether it is absolutely convergent, we must consider the series ), nf—:{,
n=1

2

or — 2. —; this series is absolutely convergent, and so the product is absolutely convergent
e p=1 N
for all values of z.

Now let the product be written in the form

=30 20- 205
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The absolute convergence of this product depends on that of the series
zZ zZ Z Z
77 2 2
But this series is only conditionally convergent, since its series of moduli
I, Jel,
n o 2 2
is divergent. In this form therefore the infinite product is not absolutely convergent, and so,
if the order of the factors (1 + =) is deranged, there is a risk of altering the value of the
product.
Lastly, let the same product be written in the form

O R A E (U L (I C B

in which each of the expressions

(1 + i) e

mn
is counted as a single factor of the infinite product. The absolute convergence of this product
depends on that of the series of which the (2m — 1)th and (2m)th terms are

Z L2
(1 ¥ —) e“mr — 1,

mmn
But it is easy to verify that

1
(1¢i) i —1+0( 2),
mn m
and so the absolute convergence of the series in question follows by comparison with the

series
1 1 1 1 1 1
1+1+?+— ¥+§+—+42+
The infinite product in this last form is therefore again absolutely convergent, the adjunction
of the factors e*#= having changed the convergence from conditional to absolute. This result

is a particular case of the first part of the factor theorem of Weierstrass (§7.6).

Example 2.7.3 Prove that H { (1-%)en } is absolutely convergent for all values of z, if ¢

isa constant other than a negatlve mteger Hint. For the infinite product converges absolutely

Z {( ( ) ‘ } ’
+n

n=1

Now the general term of this series is

2 12
z z .z 1 =32 1 1
1- )1+—+—+0 -1=—>>—+0|=|=0(=].
( c+n { 2n? (n3)} n? (n3) (nz)

But ) # converges, and so, by §2.34, { 1 — —) en — 1} converges absolutely, and
n=1 n=1
therefore the product converges absolutely.
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Example 2.7.4 Shew that ﬁ {1 - (1 - %)7" z‘"} converges for all points z situated outside
n=2

a circle whose centre is the origin and radius unity. Hint. For the infinite product is absolutely
convergent provided that the series
IS

n=2
is absolutely convergent. But lim (1 — ;)_ = ¢, so the limit of the ratio of the (n + 1)th term

of the series to the nth term is 1/z; there is therefore absolute convergence when |1/z] < 1,
i.e. when |z| > 1.

Example 2.7.5 Shew that
1-2:3---(m=-1)
m
(z+1)z+2)---(z+m=1)

tends to a finite limit as m — oo, unless z is a negative integer. Hint. For the expression can
be written as a product of which the nth factor is

1\’ 1\’ -1 -1
AR (L Ry SO (1+5) I YRRl
z+n\ n n n 2n? n3
This product is therefore absolutely convergent, provided the series

2ol

n=1

z

is absolutely convergent; and a comparison with the convergent series Z > shews that this

is the case. When z is a negative integer the expression does not ex1st because one of the
factors in the denominator vanishes.

Example 2.7.6 Prove that

-2 0- E)0- - E)0- ) 1o )=

For the given product

1= 023 0

p| CEEbdemdn )
= lim ) Z
k—co xz(l—%)ei-(l_ﬁ)gzn (1—m)em-(l+é)e =

= lim e_%(l_%*—%_““"ﬂc]—] _ﬁ)

Z z Z Z z Z z
1——);(1+— (1—-)%(1+—) =
Z( T ¢ T 2r ¢ 2r ¢

Z .
since the product whose factors are (1 —) e'™ is absolutely convergent, and so the order

of its factors can be altered. Since log2 =1 -3 + 1 — 1 + 1 — - -, this shews that the given
—zlog2/m

product is equal to e sin z.
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2.8 Infinite determinants

Infinite series and infinite products are not by any means the only known cases of limiting
processes which can lead to intelligible results. The researches of G. W. Hill in the Lunar The-
ory, reprinted in [306], brought into notice the possibilities of infinite determinants. Infinite
determinants had previously occurred in the researches of Fiirstenau [230] on the algebraic
equation of the nth degree. Special types of infinite determinants (known as continuants)
occur in the theory of infinite continued fractions; see Sylvester [617, p. 504] and [618,
p. 249].

The actual investigation of the convergence is due not to Hill but to Poincaré [528]. We
shall follow the exposition given by H. von Koch [643, p. 217].

Let A;; be defined for all integer values (positive and negative) of i, k, and denote by

Dm = [Aik]i,k:—m ..... +m

the determinant formed of the numbers A;; (i,k = —m,...,+m); then if, as m — oo, the
expression D,, tends to a determinate limit D, we shall say that the infinite determinant
[Aik]i,k:—oo ,,,,, +00

is convergent and has the value D. If the limit D does not exist, the determinant in question
will be said to be divergent.

The elements A;; (where i takes all values) are said to form the principal diagonal of the
determinant D; the elements A;; (where i is fixed and k takes all values) are said to form
the row i; and the elements A;, (where k is fixed and i takes all values) are said to form the
column k. Any element A; is called a diagonal or a non-diagonal element, according as
i = kori# k. The element Ay is called the origin of the determinant.

2.81 Convergence of an infinite determinant

We shall now shew that an infinite determinant converges, provided the product of the
diagonal elements converges absolutely, and the sum of the non-diagonal elements converges
absolutely.

For let the diagonal elements of an infinite determinant D be denoted by 1+ a;;, and let
the non-diagonal elements be denoted by a;, (i # k), so that the determinant is

I+a .1 a a_

ao-1 I+ayw ao
ai-i ao 1+ap

oo

Then, since the series Y, |a;| is convergent, the product
t,k=—c0

e

P=]] (1 +kim|aik|)

i=—o00

is convergent.
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Now form the products

Pm:ﬁ(1+ia,~k

i=—m k=—m

m

, Pu=]] (1 +§_ |aik|);

i=—m

then if, in the expansion of P,,, certain terms are replaced by zero and certain other terms
have their signs changed, we shall obtain D,,,; thus, to each term in the expansion of D,, there
corresponds, in the expansion of P,,, a term of equal or greater modulus. Now Dyyip — Dy,
represents the sum of those terms in the determinant D,,., which vanish when the numbers
ap {i,k=x(m+1)---+(m+ p)} are replaced by zero; and to each of these terms there
corresponds a term of equal or greater modulus in pp..p — Pm-

Hence |Dm+,, - D,,,| < ﬁmw — P,,. Therefore, since P, tends to a limit as m — oo, so
also D,, tends to a limit. This establishes the proposition.

2.82 The rearrangement theorem for convergent infinite determinants

We shall now shew that a determinant, of the convergent form already considered, remains
convergent when the elements of any row are replaced by any set of elements whose moduli
are all less than some fixed positive number.

Replace, for example, the elements

Ao Ao A

of the row through the origin by the elements

S A 17, SN S
which satisfy the inequality
Il < p,

where y is a positive number; and let the new values of D,, and D be denoted by D,,,, and D’.
Moreover, denote by P, and P’ the products obtained by suppressing in P,, and P the factor
corresponding to the index zero; we see that no terms of D,, can have a greater modulus
than the corresponding term in the expansion of uP,,; and consequently, reasoning as in the
last article, we have

’D,/,H.p - Dm’ < /lP_’m+p - /lpmv
which is sufficient to establish the result stated.
Example 2.8.1 (von Koch) Shew that the necessary and sufficient condition for the absolute
convergence of the infinite determinant

1 & 0 0 0
B 1 a 0 - 0
im0 B 1 a -+ 0
0 -+ 0 PBnm 1

is that the series @181 + @28, + @333 + - - - shall be absolutely convergent.
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2.9 Miscellaneous examples

Example 2.1 Evaluate lim e *“n”, lim n™log n whena > 0, b > 0.

n—o0

Example 2.2 (Trinity, 1904) Investigate the convergence of

Example 2.3 (Peterhouse, 1906) Investigate the convergence of

i 1-3---2n+1 4n+3)>
2-4---2n 2n+2]| °

n=1

Example 2.4 Find the range of values of z for which the series
2sin? z —4sin* z + 8sin®z — - + (=1)"*12" sin* 7 + - -
is convergent.

Example 2.5 (Simon) Shew that the series
1 1 1 1

+ — +...
z z+1 z+2 z+3

is conditionally convergent, except for certain exceptional values of z; but that the series

1 1 1 1 1

z z+1 z+p-1 z+p z+p+1

1 1
— + +...,
2+2p+q-1 z+4+2p+g

in which (p + g)-negative terms always follow p positive terms, is divergent.

Example 2.6 (Trinity, 1908) Shew that

1 1 1 1 1 1 1
1 _____ 4+ - —... ::;z h)g 2.

Example 2.7 (Cesaro) Shew that the series

1 1 1 1
ﬁ+2_ﬁ+ﬁ+4_ﬁ+"' (I<a<p)

is convergent, although uy,, | /us, — oo.

Example 2.8 (Cesaro) Shew that the series & + 8> +a> + g* +--- (withO <a < B < 1)
is convergent although us,, /us, 1 — oo.

Example 2.9 Shew that the series

i nz"! {(1 +n )y - 1}
Z (2" =1) {z" = (1 +nt)y}

n=1

converges absolutely for all values of z, except the values

7= (1+3) AT (=01 k=0,1,...,m=1: m=1,23,...).
m



2.9 Miscellaneous examples 37

Example 2.10 (de la Vallée Poussin [638]) Shew that, when § > 1,

ii_LJri 1o 1 1
ne §-1 ne o §—1\|(n+1)5-1 po-tf]’

n=1 n=1

and shew that the series on the right converges when 0 < 6 < 1.

Example 2.11 In the series whose general term is u, = q"“’x%"("“), O<g<1<ux)
where v denotes the number of digits in the expression of # in the ordinary decimal scale of
notation, shew that

lim u}/" = g,

n—oo

and that the series is convergent, although lim u, 1 /u, = .
Example 2.12 (Cesaro) Shew that the series

2. 3, 4, 5. 6, 7
Ottt trq g tagrtq e,

where g, = ¢'**/", (0 < g < 1) is convergent, although the ratio of the (n + 1)th term to the

nth is greater than unity when # is not a triangular number.

Example 2.13 Shew that the series

(9]
2 Gy
i (w+n)*

where w is real, and where (w + n)® is understood to mean ¢*'°2***™ the logarithm being
taken in its arithmetic sense, is convergent for all values of s, when Im x is positive, and is
convergent for values of s whose real part is positive, when x is real and not an integer.

Example 2.14 If u, > 0, shew that if } u, converges, then lim (nu,) = 0, and that, if in

addition u,, > u,,1, then lim nu, = 0.
Example 2.15 (Trinity, 1904) If
gt man >0,
2-m n=0 m=0,
am,n =
-2 m=0,n=%0,
0 n=m=0.

shew that

Example 2.16 (Jacobi) By converting the series

8 2 3
q . 16¢g N 24q
l-qg 1+¢* 1-4°

1+ +---,
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(in which |¢g| < 1), into a double series, shew that it is equal to

2 3

8q 8q 8g

TR A TR I TR

r=1
m — oo and n — oo in such a way that limm/n = k, where & is finite, then

Ly z sin z
lim (1 + —) = je S
[+ .

r=—n

o 2
Example 2.17 (Math. Trip. 1904) Assuming that sinz = z [] (1 - %), shew that if
r’n

the prime indicating that the factor for which r = 0 is omitted.

Example 2.18 (Math. Trip. 1906) If ug = u; = u, =0, and if, when n > 1,

1 1 1 1

Up-1 = ——F=, Uy = —=+ -+
\n

N

then [](1 + u,) converges, though Y, u, and ), u? are divergent.
n=0 n=0 n=0

Example 2.19 Prove that

{30 (555}

m=1

where k is any positive integer, converges absolutely for all values of z.
Example 2.20 (Cauchy) If } a, be a conditionally convergent series of real terms, then
n=1

[1(1 + a,) converges (but not absolutely) or diverges to zero according as Y, a> converges
n=1 n=1
or diverges.

Example 2.21 (Hill; see §19.42) Let § 6, be an absolutely convergent series. Shew that
n=1

the infinite determinant

(c=H*-6 —6 -6, —6; )
-6, (c=2)*-6y -6, -6, —63
22*00 22*90 22-6, 22*0() 226,
Alc) = . —6 —6 c2-6 —6, —6,
02-6, 02-6, 02-6, 02-6, 02-6,
-63 -6, -6 (c+2)*=6o -6
-4, g, -6, 20, g,
—6, -0, -0, -0, (c+4)> -6,
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converges; and shew that the equation A(c) = 0 is equivalent to the equation

sin? (7r¢/2) = A(0) sin’ (m/e—o /2) . 2.3)
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Continuous Functions and Uniform Convergence

3.1 The dependence of one complex number on another

The problems with which Analysis is mainly occupied relate to the dependence of one
complex number on another. If z and ¢ are two complex numbers, so connected that, if z is
given any one of a certain set of values, corresponding values of { can be determined, e.g. if
¢ is the square of z, or if { = 1 when z is real and = O for all other values of z, then { is
said to be a function of z.

This dependence must not be confused with the most important case of it, which will be
explained later under the title of analytic functionality.

If £ is a real function of a real variable z, then the relation between ¢ and z, which may
be written ¢ = f(z), can be visualised by a curve in a plane, namely the locus of a point
whose coordinates referred to rectangular axes in the plane are (z,{). No such simple and
convenient geometrical method can be found for visualising an equation ¢ = f(z), considered
as defining the dependence of one complex number { = & + in on another complex number
Z = x +iy. A representation strictly analogous to the one already given for real variables
would require four-dimensional space, since the number of variables &, 17, x, ¥ is now four.

One suggestion (made by Lie and Weierstrass) is to use a doubly-manifold system of lines
in the quadruply-manifold totality of lines in three-dimensional space. Another suggestion
is to represent ¢ and 1 separately by means of surfaces & = &(x,y), n = n(x,y). A third
suggestion, due to Heffter [284], is to write { = re'd, then draw the surface r = r(x,y),
which may be called the modular-surface of the function, and on it to express the values of
6 by surface-markings. It might be possible to modify this suggestion in various ways by
representing 6 by curves drawn on the surface r = r(x, y).

3.2 Continuity of functions of real variables

The reader will have a general idea (derived from the graphical representation of functions
of a real variable) as to what is meant by continuity.

We now have to give a precise definition which shall embody this vague idea. Let f(x) be
a function of x defined when a < x < b. Let x; be such that a < x; < b. If there exists a
number ¢ such that, corresponding to an arbitrary positive number &, we can find a positive
number 7 such that | f(x) — €| < &, whenever |x — x;| <n, x # x;, and a < x < b, then { is
called the limit of f(x)as x — xi.

It may happen that we can find a number £, (even when ¢ does not exist) such that

40
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| f(x) —€,| < & when x; < x < x; + 1. We call £, the limit of f(x) when x approaches x,
from the right and denote it by f(x; + 0); in a similar manner we define f(x; — 0) if it exists.

If f(x; +0), f(x1), f(x; — 0) all exist and are equal, we say that f(x) is continuous at xi;
so that if f(x) is continuous at x;, then, given &, we can find 5 such that | f(x) — f(x1)| < &,
whenever |x — x;| <n,anda < x < b.

If £, and £_ exist but are unequal, f(x) is said to have an ordinary discontinuity' at x;;
and if £, = €_ # f(x;), f(x) is said to have a removable discontinuity at x;.

If f(x) is a complex function of a real variable, and if f(x) = g(x) + ih(x) where g(x)
and h(x) are real, the continuity of f(x) at x; implies the continuity of g(x) and of i(x). For
when | f(x) — f(x;)| < &, then |g(x) — g(x1)| < € and |h(x) — h(x;)| < &; and the result stated
is obvious.

Example 3.2.1 From Examples 2.2.1 and 2.2.2 deduce that if f(x) and ¢(x) are continuous
at xy, so are f(x) £ ¢(x), f(x) X ¢(x) and, if $(x1) # 0, f(x)/P(x).

The popular idea of continuity, so far as it relates to a real variable f(x) depending on
another real variable x, is somewhat different from that just considered, and may perhaps
best be expressed by the statement “The function f(x) is said to depend continuously on x
if, as x passes through the set of all values intermediate between any two adjacent values
x1 and x,, f(x) passes through the set of all values intermediate between the corresponding
values f(x;) and f(x;).”

The question thus arises, how far this popular definition is equivalent to the precise
definition given above.

Cauchy shewed that if a real function f(x), of a real variable x, satisfies the precise
definition, then it also satisfies what we have called the popular definition; this result will be
proved in §3.63. But the converse is not true, as was shewn by Darboux. This fact may be
illustrated by the following example due to Mansion [454].

Between x = —1 and x = +1 (except at x = 0), let f(x) = sin 5-; and let f(0) = 0. It can
then be proved that f(x) depends continuously on x near x = 0, in the sense of the popular
definition, but is not continuous at x = 0 in the sense of the precise definition.

Example 3.2.2 If f(x) be defined and be an increasing function in the range (a, b), the
limits f(x + 0) exist at all points in the interior of the range. Hint. If f(x) be an increasing
function, a section of rational numbers can be found such that, if a, A be any members of its
L-class and its R-class, a < f(x + h) for every positive value of 7 and A > f(x + h) for some
positive value of ~. The number defined by this section is f(x + 0).

3.21 Simple curves. Continua

Let x and y be two real functions of a real variable ¢ which are continuous for every value of
t such that a < ¢t < b. We denote the dependence of x and y on ¢ by writing

x=x(), y=y@t) (a<t<Dh)
The functions x(¢), y(¢) are supposed to be such that they do not assume the same pair of

! If a function is said to have ordinary discontinuities at certain points of an interval it is implied that it is
continuous at all other points of the interval.
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values for any two different values of ¢ in the range a < ¢ < b. Then the set of points with
coordinates (x, y) corresponding to these values of ¢ is called a simple curve. If

x(a) = x(b), y(a) = y(b),
the simple curve is said to be closed.
Example 3.2.3 The circle x? + y? = 1 is a simple closed curve; for we may write?
X =cost, y=sint, (0 <t < 2m).

A two-dimensional continuum is a set of points in a plane possessing the following two
properties:

(i) If (x,y) be the Cartesian coordinates of any point of it, a positive number ¢ (depending
on x and y) can be found such that every point whose distance from (x, y) is less than §
belongs to the set.

(ii) Any two points of the set can be joined by a simple curve consisting entirely of points
of the set.

Example 3.2.4 The points for which x> + y?> < 1 form a continuum. For if P be any point
inside the unit circle such that OP = r < 1, we may take § = 1 —r; and any two points inside
the circle may be joined by a straight line lying wholly inside the circle.

The following two theorems will be assumed in this work; simple cases of them appear
obvious from geometrical intuitions and, generally, theorems of a similar nature will be taken
for granted, as formal proofs are usually extremely long and difficult. Formal proofs will be
found in Watson [650].

() A simple closed curve divides the plane into two continua (the interior and the exterior).
(IT) If P be a point on the curve and Q be a point not on the curve, the angle between QP
and Ox increases by +2m or by zero, as P describes the curve, according as Q is an
interior point or an exterior point. If the increase is +2x, P is said to describe the curve
counter-clockwise.

A continuum formed by the interior of a simple curve is sometimes called an open two-
dimensional region, or briefly an open region, and the curve is called its boundary; such
a continuum with its boundary is then called a closed two-dimensional region, or briefly
a closed region or domain. A simple curve is sometimes called a closed one-dimensional
region; a simple curve with its end-points omitted is then called an open one-dimensional
region.

3.22 Continuous functions of complex variables

Let f(z) be a function of z defined at all points of a closed region (one- or two-dimensional)
in the Argand diagram, and let z; be a point of the region.

2 For a proof that the sine and cosine are continuous functions, see the Appendix, §A.41.
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Then f(z) is said to be continuous at zj, if given any positive number &, we can find a
corresponding positive number 7 such that

1f(z) = fz)] <&

whenever |z — z;| < 1 and z is a point of the region.

3.3 Series of variable terms. Uniformity of convergence

Consider the series

) x? x? x?

+ + ot ——t
R I TR 1+ 2y

This series converges absolutely (§2.33) for all real values of x. If S,(x) be the sum of n
terms, then
1 .

(1 + x2)n—1 ’
and so li_r& S,(x) =1+ x% (x # 0), but S,,(0) = 0, and therefore ILH; S,(0) =0.

Congequently, although the series is an absolutely convergentnseries of continuous func-
tions of x, the sum is a discontinuous function of x. We naturally enquire the reason of
this rather remarkable phenomenon, which was investigated in 1841-1848 by Stokes [608],
Seidel [590] and Weierstrass [662, pp. 67, 75], who shewed that it cannot occur except in
connexion with another phenomenon, that of non-uniform convergence, which will now be
explained.

Let the functions u;(z),u2(z), . . . be defined at all points of a closed region of the Argand
diagram. Let

Sp(x) =1+ x* -

Sn(2) = u1(2) + uz(2) + - - + U, (2).

The condition that the series ). u,(z) should converge for any particular value of z is that,
n=1
given &, a number n should exist such that

|Sn+p(Z) - Sn(Z)| <é&

for all positive values of p, the value of n of course depending on &.

Let n have the smallest integer value for which the condition is satisfied. This integer will
in general depend on the particular value of z which has been selected for consideration. We
denote this dependence by writing n(z) in place of n. Now it may happen that we can find
a number N, independent of z, such that n(z) < N for all values of z in the region under
consideration. If this number N exists, the series is said to converge uniformly throughout the
region. If no such number N exists, the convergence is said to be non-uniform. The reader
who is unacquainted with the concept of uniformity of convergence will find it made much
clearer by consulting Bromwich [102], where an illuminating account of Osgood’s graphical
investigation is given.

Uniformity of convergence is thus a property depending on a whole set of values of z,
whereas previously we have considered the convergence of a series for various particular
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values of z, the convergence for each value being considered without reference to the other
values.

We define the phrase ‘uniformity of convergence near a point z’ to mean that there is a
definite positive number ¢ such that the series converges uniformly in the domain common
to the circle |z — z;| < 6 and the region in which the series converges.

3.31 On the condition for uniformity of convergence

This section shews that it is indifferent whether uniformity of convergence is defined by
means of the partial remainder R, ,(z) or by R,(z). Writers differ in the definition taken as
fundamental.

If R, p(2) = n+1(2) + tpi2(2) + - - - + U4 p(2), we have seen that the necessary and sufficient

condition that )} u,(z) should converge uniformly in a region is that, given any positive

n=1
number &, it should be possible to choose N independent of z (but depending on &) such that
IRy p(2)| < &

for all positive integral values of p.
If the condition is satisfied, by §2.22, S,,(z) tends to a limit, S(z), say for each value of z
under consideration; and then, since ¢ is independent of p,

|I}£I‘}° RN,p(Z)| S &,

and therefore, whenn > N,
$(2) = Su(2) = lim Ry (2) = Ry.n-n(2):

and so |S(z) — Sn(2)] < 2e.

Thus (writing £/2 for €) a necessary condition for uniformity of convergence is that
|S(z)—Sn(2)| < &, whenever n > N and N is independent of z; the condition is also sufficient;
for if it is satisfied it follows as in §2.22 (I) that |Ry ,(z)| < 2&, which, by definition, is the
condition for uniformity.

Example 3.3.1 Shew that, if x be real, the sum of the series

G+ D) e+ D T {m—Dxsuxa1y

is discontinuous at x = 0 and the series is non-uniformly convergent near x = 0.

Solution The sum of the first n terms is easily seen to be 1 — nxl+1 ; so when x = 0 the sum

is 0; when x # 0, the sum is 1. The value of R, (x) = S(x) — S,(x) is —— if x # 0; so when

nx+1
x is small, say x = one-hundred-millionth, the remainder after a million terms is ,1+ T or
T00

1- ﬁ, so the first million terms of the series do not contribute one per cent of the sum. And
in general, to make ﬁ < g, itis necessary to take n > i (i - 1) . Corresponding to a given
£, no number N exists, independent of x, such that n < N for all values of x in any interval
including x = 0; for by taking x sufficiently small we can make n greater than any number N

which is independent of x. There is therefore non-uniform convergence near x = 0.
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Example 3.3.2 Discuss the series

n2x2H1 + (n + 1)2x2}°

< x{n(n+1)x*> -1}
nzz; {1+

in which x is real.

The nth term can be written ; +"’1’§x2 - % so S(x) = 1:‘7 and
n+1)x
Ro(x) = — 2D

1+ (n+1)2x2
Note In this example the sum of the series is not discontinuous at x = 0.

But (taking & < 1, and x # 0), |R,(x)| < gif &' (n + )|x| < 1 + (n + 1)%x%; i.e. if

1 1
n+1> 5{8’1 +Ve2—4Yx|”' Jor n+l< 5{8’1 — Ve 2 — 4} x|

Now it is not the case that the second inequality is satisfied for all values of n greater than
a certain value and for all values of x; and the first inequality gives a value of n(x) which
tends to infinity as x — 0; so that, corresponding to any interval containing the point x = 0,
there is no number N independent of x. The series, therefore, is non-uniformly convergent
near x = 0.

The reader will observe that n(x) is discontinuous at x = 0; for n(x) — oo as x — 0, but
n(0) = 0.

3.32 Connexion of discontinuity with non-uniform convergence

We shall now shew that if a series of continuous functions of z is uniformly convergent for
all values of 7 in a given closed domain, the sum is a continuous function of z at all points
of the domain.

For let the series be f(z) = u1(z) + ua(z) + -+ - + u,(z) + - - - = S,,(2) + R, (z), where R,(z)
is the remainder after n terms. Since the series is uniformly convergent, given any positive
number &, we can find a corresponding integer n independent of z, such that |R,(z)| < %8 for
all values of z within the domain. Now n and ¢ being thus fixed, we can, on account of the
continuity of S,(z), find a positive number 7 such that

1S4(2) = Su(2)] < 38,
whenever |z — 7’| < n. We have then

|f(2) = f(Z)] = 1Su(z) = Su(2)) + Ru(2) — Ru(2')]
< [84(2) = Su (@) + |Ru(2)| + | R4 (2)]
<g,

which is the condition for continuity at z.
Example 3.3.3 Shew that near x = 0 the series u;(x) + u(x) + usz(x) + - - -, where
u(x) = x, Uy(x) = xﬁ - xﬁ,

and real values of x are concerned, is discontinuous and non-uniformly convergent.
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In this example it is convenient to take a slightly different form of the test; we shall shew
that, given an arbitrarily small number &, it is possible to choose values of x, as small as
we please, depending on n in such a way that |R,(x)| is not less than & for any value of
n, no matter how large. The reader will easily see that the existence of such values of x is
inconsistent with the condition for uniformity of convergence.

The value of S, (x) is x'/>"~'; as n tends to infinity, S,(x) tends to +1, 0, or —1, according
as x is positive, zero, or negative. The series is therefore absolutely convergent for all values
of x, and has a discontinuity at x = 0.

In this series R,(x) = 1 —x"/@""D_(x > 0); however great n may be, by taking x = e¢~?"~1
(this value of x satisfies the condition |x| < § whenever 2n — 1 > logd~'), we can cause
this remainder to take the value 1 — e~!, which is not arbitrarily small. The series is therefore
non-uniformly convergent near x = 0.

Example 3.3.4 Shew that near z = 0O the series

i —2z(1 + z)*!
{1+ (1 + 2" HlI+(1+2)"}

is non-uniformly convergent and its sum is discontinuous.
The nth term can be written

1-(1+z" 1-(1+2)"!

Il+(1+z2)" 1+0+z)m "

1-(1+2)"
than —1, it is seen that the sum to infinity is +1, 0, or —1, according as z is negative, zero,
or positive. There is thus a discontinuity at z = 0. This discontinuity is explained by the fact
that the series is non-uniformly convergent near z = 0; for the remainder after n terms in

so the sum of the first n terms is Thus, considering real values of z greater

1
the series when z is positive is -, and, however great n may be, by taking z = —,
n

2
1+(1+2)

this can be made numerically greater than T

, which is not arbitrarily small. The series is
e

therefore non-uniformly convergent near z = 0.

3.33 The distinction between absolute and uniform convergence
The uniform convergence of a series in a domain does not necessitate its absolute convergence

at any points of the domain, nor conversely. Thus the series ﬁ converges absolutely,
n=1

1!

z24n

but (near z = 0) not uniformly; while in the case of the series ), the series of moduli
n=1

[oe]
is ), ﬁ which is divergent, so the series is only conditionally convergent; but for all
n=1

real values of z, the terms of the series are alternately positive and negative and numerically
decreasing, so the sum of the series lies between the sum of its first n terms and of its first
(n + 1) terms, and so the remainder after n terms is numerically less than the nth term. Thus
we only need take a finite number (independent of z) of terms in order to ensure that for
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all real values of z the remainder is less than any assigned number &, and so the series is
uniformly convergent.

Absolutely convergent series behave like series with a finite number of terms in that we
can multiply them together and transpose their terms. Uniformly convergent series behave
like series with a finite number of terms in that they are continuous if each term in the series
is continuous and (as we shall see) the series can then be integrated term by term.

3.34 A condition, due to Weierstrass, for uniform convergence

This appears in [661, p. 70]. The test given by this condition is usually described (e.g. by
Osgood, [512]) as the M-test for uniform convergence.

A sufficient, though not necessary, condition for the uniform convergence of a series may
be enunciated as follows:

If, for all values of z within a domain, the moduli of the terms of a series S = u;(z) +
uy(z) + us(z) + - - - are respectively less than the corresponding terms in a convergent series
of positive terms T = M| + M, + M5 + - - -, where M,, is independent of z, then the series
S is uniformly convergent in this region. This follows from the fact that, the series T being
convergent, it is always possible to choose n so that the remainder after the first n terms of 7,
and therefore the modulus of the remainder after the first n terms of S, is less than an assigned
positive number £; and since the value of » thus found is independent of z, it follows (§3.31)
that the series S is uniformly convergent; by §2.34, the series S also converges absolutely.

Example 3.3.5 The series
1 2 1 3
cosz+?cos z+§cos 7+
is uniformly convergent for all real values of z, because the moduli of its terms are not greater
than the corresponding terms of the convergent series

1 1 1
+ =+ 7 + -
whose terms are positive constants.

3.341 Uniformity of convergence of infinite products
The definition is, effectively, that given by Osgood [513, p. 462]. The condition here given
for uniformity of convergence is also established in that work.

A convergent product H (1 + u,(z)) is said to converge uniformly in a domain of values

of z if, given &, we can ﬁnd m independent of z such that
m+p
]_[ (1 +1,(2)) = ]_[ (I +u,(2))| < &
n=1
for all positive integral values of p.
The only condition for uniformity of convergence which will be used in this work is that

the product converges uniformly if |u,(z)| < M, where M, is independent of z and ), M,
converges. "
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To prove the validity of the condition we observe that [](1 + M,,) converges (§2.7), and
n=1
so we can choose m such that

m+p m

[TJa+m)-]]a+m)<s;
n=1 n

=1
and then we have

m+p m

[T +um@ -] [0 +u)

ﬁ(l + U (2)) [ [] a+u)- 1\

n=1 n=1 n=m+1
m m+p
< l_[(1+Mn)[ [T a+m)- 1]
n=1 n=m+1

<&,

and the choice of m is independent of z.

3.35 Hardy’s tests for uniform convergence

These results, which are generalizations of Abel’s theorem (§3.71, below), though well
known, do not appear to have been published before 1907 [276]. From their resemblance to
the tests of Dirichlet and Abel for convergence, Bromwich proposes to call them Dirichlet’s
and Abel’s tests respectively.

n=1

is real and k is finite and independent of p and z, and if f,(z) = f,.1(z) and f,(z) — O

P
The reader will see, from §2.31, that if, in a given domain, ‘Z an(z)' < k where a,(z)

uniformly as n — oo, then Y, a,(z)f,(z) converges uniformly.

n=1

Also that if k& > u,(z) > u,.1(z) = 0, where k is independent of z and Y, a,(z) converges

n=1
uniformly, then ), a,(z)u,(z) converges uniformly. Hint. To prove the latter, observe that m

n=1

can be found such that

A1 (2) Qi1 (2) + A (2)s oo oy A1 (2) + Aaa(2) + -+ + am+p(z)

are numerically less than &/k; and therefore (§2.301)

m+p

D an(@un(2)

n=m+1

< eun1(2)/k <,

and the choice of € and m is independent of z.
Example 3.3.6 Shew that, if 6 > 0, the series

i cos nf i sin n6
n n

n=1 n=1
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converge uniformly in the range 6 < 6 < 27 — ¢. Obtain the corresponding result for the

series
— (=1)"cosnfd < (=1)"sinnd

n=1

by writing 6 + 7 for 6.

Example 3.3.7 (Hardy) If, whena < x < b, |w,(x)| < k; and § |wnt1(x) = w,(x)] < ko,

n=1

(o]
where ki, k, are independent of n and x, and if ), a, is a convergent series indepen-
n=1

dent of x, then ) a,w,(x) converges uniformly when a < x < b. Hint. For we can

n=1

m+p
choose m, independent of x, such that | >, a,| < &, and then, by Corollary 2.3.2, we
n=m+1
m+p ’
have | > a,w,(x)| < (ki + ky)e.
n=m+l1

3.4 Discussion of a particular double series

Let w; and w, be any constants whose ratio is not purely real; and let & be positive. The

series , in which the summation extends over all positive and negative
mn (2 + 2mw; + 2nw,)®

integral and zero values of m and n, is of great importance in the theory of Elliptic Functions.
At each of the points z = —2mw; — 2nw, the series does not exist. It can be shewn that the
series converges absolutely for all other values of z if @ > 2, and the convergence is uniform
for those values of z such that |z + 2mw; + 2nw,| > ¢ for all integral values of m and n,
where ¢ is an arbitrary positive number.

Let )’ denote a summation for all integral values of m and n, the term for whichm =n =0
being omitted.

Now, if m and n are not both zero, and if |z + 2mw; + 2nw,| > § > 0 for all integral values
of m and n, then we can find a positive number C, depending on ¢ but not on z, such that

1
<
(z + 2mw + 2nw,)®

1
C .
‘(mel + 2nw, )
Consequently, by §3.34, the given series is absolutely and uniformly convergent in the
domain considered if }," ——————— converges. (The reader will easily define uniformity

|n1a)1-+ n(02|
of convergence of double series (see §3.5).) To discuss the convergence of the latter series,

let
w) =ar +if, wy=m+ify,
where a1, @y, B1, B, are real. Since w,/w; is not real, a8, — @B # 0. Then the series is

’ 1
Z {(aym + axn)? + (Bim + Bon)?}or?”




50 Continuous Functions and Uniform Convergence

This converges (Corollary 2.5.1) if the series

’ 1
S = Z (m? + n2)al2

converges; for the quotient of corresponding terms is

{(cm +mp) + (B + Bap)’ }“/2
1+ u? ’

where p = n/m. This expression, gua function of a continuous real variable u, can be proved
to have a positive minimum? (not zero) since @18, — @81 # 0; and so the quotient is always
greater than a positive number K (independent of u). We have therefore only to study the
convergence of the series S. Let

J4 q

Sp.q = Z Z, (m? + nZ)a/Z s 42 Z (m? + nz)a/z

m=—-p n=—q m=0 m=0
Separating S, , into the terms for which m = n, m > n, and m < n, respectively, we have

m—1 n—1

p 1 r q
q= n; W + Z (m? + n2)a/2 + Z Z (m? + n2)a/2

m=1 n=0 n=1 m=0

But

m—1
m 1

= ; (3.1)

n2)(l/2 < (m2)(1/2 me-1’

n=0 (

therefore

1 S| S| A |
75 < "; St ;1 — > - (3.2)

n=1

But these last series are known to be convergent if @ — 1 > 1. So the series § is convergent
if @ > 2. The original series is therefore absolutely and uniformly convergent, when @ > 2,
for the specified range of values of z.

Example 3.4.1 (Eisenstein [193]) Prove that the series

1
Z(m%+m§+---+m§)ﬂ’

in which the summation extends over all positive and negative integral values and zero
values of my,my, . . .,m,, except the set of simultaneous zero values, is absolutely convergent
. 1

if u>3r.

3 The reader will find no difficulty in verifying this statement; the minimum value in question is given by

K =a? +ar? + B2 + B - (a1 - o) + (2 +ﬁl)2}l/2 {(a1 +Bo)” + (2 —ﬁl)z}l/zl
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3.5 The concept of uniformity

There are processes other than that of summing a series in which the idea of uniformity is of
importance.

Let £ be an arbitrary positive number; and let f(z,) be a function of two variables z and
£, which for each point z of a closed region, satisfies the inequality |f(z,¢)| < € when ¢
is given any one of a certain set of values which will be denoted by (¢;); the particular set
of values of course depends on the particular value of z under consideration. If a set ({),
can be found such that every member of the set ({), is a member of all the sets ({;), the
function f(z, {) is said to satisfy the inequality uniformly for all points z of the region. And
if a function ¢(z) possesses some property, for every positive value of &, in virtue of the
inequality | f(z,{)| < &, ¢(z) is then said to possess the property uniformly.

In addition to the uniformity of convergence of series and products, we shall have to
consider uniformity of convergence of integrals and also uniformity of continuity; thus a
series is uniformly convergent when |R,,(z)| < &, {(= n) assuming integer values independent
of z only.

Further, a function f(z) is continuous in a closed region if, given &, we can find a positive
number 7, such that | f(z + &) — f(z)| < & whenever 0 < || < 1y and z + £ is a point of the
region.

The function will be uniformly continuous if we can find a positive number 7 independent
of z, such thatn < n; and | f(z + ¢) — f(z)| < € whenever 0 < || < n and z + £ is a point of
the region (in this case the set ({), is the set of points whose moduli are less than 7).

We shall find later (§3.61) that continuity involves uniformity of continuity; this is in
marked contradistinction to the fact that convergence does not involve uniformity of conver-
gence.

3.6 The modified Heine—Borel theorem

The following theorem is of great importance in connexion with properties of uniformity;
we give a proof for a one-dimensional closed region. (A formal proof of the theorem for a
two-dimensional region will be found in Watson [650].)

Given (i) a straight line CD and (ii) a law by which, corresponding to each point P of CD,
we can determine a closed interval /(P) of CD, P being an interior point of /(P) (except
when P is at C or D, when it is an end point). Examples of such laws associating intervals
with points will be found in §3.61 and §5.13.

Then the line CD can be divided into a finite number of closed intervals Ji,J5,. .., Ji,
such that each interval J, contains at least one point (not an end point) P,, such that no point
of J, lies outside the interval I(P,) associated (by means of the given law) with that point P,.
This statement of the Heine—Borel theorem (which is sometimes called the Borel-Lebesgue
theorem) is due to Baker [41]. Hobson [316] points out that the theorem is practically given
in Goursat [254]; the ordinary form of the Heine—Borel theorem will be found in the treatise
cited.

A closed interval of the nature just described will be called a suitable interval, and will be
said to satisfy condition (A).

If CD satisfies condition (A), what is required is proved. If not, bisect CD; if either or both
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of the intervals into which CD is divided is not suitable, bisect it or them. A suitable interval
is not to be bisected; for one of the parts into which it is divided might not be suitable.

This process of bisecting intervals which are not suitable either will terminate or it will
not. If it does terminate, the theorem is proved, for CD will have been divided into suitable
intervals.

Suppose that the process does not terminate; and let an interval, which can be divided into
suitable intervals by the process of bisection just described, be said to satisfy condition (B).
Then, by hypothesis, CD does not satisfy condition (B); therefore at least one of the bisected
portions of CD does not satisfy condition (B). Take that one which does not (if neither
satisfies condition (B) take the left-hand one); bisect it and select that bisected part which
does not satisfy condition (B). This process of bisection and selection gives an unending
sequence of intervals sy, 51, 52, . . . such that:

(i) The length of s, is 27"CD.
(ii) No point of s,,; is outside s,,.
(iii) The interval s, does not satisfy condition (A).

Let the distances of the end points of s, from C be x,,y,; then x, < Xx,41 < V41 < Ya.
Therefore, by §2.2, x,, and y, have limits; and, by the condition (i) above, these limits are
the same, say &; let Q be the point whose distance from C is £. But, by hypothesis, there is
a number d¢ such that every point of CD, whose distance from Q is less than dg, is a point
of the associated interval /(Q). Choose n so large that 27"CD < J; then Q is an internal
point or end point of s,, and the distance of every point of s, from Q is less than 6o. And
therefore the interval s, satisfies condition (A), which is contrary to condition (iii) above.
The hypothesis that the process of bisecting intervals does not terminate therefore involves a
contradiction; therefore the process does terminate and the theorem is proved.

In the two-dimensional form of the theorem?*, the interval CD is replaced by a closed
two-dimensional region, the interval /(P) by a circle, or the portion of the circle which lies
inside the region, with centre P, and the interval J, by a square with sides parallel to the
axes.

3.61 Uniformity of continuity

From the theorem just proved, it follows without difficulty that if a function f(x) of a real
variable x is continuous when a < x < b, then f(x) is uniformly continuous throughout the
range a < x < b. This result is due to Heine [288].

For let &£ be an arbitrary positive number; then, in virtue of the continuity of f(x),
corresponding to any value of x, we can find a positive number J,, depending on x, such that
|f(x") = f(x)| < &/4 for all values of x’ such that |x’ — x| < §,.

Then by §3.6 we can divide the range (a, b) into a finite number of closed intervals with the
property that in each interval there is a number x; such that | f(x") — f(x;)| < }13’ whenever
x’ lies in the interval in which x; lies.

Let ¢y be the length of the smallest of these intervals; and let &, £’ be any two numbers

4 The reader will see that a proof may be constructed on similar lines by drawing a square circumscribing the
region and carrying out a process of dividing squares into four equal squares.
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in the closed range (a, b) such that |£ — &’| < &y. Then &, &’ lie in the same or in adjacent
intervals; if they lie in adjacent intervals let & be the common end point. Then we can find
numbers xi, x,, one in each interval, such that

If(&) = fxo)l < 3. (&) = fla)l < 38,
If(€) = f()l < g (&) - f(n)l < z&

so that

1£(&) = fENN = &) - fx)} = {f(&0) — f(x)}
—{f() = f(x)} + {f (&) - f(x)}] < &.

If £, &’ lie in the same interval, we can prove similarly that | f(£) — f(£”)| < &/2. In either
case we have shewn that, for any number ¢ in the range, we have

fE)-fE+DI<e

whenever £ + { is in the range and -6y < ¢ < 8y where 9y is independent of €. The uniformity
of the continuity is therefore established.

Corollary 3.6.1 From the two-dimensional form of the theorem of §3.6 we can prove that
a function of a complex variable, continuous at all points of a closed region of the Argand
diagram, is uniformly continuous throughout that region.

Corollary 3.6.2 A function f(x) which is continuous throughout the range a < x < b
is bounded in the range; that is to say we can find a number k independent of x such that
| f(x)| < « for all points x in the range.

Let n be the number of parts into which the range is divided. Let a,&,,&,, . . ., &,-1, b be their
end points; then if x be any point of the rth interval we can find numbers x;, x,, . . ., x,, such
that

[f@) = fx)l < g 1f(x) = fEDI < g&. |f(E) = fo)l < e,
1f () = FE)N < & 1 f () = F)] < ge.

Therefore | f(a) — f(x)| < %rg, and so |f(x)| < |f(a)| + %ns, which is the required result,
since the right-hand side is independent of x. The corresponding theorem for functions of

complex variables is left to the reader.

3.62 A real function, of a real variable, continuous in a closed interval, attains its
upper bound

Let f(x) be a real continuous function of x when a < x < b. Form a section in which the
R-class consists of those numbers r such that r > f(x) for all values of x in the range (a, b),
and the L-class of all other numbers. This section defines a number @ such that f(x) < «,
but, if § be any positive number, values of x in the range exist such that f(x) > @ — 6. Then
a is called the upper bound of f(x); and the theorem states that a number x’ in the range can
be found such that f(x") = a.

For, no matter how small § may be, we can find values of x for which | f(x) —a|™' > 67';
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therefore |f(x) — a|™! is not bounded in the range; therefore (Corollary 3.6.2) it is not
continuous at some point or points of the range; but since | f(x) — a| is continuous at all
points of the range, its reciprocal is continuous at all points of the range (Example 3.2.1)
except those points at which f(x) = «; therefore f(x) = a at some point of the range; the
theorem is therefore proved.

Corollary 3.6.3 The lower bound of a continuous function may be defined in a similar
manner; and a continuous function attains its lower bound.

Corollary 3.6.4 If f(z) be a function of a complex variable continuous in a closed region,
| f(2)| attains its upper bound.

3.63 A real function, of a real variable, continuous in a closed interval, attains all
values between its upper and lower bounds

Let M, m be the upper and lower bounds of f(x); then we can find numbers X, x, by §3.62,
such that f(X) = M, f(x) = m; let u be any number such that m < yu < M. Given any
positive number &, we can (by §3.61) divide the range (X, x) into a finite number, r, of closed
intervals such that

|f (o) = [l <&,

where x; ,, x,, are any points of the rth interval; take x; ,, x; , to be the end points of the
interval; then there is at least one of the intervals for which f(x;,)— p and f(x,,) — u have
opposite signs; and since |{f(x1,r) - ,u} - {f(xz,,) - ,u}| < g,itfollows that | f(x;,)—pu| < €.

Since we can find a number x; , to satisfy this inequality for all values of &, no matter how
small, the lower bound of the function | f(x) — u/| is zero; since this is a continuous function
of x, it follows from Corollary 3.6.3 that f(x) — u vanishes for some value of x.

3.64 The fluctuation of a function of a real variable

The terminology of this section is partly that of Hobson [316] and partly that of Young [687].

Let f(x) be a real bounded function, defined when a < x < b. Leta < x; < x, £ --- <
X, < b.

Then |f(a)— f(x)|+|f(x1) = f(x2)| +- - -+ | f(xn) — f(b)| is called the fluctuation of f(x)
in the range (a, b) for the set of subdivisions xi, X, ..., x,. If the fluctuation have an upper
bound Ff, independent of n, for all choices of xy, x,, . . ., X,,, then f(x) is said to have limited

total fluctuation in the range (a, b). F? is called the total fluctuation in the range.

Example 3.6.1 If f(x) be monotonic; that is, (f(x) — f(x")) /(x — x") is one-signed or zero
for all pairs of different values of x and x’, in the range (a, b), its total fluctuation in the range

is |f(a) = f(D)].

Example 3.6.2 A function with limited total fluctuation can be expressed as the difference
of two positive increasing monotonic functions. Hint. These functions may be taken to be

HFZ + f0)}, HFZ - f(0)}

Example 3.6.3 If f(x) have limited total fluctuation in the range (a,b), then the limits
f(x £ 0) exist at all points in the interior of the range. [See Example 3.2.2].
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Example 3.6.4 If f(x), g(x) have limited total fluctuation in the range (a, b) so has f(x)g(x).
Hint. For

|f(x)g(x") = f(x)g(x) < |f(x)] - 1g(x") = gD + [g(x)] - [f(x") = f (X)L, (3.3)

and so the total fluctuation of f(x)g(x) cannot exceed g - F? + f - G4, where f, g are the
upper bounds of | f(x)][, |g(x)].

3.7 Uniformity of convergence of power series
Let the power series ag + a;z + - -+ + a,7" + - - - converge absolutely when z = zy. Then, if
lz| < lzol, |anz"| < |anzg|. Butsince . |a,zo"| converges, it follows, by §3.34, that }; a,z"

n= n=0
converges uniformly with regard to the variable z when |z| < |z|. Hence, by §3.32, a power

series is a continuous function of the variable throughout the closed region formed by the
interior and boundary of any circle concentric with the circle of convergence and of smaller
radius (§2.6).

3.71 Abel’s theorem

Abel’s proof [1] employs directly the arguments by which the theorems of §3.32 and §3.35
are proved. In the case when ) |a, | converges, the theorem is obvious from §3.7 on continuity
up to the circle of convergence.

Let ), a,z" be a power series, whose radius of convergence is unity, and let it be such that
n=0

>, a, converges; and let 0 < x < 1; then Abel’s theorem asserts that

n=0
)1(13% (i a,,x") = i a,. (3.4)

n=0 n=0
For, with the notation of §3.35, the function x™ satisfies the conditions laid on u,(x),
when 0 < x < 1; consequently f(x) = Y, a,x" converges uniformly throughout the range
=0

0 < x < 1; it is therefore, by §3.32, a cont_inuous function of x throughout the range, and so
hnll, f(x) = f(1), which is the theorem stated.

3.72 Abel’s theorem on multiplication of convergent series

This is a modification of the theorem of §2.53 for absolutely convergent series. This is Abel’s
original proof [1, Theorem VI]. In some textbooks a more elaborate proof, by the use of
Cesaro’s sums (§8.43), is given.
Let ¢, = agb,, + a\b,_ + - - - + a,by. Then the convergence of Y, a,, Y, b,,and ) ¢, isa
n=0

n=0 n=0
sufficient condition that
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For, let
A(x) = Z a,x", B(x)= Z b,x", C(x)= Z cpx".
n=0 n=0 n=0

Then the series for A(x), B(x), C(x) are absolutely convergent when |x| < 1 (§2.6); and
consequently, by §2.53, A(x)B(x) = C(x) when 0 < x < 1; therefore, by Example 2.2.2,

lim A(x) - lim B(x) = lim C(x)
x—1- x—1- x—1-
provided that these three limits exist; but, by §3.71, these three limits are Y, a,, >, b,, 2 Cn;

n=0 n=0 n=0

and the theorem is proved.

3.73 Power series which vanish identically

If a convergent power series vanishes for all values of z such that |z| < ry, where r; > 0, then
all the coefficients in the power series vanish.
For, if not, let a,,, be the first coefficient which does not vanish. Then a,,, + dy112 + Gms22> +
- vanishes for all values of z (zero excepted) and converges absolutely when |z| < r < ry;
hence, if s = a1 + A2z + -+ -, We have

(o)
I < D lamenl 77
n=1

and so we can find® a positive number § < r such that, whenever |z| < 6,
2 <1 .
Ame1Z + A" + 0| < 5 |aml;

and then |a,, + s| = |a,,| — |s| > % |a,,|, and so |a,, + s| # 0 when |z| < 6. We have therefore
arrived at a contradiction by supposing that some coefficient does not vanish. Therefore all
the coefficients vanish.

Corollary 3.7.1 We may equate corresponding coefficients in two power series whose sums
are equal throughout the region |z| < 6, where § > 0.

Corollary 3.7.2 We may also equate coefficients in two power series which are proved
equal only when 7 is real.

3.8 Miscellaneous examples

Example 3.1 Shew that the series

Z ( —Z”)(l -z

is equal to 5% )2 when [z| < 1 and is equal to -7 )2 when |z| > 1. Is this fact connected with
the theory of uniform convergence?

3 Ttis sufficient to take & to be the smaller of the numbers » and % lam| = 3 |aman | r™!

n=1
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Example 3.2 Shew that the series

1 1
2sin — +4sin — + - - - + 2" sin + .-
3z 9z 3nz
converges absolutely for all values of z (z = 0 excepted), but does not converge uniformly

near z = 0.

Example 3.3 (Math. Trip. 1907) If u,(x) = —2(n — 1)2xe" """ 4 2n2xe™** shew that
>, un(x) does not converge uniformly near x = 0.

n=1

L1,

Example 3.4 Shew that the series ViR R

formed by Abel multiplication,

RN

- is convergent, but that its square

is divergent.

Example 3.5 (Cauchy, Cajori) If the convergent series s = li - 2i + %, - % + .-+ (with
r > 0) be multiplied by itself the terms of the product being arranged as in Abel’s result,

shew that the resulting series diverges if r < % but converges to the sum s2 if r > %

Example 3.6 (Cajori) If the two conditionally convergent series

sl -1 n+l & -1 n+l
S a3
nl‘ nS
n=1 n=1
where r and s lie between 0 and 1, be multiplied together, and the product arranged as in
Abel’s result, shew that the necessary and sufficient condition for the convergence of the
resulting series is r + s > 1.

Example 3.7 (Cajori) Shew that if the series 1 — 3 + 1+ — 1 +- - - be multiplied by itself any
number of times, the terms of the product being arranged as in Abel’s result, the resulting
series converges.

Example 3.8 Shew that the gth power of the series
a;sinf + @ 8in20 + - - - + @, sinnf + - - -

is convergent whenever g(1 — r) < 1, r being the greatest number satisfying the relation
@, < n™" for all values of n.

Example 3.9 (Math. Trip. 1896) Shew that if 6 is not equal to O or a multiple of 2, and
if ug,u1,u,, . .. be a sequence such that u,, — 0 steadily, then the series } u, cos(nf + a) is
convergent. Shew also that, if the limit of «,, is not zero, but u,, is still monotonic, the sum of
the series is oscillatory if 8/ is rational, but that, if 8/ is irrational, the sum may have any
value between certain bounds whose difference is @ cosec(6/2), where a = ’}grolo Uy,.
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The Theory of Riemann Integration

4.1 The concept of integration

The reader is doubtless familiar with the idea of integration as the operation inverse to that
of differentiation; and he is equally well aware that the integral (in this sense) of a given
elementary function is not always expressible in terms of elementary functions. In order
therefore to give a definition of the integral of a function which shall be always available,
even though it is not practicable to obtain a function of which the given function is the
differential coefficient, we have recourse to the result that the integral of f(x), defined as the
(elementary) function whose differential coefficient is f(x), between the limits a and b is
the area bounded by the curve y = f(x), the axis of x and the ordinates x = a, x = b. We
proceed to frame a formal definition of integration with this idea as the starting-point.

4.11 Upper and lower integrals

The following procedure for establishing existence theorems concerning integrals is based
on that given by Goursat [255, I, Ch. IV]. The concepts of upper and lower integrals are due
to Darboux, [160, p. 64].

Let f(x) be a bounded function of x in the range (a, ). Divide the interval at the points
X1, X2, oy Xn-1, (@ <X < X < -+- < x,-1 £ D). Let U, L be the bounds of f(x) in the range
(a,b), and let U,, L,, be the bounds of f(x) in the range (x,_;, x,-), where xy = a, x, = b.

The reader will find a figure of great assistance in following the argument of this section.
S, and s, represent the sums of the areas of a number of rectangles which are respectively
greater and less than the area bounded by y = f(x), x = @, x = b and y = 0, if this area be
assumed to exist.

Consider the sums

Sp =Ui(x) —a) + Us(xy = x1) + -+ - + Up(b = xp-1),
Sn=Li(x1 —a)+ Ly(xo —x1) + -+ + Ly(b — x,-1).
ThenU(b—a) > S, = s, = L(b - a).

For a given n, S, and s,, are bounded functions of xy, x,, . . ., x,,_; . Let their lower and upper
bounds' respectively be S Sn,sothat S ,s, depend only on n and on the form of f(x), and
not on the particular way of dividing the interval into n parts.

! The bounds of a function of n variables are defined in just the same manner as the bounds of a function of a
single variable (§3.62).

58
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Let the lower and upper bounds of these functions of n be S, s. Then S, > S, s, < 5. We
proceed to shew that s is at most equal to S; i.e. S > s.

Let the intervals (a, x;), (x1,x2),... be divided into smaller intervals by new points of
subdivision, and let

A, Y1, Y25+« 5 Yk-15 yk(: X1), Yik+1s+ -5 YVI-15 yl(: x2)9 Yistls - .- 9ym719b

be the end points of the smaller intervals; let U/, L/ be the bounds of f(x) in the interval

(¥r-1,yr)- Let
T = Z(yr - yr—l)U;’ Im = Z(yr - yr—l)Lz/“
r=1 r=1

Since U{, Uj,. . ., U,: do not exceed Uy, it follows without difficulty that
S, >T, =ty =5,
Now consider the subdivision of (a,b) into intervals by the points xy, xs,. .., X,_, and
also the subdivision by a different set of points x,x},...,x,,_,. Let §,,, s,, be the sums for

the second kind of subdivision which correspond to the sums S, s, for the first kind of
subdivision. Take all the points x;,...,x,_1; x{,...,x,,_, as the points y, y,. .., yn. Then

n’-1

Soz2Tu2ty=s,, and S, >T,>t,2s

Hence every expression of the type S, exceeds (or at least equals) every expression of the
type s,,; and therefore S cannot be less than s. For if § < s and s — § = 25 we could find an
S, and an s/, such that S, —§ <7, s —s,, <nandsos, > S,, which is impossible.

b
The bound S is called the upper integral of f(x), and is written U / f(x)dx; the bound s

is called the lower integral, and written L / f(x)dx.If § = s, their common value is called

the mtegral of f(x) taken between the limits? of integration a and b. The integral is written

/a f(x)dx.

a b
We define / f(x)dx, when a < b, to mean — / f(x)dx.
b a

b b b
Example 4.1.1 Prove that/ {f(x)+¢(x)}dx=/ f(x)dx+/ d(x)dx.

Example 4.1.2 By means of Example 4.1.1, define the integral of a continuous complex
function of a real variable.

4.12 Riemann’s condition of integrability

Riemann [558, p. 239] bases his definition of an integral on the limit of the sum occurring in
§4.13; but it is then difficult to prove the uniqueness of the limit. A more general definition

2 “Extreme’ values would be a more appropriate term but ‘limits’ has the sanction of custom. “Termini’ has
been suggested by Lamb [399, p. 207].
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of integration (which is of very great importance in the modern theory of Functions of Real
Variables) has been given by Lebesgue [417]. See also [418].

A function is said to be ‘integrable in the sense of Riemann’ if (with the notation of
§4.11) S, and s, have a common limit (called the Riemann integral of the function) when
the number of intervals (x,_i, x,-) tends to infinity in such a way that the length of the longest
of them tends to zero.

The necessary and sufficient condition that a bounded function should be integrable is
that S, — s, should tend to zero when the number of intervals (x,_1,x,) tends to infinity in
such a way that the length of the longest tends to zero.

The condition is obviously necessary, for if S,, and s,, have a common limit S,, — s, — 0
as n — oo. And it is sufficient; for, since S,, > S > s > s, it follows that if lim(S,, — s,,) = 0,
then

limS§, =lims, =S =s.

Remark 4.1.1 A continuous function f(x) is integrable. For, given &, we can find § such
that | f(x") — f(x”)| < &/(b— a) whenever |x’ — x”| < §. Take all the intervals (xs_1, x5) less
than ¢, and then Us — Ls < £/(b — a) and so S,, — s, < &; therefore S,, — 5, — 0 under the
circumstances specified in the condition of integrability.

Corollary 4.1.2 If S, and s, have the same limit S for one mode of subdivision of (a,b)
into intervals of the specified kind, the limits of S,, and of s, for any other such mode of
subdivision are both S.

Example 4.1.3 The product of two integrable functions is an integrable function.

Example 4.1.4 A function which is continuous except at a finite number of ordinary
discontinuities is integrable. Hint. If f(x) have an ordinary discontinuity at ¢, enclose ¢ in an
interval of length 6;; given &, we can find ¢ so that | f(x") — f(x)| < € when |x" — x| < § and
x, x" are not in this interval. Then S,, — s, < &(b—a—8;) + k6, where k is the greatest value
of | f(x') — f(x)|, when x, x’” lie in the interval. When 6; — 0, k — |f(c +0) — f(c —0)],
and hence r}i_r)l(}o(S,, —s,)=0.

Example 4.1.5 A function with limited total fluctuation and a finite number of ordinary
discontinuities is integrable. (See Example 3.6.2.)

4.13 A general theorem on integration

Let f(x) be integrable, and let £ be any positive number. Then it is possible to choose § so
that

<eg,

n b
(xp = xp-1) f(xp_) = [ fx)dx

provided that x, — x,_; < 6, and x,_; < xl’,_1 < xp.
To prove the theorem we observe that, given &, we can choose the length of the longest
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interval, 8, so small that S, — s, < €. Also

Su = > (= Xp ) F (1) 2 s
p=1

b
Sp 2 / f(x)dx = s,.
Therefore

<S,-s,<Ee&.

n b
(xp = xp-1)f(xp ) = [ f(X)d
;xp Xp-1 X, 1 ‘/L; X)ax

As an example (see Netto [484]) of the evaluation of a definite integral directly from the
theorem of this section consider ‘/o ) (l—dﬁ’ where X < 1. Take 6 = 117 arcsin X and let
xy = sinsé, (0 < s6 < 37), so that

X541 — X5 = 2sin (§) cos (6 +3) < 6;

also let x5’ = sin(d + %) 0. Then

Zp: Xs = X1 _ Zp] sinsd —sin(6 —1)6
cos (6 —3)6

) sin%é
=arcsin X . ; .
30

By taking p sufficiently large we can make

/X dx i Xy — X1
o (=R &=z, )P

o=1

sin(6/2) _ 4

572 } arbitrarily small. That is, given

arbitrarily small. We can also make arcsin X . {

an arbitrary number &, we can make

X
dx
————— —arcsin X
/0 (1-x2)l2
by taking p sufficiently large. But the expression now under consideration does not depend

on p; and therefore it must be zero; for if not we could take & to be less than it, and we should
have a contradiction. That is to say

X dx .
A m = arcsin X. (41)

<é&

Example 4.1.6 Shew that

1 X 2x (n—1)x sin x
lim — {1 +cos— +cos— + -+ cos = .
n—oo n n n n X
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Example 4.1.7 If f(x) has ordinary discontinuities at the points ai,a, . . ., a, then
b a) *6] azf(Sz b
/ f(x)dx = lim {/ +/ +oe 4 f(x)dx},
a a ap+e&; ag+&g
where the limit is taken by making d1,0,,. . ., 0, €1, &, . . ., & tend to +0, independently.

Example 4.1.8 If f(x) is integrable when a; < x < b; and if, when a; < a < b < by, we
write

b
/ F()dx = p(a,b),

and if f(b + 0) exists, then

lim ¢(a, b+ 6) — ¢(a,b)
§—+0 1)

= f(b +0).

Deduce that, if f(x) is continuous at a and b,
d (" d "
o [ o=@ 5 [ reoas = s

dx
Example 4.1.9 Prove by differentiation that, if ¢(x) is a continuous function of x and o
a continuous function of ¢, then

‘/X:I o(x)dx = /IUII (/’J(x)%dt.

Example 4.1.10 If f’(x) and ¢’(x) are continuous when a < x < b, shew from Exam-
ple 4.1.8 that

b b
/ FOd)dx + / &) f@)dx = FBYB) — fa)pla).

b
Example4.1.11 If f(x)isintegrable in the range (a,c) anda < b < c, shew that / f(x)dx

is a continuous function of b.

4.14 Mean-value theorems

The two following general theorems are frequently useful.

(I) Let U and L be the upper and lower bounds of the integrable function f(x) in the range
(a,b). Then from the definition of an integral it is obvious that

b b
/ (U~ f(x)) dx, / (f(x) - L) dx

are not negative; and so

b
Ub-a) > / f(x)dx = L(b—a).

This is known as the First Mean-Value Theorem.
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If f(x) is continuous we can find a number £ such that a < ¢ < b and such that f(£) has
any given value lying between U and L (§3.63). Therefore we can find & such that

b
/ F)dx = (b — a)f(©).

If F(x) has a continuous differential coefficient F’(x) in the range (a, b), we have, on writing
F'(x) for f(x),
F(b) - F(a) = (b—a)F'(§)

for some value of £ such thata < & < b.

Example 4.1.12 If f(x) is continuous and ¢(x) > 0, shew that £ can be found such that
b b
[ resdar=r@ [ o ax

(II) Let f(x) and ¢(x) be integrable in the range (a, b) and let ¢(x) be a positive decreasing
function of x. Then Bonnet’s form of the Second Mean-Value Theorem [83] is that a number
& exists such that a < ¢ < b, and

b £
/ FOS() d = 9(a) / ) d.

The proof given is a modified form of an investigation due to Hoélder [326].
For, with the notation of §4.1 and §4.13, consider the sum

P
S = Z(xs = Xg-1) f (o) (x5-1).
s=1

Writing (xgy — xg—1) f(x5-1) = as_1, ¢(X5-1) = Ps—1, Go + a1 + - - - + a5 = b, we have

p-1
S = Z bs—1(¢s—l - ¢S‘) + bp*1¢[7*1'
s=1

Each term in the summation is increased by writing b for b,_; and decreased by writing b
for b,_;, if b, and b be the greatest and least of by, by,...,b,_1; and so bgy < § < l_7¢o.
Therefore S lies between the greatest and least of the sums ¢(xg) >, (x5 — x5_1) f(xs_1) where

s=1

m=1,2,3,...,p. But, given &, we can find ¢ such that, when x; — x,_; < 6,

<&,

)4 Xp
D = e ot - [ 0600 d
s=1 X

0

<Eg,

) Y5 = 3 i) = 0Ga) [ )

b
and so, writing a, b for xo, x,, we find that / f(x)p(x) dx lies between the upper and

&1
lower bounds of ¢(a) f(x)dx + 2e, where & may take all values between a and b. (By
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&
Example 4.1.11, since f(x) is bounded, f(x)dx is a continuous function of &;.) Let U

& b
and L be the upper and lower bounds of ¢(a) / f(x)dx. Then U +2¢ > / JS(x)e(x)dx >

a

L - 2¢ for all positive values of g; therefore ¢

b
U > / f(x)d(x) dx = L.
&

Since ¢(a) f(x)dx qua function of £, takes all values between its upper and lower

a

b
bounds, there is some value &, say, of & for which it is equal to / f(x)é(x) dx. This proves

the Second Mean-Value Theorem.

Example 4.1.13 (Du Bois Reymond) By writing |¢(x) — ¢(b)| in place of ¢(x) in Bonnet’s
form of the mean-value theorem, shew that if ¢(x) is a monotonic function, then a number &
exists such thata < ¢ < b and

b £ b
dx = d b dx.
/u FB)dx = d(a) / F)dx + 6(b) L Fx)dx

4.2 Differentiation of integrals containing a parameter

d [ b
E/ f(x,a)dxz/ édx 4.2)

0
is true if f(x, @) possesses a Riemann integral with respect to x and f,, which equals 8_f is
a

The equation

a continuous function of the variables x and «. This formula was given by Leibniz, without
specifying the restrictions laid on f(x,a).

Note ¢(x,y) is defined to be a continuous function of both variables if, given &, we can find
& such that |¢(x’, ") — ¢(x, y)| < & whenever {(x” — x)*+(y’ —y)*}'/? < §. It can be shewn by
§3.6 that if ¢(x, y) is a continuous function of both variables at all points of a closed region
in a Cartesian diagram, it is uniformly continuous throughout the region (the proof is almost
identical with that of §3.61). It should be noticed that, if ¢(x, y) is a continuous function of
each variable, it is not necessarily a continuous function of both; as an example take

(x + y)?
P(x,y) = Pyl #(0,0) = 1;

this is a continuous function of x and of y at (0, 0), but not of both x and y.

For

d [* L b f(x,a+h) - flx,a)
%/a f(x,a')dx—}llgg)/a ? dx 4.3)

if this limit exists. But, by the first mean-value theorem, since f, is a continuous function of
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a, the second integrand is f,(x,a + 6h), where 0 < 6 < 1. But, for any given &, a number §
independent of x exists (since the continuity of f, is uniform with respect to the variable x)
such that

|fa(x, @) = fa(x,@) | < £/(b—a),

whenever | @’ —a | < 8. It is obvious that it would have been sufficient to assume that f,
had a Riemann integral and was a continuous function of a (the continuity being uniform
with respect to x), instead of assuming that f, was a continuous function of both variables.
This is actually done by Hobson [315, p. 599].

Taking |h| < § we see that |6h| < &8, and so whenever |h| < 6,

/b flx,a+h) - f(x,@)
a h

b
dx—/ folx, @) dx

b
< / | fo(x,a + Oh) — fo(x,a)| dx < €.
Therefore by the definition of a limit of a function (§3.2),

b
lim/ fx,a+h) - f(x,a) dx

h—0 h

b
exists and is equal to / fo dx.
a

Example 4.2.1 If a,b be not constants but functions of @ with continuous differential
coefficients, shew that

d [* db da [P of
E‘/a' f(x,a)dx = f(b,(l’)@ - f(a,a)a + l %dx
b
Example 4.2.2 If f(x,@) is a continuous function of both variables, / f(x,@)dx is a

continuous functions of «.

4.3 Double integrals and repeated integrals

Let f(x,y) be a function which is continuous with regard to both of the variables x and vy,
when a < x < b,a <y < 8. By Example 4.2.2 it is clear that

/ab {/jf(x,y) dy} dx, /f {/abf(x,y) dx} dy

both exist. These are called repeated integrals.

Also, as in §3.62, f(x,y), being a continuous function of both variables, attains its upper
and lower bounds.

Consider the range of values of x and y to be the points inside and on a rectangle in a
Cartesian diagram; divide it into nv rectangles by lines parallel to the axes. Let U, ;15 Ly
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be the upper and lower bounds of f(x,y) in one of the smaller rectangles whose area is, say,
Ay and let

Zn: ZV: Unn Ay = Sn,vs Zn: ZV: LAy = Sny.

m=1 u=1 m=1 u=1

Then S,,, > s,,,and, as in §4.11, we can find numbers S, , 5,,,,, which are the lower and
upper bounds of S, ,., 5,.,,, respectively, the values of S, . EM’ depending only on the number
of the rectangles and not on their shapes; and S, |, > E’,,J,. We then find the lower and upper
bounds (S and s) respectively of §n’v, Sn, qua functions of nand v; and S,,, > S > 5 > 55,
asin §4.11.

Also, from the uniformity of the continuity of f(x,y), given &, we can find § such that
Uny — Ly < &, (for all values of m and p) whenever the sides of all the small rectangles
are less than the number § which depends only on the form of the function f(x,y) and on &.

And then S, , — s,, < &(b—-a)(B—a),andso S — s < &(b — a)(8 — @). But S and s are
independent of €, and so S = s.

The common value of S and s is called the double integral of f(x,y) and is written

/ab ‘/jf(x,y) dy dx.

It is easy to shew that the repeated integrals and the double integral are all equal when
f(x,y) is a continuous function of both variables. For let Y,,, A,, be the upper and lower

bounds of
B
[ rsyas

as x varies between x,,,_; and x,,,.
Then

Zn:Ym(xm — Xpo1) 2 /b {/B f(x,y) dy} dx > iAm(xm — Xpo1)-

But the upper bound of f(x,y) in the rectangle A,,, is not less than the upper bound of
f(x,y) on that portion of the line x = ¢ which lies in the rectangle, therefore

v v
Z Um,u(yu — Yu-1 2 Ym = Am > Z Lm,y(yu - yu—l)-
pu=1 pu=1

Multiplying these last inequalities by x,, — x,,,—1, using the preceding inequalities and sum-
ming, we get

ii UnpAmpu > /b {/B f(x,y)dy} dx > Zn:i:Lm’ﬂAm,ﬂ;

m=1 u=1 m=1 u=1

and so, proceeding to the limit,

SZ‘/ab {‘/aﬁf(x,y)dy}dsz.
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b B
But § = / / f(x,y)dx dy, and so one of the repeated integrals is equal to the double

integral. SimL{Iarlgl the other repeated integral is equal to the double integral.

Corollary 4.3.1 If f(x,y) be a continuous function of both variables,
1 I-x 1 1—v
[l [ s = [l [ raad.
0 0 0 0

4.4 Infinite integrals

If hm ( / f (x)dx) exists, we denote it by / f(x)dx; and the limit in question is called

an mﬁmte integral. This phrase, due to Hardy [274, p. 16], suggests the analogy between an
infinite integral and an infinite series.

« 1 1 1
Example 4.4.1 1. / @ = lim (— - Z) =—.

o A (L L)L

0 (x24a2)?  bow| 202+a?) 24|  2a%

3. (Euler). By integrating by parts, shew that / t"e”'dt = n!.
0

b b
Similarly we define / f(x)dx to mean lim / f(x)dx; if this limit exists; and

/ f(x)dx is defined as / f(x)dx + / f(x)dx. In this last definition the choice of

a is a matter of indifference.

4.41 Infinite integrals of continuous functions. Conditions for convergence

A necessary and sufficient condition for the convergence of / f(x)dx is that, corresponding
a

o
/ f(x)dx| < &
"
whenever x” > x’ > X.

The condition is obviously necessary; to prove that it is sufficient, suppose it is satisfied;
a+n

to any positive number &, a positive number X should exist such that

then, if n > X —a and n be a positive integer and §,, = f(x)dx, wehave |S,., —S,| < &.

Hence, by §2.22, §,, tends to a limit, S; and then, if & >aa +n,

‘S— / ‘ f(x)dx - / f(x)dx | +

£
and so ;im / f(x)dx = §; so that the condition is sufficient.
Eooo )

(x)dx

< 2sg;
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4.42 Uniformity of convergence of an infinite integral

o)

The integral f(x, @) dx is said to converge uniformly with regard to « in a given domain

a
of values of « if, corresponding to an arbitrary positive number &, there exists a number X
independent of « such that
/ f(x,a)dx
v

for all values of « in the domain and all values of x” > X.
The reader will see without difficulty on comparing §2.22 and §3.31 with §4.41 that a

<é&

necessary and sufficient condition that / f(x, @) dx should converge uniformly in a given
a

domain is that, corresponding to any positive number &, there exists a number X independent

of a such that
/ f(x,@)dx

for all values of « in the domain whenever x” > x’ > X.

<é&

4.43 Tests for the convergence of an infinite integral

There are conditions for the convergence of an infinite integral analogous to those given
in Chapter 2 for the convergence of an infinite series. The following tests are of special
importance.

(D) Absolutely convergent integrals. It may be shewn that / f(x)dx certainly converges if

| f(x)|dx does so; and the former integral is then said to be absolutely convergent. The

praoof is similar to that of §2.32.
Example 4.4.2 The comparison test. If |f(x)| < g(x) and / g(x) dx converges, then
/ f(x) dx converges absolutely.

Note It was observed by Dirichlet [175] (with the example f(x) = sin x?) that it is not
necessary for the convergence of / f(x)dx that f(x) — 0 as x — oo: the reader may see

a
this by considering the function

) 0 m<x<n+1l-(n+1)?),
x) =

m+D*n+1-x)[x-m+D+@n+1)?] m+l-(r+)?<x<n+l,
where 7 takes all integral values.

'3 n+l 1
For / f(x) dx increases with & and / f(x)dx = E(H + 1)7%; whence it follows with-
0 n

out difficulty that f(x)dx converges. But when x = n+ 1 - 1(n+1)2, f(x) = 1; and

a
so f(x) does not tend to zero.
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(I) The Maclaurin—Cauchy test.> If f(x) > 0 and f(x) — O steadily, / f(x)dx and
1

>, f(n) converge or diverge together.
n=1
m+1

For f(m) > f(x)dx > f(m+ 1), and so

m

n+1

Sz [ sz Y son
m=1 1 m=2

n+l
The first inequality shews that, if the series converges, the increasing sequence / f(x)dx

1
converges (§2.2) when n — oo through integral values, and hence it follows without difficulty

X

that f(x)dx converges when x’ — oo; also if the integral diverges, so does the series.
1

The second shews that if the series diverges so does the integral, and if the integral converges

so does the series (§2.2).

(IIT) Bertrand’s test [67, p. 38=39]. If f(x) = O(x*™1), / f(x) dx converges when A < 0;

and if f(x) = O(x~"{log x}*1), / f(x) dx converges when A < 0.
These results are particular cases of the comparison test given in (I).

(IV) Chartier’s test [143] for integrals involving periodic functions.*

./; o(x)dx

For if the upper bound of / &(x) dx' be A, we can choose X such that f(x) < g/2A

If f(x) — O steadily as x — oo and if is bounded as x — oo, then

/ ) f(x)¢(x) dx is convergent.

a
when x > X; and then by the second mean-value theorem, when x”” > x” > X, we have

‘/j o(x)dx — /aX/ o(x)dx

= f(x")

3
- ' F&) / 6(x) dx
<2Af(x) < &,

/ F(x) 6(x) dx

which is the condition for convergence.

Example 4.4.3 / ML ix converges.
0 X

S 3 _
Example 4.4.4 / de converges.
0 X

3 Maclaurin [449, vol. I, p. 289-290] makes a verbal statement practically equivalent to this result. Cauchy’s
result is given in [129, v. 7, p. 269].

4 1t is remarkable that this test for conditionally convergent integrals should have been given some years before
formal definitions of absolutely convergent integrals.
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4.431 Tests for uniformity of convergence of an infinite integral.
The results of this section and of §4.44 are due to de la Vallée Poussin [637].

(D) De la Vallée Poussin’s test. This name is due to Osgood. The reader will easily see by using

the reasoning of §3.34 that / f(x,@) dx converges uniformly with regard to & in a domain
a

of values of a if | f(x,@)| < u(x), where u(x) is independent of @ and / u(x) dx converges.
/ f(x,a)dx

Example 4.4.5 / x%"1e™ dx converges uniformly in any interval (A, B) such that 1 <
0
A<B.

X

For, choosing X so that/ u(x)dx < e when x” > x’ > X, we have < g,

and the choice of X is in()iependent of a.

(Il) The method of change of variable. This may be illustrated by an example. Consider

e .
sin ax .
/ dx where a is real. We have
0 X

" sinax ax" gin
/ dx = / sy dy.
x’ X ax’ y
Y sin
L5
v’ y

< & whenever |ax’| > Y;if |a| = § > 0, we therefore get

.
sin ax
/ dx
" X

when x” > x’ > X = Y/§; and this choice of X is independent of a. So the convergence is
uniform when a > § > 0 and whena < -6 < 0.

® sin
Since / oy dy converges we can find Y such that <ewheny” >y >7.
0 y

X
/x'

’

sinax

So dx

<é&

Example 4.4.6 (de la Vallée Poussin) Prove that / { / sin(b*x?) db} dx is uniformly
1 0
convergent in any range of real values of a.

253

f 7 V2 sinzdz
0

o0
endent of a and x since z"Y2 sin 7 dz converges.
p g
0

Write b*x® = z, and observe that does not exceed a constant inde-

(IIT) The method of integration by parts. If / f(x,a)dx = ¢(x,a) + / x(x,a)dx and if
¢(x,a) — 0 uniformly as x — oo and / x(x,a) dx converges uniformly with regard to a,

then obviously / f(x,a) dx converges uniformly with regard to a.

(IV) The method of decomposition.
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Example 4.4.7

@ i 1 [ si 1 1 [ sin(a— 1
/ cosx sinax , _/ sin(a + 1)x dx 4 _/ sin(a — 1)x dx:
0 X 2 0 X 2 0 X

both of the latter integrals converge uniformly in any closed domain of real values of a from
which the points a = =1 are excluded.

4.44 Theorems concerning uniformly convergent infinite integrals

(D Let / f(x,@) dx converge uniformly when a lies in a domain S. Then, if f(x,a) is

a continuous function of both variables when x > a and a lies in S, f(x,a)dx is a

a
continuous function of a. This result is due to Stokes. His statement is that the integral is a
continuous function of a if it does not ‘converge infinitely slowly’.

/ f(x,a)dx
£
& > X. Also we can find 6 independent of x and a, such that

|f(x,0) = f(x,@)] < £/(X - a)

whenever |@ — a’| < §. That is to say, given &, we can find 6 independent of a, such that

For, given &, we can find X independent of «, such that < & whenever

o0 oo X
/f(x,a’)dx—/ f(x,a)dx| < / {f(x,a) = f(x,a")} dx
,a')d ) ,a)d
+/x f(,a')dx |+ /x f(x,a)dx
< 3¢,

whenever |@’ — a| < §; and this is the condition for continuity.

(D) If f(x, @) satisfies the same conditions as in (1), and if « lies in S when A < a < B, then

S A romafaa= [T [ rwaraofas
JAL reaadar= [ [" s ax
Therefore

/AB {/awf(x,a)dx}da—‘/j {‘/ABf(x,a)da}dx
/AB {[jf(x,a)dx}da

For, by §4.3,

B
</ eda<e(B-A),
A

for all sufficiently large values of &.
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But, from §2.1 and §4.41, this is the condition that

é}gl;/j {/ABf(x,a)da}dx
/AB {‘/amf(x,a)dx}da

d [~ “ 9
Corollary 4.4.1 The equation T / ¢ (x,a)dx = / a—¢ dx is true if the integral on
a < Oa

a
the right converges uniformly and the integrand is a continuous function of both variables,
when x > a and a lies in a domain S, and if the integral on the left is convergent.

should exist, and be equal to

0
Let A be a point of S, and let 8_¢ = f(x,a), so that, by Example 4.1.8,
a
[ roada=sea-o0a.
A

Then / { / f(x,a) da} dx converges, that is / {¢ (x,a) — ¢ (x,A)} dx converges,
a A a

and therefore, since / ¢(x,a) dx converges, so does / ¢ (x,A)dx.

Then
d%[ / mas(x,a)dx]: [ / {#(x.a) - o(x. A)}dx]

= di [ {/A f(x,a)da} dx]
d o
=%, {/a f(x,a)dx} da

=/ f(x,a)dx=/ma—¢dx,
a « Oa

which is the required result; the change of the order of the integrations has been justified
above, and the differentiation of fAu with regard to a is justified by §4.44 (1) and Example 4.1.8.

4.5 Improper integrals. Principal values

b
If |f(x)] > o0 as x — a+ 0, then 6lim0 / f(x)dx may exist, and is written simply
-t a+o

b
f(x)dx; this limit is called an improper integral. If |f(x)] — oo as x — ¢, where

a
a < ¢ < b, then

c=6 b
Jim, [ s+ tim, [ gcoas

c+d’
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b
may exist; this is also written f(x)dx, and is also called an improper integral; it might

however happen that neither of t%ese limits exists when ¢,6” — 0 independently, but

c=0 b
5113}() {/a f(x)dx + [+6 f(x)dx}

b
exists; this is called Cauchy’s principal value of / f(x)dx and is written for brevity

P‘/ab f(x)dx.

Results similar to those of §4.4-§4.44 may be obtained for improper integrals. But all
that is required in practice is (i) the idea of absolute convergence, (ii) the analogue of
Bertrand’s test for convergence, (iii) the analogue of de la Vallée Poussin’s test for uniformity
of convergence. The construction of these is left to the reader, as is also the consideration of
integrals in which the integrand has an infinite limit at more than one point of the range of
integration. For a detailed discussion of improper integrals, the reader is referred either to
Hobson [315] or to Pierpont [519]. The connexion between infinite integrals and improper
integrals is exhibited by Bromwich [102, §164].

Example 4.5.1 1. / x~Y2 cos x dx is an improper integral.
0

1
2. / x4 11— x)*~! dx is an improper integral if 0 < A < 1,0 < u < 1. It does not converge
0

for negative values of A and .

2 a-1
3. P / 1 dx is the principal value of an improper integral when 0 < @ < 1.
0 - X

4.51 The inversion of the order of integration of a certain repeated integral

General conditions for the legitimacy of inverting the order of integration when the integrand
is not continuous are difficult to obtain. The following is a good example of the difficulties
to be overcome in inverting the order of integration in a repeated improper integral.

Let f(x,y) be a continuous function of both variables, and let 0 < A, u, v < 1; then

1 1-x
/ dx {/ YN = x = y) T f(x, ) dy}
0 0
1 1-v
= / dy {/ YN = x =y () dx} :
0 0

This integral, which was first employed by Dirichlet, is of importance in the theory of integral
equations; the investigation which we shall give is due to W. A. Hurwitz [329, p. 183].

Let x 'y (1 — x = )" ' f(x,y) = ¢(x,y); and let M be the upper bound of |f(x,)|.
Let 6 be any positive number less than 1/8. Draw the triangle whose sides are x = 8§, y = 6,
x +y = 1-46; at all points on and inside this triangle ¢(x,y) is continuous, and hence, by
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Corollary 4.3.1

1-26 1-x-6 1-26 l-y-6
/5 dx { /5 ¢(x,y)dy} = /5 dy { /6 ¢(x,y)dx} .
Now

1-26 1-x 1-26 1-x-6
/ dx{ ¢(x,y>dy}= / dx{ / ¢(x,y)dy}
o) 0 o) )
1-26 1-26
+‘/ﬂ I]dX'+&/n L dx,
o) )

I-x

s
where I} = / ¢(x,y)dy,and I, = / #(x,y)dy. But
0 1

-x=6

0 s
I < / MxTy (1 = x = y) Tl dy < MxtI(1 - x - 6)"‘1/ vy,
0 0
since (1 —x —y)' < (1 —x - 6)"". Therefore, writing x = (1 — 6)x;, and since
1

/ xf_l(l — x1)"'dx; = B(A4,v) exists if 1 > 0, v > 0 (see (2) of Example 4.5.1), we
0

have
1-26
‘/n Ildx
5

1-6
<Ms* ! / (1 = x =6 dx
0

1
<Mt (1 - 6)’”"_1/ (1 = x)
0
<M&*u ' (1 -6 'B(A,v) = 0as 6 — 0.

