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Foreword

S.J. Patterson

There are few books which remain in print and in constant use for over a century; “Whittaker
and Watson” belongs to this select group. In fact there were two books with the title “A
Course in Modern Analysis”, the first in 1902 by Edmund Whittaker alone, a textbook with
a very specific agenda, and then the joint work, first published in 1915 as a second edition.
It is an extension of the first edition but in such a fashion that it becomes a handbook for
those working in analysis. As late as 1966 J.T. Whittaker, the son of E.T. Whittaker, wrote in
his Biographical Memoir of Fellows of the Royal Society (i.e. obituary) of G.N. Watson that
there were still those who preferred the first edition but added that for most readers the later
edition was to be preferred. Indeed the joint work is superior in many different ways.

The first edition was written at a time when there was a movement for reform in mathe-
matics at Cambridge. Edmund Whittaker’s mentor Andrew Forsyth was one of the driving
forces in this movement and had himself written a Theory of Functions (1893) which was,
in its time, very influential but is now scarcely remembered. In the course of the nineteenth
century the mathematics education had become centered around theMathematical Tripos, an
intensely competitive examination. Competitions and sports were salient features of Victo-
rian Britain, a move away from the older system of patronage and towards a meritocracy. The
reader familiar with Gilbert and Sullivan operettas will think of the Modern Major-General
in The Pirates of Penzance. The Tripos had become not only a sport but a spectator sport,
followed extensively in middle-class England1 . The result of this systemwas that the colleges
were in competition with one another and employed coaches to prepare the talented students
for the Tripos. They developed the skills needed to answer difficult questions quickly and
accurately – many Tripos questions can be found in the exercises in Whittaker and Watson.
The Tripos system did not encourage the students to become mathematicians and separated
them from the professors who were generally very well informed about the developments
on the Continent. It was a very inward-looking, self-reproducing system. The system on the
Continent, especially in the German universities, was quite different. The professors there
sought contact with the students, either as note-takers for lectures or in seminar talks, and
actively supported those by whom they were most impressed. The students vied with one an-
other for the attention of the professor, a different and more fruitful form of competition. This

1 Some idea of this may be gleaned from G.B. Shaw’s play Mrs Warren’s Profession, written in 1893 but held
back by censorship until 1902. In this play Mrs Warren’s daughter Vivie has distinguished herself in
Cambridge – she tied with the third Wrangler, described as a “magnificent achievement” by a character who
has no mathematical background. She herself could not be ranked as a Wrangler as she was female. She would
have been a contemporary of Grace Chisholm, later Grace Chisholm Young, whose family background was by
no means as colourful as that of the fictional Vivie Warren.
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system allowed the likes of Weierstrass and Klein to build up groups of talented and highly
motivated students. It had become evident to Andrew Forsyth and others that Cambridge was
missing out on the developments abroad because of the concentration on the Tripos system2 .

It is interesting to read what Whittaker himself wrote about the situation at the end of
the nineteenth century in Cambridge and so of the conditions under which Whittaker and
Watson was written. We quote from his Royal Society Obituary Notice (1942) of Andrew
Russell Forsyth:

He had for some time past realized, as no one else did, the most serious
deficiency of the Cambridge school, namely its ignorance of what had
been and was being done on the continent of Europe. The college lecturers
could not read German, and did not read French.

...

The schools of Göttingen and Berlin to a great extent ignored each other
(Berlin said that Göttingen proved nothing, and Göttingen retorted that
Berlin had no ideas) and both of them ignored French work.
But Cambridge had hitherto ignored them all: and the time was ripe

for Forsyth’s book. The younger men, even undergraduates, had heard in
his lectures of the extraordinary riches and beauty of the domain beyond
Tripos mathematics, and were eager to enter into it. From the day of its
publication in 1893, the face of Cambridge was changed: the majority of
the pure mathematicians who took their degrees in the next twenty years
became function-theorists.

and further
As head of the Cambridge school of mathematics he was conspicuously
successful. British mathematicians were already indebted to him for the
first introduction of the symbolic invariant-theory, theWeierstrassian ellip-
tic functions, the Cauchy–Hermite applications of contour-integration, the
Riemannian treatment of algebraic functions, the theory of entire func-
tions, and the theory of automorphic functions: and the importation of
novelties continued to occupy his attention. A great traveller and a good
linguist, he loved to meet eminent foreigners and invite them to enjoy
Trinity hospitality: and in this way his post-graduate students had oppor-
tunities of becoming known personally to such men as Felix Klein (who
came frequently), Mittag-Leffler, Darboux and Poincaré. To the students
themselves, he was devoted: young men fresh from the narrow examina-
tion routine of the Tripos were invited to his rooms and told of the latest
research papers: and under his fostering care, many of the wranglers of the
period 1894–1910 became original workers of distinction.

The two authors were very different people. Edmund Whittaker (1874–1956) went on
from Cambridge in 1906 to become the Royal Astronomer in Ireland (then still a part of the

2 For his arguments see A. Forsyth: Old Tripos Days at Cambridge, Math. Gazette 19 162–179 (1935). For a
dissenting opinion see K. Pearson: Old Tripos Days at Cambridge, as seen from another viewpoint, Math.
Gazette 20 27–36 (1936).
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United Kingdom) and Director of Dunsink Observatory, thereby following in the footsteps
of William Rowan Hamilton. In 1985, on the occasion of the bicentenary of Dunsink, the
then Director, Patrick A. Wayman, singled out Whittaker as the greatest director aside from
Hamilton and one who, despite his relatively short tenure of office, 1906–1912, had achieved
most for the Observatory3 . This appointment brought out his skills as an administrator.
Following this he moved to Edinburgh where he exerted his influence to guide mathematics
there into the new century. Some indication of the success is given by the fact that it was
W.V.D. Hodge, a student of his, who, at the International Congress of Mathematicians in
1954, invited the International Mathematical Union to hold the next Congress in Edinburgh.
Whittaker himself did not live to experience the event which reflected the status in which
Edinburgh was held at the end of his life.

George Neville Watson (1886–1965) on the other hand was a retiring scholar who, after
leaving Cambridge, at least in the flesh, spent four years (1914–1918) in London, and then
became professor in Birminghamwhere he remained for the rest of his life4 , living a relatively
withdrawn life devoted to his mathematical work and with stamp-collecting and the study
of the history of railways as hobbies. His early work was very much in the direction of
E.W. Barnes and A.G. Greenhill. After Ramanujan’s death he took over from Hardy the
analysis of many of Ramanujan’s unpublished papers, especially those connected with the
theory of modular forms and functions, and of complex multiplication. It is worth remarking
that Greenhill, a student and ardent admirer of James Clerk Maxwell and primarily an
applied mathematician, concerned himself with the computation of singular moduli, and it
was probably he who aroused Ramanujan’s interest in this topic. Watson’s work in this area
is, besides his books, that for which he is best remembered today.

Both authors wrote other books that are still used today. In Whittaker’s case these are his
A Treatise on the Analytical Dynamics of Particles & Rigid Bodies, reprinted in 1999, with
a foreword by Sir William McCrea in the CUP series “Cambridge Mathematical Library”, a
source of much mathematics which is difficult to find elsewhere, and his History of Theories
of the Aether and Electricity which, despite some unconventional views, is an invaluable
source on the history of these parts of physics and the associated mathematics.

Watson, on the other hand, wrote his A Treatise on the Theory of Bessel Functions,
published in 1922, which like Whittaker and Watson has not been out of print since its
appearance. On coming across it for the first time as a student I was taken aback by such
a thick book being devoted to what seemed to be a very circumscribed subject. One of the
Fellows of my college, a physicist, replying to a fellow student who had made a similar
observation, declared that it was a work of genius and he would have been proud to have
written something like it. In the course of the years I have had recourse to it over and over
again and would now concur with this opinion.

Watson’s Bessel Functions, like Whittaker and Watson, despite being somewhat old-
fashioned, has retained a freshness and relevance that has made both of them classics. Unlike
many other books of this period the terminology, although not the style, is that of today. It
is less a Cours d’Analyse and more of a Handbuch der Funktionentheorie. Perhaps my own
experiences can illuminate this.My copywas given tome in 1967 bymymathematics teacher,

3 Irish Astronomical Journal 17 177–178 (1986).
4 It is worth noting that from 1924 on E.W. Barnes was a disputative Bishop of Birmingham.
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Mr Cecil Hawe, after I had been awarded a place to study mathematics in Cambridge. He had
bought it 20 years earlier as a student. During my student years the textbook on second year
analysis was J. Dieudonné’s Foundations of Modern Analysis. People then were prone to be
a bit supercilious at least about the “modern” in the title of Whittaker and Watson.5 At that
time it lay on my bookshelf unused. Five years later I was coming to terms with the theory
of non-analytic automorphic forms, especially with Selberg’s theory of Eisenstein series. At
this point I discovered how useful a book it was, both for the treatment of Bessel functions
and for that of the hypergeometric function. It also has a very useful chapter on Fredholm’s
theory of integral equations which Selberg had used. In the years since then several other
chapters have proved useful, and ones I thought I knew became useful in novel ways. It
became a constant companion. This was mainly in connection with doing mathematics but
it also proved its worth in teaching – for example the chapter on Fourier series gives very
useful results which can be obtained by relatively elementary methods and are suitable for
undergraduate lectures. Dieudonné’s book is tremendous for the university teacher; it gives
the fundamentals of analysis in a concentrated form, something very useful when one has an
overloaded syllabus and a limited number of hours to teach it in. On the other hand it is much
less useful as a “Handbuch” for the working analyst, at least in my experience. Nor was it
written for this purpose.Whittaker and Watson started, in the first edition, as such a book for
teaching but in the second and later editions became that book which has remained on the
bookshelves of generations of working mathematicians, be they formally mathematicians,
natural scientists or engineers.

One aspect that probably contributed to the long popularity of Whittaker and Watson is
the fact that it is not overloaded with many of the topics that are within range of the text.
Thus, for example, the authors do not go into the arithmetic theory of the Riemann zeta-
function beyond the Euler product over primes. Whereas they discuss the 24 solutions to
the hypergeometric equation in terms of the hypergeometric series from Riemann’s point of
view they do not go into H.A. Schwarz’ beautiful solution of Gauss’ problem as to which
of these functions is algebraic. Schwarz’ theory is covered in Forsyth’s Function Theory.
The decision to leave this out must have been difficult for Whittaker for it is a topic close to
his early research. Finally they touch on the theory of Hilbert spaces only very lightly, just
enough for their purposes. On the other hand Fredholm’s theory, well treated here, has often
been pushed aside by the theory of Hilbert spaces in other texts and it is a topic about which
an analyst should be aware.

So, gentle reader, you have in your hands a book which has been useful and instructive to
those working in mathematics for well over a hundred years. The language is perhaps a little
quaint but it is a pleasure to peruse. May you too profit from this new edition.

5 B.L. v.d. Waerden’s Moderne Algebra became simply Algebra from the 1955 edition on; with either name it
remains a great text on algebra.



Preface to the Fifth Edition

In 1896 Edmund Whittaker was elected to a Fellowship at Trinity College, Cambridge.
Amongst other duties, he was employed to teach students, many of whom would later
become distinguished figures in science and mathematics. These included G.H. Hardy,
Arthur Eddington, James Jeans, J.E. Littlewood and a certain G. Neville Watson. His course
on mathematical analysis changed the way the subject was taught, and he decided to write
a book. So was born A Course of Modern Analysis, which was first published in 1902. It
introduced students to functions of a complex variable, to the ‘methods and processes of
higher mathematical analysis’, much of which was then fairly modern, and above all to special
functions associated with equations that were used to describe physical phenomena. It was
one of the first books in English to describe material developed on the continent, mostly in
France and Germany. Its breadth and depth of coverage were unparalleled at the time and it
became an instant classic. A second edition was called for, but in 1906 Whittaker had left
Cambridge, moving first to Dublin, and then in 1912 to Edinburgh. His various duties, and
no doubt, the moves themselves, impeded work on the new edition, and Whittaker gratefully
accepted the offer fromWatson to help him. A greatly expanded second edition duly appeared
in 1915. The third edition, published five years later, was also enlarged by the addition of
chapters, but the fourth edition was not much more than a corrected reprint with added
references. I do not know if a fifth edition was ever planned. Both authors remained active
for many years (Watson wrote, amongst other publications, the definitive Treatise on Bessel
Functions), but perhaps they had nothing more to say to warrant a new edition. Nevertheless,
the book remained a classic, being continually in print and reissued in paperback, first in
1963, and again, in 1996, as a volume of the Cambridge Mathematical Library. It never lost
its appeal and occupied a unique place in the heart and work of many mathematicians (in
particular, me) as an indispensable reference.

The original editions were typeset using ‘hot metal’, and over the years successive reprint-
ings led to the degrading of the original plates. Photographic printing methods slowed this
decline, but David Tranah at Cambridge University Press had the idea to halt, indeed reverse,
the degradation, by rekeying the book and at the same time updating it with new references
and commentary. He spoke to me about this, and we agreed that if he arranged for the rekey-
ing into LaTeX, I would do the updating. I did not need much persuading: it has been a labor
of love. So much so that I have preserved the archaic spelling of the original, along with
the Peano decimal system of numbering paragraphs, as described by Watson in the Preface
to the fourth edition! This will make it straightforward for users of this fifth edition to refer
to the previous one. I have however decided to create a complete reference list and to refer
readers to that rather than to items in footnotes, items that were often hard to identify. Many
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of these items are now available in digital libraries and so for many people will be easier to
access than they were in the authors’ time.

I have made no substantial changes to the text: in particular, the original idea of adding
commentaries on the text was abandoned. I have checked and rechecked themathematics, and
I have added some additional references. I have also written an introduction that describes
what’s in the book and how it may be used in contemporary teaching of analysis. I have also
provided summaries of each chapter, and, within them, make mention of more recent work
where appropriate.

As I said, preparing this edition has been a labor of love. I have also learned a lot of
mathematics, evidence of the enduring quality and value of the original work. It has been
a rewarding experience to edit A Course of Modern Analysis: I hope that it will be equally
rewarding for readers.

Victor H. Moll
2020, New Orleans



Preface to the Fourth Edition

Advantage has been taken of the preparation of the fourth edition of this work to add a few
additional references and to make a number of corrections of minor errors.

Our thanks are due to a number of our readers for pointing out errors and misprints, and
in particular we are grateful to Mr E. T. Copson, Lecturer in Mathematics in the University
of Edinburgh, for the trouble which he has taken in supplying us with a somewhat lengthy
list.

E. T. W.
G. N. W.

June 18, 1927

The decimal system of paragraphing, introduced by Peano, is adopted in this work. The
integral part of the decimal represents the number of the chapter and the fractional parts are
arranged in each chapter in order of magnitude. Thus, e.g., on pp. 187, 1886 , §9.632 precedes
§9.7 [because 9.632 < 9.7.]

G.N.W.
July 1920

6 in the fourth edition
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Preface to the Third Edition

Advantage has been taken of the preparation of the third edition of this work to add a chapter
onEllipsoidalHarmonics andLamé’s Equation and to rearrange the chapter onTrigonometric
Series so that the parts which are used in Applied Mathematics come at the beginning of the
chapter. A number of minor errors have been corrected and we have endeavoured to make
the references more complete.

Our thanks are due to Miss Wrinch for reading the greater part of the proofs and to the
staff of the University Press for much courtesy and consideration during the progress of the
printing.

E. T. W.
G. N. W.

July, 1920
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Preface to the Second Edition

When the first edition of my Course of Modern Analysis became exhausted, and the Syndics
of the Press invited me to prepare a second edition, I determined to introduce many new
features into the work. The pressure of other duties prevented me for some time from carrying
out this plan, and it seemed as if the appearance of the new edition might be indefinitely
postponed. At this juncture, my friend and former pupil, Mr G. N. Watson, offered to share
the work of preparation; and, with his cooperation, it has now been completed.

The appearance of several treatises on the Theory of Convergence, such as Mr Hardy’s
Course of Pure Mathematics and, more particularly, Dr Bromwich’s Theory of Infinite Series,
led us to consider the desirability of omitting the first four chapters of this work; but we finally
decided to retain all that was necessary for subsequent developments in order to make the
book complete in itself. The concise account which will be found in these chapters is by no
means exhaustive, although we believe it to be fairly complete. For the discussion of Infinite
Series on their own merits, we may refer to the work of Dr Bromwich.

The new chapters of Riemann Integration, on Integral Equations, and on the Riemann
Zeta-Function, are entirely due to Mr Watson: he has revised and improved the new chapters
which I had myself drafted and he has enlarged or partly rewritten much of the matter which
appeared in the original work. It is therefore fitting that our names should stand together on
the title-page.

Grateful acknowledgement must be made to Mr W. H. A. Lawrence, B.A., and Mr C. E.
Winn, B.A., Scholars of Trinity College, who with great kindness and care have read the
proof-sheets, toMissWrinch, Scholar of Girton College, who assisted in preparing the index,
and toMr Littlewood, who read the early chapters in manuscript and made helpful criticisms.
Thanks are due also to many readers of the first edition who supplied corrections to it; and
to the staff of the University Press for much courtesy and consideration during the progress
of the printing.

E.T. Whittaker
July 1915
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Preface to the First Edition

The first half of this book contains an account of those methods and processes of higher
mathematical analysis, which seem to be of greatest importance at the present time; as will
be seen by a glance at the table of contents, it is chiefly concerned with the properties
of infinite series and complex integrals and their applications to the analytical expression
of functions. A discussion of infinite determinants and of asymptotic expansions has been
included, as it seemed to be called for by the value of these theories in connexion with linear
differential equations and astronomy.

In the second half of the book, the methods of the earlier part are applied in order to
furnish the theory of the principal functions of analysis – the Gamma, Legendre, Bessel,
Hypergeometric, and Elliptic Functions. An account has also been given of those solutions
of the partial differential equations of mathematical physics which can be constructed by the
help of these functions.

My grateful thanks are due to two members of Trinity College, Rev. E. M. Radford, M.A.
(now of St John’s School, Leatherhead), and Mr J. E. Wright, B.A., who with great kindness
and care have read the proof-sheets; and to Professor Forsyth, for many helpful consultations
during the progress of the work.My great indebtedness to Dr Hobson’s memoirs on Legendre
functions must be specially mentioned here; and I must thank the staff of the University Press
for their excellent cooperation in the production of the volume.

E. T. WHITTAKER
Cambridge

1902 August 5
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Introduction

The book is divided into two distinct parts. Part I. The Processes of Analysis discusses
topics that have become standard in beginning courses. Of course the emphasis is in concrete
examples and regrettably, this is different nowadays. Moreover the quality and level of the
problems presented in this part is higher than what appears in more modern texts. During the
second part of the last century, the tendency in introductory Analysis texts was to emphasize
the topological aspects of the material. For obvious reasons, this is absent in the present text.
There are 11 chapters in Part I.

For a student in an American university, the material presented here is roughly distributed
along the following lines:

• Chapter 1 (Complex Numbers)
• Chapter 2 (The Theory of Convergence)
• Chapter 3 (Continuous Functions and Uniform Convergence)
• Chapter 4 (The Theory of Riemann Integration)

are covered in Real Analysis courses.

• Chapter 5 (The Fundamental Properties of Analytic Functions; Taylor’s, Laurent’s and
Liouville’s Theorems)
• Chapter 6 (The Theory of Residues, Applications to the Evaluations of Definite Integrals)
• Chapter 7 (The Expansion of Functions in Infinite Series)

are covered in Complex Analysis. These courses usually cover the more elementary aspects
of

• Chapter 12 (The Gamma-Function)

appearing in Part II.
Most undergraduate programs also include basic parts of

• Chapter 9 (Fourier Series and Trigonometric Series)
• Chapter 10 (Linear Differential Equations)

and some of them will expose the student to the elementary parts of

• Chapter 8 ( Asymptotic Expansions and Summable Series)
• Chapter 11 (Integral Equations)

The material covered in Part II is mostly absent from a generic graduate program. Students
interested in Number Theory will be exposed to some parts of the contents in
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• Chapter 12 (The Gamma-Function)
• Chapter 13 (The Zeta-Function of Riemann)
• Chapter 14 (The Hypergeometric Function)

and a glimpse of

• Chapter 17 (Bessel Functions)
• Chapter 20 (Elliptic Functions. General Theorems and the Weierstrassian Functions)
• Chapter 21 (The Theta-Functions)
• Chapter 22 (The Jacobian Elliptic Functions).

Students interested in Applied Mathematics will be exposed to

• Chapter 15 (Legendre Functions)
• Chapter 16 (The Confluent Hypergeometric Function)
• Chapter 18 (The Equations of Mathematical Physics)

and some parts of

• Chapter 19 (Mathieu Functions)
• Chapter 23 (Ellipsoidal Harmonics and Lamé’s Equation)

It is perfectly possible to complete a graduate education without touching upon the topics
in Part II. For instance, in the most commonly used textbooks for Analysis, such as Royden
[565] and Wheeden and Zygmund [666] there is no mention of special functions. On the
complex variables side, in Ahlfors [13] and Greene–Krantz [260] one finds some discussion
on the Gamma function, but not much more.

This is not a new phenomenon. Fleix Klein [377] in 1928 (quoted in [91, p. 209]) writes
‘When I was a student, Abelian functions were, as an effect of the Jacobian tradition,
considered the uncontested summit of mathematics, and each of us was ambitious to make
progress in this field. And now? The younger generation hardly knows Abelian functions.

During the last two decades, the trend towards the abstraction is being complemented by
a group of researchers who emphasize concrete examples as developed by Whittaker and
Watson. Among the factors influencing this return to the classics one should include7 the
appearance of symbolic languages and algorithms producing automatic proofs of identities.
The work initiated by Wilf and Zeilberger, described in [518], shows that many identities
have automatic proofs. A second influential factor is the monumental work by B. Berndt,
G. Andrews and collaborators to provide context and proofs of all results appearing in
S. Ramanujan’s work. This has produced a collection of books, starting with [60] and
currently at [25]. The third example in this list is the work developed by J. M. Borwein and
his collaborators in the propagation of Experimental Mathematics. In the volumes [88, 89]
the authors present their ideas on how to transform mathematics into a subject, similar in
flavor to other experimental sciences. The point of view expressed in the three examples
mentioned above has attracted a new generation of researchers to get involved in this point
of view type of mathematics. This is just one direction in which Whittaker and Watson has
been a profound influence in modern authors.

7 This list is clearly a subjective one.
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The remainder of this chapter outlines the content of the book and a comparison with
modern practices.

The first part is named The Processes of Analysis. It consists of 11 chapters. A brief
description of each chapter is provided next.

Chapter 1: Complex Numbers. The authors begin with an informal description of positive
integers and move on to rational numbers. Stating that from the logical standpoint it is
improper to introduce geometrical intuition to supply deficiencies in arithmetical arguments,
they adopt Dedekind’s point of view on the construction of real numbers as classes of rational
numbers, later called Dedekind’s cuts. An example is given to show that there is no rational
number whose square is 2. The arithmetic of real numbers is defined in terms of these
cuts. Complex numbers are then introduced with a short description of Argand diagrams.
The current treatment offers two alternatives: some authors present the real number from a
collection of axioms (as an ordered infinite field) and other approach them from Cauchy’s
theory of sequences: a real number is an equivalence class of Cauchy sequences of rational
numbers. The reader will find the first point of view in [304] and the second one is presented
in [599].

Chapter 2. The Theory of Convergence. This chapter introduces the notion of convergence
of sequences of real or complex numbers starting with the definition of lim

n→∞
xn = L currently

given in introductory texts. The authors then consider monotone sequences of real numbers
and show that, for bounded sequences, there is a natural Dedekind cut (that is, a real number)
associated to them. A presentation of Bolzano’s theorem a bounded sequence of real numbers
contains a limit point and Cauchy’s formulation of the completeness of real numbers; that
is, the existence of the limit of a sequence in terms of elements being arbitrarily close,
is discussed. These ideas are then illustrated in the analysis of convergence of series. The
discussion begins with Dirichlet’s test for convergence: Assume an is a sequence of complex

numbers and fn is a sequence of positive real numbers. If the partial sums
p∑

n=1
an are uniformly

bounded and fn is decreasing and converges to 0, then
∞∑
n=1

an fn converges. This is used to give

examples of convergence of Fourier series (discussed in detail in Chapter 9). The convergence
of the geometric series

∞∑
n=1

xn and the series
∞∑
n=1

1
ns , for real s, are presented in detail. This

last series defines the Riemann zeta function ζ(s), discussed in Chapter 13. The elementary
ratio test states that

∞∑
n=1

an converges if lim
n→∞
|an+1/an | < 1 and diverges if the limit is strictly

above 1. A discussion of the case when the limit is 1 is presented and illustrated with the
convergence analysis of the hypergeometric series (presented in detail in Chapter 14). The
chapter contains some standard material on the convergence of power series as well as some
topics not usually found in modern textbooks: discussion on double series, convergence of
infinite products and infinite determinants. The final exercise8 in this chapter presents the
evaluation of an infinite determinant considered by Hill in his analysis of the Schrödinger

8 In this book, Examples are often what are normally known as Exercises and are numbered by section, i.e.,
‘Example a.b.c’. At the end of most chapters are Miscellaneous Examples, all of which are Exercises, and
which are numbered by chapter: thus ‘Example a.b’. This is how to distinguish them.
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equation with periodic potential (this is now called the Hill equation). The reader will find
in [451] and [536] information about this equation.
Chapter 3. Continuous Functions and Uniform Convergence. This chapter also discusses
functions f (x, y) of two real variables as well as functions of one complex variable g(z).
The notion of uniform convergence of a series is discussed in the context of the limiting
function of a series of functions. This is normally covered in every introductory course in
Analysis. The classical M-test of Weierstrass is presented. The reader will also find a test for
uniform convergence, due to Hardy, and its application to the convergence of Fourier series.
The chapter also contains a discussion of the series

g(z) =
∑
m,n

1
(z + 2mω1 + 2nω2)

α

which will be used to analyze the Weierstrass ℘-function: one of the fundamental elliptic
functions (discussed in Chapter 20). The chapter contains a discussion on the fact that
a continuous function defined of a compact set (in the modern terminology) attains its
maximum/minimum value. This is nowadays a standard result in elementary analysis courses.
Chapter 4. The Theory of Riemann Integration. The authors present the notion of the Riemann
integral on a finite interval [a, b], as it is currently done: as limiting values of upper and lower
sums. The fact that a continuous function is integrable is presented. The case with finite
number of discontinuities is given as an exercise. Basic results, such as integration by parts,
differentiation with respect to the limits of integration, differentiation with respect to a
parameter, the mean value theorem for integrals and the representation of a double integral
as iterated integral are presented. This material has become standard. The chapter also
contains a discussion on integrals defined on an infinite interval. There is a variety of tests to
determine convergence and criteria that can be used to evaluate the integrals. Two examples
of integral representations of the beta integral (discussed in Chapter 12) are presented. A
basic introduction to complex integration is given at the end of the chapter; the reader is
referred to Watson [650] for more details. This material is included in basic textbooks in
Complex Analysis (for instance, see [13, 26, 155, 260, 455, 552]).

Chapter 5. The Fundamental Properties of Analytic Functions; Taylor’s, Laurent’s and
Liouville’s Theorems. This chapter presents the basic properties of analytic functions that
have become standard in elementary books in complex analysis. These include the Cauchy–
Riemann equations and Cauchy’s theorem on the vanishing of the integral of an analytic
function taken over a closed contour. This is used to provide an integral representation as

f (z) =
1

2πi

∫
Γ

f (ξ)
z − ξ

dξ

where Γ is a closed contour containing ξ in its interior. This is then used to establish
classical results on analytic functions such as bounds on the derivatives and Taylor theorem.
There is also a small discussion on the process of analytic continuation and many-valued
functions. This chapter contains also basic properties on functions having poles as isolated
singularities: Laurent’s theorem on expansions and Liouville’s theorem on the fact that every
entire function that is bounded must be constant (a result that plays an important role in
the presentation of elliptic functions in Chapter 20). The Bessel function Jn, defined by its
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integral representation

Jn(x) =
1

2π

∫ 2π

0
cos(nθ − x sin θ) dθ

makes its appearance in an exercise. This function is discussed in detail in Chapter 17. The
chapter also contains a proof of the following fact: any function that is analytic, including
at ∞, except for a number of non-essential singularities, must be a rational function. This
has become a standard result. It represents the most elementary example of characterizing
functions of rational character on a Riemann surface. This is the case of P1, the Riemann
sphere. The next example corresponds to the torus C/L, where L is a lattice. This is the
class of elliptic functions described in Chapters 20, 21 and 22. The reader is referred to
[461, 553, 600, 665] for more details.

Chapter 6. The Theory of Residues: Application to the Evaluation of Definite Integrals. This
chapter presents application of Cauchy’s integral representation of functions analytic except
for a certain number of poles. Most of the material discussed here has become standard.
One of the central concepts is that of the residue of a function at a pole z = zk , defined
as the coefficient of (z − zk)−1 in the expansion of f near z = zk . As a first sign of the
importance of these residues is the statement that the integral of f (z) over the boundary of a
domainΩ is given by the sum of the residues of f insideΩ, the so-called argument principle
which gives the difference between zeros and poles of a function as a contour integral. This
chapter also presents methods based on residues to evaluate a variety of definite integrals
including rational functions of cos θ, sin θ over [0,2π], integrals over the whole real line
via deformation of a semicircle, integrals involving some of the kernels such as 1/(e2πz − 1)
(coming from the Fermi–Dirac distribution in Statistical Mechanics) and 1/(1−2a cos x+a2)

related to Legendre polynomials (discussed in Chapter 15). An important function makes its
appearance as Exercise 17:

ψ(t) =
∞∑

n=−∞

e−n
2πt,

introduced by Poisson in 1823. The exercise outlines a proof of the transformation rule

ψ(t) = t−1/2ψ(1/t)

known as Poisson summation formula. It plays a fundamental role in many problems in
Number Theory, including the proof of the prime number theorem. This states that, for x > 0,
the number of primes up to x, denoted by π(x), has the asymptotic behavior π(x) ∼ x/log x
as x →∞. The reader will find in [492] how to use contour integration and the function ψ(t)
to provide a proof of the asymptotic behavior of ψ(t). This function reappears in Chapter 21
in the study of theta functions.

Chapter 7. The Expansion of Functions in Infinite Series. This chapter begins with a result
of Darboux on the expansion of an analytic function defined on a region Ω. For points a, x,
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with the segment from a to x contained in Ω, one has the expansion

φ(n)(0)[ f (z) − f (0)] =
n∑

k=1

(−1)k−1(z − a)k
[
φ(n−k)(1) f (m)(z) − φn−k(0) f (k)(a)

]
+ (−1)n(z − a)n+1

∫ 1

0
φ(t) f (n+1)(a + t(z − a)) dt,

for any polynomial φ. The formula is then applied to the Bernoulli polynomials currently
defined by the generating function

tezt

et − 1
=

∞∑
n=0

Bn(z)
n!

tn.

(The text employs the notation φn(t) without giving the value for n = 0.) Darboux’s theorem
then becomes the classical Euler–MacLaurin summation formula

n∑
j=0

f ( j) =
∫ n

0
f (x) dx +

f (n) + f (0)
2

+

bp/2c∑
k=1

B2k

(2k)!
[

f (2k−1)(n) − f (2k−1)(0)
]

+ (−1)p−1
∫ n

0
f (p)(x)

Bp(x − bxc)
p!

dx.

The quantity x − bxc is the fractional part of x, denoted by {x}. This formula is used to
estimate partial sums of series of values of an analytic function in terms of the corresponding
integrals. The important example of theRiemann zeta function ζ(s) is presented inChapter 13.

The chapter contains a couple of examples of expansions of one function in terms of
another one. The first one, due to Bürmann, starts with an analytic function φ(z) defined on
a region and φ(a) = b with φ′(a) , 0. Define ψ(z) = (z − a)/(φ(z) − a), then one obtains the
expansion

f (z) = f (a) +
n−1∑
k=1

[φ(z) − b]k

k!

(
d
da

)k−1 [
f ′(a)ψk(a)

]
+ Rn

where the error term has the integral representation

Rn =
1

2πi

∫ z

a

∫
γ

[
φ(z) − b
φ(t) − b

]n−1 f ′(t)φ′(z)
φ(t) − φ(z)

dt dz,

where γ is a contour in the t-plane, enclosing a and t and such that, for any µ interior to γ,
the equation φ(t) = φ(µ) has a unique solution t = µ. The discussion also contains results of
Teixeira on conditions for the convergence of the series for f (z) obtained by letting n→∞.
This type of result also contains an expansion of Lagrange for solutions of the equation
µ = a + tφ(µ), for analytic function φ satisfying |tφ(z)| < |z − a|. The theorem states that
any analytic function f of the solution µ can be expanded as

f (µ) = f (a) +
∞∑
n=1

tn

n!

(
d
da

)n−1

[ f ′(a)φn(a)] .

This expansion has interesting applications in Combinatorics; see [681] for details. The
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last type of series expansion described here corresponds to the classical partial fraction
expansions of a rational function and its extensions to trigonometric functions.

The results of this chapter are then used to prove representations of an entire function f
in the form

f (z) = f (0)eG(z)
∞∏
n=1

{(
1 −

z
an

)
egn (z)

}mn

where an is a zero of f of multiplicity mn and G(z) is an entire function. The function gn(z) is
a polynomial, introduced by Weierstrass, which makes the product converge. An application
to 1/Γ(z) is discussed in Chapter 12.
Chapter 8. Asymptotic Expansions and Summable Series. This chapter presents an intro-
duction to the basic concepts behind asymptotic expansion. The initial example considers

f (x) =
∫ ∞

x

t−1ex−t dt. A direct integration by parts shows that the sum Sn(x) =
∞∑
k=0

(−1)k k!
xk+1

satisfies, for fixed x, the inequality | f (x) − Sn(x)| ≤ n!/xn+1. Therefore, for x ≥ 2n, one
obtains | f (x) − Sn(x)| < 1/n22n+1. It follows that the integral f can be evaluated with great
accuracy for large values of x by computing the partial sum of the divergent series Sn(x).
This type of behavior is written as f (x) ∼

∞∑
n=0

Anx−n and the series is called the asymptotic

expansion of f .
The chapter covers the basic properties of asymptotic series: such expansions can be

multiplied and integrated but not differentiated. Examples of asymptotic expansions of
special functions appear in later chapters: for the Gamma function in Chapter 12 and for the
Bessel function in Chapter 17.

The final part of the chapter deals with summation methods, concentrating on methods
assigning a value to a function given by a power series outside its circle of convergence D.
The first example, due to Borel, starts with the identity

∞∑
n=0

anzn =
∫ ∞

0
e−tφ(tz) dt where φ(u) =

∞∑
n=0

an

n!
un valid for z ∈ D.

The series
∞∑
n=0

anzn is said to be Borel summable if the integral on the right converges for z

outside D. For such z, the Borel sum of the series is assigned to be the value of the integral.
The discussion continues with Cesàro summability, a notion to be discussed in the context
of Fourier series in Chapter 9. Extensions by Riesz and Hardy are mentioned. More details
on asymptotic expansions can be found in [468, 508].
Chapter 9. Fourier Series and Trigonometric Series. The authors discuss trigonometrical
series defined as series of the form

1
2

a0 +

∞∑
n=1

(an cos nx + bn sin nx)

for two sequences of real numbers {an} and {bn}. Such series are named Fourier series if
there is a function f , with finite integral over (−π, π), such that the coefficients are given by

an =
1
π

∫ π

−π

f (t) cos nt dt and bn =
1
π

∫ π

−π

f (t) sin nt dt .
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The chapter contains a variety of results dealing with conditions under which the Fourier
series associated to a function f converges to f . These include Dirichlet’s theorem stating
that, under some technical conditions, the Fourier series converges to 1

2 [ f (x + 0) + f (x − 0)].
This is followed by Fejer’s theorem that the Fourier series is Césaro summable at all points
where the limits f (x±0) exist. The proofs are based on the analysis of the so-called Dirichlet–
Féjer kernel. Examples are provided where there is not a single analytic expression for the
Fourier series. The notion of orthogonality of the sequence of trigonometric functions makes
an implicit appearance in all the proofs. The so-called Riemann–Lebesgue theorem, on the
behavior of Fourier coefficients, is established. This result states that if ψ(θ) is integrable

on the interval (a, b), then lim
n→∞

∫ b

a

ψ(θ) sin(λθ) dθ = 0. The chapter contains results on the

function f which imply pointwise convergence of the Fourier series. The results of Dini and
Jordan, with conditions on the expressions f (x ± 2θ) − f (x ± 0) near θ = 0, are presented.
The reader will find more information about convergence of Fourier series in [368] and in
the treatise [690]. The results of Kolmogorov [381, 382] on an integrable function with a
Fourier series diverging everywhere, as well as the theorem of Carleson [118] on the almost-
everywhere convergence of the Fourier series of a continuous function, are some of the high
points of this difficult subject.

The chapter also includes a discussion on the uniqueness of the representation of a Fourier
series for a function f and also of the Gibbs phenomenon on the behavior of a Fourier series
in a neighborhood of a point of discontinuity of f .
Chapter 10. Linear Differential Equations. This chapter discusses properties of solutions of
second order linear differential equations

d2u
dz2 + p(z)

du
dz
+ q(z)u = 0,

where p, q are analytic functions of z except for a finite number of points. The discussion
is local; that is, in a neighborhood of a point c ∈ C. The points c are classified as ordinary,
where the functions p, q are assumed to be analytic at c and otherwise singular.

The question of existence and uniqueness of solutions of the equation is discussed. The

equation is transformed first into the form
d2v

dz2 + J(z)v = 0, by an elementary change of
variables. Existence of solutions is obtained from an integral equation equivalent to the
original problem. An iteration process is used to produce a sequence of analytic functions
{vn}. Then it is shown that, in a neighborhood of an ordinary point, this sequence converges
uniformly to a solution of the equation. Uniqueness of the solution comes also from this
process.

The solutions near an ordinary point are presented in the case of an ordinary singular
point. These are points c ∈ C where p or q have a pole, but (z − c)p(z) and (z − c)2q(z) are
analytic functions in a deleted neighborhood of z = c. The so-called method of Frobenius is
then used to seek formal series solutions in the form

u(z) = (z − c)α
[
1 +

∞∑
n=1

an(z − c)n
]
.

The so-called indicial equation α2 + (p0 − 1)α + q0 = 0 and its roots α1, α2, control the
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properties of these formal power series. The numbers p0, q0 are the leading terms of (z−c)p(z)
and (z − c)2q(z), respectively. It is shown that if α1, α2 do not differ by an integer, there are
two formal solutions and these series actually converge and thus represent actual solutions.
Otherwise one of the formal series is an actual solution and there is a procedure to obtain a
second solution containing a logarithmic term. The reader will find in [151] all the details.

It is a remarkable fact that the behavior of the singularities determines the equation itself.
For example, the most general differential equation of second order which has every point
except a1, a2, a3, a4 and∞ as ordinary points and these five points as regular points, must be
of the form

d2u
dz2 +

{
4∑

r=1

1 − αr − βr
z − ar

}
du
dz

+

{
4∑

r=1

αr βr
(z − ar )

2 +
Az2 + Bz + C

(z − a1)(z − a2)(z − a3)(z − a4)

}
u = 0,

for some constants αr , βr , A, B, C. F. Klein [376] describes how all the classical equations
of Mathematical Physics appear in this class. Six classes, carrying the names of their discov-
erers (Lamé, Mathieu, Legendre, Bessel, Weber–Hermite and Stokes) are discussed in later
chapters.

The chapter finally discusses the so-called Riemann P-function. This is a mechanism used
to write a solution of an equation with three singular points and the corresponding roots
of the indicial equation. Some examples of formal rules on P, which allow to transform a
solution with expansion at one singularity to another are presented. The chapter concludes
showing that a second order equation with three regular singular points may be converted to
the hypergeometric equation. This is the subject of Chapter 14.

The modern theory of this program, to classify differential equations by their singularities,
is its extension to nonlinear equations. A singularity of an ordinary differential equation
is called movable if its location depends on the initial condition. An equation is called a
Painlevé equation if its only movable singularities are poles. Poincaré and Fuchs proved
that any first-order equation with this property may be transformed into the Ricatti equation
or it may be solved in terms of the Weierstrass elliptic function. Painlevé considered the
case of second order, transformed them into the form u′′ = R(u,u′, z), where R is a rational
function. Then he put them into 50 canonical forms and showed that all but six may be
solved in terms of previously known functions. The six remaining cases gave rise to the six
Painlevé functions PI, . . . ,PVI. See [261, 310, 336] for details. It is a remarkable fact that
these functions, created for an analytic study, have recently appeared in a large variety of
problems. See [37] and [562] for their appearance in combinatorial questions, [76, 636] for
their relations to classical functions, [640] for connections to orthogonal polynomials, [632]
for their appearance in Statistical Physics. The reader will find in [212] detailed information
about their asymptotic behavior.

Chapter 11. Integral Equations. Given a function f , continuous on an interval [a, b] and
a kernel K(x, y), say continuous on both variables or in the region a ≤ y ≤ x ≤ b and
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vanishing for y > x, the equation

φ(x) = f (x) + λ
∫ b

a

K(x, y)φ(y) dy

for the unknown function φ, is called the Fredholm integral equation of the second kind. The
solution presented in this chapter is based on the construction of functions D(x, y, λ) and
D(λ), both entire in λ, as a series in which the nth-term consists of determinants of order
n × n based on the function K(x, y). The solution is then expressed as

φ(x) = f (x) +
1

D(λ)

∫ b

a

D(x, ξ, λ) f (ξ) dξ.

In particular, in the homogeneous case f ≡ 0, there is a unique solution φ ≡ 0 for those
values of λ with D(λ) , 0. A process to obtain a solution for those values of λ with D(λ) = 0
is also described.

Volterra introduced the concept of reciprocal functions for a pair of functions K(x, y) and
k(x, y; λ) satisfying the relation

K(x, y) + k(x, y; λ) = λ
∫ b

a

k(x, ξ; λ)K(ξ, y)dξ.

Then the solution to the Fredholm equation is given by

f (x) = φ(x) + λ
∫ b

a

k(x, ξ; λ)φ(ξ)dξ.

The last part of the chapter discusses the equation

Φ(x) = f (x) + λ
∫ b

a

K(x, ξ)Φ(ξ) dξ

and the solution is expressed as a series in terms of a sequence of orthonormal functions and
the sequence {λn} of eigenvalues of the kernel K(x, y). In detail, if f (x) =

∑
bnφn(x), then

the solution Φ is given by Φ(x) =
∑ bnλn

λ−λn
φn(x).

The Fredholm equation iswritten formally asΦ = f +KΦ and this givesΦ = f +K f +K2Φ.
Iteration of this process gives the so-called Neumann series Φ =

∞∑
n=0

Kn f , expressing the

unknown Φ in terms of iterations of the functional defined by the kernel K .
The study of Fredholm integral equations is one of the beginnings of modern Functional

Analysis. The reader will find more details in P. Lax [415]. The ideas of Fredholm have
many applications: the reader will find in H. P. McKean [460] a down-to-earth explanation
of Fredholm’s work and applications to integrable systems (such as the Korteweg–de Vries
equation ut = uxxx + 6uux and some special solutions called solitons), to the calculations of
some integrals involving Brownian paths (such as P. Lévy’s formula for the area generated by
a two-dimensional Brownian path) and finally to explain the appearance of the so-called sine
kernel in the limiting distribution of eigenvalues of random unitary matrices. This subject has
some mysterious connections to the Riemann hypothesis as described by B. Conrey [154].

The second part of the book is called The Transcendental Functions and it consists of
12 chapters. A brief description of them is provided next.
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Chapter 12. The Gamma-Function. This function, introduced by Euler, represents an exten-
sion of factorials n! from positive integers to complex values of n. The presentation begins
with the infinite product

P(z) = zeγz
∞∏
n=1

(
1 +

z
n

)
e−z/n

where γ = lim
n→∞

(
1 + 1

2 + · · · +
1
n
− log n

)
is nowadays called the Euler–Mascheroni constant.

The product is an entire function of z ∈ C and the Gamma function is defined by Γ(z) =
1/P(z). Therefore Γ(z) is an analytic function except for simple poles at z = 0,−1,2, . . . . The
constant γ is identified as−Γ′(1). The fact that Γ is a transcendental function is reflected by the
fact, mentioned in this chapter, that Γ does not satisfy a differential equation with coefficients
being rational functions of z. The chapter contains proofs of a couple of representations by
Euler

Γ(z) =
1
z

∞∏
n=1

(
1 +

1
z

)z (
1 +

z
n

)−1

= lim
n→∞

(n − 1)!
z(z + 1) · · · (z + n − 1)

nz .

The functional equation Γ(z+1) = zΓ(z) follows directly from here. Using the value Γ(1) = 1,
this leads to Γ(n) = (n − 1)! for n ∈ N, showing that Γ interpolates factorials.

The chapter also presents proofs of the reflection formula

Γ(z)Γ(1 − z) =
π

sin πz

leading to the special value Γ( 12 ) =
√
π. There is also a discussion of the multiplication

formula due to Gauss

Γ(nz) = (2π)−(n−1)/2n−1/2+nz
n−1∏
k=0

Γ

(
z +

k
n

)
and the special duplication formula of Legendre

Γ(2z) =
1
√
π

22z−1
Γ(z)Γ(z + 1

2 ).

Thismay be used to derive the relation Γ( 13 )Γ(
2
3 ) =

2π
√

3
. Arithmetical properties of these values

are difficult to establish. The reader is referred to [92] and [166] for an elementary presentation
of the Gamma function, and to [106] for an introduction to issues of transcendence.

There are several integral representations of the Gamma function established in this
chapter. Most of them appear in the collection of integrals by Gradshetyn and Ryzhik [258].
The first one, due to Euler, is

Γ(z) =
∫ ∞

0
tz−1e−t dt,

valid for Re z > 0. This may be transformed to the logarithmic scale

Γ(z) =
∫ 1

0

(
log

1
x

)z−1

dx.
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There is also a presentation of Hankel’s contour integral

Γ(z) = −
1

2i sin πz

∫
C

(−t)z−1e−t dt, z < Z

where C is a thin contour enclosing the positive real axis.
The chapter also contains a discussion of two functions related to Γ: its logarithm log Γ(z)

and the digamma function, ψ(z) = Γ′(z)/Γ(z) = (log Γ(z))′. Integral representations for ψ(z)
include

ψ(z) =
∫ ∞

0

(
e−t

t
−

e−zt

1 − e−t

)
dt

=

∫ ∞

0

(
e−x −

1
(1 + x)z

)
dx
x

;

the first one is due to Gauss and the second one to Dirichlet. The chapter also contains a
multi-dimensional integral due to Dirichlet that can be reduced to a single variable problem:∫

Rn
+

f (t1 + · · · + tn)t
a1−1
1 · · · tan−1

n dt1 · · · dtn

=
Γ(a1) · · · Γ(an)

Γ(a1 + · · · + an)

∫ 1

0
f (τ)τa1+· · ·+an−1 dτ.

Other multi-dimensional integrals appear in the modern literature. For a description of a
remarkable example due to Selberg, the reader is referred to [214].

The properties of log Γ(z) presented in this chapter include a proof of the identity

d2

dz2 log Γ(z + 1) =
∞∑
k=1

1
(z + k)2

,

showing that Γ(z+1) is log-convex. This property, the functional equation and the value Γ(1) =
1 characterize the Gamma function. The reader will also find two integral representations
due to Binet

log Γ(z) =
(
z −

1
2

)
log z − z +

1
2

log 2π +
∫ ∞

0

(
1
2
−

1
t
+

1
et − 1

)
e−tz

t
dt

and

log Γ(z) =
(
z −

1
2

)
log z − z +

1
2

log 2π + 2
∫ ∞

0

tan−1( t
z
)

e2πt − 1
dt .

Integrals involving log Γ(z) present interesting challenges. The value∫ 1

0
log Γ(z) dz = log

√
2π

due to Euler, may be obtained from the reflection formula for Γ(z). The generalization of the
previous evaluation to

Ln =

∫ 1

0
(log Γ(z))n dz

is discussed next. The value of L2 is presented in [196] as an expression involving the
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Riemann zeta function and its derivatives. The values of L3 and L4 were obtained in [38] and
they involve more advanced objects: multiple zeta values. At the present time an evaluation
of Ln, for n ≥ 5, is an open question.

The chapter also contains a discussion of the asymptotic behavior of log Γ(z), as a gener-
alization of Stirling’s formula for factorials and also a proof of the expression for the Fourier
series of log Γ(z) due to Kummer. The Barnes G-function, an important generalization of
Γ(z), appears in the exercises at the end of this chapter. A detailed presentation of these and
other topics may be found in [20].
Chapter 13. The Zeta-Function of Riemann. For s = σ + it ∈ C, the function

ζ(s) =
∞∑
n=1

1
ns

is the Riemann zeta function. This had been considered by Euler for s ∈ R. For δ > 0, the
series defines an analytic function of s on the half-plane σ = Re s ≥ 1 + δ. The function
admits the integral representation

ζ(s) =
1
Γ(s)

∫ ∞

0

xs−1e−x

1 − e−x
dx.

Euler produced the infinite product

ζ(s) =
∏
p

(1 − p−s)−1

where the product extends over all prime numbers. This formula shows that ζ(s) has no zeros
in the open half-plane Re s > 1. The auxiliary function

ξ(s) =
1
2
π−s/2s(s − 1)Γ

( s
2

)
ζ(s)

is analytic and satisfies the identity ξ(s) = ξ(1 − s). This function now shows that ζ(s) has
no zeros for Re s < 0, aside for the so-called trivial zeros at s = −2, −4, −6, . . . coming from
the poles of Γ(s/2). Thus all the non-trivial zeros lie on the strip 0 ≤ Re s ≤ 1. The Riemann
hypothesis states that all the roots of ζ(s) = 0 are on the critical line Re s = 1

2 . At the end of
§13.3 the authors state that:
It was conjectured by Riemann, but it has not yet been proved, that all the zeros of ζ(s) in this
strip lie on the line σ = 1

2 ; while it has quite recently been proved by Hardy [279] that an
infinity of zeros of ζ(s) actually lie on σ = 1

2 . It is highly probable that Riemann’s conjecture
is correct, and the proof of it would have far-reaching consequences in the theory of Prime
Numbers.

The reader will find in [93, 153, 458] more information about the Riemann hypothesis. In
a remarkable new connection, it seems that the distribution of the zeros of ζ(s) is related to
the eigenvalues of random matrices [367, 369].

This chapter establishes the identity

ζ(2n) =
(−1)n−1B2n(2π)2n

2 (2n)!
where n ∈ N and B2n is the Bernoulli number. This is a generalization of the so-called Basel
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problem ζ(2) = π2/6. The solution of this problem won the young Euler instant fame. It
follows that ζ(2n) is a rational multiple of π2n, therefore this is a transcendental number.
The arithmetic properties of the odd zeta values are more difficult to obtain. Apéry proved
in 1979 that ζ(3) is not a rational number; see [27, 72, 689]. It is still unknown whether
ζ(5) is irrational, but Zudilin [688] proved that one of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is
irrational. It is conjectured that all odd zeta values are irrational.

The literature contains a large variety of extensions of the Riemann zeta function. The
chapter contains information about some of them: the Hurwitz zeta function

ζ(s,a) =
∞∑
n=0

1
(n + a)s

, with 0 < a ≤ 1

with integral representation

ζ(s,a) =
1
Γ(s)

∫ ∞

0

xs−1 e−ax

1 − e−x
dx.

The chapter establishes the values of ζ(−m,a) in terms of derivatives of the Bernoulli
polynomials and presents a proof of Lerch’s theorem

d
ds
ζ(s,a)

���
s=0
= log

(
Γ(a)
√

2π

)
.

The chapter mentions two further generalizations: one introduced by Lerch (see [414] for
details)

φ(x,a; s) =
∞∑
n=0

e2πinx

(n + a)s
,

and another one by Barnes [43, 44, 45, 46]

ζN (s,w | a1, . . . ,aN ) =
∑

n1 ,...,nN

1
(w + n1a1 + · · · + nNaN )

s
.

The reader will find in [566] more recent information on this function.
Chapter 14. The Hypergeometric Function. This function is defined by the series

F(a, b; c, z) =
∞∑
n=0

(a)n(b)n
(c)nn!

zn,

provided c is not a negative integer. Here (u)n = Γ(u + n)/Γ(u) is the Pochhammer symbol.
The series converges for |z | < 1 and on the unit circle |z | = 1 if Re (c − a − b) > 0. Many
elementary functions can be expressed in hypergeometric form, for instance

F(1,1; 1; z) =
1

1 − z
and ez = lim

b→∞
F

(
1, b; 1;

z
b

)
.

The chapter begins with Gauss’ evaluation F(a, b; c; 1) in the form

F(a, b; c; 1) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

.
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The function F satisfies the differential equation

z(1 − z)
d2u
dz2 + [c − (a + b + 1)z]

du
dz
− abu = 0.

This equation has 0, 1, ∞ as regular singular points and every other point is ordinary. The
generalization to singular points at a, b, c with exponents given by {α,α′}, {β, β′}, {γ, γ ′},
respectively, is the Riemann differential equation

d2w

dz2 +

[
1 − α − α′

z − a
+

1 − β − β′

z − b
+

1 − γ − γ ′

z − c

]
dw
dz

+

[
αα′(a − b)(a − c)

z − a
+
ββ′(b − c)(b − a)

z − b
+
γγ ′(c − a)(c − b)

z − c

]
w

(z − a)(z − b)(z − c)
= 0.

It is shown that(
z − a
z − b

)α (
z − c
z − b

)γ
F(α + β + γ,α + β′ + γ; 1 + α − α′);

(z − a)(c − b)
(z − b)(c − a)

solves the Riemann differential equation. Using the invariance of this equation with respect
to some permutations of the parameters (for example, the exchange of α and α′) produces
from F(a, b; c; z) Kummer’s 24 new solutions of Riemann’s equation, for example

(1 − z)−aF
(
a, c − b; c;

z
z − 1

)
and (1 − z)−bF

(
c − a, b; c;

z
z − 1

)
.

Since the solutions of a second-order differential equation form a two dimensional vector
space, this type of transformation can be used to generate identities among hypergeomet-
ric series. The reader will find in [20, 339, 534, 641] more details on these ideas. The
corresponding equation with four regular singular points at 0, 1, ∞, a is called the Heun
equation

d2u
dx2 +

[
γ

x
+

δ

x − 1
+

ε

x − a

]
du
dx
+

[
αβx − q

x(x − 1)(x − a)

]
u = 0.

The corresponding process on the symmetries of the equation now gives 192 solutions. These
are described in [452]. The reader will find in [190] an example of the appearance of Heun’s
equation in integrable systems.

The chapter also contains a presentation of Barnes’ integral representation

F(a, b; c; z) =
1

2πi

∫ i∞

−i∞

Γ(a + s)Γ(b + s)Γ(−s)
Γ(c + s)

(−z)s ds

and its use in producing an analytic continuation of the hypergeometric series. Finally, the
identities of Clausen[

F(a, b; a + b + 1
2 ; x)

]2
= 3F2(2a,a + b,2b; a + b + 1

2,2a + 2b; x)

where 3F2 is the analog of the hypergeometric series, now with three Pochhammer symbols
on top and two in the bottom of the summand and Kummer’s quadratic transformation

F(2a,2b; a + b + 1
2 ; x) = F(a, b; a + b + 1

2 ; 4x(1 − x))
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appear as exercises in this chapter. The reader will find in [20] a detailed analysis of these
topics.
Chapter 15. Legendre Functions. This chapter discusses Legendre polynomials Pn(z) and
some of their extensions. These days, the usual starting point for these functions is defining
them as orthogonal polynomials on the interval (−1,1); that is,∫ 1

−1
Pn(z)Pm(z) dz = 0 if n , m,

plus some normalization in the case n = m. The starting point in this chapter is the generating
function

(1 − 2zh + h2)−1/2 =

∞∑
n=0

Pn(z)hn.

It is established from here that

Pn(z) =

⌊
n
2
⌋∑

r=0

(−1)r
(2n − 2r)!

2nr!(n − r)!(n − 2r)!
zn−2r

showing that Pn(z) is a polynomial of degree n with leading coefficient 2−n
(2n
n

)
.

The properties of these polynomials established in this chapter include

Rodriguez formula

Pn(z) =
1

2n n!

(
d
dz

)n
(z2 − 1)n.

Legendre’s differential equation The polynomials Pn(z) are solutions of the differential
equation

(1 − z2)
d2u
dz2 − 2z

du
dz
+ n(n + 1)u = 0.

In the new scale x = z2, this equation takes its hypergeometric form

x(1 − x)
d2y

dx2 +
1
2
(1 − 3x)

du
dx
+

1
4

n(n + 1)u = 0.

The (more convenient) hypergeometric form Pn(z) = 2F1(n + 1,−n; 1; 1
2 (1 − z) is

also established.
Recurrences The chapter presents proofs of the recurrences

(n + 1)Pn+1(z) − (2n + 1)zPn(z)zPn(z) − nzPn(z) = 0

and

P′n+1(z) − zP′n(z) − (n + 1)Pn(z) = 0.

Integral representations A variety of integral representations for the Legendre polynomials
are presented:
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• Schläfli:

Pn(z) =
1

2πi

∮
C

(t2 − 1)n

2n(t − z)n+1 dt

where C is a contour enclosing z. This is then used to prove the orthogonality
relation ∫ 1

−1
Pn(z)Pm(z) dz =

{
0 if n , m
2/(2n + 1) if n = m.

• Laplace:

Pn(z) =
1
π

∫ π

0

[
z + (z2 − 1)1/2 cos θ

]n
dθ

• Mehler–Dirichlet:

Pn(cos θ) =
1
π

∫ θ

−θ

e(n+
1
2 )iϕ

(2 cos ϕ − 2 cos θ)1/2
dϕ.

The formula of Schläfli given above is then used to extend the definition of Pn(z) for n < N.
In order to obtain a single-valued function, the authors introduce a cut from −1 to −∞ in the
domain of integration.

Since the differential equation for the Legendre polynomials is of second order, it has a
second solution independent of Pn(z). This is called the Legendre function of degree n of the
second type. It is denoted by Qn(z). The chapter discusses integral representations and other
properties similar to those described for Pn(z). For example, one has the hypergeometric
expression

Qn(z) =
√
πΓ(n + 1)

2n+1Γ
(
n + 3

2

) 1
zn+1 F

(
n + 1

2
,
n
2
+ 1; n +

3
2

; z−2
)
.

One obtains from here

Q0(z) =
1
2

log
z + 1
z − 1

Q1(z) =
1
2

z log
z + 1
z − 1

− 1.

In general Qn(z) = An(z) + Bn(z) log z+1
z−1 for polynomials An, Bn.

The chapter also includes further generalizations of the Legendre functions introduced by
Ferrer and Hobson. These are called associated Legendre functions. Some of their properties
are presented. There is also a discussion of the addition theorem for Legendre polynomial,
as well as a short section on the Gegenbauer function. The reader will find in the Digital
Library of Mathematical Functions developed at NIST [443] more information about these
functions.

Chapter 16. TheConfluentHypergeometric Function. This chapter discusses the second-order
differential equation with singularities at {0,∞, c} and corresponding exponents{
{ 1

2 + m, 1
2 − m}, {−c,0}, {c − k, k}

}
in the limiting situation c → ∞. This is the case

of confluent singularities (the limiting equation now has only two singularities: 0 and ∞,
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with 0 remaining regular and∞ becomes an irregular singularity). After a change of variables
to eliminate the first derivative term, the limiting equation becomes

d2W
dz2 +

(
−

1
4
+

k
z
+

1
4 − m2

z2

)
W = 0.

This is called Whittaker equation.
The authors introduce the functions

Mk ,m(z) = z1/2+me−z/2
(
1 +

1
2 + m − k

1! (2m + 1)
z +
( 12 + m − k)( 32 + m − k)

2! (2m + 1)(2m + 2)
z2 + · · ·

)
and show that, when 2m < N, the functions Mk ,m(z) and Mk ,−m(z) form a fundamental set of
solutions.

It turns out that it is more convenient to work with the functions Wk ,m(z) defined by the
integral representation

Wk ,m(z) =
zke−k/2

Γ( 12 − k + m)

∫ ∞

0
t−k−1/2+m

(
1 +

t
z

)k−1/2+m

e−t dt .

The reader is referred to [59, Chapter 6] for a readable description of the basic properties of
these functions, calledWhittaker functions in the literature.

The chapter also presents a selection of special functions that can be expressed in terms
of Wk ,m(z). This includes the incomplete gamma function

γ(a, x) =
∫ x

0
ta−1e−t dt

that can be expressed as

γ(a, x) = Γ(a) − x(a−1)/2e−x/2W 1
2 (a−1), 1

2 a
(x),

as well as the logarithmic integral function, defined by

li(z) =
∫ x

0

dt
log t

= −(− log z)−1/2z1/2W
−

1
2 ,0
(− log z).

This function appears in the description of the asymptotic behavior of the function

π(x) = number of primes p ≤ x.

The prime number theorem may be written as π(x) ∼ li(x) as x → ∞. See [191] for details.
The final example is the function

Dn(z) = 2n/2+1/4z−1/2W n
2 +

1
4 ,−

1
4

(
z2

2

)
,

related in a simple manner to the Hermite polynomials, defined by

Hn(z) = (−1)nez
2/2

(
d
dz

)n
e−z

2/2.

See [20] for information on this class of orthogonal polynomials.
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Chapter 17. Bessel Functions. This chapter discusses the Bessel functions defined, for n ∈ Z,
by the expansion

exp
(

z
2

(
t −

1
t

))
=

∞∑
n=−∞

Jn(z)tn.

Some elementary properties of Jn(z) are derived directly from this definition, such as J−n(z) =
(−1)nJn(z), the series

Jn(z) =
∞∑
r=0

(−1)r

r! (n + r)!

( z
2

)n+2r
,

and the addition theorem

Jn(y + z) =
∞∑

m=−∞

Jm(y)Jn−m(z).

The Cauchy integral formula is then used to produce the representation

Jn(z) =
1

2πi

( z
2

)n ∮
C

t−n−1et−z
2/4t dt,

where C is a closed contour enclosing the origin. From here it is possible to extend the
definition of Jn(z) to values n < Z and produce the series representation

Jn(z) =
∞∑
r=0

(−1)r zn+2r

2n+2rr!Γ(n + r + 1)
.

This function is called the Bessel function of the first kind of order n. The integral repre-
sentation of Jn(z) is then used to show that y(z) = Jn(z) is a solution of the differential
equation

d2y

dz2 +
1
z

dy
dz
+

(
1 −

n2

z2

)
y = 0,

called the Bessel equation. In the case n < Z, the functions Jn(z) and J−n(z) form a basis for
the space of solutions. In the case n ∈ Z a second solution, independent of Jn(z), is given by

Yn(z) = lim
ε→0

2πeπi(n+ε)
(

Jn+ε(z) cos(π(n + ε)) − J−(n+ε)(z)
sin(2π(n + ε))

)
.

The functions Yn(z) are called the Bessel functions of the second kind.
This chapter also contains some information on some variations of the Bessel function

such as
In(z) = i−nJn(iz) and Kn(z) =

π

2
[I−n(z) − In(z)] cot(πn).

Among the results presented here one finds

Recurrences such as

Jn−1(z) + Jn+1(z) =
2n
z

Jn(z),

J ′n(z) =
n
z

Jn(z) − Jn+1(z)
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and

z−n−1Jn+1(z) = −
1
z

d
dz
[z−nJn(z)]

which produces relations of Bessel functions of consecutive indices.
Zeros of Bessel functions it is shown that between any two non-zero consecutive roots of

Jn(z) = 0 there is a unique root of Jn+1(z) = 0.
Integral representations such as

Jn(z) =
1
π

∫ π

0
cos(nθ − z sin θ) dθ −

sin πn
π

∫ ∞

0
e−nθ−z sinh θ dθ,

where, for n ∈ Z, the second term vanishes.
Hankel representation in the form

Jn(z) =
Γ( 12 − n)

2πi
√
π

( z
2

)n ∫
C

(t2 − 1)n−1/2 cos(zt) dt

where C is a semi-infinite contour on the real line.
Evaluation of definite integrals such as one due to Mahler

K0(x) =
∫ ∞

0

t
1 + t2 J0(t x) dt

and an example due to Sonine giving an expression for∫ ∞

0
x1−mJm(ax)Jm(bx)Jm(cx) dx.

A large selection of integrals involving Bessel functions may be found in [105],
[258] and [544].

Series expansion The chapter also contains information about expansions of a function f (z)
in a series of the form

f (z) =
∞∑
n=0

anJn(z) or f (z) =
∞∑
n=0

anJ0(nz).

The reader will find in [20] and [59] more information on these functions at the level
discussed in this chapter. Much more appears in the volume [653].

There are many problems whose solutions involve the Bessel functions. As a current
problem of interest, consider the symmetric group SN of permutations π of N symbols.
An increasing sequence of length k is a collection of indices 1 ≤ i1 < · · · < ik ≤ N such
that π(i1) < π(i2) < · · · < π(ik). Define on SN a uniform probability distribution; that is,
P(π) = 1/N! for each permutation π. Then the maximal length of an increasing subsequence
of π is a random variable, denoted by `N (π), and its distribution is of interest. This is the
Ulam problem. Introduce the centered and scaled function

χN (π) =
`N (π) − 2

√
N

N1/6 .
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Baik–Deift–Johannson [36] proved that lim
N→∞
P(χN (π) ≤ x) = F(x),where F(x), the so-called

Tracy–Widom distribution, is given by

F(x) = exp
(
−

∫ ∞

x

(y − x)u2(y) dy
)
.

Here u(x) is the solution of the Painlevé PII equation u′′(x) = 2u3(x) + xu(x), with
asymptotic behavior u(x) ∼ Ai(x) as x → ∞. The Airy function Ai(x) is defined by
Ai(x) =

√
xK1/3

(
2
3 x3/2

)
/π
√

3. The reader will find in [37] an introduction to this fasci-
nating problem.
Chapter 18. The Equations ofMathematical Physics. This chapter contains a brief description
of methods of solutions for the basic equations encountered in Mathematical Physics. The
results are given for Laplace’s equation

∆V =
∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2

on a domain Ω ⊂ R3. The chapter has a presentation on the physical problems modeled by
this equation.

The results include the integral representation of the solution

V(x, y, z) =
∫ π

−π

f (z + ix cos u + iy sin u,u) du

as the 3-dimensional analog of the form V(x, y) = f (x + iy) + g(x − iy) valid in the 2-
dimensional case as well as an expression for V(x, y, z) as a series with terms of the form∫ π

−π

(z + ix cos u + iy sin u)n
(
cos mu
sin mu

)
du.

This series is then converted into one of the form

V =
∞∑
n=0

rn
{

AnPn(cos θ) +
∞∑

m=1

(
A(m)n cos mφ + B(m)n sin mφ

)
Pm
n (cos θ)

}
where Pm

n is Ferrer’s version of the associated Legendre function.
The chapter also contains similar results for Laplace’s equation on a sphere. For this type

of domain, the authors obtain the formula

V(r, θ, φ) =
a(a2 − r2)

4π

∫ π

−π

∫ π

0

f (θ ′, φ′) sin θ ′ dθ ′ dφ′

[r2 − 2ar{cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′)} + a2]3/2
,

and refer to Thompson and Tait [628] for further discussions on the theory of Green’s
functions. A similar analysis for an equation on a cylinder also appears in this chapter. In
that case the Legendre functions are replaced by Bessel functions. Some of the material
discussed in this chapter has become standard in basic textbooks in Mathematical Physics;
see for instance [476].
Chapter 19. Mathieu Functions. This chapter discusses the wave equation Vtt = c2∆V and
assuming a special form V(x, y, t) = u(x, y) cos(pt + ε) of the unknown V in a special system
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of coordinates (ξ, η) (introduced by Lamé) yields an equation for u(x, y). Using the classical
method of separation of variables (u ∗ x, y) = F(ξ)G(η) produces the equation

d2y

dz2 + (a + 16q cos(2z)) y = 0.

This is calledMathieu’s equation. The value of a is determined by the periodicity condition
G(η+2π) = G(η) and q is determined by a vanishing condition at the boundary. This type of
equation is now called Hill’s equation, considered by Hill [306] in a study on lunar motion.
Details about this equation appear in [451] and connections to integrable systems appear in
[459, 462, 463].

The authors show that G(η) satisfies the integral equation

G(η) = λ
∫ π

−π

ek cosη cos θG(θ) dθ

and this λ must be a characteristic value as described in Chapter 11.
A sequence of functions, named Mathieu functions, are introduced from the study of

Mathieu’s equation. In the case q = 0, the solutions are {1,cos nz, sin nz}n∈N, and via Fourier
series the authors introduce functions {ce0(z,q), cen(z,q), sen(z,q)}n∈N, reducing to the pre-
vious set as q → 0. Some expressions for the first coefficients in the Fourier series of these
functions are produced (it looks complicated to obtain exact expressions for them).

The authors present basic aspects of Floquet theory (more details appear in [451]). One
looks for solution of Mathieu’s equation in the form y(z) = eµzφ(z), with φ periodic. The
values of µ producing such solutions are obtained in terms of a determinant (called the Hill
determinant). The modern theory yields these values in terms of a discriminant attached
to the equation. The chapter also discusses results of Lindemann, transforming Mathieu’s
equation into the form

4ξ(1 − ξ)u′′ + 2(1 − 2ξ)u′ + (a − 16q + 32qξ)u = 0.

This equation is not of hypergeometric type: the points 0, 1 are regular, but∞ is an irregular
singular point. Finally, the chapter includes some description of the asymptotic behavior of
Mathieu functions. More details appear in [34] and [509].
Chapter 20. Elliptic Functions. General Theorems and the Weierstrassian Functions. Con-
sider two complex numbers ω1, ω2 with non-real ratio. An elliptic function is a doubly-
periodic functions: f (z+2ω1) = f (z+2ω2) = f (z)where its singularities are at worst poles.
The chapter discusses basic properties of the class E of elliptic functions. It is simple to
verify that E is closed under differentiation and that the values of f ∈ E are determined by
its values on the parallelogram with vertices 0, 2ω1, 2ω1 + 2ω2, 2ω2. (Observe the factor
of 2 in the periods.) This is called a fundamental cell and is denoted by L. One may always
assume that there are no poles of the function on the boundary of the cell. The first type of
results deal with basic properties of an elliptic function:

(1) the number of poles is always finite; the same is true for the number of solutions of
f (z) = c. This is independent of c ∈ C and is called the degree of the function f .

(2) any elliptic function without poles must be constant.
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This result is used throughout the chapter to establish a large number of identities. The
fundamental example

℘(z) =
1
z2 +

∑ (
1

(z − ω)2
−

1
ω2

)
where the sum runs over all non-zero ω = 2nω1 + 2mω2, was introduced by Weierstrass. It
is an elliptic function of order 2. It has a double pole at z = 0. It is an even function, so its
zeros in the fundamental cell are of the form ±z0 mod L. A remarkably recent formula for z0

is given by Eichler and Zagier [192]. The ℘ function satisfies a differential equation(
d℘(z)

dz

)2

= 4℘(z)3 − g2℘(z) − g3,

where g2, g3 are the so-called invariants of the lattice L. This function is then used to
parametrize the algebraic curve y2 = 4x3 + ax + b, for a, b ∈ C with a3 + 27b2 , 0. The
subject is also connected to differential equation by showing that if y = ℘(z), then the inverse
z = ℘−1(y) (given by an elliptic integral) can be written as the quotient of two solutions of

d2v

dy2 +

(
3
16

3∑
r=1

(y − er )−2 −
3
8
y

3∏
r=1

(y − er )−1

)
v = 0.

Here er are the roots of the cubic polynomial appearing in the differential equation for ℘(z).
The addition theorem

℘(z + y) =
1
4

[
℘′(z) − ℘′(y)
℘(z) − ℘(y)

]2

− ℘(z) − ℘(y)

is established by a variety of methods. One presented by Abel deals with the intersection
of the cubic curve y2 = 4x3 + ax + b and a line and it is the basis for an addition on
the elliptic curve, as the modern language states. Take two points a, b on the curve and
compute the line joining them. This line intersects the cubic at three points: the third is
declared −a ⊕ b. The points on the curve now form an abelian group: this is expected since
the cubic may be identified with a torus C/L. The remarkable fact is that the addition of
points preserves points with rational coordinates, so this set is also an abelian group. A
theorem of Mordell and Weil states that this group is finitely generated. More information
about the arithmetic of elliptic curves may be found in [331, 461, 592, 593]. The chapter
also contains some information about two additional functions: the Weierstrass ζ-function,
defined by ζ ′(z) = −℘(z) with lim

z→0
ζ(z) − 1/z = 0 and the Weierstrass σ-function, defined

by (logσ(z))′ = ζ(z) with lim
z→0

σ(z)/z = 1. These are the elliptic analogs of the cotangent
and sine functions. The chapter contains some identities for them, for instance one due to
Stickelberger: if x + y + z = 0, then

[ζ(x) + ζ(y) + ζ(z)]2 + ζ ′(x) + ζ ′(y) + ζ ′(z) = 0,

as well as the identity

℘(z) − ℘(y) = −
σ(z + y)σ(z − y)

σ2(z)σ2(y)
,
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just to cite two of many. Among the many important results established in this chapter, we
select three:

(1) any elliptic function f can be written in the form R1(℘)+R2(℘)℘
′(z), with R1, R2 rational

functions;
(2) every elliptic function f satisfies an algebraic differential equation;
(3) any curve of genus 1 can be parametrized by elliptic functions.

The chapter contains a brief discussion on the uniformization of curves of higher genus. This
problem is discussed in detail in [7, 12, 477].
Chapter 21. The Theta-Functions. The study of the function

ϑ(z,q) =
∞∑

n=−∞

(−1)nqn2
e2niz

with q = exp(πiτ) and Im τ > 0 was initiated by Euler and perfected by Jacobi in [349]. This
is an example of a theta function. It is a non-constant analytic function of z ∈ C, so it cannot
be elliptic, but it has a simple transformation rule under z 7→ z+ τ. This chapter considers ϑ,
relabelled as ϑ1 as well as three other companion functions ϑ2, ϑ3 and ϑ4. These functions
have a single zero in the fundamental cell L and since they transform in a predictable manner
under the elements of L, it is easy to produce elliptic functions from them. This leads to a
remarkable series of identities such as

ϑ3(z,q) = ϑ3(2z,q4) + ϑ2(2z,q4)

and
ϑ4

2(0,q) + ϑ
4
4(0,q) = ϑ

4
3(0,q)

that represents a parametrization of the Fermat projective curve x4 + y4 = z4. The chapter
also discusses the addition theorem

ϑ3(z + y)ϑ3(z − y)ϑ2
3(0) = ϑ

2
3(y)ϑ

2
3(z) + ϑ

2
1(y)ϑ

2
1(z)

(where the second variable q has been omitted) as well as an identity of Jacobi

ϑ′1(0) = ϑ2(0)ϑ3(0)ϑ4(0).

This corresponds to the triple product identity, written as
∞∏
n=1

(1 − q2n)(1 + q2n−1p2)(1 + q2m−1p−2) =

∞∑
n=−∞

qn2
p2n,

using the representation of theta functions as infinite products. The literature contains a
variety of proofs of this fundamental identity; see Andrews [19] for a relatively simple one,
Lewis [433] andWright [683] for enumerative proofs and [311] for more general information
on the so-called q-series. The chapter also shows that a quotient of theta functions ξ satisfies
the differential equation(

dξ
dτ

)2

=
(
ϑ2

2(0) − ξ
2ϑ2

3(0)
) (
ϑ2

3(0) − ξ
2ϑ2

2(0)
)
.
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This is Jacobi’s version of the differential equation satisfied by the Weierstrass ℘-function.
The properties of solutions of this equation form the subject of the next chapter.