The reader will prove similarly that I, — 0 as § — 0.

Hence’
1 1-x 1-26 1-x
/0 dx{/o #(x,y) dy} = }5133)/6 dx {/O ¢(x,y) dy}
1-26 1-x-6
“um [ ax { /6 B(x,) dy}
1-26 l-y—-5
= lim dy {/ o(x,y) dx},
5 5

5—0

by what has been already proved; but, by a precisely similar piece of work, the last integral is

1 1-v
/ dy{ 6(x,) dx} .
0 0

5 The repeated integral exists, and is, in fact, absolutely convergent; for

I-x 1
/ Iy (1 = x = y) 7 f(x, y) dy | < MxAI (1 = x)p+! / s*1(1 - 6) " ds,
0 0

1 1
writing y = (1 — x)8; and / MxVN 1 - x) ™ dx - / 81711 — 6)”~! dé exists. And since the integral
0 0

I-& 1-26
exists, its value which is lim may be written lim .
S5,e—0 /s 60 Js



4.6 Complex integration 75
We have consequently proved the theorem in question.

Corollary 4.5.1 Writing ¢ = a+ (b—a)x, n = b — (b — a)y, we see that, if ¢(£,n) is
continuous,

b b
/ d¢ {/ E-a) ' b-nym-&"¢&n) dn}
a &

b n
- / dn {/ E -y b - - &7 eEm) df} :
This is called Dirichlet’s formula.

Note What are now called infinite and improper integrals were defined by Cauchy [124],
though the idea of infinite integrals seems to date from Maclaurin [449]. The test for con-
vergence was employed by Chartier [143]. Stokes (1847) distinguished between ‘essentially’
(absolutely) and non-essentially convergent integrals though he did not give a formal defi-
nition. Such a definition was given by Dirichlet [179] in 1854 and 1858 (see [179, p. 39]).
In the early part of the nineteenth century improper integrals received more attention than
infinite integrals, probably because it was not fully realised that an infinite integral is really
the limit of an integral.

4.6 Complex integration

A treatment of complex integration based on a different set of ideas and not making so many
assumptions concerning the curve AB will be found in Watson [650].

Integration with regard to areal variable x may be regarded as integration along a particular
path (namely part of the real axis) in the Argand diagram. Let f(z) (= P +iQ), be a function
of a complex variable z, which is continuous along a simple curve AB in the Argand diagram.

Let the equations of the curve be x = x(¢), y = y(t) (a <t < b). Let x(a) + iy(a) = zo,
x(b) +iy(b) =

Then if x(), y(t) have continuous differential coefficients® (see Example 4.1.9) we define

/ f(2) dz taken along the simple curve AB to mean

/(P+1Q)(—+ )dt

b 2 2
d d
The ‘length’ of the curve AB will be defined as / (d—);) + (d_)t}) dt. Tt obviously

dx d
exists if —, D are continuous; we have thus reduced the discussion of a complex integral
to the discussion of four real integrals, viz.

dx b dy
/apdd /ant /Qd /aQEdt.

6 This assumption will be made throughout the subsequent work.
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By Example 4.1.9, this definition is consistent with the definition of an integral when AB
happens to be part of the real axis.

Example 4.6.1 / f(z)dz = / f(z) dz, the paths of integration being the same (but

in opposite dlrectlons) in each integral.

zZ VA b
dx dy dy dx
dz =7 -z, dz = C DBy E
/zo ¢ 0 /ZOZZ /a{xdt Y (xdt ydt)}

L, 1, 17 2_ 2
= | 5% =5y Hixy = =(Z° - g).

t=a

4.61 The fundamental theorem of complex integration
From §4.13, the reader will easily deduce the following theorem:

Let a sequence of points be taken on a simple curve 70Z; and let the first n of them,
rearranged in order of magnitude of their parameters, be called

A A @ = A =2);

n+1

let their parameters be ti"), té") .. ,tfl"), and let the sequence be such that, given any number

6, we can find N such that, when n > N, t(" t(") <6, forr=0,1,2,...,n; let g(") be any

point whose parameter lies between tﬁ ") and ti +)], then we can make

n z
2 Zri = Zan) FG) = / f(2) dz
r=0 20

arbitrarily small by taking n sufficiently large.

4.62 An upper limit to the value of a complex integral
Let M be the upper bound of the continuous function | f(z)|. Then

z b
[ @< [ % 2]

b ) 5y 172
dx dy
< MAJ|— — dt
—/a {(dt) +(dt)}

<ML,
Z
/ f(z)dz

dt

where L is the ‘length’ of the curve zyZ. That is to say, cannot exceed M L.
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4.7 Integration of infinite series

We shall now shew that if S(z) = u;(z) + u2(z) + --- is a uniformly convergent series of
continuous functions of z, for values of z contained within some region, then the series

‘/Cul(z)dz+/cu2(z)dz+-~,

(where all the integrals are taken along some path C in the region) is convergent, and has for
sum /c S(z)dz.
For, writing

S(z) = u1(2) + uz(2) + - - + un(2) + Ru(2),

/C S(2)dz = /C (2)dz + - + /C un(z) dz + /C Ru(2)dz.

Now since the series is uniformly convergent, to every positive number € there corresponds
a number r independent of z, such that when n > r we have | R,(z)| < &, for all values of
z in the region considered. Therefore if L be the length of the path of integration, we have

(§4.62)
/ R.(z)dz
C

Therefore the modulus of the difference between / S(z)dz and Z / u,(z) dz can be

made less than any posmve number, by giving n any sufficiently large value. This proves

we have

< elL.

both that the series Z un(z) dz is convergent, and that its sum is / S(z) dz.
m=1JC C

Corollary 4.7.1 As in Corollary 4.4.1, it may be shewn that’

= SWICE Z Tn2)

n=0

if the series on the right converges uniformly and the series on the left is convergent.

Example 4.7.1 Consider the series

(o]

Z 2x{n(n + 1)sin®> x> — 1} cos x
= {1+ n?sin® x2}{1 + (n + 1)? sin® x2}’

2

in which x is real.
The nth term is

2xn cos x* 2x(n + 1) cos x?
l+n?sin®x2 1+ (n+1)?sin®x2’
7 df (=) means hm M where i — 0 along a definite simple curve; this definition is modified slightly in

§5 12 in the case when f(z) is an analytic function.
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and the sum of n terms is therefore

2 2

2x CoS x 2x(n+ 1)cos x

1+sin?x2 1+ (n+1)2sin®>x2’

Hence the series is absolutely convergent for all real values of x except ++/mmx where
m=1,2,...;but

Ro(x) 2x (n+ 1) cos x?
n-x = ’
1 + (n+ 1)?sin® x2

and if n be any integer, by taking x = (n + 1)~ this has the limit 2 as n — oo. The series is
therefore non-uniformly convergent near x = 0.
2

X cosx
——, and so the integral from 0 to x of the
1 + sin” x2

sum of the series is arctan (sin xz). On the other hand, the sum of the integrals from O to x of
the first n terms of the series is

Now the sum to infinity of the series is

arctan (sin x*) — arctan ((n + 1) sinx?),

and as n — oo this tends to arctan (sin x*) — 2. Therefore the integral of the sum of the series
differs from the sum of the integrals of the terms by 7.

Example 4.7.2 Discuss, in a similar manner, the series

i 2¢"x{1 —n(e - 1) + "' x?}

n(n+ 1)(1 + e"x2)(1 + e"t1x2)

n=1

for real values of x.
Example 4.7.3 Discuss the series
u+uy+uy+---,

where

U =ze®, Uy = nze ™™ = (n—1)ze "V,
for real values of z. Hint. The sum of the first n terms is nze™%, so the sum to infinity is 0

for all real values of z. Since the terms u,, are real and ultimately all of the same sign, the

convergence is absolute.
z z z
/ uldz+/ uzdz+/ usdz +---,
0 0 0

In the series
the sum of » terms is %(1 - e‘"ez), and this tends to the limit % as n tends to infinity; this is
not equal to the integral from O to z of the sum of the series } u,,.

The explanation of this discrepancy is to be found in the non-uniformity of the convergence
near z = 0, for the remainder after n terms in the series u; + u + - - - is —nzefnzz; and by
taking z = n~' we can make this equal to e~'/", which is not arbitrarily small; the series is
therefore non-uniformly convergent near z = 0.
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Example 4.7.4 (Trinity, 1903) Compare the values of

/Oz{nz.:;un}dz and Z‘/Ozundz,

3 2n’z B 2(n+1)*z
T (L+n22)logn+1) {1+ (n+1)2z2}log(n+2)

where

Un

4.8 Miscellaneous examples

Example 4.1 (Dirichlet, Du Bois Reymond) Shew that the integrals

/ sin(x?) dx, / cos(x?) dx, / x exp(—x°sin’ x) dx
0 0 0

converge.

Example 4.2 (Stokes) If a be real, the integral
/ cos(ax) dx
o 1+x2

Example 4.3 (de la Vallée Poussin) Discuss the uniformity of the convergence of

is a continuous function of a.

x sin(x® — ax) dx. Hint. Use
0
a
3x3

1
3 / xsin(x® — ax)dx = — (l + ) cos(x® — ax) — / (—2 + 14) cos(x® — ax) dx
X x> x

1, [ sin(x’—ax)
+ ga / T dx.

00

Example 4.4 (Stokes) Shew that / exp[—e'“(x* — nx)] dx converges uniformly in the
0

1 1
range (—Eﬂ', zﬂ) of values of a.

xMdx

————— when u, v
1 + x”| sin x|? pov-p

Example 4.5 (Hardy [275]) Discuss the convergence of /
0

are positive.

Example 4.6 (Math. Trip. 1914) Examine the convergence of the integrals

*(1 1 1 \d s 2
/ L g dx /de_
o \x 2 1—-e¥) x 0 x"

o dx
E le 4.7 Shew that ——————— exists.
xample W /7r (i 02 X
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Example 4.8 (Math. Trip. 1908) Shew that / x7"e"* sin 2x dx converges if a > 0,

n>0.

Example 4.9 (Lerch [430]) If a series g(z) = i(CV — Cy41)sin(2v + 1)xrz, (in which

v=0

/4
Co = 0) converges uniformly in an interval, shew that g(z)— is the derivative of the
sinmz

0
series f(z) = X, % sin2vrnz.
v=1

Example 4.10 (Math. Trip. 1904) Shew that
/ / / dxydx; - - - dx,
(xf + 25+ )
/m/w /m dxdx, - - - dx,
and e
xi’+x§+---+xﬁ

1 -1 -1 -1 ;
converge when @ > snanda™ + 87 +---+ 47 < 1 respectively.

Example 4.11 (Bocher) If f(x,y) be a continuous function of both x and y in the ranges
(a £ x < D), (a £y < b) except that it has ordinary discontinuities at points on a finite
number of curves, with continuously turning tangents, each of which meets any line parallel

to the coordinate axes only a finite number of times, then / f(x,y)dx is a continuous
a

function of y. Hint. Consider

a;—o, a>— 52 b
/ / - f (Flay + 1) = fx.y)} dx.
a+&; anpten

where the numbers 61,0,,...,&1,&,... are so chosen as to exclude the discontinuities of
f(x,y + h) from the range of integration; a, a», . . . being the discontinuities of f(x,y).
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The Fundamental Properties of Analytic Functions;
Taylor’s, Laurent’s and Liouville’s Theorems

5.1 Property of the elementary functions

The reader will be already familiar with the term elementary function, as used (in textbooks
on Algebra, Trigonometry, and the Differential Calculus) to denote certain analytical expres-
sions' depending on a variable z, the symbols involved therein being those of elementary
algebra together with exponentials, logarithms and the trigonometrical functions; examples
of such expressions are

2 4

75, €%, logz, arcsin z°/%.

Such combinations of the elementary functions of analysis have in common a remarkable
property, which will now be investigated.

Take as an example the function e*. Write e* = f(z). Then, if z be a fixed point and if z’
be any other point, we have

f(Z') _ f(Z) _ ez’ — ¢ . e(z’—z) -1
-z -z -z

e 7—z (2 -2 '
—e{1+ X + 3 +---+},

and since the last series in brackets is uniformly convergent for all values of z’, it follows
(§3.7) that, as z” — z, the quotient

f@) - f(2)
7=z
tends to the limit ¢%, uniformly for all values of arg(z’ — z). This shews that the limit of
f&) - f)
-z
is in this case independent of the path by which the point 7’ tends towards coincidence with 7.
It will be found that this property is shared by many of the well-known elementary functions;

namely, that if f(z) be one of these functions and 4 be any complex number, the limiting
value of

LU+ - )

' The reader will observe that this is not the sense in which the term function is defined (§3.1) in this work.
Thus e.g. x — iy and |z| are functions of z (= x + iy) in the sense of §3.1, but are not elementary functions of
the type under consideration.

81
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exists and is independent of the mode in which h tends to zero.
The reader will, however, easily prove that, if f(z) = x — iy, where z = x + iy, then
lim L@+~ /(@)

Y is not independent of the mode in which 4 — 0.

5.11 Occasional failure of the property

For each of the elementary functions, however, there will be certain points z at which this
property will cease to hold good. Thus it does not hold for the function 1/(z — a) at the point
Z = a, since

y 1 1

im — -

h—0h |z—a+h z-a

does not exist when z = a. Similarly it does not hold for the functions logz and z'/? at
the point z = 0. These exceptional points are called singular points or singularities of the

function f(z) under consideration; at other points f(z) is said to be analytic. The property
does not hold good at any point for the function |z|.

5.12 Cauchy’s definition of an analytic function of a complex variable

(See the memoir [121]). The property considered in §5.11 will be taken as the basis of the
definition of an analytic function, which may be stated as follows.

Let a two-dimensional region in the z-plane be given; and let u be a function of z defined
uniquely at all points of the region. Let z, z + 6z be values of the variable z at two points,

ou
and u, u + ou the corresponding values of u. Then, if, at any point z within the area, 57

tends to a limit when 6x — 0, 6y — 0, independently (where 6z = dx + idy), u is saié
to be a function of z, which is monogenic or analytic at the point. The words ‘regular’ and
‘holomorphic’ are sometimes used. A distinction has been made by Borel [86, p. 137-138],
[87] between ‘monogenic’ and ‘analytic’ functions in the case of functions with an infinite
number of singularities. See §5.51. If the function is analytic and one-valued at all points of
the region, we say that the function is analytic throughout the region. See the footnote after
Corollary 5.2.2.

We shall frequently use the word ‘function’ alone to denote an analytic function, as the
functions studied in this work will be almost exclusively analytic functions. In the foregoing
definition, the function « has been defined only within a certain region in the z-plane. As will
be seen subsequently, however, the function u can generally be defined for other values of z
not included in this region; and (as in the case of the elementary functions already discussed)
may have singularities, for which the fundamental property no longer holds, at certain points
outside the limits of the region. We shall now state the definition of analytic functionality in
a more arithmetical form.

Let f(z) be analytic at z, and let & be an arbitrary positive number; then we can find
numbers ¢ and ¢ (with § depending on &) such that

f@) - fz)

-z

fl<e¢
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whenever |7/ — z| < 6.

If f(z) is analytic at all points z of a region, £ obviously depends on z; we consequently
write £ = f’(z). Hence f(z’) = f(2) + (2’ — 2)f’(z) + v(z’ — ), where v is a function of z and
7’ such that |v| < £ when |7/ — z| < 6.

Example 5.1.1 Find the points at which the following functions are not analytic:

7%
cosec 7 (z = nm, n any integer);

z-1
T A

ez (z=0);
{(z= Dz} (z=0,1).

A

Example 5.1.2 (Riemann) If z = x + iy, f(z) = u + iv, where u,v, x, y are real and f is an

analytic function, shew that,
du Ov u ov

ox 0dy 8y  ox

5.13 An application of the modified Heine—Borel theorem

Let f(z) be analytic at all points of a continuum; and on any point z of the boundary of the
continuum let numbers fi(z),d (6 depending on z) exist such that

If(Z) - f(z) - (' —2) fild) <& |z’ =2

whenever |z’ — z| < § and 7’ is a point of the continuum or its boundary. Hint. We write
fi(z) instead of f’(z) as the differential coefficient might not exist when z” approaches z from
outside the boundary so that fi(z) is not necessarily a unique derivative.

The above inequality is obviously satisfied for all points z of the continuum as well as
boundary points.

Applying the two-dimensional form of the theorem of §3.6, we see that the region formed
by the continuum and its boundary can be divided into a finite number of parts (squares with
sides parallel to the axes and their interiors, or portions of such squares) such that inside or
on the boundary of any part there is one point z; such that the inequality

If(2) = f(z) = (@ —z2)fi(z)] <€ 2" -zl

is satisfied by all points z’ inside or on the boundary of that part.

5.2 Cauchy’s theorem on the integral of a function round a contour

The results here are due to Cauchy [121]. The proof here given is that due to Goursat [254].

A simple closed curve C in the plane of the variable z is often called a contour; if A, B, D
be points taken in order in the counter-clockwise sense along the arc of the contour, and if
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f(z) be a one-valued continuous? function of z (not necessarily analytic) at all points on the

arc, then the integral
/ f(z)dz or / f(2)dz
ABDA C

taken round the contour, starting from the point A and returning to A again, is called the
integral of f(z) taken along the contour. Clearly the value of the integral taken along the
contour is unaltered if some point in the contour other than A is taken as the starting-point.

We shall now prove a result due to Cauchy, which may be stated as follows. If f(z) is a
Sfunction of z, analytic at all points on and inside a contour C, then

/Cf(z) dz =0.

Note Itisnotnecessary that f(z) should be analytic on C (it is sufficient that it be continuous
on and inside C), but if f(z) is not analytic on C, the theorem is much harder to prove. This
proof merely assumes that f’(z) exists at all points on and inside C. Earlier proofs made
more extended assumptions; thus Cauchy’s proof assumed the continuity of f’(z). Riemann’s
proof made an equivalent assumption. Goursat’s first proof assumed that f(z) was uniformly
differentiable throughout C.

For divide up the interior of C by lines parallel to the real and imaginary axes in the
manner of §5.13; then the interior of C is divided into a number of regions whose boundaries
are squares Cy,C,, . . ., Cy, and other regions whose boundaries Dy, D, . .., Dy are portions
of sides of squares and parts of C; consider

i/c f(Z)dZ+nZIZ;/D" f(2)dz,

n=1 n
each of the paths of integration being taken counter-clockwise; in the complete sum each side
of each square appears twice as a path of integration, and the integrals along it are taken in
opposite directions and consequently cancel (see Example 4.6.1); the only parts of the sum
which survive are the integrals of f(z) taken along a number of arcs which together make

up C, each arc being taken in the same sense as in / f(z) dz; these integrals therefore just
c

ki dz.
ma eup‘/cf(z) z
Now consider / f(z) dz. With the notation of §5.12,
Cn
[ r@a= [ e+ c-aresc-an e
Cy, Cn
= - ! d ! d - dz.
{f(z1) zlf(zl)}/C” z+f(zl)/cnz z+/cn(z z1)vdz

But

foa=tse =0 [ ca= 5] =0
Cn c, .

2 Tt is sufficient for f(z) to be continuous when variations of z along the arc only are considered.
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by Example 4.6.1, since the end points of C, coincide. Now let /,, be the side of C,, and A,
the area of C,. Then, using §4.62,
< / Iz - 2)vdz]
Cn

"/Cnf(z)dz = ‘./(:,,(Z_Zl)vdz

< 81,,\/5/ | dz| = aln\/z <41, = 4£An\/§.
Cn
In like manner

d - d
/D”f(z) Z S/Dnl(z z1)vdz|

< 4s(Al + 1 A,)V2,
where A, is the area of the complete square of which D, is part, [, is the side of this square
and A, is the length of the part of C which lies inside this square. Hence, if A be the whole
length of C, while [ is the side of a square which encloses all the squares C, and D,,

M N
‘/Cf(z)dz s; /C F(2) dz +Zl /D F(2)dz
M N N
< 45\/§{ZA,,+ZA;,+IZ/1”}
n=1 n=1 n=1

< 4eV2(1% + 1).

Now ¢ is arbitrarily small, and I/, 4 and / f(z)dz are independent of €. It therefore
c

follows from this inequality that the only value which / f(z) dz can have is zero; and this
c

is Cauchy’s result.

Corollary 5.2.1 Ifthere are two paths zoAZ and zoBZ from zg to Z, and if f(z) is a function
of z analytic at all points on these curves and throughout the domain enclosed by these two

paths, then / f(2) dz has the same value whether the path of integration is zo0AZ or zoBZ.

This follows from the fact that z0AZ Bz is a contour, and so the integral taken round it (which
is the difference of the integrals along 70AZ and z0BZ) is zero. Thus, if f(z) be an analytic

function of z, the value of f(z)dz is to a certain extent independent of the choice of the

AB
arc AB, and depends only on the terminal points A and B. It must be borne in mind that this
is only the case when f(z) is an analytic function in the sense of §5.12.

Corollary 5.2.2 Suppose that two simple closed curves Cy and Cy are given, such that C,

completely encloses C,, as e.g. would be the case if Cy and Cy were confocal ellipses.
Suppose moreover that f(z) is a function which is analytic® at all points on Cy and C, and

throughout the ring-shaped region contained between Cy and C,. Then by drawing a network

3 The phrase analytic throughout a region, implies one-valuedness (§5.12); that is to say that after z has
described a closed path surrounding Cy, f(z) has returned to its initial value. A function such as log z
considered in the region 1 < |z| < 2 will be said to be analytic at all points of the region.



86 The Fundamental Properties of Analytic Functions

of intersecting lines in this ring-shaped space, we can shew, exactly as in the theorem just
proved, that the integral
/ f(z)dz

is zero, where the integration is taken round the whole boundary of the ring-shaped space;
this boundary consisting of two curves Cy and Cy, the one described in the counter-clockwise
direction and the other described in the clockwise direction.

Corollary 5.2.3 [n general, if any connected region be given in the z-plane, bounded by
any number of simple closed curves Cy,Cy,C,,. .., and if f(z) be any function of z which

is analytic and one-valued everywhere in this region, then | f(z)dz is zero, where the

integral is taken round the whole boundary of the region; this boundary consisting of the
curves Cy, Cy,. .., each described in such a sense that the region is kept either always on the
right or always on the left of a person walking in the sense in question round the boundary.

An extension of Cauchy’s theorem / f(z)dz = 0, to curves lying on a cone whose vertex
is at the origin, has been made by Ravut [549], Morera [474] and Osgood [511] have shewn
that the property / f(z) dz = 0 may be taken as the property defining an analytic function,
the other properties being deducible from it. (See Chapter 5, Example 5.16).

Example 5.2.1 A ring-shaped region is bounded by the two circles |z] = 1 and |z] = 2 in

the z-plane. Verify that the value of / —Z, where the integral is taken round the boundary
b4

of this region, is zero. Solution. For the boundary consists of the circumference |z| = 1,
described in the clockwise direction, together with the circumference |z| = 2, described
in the counter-clockwise direction. Thus, if for points on the first circumference we write
z = ¢'?, and for points on the second circumference we write z = 2¢'?, then 6 and ¢ are real,
and the integral becomes

-2 - i0 21 - i¢
. .2
/ ! e.d0+/ [-27dg i omi= 0,
0 0

et(—? 2ei¢>

5.21 The value of an analytic function at a point, expressed as an integral taken
round a contour enclosing the point

Let C be a contour within and on which f(z) is an analytic function of z. Then, if a be any
point within the contour,

1@

z—a

is a function of z, which is analytic at all points within the contour C except the point z = a.
Now, given &, we can find ¢ such that

1f(2) - fla) - (z-a)f' (@) < €|z - al
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whenever |z — a| < §; with the point a as centre describe a circle y of radius r < &, r being so
small that vy lies wholly inside C. Then in the space between y and C the function f(z)/(z—a)
is analytic, and so, by Corollary 5.2.2 we have

fQdz _ [ f@)dz

c 72—a , z—a’

where / and / denote integrals taken counter-clockwise along the curves C and y respec-
c

Y
tively. But, since |z — a| < 6 on vy, we have

f(Z) dz /f(a) +(z - a)f (a) +(z - a)

Y

where |v| < &; and so

f(2)dz dz -,
Cz_—a—f(a)‘/yz_a+f(a)/ydz+/yvdz.

Now, if z be on vy, we may write z — a = re'®, where r is the radius of the circle y, and

consequently
d 2 - i()dg 2r
: :/ e :i/ do = 2ni,
y 2~ a 0 ret 0

2
/dz:/ ire’ do = 0;
y 0
/vdz
¥

[ niga) -
C

-

and

also, by §4.62,

<& 2nr.

/vdz
Y

But the left-hand side is independent of &, and so it must be zero, since ¢ is arbitrary; that is
to say

Thus

< 2nre.

f(z) dz

2ni Jo z—a

fla)= >

This remarkable result expresses the value of a function f(z), (which is analytic on and
inside C) at any point a within a contour C, in terms of an integral which depends only on
the value of f(z) at points on the contour itself.

Corollary 5.2.4 If f(z) is an analytic one-valued function of z in a ring-shaped region
bounded by two curves C and C', and a is a point in the region, then

1 f(Z) 1 f(Z)
fla)= — ot

i cz—a 2ni Jooz—a

where C is the outer of the curves and the integrals are taken counter-clockwise.
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5.22 The derivatives of an analytic function f(z)

The function f”(z), which is the limit of
f(z+h) - f(z)
h
as h tends to zero, is called the derivate or derivative of f(z). We shall now shew that f”(z)
is itself an analytic function of z, and consequently itself possesses a derivative.
For if C be a contour surrounding the point a, and situated entirely within the region in
which f(z) is analytic, we have

fla+h) - f(a)
h

f'(a) = lim

~ lim 1 f(z)dz _/f(z)dz
_h—>027Tih CZ_a—h c <—a

im f(z)dz
C h—027i Jo (z—a)z—a—h)
| [ f@dz |k f(z)dz

~ 2ni c (z—a)? h0 2 c(z—aP(z—a-h)

Now, on C, f(z) is continuous and therefore bounded, and so is (z — @)~?; while we can

/(@)
(z—a)y(z—a—-h)

is bounded; let

take || less than the lower bound of %Iz — a|. Therefore
its upper bound be K. Then, if / be the length of C,

N f(z)dz _ B
lim —— < lim |h|(2n) K1 = 0
’1%2ﬂi/c(z—a)2(z—a—h) < Jim 11(2m) :

h—0
and consequently
1 f(2)dz
(@)= — | ——, 5.1
fl@ 2711"/C(z—a)2 ©-1)

a formula which expresses the value of the derivative of a function at a point as an integral
taken along a contour enclosing the point.
From this formula we have, if the points a and a + h are inside C,

f'(a+h)—f'(a)_i‘/f(z){ 1 1 }dz
h " 2miJe h |(z—a-h)? (z-a)

1 2z—a—-1h)

B 2_7ri/cf(z)(z —a—-h)3*(z-a)? dz
B i f(2)dz
" 27 Je (z—a)

+ /’lAh,

and it is easily seen that A, is a bounded function of z when |A| < %lz — al. Therefore, as h
tends to zero, h~'{ f'(a + h) — f’(a)} tends to a limit, namely
2 f(2)dz

2_71'i c(z—a)3'

Since f’(a) has aunique differential coefficient, it is an analytic function of a; its derivative,



5.3 Analytic functions represented by uniformly convergent series 89

which is represented by the expression just given, is denoted by f*'(a), and is called the second
derivative of f(a). Similarly it can be shewn that f”'(a) is an analytic function of a, possessing
a derivative equal to
flz)dz
2mi c @-ay’
this is denoted by f"”(a), and is called the third derivative of f(a). And in general an nth
derivative f"(a) of f(a) exists, expressible by the integral

n! f(2)dz

2ni Jo (z —a)™+V

and having itself a derivative of the form

(n+1)! f(2ydz
2mi L (z — a)m?’

the reader will see that this can be proved by induction without difficulty.

A function which possesses a first derivative with respect to the complex variable z at all
points of a closed two-dimensional region in the z-plane therefore possesses derivatives of
all orders at all points inside the region.

5.23 Cauchy’s inequality for ) (a)

Let f(z) be analytic on and inside a circle C with centre a and radius r. Let M be the upper
bound of f(z) on the circle. Then, by §4.62,

' M
) < d
|f ({1)| 2 c rn+l| Zl
Mn!
s
Example 5.2.2 (Trinity, 1910) If f(z) is analytic, z = x + iy and
) 0? 0?
= —+ —,
ox?  0y?

shew that V2 log | f(z)| = 0; and V?|f(z)| > O unless f(z) = 0 or f'(z) =0

5.3 Analytic functions represented by uniformly convergent series

Let X, fu(z) be a series such that: (i) it converges uniformly along a contour C; (ii) f,(z) is
analytic throughout C and its interior. Then ), f,(z) converges, and the sum of the series
is an analytic function throughout C and its interior.

For let a be any point inside C; on C, let 3", f,(z) = ®(z). Then

CD(z) 1 dz
% cz-— " 2 {Z f"(z)}

N fu(2)
- 2{ae [ £}

n= ci~
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by §4.7. Since |z — a|™" is bounded when a is fixed and z is on C, the uniformity of the
convergence of Z Jf2(2)/(z — a) follows from that of Z f.(z). But this last series, by §5.21,
is Z Jn(a); the series under consideration therefore converges at all points inside C; let its

n=0
sum inside C (as well as on C) be called ®(z). Then the function is analytic if it has a unique

differential coefficient at all points inside C. But if a and a + A are inside C,

O(a+h)-Da) 1 / D(z)dz

27i Jo (z—a)z—a—hY

h  2nmi
and hence, as in §5.22, ;lzir% [{d)(a + h) — ®(a)} h‘l] exists and is equal to

1 [ D(z)dz,
2ni Je (z—a)*’

and therefore @(z) is analytic inside C. Further, by transformlng the last 1ntegral in the same
way as we transformed the first one, we see that ®’'(a) = Z f.(a), so that Z Jn(a) may be
differentiated term by term.

If a series of analytic functions converges only at points of a curve which is not closed
nothing can be inferred as to the convergence of the derived series. This might have been
anticipated as the main theorem of this section deals with uniformity of convergence over a
two- dimensional region.

Thus Z (- 1)"

n=1

al converges uniformly for real values of x (§3.34). But the derived

series Z( 1" | Snnr converges non-uniformly near x = (2m + 1)z, (m any integer); and
n=1 n

the derived series of this, viz. Y (=1)""! cos nx, does not converge at all.

Corollary 5.3.1 By §3.7, the sum of a power series is analytic inside its circle of conver-
gence.

5.31 Analytic functions represented by integrals
Let f(t, z) satisfy the following conditions when ¢ lies on a certain path of integration (a, b)
and z is any point of a region S:

0
1. fand B_f are continuous functions of ¢.
z

2. f is an analytic function of z.

0
3. The continuity of 8_f qua function of z is uniform with respect to the variable 7.
b4

Then / f(t,z) dt is an analytic function of z. For, by §4.2, it has the unique derivative

/ Of(t 3y
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5.32 Analytic functions represented by infinite integrals

From Corollary 4.4.1, it follows that / f(t,z) dt is an analytic function of z at all points

of aregion § if

(i) the integral converges,
(i) f(t,z) is an analytic function of z when ¢ is on the path of integration and z is on S,

0f(.2) .

(iii) is a continuous function of both variables,
0z

0
@iv) / f(; .2) dt converges uniformly throughout S.
a Z

For if these conditions are satisfied / f(t,z)dt has the unique derivative
a

®af(t,z)
/a 0z d

A case of very great importance is afforded by the integral / e 2 f(t) dt, where f(t)

0
is continuous and |f(z)] < Ke'" where K, r are independent of ¢; it is obvious from the

conditions stated that the integral is an analytic function of z when R(z) > r; > r. Condition

(iv) is satisfied, by §4.431 (I), since / re" " dt converges.
0

5.4 Taylor’s theorem

Consider a function f(z), which is analytic in the neighborhood of a point z = a. Let C be a
circle with a as centre in the z-plane, which does not have any singular point of the function
f(z) on or inside it; so that f(z) is analytic at all points on and inside C. Let z = a + h be
any point inside the circle C. Then, by §5.21, we have

d
fla+n)= 27rz zf—(ch —Zh
hn hn+1
:_/f@{ e a)2+"'+<z— )nﬂ+<z—a>ﬂﬂ(z—a—h>}dZ
_ ’ m o o orn) (Z)dZ n+l
=S+ b @+ @ e L [ LD e

But when z is on C, the modulus of f(z)/(z—a—h) is continuous, and so, by Corollary 3.6.2,
will not exceed some finite number M.
Therefore, by §4.62,

L/ f(z)dz - B! ‘
2ni Je (z—a)y*(z—a—h)

where R is the radius of the circle C, so that 27R is the length of the path of integration in
the last integral, and R = |z — a| for points z on the circumference of C.

M- 271R [a\""!
R b
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The right-hand side of the last inequality tends to zero as n — co. We have therefore

fla+h) = f(a)+hf'(@)+ z—?f"(a) b @)

which we can write

2
1) = f@+ G ~a)f @+ E2Y

This result is known as Taylor’s theorem; and the proof given is due to Cauchy. The formal
expansion was first published by Dr. Brook Taylor [621].

It follows that the radius of convergence of a power series is always at least so large as
only just to exclude from the interior of the circle of convergence the nearest singularity of
the function represented by the series. And by Corollary 5.3.1 it follows that the radius of
convergence is not larger than the number just specified. Hence the radius of convergence is
just such as to exclude from the interior of the circle that singularity of the function which is
nearest to a.

f”(a)+...+(Z;_'a)nf(">(a)+....

At this stage we may introduce some terms which will be frequently used.

If f(a) = 0, the function f(z) is said to have a zero at the point z = a. If at such
a point f’(a) is different from zero, the zero of f(a) is said to be simple; if, however,
f'(a), f"(a),. .., f"V(a) are all zero, so that the Taylor’s expansion of f(z) at z = a begins
with a term in (z — @)", then the function f(z) is said to have a zero of the nth order at the
point z = a.

Example 5.4.1 Find the function f(z), which is analytic throughout the circle C and its
interior, whose centre is at the origin and whose radius is unity, and has the value

a—cosf v sin @
i
a?—-2acosf+ 1 a?—2acosf+ 1

(where a > 1 and 6 is the vectorial angle) at points on the circumference of C.
We have

n n! (z)dz
o= [ 22

2”- . .

n! . a—cosf +isind .
= e . ide - , utting z = '’

27i Jo a?—2acosf +1 (putting )
_n! b g _ ! / dz a1
2n )y a-e€? 27 JoezNa-2z) |di"a-z 2=0

n!
= an+1 :

Therefore by Maclaurin’s theorem*,

> n

f@=) =

n=0

* The result £(z) = £(0) + zf"(0) + % f”(0) + - - -, obtained by putting a = 0 in Taylor’s theorem, is usually
called Maclaurin’s theorem; it was discovered by Stirling in 1717 and published by Maclaurin [449].
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or f(z) = (a — z)~" for all points within the circle.

This example raises the interesting question, will it still be convenient to define f(z) as
(a — 2)7" at points outside the circle? This will be discussed in §5.51.

Example 5.4.2 Prove that the arithmetic mean of all values of z7" }’ a,z” for points z on

v=0
the circumference of the circle |z| = 1, is a,; if } a,z” is analytic throughout the circle and
o ™0 )
its interior. Solution. Let ), a,z” = f(z), so that a, = A '( ). Then, writing z = ¢'?, and
v=0 V.

calling C the circle |z| = 1,

L f(Z)d9=L/f(Z)dZ_f(")(0)=
C

27 Jo " 2ri -

Zn+l n! n:

Example 5.4.3 Let f(z) = z"; then f(z + h) is an analytic function of & when |h| < |z| for
r(r=1) , 5,
—Zr he + -

all values of r;and so (z+ h) =z" +rz" 'h + >

-+, this series converging

when |k| < |z|. This is the binomial theorem.

Example 5.4.4 Prove that if / is a positive constant, and (1 — 2zh + h?)~"/? is expanded in
the form

1+ hPi(2) + W*Py(2) + h*P3(2) + - - - (5.2)

(where P, (z) is easily seen to be a polynomial of degree n in z), then this series converges
so long as z is in the interior of an ellipse whose foci are the points z = 1 and z = —1, and
whose semi-major axis is %(h +h™.

Let the series be first regarded as a function of A. It is a power series in 4, and therefore
converges so long as the point 4 lies within a circle in the A-plane. The centre of this circle
is the point 2 = 0, and its circumference will be such as to pass through that singularity of
(1 = 2zh + h*)"/? which is nearest to & = 0. But

1-2zh+h ={h—z+ P -D"*Hh-z- (-1, (5.3)

so the singularities of (1 —2zh+h?)~"/? are the points & = z—(z>—1)"/?and h = z+(z2-1)"/2.
These singularities are branch points (see §5.7).

Thus the series (5.2) converges so long as | /| is less than both
2= (=D and |z+ (-1

Draw an ellipse in the z-plane passing through the point z and having its foci at +1. Let a
be its semi-major axis, and € the eccentric angle of z on it. Then z = a cos #+i(a®>—1)"/?sin 6,
which gives z+(z2=1)"? = {ax(a®>-1)"/?}(cos O+i sin 0), so |z+(2=1)""?| = ax(a®>-1)"/.
Thus the series (5.2) converges so long as / is less than the smaller of the numbers a+(a>—1)'/?
and a — (a®> = 1)'/2,i.e. so long as h is less than a — (a> = 1)"/2. But 1 = a — (a*> — 1)"/> when
a= %(h + h™1). Therefore the series (5.2) converges so long as z is within an ellipse whose
foci are 1 and —1, and whose semi-major axis is %(h +hh.
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5.41 Forms of the remainder in Taylor’s series

Let f(x) be a real function of a real variable; and let it have continuous differential coefficients
of the first n orders whena < x <a+ h. If 0 <t < 1, we have

d [& mm Bl — ¢y
—_ i m ¢(m) — (n) _ ’
yr {; -(1=1)"f (a+th)}_—(n—1)! F(a+th) - hf'(a + th),
Integrating this between the limits O and 1, we have
(1 — 1))
(m) 2 )
flas = @)+ 5 2 g+ / O ki

ml

Let
h" :
R, = —/ (1 =0y f"(a + th) dr;
(n=1"Jo

and let p be a positive integer such that p < n. Then

R, = 1)"/(1—t)”1 (1 =1)"P £ (qa + th) dt.

Let U, L be the upper and lower bounds of (1 — #)"~” f"(a + th). Then

1 1 1
/ LA -ty lde< [ (1= - (1=0)" f" (a+1h)dt < / U(l —ty~'dr.
0 0 0

Since (1 — )P f"(a + th) is a continuous function it passes through all values between
U and L, and hence we can find 6 such that 0 < § < 1, and

1
/ A=) f" (a+thydt = p~' (1 = 0)" P f"(a + Oh).
0
K n-p £ln) " "y
Therefore R, = (—1)'(1 —0)"? f"(a+ 0h). Writing p = n,we getR,, = —'f (a+06h),
n—1)p n!
which is Lagrange’s form for the remainder; and writing p = 1, we get

n

Re= oD

which is Cauchy’s form for the remainder.
Taking n = 1 in this result, we get

fla+h)— f(a) = hf'(a+ 0h)

if f’(x)is continuous whena < x < a+h; this result is usually known as the First Mean-Value
Theorem (see also §4.14).

Darboux [162, p. 291] gave a form for the remainder in Taylor’s series, which is applicable
to complex variables and resembles the above form given by Lagrange for the case of real
variables.

(1-6)""'f"a + oh),
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5.5 The process of continuation

Near every point P, zg, in the neighbourhood of which a function f(z) is analytic, we have
seen that an expansion exists for the function as a series of ascending positive integral powers
of (z — zo), the coeflicients in which involve the successive derivatives of the function at z,.

Now let A be the singularity of f(z) which is nearest to P. Then the circle within which
this expansion is valid has P for centre and PA for radius.

Suppose that we are merely given the values of a function at all points of the circumference
of a circle slightly smaller than the circle of convergence and concentric with it together with
the condition that the function is to be analytic throughout the interior of the larger circle.
Then the preceding theorems enable us to find its value at all points within the smaller circle
and to determine the coefficients in the Taylor series proceeding in powers of z — zo. The
question arises, Is it possible to define the function at points outside the circle in such a way
that the function is analytic throughout a larger domain than the interior of the circle?

In other words, given a power series which converges and represents a function only at
points within a circle, to define by means of it the values of the function at points outside the
circle.

For this purpose choose any point P; within the circle, not on the line PA. We know the
value of the function and all its derivatives at P;, from the series, and so we can form the
Taylor series (for the same function) with P as origin, which will define a function analytic
throughout some circle of centre P;. Now this circle will extend as far as the singularity (of
the function defined by the new series) which is nearest to P;, which may or may not be A;
but in either case, this new circle will usually® lie partly outside the old circle of convergence,
and for points in the region which is included in the new circle but not in the old circle, the
new series may be used to define the values of the function, although the old series failed to
do so.

Similarly we can take any other point P;, in the region for which the values of the function
are now known, and form the Taylor series with P, as origin, which will in general enable us
to define the function at other points, at which its values were not previously known; and so
on.

This process is called continuation. By means of it, starting from a representation of
a function by any one power series we can find any number of other power series, which
between them define the value of the function at all points of a domain, any point of which can
be reached from P without passing through a singularity of the function; and the aggregate®
of all the power series thus obtained constitutes the analytical expression of the function.

Note It is important to know whether continuation by two different paths PBQ, PB’Q will
give the same final power series; it will be seen that this is the case, if the function have
no singularity inside the closed curve PBQB’P, in the following way: Let P; be any point
on PBQ, inside the circle C with centre P; obtain the continuation of the function with P;
as origin, and let it converge inside a circle Cy; let P, be any point inside both circles and
also inside the curve PBQB’P; let S, Si, S; be the power series with P, Py, P; as origins; then

5 The word ‘usually’ must be taken as referring to the cases which are likely to come under the reader’s notice
while studying the less advanced parts of the subject.

6 Such an aggregate of power series has been obtained for various functions by M. J. M. Hill [307], by purely
algebraical processes.
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(since each is equal to S), S; = S'1 over a certain domain which will contain P, if P'1 be taken
sufficiently near P;; and hence S; will be the continuation of S; ; for if T} were the continuation
of S}, we would have 7} = S, over a domain containing P;, and so (§3.73) corresponding
coefficients in S; and 7} are the same. By carrying out such a process a sufficient number of
times, we deform the path PBQ into the path PB’Q if no singular point is inside PBOB’P.
The reader will convince himself by drawing a figure that the process can be carried out in a
finite number of steps.

Example 5.5.1 The series

represents the function
1
f@@)=——
a-—z
only for points z within the circle |z| = |a|. But any number of other power series exist, of
the type
1 N z—-b (z=b?  (z-b)
a-b (a-b? (a-bP} (a-b)
if b/a is not real and positive these converge at points inside a circle which is partly inside

and partly outside |z| = |a|; these series represent this same function at points outside this
circle.

5.501 On functions to which the continuation-process cannot be applied

It is not always possible to carry out the process of continuation. Take as an example the
function f(z) defined by the power series

fRQ=1+2++8+2%+ . 4727+,
which clearly converges in the interior of a circle whose radius is unity and whose centre is
at the origin.

Now it is obvious that, as z — 17, f(z) — +oo; the point +1 is therefore a singularity
of f(z). But f(z) = 22 + f(z%), and if z2 — 17, f(z*) — o0 and so f(z) — oo, and hence
the points for which z> = 1 are singularities of f(z); the point z = —1 is therefore also a
singularity of f(z). Similarly since

f) =22+ + f(Z*),

we see that if z is such that z* = 1, then z is a singularity of £(z); and, in general, any root of
any of the equations

is a singularity of f(z). But these points all lie on the circle |z| = 1; and in any arc of this
circle, however small, there are an unlimited number of them. The attempt to carry out the
process of continuation will therefore be frustrated by the existence of this unbroken front of
singularities, beyond which it is impossible to pass.

In such a case the function f(z) cannot be continued at all to points z situated outside the
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circle |z| = 1; such a function is called a lacunary function, and the circle is said to be a
limiting circle for the function.

5.51 The identity of two functions
The two series

l+z+22+70+-

and -1+ (z —2) = (z = 2)*> + (z = 2)> = (z = 2)* + - - - do not both converge for any value
of z, and are distinct expansions. Nevertheless, we generally say that they represent the same
function, on the strength of the fact that they can both be represented by the same rational
expression 1/(1 - z).

This raises the question of the identity of two functions. When can two different expansions
be said to represent the same function?

We might define a function (after Weierstrass), by means of the last article, as consisting
of one power series together with all the other power series which can be derived from it by
the process of continuation. Two different analytical expressions will then define the same
function, if they represent power series derivable from each other by continuation.

Since if a function is analytic (in the sense of Cauchy §5.12) at and near a point it can be
expanded into a Taylor’s series, and since a convergent power series has a unique differential
coeflicient (§5.3), it follows that the definition of Weierstrass is really equivalent to that of
Cauchy.

Itis important to observe that the limit of a combination of analytic functions can represent
different analytic functions in different parts of the plane. This can be seen by considering

the series
1 1 = 1 1 1
Z(Z z) Z(Z z)(1+z" 1+ 7!

n=1

The sum of the first n + 1 terms of this series is

1 1 1
-+lz—--]. :
Z z) 1+2z"

The series therefore converges for all values of z (zero excepted) not on the circle |z]| = 1.
But, asn — oo, |7"| — 0 or |7""| — oo according as |z] is less or greater than unity; hence we
see that the sum to infinity of the series is z when |z| < 1, and 1/z when |z| > 1. This series
therefore represents one function at points in the interior of the circle |z| = 1, and an entirely

different function at points outside the same circle. The reader will see from §5.3 that this
result is connected with the non-uniformity of the convergence of the series near |z| = 1.

Note It has been shewn by Borel [86] that if a region C is taken and a set of points S such
that points of the set S are arbitrarily near every point of C, it may be possible to define
a function which has a unique differential coefficient (i.e. is monogenic) at all points of C
which do not belong to S; but the function is not analytic in C in the sense of Weierstrass.
The functions are not monogenic strictly in the sense of §5.1 because, in the example quoted,
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in working out {f(z + h) — f(2)} /h, it must be supposed that Re(z + /) and Im(z + h) are
not both rational fractions. Such a function is

=33y expgp o /,1

n=1 p=0 g=0

5.6 Laurent’s theorem

A very important theorem was published in 1843 by Laurent [413]. The theorem is contained
in a paper which was written by Weierstrass [662, p. 51-66], but apparently not published
before 1894. It relates to expansions of functions to which Taylor’s theorem cannot be applied.
Let C and C’ be two concentric circles of centre a, of which C’ is the inner; and let f(z)
be a function which is analytic at all points on C and C’ and throughout the annulus between
C and C’. Let a + h be any point in this ring-shaped space. Then we have (Corollary 5.2.4)

fasm=— [ L& 4 L [ _JE

S — 7 dz,
2ni Joz—a—h 27i Crz—a—hz

where the integrals are supposed taken in the positive or counter-clockwise direction round
the circles. This can be written as

W
f((1+l’l) /f(){ ( a)2+ "+m+
hn+l

(z=a)y*Y(z—a-h)

1 1 z-a (z—a) (z—a)"!
_ Z - dz.
2m'/c,f(Z){h+ T T T —a-n |~

We find, as in the proof of Taylor’s theorem, that

f(z)dz el f(@)(z—a)y!
/c<z—a)"+1<z—a—h>h and ) e a

tend to zero as n — oo; and thus we have

}dz+

dz

b b
_ 2 1 2
f(a+h)—ao+a1h+a2h +"'+W+ﬁ+"',

where a,, = L/ M and b, = L / (z—a)"' f(z) dz. We cannot write a, =
27i Je (z — a)m! 27i Jo
f™(a)/n! as in Taylor’s theorem since f(z) is not necessarily analytic inside C’.
This result is Laurent’s theorem; changing the notation, it can be expressed in the following
form: If f(z) be analytic on the concentric circles C and C’ of centre a, and throughout the
annulus between them, then at any point z of the annulus f(z) can be expanded in the form

bl + b2 +...
(z—a) (z-a)? ’

_ L[ fwar I N
= /C and bn_2m./o(t a)*” f(t)dr.

2ni Jo (t — a)t!

f(Z)=Clo+a1(z—a)+a2(z_a)2+.,,+

where
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An important case of Laurent’s theorem arises when there is only one singularity within
the inner circle C’, namely at the centre a. In this case the circle C’ can be taken as small as
we please, and so Laurent’s expansion is valid for all points in the interior of the circle C,
except the centre a.

Example 5.6.1 Prove that

e2C VD = Jo(x) + 2/ (x) + 2l (X) + -+ T (x) + - - -

=)

Zn

1 1
D)+ () = ()
< e

1 2
where J,(x) = o / cos(nf — x sin 0) d6.
T Jo

For the function of z under consideration is analytic in any domain which does not include
the point z = 0; and so by Laurent’s theorem,

x bl b2
ez @1/ =a0+a1z+a212+---+—+—2+--- ,
4 V4
where
1 x d
a, = — 67(27%) i
2ni Je zntl
and
1 x
by = 5— e¥(Ei) ! dz,
2ni Jo

and where C and C’ are any circles with the origin as centre. Taking C to be the circle of
radius unity, and writing z = ¢'?, we have

1 2 o ] 1 21
ap = =— e sl e05dg = —/ cos (nf — x sin 0) dé,
21 Jo 2 Jo

2
since / sin(nf — x sin #) d6 vanishes, as may be seen by writing 27 — ¢ for 6. Thus
0

a, = J,(x), and b, = (—1)"a,, since the function expanded is unaltered if —z~! be written
for z, so that b, = (—1)"J,(x), and the proof is complete.

Example 5.6.2 Shew that, in the annulus defined by |a| < |z| < |b|, the function

bz 12
{(z—a)(b—Z)}

s a "
So+ Y Sy |=—+=],
0 ; (Zn bn)

can be expanded in the form

where

w13 @20-1)-1-3-- (21 +2n—1) (a\!
S”‘; 22+n V(] +n)! (b)‘

The function is one-valued and analytic in the annulus (see §5.7), for the branch-points 0, a
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neutralise each other, and so, by Laurent’s theorem, if C denotes the circle | z | = r, where
|a| < r <|b]|, the coefficient of z" in the required expansion is

1 dz bz :
%/CF{(z—a)(b—Z)} '

Putting z = re'?, this becomes

. o\ —1/2 . \~1/2
e do (1 - £e’g) (1 - ge"a) ,
b r

1 2r

2r 0
or

e 13- QRk-=1Drke* K1-3---(20=1)ale™™
inf .—n
e T dekz;) 2% k1 D e N

1 2r

2 0 =0

the series being absolutely convergent and uniformly convergent with regard to 6.
The only terms which give integrals different from zero are those for which k = [ + n. So
the coeflicient of z" is

1 z"dgil-3---(21—l)1-3---(21+2n—l) al S,
1=0

27 201 20n ([ +n) ! b pr
Similarly it can be shewn that the coefficient of 77" is S,,a”".

Example 5.6.3 Shew that

b
e =a0+a1z+a2z2+---+—l+—§ e
0z
where
1 2r
ay = — ) 9 cos {(u — v) sin @ — nb} do,
2 0
and
1 2
= — et €08 0 o5 f(y — u) sinf — nb} db.
2 0

5.61 The nature of the singularities of one-valued functions

Consider first a function f(z) which is analytic throughout a closed region S, except at a
single point a inside the region.
Let it be possible to define a function ¢(z) such that

(1) ¢(z) is analytic throughout S,

(i) when z # a, f(z) = ¢(z) + zBi_la + B, B,

Goar T Gmar

BZ Bn
Z—a+(z—a)2+m+(z—a)"
are called the principal part of f(z) near a. By the definition of a singularity (§5.12) a pole
is a singularity. If n = 1, the singularity is called a simple pole.

Any singularity of a one-valued function other than a pole is called an essential singularity.

Then f(z) is said to have a pole of order n at a; and the terms
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If the essential singularity, a, is isolated (i.e. if a region, of which a is an interior point, can
be found containing no singularities other than a), then a Laurent expansion can be found, in
ascending and descending powers of (z — a) valid when A > |z — a| > &, where A depends
on the other singularities of the function, and ¢ is arbitrarily small. Hence the ‘principal part’
of a function near an isolated essential singularity consists of an infinite series.

It should be noted that a pole is, by definition, an isolated singularity, so that all singularities
which are notisolated (e.g. the limiting point of a sequence of poles) are essential singularities.

Note There does not exist, in general, an expansion of a function valid near a non-isolated
singularity in the way that Laurent’s expansion is valid near an isolated singularity.

Corollary 5.6.1 If f(z) has a pole of order n at a, and
Y(2)=(-a)'f2)(z#a), ¢(a)=lim(z-a)f(2),
then ¥ (z) is analytic at a.

Example 5.6.4 A function is not bounded near an isolated essential singularity. Hint. Prove
that if the function were bounded near z = a, the coefficients of negative powers of z — a
would all vanish.

Example 5.6.5 Find the singularities of the function

e¢lz-a)
T (54)
At z = 0, the numerator is analytic, and the denominator has a simple zero. Hence the
function has a simple pole at z = 0. Similarly there is a simple pole at each of the points
2ntnia (n = £1,+£2,+3, .. .); the denominator is analytic and does not vanish for other values
of z. At z = a, the numerator has an isolated singularity, so Laurent’s theorem is applicable,
and the coeflicients in the Laurent expansion may be obtained from the quotient

c c?
I+ St T

) 5.5
exp(l+&2+..-)—1 )

which gives an expansion involving all positive and negative powers of (z — a). So there is
an essential singularity at z = a.

Example 5.6.6 (Math. Trip. 1899) Shew that the function defined by the series

© pz"! {(1 +n7hy — 1}
Z @ =D ("= (A +ny}

has simple poles at the points z = (1 + n~!) /" (k= 0,1,2,...,n—1;n=1,2,3,...).

5.62 The ‘point at infinity’

The behaviour of a function f(z) as | z| — co can be treated in a similar way to its behaviour
as z tends to a finite limit.

If we write z = 1/z’, so that large values of z are represented by small values of z’ in the
7’-plane, there is a one-one correspondence between z and z’, provided that neither is zero;
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and to make the correspondence complete it is sometimes convenient to say that when z’ is
the origin, z is the ‘point at infinity’. But the reader must be careful to observe that this is
not a definite point, and any proposition about it is really a proposition concerning the point
7' =0.

Let f(z) = ¢(z'). Then ¢(z’) is not defined at z’ = 0, but its behaviour near 7’ = 0 is
determined by its Taylor (or Laurent) expansion in powers of z’; and we define ¢(0) as
Zliir}) ¢(z’) if that limit exists. For instance the function ¢(z") may have a zero of order m at

the point z” = 0; in this case the Taylor expansion of ¢(z") will be of the form
Azrm +Bz/m+1 + CZIm+2 e

and so the expansion of f(z) valid for sufficiently large values of | z | will be of the form

B C

Zm-%—l + Zm+2

@) =2+
4

In this case, f(z) is said to have a zero of order m at ‘infinity’.
Again, the function ¢(z’) may have a pole of order m at the point z’ = 0; in this case

B C
+

z/m Z/m—l + Z/m—2

#(z') =

L

+o =+ M+ N+ P+
Z

and so, for sufficiently large values of |z|, f(z) can be expanded in the form

N P
fR)=AZ"+B" " +C" Pk Lz M — S 4
b4
In this case, f(z) is said to have a pole of order m at ‘infinity’.

Similarly f(z) is said to have an essential singularity at infinity, if ¢(z’) has an essential
singularity at the point z” = 0. Thus the function e* has an essential singularity at infinity,
since the function e!/% or

1 1 1
l+—F—t—+--
Z/ 2' Z/ 2 3| ZI 3
0

has an essential singularity at 7" =

Example 5.6.7 Discuss the function represented by the series

- 1 1
—_— a>1).
Z n!l+ a2 z2 ( )
n=0
Hint. The function represented by this series has singularities at z = a™ and z = —ia™,

(n=1,2,3,...), since at each of these points the denominator of one of the terms in the series
is zero. These singularities are on the imaginary axis, and have z = 0 as a limiting point; so
no Taylor or Laurent expansion can be formed for the function valid throughout any region
of which the origin is an interior point.

For values of z, other than these singularities, the series converges absolutely, since the
limit of the ratio of the (n + 1)th term to the nth is lim (n + 1)~' a=2 = 0. The function is an

n—oo

even function of z (i.e. is unchanged if the sign of z be changed), tends to zero as |z] — oo,
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and is analytic on and outside a circle C of radius greater than unity and centre at the origin.
So, for points outside this circle, it can be expanded in the form

b, by bg
2raAtE T
z z z
where, by Laurent’s theorem,

1 w1 a
b2k = > ZZk ! —' e e dZ.
c nla="+z

n=0
Now
s -2n 2k 1 5 )
Z l)ma— an— m
R )) I
n=0 n: (a tz ) n=0 m=0

This double series converges absolutely when |z| > 1, and if it be rearranged in powers of z

it converges uniformly.
o (= 1)k-1g2kn

Since the coefficient of z7! is — and the only term which furnishes a non-
n=0 n.
zero integral is the term in 77!, we have
1 o (=11 a7 gz
bu= 5 | 2
Je n=0 : 2
B s ( l)k—l
- n! q2kn
n=
i
Therefore, when |z| > 1, the function can be expanded in the form
el/uz el/a“ . el/a6
z? z b '

The function has a zero of the second order at infinity, since the expansion begins with a
term in 772

5.63 Liouvillle’s theorem

This theorem, which is really due to Cauchy [127], was given this name by Borchardt [84],
who heard it in Liouville’s lectures in 1847.

Let f(z) be analytic for all values of 7 and let | f(z)| < K for all values of z, where K is a
constant (so that | f(z2)| is bounded as |z| — o). Then f(z) is a constant.

Let z,z’ be any two points and let C be a contour such that z,z’ are inside it. Then, by
§5.21,

’ _L 1 _ 1 .
1&-10 =50 [ - ] r0ae

take C to be a circle whose centre is z and whose radius is p > 2|z’ — z|; on C write
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{ =z+pe?;since | £ — 2| > 3p when £ is on C it follows from §4.62 that

&) - £ = 'i | == 0

2n Z)({ —2)
1 2 ’r_ K

< —/ —lZ 1Z| dé
27T 0 5'0

=2|7 —z|Kp .

Make p — oo, keeping z and z’ fixed; then it is obvious that f(z’) — f(z) = 0; that is to
say, f (z) is constant.

As will be seen in the next article, and again frequently in the latter half of this volume
(Chapters 20, 21 and 22), Liouville’s theorem furnishes short and convenient proofs of some
of the most important results in Analysis.

5.64 Functions with no essential singularities

We shall now shew that the only one-valued functions which have no singularities, except
poles, at any point (including o) are rational functions.
For let f(z) be such a function; let its singularities in the finite part of the plane be at the
points ¢y, ¢y, . . ., ¢x: and let the principal part (§5.61) of its expansion at the pole ¢, be
ar,1 ar,2 Ay n,

z-¢  (z-¢) (z—c ) .

Let the principal part of its expansion at the pole at infinity be
Az + @z + -+ apd";

if there is not a pole at infinity, then all the coefficients in this expansion will be zero.
Now the function

k

ar.1 ar,2 Ay, n, 2 n

f(z) - ot +ot ————— a1z -~ —auZ
r=1

S P Y P

has clearly no singularities at the points cy, ¢,,...,c; or at infinity; it is therefore analytic
everywhere and is bounded as |z| — oo, and so, by Liouville’s theorem, is a constant; that is,

k
a a a
f(Z)=C+alz+azzz+...+anz”+2{ L r’22 r—nn}
Hilz-c  (z-¢) (z=c)mr

where C is constant; f(z) is therefore a rational function, and the theorem is established.

It is evident from Liouville’s theorem (combined with Corollary 3.6.2 that a function
which is analytic everywhere (including oo) is merely a constant. Functions which are analytic
everywhere except at co are of considerable importance; they are known as integral functions.
Examples of such functions are e, sin z, ¢¢". From §5.4 it is apparent that there is no finite
radius of convergence of a Taylor’s series which represents an integral function; and from
the result of this section it is evident that all integral functions (except mere polynomials)
have essential singularities at co.
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5.7 Many-valued functions

In all the previous work, the functions under consideration have had a unique value (or limit)
corresponding to each value (other than singularities) of z. But functions may be defined
which have more than one value for each value of z; thus if z = r(cos 6 +i sin 6), the function
z!/? has the two values

r'/? (cos 10 +isin10), r'*{cos1(6 +2n) +isin1(6+2n)};

and the function arctan x (x real) has an unlimited number of values, viz. Arctan x + nm,
where =% < Arctanx < 7 and n is any integer; further examples of many-valued functions
are log z,z7/3, sin(z!/?).

Either of the two functions which z'/? represents is, however, analytic except at z = 0, and
we can apply to them the theorems of this chapter; and the two functions are called ‘branches
of the many-valued function z'/>’. There will be certain points in general at which two or
more branches coincide or at which one branch has an infinite limit; these points are called
‘branch-points’. Thus z'/? has a branch-point at 0; and, if we consider the change in z'/?
as z describes a circle counter-clockwise round 0, we see that 6 increases by 2z, r remains
unchanged, and either branch of the function passes over into the other branch. This will be
found to be a general characteristic of branch-points. It is not the purpose of this book to
give a full discussion of the properties of many-valued functions, as we shall always have
to consider particular branches of functions in regions not containing branch-points, so that
there will be comparatively little difficulty in seeing whether or not Cauchy’s theorem may
be applied.

Note Thus we cannot apply Cauchy’s theorem to such a function as z3/?> when the path of
integration is a circle surrounding the origin; but it is permissible to apply it to one of the
branches of z*/> when the path of integration is like that shewn in §6.24, for throughout the
contour and its interior the function has a single definite value.

Example 5.7.1 (Math. Trip. 1899) Prove that if the different values of a®, corresponding
to a given value of z, are represented on an Argand diagram, the representative points will
be the vertices of an equiangular polygon inscribed in an equiangular spiral, the angle of the
spiral being independent of a.

The idea of the different branches of a function helps us to understand such a paradox as
the following. Consider the function y = x*, for which

d
D~ (1 +log ). (5.6)
dx
. : dy . e .
When x is negative and real, I is not real. But if x is negative and of the form p/(2q + 1)
X
(where p and ¢ are positive or negative integers), y is real. If therefore we draw the real curve
y = x*, we have for negative values of x a set of conjugate points, one point corresponding to
each rational value of x with an odd denominator; and then we might think of proceeding to

form the tangent as the limit of the chord, just as if the curve were continuous; and thus d_y

X
when derived from the inclination of the tangent to the axis of x, would appear to be real.
The question thus arises, Why does the ordinary process of differentiation give a non-real
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d
value for d—y? The explanation is, that these conjugate points do not all arise from the same
X

branch of the function y = x*. We have in fact y = ¢* 108**2k7ix where £k is any integer. To
each value of k corresponds one branch of the function y. Now in order to get a real value of
y when x is negative, we have to choose a suitable value for k : and this value of k varies as
we go from one conjugate point to an adjacent one. So the conjugate points do not represent
values of y arising from the same branch of the function y = x*, and consequently we cannot

expect the value of 9 when evaluated for a definite branch to be given by the tangent of the

X
inclination to the axis of x of the line joining two arbitrarily close members of the series of
conjugate points.

5.8 Miscellaneous examples

Example 5.1 Obtain the expansion
(@)=
— — )3
f(a)+2{z2af,<z+a)+(z a) () L (e )f<s>(1+a)+,,,},

2 23.3 2

and determine the circumstances and range of its validity.

Example 5.2 (Corey [156]) Obtain, under suitable circumstances, the expansion
, z—a , 3(z—a)
o ) e o 22
, 2m-1)(z-a) 2 (72—
+f { R { REA

{ L 3= a)} ..
2m

T )
o fa —<2m-2131<1-a>}] F 2 (G [ (a+ 520

ol ot

Example 5.3 (Weierstrass [660]) Shew that for the series

SR
Z:z"+z‘

n=0

£(2) = fla)+ —=
m

a)3

the region of convergence consists of two distinct areas, namely outside and inside a circle
of radius unity, and that in each of these the series represents one function and represents it
completely.

Example 5.4 (Lerch [425]) Shew that the function

[oe]
5

n=0
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tends to infinity as z — exp(2wip/m!) along the radius through the point; where m is
any integer and p takes the values 0,1,2,...,(m! — 1). Deduce that the function cannot be
continued beyond the unit circle.

Example 5.5 (Jacobi [348] and Scheibner [574]) Shew that, if z> — 1 is not a positive real
number, then

- 1 1-3 1-3---(2n-1)
A e e P A G
(1-2%) MR st e v

3.5.--(2n—

1) z
A AT I —1/2/ 2l 2 U2 gy
Gy [

Example 5.6 (Jacobi [348] and Scheibner [574]) Shew that, if z — 1 is not a positive real
number, then

1-2"=1+

m m(m+1)Z2+___+m(m+l)~--(m+n—1)zn
1 2! n!
+m(m+1)-~~(m+n)

(1-z™ /OZ t"(1 =)™ dr.

Example 5.7 (Jacobi [348] and Scheibner [574]) Shew that, if z and 1 — z are not negative
real numbers, then

Z
(1 —22)1/2/ (1 -2 ar
0

n!

_ 7! 1+m+22 m+2)---(m+2n-2) ,,,
m+1 m+3 m+3)---(m+2n-1)
+(1-2)7" i + 2)om +4): - (m + 2n) Zt"’*z"(l )V dr.

m+1DH(m+3)---(m+2n-1) J,

Example 5.8 (Scheibner [574]) If, in the expansion of (ay+a;z+a,z?)™ by the multinomial
theorem, the remainder after n terms be denoted by R, (z), so that

(ap + a1z + az?)" = Ag+ Aiz + A + -+ A, 2" + Ru(2),

shew that

2 nad, "+ 2m—n+ DayA,_ 1"
Ra(@) = @+t ad) [ ( Jodat” g,

0 (a + ait + apr?)m+1
Example 5.9 (Scheibner [574]) If

z
(ap + a1z + ayz®) ™! / (ag + art + axt®)™ dt
0

be expanded in ascending powers of z in the form A;z + A,z* + - - -, shew that the remainder
after n — 1 terms is

Z
(aop + a1z + arz*)™™! / (ap + ait + axt*)™{nagA, — 2m +n + axA,_t}"" dt.
0

The results of Examples 5.5, 5.6 and 5.7 are special cases of formulae contained in
Jacobi’s dissertation (Berlin, 1825) published in [354, vol. 3, pp. 1-44]. Jacobi’s formulae
were generalized by Scheibner [574].
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Example 5.10 (Pincherle [523]) Shew that the series

(o9 dn‘
S+ ey 22D,
dz"
n=0
where
Aa(z) = -1 z.z iy
n(2) = - +Z—2—!+§—"'+(— ) PR

and where ¢(z) is analytic near z = 0, is convergent near the point z = 0; and shew that if the
sum of the series be denoted by f(z), then f(z) satisfies the differential equation

(@) = f(2) - ¢(2).
Example 5.11 (Gutzmer [264]) Shew that the arithmetic mean of the squares of the moduli

of all the values of the series ) a,z" on a circle |z|] = r, situated within its circle of
n—-0
convergence, is equal to the sum of the squares of the moduli of the separate terms.

Example 5.12 (Lerch [431]) Shew that the series

o

— 12 —
Ze 2(am) Zm 1

m=1

converges when |z| < 1; and that, when a > 0, the function which it represents can also be
represented when |z| < 1 by the integral

a\'2 [ e * dx
(;) ,/0 eX — 7 x31%’
and that it has no singularities except at the point z = 1.

Example 5.13 (Weierstrass [660]) Shew that the series

2 1y 2 Z
=(z+z )+= +
G A 2 {(1 — 2y —2v'zi)(2v + 2v'Zi)?

-1
4
(1=2v=2v'z71)Q2v + 2v'z71i)? } ’

in which the summation extends over all integral values of v,v’, except the combination
(v = 0,v’ = 0), converges absolutely for all values of z except purely imaginary values; and
that its sum is +1 or —1, according as the real part of z is positive or negative.

Example 5.14 Shew that sin (u(z + 1/z)) can be expanded in a series of the type

2 b, by
agp+ a1z + axz +"'+—+—2+"',
Z Z

in which the coeflicients, both of z" and of z7", are

1 2r
— / sin(2u cos 6) cos nf do.
2 0
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o

2
Example 5.15 If f(z) = Z m, shew that f(z) is finite and continuous for all
n=1

real values of z, but cannot be expanded as a Maclaurin’s series in ascending powers of
z; and explain this apparent anomaly. For other cases of failure of Maclaurin’s theorem,
see a posthumous memoir by Cellérier [140]; Lerch [427]; Pringsheim [540]; and Du Bois
Reymond [189].

Example 5.16 If f(z) be a continuous one-valued function of z throughout a two-dimen-

sional region, and if
/ f(2)dz=0
c

for all closed contours C lying inside the region, then f(z) is an analytic function of z
throughout the interior of the region. Hint. Let a be any point of the region and let

F(z) = /Zf(Z)dZ-

It follows from the data that F(z) has the unique derivative f(z). Hence F(z) is analytic
(§5.1) and so (§5.22) its derivative f(z) is also analytic. This important converse of Cauchy’s
theorem is due to Morera [474].



6

The Theory of Residues; Application to the Evaluation
of Definite Integrals

6.1 Residues

If the function f(z) has a pole of order m at z = a, then, by the definition of a pole, an
equation of the form

f2) =

a_m + A_m+1
-am (z—ay
where ¢(z) is analytic near and at a, is true near a.

The coefficient a_; in this expansion is called the residue of the function f(z) relative to
the pole a.

a_
+...+_1+ ¢(Z),
Z—a

Consider now the value of the integral [ f(z)dz, where the path of integration is a circle

a, whose centre is the point a and whose radius p is so small that ¢(z) is analytic inside and
on the circle. The existence of such a circle is implied in the definition of a pole as an isolated
singularity.

We have

/af(Z)dZ=rZ': ar‘/a(zi—za)r+/a¢(z)dz.

Now /¢(z) dz = 0 by §5.2; and (putting z — a = pe'?) we have, if r # 1,

d 7 5et?i do m ) e1-1)i0 17
Z - / P S pr+l/ 10 gy = -0
o (2—a) 0 pe 0 1-r |,

2r
/dz =/ ido = 2ni.
al—da 0

/f(z) dz = 2mia_;.

But when r = 1, we have

Hence finally

Now let C be any contour, containing in the region interior to it a number of poles a, b, c, . . .
of a function f(z), with residues a_i,b_1,c_y, . .. respectively: and suppose that the function
f(z) is analytic throughout C and its interior, except at these poles. Surround the points
a,b,c,...by circles a, §8,7, . . . so small that their respective centres are the only singularities

110
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inside or on each circle; then the function f(z) is analytic in the closed region bounded by

C,a,B,7,....
Hence, by Corollary 5.2.3

/Cf(Z)dZZ'/Qf(z)dz+/ﬁf(z)dz+...

=2mia_y + 2mib_y + -+ - .

Thus we have the theorem of residues, namely that if f(z) be analytic throughout a contour
C and its interior except at a number of poles inside the contour, then

/C f(z) dz = 2ni Z R,

where Y, R denotes the sum of the residues of the function f(z) at those of its poles which are
situated within the contour C. This is an extension of the theorem of §5.21 (giving (5.21)).

Note If a is a simple pole of f(z) the residue of f(z) at that pole is lim (z — a) f(2).
Z—a

6.2 The evaluation of definite integrals

We shall now apply the result of §6.1 to evaluating various classes of definite integrals; the
methods to be employed in any particular case may usually be seen from the following typical
examples.

6.21 The evaluation of the integrals of certain periodic functions taken between the
limits 0 and 21

An integral of the type
2r
/ R(cos 6,sin 0) d
0

where the integrand is a rational function of cos 6 and sin 0, finite on the range of integration,
can be evaluated by writing e’ = z; since

1 1
cos 6 = E(Z +z7Y), sinf = Z(Z -z,

the integral takes the form / S(z) dz, where S(z) is a rational function of z finite on the path

c
of integration C, the circle of radius unity whose centre is the origin.

Therefore, by §6.1, the integral is equal to 27i times the sum of the residues of S(z) at
those of its poles which are inside that circle.

Example 6.2.1 If0<p <1,

/Zn do _/’ dZ
o 1-2pcos@+p>  Jei(l-pz)(z—p)
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The only pole of the integrand inside the circle is a simple pole at p; and the residue there is
. Z=p 1
lim = .
=pi(l - pz)(z—-p)  i(1-p?)

i do 2n
/0 1—2pcos@+p2:1—p2'
Example 6.2.2 If0<p <1,
/2” cos? 36 40 = /l (lza + 12—3)2 dz
o 1=2p cos26 + p? iz \2 2 (1= pz>)(1 - pz7?)
=21 )R

where ) R denotes the sum of the residues of

Hence

(20 +1)?
425(1 = p2)(z* - p)
these poles are 0, —+/p, 4/p; and the residues at them are

L+p*+p* (PP+1? (PP +1)?
S 4p spi(1-p) 8p (1 -p))
and hence the integral is equal to

at its poles inside C;

n(l-p+p*)
1-p
Example 6.2.3 If n be a positive integer,

2 2 2n
/ e ? cos(nb —sin 0) do = — / € sin(nf — sin 0) d@ = 0.
0 n: 0

Example 6.2.4 Ifa > b > 0,

/2" de _ 2na /2" do _ n(a+b)
o (a+bcosO)?  (a>-b2)P2  Jy (a+bcos?O)?  a¥2(a+ b)3?

6.22 The evaluation of certain types of integrals taken between the limits —oco and +co
We shall now evaluate / Q(x) dx, where Q(z) is a function such that:

(i) it is analytic when the imaginary part of z is positive or zero (except at a finite number
of poles);
(ii) it has no poles on the real axis;
(iii) as |z] — o0, zQ(z) — 0 uniformly for all values of arg z such that 0 < arg z < 7;

(iv) provided that when x is real, xQ(x) — 0, as x — oo, in such a way! that / O(x)dx
0

0
and / Q(x) dx both converge.

[oe]
! The condition xQ(x) — 0 is not in itself sufficient to secure the convergence of / Q(x) dx; consider
0

O(x) = (xlogx)™".
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Given &, we can choose p, (independent of arg z) such that |z Q(z)| < &/m whenever
|z] > po and 0 < arg z < 7. Consider / 0(z) dz taken round a contour C consisting of the
part of the real axis joining the points ip (where p > pg) and a semicircle I, of radius p,
having its centre at the origin, above the real axis. Then, by §6.1, / 0(z)dz = 2mi Z R,

c

where ) R denotes the sum of the residues of Q(z) at its poles above the real axis (Q(z) has
no poles above the real axis outside the contour). Therefore

/p 0()dz - 27i ) R‘ = /FQ(Z) dz

In the last integral write z = pe'?, and then
< / (e/m)db = &,
0

/FQ(Z) dz

/ 0(pe”)pe®i d6
0

by §4.62. Hence
0
li dz =2nmi » R. 6.1
pg{}o[pQ(Z) z ’”Z (6.1)
But the meaning of/ QO(x)dx is lim / Q(x) dx; and since lim/ Q(x) dx and
—00 pP,T 0 -p oo Jq

0 7Y
lim / QO(x) dx both exist, this double limit is the same as lim / Q(x) dx. Hence we have
p—0 - P -0
proved that

/°° O(x)dx = 27Tiz R.

This theorem is particularly useful in the special case when Q(x) is a rational function.

Note Even if condition (iv) is not satisfied, we still have
o 0
/ {0(x) + O(=x)} dx = lim / O(x) dx = 2ni Z R. (6.2)
0 ,U—)OC _p

Example 6.2.5 The only pole of (z*> + 1)~ in the upper half plane is a pole at z = i with
residue there —13—6i. Therefore
/ ® dx  3nm
o (2413 87

Example 6.2.6 Ifa > 0, b > 0, shew that

/“ xtdx n
o (@+bx2)*  16a32b52°

Example 6.2.7 By integrating / ¢ dz around a parallelogram whose corners are —R,

R, R + ai, —R + ai and making R — oo, shew that, if 4 > 0, then

/ o cos(2Aax) dx = e / e dx = 20717 / e dx.
_ 0

00 —00
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6.221 Certain infinite integrals involving sines and cosines
If O(z) satisfies the conditions (i), (ii) and (iii) of §6.22, and m > 0, then Q(z)e™ also satisfies
those conditions. Hence / (Q(x)e’"i" + Q(—x)e_’"ix) dx is equal to 27ti ), R’, where ), R’
0 .
means the sum of the residues of Q(z)e™* at its poles in the upper half plane; and so

(i) If Q(x) is an even function, i.e. if Q(—x) = Q(x),
dx=mi ) R.
/0 Q(x) cos(mx) dx = mi Z

(11) Ii Q('{) 1S an Odd fllllCthIl,
!2 X)sim(mx dx =T g R .

6.222 Jordan’s lemma

(Jordan [362, p. 285-286]). The results of §6.221 are true if Q(z) be subject to the less
stringent condition Q(z) — 0 uniformly when 0 < argz < & as |z| — oo in place of the
condition z Q(z) — O uniformly. To prove this we require a theorem known as Jordan’s
lemma, viz.

If Q(z) — 0 uniformly with regard to arg 7 as |z| — co when 0 < argz < n, and if Q(z)
is analytic when both |z| > ¢ (a constant) and 0 < arg z < 7, then

lim (/emizQ(z)dz) =0,
p—)oo 1—-
where I is a semicircle of radius p above the real axis with centre at the origin.

Given g, choose py so that |Q(z)| < €/m when |z| > poand 0 < arg z < m; then, if p > p,,

/emizQ(Z) dZ / emi(pcosBJripsinH) Q(pem)peiﬁi 46! .

r 0

But |e’”i’” C"S"| =1, and so

/ e"*Q(z)dz

r

e
< _pe—mpslna 4o
o T

¢ /2

T Jo

p e—mp sin @ do.

Now sinf > 26/, when? 0 < 6 < /2, and so

) e /2
/ezsz(Z) dz| < _/ pe—Zmpé)/n de
r T Jo

2¢e & —omod w172

= 22 L [Lp2me V23
T 2m [ ]0
&

< —.
m

2 This inequality appears obvious when we draw the graphs y = sin x, y = 2x/x; it may be proved by shewing
that (sin 8)/6 decreases as 6 increases from 0 to 7r/2.
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Hence

lim [ ¢™?Q(z)dz = 0.

p— Jr

This result is Jordan’s lemma.

Now
p o . .
/ {™Q(x) + ™ Q(—x)} dx = 2mi Z R’ - /e””ZQ(z) dz,
0 r
and, making p — oo, we see at once that
/ {e™~Q(x) + e ¥ Q(=x)} dx = 2ni Z R,
0

which is the result corresponding to the result of §6.221.

Example 6.2.8 Shew that, if a > 0, then

* cosx T,
——dx = e
0o X*+a 2a

Example 6.2.9 Shew that, if a > 0, b > 0, then

/°° cos2ax—costxdx:n(b_a).
0

x2

Hint. Take a contour consisting of a large semicircle of radius p, a small semicircle of radius
0, both having their centres at the origin, and the parts of the real axis joining their ends;
then make p — o0, § — 0.

Example 6.2.10 Shew that, if » > 0, m > 0, then

® 3x2_ g me b

cosmx dx =

oxXT—a e " a0 2 2, 2
. A0 e {3b° — a” — mb(3b” + a”)}.

Example 6.2.11 Shew that, if k > 0, a > 0, then

o .

X sinax 1 _

ﬁdx:—ﬂe ka.
0 X +k 2

Example 6.2.12 Shew that, if m > 0, a > 0, then
/°° sinmx d T me ™ N 2
———=dx = - — |m+—].
o x(x%+a?)? 2a* 4a3 a
(Take the contour of Example 6.2.9).

Example 6.2.13 Shew that, if the real part of z be positive, then

® dt
/ Ca e"Z)T =logz.
0
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00 0
[t [ o)
0 t 60, p—oo 5 t
0
o ([ 5o o
6—0, p—oo 5
62
lim {/ Ly / e—dt}
6§—0, p—oo 5 t 0
-1 -t

since t~ e~ is analytic inside the quadrilateral whose corners are 9, dz, pz, p. Now

0z
/ t'e dt — 0 as p — co when Re z > 0; and

o)
6z [F4
/ e dr = logz—/ 11 —e)dt — logz,
5 5

since t7!(1 —e?) — last — 0.

Solution. We have

6.23 Principal values of integrals

It was assumed in §6.22, §6.221, and §6.222 that the function Q(x) had no poles on the
real axis; if the function has a finite number of simple poles on the real axis, we can obtain
theorems corresponding to those already obtained, except that the integrals are all principal
values (§4.5) and )’ R has to be replaced by ), R + % > Ry, where . Ry means the sum of the
residues at the poles on the real axis. To obtain this result we saw that, instead of the former
contour, we had to take as contour a circle of radius p and the portions of the real axis joining
the points

—p, a—o0;;, a+ oy, b—(52; b+(52, c—03, ...

and small semicircles above the real axis of radii §;, d,, ... with centres a, b, c, ..., where
a, b, c,. .. are the poles of Q(z) on the real axis; and then we have to make 6;, 8,, ... — 0;
call these semicircles yy, v, . ... Then instead of the equation

o
[ ) 0(z)dz + /r 0(z) dz = 2nmi Z R,

we get
o
P [ e@aze 3 i [ 0@az+ [oede=2mi Yk
Let a’ be the residue of Q(z) at a; then writing z = a + 6, on y;, we get
/ 0(z)dz = /O O(a + 6,¢") 65,6 db.
” n
But Q(a + 6,€"%)5,e" — a’ uniformly as §; — 0; and therefore

i J, Qe = i



6.2 The evaluation of definite integrals 117

we thus obtain

P d dz=2ri » R i > Ro,
[pQ(z) z+.[Q(z)z mZ +mZ 0

and hence, using the arguments of §6.22, we get

P/OOQ(x)dx:2m' (ZR+%ZR0).

The reader will see at once that the theorems of §6.221 and §6.222 have precisely similar
generalisations. The process employed above of inserting arcs of small circles so as to
diminish the area of the contour is called indenting the contour.

6.24 Evaluation of integrals of the form / x40 (x) dx
0
Let Q(x) be a rational function of x such that it has no poles on the positive part of the real
axis and x*Q(x) — 0 both when x — 0 and when x — oo,

Consider / (=2)*7'Q(z) dz taken round the contour C shewn in the figure,

consisting of the arcs of circles of radii p, 6 and the straight lines joining their end points;
(=z)¢7! is to be interpreted as

exp{(a — 1)log(-2)}
and
log(~z) = log|z| + i arg(-2),

where — < arg(—z) < m; with these conventions the integrand is one-valued and analytic
on and within the contour save at the poles of Q(z).
Hence, if Y, r denote the sum of the residues of (—z)¢"'Q(z) at all its poles,

/C(—Z)"IQ(Z) dz = 2mi Z r.

On the small circle write —z = Je'’, and the integral along it becomes

- / T 0ide,
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which tends to zero as  — 0. On the large semicircle write —z = pe'?, and the integral along
it becomes

- / (<2 0(2)i do,

which tends to zero as p — oo. On one of the lines we write —z = xe™, on the other
—z = xe ™ and (-z)*~! becomes x“~'e*@~7 Hence

p .
lim / {x97 e~ (x) — x4 e xi Q(x)} dx = 27i Z r;
s

5§—0, p—oo

and therefore
/ x47'Q (x) dx = 7 cosec(ar) Z r.
0

Corollary 6.2.1 If Q(x) have a number of simple poles on the positive part of the real axis,
it may be shewn by indenting the contour that

P © a-1 dx = — ',
/0 x4 0(x) dx = m cosec(am) Zr 7 cot(ar) Zr

where Y 1’ is the sum of the residues of z°~' Q(z) at these poles.

Example 6.2.14 IfO0<a <1,

0 xa—l 00 xa—l
/ dx = n cosec(ma), P/ dx = n cot(na).
0 1 + X 0 1 - X

Example 6.2.15 (Minding) IfO0<z<land -7 <a <,
®pldr  geilzha

_/0 f+ed  sinmz
Example 6.2.16 Shew that, if -1 < z < 3, then

® x%dx 7(1-2)

./0 (1+ 227 4cos inz
Example 6.2.17 (Euler) Shew that, if -1 < p < 1and -7 < 4 < &, then
/'°° x7Pdx . sinpd
0

1+2xcosd+x2  sinpm sind

6.3 Cauchy’s integral

We shall next discuss a class of contour-integrals which are sometimes found useful in
analytical investigations.