The reader will find in Baker [39, 40] a large amount of information on these functions
from the point of view of the 19th century, Mumford [478, 479, 480] for a more modern point
of view and [208, 209] for their connections to Riemann surfaces. Theta functions appeared
scattered in the magnificent collection by Berndt [60, 61, 62, 63, 64] and Andrews–Berndt
[21, 22, 23, 24, 25] on the formulas stated by Ramanujan.
Chapter 22. The Jacobian Elliptic Functions. Each elliptic function f has a degree attached
to it. This is defined as the number of solutions to f (z) = c in a fundamental cell. Constants
have degree 0 and there are no functions of degree 1. A function of degree 2 either has
a double pole (say at the origin) or two simple poles. The first case corresponds to the
Weierstrass ℘ function described in Chapter 20. The second case is discussed in this chapter.
The starting point is to show that any such function y = y(u) may be written as a quotient of
theta functions. From here the authors show that y must satisfy the equation(

dy
du

)2

=
(
1 − y2) (

1 − k2y2)
where k ∈ C is the modulus. An expression for k as a ratio of null-values of theta functions
is provided. Then y = y(u) is seen to come from the inversion of the relation

u =
∫ y

0

(
1 − t2)−1/2 (

1 − k2t2)−1/2
dt

and, following Jacobi, the function y is called the sinus amplitudinus and is denoted by
y = sn(u, k). This function becomes the trigonometrical y = sin u when k → 0. Two
companion functions cn(u, k) and dn(u, k) are also introduced. These functions satisfy a
system of nonlinear differential equations

ÛX = Y Z, ÛY = −Z X, ÛZ = −k2XY,

and they are shown to parametrize the curve ξ2 = (1 − η2)(1 − k2η2).
The chapter also contains an addition theorem for these functions, such as

sn(u + v) =
sn u cn v dn v + sn v cn u dnu

1 − k2 sn2 u sn2v

and other similar expressions.
The complete elliptic integral of the first kind K(k) (and the complementary one K ′(k))

appears here from sn(K(k), k) = 1. The authors establish an expression for K(k) in terms of
theta values, prove Legendre’s identity

d
dk

(
k(k ′)2

dK
dk

)
= kK,

and present a discussion of the periods of the (Jacobian elliptic) functions sn, cn, dn in terms
of elliptic integrals. The reader will find details of these properties in [90, 461]. Other results
appearing here include product representations of Jacobi functions, the Landen transforma-
tion and several definite integrals involving these functions. There is also a discussion on
the so-called singular values: these are special values of the modulus k such that the ratio
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K ′(k)/K(k) has the form (a + b
√

n)/(c + d
√

n) with a, b, c, d and n ∈ Z. These values of
k satisfy polynomial equations with integer coefficients. The authors state that the study of
these equation lies beyond the scope of this book. The reader will find information about
these equations in [90].
Chapter 23. Ellipsoidal Harmonics and Lamé’s Equation. This chapter presents the basic
theory of ellipsoidal harmonics. It begins with the expression

Θp =
x2

a2 + θp
+

y2

b2 + θp
+

z2

c2 + θp
− 1

where a > b > c are the semi-axis of the ellipsoid Θp = 0. A function of the form
Πm(Θ) = Θ1 · · ·Θm is called an ellipsoidal harmonic of the first species. The chapter de-
scribes harmonic functions (that is, one satisfying ∆u = 0) of this form. It turns out that
every such function (with n even) has the form

n/2∏
p=1

(
x2

a2 + θp
+

y2

b2 + θp
+

z2

c2 + θp
− 1

)
where θ1, . . . , θn/2 are zeros of a polynomial Λ(θ) of degree n/2. This polynomial solves the
Lamé equation

4
√
(a2 + θ)(b2 + θ)(c2 + θ)

d
dθ

[√
(a2 + θ)(b2 + θ)(c2 + θ)

dΛ
dθ

]
= [n(n + 1)θ + C]Λ(θ).

The value C is constant and it is shown that there are 1
2 n+1 possible choices. There are three

other types of ellipsoidal harmonics with a similar theory behind them.
The chapter contains many versions of Lamé’s equation: the algebraic form

d2Λ

dλ2 +
1
2

(
1

a2 + λ
+

1
b2 + λ

+
1

c2 + λ

)
dΛ
dλ
=

[n(n + 1)λ + C]Λ
4(a2 + λ)(b2 + λ)(c2 + λ)

as well as theWeierstrass elliptic form

d2Λ

du2 = [n(n + 1)℘(u) + B]Λ

and finally the Jacobi elliptic form

d2Λ

dα2 =
[
n(n + 1)k2sn2α + A

]
Λ.

These equations are used to introduce Lamé functions. These are used to show that there are
2n + 1 ellipsoidal harmonics that form a fundamental system of the harmonic functions of
degree n.

The chapter contains a brief comment on work by Heun [300, 301] mentioning the study
of an equation with four singular points. The reader will find in Ronveaux [563] more
information about this equation.
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Complex Numbers

1.1 Rational numbers

The idea of a set of numbers is derived in the first instance from the consideration of the
set of positive integral numbers, or positive integers; that is to say, the numbers 1,2,3,4, . . ..
(Strictly speaking, a more appropriate epithet would be, not positive, but signless.) Positive
integers have many properties, which will be found in treatises on the Theory of Integral
Numbers; but at a very early stage in the development of Mathematics it was found that
the operations of Subtraction and Division could only be performed among them subject to
inconvenient restrictions; and consequently, in elementary Arithmetic, classes of numbers
are constructed such that the operations of subtraction and division can always be performed
among them.

To obtain a class of numbers among which the operation of subtraction can be performed
without restraint we construct the class of integers, which consists of the class of positive inte-
gers (in the strict sense) (+1, +2, +3, . . .) and of the class of negative integers (−1,−2,−3, . . .)
and the number 0.

To obtain a class of numbers among which the operations both of subtraction and of
division can be performed freely, with the exception of division by the rational number 0,
we construct the class of rational numbers. Symbols which denote members of this class are
1
2,3,0,−

15
7 . We have thus introduced three classes of numbers, (i) the signless integers, (ii)

the integers, (iii) the rational numbers.
It is not part of the scheme of this work to discuss the construction of the class of integers

or the logical foundations of the theory of rational numbers. Such a discussion, defining a
rational number as an ordered number-pair of integers in a similar manner to that in which a
complex number is defined in §1.3 as an ordered number-pair of real numbers, will be found
in Hobson [315, §1-12].

The extension of the idea of number, which has just been described, was not effected
without some opposition from the more conservative mathematicians. In the latter half of
the eighteenth century, Maseres (1731–1824) and Frend (1757–1841) published works on
Algebra, Trigonometry, etc., in which the use of negative numbers was disallowed, although
Descartes had used them unrestrictedly more than a hundred years before.

A rational number x may be represented to the eye in the followingmanner: If, on a straight
line, we take an origin O and a fixed segment OP1 (P1 being on the right of O), we can
measure from O a length OPx such that the ratio OPx/OP1 is equal to x; the point Px is taken
on the right or left of O according as the number x is positive or negative. We may regard

3
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either the point Px or the displacement OPx (which will be written OPx) as representing the
number x.

All the rational numbers can thus be represented by points on the line, but the converse is
not true. For if we measure off on the line a length OQ equal to the diagonal of a square of
which OP1 is one side, it can be proved that Q does not correspond to any rational number.

Points on the line which do not represent rational numbers may be said to represent irra-
tional numbers; thus the pointQ is said to represent the irrational number

√
2 = 1.414213 · · · .

But while such an explanation of the existence of irrational numbers satisfied the mathemati-
cians of the eighteenth century and may still be sufficient for those whose interest lies in the
applications of mathematics rather than in the logical upbuilding of the theory, yet from the
logical standpoint it is improper to introduce geometrical intuitions to supply deficiencies
in arithmetical arguments; and it was shewn by Dedekind [169] in 1858 that the theory of
irrational numbers can be established on a purely arithmetical basis without any appeal to
geometry.

1.2 Dedekind’s theory of irrational numbers
The geometrical property of points on a line which suggested the starting point of the
arithmetical theory of irrationals was that, if all points of a line are separated into two classes
such that every point of the first class is on the right of every point of the second class, there
exists one and only one point at which the line is thus severed. The theory, though elaborated
in 1858, was not published before the appearance of Dedekind’s tract [169]. Other theories
are due to Weierstrass (see [642]) and Cantor [116].

Following up this idea, Dedekind considered rules by which a separation or section of
all rational numbers into two classes can be made. This procedure formed the basis of the
treatment of irrational numbers by the Greek mathematicians in the sixth and fifth centuries
b.c. The advance made by Dedekind consisted in observing that a purely arithmetical theory
could be built up on it.

These classes, which will be called the L-class and the R-class, or the left class and the
right class, being such that they possess the following properties:

(i) At least one member of each class exists.
(ii) Every member of the L-class is less than every member of the R-class.

It is obvious that such a section is made by any rational number x; and x is either the
greatest number of the L-class or the least number of the R-class. But sections can be made
in which no rational number x plays this part. Thus, since there is no rational number1 whose
square is 2, it is easy to see that we may form a section in which the R-class consists of
the positive rational numbers whose squares exceed 2, and the L-class consists of all other
rational numbers.

Then this section is such that theR-class has no leastmember and theL-class has no greatest
member; for, if x be any positive rational fraction, and y = x(x2+6)

3x2+2 , then y − x = 2x(2−x2)

3x2+2 and
y2 − 2 = (x2−2)3

(3x2+2)2 , so x2, y2 and 2 are in order of magnitude; and therefore given any member

1 For if p/q be such a number, this fraction being in its lowest terms, it may be seen that (2q − p)/(p − q) is
another such number, and 0 < p − q < q, so that p/q is not in its lowest terms. The contradiction implies that
such a rational number does not exist.
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x of the L-class, we can always find a greater member of the L-class, or given any member
x ′ of the R-class, we can always find a smaller member of the R-class, such numbers being,
for instance, y and y′, where y′ is the same function of x ′ as y of x.

If a section is made in which the R-class has a least member A2, or if the L-class has a
greatest member A1, the section determines a rational-real number; which it is convenient
to denote by the same symbol A2 or A1. This causes no confusion in practice.

If a section is made, such that the R-class has no least member and the L-class has no
greatest member, the section determines an irrational-real number.

Note B. A. W. Russell [567] defines the class of real numbers as actually being the class of
all L-classes; the class of real numbers whose L-classes have a greatest member corresponds
to the class of rational numbers, and though the rational-real number x which corresponds to
a rational number x is conceptually distinct from it, no confusion arises from denoting both
by the same symbol.

If x, y are real numbers (defined by sections) we say that x is greater than y if the L-class
defining x contains at least two members of the R-class defining y. If the classes had only
one member in common, that member might be the greatest member of the L-class of x and
the least member of the R-class of y.

Let α, β, . . . be real numbers and let A1,B1, . . . be any members of the corresponding
L-classes while A2,B2, . . . are any members of the corresponding R-classes. The classes of
which A1, A2, . . . are respectively members will be denoted by the symbols (A1), (A2), . . . .

Then the sum (written α + β) of two real numbers α and β is defined as the real number
(rational or irrational) which is determined by the L-class (A1+B1) and the R-class (A2+B2).

It is, of course, necessary to prove that these classes determine a section of the rational
numbers. It is evident that A1 + B1 < A2 + B2 and that at least one member of each of the
classes (A1 + B1), (A2 + B2) exists. It remains to prove that there is, at most, one rational
number which is greater than every A1 + B1 and less than every A2 + B2; suppose, if possible,
that there are two, x and y, (y > x). Let α1 be a member of (A1) and let α2 be a member of
(A2); and let N be the integer next greater than (α2 − α1)/{

1
2 (y − x)}. Take the last of the

numbers α1 +
m
N
(α2 − α1), (where m = 0,1, . . . ,N), which belongs to (A1) and the first of

them which belongs to (A2); let these two numbers be c1, c2. Then

c2 − c1 =
1
N
(α2 − α1) <

1
2
(y − x).

Choose d1, d2 in a similar manner from the classes defining β; then

c2 + d2 − c1 − d1 < y − x.

But c2 + d2 ≥ y, c1 + d1 ≤ x, and therefore c2 + d2 − c1 − d1 ≥ y − x; we have therefore
arrived at a contradiction by supposing that two rational numbers x, y exist belonging neither
to (A1 + B2) nor to (A2 + B2).

If every rational number belongs either to the class (A1 + B1) or to the class (A2 + B2),

then the classes (A1 + B1), (A2 + B2) define an irrational number. If one rational number x
exists belonging to neither class, then the L-class formed by x and (A1 + B1) and the R-class
(A2 + B2) define the rational number-real x. In either case, the number defined is called the
sum α + β.
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The difference α− β of two real numbers is defined by the L-class (A1−B2) and the R-class
(A2 − B1).

The product of two positive real numbers α, β is defined by the R-class (A2B2) and the
L-class of all other rational numbers.

The reader will see without difficulty how to define the product of negative real numbers
and the quotient of two real numbers; and further, it may be shewn that real numbers may be
combined in accordance with the associative, distributive and commutative laws.

The aggregate of rational-real and irrational-real numbers is called the aggregate of real
numbers; for brevity, rational-real numbers and irrational-real numbers are called rational
and irrational numbers respectively.

1.3 Complex numbers
We have seen that a real number may be visualised as a displacement along a definite straight
line. If, however, P and Q are any two points in a plane, the displacement PQ needs two
real numbers for its specification; for instance, the differences of the coordinates of P and Q
referred to fixed rectangular axes. If the coordinates of P be (ξ, η) and those of Q(ξ+ x, η+ y),
the displacement PQ may be described by the symbol [x, y]. We are thus led to consider
the association of real numbers in ordered pairs. The order of the two terms distinguishes
the ordered number-pair [x, y] from the ordered number-pair [y, x]. The natural definition of
the sum of two displacements [x, y], [x ′, y′] is the displacement which is the result of the
successive applications of the two displacements; it is therefore convenient to define the sum
of two number-pairs by the equation

[x, y] + [x ′, y′] = [x + x ′, y + y′].

The product of a number-pair and a real number x ′ is then naturally defined by the equation

x ′ × [x, y] = [x ′x, x ′y].

We are at liberty to define the product of two number-pairs in any convenient manner;
but the only definition, which does not give rise to results that are merely trivial, is that
symbolised by the equation

[x, y] × [x ′, y′] = [xx ′ − yy′, xy′ + x ′y].

It is then evident that

[x,0] × [x ′, y′] = [xx ′, xy′] = x × [x ′, y′]

and
[0, y] × [x ′, y′] = [−yy′, x ′y] = y × [−y′, x ′].

The geometrical interpretation of these results is that the effect of multiplying by the
displacement [x,0] is the same as that of multiplying by the real number x; but the effect of
multiplying a displacement by [0, y] is to multiply it by a real number y and turn it through
a right angle.

It is convenient to denote the number-pair [x, y] by the compound symbol x + iy; and a
number-pair is now conveniently called (after Gauss) a complex number; in the fundamental
operations of Arithmetic, the complex number x + i0 may be replaced by the real number x
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and, defining i to mean [0,1], we have i2 = [0,1] × [0,1] = [−1,0]; and so i2 may be replaced
by −1.

The reader will easily convince himself that the definitions of addition and multiplication
of number-pairs have been so framed that we may perform the ordinary operations of algebra
with complex numbers in exactly the same way as with real numbers, treating the symbol i
as a number and replacing the product ii by −1 wherever it occurs.

Thus he will verify that, if a, b, c are complex numbers, we have

a + b = b + a,

ab = ba,

(a + b) + c = a + (b + c),

(ab)c = a(bc),

a(b + c) = ab + ac,

and if ab is zero, then either a or b is zero.
It is found that algebraical operations, direct or inverse, when applied to complex numbers,

do not suggest numbers of any fresh type; the complex number will therefore for our purposes
be taken as the most general type of number.

The introduction of the complex number has led to many important developments in
mathematics. Functions which, when real variables only are considered, appear as essentially
distinct, are seen to be connected when complex variables are introduced: thus the circular
functions are found to be expressible in terms of exponential functions of a complex argument,
by the equations

cos x =
1
2
(eix + e−ix), sin x =

1
2i
(eix − e−ix).

Again, many of themost important theorems of modern analysis are not true if the numbers
concerned are restricted to be real; thus, the theorem that every algebraic equation of degree n
has n roots is true in general only when regarded as a theorem concerning complex numbers.

Hamilton’s quaternions furnish an example of a still further extension of the idea of
number. A quaternion

w + xi + y j + zk

is formed from four real numbers w, x, y, z, and four number-units 1, i, j, k, in the same way
that the ordinary complex number x + iy might be regarded as being formed from two real
numbers x, y, and two number-units 1, i. Quaternions however do not obey the commutative
law of multiplication.

1.4 The modulus of a complex number
Let x + iy be a complex number, x and y being real numbers. Then the positive square root
of x2 + y2 is called the modulus of (x + iy), and is written

| x + iy |.

Let us consider the complex number which is the sum of two given complex numbers,
x + iy and u + iv. We have

(x + iy) + (u + iv) = (x + u) + i(y + v).
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The modulus of the sum of the two numbers is therefore

{(x + u)2 + (y + v)2}1/2 = {(x2 + y2) + (u2 + v2) + 2(xu + yv)}1/2.

But

{| x + iy | + | u + iv |}2 = {(x2 + y2)1/2 + (u2 + v2)1/2}2

= (x2 + y2) + (u2 + v2) + 2(x2 + y2)1/2(u2 + v2)1/2

= (x2 + y2) + (u2 + v2) + 2 {(xu + yv)2 + (xv − yu)2}1/2,

and this latter expression is greater than (or at least equal to)

(x2 + y2) + (u2 + v2) + 2(xu + yv).

We have therefore

|x + iy | + |u + iv | ≥ |(x + iy) + (u + iv)|,

i.e. the modulus of the sum of two complex numbers cannot be greater than the sum of their
moduli; and it follows by induction that the modulus of the sum of any number of complex
numbers cannot be greater than the sum of their moduli.

Let us consider next the complex number which is the product of two given complex
numbers, x + iy and u + iv, we have

(x + iy)(u + iv) = (xu − yv) + i(xv + yu),

and so

|(x + iy)(u + iv)| = {(xu − yv)2 + (xv + yu)2}1/2

= {(x2 + y2)(u2 + v2)}1/2

= |x + iy | |u + iv |.

The modulus of the product of two complex numbers (and hence, by induction, of any number
of complex numbers) is therefore equal to the product of their moduli.

1.5 The Argand diagram
We have seen that complex numbers may be represented in a geometrical diagram by taking
rectangular axes Ox,Oy in a plane. Then a point P whose coordinates referred to these
axes are x, y may be regarded as representing the complex number x + iy. In this way, to
every point of the plane there corresponds some one complex number; and, conversely, to
every possible complex number there corresponds one, and only one, point of the plane. The
complex number x + iy may be denoted by a single letter z. It is convenient to call x and y

the real and imaginary parts of z respectively. We frequently write x = Re z, y = Im z. The
point P is then called the representative point of the number z; we shall also speak of the
number z as being the affix of the point P.

If we denote (x2 + y2)1/2 by r and choose θ so that r cos θ = x, r sin θ = y, then r and θ
are clearly the radius vector and vectorial angle of the point P, referred to the origin O and
axis Ox.

The representation of complex numbers thus afforded is often called the Argand diagram.
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It was published by J. R. Argand [33]; it had however previously been used by Gauss [235]
in his Helmstedt dissertation in 1799, who had discovered it in Oct. 1797 [375]; and Caspar
Wessel had discussed it in a memoir presented to the Danish Academy in 1797 and published
by that Society in 1798–9 [664]. The phrase complex number first occurs in [237, p. 102].

By the definition already given, it is evident that r is the modulus of z. The angle θ is
called the argument or phase, of z. We write θ = arg z.

From geometrical considerations, it appears that (although the modulus of a complex
number is unique) the argument is not unique (see the Appendix, §A.521) if θ be a value of
the argument, the other values of the argument of a complex number are comprised in the
expression 2nπ + θ where n is any integer, not zero. The principal value of the argument of
a complex number value of arg z is that which satisfies the inequality −π < arg z ≤ π.

If P1 and P2 are the representative points corresponding to values z1 and z2 respectively
of z, then the point which represents the value z1 + z2 is clearly the terminus of a line drawn
from P1, equal and parallel to that which joins the origin to P2.

To find the point which represents the complex number z1z2, where z1 and z2 are two given
complex numbers, we notice that if

z1 = r1(cos θ1 + i sin θ1),

z2 = r2(cos θ2 + i sin θ2)

then, by multiplication,

z1z2 = r1r2{cos(θ1 + θ2) + i sin(θ1 + θ2)}.

The point which represents the number z1z2 has therefore a radius vector measured by
the product of the radii vectors of P1 and P2 and a vectorial angle equal to the sum of the
vectorial angles of P1 and P2.

1.6 Miscellaneous examples
Example 1.1 Shew that the representative points of the complex numbers 1 + 4i, 2 + 7i,
3 + 10i, are collinear.

Example 1.2 Shew that a parabola can be drawn to pass through the representative points
of the complex numbers

2 + i, 4 + 4i, 6 + 9i, 8 + 16i, 10 + 25i.

Example 1.3 (Math. Trip. 1895). Determine the nth roots of unity by aid of the Argand
diagram; and shew that the number of primitive roots (roots the powers of each of which
give all the roots) is the number of integers (including unity) less than n and prime to it.

Prove that if θ1, θ2, θ3, . . . be the arguments of the primitive roots,
∑

cos pθ = 0 when p is
a positive integer less than

n
abc · · · k

, where a, b, c, . . . , k are the different constituent primes
of n; and that, when

p =
n

abc · · · k
, then

∑
cos pθ =

(−1)µ n
abc · · · k

,

where µ is the number of constituent primes.
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The Theory of Convergence

2.1 The definition of the limit of a sequence
Let z1, z2, z3, . . . be an unending sequence of numbers, real or complex. Then, if a number `
exists such that, corresponding to every positive1 number ε, no matter how small, a number
n0 can be found, such that | zn − ` | < ε for all values of n greater than n0, the sequence (zn)
is said to tend to the limit ` as n tends to infinity. A definition equivalent to this was first
given by John Wallis in 1655 [645, p. 382].

Symbolic forms of the statement,‘the limit of the sequence (zn), as n tends to infinity, is
`’ are:

lim
n→∞

zn = `, lim zn = `, zn → ` as n→∞.

The arrow notation is due to Leathem (see [416]).
If the sequence be such that, given an arbitrary number N (no matter how large), we can

find n0 such that |zn | > N for all values of n greater than n0, we say that ‘ |zn | tends to infinity
as n tends to infinity’, and we write |zn | → ∞. In the corresponding case when −xn > N
when n > n0 we say that xn → −∞. If a sequence of real numbers does not tend to a limit or
to∞ or to −∞, the sequence is said to oscillate.

2.11 Definition of the phrase ‘of the order of’
If (ζn) and (zn) are two sequences such that a number n0 exists such that | (ζn/zn) | < K
whenever n > n0, where K is independent of n, we say that ζn is ‘of the order of’ zn, and we
write ζn = O(zn); thus 15n+19

1+n3 = O
( 1
n2

)
. This notation is due to Bachmann [35, p. 401] and

Landau [405, p. 61].

Note If lim ζn
zn
= 0, we write ζn = o(zn).

2.2 The limit of an increasing sequence
Let (xn) be a sequence of real numbers such that xn+1 ≥ xn for all values of n; then the
sequence tends to a limit or else tends to infinity (and so it does not oscillate).

Let x be any rational-real number; then either:

(i) xn ≥ x for all values of n greater than some number n0 depending on the value of x; or
(ii) xn < x for every value of n.

1 The number zero is excluded from the class of positive numbers.

10
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If (ii) is not the case for any value of x (no matter how large), then xn →∞.
But if values of x exist for which (ii) holds, we can divide the rational numbers into two

classes, the L-class consisting of those rational numbers x for which (i) holds and the R-class
of those rational numbers x for which (ii) holds. This section defines a real number α, rational
or irrational.

And if ε be an arbitrary positive number, α − 1
2ε belongs to the L-class which defines α,

and so we can find n1 such that xn ≥ α− 1
2ε whenever n > n1; and α+ 1

2ε is a member of the
R-class and so xn < α + 1

2ε. Therefore, whenever n > n1, | α − xn | < ε. Therefore xn → α.

Corollary 2.2.1 A decreasing sequence tends to a limit or to −∞.

Example 2.2.1 If lim zm = `, lim z′m = `
′, then lim(zm + z′m) = ` + `

′.
For, given ε, we can find n and n′ such that

(i) when m > n, |zm − ` | < 1
2ε;

(ii) when m > n′, |z′m − `′ | < 1
2ε.

Let n1 be the greater of n and n′; then, when m > n1,��(zm + z′m) − (` + `
′)
�� ≤ |(zm − `)| + ��(z′m − `′)�� ,
< ε;

and this is the condition that lim(zm + z′m) = ` + `
′.

Example 2.2.2 Prove similarly that lim(zm − z′m) = ` − `
′, lim(zmz′m) = ``

′, and, if `′ , 0,
lim(zm/z′m) = `/`′.

Example 2.2.3 If 0 < x < 1, xn → 0. For if x = (1 + α)−1, α > 0, and

0 < xn =
1

(1 + a)n
<

1
1 + na

,

by the binomial theorem for a positive integral index. And it is obvious that, given a positive
number ε, we can choose n0 such that (1 + na)−1 < ε when n > n0; and so xn → 0.

2.21 Limit-points and the Bolzano–Weierstrass theorem
This theorem, frequently ascribed to Weierstrass, was proved by Bolzano [81]. It seems to
have been known to Cauchy.

Let (xn) be a sequence of real numbers. If any number G exists such that, for every positive
value of ε, no matter how small, an unlimited number of terms of the sequence can be found
such that

G − ε < xn < G + ε,

then G is called a limit-point, or cluster-point of the sequence.

Theorem 2.2.2 (Bolzano) If λ ≤ xn ≤ ρ, where λ, ρ are independent of n, then the sequence
(xn) has at least one limit-point.
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To prove the theorem, choose a section in which (i) the R-class consists of all the rational
numbers which are such that, if A be any one of them, there are only a limited number of
terms xn satisfying xn > A; and (ii) the L-class is such that there are an unlimited number of
terms xn such that xn ≥ α for all members α of the L-class.

This section defines a real number G; and, if ε be an arbitrary positive number, G − 1
2ε

and G + 1
2ε are members of the L- and R-classes respectively, and so there are an unlimited

number of terms of the sequence satisfying

G − ε < G −
1
2
ε ≤ xn ≤ G +

1
2
ε < G + ε,

and so G satisfies the condition that it should be a limit-point.

2.211 Definition of ‘the greatest and the least of the limits’
The number G obtained in §2.21 is called ‘the greatest of the limits of the sequence (xn).’
The sequence (xn) cannot have a limit-point greater than G; for if G′ were such a limit-point,
and ε = 1

2 (G
′ − G), G′ − ε is a member of the R-class defining G, so that there are only

a limited number of terms of the sequence which satisfy xn > G′ − ε. This condition is
inconsistent with G′ being a limit-point. We write

G = lim
n→∞

xn.

The ‘least of the limits’ L, of the sequence (written lim
n→∞

xn) is defined to be

− lim
n→∞
(−xn).

2.22 Cauchy’s theorem on the necessary and sufficient condition for the existence of
a limit [120, p. 125]

We shall now shew that the necessary and sufficient condition for the existence of a limiting
value of a sequence of numbers z1, z2, z3, . . . is that, corresponding to any given positive
number ε, however small, it shall be possible to find a number n such that��zn+p − zn

�� < ε

for all positive integral values of p. This result is one of the most important and fundamental
theorems of analysis. It is sometimes called the Principle of Convergence.

First, we have to shew that this condition is necessary, i.e. that it is satisfied whenever
a limit exists. Suppose then that a limit ` exists; then (§2.1) corresponding to any positive
number ε, however small, an integer n can be chosen such that

|zn − ` | < 1
2ε,

��zn+p − `�� < 1
2ε,

for all positive values of p; therefore��zn+p − zn
�� = �� (zn+p − `) − (zn − `)��
≤

��zn+p − `�� + |zn − ` | < ε,



2.3 Convergence of an infinite series 13

which shews the necessity of the condition��zn+p − zn
�� < ε,

and thus establishes the first half of the theorem.
Second, we have to prove that this condition is sufficient, i.e. that if it is satisfied, then a

limit exists. This proof is given in Stolz–Gmeiner [613, p. 144].
(I) Suppose that the sequence of real numbers (xn) satisfies Cauchy’s condition; that is to

say that, corresponding to any positive number ε, an integer n can be chosen such that��xn+p − xn
�� < ε

for all positive integral values of p.
Let the value of n, corresponding to the value 1 of ε, be m. Let λ1, ρ1 be the least and

greatest of x1, x2, . . . , xm; then
λ1 − 1 < xn < ρ1 + 1,

for all values of n; write λ1 − 1 = λ, ρ1 + 1 = ρ.
Then, for all values of n, λ < xn < ρ. Therefore by Theorem 2.2.2, the sequence (xn) has

at least one limit-point G.
Further, there cannot be more than one limit-point; for if there were two,G and H (H < G),

take ε < 1
4 (G − H). Then, by hypothesis, a number n exists such that

��xn+p − xn
�� < ε for

every positive value of p. But since G and H are limit-points, positive numbers q and r exist
such that �� G − xn+q

�� < ε, | H − xn+r | < ε.

Then
�� G − xn+q

�� + �� xn+q − xn
�� + | xn − xn+r | + | xn+r − H | < 4ε. But, by §1.4, the sum on

the left is greater than or equal to | G − H |. Therefore G − H < 4ε, which is contrary to
hypothesis; so there is only one limit-point. Hence there are only a finite number of terms of
the sequence outside the interval (G− δ, G+ δ), where δ is an arbitrary positive number; for,
if there were an unlimited number of such terms, these would have a limit-point which would
be a limit-point of the given sequence and which would not coincide with G; and therefore
G is the limit of (xn).

(II) Now let the sequence (zn) of real or complex numbers satisfy Cauchy’s condition; and
let zn = xn + iyn, where xn and yn are real; then for all values of n and p�� xn+p − xn

�� ≤ �� zn+p − zn
�� , �� yn+p − yn

�� ≤ �� zn+p − zn
�� .

Therefore the sequences of real numbers (xn) and (yn) satisfy Cauchy’s condition; and so,
by (I), the limits of (xn) and (yn) exist. Therefore, by Example 2.2.1, the limit of (zn) exists.
The result is therefore established.

2.3 Convergence of an infinite series
Let u1,u2,u3, . . . ,un, . . . be a sequence of numbers, real or complex. Let the sum

u1 + u2 + · · · + un

be denoted by Sn.
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Then, if Sn tends to a limit S as n tends to infinity, the infinite series

u1 + u2 + u3 + u4 + · · ·

is said to be convergent, or to converge to the sum S. In other cases, the infinite series is said
to be divergent. When the series converges, the expression S − Sn, which is the sum of the
series

un+1 + un+2 + un+3 + · · · ,

is called the remainder after n terms, and is frequently denoted by the symbol Rn. The sum
un+1 + un+2 + · · · + un+p will be denoted by Sn,p.

It follows at once, by combining the above definition with the results of the last paragraph,
that the necessary and sufficient condition for the convergence of an infinite series is that,
given an arbitrary positive number ε, we can find n such that

�� Sn,p

�� < ε for every positive
value of p.

Since un+1 = Sn,1, it follows as a particular case that lim un+1 = 0, in other words, the nth
term of a convergent series must tend to zero as n tends to infinity. But this last condition,
though necessary, is not sufficient in itself to ensure the convergence of the series, as appears
from a study of the series

1
1
+

1
2
+

1
3
+

1
4
+

1
5
+ · · · .

In this series, Sn,n =
1

n + 1
+

1
n + 2

+
1

n + 3
+ · · · +

1
2n

. The expression on the right is

diminished by writing (2n)−1 in place of each term, and so Sn,n >
1
2 . Therefore

S2n+1 = 1 + S1, 1 + S2, 2 + S4, 4 + S8, 8 + S16, 16 + · · · + S2n , 2n

>
1
2
(n + 3) → ∞;

so the series is divergent; this result was noticed by Leibniz in 1673.
There are two general classes of problems which we are called upon to investigate in

connexion with the convergence of series:

1. We may arrive at a series by some formal process, e.g. that of solving a linear differential
equation by a series, and then to justify the process it will usually have to be proved
that the series thus formally obtained is convergent. Simple conditions for establishing
convergence in such circumstances are obtained in §§2.31–2.61.

2. Given an expression S, it may be possible to obtain a development S =
n∑

m=1
um + Rn, valid

for all values of n; and, from the definition of a limit, it follows that, if we can prove that
Rn → 0, then the series

∞∑
m=1

um converges and its sum is S. An example of this problem

occurs in §5.4.

Infinite series were used by Lord Brouncker in [103, pp. 645–649], and the term con-
vergent was introduced by James Gregory, Professor of Mathematics at Edinburgh, in the
same year; the term divergent was introduced by N. Bernoulli in 1713. Infinite series were
used systematically by Newton [494, pp. 206–247], and he investigated the convergence of
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hypergeometric series (§14.1) in 1704. (See also the convergence of products in §2.7.) But
the great mathematicians of the eighteenth century used infinite series freely without, for the
most part, examining their convergence. Thus Euler gave the sum of the series

· · · +
1
z3 +

1
z2 +

1
z
+ 1 + z + z2 + z3 + · · · (a)

as zero, on the ground that

z + z2 + z3 + · · · =
z

1 − z
(b)

and

1 +
1
z
+

1
z2 + · · · =

z
z − 1

(c)

The error of course arises from the fact that the series (b) converges only when |z | < 1,
and the series (c) converges only when |z | > 1, so the series (a) never converges.

For the history of researches on convergence, see Pringsheim and Molk [543] and Reiff
[551].

2.301 Abel’s inequality.
This appears in [1, pp. 311–339]. A particular case of Corollary 2.3.3 also appears in that
memoir.

Theorem 2.3.1 Let fn ≥ fn+1 > 0 for all integer values of n. Then����� m∑
n=1

an fn

����� ≤ A f1,

where A is the greatest of the sums

| a1 | , | a1 + a2 | , | a1 + a2 + a3 | , . . . , | a1 + a2 + · · · + am | .

For, writing a1 + a2 + · · · + an = sn,we have
m∑
n=1

an fn = s1 f1 + (s2 − s1) f2 + (s3 − s2) f3 + · · · + (sm − sm−1) fm

= s1( f1 − f2) + s2( f2 − f3) + · · · + sm−1( fm−1 − fm) + sm fm.

Since f1− f2, f2− f3, . . . are not negative, we have, when n = 2,3, . . . ,m, |sn−1 | ( fn−1− fn) ≤
A( fn−1 − fn) also |sm | fm ≤ A fm, and so, summing and using §1.4, we get����� m∑

n=1

an fn

����� ≤ A f1.

Corollary 2.3.2 (Hardy) If a1,a2, . . . ,w1,w2, . . . are any numbers, real or complex,����� m∑
n=1

anwn

����� ≤ A

{
m−1∑
n=1

|wn+1 − wn | + |wm |

}
,

where A is the greatest of the sums
��∑p

n=1 an

��, (p = 1,2, . . . ,m).
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2.31 Dirichlet’s test for convergence
This appears in [177, pp. 253–255]. Before the publication of the Second edition of Jordan’s
Cours d’Analyse [361], Dirichlet’s test and Abel’s test were frequently jointly described as
the Dirichlet–Abel test, see e.g. Pringsheim [537, p. 423].

Let
���� p∑
n=1

an

���� < K, where K is independent of p. Then, if fn ≥ fn+1 > 0 and lim fn = 0,
∞∑
n=1

an fn converges.

In these circumstances, we say fn → 0 steadily.

Proof For, since lim fn = 0, given an arbitrary positive number ε, we can find m such that
fm+1 < ε/2K . Then ����� m+q∑

n=m+1

an

����� ≤
����� m+q∑
n=1

an

����� +
����� m∑
n=1

an

����� < 2K,

for all positive values of q; so that, by Abel’s inequality, we have, for all positive values of p,����� m+p∑
n=m+1

an fn

����� ≤ A fm+1,

where A < 2K .
Therefore

���� m+p∑
n=m+1

an fn

���� < 2K fm+1 < ε; and so, by §2.3,
∞∑
n=1

an fn converges.

Corollary 2.3.3 Abel’s test for convergence. If
∞∑
n=1

an converges and the sequence (un)

is monotonic (i.e. un ≥ un+1 always or else un ≤ un+1 always) and |un | < κ, where κ is
independent of n, then

∞∑
n=1

anun converges.

For, by §2.2, un tends to a limit u; let | u − un | = fn. Then fn → 0 steadily; and therefore
∞∑
n=1

an fn converges. But, if (un) is an increasing sequence, fn = u − un, and so
∞∑
n=1
(u − un)an

converges; therefore since
∞∑
n=1

uan converges,
∞∑
n=1

unan converges. If (un) is a decreasing

sequence fn = un − u, and a similar proof holds.

Corollary 2.3.4 Taking an = (−1)n−1 in Dirichlet’s test, it follows that, if fn ≥ fn+1 and
lim fn = 0, f1 − f2 + f3 − f4 + · · · converges.

Example 2.3.1 Shew that if 0 < θ < 2π,
���� p∑
n=1

sin nθ
���� < cosec 1

2θ; and deduce that, if fn → 0

steadily,
∞∑
n=1

fn sin nθ converges for all real values of θ, and that
∞∑
n=1

fn cos nθ converges if θ

is not an even multiple of π.

Example 2.3.2 Shew that, if fn → 0 steadily,
∞∑
n=1
(−1)n fn cos nθ converges if θ is real and

not an odd multiple of π and
∞∑
n=1
(−1)n fn sin nθ converges for all real values of θ. Hint. Write

π + θ for θ in Example 2.3.1.
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2.32 Absolute and conditional convergence

In order that a series
∞∑
n=1

un of real or complex terms may converge, it is sufficient (but not

necessary) that the series of moduli
∞∑
n=1
|un | should converge. For, if σn,p = |un+1 | + |un+2 | +

· · ·+
��un+p

�� and if ∞∑
n=1
|un | converges, we can find n, corresponding to a given number ε, such

that σn,p < ε for all values of p. But
��Sn,p

�� ≤ σn,p < ε, and so
∞∑
n=1

un converges.

The condition is not necessary; for, writing fn = 1/n in Corollary 2.3.4, we see that
1
1 −

1
2 +

1
3 −

1
4 + · · · converges, though (§2.3) the series of moduli 1

1 +
1
2 +

1
3 +

1
4 + · · · is known

to diverge.
In this case, therefore, the divergence of the series of moduli does not entail the divergence

of the series itself.
Series which are such that the series formed by the moduli of their terms are convergent,

possess special properties of great importance, and are called absolutely convergent series.
Series which though convergent are not absolutely convergent (i.e. the series themselves
converge, but the series of moduli diverge) are said to be conditionally convergent.

2.33 The geometric series, and the series
∑∞

n=1
1
ns

The convergence of a particular series is in most cases investigated, not by the direct con-
sideration of the sum Sn,p, but (as will appear from the following articles) by a comparison
of the given series with some other series which is known to be convergent or divergent. We
shall now investigate the convergence of two of the series which are most frequently used as
standards for comparison.

(I) The geometric series. The geometric series is defined to be the series

1 + z + z2 + z3 + z4 + · · · .

Consider the series of moduli

1 + |z | + |z |2 + |z |3 + · · · ; (2.1)

for this series

Sn,p = |z |
n+1
+ |z |n+2

+ · · · + |z |n+p

= |z |n+1 1 − |z |p

1 − |z |
.

Hence, if |z | < 1, then Sn,p <
|z |n+1

1−|z | for all values of p, and, by Example 2.2.3, given any
positive number ε, we can find n such that

|z |n+1
{1 − |z |}−1 < ε.

Thus, given ε, we can find n such that, for all values of p, Sn,p < ε. Hence, by §2.22, the
series (2.1) is convergent so long as |z | < 1, and therefore the geometric series is absolutely
convergent if |z | < 1.
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When |z | ≥ 1, the terms of the geometric series do not tend to zero as n tends to infinity,
and the series is therefore divergent.

(II) The series 1
1s +

1
2s +

1
3s +

1
4s +

1
5s + · · · . Consider now the series Sn =

n∑
m=1

1
ms , where s

is greater than 1. We have

1
2s
+

1
3s

<
2
2s
=

1
2s−1 ,

1
4s
+

1
5s
+

1
6s
+

1
7s

<
4
4s
=

1
4s−1 ,

and so on. Thus the sum of 2p − 1 terms of the series is less than
1

1s−1 +
1

2s−1 +
1

4s−1 +
1

8s−1 + · · · +
1

2(p−1)(s−1) <
1

1 − 21−s ,

and so the sum of any number of terms is less than (1 − 21−s)−1. Therefore the increasing
sequence

n∑
m=1

m−s cannot tend to infinity; therefore, by §2.2, the series
∞∑
n=1

1
ns is convergent if

s > 1; and since its terms are all real and positive, they are equal to their own moduli, and so
the series of moduli of the terms is convergent; that is, the convergence is absolute.

If s = 1, the series becomes

1
1
+

1
2
+

1
3
+

1
4
+ · · · ,

which we have already shewn to be divergent; and when s < 1, it is a fortiori divergent, since
the effect of diminishing s is to increase the terms of the series. The series

∞∑
n=1

1
ns is therefore

divergent if s ≤ 1.

2.34 The comparison theorem
We shall now shew that a series u1 + u2 + u3 + · · · is absolutely convergent, provided that
|un | is always less than C |vn |, where C is some number independent of n, and vn is the nth
term of another series which is known to be absolutely convergent.

For, under these conditions, we have

|un+1 | + |un+2 | + · · · +
��un+p

�� < C
{
|vn+1 | + |vn+2 | + · · · +

��vn+p ��} ,
where n and p are any integers. But since the series

∑
vn is absolutely convergent, the series∑

|vn | is convergent, and so, given ε, we can find n such that

| vn+1 | + | vn+2 | + · · · +
�� vn+p �� < ε/C,

for all values of p. It follows therefore that we can find n such that

| un+1 | + | un+2 | + · · · +
�� un+p

�� < ε,

for all values of p, i.e. the series
∑
|un |is convergent. The series

∑
un is therefore absolutely

convergent.
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Corollary 2.3.5 A series is absolutely convergent if the ratio of its nth term to the nth term
of a series which is known to be absolutely convergent is less than some number independent
of n.

Example 2.3.3 Shew that the series

cos z +
1
22 cos 2z +

1
32 cos 3z +

1
42 cos 4z + · · ·

is absolutely convergent for all real values of z.
When z is real, we have |cos nz | ≤ 1, and therefore

�� cos nz
n2

�� ≤ 1
n2 . The moduli of the terms

of the given series are therefore less than, or at most equal to, the corresponding terms of the
series

1
1
+

1
22 +

1
32 +

1
42 + · · · ,

which by §2.33 is absolutely convergent. The given series is therefore absolutely convergent.

Example 2.3.4 Shew that the series

1
12(z − z1)

+
1

22(z − z2)
+

1
32(z − z3)

+
1

42(z − z4)
+ · · · ,

where zn = ein, (n = 1,2,3, . . .) is convergent for all values of z that are not on the circle
|z | = 1.

The geometric representation of complex numbers is helpful in discussing a question of
this kind. Let values of the complex number z be represented on a plane; then the numbers
z1, z2, z3, . . . will give a sequence of points which lie on the circumference of the circle whose
centre is the origin and whose radius is unity; and it can be shewn that every point on the
circle is a limit-point (§2.21) of the points zn.

For these special values zn of z, the given series does not exist, since the denominator of
the nth term vanishes when z = zn. For simplicity we do not discuss the series for any point
z situated on the circumference of the circle of radius unity.

Suppose now that |z | , 1. Then for all values of n, |z − zn | ≥ |{1 − |z |}| > c−1, for some
value of c; so the moduli of the terms of the given series are less than the corresponding
terms of the series

c
12 +

c
22 +

c
32 +

c
42 + · · · ,

which is known to be absolutely convergent. The given series is therefore absolutely conver-
gent for all values of z, except those which are on the circle |z | = 1.

It is interesting to notice that the area in the z-plane over which the series converges is
divided into two parts, between which there is no intercommunication, by the circle |z | = 1.

Example 2.3.5 Shew that the series

2 sin
z
3
+ 4 sin

z
9
+ 8 sin

z
27
+ · · · + 2n sin

z
3n
+ · · ·

converges absolutely for all values of z.
Since lim

n→∞
3n sin(z/3n) = z (this is evident from results proved in the Appendix), we can
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find a number k, independent of n (but depending on z), such that |3n sin(z/3n)| < k; and
therefore ���2n sin

z
3n

��� < k
(

2
3

)n
.

Since
∞∑
n=1

k
( 2

3

)n converges, the given series converges absolutely.
2.35 Cauchy’s test for absolute convergence

This appears in [120, p. 132–135].

If lim
n→∞
|un |

1/n < 1, then
∞∑
n=1

un converges absolutely.

For we can find m such that, when n ≥ m, |un |
1/n ≤ ρ < 1, where ρ is independent of

n. Then, when n > m, |un | < ρn; and since
∞∑

n=m+1
ρn converges, it follows from §2.34 that

∞∑
n=m+1

un (and therefore
∞∑
n=1

un) converges absolutely.

Note If lim |un |
1/n > 1, un does not tend to zero, and, by §2.3,

∞∑
n=1

un does not converge.

2.36 D’Alembert’s ratio test for absolute convergence
This appears in [159, pp. 171–182]. We shall now shew that a series

u1 + u2 + u3 + u4 + · · ·

is absolutely convergent, provided that for all values of n greater than some fixed value r , the
ratio | un+1

un
| is less than ρ, where ρ is a positive number independent of n and less than unity.

For the terms of the series

| ur+1 | + | ur+2 | + | ur+3 | + · · ·

are respectively less than the corresponding terms of the series

| ur+1 | (1 + ρ + ρ2 + ρ3 + · · · ),

which is absolutely convergent when ρ < 1; therefore
∞∑

n=r+1
un (and hence the given series)

is absolutely convergent.
A particular case of this theorem is that if lim

n→∞
|un+1/un | = ` < 1, the series is absolutely

convergent.
For, by the definition of a limit, we can find r such that��������un+1

un

���� − `���� < 1
2
(1 − `), when n > r,

and then ����un+1

un

���� < 1
2
(1 + `) < 1, when n > r .
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Note If lim |un+1/un | > 1, then un does not tend to zero, and, by §2.3,
∞∑
n=1

un does not
converge.

Example 2.3.6 If |c | < 1, shew that the series
∞∑
n=1

cn
2
enz

converges absolutely for all values of z. Hint. For un+1/un = c(n+1)2−n2
ez = c2n+1ez → 0, as

n→∞, if |c | < 1.

Example 2.3.7 Shew that the series

z +
(a − b)

2!
z2 +
(a − b)(a − 2b)

3!
z3 +
(a − b)(a − 2b)(a − 3b)

4!
z4 + · · ·

converges absolutely if |z | < |b|−1. Hint. For un+1
un
= a−nb

n+1 z → −bz, as n → ∞; so the
condition for absolute convergence is |bz | < 1, i.e. |z | < |b|−1.

Example 2.3.8 Shew that the series
∞∑
n=1

nzn−1

zn−(1+n−1)n
converges absolutely if |z | < 1. Hint.

For, when | z | < 1,
�� zn − (1 + n−1)n

�� ≥ (1 + n−1)n − | zn | ≥ 1 + 1 + n−1
2n + · · · − 1 > 1,

so the moduli of the terms of the series are less than the corresponding terms of the series
∞∑
n=1

n
��zn−1

��; but this latter series is absolutely convergent, and so the given series converges

absolutely.

2.37 A general theorem on series for which lim
n→∞

����un+1

un

���� = 1

It is obvious that if, for all values of n greater than some fixed value r , |un+1 | is greater than
|un |, then the terms of the series do not tend to zero as n → ∞, and the series is therefore
divergent. On the other hand, if

���un+1
un

��� is less than some number which is itself less than unity
and independent of n (when n > r), we have shewn in §2.36 that the series is absolutely
convergent. The critical case is that in which, as n increases,

���un+1
un

��� tends to the value unity.
In this case a further investigation is necessary.

We shall now shew that a series u1 + u2 + u3 + · · · , in which lim
n→∞

���� un+1

un

���� = 1 will be

absolutely convergent if a positive number c exists such that

lim
n→∞

n
{���� un+1

un

���� − 1
}
= −1 − c.

This is the second (D’Alembert’s theorem given in §2.36 being the first) of a hierarchy of
theorems due to De Morgan. See Chrystal [146, p. xxvi] for an historical account of these
theorems.

For, compare the series
∑
|un | with the convergent series

∑
vn, where

vn = An−1− 1
2 c
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and A is a constant; we have

vn+1

vn
=

( n
n + 1

)1+ 1
2 c

=

(
1 +

1
n

)−(1+ 1
2 c)

= 1 −
1 + 1

2 c
n
+O

(
1
n2

)
.

As n→∞, n
{
vn+1
vn
− 1

}
→ −1 − 1

2 c, and hence we can find m such that, when n > m,����un+1

un

���� ≤ vn+1

vn
.

By a suitable choice of the constant A, we can therefore secure that for all values of n we
shall have

|un | < vn.

As
∑
vn is convergent,

∑
|un | is also convergent, and so

∑
un is absolutely convergent.

Corollary 2.3.6 If
���un+1
un

��� = 1 + A1
n
+ O

( 1
n2

)
, where A1 is independent of n, then the series

is absolutely convergent if A1 < −1.

Example 2.3.9 Investigate the convergence of
∞∑
n=1

nr exp
(
−k

n∑
m=1

1
m

)
, when r > k and when

r < k.

2.38 Convergence of the hypergeometric series
The theorems which have been given may be illustrated by a discussion of the convergence
of the hypergeometric series

1 +
a · b
1 · c

z +
a(a + 1)b(b + 1)
1 · 2 · c(c + 1)

z2 +
a(a + 1)(a + 2)b(b + 1)(b + 2)

1 · 2 · 3 · c(c + 1)(c + 2)
z3 + · · · ,

which is generally denoted (see Chapter 14) by F(a, b; c; z).
If c is a negative integer, all the terms after the (1 − c)th have zero denominators; and if

either a or b is a negative integer the series will terminate at the (1 − a)th or (1 − b)th term
as the case may be. We shall suppose these cases set aside, so that a, b, and c are assumed
not to be negative integers. In this series����un+1

un

���� = ���� (a + n − 1)(b + n − 1)
n(c + n − 1)

z
����→ |z | ,

as n→∞. We see therefore, by §2.36, that the series is absolutely convergent when |z | < 1,
and divergent when |z | > 1.

When |z | = 1,we have2����un+1

un

���� = ���� 1 +
a − 1

n

���� ���� 1 +
b − 1

n

���� ���� 1 −
c − 1

n
+O

(
1
n2

) ����
=

���� 1 +
a + b − c − 1

n
+O

(
1
n2

) ���� .
2 The symbolO(1/n2) does not denote the same function of n throughout. See §2.11.
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Let a, b, c be complex numbers, and let them be given in terms of their real and imaginary
parts by the equations

a = a′ + ia′′, b = b′ + ib′′, c = c′ + ic′′.

Then we have���� un+1

un

���� = ���� 1 +
a′ + b′ − c′ − 1 + i(a′′ + b′′ − c′′)

n
+ O

(
1
n2

) ����
=

{(
1 +

a′ + b′ − c′ − 1
n

)2

+

(
a′′ + b′′ − c′′

n

)2

+O
(

1
n2

)}1/2

= 1 +
a′ + b′ − c′ − 1

n
+O

(
1
n2

)
.

By Corollary 2.3.6, a condition for absolute convergence is

a′ + b′ − c′ < 0.

Hencewhen |z | = 1, a sufficient condition for the absolute convergence of the hypergeometric
series is that the real part of a + b− c shall be negative. The condition is also necessary. See
Bromwich [102, pp. 202–204].

2.4 Effect of changing the order of the terms in a series
In an ordinary sum the order of the terms is of no importance, for it can be varied without
affecting the result of the addition. In an infinite series, however, this is no longer the case3 ,
as will appear from the following example.

Let

T = 1 +
1
3
−

1
2
+

1
5
+

1
7
−

1
4
+

1
9
+

1
11
−

1
6
+ · · · and S = 1 −

1
2
+

1
3
−

1
4
+

1
5
−

1
6
+ · · · ,

and let Tn and Sn denote the sums of their first n terms. These infinite series are formed of
the same terms, but the order of the terms is different, and so Tn and Sn are quite distinct
functions of n.

Let σn =
1
1 +

1
2 + · · · +

1
n
, so that S2n = σ2n − σn. Then

T3n =
1
1
+

1
3
+ · · · +

1
4n − 1

−
1
2
−

1
4
− · · · −

1
2n

= σ4n −
1
2σ2n −

1
2σn

= (σ4n − σ2n) +
1
2 (σ2n − σn)

= S4n +
1
2 S2n.

Making n → ∞, we see that T = S + 1
2 S; and so the derangement of the terms of S has

altered its sum.

3 We say that the series
∞∑
n=1

vn consists of the terms of
∞∑
n=1

un in a different order if a law is given by which

corresponding to each positive integer p we can find one (and only one) integer q and vice versa, and vq is
taken equal to up . The result of this section was noticed by Dirichlet [173, p. 48]. See also Cauchy [125, p. 57].
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Example 2.4.1 (Manning) If in the series

1 −
1
2
+

1
3
−

1
4
+ · · ·

the order of the terms be altered, so that the ratio of the number of positive terms to the
number of negative terms in the first n terms is ultimately a2, shew that the sum of the series
will become log(2a).

2.41 The fundamental property of absolutely convergent series
We shall shew that the sum of an absolutely convergent series is not affected by changing the
order in which the terms occur.

Let S = u1 + u2 + u3 + · · · be an absolutely convergent series, and let S′ be a series formed
by the same terms in a different order.

Let ε be an arbitrary positive number, and let n be chosen so that

|un+1 | + |un+2 | + · · · +
��un+p

�� < 1
2
ε

for all values of p.
Suppose that in order to obtain the first n terms of S we have to take m terms of S′; then if

k > m,

Sk
′ − Sn + terms of S with suffices greater than n,

so that
Sk
′ − S = Sn − S + terms of S with suffices greater than n.

Now the modulus of the sum of any number of terms of S with suffices greater than n
does not exceed the sum of their moduli, and therefore is less than 1

2ε. Therefore
��S′k − S

�� <
|Sn − S | + 1

2ε. But

|Sn − S | ≤ lim
p→∞

{
|un+1 | + |un+2 | + · · · +

��un+p

��} ≤ 1
2
ε.

Therefore given ε we can find m such that
�� S′k − S

�� < ε when k > m; therefore S′m → S,
which is the required result.

If a series of real terms converges, but not absolutely, and if Sp be the sum of the first p
positive terms, and if σn be the sum of the first n negative terms, then Sp → ∞, σn → −∞;
and lim(Sp +σn) does not exist unless we are given some relation between p and n. It has, in
fact, been shewn by Riemann [558, p. 221], that it is possible, by choosing a suitable relation,
to make lim(Sp + σn) equal to any given real number.

2.5 Double series
A complete theory of double series, on which this account is based, is given by Pringsheim
[541]. See further memoirs by that writer [542] and by London [442], and also Bromwich
[102], which, in addition to an account of Pringsheim’s theory, contains many developments
of the subject. Other important theorems are given by Bromwich [101].
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Let um,n be a number determinate for all positive integral values of m and n; consider the
array

u1,1 u1,2 u1,3 · · ·

u2,1 u2,2 u2,3 · · ·

u3,1 u3,2 u3,3 · · ·
...

...
...

...

Let the sum of the terms inside the rectangle, formed by the first m rows of the first n columns
of this array of terms, be denoted by Sm,n.

If a number S exists such that, given any arbitrary positive number ε, it is possible to find
integers m and n such that

�� Sµ,ν − S
�� < ε whenever both µ > m and ν > n, we say4 that the

double series of which the general element is uµ,ν converges to the sum S, and we write

lim
µ→∞, ν→∞

Sµ,ν = S.

If the double series, of which the general element is |uµ,ν |, is convergent, we say that the
given double series is absolutely convergent.

Since uµ,ν = (Sµ,ν − Sµ,ν−1) − (Sµ−1,ν − Sµ−1,ν−1), it is easily seen that, if the double series
is convergent, then

lim
µ→∞,ν→∞

uµ,ν = 0.

Stolz’ necessary and sufficient condition for convergence. This condition, stated by
Stolz [612], appears to have been first proved by Pringsheim. A condition for conver-
gence which is obviously necessary (see §2.22) is that, given ε, we can find m and n
such that

��Sµ+ρ,ν+σ − Sµ,ν
�� < ε whenever µ > m and v > n and ρ,σ may take any of

the values 0,1,2, . . .. The condition is also sufficient; for, suppose it satisfied; then, when
µ > m + n,

�� Sµ+ρ,µ+ρ − Sµ,µ
�� < ε.

Therefore, by §2.22, Sµ,µ has a limit S; and then making ρ and σ tend to infinity in such a
way that µ + ρ = ν + σ, we see that

��S − Sµ,ν
�� ≤ ε whenever µ > m and ν > n; that is to say,

the double series converges.

Corollary 2.5.1 An absolutely convergent double series is convergent. For if the double
series converges absolutely and if tm,n be the sum of m rows of n columns of the series of
moduli, then, given ε, we can find µ such that, when ρ > m > µ and q > n > µ, tp,q−tm,n < ε.
But

��Sp,q − Sm,n

�� ≤ tp,q − tm,n and so
��Sp,q − Sm,n

�� < ε when p > m > µ, q > n > µ; and this
is the condition that the double series should converge.

2.51 Methods of summing a double series

These methods are due to Cauchy. Let us suppose that
∞∑
ν=1

uµ,ν converges to the sum Sµ.

Then
∞∑
µ=1

Sµ is called the sum by rows of the double series; that is to say, the sum by rows is

∞∑
µ=1

(
∞∑
ν=1

uµ,ν

)
. Similarly, the sum by columns is defined as

∞∑
ν=1

(
∞∑
µ=1

uµ,ν

)
. That these two sums

4 This definition is practically due to Cauchy [120, p. 540].
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are not necessarily the same is shewn by the example Sµ,ν =
µ − ν

µ + ν
, in which the sum by

rows is −1, the sum by columns is +1; and S does not exist.

Theorem 2.5.2 (Pringsheim’s theorem) [541, p. 117]. If S exists and the sums by rows and
columns exist, then each of these sums is equal to S.

For since S exists, then we can find m such that
��Sµ,ν − S

�� < ε, if µ > m, ν > m. And

therefore, since lim
ν→∞

Sµ,ν exists,
���( lim
ν→∞

Sµ,ν
)
− S

��� ≤ ε; that is to say,
���� µ∑
p=1

Sp − S
���� ≤ ε when

µ > m, and so (§2.22) the sum by rows converges to S. In like manner the sum by columns
converges to S.

2.52 Absolutely convergent double series
We can prove the analogue of §2.41 for double series, namely that if the terms of an absolutely
convergent double series are taken in any order as a simple series, their sum tends to the
same limit, provided that every term occurs in the summation.

Let σµ,ν be the sum of the rectangle of µ rows and ν columns of the double series whose
general element is

��uµ,ν ��; and let the sum of this double series be σ. Then given ε we can find
m and n such that σ − σµ,ν < ε whenever both µ > m and ν > n.

Now suppose that it is necessary to take N terms of the deranged series (in the order in
which the terms are taken) in order to include all the terms of SM+1,M+1, and let the sum of
these terms be tN .

Then tN − SM+1,M+1 consists of a sum of terms of the type up,q in which p > m, q > n
whenever M > m and M > n; and therefore�� tN − SM+1,M+1

�� ≤ σ − σM+1,M+1 <
1
2ε.

Also, S−SM+1,M+1 consists of termsup,q inwhich p > m, q > n; therefore
��S − SM+1,M+1

�� ≤
σ − σM+1,M+1 <

1
2ε; therefore |S − tN | < ε; and, corresponding to any given number ε, we

can find N; and therefore tN → S.

Example 2.5.1 Prove that in an absolutely convergent double series,
∞∑
n=1

um,n exists, and

thence that the sums by rows and columns respectively converge to S. Hint. Let the sum of µ
rows of ν columns of the series of moduli be tµ,ν, and let t be the sum of the series of moduli.

Then
∞∑
ν=1

��uµ,ν �� < t, and so
∞∑
ν=1

uµ,ν converges; let its sum be bµ; then

|b1 | + |b2 | + · · · +
��bµ�� ≤ lim

ν→∞
tµ,ν ≤ t,

and so
∞∑
µ=1

bµ converges absolutely. Therefore the sum by rows of the double series exists, and

similarly the sum by columns exists; and the required result then follows from Pringsheim’s
theorem.
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Example 2.5.2 Shew from first principles that if the terms of an absolutely convergent
double series be arranged in the order

u1,1 + (u2,1 + u1,2) + (u3,1 + u2,2 + u1,3) + (u4,1 + · · · + u1,4) + · · · ,

this series converges to S.

2.53 Cauchy’s theorem on the multiplication of absolutely convergent series
This appears in [120, Note VII]. We shall now shew that if two series

S = u1 + u2 + u3 + · · · and T = v1 + v2 + v3 + · · ·

are absolutely convergent, then the series

P = u1v1 + u2v1 + u1v2 + · · · ,

formed by the products of their terms, written in any order, is absolutely convergent, and has
for sum ST .

Let

Sn = u1 + u2 + · · · + un,

Tn = v1 + v2 + · · · + vn.

Then ST = lim Sn lim Tn = lim(SnTn) by Example 2.2.2. Now

SnTn = u1v1 + u2v1 + · · · + unv1

+ u1v2 + u2v2 + · · · + unv2

+
...

...
...

...
...

...
...

+ u1vn + u2vn + · · · + unvn.

But this double series is absolutely convergent; for if these terms are replaced by their
moduli, the result is σnτn,where

σn = |u1 | + |u2 | + · · · + |un | ,

τn = |v1 | + |v2 | + · · · + |vn | ,

and σnτn is known to have a limit. Therefore, by §2.52, if the elements of the double series,
of which the general term is umvn, be taken in any order, their sum converges to ST .

Example 2.5.3 Shew that the series obtained by multiplying the two series

1 +
z
2
+

z2

22 +
z3

23 +
z4

24 + · · · and 1 +
1
z
+

1
z2 +

1
z3 + · · · ,

and rearranging according to powers of z, converges so long as the representative point of z
lies in the ring-shaped region bounded by the circles |z | = 1 and |z | = 2.



28 The Theory of Convergence

2.6 Power series
The results of this section are due to Cauchy [120, Ch. IX]. A series of the type

a0 + a1z + a2z2 + a3z3 + · · · ,

in which the coefficients a0,a1,a2,a3, . . . are independent of z, is called a series proceeding
according to ascending powers of z, or briefly a power series.

We shall now shew that if a power series converges for any value z0 of z, it will be absolutely
convergent for all values of z whose representative points are within a circle which passes
through z0 and has its centre at the origin.

For, if z be such a point, we have |z | < |z0 |. Now, since
∞∑
n=0

anzn0 converges, anzn0 must tend

to zero as n→∞, and so we can find M (independent of n) such that |anzn0 | < M . Thus

|anzn | < M
���� z
z0

����n .
Therefore every term in the series

∞∑
n=0

anzn is less than the corresponding term in the

convergent geometric series
∞∑
n=0

M |z/z0 |
n ; the series is therefore convergent; and so the

power series is absolutely convergent, as the series of moduli of its terms is a convergent
series; the result stated is therefore established.

Let lim |an |
−1/n = r; then, from §2.35,

∞∑
n=0

anzn converges absolutely when |z | < r; if

|z | > r , anzn does not tend to zero and so
∞∑
n=0

anzn diverges (§2.3). The circle |z | = r , which

includes all the values of z for which the power series

a0 + a1z + a2z2 + a3z3 + · · ·

converges, is called the circle of convergence of the series. The radius of the circle is called
the radius of convergence.

In practice there is usually a simpler way of finding r , derived from d’Alembert’s test
(§2.36); r is lim(an/an+1) if this limit exists.

A power series may converge for all values of the variable, as happens, for instance, in the
case of the series5

z −
z3

3!
+

z5

5!
− · · · ,

which represents the function sin z; in this case the series converges over the whole z-plane.
On the other hand, the radius of convergence of a power series may be zero; thus in the

case of the series

1 + 1!z + 2!z2 + 3!z3 + 4!z4 + · · ·

we have |un+1/un | = n|z |, which, for all values of n after some fixed value, is greater than

5 The series for ez , sin z, cos z and the fundamental properties of these functions and of log z will be assumed
throughout. A brief account of the theory of the functions is given in the Appendix.
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unity when z has any value different from zero. The series converges therefore only at the
point z = 0, and the radius of its circle of convergence vanishes.

A power series may or may not converge for points which are actually on the periphery of
the circle; thus the series

1 +
z
1s
+

z2

2s
+

z3

3s
+

z4

4s
+ · · · ,

whose radius of convergence is unity, converges or diverges at the point z = 1 according as
s is greater or not greater than unity, as was seen in §2.33.

Corollary 2.6.1 If (an) be a sequence of positive terms such that lim(an+1/an) exists, this
limit is equal to lim a1/n

n .

2.61 Convergence of series derived from a power series
Let a0 + a1z + a2z2 + a3z3 + a4z4 + · · · be a power series, and consider the series

a1 + 2a2z + 3a3z2 + 4a4z3 + · · · ,

which is obtained by differentiating the power series term by term. We shall now shew that
the derived series has the same circle of convergence as the original series.

For let z be a point within the circle of convergence of the power series; and choose
a positive number r1, intermediate in value between |z | and r the radius of convergence.
Then, since the series

∞∑
n=0

anrn1 converges absolutely, its terms must tend to zero as n → ∞;

and it must therefore be possible to find a positive number M , independent of n, such that
|an | < Mr−n1 for all values of n.

Then the terms of the series
∞∑
n=1

n|an | |z |n−1 are less than the corresponding terms of the

series
M
r1

∞∑
n=1

n|z |n−1

rn−1
1

.

But this series converges, by §2.36, since |z | < r1. Therefore, by §2.34, the series
∞∑
n=1

n|an | |z |n−1

converges; that is, the series
∞∑
n=1

nanzn−1 converges absolutely for all points z situated within

the circle of convergence of the original series
∞∑
n=0

anzn. When |z | > r , anzn does not tend to

zero, and a fortiori nanzn does not tend to zero; and so the two series have the same circle of
convergence.

Corollary 2.6.2 The series
∞∑
n=0

an

n+1 zn+1, obtained by integrating the original power series

term by term, has the same circle of convergence as
∞∑
n=0

anzn.
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2.7 Infinite products
We next consider a class of limits, known as infinite products. Let 1 + a1,1 + a2,1 + a3, . . .

be a sequence such that none of its members vanish. If, as n→∞, the product

(1 + a1)(1 + a2)(1 + a3) · · · (1 + an)

(which we denote by
∏

n) tends to a definite limit other than zero, this limit is called the
value of the infinite product ∏

= (1 + a1)(1 + a2)(1 + a3) · · · ,

and the product is said to be convergent. (The convergence of the product in which an−1 =

−1/n2 was investigated by Wallis as early as 1655.) It is almost obvious that a necessary
condition for convergence is that lim an = 0, since lim

∏
n−1 = lim

∏
n , 0. The limit of the

product is written
∞∏
n=1
(1 + an).

Now
m∏
n=1

(1 + an) = exp

(
m∑
n=1

log(1 + an)

)
, (2.2)

and (see Appendix §A.2), exp
(

lim
m→∞

um

)
= lim

m→∞
(exp um) if the former limit exists; hence

a sufficient condition that the product should converge is that
∞∑
n=1

log(1 + an) should con-

verge when the logarithms have their principal values. If this series of logarithms converges
absolutely, the convergence of the product is said to be absolute.

The condition for absolute convergence is given by the following theorem: in order that
the infinite product

(1 + a1)(1 + a2)(1 + a3) · · ·

may be absolutely convergent, it is necessary and sufficient that the series

a1 + a2 + a3 + · · ·

should be absolutely convergent.
For, by definition,

∏
is absolutely convergent or not according as the series

log(1 + a1) + log(1 + a2) + log(1 + a3) + · · ·

is absolutely convergent or not.
Now, since lim an = 0, we can find m such that, when n > m, |an | <

1
2 ; and then��an

−1 log(1 + an) − 1
�� = ����−an

2
+

an
2

3
−

an
3

4
+ · · ·

����
<

1
22 +

1
23 + · · · =

1
2
.

And thence, when n > m,
1
2
≤

���� log(1 + an)

an

���� ≤ 3
2

;
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therefore, by the comparison theorem, the absolute convergence of
∑

log(1+ an) entails that
of

∑
an and conversely, provided that an , −1 for any value of n. This establishes the result.

Note A discussion of the convergence of infinite products, in which the results are obtained
without making use of the logarithmic function, is given by Pringsheim [539], and also by
Bromwich [102, Ch. VI].

If, in a product, a finite number of factors vanish, and if, when these are suppressed, the
resulting product converges, the original product is said to converge to zero. But such a
product as

∞∏
n=2
(1 − n−1) is said to diverge to zero.

Corollary 2.7.1 Since, if Sn → `, exp(Sn) → exp `, it follows from §2.41 that the factors of
an absolutely convergent product can be deranged without affecting the value of the product.

Example 2.7.1 Shew that if
∞∏
n=1
(1+an) converges, so does

∞∑
n=1

log (1+an), if the logarithms

have their principal values.

Example 2.7.2 Shew that the infinite product

sin z
z
·

sin 1
2 z

1
2 z
·

sin 1
3 z

1
3 z
·

sin 1
4 z

1
4 z
· · ·

is absolutely convergent for all values of z. Hint. For
(
sin z

n

)
/
(
z
n

)
can be written in the

form 1 − λn

n2 , where |λn | < k and k is independent of n; and the series
∞∑
n=1

λn

n2 is absolutely

convergent, as is seen on comparing it with
∞∑
n=1

1
n2 . The infinite product is therefore absolutely

convergent.

2.71 Some examples of infinite products
Consider the infinite product(

1 −
z2

π2

) (
1 −

z2

22π2

) (
1 −

z2

32π2

)
· · · ,

which, as will be proved later (§7.5), represents the function
sin z

z
.

In order to find whether it is absolutely convergent, we must consider the series
∞∑
n=1

z2

n2π2 ,

or
z2

π2

∞∑
n=1

1
n2 ; this series is absolutely convergent, and so the product is absolutely convergent

for all values of z.
Now let the product be written in the form(

1 −
z
π

) (
1 +

z
π

) (
1 −

z
2π

) (
1 +

z
2π

)
· · · .
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The absolute convergence of this product depends on that of the series

−
z
π
+

z
π
−

z
2π
+

z
2π
− · · · .

But this series is only conditionally convergent, since its series of moduli
|z |
π
+
|z |
π
+
|z |
2π
+
|z |
2π
+ · · ·

is divergent. In this form therefore the infinite product is not absolutely convergent, and so,
if the order of the factors

(
1 ± z

nπ

)
is deranged, there is a risk of altering the value of the

product.
Lastly, let the same product be written in the form{(

1 −
z
π

)
e

z
π

} {(
1 +

z
π

)
e−

z
π

} {(
1 −

z
2π

)
e

z
2π

} {(
1 +

z
2π

)
e−

z
2π

}
· · · ,

in which each of the expressions (
1 ±

z
mπ

)
e∓

z
mπ

is counted as a single factor of the infinite product. The absolute convergence of this product
depends on that of the series of which the (2m − 1)th and (2m)th terms are(

1 ∓
z

mπ

)
e±

z
mπ − 1.

But it is easy to verify that (
1 ∓

z
mπ

)
e±

z
mπ = 1 +O

(
1

m2

)
,

and so the absolute convergence of the series in question follows by comparison with the
series

1 + 1 +
1
22 +

1
22 +

1
32 +

1
32 +

1
42 +

1
42 + · · · .

The infinite product in this last form is therefore again absolutely convergent, the adjunction
of the factors e±

z
nπ having changed the convergence from conditional to absolute. This result

is a particular case of the first part of the factor theorem of Weierstrass (§7.6).

Example 2.7.3 Prove that
∞∏
n=1

{(
1 − z

c+n

)
e

z
n

}
is absolutely convergent for all values of z, if c

is a constant other than a negative integer. Hint. For the infinite product converges absolutely
with the series

∞∑
n=1

{(
1 −

z
c + n

)
e

z
n − 1

}
.

Now the general term of this series is(
1 −

z
c + n

) {
1 +

z
n
+

z2

2n2 +O
(

1
n3

)}
− 1 =

zc − 1
2 z2

n2 +O
(

1
n3

)
= O

(
1
n2

)
.

But
∞∑
n=1

1
n2 converges, and so, by §2.34,

∞∑
n=1

{(
1 − z

c+n

)
e

z
n − 1

}
converges absolutely, and

therefore the product converges absolutely.
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Example 2.7.4 Shew that
∞∏
n=2

{
1 −

(
1 − 1

n

)−n z−n
}
converges for all points z situated outside

a circle whose centre is the origin and radius unity.Hint. For the infinite product is absolutely
convergent provided that the series

∞∑
n=2

(
1 −

1
n

)−n
z−n

is absolutely convergent. But lim
n→∞

(
1 − 1

n

)−n
= e, so the limit of the ratio of the (n+ 1)th term

of the series to the nth term is 1/z; there is therefore absolute convergence when |1/z | < 1,
i.e. when |z | > 1.

Example 2.7.5 Shew that
1 · 2 · 3 · · · (m − 1)

(z + 1)(z + 2) · · · (z + m − 1)
mz

tends to a finite limit as m→ ∞, unless z is a negative integer. Hint. For the expression can
be written as a product of which the nth factor is

n
z + n

(
n + 1

n

) s
=

(
1 +

1
n

) s (
1 +

z
n

)−1
=

{
1 +

z(z − 1)
2n2 +O

(
1
n3

)}
.

This product is therefore absolutely convergent, provided the series
∞∑
n=1

{
z(z − 1)

2n2 +O
(

1
n3

)}
is absolutely convergent; and a comparison with the convergent series

∞∑
n=1

1
n2 shews that this

is the case. When z is a negative integer the expression does not exist because one of the
factors in the denominator vanishes.

Example 2.7.6 Prove that

z
(
1 −

z
π

) (
1 −

z
2π

) (
1 +

z
π

) (
1 −

z
3π

) (
1 −

z
4π

) (
1 +

z
2π

)
· · · = e−z log 2/π sin z.

For the given product

lim
k→∞

z
(
1 −

z
π

) (
1 −

z
2π

) (
1 +

z
π

)
· · ·

(
1 −

z
(2k − 1)π

) (
1 −

z
2kπ

) (
1 +

z
kπ

)
= lim

k→∞

[
e

z
π

(
−1 − 1

2 + 1 − 1
3 −

1
4 +

1
2 − · · · −

1
2k−1 −

1
2k +

1
k

)
× z

(
1 − z

π

)
e

z
π ·

(
1 − z

2π

)
e

z
2π · · ·

(
1 − z

2kπ

)
e

z
2kπ ·

(
1 + z

kπ

)
e−

z
kπ

]
= lim

k→∞
e−

z
π (1−

1
2+

1
3−···+

1
2k−1−

1
2k )

× z
(
1 −

z
π

)
e

z
π

(
1 +

z
π

)
e−

z
π

(
1 −

z
2π

)
e

z
2π

(
1 +

z
2π

)
e−

z
2π · · · ,

since the product whose factors are
(
1 −

z
rπ

)
erπ is absolutely convergent, and so the order

of its factors can be altered. Since log 2 = 1 − 1
2 +

1
3 −

1
4 +

1
5 − · · ·, this shews that the given

product is equal to e−z log 2/π sin z.
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2.8 Infinite determinants
Infinite series and infinite products are not by any means the only known cases of limiting
processes which can lead to intelligible results. The researches of G.W. Hill in the Lunar The-
ory, reprinted in [306], brought into notice the possibilities of infinite determinants. Infinite
determinants had previously occurred in the researches of Fürstenau [230] on the algebraic
equation of the nth degree. Special types of infinite determinants (known as continuants)
occur in the theory of infinite continued fractions; see Sylvester [617, p. 504] and [618,
p. 249].

The actual investigation of the convergence is due not to Hill but to Poincaré [528]. We
shall follow the exposition given by H. von Koch [643, p. 217].

Let Aik be defined for all integer values (positive and negative) of i, k, and denote by

Dm = [Aik]i,k=−m,...,+m

the determinant formed of the numbers Aik (i, k = −m, . . . ,+m); then if, as m → ∞, the
expression Dm tends to a determinate limit D, we shall say that the infinite determinant

[Aik]i,k=−∞,...,+∞

is convergent and has the value D. If the limit D does not exist, the determinant in question
will be said to be divergent.

The elements Aii (where i takes all values) are said to form the principal diagonal of the
determinant D; the elements Aik (where i is fixed and k takes all values) are said to form
the row i; and the elements Aik (where k is fixed and i takes all values) are said to form the
column k. Any element Aik is called a diagonal or a non-diagonal element, according as
i = k or i , k. The element A0,0 is called the origin of the determinant.

2.81 Convergence of an infinite determinant
We shall now shew that an infinite determinant converges, provided the product of the
diagonal elements converges absolutely, and the sum of the non-diagonal elements converges
absolutely.

For let the diagonal elements of an infinite determinant D be denoted by 1+ aii, and let
the non-diagonal elements be denoted by aik , (i , k), so that the determinant is������������

...
...

...
...

...

· · · 1 + a−1−1 a−10 a−11 · · ·

· · · a0−1 1 + a00 a01 · · ·

· · · a1−1 a10 1 + a11 · · ·
...

...
...

...
...

������������
Then, since the series

∞∑
t ,k=−∞

|aik | is convergent, the product

P =
∞∏

i=−∞

(
1 +

∞∑
k=−∞

|aik |

)
is convergent.
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Now form the products

Pm =

m∏
i=−m

(
1 +

m∑
k=−m

aik

)
, Pm =

m∏
i=−m

(
1 +

m∑
k=−m

|aik |

)
;

then if, in the expansion of Pm, certain terms are replaced by zero and certain other terms
have their signs changed, we shall obtain Dm; thus, to each term in the expansion of Dm there
corresponds, in the expansion of Pm, a term of equal or greater modulus. Now Dm+p − Dm

represents the sum of those terms in the determinant Dm+p which vanish when the numbers
aik {i, k = ± (m + 1) · · · ± (m + p)} are replaced by zero; and to each of these terms there
corresponds a term of equal or greater modulus in p̄m+p − p̄m.

Hence
��Dm+p − Dm

�� ≤ Pm+p − Pm. Therefore, since Pm tends to a limit as m → ∞, so
also Dm tends to a limit. This establishes the proposition.

2.82 The rearrangement theorem for convergent infinite determinants
We shall now shew that a determinant, of the convergent form already considered, remains
convergent when the elements of any row are replaced by any set of elements whose moduli
are all less than some fixed positive number.

Replace, for example, the elements

. . . , A0,−m, . . . , A0, . . . , A0,m, . . .

of the row through the origin by the elements

. . . , µ−m, . . . , µ0, . . . , µm, . . .

which satisfy the inequality
|µr | < µ,

where µ is a positive number; and let the new values of Dm and D be denoted by Dm′ , and D′.
Moreover, denote by P̄m′ and P̄′ the products obtained by suppressing in P̄m and P̄ the factor
corresponding to the index zero; we see that no terms of Dm′ can have a greater modulus
than the corresponding term in the expansion of µP̄m′; and consequently, reasoning as in the
last article, we have ��D′m+p − Dm′

�� < µP̄′m+p − µP̄m,

which is sufficient to establish the result stated.

Example 2.8.1 (von Koch) Shew that the necessary and sufficient condition for the absolute
convergence of the infinite determinant

lim
m→∞

�����������
1 α1 0 0 · · · 0
β1 1 α2 0 · · · 0
0 β2 1 α3 · · · 0
...

...
...

...
...

...

0 · · · 0 βm 1

�����������
is that the series α1β1 + α2β2 + α3β3 + · · · shall be absolutely convergent.
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2.9 Miscellaneous examples
Example 2.1 Evaluate lim

n→∞
e−nanb, lim

n→∞
n−a log n when a > 0, b > 0.

Example 2.2 (Trinity, 1904) Investigate the convergence of
∞∑
n=1

{
1 − n log

2n + 1
2n − 1

}
.

Example 2.3 (Peterhouse, 1906) Investigate the convergence of
∞∑
n=1

{
1 · 3 · · · 2n + 1

2 · 4 · · · 2n
.
4n + 3
2n + 2

}2

.

Example 2.4 Find the range of values of z for which the series

2 sin2 z − 4 sin4 z + 8 sin6 z − · · · + (−1)n+12n sin2n z + · · ·

is convergent.

Example 2.5 (Simon) Shew that the series
1
z
−

1
z + 1

+
1

z + 2
−

1
z + 3

+ · · ·

is conditionally convergent, except for certain exceptional values of z; but that the series

1
z
+

1
z + 1

+ · · · +
1

z + p − 1
−

1
z + p

−
1

z + p + 1
− · · ·

−
1

z + 2p + q − 1
+

1
z + 2p + q

+ · · · ,

in which (p + q)-negative terms always follow p positive terms, is divergent.

Example 2.6 (Trinity, 1908) Shew that

1 −
1
2
−

1
4
+

1
3
−

1
6
−

1
8
+

1
5
− · · · =

1
2

log 2.

Example 2.7 (Cesàro) Shew that the series
1

1α
+

1
2β
+

1
3α
+

1
4β
+ · · · (1 < α < β)

is convergent, although u2n+1/u2n →∞.

Example 2.8 (Cesàro) Shew that the series α + β2 + α3 + β4 + · · · (with 0 < α < β < 1)
is convergent although u2n/u2n−1 →∞.

Example 2.9 Shew that the series
∞∑
n=1

nzn−1
{
(1 + n−1)n − 1

}
(zn − 1) {zn − (1 + n−1)n}

converges absolutely for all values of z, except the values

z =
(
1 +

a
m

)
e2kπi/m (a = 0,1; k = 0,1, . . . ,m − 1; m = 1,2,3, . . .).
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Example 2.10 (de la Vallée Poussin [638]) Shew that, when δ > 1,
∞∑
n=1

1
nδ
=

1
δ − 1

+

∞∑
n=1

[
1
nδ
+

1
δ − 1

{
1

(n + 1)δ−1 −
1

nδ−1

}]
,

and shew that the series on the right converges when 0 < δ < 1.

Example 2.11 In the series whose general term is un = qn−νx
1
2ν(ν+1), (0 < q < 1 < x)

where ν denotes the number of digits in the expression of n in the ordinary decimal scale of
notation, shew that

lim
n→∞

u1/n
n = q,

and that the series is convergent, although lim
n→∞

un+1/un = ∞.

Example 2.12 (Cesàro) Shew that the series

q1 + q2
1 + q3

2 + q4
1 + q5

2 + q6
3 + q7

1 + · · · ,

where qn = q1+4/n, (0 < q < 1) is convergent, although the ratio of the (n + 1)th term to the
nth is greater than unity when n is not a triangular number.

Example 2.13 Shew that the series
∞∑
n=0

e2nπix

(w + n)s
,

where w is real, and where (w + n)s is understood to mean es log(w+n), the logarithm being
taken in its arithmetic sense, is convergent for all values of s, when Im x is positive, and is
convergent for values of s whose real part is positive, when x is real and not an integer.

Example 2.14 If un > 0, shew that if
∑

un converges, then lim
n→∞
(nun) = 0, and that, if in

addition un ≥ un+1, then lim
n→∞

nun = 0.

Example 2.15 (Trinity, 1904) If

am,n =


m−n
2m+n

(m+n−1)!
m! n! m,n > 0,

2−m n = 0, m , 0,
−2−n m = 0, n , 0,
0 n = m = 0.

shew that
∞∑

m=0

(
∞∑
n=0

am,n

)
= −1,

∞∑
n=0

(
∞∑

m=0

am,n

)
= 1.

Example 2.16 (Jacobi) By converting the series

1 +
8q

1 − q
+

16q2

1 + q2 +
24q3

1 − q3 + · · · ,
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(in which |q | < 1), into a double series, shew that it is equal to

1 +
8q

(1 − q)2
+

8q2

(1 + q2)2
+

8q3

(1 − q3)2
+ · · · .

Example 2.17 (Math. Trip. 1904) Assuming that sin z = z
∞∏
r=1

(
1 −

z2

r2π2

)
, shew that if

m→∞ and n→∞ in such a way that lim m/n = k, where k is finite, then

lim
m∏′

r=−n

(
1 +

z
rπ

)
= kz/π sin z

z
,

the prime indicating that the factor for which r = 0 is omitted.

Example 2.18 (Math. Trip. 1906) If u0 = u1 = u2 = 0, and if, when n > 1,

u2n−1 = −
1
√

n
, u2n =

1
√

n
+

1
n
+

1
n
√

n
,

then
∞∏
n=0
(1 + un) converges, though

∞∑
n=0

un and
∞∑
n=0

u2
n are divergent.

Example 2.19 Prove that

∞∏
n=1

{(
1 −

z
n

)nk
exp

(
k+1∑
m=1

nk−mzm

m

)}
,

where k is any positive integer, converges absolutely for all values of z.

Example 2.20 (Cauchy) If
∞∑
n=1

an be a conditionally convergent series of real terms, then
∞∏
n=1
(1 + an) converges (but not absolutely) or diverges to zero according as

∞∑
n=1

a2
n converges

or diverges.

Example 2.21 (Hill; see §19.42) Let
∞∑
n=1

θn be an absolutely convergent series. Shew that

the infinite determinant

∆(c) =

�����������������������

...
...

...
...

...
...

...

· · ·
(c−4)2−θ0

42−θ0

−θ1
42−θ0

−θ2
42−θ0

−θ3
42−θ0

−θ3
42−θ0

· · ·

· · ·
−θ1

22−θ0

(c−2)2−θ0
22−θ0

−θ1
22−θ0

−θ2
22−θ0

−θ3
22−θ0

· · ·

· · ·
−θ2

02−θ0

−θ1
02−θ0

c2−θ0
02−θ0

−θ1
02−θ0

−θ2
02−θ0

· · ·

· · ·
−θ3

22−θ0

−θ2
22−θ0

−θ1
22−θ0

(c+2)2−θ0
22−θ0

−θ1
22−θ0

· · ·

· · ·
−θ4

42−θ0

−θ3
42−θ0

−θ2
42−θ0

−θ1
42−θ0

(c+4)2−θ0
42−θ0

· · ·

...
...

...
...

...
...

...

�����������������������
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converges; and shew that the equation ∆(c) = 0 is equivalent to the equation

sin2 (πc/2) = ∆(0) sin2
(
π
√
θ0/2

)
. (2.3)
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Continuous Functions and Uniform Convergence

3.1 The dependence of one complex number on another
The problems with which Analysis is mainly occupied relate to the dependence of one
complex number on another. If z and ζ are two complex numbers, so connected that, if z is
given any one of a certain set of values, corresponding values of ζ can be determined, e.g. if
ζ is the square of z, or if ζ = 1 when z is real and ζ = 0 for all other values of z, then ζ is
said to be a function of z.

This dependence must not be confused with the most important case of it, which will be
explained later under the title of analytic functionality.

If ζ is a real function of a real variable z, then the relation between ζ and z, which may
be written ζ = f (z), can be visualised by a curve in a plane, namely the locus of a point
whose coordinates referred to rectangular axes in the plane are (z, ζ). No such simple and
convenient geometrical method can be found for visualising an equation ζ = f (z), considered
as defining the dependence of one complex number ζ = ξ + iη on another complex number
z = x + iy. A representation strictly analogous to the one already given for real variables
would require four-dimensional space, since the number of variables ξ, η, x, y is now four.

One suggestion (made by Lie and Weierstrass) is to use a doubly-manifold system of lines
in the quadruply-manifold totality of lines in three-dimensional space. Another suggestion
is to represent ξ and η separately by means of surfaces ξ = ξ(x, y), η = η(x, y). A third
suggestion, due to Heffter [284], is to write ζ = reiθ, then draw the surface r = r(x, y),
which may be called the modular-surface of the function, and on it to express the values of
θ by surface-markings. It might be possible to modify this suggestion in various ways by
representing θ by curves drawn on the surface r = r(x, y).

3.2 Continuity of functions of real variables
The reader will have a general idea (derived from the graphical representation of functions
of a real variable) as to what is meant by continuity.

We now have to give a precise definition which shall embody this vague idea. Let f (x) be
a function of x defined when a ≤ x ≤ b. Let x1 be such that a ≤ x1 ≤ b. If there exists a
number ` such that, corresponding to an arbitrary positive number ε, we can find a positive
number η such that | f (x) − ` | < ε, whenever |x − x1 | < η, x , x1, and a ≤ x ≤ b, then ` is
called the limit of f (x) as x → x1.

It may happen that we can find a number `+ (even when ` does not exist) such that

40
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| f (x) − `+ | < ε when x1 < x < x1 + η. We call `+ the limit of f (x) when x approaches x1

from the right and denote it by f (x1 + 0); in a similar manner we define f (x1 − 0) if it exists.
If f (x1 + 0), f (x1), f (x1 − 0) all exist and are equal, we say that f (x) is continuous at x1;

so that if f (x) is continuous at x1, then, given ε, we can find η such that | f (x) − f (x1)| < ε,
whenever |x − x1 | < η, and a ≤ x ≤ b.

If `+ and `− exist but are unequal, f (x) is said to have an ordinary discontinuity1 at x1;
and if `+ = `− , f (x1), f (x) is said to have a removable discontinuity at x1.

If f (x) is a complex function of a real variable, and if f (x) = g(x) + ih(x) where g(x)
and h(x) are real, the continuity of f (x) at x1 implies the continuity of g(x) and of h(x). For
when | f (x) − f (x1)| < ε, then |g(x) − g(x1)| < ε and |h(x) − h(x1)| < ε; and the result stated
is obvious.

Example 3.2.1 From Examples 2.2.1 and 2.2.2 deduce that if f (x) and φ(x) are continuous
at x1, so are f (x) ± φ(x), f (x) × φ(x) and, if φ(x1) , 0, f (x)/φ(x).

The popular idea of continuity, so far as it relates to a real variable f (x) depending on
another real variable x, is somewhat different from that just considered, and may perhaps
best be expressed by the statement “The function f (x) is said to depend continuously on x
if, as x passes through the set of all values intermediate between any two adjacent values
x1 and x2, f (x) passes through the set of all values intermediate between the corresponding
values f (x1) and f (x2).”

The question thus arises, how far this popular definition is equivalent to the precise
definition given above.

Cauchy shewed that if a real function f (x), of a real variable x, satisfies the precise
definition, then it also satisfies what we have called the popular definition; this result will be
proved in §3.63. But the converse is not true, as was shewn by Darboux. This fact may be
illustrated by the following example due to Mansion [454].

Between x = −1 and x = +1 (except at x = 0), let f (x) = sin π
2x ; and let f (0) = 0. It can

then be proved that f (x) depends continuously on x near x = 0, in the sense of the popular
definition, but is not continuous at x = 0 in the sense of the precise definition.

Example 3.2.2 If f (x) be defined and be an increasing function in the range (a, b), the
limits f (x ± 0) exist at all points in the interior of the range. Hint. If f (x) be an increasing
function, a section of rational numbers can be found such that, if a, A be any members of its
L-class and its R-class, a < f (x + h) for every positive value of h and A ≥ f (x + h) for some
positive value of h. The number defined by this section is f (x + 0).

3.21 Simple curves. Continua
Let x and y be two real functions of a real variable t which are continuous for every value of
t such that a ≤ t ≤ b. We denote the dependence of x and y on t by writing

x = x(t), y = y(t) (a ≤ t ≤ b)

The functions x(t), y(t) are supposed to be such that they do not assume the same pair of
1 If a function is said to have ordinary discontinuities at certain points of an interval it is implied that it is
continuous at all other points of the interval.
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values for any two different values of t in the range a < t < b. Then the set of points with
coordinates (x, y) corresponding to these values of t is called a simple curve. If

x(a) = x(b), y(a) = y(b),

the simple curve is said to be closed.

Example 3.2.3 The circle x2 + y2 = 1 is a simple closed curve; for we may write2

x = cos t, y = sin t, (0 ≤ t ≤ 2π).

A two-dimensional continuum is a set of points in a plane possessing the following two
properties:

(i) If (x, y) be the Cartesian coordinates of any point of it, a positive number δ (depending
on x and y) can be found such that every point whose distance from (x, y) is less than δ
belongs to the set.

(ii) Any two points of the set can be joined by a simple curve consisting entirely of points
of the set.

Example 3.2.4 The points for which x2 + y2 < 1 form a continuum. For if P be any point
inside the unit circle such that OP = r < 1, we may take δ = 1− r; and any two points inside
the circle may be joined by a straight line lying wholly inside the circle.

The following two theorems will be assumed in this work; simple cases of them appear
obvious from geometrical intuitions and, generally, theorems of a similar nature will be taken
for granted, as formal proofs are usually extremely long and difficult. Formal proofs will be
found in Watson [650].

(I) A simple closed curve divides the plane into two continua (the interior and the exterior).
(II) If P be a point on the curve and Q be a point not on the curve, the angle between QP

and Ox increases by ±2π or by zero, as P describes the curve, according as Q is an
interior point or an exterior point. If the increase is +2π, P is said to describe the curve
counter-clockwise.

A continuum formed by the interior of a simple curve is sometimes called an open two-
dimensional region, or briefly an open region, and the curve is called its boundary; such
a continuum with its boundary is then called a closed two-dimensional region, or briefly
a closed region or domain. A simple curve is sometimes called a closed one-dimensional
region; a simple curve with its end-points omitted is then called an open one-dimensional
region.

3.22 Continuous functions of complex variables
Let f (z) be a function of z defined at all points of a closed region (one- or two-dimensional)
in the Argand diagram, and let z1 be a point of the region.

2 For a proof that the sine and cosine are continuous functions, see the Appendix, §A.41.
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Then f (z) is said to be continuous at z1, if given any positive number ε, we can find a
corresponding positive number η such that

| f (z) − f (z1)| < ε,

whenever |z − z1 | < η and z is a point of the region.

3.3 Series of variable terms. Uniformity of convergence
Consider the series

x2 +
x2

1 + x2 +
x2

(1 + x2)2
+ · · · +

x2

(1 + x2)n
+ · · · .

This series converges absolutely (§2.33) for all real values of x. If Sn(x) be the sum of n
terms, then

Sn(x) = 1 + x2 −
1

(1 + x2)n−1 ;

and so lim
n→∞

Sn(x) = 1 + x2; (x , 0), but Sn(0) = 0, and therefore lim
n→∞

Sn(0) = 0.
Consequently, although the series is an absolutely convergent series of continuous func-

tions of x, the sum is a discontinuous function of x. We naturally enquire the reason of
this rather remarkable phenomenon, which was investigated in 1841–1848 by Stokes [608],
Seidel [590] and Weierstrass [662, pp. 67, 75], who shewed that it cannot occur except in
connexion with another phenomenon, that of non-uniform convergence, which will now be
explained.

Let the functions u1(z),u2(z), . . . be defined at all points of a closed region of the Argand
diagram. Let

Sn(z) = u1(z) + u2(z) + · · · + un(z).

The condition that the series
∞∑
n=1

un(z) should converge for any particular value of z is that,

given ε, a number n should exist such that

|Sn+p(z) − Sn(z)| < ε

for all positive values of p, the value of n of course depending on ε.
Let n have the smallest integer value for which the condition is satisfied. This integer will

in general depend on the particular value of z which has been selected for consideration. We
denote this dependence by writing n(z) in place of n. Now it may happen that we can find
a number N , independent of z, such that n(z) < N for all values of z in the region under
consideration. If this number N exists, the series is said to converge uniformly throughout the
region. If no such number N exists, the convergence is said to be non-uniform. The reader
who is unacquainted with the concept of uniformity of convergence will find it made much
clearer by consulting Bromwich [102], where an illuminating account of Osgood’s graphical
investigation is given.

Uniformity of convergence is thus a property depending on a whole set of values of z,
whereas previously we have considered the convergence of a series for various particular
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values of z, the convergence for each value being considered without reference to the other
values.

We define the phrase ‘uniformity of convergence near a point z’ to mean that there is a
definite positive number δ such that the series converges uniformly in the domain common
to the circle |z − z1 | ≤ δ and the region in which the series converges.

3.31 On the condition for uniformity of convergence
This section shews that it is indifferent whether uniformity of convergence is defined by
means of the partial remainder Rn,p(z) or by Rn(z). Writers differ in the definition taken as
fundamental.

If Rn,p(z) = un+1(z)+un+2(z)+ · · ·+un+p(z), we have seen that the necessary and sufficient

condition that
∞∑
n=1

un(z) should converge uniformly in a region is that, given any positive

number ε, it should be possible to choose N independent of z (but depending on ε) such that

|RN ,p(z)| < ε

for all positive integral values of p.
If the condition is satisfied, by §2.22, Sn(z) tends to a limit, S(z), say for each value of z

under consideration; and then, since ε is independent of p,

| lim
p→∞

RN ,p(z)| ≤ ε,

and therefore, when n > N ,

S(z) − Sn(z) = lim
p→∞

RN ,p(z) − RN ,n−N (z),

and so |S(z) − Sn(z)| < 2ε.
Thus (writing ε/2 for ε) a necessary condition for uniformity of convergence is that
|S(z)−Sn(z)| < ε, whenever n > N and N is independent of z; the condition is also sufficient;
for if it is satisfied it follows as in §2.22 (I) that |RN ,p(z)| < 2ε, which, by definition, is the
condition for uniformity.

Example 3.3.1 Shew that, if x be real, the sum of the series
x

1(x + 1)
+

x
(x + 1)(2x + 1)

+ · · · +
x

{(n − 1)x + 1}{nx + 1}
+ · · ·

is discontinuous at x = 0 and the series is non-uniformly convergent near x = 0.

Solution The sum of the first n terms is easily seen to be 1 − 1
nx+1 ; so when x = 0 the sum

is 0; when x , 0, the sum is 1. The value of Rn(x) = S(x) − Sn(x) is 1
nx+1 if x , 0; so when

x is small, say x = one-hundred-millionth, the remainder after a million terms is 1
1

100+1 or
1− 1

101 , so the first million terms of the series do not contribute one per cent of the sum. And
in general, to make 1

nx+1 < ε, it is necessary to take n > 1
x

( 1
ε
− 1

)
. Corresponding to a given

ε, no number N exists, independent of x, such that n < N for all values of x in any interval
including x = 0; for by taking x sufficiently small we can make n greater than any number N
which is independent of x. There is therefore non-uniform convergence near x = 0.
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Example 3.3.2 Discuss the series
∞∑
n=1

x{n(n + 1)x2 − 1}
{1 + n2x2}{1 + (n + 1)2x2}

,

in which x is real.
The nth term can be written nx

1+n2x2 −
(n+1)x

1+(n+1)2x2 , so S(x) = x
1+x2 , and

Rn(x) =
(n + 1)x

1 + (n + 1)2x2 .

Note In this example the sum of the series is not discontinuous at x = 0.

But (taking ε < 1
2 , and x , 0), |Rn(x)| < ε if ε−1(n + 1)|x | < 1 + (n + 1)2x2; i.e. if

n + 1 >
1
2
{ε−1 +

√
ε−2 − 4}|x |−1 ,or n + 1 <

1
2
{ε−1 −

√
ε−2 − 4}|x |−1.

Now it is not the case that the second inequality is satisfied for all values of n greater than
a certain value and for all values of x; and the first inequality gives a value of n(x) which
tends to infinity as x → 0; so that, corresponding to any interval containing the point x = 0,
there is no number N independent of x. The series, therefore, is non-uniformly convergent
near x = 0.

The reader will observe that n(x) is discontinuous at x = 0; for n(x) → ∞ as x → 0, but
n(0) = 0.

3.32 Connexion of discontinuity with non-uniform convergence
We shall now shew that if a series of continuous functions of z is uniformly convergent for
all values of z in a given closed domain, the sum is a continuous function of z at all points
of the domain.

For let the series be f (z) = u1(z) + u2(z) + · · · + un(z) + · · · = Sn(z) + Rn(z), where Rn(z)
is the remainder after n terms. Since the series is uniformly convergent, given any positive
number ε, we can find a corresponding integer n independent of z, such that |Rn(z)| < 1

3ε for
all values of z within the domain. Now n and ε being thus fixed, we can, on account of the
continuity of Sn(z), find a positive number η such that

|Sn(z) − Sn(z′)| < 1
3ε,

whenever |z − z′ | < η.We have then

| f (z) − f (z′)| = |Sn(z) − Sn(z′) + Rn(z) − Rn(z′)|

< |Sn(z) − Sn(z′)| + |Rn(z)| + |Rn(z′)|

< ε,

which is the condition for continuity at z.

Example 3.3.3 Shew that near x = 0 the series u1(x) + u2(x) + u3(x) + · · · , where

u1(x) = x, un(x) = x
1

2n−1 − x
1

2n−3 ,

and real values of x are concerned, is discontinuous and non-uniformly convergent.
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In this example it is convenient to take a slightly different form of the test; we shall shew
that, given an arbitrarily small number ε, it is possible to choose values of x, as small as
we please, depending on n in such a way that |Rn(x)| is not less than ε for any value of
n, no matter how large. The reader will easily see that the existence of such values of x is
inconsistent with the condition for uniformity of convergence.

The value of Sn(x) is x1/2n−1; as n tends to infinity, Sn(x) tends to +1, 0, or −1, according
as x is positive, zero, or negative. The series is therefore absolutely convergent for all values
of x, and has a discontinuity at x = 0.

In this series Rn(x) = 1− x1/(2n−1), (x > 0); however great n may be, by taking x = e−(2n−1)

(this value of x satisfies the condition |x | < δ whenever 2n − 1 > log δ−1), we can cause
this remainder to take the value 1− e−1,which is not arbitrarily small. The series is therefore
non-uniformly convergent near x = 0.

Example 3.3.4 Shew that near z = 0 the series
∞∑
n=1

−2z(1 + z)n−1

{1 + (1 + z)n−1}{1 + (1 + z)n}

is non-uniformly convergent and its sum is discontinuous.
The nth term can be written

1 − (1 + z)n

1 + (1 + z)n
−

1 − (1 + z)n−1

1 + (1 + z)n−1 ,

so the sum of the first n terms is
1 − (1 + z)n

1 + (1 + z)n
. Thus, considering real values of z greater

than −1, it is seen that the sum to infinity is +1, 0, or −1, according as z is negative, zero,
or positive. There is thus a discontinuity at z = 0. This discontinuity is explained by the fact
that the series is non-uniformly convergent near z = 0; for the remainder after n terms in

the series when z is positive is
−2

1 + (1 + z)n
, and, however great n may be, by taking z =

1
n
,

this can be made numerically greater than
2

1 + e
, which is not arbitrarily small. The series is

therefore non-uniformly convergent near z = 0.

3.33 The distinction between absolute and uniform convergence
The uniform convergence of a series in a domain does not necessitate its absolute convergence
at any points of the domain, nor conversely. Thus the series

∞∑
n=1

z2

(1+z2)n
converges absolutely,

but (near z = 0) not uniformly; while in the case of the series
∞∑
n=1

(−1)n−1

z2+n
, the series of moduli

is
∞∑
n=1

1
|z2+n |

, which is divergent, so the series is only conditionally convergent; but for all

real values of z, the terms of the series are alternately positive and negative and numerically
decreasing, so the sum of the series lies between the sum of its first n terms and of its first
(n + 1) terms, and so the remainder after n terms is numerically less than the nth term. Thus
we only need take a finite number (independent of z) of terms in order to ensure that for
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all real values of z the remainder is less than any assigned number ε, and so the series is
uniformly convergent.

Absolutely convergent series behave like series with a finite number of terms in that we
can multiply them together and transpose their terms. Uniformly convergent series behave
like series with a finite number of terms in that they are continuous if each term in the series
is continuous and (as we shall see) the series can then be integrated term by term.

3.34 A condition, due to Weierstrass, for uniform convergence
This appears in [661, p. 70]. The test given by this condition is usually described (e.g. by
Osgood, [512]) as theM-test for uniform convergence.

A sufficient, though not necessary, condition for the uniform convergence of a series may
be enunciated as follows:

If, for all values of z within a domain, the moduli of the terms of a series S = u1(z) +
u2(z) + u3(z) + · · · are respectively less than the corresponding terms in a convergent series
of positive terms T = M1 + M2 + M3 + · · · , where Mn is independent of z, then the series
S is uniformly convergent in this region. This follows from the fact that, the series T being
convergent, it is always possible to choose n so that the remainder after the first n terms of T ,
and therefore the modulus of the remainder after the first n terms of S, is less than an assigned
positive number ε; and since the value of n thus found is independent of z, it follows (§3.31)
that the series S is uniformly convergent; by §2.34, the series S also converges absolutely.

Example 3.3.5 The series

cos z +
1
22 cos2 z +

1
32 cos3 z + · · ·

is uniformly convergent for all real values of z, because the moduli of its terms are not greater
than the corresponding terms of the convergent series

1 +
1
22 +

1
32 + · · · ,

whose terms are positive constants.

3.341 Uniformity of convergence of infinite products
The definition is, effectively, that given by Osgood [513, p. 462]. The condition here given
for uniformity of convergence is also established in that work.

A convergent product
∞∏
n=1
(1 + un(z)) is said to converge uniformly in a domain of values

of z if, given ε, we can find m independent of z such that�����m+p∏
n=1

(1 + un(z)) −
m∏
n=1

(1 + un(z))

����� < ε

for all positive integral values of p.
The only condition for uniformity of convergence which will be used in this work is that

the product converges uniformly if |un(z)| < Mn where Mn is independent of z and
∞∑
n=1

Mn

converges.
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To prove the validity of the condition we observe that
∞∏
n=1
(1 + Mn) converges (§2.7), and

so we can choose m such that
m+p∏
n=1

(1 + Mn) −

m∏
n=1

(1 + Mn) < ε;

and then we have�����m+p∏
n=1

(1 + un(z)) −
m∏
n=1

(1 + un(z))

����� =
����� m∏
n=1

(1 + un(z))

[
m+p∏

n=m+1

(1 + un(z)) − 1

] �����
≤

m∏
n=1

(1 + Mn)

[
m+p∏

n=m+1

(1 + Mn) − 1

]
< ε,

and the choice of m is independent of z.

3.35 Hardy’s tests for uniform convergence
These results, which are generalizations of Abel’s theorem (§3.71, below), though well
known, do not appear to have been published before 1907 [276]. From their resemblance to
the tests of Dirichlet and Abel for convergence, Bromwich proposes to call them Dirichlet’s
and Abel’s tests respectively.

The reader will see, from §2.31, that if, in a given domain,
���� p∑
n=1

an(z)
���� ≤ k where an(z)

is real and k is finite and independent of p and z, and if fn(z) ≥ fn+1(z) and fn(z) → 0
uniformly as n→∞, then

∞∑
n=1

an(z) fn(z) converges uniformly.

Also that if k ≥ un(z) ≥ un+1(z) ≥ 0, where k is independent of z and
∞∑
n=1

an(z) converges

uniformly, then
∞∑
n=1

an(z)un(z) converges uniformly. Hint. To prove the latter, observe that m

can be found such that

am+1(z),am+1(z) + am+2(z), . . . ,am+1(z) + am+2(z) + · · · + am+p(z)

are numerically less than ε/k; and therefore (§2.301)����� m+p∑
n=m+1

an(z)un(z)

����� < εum+1(z)/k < ε,

and the choice of ε and m is independent of z.

Example 3.3.6 Shew that, if δ > 0, the series
∞∑
n=1

cos nθ
n

,

∞∑
n=1

sin nθ
n
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converge uniformly in the range δ ≤ θ ≤ 2π − δ. Obtain the corresponding result for the
series

∞∑
n=1

(−1)n cos nθ
n

,

∞∑
n=1

(−1)n sin nθ
n

,

by writing θ + π for θ.

Example 3.3.7 (Hardy) If, when a ≤ x ≤ b, |ωn(x)| < k1 and
∞∑
n=1
|ωn+1(x) − ωn(x)| < k2,

where k1, k2 are independent of n and x, and if
∞∑
n=1

an is a convergent series indepen-

dent of x, then
∞∑
n=1

anωn(x) converges uniformly when a ≤ x ≤ b. Hint. For we can

choose m, independent of x, such that
���� m+p∑
n=m+1

an

���� < ε, and then, by Corollary 2.3.2, we

have
���� m+p∑
n=m+1

anωn(x)
���� < (k1 + k2)ε.

3.4 Discussion of a particular double series
Let ω1 and ω2 be any constants whose ratio is not purely real; and let α be positive. The

series
∑
m,n

1
(z + 2mω1 + 2nω2)

α
, inwhich the summation extends over all positive and negative

integral and zero values of m and n, is of great importance in the theory of Elliptic Functions.
At each of the points z = −2mω1 − 2nω2 the series does not exist. It can be shewn that the
series converges absolutely for all other values of z if α > 2, and the convergence is uniform
for those values of z such that |z + 2mω1 + 2nω2 | ≥ δ for all integral values of m and n,
where δ is an arbitrary positive number.

Let
∑
′ denote a summation for all integral values of m and n, the term for which m = n = 0

being omitted.
Now, if m and n are not both zero, and if |z + 2mω1 + 2nω2 | ≥ δ > 0 for all integral values

of m and n, then we can find a positive number C, depending on δ but not on z, such that���� 1
(z + 2mω1 + 2nω2)

α

���� < C
���� 1
(2mω1 + 2nω2)

α

���� .
Consequently, by §3.34, the given series is absolutely and uniformly convergent in the

domain considered if
∑′ 1
|mω1 + nω2 |

α converges. (The reader will easily define uniformity

of convergence of double series (see §3.5).) To discuss the convergence of the latter series,
let

ω1 = α1 + iβ1, ω2 = α2 + iβ2,

where α1, α2, β1, β2, are real. Since ω2/ω1 is not real, α1β2 − α2β1 , 0. Then the series is∑′ 1
{(α1m + α2n)2 + (β1m + β2n)2}α/2

.
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This converges (Corollary 2.5.1) if the series

S =
∑′ 1
(m2 + n2)α/2

converges; for the quotient of corresponding terms is{
(α1 + α2µ)

2 + (β1 + β2µ)
2

1 + µ2

}α/2
,

where µ = n/m. This expression, qua function of a continuous real variable µ, can be proved
to have a positive minimum3 (not zero) since α1β2 − α2β1 , 0; and so the quotient is always
greater than a positive number K (independent of µ). We have therefore only to study the
convergence of the series S. Let

Sp,q =

p∑
m=−p

q∑′

n=−q

1
(m2 + n2)α/2

≤ 4
∞∑

m=0

∞∑′

m=0

1
(m2 + n2)α/2

.

Separating Sp,q into the terms for which m = n, m > n, and m < n, respectively, we have

1
4

Sp,q =

p∑
m=1

1
(2m2)α/2

+

p∑
m=1

m−1∑
n=0

1
(m2 + n2)α/2

+

q∑
n=1

n−1∑
m=0

1
(m2 + n2)α/2

.

But
m−1∑
n=0

1
(m2 + n2)α/2

<
m

(m2)α/2
=

1
mα−1 ; (3.1)

therefore
1
4

S ≤
∞∑

m=1

1
2α/2mα

+

∞∑
m=1

1
mα−1 +

∞∑
n=1

1
nα−1 . (3.2)

But these last series are known to be convergent if α − 1 > 1. So the series S is convergent
if α > 2. The original series is therefore absolutely and uniformly convergent, when α > 2,
for the specified range of values of z.

Example 3.4.1 (Eisenstein [193]) Prove that the series∑ 1
(m2

1 + m2
2 + · · · + m2

r )
µ
,

in which the summation extends over all positive and negative integral values and zero
values of m1,m2, . . . ,mr , except the set of simultaneous zero values, is absolutely convergent
if µ > 1

2r .
3 The reader will find no difficulty in verifying this statement; the minimum value in question is given by

K2/α = 1
2 [α1

2 + α2
2 + β1

2 + β2
2 −

{
(α1 − β2)

3 + (α2 + β1)
2}1/2 {

(α1 + β2)
2 + (α2 − β1)

2}1/2
].

.
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3.5 The concept of uniformity
There are processes other than that of summing a series in which the idea of uniformity is of
importance.

Let ε be an arbitrary positive number; and let f (z, ζ) be a function of two variables z and
ζ , which for each point z of a closed region, satisfies the inequality | f (z, ζ)| < ε when ζ
is given any one of a certain set of values which will be denoted by (ζz); the particular set
of values of course depends on the particular value of z under consideration. If a set (ζ)0
can be found such that every member of the set (ζ)0 is a member of all the sets (ζz), the
function f (z, ζ) is said to satisfy the inequality uniformly for all points z of the region. And
if a function φ(z) possesses some property, for every positive value of ε, in virtue of the
inequality | f (z, ζ)| < ε, φ(z) is then said to possess the property uniformly.

In addition to the uniformity of convergence of series and products, we shall have to
consider uniformity of convergence of integrals and also uniformity of continuity; thus a
series is uniformly convergent when |Rn(z)| < ε, ζ(= n) assuming integer values independent
of z only.

Further, a function f (z) is continuous in a closed region if, given ε, we can find a positive
number ηs such that | f (z + ζs) − f (z)| < ε whenever 0 < |ζs | < ηs and z + ζ is a point of the
region.

The function will be uniformly continuous if we can find a positive number η independent
of z, such that η < ηs and | f (z + ζ) − f (z)| < ε whenever 0 < |ζ | < η and z + ζ is a point of
the region (in this case the set (ζ)0 is the set of points whose moduli are less than η).

We shall find later (§3.61) that continuity involves uniformity of continuity; this is in
marked contradistinction to the fact that convergence does not involve uniformity of conver-
gence.

3.6 The modified Heine–Borel theorem
The following theorem is of great importance in connexion with properties of uniformity;
we give a proof for a one-dimensional closed region. (A formal proof of the theorem for a
two-dimensional region will be found in Watson [650].)

Given (i) a straight line CD and (ii) a law by which, corresponding to each point P of CD,
we can determine a closed interval I(P) of CD, P being an interior point of I(P) (except
when P is at C or D, when it is an end point). Examples of such laws associating intervals
with points will be found in §3.61 and §5.13.

Then the line CD can be divided into a finite number of closed intervals J1, J2, . . . , Jk ,
such that each interval Jr contains at least one point (not an end point) Pr , such that no point
of Jr lies outside the interval I(Pr ) associated (by means of the given law) with that point Pr .
This statement of the Heine–Borel theorem (which is sometimes called the Borel–Lebesgue
theorem) is due to Baker [41]. Hobson [316] points out that the theorem is practically given
in Goursat [254]; the ordinary form of the Heine–Borel theorem will be found in the treatise
cited.

A closed interval of the nature just described will be called a suitable interval, and will be
said to satisfy condition (A).

If CD satisfies condition (A), what is required is proved. If not, bisect CD; if either or both
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of the intervals into which CD is divided is not suitable, bisect it or them. A suitable interval
is not to be bisected; for one of the parts into which it is divided might not be suitable.

This process of bisecting intervals which are not suitable either will terminate or it will
not. If it does terminate, the theorem is proved, for CD will have been divided into suitable
intervals.

Suppose that the process does not terminate; and let an interval, which can be divided into
suitable intervals by the process of bisection just described, be said to satisfy condition (B).
Then, by hypothesis, CD does not satisfy condition (B); therefore at least one of the bisected
portions of CD does not satisfy condition (B). Take that one which does not (if neither
satisfies condition (B) take the left-hand one); bisect it and select that bisected part which
does not satisfy condition (B). This process of bisection and selection gives an unending
sequence of intervals s0, s1, s2, . . . such that:

(i) The length of sn is 2−nCD.
(ii) No point of sn+1 is outside sn.
(iii) The interval sn does not satisfy condition (A).

Let the distances of the end points of sn from C be xn, yn; then xn ≤ xn+1 < yn+1 ≤ yn.
Therefore, by §2.2, xn and yn have limits; and, by the condition (i) above, these limits are
the same, say ξ; let Q be the point whose distance from C is ξ. But, by hypothesis, there is
a number δQ such that every point of CD, whose distance from Q is less than δQ, is a point
of the associated interval I(Q). Choose n so large that 2−nCD < δQ; then Q is an internal
point or end point of sn and the distance of every point of sn from Q is less than δQ. And
therefore the interval sn satisfies condition (A), which is contrary to condition (iii) above.
The hypothesis that the process of bisecting intervals does not terminate therefore involves a
contradiction; therefore the process does terminate and the theorem is proved.

In the two-dimensional form of the theorem4 , the interval CD is replaced by a closed
two-dimensional region, the interval I(P) by a circle, or the portion of the circle which lies
inside the region, with centre P, and the interval Jr by a square with sides parallel to the
axes.

3.61 Uniformity of continuity
From the theorem just proved, it follows without difficulty that if a function f (x) of a real
variable x is continuous when a ≤ x ≤ b, then f (x) is uniformly continuous throughout the
range a ≤ x ≤ b. This result is due to Heine [288].

For let ε be an arbitrary positive number; then, in virtue of the continuity of f (x),
corresponding to any value of x, we can find a positive number δx , depending on x, such that
| f (x ′) − f (x)| < ε/4 for all values of x ′ such that |x ′ − x | < δx .

Then by §3.6 we can divide the range (a, b) into a finite number of closed intervals with the
property that in each interval there is a number x1 such that | f (x ′) − f (x1)| <

1
4ε, whenever

x ′ lies in the interval in which x1 lies.
Let δ0 be the length of the smallest of these intervals; and let ξ, ξ ′ be any two numbers

4 The reader will see that a proof may be constructed on similar lines by drawing a square circumscribing the
region and carrying out a process of dividing squares into four equal squares.
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in the closed range (a, b) such that |ξ − ξ ′ | < δ0. Then ξ, ξ ′ lie in the same or in adjacent
intervals; if they lie in adjacent intervals let ξ0 be the common end point. Then we can find
numbers x1, x2, one in each interval, such that

| f (ξ) − f (x1)| <
1
4ε, | f (ξ0) − f (x1)| <

1
4ε,

| f (ξ ′) − f (x2)| <
1
4ε, | f (ξ0) − f (x2)| <

1
4ε,

so that

| f (ξ) − f (ξ ′)| = |{ f (ξ) − f (x1)} − { f (ξ0) − f (x1)}

− { f (ξ ′) − f (x2)} + { f (ξ0) − f (x2)}| < ε.

If ξ, ξ ′ lie in the same interval, we can prove similarly that | f (ξ) − f (ξ ′)| < ε/2. In either
case we have shewn that, for any number ξ in the range, we have

| f (ξ) − f (ξ + ζ)| < ε

whenever ξ+ ζ is in the range and −δ0 < ζ < δ0 where δ0 is independent of ξ. The uniformity
of the continuity is therefore established.

Corollary 3.6.1 From the two-dimensional form of the theorem of §3.6 we can prove that
a function of a complex variable, continuous at all points of a closed region of the Argand
diagram, is uniformly continuous throughout that region.

Corollary 3.6.2 A function f (x) which is continuous throughout the range a ≤ x ≤ b
is bounded in the range; that is to say we can find a number κ independent of x such that
| f (x)| < κ for all points x in the range.

Let n be the number of parts into which the range is divided. Let a, ξ1, ξ2, . . . , ξn−1, b be their
end points; then if x be any point of the rth interval we can find numbers x1, x2, . . . , xn such
that

| f (a) − f (x1)| <
1
4ε, | f (x1) − f (ξ1)| <

1
4ε, | f (ξ1) − f (x2)| <

1
4ε,

| f (x2) − f (ξ2)| <
1
4ε, . . . , | f (xr−1) − f (x)| < 1

4ε.

Therefore | f (a) − f (x)| < 1
2rε, and so | f (x)| < | f (a)| + 1

2 nε, which is the required result,
since the right-hand side is independent of x. The corresponding theorem for functions of
complex variables is left to the reader.

3.62 A real function, of a real variable, continuous in a closed interval, attains its
upper bound

Let f (x) be a real continuous function of x when a ≤ x ≤ b. Form a section in which the
R-class consists of those numbers r such that r > f (x) for all values of x in the range (a, b),
and the L-class of all other numbers. This section defines a number α such that f (x) ≤ α,
but, if δ be any positive number, values of x in the range exist such that f (x) > α − δ. Then
α is called the upper bound of f (x); and the theorem states that a number x ′ in the range can
be found such that f (x ′) = α.

For, no matter how small δ may be, we can find values of x for which | f (x) − α |−1 > δ−1;



54 Continuous Functions and Uniform Convergence

therefore | f (x) − α |−1 is not bounded in the range; therefore (Corollary 3.6.2) it is not
continuous at some point or points of the range; but since | f (x) − α | is continuous at all
points of the range, its reciprocal is continuous at all points of the range (Example 3.2.1)
except those points at which f (x) = α; therefore f (x) = α at some point of the range; the
theorem is therefore proved.

Corollary 3.6.3 The lower bound of a continuous function may be defined in a similar
manner; and a continuous function attains its lower bound.

Corollary 3.6.4 If f (z) be a function of a complex variable continuous in a closed region,
| f (z)| attains its upper bound.

3.63 A real function, of a real variable, continuous in a closed interval, attains all
values between its upper and lower bounds

Let M , m be the upper and lower bounds of f (x); then we can find numbers x̄, x, by §3.62,
such that f (x̄) = M , f (x) = m; let µ be any number such that m < µ < M . Given any
positive number ε, we can (by §3.61) divide the range (x̄, x) into a finite number, r , of closed
intervals such that

| f (x1,r ) − f (x2,r )| < ε,

where x1,r , x2,r are any points of the rth interval; take x1,r , x2,r to be the end points of the
interval; then there is at least one of the intervals for which f (x1,r ) − µ and f (x2,r ) − µ have
opposite signs; and since

��{ f (x1,r ) − µ
}
−

{
f (x2,r ) − µ

}�� < ε, it follows that | f (x1,r )−µ| < ε.
Since we can find a number x1,r to satisfy this inequality for all values of ε, no matter how

small, the lower bound of the function | f (x) − µ| is zero; since this is a continuous function
of x, it follows from Corollary 3.6.3 that f (x) − µ vanishes for some value of x.

3.64 The fluctuation of a function of a real variable
The terminology of this section is partly that of Hobson [316] and partly that of Young [687].
Let f (x) be a real bounded function, defined when a ≤ x ≤ b. Let a ≤ x1 ≤ x2 ≤ · · · ≤

xn ≤ b.
Then | f (a)− f (x1)|+ | f (x1)− f (x2)|+ · · ·+ | f (xn)− f (b)| is called the fluctuation of f (x)

in the range (a, b) for the set of subdivisions x1, x2, . . . , xn. If the fluctuation have an upper
bound Fb

a , independent of n, for all choices of x1, x2, . . . , xn, then f (x) is said to have limited
total fluctuation in the range (a, b). Fb

a is called the total fluctuation in the range.

Example 3.6.1 If f (x) be monotonic; that is, ( f (x) − f (x ′)) /(x − x ′) is one-signed or zero
for all pairs of different values of x and x ′, in the range (a, b), its total fluctuation in the range
is | f (a) − f (b)|.

Example 3.6.2 A function with limited total fluctuation can be expressed as the difference
of two positive increasing monotonic functions. Hint. These functions may be taken to be
1
2 {F

z
a + f (x)}, 1

2 {F
z
a − f (x)}.

Example 3.6.3 If f (x) have limited total fluctuation in the range (a, b), then the limits
f (x ± 0) exist at all points in the interior of the range. [See Example 3.2.2].



3.7 Uniformity of convergence of power series 55

Example 3.6.4 If f (x),g(x) have limited total fluctuation in the range (a, b) so has f (x)g(x).
Hint. For

| f (x ′)g(x ′) − f (x)g(x) ≤ | f (x ′)| · |g(x ′) − g(x)| + |g(x)| · | f (x ′) − f (x)|, (3.3)

and so the total fluctuation of f (x)g(x) cannot exceed g · Fb
a + f · Gb

a, where f , g are the
upper bounds of | f (x)|, |g(x)|.

3.7 Uniformity of convergence of power series
Let the power series a0 + a1z + · · · + anzn + · · · converge absolutely when z = z0. Then, if
|z | ≤ |z0 |, |anzn | ≤ |anzn0 |. But since

∞∑
n=0
|anz0

n | converges, it follows, by §3.34, that
∞∑
n=0

anzn

converges uniformly with regard to the variable z when |z | ≤ |z0 |. Hence, by §3.32, a power
series is a continuous function of the variable throughout the closed region formed by the
interior and boundary of any circle concentric with the circle of convergence and of smaller
radius (§2.6).

3.71 Abel’s theorem
Abel’s proof [1] employs directly the arguments by which the theorems of §3.32 and §3.35
are proved. In the case when

∑
|an | converges, the theorem is obvious from §3.7 on continuity

up to the circle of convergence.
Let

∞∑
n=0

anzn be a power series, whose radius of convergence is unity, and let it be such that
∞∑
n=0

an converges; and let 0 ≤ x ≤ 1; then Abel’s theorem asserts that

lim
x→1

(
∞∑
n=0

anxn

)
=

∞∑
n=0

an. (3.4)

For, with the notation of §3.35, the function xn satisfies the conditions laid on un(x),
when 0 ≤ x ≤ 1; consequently f (x) =

∞∑
n=0

anxn converges uniformly throughout the range

0 ≤ x ≤ 1; it is therefore, by §3.32, a continuous function of x throughout the range, and so
lim
x→1−

f (x) = f (1), which is the theorem stated.

3.72 Abel’s theorem on multiplication of convergent series
This is a modification of the theorem of §2.53 for absolutely convergent series. This is Abel’s
original proof [1, Theorem VI]. In some textbooks a more elaborate proof, by the use of
Cesàro’s sums (§8.43), is given.

Let cn = a0bn + a1bn−1 + · · · + anb0. Then the convergence of
∞∑
n=0

an,
∞∑
n=0

bn, and
∞∑
n=0

cn is a

sufficient condition that (
∞∑
n=0

an

) (
∞∑
n=0

bn

)
=

∞∑
n=0

cn.
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For, let

A(x) =
∞∑
n=0

anxn, B(x) =
∞∑
n=0

bnxn, C(x) =
∞∑
n=0

cnxn.

Then the series for A(x), B(x), C(x) are absolutely convergent when |x | < 1 (§2.6); and
consequently, by §2.53, A(x)B(x) = C(x) when 0 < x < 1; therefore, by Example 2.2.2,

lim
x→1−

A(x) · lim
x→1−

B(x) = lim
x→1−

C(x)

provided that these three limits exist; but, by §3.71, these three limits are
∞∑
n=0

an,
∞∑
n=0

bn,
∞∑
n=0

cn;

and the theorem is proved.

3.73 Power series which vanish identically
If a convergent power series vanishes for all values of z such that |z | ≤ r1, where r1 > 0, then
all the coefficients in the power series vanish.

For, if not, let am be the first coefficient which does not vanish. Then am+am+1z+am+2z2+

· · · vanishes for all values of z (zero excepted) and converges absolutely when |z | ≤ r < r1;
hence, if s = am+1 + am+2z + · · · , we have

|s | ≤
∞∑
n=1

|am+n | rn−1,

and so we can find5 a positive number δ ≤ r such that, whenever |z | ≤ δ,��am+1z + am+2z2 + · · ·
�� ≤ 1

2 |am | ;

and then |am + s | ≥ |am | − |s | > 1
2 |am |, and so |am + s | , 0 when |z | < δ. We have therefore

arrived at a contradiction by supposing that some coefficient does not vanish. Therefore all
the coefficients vanish.

Corollary 3.7.1 Wemay equate corresponding coefficients in two power series whose sums
are equal throughout the region |z | < δ, where δ > 0.

Corollary 3.7.2 We may also equate coefficients in two power series which are proved
equal only when z is real.

3.8 Miscellaneous examples
Example 3.1 Shew that the series

∞∑
n=1

zn−1

(1 − zn)(1 − zn+1)

is equal to 1
(1−z)2 when |z | < 1 and is equal to 1

z(1−z)2 when |z | > 1. Is this fact connected with
the theory of uniform convergence?

5 It is sufficient to take δ to be the smaller of the numbers r and 1
2 |am | ÷

∞∑
n=1
|am+n | r

n−1.
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Example 3.2 Shew that the series

2 sin
1
3z
+ 4 sin

1
9z
+ · · · + 2n sin

1
3nz
+ · · ·

converges absolutely for all values of z (z = 0 excepted), but does not converge uniformly
near z = 0.

Example 3.3 (Math. Trip. 1907) If un(x) = −2(n − 1)2xe−(n−1)2x2
+ 2n2xe−n

2x2 , shew that
∞∑
n=1

un(x) does not converge uniformly near x = 0.

Example 3.4 Shew that the series 1√
1 −

1√
2 +

1√
3 − · · · is convergent, but that its square

formed by Abel multiplication,

1
1
−

2
√

2
+

(
2
√

3
+

1
2

)
−

(
2
√

4
+

2
√

6

)
− · · · ,

is divergent.

Example 3.5 (Cauchy, Cajori) If the convergent series s = 1
1r −

1
2r +

1
3r −

1
4r + · · · (with

r > 0) be multiplied by itself the terms of the product being arranged as in Abel’s result,
shew that the resulting series diverges if r ≤ 1

2 but converges to the sum s2 if r > 1
2 .

Example 3.6 (Cajori) If the two conditionally convergent series
∞∑
n=1

(−1)n+1

nr
and

∞∑
n=1

(−1)n+1

ns
,

where r and s lie between 0 and 1, be multiplied together, and the product arranged as in
Abel’s result, shew that the necessary and sufficient condition for the convergence of the
resulting series is r + s > 1.

Example 3.7 (Cajori) Shew that if the series 1− 1
3 +

1
5 −

1
7 + · · · be multiplied by itself any

number of times, the terms of the product being arranged as in Abel’s result, the resulting
series converges.

Example 3.8 Shew that the qth power of the series

α1 sin θ + α2 sin 2θ + · · · + αn sin nθ + · · ·

is convergent whenever q(1 − r) < 1, r being the greatest number satisfying the relation
αn ≤ n−r for all values of n.

Example 3.9 (Math. Trip. 1896) Shew that if θ is not equal to 0 or a multiple of 2π, and
if u0,u1,u2, . . . be a sequence such that un → 0 steadily, then the series

∑
un cos(nθ + a) is

convergent. Shew also that, if the limit of un is not zero, but un is still monotonic, the sum of
the series is oscillatory if θ/π is rational, but that, if θ/π is irrational, the sum may have any
value between certain bounds whose difference is α cosec(θ/2), where α = lim

n→∞
un.
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The Theory of Riemann Integration

4.1 The concept of integration
The reader is doubtless familiar with the idea of integration as the operation inverse to that
of differentiation; and he is equally well aware that the integral (in this sense) of a given
elementary function is not always expressible in terms of elementary functions. In order
therefore to give a definition of the integral of a function which shall be always available,
even though it is not practicable to obtain a function of which the given function is the
differential coefficient, we have recourse to the result that the integral of f (x), defined as the
(elementary) function whose differential coefficient is f (x), between the limits a and b is
the area bounded by the curve y = f (x), the axis of x and the ordinates x = a, x = b. We
proceed to frame a formal definition of integration with this idea as the starting-point.

4.11 Upper and lower integrals
The following procedure for establishing existence theorems concerning integrals is based
on that given by Goursat [255, I, Ch. IV]. The concepts of upper and lower integrals are due
to Darboux, [160, p. 64].

Let f (x) be a bounded function of x in the range (a, b). Divide the interval at the points
x1, x2, . . . , xn−1, (a ≤ x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ b). Let U, L be the bounds of f (x) in the range
(a, b), and let Ur, Lr , be the bounds of f (x) in the range (xr−1, xr ), where x0 = a, xn = b.

The reader will find a figure of great assistance in following the argument of this section.
Sn and sn represent the sums of the areas of a number of rectangles which are respectively
greater and less than the area bounded by y = f (x), x = a, x = b and y = 0, if this area be
assumed to exist.

Consider the sums

Sn = U1(x1 − a) +U2(x2 − x1) + · · · +Un(b − xn−1),

sn = L1(x1 − a) + L2(x2 − x1) + · · · + Ln(b − xn−1).

Then U(b − a) ≥ Sn ≥ sn ≥ L(b − a).
For a given n, Sn and sn are bounded functions of x1, x2, . . . , xn−1. Let their lower and upper

bounds1 respectively be S
n
, sn, so that S

n
, sn depend only on n and on the form of f (x), and

not on the particular way of dividing the interval into n parts.
1 The bounds of a function of n variables are defined in just the same manner as the bounds of a function of a
single variable (§3.62).
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Let the lower and upper bounds of these functions of n be S, s. Then Sn ≥ S, sn ≤ s. We
proceed to shew that s is at most equal to S; i.e. S ≥ s.

Let the intervals (a, x1), (x1, x2), . . . be divided into smaller intervals by new points of
subdivision, and let

a, y1, y2, . . . , yk−1, yk(= x1), yk+1, . . . , yl−1, yl(= x2), yl+1, . . . , ym−1, b

be the end points of the smaller intervals; let U ′r , L ′r be the bounds of f (x) in the interval
(yr−1, yr ). Let

Tm =

m∑
r=1

(yr − yr−1)U ′r, tm =
m∑
r=1

(yr − yr−1)L ′r .

Since U ′1, U ′2, . . . ,U
′
k do not exceed U1, it follows without difficulty that

Sn ≥ Tm ≥ tm ≥ sn.

Now consider the subdivision of (a, b) into intervals by the points x1, x2, . . . , xn−1, and
also the subdivision by a different set of points x ′1, x

′
2, . . . , x

′
n′−1. Let S′n′ , s′n′ be the sums for

the second kind of subdivision which correspond to the sums Sn, sn for the first kind of
subdivision. Take all the points x1, . . . , xn−1; x ′1, . . . , x

′
n′−1 as the points y1, y2, . . . , ym. Then

Sn ≥ Tm ≥ tm ≥ sn, and S′n′ ≥ Tm ≥ tm ≥ s′n′ .

Hence every expression of the type Sn exceeds (or at least equals) every expression of the
type s′n′; and therefore S cannot be less than s. For if S < s and s − S = 2η we could find an
Sn and an s′n′ such that Sn − S < η, s − s′n′ < η and so s′n′ > Sn, which is impossible.

The bound S is called the upper integral of f (x), and is writtenU
∫ b

a

f (x)dx; the bound s

is called the lower integral, and written L
∫ b

a

f (x)dx. If S = s, their common value is called

the integral of f (x) taken between the limits2 of integration a and b. The integral is written∫ b

a

f (x)dx.

We define
∫ a

b

f (x)dx, when a < b, to mean −
∫ b

a

f (x)dx.

Example 4.1.1 Prove that
∫ b

a

{ f (x) + φ(x)}dx =
∫ b

a

f (x)dx +
∫ b

a

φ(x)dx.

Example 4.1.2 By means of Example 4.1.1, define the integral of a continuous complex
function of a real variable.

4.12 Riemann’s condition of integrability
Riemann [558, p. 239] bases his definition of an integral on the limit of the sum occurring in
§4.13; but it is then difficult to prove the uniqueness of the limit. A more general definition

2 ‘Extreme’ values would be a more appropriate term but ‘limits’ has the sanction of custom. ‘Termini’ has
been suggested by Lamb [399, p. 207].
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of integration (which is of very great importance in the modern theory of Functions of Real
Variables) has been given by Lebesgue [417]. See also [418].

A function is said to be ‘integrable in the sense of Riemann’ if (with the notation of
§4.11) Sn and sn have a common limit (called the Riemann integral of the function) when
the number of intervals (xr−1, xr ) tends to infinity in such a way that the length of the longest
of them tends to zero.

The necessary and sufficient condition that a bounded function should be integrable is
that Sn − sn should tend to zero when the number of intervals (xr−1, xr ) tends to infinity in
such a way that the length of the longest tends to zero.

The condition is obviously necessary, for if Sn and sn have a common limit Sn − sn → 0
as n→∞. And it is sufficient; for, since Sn ≥ S ≥ s ≥ sn, it follows that if lim(Sn − sn) = 0,
then

lim Sn = lim sn = S = s.

Remark 4.1.1 A continuous function f (x) is integrable. For, given ε, we can find δ such
that | f (x ′) − f (x ′′)| < ε/(b− a) whenever |x ′ − x ′′ | < δ. Take all the intervals (xδ−1, xδ) less
than δ, and then Uδ − Lδ < ε/(b − a) and so Sn − sn < ε; therefore Sn − sn → 0 under the
circumstances specified in the condition of integrability.

Corollary 4.1.2 If Sn and sn have the same limit S for one mode of subdivision of (a, b)
into intervals of the specified kind, the limits of Sn and of sn for any other such mode of
subdivision are both S.

Example 4.1.3 The product of two integrable functions is an integrable function.

Example 4.1.4 A function which is continuous except at a finite number of ordinary
discontinuities is integrable.Hint. If f (x) have an ordinary discontinuity at c, enclose c in an
interval of length δ1; given ε, we can find δ so that | f (x ′) − f (x)| < ε when |x ′ − x | < δ and
x, x ′ are not in this interval. Then Sn − sn ≤ ε(b− a− δ1)+ kδ1, where k is the greatest value
of | f (x ′) − f (x)|, when x, x ′ lie in the interval. When δ1 → 0, k → | f (c + 0) − f (c − 0)|,
and hence lim

n→∞
(Sn − sn) = 0.

Example 4.1.5 A function with limited total fluctuation and a finite number of ordinary
discontinuities is integrable. (See Example 3.6.2.)

4.13 A general theorem on integration
Let f (x) be integrable, and let ε be any positive number. Then it is possible to choose δ so
that ����� n∑

p=1

(xp − xp−1) f (x ′p−1) −

∫ b

a

f (x)dx

����� < ε,

provided that xp − xp−1 ≤ δ, and xp−1 ≤ x ′p−1 ≤ xp.
To prove the theorem we observe that, given ε, we can choose the length of the longest
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interval, δ, so small that Sn − sn < ε. Also

Sn ≥

n∑
p=1

(xp − xp−1) f (x ′p−1) ≥ sn,

Sn ≥

∫ b

a

f (x)dx ≥ sn.

Therefore ����� n∑
p=1

(xp − xp−1) f (x ′p−1) −

∫ b

a

f (x)dx

����� ≤ Sn − sn < ε.

As an example (see Netto [484]) of the evaluation of a definite integral directly from the

theorem of this section consider
∫ X

0

dx
(1 − x2)1/2

, where X < 1. Take δ = 1
p

arcsin X and let

xs = sin sδ, (0 < sδ < 1
2π), so that

xδ+1 − xδ = 2 sin
(
δ
2

)
cos

(
δ + 1

2

)
< δ;

also let xδ ′ = sin(δ + 1
2 ) δ. Then

p∑
δ=1

xδ − xδ−1

(1 − x ′2δ−1)
1/2
=

p∑
δ=1

sin sδ − sin (δ − 1) δ
cos (δ − 1

2 ) δ

= 2p sin 1
2 δ

= arc sin X .

{
sin 1

2 δ
1
2δ

}
.

By taking p sufficiently large we can make����� ∫ X

0

dx
(1 − x2)1/2

−

p∑
δ=1

xs − xs−1

(1 − x ′2
s−1)

1/2

�����
arbitrarily small. We can also make arcsin X .

{
sin(δ/2)
δ/2 − 1

}
arbitrarily small. That is, given

an arbitrary number ε, we can make����∫ X

0

dx
(1 − x2)1/2

− arcsin X
���� < ε

by taking p sufficiently large. But the expression now under consideration does not depend
on p; and therefore it must be zero; for if not we could take ε to be less than it, and we should
have a contradiction. That is to say∫ X

0

dx
(1 − x2)1/2

= arcsin X . (4.1)

Example 4.1.6 Shew that

lim
n→∞

1
n

(
1 + cos

x
n
+ cos

2x
n
+ · · · + cos

(n − 1) x
n

)
=

sin x
x

.
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Example 4.1.7 If f (x) has ordinary discontinuities at the points a1,a2, . . . ,ak , then∫ b

a

f (x)dx = lim
{∫ a1−δ1

a

+

∫ a2−δ2

a1+ε1

+ · · · +

∫ b

ak+εk

f (x) dx
}
,

where the limit is taken by making δ1, δ2, . . . , δk , ε1, ε2, . . . , εk tend to +0, independently.

Example 4.1.8 If f (x) is integrable when a1 ≤ x ≤ b1 and if, when a1 ≤ a < b < b1, we
write ∫ b

a

f (x)dx = φ(a, b),

and if f (b + 0) exists, then

lim
δ→+0

φ(a, b + δ) − φ(a, b)
δ

= f (b + 0).

Deduce that, if f (x) is continuous at a and b,

d
da

∫ b

a

f (x)dx = − f (a),
d
db

∫ b

a

f (x)dx = f (b).

Example 4.1.9 Prove by differentiation that, if φ(x) is a continuous function of x and
dx
dt

a continuous function of t, then∫ x1

x0

φ(x)dx =
∫ t1

t0

φ(x)
dx
dt

dt .

Example 4.1.10 If f ′(x) and φ′(x) are continuous when a ≤ x ≤ b, shew from Exam-
ple 4.1.8 that ∫ b

a

f ′(x)φ(x)dx +
∫ b

a

φ′(x) f (x)dx = f (b)φ(b) − f (a)φ(a).

Example 4.1.11 If f (x) is integrable in the range (a, c) and a ≤ b ≤ c, shew that
∫ b

a

f (x)dx

is a continuous function of b.

4.14 Mean-value theorems
The two following general theorems are frequently useful.
(I) Let U and L be the upper and lower bounds of the integrable function f (x) in the range
(a, b). Then from the definition of an integral it is obvious that∫ b

a

(U − f (x)) dx,
∫ b

a

( f (x) − L) dx

are not negative; and so

U(b − a) ≥
∫ b

a

f (x)dx ≥ L(b − a).

This is known as the First Mean-Value Theorem.
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If f (x) is continuous we can find a number ξ such that a ≤ ξ ≤ b and such that f (ξ) has
any given value lying between U and L (§3.63). Therefore we can find ξ such that∫ b

a

f (x)dx = (b − a) f (ξ).

If F(x) has a continuous differential coefficient F ′(x) in the range (a, b), we have, on writing
F ′(x) for f (x),

F(b) − F(a) = (b − a)F ′(ξ)

for some value of ξ such that a ≤ ξ ≤ b.

Example 4.1.12 If f (x) is continuous and φ(x) ≥ 0, shew that ξ can be found such that∫ b

a

f (x)φ(x) dx = f (ξ)
∫ b

a

φ(x) dx.

(II) Let f (x) and φ(x) be integrable in the range (a, b) and let φ(x) be a positive decreasing
function of x. Then Bonnet’s form of the Second Mean-Value Theorem [83] is that a number
ξ exists such that a ≤ ξ ≤ b, and∫ b

a

f (x)φ(x) dx = φ(a)
∫ ξ

a

f (x) dx.

The proof given is a modified form of an investigation due to Hölder [326].
For, with the notation of §4.1 and §4.13, consider the sum

S =
p∑

s=1

(xs − xs−1) f (xs−1)φ(xs−1).

Writing (xs − xs−1) f (xs−1) = as−1, φ(xs−1) = φs−1, a0 + a1 + · · · + as = bs,we have

S =
p−1∑
s=1

bs−1(φs−1 − φs) + bp−1φp−1.

Each term in the summation is increased by writing b̄ for bs−1 and decreased by writing b
for bs−1, if b̄, and b be the greatest and least of b0, b1, . . . , bp−1; and so bφ0 ≤ S ≤ b̄φ0.

Therefore S lies between the greatest and least of the sums φ(x0)
m∑
s=1
(xs − xs−1) f (xs−1) where

m = 1,2,3, . . . , p. But, given ε, we can find δ such that, when xs − xs−1 < δ,����� p∑
s=1

(xs − xs−1) f (xs−1)φ(xs−1) −

∫ xp

x0

f (x)φ(x) dx

����� < ε,����� φ(x0)

m∑
s=1

(xs − xs−1) f (xs−1) − φ(x0)

∫ xm

x0

f (x) dx

����� < ε,

and so, writing a, b for x0, xp, we find that
∫ b

a

f (x)φ(x) dx lies between the upper and

lower bounds of φ(a)
∫ ξ1

a

f (x) dx ± 2ε, where ξ1 may take all values between a and b. (By
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Example 4.1.11, since f (x) is bounded,
∫ ξ1

a

f (x) dx is a continuous function of ξ1.) Let U

and L be the upper and lower bounds of φ(a)
∫ ξ1

a

f (x) dx. ThenU+2ε ≥
∫ b

a

f (x)φ(x)dx ≥

L − 2ε for all positive values of ε; therefore

U ≥
∫ b

a

f (x)φ(x) dx ≥ L.

Since φ(a)
∫ ξ1

a

f (x) dx qua function of ξ1 takes all values between its upper and lower

bounds, there is some value ξ, say, of ξ1 for which it is equal to
∫ b

a

f (x)φ(x) dx. This proves

the Second Mean-Value Theorem.

Example 4.1.13 (Du Bois Reymond) By writing |φ(x) − φ(b)| in place of φ(x) in Bonnet’s
form of the mean-value theorem, shew that if φ(x) is a monotonic function, then a number ξ
exists such that a ≤ ξ ≤ b and∫ b

a

f (x)φ(x)dx = φ(a)
∫ ξ

a

f (x)dx + φ(b)
∫ b

ξ

f (x)dx.

4.2 Differentiation of integrals containing a parameter
The equation

d
dα

∫ b

a

f (x, α)dx =
∫ b

a

∂ f
∂α

dx (4.2)

is true if f (x, α) possesses a Riemann integral with respect to x and fα, which equals
∂ f
∂α

, is
a continuous function of the variables x and α. This formula was given by Leibniz, without
specifying the restrictions laid on f (x,a).

Note φ(x, y) is defined to be a continuous function of both variables if, given ε, we can find
δ such that |φ(x ′, y′)−φ(x, y)| < ε whenever {(x ′− x)2+ (y′− y)2}1/2 < δ. It can be shewn by
§3.6 that if φ(x, y) is a continuous function of both variables at all points of a closed region
in a Cartesian diagram, it is uniformly continuous throughout the region (the proof is almost
identical with that of §3.61). It should be noticed that, if φ(x, y) is a continuous function of
each variable, it is not necessarily a continuous function of both; as an example take

φ(x, y) =
(x + y)2

x2 + y2 , φ(0,0) = 1;

this is a continuous function of x and of y at (0, 0), but not of both x and y.

For
d

dα

∫ b

a

f (x, α) dx = lim
h→0

∫ b

a

f (x, α + h) − f (x, α)
h

dx (4.3)

if this limit exists. But, by the first mean-value theorem, since fα is a continuous function of
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α, the second integrand is fa(x, α + θh), where 0 ≤ θ ≤ 1. But, for any given ε, a number δ
independent of x exists (since the continuity of fα is uniform with respect to the variable x)
such that

| fa(x, α′) − fa(x, α) | < ε/(b − a),

whenever | α′ − α | < δ. It is obvious that it would have been sufficient to assume that fα
had a Riemann integral and was a continuous function of a (the continuity being uniform
with respect to x), instead of assuming that fa was a continuous function of both variables.
This is actually done by Hobson [315, p. 599].

Taking |h| < δ we see that |θh| < δ, and so whenever |h| < δ,����∫ b

a

f (x, α + h) − f (x, α)
h

dx −
∫ b

a

fα(x, α) dx
����

≤

∫ b

a

| fα(x, α + θh) − fα(x, α)| dx < ε.

Therefore by the definition of a limit of a function (§3.2),

lim
h→0

∫ b

a

f (x, α + h) − f (x, α)
h

dx

exists and is equal to
∫ b

a

fα dx.

Example 4.2.1 If a, b be not constants but functions of α with continuous differential
coefficients, shew that

d
dα

∫ b

a

f (x, α)dx = f (b, α)
db
dα
− f (a, α)

da
dα
+

∫ b

a

∂ f
∂α

dx.

Example 4.2.2 If f (x, α) is a continuous function of both variables,
∫ b

a

f (x, α)dx is a

continuous functions of α.

4.3 Double integrals and repeated integrals
Let f (x, y) be a function which is continuous with regard to both of the variables x and y,
when a ≤ x ≤ b, α ≤ y ≤ β. By Example 4.2.2 it is clear that∫ b

a

{∫ β

α

f (x, y) dy
}

dx,
∫ β

α

{∫ b

a

f (x, y) dx
}

dy

both exist. These are called repeated integrals.
Also, as in §3.62, f (x, y), being a continuous function of both variables, attains its upper

and lower bounds.
Consider the range of values of x and y to be the points inside and on a rectangle in a

Cartesian diagram; divide it into nν rectangles by lines parallel to the axes. Let Um,µ, Lm,µ



66 The Theory of Riemann Integration

be the upper and lower bounds of f (x, y) in one of the smaller rectangles whose area is, say,
Am,µ; and let

n∑
m=1

ν∑
µ=1

Um,µAm,µ = Sn,v,

n∑
m=1

ν∑
µ=1

Lm,µAm,µ = Sn,ν .

Then Sn,ν > sn,ν, and, as in §4.11, we can find numbers S
n,ν

, s̄n,ν, which are the lower and
upper bounds of Sn,ν, sn,ν respectively, the values of S

n,v
, s̄n,v depending only on the number

of the rectangles and not on their shapes; and S
n,ν
≥ s̄n,ν. We then find the lower and upper

bounds (S and s) respectively of S
n,ν

, s̄n,ν qua functions of n and ν; and Sn,ν ≥ S ≥ s ≥ sn,ν,
as in §4.11.

Also, from the uniformity of the continuity of f (x, y), given ε, we can find δ such that
Um,µ − Lm,µ < ε, (for all values of m and µ) whenever the sides of all the small rectangles
are less than the number δ which depends only on the form of the function f (x, y) and on ε.

And then Sn,ν − sn,ν < ε(b − a)(β − α), and so S − s < ε(b − a)(β − α). But S and s are
independent of ε, and so S = s.

The common value of S and s is called the double integral of f (x, y) and is written∫ b

a

∫ β

α

f (x, y) dy dx.

It is easy to shew that the repeated integrals and the double integral are all equal when
f (x, y) is a continuous function of both variables. For let Ym, Λm be the upper and lower
bounds of ∫ β

α

f (x, y) dy

as x varies between xm−1 and xm.
Then

n∑
m=1

Ym(xm − xm−1) ≥

∫ b

a

{∫ β

a

f (x, y) dy
}

dx ≥
n∑

m=1

Λm(xm − xm−1).

But the upper bound of f (x, y) in the rectangle Am,µ is not less than the upper bound of
f (x, y) on that portion of the line x = ξ which lies in the rectangle, therefore

ν∑
µ=1

Um,µ(yµ − yµ−1 ≥ Ym ≥ Λm ≥

ν∑
µ=1

Lm,µ(yµ − yµ−1).

Multiplying these last inequalities by xm − xm−1, using the preceding inequalities and sum-
ming, we get

n∑
m=1

ν∑
µ=1

Um,µAm,µ ≥

∫ b

a

{∫ β

a

f (x, y)dy
}

dx ≥
n∑

m=1

ν∑
µ=1

Lm,µAm,µ;

and so, proceeding to the limit,

S ≥
∫ b

a

{∫ β

a

f (x, y)dy
}

dx ≥ S.
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But S =
∫ b

a

∫ β

a

f (x, y) dx dy, and so one of the repeated integrals is equal to the double

integral. Similarly the other repeated integral is equal to the double integral.

Corollary 4.3.1 If f (x, y) be a continuous function of both variables,∫ 1

0
dx

{∫ 1−x

0
f (x, y)dy

}
=

∫ 1

0
dy

{∫ 1−ν

0
f (x, y)dx

}
.

4.4 Infinite integrals

If lim
b→∞

(∫ b

a

f (x)dx
)
exists, we denote it by

∫ ∞

a

f (x)dx; and the limit in question is called

an infinite integral. This phrase, due to Hardy [274, p. 16], suggests the analogy between an
infinite integral and an infinite series.

Example 4.4.1 1.
∫ ∞

a

dx
x2 = lim

b→∞

(
1
a
−

1
b

)
=

1
a
.

2.
∫ ∞

0
x dx

(x2 + a2)2
= lim

b→∞

(
−

1
2(b2 + a2)

+
1

2a2

)
=

1
2a2 .

3. (Euler). By integrating by parts, shew that
∫ ∞

0
tne−tdt = n!.

Similarly we define
∫ b

−∞

f (x) dx to mean lim
a→−∞

∫ b

a

f (x) dx; if this limit exists; and∫ ∞

−∞

f (x) dx is defined as
∫ a

−∞

f (x) dx +
∫ ∞

a

f (x) dx. In this last definition the choice of

a is a matter of indifference.

4.41 Infinite integrals of continuous functions. Conditions for convergence

Anecessary and sufficient condition for the convergence of
∫ ∞

a

f (x)dx is that, corresponding

to any positive number ε, a positive number X should exist such that
���� ∫ x′′

x′
f (x)dx

���� < ε

whenever x ′′ ≥ x ′ ≥ X .
The condition is obviously necessary; to prove that it is sufficient, suppose it is satisfied;

then, if n ≥ X−a and n be a positive integer and Sn =

∫ a+n

a

f (x)dx, we have |Sn+p−Sn | < ε.