Let C be a contour in the z-plane, and let f(z) be a function analytic inside and on C.
Let ¢(z) be another function which is analytic inside and on C except at a finite number
of poles; let the zeros of ¢(z) in the interior® of C be aj,as,..., and let their degrees of
multiplicity be r,7,,...; and let its poles in the interior of C be by, b,,. .., and let their
degrees of multiplicity be sy, s,,. . ..

3 ¢(z) must not have any zeros or poles on C.
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¢( )
[(2)¢'(z)  F@()

at its poles inside C. Now ———— can have singularities
z

only at the poles and zeros of ¢(z). Near one of the zeros, say a;, we have ¢(z) = A(z —
a)" + B(z —a;)"*" + --- . Therefore ¢'(z) = Ari(z —a)" ™" + B(ry + )(z —a))" + -+,

and f(z) = f(a;) + (z — a1)f’(a) + - - -. Therefore ACILAC) - nf(a)

#(2) Z—a
f(2)¢'(z)

$(z)
is —s; f(by); for near z = by, we have ¢(z) = C(z — b))™ + D(z — b)) + ... and

F@) = fb) + = ) f(br) + -, s0 LDF R 017y
#(2) z—b

1 ¢'(2)
o @SSz = Ynsa) =Y o

the summations being extended over all the zeros and poles of ¢(z).

of the residues of

is analytic at a;.

Thus the residue of , at the point z = ay, is r f(a;). Similarly the residue at z = b,

is analytic at b,. Hence

6.31 The number of roots of an equation contained within a contour

The result of the preceding paragraph can be at once applied to find how many roots of an
equation ¢(z) = 0 lie within a contour C. For, on putting f(z) = 1 in the preceding result,
we obtain the result that

L ¢’ (z)

2ri (Z)

is equal to the excess of the number of zeros over the number of poles of ¢(z) contained in
the interior of C, each pole and zero being reckoned according to its degree of multiplicity.

Example 6.3.1 Shew that a polynomial ¢(z) of degree m has m roots. Hint. Let ¢(z) =
ap?™ + a1 7" " + -+ a,, (ap £ 0). Then

¢'(z) _ mag?" '+ 4 @y
¢(2) Q"+t ay

(6.3)

Consequently, for large values of |z|,

¢'(zx) _m 1
=—+0|=].
#(z) =z 22
Thus, if C be a circle of radius p whose centre is at the origin, we have
1 ¢'(z) dz 1 1 1 1
— dz — [ O dz = — 0 — | dz.
2ni Jo ¢(2) 27rl c Z +27ri c (z ) £ m+2 i (zz) ¢

But, as in §6.22,

1
/O(—z) dz—0 as p—0;
C Z
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and hence as ¢(z) has no poles in the interior of C, the total number of zeros of ¢(z) is

1 [¢@)

im
p=e 27 Jo ¢ (2)
Example 6.3.2 If at all points of a contour C the inequality

dz=m

larz| > |ag + a1z + - + a1 25+ @ 5+ -+ ™|

is satisfied, then the contour contains k roots of the equation

1

am" + apm7" + - +ajz+ay=0.

For write f(z) = auz™ + ap_12™ ' + -+ + a;z + ag. Then

AZ™ + -+ Qg K+ ag_ 25! +---+a0)
3

£@) = a2t (1 .

= aka(l + U),

a2

where |U| < a < 1 on the contour, a being independent* of z. Therefore the number of roots
of f(z) contained in C is

1 [ 1 k1 du
— dz = — - — | dz.
Zm'/Cf(z) “7 oni C(z+1+Udz) ¢

d
But / L o ; and, since |U| < 1, we can expand (1 + U)™! in the uniformly convergent
c

z
series | —U+U?*-U>+---, s0
1 dU
—dz=|U-LiU*+LiU° - | . =0.
L gttt

Therefore the number of roots contained in C is equal to k.
Example 6.3.3 (Clare, 1900) Find how many roots of the equation
2 +6z+10=0

lie in each quadrant of the Argand diagram.

6.4 Connexion between the zeros of a function and the zeros of its derivative

MacDonald [444] has shewn that if f(z) is a function of z analytic throughout the interior of
a single closed contour C, defined by the equation |f(z)| = M, where M is a constant, then
the number of zeros of f(z) in this region exceeds the number of zeros of the derived function
f'(z) in the same region by unity.

On C let f(z) = Me'; then at points on C

.do |.d20 (4o’
’ _ i0 - 77 — 0 ). _
f'(z) = Me l_dz’ f"(z) =Me {l_dzz (_dz) }

# |U| is a continuous function of z on C, and so attains its upper bound (§3.62). Hence its upper bound @ must

be less than 1.
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Hence, by §6.31, the excess of the number of zeros of f(z) over the number of zeros of
f'(z) inside® C is

Py L[ IGLf(de)"
2m c FQ T m e TP i &) @
Let s be the arc of C measured from a fixed point and let ¢ be the angle the tangent to C
makes with Ox; then

—_— A S
2mi Jo\dz) a2 T Toxi | % dz],

do dz
Now log — is purely real and its initial value is the same as its final value; and log & i
s

hence the excess of the number of zeros of f(z) over the number of zeros of f’(z) is the
change in ¢ /2x in describing the curve C; and it is obvious (for a formal proof, see [651])
that if C is any ordinary curve, ¢ increases by 27 as the point of contact of the tangent
describes the curve C; this gives the required result.

Example 6.4.1 Deduce from Macdonald’s result the theorem that a polynomial of degree
n has n zeros.

Example 6.4.2 Prove that, if a polynomial f(z) has real coefficients and if its zeros are all
real and different, then between two consecutive zeros of f(z) there is one zero and one only
of f’(z). Pélya has pointed out that this result is not necessarily true for functions other than
polynomials, as may be seen by considering the function (z> — 4) exp(z?/3).

6.5 Miscellaneous examples

Example 6.1 (Trinity, 1898) A function ¢(z) is zero when z = 0, and is real when z is
real, and is analytic when |z| < 1;if f(x,y) is the coefficient of i in ¢(x + iy), prove that if
-1 < x < 1, then

2 .
xsin@

T el o 2 6,sin0) do = )
/o 1—2xcos0+x2f(COS sin6) np(x)

+aiz

Example 6.2 (Legendre) By integrating round a contour formed by the rectangle

62772 —
whose corners are 0, R, R +i, i (the rectangle being indented at 0 and /) and making R — oo,

shew that
/°° sinaxd let+1 1
—dx = ——— — —.
0 e —1] 4es—1 2a

3 f'(z) does not vanish on C unless C has a node or other singular point; for, if f = ¢ + iy, where ¢ and y are

of 0 9¢ o oY

0
real, since i% = 6y it follows that if f’(z) = 0 at any point, then — Ix 6y I’ 6 all vanish; and these

are sufficient conditions for a singular point on ¢ + ¢ = M2,
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Example 6.3 By integrating log(—z) Q(z) round the contour of §6.24, where Q(z) is a
rational function such that zQ(z) — 0 as |z|] — 0 and as |z] — oo, shew that if Q(z) has
no poles on the positive part of the real axis, Q(x) dx is equal to minus the sum of

0
the residues of log(—z) Q(z) at the poles of Q(z); where the imaginary part of log(—z) lies
between +7.

Example 6.4 Shew that, if a > 0, b > 0,
® d 1
/ €<% gin(a sin bx)—x = —m(e“ - 1).
0 X 2
Example 6.5 (Cauchy) Shew that
/mﬂ asin2x {gmg1+ax (-1<a<1)
xdx =
0

_ 2 T -
1 —2acos2x +a Zlog(l+a™), (a*>1)

Example 6.6 (Stormer [614]) Shew that
/°° sin ¢ x sin ¢ox sin ¢, x sin ax d
0

COSa X -+ COSAuX—— dx = =10y -+ P,
X X X X 2

if ¢1,¢2,....¢n,a1,a0,...,a, are real and a be positive and
a> g1l +[ga| + -+ |l +lar| + -+ + |anl.

Example 6.7 (Amigues [17]) If a point z describes a circle C of centre a, and if f(z) be
analytic throughout C and its interior except at a number of poles inside C, then the point
u = f(z) will describe a closed curve 7y in the u-plane. Shew that if to each element of y be
attributed a mass proportional to the corresponding element of C, the centre of gravity of y

f(2)

Z—a

is the point r, where r is the sum of the residues of at its poles in the interior of C.

Example 6.8 Shew that
/' « dx n(2a + b)

o (X2 DP)(X2+a2)?  2a3b(a + b)?

Example 6.9 Shew that

_onrn 1:3---(2n-3) 1
(a+bx2n — 20p12 1.2+ (n—1) an-1/2

n—1 n-1
Example 6.10 (Laurent [412]) If F,,(z) = [] [1(1 — z™P), shew that the series

m=1 p=1

F(zn™Y)
f(Z) Z (Znn n _ l)nn 1

is an analytic function when z is not a root of any of the equations z" = n"; and that the
sum of the residues of f(z) contained in the ring-shaped space included between two circles
whose centres are at the origin, one having a small radius and the other having a radius
between n and n + 1, is equal to the number of prime numbers less than n + 1.
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Example 6.11 (Grace [257]) If A and B represent on the Argand diagram two given roots
(real or imaginary) of the equation f (z) = 0 of degree n, with real or imaginary coefficients,
shew that there is at least one root of the equation f’(z) = 0 within a circle whose centre is
the middle point of AB and whose radius is %AB cot(rmr/n).

Example 6.12 (Kronecker [386]) Shew that, if 0 < v < 1,

27ivx n 27rtkv

¢ li
——— = — lim
1 — e2mix 2m oo k —x

e(2v—l)7riz dZ

Hint. Consider / round a circle of radius n + %; and make n — oo.

sinmtz z—x
Example 6.13 Shew that, if m > 0, then
< sin” mt am™! .on , nn-1) _
dt = n-1_ — ) 1 4+ 7 —4) 1
/0 m 2 (n—1)! {” (=2 TR

_W(n_@"—uﬂ..}.

Discuss the discontinuity of the integral at m = 0.

Example 6.14 (Wolstenholme) IfA+B+C+---=0anda,b,c,... are positive, shew that

/°°Acosax+Bcosbx+~--+Kcoskxd
X
0

X
=—-Aloga—-Blogh—----—Klogk.

x(k+ti)
Example 6.15 By considering / i dt taken around a rectangle indented at the origin,
i

shew that, if k > O,

x(k+ti) 0 extt
i lim _dt:ﬂi+limP/ dt,
k +ti _, t

p—00 —-p P "

and thence deduce, by using the contour of Example 6.2.9, or its reflexion in the real axis
(according as x > 0 and x < 0), that

1 14 x(k+n)
lim—/ dt=2,10r0,
poe ), k+ 1

according as x > 0, x = 0 or x < 0. This integral is known as Cauchy’s discontinuous factor.

Example 6.16 Shew that, if 0 < a < 2,b > 0,r > 0, then

0 na rdx m
x*sin (— - bx) - = Zpaletbr,
0 2 x> +r 2

Example 6.17 (Poisson [531]; Jacobi [352]) Lets > O and let Y ™™ = y (¢). By

n=—oo
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—s*nt
considering / por dz around a rectangle whose corners are (N + %) + i, where N is
p2mis _

an integer, and making N — oo, shew that

co—i e—szﬂr co+i e—szm
()= /wi o2miz _ | dz - /00” e2niz _ | dz.
By expanding these integrands in powers of e 2%, ¢>*s respectively and integrating term-
by-term, deduce from Example 6.2.7 that

1 ©
w(r)-mwa/r)/me dx.

Hence, by putting ¢ = 1 shew that

w(t) =12y (1)),
Example 6.18 (Poisson [532], Jacobi [346] and Landsberg [407]) Shew that, if # > 0,

00

(9]
—nlrt— - 2 -n’
Z e nt=2nmat _ t I/Zena t (1 +zze n’n/t COSZI’lﬂ'a) .

n=—o00 n=1

See also §21.51.
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The Expansion of Functions in Infinite Series

7.1 A formula due to Darboux

Let f(z) be analytic at all points of the straight line joining a to z, and let ¢(¢) be any
polynomial of degree n in r. Then if 0 < ¢ < 1, we have by differentiation

d n
7 Z(—l)’" (z=a)" g" () f™ (a+1(z—a))

m=1

=—(z-a) ") f (a+t(z—a)+ (1) (z=a)"" ¢(0) f" V(@ +1(z - a)).

Noting that "”(¢) is constant = ¢”(0), and integrating between the limits 0 and 1 of 7, we
get

¢"(0){f(2) - f(a)}
= Z(—l)’"—l(z —a)™{g" (1) £ () = ¢"7"(0) £ (@)}
m=1

1
H1) (2 — )™ /0 o) " a + 1 (z — a)) dr,

which is the formula in question. It appears in Darboux [162].
Taylor’s series may be obtained as a special case of this by writing ¢(¢) = (¢ — 1)" and
making n — oo.

Example 7.1.1 By substituting 2n for n in the formula of Darboux, and taking ¢(f) =
" (t — 1), obtain the expansion (supposed convergent)

X 1yl _ 0
1= flay= 3 TICEZD oy 4yt pora),
n=1 '

and find the expression for the remainder after » terms in this series.

7.2 The Bernoullian numbers and the Bernoullian polynomials

The function %z cot %z is analytic when |z| < 27 and, since it is an even function of z, it can
be expanded into a Maclaurin series, thus
2 4 6

< < <
ECOtEZI—Bli—Bzm—B3a—“',
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then B, is called the nth Bernoullian number. These numbers were introduced by Jakob
Bernoulli [66]. It is found that

1 1 1 1 5
B[ = E,Bz = %,33 = 5,34 = %,BS = &,. N
The first sixty-two Bernoullian numbers were computed by Adams [11]; the first nine signif-
icant figures of the first 250 Bernoullian numbers were subsequently published by Glaisher
[246].
These numbers can be expressed as definite integrals as follows:

We have, by Chapter 6, Example 6.2,
/""sinpxdx 1 +i coti
e er - L ;
, e —1  2p 2P
1 1

=——+—[1+Bl

2 4
(2p)” Bz(2p) .
2p 2p

21 4!
© x"sin (px + 1nn)

0 e™ — 1
p = 0 we may, by Corollary 4.4.1, differentiate both sides of this equation any number of

times and then put p = 0; doing so and writing 2¢ for x, we obtain

B — a4 /00 t2n71dt
n- 0 e2nt 1

A proof of this result, depending on contour integration, is given by Carda [117].

Since dx converges uniformly (by de la Vallée Poussin’s test) near

Example 7.2.1 Shew that

2n ldx
B, =
772"(22" -1 / sinh x

e
Now consider the function 7— , which may be expanded into a Maclaurin series in

powers of ¢ valid when |f| < 27.
The Bernoullian polynomial of order n is defined to be the coefficient of ;—", in this
expansion. It is denoted by ¢,(z), so that

-1 Z b (z)t

The name was given by Raabe [547]. For a full discussion of their properties, see Norlund
[507].

This polynomial possesses several important properties. Writing z+ 1 for z in the preceding
equation and subtracting, we find that

ot = Z;{cpn e+ 1) = (@) .

On equating coefficients of #" on both sides of this equation we obtain

Zn_l = ¢n(z + 1) - ¢n(z)$
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which is a difference-equation satisfied by the function ¢,,(z).
An explicit expression for the Bernoullian polynomials can be obtained as follows. We
have

: 22 28
e - —ZZ+T+T+"',
and
t t It t Bitr Byt
=—cot——==1-=—4+ — —— + -+, 7.1
er—1 2 20 2 2 2! 4! 7.1y
Hence

Z Z)t - 2?12 N 28 . by B> Bt N
— 2! 3! 2 2! 4! ’

From this, by equating coefficients of " (§3.73), we have

1 n n n
¢n(Z) =z7"- zﬂZn_l + (2)B1Zn_2 - (4)822"_4 + (6)332"_6 — e,

the last term being that in z or z> and (3), (), . . . being the binomial coefficients; this is the
Maclaurin series for the nth Bernoullian polynomial.
When z is an integer, it may be seen from the difference-equation that

¢n(z) - (!

n

27 (=)
The Maclaurin series for the expression on the right was given by Bernoulli.

Example 7.2.2 Shew that, when n > 1, ¢,,(z) = (-1)"¢,,(1 — 2).

7.21 The Euler-Maclaurin expansion

In the formula of Darboux (§7.1) write ¢,(¢) for ¢(¢), where ¢,(¢) is the nth Bernoullian
polynomial. Differentiating the equation

Gult + 1) — ¢, (1) = "™
n — k times, we have
¢t + 1) — ¢ () = n(n — 1) - - k"

Putting ¢ = 0 in this, we have q’J(" k)(l) = qﬁfi"_k)(O). Now, from the Maclaurin series for ¢,(z),
we have if k > 0

# D0 =0, ¢ (0) =

(2k)' -1)*" By,

¢(n 1)(0) ——I’l' (’l)(o) =n!.

Substituting these values of gb(" ») (1) and ¢(" %) (0) in Darboux’s result, we obtain the
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Euler—Maclaurin sum formulal )
(- a)f(@) = £() - (@) - 5@ - F(@)
n-1
(_l)m_]Bm(Z - a)2m
) 2m)!
_ \2n+l 1
St [ enor  as - anyar.

In certain cases the last term tends to zero as n — oo, and we can thus obtain an infinite
series for f(z) — f(a). If we write w for z — a and F(x) for f’(x), the last formula becomes

{f%"(2) - %" (a)}

/a wF(x)dx = 1a){F(a)+F(a+a))}

Z ( 1)(2Br)ﬂ'w {F(Zm—l)(a + w) _ F(Zm—l)(a)}

2n+]

T

Writing @ + w,a + 2w, . ..,a + (r — 1)w for a in this result and adding up, we get

/ G2 (H)F?(a + wi) dt.

/a+er(x)dx = w{%F(a)+F(a+a))+F(a+2a))+---+ %F(a+rw)}

Z (= 1)(233"'w {(FP" (a + rw) — F® Y (a)} + R,,
where

2n+1

1 r—1
R, = C(()Z—n)' / 2, (1) {Z F®(a + mw + wt)} dt.
''Jo

m=0

This last formula is of the utmost importance in connexion with the numerical evaluation
of definite integrals. It is valid if F(x) is analytic at all points of the straight line joining a to
a+row.

Example 7.2.3 If f (z) be an odd function of z, shew that

n 2m-2
Q) =10+ D E T e

1
/ Gon(t) fO (=7 + 2z1) dt.
0

22n22n+1

T (2n)!

' A history of the formula is given by Barnes [47]. It was discovered by Euler (1732), but was not published at
the time. Euler communicated it (June 9, 1736) to Stirling who replied (April 16, 1738) that it included his
own theorem (see §12.33) as a particular case, and also that the more general theorem had been discovered by
Maclaurin; and Euler, in a lengthy reply, waived his claims to priority. The theorem was published by Euler
[204] and by Maclaurin [449]. For information concerning the correspondence between Euler and Stirling, we
are indebted to Mr. C. Tweedie.
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Example 7.2.4 (Math. Trip. 1904) Shew, by integrating by parts, that the remainder after
n terms of the expansion of § cot £ may be written in the form

(_ 1)n+1 2n+1

/ $2n(1) cos (zt) dt.

(2n)!'sinz J

7.3 Biirmann’s theorem

We shall next consider several theorems which have for their object the expansion of one
Sfunction in powers of another function. This appears in [109]; see also Dixon [182].

Let ¢(z) be a function of z which is analytic in a closed region S of which a is an interior
point; and let

d(a) =
Suppose also that ¢’(a) # 0. Then Taylor’s theorem furnishes the expansion
4 a
p)-b=¢'(a)(z—a) + ¢2(' )(Z—a)z +e,

and if it is legitimate to revert this series we obtain

1 ¢"(a)

2{¢'(a)}?
which expresses z as an analytic function of the variable {¢(z) — b}, for sufficiently small
values of |z —a|. If then f(z) be analytic near z = a, it follows that f(z) is an analytic function
of {¢(z) — b} when |z — a] is sufficiently small, and so there will be an expansion of the form

@) = fl@+ai{d () - by + SH{o (@)~ b + T8 (2) ~ b} +

The actual coefficients in the expansion are given by the following theorem, which is
generally known as Biirmann’s theorem.
Let y(z) be a function of 7 defined by the equation

{p(z) - by* +

Z—a=

then an analytic function f(z) can, in a certain domain of values of z, be expanded in the
SJorm

n-l1 _ m gm—1
1@ = ftay+ y, POy y@y + .
m=1 :

/ / 9(2) ~b|"" [0/ (2)d1 dz
" 2mi OEL ¢(1) - ¢(z)
and vy is a contour in the t-plane, enclosing the points a and z and such that, if  be any point

inside it, the equation ¢(t) = ¢({) has no roots on or inside the contour except* a simple
roott = (.

where

2 Tt is assumed that such a contour can be chosen if |z — a| be sufficiently small; see §7.31.
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To prove this, we have

) e, S0 ¢'(Qdrdl
f(2) f(a)—/uf(é)d-f // o) - ¢(£)

L[ f0eQdid

2ri y o(t)—b
uis {¢(4> b} {o(0) - by
i p()-b {o(t) = by =2{p(t) = p(O)} |
But, by §4.3,
/ /[¢(§)—br fWe@Q)drdl _ {4(z) - b} f'(@)dt
27i o(t)-b o(t)-b 2ni(m + 1) J, {o(t) = b}m+!
_{s@=by™t @y de  {g(z) - by d” mt
© 2nim+1) J, (t—ayt  (m+ 1) da dan /@@y,

Therefore, writing m — 1 for m,

n-1 _ m gm-—1
@)= @+ 3, P T @@y

) - b|"" (1) /(L) dr dL
2m//[¢<r>—b} o(1)— ¢()

If the last integral tends to zero as n — oo, we may write the right-hand side of this
equation as an infinite series.

Example 7.3.1 Prove that

_ a)n en(zz—az)
b

n!

il _1n—1
cmas 3 VGG
n=1

where

n*(n—1)(n—-2)(n-3)(n-4)
2!

nn—1)n-2)
1!

C, = (2na)" "' - (2na)"3 + (2na)"™ -

To obtain this expansion, write

f@=2  $@-b=G-a T, Y@=,

in the above expression of Biirmann’s theorem; we thus have

ar! 22
Z —a+Z—(z—a)" n(z*-a* {_dz"l e z)} .
z=a
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But, putting z = a + ¢,

-1 -1
{ d" en(uz—zz)} — { a" e—n(Zut+r2)}
1 _
dzn z=a dtn ! =0

= (n—1)! x the coefficient of "~ in the expansion of e

o i (=1)'n"t"Qa + 1)
r=0

r!

—nt(2a+t)

= (n—1)! x the coefficient of 1"~

n—1
_ (=1)"n" (2a) !
=(n- 1)’X; (n-1-r)2r—n+ DU

The highest value of r which gives a term in the summation is r = n — 1. Arranging
therefore the summation in descending indices r, beginning with » = n — 1, we have

{dn__len(uz—zz)} — (_l)n—l {(zna)n—l _ n(n—1)(n-2)

n-3
P T 2na)"” +--- }

= (_1)n—lcm
which gives the required result.

Example 7.3.2 Obtain the expansion

2o+ 2 sin* z N 2-4 sin® z
3 2 3-5 3

Example 7.3.3 Let a line p be drawn through the origin in the z-plane, perpendicular to
the line which joins the origin to any point a. If z be any point on the z-plane which is on the

same side of the line p as the point a is, shew that

i 1 Z—a 2m+1
logz =log a+2 ( ) .
m=12m+1 z+a

7.31 Teixeira’s extended form of Biirmann’s theorem

In the last section we have not investigated closely the conditions of convergence of Biirmann’s
series, for the reason that a much more general form of the theorem will next be stated; this
generalisation bears the same relation to the theorem just given that Laurent’s theorem bears
to Taylor’s theorem: viz., in the last paragraph we were concerned only with the expansion of
a function in positive powers of another function, whereas we shall now discuss the expansion
of a function in positive and negative powers of the second function.

The general statement of the theorem is due to Teixeira [622], whose exposition we shall
follow in this section. See also Bateman [56].

Suppose

(i) that f(z) is a function of z analytic in a ring-shaped region A, bounded by an outer
curve C and an inner curve c;

(ii) that 6(z) is a function analytic on and inside C, and has only one zero a within this
contour, the zero being a simple one;
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(iii) that x is a given point within A;
(iv) that for all points z of C we have |6(x)| < |8(z)|, and for all points z of ¢ we have
16(x)] > |6(2)].

The equation 6(z) — 6(x) = 0 has, in this case, a single root z = x in the interior of C, as is
seen from the equation’

1 0'(z)dz _L 0'(z) 0'(z)
i Jo 02) - 6(x)  2mi [/c o) ’“/c{e@}z dat ]
_ 1 [8k)dz
S 27 Je o 6(z)

of which the left-hand and right-hand members represent respectively the number of roots
of the equation considered (§6.31) and the number of the roots of the equation 6(z) = 0
contained within C.

Cauchy’s theorem therefore gives

1[ [0 () dz f(z)@’(z)dz}
2mi 0(z) —0(x) J. 6(z)—0(x) |’

The integrals in this formula can be expanded, as in Laurent’s theorem, in powers of 6 (x),
by the formulae

fx) =

f(2)0'(z)dz 2 [ f(2)8(2)dz
/ce<z> 600) Z{()} ey

f@)O(x)dz _
e 0x)-0(x) Z::‘ {6(x)}"

/ FOBQY6() dz.

We thus have the formula

1) = Y AN + Y
n=0 n=1

where

1 f(2)8'(2)dz _ 1 -1
— o [LO50E b= o [ @0y 00 e

Integrating by parts, we get, if n # 0,

1 J' () _ 1 n pr
- /C oy B a / (6} ' (2) dz.

This gives a development of f(x) in positive and negative powers of 8(x), valid for all
points x within the ring-shaped space A.

If the zeros and poles of f(z) and 6(z) inside C are known, A,, and B, can be evaluated by
§5.22 or by §6.1.

3 The expansion is justified by §4.7, since Z { } converges uniformly when z is on C.

n=1
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Example 7.3.4 Shew that, if |x| < 1, then
Jlf2 (2 V13 2 VL
T\ 2) T2 a\Tr ) T2 a6\ e

Shew that, when |x| > 1, the second member represents x~".

Example 7.3.5 (Teixeira) If S;':) denote the sum of all combinations of the numbers 22, 42,
6%, ...,(2n — 2)?, taken m at a time, shew that

(1) n ¢(n)
1 1 @ (—1)t! 1 S " -n"s "
L +Z =1 _ Dy 200 iy 721
z sinz 4 2n+2)! [2n+3 2n+1 3

the expansion being valid for all values of z represented by points within the oval whose
equation is |sin z| = 1 and which contains the point z = 0.

7.32 Lagrange’s theorem

Suppose now that the function f(z) of §7.31 is analytic at all points in the interior of C, and
let 8(x) = (x — a)8;(x). Then 6, (x) is analytic and not zero on or inside C and the contour ¢
can be dispensed with; therefore the formulae which give A,, and B, now become, by §5.22
and §6.1,

1 / f'(z)dz _ 1 ar! {f’(a)
" 2rin Je (z—a){61(2)}"  nldan ! | 07(a)

1 f(2)0'(z) dz

0 _ —

C2niJe 601(2) z-a
B, =0.

b e

= f(a),

The theorem of the last section accordingly takes the following form, if we write 6(z) =

1/¢(2):
Let f(z) and ¢(z) be functions of z analytic on and inside a contour C surrounding a point
a, and let t be such that the inequality

l1¢(2) | < |z — 4l

is satisfied at all points z on the perimeter of C; then the equation

{=a+1¢(0),

regarded as an equation in {, has one root in the interior of C; and further any function of
{ analytic on and inside C can be expanded as a power series in t by the formula

®  n gn-1
0= f@+ Y = @@y

n=1

This result was published by Lagrange [395] in 1770.
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Example 7.3.6 Within the contour surrounding b defined by the inequality |z(z —a)| > ||,
where |@| < 3|b], the equation
b
z—a——-=0
Z

has one root £, the expansion of which is given by Lagrange’s theorem in the form
D"'@n-2)! ,
f=b+ Z nl(n — 1)1p?-1 PCEn

Now, from the elementary theory of quadratic equations, we know that the equation
b
z—a——-=0
Z

has two roots, namely § {1 +4/1+ 4b/a2} and ¢ {1 -1+ 4b/oz2}; and our expansion

represents the former of these only (the latter is outside the given contour) — an example of
the need for care in the discussion of these series.

Example 7.3.7 If y be that one of the roots of the equation
y=1+2y?

which tends to 1 when z — 0, shew that

"= 1+nz+ n(n; 3)22 + n(n + ?‘(n hl 5)13

+n(n +5)(n+6)(n+17) Ay nn+6)n+7)n+8)(n+9) 54
41 51

solong as |z| < ;.
Example 7.3.8 (McClintock) If x be that one of the roots of the equation
x=1+yx*

which tends to 1 when y — 0, shew that

2a-1 , Ba-1)3a-2) ,
2 U 23 yoEes
)a—la—a|.

log x =y +

the expansion being valid so long as |y| < |[(a — 1

7.4 The expansion of a class of functions in rational fractions

This appears in Mittag-Leffler [470], see also [471]. Consider a function f(z), whose only
singularities in the finite part of the plane are simple poles a;,as,as, . . ., where |a;| < |a;| <
las| < ---. Let by, by, bs,. .. be the residues at these poles, and let it be possible to choose a
sequence of circles C,, (the radius of C,, being R,,,) with centre at O, not passing through any
poles, such that | f(z)| is bounded on C,,. (The function cosec z may be cited as an example
of the class of functions considered, and we take R,, = (m + %)ﬂ'.) Suppose further that
R,, — o0 as m — oo and that the upper bound (which is a function of m) of | f(z)| on C,,, is
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itself bounded as* m — oo; so that, for all points on the circle C,,, | f(z)| < M, where M is
independent of m.

Then, if x be not a pole of f(z), since the only poles of the integrand are the poles of f(z)
and the point z = x, we have, by §6.1,

1 f(z) b,
— —dz= + ,
2mi «/Cm Z—x i=/® Zar—x
where the summation extends over all poles in the interior of C,,. But

1 f(@)dz 1 fl)dz  x f(z)dz
b fe ] sy o

2ni Je, z—x 2ni Jc,, 2(z = x)

(ORI (i L

27 Je,, 2(z—x)

if we suppose the function f(z) to be analytic at the origin.

f(2)dz .

is O(R,,”"), and so tends to zero as m tends to infinity.
Cn 22— X)

Therefore, making m — oo, we have
- 1 1 X f(2)dz
0= - f(0) + b, -—]-1 —_— —_—
f@x) =10 ; (an -x an) meos 27 /Cm 2(z—x)

1 1
+ —} , which is an expansion of f(x) in rational fractions

iﬂﬂw=ﬂ®+§m{
n=1 X —ay ap

of x; and the summation extends over all the poles of f(x).

If |a,| < |a,.1] this series converges uniformly throughout the region given by | x| < a,
where a is any constant (except near the points a,). For if R,, be the radius of the circle
which encloses the points |a],. .., |a,|, the modulus of the remainder of the terms of the
series after the first n is

Now as m — oo,

X f(z)dz

2ni Je, 2(z—x)

M,
R,—a

a

by §4.62; and, given &, we can choose n independent of x such that <e.

-a

The convergence is obviously still uniform even if |a,| < |a,41] proﬁided the terms of the
series are grouped so as to combine the terms corresponding to poles of equal moduli.

If, instead of the condition | f(z)| < M, we have the condition |z7? f(z)| < M, where M is
independent of m when z is on C,,, and p is a positive integer, then we should have to expand

f(2)dz

c <—X

by writing

1
i—X

X xp+1
2

1
=—+ =4t =,

z z P (z = x)
and should obtain a similar but somewhat more complicated expansion.

* Of course R, need not (and frequently must not) tend to infinity continuously; e.g. in the example taken
R, =(m+ %) 7t, where m assumes only integer values.
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Example 7.4.1 Prove that

1
cosec 7 = —+Z( l)n(z—nn +E)

the summation extending to all positive and negative values of n.

To obtain this result, let cosecz — 1/z = f(z). The singularities of this function are at
the points z = nz, where n is any positive or negative integer. The residue of f(z) at the
singularity nr is therefore (—1)", and the reader will easily see that | f(z)| is bounded on the
circle |z| = (n + ) as n — oo.

Applying now the general theorem

0= 10+ Yoo =+ 1)

l’l

where ¢, is the residue at the singularity a,,, we have

1) =0+ P (v L),

nmw  Am
But f(0) = 1 —sinz _ = 0. Therefore
zsinz
1 1 1
cosecz = — + Z(—l)” ( + —) (7.2)
z Z—nm  nm
which is the required result.
Example 7.4.2 If0 < a < 1, shew that
e 1 — 2z cos 2nan — 4nn sin 2nan
-1 z o Z2 + 4n’n?
Example 7.4.3 Prove that
1 1 1 1 . 2 1
27mx2(coshx —cosx) 2mx* em —e 7 gh 4 Xt e — e 2n)t + pxt

3 1

+
37 _ -3 4 1.4
e — e (3m)t + 1x

The general term of the series on the right is

(=r)r
(erﬂ _ e—rﬂ) {(Vﬂ')4 + zlt'x4} ’

which is the residue at each of the four singularities r, —r, ri, —ri of the function

g

(m*z* + ix“)(e’rZ — e %) sinnz

The singularities of this latter function which are not of the type r, —r, ri, —ri are at
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the five points 0, (+1 + i)x/2x. At z = 0 the residue is 2/7x*; at each of the four points
7 = (1 +i)x/2n, the residue is {27x*(cos x — cosh x)}~'. Therefore

4 o (=) 1 N 2 2
— e — e (rp)* + gx*  mx*  mx*(coshx — cosx)

r

. nzdz
= — lim 1 ; )
2xi noe Jo (it + 1x4)(e7 — e%)sinnz

where C is the circle whose radius is n + % (here n an integer), and whose centre is the origin.
But, at points on C, this integrand is O(|z|~®); the limit of the integral round C is therefore
Zero.

From the last equation the required result is now obvious.

Example 7.4.4 Prove that

1 3 5
Secx:4ﬂ(ﬂ2—4x2_9ﬂ2—4x2+257r2—4x2_”.)' (7.3)

Example 7.4.5 Prove that

1 1 1 1
cosechx:;—2)((7r2+xz—4ﬂz+x2 +97r2+x2_”.)' (7.4)

Example 7.4.6 Prove that

1 3 1
hx =4 - — . 7.
seehx d (71'2 +4x2  9n? +4x2 M 25712 + 4x2 ) (7.5)

Example 7.4.7 Prove that

1 1 1 1
thx = —+2 + + +oee 7.6
comx=y T (7r2 +x2 4n?+x* 9n? + x? ) (7.6)

Example 7.4.8 (Math. Trip. 1899) Prove that

> T " ap O racothb. (7.7)

m=—00 n=—00

7.5 The expansion of a class of functions as infinite products

The theorem of the last article can be applied to the expansion of a certain class of functions
as infinite products.

For let f(z) be a function which has simple zeros at the points®> a;,as,as,. .., where
l}grolo |a,| is infinite; and let f(z) be analytic for all values of z. Then f’(z) is analytic for all

values of z (§5.22), and so f’(z)/ f(z) can have singularities only at the points a;,a,,as, . . .
Consequently, by Taylor’s theorem,

(Z - ar)z

f@=z-a)f(a)+ Tf”(ar) ...

3 These being the only zeros of f(z); and a,, # 0.
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and
f/(z) = f,(ar) + (Z - ar)f”(ar) t+ee
It follows immediately that at each of the points a,, the function f’(z)/f(z) has a simple
pole, with residue +1.
If then we can find a sequence of circles C,, of the nature described in §7.4, such that
f'(z)/ f(z) is bounded on C,, as m — oo, it follows, from the expansion given in §7.4, that
’ ’ sl 1 1
1O SO (1 1),
f@  fQ) Z—a, a

n=1

Since this series converges uniformly when the terms are suitably grouped (§7.4), we may
integrate term-by-term (§4.7). Doing so, and taking the exponential of each side, we get

£(z) = cel OO 1—[ {(1 _ i) ez/an},
an

n=1

where c is independent of z. Putting z = 0, we see that f(0) = ¢, and thus the general result
becomes

£(2) = f(0)e/ ©2/1O ﬁ {(1 _ i) ez/an} '

an
This furnishes the expansion, in the form of an infinite product, of any function f(z) which
fulfils the conditions stated.

Example 7.5.1 Consider the function f(z) = %, which has simple zeros at the points
z

rm, where r is any positive or negative integer. In this case we have f(0) = 1, f(0) = 0, and
so the theorem gives immediately

11051055 )

n=1

£ L@

7o) as |z| = oo is fulfilled.

for it is easily seen that the condition concerning the behaviour o

Example 7.5.2 (Trinity, 1899) Prove that

[ T T )

7.6 The factor theorem of Weierstrass

This appears in [663, pp. 77-124]. The theorem of §7.5 is very similar to a more general

theorem in which the character of the function f(z), as |z| — oo, is not so narrowly restricted.
Let f(z) be a function of z with no essential singularities (except at ‘the point infinity’);

and let the zeros and poles of f(z) be at aj,ay,as,. .., where 0 < |a;| < |az| < |az| < ---
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Let the zero at a,, be of (integer) order m,,. (We here regard a pole as being a zero of negative
order.)

If the number of zeros and poles is unlimited, it is necessary that |a,| — oo, as n — oo;
for, if not, the points a,, would have a limit point®, which would be an essential singularity

of f(z).
We proceed to shew first of all that it is possible to find polynomials g, (z) such that

=)t ]

n=1

converges for all finite values of z, provided that z is not at one of the points a,, for which m,,
is negative.

Let K be any constant, and let |z] < K; then, since |a,| — oo, we can find N such that,
when n > N,|a,| > 2K. The first N factors of the product do not affect its convergence;
consider any value of n greater than N, and let

Then

m=0 1"

< 2|(Ka;'ye

>

since |za,!| < 1. Hence

(- 2) o) < o
an

where |u,(z)| <2 |m,,(Ka;‘)k"
Now m,, and a, are given, but k,, is at our disposal; since K a;l < % we choose k,, to be

(o)
< b,, where ), b, is any convergent series of

n=1

the smallest number such that 2 |m,,(Ka;, ")
positive terms (e.g. we might take b,, = 27"). Hence
[ H(] - i) eg"(Z)} ] =[] @ (7.9)
an
n=N+1 n=N+1

where |u,(z)| < b,; and therefore, since b, is independent of z, the product converges
absolutely and uniformly when |z| < K, except near the points a,. Now let

F(z) = ﬁ [{(1 - ai) egn@}mn] : (7.10)

6 From the two-dimensional analogue of §2.21.
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Then, if %Z; = G/(z), it follows that G(z) is an integral function (§5.64) of z and has no
<
1 d
zeros. It follows that @) e G(z) is analytic for all finite values of z; and so, by Taylor’s
1\Z) az

[e]
theorem, this function can be expressed as a series ), nb,z"~
n=1

! converging everywhere;

integrating, it follows that

G(z) = ce®?,

(9]

where G(z) = Y, b,7" and c is a constant; this series converges everywhere, and so G(z) is
n=1

an integral function.

Therefore, finally,

n

flz) = f(O)eG(z)lj {(1 _ ai) egn<z)}m"]’

where G(z) is some integral function such that G(0) = 0.

Note The presence of the arbitrary element G(z) which occurs in this formula for f(z) is
due to the lack of conditions as to the behaviour of f(z) as |z] — oo.

Corollary 7.6.1 Ifm, = 1, it is sufficient to take k, = n, by §2.36.

7.7 The expansion of a class of periodic functions in a series of cotangents

Let f(z) be a periodic function of z, analytic except at a certain number of simple poles; for
convenience, let i be the period of f(z) so that f(z) = f(z + «).

Letz = x +iy and let f(z) — ¢ uniformly with respect to x as y — +oo, when 0 < x < m;
similarly let f(z) — ¢’ uniformly as y — —oo. Let the poles of f(z) inthe strip0 < x < 7
be at aj,as,...,a,; and let the residues at them be ¢y, ¢y, .. .,c,. Further, let ABCD be a
rectangle whose corners are” —ip,m —ip,m +ip’ and ip’ in order.

1
Consider i / f(t) cot(t — z) dt taken round this rectangle; the residue of the integrand
Tl

at a, is ¢, cot(a, — 7), and the residue at z is f(z). Also the integrals along DA and CB cancel
on account of the periodicity of the integrand; and as p — oo, the integrand on AB tends
uniformly to i¢’, while as p” — oo the integrand on CD tends uniformly to —i¢; therefore

n

%(é’ +¢) = f(z) + Z cr cot(a, — 2).

r=1
That is to say, we have the expansion

n

f(2) = %(Z +{) + Z ¢, cot(z — a,.).

r=1

7 If any of the poles are on x = x, shift the rectangle slightly to the right; p, o’ are to be taken so large that
a, as, ..., a, are inside the rectangle.
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Example 7.7.1 Prove that

cot(x —aj)cot(x — ay) - - - cot(x —a,) =
n
Z cot(a, —a)--- % - -cot(a, — a,) x cot(x — a,) + (=1)"%,
r=1
n

or Z cot(a, —ay)--- *---cot(a, — a,)cot(x — a,),

r=1
according as n is even or odd; the * means that the factor cot(a, — a,) is omitted.

Example 7.7.2 Prove that

sin(x — by) sin(x — by) - - -sin(x — b,) _ sin(a; — by) - - - sin(a; — b,)
sin(x — a;) sin(x — ay) - - - sin(x — a,)  sin(a; — a) - - - sin(a; — a,)
sin(a, — by) - - - sin(ap — b,,)
sin(ay — ay) - - - sin(a; — a,,)

cot(x — ay)

cot(x — a»)

+

+cos(ay+ay+---+a,—by—by—---—b,).

7.8 Borel’s theorem

This appears in [85, p. 94] and the memoirs there cited. Let f(z) = . a,z" be analytic

n=0
when |z| < r, so that, by §5.23, |a,r"| < M, where M is independent of n. Hence, if
o(2) =Y a"f , then ¢(z) is an integral function, and
o M 2"
<y —— =M, 7.11
6l < 3 oy = Me (7.11)

n=0
and similarly [¢™(z)| < Mel*!/" /.
Now consider fi(z) = / e~ ¢(zt) dt; this integral is an analytic function of z when
0
|z| < r, by §5.32. Also, if we integrate by parts,

oo

h)= [—e”¢(zt)];° +z | e’ (zt)dt

0

o)

= Z " [—e"¢('")(zt)]((;o + " / e "¢ D (zt) dt.
m=0

0

But linge"qﬁ(’”)(zt) = a,; and, when |z| < r, lime¢"(zt) = 0. Therefore
- t—o0
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fiz) = X anz™ + R,, where
m=0

|Rn| < |Zn+1|/€—t XMeIztl/rr—n—ldt
0

n+l

=|Zr_1| M{1-|z|r''}' >0, as n— co.

Consequently, when |z| < r,
A=) anz" = f(2);
and so

@) = /0 Bzt db,

where ¢(z) = X, “’;f," ; #(z) is called Borel’s function associated with . a,z".
n=0 n=0

S
00

IfS =) a,and ¢(z) = 2, “';l—z," and if we can establish the relation S = [ e7¢ (¢) dt,
n=0 n=0
0
the series S is said (§8.41) to be ‘summable (B)’; so that the theorem just proved shews that

a Taylor’s series representing an analytic function is summable (B).

7.81 Borel’s integral and analytic continuation

We next obtain Borel’s result that his integral represents an analytic function in a more
extended region than the interior of the circle |z| = r.

——

This extended region is obtained as follows: take the singularities a, b, ¢, . .. of f(z) and
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through each of them draw a line perpendicular to the line joining that singularity to the
origin. The lines so drawn will divide the plane into regions of which one is a polygon with
the origin inside it.

Then Borel’s integral represents an analytic function (which, by §5.5 and §7.8, is obviously
that defined by f(z) and its continuations) throughout the interior of this polygon. The reader
will observe that this is the first actual formula obtained for the analytic continuation of a
function, except the trivial one of Example 5.5.1.

For, take any point P with affix { inside the polygon; then the circle on OP as diameter
has no singularity on or inside it®; and consequently we can draw a slightly larger concentric
circle (the difference of the radii of the circles being, say, §) C with no singularity on or
inside it. Then, by §5.4,

1
n= < f(Z) d s
271'1 c Zn+1
and so
1 't [ f)
¢(§t)zr ' —dz;
mi i onl Joz
but
i " f(2)
— n! Zn-¢—1

converges uniformly (§3.34) on C since f(z) is bounded and |z| > 6 > 0, where § is
independent of z; therefore, by §4.7,

1
(L) = %/Czlf(z)exp(gtzl)dz,

and so, when ¢ is real, |¢(Zt)| < F({)e', where F(() is bounded in any closed region lying
wholly inside the polygon and is independent of ¢; and A is the greatest value of the real part
of {/zonC.

If we draw the circle traced out by the point z/{, we see that the real part of {/z is greatest
when z is at the extremity of the diameter through ¢, and so the value of Ais |£|-(|¢] + 6) ™' < 1.

We can get a similar inequality for ¢’({t) and hence, by §5.32, / e”" ¢({1) dt is analytic at

0
{ and is obviously a one-valued function of . This is the result stated above.

7.82 Expansions in series of inverse factorials

A mode of development of functions, which, after being used by Nicole [498] and Stirling (see
[635], and [634]) in the eighteenth century, was systematically investigated by Schlomilch
[583] in 1863, is that of expansion in a series of inverse factorials. More recent investigations
are due to Kluyver [379], Nielsen [499, 501, 502] and Pincherle [524, 525]. Properties of
functions defined by series of inverse factorials have been studied in an important memoir
by Norlund [506].

8 The reader will see this from the figure; for if there were such a singularity the corresponding side of the
polygon would pass between O and P;i.e. P would be outside the polygon.
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To obtain such an expansion of a function analytic when |z| > r, we let the function be

f(z) = Z a,z", and use the formula f(z) = / e "% ¢ (1) dt, where ¢(t) = Z a,t" /n!; this
n=0
result may be obtained in the same way as that of §7.8. Modify this by wrltlng e =1-¢,
1

¢(t) = F(&); then f(z) = / 2(1 = & 'F(&)dé. Now if t = u + iv and if ¢ be confined to

the strip -7 < v < m, t is 0a one-valued function of ¢ and F(¢) is an analytic function of
&; and ¢ is restricted so that —n < arg(l — &) < n. Also the interior of the circle |£| = 1
corresponds to the interior of the curve traced out by the point r = —log(2 cos %9) + %i&,
(writing & = exp{i(6 + n)}); and inside this curve |¢| — R(¢) < [R(z‘)2 + 712] 2 R() — 0,
as R(t) — oo.

It follows that, when |£]| < 1, |F(€)] < Me™"! < M, |e"|, where M, is independent of ¢;
and so F(&) < M;(1-¢)™". Now suppose that 0 < ¢ < 1; then, by §5.23, |[F"(¢)| < Man!p™,
where M, is the upper bound of |F(z)| on a circle with centre £ and radius p < 1 — &£.

Taking p = n(1 — &)/(n + 1) and observing that (1 + n~!)" < e we find that’

n+1

|F(n)(§)| < M, [1 _ {f+ nnﬁf}]—rn! {n(] _5)}—n

< Mie(n+ 1)'n!(1-¢)""".

1-¢

1
Remembering that, by §4.5, / means lirg , we have, by repeated integrations by
0 =07 Jo

parts,
l-&
70 = Jim (=7 PN+ [ (1-e7F @ de
1 -
= Jim [~(1 =€ FOL ™ + — [-1 - &7 F@)],
1 1-& .
T | (1 =& F"(§) d¢
B b by b,
R R T sy SR S YA ey e g
where
. z+n (n l-e n
by =lim [-(1 = 7" F™(E)], " = F™(0),
o (1 + x~1)* increases with x; for — > eV, wheny < 1, and so log (ﬁ) > y. That is to say, putting

yl=1+x, —xlog(1+x’1)—log(l+x Hh--L >o.

I+x
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if the real part of z + n —r —n > 0, i.e. if Re z > r; further

1 : e z+n (n+l1)
|R,1|s|(Z+1)(Z+2)__.(Z+n)|g%/o (1= & Fe (&) | de

- Mie(n +2) n!
(z+1)(z+2)---(z+n)|-R(z—r)

- Mie(n +2)" n!
(r+1+8)(Fr+2+06)---(r+n+0d)-6

where § = R(z —r).
n +0
Now [] {(1 + r )em‘;} tends to a limit (§2.71) as n — oo, and so |R,| — 0 if

m=1 m

L ~r+8)31/m
(n+2)e 1 tends to zero; but

n 1 n+l d
Z—>/ —leog(n+1),
m 1 X

m=1

by §4.43, and (n +2)"(n + 1)”"% — 0 when 6 > 0; therefore R, — 0 as n — oo, and so,
when R(z) > r, we have the convergent expansion

bl b2 bn

fA=b+ S+ eyt T ey e T

Example 7.8.1 Obtain the same expansion by using the results

1
! 1/u"(l—u)zdu, (7.12)
0

z+1)(z+2)-(z+n+ D) n!

1
f@adt :/dt/ FO =" du,
C 0

c 71
Example 7.8.2 (Schlomilch) Obtain the expansion

lo (1+1)—1— @4 & -
g 2]z z2z+1) zz+1D)(z+2) ’

(7.13)

1
where a,, = / t(1=1)2—1)---(n—1—1t)dt, and discuss the region in which it converges.
0

7.9 Miscellaneous examples

Example 7.1 (Levi-Civita [432]) If y —x — ¢ (y) = 0, where ¢ is a given function of its
argument, obtain the expansion

F0)= £+ 3 o OV | 25 0

m=1

where f denotes any analytic function of its argument, and discuss the range of its validity.
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Example 7.2 Obtain (from the formula of Darboux or otherwise) the expansion

S (12— a)

1@ - @)= 3, SIES ) - @)
n=1 .

find the remainder after n terms, and discuss the convergence of the series.
Example 7.3 Shew that

5.-Qm—1)h"
(m!)?

o hy = £ = Y npt 2 DL+ 1) = 1" )

m=1
1

+(=1)"h"*! / Yu®) F D (x + ht) dt,
0

where
n+2(1 _ x)n+2 dn
(n!)?

and shew that y,,(x) is the coefficient of n!#" in the expansion of {(1 —rx)(1 +¢ —tx)}~"/?in
ascending powers of 7.

() = Lt = o / (o2t - 2t e

Example 7.4 By taking

o= b [ {4z
. u=0

in the formula of Darboux, shew that

n

) = — Ly _Lm
fat )= ()= = an— {f (x+h)=~f (x)}

m=1
1
+(=1)"n"! / ¢ () f" D (x + he) dt,
0

where

1-r - u u? u’
T TR TR T

Example 7.5 Shew that

2B,(22" - 1)(z — a)*"""!

Gm)! {re @) + 4" D(2))

f@) = flay= > (="

2n+1 1
z—a
+ % / Yo f P Na +1(z-a)}dr,
(2n)! 0
where
2 dn+1 uetu

1) = .

Yn(t) n+1 |du! (e“ + 1) 40




7.9 Miscellaneous examples 147

Example 7.6 (Trinity, 1899) Prove that

f(z22) = f(z1) = Ci(za — 21) f(z2) + Calza — 212 f(21) = C3(z2 — 1) 7 (22)
—Ci(zo =z fMz) + - + (D) "(z2 — 2)™!

1
dn
x/ { - (e™ sech u)} FrD () + 120 — 12y) dt;
0

du u=0

in the series plus signs and minus signs occur in pairs, and the last term before the integral
is that involving (z; — z;)"; also C, is the coeflicient of z”* in the expansion of cot (% - %) in
ascending powers of z.

Example 7.7 If x; and x, are integers, and ¢(z) is a function which is analytic and bounded
for all values of z such that x; < R(z) < x,, shew (by integrating

¢(z)dz

e:27riz -1
round indented rectangles whose corners are x;, X, Xo + 0, x; + coi) that

Ip(x)+o(xi+D+o(xi+2)+- -+ ¢ (- D)+ 1¢(x)
_ /"3 ¢(Z)dz+%/w o +1y) = $lxi +iy) = bz —iy) + $01 = 1)) |
1 0

ey — 1

Hence, by applying the theorem

where By, B, . .. are Bernoulli’s numbers, shew that
¢(1) +¢(2) + -+ + ¢(n)
—cuzom+ [ o@azs Z )

(where C is a constant not involving n), provided that the last series converges. (This important
formula is due to Plana [526]; a proof by means of contour integration was published by
Kronecker [386]. For a detailed history, see Lindelof [436]. Some applications of the formula
are given in Chapter 12.)

Example 7.8 Obtain the expansion

2n—-3
=—+Z( 1)"l (!n );n

for one root of the equation x = 2u + u?, and shew that it converges so long as |x| < 1.

Example 7.9 (Teixeira) If S;;"il denote the sum of all combinations of the numbers

12, 3%, 5%, ...,2n - 1),
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taken m at a time, shew that
cosz 1 > (=1)!
- s
b4 sinz 44 (2n+2) !

22(n+1) 22n 22
_ o a1y 2 s 2n]
X {Zn 3 Sz("“)zn — +---+(=1) S2(n+1) 3 }sm Z.

Example 7.10 (Teixeira) If the function f(z) is analytic in the interior of that one of the
ovals whose equation is | sin z| = C (where C < 1), which includes the origin, shew that f(z)
can, for all points z within this oval, be expanded in the form

OO + S RO+ 4 STO)

2n z
2n !

@) =fO)+ )
n=1

n S f(2n+1)(0) + Sgi)nf(zn_l) O)+---+ S;’:l)-i-lf, (0) sin2*! 7
g 2n+1)! ’
where S;':) is the sum of all combinations of the numbers
2%, 4 6%...,(2n - 2)%
taken m at a time, and Sé':il denotes the sum of all combinations of the numbers
12,32, 5%,...,2n - 1%,
taken m at a time.

Example 7.11 (Kapteyn [366]) Shew that the two series

273 27
2Z+?+?+"',

2z 2 (22 ) 24 2 )
1-22 1-3\1-22] 3.52\{1-2 '
represent the same function in a certain region of the z-plane, and can be transformed into
each other by Biirmann’s theorem.

and

Example 7.12 If a function f(z) is periodic, of period 27, and is analytic at all points in the
infinite strip of the plane included between the two branches of the curve | sin z| = C (where
C > 1), shew that at all points in the strip it can be expanded in an infinite series of the form

f() =Ag+ A;sing+---+A,sin" z+ -+

+cosz(By + B, sinz+---+ B, sin"™!

and find the coefficients A,, and B,,.
Example 7.13 If ¢ and f are connected by the equation

¢(x) + Af(x) =0,
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of which one root is a, shew that

a1 21| ¢ fF
F(X) =F - Taf 1! 2,% ¢// (fZF/)/
/13 1 ¢, (¢22), (f:F,)
-— ¢N (¢ )H (f Fr)r +
1 ‘ 2' 3‘ ¢ ¢H/ (¢2)/N (f3F/)//

the general term being
/lm
1121 m! (¢p7)zmim+D)
multiplied by a determinant in which the elements of the first row are
(@) (@), (8" (fF)
and each row is the differential coefficient of the preceding one with respect to a; and

F,f,F',...denote F(a), f(a),F'(a),.... (See Wronski [684]. For proofs of the theorem see
Cayley [135], Transon [633] and Ch. Lagrange [391].)

Example 7.14 (JeZek) If the function W(a, b, x) be defined by the series

- —b)a-2
W(a,b,x):x+ az‘b 2+ (a b):g? b)x3+... ,

which converges so long as |x| < 1/|b|, shew that

="

d
d—W(a, b,x)=1+(a—-b)W(a - b,b,x);
X

and shew that if y = W(a, b, x), then x = W(b, a, y). Examples of this function are
W(1,0,x) = ¢* — 1,
W(0,1,x) =log(1 + x),

Wial,x)= 4F0 =1

Example 7.15 (Mangeot [453]) Prove that

—— - Sl

Z a,x" n=1
n=0
where
2611 do 0 0 te 0
4612 3a1 261() 0 te 0
6613 5612 4611 3610 te 0
Gn = ) ) : . ) ,
(2n—2)dn—| (n_l)ao
na, (I’l— 1)Cln—1 a

1/2
(o]
and obtain a similar expression for { > a,,x"} .
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Example 7.16 (Gambioli [232]) Shew that
_ Z 1 aSr+l X
r+1 8a1 ’

where S, is the sum of the rth powers of the reciprocals of the roots of the equation

n
ax" =0
r=0

Z a,x’
r=0

Example 7.17 (Guichard) If f,(z) denote the nth derivate of f(z), and if f_,,(z) denote that
one of the nth integrals of f(z) which has an n-tuple zero at z = 0, shew that if the series

i fn(Z)gfn(x)

n=—oo

is convergent it represents a function of z + x; and if the domain of convergence includes the
origin in the x-plane, the series is equal to

D Foulz + 2)84(0).
n=0

Obtain Taylor’s series from this result, by putting g(z) = 1.
Example 7.18 (Math. Trip. 1895) Shew that, if x be not an integer,
2x+m+n
Z Z (x + m)?(x + n)? -0
m=-v n=-v
as v — oo, provided that all terms for which m = n are omitted from the summation.
Example 7.19 (Math. Trip. 1896) Sum the series

C 1 1
Z ((—1)"x—a—n+5)’

n=—q

where the value n = 0 is omitted, and p, g are positive integers to be increased without limit.

Example 7.20 (Trinity, 1898) If F(x) = exp ( fox x7 cot(xm) dx), shew that

ﬁ —a e
F(x)=e* :1{(1 ) }

il

n

{1+ es)
n=1 n

and that the function thus defined satisfies the relations

F(-x) = F(x)F(1 — x) = 2sinxn.

1
F(x)
Further, if

2 3 4 dt
a//(z)—z+z—+%+ / log(1 — )—,
0 t
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shew that
1 . 2 1 —2mix
F(x)=exp|zmix— —uy(l —e )
2 27i
when |1 — e727¥| < 1.

Example 7.21 (Mildner) Shew that

STy
- (4nk_x)n] 1+ (4ﬂ"+x)"]

H {1 —2¢7% cos(x + Bg) + e} 12 {1 =2¢7% cos(x — Bg) + 2% }1/2

2n/2(1 — Cos x)n/Ze—kcoszr/n ’
_ 2g 1 2g 1
where @, = k sin =—mn, B, = k cos mand 0 < x < 27,

Example 7.22 (Lerch [428]) If |x| < 1 and a is not a positive integer, shew that

(o) . — —_

x" 2mix® X ol — xo-l
: J = 2ani + 2ani dt’
Hn-—a l-e 1-e c t—x

where C is a contour in the ¢-plane enclosing the points 0, x.

Example 7.23 If ¢,(z), ¢2(2),. .. are any polynomials in z, and if F(z) be any integrable
function, and if ¥ (z), ¥ (2),. . . be polynomials defined by the equations

/ P2 D0 gy

/ P00 20 2y,

¢m(Z) ¢m( )

b
/ F(x) 61(0)02(0) - (1) dx = Y (2),

a

shew that

/h Fx)dx _¢1(2) N ¥a(z) N V3(2)
a Z—X $1(z2)  $1(2) 92(z)  ¢1(2) a(2) ¢3(Z)
" YUm(2)
¢|(Z)¢z(Z) “Pm(2)

e / FOIB0:(0) ()=

¢1(Z)¢2(Z)

Example 7.24 (Pincherle [521]) A system of functions po(z), pi(z), p2(2), . . . is defined by
the equations

Po(2) = 1, pusi(2) = (22 + anz + by)pa(2),
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where a,, and b,, are given functions of n, which tend respectively to the limits 0 and —1 as
n— oo,

Shew that the region of convergence of a series of the form )’ e,,p,(z), where ey, e, . . . are
independent of z, is a Cassini’s oval with the foci +1, —1.

Shew that every function f(z), which is analytic on and inside the oval, can, for points
inside the oval, be expanded in a series

F@) = (cn+26,)pa(2),
where

Cn = % / (an + 2)qn(2) f(2) dz, ¢, = % / qn(2) f(2) dz,

the integrals being taken round the boundary of the region, and the functions ¢,(z) being
defined by the equations

1 1

» 41 () = 2+ an12+ bun ()

90(2) = 22+ apz + by

Example 7.25 Let C be a contour enclosing the point a, and let ¢(z) and f(z) be analytic
when z is on or inside C. Let |¢| be so small that |¢(z)| < |z — a| when z is on the periphery

of C. By expanding
1-1¢'(2) ,
Zm/ U )z -a- t¢(z)

in ascending powers of ¢, shew that it is equal to

00

"odr 1
fla)+ Y S @ gy

n=1

Hence, by using §6.3, §6.31, obtain Lagrange’s theorem.
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Asymptotic Expansions and Summable Series

8.1 Simple example of an asymptotic expansion

00

Consider the function f(x) = / t~'e*" dt, where x is real and positive, and the path of
X
integration is the real axis. By repeated integrations by parts, we obtain

f(x)=%_i+2_...+L81—1)!+(_1)nm/wex_,dt.

X2 x3 X tn+l

In connexion with the function f(x), we therefore consider the expression

=) -1
el S T
and we shall write
z 1 1 2! (=1)"n!
™ R

Then we have |u,, /u,,—1| = mx~' — oo as m — oo. The series Y u,, is therefore divergent for

all values of x. In spite of this, however, the series can be used for the calculation of f(x);
this can be seen in the following way.
Take any fixed value for the number 7, and calculate the value of S,,. We have

e*dr

ﬂ@—&@ﬁ%AW%mHM/ —
and therefore, since ¢ < 1,
< ¥ 'dt < dt n!
|f()C) - Sn()C)l = (I’l + 1)'[ tnT < (n + 1)'[ prve) = W

For values of x which are sufficiently large, the right-hand member of this equation is very
small. Thus, if we take x > 2n, we have

)= .01 < 3.

which for large values of n is very small. It follows therefore that the value of the function
f(x) can be calculated with great accuracy for large values of x, by taking the sum of a
suitable number of terms of the series Y, u,,.

Taking even fairly small values of x and n

S5(10) = 0.09152, and 0 < £(10) — S5(10) < 0.00012.

153
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The series is on this account said to be an asymptotic expansion of the function f(x). The
precise definition of an asymptotic expansion will now be given.

8.2 Definition of an asymptotic expansion

A divergent series
A A A,
A+ —+ 5+t —
V4 Z "
in which the sum of the first (n + 1) terms is S,,(z), is said to be an asymptotic expansion of a
function f(z) for a given range of values of arg z, if the expression R,(z) = 2" [ f(z) — S.(2)]
satisfies the condition

lim R,(z) =0 (nfixed),

|z|—>00
even though

lim |R,(z)| = o0 (z fixed).
When this is the case, we can make

12" (f(2) = Su(2) | <&,

where ¢ is arbitrarily small, by taking |z| sufficiently large.
We denote the fact that the series is the asymptotic expansion of f(z) by writing

f(z) ~ iAnz’”.
n=0

The definition which has just been given is due to Poincaré [529]. Special asymptotic
expansions had, however, been discovered and used in the eighteenth century by Stirling,
MacLaurin and Euler. Asymptotic expansions are of great importance in the theory of Linear
Differential Equations, and in Dynamical Astronomy; some applications will be given in
subsequent chapters of the present work.

The example discussed in §8.1 clearly satisfies the definition just given: for, when x is
positive, |x" (f(x) — S,(x))| < n!x™! — 0 as x — oo. For the sake of simplicity, in this
chapter we shall for the most part consider asymptotic expansions only in connexion with
real positive values of the argument. The theory for complex values of the argument may be
discussed by an extension of the analysis.

8.21 Another example of an asymptotic expansion

As a second example, consider the function f(x), represented by the series

i k

f@) =3 —

k=1

where x > 0and 0 < ¢ < 1.
The ratio of the kth term of this series to the (k — 1)th is less than ¢, and consequently the
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series converges for all positive values of x. We shall confine our attention to positive values
of x. We have, when x > k,

1 1k kK B K

+ +
x+k x x* x3 x* X

If, therefore, it were allowable' to expand each fraction in this way, and to rearrange

X
the series for f(x) in descending powers of x, we should obtain the formal series

A A A,
_+_2+...+_+...,
X X X"

where A, = (=1)""!' ¥ k""'ck. But this procedure is not legitimate, and in fact 3. A,x™"

k=1 n=1
diverges. We can, however, shew that it is an asymptotic expansion of f(x).
A A A
Forlet S,(x) = — + = +---+ —_ Then
x X2 xn+1
& k k 2 .k nin .k
¢ kc® ke (=)*k"c
Sa(x) = ———+ +o 8.1
=25 ea

_i . _E n+l Ck
- = X x+k
o k n+l Ck
5 ()

k=1 X x+k

0
Now Y k"c* converges for any given value of n and is equal to C,, say, and hence
k=1

(o]
< x"72 Y kK.
k=1

so that | f(x) — S, (x)| =

|f(x) = Sp(x)| < C,x™""2. Consequently f(x) ~ > A,x™".

n=1
Example 8.2.1 If f(x) = / e~ dt, where x is positive and the path of integration is
the real axis, prove that *

1 1 +1-3 1-3-5
2x  22x3 0 23x° 24x7

) ~

In fact, it was shewn by Stokes [610] in 1857 that

/X R g L1 13 1.35
e ~x—e - [—- - s
0 2 2x  22x3 0 23x%° 24x7

the upper or lower sign is to be taken according as

—§ﬂ<argx<§7r or §ﬂ<argx<§7r.

I 1t is not allowable, since k > x for all terms of the series after some definite term.
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8.3 Multiplication of asymptotic expansions

We shall now shew that two asymptotic expansions, valid for a common range of values of
arg z, can be multiplied together in the same way as ordinary series, the result being a new
asymptotic expansion.

For let f(z) ~ i A", 9(2) ~ i Bz, and let S,(z) and T,,(z) be the sums of their
0

m=0

first (n + 1) terms; ;0 that, n being fixed,

f(2) = 8u(2) = 0(z™"), ¢(2) = T(z) = o(z™).

Then, if C,, = AgB,, + A\ Bp_i + - - + A, By, it is obvious that?
Su(DTu(2) = ) Cuz ™ +0(z™").
m=0

But

f(@)p(2) = (Su(2) + 0(z7)) (T(2) + 0(z7™))
= 85,()T(2) + o(z™")

= Zn: Cnz™+o0(z7").
=0

This result being true for any fixed value of n, we see that

F@9(2) ~ Y Cuz ™.
m=0

8.31 Integration of asymptotic expansions

We shall now shew that it is permissible to integrate an asymptotic expansion term by term,
the resulting series being the asymptotic expansion of the integral of the function represented
by the original series.

For let f(x) ~ > A,x ™ andlet S,(x) = X, A, x7". Then, given any positive number
=2 m=2

o
&, we can find xq such that

|f(x) = S.(x)] < &|lx|™" when x > x,

‘/XOo f(x)dx — ‘/XDo S, (x)dx

and therefore

< / F() = Su()ldx
) E
< (n—1)xmt

2 See §2.11; we use o(z ™) to denote any function ¢ (z) such that zy(z) — 0 as |z| — x.
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« A A A,
But‘/x S, (x)dx = 72 + 2—;2 +t m, and therefore

[ sl Am
/ Foo)dx~ ' TETE (8.2)
x m=2

On the other hand, it is not in general permissible to differentiate an asymptotic expansion;
this may be seen by considering e~ sin(e*). For a theorem concerning differentiation of
asymptotic expansions representing analytic functions, see Ritt [560].

8.32 Uniqueness of an asymptotic expansion

A question naturally suggests itself, as to whether a given series can be the asymptotic
expansion of several distinct functions. The answer to this is in the affirmative. To shew this,
we first observe that there are functions L(x) which are represented asymptotically by a series
all of whose terms are zero, i.e. functions such that }g’xolo x"L(x) = 0 for every fixed value of
n. The function e is such a function when x is positive. The asymptotic expansion® of a
function J(x) is therefore also the asymptotic expansion of J(x) + L(x).

On the other hand, a function cannot be represented by more than one distinct asymptotic
expansion over the whole of a given range of values of z; for, if

f(@) ~ i Anz™, (@) ~ i Bz,
m=0 m=0

then

>
Z—00 Zl’l

A A, B B,
limz”(Ao+—l+---+—_BO__1 ..... _)
Z " Z

which can only be if Ay = By, A; = By,.. ..

Important examples of asymptotic expansions will be discussed later, in connexion with
the Gamma-function (Chapter 12) and Bessel functions (Chapter 17).

8.4 Methods of summing series

We have seen that it is possible to obtain a development of the form f(x) = Y, A,,x ™ +R,(x),
m=0

(o)
where R, (x) — oo as n — oo, and the series ), A,,x™" does not converge. We now consider

m=0
what meaning, if any, can be attached to the sum of a non-convergent series. That is to say,
given the numbers ay, @y, ay, . . ., we wish to formulate definite rules by which we can obtain

from them a number § such that S = ) a, if ) a, converges, and such that S exists when
n=0 n=0
this series does not converge.

3 It has been shewn that when the coefficients in the expansion satisfy certain inequalities, there is only one
analytic function with that asymptotic expansion. See Watson [648].
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8.41 Borel’s method of summation [85, p. 97-115]

We have seen (§7.81) that Y, a,7" = fom e~ p(1z) dt, where ¢(tz) = Y “LZ the equation
n=0

n!
n=0

certainly being true inside the circle of convergence of ), a,z". If the integral exists at points
n=0

z outside this circle, we define the Borel sum of ), a,z" to mean the integral.
n=0

Thus, whenever Re z < 1, the ‘Borel sum’ of the series Y, 7" is
n=0

/ ele?dr = (1 -2\
0

If the Borel sum exists we say that the series is summable (B).

8.42 Euler’s method of summation [85, 201]

A method, practically due to Euler, is suggested by the theorem of §3.71; the sum of )] a,

n=0

may be defined as lim }, a,x", when this limit exists.

x—=1" ,-0

Thus the sum of the series1 — 1+ 1 -1+ --- would be

1
lim (1—x+x2—-~-): lir111(1+x)_1:§.

x—1-

8.43 Cesaro’s method of summation [141]

1 =)
Lets, =a+a+---+a,;thenif S = lim —(s; + s, + - -+ + 5,,) exists, we say that ), a,

n—oo N n=1

is ‘summable (C1)’, and that its sum (C1) is S. It is necessary to establish the condition of

consistency, namely that S = } a, when this series is convergent. (See the end of §8.4.)
n=1

(o] n
To obtain the required result, let >, a,, = s, X, s, = nS,; then we have to prove that

m=1 m=1
n+p
S, — s. Given &, we can choose n such that | >, a,| < & for all values of p, and so
m=n+1

|s — s,| < &. Then, if v > n, we have

1 -1
SV=a1+a2(1——)+---+an(l—n )

v 4

-1
+an+1(1—g)+---+av(1—vv )

Since 1,1-v~!,1-2v~!, .. .isapositive decreasing sequence, it follows from Abel’s inequality
(§2.301) that

vt (1= ) s (1= v (1= 2 < (122

14 14 14
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1 -1
sv—{a1+a2(1——)+---+a,1(1—n )H<(1—E)s.
y v y

Making v — oo, we see that, if S be any one of the limit points (§2.21) of §,, then
S— 3 an

m=1

true for every positive value of & we infer, as in §2.21, that § = s; that is to say, S, has the
unique limit s; this is the theorem which had to be proved.

Therefore

< &. Therefore, since |s — s5,,| < &, we have |S — 5| < 2&. This inequality being

Example 8.4.1 Frame a definition of ‘uniform summability (C1) of a series of variable
terms’.

Example 8.4.2 1If b, , > b1, > 0 when n < v, and if, when n is fixed, lim b, , = 1 and

if >, a,, = S, then lim {i anbn,v} =S.
n=1

m=1 V—00

8.431 Cesaro’s general method of summation

(o) v
A series ), a,, is said to be ‘ summable (Cr)’ if lim », a,b,,, exists, where

n=0 V=00 p=(0

r r r -1
o= 1 b= {1 (1 Joo (59
bo, bn, +v+1—n +v+2—n Jrv—l

It follows from Example 8.4.2 that the condition of consistency is satisfied; in fact it can be
proved [102, §122] that if a series is summable (Cr’) it is also summable (Cr) when r > r’;
the condition of consistency is the particular case of this result when r = 0.

8.44 The method of summation of Riesz [559]

A more extended method of summing a series than the preceding is by means of

) (1 - ﬁ—)
n=1

4

in which 4,, is any real function of n which tends to infinity with n. A series for which this
limit exists is said to be ‘ summable (Rr) with sum-function A4,,’.

8.5 Hardy’s convergence theorem

This appears in Hardy [278]. For the proof here given, we are indebted to Mr. Littlewood.

Let 3, a, be a series which is summable (C1). Then if a, = O(1/n), the series 3, a,
convergzls. "

o0
Lets, = a;+ a,+---+a,;thensince >, a, is summable (C1), we have s; +s,+-- -+, =
n=1

n(s + o(1)), where s is the sum (C1) of i a,. Lets, —s =t,, (m=1,2,...,n), and let

n=1



160 Asymptotic Expansions and Summable Series

t +t + -+ +1t, = 0,. With this notation, it is sufficient to shew that, if |a,| < Kn~', where
K is independent of n, and if o, = n - o(1), thenf, —» 0 as n — oo.

Suppose first that a;, a,, . . ., are real. Then, if ¢,, does not tend to zero, there is some positive
number / such that there are an unlimited number of the numbers #,, which satisfy either (i)
t, > hor (ii) t, < —h. We shall shew that either of these hypotheses implies a contradiction.
Take the former*, and choose n so that ¢, > h. Then, when r = 0,1,2,. .., |a,.,| < K/n.

y

T
~

(o] &

Now plot the points P, whose coordinates are (7, t,,,) in a Cartesian diagram. Since
tasrsl — tnsr = Qnirs1, the slope of the line P, P,,; is less than 6 = arctan(K/n). Therefore
the points Py, Py, P, . .. lie above the line y = h — xtan 6. Let P; be the last of the points
Py, Py, ... which lie on the left of x = Acot8, so that k < hcot6.

Draw rectangles as shewn in the figure. The area of these rectangles exceeds the area of
the triangle bounded by y = & — x tan 6 and the axes; that is to say

Op+k — Op—1 = Iy tlppr + 00 + Ik
1 1
> —h*cotf = ~h*K 'n.
2 2
But

On+k — O-n—ll < |0-n+k| + |O-n—l|
(n+k)-ol)+(n—-1)-0(1)
=n-o(l),

since k < hnK~', and h,K are independent of n. Therefore, for a set of values of n tending
to infinity, $#*K~"'n < n - o(1), which is impossible since 1h2K~" is not o(1) as n — oo.
This is the contradiction obtained on the hypothesis that limz, > h > 0; therefore
limz, < 0. Similarly, by taking the corresponding case in which ¢, < —h, we arrive at the
result lim#, > 0. Therefore since Ent,, > lim¢t,, we have mtn =lim¢, =0,andsot, — O.

00

That is to say s, — s, and so ), a, is convergent and its sum is s.
n=1

If a, be complex, we consider Rea, and Ima, separately, and find that ), Rea, and

n=1

4 The reader will see that the latter hypothesis involves a contradiction by using arguments of a precisely similar
character to those which will be employed in dealing with the former hypothesis.
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>, Ima,, converge by the theorem just proved, and so ), a, converges. The reader will see
n=1 n=1
in Chapter 9 that this result is of great importance in the modern theory of Fourier series.

Corollary 8.5.1 If a, (&) be a function of ¢ such that Z a, (&) is uniformly summable (C1)
throughout a domain of values of &, and if |a,(¢)| < K” !, where K is independent of &,

Z an(€) converges uniformly throughout the domain.
n=1

For, retaining the notation of the preceding section, if ,,(£) does not tend to zero uniformly,
we can find a positive number £ independent of n and & such that an infinite sequence of
values of n can be found for which ¢,(£,) > h or 1,(£,) < —h for some point &, of the
domain’; the value of &, depends on the value of n under consideration.

We then find, as in the original theorem, %th ~'n < n-o(1) for a set of values of n tending
to infinity. The contradiction implied in the inequality shews® that i does not exist, and so
1,(&) — 0 uniformly.

8.6 Miscellaneous examples
< e 1 2! 4! i .
Example 8.1 Shew that ——dt ~ — — — + — —--- when x is real and positive.
o 1+ x x3  x®

Example 8.2 Discuss the representation of the function

0
ﬂm=[¢mwm

(where x is supposed real and positive, and ¢ is a function subject to certain general condi-
tions) by means of the series

00 _40 00

x2 x3

Jfx) =

Shew that in certain cases (e.g. ¢(¢) = e**) the series is absolutely convergent, and represents
f(x) for large positive values of x; but that in certain other cases the series is the asymptotic
expansion of f(x).

Example 8.3 (Legendre [421, p. 340]) Shew that

® 1 -1 -1D(a-2
e3z“/ e x N dx ~ =+ 2 —+ (@ )Ea ),
. z 0z z

for large positive values of z.

5 Ttis assumed that a,,(&) is real; the extension to complex variables can be made as in the former theorem. If
no such number 4 existed, #,,(£) would tend to zero uniformly.

6 Tt is essential to observe that the constants involved in the inequality do not depend on &,. For if, say, K
depended on &,,, K~! would really be a function of n and might be o(1) qua function of n, and the inequality
would not imply a contradiction.
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Example 8.4 (Schlomilch) Shew that if, when x > 0,

f(x)= /000 {logu + log (1 _le_u )} e‘xu%,

1 B B, B;
th ~— - + -
en f(x) 2x  22x% 4% 62O
absolutely convergent series of the form

+ --- . Shew also that f(x) can be expanded into an

Ck

f(x)zkz;(x+1)(x+2)---(x+k)'

Example 8.5 (Euler, Borel) Shew that if the series 1 +0+0-1+0+1+0+0—-1+---,
in which two zeros precede each —1 and one zero precedes each +1, be summed by Cesaro’s

method, its sum is %

Example 8.6 Shew that the series 1 — 2! +4! — - .. cannot be summed by Borel’s method,
but the series 1 + 0 —2! + 0+ 4! + --- can be so summed.
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Fourier Series and Trigonometric Series

9.1 Definition of Fourier series

Series of the type

(o)
tag + (aj cos x + by sinx) + (ay cos 2x + by sin2x) + - - - = ag + Z (a, cos nx + b, sin nx),

n=1

where a,,, b,, are independent of x, are of great importance in many investigations. They are
called trigonometrical series. (Throughout this chapter, except in §9.11, it is supposed that
all the numbers involved are real.)

s
If there is a function f(¢) such that / f(t)dt exists as a Riemann integral or as an

improper integral which converges absolut_eiiy, and such that

nan:/ f(t)cosnt dt, ﬂbn=/ f(¢) sinnt dt,

then the trigonometrical series is called a Fourier series.
Trigonometrical series that are not Fourier series first appeared in analysis in connexion

with the investigations of Daniel Bernoulli (1700-1782) on vibrating strings; d’Alembert had
2

d7y
. . . o 2 : |
previously solved the equation of motion j = a Sz in the formy = S{f(x+at)+ f(x—at)},

where y = f(x) is the initial shape of the string starting from rest; and Bernoulli shewed that
a formal solution is

i b si nrx nrat
= sin — cos ,
y n 7 7

n=1

the fixed ends of the string being (0, 0) and (¢, 0); and he asserted that this was the most general
solution of the problem. This appeared to d’Alembert and Euler to be impossible, since such
a series, having period 2¢, could not possibly represent such a function as' cx(¢ — x) when
t = 0. A controversy arose between these mathematicians, of which an account is given in
Hobson [315].

Fourier, in his Théorie de la Chaleur [223] investigated a number of trigonometrical series
and shewed that, in a large number of particular cases, a Fourier series actually converged
to the sum f(x). Poisson [531] attempted a general proof of this theorem. Two proofs were
given by Cauchy [122] and [123, vol. 2, p. 341-376]. These proofs, which are based on the

! This function gives a simple form to the initial shape of the string.
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theory of contour integration, are concerned with rather particular classes of functions and
one is invalid. The second proof has been investigated by Harnack [283].

In 1829, Dirichlet [172] gave the first rigorous proof that, for a general class of functions,
the Fourier series, defined as above, does converge to the sum f(x). A modification of this
proof was given later by Bonnet [82]. He employs the second mean-value theorem directly,
while Dirichlet’s original proof makes use of arguments precisely similar to those by which
that theorem is proved. See §9.43.

The result of Dirichlet is that® if f(¢) is defined and bounded in the range (-7, 7) and if
f(¢) has only a finite number of maxima and minima and a finite number of discontinuities
in this range and, further, if f(¢) is defined by the equation f(z + 27) = f(¢) outside the range
(—m, ), then, provided that

ﬂan:/ f(t) cosnt dt, 7Tbn=/ f(¢) sinnt dt,

the series %ao + > (a, cosnx + b, sinnx) converges to %{f(x +0)+ f(x-0)}.
n=1
Later, Riemann and Cantor developed the theory of trigonometrical series generally, while
still more recently Hurwitz, Fejér and others have investigated properties of Fourier series

when the series does not necessarily converge. Thus Fejér has proved the remarkable theorem
that a Fourier series (even if not convergent) is ‘summable (C1)’ at all points at which f(x+0)
s

exist, and its sum (C1) is %{ f(x +0)+ f(x —0)}, provided that / f(¢) dt is an absolutely

convergent integral. One of the investigations of the convergence of Fourier series which we
shall give later (§9.42) is based on this result.

For a fuller account of investigations subsequent to Riemann, the reader is referred to
Hobson [323], and to de la Vallée Poussin [639].

9.11 Nature of the region within which a trigonometrical series converges

Consider the series
1 [ee)
an + Z(an cosnz + b, sinnz),

n=1

where z may be complex. If we write ¢ = /, the series becomes
1 > (1 1
Ea() + nz:; {E(an - ibn)gn + i(an + lbn)g_n} .

This Laurent series will converge, if it converges at all, in a region in which a < || < b,
where a, b are positive constants. But, if z = x + iy, |{| = ¢7”, and so we get, as the region of
convergence of the trigonometrical series, the strip in the z plane defined by the inequality

loga < —y <logb.

2 The conditions postulated for f(¢) are known as Dirichlet’s conditions; as will be seen in §§9.2, 9.42, they are
unnecessarily stringent.
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The case which is of the greatest importance in practice is that in which a = b = 1, and the
strip consists of a single line, namely the real axis.

Example 9.1.1 Let
f(z) = sin 1sin2 + ! sin 3 1sin4 +
— —_— — S1 —_— ve e
Z 3 i+ 3 07 Z ,

where z = x + iy. Writing this in the form

_ 1 is 1 2is 1 3is . —is 1 =2is —3is
f(z) = zl(e 5¢ +3e )+ l(e 5¢ +—e

we notice that the first series converges® only if y > 0, and the second only if y < 0. Writing
x in place of z (x being real), we see that by Abel’s theorem (§3.71),

1 1
flx)= lirrll (rsinx - Erz sin2x + §r3 sin 3x —)

1 . 1 ) 1 )
= 11_{1'11 {_Ei (retx _ §r2€21x + §’,,3631x . )

1 1 w1 ;
+ Ei (re_”‘ - zrze_z”‘ + §r3e_3’x - )} -

This is the limit of one of the values of
1 ) 1 )
—Eilog (1+re™) + Eilog (1+re™),

and as r — 1 (if -7 < x < «), this tends to %x + km, where k is some integer.
« (=1)y"!sinnx ) . ,
Now ), ———— converges uniformly (Example 3.3.6) and is therefore continuous
n=1 n
in the range —m + 6 < x < m — J, where ¢ is any positive constant. Since %x is continuous,
k has the same value wherever x lies in the range; and putting x = 0, we see that k = 0.
Therefore, when - < x < m, f(x) = %x. But, when 7 < x < 3,
x-2r x

2 27"

) = flx-27) =

and generally, if 2n — )7 < x < 2n + Dz, f(x) = %x — nmr. We have thus arrived at an
example in which f(x) is not represented by a single analytical expression.