Hence, by §2.22, Sn tends to a limit, S; and then, if ξ > a + n,���� S −
∫ ξ

a

f (x)dx
���� ≤ ���� S −

∫ a+n

a

f (x)dx
���� + ���� ∫ ξ

a+n

f (x)dx
����

< 2ε;

and so lim
ξ→∞

∫ ξ

a

f (x) dx = S; so that the condition is sufficient.
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4.42 Uniformity of convergence of an infinite integral

The integral
∫ ∞

a

f (x, α) dx is said to converge uniformly with regard to α in a given domain

of values of α if, corresponding to an arbitrary positive number ε, there exists a number X
independent of α such that ���� ∫ ∞

x′
f (x, α) dx

���� < ε

for all values of α in the domain and all values of x ′ ≥ X .
The reader will see without difficulty on comparing §2.22 and §3.31 with §4.41 that a

necessary and sufficient condition that
∫ ∞

a

f (x, α) dx should converge uniformly in a given

domain is that, corresponding to any positive number ε, there exists a number X independent
of α such that ���� ∫ x′′

x′
f (x, α) dx

���� < ε

for all values of α in the domain whenever x ′′ ≥ x ′ ≥ X .

4.43 Tests for the convergence of an infinite integral
There are conditions for the convergence of an infinite integral analogous to those given
in Chapter 2 for the convergence of an infinite series. The following tests are of special
importance.

(I) Absolutely convergent integrals. It may be shewn that
∫ ∞

a

f (x)dx certainly converges if∫ ∞

a

| f (x)|dx does so; and the former integral is then said to be absolutely convergent. The

proof is similar to that of §2.32.

Example 4.4.2 The comparison test. If | f (x)| ≤ g(x) and
∫ ∞

a

g(x) dx converges, then∫ ∞

a

f (x) dx converges absolutely.

Note It was observed by Dirichlet [175] (with the example f (x) = sin x2) that it is not

necessary for the convergence of
∫ ∞

a

f (x) dx that f (x) → 0 as x → ∞: the reader may see

this by considering the function

f (x) =

{
0 (n ≤ x ≤ n + 1 − (n + 1)−2),

(n + 1)4(n + 1 − x)
[
x − (n + 1) + (n + 1)−2

]
(n + 1 − (n + 1)−2 ≤ x ≤ n + 1,

where n takes all integral values.

For
∫ ξ

0
f (x) dx increases with ξ and

∫ n+1

n

f (x) dx =
1
6
(n + 1)−2; whence it follows with-

out difficulty that
∫ ∞

a

f (x) dx converges. But when x = n + 1 − 1
2 (n + 1)−2, f (x) = 1

4 ; and

so f (x) does not tend to zero.
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(II) The Maclaurin–Cauchy test.3 If f (x) > 0 and f (x) → 0 steadily,
∫ ∞

1
f (x) dx and

∞∑
n=1

f (n) converge or diverge together.

For f (m) ≥
∫ m+1

m

f (x) dx ≥ f (m + 1), and so

n∑
m=1

f (m) ≥
∫ n+1

1
f (x) dx ≥

n+1∑
m=2

f (m).

Thefirst inequality shews that, if the series converges, the increasing sequence
∫ n+1

1
f (x)dx

converges (§2.2) when n→∞ through integral values, and hence it follows without difficulty

that
∫ x′

1
f (x)dx converges when x ′ → ∞; also if the integral diverges, so does the series.

The second shews that if the series diverges so does the integral, and if the integral converges
so does the series (§2.2).

(III) Bertrand’s test [67, p. 38–39]. If f (x) = O(xλ−1),

∫ ∞

n

f (x) dx converges when λ < 0;

and if f (x) = O(x−1{log x}λ−1),
∫ ∞

a

f (x) dx converges when λ < 0.

These results are particular cases of the comparison test given in (I).

(IV) Chartier’s test [143] for integrals involving periodic functions.4

If f (x) → 0 steadily as x → ∞ and if
����∫ x

a

φ(x) dx
���� is bounded as x → ∞, then∫ ∞

a

f (x)φ(x) dx is convergent.

For if the upper bound of
���� ∫ x

a

φ(x) dx
���� be A, we can choose X such that f (x) < ε/2A

when x ≥ X; and then by the second mean-value theorem, when x ′′ ≥ x ′ ≥ X , we have����∫ x′′

x′
f (x) φ(x) dx

���� = ���� f (x ′)
∫ ξ

x′
φ(x) dx

���� = f (x ′)
���� ∫ ξ

a

φ(x) dx −
∫ x′

a

φ(x) dx
����

≤ 2A f (x ′) < ε,

which is the condition for convergence.

Example 4.4.3
∫ ∞

0

sin x
x

dx converges.

Example 4.4.4
∫ ∞

0

sin(x3 − ax)
x

dx converges.

3 Maclaurin [449, vol. I, p. 289–290] makes a verbal statement practically equivalent to this result. Cauchy’s
result is given in [129, v. 7, p. 269].

4 It is remarkable that this test for conditionally convergent integrals should have been given some years before
formal definitions of absolutely convergent integrals.
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4.431 Tests for uniformity of convergence of an infinite integral.
The results of this section and of §4.44 are due to de la Vallée Poussin [637].
(I)De la Vallée Poussin’s test. This name is due to Osgood. The reader will easily see by using

the reasoning of §3.34 that
∫ ∞

a

f (x, α) dx converges uniformly with regard to α in a domain

of values of α if | f (x, α)| < µ(x), where µ(x) is independent of α and
∫ ∞

a

µ(x) dx converges.

For, choosing X so that
∫ x′′

x′
µ(x) dx < ε when x ′′ ≥ x ′ ≥ X , we have

���� ∫ x′′

x′
f (x, α) dx

���� < ε,

and the choice of X is independent of α.

Example 4.4.5
∫ ∞

0
xa−1e−x dx converges uniformly in any interval (A,B) such that 1 ≤

A ≤ B.

(II) The method of change of variable. This may be illustrated by an example. Consider∫ x

0

sin ax
x

dx where a is real. We have∫ x′′

x′

sin ax
x

dx =
∫ ax′′

ax′

sin y

y
dy.

Since
∫ ∞

0

sin y

y
dy converges we can findY such that

���� ∫ ν′′

ν′

sin y

y
dy

���� < εwhen y′′ ≥ y′ ≥ Y .

So
���� ∫ x′′

x′

sin ax
x

dx
���� < ε whenever |ax ′ | ≥ Y ; if |a| ≥ δ > 0, we therefore get���� ∫ x′′

x′

sin ax
x

dx
���� < ε

when x ′′ ≥ x ′ ≥ X = Y/δ; and this choice of X is independent of a. So the convergence is
uniform when a ≥ δ > 0 and when a ≤ −δ < 0.

Example 4.4.6 (de la Vallée Poussin) Prove that
∫ ∞

1

{∫ a

0
sin(b2x3) db

}
dx is uniformly

convergent in any range of real values of a.

Write b2x3 = z, and observe that

����� ∫0

a2x3

z−1/2 sin z dz

����� does not exceed a constant inde-

pendent of a and x since
∫ ∞

0
z−1/2 sin z dz converges.

(III) The method of integration by parts. If
∫

f (x,a) dx = φ(x,a) +
∫

χ(x,a) dx and if

φ(x,a) → 0 uniformly as x → ∞ and
∫ ∞

a

χ(x,a) dx converges uniformly with regard to a,

then obviously
∫ ∞

a

f (x,a) dx converges uniformly with regard to a.

(IV) The method of decomposition.
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Example 4.4.7∫ ∞

0

cos x sin ax
x

dx =
1
2

∫ ∞

0

sin(a + 1)x
x

dx +
1
2

∫ ∞

0

sin(a − 1)x
x

dx;

both of the latter integrals converge uniformly in any closed domain of real values of a from
which the points a = ±1 are excluded.

4.44 Theorems concerning uniformly convergent infinite integrals

(I) Let
∫ ∞

a

f (x, α) dx converge uniformly when a lies in a domain S. Then, if f (x, α) is

a continuous function of both variables when x ≥ a and a lies in S,
∫ ∞

a

f (x,a) dx is a

continuous function of α. This result is due to Stokes. His statement is that the integral is a
continuous function of a if it does not ‘converge infinitely slowly’.

For, given ε, we can find X independent of α, such that
���� ∫ ∞

ξ

f (x,a) dx
���� < ε whenever

ξ ≥ X . Also we can find δ independent of x and a, such that

| f (x, α) − f (x, α′)| < ε/(X − a)

whenever |α − α′ | < δ. That is to say, given ε, we can find δ independent of a, such that���� ∫ ∞

a

f (x, α′) dx −
∫ ∞

a

f (x, α) dx
���� ≤ ���� ∫ X

a

{ f (x, α) − f (x, α′)} dx
����

+

���� ∫ ∞

X

f (x, α′) dx
���� + ���� ∫ ∞

X

f (x, α) dx
����

< 3ε,

whenever |α′ − α | < δ; and this is the condition for continuity.
(II) If f (x, α) satisfies the same conditions as in (I), and if α lies in S when A ≤ α ≤ B, then∫ B

A

{∫ ∞

a

f (x, α) dx
}

dα =
∫ ∞

a

{∫ B

A

f (x, α) dα
}

dx.

For, by §4.3, ∫ B

A

{∫ ξ

a

f (x, α) dx
}

dα =
∫ ξ

a

{∫ B

A

f (x, α) dα
}

dx.

Therefore����∫ B

A

{∫ ∞

a

f (x, α) dx
}

dα −
∫ ξ

a

{∫ B

A

f (x, α) dα
}

dx
����

=

����∫ B

A

{∫ ξ

∞

f (x, α) dx
}

dα
���� < ∫ B

A

ε dα < ε (B − A) ,

for all sufficiently large values of ξ.
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But, from §2.1 and §4.41, this is the condition that

lim
ξ→∞

∫ ξ

a

{∫ B

A

f (x, α) dα
}

dx

should exist, and be equal to ∫ B

A

{∫ ∞

a

f (x, α) dx
}

dα.

Corollary 4.4.1 The equation
d
da

∫ ∞

a

φ (x,a) dx =
∫ ∞

a

∂φ

∂a
dx is true if the integral on

the right converges uniformly and the integrand is a continuous function of both variables,
when x ≥ a and a lies in a domain S, and if the integral on the left is convergent.

Let A be a point of S, and let
∂φ

∂a
= f (x,a), so that, by Example 4.1.8,∫ a

A

f (x,a) da = φ (x,a) − φ (x, A) .

Then
∫ x

a

{∫ a

A

f (x,a) da
}

dx converges, that is
∫ ∞

a

{φ (x,a) − φ (x, A)} dx converges,

and therefore, since
∫ ∞

a

φ(x,a) dx converges, so does
∫ ∞

a

φ (x, A) dx.

Then

d
da

[∫ ∞

a

φ(x,a)dx
]
=

d
da

[∫ ∞

a

{φ(x,a) − φ(x, A)}dx
]

=
d
da

[∫ ∞

a

{∫ a

A

f (x,a)da
}

dx
]

=
d
da

∫ a

A

{∫ ∞

a

f (x,a)dx
}

da

=

∫ ∞

a

f (x,a) dx =
∫ ∞

a

∂φ

∂a
dx,

which is the required result; the change of the order of the integrations has been justified
above, and the differentiation of

∫ a

A
with regard to a is justified by §4.44 (I) andExample 4.1.8.

4.5 Improper integrals. Principal values

If | f (x)| → ∞ as x → a + 0, then lim
δ→+0

∫ b

a+δ

f (x) dx may exist, and is written simply∫ b

a

f (x)dx; this limit is called an improper integral. If | f (x)| → ∞ as x → c, where

a < c < b, then

lim
δ→+0

∫ c−δ

a

f (x)dx + lim
δ′→+0

∫ b

c+δ′
f (x)dx
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may exist; this is also written
∫ b

a

f (x)dx, and is also called an improper integral; it might

however happen that neither of these limits exists when δ, δ′→ 0 independently, but

lim
δ→+0

{∫ c−δ

a

f (x)dx +
∫ b

c+δ

f (x)dx
}

exists; this is called Cauchy’s principal value of
∫ b

a

f (x)dx and is written for brevity

P
∫ b

a

f (x)dx.

Results similar to those of §4.4–§4.44 may be obtained for improper integrals. But all
that is required in practice is (i) the idea of absolute convergence, (ii) the analogue of
Bertrand’s test for convergence, (iii) the analogue of de la Vallée Poussin’s test for uniformity
of convergence. The construction of these is left to the reader, as is also the consideration of
integrals in which the integrand has an infinite limit at more than one point of the range of
integration. For a detailed discussion of improper integrals, the reader is referred either to
Hobson [315] or to Pierpont [519]. The connexion between infinite integrals and improper
integrals is exhibited by Bromwich [102, §164].

Example 4.5.1 1.
∫ π

0
x−1/2 cos x dx is an improper integral.

2.
∫ 1

0
xλ−1(1− x)µ−1 dx is an improper integral if 0 < λ < 1, 0 < µ < 1. It does not converge

for negative values of λ and µ.

3. P
∫ 2

0

xα−1

1 − x
dx is the principal value of an improper integral when 0 < α < 1.

4.51 The inversion of the order of integration of a certain repeated integral
General conditions for the legitimacy of inverting the order of integration when the integrand
is not continuous are difficult to obtain. The following is a good example of the difficulties
to be overcome in inverting the order of integration in a repeated improper integral.

Let f (x, y) be a continuous function of both variables, and let 0 < λ, µ, ν ≤ 1; then∫ 1

0
dx

{∫ 1−x

0
xλ−1yµ−1(1 − x − y)ν−1 f (x, y) dy

}
=

∫ 1

0
dy

{∫ 1−ν

0
xλ−1yµ−1(1 − x − y)ν−1 f (x, y) dx

}
.

This integral, which was first employed by Dirichlet, is of importance in the theory of integral
equations; the investigation which we shall give is due to W. A. Hurwitz [329, p. 183].

Let xλ−1yµ−1(1 − x − y)ν−1 f (x, y) = φ(x, y); and let M be the upper bound of | f (x, y)|.
Let δ be any positive number less than 1/δ. Draw the triangle whose sides are x = δ, y = δ,
x + y = 1 − δ; at all points on and inside this triangle φ(x, y) is continuous, and hence, by
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Corollary 4.3.1∫ 1−2δ

δ

dx
{∫ 1−x−δ

δ

φ(x, y)dy
}
=

∫ 1−2δ

δ

dy
{∫ 1−y−δ

δ

φ(x, y)dx
}
.

Now∫ 1−2δ

δ

dx
{∫ 1−x

0
φ(x, y) dy

}
=

∫ 1−2δ

δ

dx
{∫ 1−x−δ

δ

φ(x, y) dy
}

+

∫ 1−2δ

δ

I1 dx +
∫ 1−2δ

δ

I2 dx,

where I1 =

∫ δ

0
φ(x, y) dy, and I2 =

∫ 1−x

1−x−δ
φ(x, y) dy. But

|I1 | ≤

∫ δ

0
M xλ−1yµ−1(1 − x − y)ν−1dy ≤ M xλ−1(1 − x − δ)ν−1

∫ δ

0
yµ−1dy,

since (1 − x − y)ν−1 ≤ (1 − x − δ)ν−1. Therefore, writing x = (1 − δ)x1, and since∫ 1

0
xλ−1

1 (1 − x1)
ν−1dx1 = B(λ, ν) exists if λ > 0, ν > 0 (see (2) of Example 4.5.1), we

have ����∫ 1−2δ

δ

I1 dx
���� ≤ Mδµµ−1

∫ 1−δ

0
xλ−1(1 − x − δ)ν−1 dx

≤ Mδµµ−1(1 − δ)λ+ν−1
∫ 1

0
xλ−1

1 (1 − x1)
ν−1 dx1

< Mδµµ−1(1 − δ)λ+ν−1B(λ, ν) → 0 as δ→ 0.

The reader will prove similarly that I2 → 0 as δ→ 0.
Hence5 ∫ 1

0
dx

{∫ 1−x

0
φ(x, y) dy

}
= lim

δ→0

∫ 1−2δ

δ

dx
{∫ 1−x

0
φ(x, y) dy

}
= lim

δ→0

∫ 1−2δ

δ

dx
{∫ 1−x−δ

δ

φ(x, y) dy
}

= lim
δ→0

∫ 1−2δ

δ

dy
{∫ 1−y−δ

δ

φ(x, y) dx
}
,

by what has been already proved; but, by a precisely similar piece of work, the last integral is∫ 1

0
dy

{∫ 1−v

0
φ(x, y) dx

}
.

5 The repeated integral exists, and is, in fact, absolutely convergent; for∫ 1−x

0
|xλ−1yµ−1(1 − x − y)ν−1 f (x, y) dy | < Mxλ−1(1 − x)µ+ν−1

∫ 1

0
δµ−1(1 − δ)ν−1 ds,

writing y = (1 − x)δ; and
∫ 1

0
Mxλ−1(1 − x)µ+ν−1 dx ·

∫ 1

0
δµ−1(1 − δ)ν−1 dδ exists. And since the integral

exists, its value which is lim
δ,ε→0

∫ 1−ε

δ

may be written lim
δ→0

∫ 1−2δ

δ

.
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We have consequently proved the theorem in question.

Corollary 4.5.1 Writing ξ = a + (b − a)x, η = b − (b − a)y, we see that, if φ(ξ, η) is
continuous, ∫ b

a

dξ
{∫ b

ξ

(ξ − a)λ−1(b − η)µ−1(η − ξ)ν−1φ(ξ, η) dη
}

=

∫ b

a

dη
{∫ η

α

(ξ − a)λ−1(b − η)µ−1(η − ξ)ν−1φ(ξ, η) dξ
}
.

This is called Dirichlet’s formula.

Note What are now called infinite and improper integrals were defined by Cauchy [124],
though the idea of infinite integrals seems to date from Maclaurin [449]. The test for con-
vergence was employed by Chartier [143]. Stokes (1847) distinguished between ‘essentially’
(absolutely) and non-essentially convergent integrals though he did not give a formal defi-
nition. Such a definition was given by Dirichlet [179] in 1854 and 1858 (see [179, p. 39]).
In the early part of the nineteenth century improper integrals received more attention than
infinite integrals, probably because it was not fully realised that an infinite integral is really
the limit of an integral.

4.6 Complex integration
A treatment of complex integration based on a different set of ideas and not making so many
assumptions concerning the curve AB will be found in Watson [650].

Integrationwith regard to a real variable x may be regarded as integration along a particular
path (namely part of the real axis) in the Argand diagram. Let f (z) (= P + iQ), be a function
of a complex variable z, which is continuous along a simple curve AB in the Argand diagram.

Let the equations of the curve be x = x(t), y = y(t) (a ≤ t ≤ b). Let x(a) + iy(a) = z0,
x(b) + iy(b) = Z .
Then if x(t), y(t) have continuous differential coefficients6 (see Example 4.1.9) we define∫ Z

z0

f (z) dz taken along the simple curve AB to mean∫ b

a

(P + iQ)
(

dx
dt
+ i

dy
dt

)
dt .

The ‘length’ of the curve AB will be defined as
∫ b

a

√(
dx
dt

)2

+

(
dy
dt

)2

dt. It obviously

exists if
dx
dt
,

dy
dt

are continuous; we have thus reduced the discussion of a complex integral
to the discussion of four real integrals, viz.∫ b

a

P
dx
dt

dt,
∫ b

a

P
dy
dt

dt,
∫ b

a

Q
dx
dt

dt,
∫ b

a

Q
dy
dt

dt .

6 This assumption will be made throughout the subsequent work.
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By Example 4.1.9, this definition is consistent with the definition of an integral when AB
happens to be part of the real axis.

Example 4.6.1
∫ Z

z0

f (z) dz = −
∫ z0

Z

f (z) dz, the paths of integration being the same (but

in opposite directions) in each integral.∫ Z

z0

dz = Z − z0,

∫ Z

z0

z dz =
∫ b

a

{
x

dx
dt
− y

dy
dt
+ i

(
x

dy
dt
+ y

dx
dt

)}
dt

=

[
1
2

x2 −
1
2
y2 + ixy

] t=b
t=a

=
1
2
(Z2 − z2

0).

4.61 The fundamental theorem of complex integration
From §4.13, the reader will easily deduce the following theorem:

Let a sequence of points be taken on a simple curve z0Z; and let the first n of them,
rearranged in order of magnitude of their parameters, be called

z(n)1 , z(n)2 , . . . , z(n)n (z(n)0 = z0, z(n)
n+1 = Z);

let their parameters be t(n)1 , t(n)2 , . . . , t(n)n , and let the sequence be such that, given any number
δ, we can find N such that, when n > N , t(n)

r+1 − t(n)r < δ, for r = 0,1,2, . . . ,n; let ζ (n)r be any
point whose parameter lies between t(n)r and t(n)

r+1; then we can make����� n∑
r=0

(Zr+1(n) − Zr (n)) f (ζ (n)r ) −

∫ Z

z0

f (z) dz

�����
arbitrarily small by taking n sufficiently large.

4.62 An upper limit to the value of a complex integral
Let M be the upper bound of the continuous function | f (z)|. Then���� ∫ Z

z0

f (z) dz
���� ≤ ∫ b

a

| f (z)|
����( dx

dt
+ i

dy
dt

)���� dt

≤

∫ b

a

M

{(
dx
dt

)2

+

(
dy
dt

)2
}1/2

dt

≤ ML,

where L is the ‘length’ of the curve z0Z . That is to say,
���� ∫ Z

z0

f (z) dz
���� cannot exceed ML.
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4.7 Integration of infinite series
We shall now shew that if S(z) = u1(z) + u2(z) + · · · is a uniformly convergent series of
continuous functions of z, for values of z contained within some region, then the series∫

C

u1(z)dz +
∫
C

u2(z)dz + · · · ,

(where all the integrals are taken along some path C in the region) is convergent, and has for
sum

∫
C

S(z) dz.
For, writing

S(z) = u1(z) + u2(z) + · · · + un(z) + Rn(z),

we have ∫
C

S(z)dz =
∫
C

u1(z)dz + · · · +
∫
C

un(z) dz +
∫
C

Rn(z)dz.

Now since the series is uniformly convergent, to every positive number ε there corresponds
a number r independent of z, such that when n > r we have | Rn(z) | < ε, for all values of
z in the region considered. Therefore if L be the length of the path of integration, we have
(§4.62) ���� ∫

C

Rn(z) dz
���� < εL.

Therefore the modulus of the difference between
∫
C

S(z) dz and
n∑

m=1

∫
C

um(z) dz can be

made less than any positive number, by giving n any sufficiently large value. This proves

both that the series
∞∑

m=1

∫
C

um(z) dz is convergent, and that its sum is
∫
C

S(z) dz.

Corollary 4.7.1 As in Corollary 4.4.1, it may be shewn that7

d
dz

∞∑
n=0

un(z) =
∞∑
n=0

d
dz

un(z)

if the series on the right converges uniformly and the series on the left is convergent.

Example 4.7.1 Consider the series
∞∑
n=1

2x{n(n + 1) sin2 x2 − 1} cos x2

{1 + n2 sin2 x2}{1 + (n + 1)2 sin2 x2}
,

in which x is real.
The nth term is

2xn cos x2

1 + n2 sin2 x2
−

2x(n + 1) cos x2

1 + (n + 1)2 sin2 x2
,

7 d f (z)
z

means lim
h→0

f (z+h)− f (z)
h

where h → 0 along a definite simple curve; this definition is modified slightly in
§5.12 in the case when f (z) is an analytic function.
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and the sum of n terms is therefore

2x cos x2

1 + sin2 x2
−

2x(n + 1) cos x2

1 + (n + 1)2 sin2 x2
.

Hence the series is absolutely convergent for all real values of x except ±
√

mπ where
m = 1,2, . . .; but

Rn(x) =
2x (n + 1) cos x2

1 + (n + 1)2 sin2 x2
,

and if n be any integer, by taking x = (n + 1)−1 this has the limit 2 as n → ∞. The series is
therefore non-uniformly convergent near x = 0.

Now the sum to infinity of the series is
2x cos x2

1 + sin2 x2
, and so the integral from 0 to x of the

sum of the series is arctan
(
sin x2) . On the other hand, the sum of the integrals from 0 to x of

the first n terms of the series is

arctan
(
sin x2) − arctan

(
(n + 1) sin x2) ,

and as n→∞ this tends to arctan
(
sin x2) − π

2 . Therefore the integral of the sum of the series
differs from the sum of the integrals of the terms by π

2 .

Example 4.7.2 Discuss, in a similar manner, the series
∞∑
n=1

2enx{1 − n(e − 1) + en+1x2}

n(n + 1)(1 + enx2)(1 + en+1x2)

for real values of x.

Example 4.7.3 Discuss the series

u1 + u2 + u3 + · · · ,

where

u1 = ze−z
2
, un = nze−nz

2
− (n − 1)ze−(n−1)z2

,

for real values of z. Hint. The sum of the first n terms is nze−nz
2 , so the sum to infinity is 0

for all real values of z. Since the terms un are real and ultimately all of the same sign, the
convergence is absolute.

In the series ∫ z

0
u1 dz +

∫ z

0
u2 dz +

∫ z

0
u3 dz + · · · ,

the sum of n terms is 1
2 (1 − e−ne

2
), and this tends to the limit 1

2 as n tends to infinity; this is
not equal to the integral from 0 to z of the sum of the series

∑
un.

The explanation of this discrepancy is to be found in the non-uniformity of the convergence
near z = 0, for the remainder after n terms in the series u1 + u2 + · · · is −nze−nz

2 ; and by
taking z = n−1 we can make this equal to e−1/n, which is not arbitrarily small; the series is
therefore non-uniformly convergent near z = 0.
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Example 4.7.4 (Trinity, 1903) Compare the values of∫ z

0

{
∞∑
n=1

un

}
dz and

∞∑
n=1

∫ z

0
un dz,

where

un =
2n2z

(1 + n2z2) log(n + 1)
−

2(n + 1)2z
{1 + (n + 1)2z2} log(n + 2)

.

4.8 Miscellaneous examples
Example 4.1 (Dirichlet, Du Bois Reymond) Shew that the integrals∫ ∞

0
sin(x2) dx,

∫ ∞

0
cos(x2) dx,

∫ ∞

0
x exp(−x6 sin2 x) dx

converge.

Example 4.2 (Stokes) If a be real, the integral∫ ∞

0

cos(ax)
1 + x2 dx

is a continuous function of a.

Example 4.3 (de la Vallée Poussin) Discuss the uniformity of the convergence of∫ ∞

0
x sin(x3 − ax) dx. Hint. Use

3
∫

x sin(x3 − ax)dx = −
(

1
x
+

a
3x3

)
cos(x3 − ax) −

∫ (
1
x2 +

a
x4

)
cos(x3 − ax) dx

+
1
3

a2
∫

sin(x3 − ax)
x3 dx.

Example 4.4 (Stokes) Shew that
∫ ∞

0
exp[−eia(x3 − nx)] dx converges uniformly in the

range
(
−

1
2
π,

1
2
π

)
of values of a.

Example 4.5 (Hardy [275]) Discuss the convergence of
∫ ∞

0

xµdx
1 + xν | sin x |p

when µ, ν, p

are positive.

Example 4.6 (Math. Trip. 1914) Examine the convergence of the integrals∫ ∞

0

(
1
x
−

1
2

e−x +
1

1 − ex

)
dx
x
,

∫ ∞

0

sin(x + x2)

xn
dx.

Example 4.7 Shew that
∫ ∞

π

dx
x2(sin x)2/3

exists.
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Example 4.8 (Math. Trip. 1908) Shew that
∫ ∞

a

x−nesin x sin 2x dx converges if a > 0,

n > 0.

Example 4.9 (Lerch [430]) If a series g(z) =
∞∑
v=0
(Cν − Cν+1) sin(2ν + 1)πz, (in which

C0 = 0) converges uniformly in an interval, shew that g(z)
π

sin πz
is the derivative of the

series f (z) =
∞∑
ν=1

Cν
ν

sin 2νπz.

Example 4.10 (Math. Trip. 1904) Shew that∫ ∞ ∫ ∞

· · ·

∫ ∞ dx1dx2 · · · dxn
(x2

1 + x2
2 + · · · + x2

n)
α

and
∫ ∞ ∫ ∞

· · ·

∫ ∞ dx1dx2 · · · dxn
xα1 + xβ2 + · · · + xλn

converge when α > 1
2 n and α−1 + β−1 + · · · + λ−1 < 1 respectively.

Example 4.11 (Bôcher) If f (x, y) be a continuous function of both x and y in the ranges
(a ≤ x ≤ b), (a ≤ y ≤ b) except that it has ordinary discontinuities at points on a finite
number of curves, with continuously turning tangents, each of which meets any line parallel

to the coordinate axes only a finite number of times, then
∫ b

a

f (x, y) dx is a continuous

function of y. Hint. Consider∫ a1−δ1

a

+

∫ a2−δ2

a1+ε1

+ · · · +

∫ b

an+εn

{ f (x, y + h) − f (x, y)} dx,

where the numbers δ1, δ2, . . . , ε1, ε2, . . . are so chosen as to exclude the discontinuities of
f (x, y + h) from the range of integration; a1,a2, . . . being the discontinuities of f (x, y).
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The Fundamental Properties of Analytic Functions;
Taylor’s, Laurent’s and Liouville’s Theorems

5.1 Property of the elementary functions
The reader will be already familiar with the term elementary function, as used (in textbooks
on Algebra, Trigonometry, and the Differential Calculus) to denote certain analytical expres-
sions1 depending on a variable z, the symbols involved therein being those of elementary
algebra together with exponentials, logarithms and the trigonometrical functions; examples
of such expressions are

z2, ez, log z, arcsin z3/2.

Such combinations of the elementary functions of analysis have in common a remarkable
property, which will now be investigated.

Take as an example the function ez . Write ez = f (z). Then, if z be a fixed point and if z′

be any other point, we have

f (z′) − f (z)
z′ − z

=
ez
′

− ez

z′ − z
= ez ·

e(z
′−z) − 1
z′ − z

= ez
{
1 +

z′ − z
2!
+
(z′ − z)2

3!
+ · · ·+

}
;

and since the last series in brackets is uniformly convergent for all values of z′, it follows
(§3.7) that, as z′→ z, the quotient

f (z′) − f (z)
z′ − z

tends to the limit ez , uniformly for all values of arg(z′ − z). This shews that the limit of

f (z′) − f (z)
z′ − z

is in this case independent of the path by which the point z′ tends towards coincidence with z.
It will be found that this property is shared by many of the well-known elementary functions;
namely, that if f (z) be one of these functions and h be any complex number, the limiting
value of

1
h
{ f (z + h) − f (z)}

1 The reader will observe that this is not the sense in which the term function is defined (§3.1) in this work.
Thus e.g. x − iy and |z | are functions of z (= x + iy) in the sense of §3.1, but are not elementary functions of
the type under consideration.
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exists and is independent of the mode in which h tends to zero.
The reader will, however, easily prove that, if f (z) = x − iy, where z = x + iy, then

lim
f (z + h) − f (z)

h
is not independent of the mode in which h→ 0.

5.11 Occasional failure of the property
For each of the elementary functions, however, there will be certain points z at which this
property will cease to hold good. Thus it does not hold for the function 1/(z − a) at the point
z = a, since

lim
h→0

1
h

{
1

z − a + h
−

1
z − a

}
does not exist when z = a. Similarly it does not hold for the functions log z and z1/2 at
the point z = 0. These exceptional points are called singular points or singularities of the
function f (z) under consideration; at other points f (z) is said to be analytic. The property
does not hold good at any point for the function |z |.

5.12 Cauchy’s definition of an analytic function of a complex variable
(See the memoir [121]). The property considered in §5.11 will be taken as the basis of the
definition of an analytic function, which may be stated as follows.

Let a two-dimensional region in the z-plane be given; and let u be a function of z defined
uniquely at all points of the region. Let z, z + δz be values of the variable z at two points,

and u, u + δu the corresponding values of u. Then, if, at any point z within the area,
δu
δz

tends to a limit when δx → 0, δy → 0, independently (where δz = δx + iδy), u is said
to be a function of z, which is monogenic or analytic at the point. The words ‘regular’ and
‘holomorphic’ are sometimes used. A distinction has been made by Borel [86, p. 137–138],
[87] between ‘monogenic’ and ‘analytic’ functions in the case of functions with an infinite
number of singularities. See §5.51. If the function is analytic and one-valued at all points of
the region, we say that the function is analytic throughout the region. See the footnote after
Corollary 5.2.2.

We shall frequently use the word ‘function’ alone to denote an analytic function, as the
functions studied in this work will be almost exclusively analytic functions. In the foregoing
definition, the function u has been defined only within a certain region in the z-plane. As will
be seen subsequently, however, the function u can generally be defined for other values of z
not included in this region; and (as in the case of the elementary functions already discussed)
may have singularities, for which the fundamental property no longer holds, at certain points
outside the limits of the region. We shall now state the definition of analytic functionality in
a more arithmetical form.

Let f (z) be analytic at z, and let ε be an arbitrary positive number; then we can find
numbers ` and δ (with δ depending on ε) such that���� f (z′) − f (z)

z′ − z
− `

���� < ε
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whenever |z′ − z | < δ.

If f (z) is analytic at all points z of a region, ` obviously depends on z; we consequently
write ` = f ′(z). Hence f (z′) = f (z)+ (z′ − z) f ′(z)+ 3(z′ − z),where 3 is a function of z and
z′ such that |3 | < ε when |z′ − z | < δ.

Example 5.1.1 Find the points at which the following functions are not analytic:

1. z2;
2. cosec z (z = nπ, n any integer);

3.
z − 1

z2 − 5z + 6
(z = 2,3);

4. e1/z (z = 0);
5. {(z − 1)z}1/3 (z = 0,1).

Example 5.1.2 (Riemann) If z = x + iy, f (z) = u + i3, where u, 3, x, y are real and f is an
analytic function, shew that,

∂u
∂x
=
∂3

∂y
,

∂u
∂y
= −

∂3

∂x
.

5.13 An application of the modified Heine–Borel theorem
Let f (z) be analytic at all points of a continuum; and on any point z of the boundary of the
continuum let numbers f1(z), δ (δ depending on z) exist such that

| f (z′) − f (z) − (z′ − z) f1(z)| < ε |z′ − z |

whenever |z′ − z | < δ and z′ is a point of the continuum or its boundary. Hint. We write
f1(z) instead of f ′(z) as the differential coefficient might not exist when z′ approaches z from
outside the boundary so that f1(z) is not necessarily a unique derivative.

The above inequality is obviously satisfied for all points z of the continuum as well as
boundary points.

Applying the two-dimensional form of the theorem of §3.6, we see that the region formed
by the continuum and its boundary can be divided into a finite number of parts (squares with
sides parallel to the axes and their interiors, or portions of such squares) such that inside or
on the boundary of any part there is one point z1 such that the inequality

| f (z′) − f (z1) − (z′ − z1) f1(z1)| < ε |z′ − z1 |

is satisfied by all points z′ inside or on the boundary of that part.

5.2 Cauchy’s theorem on the integral of a function round a contour
The results here are due to Cauchy [121]. The proof here given is that due to Goursat [254].

A simple closed curve C in the plane of the variable z is often called a contour; if A,B,D
be points taken in order in the counter-clockwise sense along the arc of the contour, and if
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f (z) be a one-valued continuous2 function of z (not necessarily analytic) at all points on the
arc, then the integral ∫

ABDA

f (z) dz or
∫
C

f (z) dz

taken round the contour, starting from the point A and returning to A again, is called the
integral of f (z) taken along the contour. Clearly the value of the integral taken along the
contour is unaltered if some point in the contour other than A is taken as the starting-point.

We shall now prove a result due to Cauchy, which may be stated as follows. If f (z) is a
function of z, analytic at all points on and inside a contour C, then∫

C

f (z) dz = 0.

Note It is not necessary that f (z) should be analytic onC (it is sufficient that it be continuous
on and inside C), but if f (z) is not analytic on C, the theorem is much harder to prove. This
proof merely assumes that f ′(z) exists at all points on and inside C. Earlier proofs made
more extended assumptions; thus Cauchy’s proof assumed the continuity of f ′(z). Riemann’s
proof made an equivalent assumption. Goursat’s first proof assumed that f (z) was uniformly
differentiable throughout C.

For divide up the interior of C by lines parallel to the real and imaginary axes in the
manner of §5.13; then the interior of C is divided into a number of regions whose boundaries
are squares C1,C2, . . . ,CM and other regions whose boundaries D1,D2, . . . ,DN are portions
of sides of squares and parts of C; consider

M∑
n=1

∫
Cn

f (z) dz +
N∑
n=1

∫
Dn

f (z)dz,

each of the paths of integration being taken counter-clockwise; in the complete sum each side
of each square appears twice as a path of integration, and the integrals along it are taken in
opposite directions and consequently cancel (see Example 4.6.1); the only parts of the sum
which survive are the integrals of f (z) taken along a number of arcs which together make

up C, each arc being taken in the same sense as in
∫
C

f (z) dz; these integrals therefore just

make up
∫
C

f (z) dz.

Now consider
∫
Cn

f (z) dz. With the notation of §5.12,∫
Cn

f (z) dz =
∫
Cn

{ f (z1) + (z − z1) f ′(z1) + (z − z1)3} dz

= { f (z1) − z1 f ′(z1)}

∫
Cn

dz + f ′(z1)

∫
Cn

z dz +
∫
Cn

(z − z1) 3 dz.

But ∫
Cn

dz = [z]Cn
= 0,

∫
Cn

zdz =
[ 1

2 z2]
Cn
= 0,

2 It is sufficient for f (z) to be continuous when variations of z along the arc only are considered.
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by Example 4.6.1, since the end points of Cn coincide. Now let ln be the side of Cn and An

the area of Cn. Then, using §4.62,����∫
Cn

f (z) dz
���� = ����∫

Cn

(z − z1) 3 dz
���� ≤ ∫

Cn

|(z − z1) 3 dz |

< εln
√

2
∫
Cn

| dz | = εln
√

2 · 4ln = 4εAn

√
2.

In like manner ����∫
Dn

f (z) dz
���� ≤ ∫

Dn

|(z − z1) 3 dz |

≤ 4ε(A′n + l ′nλn)
√

2,

where A′n is the area of the complete square of which Dn is part, l ′n is the side of this square
and λn is the length of the part of C which lies inside this square. Hence, if λ be the whole
length of C, while l is the side of a square which encloses all the squares Cn and Dn,����∫

C

f (z)dz
���� ≤ M∑

n=1

����∫
Cn

f (z) dz
���� + N∑

n=1

����∫
Dn

f (z) dz
����

< 4ε
√

2

{
M∑
n=1

An +

N∑
n=1

A′n + l
N∑
n=1

λn

}
< 4ε
√

2(l2 + lλ).

Now ε is arbitrarily small, and l, λ and
∫
C

f (z) dz are independent of ε. It therefore

follows from this inequality that the only value which
∫
C

f (z) dz can have is zero; and this

is Cauchy’s result.

Corollary 5.2.1 If there are two paths z0 AZ and z0BZ from z0 to Z , and if f (z) is a function
of z analytic at all points on these curves and throughout the domain enclosed by these two

paths, then
∫ Z

z0

f (z) dz has the same value whether the path of integration is z0 AZ or z0BZ .

This follows from the fact that z0 AZBz0 is a contour, and so the integral taken round it (which
is the difference of the integrals along z0 AZ and z0BZ) is zero. Thus, if f (z) be an analytic

function of z, the value of
∫
AB

f (z) dz is to a certain extent independent of the choice of the

arc AB, and depends only on the terminal points A and B. It must be borne in mind that this
is only the case when f (z) is an analytic function in the sense of §5.12.

Corollary 5.2.2 Suppose that two simple closed curves C0 and C1 are given, such that C0

completely encloses C1, as e.g. would be the case if C0 and C1 were confocal ellipses.
Suppose moreover that f (z) is a function which is analytic3 at all points on C0 and C1 and

throughout the ring-shaped region contained between C0 and C1. Then by drawing a network
3 The phrase analytic throughout a region, implies one-valuedness (§5.12); that is to say that after z has
described a closed path surrounding C0, f (z) has returned to its initial value. A function such as log z
considered in the region 1 ≤ |z | ≤ 2 will be said to be analytic at all points of the region.
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of intersecting lines in this ring-shaped space, we can shew, exactly as in the theorem just
proved, that the integral ∫

f (z) dz

is zero, where the integration is taken round the whole boundary of the ring-shaped space;
this boundary consisting of two curves C0 and C1, the one described in the counter-clockwise
direction and the other described in the clockwise direction.

Corollary 5.2.3 In general, if any connected region be given in the z-plane, bounded by
any number of simple closed curves C0,C1,C2, . . . , and if f (z) be any function of z which

is analytic and one-valued everywhere in this region, then
∫

f (z) dz is zero, where the
integral is taken round the whole boundary of the region; this boundary consisting of the
curves C0,C1, . . . , each described in such a sense that the region is kept either always on the
right or always on the left of a person walking in the sense in question round the boundary.

An extension of Cauchy’s theorem
∫

f (z) dz = 0, to curves lying on a cone whose vertex
is at the origin, has been made by Ravut [549], Morera [474] and Osgood [511] have shewn

that the property
∫

f (z) dz = 0 may be taken as the property defining an analytic function,
the other properties being deducible from it. (See Chapter 5, Example 5.16).

Example 5.2.1 A ring-shaped region is bounded by the two circles |z | = 1 and |z | = 2 in

the z-plane. Verify that the value of
∫

dz
z
, where the integral is taken round the boundary

of this region, is zero. Solution. For the boundary consists of the circumference |z | = 1,
described in the clockwise direction, together with the circumference |z | = 2, described
in the counter-clockwise direction. Thus, if for points on the first circumference we write
z = eiθ , and for points on the second circumference we write z = 2eiφ, then θ and φ are real,
and the integral becomes∫ −2π

0

i · eiθdθ
eiθ

+

∫ 2π

0

i · 2eiφdφ
2eiφ

= −2πi + 2πi = 0.

5.21 The value of an analytic function at a point, expressed as an integral taken
round a contour enclosing the point

Let C be a contour within and on which f (z) is an analytic function of z. Then, if a be any
point within the contour,

f (z)
z − a

is a function of z, which is analytic at all points within the contour C except the point z = a.
Now, given ε, we can find δ such that

| f (z) − f (a) − (z − a) f ′(a)| ≤ ε |z − a|
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whenever |z − a| < δ; with the point a as centre describe a circle γ of radius r < δ, r being so
small that γ lies wholly insideC. Then in the space between γ andC the function f (z)/(z−a)
is analytic, and so, by Corollary 5.2.2 we have∫

C

f (z) dz
z − a

=

∫
γ

f (z) dz
z − a

,

where
∫
C

and
∫
γ

denote integrals taken counter-clockwise along the curves C and γ respec-

tively. But, since |z − a| < δ on γ, we have∫
γ

f (z) dz
z − a

=

∫
γ

f (a) + (z − a) f ′(a) + 3(z − a)
z − a

dz,

where |3 | < ε; and so∫
C

f (z) dz
z − a

= f (a)
∫
γ

dz
z − a

+ f ′(a)
∫
γ

dz +
∫
γ

3 dz.

Now, if z be on γ, we may write z − a = reiθ , where r is the radius of the circle γ, and
consequently ∫

γ

dz
z − a

=

∫ 2π

0

ireiθdθ
reiθ

= i
∫ 2π

0
dθ = 2πi,

and ∫
γ

dz =
∫ 2π

0
ireiθ dθ = 0;

also, by §4.62, ����∫
γ

3 dz
���� ≤ ε · 2πr .

Thus ����∫
C

f (z) dz
z − a

− 2πi f (a)
���� = ����∫

γ

3 dz
���� ≤ 2πrε.

But the left-hand side is independent of ε, and so it must be zero, since ε is arbitrary; that is
to say

f (a) =
1

2πi

∫
C

f (z) dz
z − a

.

This remarkable result expresses the value of a function f (z), (which is analytic on and
inside C) at any point a within a contour C, in terms of an integral which depends only on
the value of f (z) at points on the contour itself.

Corollary 5.2.4 If f (z) is an analytic one-valued function of z in a ring-shaped region
bounded by two curves C and C

′ , and a is a point in the region, then

f (a) =
1

2πi

∫
C

f (z)
z − a

dz −
1

2πi

∫
C′

f (z)
z − a

dz,

where C is the outer of the curves and the integrals are taken counter-clockwise.
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5.22 The derivatives of an analytic function f (z)

The function f ′(z), which is the limit of

f (z + h) − f (z)
h

as h tends to zero, is called the derivate or derivative of f (z). We shall now shew that f ′(z)
is itself an analytic function of z, and consequently itself possesses a derivative.

For if C be a contour surrounding the point a, and situated entirely within the region in
which f (z) is analytic, we have

f ′(a) = lim
h→0

f (a + h) − f (a)
h

= lim
h→0

1
2πih

{∫
C

f (z) dz
z − a − h

−

∫
C

f (z) dz
z − a

}
= lim

h→0

1
2πi

∫
C

f (z) dz
(z − a)(z − a − h)

=
1

2πi

∫
C

f (z) dz
(z − a)2

+ lim
h→0

h
2πi

∫
C

f (z) dz
(z − a)2(z − a − h)

.

Now, on C, f (z) is continuous and therefore bounded, and so is (z − a)−2; while we can

take |h| less than the lower bound of 1
2 |z − a|. Therefore

���� f (z)
(z − a)2(z − a − h)

���� is bounded; let
its upper bound be K . Then, if l be the length of C,����limh→0

h
2πi

∫
c

f (z) dz
(z − a)2(z − a − h)

���� ≤ lim
h→0
|h|(2π)−1Kl = 0,

and consequently

f ′(a) =
1

2πi

∫
C

f (z) dz
(z − a)2

, (5.1)

a formula which expresses the value of the derivative of a function at a point as an integral
taken along a contour enclosing the point.

From this formula we have, if the points a and a + h are inside C,

f ′(a + h) − f ′(a)
h

=
1

2πi

∫
C

f (z)
h

{
1

(z − a − h)2
−

1
(z − a)2

}
dz

=
1

2πi

∫
C

f (z)
2(z − a − 1

2 h)
(z − a − h)2(z − a)2

dz

=
2

2πi

∫
C

f (z) dz
(z − a)3

+ hAh,

and it is easily seen that Ah is a bounded function of z when |h| < 1
2 |z − a|. Therefore, as h

tends to zero, h−1{ f ′(a + h) − f ′(a)} tends to a limit, namely

2
2πi

∫
C

f (z)dz
(z − a)3

.

Since f ′(a) has a unique differential coefficient, it is an analytic function of a; its derivative,
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which is represented by the expression just given, is denoted by f ′′(a), and is called the second
derivative of f (a). Similarly it can be shewn that f ′′(a) is an analytic function of a, possessing
a derivative equal to

2 · 3
2πi

∫
C

f (z) dz
(z − a)4

;

this is denoted by f ′′′(a), and is called the third derivative of f (a). And in general an nth
derivative f (n)(a) of f (a) exists, expressible by the integral

n !
2πi

∫
C

f (z)dz
(z − a)n+1 ,

and having itself a derivative of the form
(n + 1) !

2πi

∫
C

f (z)dz
(z − a)n+2 ;

the reader will see that this can be proved by induction without difficulty.
A function which possesses a first derivative with respect to the complex variable z at all

points of a closed two-dimensional region in the z-plane therefore possesses derivatives of
all orders at all points inside the region.

5.23 Cauchy’s inequality for f (n)(a)

Let f (z) be analytic on and inside a circle C with centre a and radius r . Let M be the upper
bound of f (z) on the circle. Then, by §4.62,�� f (n)(a)�� ≤ n !

2π

∫
C

M
rn+1 |dz |

≤
M n !

rn
.

Example 5.2.2 (Trinity, 1910) If f (z) is analytic, z = x + iy and

∇2 =
∂2

∂x2 +
∂2

∂y2 ,

shew that ∇2 log | f (z)| = 0; and ∇2 | f (z)| > 0 unless f (z) = 0 or f ′(z) = 0.

5.3 Analytic functions represented by uniformly convergent series
Let

∑∞
n=0 fn(z) be a series such that: (i) it converges uniformly along a contour C; (ii) fn(z) is

analytic throughout C and its interior. Then
∑∞

n=0 fn(z) converges, and the sum of the series
is an analytic function throughout C and its interior.

For let a be any point inside C; on C, let
∑∞

n=0 fn(z) = Φ(z). Then

1
2πi

∫
C

Φ(z)
z − a

dz =
1

2πi

∫
C

{
∞∑
n=0

fn(z)

}
dz

z − a

=

∞∑
n=0

{
1

2πi

∫
C

fn(z)
z − a

dz
}
,
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by §4.7. Since |z − a|−1 is bounded when a is fixed and z is on C, the uniformity of the
convergence of

∞∑
n=0

fn(z)/(z − a) follows from that of
∞∑
n=0

fn(z). But this last series, by §5.21,

is
∞∑
n=0

fn(a); the series under consideration therefore converges at all points inside C; let its

sum inside C (as well as on C) be called Φ(z). Then the function is analytic if it has a unique
differential coefficient at all points inside C. But if a and a + h are inside C,

Φ(a + h) − Φ(a)
h

=
1

2πi

∫
C

Φ(z) dz
(z − a)(z − a − h)

,

and hence, as in §5.22, lim
h→0

[
{Φ(a + h) − Φ(a)} h−1

]
exists and is equal to

1
2πi

∫
C

Φ(z) dz
(z − a)2

;

and therefore Φ(z) is analytic inside C. Further, by transforming the last integral in the same
way as we transformed the first one, we see that Φ′(a) =

∞∑
n=0

f ′n(a), so that
∞∑
n=0

fn(a) may be

differentiated term by term.
If a series of analytic functions converges only at points of a curve which is not closed

nothing can be inferred as to the convergence of the derived series. This might have been
anticipated as the main theorem of this section deals with uniformity of convergence over a
two-dimensional region.

Thus
∞∑
n=1
(−1)n

cos nx
n2 converges uniformly for real values of x (§3.34). But the derived

series
∞∑
n=1
(−1)n−1 sin nx

n
converges non-uniformly near x = (2m + 1)π, (m any integer); and

the derived series of this, viz.
∞∑
n=1
(−1)n−1 cos nx, does not converge at all.

Corollary 5.3.1 By §3.7, the sum of a power series is analytic inside its circle of conver-
gence.

5.31 Analytic functions represented by integrals
Let f (t, z) satisfy the following conditions when t lies on a certain path of integration (a, b)
and z is any point of a region S:

1. f and
∂ f
∂z

are continuous functions of t.
2. f is an analytic function of z.

3. The continuity of
∂ f
∂z

qua function of z is uniform with respect to the variable t.

Then
∫ b

a

f (t, z) dt is an analytic function of z. For, by §4.2, it has the unique derivative∫ b

a

∂ f (t, z)
∂z

dt.
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5.32 Analytic functions represented by infinite integrals

From Corollary 4.4.1, it follows that
∫ ∞

a

f (t, z) dt is an analytic function of z at all points

of a region S if

(i) the integral converges,
(ii) f (t, z) is an analytic function of z when t is on the path of integration and z is on S,

(iii)
∂ f (t, z)
∂z

is a continuous function of both variables,

(iv)
∫ ∞

a

∂ f (t, z)
∂z

dt converges uniformly throughout S.

For if these conditions are satisfied
∫ ∞

a

f (t, z)dt has the unique derivative∫ ∞

a

∂ f (t, z)
∂z

dt .

A case of very great importance is afforded by the integral
∫ ∞

0
e−tz f (t) dt, where f (t)

is continuous and | f (t)| < Kert where K , r are independent of t; it is obvious from the
conditions stated that the integral is an analytic function of z when R(z) ≥ r1 > r . Condition

(iv) is satisfied, by §4.431 (I), since
∫ ∞

0
te(r−r1)tdt converges.

5.4 Taylor’s theorem
Consider a function f (z), which is analytic in the neighborhood of a point z = a. Let C be a
circle with a as centre in the z-plane, which does not have any singular point of the function
f (z) on or inside it; so that f (z) is analytic at all points on and inside C. Let z = a + h be
any point inside the circle C. Then, by §5.21, we have

f (a + h) =
1

2πi

∫
C

f (z) dz
z − a − h

=
1

2πi

∫
C

f (z)
{

1
z − a

+
h

(z − a)2
+ · · · +

hn

(z − a)n+1 +
hn+1

(z − a)n+1(z − a − h)

}
dz

= f (a) + h f ′(a) +
h2

2!
f ′′(a) + · · · +

hn

n!
f (n)(a) +

1
2πi

∫
C

f (z) dz
(z − a)n+1(z − a − h)

hn+1.

Butwhen z is onC, themodulus of f (z)/(z−a−h) is continuous, and so, byCorollary 3.6.2,
will not exceed some finite number M .

Therefore, by §4.62,���� 1
2πi

∫
C

f (z) dz · hn+1

(z − a)n+1(z − a − h)

���� ≤ M · 2πR
2π

(
|h|
R

)n+1

,

where R is the radius of the circle C, so that 2πR is the length of the path of integration in
the last integral, and R = |z − a| for points z on the circumference of C.
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The right-hand side of the last inequality tends to zero as n→∞. We have therefore

f (a + h) = f (a) + h f ′(a) +
h2

2!
f ′′(a) + · · · +

hn

n!
f (n)(a) + · · · ,

which we can write

f (z) = f (a) + (z − a) f ′(a) +
(z − a)2

2!
f ′′(a) + · · · +

(z − a)n

n!
f (n)(a) + · · · .

This result is known as Taylor’s theorem; and the proof given is due to Cauchy. The formal
expansion was first published by Dr. Brook Taylor [621].

It follows that the radius of convergence of a power series is always at least so large as
only just to exclude from the interior of the circle of convergence the nearest singularity of
the function represented by the series. And by Corollary 5.3.1 it follows that the radius of
convergence is not larger than the number just specified. Hence the radius of convergence is
just such as to exclude from the interior of the circle that singularity of the function which is
nearest to a.

At this stage we may introduce some terms which will be frequently used.
If f (a) = 0, the function f (z) is said to have a zero at the point z = a. If at such

a point f ′(a) is different from zero, the zero of f (a) is said to be simple; if, however,
f ′(a), f ′′(a), . . . , f (n−1)(a) are all zero, so that the Taylor’s expansion of f (z) at z = a begins
with a term in (z − a)n, then the function f (z) is said to have a zero of the nth order at the
point z = a.

Example 5.4.1 Find the function f (z), which is analytic throughout the circle C and its
interior, whose centre is at the origin and whose radius is unity, and has the value

a − cos θ
a2 − 2a cos θ + 1

+ i
sin θ

a2 − 2a cos θ + 1
(where a > 1 and θ is the vectorial angle) at points on the circumference of C.
We have

f (n)(0) =
n!

2πi

∫
C

f (z) dz
zn+1

=
n!

2πi

∫ 2π

0
e−niθ · idθ ·

a − cos θ + i sin θ
a2 − 2a cos θ + 1

, (putting z = eiθ)

=
n!
2π

∫ 2π

0

e−niθdθ
a − eiθ

=
n!

2πi

∫
C

dz
zn+1(a − z)

=

[
dn

dzn
1

a − z

]
z=0

=
n!

an+1 .

Therefore by Maclaurin’s theorem4 ,

f (z) =
∞∑
n=0

zn

an+1 ,

4 The result f (z) = f (0) + z f ′(0) + z2

2 f ′′(0) + · · · , obtained by putting a = 0 in Taylor’s theorem, is usually
called Maclaurin’s theorem; it was discovered by Stirling in 1717 and published by Maclaurin [449].
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or f (z) = (a − z)−1 for all points within the circle.

This example raises the interesting question, will it still be convenient to define f (z) as
(a − z)−1 at points outside the circle? This will be discussed in §5.51.

Example 5.4.2 Prove that the arithmetic mean of all values of z−n
∞∑
ν=0

aνzν for points z on

the circumference of the circle |z | = 1, is an; if
∑

aνzν is analytic throughout the circle and

its interior. Solution. Let
∞∑
ν=0

aνzν = f (z), so that aν =
f (ν)(0)
ν!

. Then, writing z = eiθ , and

calling C the circle |z | = 1,

1
2π

∫ 2π

0

f (z) dθ
zn

=
1

2πi

∫
C

f (z) dz
zn+1 =

f (n)(0)
n!

= an.

Example 5.4.3 Let f (z) = zr ; then f (z + h) is an analytic function of h when |h| < |z | for

all values of r; and so (z + h)r = zr + rzr−1h +
r(r − 1)

2
zr−2h2 + · · · , this series converging

when |h| < |z |. This is the binomial theorem.

Example 5.4.4 Prove that if h is a positive constant, and (1 − 2zh + h2)−1/2 is expanded in
the form

1 + hP1(z) + h2P2(z) + h3P3(z) + · · · (5.2)

(where Pn(z) is easily seen to be a polynomial of degree n in z), then this series converges
so long as z is in the interior of an ellipse whose foci are the points z = 1 and z = −1, and
whose semi-major axis is 1

2 (h + h−1).
Let the series be first regarded as a function of h. It is a power series in h, and therefore

converges so long as the point h lies within a circle in the h-plane. The centre of this circle
is the point h = 0, and its circumference will be such as to pass through that singularity of
(1 − 2zh + h2)−1/2 which is nearest to h = 0. But

1 − 2zh + h2 = {h − z + (z2 − 1)1/2}{h − z − (z2 − 1)1/2}, (5.3)

so the singularities of (1−2zh+h2)−1/2 are the points h = z−(z2−1)1/2 and h = z+(z2−1)1/2.
These singularities are branch points (see §5.7).

Thus the series (5.2) converges so long as |h| is less than both

|z − (z2 − 1)1/2 | and |z + (z2 − 1)1/2 |.

Draw an ellipse in the z-plane passing through the point z and having its foci at ±1. Let a
be its semi-major axis, and θ the eccentric angle of z on it. Then z = a cos θ+i(a2−1)1/2 sin θ,
which gives z±(z2−1)1/2 = {a±(a2−1)1/2}(cos θ±i sin θ), so |z±(z2−1)1/2 | = a±(a2−1)1/2.
Thus the series (5.2) converges so long as h is less than the smaller of the numbers a+(a2−1)1/2
and a − (a2 − 1)1/2, i.e. so long as h is less than a − (a2 − 1)1/2. But h = a − (a2 − 1)1/2 when
a = 1

2 (h + h−1). Therefore the series (5.2) converges so long as z is within an ellipse whose
foci are 1 and −1, and whose semi-major axis is 1

2 (h + h−1).
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5.41 Forms of the remainder in Taylor’s series
Let f (x) be a real function of a real variable; and let it have continuous differential coefficients
of the first n orders when a ≤ x ≤ a + h. If 0 ≤ t ≤ 1, we have

d
dt

{
n−1∑
m=1

hm

m!
(1 − t)m f (m)(a + th)

}
=

hn(1 − t)n−1

(n − 1)!
f (n)(a + th) − h f ′(a + th).

Integrating this between the limits 0 and 1, we have

f (a + h) = f (a) +
n−1∑
m=1

hm

m!
f (m)(a) +

∫ 1

0

hn(1 − t)n−1

(n − 1)!
f (n)(a + th) dt .

Let

Rn =
hn

(n − 1)!

∫ 1

0
(1 − t)n−1 f (n)(a + th) dt;

and let p be a positive integer such that p ≤ n. Then

Rn =
hn

(n − 1)!

∫ 1

0
(1 − t)p−1 · (1 − t)n−p f (n) (a + th) dt .

Let U, L be the upper and lower bounds of (1 − t)n−p f (n)(a + th). Then∫ 1

0
L(1 − t)p−1dt <

∫ 1

0
(1 − t)p−1 · (1 − t)n−p f (n) (a + th) dt <

∫ 1

0
U(1 − t)p−1dt.

Since (1 − t)n−p f (n)(a + th) is a continuous function it passes through all values between
U and L, and hence we can find θ such that 0 ≤ θ ≤ 1, and∫ 1

0
(1 − t)n−1 f (n) (a + th) dt = p−1(1 − θ)n−p f (n)(a + θh).

Therefore Rn =
hn

(n − 1)!p
(1 − θ)n−p f (n)(a + θh).Writing p = n, we get Rn =

hn

n!
f (n)(a + θh),

which is Lagrange’s form for the remainder; and writing p = 1, we get

Rn =
hn

(n − 1)!
(1 − θ)n−1 f (n)(a + θh),

which is Cauchy’s form for the remainder.
Taking n = 1 in this result, we get

f (a + h) − f (a) = h f ′(a + θh)

if f ′(x) is continuouswhen a ≤ x ≤ a+h; this result is usually known as theFirstMean-Value
Theorem (see also §4.14).

Darboux [162, p. 291] gave a form for the remainder in Taylor’s series, which is applicable
to complex variables and resembles the above form given by Lagrange for the case of real
variables.
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5.5 The process of continuation
Near every point P, z0, in the neighbourhood of which a function f (z) is analytic, we have
seen that an expansion exists for the function as a series of ascending positive integral powers
of (z − z0), the coefficients in which involve the successive derivatives of the function at z0.

Now let A be the singularity of f (z) which is nearest to P. Then the circle within which
this expansion is valid has P for centre and PA for radius.

Suppose that we are merely given the values of a function at all points of the circumference
of a circle slightly smaller than the circle of convergence and concentric with it together with
the condition that the function is to be analytic throughout the interior of the larger circle.
Then the preceding theorems enable us to find its value at all points within the smaller circle
and to determine the coefficients in the Taylor series proceeding in powers of z − z0. The
question arises, Is it possible to define the function at points outside the circle in such a way
that the function is analytic throughout a larger domain than the interior of the circle?

In other words, given a power series which converges and represents a function only at
points within a circle, to define by means of it the values of the function at points outside the
circle.

For this purpose choose any point P1 within the circle, not on the line PA. We know the
value of the function and all its derivatives at P1, from the series, and so we can form the
Taylor series (for the same function) with P1 as origin, which will define a function analytic
throughout some circle of centre P1. Now this circle will extend as far as the singularity (of
the function defined by the new series) which is nearest to P1, which may or may not be A;
but in either case, this new circle will usually5 lie partly outside the old circle of convergence,
and for points in the region which is included in the new circle but not in the old circle, the
new series may be used to define the values of the function, although the old series failed to
do so.

Similarly we can take any other point P2, in the region for which the values of the function
are now known, and form the Taylor series with P2 as origin, which will in general enable us
to define the function at other points, at which its values were not previously known; and so
on.

This process is called continuation. By means of it, starting from a representation of
a function by any one power series we can find any number of other power series, which
between them define the value of the function at all points of a domain, any point of which can
be reached from P without passing through a singularity of the function; and the aggregate6

of all the power series thus obtained constitutes the analytical expression of the function.

Note It is important to know whether continuation by two different paths PBQ, PB′Q will
give the same final power series; it will be seen that this is the case, if the function have
no singularity inside the closed curve PBQB′P, in the following way: Let P1 be any point
on PBQ, inside the circle C with centre P; obtain the continuation of the function with P1

as origin, and let it converge inside a circle C1; let P
′

1 be any point inside both circles and
also inside the curve PBQB′P; let S,S1,S

′

1 be the power series with P,P1,P
′

1 as origins; then
5 The word ‘usually’ must be taken as referring to the cases which are likely to come under the reader’s notice
while studying the less advanced parts of the subject.

6 Such an aggregate of power series has been obtained for various functions by M. J. M. Hill [307], by purely
algebraical processes.
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(since each is equal to S), S1 ≡ S
′

1 over a certain domain which will contain P1, if P
′

1 be taken
sufficiently near P1; and hence S1 will be the continuation of S

′

1; for ifT1 were the continuation
of S

′

1, we would have T1 ≡ S1 over a domain containing P1, and so (§3.73) corresponding
coefficients in S1 and T1 are the same. By carrying out such a process a sufficient number of
times, we deform the path PBQ into the path PB′Q if no singular point is inside PBQB′P.
The reader will convince himself by drawing a figure that the process can be carried out in a
finite number of steps.

Example 5.5.1 The series
1
a
+

z
a2 +

z2

a3 +
z3

a4 + · · ·

represents the function

f (z) =
1

a − z

only for points z within the circle |z | = |a|. But any number of other power series exist, of
the type

1
a − b

+
z − b
(a − b)2

+
(z − b)2

(a − b)3
+
(z − b)3

(a − b)4
+ · · · ;

if b/a is not real and positive these converge at points inside a circle which is partly inside
and partly outside |z | = |a|; these series represent this same function at points outside this
circle.

5.501 On functions to which the continuation-process cannot be applied
It is not always possible to carry out the process of continuation. Take as an example the
function f (z) defined by the power series

f (z) = 1 + z2 + z4 + z8 + z16 + · · · + z2n

+ · · · ,

which clearly converges in the interior of a circle whose radius is unity and whose centre is
at the origin.

Now it is obvious that, as z → 1−, f (z) → +∞; the point +1 is therefore a singularity
of f (z). But f (z) = z2 + f (z2), and if z2 → 1−, f (z2) → ∞ and so f (z) → ∞, and hence
the points for which z2 = 1 are singularities of f (z); the point z = −1 is therefore also a
singularity of f (z). Similarly since

f (z) = z2 + z4 + f (z4),

we see that if z is such that z4 = 1, then z is a singularity of f (z); and, in general, any root of
any of the equations

z2 = 1, z4 = 1, z8 = 1, z16 = 1, . . . ,

is a singularity of f (z). But these points all lie on the circle |z | = 1; and in any arc of this
circle, however small, there are an unlimited number of them. The attempt to carry out the
process of continuation will therefore be frustrated by the existence of this unbroken front of
singularities, beyond which it is impossible to pass.

In such a case the function f (z) cannot be continued at all to points z situated outside the
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circle |z | = 1; such a function is called a lacunary function, and the circle is said to be a
limiting circle for the function.

5.51 The identity of two functions
The two series

1 + z + z2 + z3 + · · ·

and −1 + (z − 2) − (z − 2)2 + (z − 2)3 − (z − 2)4 + · · · do not both converge for any value
of z, and are distinct expansions. Nevertheless, we generally say that they represent the same
function, on the strength of the fact that they can both be represented by the same rational
expression 1/(1 − z).

This raises the question of the identity of two functions.When can two different expansions
be said to represent the same function?

We might define a function (after Weierstrass), by means of the last article, as consisting
of one power series together with all the other power series which can be derived from it by
the process of continuation. Two different analytical expressions will then define the same
function, if they represent power series derivable from each other by continuation.

Since if a function is analytic (in the sense of Cauchy §5.12) at and near a point it can be
expanded into a Taylor’s series, and since a convergent power series has a unique differential
coefficient (§5.3), it follows that the definition of Weierstrass is really equivalent to that of
Cauchy.

It is important to observe that the limit of a combination of analytic functions can represent
different analytic functions in different parts of the plane. This can be seen by considering
the series

1
2

(
z +

1
z

)
+

∞∑
n=1

(
z −

1
z

) (
1

1 + zn
−

1
1 + zn−1

)
.

The sum of the first n + 1 terms of this series is

1
z
+

(
z −

1
z

)
.

1
1 + zn

.

The series therefore converges for all values of z (zero excepted) not on the circle |z | = 1.
But, as n→∞, |zn | → 0 or |zn | → ∞ according as |z | is less or greater than unity; hence we
see that the sum to infinity of the series is z when |z | < 1, and 1/z when |z | > 1. This series
therefore represents one function at points in the interior of the circle |z | = 1, and an entirely
different function at points outside the same circle. The reader will see from §5.3 that this
result is connected with the non-uniformity of the convergence of the series near |z | = 1.

Note It has been shewn by Borel [86] that if a region C is taken and a set of points S such
that points of the set S are arbitrarily near every point of C, it may be possible to define
a function which has a unique differential coefficient (i.e. is monogenic) at all points of C
which do not belong to S; but the function is not analytic in C in the sense of Weierstrass.
The functions are not monogenic strictly in the sense of §5.1 because, in the example quoted,
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in working out { f (z + h) − f (z)} /h, it must be supposed that Re(z + h) and Im(z + h) are
not both rational fractions. Such a function is

f (z) =
∞∑
n=1

n∑
p=0

n∑
q=0

exp(− exp n4)

z − (p + qi)/n
.

5.6 Laurent’s theorem
A very important theorem was published in 1843 by Laurent [413]. The theorem is contained
in a paper which was written by Weierstrass [662, p. 51–66], but apparently not published
before 1894. It relates to expansions of functions towhich Taylor’s theorem cannot be applied.

Let C and C ′ be two concentric circles of centre a, of which C ′ is the inner; and let f (z)
be a function which is analytic at all points on C and C ′ and throughout the annulus between
C and C ′. Let a + h be any point in this ring-shaped space. Then we have (Corollary 5.2.4)

f (a + h) =
1

2πi

∫
C

f (z)
z − a − h

dz −
1

2πi

∫
C′

f (z)
z − a − h

dz,

where the integrals are supposed taken in the positive or counter-clockwise direction round
the circles. This can be written as

f (a + h) =
1

2πi

∫
C

f (z)
{

1
z − a

+
h

(z − a)2
+ · · · +

hn

(z − a)n+1+

hn+1

(z − a)n+1(z − a − h)

}
dz +

1
2πi

∫
C′

f (z)
{

1
h
+

z − a
h2 + · · · +

(z − a)n

hn+1 −
(z − a)n+1

hn+1(z − a − h)

}
dz.

We find, as in the proof of Taylor’s theorem, that∫
C

f (z) dz
(z − a)n+1(z − a − h)

hn+1 and
∫
C′

f (z)(z − a)n+1

(z − a − h)hn+1 dz

tend to zero as n→∞; and thus we have

f (a + h) = a0 + a1h + a2h2 + · · · +
b1

h
+

b2

h2 + · · · ,

where an =
1

2πi

∫
C

f (z) dz
(z − a)n+1 and bn =

1
2πi

∫
C′
(z − a)n−1 f (z) dz. We cannot write an =

f (n)(a)/n! as in Taylor’s theorem since f (z) is not necessarily analytic inside C ′.
This result is Laurent’s theorem; changing the notation, it can be expressed in the following

form: If f (z) be analytic on the concentric circles C and C ′ of centre a, and throughout the
annulus between them, then at any point z of the annulus f (z) can be expanded in the form

f (z) = a0 + a1(z − a) + a2(z − a)2 + · · · +
b1

(z − a)
+

b2

(z − a)2
+ · · · ,

where

an =
1

2πi

∫
C

f (t) dt
(t − a)n+1 and bn =

1
2πi

∫
C′
(t − a)n−1 f (t) dt .
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An important case of Laurent’s theorem arises when there is only one singularity within
the inner circle C ′, namely at the centre a. In this case the circle C ′ can be taken as small as
we please, and so Laurent’s expansion is valid for all points in the interior of the circle C,
except the centre a.

Example 5.6.1 Prove that

e
x
2 (z−1/z) = J0(x) + zJ1(x) + z2J2(x) + · · · + znJn(x) + · · ·

−
1
z

J1(x) +
1
z2 J2(x) − · · · +

(−)n

zn
Jn(x) + · · · ,

where Jn(x) =
1

2π

∫ 2π

0
cos(nθ − x sin θ) dθ.

For the function of z under consideration is analytic in any domain which does not include
the point z = 0; and so by Laurent’s theorem,

e
x
2 (z−1/z) = a0 + a1z + a2z2 + · · · +

b1

z
+

b2

z2 + · · · ,

where

an =
1

2π i

∫
C

e
x
2 (z−

1
z )

dz
zn+1

and

bn =
1

2π i

∫
C′

e
x
2 (z−

1
z )zn−1 dz,

and where C and C ′ are any circles with the origin as centre. Taking C to be the circle of
radius unity, and writing z = eiθ , we have

an =
1

2πi

∫ 2π

0
eix sin θ · e−niθidθ =

1
2π

∫ 2π

0
cos (nθ − x sin θ) dθ,

since
∫ 2π

0
sin(nθ − x sin θ) dθ vanishes, as may be seen by writing 2π − φ for θ. Thus

an = Jn(x), and bn = (−1)nan, since the function expanded is unaltered if −z−1 be written
for z, so that bn = (−1)nJn(x), and the proof is complete.

Example 5.6.2 Shew that, in the annulus defined by |a| < |z | < |b|, the function{
bz

(z − a) (b − z)

}1/2

can be expanded in the form

S0 +

∞∑
n=1

Sn

(
an

zn
+

zn

bn

)
,

where

Sn =

∞∑
l=0

1 · 3 · · · (2l − 1) · 1 · 3 · · · (2l + 2n − 1)
22l+n · l ! (l + n) !

(a
b

) l
.

The function is one-valued and analytic in the annulus (see §5.7), for the branch-points 0,a
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neutralise each other, and so, by Laurent’s theorem, if C denotes the circle | z | = r , where
| a | < r < | b |, the coefficient of zn in the required expansion is

1
2π i

∫
C

dz
zn+1

{
bz

(z − a) (b − z)

} 1
2

.

Putting z = reiθ , this becomes

1
2π

∫ 2π

0
e−niθr−n dθ

(
1 −

r
b

eiθ
)−1/2 (

1 −
a
r

e−iθ
)−1/2

,

or
1

2π

∫ 2π

0
e−inθr−n dθ

∞∑
k=0

1 · 3 · · · (2k − 1)
2k · k !

rk eikθ

bk

∞∑
l=0

1 · 3 · · · (2l − 1)
2l · l!

ale−ilθ

r l
,

the series being absolutely convergent and uniformly convergent with regard to θ.
The only terms which give integrals different from zero are those for which k = l + n. So

the coefficient of zn is

1
2π

∫ 2π

0
dθ

∞∑
l=0

1 · 3 · · · (2l − 1)
2l · l !

1 · 3 · · · (2l + 2n − 1)
2l+n (l + n) !

al

bl+n
=

Sn

bn
.

Similarly it can be shewn that the coefficient of z−n is Snan.

Example 5.6.3 Shew that

enz+v/z = a0 + a1 z + a2 z2 + · · · +
b1

z
+

b2

z2 + · · · ,

where

an =
1

2π

∫ 2π

0
e(u+v) cos θ cos {(u − v) sin θ − nθ} dθ,

and

bn =
1

2π

∫ 2π

0
e(u+v) cos θ cos {(v − u) sin θ − nθ} dθ.

5.61 The nature of the singularities of one-valued functions
Consider first a function f (z) which is analytic throughout a closed region S, except at a
single point a inside the region.

Let it be possible to define a function φ(z) such that

(i) φ(z) is analytic throughout S,

(ii) when z , a, f (z) = φ(z) +
B1

z − a
+

B2

(z − a)2
+ · · · +

Bn

(z − a)n
.

Then f (z) is said to have a pole of order n at a; and the terms
B1

z − a
+

B2

(z − a)2
+ · · ·+

Bn

(z − a)n
are called the principal part of f (z) near a. By the definition of a singularity (§5.12) a pole
is a singularity. If n = 1, the singularity is called a simple pole.

Any singularity of a one-valued function other than a pole is called an essential singularity.
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If the essential singularity, a, is isolated (i.e. if a region, of which a is an interior point, can
be found containing no singularities other than a), then a Laurent expansion can be found, in
ascending and descending powers of (z − a) valid when ∆ > | z − a | > δ, where ∆ depends
on the other singularities of the function, and δ is arbitrarily small. Hence the ‘principal part’
of a function near an isolated essential singularity consists of an infinite series.

It should be noted that a pole is, by definition, an isolated singularity, so that all singularities
which are not isolated (e.g. the limiting point of a sequence of poles) are essential singularities.

Note There does not exist, in general, an expansion of a function valid near a non-isolated
singularity in the way that Laurent’s expansion is valid near an isolated singularity.

Corollary 5.6.1 If f (z) has a pole of order n at a, and

ψ(z) = (z − a)n f (z) (z , a), ψ(a) = lim
z→a
(z − a)n f (z),

then ψ(z) is analytic at a.

Example 5.6.4 A function is not bounded near an isolated essential singularity.Hint. Prove
that if the function were bounded near z = a, the coefficients of negative powers of z − a
would all vanish.

Example 5.6.5 Find the singularities of the function

ec/(z−a)

ez/a − 1
. (5.4)

At z = 0, the numerator is analytic, and the denominator has a simple zero. Hence the
function has a simple pole at z = 0. Similarly there is a simple pole at each of the points
2πnia (n = ±1,±2,±3, . . .); the denominator is analytic and does not vanish for other values
of z. At z = a, the numerator has an isolated singularity, so Laurent’s theorem is applicable,
and the coefficients in the Laurent expansion may be obtained from the quotient

1 + c
z−a
+ c2

2 ! (z−a)2 + · · ·

exp
(
1 + z−a

a
+ · · ·

)
− 1

, (5.5)

which gives an expansion involving all positive and negative powers of (z − a). So there is
an essential singularity at z = a.

Example 5.6.6 (Math. Trip. 1899) Shew that the function defined by the series
∞∑
n=1

nzn−1
{
(1 + n−1)n − 1

}
(zn − 1) {zn − (1 + n−1)n}

has simple poles at the points z = (1 + n−1) e2kiπ/n, (k = 0,1,2, . . . ,n − 1; n = 1,2,3, . . .).