It must be observed that this phenomenon can only occur when the strip in which the
Fourier series converges is a single line. For if the strip is not of zero breadth, the associated
Laurent series converges in an annulus of non-zero breadth and represents an analytic function
of £ in that annulus; and, since £ is an analytic function of z, the Fourier series represents an
analytic function of z; such a series is given by

. 1 1
rsinx — Erzsin2x+ §r3 sin3x—---,

3 The series do converge if y = 0, see Example 2.3.2.
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rsin x

—— |, the arctan always representing an angle
1 +rcosx

where 0 < r < 1; its sum is arctan(

between +37.

Example 9.1.2 When -7 < x <7,

o (=)t 1 1
Z (-1 2cos nx 1, 1,
n=1 n

The series converges only when x is real; by §3.34 the convergence is then absolute and
uniform. Since

1 1 1
Ex=sinx—§sin2x+§sin3x—-~ (-r+6<x<nm-6;, 6§>0),

and this series converges uniformly, we may integrate term-by-term from O to x (§4.7), and
consequently

(—m+6 <x<m-96).

1, < (=D"'(1-cosnx)
3" _; n?

That is to say, when -7 + 0 < x < 1 — 4,

00

1 —1)y"!cosnx
-1y oy U cosnx
4 n?
n=1
where C is a constant, at present undetermined.

But since the series on the right converges uniformly throughout the range -7 < x < 7,
its sum is a continuous function of x in this extended range; and so, proceeding to the limit
when x — =+, we see that the last equation is still true when x = +7.

To determine C, integrate each side of the equation (§4.7) between the limits —x, 7r; and
we get

1
2nC — 8713 =0.

Consequently

1 1 o (1)
_ﬁz__xzzzw

- < < .
2" "1 (-r<x<7)

n=1

Example 9.1.3 By writing 7 — 2x for x in Example 9.1.2, shew that

Z sin® nx { ix(r—x) (0<x<n),

2 | Halxl ¥} (—r<x <)
n=1
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9.12 Values of the coefficients in terms of the sum of a trigonometrical series

Let the trigonometrical series %co + Y (¢, cos nx + d,, sin nx) be uniformly convergent in the
n=1

range (—, ) and let its sum be f(x). Using the obvious results

g 0 (m#n)
cosmxcosnxdx =
B n (m=n=#0),

T

sinmx sinnx dx = 0 (m#n) dx =2,
_ 7 (m=n=#0), _

T T

we find, on multiplying the equation %co + Y (¢, cosnx + d, sinnx) = f(x) by* cos nx; or

by sinnx and integrating term-by-term (§4.7):,

nC, = / f(x)cosnx dx, nd, = / f(x)sinnx dx.
These were given by Euler [203].

Corollary 9.1.1 A trigonometrical series uniformly convergent in the range (—m,7) is a
Fourier series.

Note Lebesgue [419, p. 124] has given a proof of a theorem communicated to him by

Fatou that the trigonometrical series ), sinnx/logn, which converges for all real values of
n=2
x (Example 2.3.1), is not a Fourier series.

9.2 On Dirichlet’s conditions and Fourier’s theorem

A theorem, of the type described in §9.1, concerning the expansibility of a function of a real
variable into a trigonometrical series is usually described as Fourier’s theorem. On account
of the length and difficulty of a formal proof of the theorem (even when the function to
be expanded is subjected to unnecessarily stringent conditions), we defer the proof until
§9.42, §9.43. It is, however, convenient to state here certain sufficient conditions under which
a function can be expanded into a trigonometrical series.

Let f(t) be defined arbitrarily when —r < t < m and defined > for all other real values of t
by means of the equation f(t +2m) = f(t), so that f(t) is a periodic function with period 2r.

Let f(t) be such that / f(t)dt exists; and if this is an improper integral, let it be

absolutely convergent.

4 Multiplying by these factors does not destroy the uniformity of the convergence.
3 This definition frequently results in £(z) not being expressible by a single analytical expression for all real
values of #; cf. Example 9.1.1.
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Let a,,, b, be defined by the equations®

:/ f(t) cosnt dt, nbn:/ f@)sinntdt (n=0,1,2,...).

Then, if x be an interior point of any interval (a,b) in which f(t) has limited total
fluctuation, the series

1
an + Z(an cosnx + b, sinnx)

n=1

is convergent, and its sum’ is %{f(x +0)+ f(x —0)}. If f(¢) is continuous at t = x, this sum
reduces to f(x).

This theorem will be assumed in §§9.21-9.32; these sections deal with theorems con-
cerning Fourier series which are of some importance in practical applications. It should be
stated here that every function which Applied Mathematicians need to expand into Fourier
series satisfies the conditions just imposed on f(f), so that the analysis given later in this
chapter establishes the validity of all the expansions into Fourier series which are required
in physical investigations.

The reader will observe that in the theorem just stated, f(¢) is subject to less stringent
conditions than those contemplated by Dirichlet, and this decrease of stringency is of con-
siderable practical importance. Thus, so simple a series as Y (—1)""! €222 s the expansion

n=1
of the function® log |2 cos %x|; and this function does not satisfy Dirichlet’s condition of
boundedness at +.

It is convenient to describe the series 5610 + Z (a, cosnx + b, sinnx) as the Fourier
=1

series associated with f(t). This description must however, be taken as implying nothing
concerning the convergence of the series in question.

9.21 The representation of a function by Fourier series for ranges other than (—n, )

Consider a function f(x) with an (absolutely) convergent integral, and with limited total
fluctuation in the range a < x < b.
Write x = 1(a + b) — 3(a — b)r~'x’, f(x) = F(x’). Then it is known (§9.2) that

1 1 -
E{F(x’ +0)+ F(x'-0)} = 540 + ;(an cosnx’ + b, sinnx’),

% The numbers a,,, b, are called the Fourier constants of f(t), and the symbols a,,, b,, will be used in this
sense throughout §§9.2-9.5. It may be shewn that the convergence and absolute convergence of the integrals
defining the Fourier constants are consequences of the convergence and absolute convergence of [ 7; f(t)drt;
cf. §§2.32,4.5.

7 The limits f(x + 0) exist, by Example 3.6.3.

8 Example 9.6 at the end of the chapter.
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and so

S+ 0)+ f(x-0)) =

—ao +Z {anco (nn(2x —a- b)) + b, sin (—nn(Zz:Z—b))},

where by an obvious transformation

b
%(b—a)an =‘/a f(x)cos (M) dx,

b—a
b
%(b—a)b,,:/a f(x)sin(mzzc]%z_b)) dx.

9.22 The cosine series and the sine series

Let f(x) be defined in the range (0,¢) and let it have an (absolutely) convergent integral and
also let it have limited total fluctuation in that range. Define f(x) in the range (—¢,0) by the
equation

f(=x) = f(x).
Then

—{f(x+0)+f(x—0)}——GO“‘Z{ancos Z +bys 1n7T_Zx},

where, by §9.21,
¢ nnt ¢ nnt
f(t)cos — dt = 2/ f(t)cos — dt,

4
t
tb, = / F@ysin 22 gr = o,
» ¢
so what when —¢€ < x < ¢,

nmnx

%{f(x+0)+f(x—0)}: %a0+n§;ancos7;

this is called the cosine series.
If, however, we define f(x) in the range (—¢,0) by the equation

J(=x) = =f(=x),

we get, when —€ < x < ¢,

1 = . nx
S+ 0+ fx-0)) = ;bnmnT,

¢
t
where €b,, = 2 / f(t)sin % dt; this is called the sine series.
0
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Thus the series
1 - TnXx - . nnx
—ay + E a, cos — + E b,, sin —,
2 4 4
n=1 n=1

ta, ¢ ¢ b, ¢ ¢
where ; = / f(t)cos % dt, > = / f(#)sin % dt, have the same sum when
0 0

0 < x < ¢; but their sums are numerically equal and opposite in sign when 0 > x > —¢.
The cosine series was given by Clairaut [147] in a memoir dated July 9, 1757; the sine
series was obtained between 1762 and 1765 by Lagrange [396, vol. I, p. 553].

Example 9.2.1 Expand %(ﬂ' — x)sin x in a cosine series in the range 0 < x < 7.
Solution. We have, by the formula just obtained,

1 1 =
5(71 —x)sinx = 540 + Z a, cos nx,

n=1

where

1 1
Eﬂan = ‘/0 E(ﬂ' — x)sin x cos nx dx.

But, integrating by parts, if n # 1,
/ 2(m — x)sin x cosnx dx = / (m — x){sin(n + 1)x — sin(n — 1)x} dx
0 0
cos(n+ 1)x cos(n+ )x)1]”
= [(x —m) -

n+1 n-—1 0
/” cos(m+ 1)x cos(n—1)x
- - dx
0 n+1 n—1

(1 1) 21
“T\a 1l T a-1)T TmeDm-1
Whereas if n = 1, we get/ 2(m — x)sinxcos x dx = %n.

0
Therefore the required series is

%+ Zcosx— mcost— ﬁcos&c— %cos4x—---

It will be observed that it is only for values of x between 0 and 7 that the sum of this series
is proved to be %(7‘[ — x) sin x; thus for instance when x has a value between 0 and —, the
sum of the series is not %(n — x) sin x, but —%(71 + x) sin x; when x has a value between 7 and
27, the sum of the series happens to be again %(7‘( — x) sin x, but this is a mere coincidence
arising from the special function considered, and does not follow from the general theorem.

Example 9.2.2 Expand %nx(n — x) in a sine series, valid when 0 < x < 7.
sin3x  sinSx

» "

Answer. The series is sin x +
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Example 9.2.3 Shew that, when 0 < x < 7,

1 3 5
96"~ 2x)(m* + 27x — 2x%) = cOs X + CO; - 'CO; -

Hint. Denoting the left-hand side by f(x), we have, on integrating by parts and observing
that f/(0) = f'(m) =0,

/" f(x)cosnx dx = l[f(x)sinnx]f)r ! /nf'(x)sinnxdx
0 n nJo
= S weosnad; - [ cosmrds

1 1 ”
s L @sinnay + o [ sinne
n n 0

1 r s
— 3 [ (x) cos nx];
4
4nt
Example 9.2.4 Shew that for values of x between 0 and 7, e** can be expanded in the
cosine series

(1 = cos nrm).

Zer-n|
T

1 +cost N cosdx N
252 s2+4  s2+16

_g(equ)(cosx cos3x+._.),
n

— +
241 s2+9
and draw graphs of the function ¢** and of the sum of the series.

Example 9.2.5 Shew that for values of x between 0 and 7, the function %ﬂ'(ﬂ' —2x) can be
expanded in the cosine series

cos3x cosSx
32 + 52 + BN

and draw graphs of the function %ﬂ'(ﬂ' — 2x) and of the sum of the series.

COoS x +

9.3 The nature of the coefficients in a Fourier series

The analysis of this section and of §9.31 is contained in Stokes’ great memoir [608] (repro-
duced in [611, vol. I, pp. 236-313]).

Suppose that (as in the numerical examples which have been discussed) the interval
(—m, ) can be divided into a finite number of ranges (-, k1), (ky, k2),. . ., (k,, ) such that
throughout each range f(x) and all its differential coefficients are continuous with limited
total fluctuation and that they have limits on the right and on the left (§3.2) at the end points
of these ranges.

Then

ki ka 7
na,, = f(t)cosmt dt + f(t)cosmt dt+~~+/ f(t)cosmt dt.
kn

-7 k]
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Integrating by parts we get

may, = [m™" f() sin mt]]:r + [m™! f(1) sin mt]i? +-+ [m7 f(1) sin mt]:n

kl k2 T
-m! f/(t)sinmt dt —m™" f'@)sinmedt —---— m_I/ f'(t) sinmt dt,
- K Kn

A ’
sothata,, = — -2

, where 1A, = i sinmk, [ f(k, —0) — f(k, + 0)], and b/, is a Fourier
m m r=1

B, a
constant of f”(x). Similarly b,, = — + —=, where
m

B, = — Z cos mk, [ f(k, — 0) — f(k, + 0)] — cosmn [ f(x — 0) — f(~n + 0)],

r=1

and a/, is a Fourier constant of f’(x). Similarly, we get

A by By 4
a,, = -, b, = + -,
m m m m
where a/, b/ are the Fourier constants of f”'(x) and
nA, = ) sinmk (£ (ke = 0) = f'(k; +0)},
r=1
B, =— ) cosmk.{f'(k, —0)— f'(k, +0)} —cosmn {f'(m —0)— f'(-m + 0)}.
r=1
Therefore
A, B, al B, A, Dbl
An = —— — — — —%, bm—_ - T 5
m  m?: m?

m o om: m?
Now as m — co, we see that A/ = O(1), B/, = O(1), and, since the integrands involved in
a;’ and b’ are bounded, it is evident that ;) = O(1), b, = O(1). Hence if A,, =0, B,, = 0,
the Fourier series for f(x) converges absolutely and uniformly, by §3.34.
The necessary and sufficient conditions that A,, = B,, = 0 for all values of m are that
flky =0) = f(k, +0),  f(x=0)=f(-m+0),

that is to say that® f(x) should be continuous for all values of x.

9.31 Differentiation of Fourier series
The result of differentiating

(o]
2a0 + Z(am cosmx + b, sinmx)

m=1

9 Of course f(x) is also subject to the conditions stated at the beginning of the section.
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term by term is ), {mb,, cos mx — ma,, sin mx}. With the notation of §9.3, this is the same
m=1

as

1 - ,
Ea() + Z(a,’n cos mx + b, sinmx),

m=1

provided that A,, = B,, = 0 and / f’(x)dx = 0; these conditions are satisfied if f(x) is

continuous for all values of x.

Consequently sufficient conditions for the legitimacy of differentiating a Fourier series
term by term are that f(x) should be continuous for all values of x and f’(x) should have
only a finite number of points of discontinuity in the range (-, ), both functions having
limited total fluctuation throughout the range.

9.32 Determination of points of discontinuity

The expressions for a,, and b,, which have been found in §9.3 can frequently be applied in
practical examples to determine the points at which the sum of a given Fourier series may be
discontinuous. Thus, let it be required to determine the places at which the sum of the series

1 1
sinx+§sin3x+§sin5x+~-

is discontinuous.
Assuming that the series is a Fourier series and not any trigonometrical series and observing
that a,, = 0, b,, = (2m)~'(1 — cos mn), we get on considering the formula found in §9.3,

An=0, By,=

1 1 ro_ o
3 —ycosmn, a, =b, =0.

Hence if ki, ks, . . . are the places at which the analytic character of the sum is broken, we
have

0 =rnA,, = sinmk, {f(k1 - 0) - f(kl + 0)} + Sinmkz{f(kz - O) - f(k2 + 0)} +oee

Since this is true for all values of m, the numbers &y, k5, . . . must be multiples of 7; but there
is only one even multiple of 7 in the range —7 < x < &, namely zero. So k; = 0, and k5, k3, . . .
11

do not exist. Substituting k; = 0 in the equation B,,, = 5 — 5 cos mm, we have

7 (3 = Lcosmm) = —[cosmr{f(x —0) = f(-7 +0)} + f(=0) — f(+0)].

Since this is true for all values of m, we have

370 = f(+0) = f(=0), 37 =f(r~0)~ f(-n+0).

This shews that, if the series is a Fourier series, f(x) has discontinuities at the points nzx
(n any integer) and since a,, = b,, = 0, we should expect to be constant in the open range
(=m,0) and to be another constant in the open range (0, 7). In point of fact f(x) = —n/4
(-r<x<0)and 7/4 (0 < x < 7).
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9.4 Fejér’s theorem

We now begin the discussion of the theory of Fourier series by proving the following
theorem, due to Fejér [210], concerning the summability of the Fourier series associated
with an arbitrary function f(¢):

Let f(t) be a function of the real variable t, defined arbitrarily when —n < t < r, and

defined by the equation f(t + 2rm) = f(t) for all other real values of t; and let / f(t)dt

exist and (if it is an improper integral) let it be absolutely convergent. Then the Fourier series
associated with the function f(t) is summable (C1) at all points x at which, the two limits
f(x £0) exist. (See §8.43.) And its sum (C1) is

1
UG+ 0+ fx =0},
Let a,, b,, (n =0,1,2,...) denote the Fourier constants (§9.2) of f(¢) and let

l m
an = Ay, a, cosnx + b, sinnx = A,(x), Z A, (x) =S, (x).
n=0

Then we have to prove that

B A+ 5,0+ $:00 4+ Sy (0} = 3 (F+0)+ f(xr -0},

provided that the limits on the right exist.
If we substitute for the Fourier constants their values in the form of integrals (§9.2), it is
easy to verify that!’
m—1
Ag+ D 8(x) = mAg + (m = 1A (x) + (m = 2)As(x) + -+ + Ay ()

n=1
n

= ;[ [%m+(m— 1)cos(x — 1) + (m —2)cos2(x — 1)

+ -+ cos(m—1)(x —1)] f(t)dt
1 [~ sin® im(x -t
=5 D oy
mJ-x sin®5(x —1)
1 7 sin? im(x —1)
=5 | =W,
27 Jogex sin® 3(x —1)
the last step following from the periodicity of the integrand.
If now we bisect the path of integration and write x ¥ 26 in place of ¢ in the two parts of

10Tt is obvious that, if we write A for e’ (x — 7) in the second line, then
m+m-DA+A N+ m-2)A+2 )+ -+ @+
(0 ) LR L Lol LD b [ [ [ Ly K

= (L= D)2 =24+ A = (2™ - TP J(A2 - AT,



9.4 Fejér’s theorem 175

the path, we get

m—1 . .
1 /2 2 0 1 /2 2 9
Aot Y Su(x) = = / T f(x +20)d6 + — / T f(x - 26)d6.
o T Jo sin” 6 T Jo sin” 6

Consequently it is sufficient to prove that, as m — oo, then

1 w2 :.2 0
- / ST f(x +26)d6 — 2 f(x +0),
m Jo sin2 0 2

1 w2 :.2 0
— / S Fx - 20)d0 — 2 f(x - 0).
m Jo sin” @ 2

Now, if we integrate the equation

1sin?md 1
————=—-m+(m—-1)cos20 + --- +cos2(m —1)6,
2 sing 2 ( ) ( )

we find that

and so we have to prove that

1 )2 :.2 0
—/ Sn_l Zm ¢(0)dd — 0 asm — oo,
mJy sin” @

where ¢(6) stands in turn for each of the two functions

f(x+20)— f(x+0), f(x =20)— f(x-0).

Now, given an arbitrary positive number &, we can choose § so that |¢(0)| < & whenever
0<0< %6, (on the assumption that f(x +0) exist). This choice of § is obviously independent

of m. Then
1 7 sin?mo 1 %2 sin®>mo 1 7 sin? m6
’—/ ool < [ a0 s [T o) ao
mJg sin” @ mJy sin” @ mJsp sin© 0

512 gin2 mo 1 /2
e R
m J, sin* msin® (6/2) Jsp2
)2 522 0 1 7/2
C T s —— [T 1001 as
m Jo sin“ @ msin“ (6/2) Jo

nE 1 /2
=2 st (6)2) /0 [4(6)] .

/2
Now the convergence of | f(?)| dt entails the convergence of / |#(0)| db, and so,
0

IA

-7t
given £ (and therefore §), we can make

S /2
%gsin2§>/0 16(0)] db,
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by taking m sufficiently large. Hence, by taking m sufficiently large, we can make

1 [ 0
_/ sin® m ¢(9)d9
0

m s1n

< TE,

where ¢ is an arbitrary positive number; that is to say, from the definition of a limit,

12 4
lim — / sint m = 0(6)d6 =0,
0

m—oo M Sln

and so Fejér’s theorem is established.

Corollary 9.4.1 Let U and L be the upper and lower bounds of f(t) in any interval (a, b)
whose length does not exceed 2mt, and let

/|f(t)|dt =nA.

Then, ifa +n < x < b—n, where n is any positive number, we have

U- —{A0+ Zs (x)}
x-n X+ X+ sin? m(x —1)
" 2mn {/ / / } Sy IO

sin? m(x—)
Z 2mm {/_;HX v/x+:7 } sin? L P {U - f(t)} dt

2mn {/ﬂ+x /xm } |Us|11+1 |{(t)| a

so that
1 . Ul+1A
- A0+ZSn(x) <U+ HTZ
m | = | msin“(n/2)
Similarly
= | Ll +1a
— A() + Z Sn(x) > - ||+
m — | msin“(n/2)

Corollary 9.4.2 Let f(¢) be continuous in the interval a < t < b. Since continuity implies
uniformity of continuity (§3.61), the choice of § corresponding to any value of x in (a,b) is
independent of x, and the upper bound of | f (x £ 0)|, i.e. of | f(x)|, is also independent of x,
so that

/2 /2
/ 16(0)] d6 = / F(x £26) — f(x £0)]d6
0 0
<3 / @) di + 3l e =),

and the upper bound of the last expression is independent of x.
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Hence the choice of m, which makes

1 T[22 i2 0
‘_/ sin® m #(6) do
0

m sin® 6

< re,

m—1
1
is independent of x, and consequently — {Ao + Z Sn(x)} tends to the limit f(x), asm — oo,
m

n=1
uniformly throughout the interval a < x < b.

9.41 The Riemann—Lebesgue lemmas

In order to be able to apply Hardy’s theorem; (§8.5) to deduce the convergence of Fourier
series from Fejér’s theorem, we need the two following lemmas:

b
(D Let / W (0) dO exist and (if it is an improper integral) let it be absolutely convergent.

b
Then, as A — oo,/ ¥ (0)sin(A0) do is O(1).

(1) If, further, W(0) has limited total fluctuation in the range (a, b) then, as 1 — oo,
b
/ w(0)sin(10)d6 is  O(1/1).

Of these results (I) was stated by W. R. Hamilton [270] and by Riemann [558, p. 241]. For
Lebesgue’s investigation see his [419, ch. III] in the case of bounded functions. The truth of
(IT) seems to have been well known before its importance was realised; it is a generalisation
of a result established by Dirksen [180] and Stokes [608] (§9.3) in the case of functions
with a continuous differential coefficient. The reader should observe that the analysis of this
section remains valid when the sines are replaced throughout by cosines.

(D It is convenient!! to establish this lemma first in the case in which ¥(6) is bounded in
the range (a, b). In this case, let K be the upper bound of |/(8)|, and let € be an arbitrary
positive number. Divide the range (a, b) into n parts by the points x, xp, . . ., X,_1, and form
the sums S,,, s,, associated with the function () after the manner of §4.1. Take n so large
that S,, — s, < &; this is possible since (0) is integrable.

In the interval (x,_q, x,) write ¥(0) = ¥, (x,_1) + w,(0), so that |w,(0)| < U, — L,, where
U, and L, are the upper and lower bounds of (0) in the interval (x,_, x,-). It is then clear

1" For this proof we are indebted to Mr Hardy; it seems to be neater than the proofs given by other writers, e.g.
de la Vallée Poussin [639, pp. 140-141].
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that

Z U (x,_1) / N sin(16) d9+z / " w,(6) sin(16) do
r=1 Xr-1 r=1 Y *r-1

< Y luntonl| [ sincordel + Y [ o) ao
r=1 r=1 Y Xr-1

<nK-2/2)+ (S, ; Sp)
< (2nK/A) + e.

b
/w(@) sin(160) d6| =

By taking A large (n remaining fixed after £ has been chosen), the last expression may be
made less than 2¢ so that

b
}im / W (0) sin(10) do = 0,

and this is the result stated.

When /(6) is unbounded, if it has an absolutely convergent integral, by §4.5, we may
enclose the points at which it is unbounded in a finite number of intervals 01,6, . ..,d, (the
finiteness of the number of intervals is assumed in the definition of an improper integral,
§4.5) such that

i/lglr(@)l do < .

r=1 5,

If K denotes the upper bound of | (8)| for values of 8 outside these intervals, and if
Y1,%2 .. .,Yp+1 denote the portions of the interval (a, b) which do not belong to 61,9, . .,6,
we may prove as before that

b p+l p
/ W (6) sin (10) d0’ = Z / W (6) sin (10) d0+Z / W (6) sin (16) d
a r=1 Y7r r=1 S
p+1
<

; /y Y (O)sin(20) db

< (20K /) + 2e.

P
0) sin (16)| do
+,Z_;/6,'“’()Sm( )

Now the choice of € fixes n and K, so that the last expression may be made less than 3¢
by taking A sufficiently large. That is to say that, even if (6) be unbounded,

b
}im / W (0)sin (40) db = 0,

provided that /(@) has an (improper) integral which is absolutely convergent. The first lemma
is therefore completely proved.

(II) When ¢ (6) has limited total fluctuation in the range (a, b), by Example 3.6.2, we may
write ¥ (0) = x1(0) — x2(0), where x1(0), x»(0) are positive increasing bounded functions.
Then, by the second mean-value theorem (§4.14) a number £ exists such thata < ¢ < b
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and
b b
/ x1(0) sin (160) d@‘ = X1(b)/ sin (10) d6| < 2x(b)/ .
a &
If we treat y,(6) in a similar manner, it follows that
b b b
/ Y (0)sin (10) db| < / x1 (0)sin(20) dO| + / X2 (8)sin (160) do

<2(n(b) + x2(b)) /2
=0(1/2),

and the second lemma is established.

Corollary 9.4.3 If f(t) be such that / f(¢) exists and is an absolutely convergent integral,

-
the Fourier constants a,,, b, of f(t) are o(1) as n — oo; and if, further, f(t) has limited total
fluctuation in the range (—n, ), the Fourier constants are O(1/n).

Note Of course these results are not sufficient to ensure the convergence of the Fourier
series associated with f(¢); for a series, in which the terms are of the order of magnitude of
the terms in the harmonic series (§2.3), is not necessarily convergent.

9.42 The proof of Fourier’s theorem

We shall now prove the theorem enunciated in §9.2, namely:

Let f(t) be a function defined arbitrarily when —n < t < n, and defined by the equation

s

f(t+2m) = f(¢t) for all other real values of t; and let / f(2) dt exist and (if it is an improper

integral) let it be absolutely convergent. Let a,, b, be geﬁned by the equations

na, = / f(t)cosnt dt, b, = / f(t)sinnt dt.

Then, if x be an interior point of any interval (a,b) within which f(t) has limited total
fluctuation, the series

1 = ,
an + Z a, cosnx + b, sinnx

n=1
is convergent and its sum is % (f(x+0)+ f(x=0)).

It is convenient to give two proofs, one applicable to functions for which it is permissible
to take the interval (a, b) to be the interval (- + x, 7 + x), the other applicable to functions
for which it is not permissible.

(I) When the interval (a, b) may be taken to be (- + x, 7 + x), it follows from §9.41(II) that
a, cosnx + b, sinnx is as O(1/n) as n — co. Now by Fejér’s theorem (§9.4) the series under
consideration is summable (C1) and its sum (C1) is %( f(x+0)+ f(x—0)). (The limits
f(x £ 0) exist, by Example 3.6.3.)

Therefore, by Hardy’s convergence theorem (§8.5), the series under consideration is
convergent and its sum (by §8.43) is % (f(x+0)+ f(x=0)).
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(II) Even if it is not permissible to take the interval (a, b) to be the whole interval (-7 +x, 7+ x),
it is possible, by hypothesis, to choose a positive number §, less than n, such that f(z) has
limited total fluctuation in the interval (x — §,x + §). We now define an auxiliary function
g(#), which is equal to f(f) when x — 6 < ¢ < x + §, and which is equal to zero throughout
the rest of the interval (-7 + x, 7 + x); and g(¢ + 2x) is to be equal to g(r) for all real values
of 7.

Then g(¢) satisfies the conditions postulated for the functions under consideration in (I),
namely that it has an integral which is absolutely convergent and it has limited total fluctuation
in the interval (- + x,7 + x); and so, if aﬁll), and b(,,l) denote the Fourier constants of g(7),
the arguments used in (I) prove that the Fourier series associated with g(), namely

%agl) + Z(aﬁ,l) cos nx + bV sin nx),
n=1

is convergent and has the sum % (g(x +0) + g(x — 0)), and this is equal to
5(f(x+0)+ f(x=0)).

Now let S,,(x) and Sf,l)(x) denote the sums of the first m + 1 terms of the Fourier series
associated with f(¢) and g(¢) respectively. Then it is easily seen that

Sn(x) = l/.7r {l +cos(x —t)+cos2(x —t)+ -+ cos m(x—t)} f(t)dt
TJ |2

YUY

1 [*sin(m+31)(x-1)

f(t)dt

2n ). sini(x-1)

1 ™ sin(m+3)(x—1)

= — t)dt
21 J gex sini(x—1) U

1 (™ sin(2m+1)6 1 (™ sin(2m+1)6
/ sm(m+ ) f(x+29)d0+—/ sm(fn+ )
0 sin 6 7 Jo sin 6

f(x —20) db,

T

by steps analogous to those given in §9.4.
In like manner

1 ™2 sin2m + 1)6 1 (™2 sin2m + 1)6
Sﬁ)(x)z _/ Sm(_m—)g(x+29)d0+—/ Sm(.m—)g(x_zg)dg,
nJo sin 6 nJo sin 6

and so, using the definition of g(r), we have

™2 sin(2m + 1)0

1
S(x) = SI(x) == / 2 19 px +26)d6
nJ,, sin 6
1 ™% sin2m + 1)0
+_/ sm(-m—+)f(x_20)d9.
7 Jsp sin 6

Since cosec 6 is a continuous function in the range (%6 %n) ,it follows that f(x+26) cosec 8
are integrable functions with absolutely convergent integrals; and so, by the Riemann—
Lebesgue lemma of §9.41(I), both the integrals on the right in the last equation tend to

zero as m — oo, That is to say lim (Sm(x) - S,(qi)(x)) = 0. Hence, since lim Sf,i)(x) =
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Hf(x+0) + f(x —0)}, it follows also that

1
lim S,,(x) = 3 (f(x+0)+ f(x=0)).
We have therefore proved that the Fourier series associated with f(t), namely

%ao + Z(an cos nx + b, sin nx),

is convergent and its sum is %{f(x +0)+ f(x - 0)}.

9.43 The Dirichlet—-Bonnet proof of Fourier’s theorem

It is of some interest to prove directly the theorem of §9.42, without making use of the theory
of summability; accordingly we now give a proof which is on the same general lines as the
proofs due to Dirichlet and Bonnet.

As usual we denote the sum of the first m + 1 terms of the Fourier series by S,,(x), and
then, by the analysis of §9.42, we have

1 [ sin2m + 1)8 1 [ sin2m + 1)0

Sp(x) = — / sin@m+ 1) o\ 26yd6 + / sin@m + D0 . _ 26 ae.
T Jo sin nJo sin 6

Again, on integrating the equation

sin(2m + 1)0

- =1+4+2c0s20 +2cos48 + ---+2cos22m0,
sin @
we have

do = —,

/”/2 sin(2m + 1)0 g
0 sin 8 2

so that

$0(0) = 3L+ 0) + (- 0)
1 (™2 sin2m + 1)0
T

T sin

{f(x+20)- f(x+0)}do

/2 o
+1/0 sin@m+ DO oo 26— f(x - 0)) db.

T sin @

In order to prove that
lim S,,(x) = 5 (f(x +0) + f(x = 0)),
it is therefore sufficient to prove that

) /2 sin(2m + 1)0
lim _—
m—co Jq sin 6

$(0)db = 0,

where ¢(0) stands in turn for each of the functions

f(x+20)— f(x+0), f(x =20)— f(x=0).



182 Fourier Series and Trigonometric Series

Now, by Example 3.6.4 6 ¢(0)/sin@ is a function with limited total fluctuation in an
interval of which 6 = 0 is an end-point'?; and so we may write

04(0) _
sing x1(0) = x2(0),

where y1(6), x»(6) are bounded positive increasing functions of 6 such that
Xx1(+0) + x2(+0) = 0.

Hence, given an arbitrary positive number &, we can choose a positive number ¢ such that
0< x1(0) < &,0 < x2(0) < & whenever 0 < 6 < 6/2.

We now obtain inequalities satisfied by the three integrals on the right of the obvious
equation

/2 sin(2m + 1)0 /”/2 sin2m + 1)0
SR ¥ 1 5(6) do = ST )% 6 (0) do
/0 o0)do = [ 6 ()

sin P sin 6
5/2 5/2 s
sin(2m + 1)8 sin(2m + 1)8
0 0

The modulus of the first integral can be made less than ¢ by taking m sufficiently large;
this follows from §9.41(I) since ¢(6)/sin 6 has an integral which converges absolutely in the
interval (%6, %7‘[).

Next, from the second mean-value theorem, it follows that there is a number & between 0
and ¢ such that

92 sin(2m + 1)8 5 92 sin(2m + 1)0
/ —( ) x1(0)dé| =|xi |3 / —( ) deo

) (m+2)8 gin
= x (—) / duf.
2) |Jomsne u

“ sinu
[,
5 u

< 23){1 (g) < 2Be.

“ sint
Since / - dt is convergent, it follows that has an upper bound'? B which

is independent of 8, and it is then clear that

/‘5/2 sin(2m + 1)0
0

0)do
9 x1(0)

On treating the third integral in a similar manner, we see that we can make

/”/2 sin(2m + 1)
0

sin @ $(0) do

<(@4B+1)e

by taking m sufficiently large; and so we have proved that

. /2 sin(2m + 1)0
lim RSy —
m—co Jq sin 6

#(0)do = 0.
12 The other end-point is 6 = %(b —x)or6 = %(x — a), according as ¢(6) represents one or other of the two
functions.
13" The reader will find it interesting to prove that B = / aLL %
0 u
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But it has been seen that this is a sufficient condition for the limit of S,,(x) to be
%( f(x+0)+ f(x—0)); and we have therefore established the convergence of a Fourier
series in the circumstances enunciated in §9.42.

Note The reader should observe that in either proof of the convergence of a Fourier series
the second mean-value theorem is required; but to prove the summability of the series, the
first mean-value theorem is adequate. It should also be observed that, while restrictions are
laid upon f(¢) throughout the range (-7, 7) in establishing the summability at any point x, the
only additional restriction necessary to ensure convergence is a restriction on the behaviour
of the function in the immediate neighbourhood of the point x. The fact that the convergence
depends only on the behaviour of the function in the immediate neighbourhood of x (provided
that the function has an integral which is absolutely convergent) was noticed by Riemann
and has been emphasised by Lebesgue [418, p. 60].

It is obvious that the condition (due to Jordan [360]) that x should be an interior point of
an interval in which f(¢) has limited total fluctuation is merely a sufficient condition for the
convergence of the Fourier series; and it may be replaced by any condition which makes

/2 sin(2m + 1)
lim/ Wm—+)¢(g)d9=0.
m—co Jq sin 6

Jordan’s condition is, however, a natural modification of the Dirichlet condition that the
function f(¢) should have only a finite number of maxima and minima, and it does not
increase the difficulty of the proof.

Another condition with the same effect is due to Dini [170], namely that, if

1
D(0) = 5 [f(x +20) + f(x = 20) = f(x +0) - f(x = 0)],
then / ®(6)d6 should converge absolutely for some positive value of a. If the condition is
0

5/2
satisfied, given & we can find ¢ so that / |D(6)| df < &, and then
0

2 sin(2m + 1)0
/ sin(2m + )6 9@(9)(19‘ < I
0 sin 6 2
7/ sin(2m + 1)6
the proof that / Wd@d@ < ¢ for sufficiently large values of m follows from
52 sin

the Riemann—Lebesgue lemma.

A more stringent condition than Dini’s is due to Lipschitz [440], namely |¢(0)| < C6*,
where C and k are positive and independent of 6. For other conditions due to Lebesgue and to
de la Vallée Poussin, see the latter’s [639, II, pp. 149—150]. It should be noticed that Jordan’s
condition differs in character from Dini’s condition; the latter is a condition that the series
may converge at a point, the former that the series may converge throughout an interval.

9.44 The uniformity of the convergence of Fourier series

Let f() satisfy the conditions enunciated in §9.42, and further let it be continuous (in addition
to having limited total fluctuation) in an interval (a, b). Then the Fourier series associated
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with f(t) converges uniformly fo the sum f(x) at all points x for whicha+6 < x < b -6,
where ¢ is any positive number.

Let /() be an auxiliary function defined to be equal to f(¢) when a < ¢ < b and equal to
zero for other values of ¢ in the range (-, x), and let a,,, b,, denote the Fourier constants of
h(t). Also let Sﬁ)(x) denote the sum of the first m + 1 terms of the Fourier series associated
with A(z).

Then, by Corollary 9.4.2, it follows that %ao + >, (a,cosnx + b, sinnx) is uniformly

n=1
summable throughout the interval (a + ¢, b — §); and since

|la, cos nx + b, sinnx| < (a2 + b>)'?,

which is independent of x and which, by §9.41(II), is O(1/n), it follows from Corollary 8.5.1
that
1 o0
zao + ;(an cosnx + b, sinnx)
converges uniformly to the sum A(x), which is equal to f(x).
Now, as in §9.42,

1 ™% sin@m+ 1)
Spn(x) = SP(x) == / sin@m+ D0 .+ 26)d6
T %(b—x) Sin
1 ™7 sin@m+ 1)
+_/ sm(.m—+)f(x_29)d9.
T %(x—a) sin @

As in §9.41 we choose an arbitrary positive number € and then enclose the points at which
f(#) is unbounded in a set of intervals 6,,6,, . . ., ), such that

P
2/ |£()| dt < e. 9.1)
r=1 6r

If K be the upper bound of | f(¢)| outside these intervals, we then have, as in §9.41,

1S(x) = S2(x)] < ( 2nk

o + 28) cosec 0,

where the choice of n depends only on a and b and the form of the function f(r). Hence,
by a choice of m independent of x we can make |S,,(x) — SD(x)| arbitrarily small; so that
Sn(x) = S (x) tends uniformly to zero. Since SD(x) > f(x) uniformly, it is then obvious
that S,,,(x) — f(x) uniformly; and this is the result to be proved.

Note It must be observed that no general statement can be made about uniformity or
absoluteness of convergence of Fourier series. Thus the series of Example 9.1.1 converges
uniformly except near x = (2n + 1)x but converges absolutely only when x = nm, whereas
the series of Example 9.1.2 converges uniformly and absolutely for all real values of x.
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Example 9.4.1 If ¢(0) satisfies suitable conditions in the range (0, 7), shew that

T sin(2m + 1)0 ™12 sin(2m + 1)0
lim / sin@m + 1)6 4 4) 46 = 1im / sin@m + 1) 4 ) 4
m—co Jo sin @ m—oo J sin 6

/2
+ lim s1n(21?1 +1)0
m—oo Jo sin 6

4
= 2 (9(+0) + ¢(x — 0)).
Example 9.4.2 (Math. Trip. 1894) Prove that, if a > 0,

* sin(2 1)o
lim / Me‘“g do = il coth E.
0

¢(mr—0)do

n—oo sin 6 2 2
Hint. Shew that

“ sin(2n + 1)0 "7 sin(2n + 1)6
/ sin( n ) -0 g lim/ sin( n ) e 4o
0 sin 6 m—co Jq sin 6

T sin(2n + 1)0
lim / ¥ {e—aﬁ’ +e—a(3+7r) + .- +e—a(9+m7r)} do
m—eo Jo sin @

/” sin(2n + 1)8 e 4o
0 sinf 1 —ear’

and use Example 9.4.1.

Example 9.4.3 Discuss the uniformity of the convergence of Fourier series by means of
the Dirichlet-Bonnet integrals, without making use of the theory of summability.

9.5 The Hurwitz—Liapounoff theorem concerning Fourier constants

This appears in Hurwitz [328]. Liapounoff discovered the theorem in 1896 and published it
in [434]. See also Stekloff [601].

Let f(x) be bounded in the interval (—n, ) and let / f(x) dx exist, so that the Fourier

constants a,, b, of f(x) exist. Then the series
1, N 2, 2
an + (an + n)
n=1
is convergent and its sum is

- [ ey e

This integral exists by Example 4.1.3. A proof of the theorem has been given by de la Vallée
Poussin, in which the sole restrictions on f(x) are that the (improper) integrals of f(x) and
{f(x)}2 exist in the interval (-, 7). See [639, II, pp. 165-166].

It will first be shewn that, with the notation of §9.4,

T m—1 2
”111320/ {f(x) - %Z Sn(x)} dx = 0.
- n=0
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Divide the interval (-, 7r) into 4r parts, each of length ¢; let the upper and lower bounds
of f(x) in the interval {(2p — 1)0 — 7, (2p + 3)6 — w} be U,,, L,, and let the upper bound of
| f(x)| in the interval (—m, ) be K. Then, by Corollary 9.4.1

m—1

flx)- % Z Sa(x)| < U, = L, + 2K/ (m sin® 16)
n=0

< 2K [1+1/(msin* $6)],

when x lies between 2pd and (2p + 2)6.
Consequently, by the first mean-value theorem,

p3 m-1 2
/ {f(X)—%ZSn(X)} dx
- n=0
1 2r-1 4K
< ZK{I + M} {252(U L)+ — 15}

p=0
Since f(x) satisfies the Riemann condition of integrability (§4.12), it follows that both
46 Z (Uzp L,,) and 46 Z (U2p+1 L,p.1) can be made arbitrarily small by giving r a

sufﬁc1ently large value. When r (and therefore also ¢) has been given such a value, we may
choose my, so large that r/ {m1 sin? 26 } is arbitrarily small. That is to say, we can make the
expression on the right of the last inequality arbitrarily small by giving m any value greater
than a determinate value m,. Hence the expression on the left of the inequality tends to zero
as m — co.

But evidently
bis 1 m—1 2 bis m—1 2
m-—n
| {f(X)—;;Sn(X)} a= [ {f(x)—; - An(x)} &
T m—1 m—1 n 2
-/ {f(x)—ZAn(X) . —An<x>} dx
- n=0 n=0 m
n m—1 2 x (m-1 2
:/ {f(x)—ZAn(x)} dx+/ {Z ﬁA,,(x)} dx
- n=0 - n=0
T m—1 m—1
+2/ {f(x) - ZAn(x)} {Z An(x)} dx
- =0 n=0
m—1
= / {f(x) ZA (x)} dx + = 2,1+ b
since

[ rwawa= [ {Z A (x)} A3 d

whenr =0,1,2,...,m—1.
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Since the original integral tends to zero and since it has been proved equal to the sum of
two positive expressions, it follows that each of these expressions tends to zero; that is to say

bis m—1 2
/ {f(x) - Z A,,(x)} dx — 0.
n 0

- £
Now the expression on the left is equal to

T

Yy

[wewra-2f {f(x) -5 An(x>} {mZ An(x>} dx
- = n=0 n=0
e 2
—/ {Z‘j An(x)} dx
T\ n=0
b4 x (m=1 2
= X))} dx — A, (x dx
L{f( )} / {ZO ()}
- [ {% ' mZ( : bi)},

so that, as m — oo,

Vs m—1
/ {f()c)}2 dx—ﬂ(%ag+2(ai +bfl)) — 0.
- n=0

This is the theorem stated.
For the following corollary, Parseval assumed, of course, the permissibility of integrating
the trigonometrical series term-by-term.

Corollary 9.5.1 (Parseval [516]) If f(x), F(x) both satisfy the conditions laid on f(x) at
the beginning of this section, and if A,, B, be the Fourier constants of F(x), it follows by
subtracting the pair of equations which may be combined in the one form

[Uw=repa=x [%(ao £ AP+ D (s AR + (b = B,
- n=1
that

[: fO)F(x)dx =n {%avo + nf;(anAn + an,,)} .

9.6 Riemann’s theory of trigonometrical series

The theory of Dirichlet concerning Fourier series is devoted to series which represent
given functions. Important advances in the theory were made by Riemann, who considered

properties of functions defined by a series of the type'* %ao + Y (a, cos nx+b,, sin nx), where
1

n=

14 Throughout §§9.6-9.632 the letters a,,, b,, do not necessarily denote Fourier constants.
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it is assumed that lim (a, cos nx + b, sinnx) = 0. We shall give the propositions leading up

n—oo

to Riemann’s theorem that if two trigonometrical series converge and are equal at all points
of the range (-, r) with the possible exception of a finite number of points, corresponding
coeflicients in the two series are equal. The proof given is due to G. Cantor [113, 114].

9.61 Riemann’s associated function

Let the sum of the series

S N
—ag + Z (a, cosnx + b, sinnx) = Ag + Ay(x),
2 n=1

n=1

at any point x where it converges, be denoted by f(x). Let

1., <
F(x)— EAOX —Z

n=1

Ap(x)
n?

Then, if the series defining f(x) converges at all points of any finite interval, the series
defining F(x) converges for all real values of x.

To obtain this result we need the following lemma due to Cantor!?.

Lemma (Cantor) If lim A,(x) = 0 for all values of x such that a < x < b, then a,, — 0,
b, — 0.

For take two points x, x + ¢ of the interval. Then, given &, we can find n, (the value of n
depends on x and on ¢) such that, when n > ng

la, cosnx + b, sinnx |< &, |a,cosn(x+68)+ b,sinn(x +06)| < &.
Therefore
| cos né(a, cos nx + b, sinnx) + sinndé(— a, sinnx + b, cosnx)| < .

Since | cos né(a, cosnx + b, sinnx)| < g, it follows that |sin né(—a,, sinnx + b,, cos nx)| <
2¢, and itis obvious that |sin nd(a, cos nx + b, sinnx)| < 2&. Therefore, squaring and adding,

(a2 + b2)'? [sinnd| < 2& V2.

Now suppose that a,, b, have not the unique limit 0; it will be shewn that this hypothesis
involves a contradiction. For, by this hypothesis, some positive number &, exists such that
there is an unending increasing sequence n,n,, . . . of values of n, for which

(a,z1 + b%)l/2 > 4deg.

Now let the range of values of ¢ be called the interval /; of length L; on the real axis.
Take n| the smallest of the integers n, such that n{L; > 2x; then sinn|y goes through all its
phases in the interval I;; call I, that sub-interval'® of I; in which sin nyy >1/ V2; its length

15 Riemann appears to have regarded this result as obvious. The proof here given is a modification of Cantor’s
proof [114, 115].
16" If there is more than one such sub-interval, take that which lies on the left.
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is 7/(2n]) = L,. Next take n) the smallest of the integers n,(> n}) such that n)L, > 2,
so that sinn}y goes through all its phases in the interval I,; call I3 that sub-interval of I,
in which sinnly > 1/ V2; its length is 7/ (2n}) = Ls. We thus get a sequence of decreasing
intervals I, I, . . . each contained in all the previous ones. It is obvious from the definition of
an irrational number that there is a certain point a which is not outside any of these intervals,
and sinna > 1/V2 whenn = nj,nj,... (n.,, > n.).

For these values of n, (a2 +b2)"/? sin na > 2&,V2. But it has been shewn that corresponding
to given numbers a and £ we can find 7 such that when n > no, (a2 + b?)"/*(sin na) < 2&V2;
since some values of n, are greater than ny, the required contradiction has been obtained,
because we may take € < &g; therefore a,, — 0, b,, — 0.

Assuming that the series defining f(x) converges at all points of a certain interval of the
real axis, we have just seen that a, — 0, b, — 0. Then, for all real values of x, |a,, cos nx +

b,sinnx| < (a% + b2)'* — 0, and so, by §3.34, the series Agx* — ¥ A,(x)/n* = F(x)
n=1

converges absolutely and uniformly for all real values of x; therefore _(see §3.32) F(x) is
continuous for all real values of x.

9.62 Properties of Riemann’s associated function; Riemann’s first lemma
It is now possible to prove Riemann’s first lemma that if

F(x +2a) + F(x —2a) — 2F(x)

G(x,a) = 10

then li[I(l) G(x,a) = f(x), provided that Y, A,(x) converges for the value of x under consid-
a— n=0

eration.
Since the series defining F(x), F(x + 2a) converge absolutely, we may rearrange them;
and, observing that

cos n(x + 2a) cosn(x — 2a) — 2 cos nx = —4sin® na cos nx,

sinn(x + 2a) + sinn(x — 2a) — 2sinnx = —4sin” na sin nx,

it is evident that

&) . 2
G@@:%+Ztmm)mm.
n=1

na

It will now be shewn that this series converges uniformly with regard to « for all values of

a, provided that Y, A, (x) converges. The result required is then an immediate consequence
n=1

of §3.32: for, if f,,(a) = (%)2, (a # 0),and f£,,(0) = 1,then f,(a) is continuous for all values
of @, and so G(x, @) is a continuous function of «, therefore, by §3.2, G(x,0) = liII(l) G(x,a).

To prove that the series defining G(x, @) converges uniformly, we employ the test given
in Example 3.3.7. The expression corresponding to w,(x) is f,(a), and it is obvious that

| f(@)] < 1; it is therefore sufficient to shew that ) |f,+1(@) — fu(@)] < K, where K is
n=1

independent of «.
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In fact, since x~! sin x decreases as x increases from O to 7, if s be the integer such that
sla] £ m < (s + 1)|a|, when a # 0 we have

S—

._

s1n2 a sin’?sa

| fu1(@) = fule)| = Z(fn(a) Fri(@) =

- a2
Also
- o |[sin®na (1 1 sin® na — sin®(n + 1o
n —Jn = - 5 |5~ +
n;I |f +1(Q’) f (a)l n;] { a'2 (n2 (n + 1)2)} (n + 1)2@/2
< i 1 (1 Z | sin® na — sin’(n + 1)a/|
s n”  (n+ 1)2 = (n+ 1)2a?
oL 1 Z | sina sin(2n + 1)a|
= (s + 122 et (n% + 1)2a?
< 1 |s1n a| Z
T (s+ l)zcx2 S (n+ 1)2
< |sma/|
- 712 (x + 1)2
1
S —_ —_—
7r2 (s + 1)|a/|
Therefore
¢ siffa  sin’se (sin’sa sin’(s + 1)a 1 1
nzz; |fn+1(a) - ﬁl(a)| - az - S2C},’2 ( SZG,’Z (S + 1)2@2 p ;
1 2
<l+—-—+—=
P S

Since this expression is independent of «, the result required has been obtained (this
inequality is obviously true when a = 0).
Hence, if 3, A, (x)converges, the series defining G(x, @) converges uniformly with respect

n=0
to « for all values of «, and, as stated above,

lim G(x,@) = G(x,0) = Ao + Z An(x) = f(x).

n=1

Example (Riemann) If

Fx+a+B)—-Fx+a-B)—-F(x—-a+B)+F(x—a-p)
4apB

H(x,a,B) =

shew that H(x,a,8) — f(x) when f(x) converges if @, 8 — 0 in such a way that @/ and
B/ a remain finite.



9.6 Riemann'’s theory of trigonometrical series 191

9.621 Riemann’s second lemma
With the notation of §9.6 and §9.62, if a,, b, — 0, then

lim F(x +2a) + F(x —2a) — 2F(x) _

a—0 da 0

Sor all values of x.

For

-1 o sin? na
1@ F(x +2a) + F(x — 2a) = 2F(x) = Apa + Z ——Au(x);
o nPa

but by Example 9.1.3 if & > 0,

isinzna 1( )
= —(n-a);
n2a 2 ’
n=1

and so, since

Ag(x)a + i 5122;“’ An(x) = Ag(x)a + %(n —a)A(x)
n=1

0o

1 nooi2
+nz:; {z(ﬂ' —CY) _; 51212;;1&} {A,H_](x) — An(x)},

it follows from Example 3.3.7, that this series converges uniformly with regard to « for all
values of « greater than, or equal to, zero'”.
But

1
limo Za'_l {F(x +2a) + F(x — 2a) — 2F(x)}
a—+

= lim
a—0*

n=1

A)a + 3= @A)+ Y 60(@) {Avaa(2) - An<x>}‘

and this limit is the value of the function when @ = 0, by §3.32; and this value is zero since
lim A, (x) = 0. By symmetry we see that lim = lim.

a—0 a—0~

9.63 Riemann’s theorem on trigonometrical series

Two trigonometrical series which converge and are equal at all points of the range (—n,7),
with the possible exception of a finite number of points, must have corresponding coefficients
equal. The proof we give is due to G. Cantor [113].

An immediate deduction from this theorem is that a function of the type considered in
§9.42 cannot be represented by any trigonometrical series in the range (-, 7r) other than the
Fourier series. This fact was first noticed by Du Bois Reymond.

17 If we define g, (e) by the equations g, (@) = (7 — @)/2 - 3, % (with @ # 0), and g,,(0) = /2, then
m=1

gn(a) is continuous when @ > 0, and g,,+1(@) < gn(@).
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We observe that it is certainly possible to have other expansions of (say) the form

ap + Z(am cos 2mx + B, sin 1mx),
m=1
which represent f(x) between —m and ; for write x = 2¢, and consider a function ¢(¢), which
is such that ¢(¢) = f(2¢) when —n1/2 < ¢ < /2, and ¢(&¢) = g(£) when — < € < —n/2,
and when 77/2 < ¢ <, where g(¢) is any function satisfying the conditions of §9.43. Then
if we expand ¢(¢) in a Fourier series of the form

(o)
ap + Z(am cos mé + By, sin mé),
m=0

this expansion represents f(x) when —m < x < x; and clearly by choosing the function g(¢)
in different ways an unlimited number of such expansions can be obtained.

The question now at issue is, whether other series proceeding in sines and cosines of
integral multiples of x exist, which differ from Fourier’s expansion and yet represent f(x)
between —m and .

If possible, let there be two trigonometrical series satisfying the given conditions, and let
their difference be the trigonometrical series

A+ )" An(x) = f(x).
n=1

Then f(x) = 0 at all points of the range (—, ) with a finite number of exceptions; let &,
& be a consecutive pair of these exceptional points, and let F(x) be Riemann’s associated
function. We proceed to establish a lemma concerning the value of F(x) when & < x < &,.

9.631 Schwartz’ lemma

Quoted by G. Cantor [113]. In the range & < x < &, F(x) is a linear function of x, if
f(x) = 0 in this range.
Forif@ =1orif 8 = -1

x=¢&
&H—-&
is a continuous function of x in the range &, < x < & and ¢(£)) = ¢(&) = 0.

If the first term of ¢(x) is not zero throughout the range'® there will be some point x = ¢
at which it is not zero. Choose the sign of 8 so that the first term is positive at ¢, and then
choose h so small that ¢(c) is still positive. Since ¢(x) is continuous it attains its upper bound
(§3.62), and this upper bound is positive since ¢(c) > 0. Let ¢(x) attain its upper bound at
c1, so that ¢y # &1,¢; # &. Then, by Riemann’s first lemma,

lim ¢(cr+a)+¢(cr—a)-2¢(cr)

a—0 612

¢(x) =0 |F(x) - F(&) - {F(&) - FE)}| - %hz(x - &) - x)

= K.

But ¢(c; + a) < ¢(c1), p(c; —a) < ¢(cy), so this limit must be negative or zero. Hence,
by supposing that the first term of ¢(x) is not everywhere zero in the range (£}, &;), we have

18 Tf it is zero throughout the range, F(x) is a linear function of x.
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arrived at a contradiction. Therefore it is zero; and consequently F(x) is a linear function of
x in the range &, < x < &,. The lemma is therefore proved.

9.632 Proof of Riemann’s theorem

We see that, in the circumstances under consideration, the curve y = F(x) represents a
series of segments of straight lines, the beginning and end of each line corresponding to an
exceptional point; and as F(x), being uniformly convergent is a continuous function of x,
these lines must be connected.
But, by Riemann’s second lemma, even if & be an exceptional point,
i FE+ O+ FE— )~ 2F(E) _

a—0 a

0.

Now the fraction involved in this limit is the difference of the slopes of the two segments
which meet at that point whose abscissa is &; therefore the two segments are continuous in
direction, so the equation y = F(x) represents a single line. If then we write F'(x) = cx + ¢/,
it follows that ¢ and ¢ have the same values for all values of x. Thus

1 — A,
onxz —cx—c' = Z n(zx)’

n=1

the right-hand side of this equation being periodic, with period 2.

The left-hand side of this equation must therefore be periodic, with period 2z. Hence

) An
Ay =0.c=0 and —c = 5 2
n=1 N
uniformly, so we can multiply by cos nx or by sin nx and integrate. This process gives

T

na,

= c'/ cosnx dx =0,

2
-7

b, d
On _ —c'/ sinnx dx = 0.

n? x

. Now the right-hand side of this equation converges

Therefore all the coefficients vanish, and therefore the two trigonometrical series whose

difference is Ag + Y, A,(x) have corresponding coefficients equal. This is the result stated in
n=1

§9.63.

9.7 Fourier’s representation of a function by an integral

This appears in Fourier [223]. For recent work on Fourier’s integral and the modern theory
of ‘Fourier transforms’, see Titchmarsh [629, 630].

It follows from §9.43 that, if f(x) be continuous except at a finite number of discontinuities
and if it have limited total fluctuation in the range (—o0, o), then, if x be any internal point
of the range (—a, B),

. B sin (2m + 1)(t — x) .
lim [0 ) f(l‘)dl‘—élil(l)z

Now let A be any real number, and choose the integer m so that A = 2m + 1 + 25 where

%{f(ﬁzenf(x—za)}.

m—oo
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0 <n < 1. Then
/ [sin A(t — x) — sin(2m + 1)(¢ — x)] & dt

_ /B 2cos[(2m + 1 +n)(t — x)] sinn(t - x)% dt

— 0,

as m — oo by §9.41, since (t — x)~' f (¢) sinn(t — x) has limited total fluctuation.
Consequently, from the proof of the Riemann-Lebesgue lemma of §9.41, it is obvious

that if/ |f(®)] dt and/ | f(t)| dt converge, then'
0

lim/ SINAW =X ooy gr = —ﬂ{f(x+0)+f(x—0)}

oo J oo (t=x)

and so

00

4 g
lim {/ cosu(t—x)du}f(t)dtzE{f(x+0)+f(x—0)}.
0

A—oo [

To obtain Fourier’s result, we must reverse the order of integration in this repeated integral.
For any given value of A and any arbitrary value of &, there exists a number S such that

* e
/B ) de < 2

writing cos u(t — x) - f(t) = ¢(t,u), we have®

| famo ([ ]
(f e [ o]

LA s f e
AL st o]
</:{ ot dr+/01/: 000, dr du

<Zﬂ/w|f(t)|dt<s.
B

Since this is true for all values of &, no matter how small, we infer that

FLLL e [

19 / means the double limit  lim / . If this limit exists, it is equal to lim
P00, 0 —00 —p p—

-p
20 The equation /OB fo /0 foﬁ is easily justified by §4.3, by considering the ranges within which f(x) is
continuous.
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Hence

1 poo
%n{f(x+0)+f(x—())}=}2130/0 /wcosu(t—x)f(t)dtdu

=/Ooo[:cosu(t—x)f(t)dtdu.

This result is known as Fourier’s integral theorem. For a proof of the theorem when f(x)
is subject to less stringent restrictions, see Hobson [316, pp. 492—-493]. The reader should ob-

00 A 00 oo
serve that, although Alim / / exists, the repeated integral / { / sinu(t — x) du} f()dt
—00 J0 - 0

—00
o

does not.

Example 9.7.1 (Rayleigh) Verify Fourier’s integral theorem directly (i) for the function
f(x) = (a® + x*)7'/2, (ii) for the function defined by the equations

=1L (-l<x<b;  flx)=0, (Jx[>1).

9.8 Miscellaneous examples
Example 9.1 Obtain the expansions

1—-rcosz

m:1+VCOSZ+V2COS2Z+"',
- Z

(a)

1 1 1
(b) 3 log(1 —2rcosz +r*) = —rcosz — Erz cos2z — §r3 cos3z—---,
i 1
(c) arctan _rmz rsing + =r?sin2z + =r*sin3z +- - -,
l1—rcosz 2 3

1 2r si
(d) 3 arctan g

. 1 . 1 .
=rsinz+ -r’sin3z+ —r’sin5z + - - -,
—r? 3 5

and shew that, when |r| < 1, they are convergent for all values of z in certain strips parallel
to the real axis in the z-plane.

Example 9.2 (Jesus, 1902) Expand x* and x in Fourier sine series valid when -7 < x < 7;
and hence find the value of the sum of the series

1 1 1
sin x — fsin2x— §sin3x— 4—351n4x+~- s
for all values of x.

Example 9.3 (Pembroke, 1907) Shew that the function of x represented by
Z n~!sin nx sin® na,
n=1

is constant (0 < x < 2a) and zero (2a < x < «), and draw a graph of the function.

Example 9.4 (Peterhouse, 1906) Find the cosine series representing f(x) where

Fx z{sinx+cosx (O<x$%7r),

sinx — cos x (%FSX<7T).



196 Fourier Series and Trigonometric Series

Example 9.5 (Trinity, 1895) Shew that

sin i + sin 37x N sin S7x N sin 7w x N 1 [x]
inmx <= =mlx],
3 5 7 4

where [x] denotes +1 or —1 according as the integer next inferior to x is even or uneven, and
is zero if x is an integer.

Example 9.6 Shew that the expansions

1 1 1
log 2cos§x :cosx—zcos2x+§cos3x-~

and

1 1
log =—cosx—50052x—§cos3x---

1
2sin =
sin > x

are valid for all real values of x, except multiples of .

Example 9.7 (Trinity, 1898) Obtain the expansion
Z (=1)" cos mx
4 (m +1)(m +2)
= (cos x + cos2x) log (2 cos g) + %(sin 2x + sin x) — cos x,

and find the range of values of x for which it is applicable.

Example 9.8 (Trinity, 1895) Prove that, if 0 < x < 2x, then

sin x 2sin2x  3sin3x 7 sinh a(mr — x)

+ + ==
a’+1%2  a?+22  g*>+3? 2 sinhanr

Example 9.9 Shew that between the values —z and + of x the following expansions hold:

( sin x 2sin2x  3sin3x )

2
sinmx = — sinmn TER Rl v - + P

T

mcosx mcos2x mcos3x
12-m2 22+m? * 32 )

e 4 g7mx 2(1 mcosx mcos2x mcos3x )

1
cosmx = —sinmm | — +
Vg 2m

=== + —
et —emn g \2m  12+m? 22+ m? 32+ m?

Example 9.10 (Berger) Let x be a real variable between 0 and 1, and let n > 3 be an odd
number. Shew that

2= 1
(- 1)‘:—+—Z—tanmc052mnx,
T =1m n

if x is not a multiple of 1/n, where s is the greatest integer contained in nx but

1 mrm
0=-+— — tan — cos 2mmx
no mwidm n

if x is an integer multiple of 1/n.



9.8 Miscellaneous examples 197

Example 9.11 (Trinity, 1901) Shew that the sum of the series
I 4 o o
R Z]]m "sin (222) cos 2mmx

is 1 when 0 < x < §,and when 2 < x < I,and is —1 when § < x < 3.

Example 9.12 (Math. Trip. 1896) If

ae** i a"V,(x)

et —1 s n!
shew that, when —1 < x < 1,
cosdnx  cos6mx oy 22 p2n
cos2mx + o + 3 +---=(=1) @) Vou(x),
, sindrx  sin6mrx Ly 22t
sin2mx + Son+ + 320+ +e = (—l)n mVQ,H.](X).

Example 9.13 (Trinity, 1894) If m is an integer, shew that, for all real values of x,

(:052mx=21;:::'6'.(.22’;1){%+m+10052x+%cos4x
-1 )
(mT_('l’;(m-')-(Zm)(ml3)cos6x+...}’
coraf = 24O BB ) B o
2m - 1)(2m -3
EZZ+1;EZZ+3;COS4X+'“}.

Example 9.14 A point moves in a straight line with a velocity which is initially «, and which
receives constant increments, each equal to u, at equal intervals 7. Prove that the velocity at
any time ¢ after the beginning of the motion is

u o ut u~>1 _ 2mnt

-+ —+ — E — sin

2 Tt o m T
m=1

)}

and that the distance traversed is

ut 1)+ Ut Ut i
— T+ — - — — cos
27 12 2n2 £ m? T

Example 9.15 (Math. Trip. 1893) If

oo

o sin(6n —3)x <o sin(2n - 1x
S0 = 2

n=1 n=1

3V3 sin sin5x+sin7x sin11x
T 72 112 ’
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shew that f(+0) = f(r—0) = —%,and f(2+0)—- f(2-0) = -%, f(Z+0)-f(Z-0)= %
Observing that the last series is

(2" D7 sin(2n — 1)x

sin ~———
n Z (2n — 1) ’

draw the graph of f(x).
Example 9.16 (Trinity, 1908) Shew that, when 0 < x < 7,

2 1 1
flx) = T(cosx—50055x+§cos7x—Hcos11x+~~

1 1 1
=sin2x + 5sin4x+ Zsin8x+ gsin10x+---

where
1 1
37 0<x< 370
f(x)=+0 %ﬂ<x<%7r,
—in in<x<m.

Find the sum of each series when x = 0, 7r, 37r nr, and for all other values of x.

Example 9.17 (Math. Trip. 1895) Prove that the locus represented by

[oe]

(_1)11—1
n2

sinnxsinny =0
n=1

is two systems of lines at right angles, dividing the coordinate plane into squares of area 7.

Example 9.18 (Trinity, 1903) Shew that the equation

i (-1)y*"'sinnycosnx _

3 =
n=1 n

represents the lines y = +mm, (m = 0,1,2,...) together with a set of arcs of ellipses whose

semi-axes are 7 and /3, the arcs being placed in squares of area 2%, Draw a diagram of
the locus.

Example 9.19 (Math. Trip. 1904) Shew that, if the point (x, y, z) lies inside the octahedron
bounded by the planes +x + y + z = 7, then
i( 1y sinnxsinnysinnz 1

= — xyz.
n3 2 yz

n=1
Example 9.20 (Pembroke, 1902) Circles of radius a are drawn having their centres at the

alternate angular points of a regular hexagon of side a. Shew that the equation of the trefoil
formed by the outer arcs of the circles can be put in the form

il —1+ ! cos 36 ! cos 66 + ! cos 96
6\V3a 2 2-4 5.7 8-10 ’

the initial line being taken to pass through the centre of one of the circles.
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Example 9.21 (Jesus, 1908) Draw the graph represented by

r 2m (=1)" cos nmé

—=1+—sin—1= ,

a sin { Z 1 — (nm)? }
where m is an integer.

Example 9.22 (Trinity, 1905) With each vertex of a regular hexagon of side 2a as centre,
the arc of a circle of radius 2a lying within the hexagon is drawn. Shew that the equation of
the figure formed by the six arcs is

=176 +3v3)
(6n—1)(6n + 1)

——6 3\/‘+2Z

cos 6n0,

the prime vector bisecting a petal.

Example 9.23 (Trinity, 1894) Shew that, if ¢ > 0,

1 1
lim e ““cotxsin(2n+ 1)x dx = 571 tanh Ecn.

—00
n 0

Example 9.24 (King’s, 1901) Shew that

® ¢in(2 1 d 1
/ sin2n+ Dx _dx  _ —ncoth 1.
0

lim
n—oo

sin x 1+x2 2
Example 9.25 (Math. Trip. 1905) Shew that, when —1 < x < 1 and a is real,
. /'°° sin2n + 1)@sin(1 + x)0 0 7 sinh ax
lim

0

sin 0 @2 +62° 2 sinha

n—oo

Example 9.26 (Math. Trip. 1898) Assuming the possibility of expanding f(x) in a
uniformly convergent series of the form ) A, sin kx, where k is a root of the equation
k

k cos ak + bsinak = 0 and the summation is extended to all positive roots of this equation,
determine the constants Ay.

Example 9.27 (Beau) If f(x) = %ao + 2 (a,cosnx + b, sinnx) is a Fourier series, shew
n=1

that, if f(x) satisfies certain general conditions,
4 « ¢ dt 4 = tdt
a, = — P.V./ f(t) cos nt tan = —, b, = —/ f(t)sinnttan = —,
T 0 2t T Jo 2t
where P.V. means principal value.

rlS

Example 9.28 If S, (x) =2 Z( 1) sinrx prove that the highest maximum of S,,(x) in

niw
the interval (0, ) is at x =
n+1

Sn nmr _)2/ s1nt

Deduce that, as n — oo, the shape of the curve y = §,(x) in the interval (0, ) tends to

and prove that, as n — oo,




200 Fourier Series and Trigonometric Series

approximate to the shape of the curve formed by the line y = x, 0 < x < 7, together with

the line x = 7,0 < y < G, where
T ¢
G=2/ Mg,
0 t

Note The fact that G = 3.704--- > 7 is known as Gibbs’ phenomenon; see [243]. The
phenomenon is characteristic of a Fourier series in the neighbourhood of a point of ordinary
discontinuity of the function which it represents. For a full discussion of the phenomenon,
which was discovered by Wilbraham [680], see Carslaw [119, Chapter 9].
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Linear Differential Equations

10.1 Linear differential equations

The analysis contained in this chapter is mainly theoretical; it consists, for the most part, of
existence theorems. It is assumed that the reader has some knowledge of practical methods
of solving differential equations; these methods are given in works exclusively devoted to the
subject, such as Forsyth [221, 222].

In some of the later chapters of this work, we shall be concerned with the investigation of
extensive and important classes of functions which satisfy linear differential equations of the
second order. Accordingly, it is desirable that we should now establish some general results
concerning solutions of such differential equations.

The standard form of the linear differential equation of the second order will be taken to
be

d’u

dz?
and it will be assumed that there is a domain S in which both p(z), ¢g(z) are analytic except
at a finite number of poles.

Any point of S at which p(z), g(z) are both analytic will be called an ordinary point of the
equation; other points of S will be called singular points.

+p(Z)fTZ +q(z)u =0, (10.1)

10.2 Solution of a differential equation valid in the vicinity of an ordinary point

This method is applicable only to equations of the second order. For a method applicable to
equations of any order, see Forsyth [221].

Let b be an ordinary point of the differential equation, and let S;, be the domain formed by
a circle of radius r;,, whose centre is b, and its interior, the radius of the circle being such that
every point of S, is a point of S, and is an ordinary point of the equation. Let z be a variable
point of Sj,.

1 z
In the equation write u = v exp {_E / p()d¢ }, and it becomes
b

d*v
d—zz + J(Z)U = 0, (102)
14 1
where J(z) = ¢q(z) — 3 Z(Z) -7 {p(z)}*. It is easily seen (§5.22) that an ordinary point of
z

equation (10.1) is also an ordinary point of equation (10.2).

201



202 Linear Differential Equations
Now consider the sequence of functions v, (z), analytic in Sj, defined by the equations
vo(z) = ao + ai(z - b),

0n(2) = /b =IO AL (n=12.3,..)

where ay, a; are arbitrary constants.
Let M, u be the upper bounds of |J(z)| and |vy(z)| in the domain S;,. Then at all points of
this domain

Mn
la(2)] < “7|z — | (10.3)

For this inequality is true when n = O; if it is true when n = 0,1,...,m — 1, we have, by
taking the path of integration to be a straight line,

|om(2)| =

L (£ = D IDumar (D) dg“'

1 z
< W/ | = z] |J(§)|,L1Mm’l|§_b|2m72 \d¢|
Jb

M™ |z—b|
< K Iz—bl/ "2 dt
0

(m—-1)!
M™

< M ' |Z—b|2m-
m.

Therefore, by induction, the inequality holds for all values of n.
Mn 0 n
K ‘ r;" when zisin S, and
n. n=0

M
Also, since |v,(z)| < £ ‘ r;" converges, it follows (§3.34)
n!

00

that v(z) = Y v,(z) is a series of analytic functions uniformly convergent in Sj; while, from

the definition of v,(2),

d Z
d_ZUn(Z) = _l J(g)l)n_l({) dg, (l’l = 1’293" . )

2

d
d_szn(Z) = —J(Z)Unfl(z);

hence it follows (§5.3) that

Plg) _ Pud) | $ L)

2~ dz2 4 d2?
= —J(2)v(z).
Therefore v(z) is a function of z, analytic in Sy, which satisfies the differential equation
d*v(z)

= + J(2)v(z) =0,

d
and, from the value obtained for —v,(z), it is evident that

dz

ob) = a0 V(b= {%v(z)} _ a,

z=b
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where ay, a, are arbitrary.

10.21 Uniqueness of the solution

If there were two analytic solutions of the equation for v, say v;(z) and v,(z), such that
v1(b) = v2(b) = ay, and v,’(b) = vy’ (b) = ay, then, writing w(z) = v,(z) — v2(z), we should
have
d*w(z)
dz?

Differentiating this equation n — 2 times and putting z = b, we get

+ J(z2)w(z) = 0.

w™(b) + J(b)w" 2 (b) + (” ; 2)J’(b)w<"-3>(b) +- o+ J" 2 (b)w(b) = 0.

Putting n = 2,3,4, . .. in succession, we see that all the differential coefficients of w(z) vanish
at b; and so, by Taylor’s theorem, w(z) = 0; that is to say the two solutions v;(z), v,(z) are

identical. .

1 4
Writing u(z) = v(z) exp {—5 / p(&)d¢ } , we infer without difficulty that u(z) is the only
b
analytic solution of (10.1) such that u(b) = Ay, u’(b) = A;, where
Ao = ap, Ay = ay - 5p(b) ap.

Now that we know that a solution of (10.1) exists which is analytic in S;, and such that
u(b), u’(b) have the arbitrary values Ay, A;, the simplest method of obtaining the solution in
the form of a Taylor’s series is to assume

u(@) = ) Auz = b)",
n=0

substitute this series in the differential equation and equate coefficients of successive powers
of 7 — b to zero (§3.73) to determine in order the values of A, As, ... in terms of Ay, A;.

Note In practice, in carrying out this process of substitution, the reader will find it much
more simple to have the equation ‘cleared of fractions’ rather than in the canonical form
(10.1) of §10.1. Thus the equations in Examples 10.2.1 and 10.2.2 below should be treated
in the form in which they stand; the factors 1 — z2, (z — 2), (z — 3) should not be divided out.
The same remark applies to the examples of §§10.3 and 10.32.

From the general theory of analytic continuation (§5.5) it follows that the solution obtained
is analytic at all points of S except at singularities of the differential equation. The solution
however is not, in general, analytic throughout S (see the footnote after Corollary 5.2.2),
except at these points, as it may not be one-valued; i.e., it may not return to the same value
when z describes a circuit surrounding one or more singularities of the equation.

The property that the solution of a linear differential equation is analytic except at singu-
larities of the coefficients of the equation is common to linear equations of all orders.

When two particular solutions of an equation of the second order are not constant multiples
of each other, they are said to form a fundamental system.
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Example 10.2.1 Shew that the equation

(1= =2z’ +3u=0
has the fundamental system of solutions

3. 21 5 15
:1__2__4_... - +_3+_5+...‘
h g% T 128° D YRR DT &

Determine the general coeflicient in each series, and shew that the radius of convergence of
each series is 1.

Example 10.2.2 Discuss the equation
(z=-2)(z-3u"-QR2z-5u"+2u=0

in a manner similar to that of Example 10.2.1.

10.3 Points which are regular for a differential equation

Suppose that a point ¢ of S is such that, although p(z) or ¢(z) or both have poles at c, the
poles are of such orders that (z — ¢)p(z), (z — ¢)*q(z) are analytic at c¢. Such a point is called
a regular point" for the differential equation. Any poles of p(z) or of ¢(z) which are not of
this nature are called irregular points. The reason for making the distinction will become
apparent in the course of this section.

If ¢ be a regular point, the equation may be written?

2
(z- c>2j—;2‘ (2 O)P(z - c>j—;‘ F OG- =0,

where P(z — ¢), Q(z — ¢) are analytic at c¢; hence, by Taylor’s theorem,

P(z—c)=po+pi(z—c)+paz—c) +---,
Qz-c)=qo+qz—c)+qlz—c) +---,

where pg, p1, - - -, 40,41, - - - are constants; and these series converge in the domain S, formed
by a circle of radius r (centre ¢) and its interior, where r is so small that c is the only singular
point of the equation which is in S...

Let us assume as a formal solution of the equation

u=(z-c)* [1+Zan(z—c)”l,

n=1

where «,a;, a,, . .. are constants to be determined.
Substituting in the differential equation (assuming that the term-by-term differentiations

! The name ‘regular point’ is due to Thomé [624]. Fuchs had previously used the phrase ‘point of
determinateness’.
2 Frobenius calls this the normal form of the equation.
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and multiplications of series are legitimate) we get

(z-0)" [a(a -1+ Z a(a+n)a+n-1)(z- c)"}

n=1

+(z=-¢)*P(z-c¢)

a+ i a,(a +n)(z - c)"l

n=1

+(z-0)'Qz~c¢) ll + Z an(z - C)"} =0.
n=1
Substituting the series for P(z — ¢), Q(z — c), multiplying out and equating to zero the
coefficients of successive powers of z — ¢, we obtain the following sequence of equations:

a® +(po— Da +qy =0,
a{(@+ 1) +(po— D(a+1)+q}+ap +q1 =0,
a{(a@+2)*+ (po— D(@+2)+ q} +ar{(@+ Dp; + q1} +apr + 2 = 0,

an{(a +n)* + (po = 1)(@ +n) + qo}
n-1
+ ) @uen{(@ 4 0= m)pyy + G} + Py + G = 0.
m=1
The first of these equations, called the indicial equation (the name is due to Cayley [139]),
determines two values (which may, however, be equal) for @. The reader will easily convince
himself that if ¢ had been an irregular point, the indicial equation would have been (at most)
of the first degree; and he will now appreciate the distinction made between regular and
irregular singular points.
Let @ = p, @ = p, be the roots of

F(a)za/2+(p0—1)a/+qo=0;

(these roots are called the exponents of the indicial equation) then the succeeding equations
(when @ has been chosen) determine ay,ay,. . ., in order, uniquely, provided that F(a + n)
does not vanish whenn = 1,2,3,. . .; that is to say, if @ = py, that p, is not one of the numbers
p1+ 1,01 +2,..;and, if @ = p,, that p; is not one of the numbers p, + 1, po +2,. . ..

Hence, if the difference of the exponents is not zero, or an integer, it is always possible to
obtain two distinct series which formally satisfy the equation.

Example 10.3.1 Shew that, if m is not zero or an integer, the equation

is formally satisfied by two series whose leading terms are

1/2 z? 1/2 z?
It ! R R SRR
¢ { 16(1 + m) } ¢ { 16(1 — m) }
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determine the coefficient of the general term in each series, and shew that the series converge
for all values of z.

10.31 Convergence of the expansion of §10.3

If the exponents p;, p, are not equal, let p; be that one whose real part is not inferior to the
real part of the other, and let p; — p, = s; then

F (p1 +n)=n(s+n).
Now, by §5.23, we can find a positive number M such that

Ipal < Mr™", |gul < Mr™", |pipn +qu| < Mr™",

where M is independent of #; it is convenient to take M > 1.
Taking @ = p;, we see that

o1 + qil M M
|a1| < )
|[F(py + 1)  rls+1] r
since |s + 1| > 1.
If now we assume |a,| < M"r™ whenn = 1,2,...,m— 1, we get

m—1

Y Ay {(p1 +m =11+ G} + P1Pm + G

t=1

fanl = Flor +m)
m=1 m=1
El lam—c| - |p1P1 + Gi| + |P1Pm + Gl + El (m = 1) |am-!||p:|
- mls + m|
mM™r™" + {mz_jll(m - t)} Mmpm
t=
<

m? |1+ sm™|
Since |1 + sm™!| > 1, because Re s is not negative, we get

m+ 1

la,.| < M"rTm < MM,

and so, by induction, |a,| < M"r™" for all values of n.

If the values of the coefficients corresponding to the exponent p, be aj,a;, ... we should
obtain, by a similar induction,

laj| < M"K"r ",

-1 -1 . .
1- %sl ,|1 - %s| ,...; this bound exists when s

where & is the upper bound of |1 — s|™",
is not a positive integer.
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We have thus obtained two formal series

wi(z) = (z =)

1+ ian(z —c)"],

n=1

1+ i a,(z— c)”‘ )

wa(z) = (z = )

n=1

The first, however, is a uniformly convergent series of analytic functions when |z — ¢| <
rM™", as is also the second when |z — ¢| < rM~'k™!, provided in each case that arg(z — ¢) is
restricted in such a way that the series are one-valued; consequently, the formal substitution
of these series into the left-hand side of the differential equation is justified, and each of the
series is a solution of the equation; provided always that p; — p, is not a positive integer or
zero. (If p; — p, is a positive integer, k does not exist; if p; = p,, the two solutions are the
same.)

With this exception, we have therefore obtained a fundamental system of solutions valid
in the vicinity of a regular singular point. And by the theory of analytic continuation, we see
that if all the singularities in S of the equation are regular points, each member of a pair of
fundamental solutions is analytic at all points of S except at the singularities of the equation,
which are branch-points of the solution.

10.32 Derivation of a second solution in the case when the difference of the
exponents is an integer or zero

In the case when p; — p, = s is a positive integer or zero, the solution w,(z) found in §10.31
may break down or coincide with w;(z). (The coefficient a, may be indeterminate or it may
be infinite; in the former case w,(z) will be a solution containing two arbitrary constants a;,
and a’; the series of which a is a factor will be a constant multiple of w,(z).) If we write
u = wi(z)¢, the equation to determine ¢ is

2
dz?

(z-¢) {Z(Z—c)zL(Z) +(Z—C)P(Z—C)} cdi_i =0,

wi(2)

of which the general solution is

B z 1 *P(z-c¢)
{—A+B/W6Xp{—/ ZTdZ}dZ

V({Zw_l(%exp{_pl(z_c)_%Pz(Z—c)Z_...}dz

Z
=A+ B/ (z - c)’p"’z“"g(z) dz,

=A+B

where A, B are arbitrary constants and g(z) is analytic throughout the interior of any circle
whose centre is ¢, which does not contain any singularities of P(z — ¢) or singularities or
zeros of (z — ¢)”'wy(z); also g(c) = 1.
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Letg(z) =1+ Z gn(z —c)". Then, if s # 0,

n=1

§=A+B/Z{1+Zgn(z—6)"}(z—6)‘s‘1dz
n=1

s—1

8n
s —

n=1
T Z S0 l

=A+B

_l(z —0) -
N

n(z —c)"" + gslog(z —c)

n= s+1

Therefore the general solution of the differential equation, which is analytic at all points
of C (c excepted), is Aw(z) + B[gsw1(z)log (z — ¢) + w(z)], where, by §2.53,

w(z) = (z =) {—é + Z hy (z - C)"} ,

the coeflicients #,, being constants.
When s = 0, the corresponding form of the solution is

Aw(z) + B

n=1

wi(z) log(z — ¢) + (z — ¢)™ Z ha(z — c)”l .

The statement made at the end of §10.31 is now seen to hold in the exceptional case when s
is zero or a positive integer.

In the special case when g, = 0, the second solution does not involve a logarithm.

The solutions obtained, which are valid in the vicinity of a regular point of the equation,
are called regular integrals.

Integrals of an equation valid near a regular point ¢ may be obtained practically by first

obtaining w;(z), and then determining the coefficients in a function w;(z) = Z b(z—c)™",
by substituting wy(z) log(z — ¢) + wi(z) in the left-hand side of the equation and equating to

zero the coefficients of the various powers of z — ¢ in the resulting expression. An alternative
method due to Frobenius [227] is given by Forsyth [221, pp. 243-258].

Example 10.3.2 Shew that integrals of the equation

du 1du
aun, a -0
Z T m

regular near z = 0 are

> 2n 2n

Wl(Z) - 1 + Z 22n |2

and

sl m2nz2n 1 1 1
wi(z)logz — ( )

—— |-t
- 22np12 \1 2 n

Verify that these series converge for all values of z.
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Example 10.3.3 Shew that integrals of the equation

L
1
z(z—l) +(2—1)—+4u—0

regular near z = 0 are

wl(z)—l+i( (2”_1))

and
2n-1) 11 1y,
Wl(Z)IOgZ+4Z(—2n T 54‘5 Z Z .

Verify that these series converge when |z| < 1 and obtain integrals regular near z = 1.

Example 10.3.4 Shew that the hypergeometric equation
(I—Z) +{c—(a+b+1)z}——abu—0
dz

is satisfied by the hypergeometric series of §2.38. Obtain the complete solution of the equation
when ¢ = 1.

10.4 Solutions valid for large values of |z|

Let z = 1/z;; then a solution of the differential is said to be valid for large values of |z| if
it is valid for sufficiently small values of |z;|; and it is said that ‘the point at infinity is an
ordinary (or regular or irregular) point of the equation’ when the point z; = 0 is an ordinary
(or regular or irregular) point of the equation when it has been transformed so that z; is the
independent variable.

Since
dZM d2M 1 du !
au = 27 - o
dz2 +P(Z) + q@u =2 dz? { ap ( )} dz T (Zl ) *

we see that the conditions that the point z = oo should be (i) an ordinary point, (ii) a regular
point, are (i) that 2z — z%p(z), z*q(z) should be analytic at infinity (§5.62) and (ii) that zp(z),
72q(z) should be analytic at infinity.

Example 10.4.1 Shew that every point (including infinity) is either an ordinary point or a
regular point for each of the equations

Z(l—z) du +{c—(a+b+1)z}——abu—

(1- 22)— By

e +n(n+ Du=

where a, b, ¢, n are constants.



210 Linear Differential Equations

Example 10.4.2 Shew that every point except infinity is either an ordinary point or a regular
point for the equation

,d? d
dl:+zd—z+(z —n?)u =0,

where 7 is a constant.

Example 10.4.3 Shew that the equation

(1- 2)— - ZZZ—Z +6u =
has the two solutions
, 1 1 3 1 -6 1
23 Pty g7

the latter converging when |z| > 1.

10.5 Irregular singularities and confluence

Near a point which is not a regular point of linear differential equations, an equation of
the second order cannot have two regular integrals, for the indicial equation is at most of
the first degree; there may be one regular integral or there may be none. We shall see later
(e.g. §16.3) what is the nature of the solution near such points in some simple cases. A
general investigation of such solutions is beyond the scope of this book. Some elementary
investigations are given in Forsyth’s [221]. Complete investigations are given in his Theory
of Differential Equations [218].

It frequently happens that a differential equation may be derived from another differential
equation by making two or more singularities of the latter tend to coincidence. Such a
limiting process is called confluence; and the former equation is called a confluent form of
the latter. It will be seen in §10.6 that the singularities of the former equation may be of a
more complicated nature than those of the latter.

10.6 The differential equations of mathematical physics

The most general differential equation of the second order which has every point except
ai,ay, as, as and oo as an ordinary point, these five points being regular points with exponents
a,, By ata, (r = 1,2,3,4) and exponents u;, u, at oo, may be verified® to be

I
L

Pu [ Sl-a-B | du | aB,  AZ+2Bz+C
Al D i Al DY s A

[1(z-a)

r=1

r=1

3 The coefficients of = and u must be rational or they would have an essential singularity at some point; the
denominators ofp(z), ¢(z) must be H,=l(z -a,), H,=1(z — a,)? respectively; putting p(z) and g(z) into
partial fractions and remembering that p(z) = O(z™!), g(z) = O(z™2) as |z| — oo, we obtain the required
result without difficulty.
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where A is such that g and y, are the roots of

4 4
/12+/1{Z(ar+ﬁ,)—3}+2arﬁ,+A=O,
r=1 r=1

and B, C are constants. (It will be observed that p;, u, are connected by the relation

Hi+ o + Z(ar+/3r)—3)

The remarkable theorem has been proved by Klein [376] (see also [373]) and Bocher [78]
that all the linear differential equations which occur in certain branches of Mathematical
Physics are confluent forms of the special equation of this type in which the difference of the
two exponents at each smgulanty 1s ; a brief investigation of these forms will now be given.

If weput B8, = a, + (r =1,2, 3 4) and write { in place of z, the last written equation
becomes

d2M { 4 2ar} a, (a'r 2) A(2+ZB§+C

— + : u=0
dc? Z Z )2 4 ’
g r=1 { ({ a) Ijl(é,_ar)

where (on account of the condition p, — p; = %)
4 2y 3 3

- _ 2_ 2 2

A_(;ar) Zar 2Zar+l6.

This differential equation is called the generalised Lamé equation.
It is evident, on writing a; = a, throughout the equation, that the confluence of the two
singularities ay, a, yields a singularity at which the exponents «, 8 are given by the equations

a+p=2a+m), af=a (“1+%)+a2(02+%)+D’

where
Aa% +2Ba; + C

- (a1 — a3)(a; — a4)'

Therefore the exponent-difference at the confluent singularity is not 1, but it may have any
assigned value by suitable choice of B and C. In like manner, by the confluence of three or
more singularities, we can obtain one irregular singularity.

By suitable confluences of the five singularities at our disposal, we can obtain six types
of equations, which may be classified according to (a) the number of their singularities with
exponent- dlﬂerence , (b) the number of their other regular singularities, (c) the number of
their irregular smgularltles by means of the following scheme, which is easily seen to be
exhaustive:
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(@ | (b) | (©
) 3 1 0 | Lamé
(II) 2 0 1 | Mathieu
an | 1 2 0 | Legendre
avy| o 1 1 | Bessel
V) 1 0 1 | Weber, Hermite
VDh | O 0 1 | Stokes

For instance the arrangement (a) 3, (b) 0, (c) 1, is inadmissible as it would necessitate
six initial singularities. The last equation of this type was considered by Stokes [609] in his
researches on Diffraction; it is, however, easily transformed into a particular case of Bessel.

These equations are usually known by the names of the mathematicians in the last column.
Speaking generally, the later an equation comes in this scheme, the more simple are the
properties of its solution. The solutions of (II)-(VI) are discussed in Chapters 15-19 of this
work, and of (I) in Chapter 23. For properties of equations of type (I), see the works of Klein
[376] and Forsyth [218]; also Todhunter [631]. The derivation of the standard forms of the
equations from the generalised Lamé equation is indicated by the following examples:

Example 10.6.1 Obtain Lamé’s equation

d*u { > % }du {nn+1).+h}tu

— + — - =0
dr? Z —-a)| d 3 ’
é’ r=1 (g a) Z 411(§_ar)

(where h and n are constants) by taking
ai=ay=a3=a4,=0, 8B=nn+1)ay, 4C = hay,
and making a4 — oo.
Example 10.6.2 Obtain the equation
@+(% N )@_ (a—16q +32g0)u _
e dz 4~ 1) ’

(where a and g are constants) by taking a; = 0, a, = 1, and making a3 = a4, — oo. Derive
Mathieu’s equation (§19.1)

2
au +(a +16q cos2z)u =0
dz?

by the substitution { = cos? z.

Example 10.6.3 Obtain the equation

@4_ i+; ﬂ+l{n(n+l)_ mz} u —O
a2 ¢ ¢-1[d; 4| ¢ (-1)¢¢-1 7

by taking

1
ag=a=1, a3=a,=0, a;=a,=a; =0, a4=Z.
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Derive Legendre’s equation (§15.13 and §15.5)

d*u du m?

1-722)— -2z—+ +1)-——tu=0

( z)dZ2 o {n(n ) 1—12}”

by the substitution £ = z72.

Example 10.6.4 By takinga; =a, =0, a; = a; = a3 = a4 = 0, and making a3 = a4 — oo,
obtain the equation

d’u  du 1
2 2
— —+ - (- =0.
et
Derive Bessel’s equation (§17.11)
d’u du
2 2 2y,
T o +z = +(z*-nHu=0

by the substitution £ = z2.

Example 10.6.5 By taking a; =0, a; = a, = a3 = a4 = 0, and making a, = a3 = a4 — oo,
obtain the equation
du ldu 1

TR VT

1 1
(’l+§—zg)bt:0.

Derive Weber’s equation (§16.5)
d? 1 1
—u+(n+———zz)u:0

by the substitution / = z2.

Example 10.6.6 By taking a, = 0, and making a, — oo (r = 1,2,3,4), obtain the equation

d*u
E + (31§+C1)u =0.
By taking
u=(Bi{+C)vo, Bil+C = (3Bz)",
shew that
d*v dv 1
Ttz —+|F-=|v=0.
Yd2 Ttz (Z 9)v

Example 10.6.7 Shew that the general form of the generalised Lamé equation is unaltered
(i) by any homographic change of independent variable such that oo is a singular point of the
transformed equation, (ii) by any change of dependent variable of the type u = (z — a,)*v.

Example 10.6.8 Deduce from Example 10.6.7 that the various confluent forms of the
generalised Lamé equation may always be reduced to the forms given in Examples 10.6.1—
10.6.6. (Note that a suitable homographic change of variable will transform any three distinct
points into the points 0, 1, c0.)
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10.7 Linear differential equations with three singularities

Let

d’u

dz?
have three, and only three singularities, a, b, c; let these points be regular points, the exponents
thereat being a, a’; B, B’; v, v’. The point at infinity is to be an ordinary point.

Then p(z) is a rational function with simple poles at a, b, c, its residues at these poles being
l-a-a,1-B-F,1-y—9y";andas z — oo, p(z) — 27" is O(z72). Therefore
2(2) = l-a—-¢o N 1--p N 1—y—v
Z—a z—b z-c

+ p(z)j—z +qg(zu=0 (10.4)

and @ +a’ + B+ B’ + vy + 7y’ = 1. This relation must be satisfied by the exponents.
In a similar manner

4(2) = {a'a"(a —b)a-rc) . BB (b—c)b-a) . vy'(c —a)(c - b)}
zZ—a z—b z—c
1
% (z—a)z-b)(z-c)

and hence the differential equation is

d2u+{1—0z—a/’+ 1—B—B’+ 1—y—y’}du

dz
L[ea=ba=o)  pEb-0b-a)  yy(c-alc-b)
z-a z=b z-c
u
X =0
(z=a)(z-b)(z~-c)
This equation was first given by Papperitz [515].

To express the fact that u satisfies an equation of this type (which will be called Riemann’s
P-equation [556]; it will be seen from this memoir that, although Riemann did not apparently
construct the equation, he must have inferred its existence from the hypergeometric equation)
Riemann wrote

dz? z—a z—b z—c

a b ¢
u=Pqa B vy z
al Bl ,)/I

The singular points of the equation are placed in the first row with the corresponding
exponents directly beneath them, and the independent variable is placed in the fourth column.

Example 10.7.1 Shew that the hypergeometric equation
d? d
z(1 _Z)d_zl; +{c-(a+b+ l)z}d—z —abu=0
is defined by the scheme
0 00 1

l-¢c b c—a-b»b
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10.71 Transformations of Riemann’s P-equation

The two transformations which are typified by the equations

D
AN a b ¢ a b c
( b)( b)P a B v z¢(=Pja+k B-k-1I vy+Il 2z,
- - a’ ﬁ/ ,y/ a +k ﬂ/_k_l ,y/+l
(I
a b c ar b c
Psa B v zp=Pya B v zi
a/ ﬁ/ y/ a/ Bl y/

(where z1, ay, by, c| are derived from z, a, b, ¢ by the same homographic transformation) are
of great importance. They may be derived by direct transformation of the differential equation
of Papperitz and Riemann by suitable changes in the dependent and independent variables
respectively; but the truth of the results of the transformations may be seen intuitively when
we consider that Riemann’s P-equation is determined uniquely by a knowledge of the three
singularities and their exponents, and (I) that if

a b ¢
u=Pya B vy z¢,
a/ ﬁ/ ,y/

z=b] \z-
same three singular points and exponents @ + k, @’ + k; -k -1, -k -Ly+1,v' +1;
and that the sum of the exponents is 1.
Az; + B
Cz1+D
order with singularities at the points derived from a, b, ¢ by this homographic transformation,
and exponents «, a’; 8, 8'; v, v’ thereat.

k 1
z—a\ [(z-c . . . . .
then u; = ( ) (_b) u satisfies a differential equation of the second order with the

Also (II) if we write z = , the equation in z; is a linear equation of the second

10.72 The connexion of Riemann’s P-equation with the hypergeometric equation

By means of the results of §10.71 it follows that

a b c rea\ (z—c) a b c
Pozﬁyz=( b)('b)P 0 B+a+y 0 z
a By “” T @ —a B+a+y y -y
0 00 1

_ @ _ y
=(Z Z) (Z Z)P 0 B+a+y 0 X,
- - a-a Bra+y y -vy

where
‘o (z—a)(c-b)
(z=b)(c-a)
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Hence, by Example 10.7.1, the solution of Riemann’s P-equation can always be obtained
in terms of the solution of the hypergeometric equation whose elements a, b, ¢, x are a+ 8+,
a+pB +y,1+a-a’,(z-a)c—b)/(z—-b)(c— a)respectively.

10.8 Linear differential equations with two singularities
If, in §10.7, we make the point ¢ an ordinary point, we must have 1 —y —y" =0, yy' =0
and 2 @=b)a=c) pE(b-c)b-a)

zZ—a z—Db
g(z) may be analytic at c.
Hencea + o’ + B+ ' =0, aa’ = S8, and the equation is

must be divisible by z — ¢, in order that p(z) and

d’u {l—af—a’ 1+a/+0/}du aa’(a — b)u
— + + —+ —— =0,
dz? z—a z—b dz  (z-a)*(z - b)?
of which the solution is
z—a\” z—a\”
=A + B ;
! ( - b) (z - b)
that is to say, the solution involves elementary functions only.
When a = «’, the solution is
z—a\” z—a\” z-a
=A + B lo .
cal) en (=) )
10.9 Miscellaneous examples
Example 10.1 Shew that two solutions of the equation
d’u
d_ZZ +zu=0
are z — ll—zz“ +---,and 1 — éz3 +- -, and investigate the region of convergence of these series.

Example 10.2 Obtain integrals of the equation

d*u . 1-27°
dz? 472

u=0,

regular near z = 0, in the form

2 4

- 1/2 1+Z_+_Z + ..

e { 16 © 1024 ’
3/2

u2=u110g1—1—6+---.

Example 10.3 Shew that the equation

d*u 11,
—+(n+=z-= =0
7 (” 2 41)”
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has the solutions
2n+1 , 4n*+4n+3 ,
Z

1_
1 Yt T g
2n+13+4n2+4n+75_
1 ° 480 -

and that these series converge for all values of z.
Example 10.4 (Klein) Shew that the equation

d2 N 1 - r_ rﬂr N D,
_”+{Z - }_ {Z (za—ar)2 ;Z_ar}u=0,

dz? z—a,

r=1

where
n

Zn:(ar +B)=n-2, Z D, =0, Zn:(arD, +a,8) =0,
=1 =1 =1

Z (a,’D, +2a,a,,) = 0
r=1

is the most general equation for which all points (including o), except a;,ay,. . .,a,, are
ordinary points, and the points a, are regular points with exponents «,, 3, respectively

Example 10.5 (Riemann) Shew that,if 5+y+ 8" +vy' = % then
0 oo 1 -1 o 1
PO By Zp=Pyy 28 vy z
% IB/ ,y/ ,y/ Zﬁ/ ,y/
The differential equation in each case is
d? 2z1-y—-vy) d ! 4
du 2z 77)_u+/3,3,+ YY L
2-1)z2-1

dz? 2-1 dz
Example 10.6 (Riemann) Shew that, if y +y’ = 1 and if w, w? are the complex cube roots

of unity, then
2

~

1 1 w w
y Z£2¢=Pyy v v z
Y Y v oy

~
w—- o O

wi— O 8

The differential equation in each case is
d2 2 2 ’
du 227 du  Oyy'au
dz2 2 -1dz (B-172

Example 10.7 (Halm) Shew that the equation

d2u
(1—22) (2a+1)zZ—Z+n(n+2a)u—



218 Linear Differential Equations

is defined by the scheme

1 0 -1
py O -n 0 0,
14 n+2a l-a

2

and that the equation
d2
(1+{2)2d—;+n(n+2)u=0

may be obtained from it by taking a = 1 and changing the independent variable.

Example 10.8 (Cunningham) Discuss the solutions of the equation

d? d 1
zd—;+(z+1+m)d—2+(n+l+§m)u:0

valid near z = 0 and those valid near z = co.

Example 10.9 (Curzon) Discuss the solutions of the equation

d’u  2u du du
— +— — 27— +2(v - =0
A2z dz U4z (= s

valid near z = 0 and those valid near z = co. Consider the following special cases:

3 1
O p=-3 i) p=3: (i) p+v=3.
Example 10.10 (Lindemann; see §19.5) Prove that the equation
d*u 1 du
z(1 - z)d—Z2 + 5(1 - ZZ)d—Z +(az+bu=0

has two particular integrals the product of which is a single-valued transcendental function.
Under what circumstances are these two particular integrals coincident? If their product be
F(z), prove that the particular integrals are

)Vl — 2

where C is a determinate constant.

Example 10.11 (Math. Trip. 1912) Prove that the general linear differential equation of
the third order, whose singularities are 0, 1, co, which has all its integrals regular near each
singularity (the exponents at each singularity being 1, 1, —1), is

@+{%+ 2 }@_{l_ 3,1 }@
dz? z z-1)dz2 (22 z2z-1) (z-1)*) dz
{1 3cos’a  3sin’a 1 }

-~ - + u=0,

2 2= -1 (z-1)

where a may have any constant value.
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Integral Equations

11.1 Definition of an integral equation

Anintegral equation is one which involves an unknown function under the sign of integration;
and the process of determining the unknown function is called solving the equation. Except
in the case of Fourier’s integral (§9.7) we practically always need continuous solutions of
integral equations.

The introduction of integral equations into analysis is due to Laplace (1782) who consid-
ered the equations

) = / Fewydn, g(x) = / () di

(where in each case ¢ represents the unknown function), in connexion with the solution
of differential equations. The first integral equation of which a solution was obtained, was
Fourier’s equation

Fx) = / " cos(x)(0) d.

o

of which, in certain circumstances, a solution is'

4o =2 /0 cos(ux) £ (u) du,

f(x) being an even function of x, since cos(xt) is an even function.

Later, Abel [6] was led to an integral equation in connexion with a mechanical problem
and obtained two solutions of it; after this, Liouville investigated an integral equation which
arose in the course of his researches on differential equations and discovered an important
method for solving integral equations?, which will be discussed in §11.4.

In recent years, the subject of integral equations has become of some importance in various
branches of Mathematics; such equations (in physical problems) frequently involve repeated
integrals and the investigation of them naturally presents greater difficulties than do those
elementary equations which will be treated in this chapter.

To render the analysis as easy as possible, we shall suppose throughout that the constants a,
b and the variables x, y, £ are real and further thata < x, y, & < b; also that the given function,
K(x,y), which occurs under the integral sign in the majority of equations considered, is a
real function of x and y and either (i) it is a continuous function of both variables in the range

1 If this value of ¢ be substituted in the equation we obtain a result which is, effectively, that of §9.7.
2 The numerical computation of solutions of integral equations has been investigated by Whittaker [677].

219
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(a < x <b,a <y <b),or (i) it is a continuous function of both variables in the range
a<y<x<bandK(x,y) =0 when y > x; in the latter case K(x, y) has its discontinuities

regularly distributed, and in either case it is easily proved that, if f(y) is continuous when
b

a<y<b, / f(y)K(x,y)dy is a continuous function of x when a < x < b.

Bdcher [86] in his important work on integral equations, always considers the more general
case in which K(x, y) has discontinuities regularly distributed, i.e. the discontinuities are of
the nature described in Example 4.11. The reader will see from that example that the results
of this chapter can almost all be generalised in this way. To make this chapter more simple
we shall not consider such generalisations.

11.11 An algebraical lemma

The algebraical result which will now be obtained is of great importance in Fredholm’s
theory of integral equations.

Let (x1,y1,21), (X2, ¥2,22), (x3,¥3,23) be three points at unit distance from the origin. The
greatest (numerical) value of the volume of the parallelepiped, of which the lines joining
the origin to these points are conterminous edges, is +1, the edges then being perpendicular.
Therefore, if xf + yf + zf =1 (r = 1,2,3), the upper and lower bounds of the determinant

X1 Y1 2
X2 Y2 22
X3 Y3 3

are +1.
A lemma due to Hadamard [265] generalises this result. Let

aipg dip ccc Qin
d dxp Ao,
D =
ani an2 e Ann
n
where a,,, isreal and > a2 =1 (m = 1,2,...,n); let A,,- be the cofactor of a,,, in D and
mr

r=1

let A be the determinant whose elements are A,,,, so that, by a well-known theorem (see
Burnside and Panton [111, vol. 2, p. 40]), A = D"!.

Since D is a continuous function of its elements, and is obviously bounded, the ordinary
theory of maxima and minima is applicable, and if we consider variations in a;, (r =

n 9D
1,2,...,n) only, D is stationary for such variations if ), ——da,, = 0, where day,,. .. are
r=104ai,

n
variations subject to the sole condition Y a;,.da,, = 0; therefore’
r=1

0D

Ay, =
: 6611,

= /lalr,

3 By the ordinary theory of undetermined multipliers.
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n
but ) a;,Ay, = D, and so 1Y, aj, = D; therefore A, = Day,.
r=1
Considering variations in the other elements of D, we see that D is stationary for variations

in all elements when A,,,, = Da,,, (m = 1,2,...,n;r = 1,2,...,n). Consequently A = D"-D,
and so D" = D""!. Hence the maximum and minimum values of D are +1.

Corollary 11.1.1  If a,,, be real and subject only to the condition |a,.| < M, since

n a 2
)
4 n'2M

r=

we easily see that the maximum value of |D| is (n'>M)" = n"/>M™.

11.2 Fredholm’s equation and its tentative solution

Fredholm’s first paper on the subject appeared in [224]. His researches are also given in
[225].
An important integral equation of a general type is

b
o) = 1)+ 2 [ K 9(0) de,

where f(x) is a given continuous function, A is a parameter (in general complex) and K(x, &)

is subject to the conditions laid down in §11.1. K(x, &) is called the nucleus, or the kernel of

the equation. The reader will observe that if K(x,&) = 0 (£ > x), the equation may be written

o) = f(x) + 2 / K(xé) (6) d .

This is called an equation with variable upper limit.

This integral equation is known as Fredholm’s equation or the integral equation of the
second kind (see §11.3). It was observed by Volterra that an equation of this type could be
regarded as a limiting form of a system of linear equations. Fredholm’s investigation involved
the tentative carrying out of a similar limiting process, and justifying it by the reasoning given
below in §11.21. Hilbert [305] justified the limiting process directly.

We now proceed to write down the system of linear equations in question, and shall then
investigate Fredholm’s method of justifying the passage to the limit.

The integral equation is the limiting form (when § — 0) of the equation

B(x) = f(x) + A D" K(x,%,) $(x) 6,

q=1

where x; — x,-1 =0, xo = a, x, = b.
Since this equation is to be true when a < x < b, it is true when x takes the values
X1, X2, . .., X,; and so

—18 )" K(xp Xg) $(xg) + #(xp) = () (p=1,2,...,n).
q=1
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This system of equations for ¢(x,,), (p = 1,2,...,n) has aunique solution if the determinant
formed by the coefficients of ¢(x,) does not vanish. This determinant is

1 - A6K(x1,x;) —A6K(x1,x) - —A0K (x1, xp,)
—A0K(x2,x1) 1 —=A6K(x2,x5) --- —A0K (x2, xp,)
D,(1) = ) ) . )
—-A6K(x,, x1) —A6K(x,,x0) -+ 1= A0K(x,,x,)

K(xp,xp) K(xp,xg)
K(x4,x,) K(xg4,xq)

n /12 n ,
=1-2) 6K(xpx,)+ o >s
p=1 P-q=1

PERNCAN K(xp,x,) K(xp,xg) K(xp,x,)
T Z 07 |K(xg,xp) K(xg,x4) K(xg,X:)|[+ -+
“par=t |K(xpxp)  K(Xp,x)  K(Xp, X))
on expanding* in powers of 1. Making § — 0, n — oo, and writing the summations as
integrations, we are thus led to consider the series

K(,é6) K(&.6)

b /12 b b
D“)zl‘ﬂfa K(f"f‘)df”z_z/a / K(éné) K(né)

Further, if D,(x,,x,) is the cofactor of the term in D, (A1) which involves K(x,,x,), the
solution of the system of linear equations is

f(xl)Dn(x;uxl) + f(XZ)Dn(x,quZ) +--t f(xn)Dn(x;vxn)
D, (1) '

dé§y dé—--- .

¢(x,u) =

Now it is easily seen that the appropriate limiting form to be considered in association
with D, (x,, x,,) is D(1); also that, if u # v,

K(xﬂ’ xv) K(x,usxp)
K(xp,x,) K(xp,xp)

Dy(xu%,) = A6 {K(x”,xv) —26 )
p=1

1, n | K(xu,x,) K(xg,xp) K(xu,xg)
+5/l 1 Z K(xp,x,) K(xp,xp) K(xp,xg)[—---
' pa=1|K(xq4,%,) K(xg,xp) K(xg4,%4)

So that the limiting form for 67! D(x,, x,) to be considered is
K(x;uxv) K(x;ué:l)

KEnx) K@.e)| %

1 b b KX x,) K(x,é) K(xu,6)
* 5/13/ / K(¢,x,) K(é,&6) K(&,&)|déEdéaE —--- .
! a Ja 1K(&,x,) K(&,&) K(6,8)

(The law of formation of successive terms is obvious from those written down.)

b
D(x/u Xy s /l) :/IK(X/U xv) - /12 /

4 The factorials appear because each determinant of s rows and columns occurs s! times as p, g, . . . take all
the values 1, 2, . . ., n, whereas it appears only once in the original determinant for D,, ().
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Consequently we are led to consider the possibility of the equation

b
M@=ﬂﬂ+§% [ bins nfe de

giving the solution of the integral equation.

Example 11.2.1 Shew that, in the case of the equation

1
p(x)=x+2a / xyo(y) dy,
0
we have
D(1) =1- 14, D(x,y; 1) = Axy

and a solution is

3x
B = 37—

Example 11.2.2 Shew that, in the case of the equation

1
o) =+ 4 [ ey 300
0
we have
D) =1-31-L2°,
D(x,y; 1) = Axy + yz) + 22 (%xy2 - %xy - %yz + iy) ,

and obtain a solution of the equation.

11.21 Investigation of Fredholm’s solution

So far the construction of the solution has been purely tentative; we now start ab initio and
verify that we actually do get a solution of the equation; to do this we consider the two
functions D(A1), D(x; yA) arrived at in §11.2.

We write the series, by which D(A) was defined in §11.2, in the form 1 + 3] ”';14 so that

n=1

K (&,6) K(é,&) - K(6L,&)
b b b |K (&, K (&, o K5,
“ :(—1)"/ / / (f:z &1) (5:2 &) | (5:2 &n) dé e dé:

K@) K@Emé) - K(Emén)

since K(x,y) is continuous and therefore bounded, we have |K(x,y)| < M, where M is
independent of x and y; since K(x,y) is real, we may employ Hadamard’s lemma (§11.11)
and we see at once that

lan| < n"*M"™(b - a)".
Write n"/>?M"(b — a)" = n!b,; then

_ n/2
buvi _ . (b-—a)M (1+1) _o,

n

Jim b, = lim i+ )72
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since (1 + 1/n)" — e.

The series ), b, A" is therefore absolutely convergent for all values of A; and so (§2.34) the

n=1

a, A"
n!

series 1 + ), converges for all values of A and therefore (§5.64) represents an integral
=1

function of A.
Now write the series for D(x, y; A) in the form ) V’(+,WH Then, by Hadamard’s lemma

n=0
(§11.11),
[Vao1(x, y)| < n”/ZM"(b —a)" !,

Vn(X, )
n!

< ¢, where ¢, is independent of x and y and Y, ¢,A"*! is absolutely
n=0

and hence ’

convergent.

Therefore D(x, y; A) is an integral function of A and the series for D(x, y; 1) — AK(x, y) is
a uniformly convergent (§3.34) series of continuous’ functions of x and y when a < x < b,
a<y<b.

Now pick out the coefficient of K(x, y) in D(x, y; 1); and we get

/ln+1 Ql’l(-x7 Y)

D(x.y:4) = AD(DK(x.y) + Y (<14 =

n=1
where

0 K()C, é:l) K(.X', 62) e K(.X', é‘:n)
b IKGEy) K@E.E) K@) o K@né)
Quyy= [ [T [T TR T T g,

KEny) KEné) KEnt) - Kéné)

Expanding in minors of the first column, we get Q,(x, y) equal to the integral of the sum
of n determinants; writing £1,&,. . .,&n-1,&,&ms - - €1 in place of £1,&,. . ., &, in the mth
of them, we see that the integrals of all the determinants® are equal and so

0.(x.3) = —n/ab /ab---/abK(f,andfda e déa,

where
K(x,&) K(x,&) - Kx,&-41)
B K(,¢) Kéné) - K(énéar)
KEn€) Knné) K

It follows at once that

b
D(x:y: ) = ADK (x.y) + A / D(x.&: DK(E. ) de.

a

3 Ttis easy to verify that every term (except possibly the first) of the series for D(x, y; 2) is a continuous
function under either hypothesis (i) or hypothesis (ii) of §11.1.
6 The order of integration is immaterial (§4.3).
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Now take the equation

b
oE) = f() + 2 f K(E3)¢(y) dy,

multiply by D(x,&; 1) and integrate, and we get
b
[ reneenae

b b b
- / O(E)D(x,&; ) dé - A / / D(x: & DK(Ey)P(y) dy de.

the integrations in the repeated integral being in either order.
That is to say

b
/ FOD(x &) dé
¢ b b
- / O(E)D(x, &1 4) dé / [D(x,y:4) — AD(DK (x.y)] 6(3) dy

b
_ D) / K(xy)d(3) dy
= D) [¢(x)  f()],

in virtue of the given equation.
Therefore if D(1) # 0 and if Fredholm’s equation has a solution it can be none other than

o= p0+ [ e PeED

and, by actual substitution of this value of ¢(x) in the integral equation, we see that it actually
is a solution. This is, therefore, the unique continuous solution of the equation if D(1) # 0.

d¢;

Corollary 11.2.1 [fwe put f(x) = 0, the ‘homogeneous’ equation

b
o= [ Kexowe) de
has no continuous solution except ¢(x) = 0, unless D(1) =0

Example 11.2.3 By expanding the determinant involved in Q,(x,y) in minors of its first
row, shew that

b
D(x,y: ) = ADK (x.y) + A / K(x, )D&, y: ) dE.

a

Example 11.2.4 By using the formulae
> an/l" N n
D) =1+ nzz; == Dlnyid) = DK (xy) + ;(—1)

A0, (x,y)
n! ’

shew that

dD(1)

b
/ D, ¢&; /l)d.f——/lT.
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Example 11.2.5 If

1 if y<uy,

K(x,y) =
(5) {O if y>ux;
shew that D(1) = exp{—(b — a)1}.

Example 11.2.6 Shew that, if K(x,y) = fi(x) £2(y), and if

b
/ A A0 dx = A,
then
D) =1-AL  D(xy:d) = Afi(x)AO).

and the solution of the corresponding integral equation is

Afi(x%)
1- Al

¢(x) = f(x) +
Example 11.2.7 Shew that, if

K(x,y) = fi(x)g1(y) + fo(x)ga2(y),

then D(1) and D(x, y; 1) are quadratic in A, and, more generally, if

b
/ FEORE) dé.

K(x,y) = D fu(x)gm(),

then D(1) and D(x, y, A) are polynomials of degree n in A.

11.22 Volterra’s reciprocal functions

Two functions K(x,y), k(x,y; 1) are said to be reciprocal if they are bounded in the ranges
a £ x,y < b,if any discontinuities they may have are regularly distributed (§11.1, footnote
on Bdcher’s work), and if

b
K(xy) + k(x,y: ) = A / k(x.&: DK (E. ) de.

a

We observe that, since the right-hand side is continuous (by Example 4.11), the sum of two
reciprocal functions is continuous.

Also, a function K(x,y) can only have one reciprocal if D(1) # 0; for if there were two,
their difference ki (x, y) would be a continuous solution of the homogeneous equation

b
ki(xy:d) = / k(6.8 DK(E,y) dé,

(where x is to be regarded as a parameter), and by Corollary 11.2.1, the only continuous
solution of this equation is zero.

By the use of reciprocal functions, Volterra has obtained an elegant reciprocal relation
between pairs of equations of Fredholm’s type.
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We first observe, from the relation

b
D(x,y: A) = AD(DK(x,y) + A / D(xé DK (E. ) d.

proved in §11.21, that the value of k(x, y; 2) is

D(x,y; )
~ADQ)

and from Example 11.2.3, the equation

b
k(x,y: ) + K(x,y) = 4 / K )k(E,y: A) dé

a

is evidently true.
Then, if we take the integral equation

b
6(x) = f(x) + 4 / K(x.)6(6) de.

when a < x < b, we have, on multiplying the equation

b
oE) = F(€) + / K(6.6)0(&) dé

by k(x,&; A) and integrating,
b b
[ raasede = [ rxense de

b b
2 / / k(. & DK (E.£)0(E) dé, d.

Reversing the order of integration’ in the repeated integral and making use of the relation
defining reciprocal functions, we get

b b
/ k(x,&: DO(E) dé = / K(x.&: ) f () de

b
N / (K(x.6) + k(o & D} olé) dé
and so
b b
2 / k(x.&: ) f(€) dE = -2 / K(x&)0(&) dé,
= —o(0) + f(x).

b
Hence f(x) = ¢(x) + 4 / k(x,&; ) f(€) d€; similarly, from this equation we can derive

the equation
b
o(x) = f(x) + A / K(x.£)p(E) d.

7 The reader will have no difficulty in extending the result of §4.3 to the integral under consideration.
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so that either of these equations with reciprocal nuclei may be regarded as the solution of the
other.

11.23 Homogeneous integral equations

The equation
b
o) =1 [ Koo de (11.1)

is called a homogeneous integral equation. We have seen (Corollary 11.2.1) that the only
continuous solution of the homogeneous equation, when D(1) # 0, is ¢(x) = 0.

The roots of the equation D(1) = 0 are therefore of considerable importance in the theory
of the integral equation. They are called the characteristic numbers of the nucleus.

It will now be shewn that, when D(1) = 0, a solution which is not identically zero can be
obtained.

It will be proved in §11.51 that, if K(x,y) = K(y,x), the equation D(1) = 0 has at least
one root. Let 1 = Ay be a root m times repeated of the equation D(2) = 0. Since D(1) is an
integral function, we may expand it into the convergent series

D(D) = (A= )" + Coat(X = )™ 4+ (m > 05 ¢ 0.

Similarly, since D(x, y; 1) is an integral function of A, there exists a Taylor series of the form

8e(x,y) ¢, 8en(x,y) (41
D(x,y; 1) = A=) + =——A=A)"" +--- £ >0; 0);
(633 ) = FE2 (= a0 + SRR (= Ao (€20: g 20)
by §3.34 it is easily verified that the series defining g, (x,y), (n = {,£ + 1,...) converges
absolutely and uniformly whena < x < b,a < y < b, and thence that the series for D(x, y; 1)
converges absolutely and uniformly in the same domain of values of x and y.
But, by Example 11.2.4,

dD(1)

b
/ D(£, &) dg = — T

now the right-hand side has a zero of order m — 1 at Ay, while the left-hand side has a zero
of order at least ¢, and so we have m — 1 > €.

Substituting the series just given for D(1) and D(x, y; 1) in the result of Example 11.2.3,
Viz.

b
D(x,y: ) = ADK (x.y) + A / K6 )D(E, y: A) de,

a

dividing by (1 — 2y)¢ and making 1 — 1,, we get

b
geey) = Ao / K(x&)ge(é.y) dé.

Hence if y have any constant value, g.(x, y) satisfies the homogeneous integral equation,
and any linear combination of such solutions, obtained by giving y various values, is a
solution.
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Corollary 11.2.2 The equation

b
6(x) = £() + Ao / K(x&)0(€) dé

has no solution or an infinite number. For, if ¢(x) is a solution, so is ¢(x) + 3. cy8/(x,y),
y
where ¢, may be any function of y.

Example 11.2.8 Shew that solutions of

o(x) = A / cos”(x — E)p(€) dé

are ¢(x) = cos(n—2r)x,and ¢(x) = sin(n—2r)x; where r assumes all positive integral values
(zero included) not exceeding %n

Example 11.2.9 Shew that

o(x) = A / " cos”(x + £)0(&) dé

has the same solutions as those given in Example 11.2.8, and shew that the corresponding
values of A give all the roots of D(1) = 0.

11.3 Integral equations of the first and second kinds

Fredholm’s equation is sometimes called an integral equation of the second kind; while the
equation

b
f) =4 / K(x.E)6() dé

is called the integral equation of the first kind.
In the case when K(x,¢) = 0 if & > x, we may write the equations of the first and second
kinds in the respective forms

Fx) =4 / K(x£)0(€) dé,
o) = f(x) + 4 / K(x,€)0(€) de.

These are described as equations with variable upper limits.

11.31 Volterra’s equation

The equation of the first kind with variable upper limit is frequently known as Volterra’s
equation. The problem of solving it has been reduced by that writer to the solution of
Fredholm’s equation.

Assuming that K(x,&) is a continuous function of both variables when ¢ < x, we have

F) =2 / K(x,6)0(&) de.
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0K
The right-hand side has a differential coeflicient (see Example 4.2.1) if Ix exists and is
X

continuous, and so
* 0K
7100 = A0+ 4 [ 06 e

This is an equation of Fredholm’s type. If we denote its solution by ¢(x), we get on
integrating from a to x,

£ - fla) = A / K(x,€)0(&) de,

a

and so the solution of the Fredholm’s equation gives a solution of Volterra’s equation if
f(a) =0.

The solution of the equation of the first kind with constant upper limit can frequently be
obtained in the form of a series. See Example 11.6. A solution valid under fewer restrictions
is given by Bocher.

11.4 The Liouville-Neumann method of successive substitutions
This appears in Liouville [438]. K. Neumann’s investigations were later (1870); see [488].

A method of solving the equation

b
o) = f(x) + 4 / K(x,€)0(&) de.

which is of historical importance, is due to Liouville.

It consists in continually substituting the value of ¢(x) given by the right-hand side in the
expression ¢(£) which occurs on the right-hand side.

This procedure gives the series

b
S() =f(x) + A / K(x6)f(6) de

WG / K / ke / K £ € d - dy

m=2 a a

Since |K(x, y)| and | f(x)| are bounded, let their upper bounds be M, M’. Then the modulus
of the general term of the series does not exceed |A|"M™M’(b — a)”. The series for S(x)
therefore converges uniformly when 1] < M~'(b — a)™'; and, by actual substitution, it
satisfies the integral equation.

If K(x,y) = 0 when y > x, we find by induction that the modulus of the general term in
the series for S(x) does not exceed

A" M™ M (x — @)™ /m! < |A|"M™M'(b — a)" |m!,

and so the series converges uniformly for all values of A; and we infer that in this case
Fredholm’s solution is an integral function of A.
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It is obvious from the form of the solution that when || < M~!(b — a)™!, the reciprocal
function k(x,&; 1) may be written in the form

k(x’é:;/l) == K(-x9§)

0 b b b
St [Cked) [ K@e) e [ KEnng) dg dna - dei
m=2 a a

a

for with this definition of k(x,&; 1), we see that

b
S(x) = f(x) - A / k(x.&: ) f() de,

so that k(x,&; A) is a reciprocal function, and by §11.22 there is only one reciprocal function
if D(2) # 0.
Write

b
K()C,é:) = K]()C,é:), / K(xvg,)Kn(§,7§) d‘g’ = Kn+1(x7é:)9

a

and then we have
K& = ) Kt (%,€),
m=0
while
b
/'KAL$MA&§M$=KWALQ

as may be seen at once on writing each side as an (m + n — 1)-tuple integral.
The functions K,,,(x, &) are called iterated functions.

11.5 Symmetric nuclei

Let Ki(x,y) = Ki(y,x); then the nucleus K(x,y) is said to be symmetric. The iterated
functions of such a nucleus are also symmetric, i.e. K,,(x,y) = K, (v, x) for all values of n;
for, if K,,(x,y) is symmetric, then

b b
K (x,y) = / Ko )K€, y) dé = / K6, 0K (0, 8) dé

b
_ / K30 )K, (£,%) dé

a

= n+1(y’ x)7

and the required result follows by induction.
Also, none of the iterated functions are identically zero; for, if possible, let K,(x,y) = 0;
let n be chosen so that 2"~! < p < 2", and, since K,(x,y) = 0, it follows that K>-(x,y) = 0,
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from the recurrence formula. But then

b
0=Kn(x,x)= / Kon-1(x,&)Kyn-1(€, x) dé

b
_ / (Kyr (x,£))° de,

and so Kyu-1(x,&) = 0; continuing this argument, we find ultimately that K;(x,y) = 0, and
the integral equation is trivial.

11.51 Schmidt’s theorem that, if the nucleus is symmetric, the equation D(1) = 0 has
at least one root

The proof given is due to Kneser [380]. To prove this theorem, let

b
Un=/ K, (x,x)dx,

so that, when |1] < M~'(b - a)™!, we have, by Example 11.2.4 and §11.4,

1 dD() ~ ;
- = LA
D(1) dA ;U

Now since

b b
/ / (1K (56) + Ky (1, 6))? d dx = 0

for all real values of u, we have p?>Usyir + 21Uz, + Usps > 0, and s0 UspiaUsp_s > Usypo,

Uzno > 0. Therefore U, Uy, . .. are all positive, and if U,/U, = v, it follows, by induction
from the inequality Us,.2Usn_s > Uspe, that Uy,yn/Us, > v Therefore when 22| > v7!,

o dD(A

the terms of 3. U,A""! do not tend to zero; and so, by §5.4, the function L as a
n=1 D(1) dA

singularity inside or on the circle || = v~2; but since D(A) is an integral function, the only

1 dD(4
L are at zeros of D(A); therefore D(A) has a zero inside
D(1) da

1
2 .

possible singularities of

or on the circle |1]| = v

Note By §11.21, D(A) is either an integral function or else a mere polynomial; in the latter
case, it has a zero by Example 6.3.1; the point of the theorem is that in the former case D(A)
cannot be such a function as e’lz, which has no zeros.
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11.6 Orthogonal functions

The real continuous functions ¢;(x), ¢»(x),. .. are said to be orthogonal and normal® for the

range (a, b) if
’ 0
/ ¢m(x)¢n(X) dx = { (m # I’l),

1 (m=n)).
If we are given n real continuous linearly independent functions u(x),...,u,(x), we can
form n linear combinations of them which are orthogonal.
For suppose we can construct m — 1 orthogonal functions ¢, ..., ¢, such that ¢, is a
linear combination of u,u, . ..,u, (where p = 1,2,...,m — 1); we shall now shew how to
construct the function ¢,, such that ¢, ¢, . . ., ¢,, are all normal and orthogonal.

Let 1¢,,(x) = c1m®1(x) + co.m@2(X) + - - - + €1 P—1(x) + u,n(x), so that ; ¢, is a function
of uy,us, . .., u,. Then, multiplying by ¢,, and integrating,

b b
/ (D)D) dx = o + / Do, dx (p < m).

b b
Hence / 10m(X)d,(x)dx = 0if ¢, = — un(x)¢,(x) dx; a function |¢,,(x), or-

thogonal toa¢1(x) dr(x),.. ¢m 1(x), is therefore constructed.
Now choose « so that « / {1¢m(x)}* dx = 1; and take ¢,,(x) = @ (;¢,,(x)). Then

b _Jo (< m),
[ om0 - {1 oo

We can thus obtain the functions ¢y, ¢, . . . in order.
The members of a finite set of orthogonal functions are linearly independent. For, if

a1¢1(x) + () + - - + a4, d,(x) =0

we should get, on multiplying by ¢,,(x) and integrating, e, = 0; therefore all the coefficients
a, vanish and the relation is nugatory.

It is obvious that 7~'/2 cos mx, n~1/?
the range (-, 7).

sin mx form a set of normal orthogonal functions for

Example 11.6.1 From the functions 1,x,x?,. .. construct the following set of functions

which are orthogonal (but not normal) for the range (-1, 1);
1 3 3
1, x, x%, —gx —gx xt—2x? +§

Example 11.6.2 From the functions 1,x,x%,... construct a set of functions f(x), fi(x),
S (x),... which are orthogonal (but not normal) for the range (a, b); where

Ja(x) = (x=D)"}.

A similar investigation is given in §15 .14.

8 They are said to be orthogonal if the first equation only is satisfied; the systematic study of such functions is
due to Murphy [481, 483].
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11.61 The connexion of orthogonal functions with homogeneous integral equations
Consider the homogeneous equation
b
o) =0 [ w@K(E) de

where A is a real characteristic number for K(x,&). It will be seen immediately that the
characteristic numbers of a symmetric nucleus are all real. We have already seen how
solutions of it may be constructed; let n linearly independent solutions be taken and construct
from them » orthogonal and normal functions ¢y, ¢, . . ., ¢,.

Then, since the functions ¢,, are orthogonal and normal,
b[n b
/ [Z 6ul) [ KCrO00m(6)de
a m=1 a
n b b 2
>/ [«»m(y) [ kxosaie df] y,
m=1va a

and it is easily seen that the expression on the right may be written in the form

3 [ / K6 0(©) ds]

on performing the integration with regard to y; and this is the same as

2
dy

3 / K )u)dy / K06 de.

Therefore, if we write K for K(x,y) and A for

n b
Ym0 [ Kexen(e)de

b b
wehave/ Azdy:/ KA dy, and so

b b b
/Azdyzf szy—/ (K — A)*dy. (11.2)

P1IA () dm(x)
[ [B et

Therefore

2 b
dy < / (KGey)P dy,

and so
n b
/1522[</>m(x)]2 < / [K(x, )] dy.
m=1 a

Integrating, we get

b pb
nS/l()z/ / [K()c,y)]2 dy dx.
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This formula gives an upper limit to the number, n, of orthogonal functions corresponding
to any characteristic number Aj.

These n orthogonal functions are called characteristic functions (or auto-functions) cor-
responding to Ay.

Now let ¢@(x), #(x) be characteristic functions corresponding to different characteristic
numbers Ay, 4;. Then

b
#0008V (x) = A, j K ()0 ()p (&) de,
and so
b b b
/ 6006V () dx = A, / / K &)V (0)p(E) dé d (113)

and similarly
b b b
/ 6O ()P0 (x) dx =, / / K(x,6)0O@)p(x) de dx

b b
= / f K(&x)0(x)9V(€) dx dé, (11.4)

on interchanging x and &.
We infer from (11.3) and (11.4) that if A; # Ao, and if K(x,£¢) = K(&, x),

b
/ 69008 (x) dx = 0,

and so the functions ¢ (x), ¢'V(x) are mutually orthogonal.

If therefore the nucleus be symmetric and if, corresponding to each characteristic number,
we construct the complete system of orthogonal functions, all the functions so obtained will
be orthogonal.

Further, if the nucleus be symmetric all the characteristic numbers are real; for if Ay, A,
be conjugate complex roots and if? uy(x) = v(x) + iw(x) be a solution for the characteristic
number Ay, then u;(x) = v(x) —iw(x) is a solution for the characteristic number A;; replacing
#O(x), ¢V (x) in the equation

b
[ 006 ax =0

by v(x) + iw(x), v(x) — iw(x) (which is obviously permissible), we get

/b [(V(x))2 + (w(x))z] dx =0,

which implies v(x) = w(x) = 0, so that the integral equation has no solution except zero
corresponding to the characteristic numbers Ay, A;; this is contrary to §11.23; hence, if the
nucleus be symmetric, the characteristic numbers are real.

 v(x) and w(x) being real.
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11.7 The development of a symmetric nucleus

This investigation is due to Schmidt, the result to Hilbert.

Let ¢,(x), ¢2(x), #3(x), . . . be a complete set of orthogonal functions satisfying the homo-
geneous integral equation with symmetric nucleus

b
o(x) = 1 / K(x€)9(€) de,

the corresponding characteristic numbers being10 A, Ao, Az, .

Now suppose'! that the series M
n=1 n

a <y < b. Then it will be shewn that

K(x,y) — Z ¢n(x/1¢n(y)
n=1 n

is uniformly convergent when a < x < b,

For consider the symmetric nucleus
O $n(0)¢n(Y)
H(x,y) = K(x,y) — —_— .
(x,y) = K(x,y) ;:1 1

If this nucleus is not identically zero, it will possess (§11.51) at least one characteristic
number u.
Let ¢/(x) be any solution of the equation

b
W) = u / H(x. E00(€) dé.

which does not vanish identically. Multiply by ¢,(x) and integrate and we get

b b b ©
[ wesamas=u [ [ {K<x,§) -3 M} W) dx dE:
a a a m=1 m

since the series converges uniformly, we may integrate term by term and get

b b b
/a Y (xX)$n(x) dx = /%/a U(&)pn(§) dé - /%/a Pn(EW (&) dé = 0.

Therefore y(x) is orthogonal to ¢;(x), ¢>(x),. . .; and so taking the equation

b co
v = [ {K(x,.gf) -y M} v de.
a n=1

n

we have
b
W) = / K W) dé.

10" These numbers are not all different if there is more than one orthogonal function to each characteristic number.
1" The supposition is, of course, a matter for verification with any particular equation.
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Therefore y is a characteristic number of K(x, y), and so y(x) must be a linear combination
of the (finite number of) functions ¢, (x) corresponding to this number; let

U() = D ().

Multiply by ¢,,(x) and integrate; then since ¥ (x) is orthogonal to all the functions ¢, (x),
we see that a,, = 0, so, contrary to hypothesis, ¥(x) = 0. The contradiction implies that the
nucleus H(x, y) must be identically zero; that is to say, K(x, y) can be expanded in the given
series, if it is uniformly convergent.

Example 11.7.1 Shew that, if 1 be a characteristic number, the equation

b
o) = £() + Ao / K(x&)0(€) dé

certainly has no solution when the nucleus is symmetric, unless f(x) is orthogonal to all the
characteristic functions corresponding to A,.

11.71 The solution of Fredholm’s equation by a series

Retaining the notation of §11.7, consider the integral equation

b
O(x) = £(x) + 4 / K(x,£)D(E) dé.

a

where K(x,&) is symmetric.

If we assume that ®(£) can be expanded into a uniformly convergent series Y, a,¢,(£),
n=1
we have

0o

D a0 = )+ ) - (x),
n=1 "1

n=1

so that f(x) can be expanded in the series

i an /l"/; /lcbn(x}

n=1

Hence if the function f(x) can be expanded into the convergent series Y, b,$,(x), then
n=1
the series

(e

>, % Gn(),

n=1
if it converges uniformly in the range (a, b), is the solution of Fredholm’s equation.
To determine the coefficients b,, we observe that ) b, ¢,(x) converges uniformly by §3.35;

n=1

then, multiplying by ¢, (x) and integrating, we get

b
by = / Ba(0)(x) dx.
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Since the numbers 4,, are all real we may arrange them in two sets, one negative the other
positive, the members in each set being in order of magnitude; then, when |4,| > 4, it is
evident that 2,,/(2,, — 4) is a monotonic sequence in the case of either set.

11.8 Solution of Abel’s integral equation

This equation is of the form

fx) = / (xufff))“ d¢  (O<u<l, a<x<b),

where f’(x) is continuous and f(a) = 0; we proceed to find a continuous solution u(x).
Let¢(x) = / ) u(¢) dé, and take the formula (this follows from Example 6.2.14, by writing
(z-x)/(x = &) in place of x)
T / z dx
sin un e (Z=—x)H(x-ém
multiply by u(¢) and integrate, and we get, on using Dirichlet’s formula (Corollary 4.5.1),

T b = ¢ ¢ u(€) dx
ooy = [Cae [

sin pr x)H(x = EP

e de
‘/a dx/a 0 ey
_ /Z f(x)dx

a (Z - x)l_'u )

Since the original expression has a continuous derivate, so has the final one; therefore the
continuous solution, if it exists, can be none other than

sinum d. °© fx)dx
modz ), (z=x)'

u(z) =

and it can be verified by substitution'? that this function actually is a solution.

11.81 Schlomilch’s integral equation

This comes from [580]. The reader will easily see that this is reducible to a case of Volterra’s
equation with a discontinuous nucleus.
Let f(x) have a continuous differential coefficient when —n < x < nt. Then the equation

/2
f(x)= 72_r/0 ¢(x sin6) do

has one solution with a continuous differential coefficient when —n < x < m, namely

/2
¢(x) = f(0) + x /0 f(xsin @) d6.

12 For the details we refer to Bocher’s tract [80].
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From §4.2 it follows that

2 /2
fl(x)=— / sin @ ¢’(x sin 0) d6
T Jo

(so that we have ¢(0) = f(0), ¢'(0) = 7 f7(0)).
Write x siny for x, and we have on multiplying by x and integrating

/2 2x /2 /2

x/ f'(xsiny)dy = —/ {/ sin @ ¢’(x sin @ sin y) d@} dy.
0 7T Jo 0

Change the order of integration in the repeated integral (§4.3) and take a new variable y in

place of ¢, defined by the equation sin y = sin 6 siny. Then

/2 /2 0 . )
x/ f'(xSinw)dwzz—x/ { ¢(xS1nX)COSXdX}d6.
0 T Jo 0

cos Y

Changing the order of integration again (§4.51),

/2 2 /2 T2 g1 . ing
x/ F(xsing) dy = 2x / ¢’(x sin y) cos y sin 9 dy.
0 T Jo X +/sin? @ — sin® y

But
/2

/”/2 sin 6 do 3 —arcsin(cosg)} _n
N rres— cosx)l, T2
and so
/2 /2
x/ f/(xsiny)dy = x/ @' (xsin y)cos y dy
0 0
= ¢(x) — ¢(0).
Since ¢(0) = £(0), we must have
/2
0 = FO +x [ fxsing) v

and it can be verified by substitution that this function actually is a solution.

11.9 Miscellaneous examples

Example 11.1 (Abel) Shew that if the time of descent of a particle down a smooth curve to
its lowest point is independent of the starting-point (the particle starting from rest) the curve
is a cycloid.

Example 11.2 Shew that, if f(x) is continuous, the solution of
o(x) = f(x)+ /l/ cos(2xs)p(s) ds
0
is

#(x) = ﬁ (f(x) + /l‘/oo0 f(s)cos(2xs) ds |,
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assuming the legitimacy of a certain change of order of integration.

Example 11.3 (A. Milne) Shew that the Weber—Hermite functions

()
e 2
dx"

o(x) = /l[ e%isxqﬁ(s) ds

00

Dy(x) = (-1)" &t

satisfy

for the characteristic values of A.

Example 11.4 (Whittaker; see §19.21, [673]) Shew that even periodic solutions (with
period 27) of the differential equation

d*¢(x)

e + (a* + k* cos® x)p(x) = 0

satisfy the integral equation

¢(x) — /l/” ekcosxcoss¢(s) ds.

YUY

Example 11.5 Shew that the characteristic functions of the equation
(1 , 1

$(x) =1 —(x=y) =Sl —ylpo(y)dy
x| 4n 2

are ¢(x) = cos mx, sinmx, where 1 = m? and m is any integer.

Example 11.6 (Bocher) Shew that

o(x) = /0 £ §(&)de

has the discontinuous solution ¢(x) = kx*~!.

Example 11.7 Shew that a solution of the integral equation with a symmetric nucleus

o)

b
0= [ Ko@) de 15 900 = ) andath(),

n=1
provided that this series converges uniformly, where A,,, ¢,,(x) are the characteristic numbers

and functions of K(x,¢) and i a,$,(x) is the expansion of f(x).

n=1

Example 11.8 Shew that, if || < 1, the characteristic functions of the equation

A [ 1-hn?
P(x) = 27 [,r 1 —2hcos(é — x) + h? 9(&)dé

are 1, cos mx, sin mx, the corresponding characteristic numbers being 1, 1/A™, 1/h™, where
m takes all positive integral values.
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12

The Gamma-Function

12.1 Definitions of the Gamma-function. The Weierstrassian product
Historically, the Gamma-function I'(z) was first defined by Euler as the limit of a product
(§12.11) from which can be derived the infinite integral / t*"le™" dt. The notation I'(z)

0
was introduced by Legendre in 1814. But in developing the theory of the function, it is more
convenient to define it by means of an infinite product of Weierstrass’ canonical form.

Consider the product

= Z z
T 5t
e []{(1+5)e
where
y = lim {; +§+---+ L —logm} ~ 0.5772157 - - - . (12.1)

m—-oo

(The constant 7y is known as Euler’s constant, or the Euler—Mascheroni constant.) To prove
that it exists we observe that, if

/1 tdt I ettt
Up = = - - s
o n(n+t) n & n

1
dt ©
u, is positive and less than / = =5 therefore ) u, converges, and
o N n n=1
(1 1 1 , ¢ m+1 -
’}ll_r)rzo{i+§+-~+g—logm} :Wlll_l)lgo{;un+log p }:;un

The value of y has been calculated by J. C. Adams to 260 places of decimals [10].
The product under consideration represents an analytic function of z, for all values of z;
for, if N be an integer such that |z| < %N, we have! if n > N,

‘1 (1+Z) z‘ 122_‘_1z3
o O T I I
£ n n 2n2 3n
|z|? |z) 22
— 1+ ||+ |= .-
T n? n n?
1 N? 1+1+1+ <1N2
4 n? 2 22 ~ 2 n?

! Taking the principal value of log(1 + z/n).
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oo 2
Since the series ), o converges, it follows that, when |z| < %N,
n=N+1 &I

D flog(1+z2/n)—z/n}

n=N+1

is an absolutely and uniformly convergent series of analytic functions, and so it is an analytic
function (§5.3); consequently its exponential

l_[ {(1+2z/n) efz/”}

n=N+1

is an analytic function and ze”* [] {(1 +z/n)e ”} is an analytic function when |z| < % N,
n=1
where N is any integer; that is to say, the product is analytic for all finite values of z.

The Gamma-function was defined by Weierstrass [659]. This formula for I'(z) had been
obtained from Euler’s formula (§12.11) in 1848 by F. W. Newman [493] by the equation

= 11005

from this equation if is apparent that T'(z) is analytic except at the points z = 0, —1, =2,
where it has simple poles.

Note Proofs have been published by Holder [325], Moore [472] and Barnes [44] of a
theorem known to Weierstrass that the Gamma-function does not satisfy any differential
equation with rational coefficients.

Example 12.1.1 Prove that
r(l) = 1’ r,(l) ==

where y is Euler’s constant. Hint. Justify differentiating logarithmically the equation

1 = Z
—— =2ze” {(1 +—) e‘Z/”}
I'(z) lT[ n
by §4.7, and put z = 1 after the differentiations have been performed.

Example 12.1.2 Shew that

1 1 1 M1-@ -9
1 — — — = _ = dt
+2+3+ +n /0 " dt,

and hence that Euler’s constant vy is given by

,}E‘;Uol{]—(l‘;)}it /ln(l‘;) ﬂ

The reader will see later (Example 11.6.2) that this limit may be written

/(1_ _,)__/“’ e‘;dt'
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Example 12.1.3 Shew that

ﬁ [(1— * x/n] _ e I(z+1)
c+n)€ T T(z-x+1)

12.11 Euler’s formula for the Gamma-function

By the definition of an infinite product we have

1 _ . (1+%+<-~+i710gm)z . - T\ _:=z
g = 2| dim e [ {1 2}
=71 (1+43++:L-logm)z {(1+E) —ﬁ}

z lim e 1_[ -)e

n=1
m
. _z Z
=z lim |m 1+-
m—oo 1 n
n=

< L1{r3) 10+ dl
= 2 lim ﬁ {(1 + %) (1 + %)Z} (1 + n%ﬂ

Hence

I'(z) = %ﬁ{(l +%)Z(1+§)_1}. (12.2)

n=1

This formula is due to Euler. It was given in 1729 in a letter to Goldbach, printed in Fuss
[231]. It is valid except when z = 0,-1,-2,. ...

Example 12.1.4 (Euler) Prove that

o 1:2- - (n=1)
F(Z)_r}gr-}oz(z+l)---(z+n—l) ’

12.12 The difference equation satisfied by the Gamma-function

We shall now shew that the function I'(z) satisfies the difference equation

I'(z+1)=z[(2).
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For, by Euler’s formula, if z is not a negative integer

ACRSTJ I P& NUSE it P YR :
Iz) z+1 mlirion:1 1+l zrrzl—r>r<}<>n:1 1+2

Il

I

+ [
—_

iz
=
—=
—
n|
+=|._.
S
+ | &N
—| +

S

p—
—

lem — ) =Z
m—o 7z +m+ 1

This is one of the most important properties of the Gamma-function. Since I'(1) = 1, it
follows that, if z is a positive integer, I'(z) = (z — 1)!.
Example 12.1.5 Prove that
! + ! + ! +
'z+1) TI'(z+2) TI'(z+3)

e (11 1 N I 1

T T()\z 1! z+1 21z+2
Hint. Consider the expression

1 1 1 1
E+z(z+1)+z(z+1)(z+2)+m+z(z+1)~~~(z+m)'

m a
It can be expressed in partial fractions in the form ), T" where
n=0Z tn

(-1)" 1 1 1 (-1)" S
anZT{“ﬁ*a*“'*(m_n)z}: "l {‘" 2 —}

r=m-n+1 "~

Noting that displaystyle% < m, prove that

r=m-n+1
M=) 1 SR
IR

n=0 r=m-n+1 "~

as m — oo when z is not a negative integer.

12.13 The evaluation of a general class of infinite products
By means of the Gamma-function, it is possible to evaluate the general class of infinite
products of the form [] u,, where u, is any rational function of the index n.

n=1
For, resolving u,, into its factors, we can write the product in the form

b

ﬁ{A(”—al)(n—az)“‘(n—ak)}
(n=>by)---(n-0b)

n=1
and it is supposed that no factor in the denominator vanishes.
In order that this product may converge, the number of factors in the numerator must clearly
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be the same as the number of factors in the denominator, and also A = 1 for, otherwise, the
general factor of the product would not tend to the value unity as n tends to infinity.
We have therefore k = [, and, denoting the product by P, we may write

ar)---(n—a)
P= .
1_[{("— '(n_bk)}
The general term in this product can be written

-2 -]

a1+a2+---+ak—b1—~~~—bk
=1- + A,
n

where A, is O(n™?) when n is large. In order that the infinite product may be absolutely
convergent, it is therefore necessary further (§2.7) that

ay+---+ay—b;—---—b, =0.
We can therefore introduce the factor
exp{n_l(al +---+ak—b1 —"'—bk)}

into the general factor of the product, without altering its value; and thus we have

e@/n (1 — %) e®/n ... (] _ %) ekln

P
H ( )ebl/” (1_%) ebz/”...(l_%) ebk/"

But it is obvious from the Weierstrassian definition of the Gamma-function that

ﬁ {(1 B %) eZ/n} - _Zr(_]z)edy;’

n=1

and so

_ DT (=b)baT(=by) - bl (=by) _ ﬁ I(1 = by)
aiT(=ap) -~ aT(=ay) (1 -a,)

m=1

a formula which expresses the general infinite product P in terms of the Gamma-function.

Example 12.1.6 Prove that

= s(a+b+s) _Tla+DI(b+1)
1_[(at+s)(b+s)_ Ta+b+1) °

Example 12.1.7 Shew that, if a = cos(2x/n) + i sin(27/n), then

x (1 - in) (1 - i) cee = (—F(—x%)F(—axni) < T(=a"* 'xﬁ))i1
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12.14 Connexion between the Gamma-function and the circular functions

We now proceed to establish another most important property of the Gamma-function,
expressed by the equation

T - z) = —~

sinzz’

We have, by the definition of Weierstrass (§12.1),

rorta == {5 T -5 1

n= n=

T

zsinnmz’

by Example 7.5.1. Since, by §12.12, T'(1 — z) = —zI['(-z) we have the result stated.
Corollary 12.1.1 [fwe assign to z the value , this formula gives
r)y =
since, by the formula of Weierstrass, F(%) is positive, we have
r) = Ve
Corollary 12.1.2 Ify(z) = T"(2)/T'(z), then ¥ (1 — z) — ¥(z) = mcotnz.

12.15 The multiplication-theorem of Gauss and Legendre
This appears in [236, p. 149]. The case in which n = 2 was given by Legendre.

We shall next obtain the result

I'(z)I (z + l) r (z + z) --T (z L1 1) = (27)2" " D22 (nz).
n n n

For let
n“TT (z+ 1) T(z+ u=l)

¢(2) = AT (n2)

Then we have, by Euler’s formula (Example 12.1.4),

n—1
nz ; 1:2-(m=1)-m=*" /"
n Ll()nll_r)rgo (Z+%)(z+ﬁ+])...(z+%+m_l)
nz(nz+l1)---(nz+nm-1)

#(z) = :
n lim

nz-1 {(m — 1)!}nmnz+%(”*1)nmn
m—oo (nm — 1)!(7[1’}’[)”2
. {(m - 1)!}nm%(i‘l*l)nmn,1

= lim

m—co (nm—1)!

=n
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It is evident from this last equation that ¢(z) is independent of z. Thus ¢(z) is equal to the
value which it has when z = %; and so

s =r(H)r2) e (),

n—1

wor=[1{r(G)r (-2

r=1

Therefore

ﬂ.n—l B (271')"_1
sin Z sin 2 . .. gin =17 n
n n n

Thus, since ¢(n~") is positive, ¢(z) = 27) "~ D2p71/2 je.

n—

I'(z)l (z + %) T (z + 1) = n27"2(27)2" I (nz). (12.3)

Corollary 12.1.3 Taking n = 2, we have
2%7'T(Q)T (2 + 1) = 7T (22).
This is called the duplication formula..
T'(p)I'(q)
L(p+q)
e BB (p+5.9) - B(p+"L.q)
B(¢.9)B(2q.q) - -- B(n - 1)g.9)

Example 12.1.8 If B(p,q) = , shew that

B(np,ng) = n~

12.16 Expansion for the logarithmic derivates of the Gamma-function
We have
-1 _ vz = E -z/n
Tz+1)} ' =e ]_[{(1 +n)e }

n=1

Differentiating logarithmically (§4.7), this gives

dlogl'(z+1) _ PR S SR S
dz ST+ T2+ 2) " 3(z+3)
Therefore, since logI'(z + 1) = log z + log I'(z), we have
d 1 o1
—logl(z) = -y — -+ .
2z oel@) = -y -~ Z;n(z+n)
Differentiating again,
2 d z z
— logl'(z+1)=— + 4+
dz? oglz+1) dz { 1z+1) 2(z+2) }

1 1
BN AT

These expansions are occasionally used in applications of the theory.

(12.4)
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12.2 Euler’s expression of I'(z) as an infinite integral
The infinite integral e”'t*"! dt represents an analytic function of z when the real part of
0

z is positive (if the real part of z is not positive the integral does not converge on account
of the singularity of the integrand at ¢ = 0, §5.32); it is called the Eulerian Integral of the
Second Kind. The name was given by Legendre; see §12.4 for the Eulerian Integral of the
First Kind. It will now be shewn that, when Re z > 0, the integral is equal to I'(z). Denoting
the real part of z by x, we have x > 0. Now, if?

n t\"
H(z,n)=/ (1——) ~ dt,
0 n
1

we have I1(z,n) = n* | (1 —7)"t%" ! dr, if we write t = nt; it is easily shewn by repeated

0
integrations by parts that, when x > 0 and » is a positive integer,

1 1 1 n 1
/ (1 -7)"r¥ldr = [—72(1 - + —/ (1 -7 '22dr
0 Z o <Jo

nn=1)---1 /‘Tm_ldf
0

- zZ(z+ 1) (z+n-1)
1-2--.n
2(z+ 1) (z+n)

andsoIl(z,n) = n*. Hence, by Example 12.1.4,I1(z,n) — I'(z)asn — oo.

Consequently

n

t n
I'(z) = lim (1 ——) #Vdr.
0

n—oo n

And so, if ' (z) = / e 't*"'dt, we have
0

I'(z) = T(z) = lim [/n {e’ - (1 - %)n}ﬁldt + /00 e’zzldt} .
n—e | Jo n

o 00

Now lim e 't*1dt = 0, since e”'t*"'dr converges. To shew that zero is the limit of

n—oo

0
the first of the two integrals in the formula for I';(z) — ['(z) we observe that

t\" 2
OSe”—(l——) <n'Pe.
n

Hint. To establish these inequalities, we proceed as follows: when 0 < y < 1,
l+y<e <(1-y)7,

from the series for e” and (1 — y)~'. Writing ¢/n for y, we have
t\™" r\"

(1+—) ze*’z(l——),

n n

2 The many-valued function 2~ is made precise by the equation 12~! = e(2=D1°2? 1og ¢ being purely real.
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and so

OSef—(l—%)":e-’{l—e-‘(l—i)"}Se-’{l—(l—;—z)n}.

Now, if 0 < a < 1, (1 —a)" = 1 — na by induction when na < 1 and obviously when
na > 1; and, writing ¢>/n? for a, we get

and so

0<e’ - (1 - L) <e'?/n,
n

which is the required result. This analysis is a modification of that given by Schlomilch [583,
Vol. 2, p. 243]. A simple method of obtaining a less precise inequality (which is sufficient
for the object required) is given by Bromwich [102, p. 459].
From the inequalities, it follows at once that
< / nle 't dt
0

n t n
/ {e" - (1 - —) }tz_ldt
0 n
<n’! / e ' dr — 0,
0

as n — oo, since the last integral converges.
Consequently I'j(z) = I'(z) when the integral, by which I';(z) is defined, converges; that is
to say, when the real part of z is positive,

I'(z) =/ et dt.
0

And so, when the real part of z is positive, I'(z) may be defined either by this integral or by
the Weierstrassian product.

Example 12.2.1 Prove that, when Re(z) is positive,

1 z-1
F(z)z/o (logi) dx.

Example 12.2.2 Prove that, if Re(z) > 0 and Re(s) > 0,
« r
/ e xSl dx = ﬁ
0

Z S

Example 12.2.3 Prove that, if Re(z) > 0 and Re(s) > 1,

1 . 1 N 1 . 3 1 /‘” e x5l dx
(z+1)  (z+2)F (z+3) T T(s) Jo e — 1

Example 12.2.4 From Example 12.1.2 by using the inequality

n 2 -t
035’—(1—5) < e

n n
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1 - —1/t
l—-e’—e¢
Ny T,
0 t

12.21 Extension of the infinite integral to the case in which the argument of the
Gamma-function is negative

deduce that

The formula of the last article is no longer applicable when the real part of z is negative.

Cauchy [123, volume 2, pp. 91-92] and Saalschiitz [568, 569] have shewn, however, that, for

negative arguments, an analogous theorem exists. This can be obtained in the following way.
Consider the function

I r* ker 1
I(z2) = e —1+t——+- -+ (=D —|ds,
2(2) ./o (e + T + -+ (=1) k!)

where £ is the integer so chosen that —k > x > —k — 1, x being the real part of z.
By partial integration we have, when z < —1,

A r e )]
Fz(z)z[;(e —1+t—a+~~+(—1) E)L

[ ¢ !
- rfle'—1+t—---+(-1 dt.
= ( vroe D (k—l)!)

The integrated part tends to zero at each limit, since x + k is negative and x + k + 1 is
positive: so we have

() = 2@t

The same proof applies when x lies between 0 and —1, and leads to the result I'(z+1) = zI’2(2)
(0 > x > —1). The last equation shews that, between the values 0 and —1 of x,

I'(z) = I'(2).

The preceding equation then shews that I';(z) is the same as I'(z) for all negative values of
Re(z) less than —1. Thus, for all negative values of Re(z), we have the result of Cauchy and
Saalschiitz

T e r ket 16
I'(z) = e =14+t — =4+ (=D —| dt,
@=[ (e Cer e L
where k is the integer next less than — Re(z).

Example 12.2.5 (Saalschiitz) If a function P(u) be such that for positive values of u we
have

1
P(,u):/ X le™ dx,
0

and if for negative values of u we define P;(u) by the equation

1 ok
Pl(,u):/ X! (e"x—1+x—---+(—1)’“r1 o dx,
0 .
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where k is the integer next less than —u, shew that

1 1
Pi(p) = P(p) - " + T+l

1

k—
+(—1) lm.

12.22 Hankel’s expression of T'(z) as a contour integral

The integrals obtained for I'(z) in §§12.2, 12.21 are members of a large class of definite
integrals by which the Gamma-function can be defined. The most general integral of the
class in question is due to Hankel [272]; this integral will now be investigated.

Let D be a contour which starts from a point p on the real axis, encircles the origin once
counter-clockwise and returns to p. Consider / (—t)*"'e”" dt, when Rez > 0 and z is not

D
an integer. The many-valued function (—¢)*~! is to be made definite by the convention that

(=1)*7! = ele=D1og=1 and log(—1) is purely real when  is on the negative part of the real axis,
so that —rr < arg(—t) < mon D.

The integrand is not analytic inside D, but, by Corollary 5.2.1, the path of integration may
be deformed (without affecting the value of the integral) into the path of integration which
starts from p, proceeds along the real axis to d, describes a circle of radius ¢ counter-clockwise
round the origin and returns to p along the real axis.

On the real axis in the first part of this new path we have arg(—t) = —x, so that (—¢)"!
e~ @D y==I(where logt is purely real); and on the last part of the new path (—)*' =
€@ ¢z=1_On the circle we write —t = §e'?; then we get

5
/(—Z‘)Zletd[ — / e—in(z—l)tz—le—t dt + ‘/”(561‘0)2166(005 9+isin0)5ei0i 4o
D P -

o
+/ eur(z—l)ts—le—t dt
5

0 V.4
=2i sin(zrz)/ tz—le—tdt +i6% / eiz@+6(cos€+isin6’) do.
o —

T

This is true for all positive values of § < p; now make 6 — 0; then 6° — 0 and

71' T
/ ezz(9+6(c050+1 sin 6) do — / etze 4o
7T —-7T

since the integrand tends to its limit uniformly. We consequently infer that

0
/(—t)z‘le"dt =-2i SiIl(ﬂ'Z)/ t“le™ dt.
D 0

This is true for all positive values of p; make p — oo, and let C be the limit of the contour

D. Then
/(—t)z"e"dt =-2i sin(ﬂz)/ e dt.
c 0

/ (=t)¥ e dt. (12.5)
C

Therefore

I'(z) =-
(2) 2isinnz
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c

Now, since the contour C does not pass through the point ¢ = 0, there is no need longer
to stipulate that the real part of z is positive; and [ (=£)*"'e™" dt is a one-valued analytic

c

function of z for all values of z. Hence, by §5.5, the equation, just proved when the real part

of z is positive, persists for all values of z with the exception of the values 0,+1,+2,. . ..
Consequently, for all except integer values of z,

)= ——o / (—tye d1.
C

2isinmz

This is Hankel’s formula; if we write 1 — z for z and make use of §12.14, we get the further

result that
1 i
— = — [ (-1)Fe " dt.
I'z) 2n /J )
(0+)

We shall write for | , meaning thereby that the path of integration starts at ‘infinity’

. c
on the real axis, encircles the origin in the positive direction and returns to the starting point.

Example 12.2.6 Shew that, if Rez > 0 and if a be any positive constant, [ (—¢) e’ dt

tends to zero as p — oo, when the path of integration is either of the quadrants of circles of
radius p + a with centres at —a, the end points of one quadrant being p and —a + i(p + a),
and of the other p and —a — i(p + a).

Deduce that
—a—-ip
lim (=t) e dt = lim /(—t)zet dt,
and hence, by writing t = —a — iu, shew that
1 1 ” a+iu . \—Z
ng e "(a +iu)* du.

This formula was given by Laplace [410, p. 134], and it is substantially equivalent to Hankel’s
formula involving a contour integral.

Example 12.2.7 (Bourguet, L. [96, 97]) By taking a = 1, and putting t = —1 + itan6 in
Example 12.2.6, shew that

1
1 e [27
— == cos(tan @ — z6) cos*™* 6 d.
I(z) = /o ( :
Example 12.2.8 By taking as contour of integration a parabola whose focus is the origin,
shew that, if a > 0, then
2a%e”

sinmz

I'(z) = / e (1 + tz)z‘% cos {2at + (2z — 1) arctant} dt.
0
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Example 12.2.9 (St John’s, 1902) Investigate the values of x for which the integral

2 (o)
z / *'sint dt
T Jo

converges; for such values of x express it in terms of Gamma-functions, and thence shew
that it is equal to

(e

[ {(1 _ ;_n)ex/an)} / ﬁ {(1 + %) e—x/(2n—l)}‘

n=1 n=1
(o)

int
Example 12.2.10 (St John’s, 1902) Prove that / (log t)”’% dt converges when m > 0,

0
and, by means of Example 12.2.9, evaluate it when m = 1 and when m = 2.

12.3 Gauss’ expression for the logarithmic derivate of the Gamma-function as an
infinite integral

I"(z)

I'(z)
the function in question is frequently written (z). (The results appear in [236, p. 159].) We

first need a new formula for .
Take the formula in Example 11.6.2

1 —t 0o —t 1 0o  _t
1- dt
y=/ ¢ dt—/ e—dt:lim{/ ——/ e—dt}
0 t o I -0 (Js s !

d
We shall now express the function 7 logI'(z) = as an infinite integral when Re z > 0O;
Z

where A = 1 — €9, since

s
dt 0
/ — =log —0 as 6—0.
A t 1- 3_6
Writing # = 1 — e in the first of these integrals and then replacing u by ¢ we have

00 —t 0ot 00 1 1
v = lim / ¢ dt—/ ¢ at :/ ——re"dt.
00 | Js 1—e! s o (1—e? ¢t

This is the formula for y which was required.
To get Gauss’ formula, take the equation (§12.16)

and write

= / e '@ 4t this is permissible when m = 0,1,2,...if Rez > 0. It
Z+m 0
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follows that

F'(Z) /OO -zt : ‘/'Oo C —mt —(m+z)t
=—y- e “'dt + lim (e7™ — e "N dt
I'(z) 0 = Jo ;

/00 el —eF — e—(n+1)t + e—(z+n+l)t
0 1 —e

) e-z e—zt o 1 _ e—zt
= / (— - )dt - lim et gy
0

dt

= —y + lim

n—oo

t 1—e? n—e Jo 1 —e™t

-zt
is a bounded function of # whose limit as + — 0 is finite;

Now, when 0 <t <1,

_e—t
and when t > 1,
1-e# 1+ |e™¥| 2
‘l—e‘f l—et l—et’

Therefore we can find a number K independent of ¢ such that, on the path of integration,

1—e*
’ < K;

1-et

and so

/m 1= ey,
0 1 —e—1

We have thus proved the formula

* K
<K/ e gy = —0 as n— oo.
0 n+1

e—t e—zt

dt,
t 1—e?

u(z) = d%logf(z) - /0

which is Gauss’ expression of /(z) as an infinite integral. It may be remarked that this is the
first integral which we have encountered connected with the Gamma-function in which the
integrand is a single-valued function.

Writing ¢ = log(1 + x) in Gauss’ result, we get, if A = e® — 1,

l—v © -t -zt
@ _ lim/ ¢ ¢ dt
I'(z) ¢6-0) t l—e?
ot )
= lim / e—dt—/ _dx
-0 | Js 1 A x(1+x)
et 0 dx
=1i —dt - —_—
palt) {/A t /A x(1 +x)z}
set A dt e? -1
0< —dt < — =1 0
A A

I'z) . “ 1 dx
T(z) ‘i‘i%/A {"’ _(1+x)z}7’

since

as 0 — 0. Hence
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b “ 1 dx

an equation due to Dirichlet [178, p. 275].

so that

Example 12.3.1 (Gauss) Prove that, if Re z > 0,

! 1 2!
¢(z)=/0 {—logt_ l—t} dt.

Example 12.3.2 (Dirichlet). Shew that

y = /000 {1+ =}t ar

12.31 Binet’s first expression for log I'(z) in terms of an infinite integral

Binet [73] has given two expressions for log I'(z) which are of great importance as shewing
the way in which log I'(z) behaves as |z| — oo. To obtain the first of these expressions, we
observe that, when the real part of z is positive,

F'(Z+1)_/°° e e’z gt
Fz+1) Jo |t e—=1)"7"

writing z + 1 for z in §12.3. Now, by Example 6.2.13, we have

o —tf 74
el —e
logz = / — dht,
0 t

1 <
and so, since — = e "% dt, we have
< 0

d 1 “(1 1 1
—logl(z+1)=—+1 - ———+ i dr.
gz ol + 1) =5 +logz /o {2 t et_l}e
. . . . . o1 |
The integrand in the last integral is continuous as t — 0; and since = — — + is

el —1
bounded as ¢t — oo, it follows without difficulty that the integral converges uniformly when

the real part of z is positive; we may consequently integrate from 1 to z under the sign of
integration (§4.44) and we get’

(1 1 1 et — et
logT(z+1)=(z+3)logz—z+1+ ———+ dt.
ogl(z+1)=(z+3)logz—-z /0 {2 p e,_l} -

) 1 1 . . .
Since 377 + . is continuous as t — 0 by §7.2, and since

logT'(z + 1) = log z + log I'(z),

3 logT'(z + 1) means the sum of the principal values of the logarithms in the factors of the Weierstrassian
product.
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we have

To evaluate the second of these integrals, let*

(1 1 1 e (11 1 e
/ 4 e_dl’zl’ / R idt:J;
o \2 t e -1) 1t o \2 t e -1) 1t

so that, taking z = % in the last expression for log I'(z), we get

110 1+J 1
—logn==+J-1.
2 8T =35

Also, since
“(1 2 1 et/?
I = - — dt,
‘/0(2 t et/z—l) t
we have
(1 e’ \ e 12 dr
e[ (-2
0 t et—l t
_/‘X’ e!/? 1 dt
~Jo t et —1] t
And so

Consequently I =1 — %10g(2n).
We therefore have Binet’s result that, when Re z > 0,

logl'(z) = (z— 1) 1o + Llog(2 )+/w : ]+ ! e
= (;-1 — 1 T __Z
gz Z—3)logz—z+3log s 2 7T e

If z = x + iy, we see that, if the upper bound of

11+1
2t e -1

4 This artifice is due to Pringsheim [538].

1
t
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< K/ et dt
0

= Kx_',

for real values of 7 is K, then

1 1
logT'(z) — (Z - 5) logz+z - 3 log(2r)

so that, when x is large, the terms (z - %) logz — z + %10g(27r) furnish an approximate
expression for log I'(z).

Example 12.3.3 (Malmstén) Prove that, when Re(z) > 0,
o -zt _ -t dt
logF(z)=/ {u+(z—l)e’} —.
0 1-et t
Example 12.3.4 (Féaux) Prove that, when Re(z) > 0,

(1+1)72—=(1 +t)1} dt
log(1 +1)

logT'(z) = ./000 {(z - De™ +

Example 12.3.5 (Kummer) From the formula of §12.14 shew that, if 0 < x < 1,

P

| dt
—(1-2x)e } -

sinh(§ — x)t

210gF(x)—log7r+logsin7rx:/ —
0 sinh 57

Example 12.3.6 (Kummer [390]) By expanding sinh(% — x)t and 1 — 2x in Fourier sine
series, shew from Example 12.3.5 that, if 0 < x < 1,

logI'(x) = ! 1 ! log si + 25: in 2

ogl(x) = > ogm > ogsinrx a, sin2nnx,

n=1

/°° 2nm e dt
a, = — 1 —.
o |2 +4n*x? 2nm) t

Deduce from Example 12.3.2, that

where

1
a, = —(y +log2x + logn).
2nm

12.32 Binet’s second expression for log I'(z) in terms of an infinite integral
Consider the application of Example 7.7 to the equation (12.4),
d? - 1
—logl(z) = ) ——.
s ogI'(z) ;0 (z +n)y

The conditions there stated as sufficient for the transformation of a series into integrals are
obviously satisfied by the function ¢(¢) = 1/(z + £)? if Re z > 0; and we have

a 1 v dg © q(t,2) “q(t,z+n)
—logl'(z) = — + -2 dt+21i ——dt,
a2 08 (@) 227 ), G+ér /0 o2 _ | ,,l_r,?o/O o2t _ |
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where 2iq(t) = Gri? - T Since |g(t,z + n)| is easily seen to be less than K,7/n,

where K is independent of ¢ and n, it follows that the limit of the last integral is zero. Hence

2

d 11 54 dt
— logl'(z) = — + — . 12.6
dz2 08 (2) 2273 +'/0 (2 + 22 et — 1 (12.6)

Since ﬁ' does not exceed K (where K depends only on §) when the real part of z
exceeds d, the integral converges uniformly and we may integrate under the integral sign
§4.44 from 1 to z. We get

d 1 « tdt
—logl'(z) = — +1 +C-2 ,
A A

where C is a constant. Integrating again,

* arctan(t/z)

1
logz+(C—1)z+C'+2/ ——— dt,
0 627”—1

logT'(z) = (z -3

where C’ is a constant.
Now, if z is real, 0 < arctant/z < t/z, and so

2 (= t
<—/ 5 dt.
z 0 ent_l

1 1
logT'(z) — (Z - 5) logz+z - 3 log(2r)

1
logT'(z) — (Z— E)logz— C-DHz-C
But it has been shewn in §12.31 that

— 0,

as z — oo through real values. Comparing these results we see that C = 0,

1
C' = 3 log(2n).

Hence for all values of z whose real part is positive,

® arctan(t/z)

eZﬂt -1 dt’

1 1
logl'(z) = [z— = 10gz—z+—log(2ﬂ)+2/
2 2 0

where arctan u is defined by the equation

u dt
arctanu = —,
/0 1+72

in which the path of integration is a straight line. This is Binet’s second expression for
log I'(z).