5.62 The ‘point at infinity’
The behaviour of a function f (z) as | z | → ∞ can be treated in a similar way to its behaviour
as z tends to a finite limit.

If we write z = 1/z′, so that large values of z are represented by small values of z′ in the
z′-plane, there is a one-one correspondence between z and z′, provided that neither is zero;
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and to make the correspondence complete it is sometimes convenient to say that when z′ is
the origin, z is the ‘point at infinity’. But the reader must be careful to observe that this is
not a definite point, and any proposition about it is really a proposition concerning the point
z′ = 0.

Let f (z) = φ(z′). Then φ(z′) is not defined at z′ = 0, but its behaviour near z′ = 0 is
determined by its Taylor (or Laurent) expansion in powers of z′ ; and we define φ(0) as
lim
z→ 0

φ(z′) if that limit exists. For instance the function φ(z′) may have a zero of order m at
the point z′ = 0; in this case the Taylor expansion of φ(z′) will be of the form

A z′ m + Bz′ m+1 + Cz′ m+2 + · · · ,

and so the expansion of f (z) valid for sufficiently large values of | z | will be of the form

f (z) =
A
zm
+

B
zm+1 +

C
zm+2 + · · · .

In this case, f (z) is said to have a zero of order m at ‘infinity’.
Again, the function φ(z′) may have a pole of order m at the point z′ = 0; in this case

φ(z′) =
A

z′m
+

B
z′m−1 +

C
z′m−2 + · · · +

L
z′
+ M + Nz′ + Pz′2 + · · · ;

and so, for sufficiently large values of |z |, f (z) can be expanded in the form

f (z) = Azm + Bzm−1 + Czm−2 + · · · + Lz + M +
N
z
+

P
z2 + · · · .

In this case, f (z) is said to have a pole of order m at ‘infinity’.
Similarly f (z) is said to have an essential singularity at infinity, if φ(z′) has an essential

singularity at the point z′ = 0. Thus the function ez has an essential singularity at infinity,
since the function e1/z′ or

1 +
1
z′
+

1
2! z′ 2 +

1
3! z′ 3 + · · ·

has an essential singularity at z′ = 0.

Example 5.6.7 Discuss the function represented by the series
∞∑
n=0

1
n !

1
1 + a2n z2 , (a > 1).

Hint. The function represented by this series has singularities at z = a−n and z = −ia−n,
(n = 1,2,3, . . .), since at each of these points the denominator of one of the terms in the series
is zero. These singularities are on the imaginary axis, and have z = 0 as a limiting point; so
no Taylor or Laurent expansion can be formed for the function valid throughout any region
of which the origin is an interior point.

For values of z, other than these singularities, the series converges absolutely, since the
limit of the ratio of the (n + 1)th term to the nth is lim

n→∞
(n + 1)−1 a−2 = 0. The function is an

even function of z (i.e. is unchanged if the sign of z be changed), tends to zero as |z | → ∞,
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and is analytic on and outside a circle C of radius greater than unity and centre at the origin.
So, for points outside this circle, it can be expanded in the form

b2

z2 +
b4

z4 +
b6

z6 + · · · ,

where, by Laurent’s theorem,

b2k =
1

2πi

∫
C

z2k−1
∞∑
n=0

1
n !

a−2n

a− 2n + z2 dz.

Now
∞∑
n=0

a−2nz2k−1

n ! (a− 2n + z2)
=

∞∑
n=0

∞∑
m=0

z2k−3 a−2n

n !
(−1)m a−2nmz−2m.

This double series converges absolutely when |z | > 1, and if it be rearranged in powers of z
it converges uniformly.

Since the coefficient of z−1 is
∞∑
n=0

(−1)k−1a−2kn

n !
and the only term which furnishes a non-

zero integral is the term in z−1, we have

b2k =
1

2πi

∫
C

∞∑
n=0

(−1)k−1 a−2kn

n!
dz
z

=

∞∑
n=0

(−1)k−1

n ! a2kn

= (−1)k−1 e1/a2k
.

Therefore, when |z | > 1, the function can be expanded in the form

e1/a2

z2 −
e1/a4

z4 +
e1/a6

z6 − · · · .

The function has a zero of the second order at infinity, since the expansion begins with a
term in z−2.

5.63 Liouvillle’s theorem
This theorem, which is really due to Cauchy [127], was given this name by Borchardt [84],
who heard it in Liouville’s lectures in 1847.

Let f (z) be analytic for all values of z and let | f (z)| < K for all values of z, where K is a
constant (so that | f (z)| is bounded as |z | → ∞). Then f (z) is a constant.

Let z, z′ be any two points and let C be a contour such that z, z′ are inside it. Then, by
§5.21,

f (z′) − f (z) =
1

2πi

∫
C

{
1

ζ − z′
−

1
ζ − z

}
f (ζ) dζ ;

take C to be a circle whose centre is z and whose radius is ρ ≥ 2 | z′ − z | ; on C write
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ζ = z + ρeiθ ; since | ζ − z′ | ≥ 1
2 ρ when ζ is on C it follows from §4.62 that

| f (z′) − f (z)| =
���� 1
2π

∫
C

z′ − z
(ζ − z′) (ζ − z)

f (ζ) dζ
����

<
1

2π

∫ 2π

0

|z′ − z | · K
1
2 ρ

dθ

= 2|z′ − z |Kρ−1.

Make ρ → ∞, keeping z and z′ fixed; then it is obvious that f (z′) − f (z) = 0; that is to
say, f (z) is constant.

As will be seen in the next article, and again frequently in the latter half of this volume
(Chapters 20, 21 and 22), Liouville’s theorem furnishes short and convenient proofs of some
of the most important results in Analysis.

5.64 Functions with no essential singularities
We shall now shew that the only one-valued functions which have no singularities, except
poles, at any point (including∞) are rational functions.

For let f (z) be such a function; let its singularities in the finite part of the plane be at the
points c1, c2, . . . , ck : and let the principal part (§5.61) of its expansion at the pole cr be

ar , 1

z − cr
+

ar , 2

(z − cr )2
+ · · · +

ar , nr

(z − cr )nr
.

Let the principal part of its expansion at the pole at infinity be

a1z + a2z2 + · · · + anzn ;

if there is not a pole at infinity, then all the coefficients in this expansion will be zero.
Now the function

f (z) −
k∑

r=1

{
ar , 1

z − cr
+

ar , 2

(z − cr )2
+ · · · +

ar , nr

(z − cr )nr

}
− a1z − a2z2 − · · · − anzn

has clearly no singularities at the points c1, c2, . . . , ck or at infinity; it is therefore analytic
everywhere and is bounded as |z | → ∞, and so, by Liouville’s theorem, is a constant; that is,

f (z) = C + a1z + a2z2 + · · · + anzn +
k∑

r=1

{
ar , 1

z − cr
+

ar , 2

(z − cr )2
+ · · · +

ar , nr

(z − cr )nr

}
,

where C is constant; f (z) is therefore a rational function, and the theorem is established.
It is evident from Liouville’s theorem (combined with Corollary 3.6.2 that a function

which is analytic everywhere (including∞) is merely a constant. Functions which are analytic
everywhere except at∞ are of considerable importance; they are known as integral functions.
Examples of such functions are ez , sin z, ee

z . From §5.4 it is apparent that there is no finite
radius of convergence of a Taylor’s series which represents an integral function; and from
the result of this section it is evident that all integral functions (except mere polynomials)
have essential singularities at∞.
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5.7 Many-valued functions
In all the previous work, the functions under consideration have had a unique value (or limit)
corresponding to each value (other than singularities) of z. But functions may be defined
which have more than one value for each value of z; thus if z = r(cos θ + i sin θ), the function
z1/2 has the two values

r1/2 (
cos 1

2θ + i sin 1
2θ

)
, r1/2 {

cos 1
2 (θ + 2π) + i sin 1

2 (θ + 2π)
}

;

and the function arctan x (x real) has an unlimited number of values, viz. Arctan x + nπ,
where − π2 < Arctan x < π

2 and n is any integer; further examples of many-valued functions
are log z, z−5/3, sin(z1/2).

Either of the two functions which z1/2 represents is, however, analytic except at z = 0, and
we can apply to them the theorems of this chapter; and the two functions are called ‘branches
of the many-valued function z1/2’. There will be certain points in general at which two or
more branches coincide or at which one branch has an infinite limit; these points are called
‘branch-points’. Thus z1/2 has a branch-point at 0; and, if we consider the change in z1/2

as z describes a circle counter-clockwise round 0, we see that θ increases by 2π, r remains
unchanged, and either branch of the function passes over into the other branch. This will be
found to be a general characteristic of branch-points. It is not the purpose of this book to
give a full discussion of the properties of many-valued functions, as we shall always have
to consider particular branches of functions in regions not containing branch-points, so that
there will be comparatively little difficulty in seeing whether or not Cauchy’s theorem may
be applied.

Note Thus we cannot apply Cauchy’s theorem to such a function as z3/2 when the path of
integration is a circle surrounding the origin; but it is permissible to apply it to one of the
branches of z3/2 when the path of integration is like that shewn in §6.24, for throughout the
contour and its interior the function has a single definite value.

Example 5.7.1 (Math. Trip. 1899) Prove that if the different values of az , corresponding
to a given value of z, are represented on an Argand diagram, the representative points will
be the vertices of an equiangular polygon inscribed in an equiangular spiral, the angle of the
spiral being independent of a.

The idea of the different branches of a function helps us to understand such a paradox as
the following. Consider the function y = xx , for which

dy
dx
= xx(1 + log x). (5.6)

When x is negative and real,
dy
dx

is not real. But if x is negative and of the form p/(2q + 1)
(where p and q are positive or negative integers), y is real. If therefore we draw the real curve
y = xx , we have for negative values of x a set of conjugate points, one point corresponding to
each rational value of x with an odd denominator; and then we might think of proceeding to

form the tangent as the limit of the chord, just as if the curve were continuous; and thus
dy
dx

,
when derived from the inclination of the tangent to the axis of x, would appear to be real.
The question thus arises, Why does the ordinary process of differentiation give a non-real
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value for
dy
dx

? The explanation is, that these conjugate points do not all arise from the same
branch of the function y = xx . We have in fact y = ex log x+2kπix , where k is any integer. To
each value of k corresponds one branch of the function y. Now in order to get a real value of
y when x is negative, we have to choose a suitable value for k : and this value of k varies as
we go from one conjugate point to an adjacent one. So the conjugate points do not represent
values of y arising from the same branch of the function y = xx , and consequently we cannot

expect the value of
dy
dx

when evaluated for a definite branch to be given by the tangent of the
inclination to the axis of x of the line joining two arbitrarily close members of the series of
conjugate points.

5.8 Miscellaneous examples
Example 5.1 Obtain the expansion

f (z) =

f (a) + 2
{ z − a

2
f ′

( z + a
2

)
+
(z − a)3

23 · 3
f ′′′

( z + a
2

)
+
(z − a)5

25 · 5!
f (5)

( z + a
2

)
+ · · ·

}
,

and determine the circumstances and range of its validity.

Example 5.2 (Corey [156]) Obtain, under suitable circumstances, the expansion

f (z) = f (a) +
z − a

m

[
f ′

(
a +

z − a
2m

)
+ f ′

{
a +

3 (z − a)
2m

}
+ · · ·

+ f ′
{
a +
(2m − 1)(z − a)

2m

}]
+

2
3 !

( z − a
2m

)3

[
f ′′′

(
a +

z − a
2m

)
+ f ′′′

{
a +

3(z − a)
2m

}
+ · · ·

+ f ′′′
{
a +
(2m − 1)(z − a)

2m

}]
+

2
5 !

( z − a
2m

)5 [
f (5)

(
a +

z − a
2m

)
+ f (5)

{
a +

3(z − a)
2m

}
+ · · · + f (5)

{
a +
(2m − 1)(z − a)

2m

}]
+ · · · .

Example 5.3 (Weierstrass [660]) Shew that for the series
∞∑
n=0

1
zn + z−n

,

the region of convergence consists of two distinct areas, namely outside and inside a circle
of radius unity, and that in each of these the series represents one function and represents it
completely.

Example 5.4 (Lerch [425]) Shew that the function
∞∑
n=0

zn!
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tends to infinity as z → exp(2πip/m!) along the radius through the point; where m is
any integer and p takes the values 0,1,2, . . . , (m ! − 1). Deduce that the function cannot be
continued beyond the unit circle.

Example 5.5 (Jacobi [348] and Scheibner [574]) Shew that, if z2 − 1 is not a positive real
number, then (

1 − z2)−1/2
= 1 +

1
2

z2 +
1 · 3
2 · 4

z4 + · · · +
1 · 3 · · · (2n − 1)

2 · 4 · · · 2n
z2n

+
3 · 5 · · · (2n − 1)

2 · 4 · · · (2n)
(1 − z2)−1/2

∫ z

0
t2n+1(1 − t2)−1/2 dt .

Example 5.6 (Jacobi [348] and Scheibner [574]) Shew that, if z − 1 is not a positive real
number, then

(1 − z)−m = 1 +
m
1

z +
m(m + 1)

2 !
z2 + · · · +

m(m + 1) · · · (m + n − 1)
n!

zn

+
m(m + 1) · · · (m + n)

n!
(1 − z)−m

∫ z

0
tn(1 − t)m−1 dt .

Example 5.7 (Jacobi [348] and Scheibner [574]) Shew that, if z and 1 − z are not negative
real numbers, then(

1 − z2)−1/2
∫ z

0
tm(1 − t2)−1/2 dt

=
zm+1

m + 1

{
1 +

m + 2
m + 3

z2 + · · · +
(m + 2) · · · (m + 2n − 2)
(m + 3) · · · (m + 2n − 1)

z2n−2
}

+
(
1 − z2)−1/2 (m + 2)(m + 4) · · · (m + 2n)

(m + 1)(m + 3) · · · (m + 2n − 1)

∫ z

0
tm+2n(1 − t2)−1/2 dt .

Example 5.8 (Scheibner [574]) If, in the expansion of (a0+a1z+a2z2)m by the multinomial
theorem, the remainder after n terms be denoted by Rn(z), so that(

a0 + a1z + a2z2)m = A0 + A1z + A2z2 + · · · + An−1zn−1 + Rn(z),

shew that

Rn(z) = (a + a1z + a2z2)m
∫ z

0

naAntn−1 + (2m − n + 1)a2 An−1tn

(a + a1t + a2t2)m+1 dt .

Example 5.9 (Scheibner [574]) If

(a0 + a1z + a2z2)−m−1
∫ z

0
(a0 + a1t + a2t2)m dt

be expanded in ascending powers of z in the form A1z + A2z2 + · · · , shew that the remainder
after n − 1 terms is

(a0 + a1z + a2z2)−m−1
∫ z

0
(a0 + a1t + a2t2)m{na0 An − (2m + n + 1)a2 An−1t}tn−1 dt .

The results of Examples 5.5, 5.6 and 5.7 are special cases of formulae contained in
Jacobi’s dissertation (Berlin, 1825) published in [354, vol. 3, pp. 1-44]. Jacobi’s formulae
were generalized by Scheibner [574].
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Example 5.10 (Pincherle [523]) Shew that the series
∞∑
n=0

{1 + λn(z)es}
dnφ(z)

dzn
,

where

λn(z) = −1 + z −
z2

2 !
+

z3

3 !
− · · · + (−1)n

zn

n !
,

and where φ(z) is analytic near z = 0, is convergent near the point z = 0; and shew that if the
sum of the series be denoted by f (z), then f (z) satisfies the differential equation

f ′(z) = f (z) − φ(z).

Example 5.11 (Gutzmer [264]) Shew that the arithmetic mean of the squares of the moduli
of all the values of the series

∞∑
n−0

anzn on a circle |z | = r , situated within its circle of

convergence, is equal to the sum of the squares of the moduli of the separate terms.

Example 5.12 (Lerch [431]) Shew that the series
∞∑

m=1

e−2(am)1/2 zm−1

converges when |z | < 1; and that, when a > 0, the function which it represents can also be
represented when |z | < 1 by the integral( a

π

)1/2
∫ ∞

0

e−a/x

ex − z
dx
x3/2 ,

and that it has no singularities except at the point z = 1.

Example 5.13 (Weierstrass [660]) Shew that the series

2
π
(z + z−1)+

2
π

∑ {
z

(1 − 2ν − 2ν′zi)(2ν + 2ν′zi)2
+

z−1

(1 − 2ν − 2ν′z−1i)(2ν + 2ν′z−1i)2

}
,

in which the summation extends over all integral values of ν, ν′, except the combination
(ν = 0, ν′ = 0), converges absolutely for all values of z except purely imaginary values; and
that its sum is +1 or −1, according as the real part of z is positive or negative.

Example 5.14 Shew that sin (u(z + 1/z)) can be expanded in a series of the type

a0 + a1z + a2z2 + · · · +
b1

z
+

b2

z2 + · · · ,

in which the coefficients, both of zn and of z−n, are

1
2π

∫ 2π

0
sin(2u cos θ) cos nθ dθ.
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Example 5.15 If f (z) =
∞∑
n=1

z2

n2z2 + a2 , shew that f (z) is finite and continuous for all

real values of z, but cannot be expanded as a Maclaurin’s series in ascending powers of
z; and explain this apparent anomaly. For other cases of failure of Maclaurin’s theorem,
see a posthumous memoir by Cellérier [140]; Lerch [427]; Pringsheim [540]; and Du Bois
Reymond [189].

Example 5.16 If f (z) be a continuous one-valued function of z throughout a two-dimen-
sional region, and if ∫

C

f (z) dz = 0

for all closed contours C lying inside the region, then f (z) is an analytic function of z
throughout the interior of the region. Hint. Let a be any point of the region and let

F(z) =
∫ z

a

f (z) dz.

It follows from the data that F(z) has the unique derivative f (z). Hence F(z) is analytic
(§5.1) and so (§5.22) its derivative f (z) is also analytic. This important converse of Cauchy’s
theorem is due to Morera [474].



6

The Theory of Residues; Application to the Evaluation
of Definite Integrals

6.1 Residues
If the function f (z) has a pole of order m at z = a, then, by the definition of a pole, an
equation of the form

f (z) =
a−m
(z − a)m

+
a−m+1

(z − a)m−1 + · · · +
a−1

z − a
+ φ(z),

where φ(z) is analytic near and at a, is true near a.
The coefficient a−1 in this expansion is called the residue of the function f (z) relative to

the pole a.

Consider now the value of the integral
∫
α

f (z)dz, where the path of integration is a circle

α, whose centre is the point a and whose radius ρ is so small that φ(z) is analytic inside and
on the circle. The existence of such a circle is implied in the definition of a pole as an isolated
singularity.

We have ∫
α

f (z) dz =
m∑
r−1

a−r

∫
α

dz
(z − a)r

+

∫
α

φ(z) dz.

Now
∫
α

φ(z) dz = 0 by §5.2; and (putting z − a = ρeiθ) we have, if r , 1,∫
α

dz
(z − a)r

=

∫ 2π

0

ρeiθi dθ
ρreriθ

= ρ−r+1
∫ 2π

0
e(1−r)iθi dθ = ρ−r+1

[
e(1−r)iθ

1 − r

]2π

0
= 0.

But when r = 1, we have ∫
α

dz
z − a

=

∫ 2π

0
i dθ = 2πi.

Hence finally ∫
α

f (z) dz = 2πia−1.

Now letC be any contour, containing in the region interior to it a number of poles a, b, c, . . .
of a function f (z), with residues a−1, b−1, c−1, . . . respectively: and suppose that the function
f (z) is analytic throughout C and its interior, except at these poles. Surround the points
a, b, c, . . . by circles α, β, γ, . . . so small that their respective centres are the only singularities

110



6.2 The evaluation of definite integrals 111

inside or on each circle; then the function f (z) is analytic in the closed region bounded by
C, α, β, γ, . . . .

Hence, by Corollary 5.2.3∫
C

f (z) dz =
∫
α

f (z) dz +
∫
β

f (z) dz + · · ·

= 2πia−1 + 2πib−1 + · · · .

Thus we have the theorem of residues, namely that if f (z) be analytic throughout a contour
C and its interior except at a number of poles inside the contour, then∫

C

f (z) dz = 2πi
∑

R,

where
∑

R denotes the sum of the residues of the function f (z) at those of its poles which are
situated within the contour C. This is an extension of the theorem of §5.21 (giving (5.21)).

Note If a is a simple pole of f (z) the residue of f (z) at that pole is lim
z→a
(z − a) f (z).

6.2 The evaluation of definite integrals
We shall now apply the result of §6.1 to evaluating various classes of definite integrals; the
methods to be employed in any particular case may usually be seen from the following typical
examples.

6.21 The evaluation of the integrals of certain periodic functions taken between the
limits 0 and 2π

An integral of the type ∫ 2π

0
R(cos θ, sin θ) dθ

where the integrand is a rational function of cos θ and sin θ, finite on the range of integration,
can be evaluated by writing eiθ = z; since

cos θ =
1
2
(z + z−1), sin θ =

1
2i
(z − z−1),

the integral takes the form
∫
C

S(z) dz, where S(z) is a rational function of z finite on the path

of integration C, the circle of radius unity whose centre is the origin.
Therefore, by §6.1, the integral is equal to 2πi times the sum of the residues of S(z) at

those of its poles which are inside that circle.

Example 6.2.1 If 0 < p < 1,∫ 2π

0

dθ
1 − 2p cos θ + p2 =

∫
C

dz
i(1 − pz)(z − p)

.
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The only pole of the integrand inside the circle is a simple pole at p; and the residue there is

lim
z→p

z − p
i(1 − pz)(z − p)

=
1

i(1 − p2)
.

Hence ∫ 2π

0

dθ
1 − 2p cos θ + p2 =

2π
1 − p2 .

Example 6.2.2 If 0 < p < 1,∫ 2π

0

cos2 3θ
1 − 2p cos 2θ + p2 dθ =

∫
c

1
iz

(
1
2

z3 +
1
2

z−3
)2 dz
(1 − pz2)(1 − pz−2)

= 2π
∑

R,

where
∑

R denotes the sum of the residues of
(z6 + 1)2

4z5(1 − pz2)(z2 − p)
at its poles inside C;

these poles are 0,−√p,
√

p; and the residues at them are

−
1 + p2 + p4

4p3 ,
(p3 + 1)2

8p3(1 − p2)
,
(p3 + 1)2

8p3(1 − p2)
;

and hence the integral is equal to
π(1 − p + p2)

1 − p
.

Example 6.2.3 If n be a positive integer,∫ 2π

0
ecos θ cos(nθ − sin θ) dθ =

2π
n!
,

∫ 2π

0
ecos θ sin(nθ − sin θ) dθ = 0.

Example 6.2.4 If a > b > 0,∫ 2π

0

dθ
(a + b cos θ)2

=
2πa

(a2 − b2)3/2
,

∫ 2π

0

dθ
(a + b cos2 θ)2

=
π(2a + b)

a3/2(a + b)3/2
.

6.22 The evaluation of certain types of integrals taken between the limits −∞ and +∞

We shall now evaluate
∫ ∞

−∞

Q(x) dx, where Q(z) is a function such that:

(i) it is analytic when the imaginary part of z is positive or zero (except at a finite number
of poles);

(ii) it has no poles on the real axis;
(iii) as |z | → ∞, z Q(z) → 0 uniformly for all values of arg z such that 0 ≤ arg z ≤ π;

(iv) provided that when x is real, xQ(x) → 0, as x → ±∞, in such a way1 that
∫ ∞

0
Q(x) dx

and
∫ 0

−∞

Q(x) dx both converge.

1 The condition xQ(x) → 0 is not in itself sufficient to secure the convergence of
∫ ∞

0
Q(x) dx; consider

Q(x) = (x log x)−1.
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Given ε, we can choose ρ0 (independent of arg z) such that |z Q(z)| < ε/π whenever

|z | > ρ0 and 0 ≤ arg z ≤ π. Consider
∫
C

Q(z) dz taken round a contour C consisting of the

part of the real axis joining the points ±ρ (where ρ > ρ0) and a semicircle Γ, of radius ρ,

having its centre at the origin, above the real axis. Then, by §6.1,
∫
C

Q(z) dz = 2πi
∑

R,

where
∑

R denotes the sum of the residues of Q(z) at its poles above the real axis (Q(z) has
no poles above the real axis outside the contour). Therefore����∫ ρ

−ρ

Q(z) dz − 2πi
∑

R
���� = ����∫

Γ

Q(z) dz
���� .

In the last integral write z = ρeiθ , and then���� ∫
Γ

Q(z) dz
���� = ���� ∫ π

0
Q(ρeiθ)ρeiθi dθ

���� < ∫ π

0
(ε/π)dθ = ε,

by §4.62. Hence

lim
ρ→∞

∫ ρ

−ρ

Q(z) dz = 2πi
∑

R. (6.1)

But the meaning of
∫ ∞

−∞

Q(x) dx is lim
ρ,σ→∞

∫ σ

−ρ

Q(x) dx; and since lim
σ→∞

∫ σ

0
Q(x) dx and

lim
ρ→∞

∫ 0

−ρ

Q(x) dx both exist, this double limit is the same as lim
ρ→∞

∫ ρ

−ρ

Q(x) dx. Hence we have

proved that ∫ ∞

−∞

Q(x) dx = 2πi
∑

R.

This theorem is particularly useful in the special case when Q(x) is a rational function.

Note Even if condition (iv) is not satisfied, we still have∫ ∞

0
{Q(x) +Q(−x)} dx = lim

ρ→∞

∫ ρ

−ρ

Q(x) dx = 2πi
∑

R. (6.2)

Example 6.2.5 The only pole of (z2 + 1)−3 in the upper half plane is a pole at z = i with
residue there − 3

16 i. Therefore ∫ ∞

−∞

dx
(x2 + 1)3

=
3π
8
.

Example 6.2.6 If a > 0, b > 0, shew that∫ ∞

−∞

x4dx
(a + bx2)4

=
π

16a3/2b5/2 .

Example 6.2.7 By integrating
∫

e−λz
2

dz around a parallelogram whose corners are −R,
R, R + ai, −R + ai and making R→∞, shew that, if λ > 0, then∫ ∞

−∞

c−λx
2

cos(2λax) dx = e−λa
2
∫ ∞

−∞

e−λx
2
dx = 2λ−

1
2 e−λa

2
∫ ∞

0
e−x

2
dx.
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6.221 Certain infinite integrals involving sines and cosines
IfQ(z) satisfies the conditions (i), (ii) and (iii) of §6.22, andm > 0, thenQ(z)emiz also satisfies

those conditions. Hence
∫ ∞

0

(
Q(x)emix +Q(−x)e−mix

)
dx is equal to 2πi

∑
R′, where

∑
R′

means the sum of the residues of Q(z)emiz at its poles in the upper half plane; and so

(i) If Q(x) is an even function, i.e. if Q(−x) = Q(x),∫ ∞

0
Q(x) cos(mx) dx = πi

∑
R′.

(ii) If Q(x) is an odd function, ∫ ∞

0
Q(x) sin(mx) dx = π

∑
R′.

6.222 Jordan’s lemma
(Jordan [362, p. 285–286]). The results of §6.221 are true if Q(z) be subject to the less
stringent condition Q(z) → 0 uniformly when 0 ≤ arg z ≤ π as |z | → ∞ in place of the
condition z Q(z) → 0 uniformly. To prove this we require a theorem known as Jordan’s
lemma, viz.

If Q(z) → 0 uniformly with regard to arg z as |z | → ∞ when 0 ≤ arg z ≤ π, and if Q(z)
is analytic when both |z | > c (a constant) and 0 ≤ arg z ≤ π, then

lim
ρ→∞

(∫
Γ

emizQ(z)dz
)
= 0,

where Γ is a semicircle of radius ρ above the real axis with centre at the origin.
Given ε, choose ρ0 so that |Q(z)| < ε/π when |z | > ρ0 and 0 ≤ arg z ≤ π; then, if ρ > ρ0,���� ∫

Γ

emizQ(z) dz
���� = ���� ∫ π

0
emi(ρ cos θ+iρ sin θ)Q(ρeiθ)ρeiθi dθ

���� .
But

��emiρ cos θ
�� = 1, and so���� ∫

Γ

emizQ(z) dz
���� < ∫ π

0

ε

π
ρ e−mρ sin θ dθ

=
2ε
π

∫ π/2

0
ρ e−mρ sin θ dθ.

Now sin θ ≥ 2θ/π, when2 0 ≤ θ ≤ π/2, and so����∫
Γ

eimzQ(z) dz
���� < 2ε

π

∫ π/2

0
ρe−2mρθ/π dθ

=
2ε
π
·
π

2m
[
−e−2mρθ/π ]π/2

0

<
ε

m
.

2 This inequality appears obvious when we draw the graphs y = sin x, y = 2x/π; it may be proved by shewing
that (sin θ)/θ decreases as θ increases from 0 to π/2.
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Hence

lim
ρ→∞

∫
Γ

emizQ(z) dz = 0.

This result is Jordan’s lemma.

Now ∫ ρ

0
{emixQ(x) + e−mixQ(−x)} dx = 2πi

∑
R′ −

∫
Γ

emizQ(z) dz,

and, making ρ→∞, we see at once that∫ ∞

0
{emixQ(x) + e−mixQ(−x)} dx = 2πi

∑
R′,

which is the result corresponding to the result of §6.221.

Example 6.2.8 Shew that, if a > 0, then∫ ∞

0

cos x
x2 + a2 dx =

π

2a
e−a .

Example 6.2.9 Shew that, if a ≥ 0, b ≥ 0, then∫ ∞

0

cos 2ax − cos 2bx
x2 dx = π(b − a).

Hint. Take a contour consisting of a large semicircle of radius ρ, a small semicircle of radius
δ, both having their centres at the origin, and the parts of the real axis joining their ends;
then make ρ→∞, δ→ 0.

Example 6.2.10 Shew that, if b > 0, m ≥ 0, then∫ ∞

0

3x2 − a2

(x2 + b2)2
cos mx dx =

πe−mb

4b3 {3b2 − a2 − mb(3b2 + a2)}.

Example 6.2.11 Shew that, if k > 0, a > 0, then∫ ∞

0

x sin ax
x2 + k2 dx =

1
2
πe−ka .

Example 6.2.12 Shew that, if m ≥ 0, a > 0, then∫ ∞

0

sin mx
x(x2 + a2)2

dx =
π

2a4 −
πe−ma

4a3

(
m +

2
a

)
.

(Take the contour of Example 6.2.9).

Example 6.2.13 Shew that, if the real part of z be positive, then∫ ∞

0
(e−t − e−tz)

dt
t
= log z.
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Solution. We have∫ ∞

0
(e−t − e−tz)

dt
t
= lim

δ→0, ρ→∞

{∫ ρ

δ

e−t
t

dt −
∫ ρ

δ

e−tz

t
dt

}
= lim

δ→0, ρ→∞

{∫ ρ

δ

e−t
t

dt −
∫ ρz

δz

e−u

u
du

}
= lim

δ→0, ρ→∞

{∫ δz

δ

e−t
t

dt −
∫ ρz

ρ

e−t

t
dt

}
,

since t−1e−t is analytic inside the quadrilateral whose corners are δ, δz, ρz, ρ. Now∫ ρz

ρ

t−1e−t dt → 0 as ρ→∞ when Re z > 0; and∫ δz

δ

t−1e−t dt = log z −
∫ δz

δ

t−1(1 − e−t) dt → log z,

since t−1(1 − e−t) → 1 as t → 0.

6.23 Principal values of integrals
It was assumed in §6.22, §6.221, and §6.222 that the function Q(x) had no poles on the
real axis; if the function has a finite number of simple poles on the real axis, we can obtain
theorems corresponding to those already obtained, except that the integrals are all principal
values (§4.5) and

∑
R has to be replaced by

∑
R+ 1

2
∑

R0, where
∑

R0 means the sum of the
residues at the poles on the real axis. To obtain this result we saw that, instead of the former
contour, we had to take as contour a circle of radius ρ and the portions of the real axis joining
the points

−ρ, a − δ1; a + δ1, b − δ2; b + δ2, c − δ3, . . .

and small semicircles above the real axis of radii δ1, δ2, . . . with centres a, b, c, . . ., where
a, b, c, . . . are the poles of Q(z) on the real axis; and then we have to make δ1, δ2, . . . → 0;
call these semicircles γ1, γ2, . . .. Then instead of the equation∫ ρ

−ρ

Q(z) dz +
∫
Γ

Q(z) dz = 2πi
∑

R,

we get

P
∫ ρ

−ρ

Q(z) dz +
∑
n

lim
δn→0

∫
γn

Q(z) dz +
∫
Γ

Q(z) dz = 2πi
∑

R.

Let a′ be the residue of Q(z) at a; then writing z = a + δ1eiθ on γ1, we get∫
γ1

Q(z) dz =
∫ 0

π

Q(a + δ1eiθ) δ1eiθi dθ.

But Q(a + δ1eiθ)δ1eiθ → a′ uniformly as δ1 → 0; and therefore

lim
δ1→0

∫
γ1

Q(z) dz = −πia′;
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we thus obtain

P
∫ ρ

−ρ

Q(z)dz +
∫
Γ

Q(z)dz = 2πi
∑

R + πi
∑

R0,

and hence, using the arguments of §6.22, we get

P
∫ ∞

−∞

Q(x) dx = 2πi
(∑

R + 1
2

∑
R0

)
.

The reader will see at once that the theorems of §6.221 and §6.222 have precisely similar
generalisations. The process employed above of inserting arcs of small circles so as to
diminish the area of the contour is called indenting the contour.

6.24 Evaluation of integrals of the form
∫ ∞

0
xa−1Q (x) dx

Let Q(x) be a rational function of x such that it has no poles on the positive part of the real
axis and xaQ(x) → 0 both when x → 0 and when x →∞.

Consider
∫
(−z)a−lQ(z) dz taken round the contour C shewn in the figure,

consisting of the arcs of circles of radii ρ, δ and the straight lines joining their end points;
(−z)a−1 is to be interpreted as

exp{(a − 1) log(−z)}

and
log(−z) = log |z | + i arg(−z),

where −π ≤ arg(−z) ≤ π; with these conventions the integrand is one-valued and analytic
on and within the contour save at the poles of Q(z).

Hence, if
∑

r denote the sum of the residues of (−z)a−1Q(z) at all its poles,∫
C

(−z)a−1Q(z) dz = 2πi
∑

r .

On the small circle write −z = δeiθ , and the integral along it becomes

−

∫ −π

π

(−z)a Q(z)i dθ,
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which tends to zero as δ→ 0. On the large semicircle write −z = ρeiθ , and the integral along
it becomes

−

∫ π

−π

(−z)a Q(z)i dθ,

which tends to zero as ρ → ∞. On one of the lines we write −z = xeπi, on the other
−z = xe−πi and (−z)a−1 becomes xa−1e±(a−1)πi. Hence

lim
δ→0, ρ→∞

∫ ρ

δ

{xa−1e−(a−1)πiQ (x) − xa−1ea−1xi Q(x)} dx = 2πi
∑

r;

and therefore ∫ ∞

0
xa−1Q (x) dx = π cosec(aπ)

∑
r .

Corollary 6.2.1 If Q(x) have a number of simple poles on the positive part of the real axis,
it may be shewn by indenting the contour that

P
∫ ∞

0
xa−1Q(x) dx = π cosec(aπ)

∑
r − π cot(aπ)

∑
r ′,

where
∑

r ′ is the sum of the residues of za−1 Q(z) at these poles.

Example 6.2.14 If 0 < a < 1,∫ ∞

0

xa−1

1 + x
dx = π cosec(πa), P

∫ ∞

0

xa−1

1 − x
dx = π cot(πa).

Example 6.2.15 (Minding) If 0 < z < 1 and −π < a < π,∫ ∞

0

tz−1 dt
t + eia

=
πei(z−1)a

sin πz
.

Example 6.2.16 Shew that, if −1 < z < 3, then∫ ∞

0

xz dx
(1 + x2)2

=
π(1 − z)

4 cos 1
2πz

.

Example 6.2.17 (Euler) Shew that, if −1 < p < 1 and −π < λ < π, then∫ ∞

0

x−p dx
1 + 2x cos λ + x2 =

π

sin pπ
sin pλ
sin λ

.

6.3 Cauchy’s integral
We shall next discuss a class of contour-integrals which are sometimes found useful in
analytical investigations.

Let C be a contour in the z-plane, and let f (z) be a function analytic inside and on C.
Let φ(z) be another function which is analytic inside and on C except at a finite number
of poles; let the zeros of φ(z) in the interior3 of C be a1,a2, . . . , and let their degrees of
multiplicity be r1,r2, . . . ; and let its poles in the interior of C be b1, b2, . . . , and let their
degrees of multiplicity be s1, s2, . . . .

3 φ(z) must not have any zeros or poles on C.
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Then, by the fundamental theorem of residues,
1

2πi

∫
C

f (z)
φ′(z)
φ(z)

dz is equal to the sum

of the residues of
f (z)φ′(z)
φ(z)

at its poles inside C. Now
f (z)φ′(z)
φ (z)

can have singularities

only at the poles and zeros of φ(z). Near one of the zeros, say a1, we have φ(z) = A(z −
a1)

r1 + B(z − a1)
r1+1 + · · · . Therefore φ′(z) = Ar1(z − a1)

r1−1 + B(r1 + 1)(z − a1)
r1 + · · · ,

and f (z) = f (a1) + (z − a1) f ′(a1) + · · · . Therefore
f (z)φ′(z)
φ(z)

−
r1 f (a1)

z − a1
is analytic at a1.

Thus the residue of
f (z)φ′(z)
φ(z)

, at the point z = a1, is r1 f (a1). Similarly the residue at z = b1

is −s1 f (b1); for near z = b1, we have φ(z) = C(z − b1)
−s1 + D(z − b1)

−s1+1 + · · · , and

f (z) = f (b1) + (z − b1) f ′(b1) + · · · , so
f (z)φ′(z)
φ(z)

+
s1 f (b1)

z − b1
is analytic at b1. Hence

1
2πi

∫
C

f (z)
φ′(z)
φ(z)

dz =
∑

r1 f (a1) −
∑

s1 f (b1),

the summations being extended over all the zeros and poles of φ(z).

6.31 The number of roots of an equation contained within a contour
The result of the preceding paragraph can be at once applied to find how many roots of an
equation φ(z) = 0 lie within a contour C. For, on putting f (z) = 1 in the preceding result,
we obtain the result that

1
2πi

∫
C

φ′(z)
φ(z)

dz

is equal to the excess of the number of zeros over the number of poles of φ(z) contained in
the interior of C, each pole and zero being reckoned according to its degree of multiplicity.

Example 6.3.1 Shew that a polynomial φ(z) of degree m has m roots. Hint. Let φ(z) =
a0zm + a1zm−1 + · · · + am, (a0 , 0). Then

φ′(z)
φ(z)

=
ma0zm−1 + · · · + am−1

a0zm + · · · + am

. (6.3)

Consequently, for large values of |z |,

φ′(z)
φ(z)

=
m
z
+O

(
1
z2

)
.

Thus, if C be a circle of radius ρ whose centre is at the origin, we have

1
2πi

∫
C

φ′(z)
φ(z)

dz =
m

2πi

∫
C

dz
z
+

1
2πi

∫
C

O
(

1
z2

)
dz = m +

1
2πi

∫
C

O
(

1
z2

)
dz.

But, as in §6.22, ∫
C

O
(

1
z2

)
dz → 0 as ρ→ 0;
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and hence as φ(z) has no poles in the interior of C, the total number of zeros of φ(z) is

lim
ρ→∞

1
2πi

∫
C

φ′ (z)
φ (z)

dz = m.

Example 6.3.2 If at all points of a contour C the inequality

|ak zk | > |a0 + a1z + · · · + ak−1zk−1 + ak+1zk+1 + · · · + amzm |

is satisfied, then the contour contains k roots of the equation

amzm + am−1zm−1 + · · · + a1z + a0 = 0.

For write f (z) = amzm + am−1zm−1 + · · · + a1z + a0. Then

f (z) = ak zk
(
1 +

amzm + · · · + ak+1zk+1 + ak−1zk−1 + · · · + a0

ak zk

)
= ak zk(1 +U),

where |U | ≤ a < 1 on the contour, a being independent4 of z. Therefore the number of roots
of f (z) contained in C is

1
2πi

∫
C

f ′ (z)
f (z)

dz =
1

2πi

∫
C

(
k
z
+

1
1 +U

dU
dz

)
dz.

But
∫
C

dz
z
= 2πi; and, since |U | < 1, we can expand (1 +U)−1 in the uniformly convergent

series 1 −U +U2 −U3 + · · · , so∫
C

1
1 +U

dU
dz

dz =
[

U − 1
2U2 + 1

3U3 − · · ·
]
C
= 0.

Therefore the number of roots contained in C is equal to k.

Example 6.3.3 (Clare, 1900) Find how many roots of the equation

z6 + 6z + 10 = 0

lie in each quadrant of the Argand diagram.

6.4 Connexion between the zeros of a function and the zeros of its derivative
MacDonald [444] has shewn that if f (z) is a function of z analytic throughout the interior of
a single closed contour C, defined by the equation | f (z)| = M, where M is a constant, then
the number of zeros of f (z) in this region exceeds the number of zeros of the derived function
f ′(z) in the same region by unity.
On C let f (z) = Meiθ ; then at points on C

f ′(z) = Meiθi
dθ
dz
, f ′′(z) = Meiθ

{
i
d2θ

dz2 −

(
dθ
dz

)2
}
.

4 |U | is a continuous function of z onC, and so attains its upper bound (§3.62). Hence its upper bound a must
be less than 1.
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Hence, by §6.31, the excess of the number of zeros of f (z) over the number of zeros of
f ′(z) inside5 C is

1
2πi

∫
C

f ′(z)
f (z)

dz −
1

2πi

∫
C

f ′′(z)
f ′(z)

dz = −
1

2πi

∫
C

(
dθ
dz

)−1 d2θ

dz2 dz.

Let s be the arc of C measured from a fixed point and let ψ be the angle the tangent to C
makes with 0x; then

−
1

2πi

∫
C

(
dθ
dz

)−1 d2θ

dz2 dz = −
1

2πi

[
log

dθ
dz

]
C

= −
1

2πi

[
log

dθ
ds
− log

dz
ds

]
C

.

Now log
dθ
ds

is purely real and its initial value is the same as its final value; and log
dz
ds
= iψ;

hence the excess of the number of zeros of f (z) over the number of zeros of f ′(z) is the
change in ψ/2π in describing the curve C; and it is obvious (for a formal proof, see [651])
that if C is any ordinary curve, ψ increases by 2π as the point of contact of the tangent
describes the curve C; this gives the required result.

Example 6.4.1 Deduce from Macdonald’s result the theorem that a polynomial of degree
n has n zeros.

Example 6.4.2 Prove that, if a polynomial f (z) has real coefficients and if its zeros are all
real and different, then between two consecutive zeros of f (z) there is one zero and one only
of f ′(z). Pólya has pointed out that this result is not necessarily true for functions other than
polynomials, as may be seen by considering the function (z2 − 4) exp(z2/3).

6.5 Miscellaneous examples
Example 6.1 (Trinity, 1898) A function φ(z) is zero when z = 0, and is real when z is
real, and is analytic when |z | ≤ 1; if f (x, y) is the coefficient of i in φ(x + iy), prove that if
−1 < x < 1, then ∫ 2π

0

x sin θ
1 − 2x cos θ + x2 f (cos θ, sin θ) dθ = πφ(x).

Example 6.2 (Legendre) By integrating
e±aiz

e2πz − 1
round a contour formed by the rectangle

whose corners are 0, R, R+ i, i (the rectangle being indented at 0 and i) and making R→∞,
shew that ∫ ∞

0

sin ax
e2πx − 1

dx =
1
4

ea + 1
ea − 1

−
1

2a
.

5 f ′(z) does not vanish onC unlessC has a node or other singular point; for, if f = φ + iψ, where φ and ψ are

real, since i
∂ f

∂x
=
∂ f

∂y
, it follows that if f ′(z) = 0 at any point, then

∂φ

∂x
,
∂φ

∂y
,
∂ψ

∂x
,
∂ψ

∂y
all vanish; and these

are sufficient conditions for a singular point on φ2 + ψ2 = M2.
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Example 6.3 By integrating log(−z)Q(z) round the contour of §6.24, where Q(z) is a
rational function such that zQ(z) → 0 as |z | → 0 and as |z | → ∞, shew that if Q(z) has

no poles on the positive part of the real axis,
∫ ∞

0
Q(x) dx is equal to minus the sum of

the residues of log(−z)Q(z) at the poles of Q(z); where the imaginary part of log(−z) lies
between ±π.

Example 6.4 Shew that, if a > 0, b > 0,∫ ∞

0
ea cos bx sin(a sin bx)

dx
x
=

1
2
π(ea − 1).

Example 6.5 (Cauchy) Shew that∫ π/2

0

a sin 2x
1 − 2a cos 2x + a2 xdx =

{
π
4 log(1 + a), (−1 < a < 1)
π
4 log(1 + a−1), (a2 > 1)

Example 6.6 (Störmer [614]) Shew that∫ ∞

0

sin φ1x
x

sin φ2x
x
· · ·

sin φnx
x

cos a1x · · · cos amx
sin ax

x
dx =

π

2
φ1φ2 · · · φn,

if φ1, φ2, . . . , φn,a1,a2, . . . ,am are real and a be positive and

a > |φ1 | + |φ2 | + · · · + |φn | + |a1 | + · · · + |am |.

Example 6.7 (Amigues [17]) If a point z describes a circle C of centre a, and if f (z) be
analytic throughout C and its interior except at a number of poles inside C, then the point
u = f (z) will describe a closed curve γ in the u-plane. Shew that if to each element of γ be
attributed a mass proportional to the corresponding element of C, the centre of gravity of γ

is the point r , where r is the sum of the residues of
f (z)

z − a
at its poles in the interior of C.

Example 6.8 Shew that∫ ∞

−∞

dx
(x2 + b2)(x2 + a2)2

=
π(2a + b)

2a3b(a + b)2
.

Example 6.9 Shew that∫ ∞

0

dx
(a + bx2)n

=
π

2nb1/2

1 · 3 · · · (2n − 3)
1 · 2 · · · (n − 1)

1
an−1/2 .

Example 6.10 (Laurent [412]) If Fn(z) =
n−1∏
m=1

n−1∏
p=1
(1 − zmp), shew that the series

f (z) = −
∞∑
n=2

Fn(zn−1)

(znn−n − 1)nn−1

is an analytic function when z is not a root of any of the equations zn = nn; and that the
sum of the residues of f (z) contained in the ring-shaped space included between two circles
whose centres are at the origin, one having a small radius and the other having a radius
between n and n + 1, is equal to the number of prime numbers less than n + 1.
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Example 6.11 (Grace [257]) If A and B represent on the Argand diagram two given roots
(real or imaginary) of the equation f (z) = 0 of degree n,with real or imaginary coefficients,
shew that there is at least one root of the equation f ′(z) = 0 within a circle whose centre is
the middle point of AB and whose radius is 1

2 AB cot(π/n).

Example 6.12 (Kronecker [386]) Shew that, if 0 < ν < 1,

e2πiνx

1 − e2πix =
1

2πi
lim
n→∞

n∑
k=−n

e2πikν

k − x
.

Hint. Consider
∫

e(2ν−1)πiz

sin πz
dz

z − x
round a circle of radius n + 1

2 ; and make n→∞.

Example 6.13 Shew that, if m > 0, then∫ ∞

0

sinn mt
tn

dt =
πmn−1

2n (n − 1)!

{
nn−1 −

n
1
(n − 2)n−1 +

n(n − 1)
2!

(n − 4)n−1

−
n(n − 1)(n − 2)

3!
(n − 6)n−1 + · · ·

}
.

Discuss the discontinuity of the integral at m = 0.

Example 6.14 (Wolstenholme) If A+ B+C + · · · = 0 and a, b, c, . . . are positive, shew that∫ ∞

0

A cos ax + B cos bx + · · · + K cos k x
x

dx

= −A log a − B log b − · · · − K log k .

Example 6.15 By considering
∫

ex(k+ti)

k + ti
dt taken around a rectangle indented at the origin,

shew that, if k > 0,

i lim
ρ→∞

∫ ρ

−ρ

ex(k+ti)

k + ti
dt = πi + lim

ρ→∞
P

∫ ρ

−ρ

exti

t
dt,

and thence deduce, by using the contour of Example 6.2.9, or its reflexion in the real axis
(according as x ≥ 0 and x < 0), that

lim
ρ→∞

1
π

∫ ρ

−ρ

ex(k+ti)

k + ti
dt = 2,1 or 0,

according as x > 0, x = 0 or x < 0. This integral is known as Cauchy’s discontinuous factor.

Example 6.16 Shew that, if 0 < a < 2, b > 0,r > 0, then∫ ∞

0
xa−1 sin

( πa
2
− bx

) rdx
x2 + r2 =

π

2
ra−1e−br .

Example 6.17 (Poisson [531]; Jacobi [352]) Let t > 0 and let
∞∑

n=−∞
e−n

2πt = ψ (t). By
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considering
∫

e−s
2πt

e2πis − 1
dz around a rectangle whose corners are ±(N + 1

2 ) ± i, where N is
an integer, and making N →∞, shew that

ψ (t) =
∫ ∞−i

−∞−i

e−s
2πt

e2πiz − 1
dz −

∫ ∞+i

−∞+i

e−s
2πt

e2πiz − 1
dz.

By expanding these integrands in powers of e−2πis, e2πis respectively and integrating term-
by-term, deduce from Example 6.2.7 that

ψ (t) =
1
(πt)

1
2
ψ (1/t)

∫ ∞

−∞

e−x
2

dx.

Hence, by putting t = 1 shew that

ψ(t) = t−
1
2ψ (1/t) .

Example 6.18 (Poisson [532], Jacobi [346] and Landsberg [407]) Shew that, if t > 0,
∞∑

n=−∞

e−n
2πt−2nπat = t−1/2eπa

2t

(
1 + 2

∞∑
n=1

e−n
2π/t cos 2nπa

)
.

See also §21.51.
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The Expansion of Functions in Infinite Series

7.1 A formula due to Darboux
Let f (z) be analytic at all points of the straight line joining a to z, and let φ(t) be any
polynomial of degree n in t. Then if 0 ≤ t ≤ 1, we have by differentiation

d
dt

n∑
m=1

(−1)m (z − a)m φ(n−m)(t) f (m) (a + t (z − a))

= − (z − a) φ(n)(t) f ′ (a + t (z − a)) + (−1)n (z − a)n+1 φ (t) f (n+1) (a + t (z − a)) .

Noting that φ(n)(t) is constant = φ(n)(0), and integrating between the limits 0 and 1 of t, we
get

φ(n)(0){ f (z) − f (a)}

=

n∑
m=1

(−1)m−1(z − a)m{φ(n−m)(1) f (m) (z) − φ(n−m)(0) f m(a)}

+(−1)n (z − a)n+1
∫ 1

0
φ(t) f (n+1)(a + t (z − a)) dt,

which is the formula in question. It appears in Darboux [162].
Taylor’s series may be obtained as a special case of this by writing φ(t) = (t − 1)n and

making n→∞.

Example 7.1.1 By substituting 2n for n in the formula of Darboux, and taking φ(t) =
tn (t − 1)n, obtain the expansion (supposed convergent)

f (z) − f (a) =
∞∑
n=1

(−1)n−1(z − a)n

2nn !
{ f (n)(z) + (−1)n−1 f (n)(a)},

and find the expression for the remainder after n terms in this series.

7.2 The Bernoullian numbers and the Bernoullian polynomials
The function 1

2 z cot 1
2 z is analytic when |z | < 2π and, since it is an even function of z, it can

be expanded into a Maclaurin series, thus

z
2

cot
z
2
= 1 − B1

z2

2 !
− B2

z4

4 !
− B3

z6

6 !
− · · · ;

125
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then Bn is called the nth Bernoullian number. These numbers were introduced by Jakob
Bernoulli [66]. It is found that

B1 =
1
6
,B2 =

1
30
,B3 =

1
42
,B4 =

1
30
,B5 =

5
66
, . . . .

The first sixty-two Bernoullian numbers were computed by Adams [11]; the first nine signif-
icant figures of the first 250 Bernoullian numbers were subsequently published by Glaisher
[246].

These numbers can be expressed as definite integrals as follows:
We have, by Chapter 6, Example 6.2,∫ ∞

0

sin px dx
eπx − 1

= −
1

2p
+

i
2

cot ip

= −
1

2p
+

1
2p

[
1 + B1

(2p)2

2 !
− B2
(2p)4

4 !
+ · · ·

]
.

Since
∫ ∞

0

xn sin
(
px + 1

2 nπ
)

eπx − 1
dx converges uniformly (by de la Vallée Poussin’s test) near

p = 0 we may, by Corollary 4.4.1, differentiate both sides of this equation any number of
times and then put p = 0; doing so and writing 2t for x, we obtain

Bn = 4n

∫ ∞

0

t2n−1dt
e2πt − 1

.

A proof of this result, depending on contour integration, is given by Carda [117].

Example 7.2.1 Shew that

Bn =
2n

π2n(22n − 1)

∫ ∞

0

x2n−1dx
sinh x

> 0.

Now consider the function t
ezt − 1
et − 1

, which may be expanded into a Maclaurin series in
powers of t valid when |t | < 2π.

The Bernoullian polynomial of order n is defined to be the coefficient of tn

n! in this
expansion. It is denoted by φn(z), so that

t
ezt − 1
et − 1

=

∞∑
n=1

φn (z)tn

n!
.

The name was given by Raabe [547]. For a full discussion of their properties, see Nörlund
[507].

This polynomial possesses several important properties.Writing z+1 for z in the preceding
equation and subtracting, we find that

tezt =
∞∑
n=1

{φn (z + 1) − φn(z)}
tn

n!
.

On equating coefficients of tn on both sides of this equation we obtain

nzn−1 = φn(z + 1) − φn(z),
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which is a difference-equation satisfied by the function φn(z).
An explicit expression for the Bernoullian polynomials can be obtained as follows. We

have

ezt − 1 = zt +
z2t2

2!
+

z3t3

2!
+ · · · ,

and
t

et − 1
=

t
2i

cot
t
2i
−

t
2
= 1 −

t
2
+

B1t2

2!
−

B2t4

4!
+ · · · . (7.1)

Hence
∞∑
n=1

φn(z) tn

n!
=

{
zt +

z2t2

2!
+

z3t3

3!
+ · · ·

} {
1 −

t
2
+

B1t2

2!
−

B2t4

4!
+ · · ·

}
.

From this, by equating coefficients of tn (§3.73), we have

φn(z) = zn −
1
2

nzn−1 +

(
n
2

)
B1zn−2 −

(
n
4

)
B2zn−4 +

(
n
6

)
B3zn−6 − · · · ,

the last term being that in z or z2 and
(n

2

)
,
(n

4

)
, . . . being the binomial coefficients; this is the

Maclaurin series for the nth Bernoullian polynomial.
When z is an integer, it may be seen from the difference-equation that

φn(z)
n
= 1n−1 + 2n−1 + · · · + (z − 1)n−1.

The Maclaurin series for the expression on the right was given by Bernoulli.

Example 7.2.2 Shew that, when n > 1, φn(z) = (−1)nφn(1 − z).

7.21 The Euler–Maclaurin expansion
In the formula of Darboux (§7.1) write φn(t) for φ(t), where φn(t) is the nth Bernoullian
polynomial. Differentiating the equation

φn(t + 1) − φn(t) = ntn−1

n − k times, we have

φ(n−k)n (t + 1) − φ(n−k)n (t) = n(n − 1) · · · ktk−1.

Putting t = 0 in this, we have φ(n−k)n (1) = φ(n−k)n (0). Now, from the Maclaurin series for φn(z),
we have if k > 0

φ(n−2k−1)
n (0) = 0, φ(n−2k)

n (0) =
n!
(2k)!

(−1) k−1 Bk,

φ(n−1)
n (0) = −

1
2

n!, φ(n)n (0) = n!.

Substituting these values of φ(n−k)n (1) and φ(n−k)n (0) in Darboux’s result, we obtain the
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Euler–Maclaurin sum formula1 ,

(z − a) f ′(a) = f (z) − f (a) −
z − a

2
{ f ′(z) − f ′(a)}

+

n−1∑
m=1

(−1)m−1Bm(z − a)2m

(2m)!
{ f (2m)(z) − f (2m)(a)}

−
(z − a)2n+1

(2n)!

∫ 1

0
φ2n(t) f (2n+1){a + (z − a)t} dt.

In certain cases the last term tends to zero as n → ∞, and we can thus obtain an infinite
series for f (z) − f (a). If we write ω for z − a and F(x) for f ′(x), the last formula becomes∫ a+ω

a

F(x) dx =
1
2
ω{F(a) + F(a + ω)}

+

n−1∑
m=1

(−1)mBmω
2m

(2m)!
{F(2m−1)(a + ω) − F(2m−1)(a)}

+
ω2n+1

(2n)!

∫ 1

0
φ2n(t)F(2n)(a + ωt) dt .

Writing a + ω,a + 2ω, . . . ,a + (r − 1)ω for a in this result and adding up, we get∫ a+rω

a

F(x) dx = ω
{

1
2

F(a) + F(a + ω) + F(a + 2ω) + · · · +
1
2

F(a + rω)
}

+

n−1∑
m=1

(−1)mBmω
2m

(2m)!
{F(2m−1)(a + rω) − F(2m−1)(a)} + Rn,

where

Rn =
ω2n+1

(2n)!

∫ 1

0
φ2n (t)

{
r−1∑
m=0

F(2n)(a + mω + ωt)

}
dt.

This last formula is of the utmost importance in connexion with the numerical evaluation
of definite integrals. It is valid if F(x) is analytic at all points of the straight line joining a to
a + rω.

Example 7.2.3 If f (z) be an odd function of z, shew that

z f ′(z) = f (z) +
n∑

m=2

(−1)m
Bm−1(2z)2m−2

(2m − 2)!
f (2m−2)(z)

−
22n22n+1

(2n)!

∫ 1

0
φ2n(t) f (2n+1)(−z + 2zt) dt .

1 A history of the formula is given by Barnes [47]. It was discovered by Euler (1732), but was not published at
the time. Euler communicated it (June 9, 1736) to Stirling who replied (April 16, 1738) that it included his
own theorem (see §12.33) as a particular case, and also that the more general theorem had been discovered by
Maclaurin; and Euler, in a lengthy reply, waived his claims to priority. The theorem was published by Euler
[204] and by Maclaurin [449]. For information concerning the correspondence between Euler and Stirling, we
are indebted to Mr. C. Tweedie.
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Example 7.2.4 (Math. Trip. 1904) Shew, by integrating by parts, that the remainder after
n terms of the expansion of z

2 cot z
2 may be written in the form

(−1)n+1z2n+1

(2n)! sin z

∫ 1

0
φ2n(t) cos (zt) dt .

7.3 Bürmann’s theorem
We shall next consider several theorems which have for their object the expansion of one
function in powers of another function. This appears in [109]; see also Dixon [182].

Let φ(z) be a function of z which is analytic in a closed region S of which a is an interior
point; and let

φ(a) = b.

Suppose also that φ′(a) , 0. Then Taylor’s theorem furnishes the expansion

φ(z) − b = φ′(a) (z − a) +
φ′′(a)

2!
(z − a)2 + · · · ,

and if it is legitimate to revert this series we obtain

z − a =
1

φ′(a)
{φ(z) − b} −

1
2

φ′′(a)
{φ′(a)}3

{φ(z) − b}2 + · · · ,

which expresses z as an analytic function of the variable {φ(z) − b}, for sufficiently small
values of |z−a|. If then f (z) be analytic near z = a, it follows that f (z) is an analytic function
of {φ(z) − b} when |z − a| is sufficiently small, and so there will be an expansion of the form

f (z) = f (a) + a1{φ (z) − b} +
a2

2!
{φ (z) − b}2 +

a3

3!
{φ (z) − b}3 + · · · .

The actual coefficients in the expansion are given by the following theorem, which is
generally known as Bürmann’s theorem.

Let ψ(z) be a function of z defined by the equation

ψ(z) =
z − a

φ(z) − b
;

then an analytic function f (z) can, in a certain domain of values of z, be expanded in the
form

f (z) = f (a) +
n−1∑
m=1

{φ(z) − b}m

m!
dm−1

dam−1 [ f
′(a){ψ(a)}m] + Rn,

where

Rn =
1

2πi

∫ z

a

∫
γ

[
φ(z) − b
φ(t) − b

]n−1 f ′(t)φ′(z)dt dz
φ(t) − φ(z)

,

and γ is a contour in the t-plane, enclosing the points a and z and such that, if ζ be any point
inside it, the equation φ(t) = φ(ζ) has no roots on or inside the contour except2 a simple
root t = ζ .

2 It is assumed that such a contour can be chosen if |z − a | be sufficiently small; see §7.31.
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To prove this, we have

f (z) − f (a) =
∫ z

a

f ′(ζ) dζ =
1

2πi

∫ z

a

∫
γ

f ′(t) φ′(ζ) dt dζ
φ(t) − φ(ζ)

=
1

2πi

∫ z

a

∫
γ

f ′(t) φ′(ζ) dt dζ
φ(t) − b

×

[
n−2∑
m=0

{
φ(ζ) − b
φ(t) − b

}m
+

{φ(ζ) − b}n−1

{φ(t) − b}n−2{φ(t) − φ(ζ)}

]
.

But, by §4.3,

1
2πi

∫ z

a

∫
γ

[
φ(ζ) − b
φ(t) − b

]m f ′(t) φ′(ζ) dt dζ
φ(t) − b

=
{φ(z) − b}m+1

2πi(m + 1)

∫
γ

f ′(t) dt
{φ(t) − b}m+1

=
{φ(z) − b}m+1

2πi(m + 1)

∫
γ

f ′(t){ψ(t)}m+1dt
(t − a)m+1 =

{φ(z) − b}m+1

(m + 1)!
dm

dam
[ f ′(a){ψ(a)}m+1].

Therefore, writing m − 1 for m,

f (z) = f (a) +
n−1∑
m=1

{φ(z) − b}m

m!
dm−1

dam−1 [ f
′(a){ψ(a)}m]

+
1

2πi

∫ z

a

∫
γ

[
φ(ζ) − b
φ(t) − b

]n−1 f ′(t) φ′(ζ) dt dζ
φ(t) − φ(ζ)

.

If the last integral tends to zero as n → ∞, we may write the right-hand side of this
equation as an infinite series.

Example 7.3.1 Prove that

z = a +
∞∑
n=1

(−1)n−1Cn (z − a)nen(z
2−a2)

n!
,

where

Cn = (2na)n−1 −
n(n − 1)(n − 2)

1!
(2na)n−3 +

n2(n − 1)(n − 2)(n − 3)(n − 4)
2!

(2na)n−5 − · · · .

To obtain this expansion, write

f (z) = z, φ(z) − b = (z − a)ex2−a2
, ψ(z) = ea2−z2

,

in the above expression of Bürmann’s theorem; we thus have

z = a +
∞∑
n=1

1
n!
(z − a)nen(z

2−a2)

{
dn−1

dzn−1 en(a
2−z2)

}
z=a

.
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But, putting z = a + t,{
dn−1

dzn−1 en(a
2−z2)

}
z=a

=

{
dn−1

dtn−1 e−n(2at+t
2)

}
t=0

= (n − 1)! × the coefficient of tn−1 in the expansion of e−nt(2a+t)

= (n − 1)! × the coefficient of tn−1 in
∞∑
r=0

(−1)rnr tr (2a + t)r

r!

= (n − 1)! ×
n−1∑
r=0

(−1)rnr (2a)2r−n+1

(n − 1 − r)!(2r − n + 1)!
.

The highest value of r which gives a term in the summation is r = n − 1. Arranging
therefore the summation in descending indices r , beginning with r = n − 1, we have{

dn−1

dzn−1 en(a
2−z2)

}
z=a

= (−1)n−1
{
(2na)n−1 −

n(n − 1)(n − 2)
1!

(2na)n−3 + · · ·

}
= (−1)n−1Cn,

which gives the required result.

Example 7.3.2 Obtain the expansion

z2 = sin2 z +
2
3
·

sin4 z
2
+

2 · 4
3 · 5

·
sin6 z

3
+ · · · .

Example 7.3.3 Let a line p be drawn through the origin in the z-plane, perpendicular to
the line which joins the origin to any point a. If z be any point on the z-plane which is on the
same side of the line p as the point a is, shew that

log z = log a + 2
∞∑

m=1

1
2m + 1

(
z − a
z + a

)2m+1

.

7.31 Teixeira’s extended form of Bürmann’s theorem
In the last sectionwe have not investigated closely the conditions of convergence ofBürmann’s
series, for the reason that a much more general form of the theorem will next be stated; this
generalisation bears the same relation to the theorem just given that Laurent’s theorem bears
to Taylor’s theorem: viz., in the last paragraph we were concerned only with the expansion of
a function in positive powers of another function, whereas we shall now discuss the expansion
of a function in positive and negative powers of the second function.

The general statement of the theorem is due to Teixeira [622], whose exposition we shall
follow in this section. See also Bateman [56].

Suppose

(i) that f (z) is a function of z analytic in a ring-shaped region A, bounded by an outer
curve C and an inner curve c;

(ii) that θ(z) is a function analytic on and inside C, and has only one zero a within this
contour, the zero being a simple one;
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(iii) that x is a given point within A;
(iv) that for all points z of C we have |θ(x)| < |θ(z)|, and for all points z of c we have
|θ(x)| > |θ(z)|.

The equation θ(z) − θ(x) = 0 has, in this case, a single root z = x in the interior of C, as is
seen from the equation3

1
2πi

∫
C

θ ′(z) dz
θ(z) − θ(x)

=
1

2πi

[∫
C

θ ′(z)
θ(z)

dz + θ(x)
∫
C

θ ′(z)
{θ(z)}2

dz + · · ·
]

=
1

2πi

∫
C

θ ′(z) dz
θ(z)

,

of which the left-hand and right-hand members represent respectively the number of roots
of the equation considered (§6.31) and the number of the roots of the equation θ(z) = 0
contained within C.

Cauchy’s theorem therefore gives

f (x) =
1

2πi

[∫
C

f (z) θ ′(z) dz
θ(z) − θ(x)

−

∫
c

f (z) θ ′(z) dz
θ(z) − θ(x)

]
.

The integrals in this formula can be expanded, as in Laurent’s theorem, in powers of θ (x),
by the formulae ∫

C

f (z) θ ′(z) dz
θ(z) − θ(x)

=

∞∑
n=0

{θ(x)}n
∫
C

f (z) θ ′(z) dz
{θ(z)}n+1 ,∫

c

f (z) θ ′(z) dz
θ(z) − θ(x)

= −

∞∑
n=1

1
{θ(x)}n

∫
c

f (z){θ(z)}n−1θ ′(z) dz.

We thus have the formula

f (x) =
∞∑
n=0

An{θ(x)}n +
∞∑
n=1

Bn

{θ(x)}n
,

where

An =
1

2πi

∫
C

f (z) θ ′(z) dz
{θ(z)}n+1 , Bn =

1
2πi

∫
c

f (z){θ(z)}n−1θ ′(z) dz.

Integrating by parts, we get, if n , 0,

An =
1

2πin

∫
C

f ′ (z)
{θ(z)}n

dz, Bn = −
1

2πin

∫
c

{θ(z)}n f ′(z) dz.

This gives a development of f (x) in positive and negative powers of θ(x), valid for all
points x within the ring-shaped space A.

If the zeros and poles of f (z) and θ(z) inside C are known, An and Bn can be evaluated by
§5.22 or by §6.1.

3 The expansion is justified by §4.7, since
∞∑
n=1

{
θ (x)
θ (z)

}n
converges uniformly when z is onC.
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Example 7.3.4 Shew that, if |x | < 1, then

x =
1
2

(
2x

1 + x2

)
+

1
2 · 4

(
2x

1 + x2

)3

+
1 · 3

2 · 4 · 6

(
2x

1 + x2

)5

+ · · · .

Shew that, when |x | > 1, the second member represents x−1.

Example 7.3.5 (Teixeira) If S(m)2n denote the sum of all combinations of the numbers 22, 42,
62, . . . , (2n − 2)2, taken m at a time, shew that

1
z
=

1
sin z

+

∞∑
n=0

(−1)n+1

(2n + 2)!

{
1

2n + 3
−

S(1)2(n+1)

2n + 1
+ · · · +

(−1)nS(n)2(n+1)

3

}
(sin z)2n+1,

the expansion being valid for all values of z represented by points within the oval whose
equation is |sin z | = 1 and which contains the point z = 0.

7.32 Lagrange’s theorem
Suppose now that the function f (z) of §7.31 is analytic at all points in the interior of C, and
let θ(x) = (x − a)θ1(x). Then θ1(x) is analytic and not zero on or inside C and the contour c
can be dispensed with; therefore the formulae which give An and Bn now become, by §5.22
and §6.1,

An =
1

2πin

∫
C

f ′(z) dz
(z − a)n{θ1(z)}n

=
1
n!

dn−1

dan−1

{
f ′(a)
θn1 (a)

}
(n ≥ 1),

A0 =
1

2πi

∫
C

f (z) θ ′(z)
θ1(z)

dz
z − a

= f (a),

Bn = 0.

The theorem of the last section accordingly takes the following form, if we write θ1(z) =
1/φ(z):

Let f (z) and φ(z) be functions of z analytic on and inside a contour C surrounding a point
a, and let t be such that the inequality

| tφ(z) | < |z − a|

is satisfied at all points z on the perimeter of C; then the equation

ζ = a + tφ(ζ),

regarded as an equation in ζ , has one root in the interior of C; and further any function of
ζ analytic on and inside C can be expanded as a power series in t by the formula

f (ζ) = f (a) +
∞∑
n=1

tn

n!
dn−1

dan−1 [ f
′(a){φ(a)}n].

This result was published by Lagrange [395] in 1770.
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Example 7.3.6 Within the contour surrounding b defined by the inequality |z(z−α)| > |α |,
where |α | < 1

2 |b|, the equation

z − α −
b
z
= 0

has one root ζ , the expansion of which is given by Lagrange’s theorem in the form

ζ = b +
∞∑
n=1

(−1)n−1(2n − 2)!
n!(n − 1)!b2n−1 α

n.

Now, from the elementary theory of quadratic equations, we know that the equation

z − α −
b
z
= 0

has two roots, namely α
2

{
1 +

√
1 + 4b/α2

}
and α

2

{
1 −

√
1 + 4b/α2

}
; and our expansion

represents the former of these only (the latter is outside the given contour) – an example of
the need for care in the discussion of these series.

Example 7.3.7 If y be that one of the roots of the equation

y = 1 + zy2

which tends to 1 when z → 0, shew that

yn = 1 + nz +
n(n + 3)

2!
z2 +

n(n + 4)(n + 5)
3!

z3

+
n(n + 5)(n + 6)(n + 7)

4!
z4 +

n(n + 6)(n + 7)(n + 8)(n + 9)
5!

z5 + · · ·

so long as |z | < 1
4 .

Example 7.3.8 (McClintock) If x be that one of the roots of the equation

x = 1 + yxa

which tends to 1 when y → 0, shew that

log x = y +
2a − 1

2
y2 +

(3a − 1)(3a − 2)
2.3

y3 + · · · ,

the expansion being valid so long as |y | < |(a − 1)a−1a−a |.

7.4 The expansion of a class of functions in rational fractions
This appears in Mittag-Leffler [470], see also [471]. Consider a function f (z), whose only
singularities in the finite part of the plane are simple poles a1,a2,a3, . . . ,where |a1 | ≤ |a2 | ≤

|a3 | ≤ · · · . Let b1, b2, b3, . . . be the residues at these poles, and let it be possible to choose a
sequence of circles Cm (the radius of Cm being Rm) with centre at O, not passing through any
poles, such that | f (z)| is bounded on Cm. (The function cosec z may be cited as an example
of the class of functions considered, and we take Rm = (m + 1

2 )π.) Suppose further that
Rm → ∞ as m → ∞ and that the upper bound (which is a function of m) of | f (z)| on Cm is
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itself bounded as4 m → ∞; so that, for all points on the circle Cm, | f (z)| < M , where M is
independent of m.

Then, if x be not a pole of f (z), since the only poles of the integrand are the poles of f (z)
and the point z = x, we have, by §6.1,

1
2πi

∫
Cm

f (z)
z − x

dz = f (x) +
∑
r

br

ar − x
,

where the summation extends over all poles in the interior of Cm. But

1
2πi

∫
Cm

f (z) dz
z − x

=
1

2πi

∫
Cm

f (z) dz
z
+

x
2πi

∫
Cm

f (z) dz
z(z − x)

= f (0) +
∑
r

br

ar

+
x

2πi

∫
Cm

f (z) dz
z(z − x)

,

if we suppose the function f (z) to be analytic at the origin.

Now as m → ∞,
∫
Cm

f (z) dz
z(z − x)

is O(Rm
−1), and so tends to zero as m tends to infinity.

Therefore, making m→∞,we have

0 = f (x) − f (0) +
∞∑
n=1

bn

(
1

an − x
−

1
an

)
− lim

m→∞

x
2πi

∫
Cm

f (z) dz
z(z − x)

,

i.e. f (x) = f (0) +
∞∑
n=1

bn

{
1

x − an

+
1
an

}
,which is an expansion of f (x) in rational fractions

of x; and the summation extends over all the poles of f (x).
If |an | < |an+1 | this series converges uniformly throughout the region given by | x | ≤ a,

where a is any constant (except near the points an). For if Rm be the radius of the circle
which encloses the points |a1 |, . . . , |an |, the modulus of the remainder of the terms of the
series after the first n is ���� x

2πi

∫
Cm

f (z) dz
z(z − x)

���� < Ma

Rm − a
,

by §4.62; and, given ε, we can choose n independent of x such that
Ma

Rm − a
< ε.

The convergence is obviously still uniform even if |an | ≤ |an+1 | provided the terms of the
series are grouped so as to combine the terms corresponding to poles of equal moduli.

If, instead of the condition | f (z)| < M , we have the condition |z−p f (z)| < M , where M is
independent of m when z is on Cm, and p is a positive integer, then we should have to expand∫
C

f (z) dz
z − x

by writing

1
z − x

=
1
z
+

x
z2 + · · · +

xp+1

zp+1(z − x)
,

and should obtain a similar but somewhat more complicated expansion.

4 Of course Rm need not (and frequently must not) tend to infinity continuously; e.g. in the example taken
Rm = (m +

1
2 ) π, where m assumes only integer values.
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Example 7.4.1 Prove that

cosec z =
1
z
+

∑
(−1)n

(
1

z − nπ
+

1
nπ

)
,

the summation extending to all positive and negative values of n.
To obtain this result, let cosec z − 1/z = f (z). The singularities of this function are at

the points z = nπ, where n is any positive or negative integer. The residue of f (z) at the
singularity nπ is therefore (−1)n, and the reader will easily see that | f (z)| is bounded on the
circle |z | = (n + 1

2 )π as n→∞.
Applying now the general theorem

f (z) = f (0) +
∑

cn

(
1

z − an

+
1
an

)
,

where cn is the residue at the singularity an, we have

f (z) = f (0) +
∑
(−1)n

(
1

z − nπ
+

1
nπ

)
.

But f (0) = lim
z→0

z − sin z
z sin z

= 0. Therefore

cosec z =
1
z
+

∑
(−1)n

(
1

z − nπ
+

1
nπ

)
, (7.2)

which is the required result.

Example 7.4.2 If 0 < a < 1, shew that

eaz

ez − 1
=

1
z
+

∞∑
n=1

2z cos 2naπ − 4nπ sin 2naπ
z2 + 4n2π2 .

Example 7.4.3 Prove that

1
2πx2(cosh x − cos x)

=
1

2πx4 −
1

eπ − e−π
1

π4 + 1
4 x4
+

2
e2π − e−2π

1
(2π)4 + 1

4 x4

−
3

e3π − e−3π
1

(3π)4 + 1
4 x4
+ · · · .

The general term of the series on the right is

(−r)rr
(erπ − e−rπ)

{
(rπ)4 + 1

4 x4
} ,

which is the residue at each of the four singularities r , −r , ri, −ri of the function
πz

(π4z4 + 1
4 x4)(eπz − e−πz) sin πz

.

The singularities of this latter function which are not of the type r , −r , ri, −ri are at
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the five points 0, (±1 ± i)x/2π. At z = 0 the residue is 2/πx4; at each of the four points
z = (±1 ± i)x/2π, the residue is {2πx2(cos x − cosh x)}−1. Therefore

4
∞∑
r=1

(−1)rr
erπ − e−rπ

1
(rπ)4 + 1

4 x4
+

2
πx4 −

2
πx2(cosh x − cos x)

=
1

2πi
lim
n→∞

∫
C

πz dz
(π4z4 + 1

4 x4)(eπz − e−πz) sin πz
,

where C is the circle whose radius is n+ 1
2 (here n an integer), and whose centre is the origin.