Example 12.3.7 Justify differentiating with regard to z under the sign of integration, so as
to get the equation

I"(z) log 7 — 1 2/"" tdt
[(z) £z 2z 0o (2 +z2) (e - 1)




12.3 Gauss’ infinite integral for T''(z)/T(z) 261

12.33 The asymptotic expansion of the logarithms of the Gamma-function

We can now obtain an expansion which represents the function log I'(z) asymptotically (§8.2)
for large values of |z|, and which is used in the calculation of the Gamma-function.
Let us assume that, if 7 = x + iy, then x > 6 > 0; and we have, by Binet’s second formula,

logT'(z) = (z— 1) log z — z + 3 log (27) + ¢(z),

where
® arctan(t/z)
oo =2 [ E (12.7)
0 e — 1
Now
t 1 l‘3 1 tS (_l)n—l t2n—1 (_l)n t Manu
tan(z -— == ceet + .
arc an( /Z) z 3 Z 5 Z 2n—1 Z2n—1 Zn—l l Lt2 + ZZ

Substituting and remembering (§7.2) that
/“’ #"'dr B,
0 627” -1 - 41’1’
where By, B,, . .. are Bernoulli’s numbers, we have
(-1~ 1B 2(-1)" /°° /’ u* du dt
+ )
¢(Z) Z 2’-(2}, 2r 1 Z2n—1 0 0 u2 + Z2 627” -1

2
Let the upper bound” of | — <
u? +

5 | for positive values of u be K,. Then

< rtuwrd dt < r dt
/ / L < Kzlzlz/ / Prduy =L
0 0 I/l2 + Z2 eZﬂt _ 1 0 0 eZﬂt — 1
K Bn+l
4(n +1)2n+1)|z]*

2(-1)" '/‘X’ /t u™ du dt
2T ), o 2+ 2] el
and it is obvious that this tends to zero uniformly as |z| — oo if |argz| < 17— A, where

2
}171 > A > 0, so that K, < cosec2A.
Also it is clear that if | arg z| < in (so that K, = 1) the error in taking the first n terms of

the series
i '8 lB 1
r(2r Z2r-1

r=1

Hence
K. Bn+1
2(n + 1)(2n + 1)|z|2+1°

as an approximation to ¢(z) is numerically less than the (n + 1)th term.

2.2
or 1 as

2 2 _ 2012 2.2
+ - +4
{u” + (o = y7)} ry and is consequently equal to

5 -2
K~ is the lower bound of —_—
s wer bou o227 (x2+y2)2

x2 <y?orx? >y%
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Since, if |argz| < 17— A,

R

— 0,

Bn+1 |Z | -2
2(n + 1)(2n + 1) sin®(2A)

as z — oo, it is clear that
B, B N By
1-2-z 3:4.22 562
is the asymptotic expansion of ¢(z) (§8.2). (The development is asymptotic; for if it converged

when |z| > p, by §2.6 we could find K, such that B, < (2n — 1)2nK p**; and then the series
P ( l)n 1 2n

n=1 (21’!)'
We see therefore that the series

would define an integral function; this is contrary to §7.2.)

1 1 - (_1)r_lBr
(z—3)logz —z + 1 log(27) + ; o T

is the asymptotic expansion of logI'(z) when | arg z| < /2 — A.
This is generally known as Stirling’s series. In §13.6 it will be established over the extended
range | arg z| < m — A. In particular when z is positive (= x), we have

0 " uP du dt B
0<2 < .
0 o WHx?] e —1 2mn+1)2n+ 1)x?
Hence, when x > 0, the value of ¢(x) always lies between the sum of n terms and the sum of
n + 1 terms of the seriesfor all values of n.

In particular 0 < ¢(x) < 32, so that ¢(x) = ﬂ where 0 < 6 < 1. Hence

I'(x) = x"_l/ze_x(2ﬂ)%eg/“2x).

Also, taking the exponential of Stirling’s series, we get

1 1 1 71 1
I'x)=e*x" ]/2(27T)]/2{1+ 9 > +O(—)}.

288x2 51840x3  2488320x* x>

This is an asymptotic formula for the Gamma-function. In conjunction with the formula
['(x + 1) = xI' (x), it is very useful for the purpose of computing the numerical value of the
function for real values of x.

Tables of the function log,, I'(x), correct to 12 decimal places, for values of x between 1
and 2, were constructed in this way by Legendre, and published in [421, vol. 2, p. 85], and
his Traité des fonctions elliptiques [422, p. 489].

It may be observed that I'(x) has one minimum for positive values of x, when x =
1.4616321 - - -, the value of log,, I'(x) then being 1.9472391 - - - .

Example 12.3.8 (Binet) Obtain the expansion, convergent when Re(z) > 0,

log, I'(z) = (z — §) log, z — 2 + 1 log,(27) + J(2),
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where
1 C| C C3
J = - + + - + .. s
@ 2{z+1 22+ D)z +2)  3(z+ Dz +2)(z+3) }
in which
1 1 59 227
¢ = 69 Cy = 3a 3 = 90’ Cq = 60 )

and generally

1
Cn :/ x+Dx+2)---(x+n-1)2x — 1)x dx.
0

12.4 The Eulerian integral of the first kind

The name Eulerian Integral of the First Kind was given by Legendre to the integral

1
B(p,q) = / xPt1 - x)q’1 dx,
0

which was first studied by Euler [200] and Legendre [421, vol. 1, p. 221]. In this integral, the
real parts of p and g are supposed to be positive; and x”~!, (1 — x)9~! are to be understood to
mean those values of e?~11°¢¥ and e(@-D1oe(1-%) which correspond to the real determinations
of the logarithms.

With these stipulations, it is easily seen that B(p, ¢) exists, as a (possibly improper) integral
(see formula (2) in Example 4.5.1).

We have, on writing (1 — x) for x,

B(p,q) = B(q,p).

Also, integrating by parts,

1 P(1 — x)4 1 1
/ xP'1 - x)dx = [u} + g/ xP(1 - x)?7 " dx,
0 P o PJo

sothat B(p,q + 1) = LB(p + 1,¢).
p
Example 12.4.1 Shew that

B(p,q) = B(p+ 1,q) + B(p,q + 1).
Example 12.4.2 Deduce from Example 12.4.1 that

q
B(p.q +1) = ——B(p.q).
pP+q

Example 12.4.3 Prove that if n is a positive integer,

1-2---n
B(p,n+1) = .
plp+1)---(p+n)
Example 12.4.4 Prove that
©o x—1

a

By = | —2 4
&= Traps



264 The Gamma-Function
Example 12.4.5 Prove that

I'(z) = lim n*B(z,n).

12.41 Expression of the Eulerian integral of the first kind in terms of the
Gamma-function

We shall now establish the important theorem that

 T(mT(®)
C T(m+n)

B(m,n)

First let the real parts of m and n exceed %; then

I'(m)T(n) = / e x™ ! dx x/ ey dy.
0 0

On writing x? for x and y? for y, this gives
R 2 R 2
T(m)T(n) = 4 lim / e xMdx x / ey dy

0 0
R R
=4 lim / / e~ 2m=lyIn=l g dy.
o Jo

R—

Now, for the values of m and n under consideration, the integrand is continuous over the
range of integration, and so the integral may be considered as a double integral taken over a
square Sg. Calling the integrand f(x, ), and calling Qg the quadrant with centre at the origin
and radius R, we have, if Tk be the part of Sk outside Qg,

,y)dx dy — ,y)dx dy| = ,y)dxd
’/SRf(xy) x dy /QRf(xy) x y‘ '/TRf(xy) x y‘

< // £ y)l dx dy

<[ [ Ve taray - / /S U dedy

— 0as R — oo,

since f fSR | f(x,y)| dx dy converges to a limit, namely

2/ e X! dx x 2/ eyl dy.
0 0

lim // f(x,y)dxdy = lim // f(x,y)dxdy.
R— Sk R— Or

Therefore
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Changing to polar® coordinates (x = r cos 6,y = r sin ), we have

R /2 N
/ f(x,y)dxdy = / / e (rcos 0)*" ' (rsin 0)*"'rdr de.
Or 0 0

Hence

) /2
[(m)[(n) = 4/ e_’zrz(m”)_ldr/ cos> ! gsin®"~! 9 do
0 0

/2
=2I'(m + n) / cos® ! gsin*~! 9 d#.
0

Writing cos” 6 = u we at once get
I'(m)I'(n) = T'(m + n) - B(m,n).

This has only been provided when the real parts of m and n exceed 1/2; but it can obviously
be deduced when these are less than 1/2 by Example 12.4.2. This result, discovered by Euler,
connects the Eulerian Integral of the First Kind with the Gamma-function.

Example 12.4.6 Shew that
: T(p)I'(q)
(1+x)P7'(1 = x)? " dx = 2P+ 2=
[1 I'(p+q)
Example 12.4.7 (Jesus, 1901) Shew that, if

I - 1 »yo-DG-2 1
x+1 21 x+2 3! x+3 ’

ﬂ&w=%—y
then
JOuy)=fOr+Lx-1),
where x and y have such values that the series are convergent.

Example 12.4.8 (Math. Trip. 1894) Prove that

1 1 |
‘/Ov ‘/Ov f(xy)(l - x):“*lyll(l _ y)vfl dx dy — %./0 f(Z)(l _ Z),u+v—1 dZ.

12.42 Evaluation of trigonometrical integrals in terms of the Gamma-function
/2
We can now evaluate the integral cos™ ! x sin"~! x dx, where m and n are not restricted
0
to be integers, but have their real parts positive.
For, writing cos? x = ¢, we have, as in §12.41,

/2 L(2(2
/ cos™ ! x sin" ! xdx = M
0

zr( m2+n ) :

6 Itis easily provided by the methods of §4.11 that the areas A, , of §4.3 need not be rectangles provided only
that their greatest diameters can be made arbitrarily small by taking the number of areas sufficiency large; so
the areas may be taken to be the regions bounded by radii vectors and circular arcs.
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The well-known elementary formulae for the cases in which m and n are integers can be
at once derived from this result.

Example 12.4.9 (Trinity, 1898) Prove that, when |k| < 1,

./ﬂ/2 cos™ @sin" 0do _ T(*3)C(*3) (™2 cos™*" 6 do
o (I=ksi?0)'2 — T2y Jo (1 ksin® )0/

12.43 Pochhammer’s extension of the Eulerian integral of the first kind

This appears in [527]. The use of the double circuit integrals of this section seems to be due
to Jordan [363].

We have seen in §12.22 that it is possible to replace the second Eulerian integral for I'(z)
by a contour integral which converges for all values of z. A similar process has been carried
out by Pochhammer for Eulerian integrals of the first kind.

Let P be any point on the real axis between 0 and 1; consider the integral

] (14,0+,1-,0-)
e’”’(“+ﬁ)/ (1 =1 dt = &(a, B).
p

The notation employed is that introduced at the end of §12.22 and means that the path of
integration starts from P, encircles the point 1 in the positive (counter-clockwise) direction
and returns to P, then encircles the origin in the positive direction and returns to P, and so
on.

At the starting-point the arguments of # and 1 — ¢ are both zero; after the circuit (1+) they
are 0 and 27; after the circuit (0+) they are 27 and 27; after the circuit (1-) they are 27 and
0 and after the circuit (0—) they are both zero, so that the final value of the integrand is the
same as the initial value.

It is easily seen that, since the path of integration may be deformed in any way so long as
it does not pass over the branch points 0, 1 of the integrand, the path may be taken to be that
shewn in the figure, wherein the four parallel lines are supposed to coincide with the real
axis.

oo || P a s

If the real parts of a and B are positive the integrals round the circles tend to zero as the
radii of the circles tend to zero (the reader ought to have no difficulty in proving this); the
integrands on the paths marked a, b, ¢,d are

ta_l(l _ [)ﬁ—l’ la_l(l _ [)[)’—leZIri(/J’—l)’
ta—lehri(a—l)(l _ t)ﬁ—lehri(ﬁ'—l)’ ta—1627ri(a—l)(1 _ t)[&’—l

respectively, the arguments of ¢ and 1 — ¢ now being zero in each case.
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Hence we may write &(a, 8) as the sum of four (possibly improper) integrals, thus:

1

0
S(Q,ﬁ) — eni((ﬁ—ﬁ) /t(l—l(l _ t)/ﬁ’—l dt +/ ta—l(l _ t),[f—leZm'ﬁ dt
1

0
1 0
+ / ta—l(l _ [)ﬁ—leZm'(a/+,8) dt +/ [u/—l(l _ t)ﬁ—lebriu drl .
0 1

Hence

1
8(0(,ﬂ) — eni((wrﬁ)(l _ eZnia)(l _ eZniB)/ t(y—l(l _ t)ﬁ—l dt
0

= —4sin(an) Sin(ﬁ")lg((z)—icﬂg))
—47?

T T -a)(1-pB)(@+p)

Now &(a, 8) and this last expression are analytic functions of & and of S for all values of
a and B. So, by the theory of analytic continuation, this equality, proved when the real parts
of @ and S are positive, holds for all values of @ and . Hence for all values of @ and 3 we
have proved that

—4rx?

(1-a)l(1 - ) (a +p)

&@p) = ¢

12.5 Dirichlet’s integral
This material appears in [178, pp. 375, 391]. We shall now shew how the repeated integral

I=//m/f(tl+t2+---+tn)t]”“1t§'2‘1---t;f""dtldtz'-~a’tn

may be reduced to a simple integral, where f is continuous, @, > 0 (r = 1,2,...,n) and the
integration is extended over all positive values of the variables such that#; +#, +---+1, < 1.

To simplify
1-2 1-A-T
/ / ft+T + ) ' TPV dr aT
0 0

(where we have written 1,7, a, 8 for t,,t, @y, ap and A for t3 + t4+ - - - + t,,), putt = T(1 —=v)/v;
the integral becomes (if 1 # 0)

-1 pl
/ / F(A+T/v)A =v)ty o traB=t gy ar.
0 T/(1-1)

Changing the order of integration (§4.51), the integral becomes

1 p(1-2)
/ / FA+T/v)(A =v)y vy e tTeB-1gr dy.
o Jo
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Putting T = v1,, the integral becomes

1 1-1 N T(a)T N
[ [ rsm - wmtvnteg s anar = 188 [ e,
Hence
r r
r((al)+(az))/ / / fo+n+- )y T Ay diy - diy,
a) + @

the integration being extended over all positive values of the variables such that 7, +#3 +- - - +
t, < 1.
Continually reducing in this way we get
_ C(a)(az) - - - T(ay,)
IMNag+ar + -+ +a,)

1

[ st
0

which is Dirichlet’s result.

Example 12.5.1 (Dirichlet) Reduce

/// f[(g)aJ’(%)ﬁ*(g)y} Xy dx dy de

to a simple integral; the range of integration being extended over all positive values of the
variables such that
X\« B Y
@) G+ =t
a b c
it being assumed that a, b, c, @, B, v, p, g, r are positive.

Example 12.5.2 (Pembroke, 1907) Evaluate / / xPy9 dx dy, where m and n are positive

andx >0,y >0, x"+y" < 1.

Example 12.5.3 Shew that the moment of inertia of a homogeneous ellipsoid of unit
density, taken about the axis of z, is

4
%(a2 + b*)abc,
where a, b, ¢ are the semi-axes.

Example 12.5.4 Shew that the area of the hypocycloid x*/3 + y?/3 = ¢2/% is 3n?/8.

12.6 Miscellaneous examples
Example 12.1 (Trinity, 1897) Shew that

1o)== e

3 4 (1 + 2z)l"(— - —z)
Example 12.2 (Trinity, 1885) Shew that
1 1 1 1
lim ; — —n* =T(x+1).
'H°°1+x1+5x1+§x 1+;x
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Example 12.3 (Jesus, 1903) Prove that
) I'G)
I 1)
Example 12.4 (Trinity, 1891) Shew that
) 32 -1 7 o1 a2
1672  32-1 52 72—-1 92 112-1
Example 12.5 (Trinity, 1905) Shew that

Slm=-a)n+B+7y) @ B
[Tt 1+ )| = g st
Example 12.6 (Peterhouse, 1906) Shew that

[1r(s)- S (&

k=1

= 2log?2.

Example 12.7 (Trinity, 1904) Shew that, if z = i{ where { is real, then

T
IT(z)| = ‘/(ST(FO

Example 12.8 (Math. Trip. 1897) When x is positive, shew that
rOr@) < @n)! 1

I'(x+ %) 22012 x +n’

(This and some other examples are most easily proved by the result of §14.11.)

Example 12.9 If a is positive, shew that

I'z)Ia+1) _ i D"a)a-=1)a=2)---(a—-n) 1
n=0

[(z+a) n! z+n

Example 12.10 If x > 0 and

1
P(x) =/ et dt,
0

shew that

FOSRAE WL IO B IO BN IO B
T x+1 T2 x+2 31 x+3 ’

and
P(x+1)=xP(x)—1/e.

Example 12.11 (Euler) Shew thatif 4 > 0, x > 0, —7/2 < a < 7/2, then

/ ¥ Lo @ cog( At sina) dt = 17 T'(x) cos ax,
0

/ ¥ eV s agin(Arsina) dtf = A7 T'(x) sin ax.
0
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Example 12.12 (Euler) Prove that, if b > 0, then, when 0 < z < 2,

/°° sin bx x bl nz
dx = — cosec (—) ,
0 X2 2T(z) 2

/°° cosbxd 7 bl sec(ﬂz)
x== —.
. X 2T() \2

Example 12.13 (Peterhouse, 1895) If0 < n < 1, prove that

a el _ nm 1 1
/0 (1+x) cosxdx—l"(n){cos(y—l)— CFE) +F(n+3) _}

Example 12.14 (Bourguet [97]) By taking as contour of integration a parabola with its
vertex at the origin, derive from the formula

1 (0+) .
" Disinan / (-2)" e dz

I'(a) = / e‘xzx“_l(l + x)*? [3sin {x + a arccot(—x)}
0

and, when0 < z < 1,

I'(a) =

the result

+sin {x + (a — 2) arccot(—x)}] dx,

the arccot denoting an obtuse angle.

Example 12.15 (Math. Trip. 1907) Shew that, if Rea, > 0 and Y, 1/a2 is convergent,
n=1

then

00

[

n=

F(an) o 28 .
I(z+ay) exp {; Ew( )(a”)H

dY
is convergent when m > 2, where w®(z) = p

Example 12.16 (Legendre) Prove that

dlogl'(z) /"" et — e
0

d —
dz —ea 477

=/°° [(1+a)_'—(l+a)_’] d—a—y
0 a

1 s—1
-1
=/ s dx —vy.
0 x—1

Example 12.17 (Binet) Prove that, when Re(z) > 0,

1 s _ d
logF(z)Z/O {);_lx—x(z—l)} -

xlogx’
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Example 12.18 Prove that, for all values of z except negative real values,

1 1 11 - 1
logl'(z) = |z - 5 |logz — z+ 5 log(27) + >
ogI'(z) (z 2) 0gz =z + 5 log( 7T)+2{2.3 ;(z+r)z

2 S 1 3 S 1
+3-4;(z+r)3+4-5;(z+r)4+"'}'

Example 12.19 Prove that, when Re(z) > 0,

xs—l

m [1 —X+10g)€] dx.

d 1
—logI'(z) =logz - /
dz 0

Example 12.20 Prove that, when Re(z) > 0,

d> © xe ™ dx
logI'(z) = .
72 og () = /0 —

—e

s+1
Example 12.21 (Raabe, [546]) If / logI'(¢) dt = u, shew that

— =logz,
dz o8z
and deduce from §12.33 that, for all values of z except negative real values,
u=zlogz—z+ %log(Zn).

Example 12.22 (Bourguet) Prove that, for all values of z except negative real values,

dx s1n 2nmwx

logI'(z) = (z — 3) logz — z + § log(27) + Z/

xX+z nm
This result is attributed to Bourguet by Stieltjes [606].

Example 12.23 (Binet) Prove that

B(p,p)B(p+1.p+3) =

24p 1 p
Example 12.24 Prove that, when —¢ < r < t,

1 /'°° cosh(2ru) du
0

41-1 cosh? u

B(t+r,t—r)=

Example 12.25 Prove that, when g > 1,
B(p,q)+B(p+1,9)+B(p+2,q)+---=B(p.g—1).
Example 12.26 Prove that, when p —a > 0,

Bp-aq _,. 94 ala +1)g(g +1)
B(p.q) ptq 1-2:(p+q)p+q+1)
Example 12.27 (Euler) Prove that

B(p,q)B(p + q,r) = B(q,r)B(q + r,p).
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Example 12.28 (Trinity, 1908) Shew that

b o dx T@rp) 1
a—1 b-1 _
/0 = e ) T Tar o) (s gt

ifa>0,b>0,p>0.
Example 12.29 (St John’s, 1904) Shew that, if m > 0, n > 0, then

! (1 + x)zm_l(l - x)zn_l d — 2m+n—2 r(m)r(n) .
L (It *= Tm+n)

and deduce that, when a is real and not an integer multiple of /2,

/”/2 cos@ + sin @\ 40 = n
—xj2 \€OS 6 —sin@ ~ 2sin(rcos?a)’

Example 12.30 (Kummer) Shew that, if @ > 0, 8 > 0,
1 La-1
t 1 a+1 1
dt = - - =
/0 1+t 2"0 ( 2 ) 21’// (

1 ja-1 _ -1 I“ll_ﬂr‘é
/ t r dr = log (2)(21)'
o (I+1)logt NEOONECS!

and

Example 12.31 Shew that, ifa > 0,a + b > 0,

/‘ x“"(l—xb)d 1 {r(a)r(a) F(a+b)F(6)}
0 1—x T Ta+06) T(a+b+90)

=y(a+b)—y(a).
Deduce that, if in additiona +c¢ > 0,a+ b+ ¢ > 0,

lx“"(l—xb)(l—x")d 4 I(a)T(a+b+c)
/0 1-x)(—logx) = B Ta+ml@+ro)

Example 12.32 Shew that, if a, b, ¢ be such that the integral converges,

/l (l—x“)(l—xb)(l—xc)dx
0 (1 -x)(~logx)
1 I'b+c+DHI'(c+a+1D)IT(a+b+1)
T TG+ Db+ DI(c+ DT @+ b+c+1)

Example 12.33 (St John’s, 1896) By the substitution cos§ = 1 — 2 tan %d), shew that

/” o [TH]
o (3-cosO)2  4yx

Example 12.34 (Clare, 1898) Evaluate in terms of Gamma-functions the integral
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oo

sin? x

dx, when p is a fraction greater than unity whose numerator and denomina-

0 X
tor are both odd integers. Shew that the integral is

1 [ 1 < 1 1
= in” x |—+ -1)" + dx.
2 /0 M nZ:;( ) (x+n7r x—nﬂ)] *

Example 12.35 Shew that

/2 - R 2> 2r + 1\
1+ Lsin? x)" 2 dy = = r
/0 (1 + 4 sin’ x) T an ’Z:(; 2nin—r)! 4

Example 12.36 (Euler) Prove that

1
ptq (1 =vP)(1 —v9)
wastp - (28) [ UM
rq o (I—-v)logv
Example 12.37 (Binet) Prove that, if p > 0, p + s > 0, then

B(p,p) s(s=1)  s(s—=1)(s-2)(s—3)
2 {“ 22p+ 1) 2-42p+ D2p+3) +}

B(p,p +s) =

Example 12.38 The curve " = 2"~'a™ cos m# is composed of m equal closed loops. Shew
that the length of the arc of half of one of the loops is

—/ cos I/WH dx,

and hence that the total perimeter of the curve is

2
()
TG
Example 12.39 (Cauchy) Draw the straight line joining the points +i, and the semicircle
of |z| = 1 which lies on the right of this line. Let C be the contour formed by indenting this
figure at —i, 0, i. By considering

/ PN+ P,
c
shew that,if p+¢g > 1,9 < 1,

(p+q—1)2r71B(p,q)

Prove that the result is true for all values of p and ¢ such that p + g > 1.

/2
/ cosP* 2 g cos(p — q)0 do =
0

Example 12.40 If s is positive (not necessarily integral), and —%ﬂ' <x< %ﬂ, shew that

1 [(s+1) {1 5 s(s —2)
251 {r(%s+1)}2 §+mcos x+(s+2)(s+4)

and draw graphs of the series and of the function cos® x.

(cosx)® = cos4x+---},



274 The Gamma-Function
Example 12.41 (Cauchy) Obtain the expansion
(cosx)’ =

a
2s—1

I'(s+1)

cos ax cos 3ax
1 1 1 1 T 3 1 3 T
F(ES + Ea + 1)F(§S - Ea + 1) F(ES + za + I)F(ES - Ea + 1)
and find the values of x for which it is applicable.
Example 12.42 (Binet) Prove that, if p > 1,
2p-1 2p2 2 12 .32 1/2
I+ + + - .
\r 2p + 1 22p+3) 2-4-2p+3)2p+5)
Example 12.43 Shew that, if x < 0, x + z > 0, then

rem{—x+1<<wu—x>+1cwx1—m@—x>+”}

Tz |z 2 zl+z) 3 z(1+22+2)

r(2p) = {T(p)¥

1
= ﬁ </O Xl {- log(l -0} - [)X+Z_l dr.

and deduce that, when x + z > 0,

ilo I(z+x) lx(x—l)_’_lx(x—l)(x—Z)_‘“
dz £ I'(z) 2z(z+1) 3 z(z+1D)(z+2)

Example 12.44 (Binet [73]) Using the result of Example 12.43 above, prove that

X
Z

—a?

2z
N a/ol t(l_t)(z_f)“‘(n—t)dt—/()ut(l—t)(2—t)...(n_t)dt
—Z m+Dz(z+1)(z+2)---(z+n) s

logT'(z + a) =logI'(z) + alog z — a

n=1

investigating the region of convergence of the series.

Example 12.45 Prove that, if p > 0, ¢ > 0, then

P,l q,l
B(p,q) = u(zﬂ)%eM(ﬂ»q)’
(p+ gyt
where
® £ +1)p°
M) =2 [ ( )p}a
0

arctan { —
{pq@ +q)

eZntp -1
and p* = p* + ¢* + pq.

Example 1246 If U = 2*//T(1 - 1x), V = 2*/2/T'(4 — 1x), and if the function F(x) be
defined by the equation

du dv
F(x)=\/7_r(VE— dx)’

shew:
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(a) that F(x) satisfies the equation
1
Fx+1)=xF(x)+ ———;
(64 1) = 3F () + s
(b) that, for all positive integral values of x,
F(x) =T(x);

(c) that F(x) is analytic for all finite values of x;
(d) that
I (%)

Log —271
T(l-xdx °T(1-3%)

F(x) =

Example 12.47 Expand 1/T°(a) as a series of ascending powers of a.

Note Various evaluations of the coefficients in this expansion have been given by Bourguet
[94]; Schlomilch [585, 586].

Example 12.48 (Alexeiwksky) Prove that the G-function, defined by the equation

Gle+ 1= @mytre et (14 2) o)
n

is an integral function which satisfies the relations

G(z+1) =T(2)G(z), G(1) =1,
()" n
Gl " 1122350,

The most important properties of the G-function are discussed in Barnes [42].

Example 12.49 Shew that

G'(z+1) 1 1 I''(z)
m = Elog(2ﬂ)+§—Z+ZF(Z),

and deduce that

\)

G(1 - ’
IOgGEI—-kg:/O nzcotnzdz — z1og(2r).

Example 12.50 Shew that

$ 1 1
/ logT(z + 1)dt = Ezlog(Zn) - EZ(Z + 1)+ zlogT(z+ 1) —logG(z + 1).
0
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The Zeta-Function of Riemann

13.1 Definition of the zeta-function

Let s = o + it where o and ¢ are real!; then, if § > 0, the series

(=3~

is a uniformly convergent series of analytic functions (§§2.33, 3.34) in any domain in which
o > 1+ 6; and consequently the series is an analytic function of s in such a domain.
The function is called the zeta-function; although it was known to Euler [197], its most
remarkable properties were not discovered before Riemann [557] who discussed it in his
memoir on prime numbers; it has since proved to be of fundamental importance, not only
in the Theory of Prime Numbers, but also in the higher theory of the Gamma-function and
allied functions.

13.11 The generalised zeta-function

The definition of this function appears to be due to Hurwitz [327].

Many of the properties possessed by the zeta-function are particular cases of properties
possessed by a more general function defined, when o > 1 + 4, by the equation

(a +n)s’

- 1
L(sa)= ) (13.1)
n=0

where a is a constant. For simplicity, we shall suppose that 0 < a < 1, and then we take
arg(a + n) = 0. It is evident that £(s,1) = (s). (When a has this range of values, the
properties of the function are, in general, much simpler than the corresponding properties for
other values of a. The results of §13.14 are true for all values of a (negative integer values
excepted); and the results of §§13.12, 13.13, 13.2 are true when Re(a) > 0.)

13.12 The expression of ((s,a) as an infinite integral

Since

(a+n)*T(s) = / xSl ax gy
0
! The letters o, ¢ will be used in this sense throughout the chapter.

276
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when arg x = 0 and o > 0 (and a fortiori when o > (1 + §)), we have, when o > 1 + 6,

N )
['(s){(s,a) = lim Z/ S gy g
0 Y0

N—>o

oo _s—1_-—ax o s—1
lim / r e dx — / x—e_(N+l+“)x dx;.
N—o0 0 1—e> 0 1—e>

Now, when x > 0, ¢* > 1 + x, and so the modulus of the second of these integrals does
not exceed

/ x7 2o WX gy = (N + ) " T(0 - 1),
0
which (when o > 1 + ) tends to 0 as N — oo. Hence, when o > 1 + ¢ and arg x = 0,

sl—ax
da) =5 [

this formula corresponds in some respects to Euler’s integral for the Gamma-function.

13.13 The expression of {(s,a) as a contour integral

This was given by Riemann for the ordinary zeta-function.

(0+) (=2)*" 1 g-az
~ = 4z
L l—e= °°

the contour of integration being of Hankel’s type (§12.22) and not containing the points
+2nmi (n = 1,2,3,...) which are poles of the integrand; it is supposed (as in §12.22) that
|arg(=2)| < 7.

It is legitimate to modify the contour, precisely as in §12.22, when? o > 1 + 6; and we get

0 1,—- 1 -
/( +)( Z)q “ {em(é 1) _ it 1)}/ “
o T l-—e? T—e>

_ O+) (_\s-1,-az
oy =202 [T

l1—e=

When o > 1 + 6, consider

Therefore

Now this last integral is a one-valued analytic function of s for all values of s. Hence the
only possible singularities of £(s,a) are at the singularities of I'(1 — s), i.e. at the points
1,2,3,..., and, with the exception of these points, the integral affords a representation of
{(s,a) valid over the whole plane. The result obtained corresponds to Hankel’s integral for
the Gamma-function. Also, we have seen that (s, ) is analytic when o~ > 1 + §, and so the
only singularity of £(s, a) is at the point s = 1. Writing s = 1 in the integral, we get

1 (0+) e~ dz

2ni J, 1—e7%

2 If o < 1, the integral taken along any straight line up to the origin does not converge.
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which is the residue at z = 0 of the integrand, and this residue is 1. Hence
RO
s—1 F(l - S)
Since I'(1 — s) has a single pole at s = 1 with residue —1, it follows that the only singularity
of {(s,a) is a simple pole with residue +1 at s = 1.

Example 13.1.1 Shew that, when Re(s) > 0,
1 1 1

1-s - _ - =
A-2"0) = -5+ 53+

_ / T
- F(S) 0 er + 1
Example 13.1.2 Shew that, when Re(s) > 1,
2= D) = (s.3)

2s o s—1,x
- I'(s) J, e>-1

Example 13.1.3 Shew that

25T(1—s) [ (=2)!
2ri215 - 1) Joo  es+1

where the contour does not include any of the points +7i, +37i, +57i,. . ..

L(s) = - dz,

13.14 Values of {(s,a) for special values of s

In the special case when s is an integer (positive or negative),
(_Z)s—l e 9z
is a one-valued function of z. We may consequently apply Cauchy’s theorem, so that
1 (0+) -z s=1p-az
2mi o ( 1)— ez dz
(—1) ez

is the residue of the integrand at z = 0, that is to say, it is the coefficient of z7° in 1 .

To obtain this coefficient we differentiate the expansion (§7.2)

Z = 1)”¢n(a)z

ez—l

term-by-term with regard to a, where ¢, (a) denotes the Bernoullian polynomial. (This is
2 ,—az
] can be expanded into a power

obviously legitimate, by §4.7, when |z| < 2, since

series in z uniformly convergent with respect to a.) Then
2 e~z

(= 1)”¢ (@)z"
-z — 1 Z T

(13.2)
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Therefore if s is zero or a negative integer (= —m), we have

¢;n+2(a)

{ema) =~ D m+ )

In the special case when a = 1, if s = —m, then (s) is the coefficient of z!~* in the expansion
-1)’m!
of m Hence, by §7.2

e< —

¢(=2m) =0 L(1-2m) = (_12)#

1
(m=123..)  {0)=-3.

These equations give the value of {(s) when s is a negative integer or zero.

13.15 The formula ofHurwitzfor {(s,a) when o <0

s—1 —az
This appears in [327, p. 95]. Consider ——; / - IZ)_ =
consisting of a (large) circle of radius (2N + 1)7r (N an 1nteger) starting at the point (2N + 1)z
and encircling the origin in the positive direction, arg(—z) being zero at z = —(2N + 1)x.
In the region between C and the contour (2N7 + 7,0+), of which the contour of §13.13
is the limiting form, (—z)*"'e~%*(1 — ¢7%)7! is analytic and one-valued except at the simple
poles +2mi, +4ni,...,+2Nmi. Hence

1 _\s-1,-az 1 (0+) _\s-1,-az N
__/M_edz___/ C e oY (R +R))
21t Jo 1—e7% 27 Jon+ye 1—€7F =

where R,, R), are the residues of the integrand at 2nmi, —2nmi respectively. At the point at
which —z = 2nme™/2, the residue is

dz taken round a contour C

I DV .
(znﬂ,)s 16 3 mi(s l)e 2anm,

and hence R, + R, = 2(2nn)*~'sin (sm/2 + 2man) . Hence

1 (0+) (_Z)s—le—az
e / ———dz
21 Jonse 1 —€7®
_ 2sin(sm/2) Z cos(2man)
- (271-)1 -5 nl s

dz.

2 cos(sm/2) sin(2man) 1 (=z) ez
> e

2m)t-s nl-s 27i —e?

Now, since 0 < a < 1, itis easy to see that we can find a number K independent of N such
that [e=#*(1 — ¢7*)"!| < K when z is on C. Hence

L / (_Z)s—le—az
27 Jo 1 —e7F

K [~ :
dz| < — / [N + D)x]* | db
2r J_,

< K[@2N + Dr]* ™!

—0 asN —> if o <O.
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Making N — oo, we obtain the result of Hurwitz that, if o < 0,

00

2r(1 - o cos(2 in(2
L(s,a) = —{2(;)1_:) [sin (%) ; —cosr(llirsan) + cos (%) Z; s1n£ll7_'rsan)} ,

each of these series being convergent.

13.151 Riemann’s relation between {(s) and {(1 — s)

If we write @ = 1 in the formula of Hurwitz given in §13.15, and employ §12.14, we get the
remarkable result, due to Riemann, that

2175T(5)Z () cos (%) =n°l(1 —s). (13.3)

Since both sides of this equation are analytic functions of s, save for isolated values of s at
which they have poles, this equation, proved when o < 0, persists (by §5.5) for all values of
s save those isolated values.

Example 13.1.4 If m be a positive integer, shew that
22m—1 ﬂszm
2m)!
Example 13.1.5 (Riemann) Shew that I'(s/2)7~%/2(s) is unaltered by replacing s by 1 —s.

{(@2m) =

Example 13.1.6 Deduce from Riemann’s relation that the zeros of Hermite’s integral for
l(s) at —2,—4,—6,. .. are zeros of the first order.

13.2 Hermite’s formula for {(s,a)

This appears in [296]. Let us apply Plana’s theorem (Example 7.7 in Chapter 7) to the function
¢(z) = (a + z)~°, where arg(a + z) has its principal value.
Define the function g(x, y) by the equation

gley) = @+ x4 iy) = (@t x=in)”]

=—[(a+x)+ yz]ﬂ/2 sin (s arctan ) .
x+a

[y
X+a

Vs
Since? |arctan does not exceed the smaller of — and , we have
2

X+a

lg(x, )| < {(@+x)?+y}77" |y-1 sinh (g)‘

s
sinh M

2}—(7’/2
X +a

S{(a+x)2+y

Using the first result when |y| > a and the second when |y| < a, it is evident that, if

o >0, / q(x,y) (™ — 1)"" dy is convergent when x > 0 and tends to 0 as x — oo; also
0

£ dr * dt ¢
3 If & > 0, arctan & :/ < / ;and arctan & < / dt.
0 1+12 0 1+12

0
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/ (a + x)% dx converges if o > 1. Hence, if o > 1, it is legitimate to make x, — oo in

0
the result contained in the example cited; and we have

§(s,a)——a‘+/ (a+x)"* dx+2/ (a? +y)‘/2[sm(sarctany)] e;j—y_l.

So

{(s,a) = = /Ooo(a2 +y?)2 [sin (s arctan g)] _dy

ey —1

This is Hermite’s formula*; using the results that, if y > 0,

y _y y _T xa
arctan = < =, < i), arctan = < — > 2,
—< <) <5 b>%)
we see that the integral involved in the formula converges for all values of s. Further, the
integral defines an analytic function of s for all values of s.
To prove this, it is sufficient (§5.31) to shew that the integral obtained by differentiating
under the sign of integration converges uniformly; that is to say we have to prove that
I 3
0 62”y -1

" d
+ / [(a2 +y?)™/? arctan 2 cos (s arctan X)] v
0 a all e?my — 1

1
-3 log(a® + y*)(a* + y*)™/? sin (s arctan 2)}
a

converges uniformly with respect to s in any domain of values of s. Now when [s| < A,
where A is any positive number, we have
s/2

‘(a2 +y%)" arctan Y cos (s arctan X)| < (a*+ yz)A/zy cosh (37A) ;
a

since

/ (a +y)A/2 ydy

eZny

converges, uniform convergence of the second integral is justified using de la Vallée Poussin’s
test in (I) of §4.431.

By dividing the path of integration of the first integral into two parts (0, %ﬂa), (%na, o)
and using the results

1
X) ‘ < sinh ERA

Ay |
< sinh —, | sin (s arctan
a a

sin(» arctan 7)
sin | § arctan =
a

in the respective parts, we can similarly shew that the first integral converges uniformly.

Consequently Hermite’s formula is valid (§5.5) for all values of s, and it is legitimate
to differentiate under the sign of integration, and the differentiated integral is a continuous
function of s.

4 The corresponding formula when a = 1 had been previously given by Jensen.
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13.21 Deductions from Hermite’s formula

Writing s = 0 in Hermite’s formula, we see that £ (0,a) = % — a. Making s — 1, from the
uniformity of convergence of the integral involved in Hermite’s formula we see that

1 a=s -1 1 o ydy
li ,a)— —— ¢ =i +—+2 .
o {{(S @) s—1 } P R 2a /0 (@ + y2)(e?v - 1)

Hence, by the example of §12.32, we have

I"(a)

I(a)

Further, differentiating the formula for {(s,a) and then making s — O (this was justified
in §13.2), we get

i (e~ 25 -

d 1 a'loga a'=s
Z s, —lim |—=a~*log q — _
{dsg(s a)}szo 20 [ ¢ oed s—1 (s —1)?

2 [ diou(@ %) @ 527 s (s arcan 2
0

a
d
+(a® + y*) ™/ arctan Y cos (s arctan X)} > 24 }
a all e —1
1 ® arctan(y/a)
=(a—§)loga—a+2‘/0 Wdy

Hence, by §12.32,
d
{54(&61)} = log ['(a) — } log(2m).
s=0

These results had previously been obtained in a different manner by Lerch [425]. The
formula for (s, a) from which Lerch derived these results is given in a memoir published by
the Academy of Sciences of Prague. A summary of his memoir is contained in [429].

Corollary 13.2.1 lim (C()- L) =7 ¢ 0)=—-3log2n).

13.3 Euler’s product for /(s)

Leto > 1+ 6;andlet 2,3,5,...,p,... be the prime numbers in order. Then, subtracting the
series for 279/ (s) from the series for £(s), we get

1 1 1 1
(1=2%)= — 4+ — + — + — -
{(s) - ( )=ptEtatato
all the terms of » n™* for which »n is a multiple of 2 being omitted; then in like manner
(s)-(1-271-37) = 1 + ! + : +
g § - 1s 5s 7s ’

all the terms for which # is a multiple of 2 or 3 being omitted, and so on; so that

) (1-2)1=3") - (1-p*)=1+ Zn
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the prime denoting that only those values of n (greater than p) which are prime to 2,3,...,p
occur in the summation. Now, since the first term of Y, starts with the prime next greater

than p,
|Z,n‘s < Z/n"“" < i !0 asp— oo

n=p+1
Therefore if o > 1 + &, the product {(s) [1(1 — p~*) converges to 1, where the number

p
p assumes the prime values 2,3,5,. .. only. But the product [] (1 — p~*) converges when

p
o > 1+ ¢, for it consists of some of the factors of the absolutely convergent product
[T (1 = n™*). Consequently we infer that £(s) has no zeros at which o > 1 + ¢; for if it had
n=2
any such zeros, [] (1 — p~) would not converge at them. Therefore, if o > 1 + 6,

p
n(l_i)zL
, Pl L)

This is Euler’s result.

13.31 Riemann’s hypothesis concerning the zeros of ((s)
It has just been proved that £(s) has no zeros at which o > 1. From the formula (13.3)
2s—1ﬂs
I'(s

£(s) = =2 see (57 £(1 - 9)
itis now apparent that the only zeros of £(s) for which o= < 0 are the zeros of sec (s7/2) /T'(s),
i.e. the points s = =2,—-4,.. ..

Hence all the zeros of {(s) except those at —2,—4, . .. lie in that strip of the domain of the
complex variable s which is defined by 0 < o < 1.

It was conjectured by Riemann, but it has not yet been proved, that all the zeros of (s)
in this strip lie on the line o = %; while it has quite recently been proved by Hardy [279]
that an infinity of zeros of {(s) actually lie on o = % It is highly probable that Riemann’s
conjecture is correct, and the proof of it would have far-reaching consequences in the theory
of Prime Numbers.

13.4 Riemann’s integral for /(s)

It is easy to see that, if o > 0,
-5 S —-s/2 a -n’rx _s/2-1
nI'l=|n = e X dx.
2 0

Hence, when o > 0,

o N
N . 2

L(s)l (—) a7 = lim E e xS g
2 (U —
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Now, if #(x) = Y e, since, by Example 6.17 of Chapter 6,
n=1
1+20(x) = x7 2 (1 +20(1/x)), (13.4)

we have lirr(l) x'29 (x) = 1/2; and hence / 9 (x)x*/*"! dx converges when o > 1.
X 0

Consequently, if o > 2,

/ 9(x) x> dx - / Z o 52 g
0 0

n=N+1

cor (5) = m

Now, as in §13.12, the modulus of the last integral does not exceed
‘/m{ i e—n(N+l)7rx} T gy = /m e~ (N+1P7x .0 /2-1 ”
0 vt 0 1 - e—(N+1)7rx
< {n(N + 1)}_1 /00 e~ (NH2N)mx o[22
0
= (x(N+ DY N + 2N} P T (o2 - 1)

— 0 asN — oo, since o > 2.

Hence, when o > 2,
S 0
LT (=2) 8% = / 9(x)x> " dx
5)7"=

1 )
= / {—% + %x_% + x_%ﬂ(l/x)} 7 dx + / P(x) x> dx
0

1

11 ! 1 ©
=——+ +/ X290 xS - = | dx + / 9(x) x> dx.
s s—1 o x? .

Consequently
. 1 « : PN
L(s)r (f) o —— = / (x17972 4 x”z)—(x) dx.
2 s(s—=1) | X
Now the integral on the right represents an analytic function of s for all values of s, by §5.32,
since on the path of integration

Hx) < ™ Z e < (1 — e ™)L

n=0
Consequently, by §5.5, the above equation, proved when o > 2, persists for all values of s.
If now we put

s=gwi st = DE@(3) 7 = €0

we have

() = % -7 +1) /1oo x~¥49(x) cos (3¢log x) dx.
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Since

/ x*9(x) {1 log x}" cos (tlog x + Lnm) dx
I

satisfies the test of Corollary 4.4.1, we may differentiate any number of times under the sign
of integration, and then put ¢ = 0. Hence, by Taylor’s theorem, we have for all values> of ¢

00

E() = ) ant™; (13.5)

n=0

by considering the last integral a,,, is obviously real. This result is fundamental in Riemann’s
researches.

13.5 Inequalities satisfied by {(s,a) when o > 0

We shall now investigate the behaviour of {(s,a) as t — =*oo, for given values of 0. When
o > 1, itis easy to see that, if N be any integer,

N 1 1 )
f(s,a) = ZO @+nr (I-s)N+ap' Z Juls):

=N
where
| 1 1 !
)= 75 {(n+1+a)“l - ("+a)s_1}_ (n+1+a)
n+l
u-n
— — du.
S‘/n (u+a)s+l u

Now, when o > 0,

n+l u—n
| fu(s)] < M/n Wdu

n+1 dl/l
< |s _—
[ e

=|s|(n+a) "

Therefore the series ), f,(s) is a uniformly convergent series of analytic functions when
n=N
o > 0;sothat Y, f;, (s)is an analytic function when o > 0; and consequently, by §5.5, the
n=N
function £(s,a) may be defined when o > 0 by the series

[e]

Yoo 1
fls.a) = Z;A @+ny (—-s)N+tay- Z Jals).

=N

3 1In this particular piece of analysis it is convenient to regard ¢ as a complex variable, defined by the equation
s = % + it; and then £(¢) is an integral function of ¢.
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Now let | ] be the greatest integer in |¢|; and take N = [¢]. Then
LtJ 00

sl < D la+n [+ {0 -9+ )=+ D Isln+a) !

n=0 n=|t|
L7] o
< Ya+ny T+l (e + @)+ s Y (n+a) "

n=0 n=|t]
Using the Maclaurin—Cauchy sum formula (§4.43), we get

L] o0
|£(s,a)] <a ™ + (a+x)"dx+t|'([t] + @)™ + s (x +a) 7 "dx.
0 Le]-1
Now when § < o < 1 — ¢ where § > 0, we have
1{(s,a)l <a+(1=0) {a+ 1) =a" 7} + 1| (L) + @)~ +Islo™ " (lt] =1 +a) ™.

Hence /(s,a) = O(|t|'~), the constant implied in the symbol O being independent of s. But,
when1 -6 <o <1+ 8, we have

Lz]
¢(s.a)l = O(It]'™") + A (a+x)7dx

lz]
<Oo(|t]") + {al_” + (a+ t)l_‘f} / (a+ x)""dx,
0

since (a +x)” <a'"“(a+x)"'wheno > 1,and (a + x)™ < (a+ [t])'""(a+ x)' when
o <1, and so

l(s,a) =0 {|t|1“r log |t|} .
Wheno > 1+6,

1£(s,a)| < a™ + i (a+n)""° = O(1).

13.51 Inequalities satisfied by {(s,a) when o < 0

We next obtain inequalities of a similar nature when o= < 6. In the case of the function {(s)
we use Riemann’s relation

2(s) = 27 T(1 = 5) £(1 = 5) sin (%) .
Now, when o < 1 — §, we have, by §12.33,
(1 - 9) = 0 sti-mst=--0)

and so

l(s)=0 [exp{glﬂ + (3 — o —ir)log|1 — s| + i arctan a _to_) H (1 -5s).
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Since arctanz/(1 — o) = i%ﬂ + O(t™"), according as ¢ is positive or negative, we see, from
the results already obtained for (s, a), that

£(s)=0 (") 21 - s).

In the case of the function (s, a), we have to use the formula of Hurwitz (§13.15) to obtain
the generalisation of this result; we have, when o < 0,

£(5,0) = =i(20) " T(1 = 5) [#724,(1 = 5) = e £ o(1 - 5)]

where

Hence

N
(1 _ eZnia)éra(l _ S) — eZm’a + Zlemiu [ns—l _ (I’l _ l)s—l]

n=2

+(s—1) Z eZ"”i“‘/ w du;
n-1

n=N+1

since the series on the right is a uniformly convergent series of analytic functions whenever
o < 1 -6, this equation gives the continuation of ,(1 — s) over the range 0 < o < 1 —§; so
that, whenever o < 1 — §, we have

N )
|sin7ra{a(1—s)|S1+Z{n"'_]+(n—1)“'_1}+|s—1| Z /
n=2

n=N+1Y"1"

n
u” 2 du.
1

Taking N = |t], we obtain, as in §13.5,

La(l=5)=0(t|7) (<o =<1-0)
=0(|t]7log|z]) (=6 <0 <0),

and obviously
L(1—=5)=0(1) (o < =96).
Consequently, whether a is unity or not, we have the results

{(s.a) = 0(1]'"*7) (0 <0)
=0(t]'"® (<o <1-6)
=0(7|'"1loglt]) (=6 <o <6).

We may combine these results and those of §13.5, into the single formula

¢(s,a) = O(|t]"7 log |¢]),
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where®
%—a’ o <0,
1 0<o <!t
_ 2 - - 2’
T(O-)_ 1
0 o>1,

and the log |¢| may be suppressed except when -6 < o < §orwhen1 -5 <o < 1+6.

13.6 The asymptotic expansion of log ['(z + a)
From Example 12.1.3 it follows that

(AT )] = o

Now, the principal values of the logarithms being taken,

tog (1+ %) viog[ ] {(1+ s
n=1

B © —az © (_l)m—l z
_Z;l(n(a+n))+;:2 m  (a+n)m

n=

© (_1)m—1 7™
+'; " a—m

If |z] < a, the double series is absolutely convergent since

i alzl | ( 2] ) 2]
—log|1 - +
o n(a + n) a+n a+n

converges.
Consequently

eI'(a) z (-1
o8 fg) = 4 e o )

1 nz®
Now consider —— -
2ri Jo ssinms

of §12.22 enclosing the points s = 2,3,4,. .. but not the points 1,0,—1,-2,. . .; the residue of

{(s,a) ds, the contour of integration being similar to that

—1)ym
the integrand at s = m (m > 2) is =D 7™ (m,a); and since, as o — oo (where s = o +it),
L(s,a) = O(1), the integral converges if |z| < 1.
Consequently

00

e”I(a) z az 1 / nz
log ———==—-— - — ds.
08 F(z +a) a ; ma+n) 2mi Jo ssinms {(s,a)ds

log I'(a) F (a) 1 /
c

Hence

L(s,a)ds.

T(z+a) F(a) 27 Jo ssinms

6 Tt can be proved that 7(o-) may be taken to be %(1 — o) when0 < o < 1. See Landau [405, §237].
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Now let D be a semicircle of (large) radius N with centre at s = % the semicircle lying on
the right of the line o = % On this semicircle Z(s,a) = O(1), |z°] = |z|” e "*%, and so the
integrand is O{|z|” e~*!/I="a¢2} The constants implied in the symbol O are independent of
s and z throughout. Hence if |z| < 1 and -7 + § < argz < m — §, where ¢ is positive, the
integrand is O (|z|” ¢~°!"l), and hence

ssinms

/ i L(s,a)ds — 0
D

as N — oo. It follows at once that, if |argz | < 7 — ¢ and |z]| < 1,

o L@ L s

& [(z+a) < T(a) 2ni 1w SSinTTS

But this integral defines an analytic function of z for all values of |z] if |argz| < 7 - 6.

Hence, by §5.5 the above equation, proved when |z| < 1, persists for all values of |z| when
largz| < m - 6.

3,
iilR ﬂZS

Now consider / £(s,a) ds, where n is a fixed integer and R is going to tend

—n-L1siR S sinsms

to infinity. By §13.51, the integrand is O (z7¢**R"?)), where —n— § < o < 3; and hence if
the upper signs be taken, or if the lower signs be taken, the integral tends to zero as R — oo.
Therefore, by Cauchy’s theorem,

r l—v 1 —n—%+ioo s n
@ __ @) + / ks l(s,a)ds + Z R,
- m=—1

I'z+a) c T(a)  2ni n-lie SSINTS

where R, is the residue of the integrand at s = —m.
Now, on the new path of integration

nz®

P _n—1
<KZ n Ze S|tlr(-n 2)|t|,

{(s,a)

ssinms

where K is independent of z and #, and 7(o) is the function defined in §13.51. Consequently,

. — —n—1
s1nce/ e~°1t¢|™="=2) dt converges, we have
—00

I['(a) = T'(a)

ot s ™ T

+ Z R, + 0(1‘"‘%),
m=—1

when |z] is large.

(=D"z"{(=m,a)

Now, when m is a positive integer, R, = , and so by §13.14,
-m
=) ()

 m(m+ )(m+2)’
Also Ry is the residue at s = 0 of

where ¢/ (a) denotes the derivative of Bernoulli’s polynomial.

é(1+éﬂ252+---)(1+slogz+---)(%—a+s§’(0,a)+'~),
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and so
Ry = (3 —a)logz+'(0,a)
= (3 — a) log z + log I'(a) — § log(2n),
by §13.21.
And, using §13.21 and writing s = S + 1, R_; is the residue at § = 0 of

2¢Q2 ’
—é(l—S+Sz—---)(l+%+---)z(1+$logz+---)(§—11:((5))+-~).

7’

I'(a)

Hence R_; = —zlogz +z + z. Consequently, finally, if |arg z| < 7 — ¢ and |z| is large,

logT(z+a) =(z+a—1)logz -z + 1 log(2n)
n _1\m—1 47
+ Z CD™ (@) O(z" 7).

m(m+ 1)(m + 2)z"

m=1

In the special case when a = 1, this reduces to the formula found previously in §12.33 for a
more restricted range of values of arg z.

The asymptotic expansion just obtained is valid when a is not restricted by the inequality
0 < a < 1; but the investigation of it involves the rather more elaborate methods which are
necessary for obtaining inequalities satisfied by {(s,a) when a does not satisfy the inequality
0 < a < 1. But if, in the formula just obtained, we write a = 1 and then put z + a for z, it is
easily seen that, when |arg(z + a)| < 7 — &, we have

logT(z+a+1)=(z+a+3)log(z+a) —z—a+ 3log(2m) + o(1);
subtracting log(z + a) from each side, we easily see that when both
larg(z +a)| <7 -6 and |argz| <7 -6,
we have the asymptotic formula
logl(z+a) = (z+a—-3)logz -z + 1 log(2n) + o(1),

where the expression which is o(1) tends to zero as |z| — co.

13.7 Miscellaneous examples
Example 13.1 (Jensen [359]) Shew that

2s—1 o s d
2°=1)(s) = — f + 2/0. (% + yz) /2 sin(s arctan 2y) ezﬂyy_ T
Example 13.2 (Jensen) Shew that
2s—1 , 00 s dy
_ _ns —5/2 o3
L(s) = p— 2 /o (1 + y*)™*/*sin(s arct.amy)e”y 1

Example 13.3 (Barnes) Discuss the asymptotic expansion of log G(z + @), (Example 12.48)
by aid of the generalised zeta-function.
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Example 13.4 (Dirichlet [176]) Shew that, if o > 1,

log () =Y Y — S

p m=1

291

the summation extending over the prime numbers p = 2,3,5,. ...

Example 13.5 Shew that, if o > 1,
L@ 3 A
() L

where A(n) = 0 when 7 is not a power of a prime, and A(n)
prime p.

Example 13.6 (Lerch [429]) Prove that

’

00

I—

[3S7 =)

t 12

= log p when n is a power of a

e dx bid w1
= e T x T dx.
/o (1 Wz)~‘/2 I3 Jo

Example 13.7 (Appell [28]) If

Hox)= Y
n=1

where |x| < 1, and Re s > 0, shew that
s—1
xz°7 dz
o0 =5 [ 5
I'(s)

liil}(l —0)" (s, x) =T(1 - 5).

and, if s < 1,

Example 13.8 (Lerch [426]) If x,a, and s be real, and 0 < a < 1, and s > 1, and if

anx

9(x.a,5) = Z (a+n)y’

shew that
e~as s—l dZ

¢(X a, S) F( ) / 1 _ eme Z

and
o(x,a,1 —s) =

I'(s)
(2n)*

{ 7i(s/2-2a%) (g . 5) + 7I5242a0- g ] — x, s)} .

Example 13.9 (Hardy) By evaluating the residues at the poles on the left of the straight

line taken as contour, shew that, if £ > 0, and | arg y| < Z,

1 k+ioco
e = % l"(u)y‘” du
k—ico
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and deduce that, if k > 3,

1 k+ioco r(u)
270 Jieio  (Tx)"

{(2u) du = 9(x),
and thence that, if a is an acute angle,
* cosh %at - .
/ ﬁf(t) dt = mcos(a/4) — %em/ (1 + Zﬁ(eta)) _
o 2+7

Example 13.10 (Hardy) By differentiating 2n times under the integral sign in the last result
(Example 13.9) and then making @ — 7/2, deduce from Example 6.17 of Chapter 6 that

® cosh L7t —1)"
/ — 2 @) dt = L'z cos =.
0

t2 + 41_1 22n 8

By taking n large, deduce that there is no number #, such that &£(z) is of fixed sign when ¢ > 1,

and thence that (s) has an infinity of zeros on the line o = %

Note Hardy and Littlewood [281] have shewn that the number of zeros on the line o =
for which 0 < ¢ < T'is atleast O(T) as T — oo; if the Riemann hypothesis is true, the numbe
is

- NI—

1 1+1log2
2—T10gT— ﬂT+O(logT);
s

see Landau [405, p. 370].
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The Hypergeometric Function

14.1 The hypergeometric series

We have already (§2.38) considered the hypergeometric series'

a-b ala+1)-bb+1) , ala+1)a+2)-bb+1)b+2) ,
L 12 cler) © 1-2-3-clc+ D(c+2)

1+

from the point of view of its convergence. It follows from §2.38 and §5.3 that the series
defines a function which is analytic when |z| < 1.

It will appear later (§14.53) that this function has a branch point at z = 1 and that if a cut?
(i.e. an impassable barrier) is made from +1 to +oo along the real axis, the function is analytic
and one-valued throughout the cut plane. The function will be denoted by F(a, b; c; 7).

Many important functions employed in Analysis can be expressed by means of hypergeo-
metric functions. Thus?

(1+2)" = F(-n,B; B;-2),
log(1 + z) = zF(1,1;2;—2),
et :[}im F(1,B;1;z/B).

Example 14.1.1 Shew that

d b
— F(a,b;c;z) = L Fra+1,b+ e+ 1;2).
dz c

14.11 The value of F(a,b;c; 1) when Re(c —a—b) >0

This analysis is due to Gauss. A method more easy to remember but more difficult to justify
is given in Example 14.6.2.

! The name was given by Wallis in 1655 to the series whose nth term is
ala+b)a+2b)---(a+(n-1)b).

Euler used the term hypergeometric in this sense, the modern use of the term being apparently due to Kummer
[388, 389].

2 The plane of the variable z is said to be cut along a curve when it is convenient to consider only such
variations in z which do not involve a passage across the curve in question; so that the cut may be regarded as
an impassable barrier.

3 It will be a good exercise for the reader to construct a rigorous proof of the third of these results.

293



294 The Hypergeometric Function

The reader will easily verify, by considering the coefficients of x" in the various series,
that if 0 < x < 1, then

c{c=1-QRc—a-b-1)x}F(a,b;c;x)+ (c —a)(c — b)xF(a,b;c + 1; x)
=c(c - 1)1 -x)F(a,b;c —1;x)

=c(c-1) (1 + i(un - un_l)x") ,

where u,, is the coefficient of x™ in F(a, b;c — 1; x).
Now make x — 1. By §3.71, the right-hand side tends to zero if 1+ Z (up, —u, 1) converges

to zero, i.e. if u,, — 0, which is the case when Re(c —a — b) > 0. Also by §2.38 and §3.71,
the left-hand side tends to

cla+b-c)F(a,b;c;1)+ (¢ —a)(c —b)F(a,b;c+ 1;1)

under the same condition; and therefore

(c—a)c—-b)

F(a,b;c;1) = c—a—b)

F(a,b;c+1;1).

Repeating this process, we see that

F(a,b;c; 1)—{1_[ (c+a+n)(C—b+n)}F(a,b;c+m;1)

n)c—a—-b+n)

(c—a+n)c—=b+n)| .
lim F(a,b;c +m;1),
{m—»ool_[(c+n)(c—a—b+n) s (@bic+m1)
if these two limits exist.
But (§12.13) the former limit is

I'c)['(c—a-b)

I'(c = a)'(c - b)’
u,(a, b, c) be the coefficient of x" in F(a, b; c; x), and m > |c|, we have

if ¢ is not a negative integer; and, if

[F(a, by +m) = 1] < > |un(a, b,c + m)|

n=1

< Z un(lal, |bl,m = |c|)

Iabl

Zun(|a|+1 b| + 1,m + 1 = |cl).

Now the last series converges, when m > |c| + |a| + |b| — 1, and is a positive decreasing
function of m; therefore, since (m — |c|)™' — 0, we have

lim F(a,b;c +m;1) =1,

nm—oo

and therefore, finally,
I'c)['(c—a-b)

F(d,b;C; 1) = m
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14.2 The differential equation satisfied by F(a, b; c; z)

The reader will verify without difficulty, by the methods of §10.3 that the hypergeometric
series is an integral valid near z = O of the hypergeometric equation (this equation was given
by Gauss).

2
Z(I—Z)Z—ZZ+{c—(a+b+1)z}fl—Z—abu:0;

from §10.3, it is apparent that every point is an ‘ordinary point’ of this equation, with the
exception of 0, 1, oo, and that these are ‘regular points’.

Example 14.2.1 Shew that an integral of the equation

isz?Fla+a,b+a;a—B+1;2).

14.3 Solutions of Riemann’s P-equation by hypergeometric functions

In §10.72 it was observed that Riemann’s differential equation*

du (l-a-a 1-B-p 1-y-vy) du
d_zz+{ zZ—a " z-b " z—c }d_z
fartesieso)  pro-oboa), yye-dte-b)
z—a (z-¢) z-c
u

“Crac-be—o "

by a suitable change of variables, could be reduced to a hypergeometric equation; and,
carrying out the change, we see that a solution of Riemann’s equation is

(Z_a)a(z_c)yF{a'+,B+y,a+ﬂ'+y;l+cx—af"—(z_a)(c_b)},
z—b z—0b

“(z-b)(c-a)

provided that @ — @’ is not a negative integer; for simplicity, we shall, throughout this section,
suppose that no one of the exponent differences @ —a’, § — ', ¥ — 7’ is zero or an integer, as
(§10.32) in this exceptional case the general solution of the differential equation may involve
logarithmic terms; the formulae in the exceptional case will be found in Lindel6f’s memoir
[435] to which the reader is referred. See also Klein’s lithographed lectures [372].

Now if a be interchanged with a’, or y with y’, in this expression, it must still satisfy
Riemann’s equation, since the latter is unaffected by this change.

4 The constants are subject to the conditiona@ + @’ + B+ B +y +y' = 1.
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We thus obtain altogether four expressions, namely,

u1=(z:2) ;_;C)YF{a+ﬁ+y,a+/3 tyilta—al %},

o= (5] (5] s evarem oo R
o= (5] (5] rleesevass v o eg)
(b)(b)p{ﬁyﬁyl%}

which are all solutions of the differential equation.

Moreover, the differential equation is unaltered if the triads (a,a’,a), (8,8’,b), (y,y’,c)
are interchanged in any manner. If therefore we make such changes in the above solutions,
they will still be solutions of the differential equation.

There are five such changes possible, for we may write

{b,c,a}, {c,a,b}, {a,c,b}, {c,b,a}, {b,a,c}

in turn in place of {a, b, c}, with corresponding changes of a, a’, 8, 8.y, v
We thus obtain 4 X 5 = 20 new expressions, which with the original four make altogether
twenty-four series.

The twenty new solutions may be written down as follows:

_ [z b\P (2 , ' (et
us_(Z c) (z ) F{ﬂ+7+a,ﬂ+y +a,1+ﬂ_ﬁ,m},
5
M6=(Z b) (Z “) F{ﬁ,+7+a"g/+7'+a;l+ﬁ'—ﬁ;W},
z-c z-c T
B
“7:(Z b) (Z a) F{B+7+0/"3+7'+a’;1+/3—/3’;W},
z—-c) \z—-c T
K »\* [z ) S  aoGob)
us_(Z C) (Z ) F{,B +yv+a,B+y +a’51+8 _'B’m}’
“o) (=) b— _

Y (z-b\° , S , o (b-a)z-0)
(_a) F{y +a+By +a+B1+y —y,m},
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5
ull:(z:c)y(z:b) F{y+a+ﬁ’,y+a’+ﬁ';1+7—y';W},
Z—a Z—a (b-c)z-a)
z-c\ (z-b\ [, S . (b-a)z-o0)
u12=( — ) ( — ) F{y +a+ By +a +ﬁ;1+y—y;f},
z—a z—a (b-c)z-a)
_(z=a)" (2=b), a1 , (b=0)z-a)
Uz = p— p— a+y+Ba+y +6; +a_a’—(b—a)(z—c) R
o B
u14:(z:a) (Z:b) F{a/’+y+ﬂ,a’+)/’+,8;1+a/'—cy;—(b:c)(z:a)},
z—c z—c (b-a)z—-c)
a B
uls:(z:a) (Z:b) F{a/+y+,8’,a+y'+ﬁ’;1+a—a’;W}’
z—c¢ z-c (b-a)z-rc)
o B
u16=(z:a) (Z:b) F{a’+y+ﬁ',a’+y'+,8’;1+a’—a;W},
z—c z—c (b-a)z—-rc)
—b)(z —
u”:(i Z) (i Z) F{'y+,8+ay+,8 +a;1+y- y,—gz C))g_;}
— b)(z7 —
e (S 5] sy 25
— b)(z —
u19=(§ Z) (i Z) F{y+ﬂ+a',y+ﬁ’+af’;1+7—y';—8_c;g_2},
—b)(z —
uzoz(z Z) (z Z) F{y'+,3+a’,y'+/3/+a’;l+y’—y;—EZ_C;g_Z;},
b\’ -b
u21:(§ a) (z 2) F{,B+a+y,,8+a +v;1+B8-p4" %},
b\* —a)(z=b
uzzz(i a) (; )F{B,+a+%’8,+a,+y;l+'B’_B;EZ—Z;§§—a;}’
b\’ —a)z-b
u23=(§ a) (; :) F{,B+a+7’,ﬁ+a’+y’;1+,3—/3’;—EE_Z;E§_Q;},
b\* —a)z-b
u24=(§ a) (i ) F{ﬂ’+a+y’,ﬁ’+a’+y’;l+/3’—/3;—§2_Z;Z_a;}.

(z—a)(c-b)
- b)(c — a)
obtain 24 solutions of the hypergeometric equation satisfied by F(A, B; C; x). The existence

By writing0,1-C, A, B,0,C—-A-B, xfora,a’, 3, 8",v,Y, respectively, we
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of these 24 solutions was first shewn by Kummer [388, 389]. They are obtained in a different
manner in Forsyth [221, Chap. VI].

14.4 Relations between particular solutions of the hypergeometric equation

It has just been shewn that 24 expressions involving hypergeometric series are solutions of
the hypergeometric equation; and, from the general theory of linear differential equations of
the second order, it follows that, if any three have a common domain of existence, there must
be a linear relation with constant coefficients connecting those three solutions.

If we simplify u,, us, us, uq; w17, Uy, Uny, Uz in the manner indicated at the end of §14.3,
we obtain the following solutions of the hypergeometric equation with elements A, B, C, x:

y1 = F(A,B; C; x),
yo=(=x)"“F(A-C+1,B-C+1;2-C;x),
yi=(1-x)"*BF(C-B,C-A;C;x),
ya=(=x)"C(1-x)ABF(1-B,1-A4;2-C;x),
yi7=F(AB;A+B—-C+1;1-x),
yig=(1-x)*FF(C-B,C-A;C-A-B+1;1-x),
vy =(=x)BF(AA-C+1;A-B+1;x7"),

v =(-x)*F(B,B-C+1;B-A+1;x7").

If |arg(1 — x)| < =, itis easy to see from §2.53 that, when |x| < 1, the relations connecting
Y1, ¥2, V3, Y4 must be y; = y3, y» = y4, by considering the form of the expansions near x = 0
of the series involved. In this manner we can group the functions uy, . . ., u,, into six sets of
four, viz.

Uy, Uz, U13, U155 U, Us, Uta, Ure, Us, U7, U1, U235

Ue, Ug, U2, U4; Ug, UL, U7, U195 U0, U112, U18, U0,
such that members of the same set are constant multiples of one another throughout a suitably
chosen domain.

In particular, we observe that u, u3,u;3,u;5 are constant multiples of a function which (by
§5.4, §2.53) can be expanded in the form

(z —a)* {1 + Zen(z - a)"}

n=1
when |z — a| is sufficiently small; when arg(z — ) is so restricted that (z — a)® is one-valued,

3 The special formula

1
F(A,1;C:x) = I—F(C—A, 1;C;Ll),
— T

which is derivable from the relation connecting u; with w3, was discovered in 1730 by Stirling [607, Prop.
VIII.
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this solution of Riemann’s equation is usually written P‘?). And P@); P¥), pB); po) po)
are defined in a similar manner when |z —a|, |z — b|, |z — c| respectively are sufficiently small.

To obtain the relations which connect three members of separate sets of solutions is much
more difficult. The relations have been obtained by elaborate transformations of the double
circuit integrals which will be obtained later in §14.61; but a more simple and singularly
elegant method has recently been discovered by Barnes; of his investigation we shall give a
brief account.

14.5 Barnes’ contour integrals for the hypergeometric function

This appears in [48]. References to previous work on similar topics by Pincherle, Mellin and
Barnes are there given.

Consider

1 [ T(a+sT(b+s)I(-s)
o | (-2 ds.
270 J_joo I'(c+5s)

where |arg(—z)| < &, and the path of integration is curved (if necessary) to ensure that the
poles of T'(a + s)['(b + ), viz. s = —a—n,—-b—n (n = 0,1,2,...) lic on the left of the path
and the poles of I'(=s), viz. s = 0,1,2,.. ., lie on the right of the path. It is assumed that a
and b are such that the contour can be drawn, i.e. that a and b are not negative integers (in
which case the hypergeometric series is merely a polynomial).

From §13.6 it follows that the integrand is

O (Is|**=""exp{~ arg(~z) Im(s) — 7| Im(s)[})

as s — oo on the contour, and hence it is easily seen (§5.32) that the integrand is an analytic
function of z throughout the domain defined by the inequality |argz| < 7 — &8, where ¢ is any
positive number.

Now, taking note of the relation I'(—s)['(1 + s) = —x cosec s, consider

1 I'(a+s)['(b+s) n(—2z)°
27ti Jo T(c+s)[(1+s) sinns

where C is the semicircle of radius N + % on the right of the imaginary axis with centre at
the origin, and N is an integer. Now, by §13.6, we have

L(a+s)0(b+s) n(-2)° _ (-2)*

=0 Na+b—c—1 .
I'(c+s)(1+s) sinsa ( ) sinws

as N — oo, the constant implied in the symbol O being independent of arg s when s is on
the semicircle; and, if s = (N + %) e and |z| < 1, we have
(—z)* cosec s = O [exp {(N + 1) cos 6log|z| — (N + 1) sin 6 arg(-z)
— (N + 1) n|sing|}]
=0 |exp{(N + 1) cosflog|z| - (N + 1) 5| sin 6|} ]
o [exp {2‘% (N +3) log |z|” 0<10] <qm,

9] [exp {—2’%6 (N + %)H m<10] < in

=
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Hence if log |z| is negative (i.e. |z| < 1), the integrand tends to zero sufficiently rapidly

(for all values of 6 under consideration) to ensure that | — Oas N — oo.
c

jco —i(N+3) ico
Lol Lo Ly
—ico —ico C i(N+1)

by Cauchy’s theorem, is equal to —2xi times the sum of the residues of the integrand at
the points s = 0,1,...,N. Make N — oo, and the last three integrals tend to zero when
larg(—z)| < 7 — 6, and |z| < 1, and so, in these circumstances,

Now

1 [™Ta+)Th+)T(=s) . sala+mb+n) ,
27i /im I'(c+s) (=2)ds = 1\1}1_120 ; I'(c + n)n! o

the general term in this summation being the residue of the integrand at s = n.

Thus, an analytic function (namely the integral under consideration) exists throughout the
domain defined by the inequality |argz| < &, and, when |z| < 1, this analytic function may
be represented by the series

(e

Z IFa+n)I'(b+n) ,

por I'(c + n)n!

The symbol F(a,b;c;z) will, in future, be used to denote this function divided by
I'(a)T'(b)/T(c).

14.51 The continuation of the hypergeometric series

To obtain a representation of the function F(a, b; c; z) in the form of series convergent when
|z| > 1, we shall employ the integral obtained in §14.5. If D be the semicircle of radius p on
the left of the imaginary axis with centre at the origin, it may be shewn® by the methods of
§14.5 that
1 I'(a+ s)I'(b+ s)I'(—s)
2mi D I'(c+s)

as p — oo, provided that |arg(—z)| < 7, |z] > 1 and p — oo in such a way that the lower
bound of the distance of D from poles of the integrand is a positive number (not zero).

Hence it can be proved (as in the corresponding work of §14.5) that, when |arg(—z)| < &
and |z] > 1,

(—2)°ds —> 0

1 I'(a+ s)I'(b+ s)I'(-s)
27i I'(c+5s)

00

B Z INa+n)['(1-c+a+n) sin(c—a-n)n ——
B I'd+mI'(1=b+a+n)cosnnsin(b—a—n)n ¢

(=2)°ds

n=0

. i I'b+n)'(1—c+b+n) sin(c—b-n)r ——
n=0

I'A+n)I'(1 —a+b+n)cosnrsin(a—b—n)n

% In considering the asymptotic expansion of the integrand when |s| is large on the contour or on D, it is
simplest to transform I'(a + s), I'(b + s), ['(c + 5) by the relation of §12.14.
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the expressions in these summations being the residues of the integrand at the points s =
—a —n, s = —b — n respectively.

It then follows at once on simplifying these series that the analytic continuation of the
series, by which the hypergeometric function was originally defined, is given by the equation

A P =m0 O R - sl - b i)
%(_z)bﬂb, l—c+bl—a+b;z7"),

where |arg(—z)| < 7.

It is readily seen that each of the three terms in this equation is a solution of the hyperge-
ometric equation (see §14.4).

This result has to be modified when a — b is an integer or zero, as some of the poles of
I'(a+s)I'(b+s) are double poles, and the right-hand side then may involve logarithmic terms,
in accordance with §14.3.

Corollary 14.5.1 Putting b = c, we see that, if |arg(—z)| < ,

M- = 5 [ T+ 9o ds

where (1 — z)™ — 1 as z — 0, and so the value of |arg(1 — z)| which is less than © always
has to be taken in this equation, in virtue of the cut (see §14.1) from 0 to +co caused by the
inequality |arg(—z)| < .

14.52 Barnes’ lemma

Barnes’ lemma states that, if the path of integration is curved so that the poles of T'(y —
$)I(6 — s) lie on the right of the path and the poles of T'(a + s)I'(B + s) lie on the left’, then

Ia + y)I(a+6)I'(B+y)I'(B+06)
T(a+pB+vy+0) '

ﬁ /_.:: INa+ B+ s)I['(y—s)'6—-s)ds =

Write [ for the expression on the left.

If C be defined to be the semicircle of radius p on the right of the imaginary axis with
centre at the origin, and if p — oo in such a way that the lower bound of the distance of C
from the poles of I'(y — s)['(6 — s) is positive (not zero), it is readily seen that

Ia+s)T(B+ s)['(y—s)(6-ys)

= O™ exp {~27 | Im(s)|}],

as |s| — oo on the imaginary axis or on C.
Hence the original integral converges; and / — 0 as p — oo, when
c
Re(a + B+ 7y + 6 —1) < 0. Thus, as in §14.5, the integral involved in [ is —2xi times

7 Tt is supposed that a, 3, y, & are such that no pole of the first set coincides with any pole of the second set.
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the sum of the residues of the integrand at the poles of I'(y — s)I'(6 — s); evaluating these
residues we get®

e

I_ZF(a+y+n)F(,B+y+n) by
B IF'n+ DI'(01+y—-0+n) sina(d—7y)

n=0

N T@+86+n(B+6+
+Z (a mI(B n) n
n=0

IT'n+DI(1+6—y+n) sina(y —96)

And so, using the result of §12.14 freely, by §14.11:

_ i3 I'(a+6)I(B+9) . .
I_sinn'()/—é){ Ti-y+0) Fla+6,B+06;1—y+0;1)
T@+y)(B+y)

F l—6+y:1
TT=0+7) (@+7.B+7; +7,%

_al(l-a-B-y-0) I'(a+8)I'(B+0)
- sin(y — &) {Fﬂ—a—yﬁﬂ—ﬂ—y)
T+ 9rB+y) }
T(l—a-0)l(l-8-0)
3 I'a+y)I'(B+y)'a+8)I(B+0)
" T(@+B+y+06)sina(e+B+y+06)sina(y —6)
{sinz(a +7y) sinn(B +y) —sinza(a + ) sinw(B+ )} .

But

2sinm(a + y)sinn(B +y) — 2sinw(a + 6) sin (B + 6)
=cosa(a — B) —cosm(a + B+ 2y) —cosm(a — B) + cosm(a + B+ 26)
=2sinn(y — §)sinzm(a + B+ 7y + 0).

Therefore

[ I'a+y)I'(B+y)['(a+8)I(B+0)

a T(a+B+7y+0)

which is the required result; it has, however, only been proved when Re(a + 8+y+d—1) < 0;
but, by the theory of analytic continuation, it is true throughout the domain through which
both sides of the equation are analytic functions of, say «, and hence it is true for all values
of a, B, v, 6 for which none of the poles of I'(a + s)['(8 + ), qua function of s, coincide with
any of the poles of I'(y — s)I'(6 — s).

Corollary 14.5.2 Writing s + k,a — k,3—k,y + k,0 + k in place of s, @, B,, 0, we see that
the result is still true when the limits of integration are —k + ico, where k is any real constant.

8 These two series converge (§2.38).
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14.53 The connexion between hypergeometric functions of z and of 1 — 7
We have seen that, if |arg(—z)| < 7,
I'(a)['(b) Fla.biciz) = 1 /im I'(a+ )b+ s)(-s)
I'(c) OGN = o ieo I'(c +s5)

] i°° { 1 /_k+iw Ia+I'(b+0)l'(s—t)'(c—a-b-1t)dt }

(=2)°ds

T2 S 270 S
L)
—_— ds,
I'(c —a)l'(c - b)
by Barnes’ lemma.
If k& be so chosen that the lower bound of the distance between the s contour and the ¢

contour is positive (not zero), it may be shewn that the order of the integrations’ may be
interchanged.

Carrying out the interchange, we see that if arg(1 — z) be given its principal value,
I'(c — a)l'(c — b)I'(a)T'(b)

B F(a,b;c;2)
1 —k+ioco
= — IFMa+)'b+t)l'(c—a-b-1)
270 J ko
{% [: I'(s —)(=s)(-2)* ds} dt
—k+ico
- T(a + OT(b + DT (c — a— b - )T(=0)(1 — 2)' di.
2mi

—k—ioco

Now, when |arg(1 — z)| < 2z and |1 — z| < 1, this last integral may be evaluated by the
methods of Barnes’ lemma (§14.52); and so we deduce that

I'(c — a)l'(c — b)I'(a)T'(b)F(a,b;c;z)
=T'(e)'(@)'(b)I(c —a—-b)F (a,b;a+b—c+1;1-2)
+T(c)(c —a)[(c—b)(a+b—-c)l -z P
XF(c—a,c—b,c—a—-b+1;1-7),

a result which shews the nature of the singularity of F(a,b;c;z) atz = 1.

This result has to be modified if ¢ —a — b is an integer or zero, as then I'(a + )['(b+t)I'(c —
a—b—1)['(—t) has double poles, and logarithmic terms may appear. With this exception, the

result is valid when |arg(—z)| < =, |argl — z| < &. Taking |z| < 1, we may make z tend to a
real value, and we see that the result still holds for real values of z such that 0 < z < 1.

14.6 Solution of Riemann’s equation by a contour integral

We next proceed to establish a result relating to the expression of the hypergeometric function
by means of contour integrals.

® Methods similar to those of §4.51 may be used, or it may be proved without much difficulty that conditions
established by Bromwich [102, §177] are satisfied.
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Let the dependent variable u in Riemann’s P-equation (§10.7) be replaced by a new

dependent variable /, defined by the relation
u=(z-a)(z-bPrz-cyl
The differential equation satisfied by / is easily found to be
d’I l+a-a -p -y
ar aa/+1+ﬁ ,8+1+yy ﬂ
dz? z—a z-b z—c dz
L @+B+yf@+pry+Dz+Na@+f +y =D} _
(z—a)z-b)z—-c¢)

0,

which can be written in the form

0P~ (1 -200) + R &
+{1(1-2)1-1)Q"(z) +(A-1)R'(2)} I =0,
where
A=l-a-B-y=a +p +7v,
0(z) = (z—a)(z = b)(z—c),
R(z)= ) (@ +B+y)(z—b)z—c).

It must be observed that the function / is not analytic at oo, and consequently the above
differential equation in / is not a case of the generalised hypergeometric equation.
We shall now shew that this differential equation can be satisfied by an integral of the form

C

provided that C, the contour of integration, is suitably chosen.
For, if we substitute this value of I in the differential equation, the condition'® that the
equation should be satisfied becomes

/(l _ a)a'+,b’+y—l(t _ b)(z+,8'+y—l(l _ c)a+ﬁ+y’—l(Z _ t)—a—ﬁ—y—Z Kdt = 0,
C

where

K=1-2{0@)+(-20'() + 3(t -2°0"(2)}
+(t — 2){R(z) + (t — 2)R'(2)}
=(A=2{Q(t) - (t - 2)’} + (t — 2){R(1) — (t — 2) Z(a' +B+7y)}

=—(l+a+B+y)t—-a)t-Db)(t—c)+ Z(a’ + B+ y)(t—b)t—c)t - z).
d
It follows that the condition to be satisfied reduces to / d_‘t/ dt = 0, where
c

V= (l _ a)a’+B+y([ _ b)a+B’+y(t _ C)a+,6+y’([ _ Z)—(1+a+,8+y).

10 The differentiations under the sign of integration are legitimate (§4.2) if the path C does not depend on z and
does not pass through the points a, b, c, z; if C be an infinite contour or if C passes through the points
a, b, c or z, further conditions are necessary.
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The integral [ is therefore a solution of the differential equation, when C is such that V
resumes its initial value after ¢ has described C. Now

V= (t _ a)(t'+ﬁ+‘y—l (f _ b)(1+ﬁ’+y—l (t _ c)(1+ﬁ+y’—l (Z _ t)—(l/—ﬂ—)/[]7

where U = (t —a)(t — b)(t — c)(z—t)~'. Now U is a one-valued function of ¢; hence, if C be a
closed contour, it must be such that the integrand in the integral I resumes its original value
after ¢ has described the contour.

Hence finally any integral of the type

(z=a)"(z=bY(z—c) / (t — aP P+ =1 (g — pyrra+h-1
c
X (l _ C)a+ﬁ+7/_l(z _ t)_g_'[;_y dl,
where C is either a closed contour in the z-plane such that the integrand resumes its initial

value after ¢ has described it, or else is a simple curve such that V has the same value at its
termini, is a solution of the differential equation of the general hypergeometric function.

Note The reader is referred to the memoirs of Pochhammer [527], and Hobson [314], for
an account of the methods by which integrals of this type are transformed so as to give rise
to the relations of §14.51 and §14.53.

Example 14.6.1 To deduce a real definite integral which, in certain circumstances, repre-
sents the hypergeometric series.

The hypergeometric series F(a, b; c; 7) is, as already shewn, a solution of the differential
equation defined by the scheme

0 %) 1
Ps 0 a 0 z
l-¢c b c—a-b»b

If in the integral
t )’y+(l+[))'—l

(Z _ a)a (1 _ %)ﬁ (Z _ C)y L([ _ a)5+7+a’71 (1 _ Z
X (Z _ C)a+ﬁ+7’—l (I _ Z)—(l—ﬁ—'}’ dt,

which is a constant multiple of that just obtained, we make b — oo (without paying attention
to the validity of this process), we are led to consider

/ 1976t = )07t — )™ dr.
c
Now the limiting form of V in question is
tl—c+a (t _ l)c—b (t _ Z)—l—a’
and this tends to zero at t = 1 and ¢ = oo, provided Re(c) > Re(b) > 0. We accordingly

consider / 197¢(t — 1)°771(t — 2)™* dt, where z is not!! positive and greater than 1. In this
1

1" This ensures that the point ¢ = 1/z is not on the path of integration.
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integral, write ¢ = u~': the integral becomes

1
/ uP N (1 = )71 - uz)™ du.
0

We are therefore led to expect that this integral may be a solution of the differential equation
for the hypergeometric series.

The reader will easily see that if Re(c) > Re(b) > 0, and if argu = arg(1 — u) = 0, while
the branch of 1 — uz is specified by the fact that (1 — uz)™* — 1 as u — 0, the integral just
found is

I'(b)'(c—-b)

o F(a,b;c;z).

This can be proved by expanding'? (1 — uz)™“ in ascending powers of z when |z| < 1 and
using §12.41.

Example 14.6.2 Deduce the result of (§14.11) from the preceding example.

14.61 Determination of an integral which represents P*)

We shall now shew how an integral which represents the particular solution P‘® (§14.3) of
the hypergeometric differential equation can be found.
We have seen (§14.6) that the integral

I = (Z - a)"(z — b)ﬁ(z - C)?’ /([ _ a)ﬁ+y+a’—l(t _ b)y+a+ﬁ’_1
C
X (t — )P Nt — ) PV dy

satisfies the differential equation of the hypergeometric function, provided C is a closed
contour such that the integrand resumes its initial value after ¢ has described C. Now the
singularities of this integrand in the ¢-plane are the points a, b, c, z; and after describing the
double circuit contour (§12.43) symbolised by (b+, c+, b—,c—) the integrand returns to its
original value.

Now, if z lie in a circle whose centre is a, the circle not containing either of the points b and
¢, we can choose the path of integration so that ¢ is outside this circle, and so |z —a| < |t — a]
for all points ¢ on the path.

Now choose arg(z — a) to be numerically less than 7 and arg(z — b), arg(z — ¢) so that they
reduce to arg(a — b), arg(a — ¢) when z — a, the values of arg(a — b), arg(a — ¢) being fixed.
Now fix arg(t — a), arg(t — b), arg(t — c) at the point N at which the path of integration starts
and ends; also choose arg(z — z) to reduce to arg(t — a) when z — a.

Then
(=bF =(@=bf {1+p(Z=5 )+ ],
(Z—c)7:(a—c)7{1+y(2:i)+...},

12 The justification of this process by (§4.7) is left to the reader.
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and since we can expand (¢ — )~ 7 into an absolutely and uniformly convergent series
—a—p— a-z
(t — a)y o 7{1—(a/+ﬁ+y)t—+---},
-a

we may expand the integral into a series which converges absolutely.
Multiplying up the absolutely convergent series, we get a series of integer powers of z — a
multiplied by (z — a)®. Consequently we must have

(b+,c+,b—,c—)

I=(a-bf(a—cyP® / (t — ayfree-!

N
X (t = b)Y (1 — )P gy

We can define P\@), ¥ pB) p»_ PpY) by double circuit integrals in a similar manner.

14.7 Relations between contiguous hypergeometric functions

Let P(z) be a solution of Riemann’s equation with argument z, singularities a, b, ¢, and
exponents «, a’, B, B, v, v'. Further, let P(z) be a constant multiple of one of the six
functions P, p@) pB pE) p»_ pY) Let Py m1(z) denote the function which is
obtained by replacing two of the exponents, £ and m, in P(z) by € + 1 and m — 1 respectively.
Such functions Py, ,,-1(2) are said to be contiguous to P(z). There are 6 x5 = 30 contiguous
functions, since £ and m may be any two of the six exponents.

It was first shewn by Riemann [556]'? that the function P(z) and any two of its contiguous
functions are connected by a linear relation, the coefficients in which are polynomials in z.
There will clearly be 2 x 30 x 29 = 435 of these relations. To shew how to obtain them, we
shall take P(z) in the form

P(z) =(z—a)"(z - b)ﬁ(z —-c)y L([ — a)ﬁ‘*’)’*'a/—l(t _ b)7+tx+,8’—l
X (1 = Y B = P

where C is a double circuit contour of the type considered in (§14.61).
First, since the integral round C of the differential of any function which resumes its initial
value after ¢ has described C is zero, we have

d , , ,
0 — / E {(t _ a)a/ +ﬁ+y(t _ b)a/Jrﬁ +y—l(t _ C)a+ﬁ+y —l(t _ Z)—a—ﬁ—y} dr.
c
On performing the differentiation by differentiating each factor in turn, we get

(a/ +ﬂ + 7)P + (a +ﬁ, + Y - l)P(r’+l,,B’—l + (a/ +ﬂ + 71 - 1)P(t’+1,y’—1
_(a+B+y)
z-b
Considerations of symmetry shew that the right-hand side of this equation can be replaced
by

Pgi1y-.

(@+pB+7y)

P’—l 1.
7—c B'=1y+

13 Gauss had previously obtained 15 relations between contiguous hypergeometric functions.
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These, together with the analogous formulae obtained by cyclical interchange'* of (a,a, a’)
with (b,8,8’) and (c,y,vy’), are six linear relations connecting the hypergeometric function
P with the twelve contiguous functions

Pa+1,ﬁ'—ls Pﬁ+l,y’—l’ Py+1,af’—1a Pa/+1,y’—ls P,G’Jrl,a’—l» Py+1,ﬁ’—ls
P(1’+1,ﬁ’—l, P(z’+l,7’—l’ P,B’+l,'y’—laPﬁ’+l,(1’—1, Py’+l,1x’—l’ Py’+l,,8’—l-

Next, writing t — a = (t — b) + (b — a), and using'® P, _, to denote the result of writing
a’ — 1 for @’ in P, we have

P=Py_1p+(b-a)Py_,.
Similarly P = Py_1,44+1 + (¢ — a)Py—;. Eliminating P,_; from these equations, we have
(c=b)P+(a—c)Py_1ps+(b—a)Py_i i1 =0.

This and the analogous formulae are three more linear relations connecting P with the last
six of the twelve contiguous functions written above.
Next, writing (¢ — z) = (t — a) — (z — a), we readily find the relation

P 1
T z-b

X / (t _ a)[)’+7+a’_l(t _ b)’y+a+ﬁ’_1(t _ C)Q+'B+7/_l(t _ Z)_a—ﬁ‘)’—l dt,
C

Psiiy-1 — (z—a) ™ (z=bP(z-c)

which gives the equations

(z-a) ' {P-(z=b)"Pauiy1} = -0 {P-(z-0) " Prro}
=(z-o" {P —(z-a)" P(H—l,[)”—l} .

These are two more linear equations between P and the above twelve contiguous functions.

We have therefore now altogether found eleven linear relations between P and these twelve
functions, the coefficients in these relations being rational functions of z. Hence each of these
functions can be expressed linearly in terms of P and some selected one of them; that is,
between P and any two of the above functions there exists a linear relation. The coeflicients in
this relation will be rational functions of z, and therefore will become polynomials in z when
the relation is multiplied throughout by the least common multiple of their denominators.

The theorem is therefore proved, so far as the above twelve contiguous functions are
concerned. It can, without difficulty, be extended so as to be established for the rest of the
thirty contiguous functions.

Corollary 14.7.1 If functions be derived from P by replacing the exponents a, o, B, 8, v,
vibya+p @ +q B+r, B +s, v+t vy +u wherep, q, 1, s, t,uare integers satisfying
the relation

prg+r+s+t+u=0,

then between P and any two such functions there exists a linear relation, the coefficients in
which are polynomials in z.

14 The interchange is to be made only in the integrands; the contour C is to remain, unaltered.
15 P,s_y is not a function of Riemann’s type since the sum of its exponents at a, b, ¢ is not unity.
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This result can be obtained by connecting P with the two functions by a chain of inter-
mediate contiguous functions, writing down the linear relations which connect them with
P and the two functions, and from these relations eliminating the intermediate contiguous
functions.

Many theorems which will be established subsequently, e.g. the recurrence formulae for
the Legendre functions (§15.21), are really cases of the theorem of this article.

14.8 Miscellaneous examples
Example 14.1 Shew that

Fla,b+1;¢;2) - F(a,byc;2) = S F(a+ 1,b+ 1;¢ + 15 2).
C

Example 14.2 Shew that if a is a negative integer while 8 and vy are not integers, then the
ratio F(a,B;a+ B+ 1—-v;1— x)/F(a/,,B; v; x) is independent of x, and find its value.

d da’p

Example 14.3 If P(z) be a hypergeometric function, express its derivatives — and e
Z Z

linearly in terms of P and contiguous functions, and hence find the linear relation between

dp d’pP

P, e and P i.e. verify that P satisfies the hypergeometric differential equation.
b4 Z

Example 14.4 Shew that F {1, 1; 1;4z(1—2)} satisfies the hypergeometric equation satisfied
by F(3,3;1;z). Shew that, in the left-hand half of the lemniscate |z(1 — z)| = 3, these two
functions are equal; and in the right-hand half of the lemniscate, the former function is equal
to F(3, 31,1 -2).
Example 14.5 (Gauss) If F,, = F(a + 1,b;¢;x), F,_ = F(a — 1, b; c; x) determine the 15
linear relations with polynomial coefficients which connect F(a, b; c; x) with pairs of the six
functions F,., F,_, Fp., Fp_, F.., F,._.

Example 14.6 Shew that the hypergeometric equation

2
x(x — 1)%

d
S - {y—(@+B+1)x} 2 +aBy =0

is satisfied by the two integrals (supposed convergent)

1
/ Z'B_](l — z)"_ﬁ_l(l - xz)7%dz
0
and
1
/ A1 -2 {1 -1 - x)z} ¥ dz.
0

Example 14.7 (Math. Trip. 1896) Shew that, for values of x between 0 and 1, the solution
of the equation

2
x(1 —x)j—y

1 d
2 +§(a/+ﬁ+1)(1—2x)d—i—a'ﬁy20
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is
aﬂl
2°2° 2

a+l1 g+1 3
2

AF( (1—2x)2)+B(1 2x )F( -2x)*],

where A, B are arbitrary constants and F(a, 8; y; x) represents the hypergeometric series.

Example 14.8 (Hardy) Shew that
lim [F (@.B;7; %)~

i iy T By =G =0t =BETQ) (| unyeas
n!I'(y —)l'(y = B)I'(@)I' (B)
_Ty-a-pr()
Iy —a)l'(y -p)
where k is the integer such that k < Re(a + 8 —y) < k + 1. (This specifies the manner in

which the hypergeometric function becomes infinite when x — 17 provided that @ + 5 —y
is not an integer.)

Example 14.9 (M. J. M. Hill [308]) Shew that, when Re(y — @ — 8) < 0, then

/ F()’)I’l(ﬁ—’gay
(@ +B=y)(@)(B)

where S, denotes the sum of the first n terms of the series for F(a, 8;7y; 1).

-1 as n — oo,

Example 14.10 (Appell [29]) Shew that, if y;, y, be independent solutions of

d?y dy
dx2+Pd_+Qy 0,
then the general solution of
dz d’z dP dz dQ
P——= 4+ 1{2P°+ — +4Q} — +14PQ +2—=} 7 =
e +3d2 { oot Q}dx+{ 0+ Tl ? 0

is z = Ay;? + By, y, + cy,%, where A, B, C are constants.

Example 14.11 (Clausen [148]) Deduce from Example 14.10 above that, if a + b + % =

I'(c)l2c-1) i I'a+nI(a+b+nl2b+n) ,

C . 2 _
(Fla.biei)) = Faar e @+ b) (e +nl(2c—1+n)

Example 14.12 (Kummer) Shew that, if |x| < % and [x(1 —x)| < 1,

1 1
F(2a,2,8;a/+ﬁ+ E;x) = F(a/,,B;a/+ﬁ+ 5;4x(1 -x)].
Example 14.13 Deduce from Example 14.12 above that

Dl
(za 28a+p+ L 1) _Ta+p+yre)
(e + 3)(B + 3)

272
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Example 14.14 (Watson [647]) Shew that, if w = ¢**/3 and Re(a) < 1,
ni(3a — 1)] I'(2a)(a - 1)
6 I'(3a-DIZ)
_7i(3a - 1)} T2a)l(a - 3)
6 IFBa-DI3)

F(a,3a - 1:2a;-w?) = 33@=Df2 exp [

F(a,3a - 1;2a;—w) = 33e-D/2 exp [

Example 14.15 (Heymann [302]) Shew that
F 1 1 . 1 . 3 1) (8)” F(3H(n+3)
——n,—=—n+-n+ - —=-|=|-| —SV——.
272 2 273 9 F(%)F(n + %‘)
Example 14.16 (Cayley [133]. See also Orr [510]) If
(1 =x)"P7YFQ2a,2B;2y;x) =1+ Bx + Cx>* + Dx* + -+ -,
shew that
Fla.fiy+3:0)F(y —a,y - By + §:x)
1
Y B+ 7(?’+ )% 2
Y+3 (y+2)(r+3)
1 2
7(17’+ )(;y+ ) D+
(Y +3)y+35)y+3)
Example 14.17 (Le Vavasseur) If the function F(«, 8, 8’,7; x, y) be defined by the equation
I(y) :
@)y — @) Jo
then shew that between F and any three of its eight contiguous functions

Fla+1),F(B+£1),F(B +£1),F(y 1),

=1+

Fa.p.p i x,y) = w1 = uy ™ (1 = ux) P (1 - uy) ™ du,

there exists a homogeneous linear equation, whose coefficients are polynomials in x and y.

Example 14.18 (Math. Trip. 1893) Ify —a — B <0, shew that, as x — 17,
T +B-7)
F(a,B;y:x) /{

F(@)I'(B)

and that, if y — @ — 8 = 0, the corresponding approximate formula is
I'a + pB) 1
F(a,B;vy; 1 1.
i) [{ gty oo 75
Example 14.19 (Pochhammer) Shew that, when |x| < 1,

(1 —x)”f”} -1,

(x*,0",x7,07)
/ XY= xy e (1 =)y P ay
(&

I'(y - )l (a)
['(y)

where ¢ denotes a point on the straight line joining the points 0, x, the initial arguments of
v — x and of v are the same as that of x, and arg(1 —v) - Oas v — 0.

= —4¢™ sin rar sin w(y — @) - F(a,B;y; x),
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Example 14.20 (Barnes) If, when |arg(1 — x)| < 27,

K(x) = %/ [F=5)T (L +5)]* (1= x)° ds,

ico

and, when |argx| < 27,

K'(x) = ZLm [ [T(=s)L (3 + S)]sz ds,

100

by changing the variable s in the integral or otherwise, obtain the following relations:

K(x) = K'(1 - x), if Jarg(l - x)| < m,
K(1—x)=K'(x), if |argx| < m,
K(x) =(1-x) "k (Ll) i Jarg(1 - x)| < 7,
P
g (X1 .
K(l-x)=x"""K|—], if |argx| < m,
X
K'(x) = x"'?K'(1/x), if Jargx| < 7,
1
K'(1l-x)=(1 —x)‘l/zK’(l—), if |arg(l — x)| < 7.
- X

Example 14.21 (Barnes) With the notation of the preceding example, obtain the following
results

TG +n)
2K(x) = )| == ]
o n!
, T +n)
2ﬂK(x):—Z 2' ] "
g n!
1 1 1
><10gx—410g2+4(T—§+~‘—§)],

when |x| < 1, |argx| < 7; and
K(x) = Fi(=x) 2 K(1/x) + (=x)2K'(1/x),
when |arg(—x)| < &, the ambiguous sign being the same as the sign of Im(x).

Example 14.22 (Appell [30]) Hypergeometric series in two variables are defined by the
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equations

am+nﬁmﬁ
- nxmyn
minYm+n

(07
m+nﬂmﬂn xmyn’

Fi(a; 8,8 ;v;x,y) = Z

B(@; BB 73 %y) = ), Yy
i minlywy,

7 ’
(l’m anﬁfﬂﬁn m._n
m\n!y

F3(01,a’/,ﬁ,ﬁ,§7§ x,}’) = Z

m,n

’ Ay nﬁm n m.n
Fi(a,B;7,Y: x,y) = Z;x "

nly,. vy’
c=imlnlynyy,

k]

where @, = a(@ +1)--- (@ + m—1[), and Z means Z Z

m=0 n=0
Obtain the differential equations
0°F, 2F F
R =052 4y =0Fl + ty = (@ DX G~ By - apFi =0,
2F ) F
w1-05 2 - S sy =G 052 - gy 5 e <o,
x0
(’)2F (’)2F
x(l—x) 3 88 +{y - (a/+,8+1)x}——cyﬂF3—
F4 0°F, ,0%F,
)6(1—)6)(9 > - xyaxay—y e +{y—-(a+B+Dx }—

F.
e+ By apr =0,
dy

and four similar equations, derived from these by interchanging x with y and «, 3, y with
a’, B,y when «’, ', y" occur in the corresponding series.

Example 14.23 (Hermite [292]) If « is negative, and if
a=-v+a,

where v is an integer and « is positive, shew that

00

I'(x)I'(a) Z{ R, LG (x)}

I'x +a) X+n
where
Ro- VDD g,
6w =(1+ ) (1+75) - (1+ 55
G(x) = G(x) - G(- n)

xX+n



314 The Hypergeometric Function

Example 14.24 When « < 1, shew that

o

FONa-x) < R, R,
(@) _Zx+n_zx—a—n’

n=1 n=1

where
_(=D'a(@+1)---(@+n-1)

n =

n!

Example 14.25 (Hermite [292]) When « > 1, and v and a are respectively the integral and
fractional parts of @, shew that

PN =) 3 6o _ $ Glpuns

I'(@) M x+n Hx-a-n
Lo P1 Pr-1
-G [ + dod ——],
(x) x—a x-a-1 x—a-v+1
where
X X X
o= (1-3) - 7))
() a a+1 a+v-—-1
and

_(=D"a(a+1)---(a+n-1)
B n! ’

n

Example 14.26 (Saalschiitz [570]) (A number of similar results are given by Dougall
[187].) If

Ja(x,y,v) =
! mx(y+v+n—1) [(m\x(x+1D)(y+v+n-1)(y+v+n)
- (1) y(x +v) * (2) yy+Dx+v)(x+v+1) o

n
2

where n is a positive integer and (7), (), . . . are binomial coefficients, shew that

)= IF'YWI'(y—x+nl'(x+v)['(v+n)
Sl y.v) = I'y—x)I'(y +n)LMIC(x+v+n)

Example 14.27 (Dixon [183]) If

afy @+ DEB+yy+D) 5
Se+ 1 000+ De(e+1)1-2 ’

F(e,B,y;6,65x) =1+

shew that, when Re(6 + &£ — 3o — 1) > 0, then
Fla,a-6+1l,a—e+1;6,&;1)
T(HI(S(EI(S + & - 3 - 1)
I -1a)(e - 1)} +ia)[(6+e—-a-1)

-

Example 14.28 (Morley [475]) Shew that, if Re(@) < %, then

- a(04+1)-~(a/+n—1)3 ey I(1-3a)
1+Z{ Py } =COS<7)[F(1_—;)]3.

n=1
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Example 14.29 (Dixon [184]) If

1 1
/ / XL =x) YN = )N (1 = xy)" T  dxe dy = B, j, k. 1,m),
0 0

shew, by integrating with respect to x, and also with respect to y, that B(i, j, k,[,m) is a
symmetric function of i + j, j + k, k + [, [ + m, m + i. Deduce that

F(a,p,y;6,1)
royrEero+e—a—-g-vy)

is a symmetric function of 0, &, 0 +e—a - 5,6+ -5 —v,0 + &€ —y — . For a proof of a
special case by Barnes, see [50].

Example 14.30 If

F, = F(—n,a + n;y; x)
B xl~y(1 _ x)y—(l dn
B yiy+1)---(y+n-1)dx"

shew that, when 7 is a large positive integer, and 0 < x < 1,

F, = nyr_(;\)/#sin $)77 (cos )% cos{(2n + a)¢ - %(27 -D}+0 (n%) ’

where x = sin® ¢.

{xy+n—1(1 _ x)a+n—y}’

Note This result is contained in the great memoir by Darboux [163, 164]. For a systematic
development of hypergeometric functions in which one (or more) of the constants is large,
see [652].
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Legendre Functions

15.1 Definition of Legendre polynomials

Consider the expression (1 — 2zh + h2)"2; when |2zh — h2| < 1, it can be expanded in a
series of ascending powers of 2z — h?. If, in addition, |2zh| + |h|*> < 1, these powers can be
multiplied out and the resulting series rearranged in any manner (§2.52) since the expansion
of [1 = {|2zh| + |h|*}]"? in powers of |2zh| + |h|* then converges absolutely. In particular, if
we rearrange in powers of &, we get

(1 =2zh+ h*) % = Py(2) + hPy(2) + W2P>(2) + B P3(2) + -+ - ,

where
1 1
Po(z)=1, P(z)=2z P(z)= 5(312 -1), P3(z)= 5(513 - 32),
1 1
Py(2) = g(35z4 -30z2+3), Ps(z) = §(63z5 - 702° + 157),

and generally

Pn(z) =

(2n)! {n_ nin-1) ,, nm-1)(n-2)(n-3) n_4_”‘}
2n(nl)? 20n-1)° T 2.4-2n-1)2n-3)

“ 2n —2r)!
= Dy g A e,
r=0

ri(n—r)l(n—2r)!

where m = %n or %(n — 1), whichever is an integer.

If a, b and § be positive constants, b being so small that 2ab + b*> < 1 — 6, the expansion
of (1 -2zh + hz)‘% converges uniformly with respect to z and & when |z| < a,|h| < b.

The expressions Py(z), Pi(z),. .., which are clearly all polynomials in z, are known as
Legendre polynomials, P,(z) being called the Legendre polynomial of degree n. Other names
are Legendre coefficients and Zonal Harmonics. They were introduced into analysis in 1784
by Legendre [420].

It will appear later (§15.2) that these polynomials are particular cases of a more extensive
class of functions known as Legendre functions.

Example 15.1.1 By giving z special values in the expression (1 — 2zh + h?)"z, shew that
P(1)=1,  Py(=1)=(-1)",

Pr1(0) =0,  P(0) = (_l)nlli%(-zé;)l)

316
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Example 15.1.2 (Legendre) From the expansion

(1-2hcos@ + h*) 2 :(1 + —he'? + hzezla_'_.“)

2 2-4
1 -i0 1-3 2 -2i0
x(1+2he +2.4he + ,
shew that
1-3---2n-1) 1-(2n)
P, ) =—————=12 0+ ——-""-2 -2)6
(cos ) 340 { cosn 3 an-1) cos(n—2)

1-3-2n)-(2n-2)
2-4-2n-1)2n-3)

200s(n—4)9+---}.

Deduce that, if 6 be a real angle,

1-3---2n-1) 1-(2n) 1-3-2n)2n -2)
PrlcosOl < 4 {2 2 on-1) 2-4-(2n—1)(2n—3)'2+"'}
= P,(1),

so that |P,(cos0)| < 1.

Example 15.1.3 (Clare, 1905) Shew that, when z = —%,
P, = PyPy, — P1Poy_ + PyPoy 5 — -+ + P, Py.

15.11 Rodrigues’ formula for the Legendre polynomials [561]

It is evident that, when n is an integer,

", ar |+ n! >
_ 1 n_ * _1 r_ v 2n-2r
dz”(z ) dz" {;( ) r!(n—r)!Z }

& ! 2n —2r)!
= D=1y n Qno 20t
r=0

ri(n—r)! (n—-2r)!

where m = %n or %(n — 1), the coeflicients of negative powers of z vanishing. From the
general formula for P,(z) it follows at once that
1 4
P n = 7 - 1 n;
@ = sige @~V

this result is known as Rodrigues’ formula.

Example 15.1.4 Shew that P,(z) = 0 has n real roots, all lying between +1.

15.12 Schlifli’s integral for P, (z) [579]

From the result of §15.11 combined with §5.22, it follows at once that

2 _ 1\
Pn(Z):LL ¢-D

— _dt,
2ni Je 27(t — )
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where C is a contour which encircles the point z once counter-clockwise; this result is called
Schldfli’s integral formula for the Legendre polynomials.

15.13 Legendre’s differential equation

We shall now prove that the function u = P,(z) is a solution of the differential equation

which is called Legendre’s differential equation for functions of degree n.
For, substituting Schlifli’s integral in the left-hand side, we have, by §5.22,

dPu(z) _, dPu(2)
d

(1-2) dz?
B (n+1) -1y
Co2mi Je 2t - )3
_(m+l) [ d {(ﬂ - 1)"“} "

T 2mi-2n Joodt | (1 - 72

2

+nm + 1)P,(2)

{(-n+2)F = 1) +2(n+ Dt(t — 2)} dt

and this integral is zero, since (1> — 1)"*!(t — z) ™2 resumes its original value after describing
C when n is an integer. The Legendre polynomial therefore satisfies the differential equation.
The result just obtained can be written in the form

dP,(z)
Z

4 {(1 -9 } +n(n+1)P,(2) = 0.
dz

Note It will be observed that Legendre’s equation is a particular case of Riemann’s equation,
defined by the scheme

-1 1
P{0 n+l1 0 z
0 -n O
. . d"Pu(2) .
Example 15.1.5 Shew that the equation satisfied by ——— is defined by the scheme
Zr
-1 —00 1
Py-r n+r+1 —-r z
0 -n+r 0

Example 15.1.6 If z> = 57, shew that Legendre’s differential equation takes the form

Cﬂ_y+{i_;}ﬂ+m_
dn* \2n 1-n)dn 4n(1-n)

Shew that this is a hypergeometric equation.

Example 15.1.7 Deduce Schléfli’s integral for the Legendre functions, as a limiting case
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of the general hypergeometric integral of §14.6. Hint. Since Legendre’s equation is given by
the scheme

-1 00 1
PSJ O n+l1 0 z¢,
0 -n 0

the integral suggested is

b—oo0

tim (1 - %)"H /(z 1) = 1 im (1~ %) (= 2" dr
c —00
- [ =1y
C

taken round a contour C such that the integrand resumes its initial value after describing it;
and this gives Schléfli’s integral.

15.14 The integral properties of the Legendre polynomials
We shall now shew that

| 0 (m # n),
[ Patairatardz -
B (m = n)
2n+1 '
These two results were given by Legendre in 1784 and 1789.

d
Let {u}, denote d—u; then, if » < n, {(z* — 1)}, is divisible by (z*> — 1)"™"; and so, if
Zr

r < n, {(z* = 1)"}, vanishes when z = 1 and when z = —1.
Now, of the two numbers m, n, let m be that one which is equal to or greater than the other.
Then, integrating by parts continually,

1
[1 {@-0m, @ -1}, de= [{@ -0}, {@ =01 -

1
J A0 @) e

1
=(-1)" /1 @ -0 {@-1D"}, dz,

since {(12 - l)m}m_l, {(z2 - 1)’"}m_2 ,. .. vanish at both limits.

Now, when m > n, {(z2 - 1)"}m+n = 0, since differential coefficients of (z> — 1)" of order
higher than 2n vanish; and so, when m is greater than n, it follows from Rodrigues’ formula

that

1
/ P, (2)Py(2) dz = 0.

1
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When m = n, we have, by the transformations just obtained,
1 1 d2n
/ {@-D"}, {@ -1}, dz=(-1)" / (& =)' (& = 1) dz
-1 -1
1
= (2n)! / (1-2°)"dz
-1

1
:2-(2n)!/ (1-25)"dz
0

Vs

=2-(2n)! / sin?"*! 6 do
0
2-4---(2n)
=2-2n))—7—m——,
S s+
where cos 6 has been written for z in the integral; hence, by Rodrigues’ formula,

2-2n)! 2mnl? 2
@2 2n+1)! 2n+1

[NE

/ (P dz =
-1

We have therefore obtained both the required results.

Note It follows that, in the language of Chapter 11, the functions (n + %) 2 P, (z) are normal
orthogonal functions for the interval (-1, 1).

Example 15.1.8 (Clare, 1908) Shew that, if x > 0,

1
/ (cosh2x — )" Py(z)dz = V2 (n+ %)—1 o n+hx
-1

1
Example 15.1.9 (Clare, 1902) If [ = / P(2)Pn(2) dz, then
0

(i) I=1/2n+1)whenm = n,

(ii) 1 = 0 when m — n is even,
(iii) 1 = (=1 n!m!
©2min=l(n —m)(n 4+ m + 1) (v)2(u!)?

whenn =2v+1,m=2pu.

15.2 Legendre functions

Hitherto we have supposed that the degree n of P,(z) is a positive integer; in fact, P,(z) has
not been defined except when n is a positive integer. We shall now see how P, (z) can be
defined for values of n which are not necessarily integers.

An analogy can be drawn from the theory of the Gamma-function. The expression z! as
ordinarily defined (viz. as z(z — 1)(z — 2)---2 - 1) has a meaning only for positive integral
values of z; but when the Gamma-function has been introduced, z! can be defined to be
I'(z + 1), and so a function z! will exist for values of z which are not integers.

Referring to §15.13, we see that the differential equation

d

2
d
(l—zz)d—;:—sz—z+n(n+l)u=O
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1 -1y
w= L / oy,
2ni Je 2M(t — )]
even when n is not a positive integer, provided that C is a contour such that (1> —1)"*! (t—z) ™2
resumes its original value after describing C.

is satisfied by the expression

Suppose then that 7 is no longer taken to be a positive integer. The function (£ — 1)"*!(r —
z)7"2 has three singularities, namely the points = 1, ¢ = —1, ¢ = z; and it is clear that after
describing a circuit round the point # = 1 counter-clockwise, the function resumes its original
value multiplied by ¢>*/***D; while after describing a circuit round the point ¢ = z counter-
clockwise, the function resumes its original value multiplied by ¢**-"=2)_ If therefore C be
a contour enclosing the points ¢ = 1 and ¢ = z, but not enclosing the point ¢ = —1, then the
function (£> — 1)**!(t — )72 will resume its original value after ¢ has described the contour
C. Hence, Legendre’s differential equation for functions of degree n,

d? d
(l—zz)d—;:—sz—:+n(n+l)u=O,

is satisfied by the expression

I A (e VL
u= —/ —( ) dt,
27 Ja 21(t — z)**!

for all values of n; the many-valued functions will be specified precisely by taking A on the
real axis on the right of the point t = 1 (and on the right of z if z be real), and by taking
arg(r — 1) = arg(r + 1) = 0 and | arg(¢ — z)| < 7 at A.

This expression will be denoted by P,(z), and will be termed the Legendre function of
degree n of the first kind.

We have thus defined a function P,(z), the definition being valid whether # is an integer
or not.

Note The function P,(z) thus defined is not a one-valued function of z; for we might take
two contours as shewn in the figure, and the integrals along them would not be the same; to

make the contour integral unique, make a cut in the ¢ plane from —1 to —oco along the real
axis; this involves making a similar cut in the z plane, for if the cut were not made, then, as
z varied continuously across the negative part of the real axis, the contour would not vary
continuously. It follows, by §5.31, that P, (z) is analytic throughout the cut plane.
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15.21 The recurrence formulae

We proceed to establish a group of formulae (which are really particular cases of the relations
between contiguous Riemann P-functions which were shewn to exist in §14.7) connecting
Legendre functions of different degrees.

If C be the contour of §15.2, and writing P},(z) for diZPn(z), we have

2 n 2 n
P = g [ P = g [
Now
i(t2 -t 2+ D - 1) _(n+ (- 1)+t
dt (t — 7! (t — 7! (t—zm2
and so, integrating,
(2 — 1) 2 1y
0=2 ; —(E — Z)n-)i-l dt - ./c —((t — Z))"+2 dt

Therefore

1 t2_1n 1 t2_1n+1 t2_1n
,/( L ,/( LIS S N Gl i
2n+l7” c (t _ Z)n 2n+27” c (t _ Z)n+2 2n+l7” c (t _ Z)n+l

Consequently

1 (tZ )n

Pui1(2) = 2Pu(2) = 5 o (15.1)
Differentiating', we get
P;,1(2) = 2Py (2) — Pu(2) = nPy(2),
and so
Py 1(2) = 2P (2) = (n + )Py(2) (15.2)

This is the first of the required formulae.

Next, expanding the equation

2 _1\n
[ 4
we find that

(2 -1)" 2 - 1! (-1
./c T—or dt+2n_/c—(t—z)" dt —n c—(t—z)"” dt =

Writing (£ — 1) + 1 for > and (¢ — z) + z for ¢ in this equation, we get

t2 1" t2_1n—1 t2_1n
1)/( ) dt +2n le—nz udl=0.

—2) c -2y c (=2

Using (15.1), we have at once

(I’l + 1) {Pn+l(Z) - ZPn(Z)} + nPn—l(Z) - nZPn(Z) =0

! The process of differentiating under the sign of integration is readily justified by §4.2.
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That is to say
(n+ DPu1(z) —2n+ 1)zP,(2) + nP,y—1(z) = 0, (15.3)
a relation’ connecting three Legendre functions of consecutive degrees. This is the second
of the required formulae.
We can deduce the remaining formulae from (15.2) and (15.3) thus:
Differentiating (15.3), we have
(n+ D {P,,1(2) = 2P, (2)} = n{zP(2) = P,_;(2)} = 2n + D)P,(2) = 0.
Using (15.2) to eliminate P/ (z), and then dividing by* n we get
2P(2) = P _1(2) = nPy(2). (15.4)
Adding (15.2) and (15.4) we get
Py ,1(2) = Py y(2) = 2n+ 1)P,(2). (15.5)
Lastly, writing n— 1 for nin (15.2) and eliminating P/ _,(z) between the equation so obtained
and (15.4), we have
(2 = D)P;(2) = nzPu(2) = nPy1(2). (15.6)

The formulae (15.2), (15.3), (15.4), (15.5), (15.6), are called the recurrence formulae.

Note The above proof holds whether 7 is an integer or not, i.e. it is applicable to the general
Legendre functions. Another proof which, however, only applies to the case when n is a
positive integer (i.e. is only applicable to the Legendre polynomials) is as follows:

Write V = (1 —2hz + h)~2. Then, equating coefficients* of powers of / in the expansions
on each side of the equation

v
(1-2hz+ hz)% =(z-h)V,

we have nP,(z) — 2n — 1)zP,_1(z) + (n — 1)P,_»(z) = 0, which is the formula (15.3).

Similarly, equating coefficients of powers of & in the expansions on each side of the
equation
ov ov
h— =(z-h)—,
oh (@=h) 0z

we have

dPn(Z) dPn—l(Z)
- = Pn ’
< dz dz nPa(z)

which is the formula (15.4). The others can be deduced from these.

Example 15.2.1 (Hargreaves) Shew that, for all values of n,

d
d—{z(P,,2 + P2, )=2P,P,,1} = (2n+3)P%,, — (2n+ 1)P2.
Z

2 This relation was given in substance by Lagrange [392] in a memoir on probability.
3 If n = 0, we have Py(z) = 1, P_(z) = 1, and the result (15.4) is true but trivial.
4 The reader is recommended to justify these processes.



324 Legendre Functions

Example 15.2.2 (Trinity, 1900) If

M,(x) = [(diz)n (ze™** cosech z)] ,
z=0

shew that
dM,,(x)
dx

Example 15.2.3 (Clare, 1898) Prove that if m and n are integers such that m < n, both
being even or both odd,

1
=nM,_1(x) and / M,(x)dx = 0.
-1

z=m(m + 1).

/' dP,,(z) dP,(z) p
-1 dz dz

Example 15.2.4 (Math. Trip. 1897) Prove that, if m, n are integers and m > n,
/‘ d*P,.(z) d*P,(z) o< (n=Dn(n+ 1)(n+2)
o dZ? a2z °T 48
X {1+ (=1)""}.

{Bmm+1)-nn+1)+6}

15.211 The expression of any polynomial as a series of Legendre polynomials

Let f,,(z) be a polynomial of degree n in z. Then it is always possible to choose ay, ay, . . ., a,
so that

fu(2) = apPo(2) + a1 Pi(2) + - - - + a, Py(2),

for, on equating coefficients of 7", z""! ... oneach side, we obtain equations which determine

an,dn_1, . . . uniquely in turn, in terms of the coefficients of powers of z in f,(z).
To determine ag, ay, . . ., a, in the most simple manner, multiply the identity by P,(z), and
integrate. Then, by §15.14,

1
2a,
n Pr dz = ey
[ #@re = 5
when r = 0,1,2,...,n; when r > n, the integral on the left vanishes.

Example 15.2.5 (Legendre [421]) Given 2" = agPy(z) + a, P1(z) +- - - + a, P,(z), determine

ap,dy,...,ay,.
Hint. Equate coeflicients of z"* on both sides; this gives
2"(n!)?
a, = .
(2n)!

1
Let I, ,, = / 7" P,,(z) dz, so that, by the result just given,
-1

! 2m+1(m!)2
T Qm+ 1)

Now when n—m is odd, I, ,, is the integral of an odd function with limits +1, and so vanishes;
and 1, ,, also vanishes when n — m is negative and even.
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To evaluate 1, ,, when n — m is a positive even integer, we have from Legendre’s equation

m(m + 1)/11 7"Pu(2)dz = —/: aniz{(l - 2P (2)} dz
=-["(1 - ZZ)P;n(z)]{1 + n/ll 71 - 2P (2)dz
=n[2"'(1-D)Pa)],
o0 [ (=02 - DR
on integrating by parts twice; and so
m(m + V)1, ,, = n(n+ D1, —n(n — 1)1, .

Therefore
_ nn—1)
S (n-mn+m+1)

In,m

n-2,m

B nn-1)---(m+1) I
T m-m(n-2-m)---2-m+m+Dn+m—-1)---Cm+3)""

by carrying on the process of reduction.
Consequently

+1 1 1
2" nl(5n + ym)!

n,m

B (%n - %m)!(n +m+ 1!
and so

0, when n —m is odd or negative and

am =1 QCm+ 1)2’”n!(%n + %m)! (15.7)
when n — m is even and positive.

(%n - %m)!(n +m+1)!

Example 15.2.6 Express cos nf as a series of Legendre polynomials of cos § when n is an
integer.

Example 15.2.7 (St John’s, 1899) Evaluate the integrals

1 1
/ Po(2)Prn(2) dz, / 2Py()Punt(2) dz.
-1 _

1

Example 15.2.8 (Trinity, 1894) Shew that

2n(n + 1)
2n+1

1
/ (1-2) (P()) dz =
-1

Example 15.2.9 (St John’s, 1898) Shew that

n

nP,(cosf) = Z cosrfP,_.(cos ).

r=1
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1
Example 15.2.10 (Trinity, 1895) If u, = / (1 = 22)"Py,n(2) dz, where m < n, shew that
-1

n—m)(2n +2m + Du, = 2n’u,_,.
( X

15.22 Murphy’s expression of P,(z) as a hypergeometric function
This appears in [482]. Murphy’s result was obtained only for the Legendre polynomials.

Since (§15.13) Legendre’s equation is a particular case of Riemann’s equation, it is to be
expected that a formula can be obtained giving P,(z) in terms of hypergeometric functions.
To determine this formula, take the integral of §15.2 for the Legendre function and suppose
that | 1 — z| < 2; to fix the contour C, let § be any constant such that 0 < § < 1, and suppose
that z is such that |1 — z| < 2(1 — §); and then take C to be the circle’ |1 —¢| = 2 — §. Since
2-26

<——Fx<1,

T 2-96

1-z
1—1¢

we may expand (t — z)™"~! into the uniformly convergent series®

1+(n+1)(n+2)(z—1)2+.“}'
1 2! -1

(t—2)" ' =@-1)"" {1 +(n+ l)j:

Substituting this result in Schlifli’s integral, and integrating term-by-term (§4.7) we get

D@l D)n+2) - (ntr) (O @1y
Pn(Z) - rZ:O 2n+17'l'i r! /A' m dt
(=1 (n+ D +2)---(n+r) [ d i
- Z 2n(r1)2 ar (t+1) )

r=0
by §5.22. Since arg(t + 1) = O when ¢ = 1, we get

r

dtr

(t+1)" =2""n(n-1)---(n—r+1),

t=1

and so, when |1 — z| < 2(1 — §) < 2, we have

A m+1D)n+2)---(n+r)-(-n)(1-n)---(r—1-n) (1 11\
Pa() = Zﬁ (1) (E - EZ)

11
=F|n+1,-n1; - - =z].
RSN

This is the required expression; it supplies a reason §14.53 why the cut from —1 to —oo
could not be avoided in §15.2.

Corollary 15.2.1 From this result, it is obvious that, for all values of n,

Pn(z) = P—n—l(z)-

5 This circle contains the points t = 1, t = z.
6 The series terminates if n be a negative integer.
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Note When r is a positive integer, the result gives the Legendre polynomial as a polynomial
in 1 — z with simple coefficients.

Example 15.2.11 (Trinity, 1907) Shew that, if m be a positive integer,

d™'P,,..(2) _ TCm+n+2)
dzm+! o 2™ (m+ 1D)IT(n)

Example 15.2.12 (Murphy) Shew that the Legendre polynomial P,(cos 6) is equal to
(=1)"F (n+1,-n; 1;c08*(/2)),

and to
cos” (6/2) x F (—n,—n; 1;tan*(6/2)) .

15.23 Laplace’s integrals for P,(z)

This appears in Laplace’s Mécanique Céleste, [409, Livre XI, Ch. 2.]. For the contour
employed in this section, and for some others introduced later in the chapter, we are indebted
to Mr J. Hodgkinson.

We shall next shew that, for all values of n and for certain values of z, the Legendre
function P,(z) can be represented by the integral (called Laplace’s first integral)

1 [~ |
- / {z+ (2= 1)2cosp}" do.
T Jo
(A) Proof applicable only to the Legendre polynomials.
When r is a positive integer, we have, by §15.12,

1 -1
274070 Jo (t—2)m D)

Pu(2) =

where C is any contour which encircles the point z counter-clockwise. Take C to be the circle
with centre z and radius |22 — 1|'/2, so that, on C, 1 = z + (2% — 1)2¢%, where ¢ may be taken
to increase from —x to «.

Making the substitution, we have, for all values of z,

/” ({Z_ L+ (2% = D2z + 1+ (2 - Die} ni

Pu(z) = (12—1)%@4’

d
2n+17”' ¢

-7

=i/ {2+ (22 = 1)} cos g}" dg
2 J_,

:l/ {z+ (2= 1) cos ¢}" do,
T Jo

since the integrand is an even function of ¢. The choice of the branch of the two-valued
function (z% — 1)% is obviously a matter of indifference.

(B) Proof applicable to the Legendre functions, where n is unrestricted.
Make the same substitution as in (A) in Schlifli’s integral defining P,(z); it is, however,
necessary in addition to verify that ¢ = 1 is inside the contour and t = —1 outside it, and it is
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also necessary that we should specify the branch of {z + (z*> — 1) cos ¢}", which is now a
many-valued function of ¢.

The conditions that ¢t = 1, ¢ = —1 should be inside and outside C respectively are that the
distances of z from these points should be less and greater than |z> — 1|2. These conditions
are both satisfied if |z — 1| < |z + 1|, which gives Re(z) > 0, and so (giving arg z its principal
value) we must have | arg z| < in.

Therefore

P.(z) = % /n{z + (2 - 1)% cos ¢}" do,

where the value of arg{z + (z*> — 1) cos ¢} is specified by the fact that it, being equal to
arg(t> — 1) — arg(t — z), is numerically less than 7 when ¢ is on the real axis and on the right
of z (see §15.2).

Now as ¢ increases from —x to 7, z + (2> — 1)% cos ¢ describes a straight line in the Argand
diagram going from z — (z> — 1)% to z+ (2> - 1)% and back again; and since this line does not
pass through the origin’, arg{z + (2 — 1) cos ¢} does not change by so much as 7 on the
range of integration.

Now suppose that the branch of {z + (z*> — 1)% cos ¢}" which has to be taken is such that
it reduces to z"e*™n (where k is an integer) when ¢ = %ﬂ'. Then

eanm’ b

P = S [ (4@ =)t cose)” do
2 J_,

where now that branch of the many-valued function is taken which is equal to z" when

¢ = %7‘[. Now make z — 1 by a path which avoids the zeros of P,(z); since P,(z) and the

integral are analytic functions of z when | arg z| < 17, k does not change as z describes the

2
path. And so we get ¢*"** = 1. Therefore, when | arg z| < %ﬂ and # is unrestricted,

P.(2)= % /n{z + (Z2 _ 1)% cos ¢}" do,

where arg{z + (z2 — 1) cos ¢} is to be taken equal to arg z when ¢ = %

P,(z), which may, again, obviously be written

m. This expression for

L [" |
- / {z+ (% = 1) cos ¢}" dop,
T Jo

is known as Laplace’s first integral for P,(z).

Corollary 15.2.2 From Corollary 15.2.1 it is evident that, when
largz| < 3,

P(z)—l/n d¢
" nJo {z+ (22~ 1)1 cos g}l

a result, due to Jacobi [351], known as Laplace’s second integral for P,(z).

7 Tt only does so if z is a pure imaginary; and such values of z have been excluded.
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Example 15.2.13 Obtain Laplace’s first integral by considering

Z hn /n{z + (Zz - 1)% Cos ¢}n d¢7
n=0 0

and using Example 6.2.1.

Example 15.2.14 Shew, by direct differentiation, that Laplace’s integral is a solution of
Legendre’s equation.

Example 15.2.15 (Binet) Ifs < 1,|k| < 1 and

(1 =2hcos@ + h*)™ = Z b, cos né,
n=0
shew that
b = 2sinst ' Wt Tldx
" oo o (I =x)5(1—xh?)y"
Example 15.2.16 When z > 1, deduce Laplace’s second integral from his first integral by
the substitution

{z—= (- 1) cosOHz + (- 1) cos ¢} = 1.

Example 15.2.17 By expanding in powers of cos ¢, shew that for a certain range of values
of z,

nl-n
— — 1=z,
272 ¢

l/ {Z+(Z2—1)%COS¢}"d¢=ZnF —
T Jo

Example 15.2.18 Shew that Legendre’s equation is defined by the scheme

0 ) 1
1 1,1
P I——lli §+]2n 0 &,
§+21’l —E}’l 0

where z = %(5% )

15.231 The Mehler-Dirichlet integral for Py(z)
This comes from Dirichlet [174] and Mehler [465].

Another expression for the Legendre function as a definite integral may be obtained in the
following way: For all values of n, we have, by the preceding theorem,

P,(z) = %/On{z + (22 = D% cos o} do.

In this integral, replace the variable ¢ by a new variable h, defined by the equation
h=z+(z>-1)"%cos ¢, and we get

i z+(12_1)l/2
P,(z) = — / R'(1 = 2hz + h*)™'* dh;
T Jz—(z2-1)2
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the path of integration is a straight line, arg /4 is determined by the fact that 2 = z when
¢ = 3m,and (1 = 2hz + h?)V2 = —i (22 = 1)"*sin .
Now let z = cos 6; then
. ei?
P,(cos ) = i/ n'(1 - 2hz + k)2 dh.
T Je-i0
Now (6 being restricted so that —7 < 6 < 7 when n is not a positive integer) the path of
integration may be deformed® into that arc of the circle |4 = 1 which passes through & = 1,
and joins the points h = e7%, h = ¢, since the integrand is analytic throughout the region
between this arc and its chord”’.
Writing h = ¢’ we get

» ( 9) 1 /9 e(n+l/2)i¢ d¢
. (cos ) = — ,
7 J_g (2cos ¢ —2cos@)!/2

and so
2 % cos(n+)pd
P,(cos ) = — (n+3)¢ d¢ ;
7w Jo {2(cos¢ —cos)}/?
it is easy to see that the positive value of the square root is to be taken. This is known as
Mehler’s simplified form of Dirichlet’s integral. The result is valid for all values of n.

Example 15.2.19 Prove that, when 7 is a positive integer,
2 7 sin(n+ 4Héd
P,(cos0) = —/ (n +2)p d¢ .
7w Jo {2(cos8 —cos )}!/?
(Write m — 6 for 8 and © — ¢ for ¢ in the result just obtained.)

Example 15.2.20 Prove that
P,(cos0) = ! / h” dh
" " 2ni ) (W2 —=2hcos@ + 1)1/2

the integral being taken along a closed path which encircles the two points 4 = ¢*, and a
suitable meaning being assigned to the radical.

Note Hence (or otherwise) prove that, if 6 lie between én and %ﬂ,

cos(nf + ¢) N 12 cos(nf +3¢)
P.(cos6) = 4 2.4...2n (ZSinﬁ)% 2(2n +3) (251119)%
n\C0S T r3-5---2n+1) 12.32 cos(nf + 5¢) |

+
2:4-2n+3)2n+5) (2sin6)?

where ¢ denotes %9 - %71.

Shew also that the first few terms of the series give an approximate value of P,(cos ) for

8 If @ be complex and Re cos 6 > 0 the deformation of the contour presents slightly greater difficulties. The
reader will easily modify the analysis given to cover this case.

° The integrand is not analytic at the ends of the arc but behaves like (7 — e near them; but if the region
be indented §6.23 at ¢*'? and the radii of the indentations be made to tend to zero, we see that the

+i0)-1/2

deformation is legitimate.
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all values of 6 between 0 and 7 which are not nearly equal to either O or 7. And explain how
this theorem may be used to approximate to the roots of the equation P,(cos8) = 0. (See
Heine [287, vol. I, p. 171]; Darboux [161].)

15.3 Legendre functions of the second kind

We have hitherto considered only one solution of Legendre’s equation, namely P,(z). We
proceed to find a second solution.

We have seen (§15.2) that Legendre’s equation is satisfied by

/(t2 - D"t -z dr,

taken round any contour such that the integrand returns to its initial value after describing it.
Let D be a figure-of-eight contour formed in the following way: let z be not a real number
between +1; draw an ellipse in the ¢-plane with the points 1 as foci, the ellipse being so
small that the point t = z is outside. Let A be the end of the major axis of the ellipse on the
right of ¢ = 1. Let the contour D start from A and describe the circuits (17, —1%), returning to
A (cf. §12.43), and lying wholly inside the ellipse. Let | arg z| < 7 and let | arg(z —1)| — argz
as t — 0 on the contour. Let arg(t + 1) = arg(t — 1) = 0 at A.

Then a solution of Legendre’s equation valid in the plane (cut along the real axis from 1

to —o0) is
2 _ 1\
0,(2) = 1 / (== 1)" dt
D

4isinnr Jp 27(z — )tV

if n is not an integer.
When Re(n + 1) > 0, we may deform the path of integration as in §12.43, and get

1
/ A= (z-t)™" " at
-1

(where arg(1 — ) = arg(1 + ¢t) = 0); this will be taken as the definition of Q,,(z) when n is
a positive integer or zero. When 7 is a negative integer (= —m — 1) Legendre’s differential
equation for functions of degree n is identical with that for functions of degree m, and
accordingly we shall take the two fundamental solutions to be P,,(z), Q,.(2).

We call Q,,(z) the Legendre function of degree n of the second kind.

Qn(z) = il

15.31 Expansion of Q,(z) as a power series

We now proceed to express the Legendre function of the second kind as a power series in
z~1. We have, when the real part of n + 1 is positive,

1 : n -n—
0n(z) = W/l(l -z -1 dr.

Suppose that |z| > 1. Then the integrand can be expanded in a series uniformly convergent
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with regard to ¢, so that
1 1 P -n-1
Qn(z):W'/_‘l(] —ZZ)" (1—2) dl

1 ! ; St (m+Dn+2)---(n+r)
=W[1(1_t2) {1_'_2(2) n n = n r }dt

=1

1 ! 2\n N (l’l+1)"'(}’l+25’) ! 2\n 2s
_W[/o (1-1¢9) dt+; 51 /O(l—t)z dt

where r = 2s, the integrals arising from odd values of r vanishing. Writing 1> = u we get
without difficulty, from §12.41,

mln+1) 1 (1 11 3 _2)

s

n(z)= ————F + -, =-n+Lin+ =;
0= Ty T T g
The proof given above applies only when the real part of (n + 1) is positive (see §4.5); but a
similar process can be applied to the integral

1 1
/ e ye-na
D 27’[

4i sinnw

Qn(Z) =

the coeflicients being evaluated by writing / (f* — 1)"t" dt in the form
D

o) 1)
e’””/ (1 =)t dt + e"’”/ (1 —3)"t" dt;
0 0
and then, writing > = u and using §12.43, the same result is reached, so that the formula

1
2 T
d —(n+1) ! F(ll’l-f-ll +1;n+§'1)
2n+1 F(n + %) Zn+1

Qn(Z) =

s =n s o
2 2°2 27 72
is true for unrestricted values of n (negative integer values excepted) and for all values!'® of

z, such that |z| > 1, |argz| < 7.

Example 15.3.1 Shew that, when 7 is a positive integer,

_(=2)"n! a" 5 P B -
Qn(Z) = (271)' dz {(Z - 1) ‘/Z (V = 1) dv} .

It is easily verified that Legendre’s equation can be derived from the equation

d*w dw
2 _
(1-z )_dZ2 +2(n - l)z—dZ + 2nw = 0,

n

by differentiating » times and writing u = Two independent solutions of this equation

"

are found to be

(ZZ-1" and (Z2-1)" /m(v2 - 1) av.

10 When n is a positive integer it is unnecessary to restrict the value of arg z.
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jnn {(z2 —1)" /Zm(v2 — )™ dv}

is a solution of Legendre’s equation. As this expression, when expanded in ascending powers
of z7!, commences with a term in z7""!, it must be a constant multiple!' of Q,(z); and
on comparing the coefficient of z7"~! in this expression with the coefficient of z7*~! in the

expansion of Q,(z), as found above, we obtain the required result.

It follows that

-n—1

Example 15.3.2 Shew that, when 7 is a positive integer, the Legendre function of the
second kind can be expressed by the formula

0,(2) = 2nm/:> /VOO /vm.../vm(vz ~ 1y (v

Example 15.3.3 Shew that, when 7 is a positive integer,

0 = Y (ot [ vt =1y,

t=0

This result can be obtained by applying the general integration theorem

[ Lo orwr-$ 2 o

to the preceding result.

15.32 The recurrence formulae for Q,(z)

The functions P,(z) and Q,(z) have been defined by means of integrals of precisely the same
form, namely

/ (2 =1t -z2)" " dr,

taken round different contours.

It follows that the general proof of the recurrence formulae for P,(z), given in §15.21, is
equally applicable to the function Q,(z); and hence that the Legendre function of the second
kind satisfies the recurrence formulae

05,41(2) = 20,,(2) = (n + 1)Q,(2),
(n+ 1)Qns+1(z) = (2n + 1)z0n(z) + nQy-1(2) = 0
20,(2) = 0,,_1(z) = nQn(2),
0111(2) = 05,_1(2) = 2n + 1)Qu(2),
(2% = 1Q,(2) = nzQ0(2) = nQp-1(2).
Example 15.3.4 Shew that
z+1 z+1

Qo(z) = _lg_l’ 0i(z) = —zlog 1

1,

11" P, (z) contains positive powers of z when n is an integer.



334 Legendre Functions

and deduce that

3
—P 1 -z
0,(2) = zP2(2) og — 3¢
and that
Qn(z)_llo Z+1_ 1
P,(z) 2 &1 12
Z— 22
3z - 3
5z -
; (n—1)
T 2n-1)z

Example 15.3.5 Shew by the recurrence formulae that, when 7 is a positive integer'?,

—P (z)lg( ) 0,(2) = fu-1(2),

where f,_1(z) consists of the positive (and zero) powers of z in the expansion of
1P, (z)log (Z” ) in descending powers of z.

Note This example shews the nature of the singularities of Q,(z) at =1, when n is an
integer, which make the cut from —1 to +1 necessary. For the connexion of the result with
the theory of continued fractions, see Gauss [233], and Frobenius [226]; the formulae of
Example 15.3.4 are due to them.

15.33 The Laplacian integral for Legendre functions of the second kind
This formula was first given by Heine [287, p. 147].
It will now be proved that, when Re(n + 1) > 0,

-n—1

0.(2) = /000 {z + (22 = 1)? cosh 9} do,

where arg{z + (z2 — 1)z cosh 8} has its principal value when @ = 0, if n be not an integer.
First suppose that z > 1. In the integral of §15.3, viz.

1 : n -n—
0.0)= i [ (1=£r G-

write
(z+ D2 —(z-1"2
ez + D2+ (z - )Y

12 If -1 < z < 1, it is apparent from these formulae that Q,,(z + 0i) — Q,,(z — 0i) = —7i P,,(z). It is convenient
to define Q,,(z) for such values of z to be %Qn (z+0i)+ %Qn (z — 0i). The reader will observe that this
function satisfies Legendre’s equation for real values of z.
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so that the range (-1, 1) of real values of ¢ corresponds to the range (—oo, ) of real values
of 6. It then follows (as in (15.1)) by straightforward substitution that

0.(z) = %/"" {z + (22 = 1)2 cosh 0}_“_1 de

o | -n-1
= / {Z + (2% = 1) cosh 9} de,
0
since the integrand is an even function of 6.

Note To prove the result for values of z not comprised in the range of real values greater
than 1, we observe that the branch points of the integrand, qua function of z, are at the points
+1 and at points where z + (z2 — 1)'/2 cosh 6 vanishes; the latter are the points at which
z = = coth 6. Hence Q,,(z) and

/ {z+ (- 1)% cosh@} ™! do
0

are both analytic!® at all points of the plane when cut along the line joining the points
z = =1. By the theory of analytic continuation the equation proved for positive values of
z — 1 persists for all values of z in the cut plane, provided that arg {z + (z* — 1)% cosh 6}
is given a suitable value, namely that one which reduces to zero when z — 1 is positive.
The integrand is one-valued in the cut plane [and so is Q,(z)] when n is a positive integer;
but arg{z + (z*> - 1)% cosh 8} increases by 27 as arg z does so, and therefore if n be not a
positive integer, a further cut has to be made from z = —1 to z = —co. These cuts give the
necessary limitations on the value of z; and the cut when #n is not an integer ensures that
arg{z + (22— 1)2} = 2arg{(z + 1)? + (z — 1)} has its principal value.

Example 15.3.6 Obtain this result for complex values of z by taking the path of integration
to be a certain circular arc before making the substitution

. Pz +1)2 —(z- 1)
e(z+ 1) +(z—1)7

where 0 is real.

Example 15.3.7 (Trinity, 1893) Shew that, if z > 1 and cotha = z,
0,(2) = / (2= (= 1)} coshu}" du,
0

where arg{z — (z2 — 1)? coshu} = 0.

15.34 Neumann’s formula for Q,,(z), when n is an integer

This appears in F. Neumann [490]. When # is a positive integer, and z is not a real number
between 1 and —1, the function Q,,(z) is expressed in terms of the Legendre function of the
first kind by the relation

1! d
Qn(z) = E [l Pn(y)ﬁ’

13 Tt is easy to shew that the integral has a unique derivative in the cut plane.
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which we shall now establish.
When |z| > 1 we can expand the integrand in the uniformly convergent series

oo ym
P}’l(y)z m+1"°
m:()z

Consequently

1/1 dy Il 0 [
L e R L e / V' Pa(y) d.
2 1 -y Zr;) -1

The integrals for which m — n is odd or negative vanish (15.7); and so

(e

l/lp()dy _Zanl/l n+2mP()d
2—1nyZ_ 2m y)ay

-1

li nome1 2 (n + 2m)!(n + m)!
= m!2n +2m + 1)!
B 2"(n!)2 pt ofn Ln 3,
Sanent Flatpathntge
= Qn(z),

by §15.31. The theorem is thus established for the case in which |z| > 1. Since each side of
the equation

0= [ Pn 2

represents an analytic function, even when |z| is not greater than unity, provided that z is not
a real number between —1 and +1, it follows that, with this exception, the result is true (§5.5)
for all values of z.

The reader should notice that Neumann’s formula apparently expresses Q,(z) as a one-
valued function of z, whereas it is known to be many-valued (Example 15.3.4). The reason for
the apparent discrepancy is that Neumann’s formula has been established when the z-plane
is cut from —1 to +1, and Q,,(z) is one-valued in the cut plane.

Example 15.3.8 Shew that, when -1 < Rez < 1, Q,(z)| < | Imz|™!; and that for other
values of z, | Q,,(z) | does not exceed the larger of |z — 1" and |z + 1]~

Example 15.3.9 Shew that, when r is a positive integer, Q,(z) is the coefficient of A" in
the expansion of

h-z
2\-1/2
(1=2hz+h°) arccosh{( > 1)1/2}

Hint. For |h| sufficiently small,

n ntoflP (y)dy (1=2hy +h*)' dy
ZhQ"(Z)_Z / _[1 (z-y)

h-z
— 2\-1/2
_(1—2hZ+h ) arccosh{m}.
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This result has been investigated by Heine [287, vol. I, p. 134] and Laurent [411].

15.4 Heine’s development of (r — z)~! as a series of Legendre polynomials in z

This appears in [286]. We shall now obtain an expansion which will serve as the basis of a
general class of expansions involving Legendre polynomials. The reader will readily prove
by induction from the recurrence formulae

@m + 1)1Qp (1) = (m + 1)Qypa1 (1) — mQp—1(£) = 0,
(2m + I)ZPm(Z) - (m + l)Perl(Z) - um—l(Z) = O’

that

= ) m 4 DPADCD + (P00 P (1),
m=0

t—z
Using Laplace’s integrals, we have

B e {z+(2=1)2 cos p}"
Pun(0u) @) = 1 [ [ oS
X [z+ (2% - 1)% cos ¢ — {t + (> - 1)% coshu}™']d¢ du.

Now consider
2+ (22— 1)1 cos ¢
r+ (2= 1)z coshu

Let cosh a, sinh a be the semi-major axes of the ellipses with foci +1 which pass through z
and ¢ respectively. Let 6 be the eccentric angle of z; then

z = cosh(a + i0),
|z % (22 = 1)? cos ¢| = | cosh(a + i6) = sinh(a + i6) cos ¢|
= {cosh? & — sin 6 + (cosh® a — cos” 6)
cos® ¢ + 2 sinh a cosh a cos ¢}% .
This is a maximum for real values of ¢ when cos ¢ = ¥1; and hence
|z + (2% - 1)% cos ¢|? < 2cosh®a — 1 + 2 cosha(cosh® a — 1)% = exp(2a).

Similarly | ¢ + (2 — l)% coshu | < expa. Therefore

Pa(2)0u(t) = Pa(2)0ner(D)] < 7~ expln(a — )} /0 /0 V do du,

where
z+(2=1)icose
1+ (2= 1)2 coshu

+|{t+(#* = 1) coshu} | 2.

|VI=

Therefore |P,,1(2)0,(t) — Pu(2)Q,s1(f)] — 0, as n — oo, provided a < a. And further, if
t varies, @ remaining constant, it is easy to see that the upper bound of / / Vdpduis
o Jo
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independent of ¢, and so P,;1(2)Q,,(t) — P,(2)Q,+1(f) tends to zero uniformly with regard
tor.

Hence if the point 7 is in the interior of the ellipse which passes through the point t and
has the points +1 for its foci, then the expansion

= D 21+ DP()Qu(0)
n=0

is valid; and if t be a variable point on an ellipse with foci +1 such that 7 is a fixed point
inside it, the expansion converges uniformly with regard to t.

15.41 Neumann’s expansion of an arbitrary function in a series of Legendre
polynomials

This comes from Neumann [485]. See also Thomé [623]. Neumann also gives an expansion,
in Legendre functions of both kinds, valid in the annulus bounded by two ellipses.

We proceed now to discuss the expansion of a function in a series of Legendre polynomials.
The expansion is of special interest, as it stands next in simplicity to Taylor’s series, among
expansions in series of polynomials.

Let f(z) be any function which is analytic inside and on an ellipse C, whose foci are the
points z = =1. We shall shew that

f(2) = apPo(z) + a1 P1(z) + axPy(2) + asP3(z) + - - -,

where aq, ai, a,,. .. are independent of z, this expansion being valid for all points z in the
interior of the ellipse C. Let t be any point on the circumference of the ellipse.

Then, since Z (2n + 1)P,(2)Q,(¢) converges uniformly with regard to ¢,

n=0

f(z) = L f@dr_ 1

21i Jo t—2 27l'l

= Z anPp(2),
n=0

/m+m@@mmm

where
2n+ 1

a, =
2mi

/(wmm

This is the required expansion; since Y. (2n + 1)P,(z)Q,(t) may be proved'* to converge
n=0
uniformly with regard to z when z lies in any domain C’ lying wholly inside C, the expan-

sion converges uniformly throughout C’. Another form for a, can therefore be obtained by
integrating, as in §15.211, so that

1
= (n+1) /1 F(x)P,(x)dx.

14 The proof is similar to the proof in §15.4 that convergence is uniform with regard to ¢.
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A form of this equation which is frequently useful is

L el
a=2 [ 001y
2nn! )4
which is obtained by substituting for P, (x) from Rodrigues’ formula and integrating by parts.
The theorem which bears the same relation to Neumann’s expansion as Fourier’s theorem
bears to the expansion of §9.11 is as follows:
Let f(t) be defined when —1 < t < 1, and let the integral of (1 — t*)"'/* f(t) exist and be
absolutely convergent; also let

a, = (n+3) [1 Ff(P,(t)dt.

Then Y, a,P,(x) is convergent and has the sum %{ f(x +0)+ f(x —0)} at any point x, for
which —1 < x < 1, if any condition of the type stated at the end of §9.43 is satisfied.
For a proof, the reader is referred to memoirs by Hobson [317, 319] and Burkhardt [108].

Example 15.4.1 Shew that, if p > 1 be the radius of convergence of the series }; ¢, z", then
Y’ ¢aPu(z) converges inside an ellipse whose semi-axes are (o + p~') and 1(o — p7).

Example 15.4.2 If z = (§—1)7 k* = —Ei; Bgt 3 where y > x > 1, prove that
1 dz o
= Dy =1 Pu00.).
/ {(1 — ZZ)(l — kzzz)}% {(x + )(y )} ; (X)Q (J’)

Hint. Substitute Laplace’s integrals on the right and integrate with regard to ¢.
Example 15.4.3 (Frobenius [226]) Shew that

0g GH DO _
-0 =D+

D @n+ DA)Qa().
n=0

15.5 Ferrers’ associated Legendre functions P)'(z) and Q}'(z)

We shall now introduce a more extended class of Legendre functions.
If m be a positive integer and —1 < z < 1, n being unrestricted (when n is a positive
integer it is unnecessary to restrict the value of arg z), the functions

m m
P =1 -2y LD gy = o - 2y T2
dz" dz™

will be called Ferrers’ associated Legendre functions of degree n and order m of the first and
second kinds respectively. (Ferrers writes 7.)(z) for P7'(z).)

It may be shewn that these functions satisfy a differential equation analogous to Legendre’s
equation.

For, differentiate Legendre’s equation

& d
(a —zz)d—zz —2zd—§ +a(n+ 1)y =0
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m

m times and write v for d_"): We obtain the equation
Z

d
(1—Zz)d—z‘z}—Zz(m+l)d—z+(n—m)(n+m+1)v=0

Write w = (1 — z2)™/?v, and we get

dw m?
dz {n(ﬂ+l)—1_—Z2}W=0.

This is the differential equation satisfied by P'(z) and Q7'(z).

1- zz)— -2z—

Note From the definitions given above, several expressions for the associated Legendre
functions may be obtained. Thus, from Schléfli’s formula we have

n+ Dn+2)---(n+m (I+.2+) e
P:LH(Z):( X 2n+1)7ri ( )(1—Z2)m/2/ (=1t -z)" " dt,
A

where the contour does not enclose the point t+ = —1. Further, when 7 is a positive integer,
we have, by Rodrigues’ formula,

(1 _ Z2)m/2 dn+m(Z2 _ 1)"

2"7’1! dzn+m
Example 15.5.1 (Olbricht) Shew that Legendre’s associated equation is defined by the
scheme

Pl(z) =

0 00 1

1 1 1 1
P 21m n+1 21m 7~ 32

—;m  -n —zm

15.51 The integral properties of the associated Legendre functions

The generalisation of the theorem of §15.14 is the following: When n,r,m are positive
integers and n > m, r > m, then
1 0 (r#n),
/ PrOPMDdz=1 2 (n+m)
-1 (r =n).
2n+1(n—m)!
To obtain the first result, multiply the differential equations for P*(z), P"(z) by P*(z), P*(z)
respectively and subtract; this gives

2 la-a o R

+(n - r)(n +r+ DP(2)P)(z) =

On integrating between the limits —1, +1, the result follows when n and r are unequal,
since the expression in square brackets vanishes at each limit. To obtain the second result,
we observe that

dP"
PZHI(Z) — (1 _ Z2)1/2 ; (Z) " mz(l _ Z2)71/2P:ln(z);
Z
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squaring and integrating, we get

1 1 - 2 "
[ emara- [ [(1—2){” ;Z(Z)} + 2mep(e) L
-1 _1

dz

+

2.2
I’"_ZZZ {P;"(z)}z} dz
b d dP™(z) e
= —[1 Py (z)d—Z {(1 - zz)d—zz} dz —m[l {Pn (z)}2 dz

1 2.2
N / TP de,

-1 1—Z2

on integrating the first two terms in the first lines on the right by parts. If now we use the
differential equation for P"'(z) to simplify the first integral in the second line, we at once get

f (P" N ()Y dz = (n—m)(n+m+ 1)] {P™(2)}? dz.
-1 -1

By repeated applications of this result we get
1
/ {P:zn(z)}zd2=(n—m+1)(n—m+2)-..n
-1

1
X(n+m)nm—1)---(n+ 1)/ (.Y dz,
-1

and so
2 (n+m)!
2n+1(m—-m)

1
/ {P(2)}* dz = (15.8)
-1

15.6 Hobson’s definition of the associated Legendre functions

So far it has been taken for granted that the function (1 — z?)™/? which occurs in Ferrers’
definition of the associated functions is purely real; and since, in the more elementary physical
applications of Legendre functions, it usually happens that -1 < z < 1, no complications
arise. But as we wish to consider the associated functions as functions of a complex variable,
it is undesirable to introduce an additional cut in the z-plane by giving arg(1 — z) its principal
value.

Accordingly, in future, when z is not a real number such that —1 < z < 1, we shall follow
Hobson in defining the associated functions by the equations

den(Z) 2 _ l)m/2 den(Z)
dzm dzm
where m is a positive integer, n is unrestricted and arg z, arg(z + 1), arg(z — 1) have their

principal values.
When m is unrestricted, P*(z) is defined by Hobson to be

1 z+1
Ir'i-m)\z-1

Piz) = (- 1)""? on(z) = (z

m/2
) F(-mn+1;1-m;1-1z);
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and Barnes has given a definition of Q(z) from which the formula

sin(n + m)r T(n+m + DI (3) (22 = 1ym/2

sin nrr 2n+11—~(n + %) Zn+m+1

Qn (Z)
F (2 m n m 1. n 3. \772
X (2 2 1’ 2 2 2’ 27 g )

may be obtained.

Throughout this work we shall take m to be a positive integer.

15.61 Expression of P)'(z) as an integral of Laplace’s type

If we make the necessary modification in the Schlifli integral of §15.5, in accordance with
the definition of §15.6, we have

n+1)(n+2)--
2n+17”'

. (1+,2+)
Piz) = (s m) (2 - l)m/z‘/A & = 1)t —z)" " dr.

Write t = z + (22 — 1)'/?¢'?, as in §15.23; then

(m+Dn+2)---(n+m) » .0 mra L7 4 (22 - 1)Y2cos ¢}
2r (@-b L {(z2 = 1)1/2¢i¢}m ’

P (z) =

where « is the value of ¢ when ¢ is at A, so that |arg(z> — 1)'/2 + a| < 7.
Now, as in §15.23, the integrand is a one-valued periodic function of the real variable ¢
with period 27, and so

n+1DHn+2)--
2r

(n+ n .
Pr(:) = W [ e @1 cos oy do.
Since {z + (z> — 1)/ cos ¢}" is an even function of ¢, we get, on dividing the range of
integration into the parts (-, 0) and (0, ),

<n+1><n+i>---<n+m>/0”{z+(zz_

P (z) = 1)'/2 cos ¢}" cos mep dep.

The ranges of validity of this formula, which is due to Heine (according as n is or is not an
integer), are precisely those of the formula of §15.23.

Example 15.6.1 Shew that, if |argz| < i,
(n—1)~~~(n—m+1)/’r cosme¢ do
o {z+(z

T 2 _ 1)1/2 cos ¢}n+1’

P(z) = (-1)"2

where the many-valued functions are specified as in §15.23.

15.7 The addition-theorem for the Legendre polynomials

This appears in Legendre [421, vol. II, p. 262-269]. An investigation of the theorem based
on physical reasoning will be given subsequently (§18.4).
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Letz = xx’—(x>—1)"2(x>—1)'/? cos w, where x, x’, w are unrestricted complex numbers.
Then we shall shew that

EZ ; Z;: P'T(X)Prrln(x/) COS Mw.

Pa(z) = Pa(x)Py(x') +2 ) (=1)"
m=1
First let Re(x’) > 0, so that

x+ (x> = 1D"2cos(w — ¢)
x' +(x2-1)"2cos ¢

is a bounded function of ¢ in the range 0 < ¢ < 2x. If M be its upper bound and if || < M,
then

00

Z - {x +(x* = )2 cos(w — ¢)}"

{xr + (x12 _ 1)]/2 cos ¢}n+1

n=0
converges uniformly with regard to ¢, and so (§4.7)

00

Z B TAx+ (x> = D" cos(w — ¢)}"

o {)C’ + (xxz _ 1)1/2 cos ¢}n+l

n=0
_ /” i W {x + (x> = D2 cos(w — ¢)}"

d¢

d¢

{x/ + (X/Z _ 1)1/2 cos ¢}n+1
_ / d¢
) x + (x2 = 1)V2cos d — h{x + (x2 — 1)1/2 cos(w — @)}
Now, by a slight modification of Example 6.2.1 it follows that

‘/7r d¢ _ 2n
< A+Bcos¢p+Csing (A2 — B2 —C?)\/?’
where that value of the radical is taken which makes

|A _ (A2 _ BZ _ C2)1/2| < I(BZ + C2)1/2|,

Therefore

[,r x'+ (x2=1D2cos¢p — h{x + (x2 = 1)1/2 cos(w — ¢)}
2w
[(x" = hx)? = {(x2 = DY2 = h(x2 = 1)1/2 cos w}? — {h(x2 — 1)1 /2 sin w}?]'/2
2w
T

and when & — 0, this expression has to tend to 27 Py(x") by §15.23. Expanding in powers of
h and equating coefficients, we get

T {x+ (x* = D2 cos(w - ¢)}"
. {x/+(x/2_ 1)1/2COS¢}"+1

1
Pn(z) = E d¢

Now P,(z) is a polynomial of degree n in cos w, and can consequently be expressed in the
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1 n
form EAO + E A,, cos mw, where the coefficients Ay, Ai,...,A, are independent of w; to
m=1

determine them, we use Fourier’s rule (§9.12), and we get

1 T
A, = —/ P,(z) cos mw dw
nJ.

s

B L/” [ 7 {x+ (x* = )2 cos(w — ¢)}" cos mw
272 J_ o | Jox {x’" + (x2 = 1)1/2 cos ¢p}"+!

_ L/” [ 7 {x+ (x* = )2 cos(w — ¢)}" cos mw
272 J_p | Jon {x’" + (x2 = 1)1/2 cos ¢} !

1 [" /” {x+ (x> = D" cosy}" cosm(p + )

s r {x" + (x2 = 1)1/2 cos ¢} +!

dgb] dw

da)] d¢

T

dlﬁ} dg,

on changing the order of integration, writing w = ¢ +  and changing the limits for s from
+m — ¢ to £m.
Now

/n {x+x* = 1) cosy}" sinmy dy =0,

since the integrand is an odd function; and so, by §15.61,

__n " cos m¢ P"(x)

n = n(n+m)! J_ {x"+(x?2—1)"2cos ¢}"*! 49
— 9 (_ m(n_m)! m P
=2(-1) —(n n m)!Pn ()P (x").

Therefore, when |arg z'| < 1,

(n—m)!

(n+m)!

n
P.(z) = Py(x)P,(x") +2 Z(—l)’” PI'(x)P'(x") cos mw.
m=1
But this is a mere algebraical identity in x, x” and cos w (since n is a positive integer) and
so is true independently of the sign of Re(x”). The result stated has therefore been proved.
The corresponding theorem with Ferrers’ definition is

P {xx’ + (1= xH)"2(1 = x*)? cosw}

n—m)!
P™(x)P"(x") cos mw.
e ACLACY

=P, (x)P,(x")+2 Zn:

15.71 The addition theorem for the Legendre functions

Let x, x” be two constants, real or complex, whose arguments are numerically less than %n;
and let (x + 1)'/2, (x” + 1)/? be given their principal values; let w be real and let

z=xx' —(x2 - 12 (x? -1 cosw.

Then we shall shew that, if | arg z| < %ﬂ' for all values of the real variable w, and n be not
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a positive integer,

I'n—-m+1)

Pm Pm ’ X
Tnrm+]) "(x)P(x") cos mw

Po(z) = P(x)Py(x') +2 ) (=1)"
m=1

Let cosh @, cosh @’ be the semi-major axes of the ellipses with foci +1 passing through x,
x’ respectively. Let 8, 8’ be the eccentric angles of x, x” on these ellipses so that

V4 T T , T
—§<ﬂ<§, —§<ﬂ<2.

Leta+if =¢,a +ip" = ¢, sothat x = cosh xi, x” = cosh&’. Now as w passes through
all real values, Re(z) oscillates between

Re(xx’) + Re(x? — 1)'2(x” = 1)!/? = cosh(a + ) cos(B + B),

so that it is necessary that 8 + 8’ be acute angles positive or negative.

Now take Schlifli’s integral

1 (1+,2+) l,2 _ 1 n
A

2"+I7Ti (t _ Z)n+1

and write
e {e7™ sinh & cosh 1&” — cosh & sinh 1¢7} + cosh 1£’ — €™ sinh ¢ sinh ¢’

- 1 ié it 1
cosh 3¢’ + €' sinh 3¢’

The path of ¢, as ¢ increases from —x to 7, may be shewn to be a circle; and the reader
will verify that

2{e'®~) cosh 1¢ + sinh 3£} {sinh 3£ cosh 3£’ — ¢ cosh 1 sinh 1¢'}

t— 1 = 1 . . 1
cosh 3£’ + €' sinh 3¢’
o 2{e'®=) sinh 1¢£ + cosh 1£}{cosh 1£ cosh 1¢” — €/ sinh 1¢£ sinh 1¢£7}
cosh %f’ + ¢ sinh %f’ ’
t—z=

{e'® cosh 1&” + sinh &' }{e'® sinh 1& sinh® 1¢” + ¢/ sinh ¢ cosh” 1¢” — cosh & + sinh €'}
cosh 3£’ + €' sinh 3¢’ )

Since'” | cosh %f ’| > | sinh %{-‘ ’|, the argument of the denominators does not change when ¢
increases by 2m; for similar reasons, the arguments of the first and third numerators increase
by 27, and the argument of the second does not change; therefore the circle contains the
points t = 1, = z, and not t = —1, so it is a possible contour.

Making these substitutions it is readily found that

Po(2) = i/" {x + (x* = D2 cos(w — ¢)}"
n\Z) = o . {x’+(x’2— 1)1/2cos¢}”“

and the rest of the work follows the course of §15.7 except that the general form of Fourier’s
theorem has to be employed.

dg,

15 This follows from the fact that cos 8’ > 0.
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Example 15.7.1 (Heine [287], Neumann [489]) Shew that, if n be a positive integer,
On{xx"+ (x* = D"2(x? = )% cos w}

= Qu(x)Pn(x") +2 i Or(x)P,"(x") cos mw,

m=1

when w is real, Re(x’) > 0, and |[(x" — 1)(x + 1)|] < |(x = 1)(x” + 1)].

15.8 The function C)(z)

A function connected with the associated Legendre function P'(z) is the function C)(z),
which for integral values of n is defined to be the coefficient of A" in the expansion of
(1 — 2hz + h*)™ in ascending powers of 4. This function has been studied by Gegenbauer
[240].

It is easily seen that C)/(z) satisfies the differential equation

d’y (2v+1)z d_y n(n+2v)

dz? 2-1 dz z22-1

y=0.

For all values of n and v, it may be shewn that we can define a function, satisfying this
equation, by a contour integral of the form

_ 2\n+v-1)2
(1 _ZZ)I/Z—V/ (1 t ) dt,
C

(1t = 7y

where C is the contour of §15.2; this corresponds to Schléfli’s integral.
The reader will easily prove the following results:

(I) When n is a integer

(_2)nV(V + 1) c (V +n- 1) (1 _ ZZ)I/Z—vﬂ{(l _ Z2)n+v—%};

G2 = n!2n+2v-1)2n+2v-2)---(n+2v) dz"

since P,(z) = C/*(2), Rodrigues’ formula is a particular case of this result.

(IT) When r is an integer,

+1 1

Cli(z) =

dr
(2}" - 1)(2}" — 3)3 1 d_ZrPn(Z)»

whence

(Z2 _ 1)—r/3

GO = G =33

P (2).

The last equation gives the connexion between the functions C)/(z) and P/ (z).



15.9 Miscellaneous examples 347

(IIT) Modifications of the recurrence formulae for P,(z) are the following:
v+1(z) Cv+ (Z)_ _CV(Z)

C’1:+1(Z) Cv+i( ) —

dc,(z)
S dz
nCi(z) = (n—1+2v)zC_(z) - 2v(1 = 2)C. 5 (2).

n(2)s

=2y Cv+l(Z)

15.9 Miscellaneous examples

The functions involved in Examples 15.1-15.30 are Legendre polynomials.

Example 15.1 (Math. Trip. 1898) Prove that when 7 is a positive integer,

Z T (=2 + (1 + 27,

1
o dP, dP,,
Example 15.2 (Math. Trip. 1896) Prove that /
1 dz dz

m —n = 1, and determine its value in these cases.

Example 15.3 (Math. Trip. 1899) Shew (by induction or otherwise) that when n is a positive
integer,

Q2n+1) /1 P(z)dz =
1- zP;2 —2z(P* + PP + -+ P2 )+ 2(P\Py+ P,P3 +-- -+ P, | P,).
Example 15.4 (Clare, 1906) Shew that
2P (2) = nPu(2) + 2n = 3)P,2(2) + (2n = T)Ppa(2) + -+ - .
Example 15.5 (Math. Trip. 1904) Shew that

p
2 P/(z) =n(n—-1)P,(z) + Z(Zn —4r+ D{r@n-2r+1) - 2}P,_5,(2),

r=1
where p = —n or 2(n -1).

Example 15.6 (Trin. Coll. Dublin) Shew that the Legendre polynomial satisfies the relation

2 4 4
(2 -1)? dd;n =nn-1)n+1)(n+ 2)/ dz/ P.(z)dz.
1 1

Example 15.7 (Peterhouse, 1905) Shew that

1
) B nn+1)
/O 2 Pn1(2)Pp-1(2) dz = 2n—-1)Q2n+1)2n+3)
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Example 15.8 (Peterhouse, 1907) Shew that the values of

1
/ (1= 2P,/ (2)P;(2) dz
-1
are as follows:

1. 8n(n + 1) when m — n is positive and even,
2. —2n(n* - 1)(n—2)/(2n + 1) when m = n,
3. 0 for other values of m and n.

Example 15.9 (Math. Trip. 1907) Shew that

sin” OP,(sin 0) = Z( 1y ——

24 ( i cos” 6P,(cos 9).

Example 15.10 (Clare, 1903) Shew, by evaluating / P,(cos 8) d6 (Example 15.3.1), and
0
then integrating by parts, that

0 when n is even

1
P, (u) arcsin udu = 1-3---(n=2))2
[1 by M when 7 is odd.
4.--(n+1)

Example 15.11 (Adams [9]) If m and n be positive integers, and m < n, shew by induction
that

A Ay ArAn, (204 2m —4r + 1
P,(2)P, = Ppim-2(2),
(2)Pa(2) Z:(; Anemor (2n+2m—2r+1) +m2r(2)

1-3:5---2m—1)
m! ’

where A,, =

Example 15.12 By expanding in ascending powers of u shew that

(= 1)”
n!

P (Z)_ 2) 1/2

where u? is to be replaced by (1 — z?) after the differentiation has been performed.

Example 15.13 (Heun [299]) Shew that P,(z) can be expressed as a constant multiple
of a determinant in which all elements parallel to the auxiliary diagonal are equal (i.e. all
elements are equal for which the sum of the row-index and column-index is the same); the
determinant containing n rows, and its elements being
11 11 1
2, —g, 52, —g, gz, e Zn—lz.