But, at points on C, this integrand is O(|z |−3); the limit of the integral round C is therefore
zero.

From the last equation the required result is now obvious.

Example 7.4.4 Prove that

sec x = 4π
(

1
π2 − 4x2 −

3
9π2 − 4x2 +

5
25π2 − 4x2 − · · ·

)
. (7.3)

Example 7.4.5 Prove that

cosech x =
1
x
− 2x

(
1

π2 + x2 −
1

4π2 + x2 +
1

9π2 + x2 − · · ·

)
. (7.4)

Example 7.4.6 Prove that

sech x = 4π
(

1
π2 + 4x2 −

3
9π2 + 4x2 +

1
25π2 + 4x2 − · · ·

)
. (7.5)

Example 7.4.7 Prove that

coth x =
1
x
+ 2x

(
1

π2 + x2 +
1

4π2 + x2 +
1

9π2 + x2 + · · ·

)
. (7.6)

Example 7.4.8 (Math. Trip. 1899) Prove that
∞∑

m=−∞

∞∑
n=−∞

1
(m2 + a2)(n2 + b2)

=
π2

ab
coth πa coth πb. (7.7)

7.5 The expansion of a class of functions as infinite products
The theorem of the last article can be applied to the expansion of a certain class of functions
as infinite products.

For let f (z) be a function which has simple zeros at the points5 a1,a2,a3, . . . , where
lim
n→∞
|an | is infinite; and let f (z) be analytic for all values of z. Then f ′(z) is analytic for all

values of z (§5.22), and so f ′(z)/ f (z) can have singularities only at the points a1,a2,a3, . . .

Consequently, by Taylor’s theorem,

f (z) = (z − ar ) f ′(ar ) +
(z − ar )

2

2
f ′′(ar ) + · · ·

5 These being the only zeros of f (z); and an , 0.
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and
f ′(z) = f ′(ar ) + (z − ar ) f ′′(ar ) + · · · .

It follows immediately that at each of the points ar , the function f ′(z)/ f (z) has a simple
pole, with residue +1.

If then we can find a sequence of circles Cm of the nature described in §7.4, such that
f ′(z)/ f (z) is bounded on Cm as m→∞, it follows, from the expansion given in §7.4, that

f ′(z)
f (z)

=
f ′(0)
f (0)

+

∞∑
n=1

(
1

z − an

+
1
an

)
.

Since this series converges uniformly when the terms are suitably grouped (§7.4), we may
integrate term-by-term (§4.7). Doing so, and taking the exponential of each side, we get

f (z) = ce f ′(0)z/ f (0)
∞∏
n=1

{(
1 −

z
an

)
ez/an

}
,

where c is independent of z. Putting z = 0, we see that f (0) = c, and thus the general result
becomes

f (z) = f (0)e f ′(0)z/ f (0)
∞∏
n=1

{(
1 −

z
an

)
ez/an

}
.

This furnishes the expansion, in the form of an infinite product, of any function f (z)which
fulfils the conditions stated.

Example 7.5.1 Consider the function f (z) =
sin z

z
, which has simple zeros at the points

rπ, where r is any positive or negative integer. In this case we have f (0) = 1, f ′(0) = 0, and
so the theorem gives immediately

sin z
z
=

∞∏
n=1

{(
1 −

z
nπ

)
e

z
nπ

} {(
1 +

z
nπ

)
e−

z
nπ

}
;

for it is easily seen that the condition concerning the behaviour of f ′(z)

f (z)
as |z | → ∞ is fulfilled.

Example 7.5.2 (Trinity, 1899) Prove that{
1 +

(
k
x

)2
} {

1 +
(

k
2π − x

)2
} {

1 +
(

k
2π + x

)2
} {

1 +
(

k
4π − x

)2
}

×

{
1 +

(
k

4π + x

)2
}
· · · =

cosh k − cos x
1 − cos x

.

7.6 The factor theorem of Weierstrass
This appears in [663, pp. 77–124]. The theorem of §7.5 is very similar to a more general
theorem in which the character of the function f (z), as |z | → ∞, is not so narrowly restricted.

Let f (z) be a function of z with no essential singularities (except at ‘the point infinity’);
and let the zeros and poles of f (z) be at a1,a2,a3, . . ., where 0 < |a1 | ≤ |a2 | ≤ |a3 | ≤ · · · .
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Let the zero at an be of (integer) order mn. (We here regard a pole as being a zero of negative
order.)

If the number of zeros and poles is unlimited, it is necessary that |an | → ∞, as n → ∞;
for, if not, the points an would have a limit point6 , which would be an essential singularity
of f (z).

We proceed to shew first of all that it is possible to find polynomials gn(z) such that
∞∏
n=1

[{(
1 −

z
an

)
egn (z)

}mn
]

converges for all finite values of z, provided that z is not at one of the points an for which mn

is negative.
Let K be any constant, and let |z | < K; then, since |an | → ∞, we can find N such that,

when n > N, |an | > 2K . The first N factors of the product do not affect its convergence;
consider any value of n greater than N , and let

gn(z) =
z

an

+
1
2

(
z

an

)2

+ · · · +
1

kn − 1

(
z

an

)kn−1

.

Then �����− ∞∑
m=1

1
m

(
z

an

)m
+ gn(z)

����� =
����� ∞∑
m=kn

1
m

(
z

an

)m�����
<

���� z
an

����kn ∞∑
m=0

���� z
an

����m
< 2

��(Ka−1
n )

kn
�� ,

since
��za−1

n

�� < 1
2 . Hence {(

1 −
z

an

)
egn (z)

}mn

= eun (z), (7.8)

where |un(z)| ≤ 2
��mn(Ka−1

n )
kn

�� .
Now mn and an are given, but kn is at our disposal; since Ka−1

n < 1
2 , we choose kn to be

the smallest number such that 2
��mn(Ka−1

n )
kn

�� < bn, where
∞∑
n=1

bn is any convergent series of

positive terms (e.g. we might take bn = 2−n). Hence
∞∏

n=N+1

[{(
1 −

z
an

)
egn (z)

}mn
]
=

∞∏
n=N+1

eun (z), (7.9)

where |un(z)| < bn; and therefore, since bn is independent of z, the product converges
absolutely and uniformly when |z | < K , except near the points an. Now let

F(z) =
∞∏
n=1

[{(
1 −

z
an

)
egn (z)

}mn
]
. (7.10)

6 From the two-dimensional analogue of §2.21.
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Then, if
f (z)
F(z)

= G1(z), it follows that G1(z) is an integral function (§5.64) of z and has no

zeros. It follows that
1

G1(z)
d
dz

G1(z) is analytic for all finite values of z; and so, by Taylor’s

theorem, this function can be expressed as a series
∞∑
n=1

nbnzn−1 converging everywhere;

integrating, it follows that

G1(z) = ceG(z),

where G(z) =
∞∑
n=1

bnzn and c is a constant; this series converges everywhere, and so G(z) is

an integral function.
Therefore, finally,

f (z) = f (0)eG(z)
∞∏
n=1

[{(
1 −

z
an

)
egn (z)

}mn
]
,

where G(z) is some integral function such that G(0) = 0.

Note The presence of the arbitrary element G(z) which occurs in this formula for f (z) is
due to the lack of conditions as to the behaviour of f (z) as |z | → ∞.

Corollary 7.6.1 If mn = 1, it is sufficient to take kn = n, by §2.36.

7.7 The expansion of a class of periodic functions in a series of cotangents
Let f (z) be a periodic function of z, analytic except at a certain number of simple poles; for
convenience, let π be the period of f (z) so that f (z) = f (z + π).

Let z = x + iy and let f (z) → ` uniformly with respect to x as y → +∞, when 0 ≤ x ≤ π;
similarly let f (z) → `′ uniformly as y → −∞. Let the poles of f (z) in the strip 0 < x ≤ π
be at a1,a2, . . . ,an; and let the residues at them be c1, c2, . . . , cn. Further, let ABCD be a
rectangle whose corners are7 −iρ, π − iρ, π + iρ′ and iρ′ in order.

Consider
1

2πi

∫
f (t) cot(t − z) dt taken round this rectangle; the residue of the integrand

at ar is cr cot(ar − z), and the residue at z is f (z). Also the integrals along DA and CB cancel
on account of the periodicity of the integrand; and as ρ → ∞, the integrand on AB tends
uniformly to i`′, while as ρ′→∞ the integrand on CD tends uniformly to −i`; therefore

1
2
(` + `′) = f (z) +

n∑
r=1

cr cot(ar − z).

That is to say, we have the expansion

f (z) =
1
2
(` + `′) +

n∑
r=1

cr cot(z − ar ).

7 If any of the poles are on x = π, shift the rectangle slightly to the right; ρ, ρ′ are to be taken so large that
a1, a2, . . . , an are inside the rectangle.
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Example 7.7.1 Prove that

cot(x − a1) cot(x − a2) · · · cot(x − an) =

n∑
r=1

cot(ar − a1) · · · ∗ · · · cot(ar − an) × cot (x − ar ) + (−1)n/2,

or
n∑

r=1

cot(ar − a1) · · · ∗ · · · cot(ar − an) cot(x − ar ),

according as n is even or odd; the ∗ means that the factor cot(ar − ar ) is omitted.

Example 7.7.2 Prove that

sin(x − b1) sin(x − b2) · · · sin(x − bn)

sin(x − a1) sin(x − a2) · · · sin(x − an)
=

sin(a1 − b1) · · · sin(a1 − bn)

sin(a1 − a2) · · · sin(a1 − an)
cot(x − a1)

+
sin(a2 − b1) · · · sin(a2 − bn)

sin(a2 − a1) · · · sin(a2 − an)
cot(x − a2)

+
...

+ cos(a1 + a2 + · · · + an − b1 − b2 − · · · − bn).

7.8 Borel’s theorem

This appears in [85, p. 94] and the memoirs there cited. Let f (z) =
∞∑
n=0

anzn be analytic

when |z | ≤ r, so that, by §5.23, | anrn | < M , where M is independent of n. Hence, if

φ(z) =
∞∑
n=0

anzn

n!
, then φ(z) is an integral function, and

|φ(z)| <
∞∑
n=0

M |zn |
rn · n!

= Me |z |/r, (7.11)

and similarly
��φ(n)(z)�� < Me |z |/r/rn.

Now consider f1(z) =
∫ ∞

0
e−tφ(zt) dt; this integral is an analytic function of z when

|z | < r , by §5.32. Also, if we integrate by parts,

f1 (z) =
[
−e−tφ(zt)

]∞
0 + z

∞∫
0

e−tφ′(zt) dt

=

n∑
m=0

zm
[
−e−tφ(m)(zt)

]∞
0 + zn+1

∞∫
0

e−tφ(n+1)(zt) dt .

But lim
t→0

e−tφ(m)(zt) = am; and, when |z | < r , lim
t→∞

e−tφ(m)(zt) = 0. Therefore
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f1(z) =
n∑

m=0
amzm + Rn,where

|Rn | <
��zn+1

�� ∞∫
0

e−t × Me |zt |/rr−n−1dt

=
��zr−1

��n+1
M{1 − |z | r−1}−1 → 0, as n→∞.

Consequently, when |z | < r,

f1(z) =
∑∞

m=0
amzm = f (z);

and so

f (z) =
∫ ∞

0
e−tφ(zt) dt,

where φ(z) =
∞∑
n=0

anz
n

n! ; φ(z) is called Borel’s function associated with
∞∑
n=0

anzn.

If S =
∞∑
n=0

an and φ(z) =
∞∑
n=0

anz
n

n! and if we can establish the relation S =

∞∫
0

e−tφ (t) dt,

the series S is said (§8.41) to be ‘summable (B)’; so that the theorem just proved shews that
a Taylor’s series representing an analytic function is summable (B).

7.81 Borel’s integral and analytic continuation
We next obtain Borel’s result that his integral represents an analytic function in a more
extended region than the interior of the circle |z | = r .

This extended region is obtained as follows: take the singularities a, b, c, . . . of f (z) and
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through each of them draw a line perpendicular to the line joining that singularity to the
origin. The lines so drawn will divide the plane into regions of which one is a polygon with
the origin inside it.

Then Borel’s integral represents an analytic function (which, by §5.5 and §7.8, is obviously
that defined by f (z) and its continuations) throughout the interior of this polygon. The reader
will observe that this is the first actual formula obtained for the analytic continuation of a
function, except the trivial one of Example 5.5.1.

For, take any point P with affix ζ inside the polygon; then the circle on OP as diameter
has no singularity on or inside it8; and consequently we can draw a slightly larger concentric
circle (the difference of the radii of the circles being, say, δ) C with no singularity on or
inside it. Then, by §5.4,

an =
1

2πi

∫
C

f (z)
zn+1 dz,

and so

φ (ζ t) =
1

2πi

∞∑
n=0

ζntn

n!

∫
C

f (z)
zn+1 dz;

but
∞∑
n=0

ζntn

n!
f (z)
zn+1

converges uniformly (§3.34) on C since f (z) is bounded and |z | ≥ δ > 0, where δ is
independent of z; therefore, by §4.7,

φ(ζ t) =
1

2πi

∫
C

z−1 f (z) exp(ζ tz−1) dz,

and so, when t is real, |φ(ζ t)| < F(ζ)eλt , where F(ζ) is bounded in any closed region lying
wholly inside the polygon and is independent of t; and λ is the greatest value of the real part
of ζ/z on C.

If we draw the circle traced out by the point z/ζ , we see that the real part of ζ/z is greatest
when z is at the extremity of the diameter through ζ , and so the value of λ is |ζ |·(|ζ | + δ)−1 < 1.

We can get a similar inequality for φ′(ζ t) and hence, by §5.32,
∫ ∞

0
e−t φ(ζ t) dt is analytic at

ζ and is obviously a one-valued function of ζ . This is the result stated above.

7.82 Expansions in series of inverse factorials
Amode of development of functions, which, after being used byNicole [498] and Stirling (see
[635], and [634]) in the eighteenth century, was systematically investigated by Schlömilch
[583] in 1863, is that of expansion in a series of inverse factorials. More recent investigations
are due to Kluyver [379], Nielsen [499, 501, 502] and Pincherle [524, 525]. Properties of
functions defined by series of inverse factorials have been studied in an important memoir
by Nörlund [506].

8 The reader will see this from the figure; for if there were such a singularity the corresponding side of the
polygon would pass betweenO and P; i.e. P would be outside the polygon.
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To obtain such an expansion of a function analytic when |z | > r , we let the function be

f (z) =
∞∑
n=0

anz−n, and use the formula f (z) =
∫ ∞

0
ze−tzφ (t) dt,where φ(t) =

∞∑
n=0

antn/n!; this

result may be obtained in the same way as that of §7.8. Modify this by writing e−t = 1 − ξ,

φ(t) = F(ξ); then f (z) =
∫ 1

0
z(1 − ξ)z−1F(ξ) dξ. Now if t = u + iv and if t be confined to

the strip −π < v < π, t is a one-valued function of ξ and F(ξ) is an analytic function of
ξ; and ξ is restricted so that −π < arg(1 − ξ) < π. Also the interior of the circle |ξ | = 1
corresponds to the interior of the curve traced out by the point t = − log(2 cos 1

2θ) +
1
2 iθ,

(writing ξ = exp{i(θ + π)}); and inside this curve | t | − R(t) ≤
[
R(t)2 + π2]1/2

− R(t) → 0,
as R (t) → ∞.

It follows that, when |ξ | ≤ 1, |F(ξ)| < Mer |t | < M1 |ert | , where M1 is independent of t;
and so F(ξ) < M1(1−ξ)−r . Now suppose that 0 ≤ ξ < 1; then, by §5.23,

��F(n)(ξ)�� < M2n!ρ−n,
where M2 is the upper bound of |F(z)| on a circle with centre ξ and radius ρ < 1 − ξ.

Taking ρ = n(1 − ξ)/(n + 1) and observing that (1 + n−1)n < e we find that9

�� F(n)(ξ)
�� < M1

[
1 −

{
ξ +

n
n + 1

ξ
}]−r

n!
{

n(1 − ξ)
n + 1

}−n
< M1e(n + 1)rn!(1 − ξ)−r−n.

Remembering that, by §4.5,
∫ 1

0
means lim

ε→0+

∫ 1−ε

0
, we have, by repeated integrations by

parts,

f (z) = lim
ε→0+
[−(1 − ξ)zF(ξ)]1−ε0 +

∫ 1−ε

0
(1 − ξ)zF ′ (ξ) dξ

= lim
ε→0+
[−(1 − ξ)zF(ξ)]1−ε0 +

1
z + 1

[
−(1 − ξ)z+1F ′(ξ)

]1−ε
0

+
1

z + 1

∫ 1−ε

0
(1 − ξ)z+1F ′′(ξ) dξ

=
...

= b0 +
b1

z + 1
+

b2

(z + 1)(z + 2)
+ · · · +

bn

(z + 1)(z + 2) · · · (z + n)
+ Rn,

where

bn = lim
ε→0

[
−(1 − ξ)z+nF(n)(ξ)

]1−ε
0 = F(n)(0),

9 (1 + x−1)x increases with x; for 1
1−y > ev , when y < 1, and so log

(
1

1−y

)
> y. That is to say, putting

y−1 = 1 + x, d
dx

x log(1 + x−1) = log(1 + x−1) − 1
1+x > 0.
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if the real part of z + n − r − n > 0, i.e. if Re z > r; further

|Rn | ≤
1

|(z + 1)(z + 2) · · · (z + n)|
lim
ε→0

∫ 1−ε

0

�� (1 − ξ)z+nF(n+1)(ξ)
�� dξ

<
M1e(n + 2)r n!

|(z + 1)(z + 2) · · · (z + n)| · R(z − r)

<
M1e(n + 2)r n!

(r + 1 + δ)(r + 2 + δ) · · · (r + n + δ) · δ
,

where δ = R(z − r).

Now
n∏

m=1

{(
1 +

r + δ
m

)
e−

r+δ
m

}
tends to a limit (§2.71) as n → ∞, and so |Rn′ | → 0 if

(n + 2)re
−(r+δ)

n∑
1

1/m
tends to zero; but

n∑
m=1

1
m
>

∫ n+1

1

dx
x
= log(n + 1),

by §4.43, and (n + 2)r (n + 1)−r−δ → 0 when δ > 0; therefore Rn → 0 as n → ∞, and so,
when R(z) > r , we have the convergent expansion

f (z) = b0 +
b1

z + 1
+

b2

(z + 1) (z + 2)
+ · · · +

bn

(z + 1)(z + 2) · · · (z + n)
+ · · · .

Example 7.8.1 Obtain the same expansion by using the results

1
(z + 1) (z + 2) · · · (z + n + 1)

=
1

n !

∫ 1

0
un(1 − u)zdu, (7.12)∫

C

f (t) dt
z − t

=

∫
C

dt
∫ 1

0
f (t)(1 − u)z−t−1du.

Example 7.8.2 (Schlömilch) Obtain the expansion

log
(
1 +

1
z

)
=

1
z
−

a1

z(z + 1)
−

a2

z(z + 1)(z + 2)
− · · · , (7.13)

where an =

∫ 1

0
t(1 − t)(2 − t) · · · (n − 1 − t) dt, and discuss the region in which it converges.

7.9 Miscellaneous examples
Example 7.1 (Levi-Cività [432]) If y − x − φ (y) = 0, where φ is a given function of its
argument, obtain the expansion

f (y) = f (x) +
∞∑

m=1

1
m!
{φ (x)}m

(
1

1 − φ′ (x)
d
dx

)m
f (x),

where f denotes any analytic function of its argument, and discuss the range of its validity.
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Example 7.2 Obtain (from the formula of Darboux or otherwise) the expansion

f (z) − f (a) =
∞∑
n=1

(−1)n−1(z − a)n

n!(1 − r)n
{ f (n)(z) − rn f (n)(a)};

find the remainder after n terms, and discuss the convergence of the series.

Example 7.3 Shew that

f (x + h) − f (x) =
n∑

m=1

(−1)m−1 1 · 3 · 5 · · · (2m − 1)
(m!)2

hm

2m
{ f (m)(x + h) − (−1)m f (m)(x)}

+(−1)nhn+1
∫ 1

0
γn(t) f (n+1)(x + ht) dt,

where

γn(x) =
xn+ 1

2 (1 − x)n+
1
2

(n!)2
dn

dxn
{x−

1
2 (1 − x)−

1
2 } =

1
πn!

∫ 1

0
(x − z)nz−

1
2 (1 − z)−

1
2 dz,

and shew that γn(x) is the coefficient of n!tn in the expansion of {(1 − t x)(1 + t − t x)}−1/2 in
ascending powers of t.

Example 7.4 By taking

φ(x + 1) =
1

n !

[
dn

dun

{
(1 − r)exu

1 − re−u

}]
u=0

in the formula of Darboux, shew that

f (x + h) − f (x) = −
n∑

m=1

am

hm

m!

{
f (m)(x + h) −

1
r

f (m)(x)
}

+(−1)nhn+1
∫ 1

0
φ (t) f (n+1)(x + ht) dt,

where
1 − r

1 − re−u
= 1 − a1

u
1!
+ a2

u2

2!
− a3

u3

3!
+ · · · .

Example 7.5 Shew that

f (z) − f (a) =
n∑

m=1

(−1)m−1 2Bm(22n − 1)(z − a)2m−1

(2m)!
{ f (2m−1)(a) + f (2m−1)(z)}

+
(z − a)2n+1

(2n)!

∫ 1

0
ψ2n(t) f (2n+1){a + t (z − a)} dt,

where

ψn(t) =
2

n + 1

[
dn+1

dun+1

(
uetu

eu + 1

)]
u=0

.
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Example 7.6 (Trinity, 1899) Prove that

f (z2) − f (z1) = C1(z2 − z1) f ′(z2) + C2(z2 − z1)
2 f ′′(z1) − C3(z2 − z1)

3 f ′′′(z2)

−C4(z2 − z1)
4 f (iv)(z1) + · · · + (−1)n(z2 − z1)

n+1

×

∫ 1

0

{
dn

dun
(etu sech u)

}
u=0

f (n+1)(z1 + tz2 − tz1) dt;

in the series plus signs and minus signs occur in pairs, and the last term before the integral
is that involving (z2 − z1)

n; also Cn is the coefficient of zn in the expansion of cot
(
π
4 −

z
2

)
in

ascending powers of z.

Example 7.7 If x1 and x2 are integers, and φ(z) is a function which is analytic and bounded
for all values of z such that x1 ≤ R (z) ≤ x2, shew (by integrating∫

φ(z) dz
e±2πiz − 1

round indented rectangles whose corners are x1, x2, x2 ±∞ i, x1 ±∞ i) that

1
2φ (x1) + φ (x1 + 1) + φ (x1 + 2) + · · · + φ (x2 − 1) + 1

2φ (x2)

=

∫ x3

x1

φ(z) dz +
1
i

∫ ∞

0

φ(x2 + iy) − φ(x1 + iy) − φ(x2 − iy) + φ(x1 − iy)
e2πy − 1

dy.

Hence, by applying the theorem

4n
∫ ∞

0

y2n−1

e2πy − 1
dy = Bn,

where B1,B2, . . . are Bernoulli’s numbers, shew that

φ(1) + φ(2) + · · · + φ(n)

= C +
1
2
φ(n) +

∫ n

φ(z) dz +
∞∑
r=1

(−1)r−1Br

2r!
φ(2r−1)(n),

(whereC is a constant not involving n), provided that the last series converges. (This important
formula is due to Plana [526]; a proof by means of contour integration was published by
Kronecker [386]. For a detailed history, see Lindelöf [436]. Some applications of the formula
are given in Chapter 12.)

Example 7.8 Obtain the expansion

u =
x
2
+

∞∑
n=2

(−1)n−1 1 · 3 · · · (2n − 3)
n !

xn

2n

for one root of the equation x = 2u + u2, and shew that it converges so long as |x | < 1.

Example 7.9 (Teixeira) If S(m)2n+1 denote the sum of all combinations of the numbers

12, 32, 52, . . . , (2n − 1)2,
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taken m at a time, shew that

cos z
z
=

1
sin z

+

∞∑
n=0

(−1)n+1

(2n + 2) !

×

{
22(n+1)

2n + 3
− S(1)2(n+1)

22n

2n + 1
+ · · · + (−1)nS(n)2(n+1)

22

3

}
sin2n+1 z.

Example 7.10 (Teixeira) If the function f (z) is analytic in the interior of that one of the
ovals whose equation is | sin z | = C (where C ≤ 1), which includes the origin, shew that f (z)
can, for all points z within this oval, be expanded in the form

f (z) = f (0) +
∞∑
n=1

f (2n)(0) + S(1)2n f (2n−2)(0) + · · · + S(n−1)
2n f ′′ (0)

2n !
sin2n z

+

∞∑
n=0

f (2n+1)(0) + S(1)2n+1 f (2n−1) (0) + · · · + S(n)2n+1 f ′ (0)
(2n + 1) !

sin2n+1 z,

where S(m)2n is the sum of all combinations of the numbers

22, 42, 62, . . . , (2n − 2)2,

taken m at a time, and S(m)2n+1 denotes the sum of all combinations of the numbers

12, 32, 52, . . . , (2n − 1)2,

taken m at a time.

Example 7.11 (Kapteyn [366]) Shew that the two series

2z +
2z3

32 +
2z5

52 + · · · ,

and
2z

1 − z2 −
2

1 · 32

(
2z

1 − z2

)3

+
2 · 4
3 · 52

(
2z

1 − z2

)6

− · · · ,

represent the same function in a certain region of the z-plane, and can be transformed into
each other by Bürmann’s theorem.

Example 7.12 If a function f (z) is periodic, of period 2π, and is analytic at all points in the
infinite strip of the plane included between the two branches of the curve | sin z | = C (where
C > 1), shew that at all points in the strip it can be expanded in an infinite series of the form

f (z) =A0 + A1 sin z + · · · + An sinn z + · · ·+

+ cos z (B1 + B2 sin z + · · · + Bn sinn−1 z + · · · );

and find the coefficients An and Bn.

Example 7.13 If φ and f are connected by the equation

φ(x) + λ f (x) = 0,
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of which one root is a, shew that

F(x) =F −
λ

1
1
φ′

f F ′ +
λ2

1! 2!
1
φ′3

���� φ′ f 2F ′

φ′′ ( f 2F ′)′

����
−

λ3

1! 2! 3!
1
φ′6

������ φ′ (φ2)′ ( f 3F ′)
φ′′ (φ2)′′ ( f 3F ′)′

φ′′′ (φ2)′′′ ( f 3F ′)′′

������ + · · · ,
the general term being

(−1)m
λm

1!2! · · ·m! (φ′) 1
2 m(m+1)

multiplied by a determinant in which the elements of the first row are

φ′, (φ2)′, (φ3)′, . . . , (φm−1)′, ( f mF ′)

and each row is the differential coefficient of the preceding one with respect to a; and
F, f ,F ′, . . . denote F(a), f (a),F ′(a), . . .. (See Wronski [684]. For proofs of the theorem see
Cayley [135], Transon [633] and Ch. Lagrange [391].)

Example 7.14 (Ježek) If the function W(a, b, x) be defined by the series

W(a, b, x) = x +
a − b

2!
x2 +

(a − b)(a − 2b)
3!

x3 + · · · ,

which converges so long as |x | < 1/|b|, shew that
d
dx

W(a, b, x) = 1 + (a − b)W(a − b, b, x);

and shew that if y = W(a, b, x), then x = W(b,a, y). Examples of this function are

W(1,0, x) = ex − 1,
W(0,1, x) = log(1 + x),

W(a,1, x) =
(1 + x)a − 1

a
.

Example 7.15 (Mangeot [453]) Prove that

1
∞∑
n=0

anxn

=
1
a0
+

∞∑
n=1

(−1)nxn

n! a n+1
0

Gn,

where

Gn =

�������������

2a1 a0 0 0 · · · 0
4a2 3a1 2a0 0 · · · 0
6a3 5a2 4a1 3a0 · · · 0
...

...
...

...
...

...

(2n − 2)an−1 · · · · · · · · · · · · (n − 1)a0

nan (n − 1)an−1 · · · · · · · · · a1

�������������
,

and obtain a similar expression for
{
∞∑
n=0

anxn

}1/2

.
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Example 7.16 (Gambioli [232]) Shew that

1
∞∑
r=0

ar xr

= −

∞∑
r=0

1
r + 1

∂Sr+1

∂a1
xr,

where Sr is the sum of the rth powers of the reciprocals of the roots of the equation
n∑

r=0
ar xr = 0.

Example 7.17 (Guichard) If fn(z) denote the nth derivate of f (z), and if f−n(z) denote that
one of the nth integrals of f (z) which has an n-tuple zero at z = 0, shew that if the series

∞∑
n=−∞

fn(z)g−n(x)

is convergent it represents a function of z + x; and if the domain of convergence includes the
origin in the x-plane, the series is equal to

∞∑
n=0

f−n(z + x)gn(0).

Obtain Taylor’s series from this result, by putting g(z) = 1.

Example 7.18 (Math. Trip. 1895) Shew that, if x be not an integer,
ν∑

m=−ν

ν∑
n=−ν

2x + m + n
(x + m)2(x + n)2

→ 0

as ν →∞, provided that all terms for which m = n are omitted from the summation.

Example 7.19 (Math. Trip. 1896) Sum the series
p∑

n=−q

(
1

(−1)nx − a − n
+

1
n

)
,

where the value n = 0 is omitted, and p,q are positive integers to be increased without limit.

Example 7.20 (Trinity, 1898) If F(x) = exp
(∫ x

0 xπ cot(xπ) dx
)
, shew that

F(x) = ex

∞∏
n=1

{(
1 − x

n

)n ex+ x2
2n

}
∞∏
n=1

{(
1 + x

n

)n e−x+
x2
2n

} ,
and that the function thus defined satisfies the relations

F(−x) =
1

F(x)
, F(x)F(1 − x) = 2 sin xπ.

Further, if

ψ(z) = z +
z2

22 +
z3

32 + · · · = −

∫ z

0
log(1 − t)

dt
t
,
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shew that

F(x) = exp
(

1
2
πix2 −

1
2πi

ψ(1 − e−2πix)

)
when |1 − e−2πix | < 1.

Example 7.21 (Mildner) Shew that[
1 +

(
k
x

)n] [
1 +

(
k

2π − x

)n] [
1 +

(
k

2π + x

)n]
[
1 +

(
k

4π − x

)n] [
1 +

(
k

4π + x

)n]
· · ·

=

≤n/2∏
g=1

{
1 − 2e−αg cos(x + βg) + e−2αg

}1/2 {
1 − 2e−αg cos(x − βg) + e−2αg

}1/2

2n/2(1 − cos x)n/2e−k cos π/n ,

where αg = k sin 2g−1
n
π, βg = k cos 2g−1

n
π, and 0 < x < 2π.

Example 7.22 (Lerch [428]) If |x | < 1 and a is not a positive integer, shew that
∞∑
n=1

xn

n − α
=

2πixα

1 − e2απi +
x

1 − e2απi

∫
C

tα−1 − xα−1

t − x
dt,

where C is a contour in the t-plane enclosing the points 0, x.

Example 7.23 If φ1(z), φ2(z), . . . are any polynomials in z, and if F(z) be any integrable
function, and if ψ1 (z), ψ2 (z), . . . be polynomials defined by the equations∫ b

a

F(x)
φ1(z) − φ1(x)

z − x
dx = ψ1(z),∫ b

a

F(x)φ1(x)
φ2(z) − φ2(x)

z − x
dx = ψ2(z),∫ b

a

F(x) φ1(x)φ2(x) · · · φm−1(x)
φm(z) − φm(x)

z − x
dx = ψm(z),

shew that∫ b

a

F(x) dx
z − x

=
ψ1(z)
φ1(z)

+
ψ2(z)

φ1(z) φ2(z)
+

ψ3(z)
φ1(z) φ2(z) φ3(z)

+ · · ·

+
ψm(z)

φ1(z)φ2(z) · · · φm(z)

+
1

φ1(z)φ2(z) · · · φm(z)

∫ b

a

F(x)φ1(x)φ2(x) · · · φm(x)
dx

z − x
.

Example 7.24 (Pincherle [521]) A system of functions p0(z), p1(z), p2(z), . . . is defined by
the equations

p0(z) = 1, pn+1(z) = (z2 + anz + bn)pn(z),
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where an and bn are given functions of n, which tend respectively to the limits 0 and −1 as
n→∞.

Shew that the region of convergence of a series of the form
∑

enpn(z), where e1, e2, . . . are
independent of z, is a Cassini’s oval with the foci +1, −1.

Shew that every function f (z), which is analytic on and inside the oval, can, for points
inside the oval, be expanded in a series

f (z) =
∑
(cn + zc′n)pn(z),

where

cn =
1

2πi

∫
(an + z)qn(z) f (z) dz, c′n =

1
2πi

∫
qn(z) f (z) dz,

the integrals being taken round the boundary of the region, and the functions qn(z) being
defined by the equations

q0(z) =
1

z2 + a0z + b0
, qn+1(z) =

1
z2 + an+1z + bn+1

qn(z).

Example 7.25 Let C be a contour enclosing the point a, and let φ(z) and f (z) be analytic
when z is on or inside C. Let |t | be so small that |tφ(z)| < |z − a| when z is on the periphery
of C. By expanding

1
2πi

∫
C

f (z)
1 − tφ′(z)

z − a − tφ(z)
dz

in ascending powers of t, shew that it is equal to

f (a) +
∞∑
n=1

tn

n!
dn−1

dan−1 [ f
′(a) {φ(a)}n] .

Hence, by using §6.3, §6.31, obtain Lagrange’s theorem.



8

Asymptotic Expansions and Summable Series

8.1 Simple example of an asymptotic expansion

Consider the function f (x) =
∫ ∞

x

t−1ex−t dt, where x is real and positive, and the path of

integration is the real axis. By repeated integrations by parts, we obtain

f (x) =
1
x
−

1
x2 +

2!
x3 − · · · +

(−1)n−1(n − 1)!
xn

+ (−1)nn!
∫ ∞

x

ex−t dt
tn+1 .

In connexion with the function f (x), we therefore consider the expression

un−1 =
(−1)n−1(n − 1)!

xn
,

and we shall write
n∑

m=0

um =
1
x
−

1
x2 +

2!
x3 − · · · +

(−1)nn!
xn+1 = Sn(x).

Then we have |um/um−1 | = mx−1 →∞ as m→∞. The series
∑

um is therefore divergent for
all values of x. In spite of this, however, the series can be used for the calculation of f (x) ;
this can be seen in the following way.

Take any fixed value for the number n, and calculate the value of Sn. We have

f (x) − Sn(x) = (−1)n+1(n + 1)!
∫ ∞

x

ex−tdt
tn+2 ,

and therefore, since ex−t ≤ 1,

| f (x) − Sn(x)| = (n + 1)!
∫ ∞

x

ex−tdt
tn+2 < (n + 1)!

∫ ∞

x

dt
tn+2 =

n!
xn+1 .

For values of x which are sufficiently large, the right-hand member of this equation is very
small. Thus, if we take x ≥ 2n, we have

| f (x) − Sn(x) | <
1

2n+1n2 ,

which for large values of n is very small. It follows therefore that the value of the function
f (x) can be calculated with great accuracy for large values of x, by taking the sum of a
suitable number of terms of the series

∑
um.

Taking even fairly small values of x and n

S5(10) = 0.09152, and 0 < f (10) − S5(10) < 0.00012.

153
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The series is on this account said to be an asymptotic expansion of the function f (x). The
precise definition of an asymptotic expansion will now be given.

8.2 Definition of an asymptotic expansion
A divergent series

A0 +
A1

z
+

A2

z2 + · · · +
An

zn
+ · · · ,

in which the sum of the first (n+ 1) terms is Sn(z), is said to be an asymptotic expansion of a
function f (z) for a given range of values of arg z, if the expression Rn(z) = zn [ f (z) − Sn(z)]
satisfies the condition

lim
|z |→∞

Rn(z) = 0 (n fixed),

even though
lim
n→∞
|Rn(z)| = ∞ (z fixed).

When this is the case, we can make

| zn ( f (z) − Sn(z)) | < ε,

where ε is arbitrarily small, by taking |z | sufficiently large.
We denote the fact that the series is the asymptotic expansion of f (z) by writing

f (z) ∼
∞∑
n=0

Anz−n.

The definition which has just been given is due to Poincaré [529]. Special asymptotic
expansions had, however, been discovered and used in the eighteenth century by Stirling,
MacLaurin and Euler. Asymptotic expansions are of great importance in the theory of Linear
Differential Equations, and in Dynamical Astronomy; some applications will be given in
subsequent chapters of the present work.

The example discussed in §8.1 clearly satisfies the definition just given: for, when x is
positive, |xn ( f (x) − Sn(x)) | < n!x−1 → 0 as x → ∞. For the sake of simplicity, in this
chapter we shall for the most part consider asymptotic expansions only in connexion with
real positive values of the argument. The theory for complex values of the argument may be
discussed by an extension of the analysis.

8.21 Another example of an asymptotic expansion
As a second example, consider the function f (x), represented by the series

f (x) =
∞∑
k=1

ck

x + k
,

where x > 0 and 0 < c < 1.
The ratio of the kth term of this series to the (k − 1)th is less than c, and consequently the
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series converges for all positive values of x. We shall confine our attention to positive values
of x. We have, when x > k,

1
x + k

=
1
x
−

k
x2 +

k2

x3 −
k3

x4 +
k4

x5 − · · · .

If, therefore, it were allowable1 to expand each fraction
1

x + k
in this way, and to rearrange

the series for f (x) in descending powers of x, we should obtain the formal series

A1

x
+

A2

x2 + · · · +
An

xn
+ · · · ,

where An = (−1)n−1
∞∑
k=1

kn−1ck . But this procedure is not legitimate, and in fact
∞∑
n=1

Anx−n

diverges. We can, however, shew that it is an asymptotic expansion of f (x).

For let Sn(x) =
A1

x
+

A2

x2 + · · · +
An

xn+1 . Then

Sn(x) =
∞∑
k=1

(
ck

x
−

kck

x2 +
k2ck

x3 + · · · +
(−)nknck

xn+1

)
(8.1)

=

∞∑
k=1

{
1 −

(
−

k
x

)n+1
}

ck

x + k

so that | f (x) − Sn(x)| =

����� ∞∑k=1

(
−

k
x

)n+1 ck

x + k

����� < x−n−2
∞∑
k=1

knck .

Now
∞∑
k=1

knck converges for any given value of n and is equal to Cn, say, and hence

| f (x) − Sn(x)| < Cnx−n−2. Consequently f (x) ∼
∞∑
n=1

Anx−n.

Example 8.2.1 If f (x) =
∫ ∞

x

ex2−t2
dt, where x is positive and the path of integration is

the real axis, prove that

f (x) ∼
1

2x
−

1
22x3 +

1 · 3
23x5 −

1 · 3 · 5
24x7 + · · · .

In fact, it was shewn by Stokes [610] in 1857 that∫ x

0
ex2−t2

dt ∼ ±
1
2

ex2√
π −

(
1

2x
−

1
22x3 +

1 · 3
23x5 −

1 · 3 · 5
24x7 + · · ·

)
;

the upper or lower sign is to be taken according as

−
1
2
π < arg x <

1
2
π or

1
2
π < arg x <

3
2
π.

1 It is not allowable, since k > x for all terms of the series after some definite term.
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8.3 Multiplication of asymptotic expansions
We shall now shew that two asymptotic expansions, valid for a common range of values of
arg z, can be multiplied together in the same way as ordinary series, the result being a new
asymptotic expansion.

For let f (z) ∼
∞∑

m=0
Amz−m, φ(z) ∼

∞∑
m=0

Bmz−m, and let Sn(z) and Tn(z) be the sums of their

first (n + 1) terms; so that, n being fixed,

f (z) − Sn(z) = o(z−n), φ(z) − Tn(z) = o(z−n).

Then, if Cm = A0Bm + A1Bm−1 + · · · + AmB0, it is obvious that2

Sn(z)Tn(z) =
n∑

m=0

Cmz−m + o(z−n).

But

f (z)φ(z) = (Sn(z) + o(z−n)) (Tn(z) + o(z−n))

= Sn(z)Tn(z) + o(z−n)

=

n∑
m=0

Cmz−m + o(z−n).

This result being true for any fixed value of n, we see that

f (z)φ(z) ∼
∞∑

m=0

Cmz−m.

8.31 Integration of asymptotic expansions
We shall now shew that it is permissible to integrate an asymptotic expansion term by term,
the resulting series being the asymptotic expansion of the integral of the function represented
by the original series.

For let f (x) ∼
∞∑

m=2
Amx−m, and let Sn(x) =

n∑
m=2

Amx−m. Then, given any positive number

ε, we can find x0 such that

| f (x) − Sn(x)| < ε |x |−n when x > x0,

and therefore ����∫ ∞

x

f (x)dx −
∫ ∞

x

Sn(x)dx
���� ≤ ∫ ∞

x

| f (x) − Sn(x)|dx

<
ε

(n − 1)xn−1 .

2 See §2.11; we use o(z−n) to denote any function ψ(z) such that znψ(z) → 0 as |z | → x.
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But
∫ ∞

x

Sn(x)dx =
A2

x
+

A3

2x2 + · · · +
An

(n − 1)xn−1 , and therefore∫ ∞

x

f (x)dx ∼
∞∑

m=2

Am

(m − 1)xm−1 . (8.2)

On the other hand, it is not in general permissible to differentiate an asymptotic expansion;
this may be seen by considering e−x sin(ex). For a theorem concerning differentiation of
asymptotic expansions representing analytic functions, see Ritt [560].

8.32 Uniqueness of an asymptotic expansion
A question naturally suggests itself, as to whether a given series can be the asymptotic
expansion of several distinct functions. The answer to this is in the affirmative. To shew this,
we first observe that there are functions L(x)which are represented asymptotically by a series
all of whose terms are zero, i.e. functions such that lim

x→∞
xnL(x) = 0 for every fixed value of

n. The function e−x is such a function when x is positive. The asymptotic expansion3 of a
function J(x) is therefore also the asymptotic expansion of J(x) + L(x).

On the other hand, a function cannot be represented by more than one distinct asymptotic
expansion over the whole of a given range of values of z; for, if

f (z) ∼
∞∑

m=0

Amz−m, f (z) ∼
∞∑

m=0

Bmz−m,

then

lim
z→∞

zn
(
A0 +

A1

z
+ · · · +

An

zn
− B0 −

B1

z
− · · · −

Bn

zn

)
= 0,

which can only be if A0 = B0, A1 = B1, . . ..
Important examples of asymptotic expansions will be discussed later, in connexion with

the Gamma-function (Chapter 12) and Bessel functions (Chapter 17).

8.4 Methods of summing series

Wehave seen that it is possible to obtain a development of the form f (x) =
n∑

m=0
Amx−m+Rn(x),

where Rn(x) → ∞ as n→∞, and the series
∞∑

m=0
Amx−m does not converge. We now consider

what meaning, if any, can be attached to the sum of a non-convergent series. That is to say,
given the numbers a0,a1,a2, . . ., we wish to formulate definite rules by which we can obtain
from them a number S such that S =

∞∑
n=0

an if
∞∑
n=0

an converges, and such that S exists when

this series does not converge.

3 It has been shewn that when the coefficients in the expansion satisfy certain inequalities, there is only one
analytic function with that asymptotic expansion. See Watson [648].
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8.41 Borel’s method of summation [85, p. 97–115]

We have seen (§7.81) that
∞∑
n=0

anzn =
∫ ∞

0 e−tφ(tz) dt, where φ(tz) =
∞∑
n=0

an t
nzn

n! , the equation

certainly being true inside the circle of convergence of
∞∑
n=0

anzn. If the integral exists at points

z outside this circle, we define the Borel sum of
∞∑
n=0

anzn to mean the integral.

Thus, whenever Re z < 1, the ‘Borel sum’ of the series
∞∑
n=0

zn is∫ ∞

0
e−tetzdt = (1 − z)−1.

If the Borel sum exists we say that the series is summable (B).

8.42 Euler’s method of summation [85, 201]

A method, practically due to Euler, is suggested by the theorem of §3.71; the sum of
∞∑
n=0

an

may be defined as lim
x→1−

∞∑
n=0

anxn,when this limit exists.

Thus the sum of the series 1 − 1 + 1 − 1 + · · · would be

lim
x→1−
(1 − x + x2 − · · · ) = lim

x→1−
(1 + x)−1 =

1
2
.

8.43 Cesàro’s method of summation [141]

Let sn = a1 + a2 + · · · + an ; then if S = lim
n→∞

1
n
(s1 + s2 + · · · + sn) exists, we say that

∞∑
n=1

an

is ‘summable (C1)’, and that its sum (C1) is S. It is necessary to establish the condition of
consistency, namely that S =

∞∑
n=1

an when this series is convergent. (See the end of §8.4.)

To obtain the required result, let
∞∑

m=1
am = s,

n∑
m=1

sm = nSn; then we have to prove that

Sn → s. Given ε, we can choose n such that
���� n+p∑
m=n+1

am

���� < ε for all values of p, and so

|s − sn | ≤ ε. Then, if ν > n, we have

Sν = a1 + a2

(
1 −

1
ν

)
+ · · · + an

(
1 −

n − 1
ν

)
+an+1

(
1 −

n
ν

)
+ · · · + aν

(
1 −

ν − 1
ν

)
.

Since 1,1−ν−1,1−2ν−1, . . . is a positive decreasing sequence, it follows fromAbel’s inequality
(§2.301) that����an+1

(
1 −

n
ν

)
+ an+2

(
1 −

n + 1
ν

)
+ · · · + aν

(
1 −

ν − 1
ν

)���� < (
1 −

n
ν

)
ε.
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Therefore ����sν − {
a1 + a2

(
1 −

1
ν

)
+ · · · + an

(
1 −

n − 1
ν

)}���� < (
1 −

n
ν

)
ε.

Making ν → ∞, we see that, if S be any one of the limit points (§2.21) of Sν, then����S − n∑
m=1

am

���� ≤ ε. Therefore, since |s − sn | ≤ ε, we have |S − s | ≤ 2ε. This inequality being

true for every positive value of ε we infer, as in §2.21, that S = s; that is to say, Sν has the
unique limit s; this is the theorem which had to be proved.

Example 8.4.1 Frame a definition of ‘uniform summability (C1) of a series of variable
terms’.

Example 8.4.2 If bn, ν ≥ bn+1, ν ≥ 0 when n < ν, and if, when n is fixed, lim
ν→∞

bn, ν = 1 and

if
∞∑

m=1
am = S, then lim

ν→∞

{
ν∑

n=1
anbn, ν

}
= S.

8.431 Cesàro’s general method of summation

A series
∞∑
n=0

an, is said to be ‘ summable (Cr)’ if lim
ν→∞

ν∑
n=0

anbn, ν exists, where

b0, ν = 1, bn, ν =
{(

1 +
r

ν + 1 − n

) (
1 +

r
ν + 2 − n

)
· · ·

(
1 +

r
ν − 1

)}−1
.

It follows from Example 8.4.2 that the condition of consistency is satisfied; in fact it can be
proved [102, §122] that if a series is summable (Cr ′) it is also summable (Cr) when r > r ′;
the condition of consistency is the particular case of this result when r = 0.

8.44 The method of summation of Riesz [559]
A more extended method of summing a series than the preceding is by means of

lim
ν→∞

ν∑
n=1

(
1 −

λn
λν

)r
an,

in which λn is any real function of n which tends to infinity with n. A series for which this
limit exists is said to be ‘ summable (Rr) with sum-function λn’.

8.5 Hardy’s convergence theorem
This appears in Hardy [278]. For the proof here given, we are indebted to Mr. Littlewood.

Let
∞∑
n=1

an be a series which is summable (C1). Then if an = O(1/n), the series
∞∑
n=1

an

converges.
Let sn = a1+ a2+ · · ·+an; then since

∞∑
n=1

an is summable (C1), we have s1+ s2+ · · ·+ sn =

n (s + o(1)) , where s is the sum (C1) of
∞∑
n=1

an. Let sm − s = tm, (m = 1,2, . . . ,n), and let
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t1 + t2 + · · · + tn = σn.With this notation, it is sufficient to shew that, if |an | < Kn−1, where
K is independent of n, and if σn = n · o(1), then tn → 0 as n→∞.

Suppose first that a1,a2, . . . , are real. Then, if tn does not tend to zero, there is some positive
number h such that there are an unlimited number of the numbers tn which satisfy either (i)
tn > h or (ii) tn < −h. We shall shew that either of these hypotheses implies a contradiction.
Take the former4 , and choose n so that tn > h. Then, when r = 0,1,2, . . ., |an+r | < K/n.

Now plot the points Pr whose coordinates are (r, tn+r ) in a Cartesian diagram. Since
tn+r+1 − tn+r = an+r+1, the slope of the line PrPr+1 is less than θ = arctan(K/n). Therefore
the points P0,P1,P2, . . . lie above the line y = h − x tan θ. Let Pk be the last of the points
P0,P1, . . . which lie on the left of x = h cot θ, so that k ≤ h cot θ.

Draw rectangles as shewn in the figure. The area of these rectangles exceeds the area of
the triangle bounded by y = h − x tan θ and the axes; that is to say

σn+k − σn−1 = tn + tn+1 + · · · + tn+k

>
1
2

h2 cot θ =
1
2

h2K−1n.

But

|σn+k − σn−1 | ≤ |σn+k | + |σn−1 |

= (n + k) · o(1) + (n − 1) · o(1)
= n · o(1),

since k ≤ hnK−1, and h,K are independent of n. Therefore, for a set of values of n tending
to infinity, 1

2 h2K−1n < n · o(1),which is impossible since 1
2 h2K−1 is not o(1) as n→∞.

This is the contradiction obtained on the hypothesis that lim tn ≥ h > 0; therefore
lim tn ≤ 0. Similarly, by taking the corresponding case in which tn ≤ −h, we arrive at the
result lim tn ≥ 0. Therefore since lim tn ≥ lim tn, we have lim tn = lim tn = 0, and so tn → 0.

That is to say sn → s, and so
∞∑
n=1

an is convergent and its sum is s.

If an be complex, we consider Re an and Im an separately, and find that
∞∑
n=1

Re an and

4 The reader will see that the latter hypothesis involves a contradiction by using arguments of a precisely similar
character to those which will be employed in dealing with the former hypothesis.
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∞∑
n=1

Im an converge by the theorem just proved, and so
∞∑
n=1

an converges. The reader will see

in Chapter 9 that this result is of great importance in the modern theory of Fourier series.

Corollary 8.5.1 If an(ξ) be a function of ξ such that
∞∑
n=1

an(ξ) is uniformly summable (C1)

throughout a domain of values of ξ, and if |an(ξ)| < Kn−1, where K is independent of ξ,
∞∑
n=1

an(ξ) converges uniformly throughout the domain.

For, retaining the notation of the preceding section, if tn(ξ) does not tend to zero uniformly,
we can find a positive number h independent of n and ξ such that an infinite sequence of
values of n can be found for which tn(ξn) > h or tn(ξn) < −h for some point ξn of the
domain5; the value of ξn depends on the value of n under consideration.

We then find, as in the original theorem, 1
2 h2K−1n < n ·o(1) for a set of values of n tending

to infinity. The contradiction implied in the inequality shews6 that h does not exist, and so
tn(ξ) → 0 uniformly.

8.6 Miscellaneous examples

Example 8.1 Shew that
∫ ∞

0

e−xt

1 + t2 dt ∼
1
x
−

2 !
x3 +

4 !
x6 − · · · when x is real and positive.

Example 8.2 Discuss the representation of the function

f (x) =
∫ 0

−∞

φ(t)etx dt

(where x is supposed real and positive, and φ is a function subject to certain general condi-
tions) by means of the series

f (x) =
φ(0)

x
−
φ′(0)

x2 +
φ′′(0)

x3 − · · · .

Shew that in certain cases (e.g. φ(t) = eat) the series is absolutely convergent, and represents
f (x) for large positive values of x; but that in certain other cases the series is the asymptotic
expansion of f (x).

Example 8.3 (Legendre [421, p. 340]) Shew that

e3z−a
∫ ∞

z

e−x xa−1 dx ∼
1
z
+

a − 1
z2 +

(a − 1)(a − 2)
z3 + · · ·

for large positive values of z.
5 It is assumed that an(ξ) is real; the extension to complex variables can be made as in the former theorem. If
no such number h existed, tn(ξ) would tend to zero uniformly.

6 It is essential to observe that the constants involved in the inequality do not depend on ξn . For if, say, K
depended on ξn , K−1 would really be a function of n and might be o(1) qua function of n, and the inequality
would not imply a contradiction.
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Example 8.4 (Schlömilch) Shew that if, when x > 0,

f (x) =
∫ ∞

0

{
log u + log

(
1

1 − e−u

)}
e−xu

du
u
,

then f (x) ∼
1

2x
−

B1

22x2 +
B2

42x4 −
B3

62x6 + · · · . Shew also that f (x) can be expanded into an
absolutely convergent series of the form

f (x) =
∞∑
k−1

ck
(x + 1)(x + 2) · · · (x + k)

.

Example 8.5 (Euler, Borel) Shew that if the series 1 + 0 + 0 − 1 + 0 + 1 + 0 + 0 − 1 + · · · ,
in which two zeros precede each −1 and one zero precedes each +1, be summed by Cesàro’s
method, its sum is 3

5 .

Example 8.6 Shew that the series 1 − 2! + 4! − · · · cannot be summed by Borel’s method,
but the series 1 + 0 − 2! + 0 + 4! + · · · can be so summed.
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Fourier Series and Trigonometric Series

9.1 Definition of Fourier series
Series of the type

1
2 a0 + (a1 cos x + b1 sin x) + (a2 cos 2x + b2 sin 2x) + · · · = 1

2 a0 +

∞∑
n=1

(an cos nx + bn sin nx),

where an, bn are independent of x, are of great importance in many investigations. They are
called trigonometrical series. (Throughout this chapter, except in §9.11, it is supposed that
all the numbers involved are real.)

If there is a function f (t) such that
∫ π

−π

f (t) dt exists as a Riemann integral or as an

improper integral which converges absolutely, and such that

πan =

∫ π

−π

f (t) cos nt dt, πbn =

∫ π

−π

f (t) sin nt dt,

then the trigonometrical series is called a Fourier series.
Trigonometrical series that are not Fourier series first appeared in analysis in connexion

with the investigations of Daniel Bernoulli (1700–1782) on vibrating strings; d’Alembert had

previously solved the equation of motion Üy = a2 d2y

dx2 in the form y = 1
2 { f (x+at)+ f (x−at)},

where y = f (x) is the initial shape of the string starting from rest; and Bernoulli shewed that
a formal solution is

y =

∞∑
n=1

bn sin
nπx
`

cos
nπat
`

,

the fixed ends of the string being (0,0) and (`,0); and he asserted that this was themost general
solution of the problem. This appeared to d’Alembert and Euler to be impossible, since such
a series, having period 2`, could not possibly represent such a function as1 cx(` − x) when
t = 0. A controversy arose between these mathematicians, of which an account is given in
Hobson [315].

Fourier, in his Théorie de la Chaleur [223] investigated a number of trigonometrical series
and shewed that, in a large number of particular cases, a Fourier series actually converged
to the sum f (x). Poisson [531] attempted a general proof of this theorem. Two proofs were
given by Cauchy [122] and [123, vol. 2, p. 341–376]. These proofs, which are based on the

1 This function gives a simple form to the initial shape of the string.
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theory of contour integration, are concerned with rather particular classes of functions and
one is invalid. The second proof has been investigated by Harnack [283].

In 1829, Dirichlet [172] gave the first rigorous proof that, for a general class of functions,
the Fourier series, defined as above, does converge to the sum f (x). A modification of this
proof was given later by Bonnet [82]. He employs the second mean-value theorem directly,
while Dirichlet’s original proof makes use of arguments precisely similar to those by which
that theorem is proved. See §9.43.

The result of Dirichlet is that2 if f (t) is defined and bounded in the range (−π, π) and if
f (t) has only a finite number of maxima and minima and a finite number of discontinuities
in this range and, further, if f (t) is defined by the equation f (t +2π) = f (t) outside the range
(−π, π), then, provided that

πan =

∫ π

−π

f (t) cos nt dt, πbn =

∫ π

−π

f (t) sin nt dt,

the series 1
2 a0 +

∞∑
n=1
(an cos nx + bn sin nx) converges to 1

2 { f (x + 0) + f (x − 0)}.

Later, Riemann and Cantor developed the theory of trigonometrical series generally, while
still more recently Hurwitz, Fejér and others have investigated properties of Fourier series
when the series does not necessarily converge. Thus Fejér has proved the remarkable theorem
that a Fourier series (even if not convergent) is ‘summable (C1)’ at all points at which f (x±0)

exist, and its sum (C1) is 1
2 { f (x + 0) + f (x − 0)}, provided that

∫ π

−π

f (t) dt is an absolutely

convergent integral. One of the investigations of the convergence of Fourier series which we
shall give later (§9.42) is based on this result.

For a fuller account of investigations subsequent to Riemann, the reader is referred to
Hobson [323], and to de la Vallée Poussin [639].

9.11 Nature of the region within which a trigonometrical series converges
Consider the series

1
2

a0 +

∞∑
n=1

(an cos nz + bn sin nz),

where z may be complex. If we write eis = ζ , the series becomes

1
2

a0 +

∞∑
n=1

{
1
2
(an − ibn)ζ

n +
1
2
(an + ibn)ζ

−n

}
.

This Laurent series will converge, if it converges at all, in a region in which a ≤ |ζ | ≤ b,
where a, b are positive constants. But, if z = x + iy, |ζ | = e−v, and so we get, as the region of
convergence of the trigonometrical series, the strip in the z plane defined by the inequality

log a ≤ −y ≤ log b.

2 The conditions postulated for f (t) are known as Dirichlet’s conditions; as will be seen in §§9.2, 9.42, they are
unnecessarily stringent.
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The case which is of the greatest importance in practice is that in which a = b = 1, and the
strip consists of a single line, namely the real axis.

Example 9.1.1 Let

f (z) = sin z −
1
2

sin 2z +
1
3

sin 3z −
1
4

sin 4z + · · · ,

where z = x + iy. Writing this in the form

f (z) = −
1
2

i
(
eis −

1
2

e2is +
1
3

e3is − · · ·

)
+

1
2

i
(
e−is −

1
2

e−2is +
1
3

e−3is − · · ·

)
we notice that the first series converges3 only if y ≥ 0, and the second only if y ≤ 0. Writing
x in place of z (x being real), we see that by Abel’s theorem (§3.71),

f (x) = lim
r→1

(
r sin x −

1
2

r2 sin 2x +
1
3

r3 sin 3x − · · ·
)

= lim
r→1

{
−

1
2

i
(
reix −

1
2

r2e2ix +
1
3

r3e3ix − · · ·

)
+

1
2

i
(
re−ix −

1
2

r2e−2ix +
1
3

r3e−3ix − · · ·

)}
.

This is the limit of one of the values of

−
1
2

i log
(
1 + reix

)
+

1
2

i log
(
1 + re−ix

)
,

and as r → 1 (if −π < x < π), this tends to 1
2 x + kπ, where k is some integer.

Now
∞∑
n=1

(−1)n−1 sin nx
n

converges uniformly (Example 3.3.6) and is therefore continuous

in the range −π + δ ≤ x ≤ π − δ, where δ is any positive constant. Since 1
2 x is continuous,

k has the same value wherever x lies in the range; and putting x = 0, we see that k = 0.
Therefore, when −π < x < π, f (x) = 1

2 x. But, when π < x < 3π,

f (x) = f (x − 2π) =
x − 2π

2
=

x
2
− π,

and generally, if (2n − 1)π < x < (2n + 1)π, f (x) = 1
2 x − nπ. We have thus arrived at an

example in which f (x) is not represented by a single analytical expression.

It must be observed that this phenomenon can only occur when the strip in which the
Fourier series converges is a single line. For if the strip is not of zero breadth, the associated
Laurent series converges in an annulus of non-zero breadth and represents an analytic function
of ζ in that annulus; and, since ζ is an analytic function of z, the Fourier series represents an
analytic function of z; such a series is given by

r sin x −
1
2

r2 sin 2x +
1
3

r3 sin 3x − · · · ,

3 The series do converge if y = 0, see Example 2.3.2.
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where 0 < r < 1; its sum is arctan
(

r sin x
1 + r cos x

)
, the arctan always representing an angle

between ± 1
2π.

Example 9.1.2 When −π ≤ x ≤ π,

∞∑
n=1

(−1)n−1 cos nx
n2 =

1
12
π2 −

1
4

x2.

The series converges only when x is real; by §3.34 the convergence is then absolute and
uniform. Since

1
2

x = sin x −
1
2

sin 2x +
1
3

sin 3x − · · · (−π + δ ≤ x ≤ π − δ; δ > 0),

and this series converges uniformly, we may integrate term-by-term from 0 to x (§4.7), and
consequently

1
4

x2 =

∞∑
n=1

(−1)n−1(1 − cos nx)
n2 (−π + δ ≤ x ≤ π − δ).

That is to say, when −π + δ ≤ x ≤ π − δ,

C −
1
4

x2 =

∞∑
n=1

(−1)n−1 cos nx
n2 ,

where C is a constant, at present undetermined.
But since the series on the right converges uniformly throughout the range −π ≤ x ≤ π,

its sum is a continuous function of x in this extended range; and so, proceeding to the limit
when x → ±π, we see that the last equation is still true when x = ±π.

To determine C, integrate each side of the equation (§4.7) between the limits −π, π; and
we get

2πC −
1
6
π3 = 0.

Consequently

1
12
π2 −

1
4

x2 =

∞∑
n=1

(−1)n−1 cos nx
n2 (−π ≤ x ≤ π).

Example 9.1.3 By writing π − 2x for x in Example 9.1.2, shew that

∞∑
n=1

sin2 nx
n2 =

{ 1
2 x(π − x) (0 ≤ x ≤ π),

1
2 {π |x | − x2} (−π ≤ x ≤ π).
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9.12 Values of the coefficients in terms of the sum of a trigonometrical series

Let the trigonometrical series 1
2 c0 +

∞∑
n=1
(cn cos nx + dn sin nx) be uniformly convergent in the

range (−π, π) and let its sum be f (x). Using the obvious results∫ π

−π

cos mx cos nx dx =
{

0 (m , n)
π (m = n , 0),∫ π

−π

sin mx sin nx dx =
{

0 (m , n)
π (m = n , 0),

∫ π

−π

dx = 2π,

we find, on multiplying the equation 1
2 c0 +

∞∑
n=1
(cn cos nx + dn sin nx) = f (x) by4 cos nx; or

by sin nx and integrating term-by-term (§4.7),

πcn =
∫ π

−π

f (x) cos nx dx, πdn =

∫ π

−π

f (x) sin nx dx.

These were given by Euler [203].

Corollary 9.1.1 A trigonometrical series uniformly convergent in the range (−π, π) is a
Fourier series.

Note Lebesgue [419, p. 124] has given a proof of a theorem communicated to him by
Fatou that the trigonometrical series

∞∑
n=2

sin nx/log n, which converges for all real values of

x (Example 2.3.1), is not a Fourier series.

9.2 On Dirichlet’s conditions and Fourier’s theorem
A theorem, of the type described in §9.1, concerning the expansibility of a function of a real
variable into a trigonometrical series is usually described as Fourier’s theorem. On account
of the length and difficulty of a formal proof of the theorem (even when the function to
be expanded is subjected to unnecessarily stringent conditions), we defer the proof until
§9.42, §9.43. It is, however, convenient to state here certain sufficient conditions under which
a function can be expanded into a trigonometrical series.

Let f (t) be defined arbitrarily when −π ≤ t < π and defined 5 for all other real values of t
by means of the equation f (t + 2π) = f (t), so that f (t) is a periodic function with period 2π.

Let f (t) be such that
∫ π

−π

f (t) dt exists; and if this is an improper integral, let it be

absolutely convergent.

4 Multiplying by these factors does not destroy the uniformity of the convergence.
5 This definition frequently results in f (t) not being expressible by a single analytical expression for all real
values of t; cf. Example 9.1.1.



168 Fourier Series and Trigonometric Series

Let an, bn be defined by the equations6

πan =

∫ π

−π

f (t) cos nt dt, πbn =

∫ π

−π

f (t) sin nt dt (n = 0,1,2, . . .).

Then, if x be an interior point of any interval (a, b) in which f (t) has limited total
fluctuation, the series

1
2

a0 +

∞∑
n=1

(an cos nx + bn sin nx)

is convergent, and its sum7 is 1
2 { f (x + 0)+ f (x − 0)}. If f (t) is continuous at t = x, this sum

reduces to f (x).
This theorem will be assumed in §§9.21–9.32; these sections deal with theorems con-

cerning Fourier series which are of some importance in practical applications. It should be
stated here that every function which Applied Mathematicians need to expand into Fourier
series satisfies the conditions just imposed on f (t), so that the analysis given later in this
chapter establishes the validity of all the expansions into Fourier series which are required
in physical investigations.

The reader will observe that in the theorem just stated, f (t) is subject to less stringent
conditions than those contemplated by Dirichlet, and this decrease of stringency is of con-
siderable practical importance. Thus, so simple a series as

∞∑
n=1
(−1)n−1 cos nx

n
is the expansion

of the function8 log
��2 cos 1

2 x
��; and this function does not satisfy Dirichlet’s condition of

boundedness at ±π.
It is convenient to describe the series 1

2 a0 +
∞∑
n=1
(an cos nx + bn sin nx) as the Fourier

series associated with f (t). This description must, however, be taken as implying nothing
concerning the convergence of the series in question.

9.21 The representation of a function by Fourier series for ranges other than (−π, π)
Consider a function f (x) with an (absolutely) convergent integral, and with limited total
fluctuation in the range a ≤ x ≤ b.

Write x = 1
2 (a + b) − 1

2 (a − b)π−1x ′, f (x) = F(x ′). Then it is known (§9.2) that

1
2
{F(x ′ + 0) + F(x ′ − 0)} =

1
2

a0 +

∞∑
n=1

(an cos nx ′ + bn sin nx ′),

6 The numbers an , bn are called the Fourier constants of f (t), and the symbols an , bn will be used in this
sense throughout §§9.2–9.5. It may be shewn that the convergence and absolute convergence of the integrals
defining the Fourier constants are consequences of the convergence and absolute convergence of

∫ π
−π

f (t) dt;
cf. §§2.32, 4.5.

7 The limits f (x ± 0) exist, by Example 3.6.3.
8 Example 9.6 at the end of the chapter.
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and so
1
2
{ f (x + 0) + f (x − 0)} =

1
2

a0 +

∞∑
n=1

{
an cos

(
πn(2x − a − b)

b − a

)
+ bn sin

(
πn(2x − a − b)

b − a

)}
,

where by an obvious transformation

1
2
(b − a)an =

∫ b

a

f (x) cos
(
πn(2x − a − b)

b − a

)
dx,

1
2
(b − a)bn =

∫ b

a

f (x) sin
(
πn(2x − a − b)

b − a

)
dx.

9.22 The cosine series and the sine series
Let f (x) be defined in the range (0, `) and let it have an (absolutely) convergent integral and
also let it have limited total fluctuation in that range. Define f (x) in the range (−`,0) by the
equation

f (−x) = f (x).

Then
1
2
{ f (x + 0) + f (x − 0)} =

1
2

a0 +

∞∑
n=1

{
an cos

πnx
`
+ bn sin

πnx
`

}
,

where, by §9.21,

`an =

∫ `

−`

f (t) cos
πnt
`

dt = 2
∫ `

0
f (t) cos

πnt
`

dt,

`bn =

∫ `

−`

f (t) sin
πnt
`

dt = 0,

so what when −` ≤ x ≤ `,

1
2
{ f (x + 0) + f (x − 0)} =

1
2

a0 +

∞∑
n=1

an cos
πnx
`

;

this is called the cosine series.
If, however, we define f (x) in the range (−`,0) by the equation

f (−x) = − f (−x),

we get, when −` ≤ x ≤ `,

1
2
{ f (x + 0) + f (x − 0)} =

∞∑
n=1

bn sin
πnx
`
,

where `bn = 2
∫ `

0
f (t) sin

πnt
`

dt; this is called the sine series.
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Thus the series
1
2

a0 +

∞∑
n=1

an cos
πnx
`
+

∞∑
n=1

bn sin
πnx
`
,

where
`an

2
=

∫ `

0
f (t) cos

πnt
`

dt,
`bn

2
=

∫ `

0
f (t) sin

πnt
`

dt, have the same sum when

0 ≤ x ≤ `; but their sums are numerically equal and opposite in sign when 0 ≥ x ≥ −`.
The cosine series was given by Clairaut [147] in a memoir dated July 9, 1757; the sine

series was obtained between 1762 and 1765 by Lagrange [396, vol. I, p. 553].

Example 9.2.1 Expand 1
2 (π − x) sin x in a cosine series in the range 0 ≤ x ≤ π.

Solution. We have, by the formula just obtained,

1
2
(π − x) sin x =

1
2

a0 +

∞∑
n=1

an cos nx,

where
1
2
πan =

∫ π

0

1
2
(π − x) sin x cos nx dx.

But, integrating by parts, if n , 1,∫ π

0
2(π − x) sin x cos nx dx =

∫ π

0
(π − x){sin(n + 1)x − sin(n − 1)x} dx

=

[
(x − π)

{
cos(n + 1)x

n + 1
−

cos(n + 1)x
n − 1

}]π
0

−

∫ π

0

{
cos(n + 1)x

n + 1
−

cos(n − 1)x
n − 1

}
dx

= π

(
1

n + 1
−

1
n − 1

)
= −

2π
(n + 1)(n − 1)

.

Whereas if n = 1, we get
∫ π

0
2(π − x) sin x cos x dx = 1

2π.

Therefore the required series is

1
2
+

1
4

cos x −
1

1 · 3
cos 2x −

1
2 · 4

cos 3x −
1

3 · 5
cos 4x − · · ·

It will be observed that it is only for values of x between 0 and π that the sum of this series
is proved to be 1

2 (π − x) sin x; thus for instance when x has a value between 0 and −π, the
sum of the series is not 1

2 (π− x) sin x, but − 1
2 (π+ x) sin x; when x has a value between π and

2π, the sum of the series happens to be again 1
2 (π − x) sin x, but this is a mere coincidence

arising from the special function considered, and does not follow from the general theorem.

Example 9.2.2 Expand 1
8πx(π − x) in a sine series, valid when 0 ≤ x ≤ π.

Answer. The series is sin x +
sin 3x

33 +
sin 5x

53 + · · ·.
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Example 9.2.3 Shew that, when 0 ≤ x ≤ π,

1
96
π(π − 2x)(π2 + 2πx − 2x2) = cos x +

cos 3x
34 +

cos 5x
54 + · · · .

Hint. Denoting the left-hand side by f (x), we have, on integrating by parts and observing
that f ′(0) = f ′(π) = 0,∫ π

0
f (x) cos nx dx =

1
n
[ f (x) sin nx]π0 −

1
n

∫ n

0
f ′(x) sin nx dx

=
1
n2 [ f

′(x) cos nx]π0 −
1
n2

∫ π

0
f ′′(x) cos nx dx

= −
1
n3 [ f

′′(x) sin nx]π0 +
1
n3

∫ π

0
f ′′′(x) sin nx dx

= −
1
n4 [ f

′′′(x) cos nx]π0

=
π

4n4 (1 − cos nπ).

Example 9.2.4 Shew that for values of x between 0 and π, esx can be expanded in the
cosine series

2s
π
(esπ − 1)

(
1

2s2 +
cos 2x
s2 + 4

+
cos 4x
s2 + 16

+ · · ·

)
−

2s
π
(esπ + 1)

(
cos x
s2 + 1

+
cos 3x
s2 + 9

+ · · ·

)
,

and draw graphs of the function esx and of the sum of the series.

Example 9.2.5 Shew that for values of x between 0 and π, the function 1
8π(π − 2x) can be

expanded in the cosine series

cos x +
cos 3x

32 +
cos 5x

52 + · · · ,

and draw graphs of the function 1
8π(π − 2x) and of the sum of the series.

9.3 The nature of the coefficients in a Fourier series
The analysis of this section and of §9.31 is contained in Stokes’ great memoir [608] (repro-
duced in [611, vol. I, pp. 236–313]).

Suppose that (as in the numerical examples which have been discussed) the interval
(−π, π) can be divided into a finite number of ranges (−π, k1), (k1, k2), . . . , (kn, π) such that
throughout each range f (x) and all its differential coefficients are continuous with limited
total fluctuation and that they have limits on the right and on the left (§3.2) at the end points
of these ranges.

Then

πam =

∫ k1

−π

f (t) cos mt dt +
∫ k2

k1

f (t) cos mt dt + · · · +
∫ π

kn

f (t) cos mt dt .
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Integrating by parts we get

πam =
[
m−1 f (t) sin mt

]k1

−π
+

[
m−1 f (t) sin mt

]k2

k1
+ · · · +

[
m−1 f (t) sin mt

]π
kn

− m−1
∫ k1

−π

f ′(t) sin mt dt − m−1
∫ k2

k1

f ′(t) sin mt dt − · · · − m−1
∫ π

kn

f ′(t) sin mt dt,

so that am =
Am

m
−

b′m
m

, where πAm =
n∑

r=1
sin mkr [ f (kr − 0) − f (kr + 0)], and b′m is a Fourier

constant of f ′(x). Similarly bm =
Bm

m
+

a′m
m
,where

πBm = −

n∑
r=1

cos mkr [ f (kr − 0) − f (kr + 0)] − cos mπ [ f (π − 0) − f (−π + 0)] ,

and a′m is a Fourier constant of f ′(x). Similarly, we get

a′m =
A′m
m
−

b′′m
m
, b′m =

B′m
m
+

a′′m
m
,

where a′′m, b′′m are the Fourier constants of f ′′(x) and

πA′m =
n∑

r=1

sin mkr { f ′(kr − 0) − f ′(kr + 0)},

πB′m = −
n∑

r=1

cos mkr { f ′(kr − 0) − f ′(kr + 0)} − cos mπ { f ′(π − 0) − f ′(−π + 0)}.

Therefore

am =
Am

m
−

B′m
m2 −

a′′m
m2 , bm =

Bm

m
+

A′m
m2 −

b′′m
m2 .

Now as m→∞, we see that A′m = O(1), B′m = O(1), and, since the integrands involved in
a′′m and b′′m are bounded, it is evident that a′′m = O(1), b′′m = O(1). Hence if Am = 0, Bm = 0,
the Fourier series for f (x) converges absolutely and uniformly, by §3.34.

The necessary and sufficient conditions that Am = Bm = 0 for all values of m are that

f (kr − 0) = f (kr + 0), f (π − 0) = f (−π + 0),

that is to say that9 f (x) should be continuous for all values of x.

9.31 Differentiation of Fourier series
The result of differentiating

1
2

a0 +

∞∑
m=1

(am cos mx + bm sin mx)

9 Of course f (x) is also subject to the conditions stated at the beginning of the section.
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term by term is
∞∑

m=1
{mbm cos mx − mam sin mx}. With the notation of §9.3, this is the same

as

1
2

a′0 +
∞∑

m=1

(a′m cos mx + b′m sin mx),

provided that Am = Bm = 0 and
∫ π

−π

f ′(x)dx = 0; these conditions are satisfied if f (x) is

continuous for all values of x.
Consequently sufficient conditions for the legitimacy of differentiating a Fourier series

term by term are that f (x) should be continuous for all values of x and f ′(x) should have
only a finite number of points of discontinuity in the range (−π, π), both functions having
limited total fluctuation throughout the range.

9.32 Determination of points of discontinuity
The expressions for am and bm which have been found in §9.3 can frequently be applied in
practical examples to determine the points at which the sum of a given Fourier series may be
discontinuous. Thus, let it be required to determine the places at which the sum of the series

sin x +
1
3

sin 3x +
1
5

sin 5x + · · ·

is discontinuous.
Assuming that the series is a Fourier series and not any trigonometrical series and observing

that am = 0, bm = (2m)−1(1 − cos mπ),we get on considering the formula found in §9.3,

Am = 0, Bm =
1
2 −

1
2 cos mπ, a′m = b′m = 0.

Hence if k1, k2, . . . are the places at which the analytic character of the sum is broken, we
have

0 = πAm = sin mk1 { f (k1 − 0) − f (k1 + 0)} + sin mk2{ f (k2 − 0) − f (k2 + 0)} + · · · .