Example 15.14 (Silva) Shew that, if the path of integration passes above ¢ = 1,
P (o) - / (2(1-7) - 21 - 2P}

1 _ t2)n+1

dt.
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Example 15.15 (Math. Trip. 1893) By writing cot8’ = cot§ — hcosec § and expanding
sin 6" in powers of & by Taylor’s theorem, shew that

D" cosec™t! 9 d"(sin 6)
n! d(cot§)"”

P,(cos ) =

Example 15.16 (Glaisher [247]) By considering i h"P,(z), shew that
n=0

1 *© 2y42 d " 242
Pn [ —(1-z%)* [ _ 2 -zt dt.
@ n!\/;.[oo ¢ ( dz) ¢

Example 15.17 (Math. Trip. 1894) The equation of a nearly spherical surface of revolution
is

r=1+a{Pi(cos)+ P3(cosf) +---+ Py,_i(cos8)},

where a is small; shew that if &> be neglected the radius of curvature of the meridian is

n—1
l+a Z{n(4m +3) = (m + 1)(8m + 3)} Payns1(cos 6).

m=0
Example 15.18 (Trinity, 1894) The equation of a nearly spherical surface of revolution is
r=a{l+¢&P,(cosb)},

where ¢ is small. Shew that if &* be neglected, its area is
1 ,n?+n+2
dra* {1+ = g2 ———=

g { 2% T+l }

Example 15.19 (Routh [564]) Shew that, if k is an integer and

(1=2hz+ W2 = 3" 0, P (2),

n=0

then

1
B 236 (04 A
a, ( ) ( 2 ) x—n+k/2—2yn+k/2—27

= —+ —
(I1-h2)21.3.5---(k=2) ox 0Oy
where x and y are to be replaced by unity after the differentiations have been performed.

Example 15.20 (Catalan) Shew that

1
/ PP (D) = Pys(x)Po(2)} dx = —2,
13— X n

1
> 1 d 1 1
; 1z [Pn(z) (r—anl(Z) + mPnH(Z))} =-1

Example 15.21 Let x> + y? + z2 = r2, z = ur, the numbers involved being real, so that
—1 < pu < 1. Shew that

’
r

1) n+l o 1
P = ()
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where r is to be treated as a function of the independent variables x, y, z in performing the
differentiations.

Example 15.22 With the notation of Example 15.3.4, shew that
(_l)nrn+l o 1 r—z
On(p) = —~— — log ,
n! 2r

07" r+z

_1\n..n+3 o
(e D) + Pl = T (73)

Example 15.23 Shew that, if |A| and |z| are sufficiently small,
1 - h? -

—_— = 2n+ 1)h"P,(2).

(1—2hz + h2)32 Zﬁ( n+ DA"Pu(2)

Example 15.24 (Math. Trip. 1894) Prove that

2n+ 1
n(n+1) <
Example 15.25 (Bauer) If the arbitrary function f(x) can be expanded in the series

Pn+1(Z)Qn—l(Z) - Pn—l(Z)QnH(Z) =

FO) =D anPa(x),
n=0

converging uniformly in a domain which includes the point x = 1, shew that the expansion
of the integral of this function is

x 1 - (0779 Ayt
dx = —ag— ~ ( - ) Pa).
/1f(x) T 3“1+; -1 2n+3) P

Example 15.26 (Bauer [58]) Determine the coefficients in Neumann’s expansion of e®* in
a series of Legendre polynomials.

Example 15.27 (Catalan) Deduce from Example 15.25 that

2
arcsinz = 22{1 ; : G 2 1)} {P2n+1(2) = P2, _1(2)}.

Example 15.28 (Schlifli; Hermite [293]) Shew that
z+1 1
0,(z) = log( 1) P(2)={Pn-1(2)Po(2) + 5 Pn- 2(2)P1(2)

. %Pn-a(Z)Pz(Z) bt PP (D),

Example 15.29 (Math. Trip. 1898) Shew that

Qn(Z)

z+1 1 zZ+
)'log =} - =P,(2)1
il {(z )ng_l} > (Z)ng_

Prove also that

On(z) = P 1(2) log = fu1(2),
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where
-9
fn I(Z) - 0 n I(Z) n 3(Z) n—S(Z)+ T
: ( ) ( -2)
n(n n(n-1)(n+1)(n —1)\2
[ G = DGR () o+ (ky = 1 ) e ()
B n(n—1)(n-2)(n+1)(n+2)(n+3 —1\3 ’
+(kn_1_%_%) -l 1)52;32)<+)(+>(%) +oe

wherekn:1+%+%+---+%.
The first of these expressions for f,_;(z) was given by Christoffel [145] and he also gives
a generalisation of Example 15.28; the second was given by Stieltjes [298, p. 59].

Example 15.30 Shew that the complete solution of Legendre’s differential equation is

dt
y = AP,(z) + BP, (Z)/ W’

the path of integration being the straight line which when produced backwards passes through
the point # = 0.

Example 15.31 (Schlidfli) Shew that

{z+@ =1} = > BuOan-ai(2),
m=0

where
B _a(a—2m+%)r(m— %)F(m—a/—%)
" 2r m!'T(m—-a+1)
Example 15.32 Shew that, when Re(n + 1) > 0,
°° h™='dh
n(2) = ———, d
Cnl) /z+<z21>1/2 (1—2hz+ iy

z+(z2-1)!/2 Wt dh
00- [ st
0 (1 - Zl’lZ + h ) /

Example 15.33 (Hobson) Shew that

I'(n+1) °° cosh mu du
In-m+1)J, {z+(z%-1)Y2coshu}"+!’

Qnm(Z) — emﬂi

where Re(n + 1) > m.

Example 15.34 Obtain the expansion of P,(z) when |arg z| < & as a series of powers of
1/z, when n is not an integer, namely

{Qn(Z) Q -n— I(Z)}
_ 2”1"(n+§) n l—n_fl_ l
ICEON F( 2 2t zz)
2"'0(-n=3) _ . (n n+1
rcor - T2

tan nm

Pu(z) =
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[This is most easily obtained by the method of §14.51.]

Example 15.35 (Olbricht) Shew that the differential equation for the associated Legendre
function P"(z) is defined by the schemes'¢

0 00 1 0 o 1
1 1 Pk Gl D _1 1 1
P —zn m —El’l w s P 2}’1 zm 0 =2
1 1 1 1 1 L1 1
El’l+§ —-m §n+5 2n+2 sm 3

Example 15.36  Shew that the differential equation for C)/(z) is defined by the scheme

-1 0 1
1 1

P -3 -V n+2y 3V 2
0 -n 0

Example 15.37 (Math. Trip. 1896) Prove that, if

B Cn+1)2n+3)---2n+2s—1) ( 2_1)SdsPn
Vs S =) =)= (5s— 12} +s) dz
then
B 2(2n+1) 2n+3
y2_Pn+2_ 2]’1—1 n+2n_1Pn—2a

P 3(2n+3) N 3(2n+5) B 2n+3)2n+5)
Y3 = Ipy3 -1 n+l -3 n—1 (271 _ 1)(2]’1 _ 3) n-3»

and find the general formula.

Example 15.38 (Math. Trip. 1901) Shew that

2 T(n+m+1)|cos{(n+1)0 - 17 + imn}

P}'(cos ) = ﬁ T(n+3) (2sin6)!72
+(12 — 4m?) cos{(n + 2)0 — 31 + Lmm}
2(2n +3) (2 sin §)3/2
(12 = 4m?)(32 — 4m?) cos{(n + 2)0 — 37 + Lmn} .
2-4-2n+3)2n+5) (2sin §)3/2 ’

obtaining the ranges of values of m,n and 6 for which it is valid.

Example 15.39 (Macdonald [445, 447]) Shew that the values of n, for which P,™(cos 6)
vanishes, decrease as 6 increases from 0 to 7 when m is positive; and that the number of
real zeros of P;™(cos 6) for values of 6 between —x and « is the greatest integer less than
n—m+ 1.

16 See also Example 15.5.1.
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Example 15.40 (Legendre) Obtain the formula

1 T —
oy / [1—2h{coswcos ¢ + sinwsin ¢ cos(d’ — )} + h?] 2 ap
T Jn

h"P,(cos w)P,(cos ¢).

Me

Il
(=]

n

Example 15.41 (Trinity, 1893) If f(x) = x*> for x > 0, and f(x) = —x? for x < 0, shew
that, if f(x) can be expanded into a uniformly convergent series of Legendre polynomials in
the range (-1, 1), the expansion is

-3---(2r-3)4r+3
4.6-8---2r 2r+4

f0= 2P0 - (-1 Parai()

Example 15.42 (Gegenbauer [241]) If = >, W"C)(z), shew that
n=0

(1 =2hz + h?)
€ e — (2 = DY — 1)Y2 cos 6}

_T@2v-1) < : AT (= A+ DTy + )YPQ2v +221-1)
O ;(_ ) T(n+2v + 1)

X (% = DH(n? = DHCHOCA®)C, (cos 9)

(3]
Example 15.43 (Pincherle [522]) If o,(z) = / (* = 3tz + 1)"'2¢" dt, where e, is the
0
least root of > — 3tz + 1 = 0, shew that

Q2n+ o, —3C2n—-1)z0,.1 +2(n—1)0,, =0,

and
4(47° = Do + 1447% 07 — z(12n* = 24n - 291)0, — (n — 3)2n — 7)(2n + 5)0, = 0,
1244 d3a—"(z)
where 0, = P etc.

Example 15.44 (Pincherle [520]) If (h® = 3hz + 1)7'/2 = § R, (z)h", shew that
n=0

2(n+ DR, = 3Q2n+ 1)zR, + 2n - 1)R,, = 0,
nR,+R, _,—zR, =0,
and
4(47° — )R + 967*R! — z(12n* + 24n — 91)R, — n(2n + 3)(2n + R, = 0,
3 n
d_Z3’

where R, = etc.

1 d"
2"nl(x — 1) dx"

Example 15.45 (Schendel [575]) If A,(x) = {(x* = 1)*(x — 1)}, obtain
the recurrence formula

(n+ 1)2n - DA (x) = {(4n> = Dx + 1}A,_1(x) + (n — 1)(2n + 1)A,_»(x) = 0.
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Example 15.46 If n is not negative and m is a positive integer, shew that the equation
dy
(x? —1) +(2n+2)x——m(m+2n+1)y
dx

has the two solutions

m 1 1\
Ko = =)@ -y L= -7 [ g

when x is not a real number such that -1 < x < 1.

Example 15.47 (Clare, 1901) Prove that

Jrtm ] qrm 2 n
(1= hx = (1 = 2hx + K22} = m(x —1)'"2( (x ) .

n+ m)! n dxm 2
oS + n
Example 15.48 (Trinity, 1905) If F, ,,(x) = M , shew that
m=| 0 m.
(1/ n ('x) { n( nt+XSt)} = exPn(x’ a)’
dt £=0

where P,(x, ) is a polynomial of degree n in x; and deduce that
d
Poa(x,@) = (x + @)Py(x,) + xd—Pn(x,a).
X

Example 15.49 (Léauté) If F,(x) be the coeflicient of z”* in the expansion of

2hz
ehz _ e—kz

XZ

in ascending powers of z, so that
3x% — h?
Fo(x)=1, Fi(x)=x, Fkkx)= —
shew that:

1. F,(x)is a homogeneous polynomial of degree n in x and 4;
dF,(x)

2. ——==F,_((x)forn > 1;
LZX
F.(x)dx =0forn > 1,
—k
4. If y = apFp(x) + a1 Fi(x) + o F>(x) + - - -, where ay, @1, @y, ... are real constants, then

the mean-value of d_): in the interval from x = —h to x = +h is a,..

Example 15.50 (Appell) If F,,(x) be defined as in the preceding example, shew that, when
-h<x<h,

B, (x)= (—1)’" COS — + —— COs

h 22m ho3m
2h2’"+1 ( X 1 2ax 1 3ax . )

2h2m ( X 1 27X 1 37x )
cos +o ),

Fop(x) = (=1)" + ——sin

n b 22me sin Th T 3am+l n

2m+1
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The Confluent Hypergeometric Function

16.1 The confluence of two singularities of Riemann’s equation

We have seen (§10.8) that the linear differential equation with two regular singularities only
can be integrated in terms of elementary functions; while the solution of the linear differential
equation with three regular singularities is substantially the topic of Chapter 14. As the next
type in order of complexity, we shall consider a modified form of the differential equation
which is obtained from Riemann’s equation by the confluence of two of the singularities. This
confluence gives an equation with an irregular singularity (corresponding to the confluent
singularities of Riemann’s equation) and a regular singularity corresponding to the third
singularity of Riemann’s equation.

The confluent equation is obtained by making ¢ — oo in the equation defined by the
scheme

0 0 c
P %+m —-c ¢c—-k z
I_m o0 k

2

The equation in question is readily found to be

du du [k 1-m?
— +—+ |-+ u=0. 16.1
dz?  dz (z Z (6.1

We modity this equation by writing u = e‘%ZWk,m(z) and obtain as the equation’

2w 1 k z-m
d_zz + {—Z + ; + 2 W =0. (162)

The reader will verify that the singularities of this equation are at 0 and oo, the former
being regular and the latter irregular; and when 2m is not an integer, two integrals of equation
(16.2) which are regular near 0 and valid for all finite values of z are given by the series

%+m—kz+(%+m—k)(%+m—k) L
1'2m+ 1) 212m + 1)2m + 2) ’

1-m—k Jr(%—m—k)(%—m—k)3
1 —2m)° " " 21(1 = 2m)(2 — 2m) '

Mk,m(Z) — Z1/2+me—%z {1 +

My _p(2) = e {1 '

! This equation was given by Whittaker [671], for Wy ,,,(2).

355
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These series obviously form a fundamental system of solutions.

Note Series of the type above have been considered by Kummer [389, p. 139] and more
recently by Jacobsthal [355] and Barnes [49]; the special series in which k = 0 had been
investigated by Lagrange in 1762—1765 [396, vol. I, p. 480]. In the notation of Kummer,
modified by Barnes, they would be written |F) {% +m-—k;+x2m + l;z}; the reason for
d? d

discussing solutions of equation (16.2) rather than those of the equation zd—}z} —(z— p)d—y -
z Z

ay = 0, of which |Fi(a; p; z) is a solution, is the greater appearance of symmetry in the
formulae, together with a simplicity in the equations giving various functions of Applied

Mathematics (see §16.2) in terms of solutions of equation (16.2).

16.11 Kummer’s formulae
(I) We shall now shew that, if 2m is not a negative integer, then
My () = (=) M (=2);

that is to say,

1 1 3
e+ §+m—kz+(§+m—k)(5+m—k) 2,
1'2m+1) 2!2m + 1)2m + 2)
sem+k  GHm+lG+m+k)
TTNm+ DT T 22m s Dem+2)

For, replacing e~ by its expansion in powers of z, the coeflicient of z" in the product of
absolutely convergent series on the left is

="

n!

—DrTCm+ DI(m+ L +k+n
F(%+m—k,—n;2m+1;1)=( ) I 1)( 2 ),
nl T(m+ 3+ kI2m+1+n)

by §14.11, and this is the coefficient of 7" on the right (the result is still true when m + % +kis
a negative integer, by a slight modification of the analysis of §14.11); we have thus obtained
the required result. This will be called Kummer’s first formula.

(IT) The equation

1/2+m Z2p
Mo m(z) = 2" {1+Z24Pp!(m+1)(m+2)"'(m+p)}’

p=1

valid when 2m is not a negative integer, will be called Kummer’s second formula.
To prove it we observe that the coefficient of z*"*!/2 in the product

226722 Fy(m + :2m + 15 2),
of which the second and third factors possess absolutely convergent expansions, is (§3.73)
G+mG+m)---(n—m+1)
n!m+ 1)2m+2)---2m+n)
(%+m)(%+m)---(n—m+ %)
T @m+ D)2m+2)---(2m +n)

F(-n,—2m—n;—n+ 5 —m;3)

(-in,—-m—in;—n+4%-m;1),
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by Kummer’s relation (see Chapter 14, Examples 14.12 and 14.13)
FQa,2B;a + B+ 3;:x) = F{la,Bra + B+ 3:4x(1 — x)},
valid when 0 < x < 1; and so the coefficient of z"*"*!/2 (by §14.11) is
(%+m)(%+m)---(n—m+%) F(—n+l—m)l"(%)
n!m+ 1)2m+2)---(2m + n) F(- -m- n)I“(% - %n)
_ F(z - m)r(z)
nl2m+ 1)2m+2)---2m+ (3 —m - In)L(4 - in)

>

and when # is odd this vanishes; for even values of n (= 2p) it is
M- mi-b-d-(-p)
(2p)1220 -+ 1)m + 3)-+- (m+ p = §)om + 1)m +2) -+ (m + pL(E = m = p)

~ 3-.-2p-1) ~ 1
e 2(m+ D(m+2)---(m+p) 2% -plm+ D(m+2)---(m+p)

16.12 Definition of the function Wy, ,,(2)

The function W ,,,(z) was defined by means of an integral in this manner by Whittaker [671].
The solutions M ..,,,(z) of equation (16.2) of §16.1 are not, however, the most convenient to
take as the standard solutions, on account of the disappearance of one of them when 2m is
an integer.

The integral obtained by confluence from that of §14.6, when multiplied by a constant
multiple of e?/2, is?

1 (0+)
Wim(@) = =350 (k+ 3—m) €Z/22k/ (=) 2 (L4 1) e .

It is supposed that arg z has its principal value and that the contour is so chosen that the
point t = —z is outside it. The integrand is rendered one-valued by taking | arg(—¢)| < «
and taking that value of arg(1 + ¢/z) which tends to zero as ¢t — 0 by a path lying inside
the contour. Under these circumstances it follows from §5.32 that the integral is an analytic
function of z. To shew that it satisfies equation (16.2), write

(0+) , ]
v = / (=) k=241 4 ¢k 2 e dr
and we have without difficulty?

d*v (2k l)dv r-mr+k(k—1)
—_— v

dZZ + Z2

k+1/2+m (1 + t/Z)k—3/2+m e—t} dt

(k -3 +m) /<0+> d
=0,

2 A suitable contour has been chosen and the variable ¢ of §14.6 replaced by —¢.
3 The differentiations under the sign of integration are legitimate by Corollary 4.4.1.
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since the expression in braces tends to zero as t — +o0; and this is the condition that e 2zky
should satisfy (16.2).
Accordingly the function W;_,,,(z) defined by the integral

1 (0+)
——T(k+3-m) e 1k / (=) F2+m (] + t/z)k_%“" et drt
2ni o
is a solution of the differential equation (16.2).
The formula for W, ,,(z) becomes nugatory when k — % — m is a negative integer. To
overcome this difficulty, we observe that whenever Re (k - % - m) <0andk - % — m is not

an integer, we may transform the contour integral into an infinite integral, after the manner
of §12.22; and so, when Re (k — 3 —m) <0,

1
e 22k °° 1
e / fhmarm 1+ t/z)k 3+m e dt.
k + m) 0

Wk,m(Z) = l_,(l

This formula suffices to define W; ,,(z) in the critical cases when m + % — k is a positive
integer, and so W, ,,(z) is defined for all values of k and m and all values of z except negative
real values®.

Example 16.1.1 Solve the equation

in terms of functions of the type Wy ,,(z), where a, b, ¢ are any constants.

16.2 Expression of various functions by functions of the type Wj ,,,(z)

It has been shewn® that various functions employed in Applied Mathematics are expressible
by means of the function Wy ,,,(z); the following are a few examples:

(I) The Error function® which occurs in connexion with the theories of Probability, Errors of
Observation, Refraction and Conduction of Heat is defined by the equation

Erfc(x) =/ e dt,

where x is real.

* When z is real and negative, Wy ,,,(z) may be defined to be either Wy, ,,(z + 0i) or Wy ,,,(z — 0i), whichever
is more convenient.

> Whittaker [671]; this paper contains a more complete account than is given here.

6 This name is also applied to the function

X
Erf(x) = / e dr = g — Brfe(x).
0
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Writing ¢ = x*>(w? — 1) and then w = s/x in the integral for W_, 1 (x?), we get

11
11

W.

11
11

(xz) = x_%e_%xz / (1 + t/xz)_l/z €_t dt
0

=2xie " / exz(l —wHdw
1

e [T e
=2x2e? e ds,
X

and so the error function is given by the formula

Erfe(x) = %x*% e W (x?).

Other integrals which occur in connexion with the theory of Conduction of Heat, e.g.

11
44

b
222 . . .
/ e dt, can be expressed in terms of error functions, and so in terms of Wy
a

functions.

Example 16.2.1 Shew that the formula for the error function is true for complex values
of x.

(I) The Incomplete Gamma-function, studied by Legendre and others’, is defined by the
equation

X
v(n,x) = / " e dt.
0
By writing # = s — x in the integral for Wi, 1,,(x), the reader will verify that
y(n.x) = T(n) = x2" Ve Wy, ) 1, (x).

(I) The Logarithmic-integral function, which has been discussed by Euler and others?, is
of considerable importance in the higher parts of the Theory of Prime Numbers; see Landau
[405]. It is defined, when | arg(— log z)| < x, by the equation

< odt
li(z) = —
i) o logt
On writing s — log z = u and then u = —log ¢ in the integral for
Wy (- log2)

it may be verified that
li(z) = —(~log z) 7z} W_1 o(—logz).
It will appear later that Weber’s Parabolic Cylinder functions (§16.5) and Bessel’s Circular

Cylinder functions (Chapter 17) are particular cases of the Wj ,,, function. Other functions
of like nature are given in the Miscellaneous Examples at the end of this chapter.

7 Legendre [421, vol. I, p. 339]; Hodevar [324]; Schlomilch [584]; Prym [545].
8 Euler [201]; Soldner [597]; Bessel [69]; Laguerre [397]; Stieltjes [605].
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Note The error function has been tabulated by Encke [195], and Burgess [107]. The
logarithmic-integral function has been tabulated by Bessel and by Soldner. Jahnke & Emde
[356], and Glaisher [253], should also be consulted.

16.3 The asymptotic expansion of Wy ,,(z), when |z]| is large

From the contour integral by which Wy ,,,(z) was defined, it is possible to obtain an asymptotic
expansion for Wy ,,(z) valid when | arg z| < x. For this purpose, we employ the result given
in Chapter 5, Example 5.6, that

A n
(1+£) :]+££+m+/l(/l—1) (A-n+Dt"
Z 1 "

z n!

+ R,(t,2),

where

“1)-(1=- 4 pt/z
R,,(t,z)=/l(/l l)n! @-n (1+£) ‘/0 u"(1+u) " du.

Substituting this in the formula of §16.12 and integrating term-by-term, it follows from
the result of §12.22 that

2—(/(—%)2 {mz—(k—%)z}{mz—(k—%)z}
1!z " 2122
{m? = (k= 3PHm® = (k= 3P} m® = (k=n+ 1)}

n'z"

F( k+1 +m)/ R n(t:2)e” }

provided that n be taken so large that Re (n — k — 3 +m) > 0.

m
Wim(z) = e7272F {1 +

+...+

Now, if |arg z| < 7 — @ and |z| > 1, then

1<|(A+t/z2)| <1+t Re(z) 20
|l +1/z] = sina Re(z) <0

and so’
A1=1)---(1 = 1+l plizl
R (1, 2)] < =D @=m , ) u"(1+uw) du.
n! (sina)1l J,
Therefore
A= A=-n)| (1 +nH . )
|Ru(1,2)] < p o) lt/z|" 1+ )M+ 1),
since 1 + u < 1 + ¢. Therefore, when |z| > 1,
1 o 1 o 1
Tk+l+m) )/ R (1,2)e” di| = 0{/ lrstmen 20| g)mnel gt dt}
—K + 3 +m) Jo o
— O(Z_n_l),

9 Tt is supposed that A is real; the inequality has to be slightly modified for complex values of A.
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since the integral converges. The constant implied in the symbol O is independent of arg z,
but depends on «, and tends to infinity as @ — 0. That is to say, the asymptotic expansion of
Wie.m(2) is given by the formula

Wim(z) ~ e 272¢

x{l+i {mZ—(k—%)z}{mz—(k—%)2}---{m2—(k—n+%)2}}

nlzn

for large values of |z| when |argz| < m — a < 7.

16.31 The second solution of the equation for Wy ,,,(z)

The differential equation (16.2) of §16.1 satisfied by W, ,,(z) is unaltered if the signs of z and
k are changed throughout. Hence, if | arg(—z)| < m, W_;_,»(—z) is a solution of the equation.
Since, when | arg z| < ,

Wim(z) = e {1+ 0 (")},
whereas, when | arg(—z)| < 7,
Wem(—2) = e*(—2)* {1+ 0 (z7")},

the ratio Wy_,,(z)/W_i.m(—z) cannot be a constant, and so Wy ,,(z) and W_; ,,,(—z) form a
fundamental system of solutions of the differential equation.

16.4 Contour integrals of the Mellin-Barnes type for Wy ,,(z)

Consider now

Z* ds, (16.3)

I e 327k /im L(s)[(—s —k—m+ I (=s —k +m + 3)
2ri J_

oo D=k —m+ ) (—k +m + )

where | arg z| < %ﬂ', and neither of the numbers k + m + % is a positive integer or zero'’; the
contour has loops if necessary so that the poles of I'(s) and those of I' (—s — k —m + %) X
I (—s — k + m + 1) are on opposite sides of it.

It is easily verified, by §13.6, that, as s — oo on the contour,

L) (—s—k—m+3)T(-s—k+m+3) = O(e 371512 | 72k-1/2),

and so the integral represents a function of z which is analytic at all points!! in the domain
largz| < 37— < 37

Now choose N so that the poles of I' (—s — k —m + 3) I’ (=s — k + m + 1) are on the right
of the line Re(s) = -N — %; and consider the integral taken round the rectangle whose
corners are +i¢, —N — % + i&, where £ is positive'? and large. The reader will verify that,

10 In these cases the series of §16.3 terminates and Wi, m(z) is a combination of elementary functions.
11" The integral is rendered one-valued when Re(z) < 0 by specifying arg z.
12 The line joining +i& may have loops to avoid poles of the integrand as explained above.



362 The Confluent Hypergeometric Function

-N-1-i& -N-1+i&
when |arg z| < %n — a, the integrals / and / tend to zero as & — oo; and
—i& 173
so, by Cauchy’s theorem,

e 227k /i” D()(-=s—k—m+3(-=s —k+m+3)
2mi J_

2 ds
00 L(-k =m+ )I(=k +m+ 1)

N —N-1L+ioco 1 1
. 1 2 I'sS)I[(=s—k-m+ ) (-s—k+m+ =
= e 237k {ZR,,+—, (I : )1 : 2)zsa’s},
—l 270 J N-1ico C(—k —m+ )T(=k +m + 3)
where R, is the residue of the integrand at s = —n.
Write s = —N — % + it, and the modulus of the last integrand is

_N-1 — —
|Z| N 20{6 (t|t||t|N Zk}’

+00

where the constant implied in the symbol O is independent of z. Since / eI |N=2k gy

converges, we find that

N
I=eR7 {Z R, + 0(|z|-N-1/2)} :

n=0
But, on calculating the residue R,,, we get
F(n—k—m+%)l"(n—k+m+%)
C (k= m+ HT(~k +m+1)
{2 = (k= P = (= 37} = =+ 47}

(_l)nz—n

n

>

nlz"

and so [ has the same asymptotic expansion as Wy ,(2).
Further, I satisfies the differential equation for Wy ,,,(z); for, on substituting

/ F(S)F(—s—k—m+%)F(—s—k+m+%)zsds
for v in the expression (given in §16.12)

d*v dv
zzd—Z2+2kzd—Z+(k—m—%)(k+m—%)v—z —

we get

[ L) (-s—k-m+3)T(-s—k+m+3)2°ds

ico

—/ s+ Dl (-s—k-m+3)T(-s—k+m+1) 2" ds

ico 1+ico
:([ —/1_‘ )F(S)F(—s—k—m+%)F(—s—k+m+%)zsds.

Since there are no poles of the last integrand between the contours, and since the integrand
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tends to zero as |s| — oo, s being between the contours, the expression under consideration
vanishes, by Cauchy’s theorem; and so I satisfies the equation for Wy ,,,(z).

Therefore I = AWy ,,,(z) + BW_g ,(—2), where A and B are constants. Making |z| — oo
when Re(z) > 0 we see, from the asymptotic expansions obtained for 7 and Wy ,,,(+2), that
A =1, B = 0. Accordingly, by the theory of analytic continuation, the equality

I= Wk,m(z)

persists for all values of z such that |argz| < x; and, for values!® of arg z such that
< |argz| < %71, Wi.m(z) may be defined to be the expression /.

Example 16.4.1 Shew that

PRE: /’"’" I'(s—k)I(-s—m+ %)F(—s +m+ %)

i 1 Z ds,
ico [(=k—m+ )l(=k +m+ 3)

taken along a suitable contour.
Example 16.4.2 Obtain Barnes’ integral for Wy ,,(z) by writing

1 O T((=s—k—m+3)
— 2t ds
270 J oo I(-k—m+3)

for (1 + 1/2)F"2*™ in the integral of §16.12 and changing the order of integration.

16.41 Relations between Wy, ,,(z) and My .pm(2)

If we take the expression
F(s)EF(s)F(—s—k—m+%)F(—s—k+m+%)
which occurs in Barnes’ integral for Wy ,,(z), and write it in the form

7*I(s)
T(s+k+m+ (s +k—m+ Lycos(s + k + m)wcos(s + k —m)n’

we see, by §13.6, that, when Re(s) > 0, we have, as |s| — oo,

F(s) = O [exp {(-s — 1 — 2k) log s + s}| sec(s + k + m)m sec(s + k — m)x.

Hence, if | arg z| < %7‘[, / F(s)z® ds, taken round a semicircle on the right of the imaginary

axis, tends to zero as the radius of the semicircle tends to infinity, provided the lower bound of
the distance of the semicircle from the poles of the integrand is positive (not zero). Therefore

e %7k (X R)

W m == £
em(2) T(—k—m+ DT~k +m+ 1)

13 Tt would have been possible, by modifying the path of integration in §16.3, to have shewn that that integral
could be made to define an analytic function when | arg z| < 377/2. But the reader will see that it is
unnecessary to do so, as Barnes’ integral affords a simpler definition of the function.
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where ), R’ denotes the sum of the residues of F(s) at its poles on the right of the contour
(cf. §14.5) which occurs in equation (16.3) of §16.4.

Evaluating these residues we find without difficulty that, when | arg z| < %n, and 2m is not
an integer'*,

I'(-2m)
It —m-k)

2

Wem(2) = Min(@) + = rem e ).

(3 +m—k)

Example 16.4.3 (Barnes) Shew that, when | arg(—z)| < %ﬂ' and 2m is not an integer,
I'(-2m) I'(2m)

Won(=2) = ————2 =
em(=2) T —m+k) T +m+k)

M_y p(=2) + M m(=2).

These results are given in the notation explained in §16.1.

Example 16.4.4 When —%ﬂ' <argz < %rr; and —%n < arg(—z) < %ﬂ', shew that

I'Cm+1 ; I'm+1 | :
Mk,m(Z) — #ekﬂlw_k,m(_Z) + ¥6(5+M+k)nlwk’m(z)'
[ +m—k) (3 +m+k)
Example 16.4.5 (Barnes) Obtain Kummer’s first formula (§16.11) from the result
_ 1 ioo ‘
et = — T'(n—s)z°ds.
270 J_ioo

16.5 The parabolic cylinder functions. Weber’s equation

Consider the differential equation satisfied by w = Z_%Wk’_l (%zz); it is

7

1d [1dwz?) 1 2% 3 '
—— - +{——+—=+= 2 =0
zdz {z dz } { 4 22 e

this reduces to

Therefore the function
loel 1
Du(2) = 22" 22 Wy 1 (577)
satisfies the differential equation
d’D, ()
dz?

Accordingly D, (z) is one of the functions associated with the parabolic cylinder in har-
monic analysis (see Weber [655] and Whittaker [670]); the equation satisfied by it will be
called Weber’s equation.

+(n+1-122)Du(z) =0.

14 When 2m is an integer some of the poles are generally double poles, and their residues involve logarithms of
z. The result has not been proved when k — % + m is a positive integer or zero, but may be obtained for such
values of k and m by comparing the terminating series for Wy _,,,(z) with the series for My .,,,(2).



16.5 The parabolic cylinder functions. Weber’s equation 365

From §16.41, it follows that
(§)2imiz s
Dy(2) = ———My 1 1 (38)+ ——M, )
I'(z-5n) 2%17 ['(—5n) 2t1

3
when |arg z| < 7. But

and these are one-valued analytic functions of z throughout the z-plane. Accordingly D,,(z)
is a one-valued function of z throughout the z-plane; and, by §16.4, its asymptotic expansion
when |arg z| < %n is

12 [y nn—1) nn-1n-2)(n-3)
¢ Z{_ 22 242 _}

16.51 The second solution of Weber’s equation

Since Weber’s equation is unaltered if we simultaneously replace n and z by —n — 1 and +iz
respectively, it follows that D_,,_1(iz) and D_,_;(—iz) are solutions of Weber’s equation, as
is also D,(-z).

It is obvious from the asymptotic expansions of D, (z) and D_,_;(ze*™), valid in the range
—%Jr <argz < in, that the ratio of these two solutions is not a constant.

16.511 The relation between the functions D,,(z), D_,_1(%iz)

From the theory of linear differential equations, a relation of the form
Dn(z) = aD—n—l(iZ) + bD—n—l(_iZ)

must hold when the ratio of the functions on the right is not a constant.
To obtain this relation, we observe that if the functions involved be expanded in ascending
powers of z, the expansions are

r(3)2%  T(-$)23

rd-n" T

Z+...

and

r(322m  I(=3e7 r(§2": I3t
— + ————iz+- o+ b T~ izt

Comparing the first two terms we get
a= (271')_%1—‘(” + 1)6%717”', b= (Zﬂ)_%r(n + l)e—%nm”

and so
I'n+1)

D,(z) = Nor

[e"”i/zD_n_l(iz) + e’””"/zD_n_l(—iz)] .
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16.52 The general asymptotic expansion of D,(z)

So far the asymptotic expansion of D,,(z) for large values of z has only been given (§16.5) in
the sector | arg z| < %n. To obtain its form for values of arg z not comprised in this range we
write —iz for z and —n — 1 for » in the formula of the preceding section, and get

V2n
[(=n)
1

Now, if %7‘( > argz > 7, we can assign to —z and —iz arguments between +27r and

arg(—z) = argz — m, arg(—iz) = arg z — %ﬂ'; and then, applying the asymptotic expansion of
§16.5 to D, (—z) and D_,,_;(—iz), we see that, if 27 > argz > i,

n(n—1)+”("‘1)(n—2)(”_3)_...}

D (Z) — ean ( Z)+ —(n+1)7r1D_n 1( lZ)

D,(z) ~e 3% 2" {1 -

272 2-4z4
V21 i v L, D+ 4 D+ 2+ 3+ 4)
IYEDN ¢ { T2 T 24z }

This formula is not inconsistent with that of §16.5 since in their common range of validity,
. 1 In—1 _ s
viz. bn < argz < 3m, €37z is o(z™™) for all positive values of .

To obtain a formula valid in the range — 7r > argz > 471 we use the formula

D (Z) _ e—an ( Z) + = (n+1)mD7n 1(lZ)

2n
e
and we get an asymptotic expansion which differs from that which has just been obtained
only in containing e in place of """,
Since D, (z) is one-valued and one or other of the expansions obtained is valid for all
values of arg z in the range —7 < arg z < 7, the complete asymptotic expansion of D, (z) has
been obtained.

nmi

16.6 A contour integral for D, (z)
(0+) 142
Consider e 72" (=t)™ ' dt, where | arg(~t)| < r; it represents a one-valued analytic

function ofoz throughout the z-plane (§5.32) and further
& d ) e 9 q
(— -7 +n)/ e (=) dr = / dt{ e (=) ") di =

the differentiations under the sign of integration being easily justified; accordingly the integral
satisfies the differential equation satisfied by eizan(z); and therefore

1,2

(0+)
/ e (<) dt = aDy(2) + bD_ 1 (i2),

where a and b are constants.
Now, if the expression on the right be called E,(z), we have

(0+) - (0+) s
E,(0) = / (=" dr,  EN0) = / e (=)™ dt.
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To evaluate these integrals, which are analytic functions of n, we suppose first that
Re(n) < 0; then, deforming the paths of integration, we get

E,(0) = —2isin(n + l)n/ o3 g
0

=22 sinmr/ e “u ™ du
0
= 2" sin(nm)T (-2) .

Similarly E},(0) = =2"""/2 sin(nm)['(3(1 — n)). Both sides of these equations being analytic
functions of n, the equations are true for all values of n; and therefore

l_%n)

b=0, a=—2

= 2 2 Do-ingin(na)l (-
O

%) = 2il(-n)sin .

Therefore

I'n+1 , 00
O e / e oy dr,

16.61 Recurrence formulae for D,(z)

Form the equation

o0 d t—1s2 1
0= —{‘Z‘i —t‘"‘}dt
L & e

= /(0+> [—2(=t)" "+ (=) + (n + 1)(=0) "2} 7737
after using §16.6, we see that
Dy11(2) = 2Dy(2) + nDy1(2) = 0.
Further, by differentiating the integral of §16.6, it follows that
D(2) + 12D,(2) = nD,1(2) = 0.

Example 16.6.1 Obtain these results from the ascending power series of §16.5.

16.7 Properties of D,,(z) when n is an integer
When 7 is an integral, we may write the integral of §16.6 in the form

1,2 1.2
nle—i? 0+) p-zr-31
M@:_zm,/ o &

If now we write r = v — z, we get

117" L&D oty
Da(z) = (-1 2 / 4
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a result due to Hermite [289].
Also, if m and n be unequal integers, we see from the differential equations that

D,(z)D;(z) = D, (2)D;/(z) + (m — n)D,,(z)Dy(z) = 0,
and so
(m — ) / Du(2)Da(2)dz = [Da(@)D1y(2) — DD
-0,

by the expansion of §16.5 in descending powers of z (which terminates and is valid for all
values of arg z when n is a positive integer). Therefore if m and n are unequal positive integers

/oo D,.(z)D,(z)dz = 0.

o

On the other hand, when m = n, we have

(n+ 1)/«» (Dn(2)}* dz = /w D,(2){D,,,(z) + 1zDy41(2)} dz

00

= (DAt (I
+ / {42Du(2)Ds1(2) = Dyt (IDL(2)} dz

= / ) {Dyi1(2))? dz,

on using the recurrence formula, integrating by parts and then using the recurrence formula
again. It follows by induction that

[ 0a@y de=nt [ ooy az
= n!/Do e 1% dz
= (271)%71!,

by Corollary 12.1.1 and §12.2.
It follows at once that if, for a function f(z), an expansion of the form

f(2) = ayDo(z) + a1Dy(z) + - + ayDy(z) + - -

exists, and if it is legitimate to integrate term-by-term between the limits —co and co, then

= — / DO dr.

N Q2r)in! J-w
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16.8 Miscellaneous examples
Example 16.1 Shew that, if the integral is convergent, then

T(2m + 1)zm+2272m
(3 +m+kIG+m—k)

Mk,m(z) =

X /:(1 + u)_%”"_k(l - u)_%”’”k er¥ dy.
Example 16.2 Shew that
My (2) = Z3tm e_Z/szIEOF (3+m—k3+m—k+p2m+1;z/p).
Example 16.3 Obtain the recurrence formulae
Wim(2) = 22 Wit 1(2) + (3 = k +m) Weg m(2),
Wim(z) = Z%Wk_%,m+%(2) + (3 =k —m) Wiey m(2),
W () = (k= 12) Wen(2) = {® = (k= 1)} Wi (2).

Example 16.4 Prove that W, ,,,(z) is the integral of an elementary function when either of
the numbers k — % + m is a negative integer.

Example 16.5 Shew that, by a suitable change of variables, the equation

d? d
(ar + bzx)d—x); + (a; + blx)ﬁ + (ap + box)y =0

can be brought to the form

2
dn+(c—§)ﬂ—an20.

S dé

Derive this equation from the equation for F(a, b;c; x) by writing x = £/b and making
b — co.

Example 16.6 Shew that the cosine integral of Schlomilch and Besso [71], defined by the

equation
“ cost
Ci(z) = / — dt,
Z t

is equal to

1 ; , 1 . .

EZ_% E%IZ%RIW_%’O(—iZ) + EZ_%e_%lZ_%mW_%’O(iZ).
Shew also that Schlomilch’s function, defined in [582] by the equations

S(v,z) = / (1+0)Ve ¥ dt = zv_leZ/ ¢ — du,
0 z

u

: 2-1 2
is equal to 2> e*PW_1, 1 _1,(2).
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Example 16.7 Express in terms of W, ,, functions the two functions

ot
SI(Z)—/ ﬂah‘ Ei(z)z/ ert.

The results of Examples 16.8, 16.9, 16.10 below were communicated to us by Mr. Bateman.

Example 16.8 Shew that Sonine’s polynomial [598], defined by the equation

n n-1
z z
T!(z) = -
= 0l = Dl + = DI
Zn—2
+ — e
(n=-2)!(m+n-2)2!
is equal to
1
~Lom+1) 2 /2y .
n'(m'i‘n)'z n+s m+ 2nl(z)

Example 16.9 Shew that the function ¢,,(z) defined by Lagrange [394] in 1762-1765
and by Abel [5, p. 284] as the coefficient of A™ in the expansion of
(1 = h)~e72/0-k) i5 equal to

—1)ym
C i g, o(2).
m! 2
Example 16.10 Shew that the Pearson—Cunningham function [517, 158], w, .(z), defined
as
eF(-gy e [ (n+ gm)n = 3m)
I'(n- %m +1) Z
+(n+ %m)(n+ %m— (n - %m)(n— %m— 1) o
2172 ’
is equal to
n—im
(=1)"> g2y ()
I'(n- %m+ 1) e

Example 16.11 (Whittaker) Shew that, if | arg z| < {7 and |arg(l + 1)| < ,

FGn+1)

1.2 1 1
-z e 11+ 1)1 = 1)2 D gp.
P (1+1) (1-1)

D,(z) =

Example 16.12 Shew that, if n be not a positive integer and if | arg z| < %ﬂ, then
1 1. [ T(3t = 3n)(-1)
D)= A ete [T gy,
@)= 2 € L,o =T

(0-)
and that this result holds for all values of arg z if the integral be / , the contours enclosing

the poles of I'(—#) but not those of I'(5*).
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Example 16.13 Shew that, if |arga| < 37,
0+) 3/29n/2-m mi(m—1
T e
/ e %—a)zzszn(Z) dZ = N . -

x F(—m)r(zm - El’l + l)ai("”')
nm+l m—n 1
XF|-z, ; +1;1-—]).
202 2 2a

Example 16.14 (Watson) Deduce from Example 16.13 that, if the integral is convergent,
then

‘/Ox ¢ 3 "Dy (2) dz = ‘/iilimlﬁ(m + 1) sin ((1 -m)%) .
Example 16.15 (Watson) Shew that, if n be a positive integer, and if
Ew= [ b
then E,(x) = +ie™™V2al(n + 1)e5* D_,_(Fix), the upper or lower signs being taken
according as the imaginary part of x is positive or negative.

Example 16.16 (Adamoft) Shew that, if n be a positive integer,

COoS

D, (x) = (=1)H2"2(27) 13 / u'e { ) }(2xu)du,
0 sin

where y is %n or %(n — 1), whichever is an integer, and the cosine or sine is taken as # is even
or odd.
Example 16.17 (Adamoff) Shew that, if n be a positive integer,

2 n+l 12 )
Dy(x) = (‘U“\/j\/f_l et e (N + = Js),
n

where

Ji :/ g1y {C?I?} (xvv/n)dv,

S

« cos
J> —'/0 a(v) {sin} (xvv/n) dv,
0 ( y COS
_ —n(v=1)*
J3 = /w e {sin} (xvvn) dv,
—n(v—l)z‘

and o(v) = ex"(1=v)yn _ ¢

Example 16.18 (Adamoff) With the notation of the preceding examples, shew that, when
x is real,

_1 _1,2 |cos
le {sin} (xvvn)dv
while J; satisfies both the inequalities

Qe Tz
Ll < ——, |/ <(—) e .
< W< (5,



372 The Confluent Hypergeometric Function

Shew also that as v increases from O to 1, o-(v) decreases from 0 to a minimum at v = 1 —
and then increases to O at v = 1; and as v increases from 1 to oo, o(v) increases to a maximum
at 1 + h, and then decreases, its limit being zero; where

L3 <h< 3 /3 < hy < 3
N2 SN2 2V S SN
and |o(1 — hy)| < An™2,0(1 + hy) < An™%, where A = 0.0742 - - - .

Example 16.19 (Adamoff) By employing the second mean-value theorem when necessary,
shew that

D,(x) = ‘5\/#6_"/2 [COS (x n-— %nﬂ) + w:l/(ﬁx)} )

where w, (x) satisfies both the inequalities
335+ 1. 1
|x|vVr

e, wu(0)] < —=
when x is real and » is an integer greater than 2.

lwn(x)] <

6\n

Example 16.20 (Milne) Shew that, if n be positive but otherwise unrestricted, and if m be
a positive integer (or zero), then the equation in z

D,(z)=0

has m positive roots when 2m — 1 <n <2m + 1.
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Bessel Functions

17.1 The Bessel coefficients

In this chapter we shall consider a class of functions known as Bessel functions or cylindrical
functions which have many analogies with the Legendre functions of Chapter 15. Just as
the Legendre functions proved to be particular forms of the hypergeometric function with
three regular singularities, so the Bessel functions are particular forms of the confluent
hypergeometric function with one regular and one irregular singularity. As in the case of the
Legendre functions, we first introduce a certain set of the Bessel functions as coefficients in
an expansion. This procedure is due to Schlomilch [581].

For all values of z and ¢ (r = 0 excepted), the function

e
o2\t
can be expanded by Laurent’s theorem in a series of positive and negative powers of z. If the

coeflicient of ¢, where n is any integer positive or negative, be denoted by J,,(z), it follows,
from §5.6, that

1 o ]
Ju(z) = %‘/ u ez gy

To express J,(z) as a power series in z, write u = 2¢/z; then

1 Z\" ©) -n—1 2 .
Ju(2) = i (5) / 1™ exp (t — 2°/41) dt;

since the contour is any one which encircles the origin once counter-clockwise, we may take
it to be the circle |¢| = 1; as the integrand can be expanded in a series of powers of z uniformly
convergent on this contour, it follows from §4.7 that

1 b (_])r z n+2r (0+) vl
= — = T dt. 17.1
@)= 0 Z:(; rl (2) / ¢ 7.1)

Now the residue of the integrand at t = 0 is 1/(n + r)! by §6.1, when n + r is a positive
integer or zero; when n +r is a negative integer the residue is zero. Therefore, if n is a positive
integer or zero,

© (=1) (% n+2r
i = § U@
r=0

rli(n+r)!

n 2 4
2”n!{ 22.1(n+1) 24-1-2(n+ D(n+2) }’
373
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whereas, when r is a negative integer equal to —m,

PR e i (6" $r g
" Zrl(r —m)! i (m+s)ls!
and so J,,(z) = (=1)"J,(2).

The function J,(z), which has now been defined for all integral values of n, positive and
negative, is called the Bessel coefficient of order n; the series defining it converges for all
values of z. We shall see later (§17.2) that Bessel coefficients are a particular case of a class
of functions known as Bessel functions.

The series by which J,,(z) is defined occurs in a memoir by Euler [206], on the vibrations
of a stretched circular membrane, an investigation dealt with below in §18.51; it also occurs
in a memoir by Lagrange [393] on elliptic motion. The earliest systematic study of the
functions was made in 1824 by Bessel in [70]; special cases of Bessel coefficients had,
however, appeared in researches published before 1769; the earliest of these is in a letter,
dated Oct. 3, 1703, from Jakob Bernoulli to Leibniz [424], in which occurs a series which is
now described as a Bessel function of order % the Bessel coeflicient of order zero occurs in
1732 in Daniel Bernoulli’s memoir on the oscillations of heavy chains [65]. In reading some
of the earlier papers on the subject, it should be remembered that the notation has changed,
what was formerly written J,(z) being now written J,,(22).

Example 17.1.1 (Math. Trip. 1896) Prove that if
26(1 + 62)

(1 = 2u0 — 62) + 4202

then e® sin bz = A Ji(z) + AyJ>(z) + A3J3(z) + - - - . Hint. For, if the contour D in the u-plane

be a circle with centre u = 0 and radius large enough to include the zeros of the denominator,
we have

= A+ A+ A0+ -+,

1 1 00
er(u=3) 2b (7 * F) — Z e%z(u—%)A ynl
(]_2_‘1_L)2+4b1 " ’

2 n=1

u u? u?
the series on the right converging uniformly on the contour; and so, using §4.7 and replacing

the integrals by Bessel coeflicients, we have

L4 L
L O M k) B
il e

:L/eéz(”‘i) ﬁ+&+é+--- du
27i Jp w o out
= Ai(2) + Ao a(2) + AsJa(2) + -+ -

In the integral on the left write %(u —u"") —a =1, so that as u describes a circle of radius
P, t describes an ellipse with semi-axes cosh 8 and sinh 8 with foci at —a + i; then we have

S 1 [ e Dby
Andn(2) = 5= | —5 T2
Z; @ ml/ e

the contour being the ellipse just specified, which contains the zeros of > + b?. Evaluating
the integral by §6.1, we have the required result.
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Example 17.1.2 (K. Neumann and Schléfli) Shew that, when 7 is an integer,

I+ = D In()nm(2).

m=—o0o

Hint. Consider the expansion of each side of the equation

el(+)tl—eltlelt1
AP )] =P 2 t P 2¢ t]]”
Example 17.1.3 Shew that

€2 = Jo(z) + 2i cos ¢J1(z) + 2i* cos 2¢Jr(2) + - - - .

Example 17.1.4 (K. Neumann and E. Lommel) Shew that if 7> = x* + y?

Jo(r) = Jo(x)Jo(y) = 212(x)Ja(y) + 2J4(x)Ja(y) — -+ - .

17.11 Bessel’s differential equation

We have seen that, when # is an integer, the Bessel coefficient of order n is given by the

formula
1 Z\n 0+) . 22
=—|= T t——| dt.
(@) 27ri(2) / R

From this formula we shall now shew that J,(z) is a solution of the linear differential

equation
d’y ldy n’
—+-—+|1-=|y=0,
dz? = zdz 2)”
which is called Bessel’s equation for functions of order 7.
For we find on performing the differentiations (§4.2) that

d*J,(2) . 1 dJ,(2) N (1 n2) 52

dz? z dz 72

1 oz\r O n+1 72 z
—%(E)/ t 1- p +E exp I_It dt

1 /z\n 0+ 4 . 22
=5 (5) / 78 U Uil L

=0,

since t"~! exp(t — z%/4t) is one-valued. Thus we have proved that

d’J,(z) 1 dJ,(2) n?
- 1-—=1J,(2) =0.
dz? * z dz " z2 @

The reader will observe that z = 0 is a regular point and z = oo an irregular point, all other
points being ordinary points of this equation.
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Example 17.1.5 (St John’s, 1899) By differentiating the expansion

e3e(i-1) = i " 1,(z)

n=-—oo

with regard to z and with regard to ¢, shew that the Bessel coefficients satisfy Bessel’s
equation.

Example 17.1.6 The function P} (1 - %) satisfies the equation defined by the scheme

4n? ) 0
P{gm n+1 im 2
1 1
Em n zm

Shew that J,,(z) satisfies the confluent form of this equation obtained by making n — oo.

17.2 The solution of Bessel’s equation when 7 is not necessarily an integer

We now proceed, after the manner of §15.2, to extend the definition of J,(z) to the case when
n is any number, real or complex. It appears by methods similar to those of §17.11 that, for
all values of n, the equation

d’y 1 dy n?
AL O o S
dzz+z dz+ 72 Y

is satisfied by an integral of the form

1 z?
=" |t t——|dt
y Z ‘/C exXp ( 4t)

provided that ! exp (t - %) resumes its initial value after describing C and that differen-

tiations under the sign of integration are justified.
Accordingly, we define J,,(z) by the equation

7" (0+) o 22
Ju(z) = T [m " exp (t - Z) dt,

the expression being rendered precise by giving arg z its principal value and taking | arg#| < «
on the contour.

To express this integral as a power series, we observe that it is an analytic function of z;
and we may obtain the coefficients in the Taylor’s series in powers of z by differentiating
under the sign of integration (§§5.32 and 4.44). Hence we deduce that

7" N (_1)rz2r o0 t ,—n—r-1
1D = i 24 oy cred
r=0 e

B i (_1)rzn+2r
S LT (a4 + 1)

by §12.22. This is the expansion in question.
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Accordingly, for general values of n, we define the Bessel function J,,(z) by the equations

1y O 2
J.(2) = % (E) ‘[ t exp |t — a dt

B i (_l)an+2r
LI T(n+r+ 1)

This function reduces to a Bessel coefficient when n is an integer; it is sometimes called
a Bessel function of the first kind.

The reader will observe that since Bessel’s equation is unaltered by writing —n for n,
fundamental solutions are J,(z), J_,(z), except when » is an integer, in which case the
solutions are not independent. With this exception the general solution of Bessel’s equation
is

a'Jn(Z) + IBJ—n(Z),

where a and B are arbitrary constants.
A second solution of Bessel’s equation when # is an integer will be given later (§17.6).

17.21 The recurrence formulae for the Bessel functions

As the Bessel function satisfies a confluent form of the hypergeometric equation, it is to
be expected that recurrence formulae will exist, corresponding to the relations between
contiguous hypergeometric functions indicated in §14.7.

To establish these relations for general values of n, real or complex, we have recourse to
the result of §17.2. On writing the equation

(0+) d Z2
0= — " t——|; dt
/m dt { P ( 4:)}
at length, we have

0+) l Z2
0= [m (f” + Zzzt‘"‘z - nt‘"") exp (t - 4—t) dt

= 2ni {(21‘1)"‘11n1(z) = 212(21‘1)”“1,,“&) - n(2Z‘l)”Jn(Z)},

and so

o (D) T (2) = 27” 5 (2). (17.2)

Next we have, by §4.44,

d 1 d (0+) | 22
—{z™" = — e .
dz @) 2+ dz / exp( 4t)

—00

(0+) 2
z e z
= - " Cexp |t — — | dt
22 /m p( 4;)

= _Z_n n+1 (Z)$
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and consequently, if primes denote differentiations with regard to z,

n
Ju(2) = EJn(z) — Ju1(2). (17.3)
From (17.2) and (17.3) it is easy to derive the other recurrence formulae
1
Jr’z(z) = E {Jn—l(z) - Jn+1(z)} (174)
and
J(2) = Jut(2) - gln(z). (17.5)

Example 17.2.1 Obtain these results from the power series for J,(z).
d
Example 17.2.2 Shew that e {Z" 1. (2)} = 7" J-1(2).
Z

Example 17.2.3 Shew that J|(z) = —J,(2).
Example 17.2.4 Shew that
1605(2) = Jy-a(2) = 4J2(2) + 6J,(2) = 4J42(2) + Jsa(2).
Example 17.2.5 Shew that
D2(2) = Jo(2) = 25 (2).
Example 17.2.6 Shew that
D(z) = I (2) = 271 Jg(2).

17.211 Relation between two Bessel functions whose orders differ by an integer
From the last article can be deduced an equation connecting any two Bessel functions whose
orders differ by an integer, namely

d’
(zdz)
where n is unrestricted and r is any positive integer. This result follows at once by induction
from formula (17.3), when it is written in the form

& e (2) = (1) (@)}

T (2) = == ()
zdz

17.212 The connexion between J,(z) and Wy, functions

The reader will verify without difficulty that, if in Bessel’s equation we write y = z72v and
then write z = x/2i, we get

d*v 1 3-n

— + |-+ =0,

dx? ( 4 2 |V

which is the equation satisfied by W, ,(x); it follows that

Ju(2) = Az My o(2iz) + Bz My _(2i2).
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+n

Comparing the coeflicients of z*" on each side we see that

<
2214343 (n + 1)

=

Jn(z) =

MO,n (212)7

except in the critical cases when 27 is a negative integer; when n is half of a negative odd
integer, the result follows from Kummer’s second formula (§16.11).

17.22 The zeros of Bessel functions whose order n is real

The relations of §17.21 enable us to deduce the interesting theorem that between any two
consecutive real zeros of 77" J,(z), there lies one and only one zero 77" J,,1(z). Proofs of this
theorem have been given by Bocher [79], Gegenbauer [242] and Porter [535].

For, from relation (17.3) when written in the form

77" 1(2) = _diz {z7"(2)},

it follows from Rolle’s theorem that between each consecutive pair of zeros of 77" J,,(z) there
is at least one zero of z7"J,,;1(z). Rolle’s theorem is proved in [111, I. p. 157] for polynomials.
It may be deduced for any functions with continuous differential coefficients by using the
first mean-value theorem (§4.14).

Similarly, from relation (17.5) when written in the form

d
Zn+]-ln(z) = d_Z {ZnHJnJrl(Z)} 5

it follows that between each consecutive pair of zeros of z"*!J,,(z) there is at least one zero
of 2" J,(2).

Further, z7"J,(z) and % {z7"J.(z)} have no common zeros; for the former function satisfies
the equation

d?y dy
zd—Z2+(2n+1)d—Z+zy=0,

d
and it is easily verified by induction on differentiating this equation that if both y and d_y

vanish for any value of z, all differential coefficients of y vanish, and y is zero by §5.4.

The theorem required is now obvious except for the numerically smallest zeros +¢ of
77"J,(z), since (except for z = 0), z7"J,(z) and z"*'J,(z) have the same zeros. But z = 0 is
a zero of z7"J,,1(z), and if there were any other positive zero of z7"J,11(2), say &;, which
was less than &, then z"*!J,(z) would have a zero between 0 and &, which contradicts the
hypothesis that there were no zeros of z"*!J,(z) between 0 and £.

The theorem is therefore proved.

Note See also Examples 17.3.3 and 17.3.4, and Example 17.19 at the end of the chapter.
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17.23 Bessel’s integral for the Bessel coefficients

We shall next obtain an integral first given by Bessel in the particular case of the Bessel
functions for which » is a positive integer; in some respects the result resembles Laplace’s
integrals given in §15.23 and §15.33 for the Legendre functions.

In the integral of §17.1, viz.

1 (0+)
Jn(z) — _/ u—n—lez(u—l/u)/Z dl/t,
2mi
take the contour to be the circle |u| = 1 and write u = €', so that

Jn(Z) = i /‘” e—ni9+izsin9 d6.
2r J_

T

Bisect the range of integration and in the former part write —6 for 6; we get

L™ iosizs [
Jn(Z) = 2—/ pMif-izsing gg 4~ g Nif+izsing do,
T Jo 21 Jo

and so
Ju(z) = 1 /K cos(nf — zsin ) d6,
T Jo
which is the formula in question.
Example 17.2.7 Shew that, when z is real and # is an integer,
|Jn(2)] < 1.

Example 17.2.8 Shew that, for all values of n (real or complex), the integral

1 T
y=— / cos(nf — zsin6) do
T Jo

satisfies

Z2

2 2 ;
d_y N ld_y i n _ sinnm 1 n ’
dz?  zdz b g 7z z2

which reduces to Bessel’s equation when 7 is an integer. Hint. It is easy to shew, by differen-
tiating under the integral sign, that the expression on the left is equal to

1/” d (1, 0SO0) oo - zsind)} do
—— — = né — .
T Jo de Z2 Z ¢

17.231 The modification of Bessel’s integral when n is not an integer

We shall now shew that, for general values of n,

1 Vs 3 (o) .
Tu(z) = — / cos(nf — zsin§) do — 227 / gTn0-zsinh6 g (17.6)
T Jo T 0

when Re z > 0. This result is due to Schlifli, [S77]. This obviously reduces to the result of
§17.23 when n is an integer.
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Taking the integral of §17.2, viz.

n (0+) 2
Ju(2) = Z—/ " exp (t - Z—) dt,

2n+tlgi ) 4t

and supposing that z is positive, we have, on writing # = juz,

1 o 1 1
Ju(2) = ﬁ[w u exp{iz (u—;)} du.

But, if the contour be taken to be that of the figure consisting of the real axis from —1
to —oo taken twice and the circle |u| = 1, this integral represents an analytic function of z
when Re (zu) < 0 as |u| — oo on the path, i.e. when |arg z| < %n; and so, by the theory
of analytic continuation, the formula (which has been proved by a direct transformation for

positive values of z) is true whenever Re z > 0. Hence

Ju(2) = ﬁ {[ml +/C+[lm}u‘"“ exp{%z (u— i)} du,

where C denotes the circle |u| = 1, and argu = —x on the first path of integration while
arg u = +m on the third path.

Writing u = te™" in the first and third integrals respectively (so that in each case arg t = 0),
and u = ¢'? in the second, we have

)mi — 1)mi o0
O B e L
2n J_ 1

- 2ri 2mi

Modifying the former of these integrals as in §17.23 and writing ¢’ for 7 in the latter, we
have at once

1 [ in(n + 1 « .
Ju(2) = = / cos(nf — zsin ) do + sinn + D7 / e 0=zsinhe g
T Jo T 0

which is the required result, when |arg z| < 7.

When |arg z| lies between %ﬂ' and m, since J,(z) = e*"™J,(-z), we have

+nmi
e

Jn(z) =

{/ cos(nf + zsin @) d6 — sin mr/ g n0rzsinhd dG}, (17.7)
0 0

the upper or lower sign being taken as arg z > %71’ or < —%7‘(.
When 7 is an integer (17.6) reduces at once to Bessel’s integral, and (17.7) does so when
we make use of the equation J,(z) = (—1)"J_,(z), which is true for integer values of n.
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Equation (17.6), as already stated, is due to Schléfli [576, p. 148], and equation (17.7) was
given by Sonine [598].

These trigonometric integrals for the Bessel functions may be regarded as corresponding
to Laplace’s integrals for the Legendre functions. For (see Example 17.1.6) J,,(z) satisfies
the confluent form (obtained by making n — o) of the equation for P™(1 — z2/2n?).

But Laplace’s integral for this function is a multiple of

g 2 2\2 1/2 "
< Z
; 1_ﬁ+ l_ﬁ -1 cos¢| cosme deo

= /7r {1 + %Zcos¢ + O(nz)} cosme de.
0

The limit of the integrand as n — oo is €2°*¢ cos m¢, and this exhibits the similarity of
Laplace’s integral for P!(z) to the Bessel-Schléfli integral for J,,,(z).

1 T
Example 17.2.9 (Callandreau [112]) From the formula Jy(x) = 7 / "% dg, by a
Vg

-7t
change of order of integration, shew that, when # is a positive integer and cos 8 > 0,

1 (o9
Pn(COS 9) = m'/ e_XCOSGJO(x sin H)Xn dx.
0

Example 17.2.10 Shew that, with Ferrers’ definition of P*(cos 6),

1 “ o5
P:,ln(COS 9) = m[ ef’“ome(x sin H)x”dx

when n and m are positive integers and cos § > 0. See Hobson [313].

17.24 Bessel functions whose order is half an odd integer

We have seen (§17.2) that when the order n of a Bessel function J,,(z) is half an odd integer,
the difference of the roots of the indicial equation at z = 0 is 2n, which is an integer. We now
shew that, in such cases, J,,(z) is expressible in terms of elementary functions.

For
2z\'? 2 7t 2\'?
J - (= 1— SR G inz,
1/2(2) (n) 232345 nz) F

and therefore (§17.211) if k is a positive integer

(1@ _d*(sin
Jie12(2) = ﬂ; d(?) ( IZZ)

On differentiating out the expression on the right, we obtain the result that

Ji+172(z) = Py sinz + Qy cos z,

R |
where Py, Qy are polynomials in z72.

5|2
Example 17.2.11 Shew that J_:(z) = (—) cos z.
2 ﬂ'Z



17.3 Hankel’s contour integral for J,(z) 383

Example 17.2.12 Prove by induction that if k£ be an integer and n = k + % then

12
() = (3)

iz

X [cos (z- %nﬂ _1 { Z (=1) (4n> = 1%)(4n?> = 3%) - - {4n> — (4r - 1)2}}

(2r) 126722

+sin (z —

(=1)"(4n* = 13)(4n* = 3%) - - - {4n® — (4r = 3)?}
Z (2;» — 1)! 26r—322r—1 ’

the summations being continued as far as the terms with the vanishing factors in the numer-
ators.

dk
Example 17.2.13 Shew that s A (ﬁ) is a solution of Bessel’s equation for
Z Z
Jk+%(Z)-
. 2m+1y
Example 17.2.14 (Lommel) Shew that the solution of z"*2 pET +y=0is
Z n
2m
1 1 1
y =z Zcp { _m_,(Zapz )+iJ %(2apzf)},
p=0
where cg, c1,. . ., Capy are arbitrary and ao, aj, . . ., @y, are the roots of a*"*! =i,

17.3 Hankel’s contour integral for J,,(z)

This appears in [273]. Consider the integral

(I+,-1-) ]
y= z"/ (1> = 1)""2 cos(zt) dt,
A
where A is a point on the right of the point # = 1, and
arg(t — 1) =arg(r+1)=0

at A; the contour may conveniently be regarded as being in the shape of a figure of eight.

We shall shew that this integral is a constant multiple of J,(z). It is easily seen that the
integrand returns to its initial value after ¢ has described the path of integration; for (f — 1)z
is multiplied by the factor e®"~V% after the circuit (1+) has been described, and (7 + 1)""7 is
multiplied by the factor e~>"~D7 after the circuit (—1-) has been described.

F(op\2r
Since Z EU2DT (42 _ 1yn=1/2 converges uniformly on the contour, we have

e
0 (_l)anJrZr (I+,-1-) i .
y:ZW (> = 1)V dy,
. A

r=0

(see §4.7). To evaluate these integrals, we observe firstly that they are analytic functions of n
for all values of n, and secondly that, when Re (n + %) > (0, we may deform the contour into
the circles |[r — 1| = 6, |t + 1| = 6 and the real axis joining the points ¢ = +(1 — ¢) taken twice,
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and then we may make 6 — 0; the integrals round the circles tend to zero and, assigning to
t — 1 and t + 1 their appropriate arguments on the modified path of integration, we get, if
arg(1 —?) =0 and 1> = u,

(1+,-1-)
/ t2‘r(t2 _ 1))1—1/2 dt
A
1

-1
— e(n—l/2)7ri/ ZZT(I _ t2)n—l/2 dt + e—(n—l/Z)m'/ t2‘r(1 _t2)n—1/2 dt
1 _

1

1
= —di sin (n - %)n/ 27 (1 =) dr
0

1
= —2isin (n - 1) ﬂ/ W21 = w2
0
=2isin (n+3) 2l (r+3) T (n+3) /[T(n+r +1).

Since the initial and final expressions are analytic functions of n for all values of n, it
follows from §5.5 that this equation, proved when Re (n + %) > (, is true for all values of n.
Accordingly

(=1)" 7" 2i sin(n + 2) al(r + 2)l"(n + 2)
v = 22 2T +r+1)

= 2"”1 sin (n+ 3) 7l (n+ 3) T (3) Ju(2),

on reduction.
Accordingly, when {F (% - n)}_l # 0, we have

(i —n)i)r pa+-1-)

Ju(2) = (2—)(12) / (1> = 1) cos(zt) dt.
2l (5) A

Corollary 17.3.1 When Re (n + %) > 0, we may deform the path of integration, and obtain

the result

()
Ju(z) = —/ (1 =212 cos(zt) dt
L (n+3)C(3)
2(5)" /”/2 2
= sin”™ ¢ cos(z cos ¢) d¢.
T (n+3)T(3) Jo
Example 17.3.1 Shew that, when Re (n + %) >0,

Jn(Z) — (E) ) \/On- e_lzcos¢81n2n¢d¢

Example 17.3.2 Obtain the result

G B
m/o cos(z cos ¢) sin™ ¢ do,

Ju(2) =

when Re (n) > 0, by expanding in powers of z and integrating (§4.7) term-by-term.
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Example 17.3.3  Shew that when —1 < n < 1, J,(z) has an infinite number of real zeros.
Hint. Let z = (m + %) m where m is zero or a positive integer; then by the corollary above

n

4
27T (n+3) T (3)

Jy (mm+ i) = {Juo —uy +ur — -+ (=1)"upn },
where

2r+l
2m+1

- £y cos {(m + L) nt} dt

1/(Wl+%) zr _ 1 2 n71/2
_ _ - 1
_/0 {1 (t+2m+1) sm{(m+2)7rt} dt,

50, since n— 3 < 0,y > Upy-y > Uy > -+ ,and hence J, (mm + 37) has the sign of (—1)".
This method of proof, for n = 0, is due to Bessel.

U, =

Example 17.3.4 Shew that if n be real, J,(z) has an infinite number of real zeros; and
find an upper limit to the numerically smallest of them. Hint. Use Example 17.3.3 combined
with §17.22.

17.4 Connexion between Bessel coefficients and Legendre functions

We shall now establish a result due to Heine [287], which renders precise the statement of
§17.11, Example 17.1.6 concerning the expression of Bessel coefficients as limiting forms
of hypergeometric functions. The apparently different result given in [287] is due to the
difference between Heine’s associated Legendre function and Ferrers’ function.

When | arg(1 + z)| < «, n is unrestricted and m is a positive integer, it follows by differen-
tiating the formula of §15.22 that, with Ferrers’ definition of P*(z),

I'n+m+1)
2m .m!'T'(n—m+1)
XF(-n+mn+1+mm+1;3-1z),

PI'(z) = (1-2)"(1 + )™

and so, if | arg z| < i, |arg (1 — 322/n?) | < &, we have

Pt 2\ Tm+m+1)z"n™" 2 \"?
" 2n2)  2m.m!T(n—m+1) 4n?
XF (-n+mn+1+mm+1;1z°n7%).
Now make n — +oo (n being positive, but not necessarily integral), so that, if § = nh

6 — 0 continuously through positive values. Then
I'n+m+ 1n™
—- 1,

I'n—m+ Hnm

by §13.6, and
(1- zz/4n2)m/2 — 1.
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Further, the (r + 1)th term of the hypergeometric series is
(1 =mé)(1+ms +rd) (1 - (m+1)?6%) (1 —(m+2)*6?) - (1 = (m+r—1)*?)
m+1)m+2)---(m+r)-r!
z 2r
“(3)
2

this is a continuous function of § and the series of which this is the (r + 1)th term is easily
seen to converge uniformly in a range of values of ¢ including the point 6 = 0; so, by §3.32,
we have

=1y

lim [n"P™ (1 = Z—z = < i Sl (%)r
n—c0 " 222 [ 2 m! L (m+ 1)(m +2) - (m+r) 7!
= m(Z),
which is the relation required.

Example 17.4.1 Shew that

lim [n‘mP,T (cos E)] = Ju(2).
n—oo n
The special case of this when m = 0 was given by Mehler [464]; see also [465].

Example 17.4.2 Shew that Bessel’s equation is the confluent form of the equations defined
by the schemes

0 oo c 0 (o) c
P n ic j+ic z p,e"P n : 0 z 7,
-n —ic % —ic -n % —2ic 2ic-1
p 0 0 c?
1 1 2 )
Eln El(c -n) 0 Z
—sn —5(c+n) n+1

the confluence being obtained by making ¢ — oo.

17.5 Asymptotic series for J,,(z) when |z| is large

‘We have seen (§17.212) that

12

M, ,(2iz),
22n+1/2 p3(n+)mi T(n+1) 0.n(2i2)

Ju(z) =

where it is supposed that | arg z| < 7, —37 < arg(2iz) < %ﬂ'. But for this range of values of z
F(2n + 1)6("+%)ni F(Zn + 1)
L(3+n) L(3+n)

by Example 16.4.4, if —37 < arg(—2iz) < 1x; and so, when |arg z| < m,

M(),n(ZiZ) = WO,n(ziZ) + WO,n(_ZiZ)

1 L(n+D)ni : 1 (n+)ni H
@)= G {ez< iy, (2iz) + e H0+d) Wo,n(—zzz)}.
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But, for the values of z under consideration, the asymptotic expansion of Wy ,,(+2iz) is

212 2 1242 22
er’iz{li(ém l)+(4n 1%)(4n 3)i

8iz 21(8iz)?
R A B Gk SRR Gl UtV S
S +0(z )y,

and therefore, combining the series, the asymptotic expansion of J,,(z), when |z| is large and
|arg z| < m, is

1

Ju(z) ~ (ﬂ%)z [cos (z _nr_ E)
y {1 . i (=17 {4n® — 1} {4n? = 3%} - {4n? — (4r - 1)2}}

(2r)126r 22

r=1

. > (=) {4n? = 12} {4n? = 32} - {4n? — (4r - 3)*}
“m(z_ 2 _)Z (2r — 1)126r372r1

2 nwron nm

i (ﬂ_z) [eos (:=F = 3) - U0 =sin (= F - 3) - %0

where U, (z), —V,,(z) have been written in place of the series.

The reader will observe that if n is half an odd integer these series terminate and give the
result of Example 17.2.12.

Even when z is not very large, the value of J,(z) can be computed with great accuracy
from this formula. Thus, for all positive values of z greater than 8, the first three terms of the
asymptotic expansion give the value of Jy(z) and Ji(z) to six places of decimals.

This asymptotic expansion was given by Poisson [530, p. 350] (for n = 0) and by Jacobi
(for n = 0) and by Jacobi [353, p. 94] (for general integral values of n) for real values of z.
Complex values of z were considered by Hankel [273] and several subsequent writers. The
method of obtaining the expansion here given is due to Barnes [49]. Asymptotic expansions
for J,(z) when the order n is large have been given by Debye [168] and Nicholson [495].

An approximate formula for J,,(nx) when n is large and 0 < x < 1, namely

x" exp {n\/l - xz}

Qrn)2(1 = x2)1/4 {1 VT xZ}

no°

was obtained by Carlini in 1817 in a memoir reprinted in Jacobi [354, vol. VII, pp. 189-245].
The formula was also investigated by Laplace [409, vol. V, 1827] in 1827, on the hypothesis
that x is purely imaginary. A more extended account of researches on Bessel functions of
large order is given in [676].

Example 17.5.1 By suitably modifying Hankel’s contour integral (§17.3), shew that, when
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largz| < 7w and Re (n + 3) > 0,

1
1 : 1 1 0 1 iu "2
Jn(Z) = el(z_zmr_zﬂ)/ etu"z (1 + —) du
I (n+1)@2nz) [ 0 2z

-1
—i(z—inn—{m) © -u, n-1 iu "
+e T ey (1 - 7 dul;
0 Z

bl

and deduce the asymptotic expansion of J,,(z) when |z| is large and | arg z| < %7‘[. Hint. Take
the contour to be the rectangle whose corners are +1, +1 + i N, the rectangle being indented
at +1, and make N — oo; the integrand being (1 — %)z ¢*’.

Example 17.5.2  Shew that, when |argz| < Z and Re (n + §) > 0,

on+ln /2
Jn(2) = 1“(n+—lz)7rl ‘/0 €732 005" 3 ¢ cosec?™! ¢ sin {z—(n-1) ¢} do.
= 2
2
Hint. Write u = 2z cot ¢ in the preceding example.

Example 17.5.3 (Schatheitlin, [573]) Shew that, if | argz| < 17 and Re (n + 1) > 0, then
Aeizz”‘/ VI iv) e e dy + Be”’z"/ Vi1 = iv)" e ™ dy
0 0

is a solution of Bessel’s equation. Further, determine A and B so that this may represent
In(2).

17.6 The second solution of Bessel’s equation when the order is an integer

We have seen in §17.2 that, when the order n of Bessel’s differential equation is not an
integer, the general solution of the equation is

aJn(Z) + ﬂ‘,*n(z)7

where « and 3 are arbitrary constants. When, however, # is an integer, we have seen that

Ju(2) = (=1)"J_u(2),

and consequently the two solutions J,,(z) and J_,(z) are not really distinct. We therefore
require in this case to find another particular solution of the differential equation, distinct
from J,,(z), in order to have the general solution.

We shall now consider the function

- —J,
Yn(Z) = 2™ (Z) cos nmw (Z)

>

sin 2nm

which is a solution of Bessel’s equation when 2n is not an integer. The introduction of this
function Y, (z) is due to Hankel [273, p. 472]. When # is an integer, Y,(z) is defined by the
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limiting form of this equation, namely

(n+&)mi Jnre(2) cos(nm + en) — J_,_o(2)
sin2(n + &)n
= lim

0 si {(_1)an+8(Z) - J—n—s(Z)}
£—0 sin 2em
= llir(l) 8_1 {Jn+£(z) - (_1)”‘]—n—8(z)} .

Y.(2) = lirr(l) 2me

nmi

2me

To express Y,(z) in terms of W, ,, functions, we have recourse to the result of §17.5, which
gives
-1

Ynle) =l {0 Wo o 2iz) + e 0o miv,(<2i2))
e— m7)2

_(_1)" {e%(_n_8+%)ﬂiWO,n+s(2iZ) + e_%(_n_8+%)ﬂiWO,n+s(_2iZ)}] ?

remembering that W;_,, = W;__,,,. Hence, since' liné Wo.nre(2i2) = Wy ,(2iz), we have
e

Yn(z) = (212)

This function (n being an integer) is obviously a solution of Bessel’s equation; it is called a
Bessel function of the second kind.

Another function (also called a function of the second kind) was first used by Weber [657,
p- 148] and by Schlifli [578, p. 17]. It is defined by the equation

Ju(z)cosnm —J ,(z)  Y,(z)cosnm

[STE

e, 2ig) + e 4w, (<2iz)}

Y.(2) =

sinnm el
or by the limits of these expressions when n is an integer. This function which exists for
all values of n is taken as the canonical function of the second kind by Nielsen [500], and
formulae involving it are generally (but not always) simpler than the corresponding formulae
involving Hankel’s function.

The asymptotic expansion for Y,,(z), corresponding to that of §17.5 for J,,(z), is that, when
|arg z| < 7 and n is an integer,

1/2
Y(2) ~ (ﬂ%) [sin (2 = gn = 171) Un(2) + cos (2 = gnm = 37) Va(2)]

where U,(z) and V,,(z) are the asymptotic expansions defined in §17.5, their leading terms

being 1 and (4n* — 1)/8z7 respectively.

Example 17.6.1 (Hankel) Prove that

dJu(z)
dn

where 7 is made an integer after differentiation.

dJ_,(2)

Yl’l(z) = dn ’

(=1"

Example 17.6.2 Shew that if Y, (z) be defined by the equation of Example 17.6.1, it is a
solution of Bessel’s equation when # is an integer.

! This is most easily seen from the uniformity of the convergence with regard to & of Barnes’ contour integral
(816.4) for Wy 42 (2iz).
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17.61 The ascending series for Y, (z)

The series of §17.6 is convenient for calculating Y ,,(z) when |z| is large. To obtain a convenient
series for small values of |z|, we observe that, since the ascending series for J.(,.s)(z) are
uniformly convergent series of analytic functions? of &, each term may be expanded in powers
of ¢ and this double series may then be arranged in powers of € (§§5.3, 5.4).

Accordingly, to obtain Y, (z), we have to sum the coefficients of the first power of ¢ in the
terms of the series

r lz)n+2r+8 00 (_ l)r(%Z)_n+2r_8

SSAS n
rzz(;r!l"(n+8+r+l) -=D rzz(;r!l"(—n—s+r+l)'

Now, if s be a positive integer or zero and ¢ a negative integer, the following expansions in
powers of & are valid:

(g)n+€+2r _ (g)n+2r {1+810g(%z)+'”}’
(S S PR o (RS )
F(s+8+1)_F(s+1){ T+l }

1 -1
:r(s+1){1_8(_7+;m )+}

1 _sin(t +&)m ~ .
l“(l+a3+1)__ (-t —g)=(=1)"el(=t)+ -,

where vy is Euler’s constant (§12.1).
Accordingly, picking out the coefficient of &, we see that

Y D W DG
W@J%G”;ﬁmﬁnﬂ+m);ﬁﬁiﬁtﬂ

e (_l)r(g)nﬂr n+r1
+;ﬁm:nﬂb‘2z)

m=1
. 0 (_1)r(%)—n+2r n—r 1
+H>2533::36‘;a)
n—1 ~1) n+2r
+<—U"Z%( DT =),

r=0

and so
(=D Gy z w1 1
Yu(2) = Z rl(n+r)! {210g(§)+2y— m Z}

_ n-l G (n—-r-1)!

r!

r=0

2 The proof of this is left to the reader.
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When 7 is an integer, fundamental solutions® of Bessel’s equations, regular near z = 0, are
Ju(z) and Y ,,(2) or Y, (2).

Karl Neumann [486, p. 41] took as the second solution the function Y™ (z) defined by the
equation

1
Y"(z) = 5 Yn(2) + Ju(2)(log 2 = 7);
but ¥;,(z) and Y,,(z) are more useful for physical applications.

Example 17.6.3 Shew that the function Y, (z) satisfies the recurrence formulae

nYn(Z) = %Z (YnJrl(Z) + Yn—](Z)) and Yn,(Z) = % (Yn—l(z) - Yn+1(Z)) .

Shew also that Hankel’s function Y,(z) and Neumann’s function Y”(z) satisfy the same
recurrence formulae. Note. These are the same as the recurrence formulae satisfied by J,,(z).

Example 17.6.4 (Schlifli [576]) Shew that, when |arg z| < %n,

7Y, (z) = / sin(z sin 6 — n6) d6 — / p2sinhé {en9 + (_1)ne—n9} d6.
0

0

Example 17.6.5 Shew that

YO(2) = Jo(z) log z + 2 (Ja(2) = $4a(2) + 2 Js(2) = -+ +) .

17.7 Bessel functions with purely imaginary argument

The function*
00 (%)n+2r

1) =i = )

! !
rin+r)!

is of frequent occurrence in various branches of applied mathematics; in these applications
z is usually positive.
The reader should have no difficulty in obtaining the following formulae:

(1) In—l(z) - In+1(Z) = %In(z)

(i) S A{"L()} = "L (2).
(i) &£ {2 ()} = 27" L (2).

2 2
(iv) 4 1(2) + 1dL(@) (1 + %) I,(z) = 0.

dz? z dz

ZI‘L Ve . zn

_ cosh(z cos ¢) sin do.
ST | coshizeos sin” g.as

(v)  WhenRe (n+3)>0,1,(z) =

3 Euler [202, pp. 187, 233] gave a second solution (involving a logarithm) of the equation in the special cases
n=0,n=1.
4 This notation was introduced by Basset [S1, p. 17]; in 1886 he had defined I,,(z) as i" J,,(iz); [52].
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(vi)  When —%71 < argz < 37, the asymptotic expansion of 1,(z) is

Z( 1)r{4n - 12}{4n> = 3%} - {4n> - 2r - 1)}

rl123r zr

I,(z) ~ o )1/2

ety g s i {4n? — 12}{4n*> = 32} - - {4n® — 2r - 1)*}

(2rz)'2 r1 23 zr ’

%n The result is easily seen to be valid

over the extended range —37 < argz < 37 if we write ¢+ for e~""*37_ the upper or
lower sign being taken accordmg as arg z 1s positive or negative.

the second series being negligible when |arg 7| <

17.71 Modified Bessel functions of the second kind

When n is a positive integer or zero, I_,(z) = I,(z); to obtain a second solution of the
modified Bessel equation (iv) above, we define® the function K,,(z) for all values of n by the
equation

1/2
K, (2) = (2%) cos nt Wy n(22),

so that K,(z) = 5 (I_x(z) — 1,(z)) cot nr.
Whether n be an integer or not, this function is a solution of the modified Bessel equation,
and when |arg z| < %n it possesses the asymptotic expansion

)
K, (z) ~ (2%) % cos(nm) |1+ Z {4n® — PH{dn? = 3%} - {4n® — (2r — 1)}

I"! 23r Zr

for large values of |z|.
When n is an integer, K,(z) is defined by the equation

v/
K"(Z) = 111’1’(1) 5 {I—H—S(Z) - In+£(z)} cotre,

which gives (cf. §17.61)
ol (%)n+2r 1 n+r 1 1 r 1
K, (z)=— ) —2 - —_--N'_
@ Zor!(n-i-r)! g 14 2Z 24dm

_ 15 (22 (=1)" " (n—r — 1)
32,65 o

r=

3 The notation K, (z) was used by Basset [52, p. 11] to denote a function which differed from the function now
defined by the omission of the factor cos nzr, and Basset’s notation has since been used by various writers,
notably Macdonald. The object of the insertion of the factor is to make 7,,(z) and K,,(z) satisfy the same
re