Since this is true for all values of m, the numbers k1, k2, . . . must be multiples of π; but there
is only one even multiple of π in the range −π < x ≤ π, namely zero. So k1 = 0, and k2, k3, . . .

do not exist. Substituting k1 = 0 in the equation Bm =
1
2 −

1
2 cos mπ,we have

π
( 1

2 −
1
2 cos mπ

)
= −[cos mπ{ f (π − 0) − f (−π + 0)} + f (−0) − f (+0)].

Since this is true for all values of m, we have

1
2π = f (+0) − f (−0), 1

2π = f (π − 0) − f (−π + 0).

This shews that, if the series is a Fourier series, f (x) has discontinuities at the points nπ
(n any integer) and since a′m = b′m = 0, we should expect to be constant in the open range
(−π,0) and to be another constant in the open range (0, π). In point of fact f (x) = −π/4
(−π < x < 0) and π/4 (0 < x < π).
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9.4 Fejér’s theorem
We now begin the discussion of the theory of Fourier series by proving the following
theorem, due to Fejér [210], concerning the summability of the Fourier series associated
with an arbitrary function f (t):

Let f (t) be a function of the real variable t, defined arbitrarily when −π ≤ t < π, and

defined by the equation f (t + 2π) = f (t) for all other real values of t; and let
∫ π

−π

f (t) dt

exist and (if it is an improper integral) let it be absolutely convergent. Then the Fourier series
associated with the function f (t) is summable (C1) at all points x at which, the two limits
f (x ± 0) exist. (See §8.43.) And its sum (C1) is

1
2
{ f (x + 0) + f (x − 0)}.

Let an, bn, (n = 0,1,2, . . .) denote the Fourier constants (§9.2) of f (t) and let

1
2

a0 = A0, an cos nx + bn sin nx = An(x),
m∑
n=0

An(x) = Sm(x).

Then we have to prove that

lim
m→∞

1
m
{A0 + S1(x) + S2(x) + · · · + Sm−1(x)} =

1
2
{ f (x + 0) + f (x − 0)} ,

provided that the limits on the right exist.
If we substitute for the Fourier constants their values in the form of integrals (§9.2), it is

easy to verify that10

A0 +

m−1∑
n=1

Sn(x) = mA0 + (m − 1)A1(x) + (m − 2)A2(x) + · · · + Am−1(x)

=
1
π

∫ π

−π

[ 1
2 m + (m − 1) cos(x − t) + (m − 2) cos 2(x − t)

+ · · · + cos(m − 1)(x − t)] f (t)dt

=
1

2π

∫ π

−π

sin2 1
2 m(x − t)

sin2 1
2 (x − t)

f (t)dt

=
1

2π

∫ π+x

−π+x

sin2 1
2 m(x − t)

sin2 1
2 (x − t)

f (t)dt,

the last step following from the periodicity of the integrand.
If now we bisect the path of integration and write x ∓ 2θ in place of t in the two parts of

10 It is obvious that, if we write λ for et (x − t) in the second line, then

m + (m − 1)(λ + λ−1) + (m − 2)(λ2 + λ−2) + · · · + (λm−1 + λ1−m)

= (1 − λ)−1 {λ1−m + λ2−m + · · · + λ−1 + 1 − λ − λ2 − · · · − λm }

= (1 − λ)−2 {λ1−m − 2λ + λm+1 } = (λ
1
2 m − λ−

1
2 m)2/(λ

1
2 − λ−

1
2 )2.
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the path, we get

A0 +

m−1∑
n=1

Sn(x) =
1
π

∫ π/2

0

sin2 mθ
sin2 θ

f (x + 2θ)dθ +
1
π

∫ π/2

0

sin2 mθ
sin2 θ

f (x − 2θ)dθ.

Consequently it is sufficient to prove that, as m→∞, then

1
m

∫ π/2

0

sin2 mθ
sin2 θ

f (x + 2θ)dθ →
π

2
f (x + 0),

1
m

∫ π/2

0

sin2 mθ
sin2 θ

f (x − 2θ)dθ →
π

2
f (x − 0).

Now, if we integrate the equation

1
2

sin2 mθ
sin2 θ

=
1
2

m + (m − 1) cos 2θ + · · · + cos 2(m − 1)θ,

we find that ∫ π/2

0

sin2 mθ
sin2 θ

dθ =
πm
2
,

and so we have to prove that

1
m

∫ π/2

0

sin2 mθ
sin2 θ

φ(θ)dθ → 0 as m→∞,

where φ(θ) stands in turn for each of the two functions

f (x + 2θ) − f (x + 0), f (x − 2θ) − f (x − 0).

Now, given an arbitrary positive number ε, we can choose δ so that |φ(θ)| < ε whenever
0 < θ ≤ 1

2δ, (on the assumption that f (x±0) exist). This choice of δ is obviously independent
of m. Then���� 1

m

∫ π/2

0

sin2 mθ
sin2 θ

φ(θ) dθ
���� ≤ 1

m

∫ δ/2

0

sin2 mθ
sin2 θ

|φ(θ)| dθ +
1
m

∫ π/2

δ/2

sin2 mθ
sin2 θ

|φ(θ)| dθ

<
ε

m

∫ δ/2

0

sin2 mθ
sin2 θ

dθ +
1

m sin2 (δ/2)

∫ π/2

δ/2
|φ(θ)| dθ

≤
ε

m

∫ π/2

0

sin2 mθ
sin2 θ

dθ +
1

m sin2 (δ/2)

∫ π/2

0
|φ(θ) | dθ

=
πε

2
+

1
m sin2 (δ/2)

∫ π/2

0
|φ(θ)| dθ.

Now the convergence of
∫ π

−π

| f (t)| dt entails the convergence of
∫ π/2

0
|φ(θ)| dθ, and so,

given ε (and therefore δ), we can make

πm
2
ε sin2 δ

2
>

∫ π/2

0
|φ(θ)| dθ,
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by taking m sufficiently large. Hence, by taking m sufficiently large, we can make���� 1
m

∫ π/2

0

sin2 mθ
sin2 θ

φ(θ) dθ
���� < πε,

where ε is an arbitrary positive number; that is to say, from the definition of a limit,

lim
m→∞

1
m

∫ π/2

0

sin2 mθ
sin2 θ

φ(θ) dθ = 0,

and so Fejér’s theorem is established.

Corollary 9.4.1 Let U and L be the upper and lower bounds of f (t) in any interval (a, b)
whose length does not exceed 2π, and let

π∫
−π

| f (t)|dt = πA.

Then, if a + η ≤ x ≤ b − η, where η is any positive number, we have

U −
1
m

{
A0 +

m−1∑
n=1

Sn(x)

}
=

1
2mπ

{∫ x−η

−π+x

+

∫ x+η

x−η

+

∫ x+η

x+η

} sin2 1
2 m(x − t)

sin2 1
2 (x − t)

{U − f (t)} dt

≥
1

2mπ

{∫ x−η

−π+x

+

∫ π+x

x+η

} sin2 1
2 m(x − t)

sin2 1
2 (x − t)

{U − f (t)} dt

≥ −
1

2mπ

{∫ x−η

−π+x

+

∫ π+x

x+η

}
|U | + | f (t)|

sin2 1
2η

dt,

so that
1
m

[
A0 +

m−1∑
n=1

Sn(x)

]
≤ U +

|U | + 1
2 A

m sin2(η/2)
.

Similarly

1
m

[
A0 +

m−1∑
n=1

Sn(x)

]
≥ L −

|L | + 1
2 A

m sin2(η/2)
.

Corollary 9.4.2 Let f (t) be continuous in the interval a ≤ t ≤ b. Since continuity implies
uniformity of continuity (§3.61), the choice of δ corresponding to any value of x in (a, b) is
independent of x, and the upper bound of | f (x ± 0)|, i.e. of | f (x)|, is also independent of x,
so that ∫ π/2

0
|φ(θ)| dθ =

∫ π/2

0
| f (x ± 2θ) − f (x ± 0)|dθ

≤
1
2

∫ π

−π

| f (t)| dt +
1
2
π | f (x ± 0)|,

and the upper bound of the last expression is independent of x.
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Hence the choice of m, which makes���� 1
m

∫ π/2

0

sin2 mθ
sin2 θ

φ(θ) dθ
���� < πε,

is independent of x, and consequently
1
m

{
A0 +

m−1∑
n=1

Sn(x)

}
tends to the limit f (x), asm→∞,

uniformly throughout the interval a ≤ x ≤ b.

9.41 The Riemann–Lebesgue lemmas
In order to be able to apply Hardy’s theorem; (§8.5) to deduce the convergence of Fourier
series from Fejér’s theorem, we need the two following lemmas:

(I) Let
∫ b

a

ψ(θ) dθ exist and (if it is an improper integral) let it be absolutely convergent.

Then, as λ→∞,
∫ b

a

ψ(θ) sin(λθ) dθ is O(1).

(II) If, further, ψ(θ) has limited total fluctuation in the range (a, b) then, as λ→∞,

b∫
a

ψ(θ) sin(λθ) dθ is O(1/λ).

Of these results (I) was stated by W. R. Hamilton [270] and by Riemann [558, p. 241]. For
Lebesgue’s investigation see his [419, ch. III] in the case of bounded functions. The truth of
(II) seems to have been well known before its importance was realised; it is a generalisation
of a result established by Dirksen [180] and Stokes [608] (§9.3) in the case of functions
with a continuous differential coefficient. The reader should observe that the analysis of this
section remains valid when the sines are replaced throughout by cosines.

(I) It is convenient11 to establish this lemma first in the case in which ψ(θ) is bounded in
the range (a, b). In this case, let K be the upper bound of |ψ(θ)|, and let ε be an arbitrary
positive number. Divide the range (a, b) into n parts by the points x1, x2, . . . , xn−1, and form
the sums Sn, sn associated with the function ψ(θ) after the manner of §4.1. Take n so large
that Sn − sn < ε; this is possible since ψ(θ) is integrable.

In the interval (xr−1, xr ) write ψ(θ) = ψr (xr−1) + ωr (θ), so that |ωr (θ)| ≤ Ur − Lr, where
Ur and Lr are the upper and lower bounds of ψ(θ) in the interval (xr−1, xr ). It is then clear

11 For this proof we are indebted to Mr Hardy; it seems to be neater than the proofs given by other writers, e.g.
de la Vallée Poussin [639, pp. 140–141].
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that ������
b∫

a

ψ(θ) sin(λθ) dθ

������ =
����� n∑
r=1

ψr (xr−1)

∫ xr

xr−1

sin(λθ) dθ +
n∑

r=1

∫ n

xr−1

ωr (θ) sin(λθ) dθ

�����
≤

n∑
r=1

|ψr (xr−1)|

����∫ xr

xr−1

sin(λθ) dθ
���� + n∑

r=1

∫ xr

xr−1

|ωr (θ)| dθ

≤ nK · (2/λ) + (Sn − sn)

< (2nK/λ) + ε.

By taking λ large (n remaining fixed after ε has been chosen), the last expression may be
made less than 2ε so that

lim
λ→∞

∫ b

a

ψ(θ) sin(λθ) dθ = 0,

and this is the result stated.
When ψ(θ) is unbounded, if it has an absolutely convergent integral, by §4.5, we may

enclose the points at which it is unbounded in a finite number of intervals δ1, δ2, . . . , δp (the
finiteness of the number of intervals is assumed in the definition of an improper integral,
§4.5) such that

p∑
r=1

∫
δr

|ψ (θ)| dθ < ε.

If K denotes the upper bound of |ψ (θ)| for values of θ outside these intervals, and if
γ1, γ2, . . . , γp+1 denote the portions of the interval (a, b) which do not belong to δ1, δ2, . . . , δp
we may prove as before that����∫ b

a

ψ (θ) sin (λθ) dθ
���� = �����p+1∑

r=1

∫
γr

ψ (θ) sin (λθ) dθ +
p∑

r=1

∫
δr

ψ (θ) sin (λθ) dθ

�����
≤

�����p+1∑
r=1

∫
γr

ψ (θ) sin (λθ) dθ

����� + p∑
r=1

∫
δr

|ψ (θ) sin (λθ)| dθ

< (2nK/λ) + 2ε.

Now the choice of ε fixes n and K , so that the last expression may be made less than 3ε
by taking λ sufficiently large. That is to say that, even if ψ(θ) be unbounded,

lim
λ→∞

∫ b

a

ψ (θ) sin (λθ) dθ = 0,

provided that ψ(θ) has an (improper) integral which is absolutely convergent. The first lemma
is therefore completely proved.
(II) When ψ (θ) has limited total fluctuation in the range (a, b), by Example 3.6.2, we may
write ψ (θ) = χ1(θ) − χ2(θ), where χ1(θ), χ2(θ) are positive increasing bounded functions.

Then, by the second mean-value theorem (§4.14) a number ξ exists such that a ≤ ξ ≤ b
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and ����∫ b

a

χ1(θ) sin (λθ) dθ
���� = ����χ1(b)

∫ b

ξ

sin (λθ) dθ
���� ≤ 2χ1(b)/λ.

If we treat χ2(θ) in a similar manner, it follows that����∫ b

a

ψ (θ) sin (λθ) dθ
���� ≤ ����∫ b

a

χ1 (θ) sin (λθ) dθ
���� + ����∫ b

a

χ2 (θ) sin (λθ) dθ
����

≤ 2 (χ1(b) + χ2(b)) /λ

= O(1/λ),

and the second lemma is established.

Corollary 9.4.3 If f (t) be such that
∫ π

−π

f (t) exists and is an absolutely convergent integral,

the Fourier constants an, bn of f (t) are o(1) as n→∞; and if, further, f (t) has limited total
fluctuation in the range (−π, π), the Fourier constants are O(1/n).

Note Of course these results are not sufficient to ensure the convergence of the Fourier
series associated with f (t); for a series, in which the terms are of the order of magnitude of
the terms in the harmonic series (§2.3), is not necessarily convergent.

9.42 The proof of Fourier’s theorem
We shall now prove the theorem enunciated in §9.2, namely:
Let f (t) be a function defined arbitrarily when −π ≤ t < π, and defined by the equation

f (t+2π) = f (t) for all other real values of t; and let
∫ π

−π

f (t) dt exist and (if it is an improper

integral) let it be absolutely convergent. Let an, bn be defined by the equations

πan =

∫ π

−π

f (t) cos nt dt, πbn =

∫ π

−π

f (t) sin nt dt .

Then, if x be an interior point of any interval (a, b) within which f (t) has limited total
fluctuation, the series

1
2

a0 +

∞∑
n=1

an cos nx + bn sin nx

is convergent and its sum is 1
2 ( f (x + 0) + f (x − 0)) .

It is convenient to give two proofs, one applicable to functions for which it is permissible
to take the interval (a, b) to be the interval (−π + x, π + x), the other applicable to functions
for which it is not permissible.
(I) When the interval (a, b) may be taken to be (−π + x, π + x), it follows from §9.41(II) that
an cos nx + bn sin nx is as O(1/n) as n→∞. Now by Fejér’s theorem (§9.4) the series under
consideration is summable (C1) and its sum (C1) is 1

2 ( f (x + 0) + f (x − 0)) . (The limits
f (x ± 0) exist, by Example 3.6.3.)
Therefore, by Hardy’s convergence theorem (§8.5), the series under consideration is

convergent and its sum (by §8.43) is 1
2 ( f (x + 0) + f (x − 0)) .
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(II) Even if it is not permissible to take the interval (a, b) to be thewhole interval (−π+x, π+x),
it is possible, by hypothesis, to choose a positive number δ, less than π, such that f (t) has
limited total fluctuation in the interval (x − δ, x + δ). We now define an auxiliary function
g(t), which is equal to f (t) when x − δ ≤ t ≤ x + δ, and which is equal to zero throughout
the rest of the interval (−π + x, π + x); and g(t + 2π) is to be equal to g(t) for all real values
of t.

Then g(t) satisfies the conditions postulated for the functions under consideration in (I),
namely that it has an integral which is absolutely convergent and it has limited total fluctuation
in the interval (−π + x, π + x); and so, if a(1)n , and b(1)n denote the Fourier constants of g(t),
the arguments used in (I) prove that the Fourier series associated with g(t), namely

1
2 a(1)0 +

∞∑
n=1

(a(1)n cos nx + b(1)n sin nx),

is convergent and has the sum 1
2 (g(x + 0) + g(x − 0)), and this is equal to

1
2 ( f (x + 0) + f (x − 0)) .

Now let Sm(x) and S(1)m (x) denote the sums of the first m + 1 terms of the Fourier series
associated with f (t) and g(t) respectively. Then it is easily seen that

Sm(x) =
1
π

∫ π

−π

{
1
2
+ cos(x − t) + cos 2(x − t) + · · · + cos m(x − t)

}
f (t) dt

=
1

2π

∫ π

−π

sin
(
m + 1

2

)
(x − t)

sin 1
2 (x − t)

f (t) dt

=
1

2π

∫ π+x

−π+x

sin
(
m + 1

2

)
(x − t)

sin 1
2 (x − t)

f (t) dt

=
1
π

∫ π/2

0

sin (2m + 1) θ
sin θ

f (x + 2θ) dθ +
1
π

∫ π/2

0

sin (2m + 1) θ
sin θ

f (x − 2θ) dθ,

by steps analogous to those given in §9.4.
In like manner

S(1)m (x) =
1
π

∫ π/2

0

sin(2m + 1)θ
sin θ

g(x + 2θ) dθ +
1
π

∫ π/2

0

sin(2m + 1)θ
sin θ

g(x − 2θ) dθ,

and so, using the definition of g(t), we have

Sm(x) − S(1)m (x) =
1
π

∫ π/2

δ/2

sin(2m + 1)θ
sin θ

f (x + 2θ) dθ

+
1
π

∫ π/2

δ/2

sin(2m + 1)θ
sin θ

f (x − 2θ) dθ.

Since cosec θ is a continuous function in the range
( 1

2δ,
1
2π

)
, it follows that f (x±2θ) cosec θ

are integrable functions with absolutely convergent integrals; and so, by the Riemann–
Lebesgue lemma of §9.41(I), both the integrals on the right in the last equation tend to
zero as m → ∞. That is to say lim

m→∞

(
Sm(x) − S(1)m (x)

)
= 0. Hence, since lim

m→∞
S(1)m (x) =
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1
2 { f (x + 0) + f (x − 0)}, it follows also that

lim
m→∞

Sm(x) =
1
2
( f (x + 0) + f (x − 0)) .

We have therefore proved that the Fourier series associated with f (t), namely
1
2 a0 +

∑
(an cos nx + bn sin nx),

is convergent and its sum is 1
2 { f (x + 0) + f (x − 0)}.

9.43 The Dirichlet–Bonnet proof of Fourier’s theorem
It is of some interest to prove directly the theorem of §9.42, without making use of the theory
of summability; accordingly we now give a proof which is on the same general lines as the
proofs due to Dirichlet and Bonnet.

As usual we denote the sum of the first m + 1 terms of the Fourier series by Sm(x), and
then, by the analysis of §9.42, we have

Sm(x) =
1
π

∫ π/2

0

sin(2m + 1)θ
sin θ

f (x + 2θ) dθ +
1
π

∫ π/2

0

sin(2m + 1)θ
sin θ

f (x − 2θ) dθ.

Again, on integrating the equation

sin(2m + 1)θ
sin θ

= 1 + 2 cos 2θ + 2 cos 4θ + · · · + 2 cos 2mθ,

we have ∫ π/2

0

sin(2m + 1)θ
sin θ

dθ =
π

2
,

so that

Sm(x) −
1
2
{ f (x + 0) + f (x − 0)}

=
1
π

∫ π/2

0

sin(2m + 1)θ
sin θ

{ f (x + 2θ) − f (x + 0)} dθ

+
1
π

∫ π/2

0

sin(2m + 1)θ
sin θ

{ f (x − 2θ) − f (x − 0)} dθ.

In order to prove that

lim
m→∞

Sm(x) = 1
2 ( f (x + 0) + f (x − 0)) ,

it is therefore sufficient to prove that

lim
m→∞

∫ π/2

0

sin(2m + 1)θ
sin θ

φ(θ) dθ = 0,

where φ(θ) stands in turn for each of the functions

f (x + 2θ) − f (x + 0), f (x − 2θ) − f (x − 0).
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Now, by Example 3.6.4 θ φ(θ)/sin θ is a function with limited total fluctuation in an
interval of which θ = 0 is an end-point12; and so we may write

θ φ(θ)

sin θ
= χ1(θ) − χ2(θ),

where χ1(θ), χ2(θ) are bounded positive increasing functions of θ such that

χ1(+0) + χ2(+0) = 0.

Hence, given an arbitrary positive number ε,we can choose a positive number δ such that
0 ≤ χ1(θ) < ε, 0 ≤ χ2(θ) < ε whenever 0 ≤ θ ≤ δ/2.

We now obtain inequalities satisfied by the three integrals on the right of the obvious
equation ∫ π/2

0

sin(2m + 1)θ
sin θ

φ(θ) dθ =
∫ π/2

δ/2

sin(2m + 1)θ
sin θ

φ (θ) dθ

+

∫ δ/2

0

sin(2m + 1)θ
θ

χ1(θ) dθ −
∫ δ/2

0

sin(2m + 1)θ
θ

χ2(θ) dθ.

The modulus of the first integral can be made less than ε by taking m sufficiently large;
this follows from §9.41(I) since φ(θ)/sin θ has an integral which converges absolutely in the
interval ( 12δ,

1
2π).

Next, from the second mean-value theorem, it follows that there is a number ξ between 0
and δ such that����∫ δ/2

0

sin(2m + 1)θ
θ

χ1(θ) dθ
���� = ����χ1

(
δ

2

) ∫ δ/2

ξ/2

sin(2m + 1)θ
θ

dθ
����

= χ1

(
δ

2

) �����∫ (m+ 1
2 )δ

(m+ 1
2 )ξ

sin u
u

du

����� .
Since

∫ ∞ sin t
t

dt is convergent, it follows that
����∫ ∞

β

sin u
u

du
���� has an upper bound13 B which

is independent of β, and it is then clear that����∫ δ/2

0

sin(2m + 1)θ
θ

χ1(θ) dθ
���� ≤ 2Bχ1

(
δ

2

)
< 2Bε.

On treating the third integral in a similar manner, we see that we can make����∫ π/2

0

sin(2m + 1)θ
sin θ

φ(θ) dθ
���� < (4B + 1)ε

by taking m sufficiently large; and so we have proved that

lim
m→∞

∫ π/2

0

sin(2m + 1)θ
sin θ

φ(θ) dθ = 0.

12 The other end-point is θ = 1
2 (b − x) or θ = 1

2 (x − a), according as φ(θ) represents one or other of the two
functions.

13 The reader will find it interesting to prove that B =
∫ ∞

0

sinu
u

du =
π

2
.
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But it has been seen that this is a sufficient condition for the limit of Sm(x) to be
1
2 ( f (x + 0) + f (x − 0)) ; and we have therefore established the convergence of a Fourier
series in the circumstances enunciated in §9.42.

Note The reader should observe that in either proof of the convergence of a Fourier series
the second mean-value theorem is required; but to prove the summability of the series, the
first mean-value theorem is adequate. It should also be observed that, while restrictions are
laid upon f (t) throughout the range (−π, π) in establishing the summability at any point x, the
only additional restriction necessary to ensure convergence is a restriction on the behaviour
of the function in the immediate neighbourhood of the point x. The fact that the convergence
depends only on the behaviour of the function in the immediate neighbourhood of x (provided
that the function has an integral which is absolutely convergent) was noticed by Riemann
and has been emphasised by Lebesgue [418, p. 60].

It is obvious that the condition (due to Jordan [360]) that x should be an interior point of
an interval in which f (t) has limited total fluctuation is merely a sufficient condition for the
convergence of the Fourier series; and it may be replaced by any condition which makes

lim
m→∞

∫ π/2

0

sin(2m + 1)θ
sin θ

φ(θ) dθ = 0.

Jordan’s condition is, however, a natural modification of the Dirichlet condition that the
function f (t) should have only a finite number of maxima and minima, and it does not
increase the difficulty of the proof.

Another condition with the same effect is due to Dini [170], namely that, if

Φ(θ) =
1
θ
[ f (x + 2θ) + f (x − 2θ) − f (x + 0) − f (x − 0)] ,

then
∫ a

0
Φ(θ)dθ should converge absolutely for some positive value of a. If the condition is

satisfied, given ε we can find δ so that
∫ δ/2

0
|Φ(θ)| dθ < ε, and then����∫ δ/2

0

sin(2m + 1)θ
sin θ

θΦ(θ)dθ
���� < πε

2
;

the proof that
����∫ π/2

δ/2

sin(2m + 1)θ
sin θ

φ(θ)dθ
���� < ε for sufficiently large values of m follows from

the Riemann–Lebesgue lemma.
A more stringent condition than Dini’s is due to Lipschitz [440], namely |φ(θ)| < Cθk,

whereC and k are positive and independent of θ. For other conditions due to Lebesgue and to
de la Vallée Poussin, see the latter’s [639, II, pp. 149–150]. It should be noticed that Jordan’s
condition differs in character from Dini’s condition; the latter is a condition that the series
may converge at a point, the former that the series may converge throughout an interval.

9.44 The uniformity of the convergence of Fourier series
Let f (t) satisfy the conditions enunciated in §9.42, and further let it be continuous (in addition
to having limited total fluctuation) in an interval (a, b). Then the Fourier series associated



184 Fourier Series and Trigonometric Series

with f (t) converges uniformly to the sum f (x) at all points x for which a + δ ≤ x ≤ b − δ,
where δ is any positive number.

Let h(t) be an auxiliary function defined to be equal to f (t) when a ≤ t ≤ b and equal to
zero for other values of t in the range (−π, π), and let an, bn denote the Fourier constants of
h(t). Also let S(2)m (x) denote the sum of the first m + 1 terms of the Fourier series associated
with h(t).

Then, by Corollary 9.4.2, it follows that 1
2 a0 +

∞∑
n=1
(an cos nx + bn sin nx) is uniformly

summable throughout the interval (a + δ, b − δ); and since

|an cos nx + bn sin nx | ≤ (a2
n + b2

n)
1/2,

which is independent of x and which, by §9.41(II), is O(1/n), it follows from Corollary 8.5.1
that

1
2

a0 +

∞∑
n=1

(an cos nx + bn sin nx)

converges uniformly to the sum h(x), which is equal to f (x).
Now, as in §9.42,

Sm(x) − S(2)m (x) =
1
π

∫ π/2

1
2 (b−x)

sin(2m + 1)θ
sin θ

f (x + 2θ) dθ

+
1
π

∫ π/2

1
2 (x−a)

sin(2m + 1)θ
sin θ

f (x − 2θ) dθ.

As in §9.41 we choose an arbitrary positive number ε and then enclose the points at which
f (t) is unbounded in a set of intervals δ1, δ2, . . . , δp such that

p∑
r=1

∫
δr

| f (t)| dt < ε. (9.1)

If K be the upper bound of | f (t)| outside these intervals, we then have, as in §9.41,

|Sm(x) − S(2)m (x)| <
(

2nK
2m + 1

+ 2ε
)

cosec δ,

where the choice of n depends only on a and b and the form of the function f (t). Hence,
by a choice of m independent of x we can make |Sm(x) − S(2)m (x)| arbitrarily small; so that
Sm(x) − S(2)m (x) tends uniformly to zero. Since S(2)m (x) → f (x) uniformly, it is then obvious
that Sm(x) → f (x) uniformly; and this is the result to be proved.

Note It must be observed that no general statement can be made about uniformity or
absoluteness of convergence of Fourier series. Thus the series of Example 9.1.1 converges
uniformly except near x = (2n + 1)π but converges absolutely only when x = nπ, whereas
the series of Example 9.1.2 converges uniformly and absolutely for all real values of x.
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Example 9.4.1 If φ(θ) satisfies suitable conditions in the range (0, π), shew that

lim
m→∞

∫ π

0

sin(2m + 1)θ
sin θ

φ(θ) dθ = lim
m→∞

∫ π/2

0

sin(2m + 1)θ
sin θ

φ(θ) dθ

+ lim
m→∞

∫ π/2

0

sin(2m + 1)θ
sin θ

φ(π − θ) dθ

=
π

2
(φ(+0) + φ(π − 0)) .

Example 9.4.2 (Math. Trip. 1894) Prove that, if a > 0,

lim
n→∞

∫ ∞

0

sin(2n + 1)θ
sin θ

e−aθ dθ =
π

2
coth

πa
2
.

Hint. Shew that∫ ∞

0

sin(2n + 1)θ
sin θ

e−aθ dθ = lim
m→∞

∫ mπ

0

sin(2n + 1)θ
sin θ

e−aθ dθ

= lim
m→∞

∫ π

0

sin(2n + 1)θ
sin θ

{
e−aθ + e−a(θ+π) + · · · + e−a(θ+mπ)

}
dθ

=

∫ π

0

sin(2n + 1)θ
sin θ

e−aθ dθ
1 − e−aπ

,

and use Example 9.4.1.

Example 9.4.3 Discuss the uniformity of the convergence of Fourier series by means of
the Dirichlet–Bonnet integrals, without making use of the theory of summability.

9.5 The Hurwitz–Liapounoff theorem concerning Fourier constants
This appears in Hurwitz [328]. Liapounoff discovered the theorem in 1896 and published it
in [434]. See also Stekloff [601].

Let f (x) be bounded in the interval (−π, π) and let
∫ π

−π

f (x) dx exist, so that the Fourier

constants an, bn of f (x) exist. Then the series

1
2

a2
0 +

∞∑
n=1

(a2
n + b2

n)

is convergent and its sum is
1
π

∫ π

−π

{ f (x)}2 dx.

This integral exists by Example 4.1.3. A proof of the theorem has been given by de la Vallée
Poussin, in which the sole restrictions on f (x) are that the (improper) integrals of f (x) and
{ f (x)}2 exist in the interval (−π, π). See [639, II, pp. 165–166].

It will first be shewn that, with the notation of §9.4,

lim
m→∞

∫ π

−π

{
f (x) −

1
m

m−1∑
n=0

Sn(x)

}2

dx = 0.
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Divide the interval (−π, π) into 4r parts, each of length δ; let the upper and lower bounds
of f (x) in the interval {(2p − 1)δ − π, (2p + 3)δ − π} be Up, Lp, and let the upper bound of
| f (x)| in the interval (−π, π) be K . Then, by Corollary 9.4.1����� f (x) − 1

m

m−1∑
n=0

Sn(x)

����� < Up − Lp + 2K/
(
m sin2 1

2δ
)

< 2K
[
1 + 1/

(
m sin2 1

2δ
) ]
,

when x lies between 2pδ and (2p + 2)δ.
Consequently, by the first mean-value theorem,∫ π

−π

{
f (x) −

1
m

m−1∑
n=0

Sn(x)

}2

dx

< 2K

{
1 +

1
m sin2 1

2δ

} {
2δ

2r−1∑
p=0

(Up − Lp) +
4Kr

m sin2 1
2δ

}
.

Since f (x) satisfies the Riemann condition of integrability (§4.12), it follows that both

4δ
r−1∑
p=0
(U2p − L2p) and 4δ

r−1∑
p=0
(U2p+1 − L2p+1) can be made arbitrarily small by giving r a

sufficiently large value. When r (and therefore also δ) has been given such a value, we may
choose m1, so large that r/

{
m1 sin2 1

2δ
}
is arbitrarily small. That is to say, we can make the

expression on the right of the last inequality arbitrarily small by giving m any value greater
than a determinate value m1. Hence the expression on the left of the inequality tends to zero
as m→∞.

But evidently∫ π

−π

{
f (x) −

1
m

m−1∑
n=0

Sn(x)

}2

dx =
∫ π

−π

{
f (x) −

m−1∑
n=0

m − n
m

An(x)

}2

dx

=

∫ π

−π

{
f (x) −

m−1∑
n=0

An(x) +
m−1∑
n=0

n
m

An(x)

}2

dx

=

∫ π

−π

{
f (x) −

m−1∑
n=0

An(x)

}2

dx +
∫ π

−π

{
m−1∑
n=0

n
m

An(x)

}2

dx

+2
∫ π

−π

{
f (x) −

m−1∑
n=0

An(x)

} {
m−1∑
n=0

An(x)

}
dx

=

∫ π

−π

{
f (x) −

m−1∑
n=0

An(x)

}2

dx +
π

m2

m−1∑
n=0

n2(a2
n + b2

n),

since ∫ π

−π

f (x)Ar (x) dx =
∫ π

−π

{
m−1∑
n=0

An(x)

}
Ar (x) dx

when r = 0,1,2, . . . ,m − 1.
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Since the original integral tends to zero and since it has been proved equal to the sum of
two positive expressions, it follows that each of these expressions tends to zero; that is to say∫ π

−π

{
f (x) −

m−1∑
n=0

An(x)

}2

dx → 0.

Now the expression on the left is equal to∫ π

−π

{ f (x)}2 dx − 2
∫ π

−π

{
f (x) −

m−1∑
n=0

An(x)

} {
m−1∑
n=0

An(x)

}
dx

−

∫ π

−π

{
m−1∑
n=0

An(x)

}2

dx

=

∫ π

−π

{ f (x)}2 dx −
∫ π

−π

{
m−1∑
n=0

An(x)

}2

dx

=

∫ π

−π

{ f (x)}2 dx − π

{
1
2

a2
0 +

m−1∑
n=1

(a2
n + b2

n)

}
,

so that, as m→∞, ∫ π

−π

{ f (x)}2 dx − π

(
1
2

a2
0 +

m−1∑
n=0

(a2
n + b2

n)

)
→ 0.

This is the theorem stated.
For the following corollary, Parseval assumed, of course, the permissibility of integrating

the trigonometrical series term-by-term.

Corollary 9.5.1 (Parseval [516]) If f (x), F(x) both satisfy the conditions laid on f (x) at
the beginning of this section, and if An, Bn be the Fourier constants of F(x), it follows by
subtracting the pair of equations which may be combined in the one form∫ π

−π

{ f (x) ± F(x)}2 dx = π

[
1
2
(a0 ± A0)

2 +

∞∑
n=1

{(a0 ± An)
2 + (bn ± Bn)

2}

]
that ∫ π

−π

f (x)F(x) dx = π

{
1
2

a0 A0 +

∞∑
n=1

(anAn + bnBn)

}
.

9.6 Riemann’s theory of trigonometrical series
The theory of Dirichlet concerning Fourier series is devoted to series which represent
given functions. Important advances in the theory were made by Riemann, who considered
properties of functions defined by a series of the type14 1

2 a0+
∞∑
n=1
(an cos nx+bn sin nx), where

14 Throughout §§9.6–9.632 the letters an , bn do not necessarily denote Fourier constants.
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it is assumed that lim
n→∞
(an cos nx + bn sin nx) = 0.We shall give the propositions leading up

to Riemann’s theorem that if two trigonometrical series converge and are equal at all points
of the range (−π, π) with the possible exception of a finite number of points, corresponding
coefficients in the two series are equal. The proof given is due to G. Cantor [113, 114].

9.61 Riemann’s associated function
Let the sum of the series

1
2

a0 +

∞∑
n=1

(an cos nx + bn sin nx) = A0 +

∞∑
n=1

An(x),

at any point x where it converges, be denoted by f (x). Let

F(x) =
1
2

A0x2 −

∞∑
n=1

An(x)
n2 .

Then, if the series defining f (x) converges at all points of any finite interval, the series
defining F(x) converges for all real values of x.

To obtain this result we need the following lemma due to Cantor15 .

Lemma (Cantor) If lim
n→∞

An(x) = 0 for all values of x such that a ≤ x ≤ b, then an → 0,
bn → 0.

For take two points x, x + δ of the interval. Then, given ε,we can find n0 (the value of n0

depends on x and on δ) such that, when n > n0

|an cos nx + bn sin nx |< ε, | an cos n(x + δ) + bn sin n(x + δ)| < ε.

Therefore

| cos nδ(an cos nx + bn sin nx) + sin nδ(− an sin nx + bn cos nx)| < ε.

Since | cos nδ(an cos nx + bn sin nx)| < ε, it follows that |sin nδ(−an sin nx + bn cos nx)| <
2ε, and it is obvious that |sin nδ(an cos nx + bn sin nx)| < 2ε.Therefore, squaring and adding,

(a2
n + b2

n)
1/2 |sin nδ | < 2ε

√
2.

Now suppose that an, bn have not the unique limit 0; it will be shewn that this hypothesis
involves a contradiction. For, by this hypothesis, some positive number ε0 exists such that
there is an unending increasing sequence n1,n2, . . . of values of n, for which

(a2
n + b2

2)
1/2 > 4ε0.

Now let the range of values of δ be called the interval I1 of length L1 on the real axis.
Take n′1 the smallest of the integers nr such that n′1L1 > 2π; then sin n′1y goes through all its
phases in the interval I1; call I2 that sub-interval16 of I1 in which sin n′1y > 1/

√
2; its length

15 Riemann appears to have regarded this result as obvious. The proof here given is a modification of Cantor’s
proof [114, 115].

16 If there is more than one such sub-interval, take that which lies on the left.
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is π/(2n′1) = L2. Next take n′2 the smallest of the integers nr (> n′1) such that n′2L2 > 2π,
so that sin n′2y goes through all its phases in the interval I2; call I3 that sub-interval of I2

in which sin n′2y > 1/
√

2; its length is π/(2n′2) = L3. We thus get a sequence of decreasing
intervals I1, I2, . . . each contained in all the previous ones. It is obvious from the definition of
an irrational number that there is a certain point a which is not outside any of these intervals,
and sin na ≥ 1/

√
2 when n = n′1,n

′
2, . . . (n

′
r+1 > n′r ).

For these values of n, (a2
n+b2

n)
1/2 sin na > 2ε0

√
2.But it has been shewn that corresponding

to given numbers a and ε we can find n0 such that when n > n0, (a2
n + b2

n)
1/2(sin na) < 2ε

√
2;

since some values of n′r are greater than n0, the required contradiction has been obtained,
because we may take ε < ε0; therefore an → 0, bn → 0.

Assuming that the series defining f (x) converges at all points of a certain interval of the
real axis, we have just seen that an → 0, bn → 0. Then, for all real values of x, |an cos nx +

bn sin nx | ≤ (a2
n + b2

n)
1/2 → 0, and so, by §3.34, the series 1

2 A0x2 −
∞∑
n=1

An(x)/n2 = F(x)

converges absolutely and uniformly for all real values of x; therefore (see §3.32) F(x) is
continuous for all real values of x.

9.62 Properties of Riemann’s associated function; Riemann’s first lemma
It is now possible to prove Riemann’s first lemma that if

G(x, α) =
F(x + 2α) + F(x − 2α) − 2F(x)

4α2

then lim
a→0

G(x, α) = f (x), provided that
∞∑
n=0

An(x) converges for the value of x under consid-

eration.
Since the series defining F(x), F(x ± 2α) converge absolutely, we may rearrange them;

and, observing that

cos n(x + 2α) cos n(x − 2α) − 2 cos nx = −4 sin2 nα cos nx,

sin n(x + 2α) + sin n(x − 2α) − 2 sin nx = −4 sin2 nα sin nx,

it is evident that

G(x, α) = A0 +

∞∑
n=1

(
sin nα

nα

)2

An(x).

It will now be shewn that this series converges uniformly with regard to α for all values of
α, provided that

∞∑
n=1

An(x) converges. The result required is then an immediate consequence

of §3.32: for, if fn(α) =
( sin nα

nα

)2, (α , 0),and fn(0) = 1, then fn(α) is continuous for all values
of α, and so G(x, α) is a continuous function of α, therefore, by §3.2, G(x,0) = lim

a→0
G(x, α).

To prove that the series defining G(x, α) converges uniformly, we employ the test given
in Example 3.3.7. The expression corresponding to ωn(x) is fn(α), and it is obvious that
| fn(α)| ≤ 1; it is therefore sufficient to shew that

x∑
n=1
| fn+1(α) − fn(α)| < K, where K is

independent of α.
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In fact, since x−1 sin x decreases as x increases from 0 to π, if s be the integer such that
s |α | ≤ π < (s + 1)|α |,when α , 0 we have

s−1∑
n=1

| fn+1(α) − fn(α)| =
s−1∑
n=1

( fn(α) − fn+1(α)) =
sin2 α

α2 −
sin2 sα

s2α2 .

Also
∞∑

n=s+1

| fn+1(α) − fn(α)| =
∞∑

n=s+1

����{ sin2 nα
α2

(
1
n2 −

1
(n + 1)2

)}
+

sin2 nα − sin2(n + 1)α
(n + 1)2α2

����
≤

∞∑
n=s+1

1
α2

(
1
n2 −

1
(n + 1)2

)
+

∞∑
n=s+1

| sin2 nα − sin2(n + 1)α |
(n + 1)2α2

≤
1

(s + 1)2α2 +

∞∑
n=s+1

| sinα sin(2n + 1)α |
(n2 + 1)2α2

≤
1

(s + 1)2α2 +
| sinα |
α2

∞∑
n=s+1

1
(n + 1)2

≤
1
π2 +

| sinα |
α2

∞∫
s

dx
(x + 1)2

≤
1
π2 +

1
(s + 1)|α |

.

Therefore
∞∑
n=1

| fn+1(α) − fn(α)| ≤
sin2 α

α2 −
sin2 sα

s2α2 +

(
sin2 sα

s2α2 +
sin2(s + 1)α
(s + 1)2α2

)
+

1
π2 +

1
π

≤ 1 +
1
π
+

2
π2 .

Since this expression is independent of α, the result required has been obtained (this
inequality is obviously true when α = 0).

Hence, if
∞∑
n=0

An(x) converges, the series definingG(x, α) converges uniformlywith respect

to α for all values of α, and, as stated above,

lim
α→0

G(x, α) = G(x,0) = A0 +

∞∑
n=1

An(x) = f (x).

Example (Riemann) If

H(x, α, β) =
F(x + α + β) − F(x + α − β) − F(x − α + β) + F(x − α − β)

4αβ

shew that H(x, α, β) → f (x) when f (x) converges if α, β → 0 in such a way that α/β and
β/α remain finite.
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9.621 Riemann’s second lemma
With the notation of §9.6 and §9.62, if an, bn → 0, then

lim
α→0

F(x + 2α) + F(x − 2α) − 2F(x)
4α

= 0

for all values of x.
For

1
4α
−1F(x + 2α) + F(x − 2α) − 2F(x) = A0α +

∞∑
n=1

sin2 nα
n2α

An(x);

but by Example 9.1.3 if α > 0,
∞∑
n=1

sin2 nα
n2α

=
1
2
(π − α);

and so, since

A0(x)α +
∞∑
n=1

sin2 nα
n2α

An(x) = A0(x)α +
1
2
(π − α)A1(x)

+

∞∑
n=1

{
1
2
(π − α) −

n∑
m=1

sin2 mα
m2α

}
{An+1(x) − An(x)} ,

it follows from Example 3.3.7, that this series converges uniformly with regard to α for all
values of α greater than, or equal to, zero17 .

But

lim
α→+0

1
4
α−1 {F(x + 2α) + F(x − 2α) − 2F(x)}

= lim
α→0+

[
A0(x)α +

1
2
(π − α)A1(x) +

∞∑
n=1

gn(α) {An+1(x) − An(x)}

]
and this limit is the value of the function when α = 0, by §3.32; and this value is zero since
lim
n→∞

An(x) = 0. By symmetry we see that lim
α→0+

= lim
α→0−

.

9.63 Riemann’s theorem on trigonometrical series
Two trigonometrical series which converge and are equal at all points of the range (−π, π),
with the possible exception of a finite number of points, must have corresponding coefficients
equal. The proof we give is due to G. Cantor [113].

An immediate deduction from this theorem is that a function of the type considered in
§9.42 cannot be represented by any trigonometrical series in the range (−π, π) other than the
Fourier series. This fact was first noticed by Du Bois Reymond.

17 If we define gn(α) by the equations gn(α) = (π − α)/2 −
n∑

m=1

sin2 mα
m2α

(with α , 0), and gn(0) = π/2, then

gn(α) is continuous when α ≥ 0, and gn+1(α) ≤ gn(α).
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We observe that it is certainly possible to have other expansions of (say) the form

a0 +

∞∑
m=1

(am cos 1
2 mx + βm sin 1

2 mx),

which represent f (x) between−π and π; for write x = 2ξ, and consider a function φ(ξ), which
is such that φ(ξ) = f (2ξ) when −π/2 < ξ < π/2, and φ(ξ) = g(ξ) when −π < ξ < −π/2,
and when π/2 < ξ < π, where g(ξ) is any function satisfying the conditions of §9.43. Then
if we expand φ(ξ) in a Fourier series of the form

a0 +

∞∑
m=0

(am cos mξ + βm sin mξ),

this expansion represents f (x) when −π < x < π; and clearly by choosing the function g(ξ)

in different ways an unlimited number of such expansions can be obtained.
The question now at issue is, whether other series proceeding in sines and cosines of

integral multiples of x exist, which differ from Fourier’s expansion and yet represent f (x)
between −π and π.

If possible, let there be two trigonometrical series satisfying the given conditions, and let
their difference be the trigonometrical series

A0 +

∞∑
n=1

An(x) = f (x).

Then f (x) = 0 at all points of the range (−π, π) with a finite number of exceptions; let ξ1,
ξ2 be a consecutive pair of these exceptional points, and let F(x) be Riemann’s associated
function. We proceed to establish a lemma concerning the value of F(x) when ξ1 < x < ξ2.

9.631 Schwartz’ lemma
Quoted by G. Cantor [113]. In the range ξ1 < x < ξ2, F(x) is a linear function of x, if
f (x) = 0 in this range.
For if θ = 1 or if θ = −1

φ(x) = θ
[
F(x) − F(ξ1) −

x − ξ1

ξ2 − ξ1
{F(ξ2) − F(ξ1)}

]
−

1
2

h2(x − ξ1)(ξ2 − x)

is a continuous function of x in the range ξ1 ≤ x ≤ ξ2 and φ(ξ1) = φ(ξ2) = 0.
If the first term of φ(x) is not zero throughout the range18 there will be some point x = c

at which it is not zero. Choose the sign of θ so that the first term is positive at c, and then
choose h so small that φ(c) is still positive. Since φ(x) is continuous it attains its upper bound
(§3.62), and this upper bound is positive since φ(c) > 0. Let φ(x) attain its upper bound at
c1, so that c1 , ξ1, c1 , ξ2. Then, by Riemann’s first lemma,

lim
a→0

φ (c1 + a) + φ (c1 − a) − 2φ (c1)

a2 = h2.

But φ(c1 + a) ≤ φ(c1), φ(c1 − a) ≤ φ(c1), so this limit must be negative or zero. Hence,
by supposing that the first term of φ(x) is not everywhere zero in the range (ξ1, ξ2), we have
18 If it is zero throughout the range, F(x) is a linear function of x.
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arrived at a contradiction. Therefore it is zero; and consequently F(x) is a linear function of
x in the range ξ1 < x < ξ2. The lemma is therefore proved.

9.632 Proof of Riemann’s theorem
We see that, in the circumstances under consideration, the curve y = F(x) represents a
series of segments of straight lines, the beginning and end of each line corresponding to an
exceptional point; and as F(x), being uniformly convergent is a continuous function of x,
these lines must be connected.

But, by Riemann’s second lemma, even if ξ be an exceptional point,

lim
a→0

F(ξ + α) + F(ξ − α) − 2F(ξ)
α

= 0.

Now the fraction involved in this limit is the difference of the slopes of the two segments
which meet at that point whose abscissa is ξ; therefore the two segments are continuous in
direction, so the equation y = F(x) represents a single line. If then we write F(x) = cx + c′,
it follows that c and c′ have the same values for all values of x. Thus

1
2

A0x2 − cx − c′ =
∞∑
n=1

An(x)
n2 ,

the right-hand side of this equation being periodic, with period 2π.
The left-hand side of this equation must therefore be periodic, with period 2π. Hence

A0 = 0, c = 0, and −c′ =
∞∑
n=1

An(x)
n2 . Now the right-hand side of this equation converges

uniformly, so we can multiply by cos nx or by sin nx and integrate. This process gives

πan

n2 = c′
∫ π

−π

cos nx dx = 0,

πbn

n2 = −c′
∫ π

−π

sin nx dx = 0.

Therefore all the coefficients vanish, and therefore the two trigonometrical series whose
difference is A0 +

∞∑
n=1

An(x) have corresponding coefficients equal. This is the result stated in

§9.63.

9.7 Fourier’s representation of a function by an integral
This appears in Fourier [223]. For recent work on Fourier’s integral and the modern theory
of ‘Fourier transforms’, see Titchmarsh [629, 630].

It follows from §9.43 that, if f (x) be continuous except at a finite number of discontinuities
and if it have limited total fluctuation in the range (−∞,∞), then, if x be any internal point
of the range (−α, β),

lim
m→∞

∫ β

−α

sin (2m + 1)(t − x)
(t − x)

f ( t ) dt = lim
θ→0

π

2
sin θ
θ
{ f ( x + 2θ) + f ( x − 2θ)} .

Now let λ be any real number, and choose the integer m so that λ = 2m + 1 + 2η where
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0 ≤ η < 1. Then ∫ β

−α

[sin λ(t − x) − sin(2m + 1)(t − x)]
f (t)

t − x
dt

=

∫ β

−α

2 cos[(2m + 1 + η)(t − x)] sin η(t − x)
f (t)

t − x
dt

→ 0,

as m→∞ by §9.41, since (t − x)−1 f (t) sin η(t − x) has limited total fluctuation.
Consequently, from the proof of the Riemann–Lebesgue lemma of §9.41, it is obvious

that if
∫ ∞

0
| f (t)| dt and

∫ 0

−∞

| f (t)| dt converge, then19

lim
λ→∞

∫ ∞

−∞

sin λ (t − x)
(t − x)

f (t) dt =
1
2
π { f (x + 0) + f (x − 0)} ,

and so

lim
λ→∞

∫ ∞

−∞

{∫ λ

0
cos u (t − x) du

}
f (t) dt =

π

2
{ f (x + 0) + f (x − 0)} .

To obtain Fourier’s result, wemust reverse the order of integration in this repeated integral.
For any given value of λ and any arbitrary value of ε, there exists a number β such that∫ ∞

β

| f (t)| dt <
ε

2λ
;

writing cos u(t − x) · f (t) = φ(t,u), we have20����∫ ∞

0

{∫ λ

0
φ(t,u) du

}
dt −

∫ λ

0

{∫ ∞

0
φ(t,u) dt

}
du

����
=

����∫ β

0

{∫ λ

0
φ(t,u) du

}
dt +

∫ ∞

β

{∫ λ

0
φ(t,u)du

}
dt

−

∫ λ

0

{∫ β

0
φ(t,u) dt

}
du −

∫ λ

0

{∫ θ

β

φ(t,u) dt
}

du
����

=

����∫ ∞

β

{∫ λ

0
φ(t,u) du

}
dt −

∫ λ

0

{∫ ∞

β

φ(t,u) dt
}

du
����

<

∫ ∞

β

{∫ λ

0
|φ(t,u)| du

}
dt +

∫ λ

0

∫ ∞

β

|φ(t,u)| dt du

< 2λ
∫ ∞

β

| f (t)| dt < ε.

Since this is true for all values of ε, no matter how small, we infer that∫ ∞

0

∫ λ

0
=

∫ λ

0

∫ ∞

0
; similarly

∫ −∞

0

∫ λ

0
=

∫ λ

0

∫ −∞

0
.

19
∫ ∞

−∞

means the double limit lim
ρ→∞,σ→∞

∫ σ

−ρ

. If this limit exists, it is equal to lim
ρ→∞

∫ ρ

−ρ

.

20 The equation
∫ β

0

∫ λ
0 =

∫ λ
0

∫ β
0 is easily justified by §4.3, by considering the ranges within which f (x) is

continuous.
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Hence
1
2
π { f (x + 0) + f (x − 0)} = lim

λ→∞

∫ λ

0

∫ ∞

−∞

cos u (t − x) f (t) dt du

=

∫ ∞

0

∫ ∞

−∞

cos u (t − x) f (t) dt du.

This result is known as Fourier’s integral theorem. For a proof of the theorem when f (x)
is subject to less stringent restrictions, see Hobson [316, pp. 492–493]. The reader should ob-

serve that, although lim
λ→∞

∫ ∞

−∞

∫ λ

0
exists, the repeated integral

∫ ∞

−∞

{∫ ∞

0
sin u(t − x) du

}
f (t) dt

does not.

Example 9.7.1 (Rayleigh) Verify Fourier’s integral theorem directly (i) for the function
f (x) = (a2 + x2)−1/2, (ii) for the function defined by the equations

f (x) = 1, (−1 < x < 1); f (x) = 0, (|x | > 1).

9.8 Miscellaneous examples
Example 9.1 Obtain the expansions

(a)
1 − r cos z

1 − 2r cos z + r2 = 1 + r cos z + r2 cos 2z + · · · ,

(b)
1
2

log(1 − 2r cos z + r2) = −r cos z −
1
2

r2 cos 2z −
1
3

r3 cos 3z − · · ·,

(c) arctan
r sin z

1 − r cos z
= r sin z +

1
2

r2 sin 2z +
1
3

r3 sin 3z + · · ·,

(d)
1
2

arctan
2r sin z
1 − r2 = r sin z +

1
3

r3 sin 3z +
1
5

r5 sin 5z + · · ·,

and shew that, when |r | < 1, they are convergent for all values of z in certain strips parallel
to the real axis in the z-plane.

Example 9.2 (Jesus, 1902) Expand x3 and x in Fourier sine series valid when −π < x < π;
and hence find the value of the sum of the series

sin x −
1
23 sin 2x −

1
33 sin 3x −

1
43 sin 4x + · · · ,

for all values of x.

Example 9.3 (Pembroke, 1907) Shew that the function of x represented by
∞∑
n=1

n−1 sin nx sin2 na,

is constant (0 < x < 2a) and zero (2a < x < π), and draw a graph of the function.

Example 9.4 (Peterhouse, 1906) Find the cosine series representing f (x) where

f (x) =

{
sin x + cos x (0 < x ≤ 1

2π),

sin x − cos x ( 12π ≤ x < π).
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Example 9.5 (Trinity, 1895) Shew that

sin πx +
sin 3πx

3
+

sin 5πx
5

+
sin 7πx

7
+ · · · =

1
4
π[x],

where [x] denotes +1 or −1 according as the integer next inferior to x is even or uneven, and
is zero if x is an integer.

Example 9.6 Shew that the expansions

log
����2 cos

1
2

x
���� = cos x −

1
2

cos 2x +
1
3

cos 3x · · ·

and

log
����2 sin

1
2

x
���� = − cos x −

1
2

cos 2x −
1
3

cos 3x · · ·

are valid for all real values of x, except multiples of π.

Example 9.7 (Trinity, 1898) Obtain the expansion
∞∑

m=0

(−1)m cos mx
(m + 1)(m + 2)

= (cos x + cos 2x) log
(
2 cos

x
2

)
+

x
2
(sin 2x + sin x) − cos x,

and find the range of values of x for which it is applicable.

Example 9.8 (Trinity, 1895) Prove that, if 0 < x < 2π, then

sin x
a2 + 12 +

2 sin 2x
a2 + 22 +

3 sin 3x
a2 + 32 + · · · =

π

2
sinh a(π − x)

sinh aπ
.

Example 9.9 Shew that between the values −π and +π of x the following expansions hold:

sin mx =
2
π

sin mπ
(

sin x
12 − m2 −

2 sin 2x
22 − m2 +

3 sin 3x
32 − m2 − · · ·

)
,

cos mx =
2
π

sin mπ
(

1
2m
+

m cos x
12 − m2 −

m cos 2x
22 + m2 +

m cos 3x
32 − m2 − · · ·

)
,

emx + e−mx

emπ − e−mπ
=

2
π

(
1

2m
−

m cos x
12 + m2 +

m cos 2x
22 + m2 −

m cos 3x
32 + m2 + · · ·

)
.

Example 9.10 (Berger) Let x be a real variable between 0 and 1, and let n ≥ 3 be an odd
number. Shew that

(−1)s =
1
n
+

2
π

∞∑
m=1

1
m

tan
mπ
n

cos 2mπx,

if x is not a multiple of 1/n, where s is the greatest integer contained in nx but

0 =
1
n
+

2
π

∞∑
m=1

1
m

tan
mπ
n

cos 2mπx

if x is an integer multiple of 1/n.



9.8 Miscellaneous examples 197

Example 9.11 (Trinity, 1901) Shew that the sum of the series

1
3
+

4
π

∞∑
m=1

m−1 sin
( 2mπ

3

)
cos 2mπx

is 1 when 0 < x < 1
3 , and when

2
3 < x < 1, and is −1 when 1

3 < x < 2
3 .

Example 9.12 (Math. Trip. 1896) If

aeax

ea − 1
=

∞∑
n=0

anVn(x)
n!

,

shew that, when −1 < x < 1,

cos 2πx +
cos 4πx

22n +
cos 6πx

32n + · · · = (−1)n−1 22n−1π2n

(2n)!
V2n(x),

sin 2πx +
sin 4πx
22n+1 +

sin 6πx
32n+1 + · · · = (−1)n+1 22nπ2n+1

(2n + 1)!
V2n+1(x).

Example 9.13 (Trinity, 1894) If m is an integer, shew that, for all real values of x,

cos2m x = 2
1 · 3 · 5 · · · (2m − 1)

2 · 4 · 6 · · · 2m

{
1
2
+

m
m + 1

cos 2x +
m(m − 1)

(m + 1)(m + 2)
cos 4x

+
m(m − 1)(m − 2)

(m + 1)(m + 2)(m + 3)
cos 6x + · · ·

}
,��cos2m−1 x

�� = 4
π

2 · 4 · 6 · · · (2m − 2)
1 · 3 · 5 · · · (2m − 1)

{
1
2
+

2m − 1
2m + 1

cos 2x

+
(2m − 1)(2m − 3)
(2m + 1)(2m + 3)

cos 4x + · · ·
}
.

Example 9.14 Apoint moves in a straight line with a velocity which is initially u, and which
receives constant increments, each equal to u, at equal intervals τ. Prove that the velocity at
any time t after the beginning of the motion is

u
2
+

ut
τ
+

u
π

∞∑
m=1

1
m

sin
2mπt
τ

,

and that the distance traversed is

ut
2τ
(t + τ) +

uτ
12
−

uτ
2π2

∞∑
m=1

1
m2 cos

2mπt
τ

.

Example 9.15 (Math. Trip. 1893) If

f (x) =
∞∑
n=1

sin(6n − 3)x
2n − 1

−2
∞∑
n=1

sin(2n − 1)x
2n − 1

+
3
√

3
π

{
sin x −

sin 5x
52 +

sin 7x
72 −

sin 11x
112 + · · ·

}
,
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shew that f (+0) = f (π−0) = − π4 , and f ( π3 +0)− f ( π3 −0) = − π2 , f ( 2π3 +0)− f ( 2π3 −0) = π
2 .

Observing that the last series is

6
π

∞∑
n=1

sin (2n−1)π
3 sin(2n − 1)x
(2n − 1)2

,

draw the graph of f (x).

Example 9.16 (Trinity, 1908) Shew that, when 0 < x < π,

f (x) =
2
√

3
3

(
cos x −

1
5

cos 5x +
1
7

cos 7x −
1

11
cos 11x + · · ·

)
= sin 2x +

1
2

sin 4x +
1
4

sin 8x +
1
5

sin 10x + · · ·

where

f (x) =


1
3π 0 < x < 1

3π,

0 1
3π < x < 2

3π,

− 1
3π

2
3π < x < π.

Find the sum of each series when x = 0, 1
3π,

2
3π, π, and for all other values of x.

Example 9.17 (Math. Trip. 1895) Prove that the locus represented by
∞∑
n=1

(−1)n−1

n2 sin nx sin ny = 0

is two systems of lines at right angles, dividing the coordinate plane into squares of area π2.

Example 9.18 (Trinity, 1903) Shew that the equation
∞∑
n=1

(−1)n−1 sin ny cos nx
n3 = 0

represents the lines y = ±mπ, (m = 0,1,2, . . .) together with a set of arcs of ellipses whose
semi-axes are π and π/

√
3, the arcs being placed in squares of area 2π2. Draw a diagram of

the locus.

Example 9.19 (Math. Trip. 1904) Shew that, if the point (x, y, z) lies inside the octahedron
bounded by the planes ±x ± y ± z = π, then

∞∑
n=1

(−1)n−1 sin nx sin ny sin nz
n3 =

1
2

xyz.

Example 9.20 (Pembroke, 1902) Circles of radius a are drawn having their centres at the
alternate angular points of a regular hexagon of side a. Shew that the equation of the trefoil
formed by the outer arcs of the circles can be put in the form

πr

6
√

3a
=

1
2
+

1
2 · 4

cos 3θ −
1

5 · 7
cos 6θ +

1
8 · 10

cos 9θ − · · · ,

the initial line being taken to pass through the centre of one of the circles.
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Example 9.21 (Jesus, 1908) Draw the graph represented by

r
a
= 1 +

2m
π

sin
π

m

{
1
2
+

∞∑
n=1

(−1)n cos nmθ
1 − (nm)2

}
,

where m is an integer.

Example 9.22 (Trinity, 1905) With each vertex of a regular hexagon of side 2a as centre,
the arc of a circle of radius 2a lying within the hexagon is drawn. Shew that the equation of
the figure formed by the six arcs is

πr
4a
= 6 − 3

√
3 + 2

∞∑
n=1

{
(−1)n−16 + 3

√
3
}

(6n − 1)(6n + 1)
cos 6nθ,

the prime vector bisecting a petal.

Example 9.23 (Trinity, 1894) Shew that, if c > 0,

lim
n→∞

∫ ∞

0
e−cx cot x sin(2n + 1)x dx =

1
2
π tanh

1
2

cπ.

Example 9.24 (King’s, 1901) Shew that

lim
n→∞

∫ ∞

0

sin(2n + 1)x
sin x

dx
1 + x2 =

1
2
π coth 1.

Example 9.25 (Math. Trip. 1905) Shew that, when −1 < x < 1 and a is real,

lim
n→∞

∫ ∞

0

sin(2n + 1)θ sin(1 + x)θ
sin θ

θ

a2 + θ2 dθ = −
π

2
sinh ax
sinh a

.

Example 9.26 (Math. Trip. 1898) Assuming the possibility of expanding f (x) in a
uniformly convergent series of the form

∑
k

Ak sin k x, where k is a root of the equation

k cos ak + b sin ak = 0 and the summation is extended to all positive roots of this equation,
determine the constants Ak .

Example 9.27 (Beau) If f (x) = 1
2 a0 +

∞∑
n=1
(an cos nx + bn sin nx) is a Fourier series, shew

that, if f (x) satisfies certain general conditions,

an =
4
π

P.V.
∫ ∞

0
f (t) cos nt tan

t
2

dt
t
, bn =

4
π

∫ ∞

0
f (t) sin nt tan

t
2

dt
t
,

where P.V. means principal value.

Example 9.28 If Sn(x) = 2
n∑

r=1
(−1)r−1 sin r x

r
prove that the highest maximum of Sn(x) in

the interval (0, π) is at x =
nπ

n + 1
and prove that, as n→∞,

Sn

( nπ
n + 1

)
→ 2

∫ π

0

sin t
t

dt.

Deduce that, as n → ∞, the shape of the curve y = Sn(x) in the interval (0, π) tends to
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approximate to the shape of the curve formed by the line y = x, 0 ≤ x ≤ π, together with
the line x = π, 0 ≤ y ≤ G, where

G = 2
∫ π

0

sin t
t

dt .

Note The fact that G = 3.704 · · · > π is known as Gibbs’ phenomenon; see [243]. The
phenomenon is characteristic of a Fourier series in the neighbourhood of a point of ordinary
discontinuity of the function which it represents. For a full discussion of the phenomenon,
which was discovered by Wilbraham [680], see Carslaw [119, Chapter 9].
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Linear Differential Equations

10.1 Linear differential equations
The analysis contained in this chapter is mainly theoretical; it consists, for the most part, of
existence theorems. It is assumed that the reader has some knowledge of practical methods
of solving differential equations; these methods are given in works exclusively devoted to the
subject, such as Forsyth [221, 222].

In some of the later chapters of this work, we shall be concerned with the investigation of
extensive and important classes of functions which satisfy linear differential equations of the
second order. Accordingly, it is desirable that we should now establish some general results
concerning solutions of such differential equations.

The standard form of the linear differential equation of the second order will be taken to
be

d2u
dz2 + p(z)

du
dz
+ q(z)u = 0, (10.1)

and it will be assumed that there is a domain S in which both p(z), q(z) are analytic except
at a finite number of poles.

Any point of S at which p(z), q(z) are both analytic will be called an ordinary point of the
equation; other points of S will be called singular points.

10.2 Solution of a differential equation valid in the vicinity of an ordinary point
This method is applicable only to equations of the second order. For a method applicable to
equations of any order, see Forsyth [221].

Let b be an ordinary point of the differential equation, and let Sb be the domain formed by
a circle of radius rb, whose centre is b, and its interior, the radius of the circle being such that
every point of Sb is a point of S, and is an ordinary point of the equation. Let z be a variable
point of Sb.

In the equation write u = 3 exp
{
−

1
2

∫ z

b

p(ζ) dζ
}
, and it becomes

d23

dz2 + J(z)3 = 0, (10.2)

where J(z) = q(z) −
1
2

dp(z)
dz
−

1
4
{p(z)}2 . It is easily seen (§5.22) that an ordinary point of

equation (10.1) is also an ordinary point of equation (10.2).

201
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Now consider the sequence of functions 3n(z), analytic in Sb, defined by the equations

30(z) = a0 + a1(z − b),

3n(z) =
∫ z

b

(ζ − z) J(ζ)3n−1(ζ) dζ, (n = 1,2,3, . . .)

where a0, a1 are arbitrary constants.
Let M , µ be the upper bounds of |J(z)| and |30(z)| in the domain Sb. Then at all points of

this domain

|3n(z)| ≤
µMn

n!
|z − b|2n. (10.3)

For this inequality is true when n = 0; if it is true when n = 0,1, . . . ,m − 1, we have, by
taking the path of integration to be a straight line,

|3m(z)| =
����∫ z

b

(ζ − z) J(ζ)3m−1(ζ) dζ
����

≤
1

(m − 1)!

∫ z

b

|ζ − z | |J(ζ)|µMm−1 |ζ − b|2m−2 |dζ |

≤
µMm

(m − 1)!
|z − b|

∫ |z−b |

0
t2m−2 dt

≤
µMm

m!
|z − b|2m.

Therefore, by induction, the inequality holds for all values of n.

Also, since |3n(z)| ≤
µMn

n!
r2n
b when z is in Sb and

∞∑
n=0

µMn

n!
r2n
b converges, it follows (§3.34)

that 3(z) =
∞∑
n=0

3n(z) is a series of analytic functions uniformly convergent in Sb; while, from

the definition of 3n(z),
d
dz
3n(z) = −

∫ z

b

J(ζ)3n−1(ζ) dζ, (n = 1,2,3, . . .)

d2

dz2 3n(z) = −J(z)3n−1(z);

hence it follows (§5.3) that

d23(z)
dz2 =

d230(z)
dz2 +

∞∑
n=1

d23n(z)
dz2

= −J(z)3(z).

Therefore 3(z) is a function of z, analytic in Sb, which satisfies the differential equation

d23(z)
dz2 + J(z)3(z) = 0,

and, from the value obtained for
d
dz
3n(z), it is evident that

3(b) = a0, 3
′(b) =

{
d
dz
3(z)

}
z=b

= a1,
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where a0, a1 are arbitrary.

10.21 Uniqueness of the solution
If there were two analytic solutions of the equation for 3, say 31(z) and 32(z), such that
31(b) = 32(b) = a0, and 31

′(b) = 32
′(b) = a1, then, writing w(z) = 31(z) − 32(z), we should

have
d2w(z)

dz2 + J(z)w(z) = 0.

Differentiating this equation n − 2 times and putting z = b, we get

w(n)(b) + J(b)w(n−2)(b) +
(
n − 2

1

)
J ′(b)w(n−3)(b) + · · · + J(n−2)(b)w(b) = 0.

Putting n = 2,3,4, . . . in succession, we see that all the differential coefficients of w(z) vanish
at b; and so, by Taylor’s theorem, w(z) = 0; that is to say the two solutions 31(z), 32(z) are
identical.

Writing u(z) = 3(z) exp
{
−

1
2

∫ z

b

p(ζ) dζ
}
,we infer without difficulty that u(z) is the only

analytic solution of (10.1) such that u(b) = A0, u′(b) = A1, where

A0 = a0, A1 = a1 −
1
2 p(b) a0.

Now that we know that a solution of (10.1) exists which is analytic in Sb and such that
u(b), u′(b) have the arbitrary values A0, A1, the simplest method of obtaining the solution in
the form of a Taylor’s series is to assume

u(z) =
∞∑
n=0

An(z − b)n,

substitute this series in the differential equation and equate coefficients of successive powers
of z − b to zero (§3.73) to determine in order the values of A2, A3, . . . in terms of A0, A1.

Note In practice, in carrying out this process of substitution, the reader will find it much
more simple to have the equation ‘cleared of fractions’ rather than in the canonical form
(10.1) of §10.1. Thus the equations in Examples 10.2.1 and 10.2.2 below should be treated
in the form in which they stand; the factors 1 − z2, (z − 2), (z − 3) should not be divided out.
The same remark applies to the examples of §§10.3 and 10.32.

From the general theory of analytic continuation (§5.5) it follows that the solution obtained
is analytic at all points of S except at singularities of the differential equation. The solution
however is not, in general, analytic throughout S (see the footnote after Corollary 5.2.2),
except at these points, as it may not be one-valued; i.e., it may not return to the same value
when z describes a circuit surrounding one or more singularities of the equation.

The property that the solution of a linear differential equation is analytic except at singu-
larities of the coefficients of the equation is common to linear equations of all orders.

When two particular solutions of an equation of the second order are not constant multiples
of each other, they are said to form a fundamental system.
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Example 10.2.1 Shew that the equation

(1 − z2)u′′ − 2zu′ + 3
4 u = 0

has the fundamental system of solutions

u1 = 1 −
3
8

z2 −
21

128
z4 − · · · , u2 = z +

5
24

z3 +
15

128
z5 + · · · .

Determine the general coefficient in each series, and shew that the radius of convergence of
each series is 1.

Example 10.2.2 Discuss the equation

(z − 2)(z − 3)u′′ − (2z − 5)u′ + 2u = 0

in a manner similar to that of Example 10.2.1.

10.3 Points which are regular for a differential equation
Suppose that a point c of S is such that, although p(z) or q(z) or both have poles at c, the
poles are of such orders that (z − c)p(z), (z − c)2q(z) are analytic at c. Such a point is called
a regular point1 for the differential equation. Any poles of p(z) or of q(z) which are not of
this nature are called irregular points. The reason for making the distinction will become
apparent in the course of this section.

If c be a regular point, the equation may be written2

(z − c)2
d2u
dz2 + (z − c)P(z − c)

du
dz
+Q(z − c)u = 0,

where P(z − c), Q(z − c) are analytic at c; hence, by Taylor’s theorem,

P(z − c) = p0 + p1(z − c) + p2(z − c)2 + · · · ,

Q(z − c) = q0 + q1(z − c) + q2(z − c)2 + · · · ,

where p0, p1, . . . ,q0,q1, . . . are constants; and these series converge in the domain Sc formed
by a circle of radius r (centre c) and its interior, where r is so small that c is the only singular
point of the equation which is in Sc.

Let us assume as a formal solution of the equation

u = (z − c)α
[
1 +

∞∑
n=1

an(z − c)n
]
,

where α,a1,a2, . . . are constants to be determined.
Substituting in the differential equation (assuming that the term-by-term differentiations

1 The name ‘regular point’ is due to Thomé [624]. Fuchs had previously used the phrase ‘point of
determinateness’.

2 Frobenius calls this the normal form of the equation.
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and multiplications of series are legitimate) we get

(z − c)α
[
α(α − 1) +

∞∑
n=1

an(α + n)(α + n − 1)(z − c)n
]

+ (z − c)αP(z − c)

[
α +

∞∑
n=1

an(α + n)(z − c)n
]

+ (z − c)αQ(z − c)

[
1 +

∞∑
n=1

an(z − c)n
]
= 0.

Substituting the series for P(z − c), Q(z − c), multiplying out and equating to zero the
coefficients of successive powers of z − c, we obtain the following sequence of equations:

α2 + (p0 − 1)α + q0 = 0,
a1{(α + 1)2 + (p0 − 1)(α + 1) + q0} + αp1 + q1 = 0,

a2{(α + 2)2 + (p0 − 1)(α + 2) + q0} + a1{(α + 1)p1 + q1} + αp2 + q2 = 0,
...

an{(α + n)2 + (p0 − 1)(α + n) + q0}

+

n−1∑
m=1

an−m{(α + n − m)pm + qm} + αpn + qn = 0.

The first of these equations, called the indicial equation (the name is due to Cayley [139]),
determines two values (which may, however, be equal) for α. The reader will easily convince
himself that if c had been an irregular point, the indicial equation would have been (at most)
of the first degree; and he will now appreciate the distinction made between regular and
irregular singular points.

Let α = ρ1, α = ρ2 be the roots of

F(α) ≡ α2 + (p0 − 1)α + q0 = 0;

(these roots are called the exponents of the indicial equation) then the succeeding equations
(when α has been chosen) determine a1,a2, . . ., in order, uniquely, provided that F(α + n)
does not vanish when n = 1,2,3, . . .; that is to say, if α = ρ1, that ρ2 is not one of the numbers
ρ1 + 1, ρ1 + 2, . . .; and, if α = ρ2, that ρ1 is not one of the numbers ρ2 + 1, ρ2 + 2, . . ..
Hence, if the difference of the exponents is not zero, or an integer, it is always possible to

obtain two distinct series which formally satisfy the equation.

Example 10.3.1 Shew that, if m is not zero or an integer, the equation

u′′ +

(
1
4 − m2

z2 −
1
4

)
u = 0

is formally satisfied by two series whose leading terms are

z1/2+m
{
1 +

z2

16(1 + m)
+ · · ·

}
, z1/2−m

{
1 +

z2

16(1 − m)
+ · · ·

}
;
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determine the coefficient of the general term in each series, and shew that the series converge
for all values of z.

10.31 Convergence of the expansion of §10.3
If the exponents ρ1, ρ2 are not equal, let ρ1 be that one whose real part is not inferior to the
real part of the other, and let ρ1 − ρ2 = s; then

F (ρ1 + n) = n (s + n).

Now, by §5.23, we can find a positive number M such that

|pn | < Mr−n, |qn | < Mr−n, |ρ1pn + qn | < Mr−n,

where M is independent of n; it is convenient to take M ≥ 1.
Taking α = ρ1, we see that

|a1 |
|ρ1p1 + q1 |

|F(ρ1 + 1)|
<

M
r |s + 1|

<
M
r
,

since |s + 1| ≥ 1.
If now we assume |an | < Mnr−n when n = 1,2, . . . ,m − 1, we get

|am | =

��������
m−1∑
t=1

am−t {(ρ1 + m − t)p1 + qt} + ρ1pm + qm

F(ρ1 + m)

��������
≤

m−1∑
t=1
|am−t | · |ρ1p1 + qt | + |ρ1pm + qm | +

m−1∑
t=1
(m − t) |am−t | |pt |

m |s + m|

<

mMmr−m +
{
m−1∑
t=1
(m − t)

}
Mmr−m

m2 |1 + sm−1 |
.

Since
��1 + sm−1

�� ≥ 1, because Re s is not negative, we get

|am | <
m + 1

2m
Mmr−m < Mmr−m,

and so, by induction, |an | < Mnr−n for all values of n.

If the values of the coefficients corresponding to the exponent ρ2 be a′1,a
′
2, . . . we should

obtain, by a similar induction,

|a′n | < Mnknr−n,

where k is the upper bound of |1 − s |−1 ,
��1 − 1

2 s
��−1
,
��1 − 1

3 s
��−1
, . . .; this bound exists when s

is not a positive integer.
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We have thus obtained two formal series

w1(z) = (z − c)ρ1

[
1 +

∞∑
n=1

an(z − c)n
]
,

w2(z) = (z − c)ρ2

[
1 +

∞∑
n=1

a′n(z − c)n
]
.

The first, however, is a uniformly convergent series of analytic functions when |z − c | <
r M−1, as is also the second when |z − c | < r M−1k−1, provided in each case that arg(z − c) is
restricted in such a way that the series are one-valued; consequently, the formal substitution
of these series into the left-hand side of the differential equation is justified, and each of the
series is a solution of the equation; provided always that ρ1 − ρ2 is not a positive integer or
zero. (If ρ1 − ρ2 is a positive integer, k does not exist; if ρ1 = ρ2, the two solutions are the
same.)

With this exception, we have therefore obtained a fundamental system of solutions valid
in the vicinity of a regular singular point. And by the theory of analytic continuation, we see
that if all the singularities in S of the equation are regular points, each member of a pair of
fundamental solutions is analytic at all points of S except at the singularities of the equation,
which are branch-points of the solution.

10.32 Derivation of a second solution in the case when the difference of the
exponents is an integer or zero

In the case when ρ1 − ρ2 = s is a positive integer or zero, the solution w2(z) found in §10.31
may break down or coincide with w1(z). (The coefficient a′s may be indeterminate or it may
be infinite; in the former case w2(z) will be a solution containing two arbitrary constants a′0
and a′s; the series of which a′s is a factor will be a constant multiple of w1(z).) If we write
u = w1(z)ζ , the equation to determine ζ is

(z − c)2
d2ζ

dz2 +

{
2(z − c)2

w′1(z)
w1(z)

+ (z − c)P(z − c)
}

dζ
dz
= 0,

of which the general solution is

ζ = A + B
∫ z 1
{w1(z)}2

exp
{
−

∫ z P(z − c)
z − c

dz
}

dz

= A + B
∫ z (z − c)−p0

{w1(z)}2
exp

{
−p1(z − c) −

1
2

p2(z − c)2 − · · ·
}

dz

= A + B
∫ z

(z − c)−p0−2ρ1g(z) dz,

where A,B are arbitrary constants and g(z) is analytic throughout the interior of any circle
whose centre is c, which does not contain any singularities of P(z − c) or singularities or
zeros of (z − c)−p1w1(z); also g(c) = 1.
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Let g(z) = 1 +
∞∑
n=1

gn(z − c)n. Then, if s , 0,

ζ = A + B
∫ z

{
1 +

∞∑
n=1

gn(z − c)n
}
(z − c)−s−1 dz

= A + B

[
−

1
s
(z − c)−s −

s−1∑
n=1

gn

s − n
(z − c)n−s + gs log(z − c)

+

∞∑
n=s+1

gn

n − s
(z − c)n−s

]
.

Therefore the general solution of the differential equation, which is analytic at all points
of C (c excepted), is Aw1(z) + B [gsw1(z) log (z − c) + w(z)] ,where, by §2.53,

w(z) = (z − c)p2

{
−

1
s
+

∞∑
n=1

hn (z − c)n
}
,

the coefficients hn being constants.
When s = 0, the corresponding form of the solution is

Aw1(z) + B

[
w1(z) log(z − c) + (z − c)p2

∞∑
n=1

hn(z − c)n
]
.

The statement made at the end of §10.31 is now seen to hold in the exceptional case when s
is zero or a positive integer.

In the special case when gs = 0, the second solution does not involve a logarithm.
The solutions obtained, which are valid in the vicinity of a regular point of the equation,

are called regular integrals.
Integrals of an equation valid near a regular point c may be obtained practically by first

obtaining w1(z), and then determining the coefficients in a function w1(z) =
∞∑
n=1

bn(z− c)ρ2+n,

by substituting w1(z) log(z − c) + w1(z) in the left-hand side of the equation and equating to
zero the coefficients of the various powers of z − c in the resulting expression. An alternative
method due to Frobenius [227] is given by Forsyth [221, pp. 243–258].

Example 10.3.2 Shew that integrals of the equation

d2u
dz2 +

1
z

du
dz
− m2u = 0

regular near z = 0 are

w1(z) = 1 +
∞∑
n=1

m2nz2n

22nn!2

and

w1(z) log z −
∞∑
n=1

m2nz2n

22nn!2

(
1
1
+

1
2
+ · · · +

1
n

)
.

Verify that these series converge for all values of z.
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Example 10.3.3 Shew that integrals of the equation

z(z − 1)
d2u
dz2 + (2z − 1)

du
dz
+

1
4

u = 0

regular near z = 0 are

w1(z) = 1 +
∞∑
n=1

(
1 · 3 · · · (2n − 1)

2 · 4 · · · 2n

)2

zn

and

w1(z) log z + 4
∞∑
n=1

(
1 · 3 · · · (2n − 1)

2 · 4 · · · 2n

)2 (
1
1
−

1
2
+

1
3
− · · · −

1
2n

)
zn.

Verify that these series converge when |z | < 1 and obtain integrals regular near z = 1.

Example 10.3.4 Shew that the hypergeometric equation

z(1 − z)
d2u
dz2 + {c − (a + b + 1)z}

du
dz
− abu = 0

is satisfied by the hypergeometric series of §2.38.Obtain the complete solution of the equation
when c = 1.

10.4 Solutions valid for large values of |z |
Let z = 1/z1; then a solution of the differential is said to be valid for large values of |z | if
it is valid for sufficiently small values of |z1 |; and it is said that ‘the point at infinity is an
ordinary (or regular or irregular) point of the equation’ when the point z1 = 0 is an ordinary
(or regular or irregular) point of the equation when it has been transformed so that z1 is the
independent variable.

Since

d2u
dz2 + p(z)

du
dz
+ q(z)u ≡ z4

1
d2u
dz2

1
+

{
2z3

1 − z2
1 p

(
1
z1

)}
du
dz1
+ q

(
1
z1

)
u,

we see that the conditions that the point z = ∞ should be (i) an ordinary point, (ii) a regular
point, are (i) that 2z − z2p(z), z4q(z) should be analytic at infinity (§5.62) and (ii) that zp(z),
z2q(z) should be analytic at infinity.

Example 10.4.1 Shew that every point (including infinity) is either an ordinary point or a
regular point for each of the equations

z(1 − z)
d2u
dz2 + {c − (a + b + 1)z}

du
dz
− abu = 0,

(1 − z2)
d2u
dz2 − 2z

du
dz
+ n(n + 1)u = 0,

where a, b, c, n are constants.
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Example 10.4.2 Shew that every point except infinity is either an ordinary point or a regular
point for the equation

z2 d2u
dz2 + z

du
dz
+ (z2 − n2)u = 0,

where n is a constant.

Example 10.4.3 Shew that the equation

(1 − z2)
d2u
dz2 − 2z

du
dz
+ 6u = 0

has the two solutions

z2 −
1
3
,

1
z3 +

3 · 4
2 · 7

1
z5 +

3 · 4 · 5 · 6
2 · 4 · 7 · 9

1
z7 + · · · ,

the latter converging when |z | > 1.

10.5 Irregular singularities and confluence
Near a point which is not a regular point of linear differential equations, an equation of
the second order cannot have two regular integrals, for the indicial equation is at most of
the first degree; there may be one regular integral or there may be none. We shall see later
(e.g. §16.3) what is the nature of the solution near such points in some simple cases. A
general investigation of such solutions is beyond the scope of this book. Some elementary
investigations are given in Forsyth’s [221]. Complete investigations are given in his Theory
of Differential Equations [218].

It frequently happens that a differential equation may be derived from another differential
equation by making two or more singularities of the latter tend to coincidence. Such a
limiting process is called confluence; and the former equation is called a confluent form of
the latter. It will be seen in §10.6 that the singularities of the former equation may be of a
more complicated nature than those of the latter.

10.6 The differential equations of mathematical physics
The most general differential equation of the second order which has every point except
a1,a2,a3,a4 and∞ as an ordinary point, these five points being regular points with exponents
αr, βr at ar (r = 1,2,3,4) and exponents µ1, µ2 at∞, may be verified3 to be

d2u
dz2 +

{
4∑

r=1

1 − αr − βr
z − ar

}
du
dz
+


4∑

r=1

αr βr
(z − ar )

2 +
Az2 + 2Bz + C

4∏
r=1
(z − ar )

 u = 0,

3 The coefficients of du
dz

and u must be rational or they would have an essential singularity at some point; the
denominators of p(z), q(z) must be

∏4
r=1(z − ar ),

∏4
r=1(z − ar )

2 respectively; putting p(z) and q(z) into
partial fractions and remembering that p(z) = O(z−1), q(z) = O(z−2) as |z | → ∞, we obtain the required
result without difficulty.
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where A is such that µ1 and µ2 are the roots of

µ2 + µ

{
4∑

r=1

(αr + βr ) − 3

}
+

4∑
r=1

αr βr + A = 0,

and B, C are constants. (It will be observed that µ1, µ2 are connected by the relation

µ1 + µ2 +
4∑

r=1
(αr + βr ) = 3.)

The remarkable theorem has been proved by Klein [376] (see also [373]) and Bôcher [78]
that all the linear differential equations which occur in certain branches of Mathematical
Physics are confluent forms of the special equation of this type in which the difference of the
two exponents at each singularity is 1

2 ; a brief investigation of these forms will now be given.
If we put βr = αr + 1

2 , (r = 1,2,3,4) and write ζ in place of z, the last written equation
becomes

d2u
dζ2 +

{
4∑

r=1

1
2 − 2αr
ζ − ar

}
du
dζ
+


4∑

r=1

αr (αr +
1
2 )

(ζ − ar )
2 +

Aζ2 + 2Bζ + C
4∏

r=1
(ζ − ar )

 u = 0,

where (on account of the condition µ2 − µ1 =
1
2 )

A =

(
4∑

r=1

αr

)2

−

4∑
r=1

α2
r −

3
2

4∑
r=1

αr +
3
16
.

This differential equation is called the generalised Lamé equation.
It is evident, on writing a1 = a2 throughout the equation, that the confluence of the two

singularities a1, a2 yields a singularity at which the exponents α, β are given by the equations

α + β = 2(α1 + α2), αβ = α1
(
α1 +

1
2

)
+ α2

(
α2 +

1
2

)
+ D,

where

D =
Aa2

1 + 2Ba1 + C
(a1 − a3)(a1 − a4)

.

Therefore the exponent-difference at the confluent singularity is not 1
2 , but it may have any

assigned value by suitable choice of B and C. In like manner, by the confluence of three or
more singularities, we can obtain one irregular singularity.

By suitable confluences of the five singularities at our disposal, we can obtain six types
of equations, which may be classified according to (a) the number of their singularities with
exponent-difference 1

2 , (b) the number of their other regular singularities, (c) the number of
their irregular singularities, by means of the following scheme, which is easily seen to be
exhaustive:
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(a) (b) (c)
(I) 3 1 0 Lamé
(II) 2 0 1 Mathieu
(III) 1 2 0 Legendre
(IV) 0 1 1 Bessel
(V) 1 0 1 Weber, Hermite
(VI) 0 0 1 Stokes

For instance the arrangement (a) 3, (b) 0, (c) 1, is inadmissible as it would necessitate
six initial singularities. The last equation of this type was considered by Stokes [609] in his
researches on Diffraction; it is, however, easily transformed into a particular case of Bessel.

These equations are usually known by the names of the mathematicians in the last column.
Speaking generally, the later an equation comes in this scheme, the more simple are the
properties of its solution. The solutions of (II)–(VI) are discussed in Chapters 15–19 of this
work, and of (I) in Chapter 23. For properties of equations of type (I), see the works of Klein
[376] and Forsyth [218]; also Todhunter [631]. The derivation of the standard forms of the
equations from the generalised Lamé equation is indicated by the following examples:

Example 10.6.1 Obtain Lamé’s equation

d2u
dζ2 +

{
3∑

r=1

1
2

(ζ − ar )

}
du
dζ
−
{n(n + 1) ζ + h} u

4
3∏

r=1
(ζ − ar )

= 0,

(where h and n are constants) by taking

a1 = a2 = a3 = a4 = 0, 8B = n(n + 1)a4, 4C = ha4,

and making a4 →∞.

Example 10.6.2 Obtain the equation

d2u
dζ2 +

(
1
2

ζ
+

1
2

ζ − 1

)
du
dζ
−
(a − 16q + 32qζ)u

4ζ(ζ − 1)
= 0,

(where a and q are constants) by taking a1 = 0, a2 = 1, and making a3 = a4 → ∞. Derive
Mathieu’s equation (§19.1)

d2u
dz2 + (a + 16q cos 2z) u = 0

by the substitution ζ = cos2 z.

Example 10.6.3 Obtain the equation

d2u
dζ2 +

{
1
2

ζ
+

1
ζ − 1

}
du
dζ
+

1
4

{
n(n + 1)

ζ
−

m2

ζ − 1

}
u

ζ(ζ − 1)
= 0,

by taking

a1 = a2 = 1, a3 = a4 = 0, a1 = a2 = a3 = 0, a4 =
1
4
.
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Derive Legendre’s equation (§15.13 and §15.5)

(1 − z2)
d2u
dz2 − 2z

du
dz
+

{
n(n + 1) −

m2

1 − z2

}
u = 0

by the substitution ζ = z−2.

Example 10.6.4 By taking a1 = a2 = 0, a1 = a2 = a3 = a4 = 0, and making a3 = a4 →∞,
obtain the equation

ζ2 d2u
dζ2 + ζ

du
dζ
+

1
4
(ζ − n2) u = 0.

Derive Bessel’s equation (§17.11)

z2 d2u
dz2 + z

du
dz
+ (z2 − n2)u = 0

by the substitution ζ = z2.

Example 10.6.5 By taking a1 = 0, a1 = a2 = a3 = a4 = 0, and making a2 = a3 = a4 →∞,

obtain the equation

ζ
d2u
dζ2 +

1
2

du
dζ
+

1
4

(
n +

1
2
−

1
4
ζ

)
u = 0.

Derive Weber’s equation (§16.5)

d2u
dz2 +

(
n +

1
2
−

1
4

z2
)

u = 0

by the substitution ζ = z2.

Example 10.6.6 By taking ar = 0, and making ar →∞ (r = 1,2,3,4), obtain the equation

d2u
dζ2 + (B1ζ + C1)u = 0.

By taking

u = (B1ζ + C1)
1
2 3, B1ζ + C1 =

( 3
2 B1z

) 2
3 ,

shew that

z2 d23

dz2 + z
d3
dz
+

(
z2 −

1
9

)
3 = 0.

Example 10.6.7 Shew that the general form of the generalised Lamé equation is unaltered
(i) by any homographic change of independent variable such that∞ is a singular point of the
transformed equation, (ii) by any change of dependent variable of the type u = (z − ar )

λ3.

Example 10.6.8 Deduce from Example 10.6.7 that the various confluent forms of the
generalised Lamé equation may always be reduced to the forms given in Examples 10.6.1–
10.6.6. (Note that a suitable homographic change of variable will transform any three distinct
points into the points 0,1,∞.)
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10.7 Linear differential equations with three singularities
Let

d2u
dz2 + p(z)

du
dz
+ q(z)u = 0 (10.4)

have three, and only three singularities, a, b, c; let these points be regular points, the exponents
thereat being α, α′; β, β′; γ, γ ′. The point at infinity is to be an ordinary point.

Then p(z) is a rational function with simple poles at a, b, c, its residues at these poles being
1 − α − α′, 1 − β − β′, 1 − γ − γ ′; and as z →∞, p(z) − 2z−1 is O(z−2). Therefore

p(z) =
1 − α − α′

z − a
+

1 − β − β′

z − b
+

1 − γ − γ ′

z − c
and α + α′ + β + β′ + γ + γ ′ = 1. This relation must be satisfied by the exponents.

In a similar manner

q(z) =
{
αα′(a − b)(a − c)

z − a
+
ββ′(b − c)(b − a)

z − b
+
γγ ′(c − a)(c − b)

z − c

}
×

1
(z − a)(z − b)(z − c)

,

and hence the differential equation is

d2u
dz2 +

{
1 − α − α′

z − a
+

1 − β − β′

z − b
+

1 − γ − γ ′

z − c

}
du
dz

+

{
αα′(a − b)(a − c)

z − a
+
ββ′(b − c) (b − a)

z − b
+
γγ ′(c − a)(c − b)

z − c

}
×

u
(z − a)(z − b)(z − c)

= 0.

This equation was first given by Papperitz [515].
To express the fact that u satisfies an equation of this type (which will be called Riemann’s

P-equation [556]; it will be seen from this memoir that, although Riemann did not apparently
construct the equation, he must have inferred its existence from the hypergeometric equation)
Riemann wrote

u = P


a b c
α β γ z
α′ β′ γ ′

 .
The singular points of the equation are placed in the first row with the corresponding

exponents directly beneath them, and the independent variable is placed in the fourth column.

Example 10.7.1 Shew that the hypergeometric equation

z(1 − z)
d2u
dz2 + {c − (a + b + 1)z}

du
dz
− abu = 0

is defined by the scheme

P


0 ∞ 1
0 a 0 z

1 − c b c − a − b

 .
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10.71 Transformations of Riemann’s P-equation
The two transformations which are typified by the equations

(I) (
z − a
z − b

)k (
z − c
z − b

) l
P


a b c
α β γ z
α′ β′ γ ′

 = P


a b c
α + k β − k − l γ + l z
α′ + k β′ − k − l γ ′ + l

 ,
(II)

P


a b c
α β γ z
α′ β′ γ ′

 = P


a1 b1 c1

α β γ z1

α′ β′ γ ′


(where z1, a1, b1, c1 are derived from z, a, b, c by the same homographic transformation) are
of great importance. Theymay be derived by direct transformation of the differential equation
of Papperitz and Riemann by suitable changes in the dependent and independent variables
respectively; but the truth of the results of the transformations may be seen intuitively when
we consider that Riemann’s P-equation is determined uniquely by a knowledge of the three
singularities and their exponents, and (I) that if

u = P


a b c
α β γ z
α′ β′ γ ′

 ,
then u1 =

(
z − a
z − b

)k (
z − c
z − b

) l
u satisfies a differential equation of the second order with the

same three singular points and exponents α + k, α′ + k; β − k − l, β′ − k − l; γ + l, γ ′ + l;
and that the sum of the exponents is 1.

Also (II) if we write z =
Az1 + B
Cz1 + D

, the equation in z1 is a linear equation of the second
order with singularities at the points derived from a, b, c by this homographic transformation,
and exponents α, α′; β, β′; γ, γ ′ thereat.

10.72 The connexion of Riemann’s P-equation with the hypergeometric equation
By means of the results of §10.71 it follows that

P


a b c
α β γ z
α′ β′ γ ′

 =
(

z − a
z − b

)α (
z − c
z − b

)γ
P


a b c
0 β + α + γ 0 z

α′ − α β′ + α + γ γ ′ − γ


=

(
z − a
z − b

)α (
z − c
z − b

)γ
P


0 ∞ 1
0 β + α + γ 0 x

α′ − α β′ + α + γ γ ′ − γ

 ,
where

x =
(z − a) (c − b)
(z − b) (c − a)

.
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Hence, by Example 10.7.1, the solution of Riemann’s P-equation can always be obtained
in terms of the solution of the hypergeometric equation whose elements a, b, c, x are α+β+γ,
α + β′ + γ, 1 + α − α′, (z − a)(c − b)/(z − b)(c − a) respectively.

10.8 Linear differential equations with two singularities
If, in §10.7, we make the point c an ordinary point, we must have 1 − γ − γ ′ = 0, γγ ′ = 0

and
αα′(a − b)(a − c)

z − a
+
ββ′(b − c)(b − a)

z − b
must be divisible by z − c, in order that p(z) and

q(z) may be analytic at c.
Hence α + α′ + β + β′ = 0, αα′ = ββ′, and the equation is

d2u
dz2 +

{
1 − α − α′

z − a
+

1 + α + α′

z − b

}
du
dz
+

αα′(a − b)2u
(z − a)2(z − b)2

= 0,

of which the solution is

u = A
(

z − a
z − b

)α
+ B

(
z − a
z − b

)α′
;

that is to say, the solution involves elementary functions only.
When α = α′, the solution is

u = A
(

z − a
z − b

)α
+ B1

(
z − a
z − b

)α
log

(
z − a
z − b

)
.

10.9 Miscellaneous examples
Example 10.1 Shew that two solutions of the equation

d2u
dz2 + zu = 0

are z− 1
12 z4+ · · · , and 1− 1

6 z3+ · · · , and investigate the region of convergence of these series.

Example 10.2 Obtain integrals of the equation

d2u
dz2 +

1 − z2

4z2 u = 0,

regular near z = 0, in the form

u1 = z1/2
{
1 +

z2

16
+

z4

1024
+ · · ·

}
,

u2 = u1 log z −
z3/2

16
+ · · · .

Example 10.3 Shew that the equation

d2u
dz2 +

(
n +

1
2
−

1
4

z2
)

u = 0
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has the solutions

1 −
2n + 1

4
z2 +

4n2 + 4n + 3
96

z4 − · · · ,

z −
2n + 1

12
z3 +

4n2 + 4n + 7
480

z5 − · · · ,

and that these series converge for all values of z.

Example 10.4 (Klein) Shew that the equation

d2u
dz2 +

{
n∑

r=1

1 − αr − βr
z − ar

}
du
dz
+

{
n∑

r=1

αr βr
(z − ar )

2 +

n∑
r=1

Dr

z − ar

}
u = 0,

where
n∑

r=1

(αr + βr ) = n − 2,
n∑

r=1

Dr = 0,
n∑

r=1

(arDr + αr βr ) = 0,

n∑
r=1

(ar
2Dr + 2arαr βr ) = 0,

is the most general equation for which all points (including ∞), except a1,a2, . . . ,an, are
ordinary points, and the points ar are regular points with exponents αr , βr respectively.

Example 10.5 (Riemann) Shew that, if β + γ + β′ + γ ′ = 1
2 then

P


0 ∞ 1
0 β γ z2

1
2 β′ γ ′

 = P

−1 ∞ 1
γ 2β γ z
γ ′ 2β′ γ ′

 .
The differential equation in each case is

d2u
dz2 +

2z(1 − γ − γ ′)
z2 − 1

du
dz
+

(
ββ′ +

γγ ′

z2 − 1

)
4u

z2 − 1
= 0.

Example 10.6 (Riemann) Shew that, if γ + γ ′ = 1
3 and if ω, ω2 are the complex cube roots

of unity, then

P


0 ∞ 1
0 0 γ z3

1
3

1
3 γ ′

 = P


1 ω ω2

γ γ γ z
γ ′ γ ′ γ ′

 .
The differential equation in each case is

d2u
dz2 +

2z2

z3 − 1
du
dz
+

9γγ ′ zu
(z3 − 1)2

= 0.

Example 10.7 (Halm) Shew that the equation

(1 − z2)
d2u
dz2 − (2a + 1) z

du
dz
+ n (n + 2a) u = 0
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is defined by the scheme

p


1 ∞ −1
0 −n 0 z

1
2 − a n + 2a 1

2 − a

 ,
and that the equation

(1 + ζ2)2
d2u
dζ2 + n(n + 2)u = 0

may be obtained from it by taking a = 1 and changing the independent variable.

Example 10.8 (Cunningham) Discuss the solutions of the equation

z
d2u
dz2 + (z + 1 + m)

du
dz
+

(
n + 1 +

1
2

m
)

u = 0

valid near z = 0 and those valid near z = ∞.

Example 10.9 (Curzon) Discuss the solutions of the equation

d2u
dz2 +

2µ
z

du
dz
− 2z

du
dz
+ 2(ν − µ)u = 0

valid near z = 0 and those valid near z = ∞. Consider the following special cases:

(i) µ = −
3
2

; (ii) µ =
1
2

; (iii) µ + ν = 3.

Example 10.10 (Lindemann; see §19.5) Prove that the equation

z(1 − z)
d2u
dz2 +

1
2
(1 − 2z)

du
dz
+ (az + b)u = 0

has two particular integrals the product of which is a single-valued transcendental function.
Under what circumstances are these two particular integrals coincident? If their product be
F(z), prove that the particular integrals are

u1, u2 =
√

F(z) exp

{
±C

∫ z dz

F(z)
√

z(1 − z)

}
,

where C is a determinate constant.

Example 10.11 (Math. Trip. 1912) Prove that the general linear differential equation of
the third order, whose singularities are 0, 1, ∞, which has all its integrals regular near each
singularity (the exponents at each singularity being 1, 1, −1), is

d3u
dz3 +

{
2
z
+

2
z − 1

}
d2u
dz2 −

{
1
z2 −

3
z(z − 1)

+
1

(z − 1)2

}
du
dz

+

{
1
z3 −

3 cos2 a
z2(z − 1)

−
3 sin2 a

z(z − 1)2
+

1
(z − 1)3

}
u = 0,

where a may have any constant value.
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Integral Equations

11.1 Definition of an integral equation
An integral equation is onewhich involves an unknown function under the sign of integration;
and the process of determining the unknown function is called solving the equation. Except
in the case of Fourier’s integral (§9.7) we practically always need continuous solutions of
integral equations.

The introduction of integral equations into analysis is due to Laplace (1782) who consid-
ered the equations

f (x) =
∫

extφ(t) dt, g(x) =
∫

tx−1φ(t) dt

(where in each case φ represents the unknown function), in connexion with the solution
of differential equations. The first integral equation of which a solution was obtained, was
Fourier’s equation

f (x) =
∫ ∞

−∞

cos(xt)φ(t) dt,

of which, in certain circumstances, a solution is1

φ(x) =
2
π

∫ ∞

0
cos(ux) f (u) du,

f (x) being an even function of x, since cos(xt) is an even function.
Later, Abel [6] was led to an integral equation in connexion with a mechanical problem

and obtained two solutions of it; after this, Liouville investigated an integral equation which
arose in the course of his researches on differential equations and discovered an important
method for solving integral equations2 , which will be discussed in §11.4.

In recent years, the subject of integral equations has become of some importance in various
branches of Mathematics; such equations (in physical problems) frequently involve repeated
integrals and the investigation of them naturally presents greater difficulties than do those
elementary equations which will be treated in this chapter.

To render the analysis as easy as possible, we shall suppose throughout that the constants a,
b and the variables x, y, ξ are real and further that a ≤ x, y, ξ ≤ b; also that the given function,
K(x, y), which occurs under the integral sign in the majority of equations considered, is a
real function of x and y and either (i) it is a continuous function of both variables in the range

1 If this value of φ be substituted in the equation we obtain a result which is, effectively, that of §9.7.
2 The numerical computation of solutions of integral equations has been investigated by Whittaker [677].
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(a ≤ x ≤ b, a ≤ y ≤ b), or (ii) it is a continuous function of both variables in the range
a ≤ y ≤ x ≤ b and K(x, y) = 0 when y > x; in the latter case K(x, y) has its discontinuities
regularly distributed, and in either case it is easily proved that, if f (y) is continuous when

a ≤ y ≤ b,
∫ b

a

f (y)K(x, y) dy is a continuous function of x when a ≤ x ≤ b.

Bôcher [80] in his important work on integral equations, always considers themore general
case in which K(x, y) has discontinuities regularly distributed, i.e. the discontinuities are of
the nature described in Example 4.11. The reader will see from that example that the results
of this chapter can almost all be generalised in this way. To make this chapter more simple
we shall not consider such generalisations.

11.11 An algebraical lemma
The algebraical result which will now be obtained is of great importance in Fredholm’s
theory of integral equations.

Let (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) be three points at unit distance from the origin. The
greatest (numerical) value of the volume of the parallelepiped, of which the lines joining
the origin to these points are conterminous edges, is +1, the edges then being perpendicular.
Therefore, if x2

r + y2
r + z2

r = 1 (r = 1,2,3), the upper and lower bounds of the determinant������x1 y1 z1

x2 y2 z2

x3 y3 z3

������
are ±1.

A lemma due to Hadamard [265] generalises this result. Let

D =

���������
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

an1 an2 · · · ann

���������
where amr is real and

n∑
r=1

a2
mr = 1 (m = 1,2, . . . ,n); let Amr be the cofactor of amr in D and

let ∆ be the determinant whose elements are Amr , so that, by a well-known theorem (see
Burnside and Panton [111, vol. 2, p. 40]), ∆ = Dn−1.

Since D is a continuous function of its elements, and is obviously bounded, the ordinary
theory of maxima and minima is applicable, and if we consider variations in a1r (r =

1,2, . . . ,n) only, D is stationary for such variations if
n∑

r=1

∂D
∂a1r

δa1r = 0, where δa1r, . . . are

variations subject to the sole condition
n∑

r=1
a1rδa1r = 0; therefore3

A1r =
∂D
∂a1r

= λa1r,

3 By the ordinary theory of undetermined multipliers.
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but
n∑

r=1
a1r A1r = D, and so λ

∑
a2

1r = D; therefore A1r = Da1r .

Considering variations in the other elements of D, we see that D is stationary for variations
in all elements when Amr = Damr (m = 1,2, . . . ,n; r = 1,2, . . . ,n). Consequently∆ = Dn ·D,
and so Dn+1 = Dn−1. Hence the maximum and minimum values of D are ±1.

Corollary 11.1.1 If amr be real and subject only to the condition |amr | < M , since
n∑

r=1

( amr

n1/2M

)2
≤ 1,

we easily see that the maximum value of |D | is (n1/2M)n = nn/2Mn.

11.2 Fredholm’s equation and its tentative solution
Fredholm’s first paper on the subject appeared in [224]. His researches are also given in
[225].

An important integral equation of a general type is

φ(x) = f (x) + λ
∫ b

a

K(x, ξ) φ(ξ) dξ,

where f (x) is a given continuous function, λ is a parameter (in general complex) and K(x, ξ)
is subject to the conditions laid down in §11.1. K(x, ξ) is called the nucleus, or the kernel of
the equation. The reader will observe that if K(x, ξ) = 0 (ξ > x), the equation may be written

φ(x) = f (x) + λ
∫ x

a

K(x, ξ) φ(ξ) d ξ.

This is called an equation with variable upper limit.
This integral equation is known as Fredholm’s equation or the integral equation of the

second kind (see §11.3). It was observed by Volterra that an equation of this type could be
regarded as a limiting form of a system of linear equations. Fredholm’s investigation involved
the tentative carrying out of a similar limiting process, and justifying it by the reasoning given
below in §11.21. Hilbert [305] justified the limiting process directly.

We now proceed to write down the system of linear equations in question, and shall then
investigate Fredholm’s method of justifying the passage to the limit.

The integral equation is the limiting form (when δ→ 0) of the equation

φ(x) = f (x) + λ
n∑

q=1

K(x, xq) φ(xq) δ,

where xq − xq−1 = δ, x0 = a, xn = b.
Since this equation is to be true when a ≤ x ≤ b, it is true when x takes the values

x1, x2, . . . , xn; and so

−λδ

n∑
q=1

K(xp, xq) φ(xq) + φ(xp) = f (xp) (p = 1,2, . . . ,n).
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This system of equations for φ(xp), (p = 1,2, . . . ,n) has a unique solution if the determinant
formed by the coefficients of φ(xp) does not vanish. This determinant is

Dn(λ) =

���������
1 − λδK(x1, x1) −λδK(x1, x2) · · · −λδK(x1, xn)
−λδK(x2, x1) 1 − λδK(x2, x2) · · · −λδK(x2, xn)

...
...

...
...

−λδK(xn, x1) −λδK(xn, x2) · · · 1 − λδK(xn, xn)

���������
= 1 − λ

n∑
p=1

δK(xp, xp) +
λ2

2!

n∑
p,q=1

δ2
����K(xp, xp) K(xp, xq)
K(xq, xp) K(xq, xq)

����
−
λ3

3!

n∑
p,q,r=1

δ3

������K(xp, xp) K(xp, xq) K(xp, xr )
K(xq, xp) K(xq, xq) K(xq, xr )
K(xr, xp) K(xr, xq) K(xr, xr )

������ + · · ·
on expanding4 in powers of λ. Making δ → 0, n → ∞, and writing the summations as
integrations, we are thus led to consider the series

D(λ) = 1 − λ
∫ b

a

K(ξ1, ξ1) dξ1 +
λ2

2!

∫ b

a

∫ b

a

����K(ξ1, ξ1) K(ξ1, ξ2)

K(ξ2, ξ1) K(ξ2, ξ2)

���� dξ1 dξ2 − · · · .

Further, if Dn(xµ, xν) is the cofactor of the term in Dn(λ) which involves K(xν, xµ), the
solution of the system of linear equations is

φ(xµ) =
f (x1)Dn(xµ, x1) + f (x2)Dn(xµ, x2) + · · · + f (xn)Dn(xµ, xn)

Dn(λ)
.

Now it is easily seen that the appropriate limiting form to be considered in association
with Dn(xµ, xµ) is D(λ); also that, if µ , ν,

Dn(xµ, xν) = λδ

{
K(xµ, xν) − λδ

n∑
p=1

����K(xµ, xν) K(xµ, xp)

K(xp, xν) K(xp, xp)

����
+

1
2!
λ2δ2

n∑
p,q=1

������K(xµ, xν) K(xµ, xp) K(xµ, xq)
K(xp, xν) K(xp, xp) K(xp, xq)
K(xq, xν) K(xq, xp) K(xq, xq)

������ − · · ·
 .

So that the limiting form for δ−1D(xµ, xν) to be considered is

D(xµ, xν; λ) =λK(xµ, xν) − λ2
∫ b

a

����K(xµ, xν) K(xµ, ξ1)

K(ξ1, xν) K(ξ1, ξ1)

���� dξ1

+
1
2!
λ3

∫ b

a

∫ b

a

������K(xµ, xν) K(xµ, ξ1) K(xµ, ξ2)

K(ξ1, xν) K(ξ1, ξ1) K(ξ1, ξ2)

K(ξ2, xν) K(ξ2, ξ1) K(ξ2, ξ2)

������ dξ1dξ2 − · · · .

(The law of formation of successive terms is obvious from those written down.)

4 The factorials appear because each determinant of s rows and columns occurs s! times as p, q, . . . take all
the values 1, 2, . . . , n, whereas it appears only once in the original determinant for Dn(λ).
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Consequently we are led to consider the possibility of the equation

φ(x) = f (x) +
1

D(λ)

∫ b

a

D(x, ξ; λ) f (ξ) dξ

giving the solution of the integral equation.

Example 11.2.1 Shew that, in the case of the equation

φ(x) = x + λ
∫ 1

0
xyφ(y) dy,

we have
D(λ) = 1 − 1

3λ, D(x, y; λ) = λxy

and a solution is

φ(x) =
3x

3 − λ
.

Example 11.2.2 Shew that, in the case of the equation

φ(x) = x + λ
∫ 1

0
(xy + y2)φ(y) dy,

we have

D(λ) = 1 − 2
3λ −

1
72λ

2,

D(x, y; λ) = λ(xy + y2) + λ2 ( 1
2 xy2 − 1

3 xy − 1
3 y

2 + 1
4 y

)
,

and obtain a solution of the equation.

11.21 Investigation of Fredholm’s solution
So far the construction of the solution has been purely tentative; we now start ab initio and
verify that we actually do get a solution of the equation; to do this we consider the two
functions D(λ),D(x; yλ) arrived at in §11.2.

We write the series, by which D(λ) was defined in §11.2, in the form 1 +
∞∑
n=1

anλ
n

n! so that

an = (−1)n
∫ b

a

∫ b

a

· · ·

∫ b

a

���������
K (ξ1, ξ1) K (ξ1, ξ2) · · · K (ξ1, ξn)

K (ξ2, ξ1) K (ξ2, ξ2) · · · K (ξ2, ξn)
...

...
...

...

K (ξn, ξ1) K (ξn, ξ2) · · · K (ξn, ξn)

��������� dξ1 dξ2 · · · dξn;

since K(x, y) is continuous and therefore bounded, we have |K(x, y)| < M , where M is
independent of x and y; since K(x, y) is real, we may employ Hadamard’s lemma (§11.11)
and we see at once that

|an | < nn/2Mn(b − a)n.

Write nn/2Mn(b − a)n = n!bn; then

lim
n→∞

bn+1

bn

= lim
n→∞

(b − a)M
(n + 1)1/2

(
1 +

1
n

)n/2
= 0,
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since (1 + 1/n)n → e.

The series
∞∑
n=1

bnλ
n is therefore absolutely convergent for all values of λ; and so (§2.34) the

series 1 +
∞∑
n=1

anλ
n

n ! converges for all values of λ and therefore (§5.64) represents an integral

function of λ.
Now write the series for D(x, y; λ) in the form

∞∑
n=0

vn (x,y)λ
n+1

n! . Then, by Hadamard’s lemma

(§11.11),

|vn−1(x, y)| < nn/2Mn(b − a)n−1,

and hence
����vn(x, y)n!

���� < cn where cn is independent of x and y and
∞∑
n=0

cnλn+1 is absolutely
convergent.

Therefore D(x, y; λ) is an integral function of λ and the series for D(x, y; λ) − λK(x, y) is
a uniformly convergent (§3.34) series of continuous5 functions of x and y when a ≤ x ≤ b,
a ≤ y ≤ b.

Now pick out the coefficient of K(x, y) in D(x, y; λ); and we get

D(x, y; λ) = λD(λ)K(x, y) +
∞∑
n=1

(−1)nλn+1 Qn(x, y)
n!

,

where

Qn(x, y) =
∫ b

a

∫ b

a

· · ·

∫ b

a

���������
0 K(x, ξ1) K(x, ξ2) · · · K(x, ξn)

K(ξ1, y) K(ξ1, ξ1) K(ξ1, ξ2) · · · K(ξ1, ξn)
...

...
...

...
...

K(ξn, y) K(ξn, ξ1) K(ξn, ξ2) · · · K(ξn, ξn)

��������� dξ1 · · · dξn.

Expanding in minors of the first column, we get Qn(x, y) equal to the integral of the sum
of n determinants; writing ξ1, ξ2, . . . , ξm−1, ξ, ξm, . . . , ξn−1 in place of ξ1, ξ2, . . . , ξn in the mth
of them, we see that the integrals of all the determinants6 are equal and so

Qn(x, y) = −n
∫ b

a

∫ b

a

· · ·

∫ b

a

K(ξ, y)Pn dξ dξ1 · · · dξn−1,

where

Pn =

���������
K(x, ξ) K(x, ξ1) · · · K(x, ξn−1)

K(ξ1, ξ) K(ξ1, ξ1) · · · K(ξ1, ξn−1)
...

...
...

...

K(ξn−1, ξ) K(ξn−1, ξ1) · · · K(ξn−1, ξ)

��������� .
It follows at once that

D(x; y; λ) = λD(λ)K(x, y) + λ
∫ b

a

D(x, ξ; λ)K(ξ, y) dξ.

5 It is easy to verify that every term (except possibly the first) of the series for D(x, y;λ) is a continuous
function under either hypothesis (i) or hypothesis (ii) of §11.1.

6 The order of integration is immaterial (§4.3).
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Now take the equation

φ(ξ) = f (ξ) + λ
∫ b

a

K(ξ, y)φ(y) dy,

multiply by D(x, ξ; λ) and integrate, and we get∫ b

a

f (ξ)D(x, ξ; λ) dξ

=

∫ b

a

φ(ξ)D(x, ξ; λ) dξ − λ
∫ b

a

∫ b

a

D(x; ξ; λ)K(ξ, y)φ(y) dy dξ,

the integrations in the repeated integral being in either order.
That is to say∫ b

a

f (ξ)D(x, ξ; λ) dξ

=

∫ b

a

φ(ξ)D(x, ξ; λ) dξ −
∫ b

a

[D(x, y; λ) − λD(λ)K(x, y)] φ(y) dy

= λD(λ)
∫ b

a

K(x, y)φ(y) dy

= D(λ) [φ(x) − f (x)] ,

in virtue of the given equation.
Therefore if D(λ) , 0 and if Fredholm’s equation has a solution it can be none other than

φ(x) = f (x) +
∫ b

a

f (ξ)
D(x, ξ; λ)

D(λ)
dξ;

and, by actual substitution of this value of φ(x) in the integral equation, we see that it actually
is a solution. This is, therefore, the unique continuous solution of the equation if D(λ) , 0.

Corollary 11.2.1 If we put f (x) ≡ 0, the ‘homogeneous’ equation

φ(x) = λ
∫ b

a

K(x, ξ)φ(ξ) dξ

has no continuous solution except φ(x) = 0, unless D(λ) = 0.

Example 11.2.3 By expanding the determinant involved in Qn(x, y) in minors of its first
row, shew that

D(x, y; λ) = λD(λ)K(x, y) + λ
∫ b

a

K(x, ξ)D(ξ, y; λ) dξ.

Example 11.2.4 By using the formulae

D(λ) = 1 +
∞∑
n=1

anλ
n

n!
, D(x, y; λ) = λD(λ)K(x, y) +

∞∑
n=1

(−1)n
λn+1Qn(x, y)

n!
,

shew that ∫ b

a

D(ξ, ξ; λ) dξ = −λ
dD(λ)

dλ
.
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Example 11.2.5 If

K(x, y) =

{
1 if y ≤ x,
0 if y > x;

shew that D(λ) = exp{−(b − a)λ}.

Example 11.2.6 Shew that, if K(x, y) = f1(x) f2(y), and if∫ b

a

f1(x) f2(x) dx = A,

then
D(λ) = 1 − Aλ, D(x, y; λ) = λ f1(x) f2(y),

and the solution of the corresponding integral equation is

φ(x) = f (x) +
λ f1(x)
1 − Aλ

∫ b

a

f (ξ) f2(ξ) dξ.

Example 11.2.7 Shew that, if

K(x, y) = f1(x)g1(y) + f2(x)g2(y),

then D(λ) and D(x, y; λ) are quadratic in λ, and, more generally, if

K(x, y) =
n∑

m=1

fm(x)gm(y),

then D(λ) and D(x, y, λ) are polynomials of degree n in λ.

11.22 Volterra’s reciprocal functions
Two functions K(x, y), k(x, y; λ) are said to be reciprocal if they are bounded in the ranges
a ≤ x, y ≤ b, if any discontinuities they may have are regularly distributed (§11.1, footnote
on Bôcher’s work), and if

K(x, y) + k(x, y; λ) = λ
∫ b

a

k(x, ξ; λ)K(ξ, y) dξ.

We observe that, since the right-hand side is continuous (by Example 4.11), the sum of two
reciprocal functions is continuous.

Also, a function K(x, y) can only have one reciprocal if D(λ) , 0; for if there were two,
their difference k1(x, y) would be a continuous solution of the homogeneous equation

k1(x, y; λ) = λ
∫ b

a

k1(x, ξ; λ)K(ξ, y) dξ,

(where x is to be regarded as a parameter), and by Corollary 11.2.1, the only continuous
solution of this equation is zero.

By the use of reciprocal functions, Volterra has obtained an elegant reciprocal relation
between pairs of equations of Fredholm’s type.
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We first observe, from the relation

D(x, y; λ) = λD(λ)K(x, y) + λ
∫ b

a

D(x, ξ, λ)K(ξ, y) dξ,

proved in §11.21, that the value of k(x, y; λ) is

−
D(x, y; λ)
λD(λ)

,

and from Example 11.2.3, the equation

k(x, y; λ) + K(x, y) = λ
∫ b

a

K(x, ξ)k(ξ, y; λ) dξ

is evidently true.
Then, if we take the integral equation

φ(x) = f (x) + λ
∫ b

a

K(x, ξ)φ(ξ) dξ,

when a ≤ x ≤ b,we have, on multiplying the equation

φ(ξ) = f (ξ) + λ
∫ b

a

K(ξ, ξ1)φ(ξ1) dξ1

by k(x, ξ; λ) and integrating,∫ b

a

k(x, ξ; λ)φ(ξ) dξ =
∫ b

a

k(x, ξ; λ) f (ξ) dξ

+ λ

∫ b

a

∫ b

a

k(x, ξ, λ)K(ξ, ξ1)φ(ξ1) dξ1 dξ.

Reversing the order of integration7 in the repeated integral and making use of the relation
defining reciprocal functions, we get∫ b

a

k(x, ξ; λ)φ(ξ) dξ =
∫ b

a

k(x, ξ; λ) f (ξ) dξ

+

∫ b

a

{K(x, ξ) + k(x, ξ1; λ)}φ(ξ1) dξ1

and so

λ

∫ b

a

k(x, ξ; λ) f (ξ) dξ = −λ
∫ b

a

K(x, ξ1)φ(ξ1) dξ1

= −φ(x) + f (x).

Hence f (x) = φ(x) + λ
∫ b

a

k(x, ξ; λ) f (ξ) dξ; similarly, from this equation we can derive

the equation

φ(x) = f (x) + λ
∫ b

a

K(x, ξ)φ(ξ) dξ,

7 The reader will have no difficulty in extending the result of §4.3 to the integral under consideration.
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so that either of these equations with reciprocal nuclei may be regarded as the solution of the
other.

11.23 Homogeneous integral equations
The equation

φ(x) = λ
∫ b

a

K(x, ξ)φ(ξ) dξ (11.1)

is called a homogeneous integral equation. We have seen (Corollary 11.2.1) that the only
continuous solution of the homogeneous equation, when D(λ) , 0, is φ(x) = 0.

The roots of the equation D(λ) = 0 are therefore of considerable importance in the theory
of the integral equation. They are called the characteristic numbers of the nucleus.

It will now be shewn that, when D(λ) = 0, a solution which is not identically zero can be
obtained.

It will be proved in §11.51 that, if K(x, y) ≡ K(y, x), the equation D(λ) = 0 has at least
one root. Let λ = λ0 be a root m times repeated of the equation D(λ) = 0. Since D(λ) is an
integral function, we may expand it into the convergent series

D(λ) = cm(λ − λ0)
m + cm+1(λ − λ0)

m+1 + · · · (m > 0; cm , 0).

Similarly, since D(x, y; λ) is an integral function of λ, there exists a Taylor series of the form

D(x, y; λ) =
g`(x, y)
`!
(λ − λ0)

` +
g`+1(x, y)
(` + 1)!

(λ − λ0)
`+1 + · · · (` ≥ 0; g` . 0);

by §3.34 it is easily verified that the series defining gn(x, y), (n = `, ` + 1, . . .) converges
absolutely and uniformly when a ≤ x ≤ b, a ≤ y ≤ b, and thence that the series for D(x, y; λ)
converges absolutely and uniformly in the same domain of values of x and y.

But, by Example 11.2.4, ∫ b

a

D(ξ, ξ; λ) dξ = −λ
dD(λ)

dλ
;

now the right-hand side has a zero of order m − 1 at λ0, while the left-hand side has a zero
of order at least `, and so we have m − 1 ≥ `.

Substituting the series just given for D(λ) and D(x, y; λ) in the result of Example 11.2.3,
viz.

D(x, y; λ) = λD(λ)K(x, y) + λ
∫ b

a

K(x, ξ)D(ξ, y; λ) dξ,

dividing by (λ − λ0)
` and making λ→ λ0,we get

g`(x, y) = λ0

∫ b

a

K(x, ξ)g`(ξ, y) dξ.

Hence if y have any constant value, g`(x, y) satisfies the homogeneous integral equation,
and any linear combination of such solutions, obtained by giving y various values, is a
solution.
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Corollary 11.2.2 The equation

φ(x) = f (x) + λ0

∫ b

a

K(x, ξ)φ(ξ) dξ

has no solution or an infinite number. For, if φ(x) is a solution, so is φ(x) +
∑
y

cyg`(x, y),

where cy may be any function of y.

Example 11.2.8 Shew that solutions of

φ(x) = λ
∫ π

−π

cosn(x − ξ)φ(ξ) dξ

are φ(x) = cos(n−2r)x, and φ(x) = sin(n−2r)x; where r assumes all positive integral values
(zero included) not exceeding 1

2 n.

Example 11.2.9 Shew that

φ(x) = λ
∫ π

−π

cosn(x + ξ)φ(ξ) dξ

has the same solutions as those given in Example 11.2.8, and shew that the corresponding
values of λ give all the roots of D(λ) = 0.

11.3 Integral equations of the first and second kinds
Fredholm’s equation is sometimes called an integral equation of the second kind; while the
equation

f (x) = λ
∫ b

a

K(x, ξ)φ(ξ) dξ

is called the integral equation of the first kind.
In the case when K(x, ξ) = 0 if ξ > x, we may write the equations of the first and second

kinds in the respective forms

f (x) = λ
∫ x

a

K(x, ξ)φ(ξ) dξ,

φ(x) = f (x) + λ
∫ x

a

K(x, ξ)φ(ξ) dξ.

These are described as equations with variable upper limits.

11.31 Volterra’s equation
The equation of the first kind with variable upper limit is frequently known as Volterra’s
equation. The problem of solving it has been reduced by that writer to the solution of
Fredholm’s equation.

Assuming that K(x, ξ) is a continuous function of both variables when ξ ≤ x, we have

f (x) = λ
∫ x

a

K(x, ξ)φ(ξ) dξ.
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The right-hand side has a differential coefficient (see Example 4.2.1) if
∂K
∂x

exists and is
continuous, and so

f ′(x) = λK(x, x)φ(x) + λ
∫ x

a

∂K
∂x

φ(ξ) dξ.

This is an equation of Fredholm’s type. If we denote its solution by φ(x), we get on
integrating from a to x,

f (x) − f (a) = λ
∫ x

a

K(x, ξ)φ(ξ) dξ,

and so the solution of the Fredholm’s equation gives a solution of Volterra’s equation if
f (a) = 0.
The solution of the equation of the first kind with constant upper limit can frequently be

obtained in the form of a series. See Example 11.6. A solution valid under fewer restrictions
is given by Bôcher.

11.4 The Liouville–Neumann method of successive substitutions
This appears in Liouville [438]. K. Neumann’s investigations were later (1870); see [488].

A method of solving the equation

φ(x) = f (x) + λ
∫ b

a

K(x, ξ)φ(ξ) dξ,

which is of historical importance, is due to Liouville.
It consists in continually substituting the value of φ(x) given by the right-hand side in the

expression φ(ξ) which occurs on the right-hand side.
This procedure gives the series

S(x) = f (x) + λ
∫ b

a

K(x, ξ) f (ξ) dξ

+

∞∑
m=2

λm
∫ b

a

K(x, ξ1)

∫ b

a

K(ξ1, ξ2) · · ·

∫ b

a

K(ξm−1, ξm) f (ξm) dξm · · · dξ1.

Since |K(x, y)| and | f (x)| are bounded, let their upper bounds be M , M ′. Then the modulus
of the general term of the series does not exceed |λ |mMmM ′(b − a)m. The series for S(x)
therefore converges uniformly when |λ | < M−1(b − a)−1; and, by actual substitution, it
satisfies the integral equation.

If K(x, y) = 0 when y > x, we find by induction that the modulus of the general term in
the series for S(x) does not exceed

|λ |mMmM ′(x − a)m/m! ≤ |λ |mMmM ′(b − a)m/m!,

and so the series converges uniformly for all values of λ; and we infer that in this case
Fredholm’s solution is an integral function of λ.
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It is obvious from the form of the solution that when |λ | < M−1(b − a)−1, the reciprocal
function k(x, ξ; λ) may be written in the form

k(x, ξ; λ) = − K(x, ξ)

−

∞∑
m=2

λm−1
∫ b

a

K(x, ξ1)

∫ b

a

K(ξ1, ξ2) · · ·

∫ b

a

K(ξm−1, ξ) dξm−1 dξm−2 · · · dξ1,

for with this definition of k(x, ξ; λ),we see that

S(x) = f (x) − λ
∫ b

a

k(x, ξ; λ) f (ξ) dξ,

so that k(x, ξ; λ) is a reciprocal function, and by §11.22 there is only one reciprocal function
if D(λ) , 0.

Write

K(x, ξ) = K1(x, ξ),
∫ b

a

K(x, ξ ′)Kn(ξ
′, ξ) dξ ′ = Kn+1(x, ξ),

and then we have

−K(x, ξ; λ) =
∞∑

m=0

λmKm+1(x, ξ),

while ∫ b

a

Km(x, ξ ′)Kn(ξ
′, ξ) dξ ′ = Km+n(x, ξ),

as may be seen at once on writing each side as an (m + n − 1)-tuple integral.
The functions Km(x, ξ) are called iterated functions.

11.5 Symmetric nuclei
Let K1(x, y) ≡ K1(y, x); then the nucleus K(x, y) is said to be symmetric. The iterated
functions of such a nucleus are also symmetric, i.e. Kn(x, y) = Kn(y, x) for all values of n;
for, if Kn(x, y) is symmetric, then

Kn+1(x, y) =
∫ b

a

K1(x, ξ)Kn(ξ, y) dξ =
∫ b

a

K1(ξ, x)Kn(y, ξ) dξ

=

∫ b

a

Kn(y, ξ)K1(ξ, x) dξ

= Kn+1(y, x),

and the required result follows by induction.
Also, none of the iterated functions are identically zero; for, if possible, let Kp(x, y) ≡ 0;

let n be chosen so that 2n−1 < p ≤ 2n, and, since Kp(x, y) ≡ 0, it follows that K2n (x, y) ≡ 0,
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from the recurrence formula. But then

0 = K2n (x, x) =
∫ b

a

K2n−1(x, ξ)K2n−1(ξ, x) dξ

=

∫ b

a

{K2n−1(x, ξ)}2 dξ,

and so K2n−1(x, ξ) ≡ 0; continuing this argument, we find ultimately that K1(x, y) ≡ 0, and
the integral equation is trivial.

11.51 Schmidt’s theorem that, if the nucleus is symmetric, the equation D(λ) = 0 has
at least one root

The proof given is due to Kneser [380]. To prove this theorem, let

Un =

∫ b

a

Kn(x, x) dx,

so that, when |λ | < M−1(b − a)−1, we have, by Example 11.2.4 and §11.4,

−
1

D(λ)
dD(λ)

dλ
=

∞∑
n=1

Unλ
n−1.

Now since ∫ b

a

∫ b

a

(µKn+1(x, ξ) + Kn−1(x, ξ))
2 dξ dx ≥ 0

for all real values of µ, we have µ2U2n+2 + 2µU2n + U2n−2 ≥ 0, and so U2n+2U2n−2 ≥ U2n2 ,
U2n−2 > 0. Therefore U2,U4, . . . are all positive, and if U4/U2 = ν, it follows, by induction
from the inequality U2n+2U2n−2 ≥ U2n2 , that U2n+2/U2n ≥ νn. Therefore when |λ2 | ≥ ν−1,

the terms of
∞∑
n=1

Unλ
n−1 do not tend to zero; and so, by §5.4, the function

1
D(λ)

dD(λ)
dλ

has a

singularity inside or on the circle |λ | = ν− 1
2 ; but since D(λ) is an integral function, the only

possible singularities of
1

D(λ)
dD(λ)

dλ
are at zeros of D(λ); therefore D(λ) has a zero inside

or on the circle |λ | = ν− 1
2 .

Note By §11.21, D(λ) is either an integral function or else a mere polynomial; in the latter
case, it has a zero by Example 6.3.1; the point of the theorem is that in the former case D(λ)
cannot be such a function as eλ

2 , which has no zeros.
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11.6 Orthogonal functions
The real continuous functions φ1(x), φ2(x), . . . are said to be orthogonal and normal8 for the
range (a, b) if ∫ b

a

φm(x)φn(x) dx =

{
0 (m , n),
1 (m = n).

If we are given n real continuous linearly independent functions u1(x), . . . ,un(x), we can
form n linear combinations of them which are orthogonal.

For suppose we can construct m − 1 orthogonal functions φ1, . . . , φm−1 such that φp is a
linear combination of u1,u2, . . . ,up (where p = 1,2, . . . ,m − 1); we shall now shew how to
construct the function φm such that φ1, φ2, . . . , φm are all normal and orthogonal.

Let 1φm(x) = c1,mφ1(x)+ c2,mφ2(x)+ · · ·+ cm−1φm−1(x)+ um(x), so that 1φm is a function
of u1,u2, . . . ,um. Then, multiplying by φp and integrating,∫ b

a
1φm(x)φp(x) dx = cp,m +

∫ b

a

um(x)φp(x) dx (p < m).

Hence
∫ b

a
1φm(x)φp(x) dx = 0 if cp,m = −

∫ b

a

um(x)φp(x) dx; a function 1φm(x), or-

thogonal to φ1(x), φ2(x), . . . , φm−1(x), is therefore constructed.

Now choose α so that α2
∫ b

a

{1φm(x)}
2 dx = 1; and take φm(x) = α (1φm(x)). Then∫ b

a

φm(x)φp(x) dx =

{
0 (p < m),
1 (p = m).

We can thus obtain the functions φ1, φ2, . . . in order.
The members of a finite set of orthogonal functions are linearly independent. For, if

α1φ1(x) + α2φ2(x) + · · · + αnφn(x) ≡ 0,

we should get, on multiplying by φp(x) and integrating, αp = 0; therefore all the coefficients
αp vanish and the relation is nugatory.

It is obvious that π−1/2 cos mx, π−1/2 sin mx form a set of normal orthogonal functions for
the range (−π, π).

Example 11.6.1 From the functions 1, x, x2, . . . construct the following set of functions
which are orthogonal (but not normal) for the range (−1,1);

1, x, x2, −
1
3

x3 −
3
5

x, x4 − 2x2 +
3
35
, . . . .

Example 11.6.2 From the functions 1, x, x2, . . . construct a set of functions f0(x), f1(x),
f2(x), . . . which are orthogonal (but not normal) for the range (a, b); where

fn(x) =
dn

dxn
{(x − a)n(x − b)n} .

A similar investigation is given in §15.14.
8 They are said to be orthogonal if the first equation only is satisfied; the systematic study of such functions is
due to Murphy [481, 483].
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11.61 The connexion of orthogonal functions with homogeneous integral equations
Consider the homogeneous equation

φ(x) = λ0

∫ b

a

φ(ξ)K(x, ξ) dξ,

where λ0 is a real characteristic number for K(x, ξ). It will be seen immediately that the
characteristic numbers of a symmetric nucleus are all real. We have already seen how
solutions of it may be constructed; let n linearly independent solutions be taken and construct
from them n orthogonal and normal functions φ1, φ2, . . . , φn.

Then, since the functions φm are orthogonal and normal,∫ b

a

[
n∑

m=1

φm(y)

∫ b

a

K(x, ξ)φm(ξ) dξ

]2

dy

=

n∑
m=1

∫ b

a

[
φm(y)

∫ b

a

K(x, ξ)φm(ξ) dξ
]2

dy,

and it is easily seen that the expression on the right may be written in the form
n∑

m=1

[∫ b

a

K(x, ξ)φm(ξ) dξ
]2

on performing the integration with regard to y; and this is the same as
n∑

m=1

∫ b

a

K(x, y)φm(y) dy
∫ b

a

K(x, ξ)φm(ξ) dξ.

Therefore, if we write K for K(x, y) and Λ for
n∑

m=1

φm(y)

∫ b

a

K(x, ξ)φm(ξ) dξ,

we have
∫ b

a

Λ
2 dy =

∫ b

a

KΛ dy, and so∫ b

a

Λ
2 dy =

∫ b

a

K2 dy −
∫ b

a

(K − Λ)2 dy. (11.2)

Therefore ∫ b

a

[
n∑

m=1

φm(y)φm(x)
λ0

]2

dy ≤
∫ b

a

[K(x, y)]2 dy,

and so

λ−2
0

n∑
m=1

[φm(x)]
2
≤

∫ b

a

[K(x, y)]2 dy.

Integrating, we get

n ≤ λ0
2
∫ b

a

∫ b

a

[K(x, y)]2 dy dx.
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This formula gives an upper limit to the number, n, of orthogonal functions corresponding
to any characteristic number λ0.

These n orthogonal functions are called characteristic functions (or auto-functions) cor-
responding to λ0.

Now let φ(0)(x), φ(1)(x) be characteristic functions corresponding to different characteristic
numbers λ0, λ1. Then

φ(0)(x)φ(1)(x) = λ1

∫ b

a

K(x, ξ)φ(0)(x)φ(1)(ξ) dξ,

and so ∫ b

a

φ(0)(x)φ(1)(x) dx = λ1

∫ b

a

∫ b

a

K(x, ξ)φ(0)(x)φ(1)(ξ) dξ dx (11.3)

and similarly ∫ b

a

φ(0)(x)φ(1)(x) dx =λ0

∫ b

a

∫ b

a

K(x, ξ)φ(0)(ξ)φ(1)(x) dξ dx

=λ0

∫ b

a

∫ b

a

K(ξ, x)φ(0)(x)φ(1)(ξ) dx dξ, (11.4)

on interchanging x and ξ.
We infer from (11.3) and (11.4) that if λ1 , λ0, and if K(x, ξ) = K(ξ, x),∫ b

a

φ(0)(x)φ(1)(x) dx = 0,

and so the functions φ(0)(x), φ(1)(x) are mutually orthogonal.
If therefore the nucleus be symmetric and if, corresponding to each characteristic number,

we construct the complete system of orthogonal functions, all the functions so obtained will
be orthogonal.

Further, if the nucleus be symmetric all the characteristic numbers are real; for if λ0, λ1

be conjugate complex roots and if9 u0(x) = v(x) + iw(x) be a solution for the characteristic
number λ0, then u1(x) = v(x)− iw(x) is a solution for the characteristic number λ1; replacing
φ(0)(x), φ(1)(x) in the equation ∫ b

a

φ(0)(x)φ(1)(x) dx = 0

by v(x) + iw(x), v(x) − iw(x) (which is obviously permissible), we get∫ b

a

[
(v(x))2 + (w(x))2

]
dx = 0,

which implies v(x) ≡ w(x) ≡ 0, so that the integral equation has no solution except zero
corresponding to the characteristic numbers λ0, λ1; this is contrary to §11.23; hence, if the
nucleus be symmetric, the characteristic numbers are real.

9 v(x) and w(x) being real.
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11.7 The development of a symmetric nucleus
This investigation is due to Schmidt, the result to Hilbert.

Let φ1(x), φ2(x), φ3(x), . . . be a complete set of orthogonal functions satisfying the homo-
geneous integral equation with symmetric nucleus

φ(x) = λ
∫ b

a

K(x, ξ)φ(ξ) dξ,

the corresponding characteristic numbers being10 λ1, λ2, λ3, . . ..

Now suppose11 that the series
∞∑
n=1

φn(x) φn(y)

λn
is uniformly convergent when a ≤ x ≤ b,

a ≤ y ≤ b. Then it will be shewn that

K(x, y) =
∞∑
n=1

φn(x)φn(y)

λn
.

For consider the symmetric nucleus

H(x, y) = K(x, y) −
∞∑
n=1

φn(x)φn(y)

λn
.

If this nucleus is not identically zero, it will possess (§11.51) at least one characteristic
number µ.

Let ψ(x) be any solution of the equation

ψ(x) = µ
∫ b

a

H(x, ξ)ψ(ξ) dξ,

which does not vanish identically. Multiply by φn(x) and integrate and we get∫ b

a

ψ(x)φn(x) dx = µ
∫ b

a

∫ b

a

{
K(x, ξ) −

∞∑
m=1

φm(x)φm(ξ)

λm

}
ψ(ξ)φn(x) dx dξ;

since the series converges uniformly, we may integrate term by term and get∫ b

a

ψ(x)φn(x) dx =
µ

λn

∫ b

a

ψ(ξ)φn(ξ) dξ −
µ

λn

∫ b

a

φn(ξ)ψ(ξ) dξ = 0.

Therefore ψ(x) is orthogonal to φ1(x), φ2(x), . . . ; and so taking the equation

ψ(x) = µ
∫ b

a

{
K(x, ξ) −

∞∑
n=1

φn(x)φn(ξ)

λn

}
ψ(ξ) dξ,

we have

ψ(x) = µ
∫ b

a

K(x, ξ)ψ(ξ) dξ.

10 These numbers are not all different if there is more than one orthogonal function to each characteristic number.
11 The supposition is, of course, a matter for verification with any particular equation.
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Therefore µ is a characteristic number of K(x, y), and so ψ(x)must be a linear combination
of the (finite number of) functions φn(x) corresponding to this number; let

ψ(x) =
∑
m

amφm(x).

Multiply by φm(x) and integrate; then since ψ(x) is orthogonal to all the functions φn(x),
we see that am = 0, so, contrary to hypothesis, ψ(x) ≡ 0. The contradiction implies that the
nucleus H(x, y) must be identically zero; that is to say, K(x, y) can be expanded in the given
series, if it is uniformly convergent.

Example 11.7.1 Shew that, if λ0 be a characteristic number, the equation

φ(x) = f (x) + λ0

∫ b

a

K(x, ξ)φ(ξ) dξ

certainly has no solution when the nucleus is symmetric, unless f (x) is orthogonal to all the
characteristic functions corresponding to λ0.

11.71 The solution of Fredholm’s equation by a series
Retaining the notation of §11.7, consider the integral equation

Φ(x) = f (x) + λ
∫ b

a

K(x, ξ)Φ(ξ) dξ,

where K(x, ξ) is symmetric.
If we assume that Φ(ξ) can be expanded into a uniformly convergent series

∞∑
n=1

anφn(ξ),

we have
∞∑
n=1

anφn(x) = f (x) +
∞∑
n=1

λ

λn
anφn(x),

so that f (x) can be expanded in the series
∞∑
n=1

an

λn − λ

λn
φn(x).

Hence if the function f (x) can be expanded into the convergent series
∞∑
n=1

bnφn(x), then

the series
∞∑
n=1

bnλn
λn − λ

φn(x),

if it converges uniformly in the range (a, b), is the solution of Fredholm’s equation.
To determine the coefficients bn we observe that

∞∑
n=1

bnφn(x) converges uniformly by §3.35;

then, multiplying by φn(x) and integrating, we get

bn =

∫ b

a

φn(x) f (x) dx.
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Since the numbers λn are all real we may arrange them in two sets, one negative the other
positive, the members in each set being in order of magnitude; then, when |λn | > λ, it is
evident that λn/(λn − λ) is a monotonic sequence in the case of either set.

11.8 Solution of Abel’s integral equation
This equation is of the form

f (x) =
∫ x

a

u(ξ)
(x − ξ)µ

dξ (0 < µ < 1, a ≤ x ≤ b),

where f ′(x) is continuous and f (a) = 0; we proceed to find a continuous solution u(x).

Let φ(x) =
∫ x

a

u(ξ) dξ, and take the formula (this follows fromExample 6.2.14, bywriting

(z − x)/(x − ξ) in place of x)

π

sin µπ
=

∫ z

ξ

dx
(z − x)1−µ (x − ξ)µ

,

multiply by u(ξ) and integrate, and we get, on using Dirichlet’s formula (Corollary 4.5.1),

π

sin µπ
{φ(z) − φ(a)} =

∫ z

a

dξ
∫ z

ξ

u(ξ) dx
(z − x)1−µ(x − ξ)µ

=

∫ z

a

dx
∫ z

a

u(ξ) dξ
(z − x)1−µ(x − ξ)µ

=

∫ z

a

f (x) dx
(z − x)1−µ

.

Since the original expression has a continuous derivate, so has the final one; therefore the
continuous solution, if it exists, can be none other than

u(z) =
sin µπ
π

d
dz

∫ z

a

f (x) dx
(z − x)1−µ

;

and it can be verified by substitution12 that this function actually is a solution.

11.81 Schlömilch’s integral equation
This comes from [580]. The reader will easily see that this is reducible to a case of Volterra’s
equation with a discontinuous nucleus.

Let f (x) have a continuous differential coefficient when −π ≤ x ≤ π. Then the equation

f (x) =
2
π

∫ π/2

0
φ(x sin θ) dθ

has one solution with a continuous differential coefficient when −π ≤ x ≤ π, namely

φ(x) = f (0) + x
∫ π/2

0
f ′(x sin θ) dθ.

12 For the details we refer to Bôcher’s tract [80].
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From §4.2 it follows that

f ′(x) =
2
π

∫ π/2

0
sin θ φ′(x sin θ) dθ

(so that we have φ(0) = f (0), φ′(0) = π
2 f ′(0)).

Write x sinψ for x, and we have on multiplying by x and integrating

x
∫ π/2

0
f ′(x sinψ) dψ =

2x
π

∫ π/2

0

{∫ π/2

0
sin θ φ′(x sin θ sinψ) dθ

}
dψ.

Change the order of integration in the repeated integral (§4.3) and take a new variable χ in
place of ψ, defined by the equation sin χ = sin θ sinψ. Then

x
∫ π/2

0
f ′(x sinψ) dψ =

2x
π

∫ π/2

0

{∫ θ

0

φ′(x sin χ) cos χdχ
cosψ

}
dθ.

Changing the order of integration again (§4.51),

x
∫ π/2

0
f ′(x sinψ) dψ =

2x
π

∫ π/2

0

{∫ π/2

χ

φ′(x sin χ) cos χ sin θ√
sin2 θ − sin2 χ

dθ

}
dχ.

But ∫ π/2

χ

sin θ dθ√
cos2 χ − cos2 θ

=

[
− arcsin

(
cos θ
cos χ

)]π/2
χ

=
π

2
,

and so

x
∫ π/2

0
f ′(x sinψ) dψ = x

∫ π/2

0
φ′(x sin χ) cos χ dχ

= φ(x) − φ(0).

Since φ(0) = f (0), we must have

φ(x) = f (0) + x
∫ π/2

0
f ′(x sinψ) dψ;

and it can be verified by substitution that this function actually is a solution.

11.9 Miscellaneous examples
Example 11.1 (Abel) Shew that if the time of descent of a particle down a smooth curve to
its lowest point is independent of the starting-point (the particle starting from rest) the curve
is a cycloid.

Example 11.2 Shew that, if f (x) is continuous, the solution of

φ(x) = f (x) + λ
∫ ∞

0
cos(2xs)φ(s) ds

is

φ(x) =
1

1 − 1
4λ

2π

(
f (x) + λ

∫ ∞

0
f (s) cos(2xs) ds

)
,
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assuming the legitimacy of a certain change of order of integration.

Example 11.3 (A. Milne) Shew that the Weber–Hermite functions

Dn(x) = (−1)n e
1
4 x

2 dn

dxn

(
e−

1
2 x

2
)

satisfy

φ(x) = λ
∫ ∞

−∞

e
1
2 isxφ(s) ds

for the characteristic values of λ.

Example 11.4 (Whittaker; see §19.21, [673]) Shew that even periodic solutions (with
period 2π) of the differential equation

d2φ(x)
dx2 + (a2 + k2 cos2 x)φ(x) = 0

satisfy the integral equation

φ(x) = λ
∫ π

−π

ek cos x cos sφ(s) ds.

Example 11.5 Shew that the characteristic functions of the equation

φ(x) = λ
∫ π

−π

{
1

4π
(x − y)2 −

1
2
|x − y |

}
φ(y) dy

are φ(x) = cos mx, sin mx,where λ = m2 and m is any integer.

Example 11.6 (Bôcher) Shew that

φ(x) =
∫ x

0
ξx−ξ φ(ξ) dξ

has the discontinuous solution φ(x) = k xx−1.

Example 11.7 Shew that a solution of the integral equation with a symmetric nucleus

f (x) =
∫ b

a

K(x, ξ)φ(ξ) dξ is φ(x) =
∞∑
n=1

anλnφn(x),

provided that this series converges uniformly, where λn, φn(x) are the characteristic numbers
and functions of K(x, ξ) and

∞∑
n=1

anφn(x) is the expansion of f (x).

Example 11.8 Shew that, if |h| < 1, the characteristic functions of the equation

φ(x) =
λ

2π

∫ π

−π

1 − h2

1 − 2h cos(ξ − x) + h2 φ(ξ) dξ

are 1, cos mx, sin mx, the corresponding characteristic numbers being 1, 1/hm, 1/hm, where
m takes all positive integral values.
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12

The Gamma-Function

12.1 Definitions of the Gamma-function. The Weierstrassian product
Historically, the Gamma-function Γ(z) was first defined by Euler as the limit of a product

(§12.11) from which can be derived the infinite integral
∫ ∞

0
tz−1e−t dt. The notation Γ(z)

was introduced by Legendre in 1814. But in developing the theory of the function, it is more
convenient to define it by means of an infinite product of Weierstrass’ canonical form.

Consider the product

zeγz
∞∏
n=1

{(
1 +

z
n

)
e−

z
n

}
,

where
γ = lim

m→∞

{ 1
1 +

1
2 + · · · +

1
m
− log m

}
∼ 0.5772157 · · · . (12.1)

(The constant γ is known as Euler’s constant, or the Euler–Mascheroni constant.) To prove
that it exists we observe that, if

un =

∫ 1

0

t dt
n (n + t)

=
1
n
− log

n + 1
n

,

un is positive and less than
∫ 1

0

dt
n2 =

1
n2 ; therefore

∞∑
n=1

un converges, and

lim
m→∞

{
1
1
+

1
2
+ · · · +

1
m
− log m

}
= lim

m→∞

{
m∑
n=1

un + log
m + 1

m

}
=

∞∑
n=1

un.

The value of γ has been calculated by J. C. Adams to 260 places of decimals [10].
The product under consideration represents an analytic function of z, for all values of z;

for, if N be an integer such that |z | ≤ 1
2 N,we have1 if n > N ,���log

(
1 +

z
n

)
−

z
n

��� = ����−1
2

z2

n2 +
1
3

z3

n3 − · · ·

����
≤
|z |2

n2

{
1 +

��� z
n

��� + ���� z2

n2

���� + · · · }
≤

1
4

N2

n2

{
1 +

1
2
+

1
22 + · · ·

}
≤

1
2

N2

n2 .

1 Taking the principal value of log(1 + z/n).
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Since the series
∞∑

n=N+1

N2

2n2 converges, it follows that, when |z | ≤ 1
2 N,

∞∑
n=N+1

{log (1 + z/n) − z/n}

is an absolutely and uniformly convergent series of analytic functions, and so it is an analytic
function (§5.3); consequently its exponential

∞∏
n=N+1

{
(1 + z/n) e−z/n

}
is an analytic function and zeγz

∞∏
n=1

{
(1 + z/n) e−z/n

}
is an analytic function when |z | ≤ 1

2 N,

where N is any integer; that is to say, the product is analytic for all finite values of z.
The Gamma-function was defined by Weierstrass [659]. This formula for Γ(z) had been

obtained from Euler’s formula (§12.11) in 1848 by F. W. Newman [493] by the equation

1
Γ(z)

= zeγz
∞∏
n=1

{(
1 +

z
n

)
e−z/n

}
;

from this equation it is apparent that Γ(z) is analytic except at the points z = 0, −1, −2,
where it has simple poles.

Note Proofs have been published by Hölder [325], Moore [472] and Barnes [44] of a
theorem known to Weierstrass that the Gamma-function does not satisfy any differential
equation with rational coefficients.

Example 12.1.1 Prove that
Γ(1) = 1, Γ

′(1) = −γ,

where γ is Euler’s constant. Hint. Justify differentiating logarithmically the equation

1
Γ(z)

= zeγz
∞∏
1

{(
1 +

z
n

)
e−z/n

}
by §4.7, and put z = 1 after the differentiations have been performed.

Example 12.1.2 Shew that

1 +
1
2
+

1
3
+ · · · +

1
n
=

∫ 1

0

1 − (1 − t)n

t
dt,

and hence that Euler’s constant γ is given by

lim
n→∞

[∫ 1

0

{
1 −

(
1 −

t
n

)n} dt
t
−

∫ n

1

(
1 −

t
n

)n dt
t

]
.

The reader will see later (Example 11.6.2) that this limit may be written∫ 1

0
(1 − e−t)

dt
t
−

∫ ∞

1

e−tdt
t

.
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Example 12.1.3 Shew that

∞∏
n=1

[(
1 −

x
z + n

)
ex/n

]
=

eγx Γ(z + 1)
Γ(z − x + 1)

.

12.11 Euler’s formula for the Gamma-function
By the definition of an infinite product we have

1
Γ(z)

= z
[

lim
m→∞

e(1+
1
2+· · ·+

1
m −logm)z

] [
lim
m→∞

m∏
n=1

{(
1 +

z
n

)
e−

z
n

}]
= z lim

m→∞

[
e(1+

1
2+· · ·+

1
m −logm)z

m∏
n=1

{(
1 +

z
n

)
e−

z
n

}]
= z lim

m→∞

[
m−z

m∏
n=1

(
1 +

z
n

)]
= z lim

m→∞

[
m−1∏
n=1

(
1 +

1
n

)−z m∏
n=1

(
1 +

z
n

)]
= z lim

m→∞

[
m∏
n=1

{(
1 +

z
n

) (
1 +

1
n

)−z} (
1 +

1
m

)z]
.

Hence

Γ(z) =
1
z

∞∏
n=1

{(
1 +

1
n

)z (
1 +

z
n

)−1
}
. (12.2)

This formula is due to Euler. It was given in 1729 in a letter to Goldbach, printed in Fuss
[231]. It is valid except when z = 0,−1,−2, . . . .

Example 12.1.4 (Euler) Prove that

Γ(z) = lim
n→∞

1 · 2 · · · · · (n − 1)
z (z + 1) · · · (z + n − 1)

nz .

12.12 The difference equation satisfied by the Gamma-function
We shall now shew that the function Γ(z) satisfies the difference equation

Γ(z + 1) = zΓ(z).
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For, by Euler’s formula, if z is not a negative integer

Γ(z + 1)
Γ(z)

=
1

z + 1

[
lim
m→∞

m∏
n=1

(
1 + 1

n

)z+1

1 + z+1
n

] [
1
z

lim
m→∞

m∏
n=1

(
1 + 1

n

)z
1 + z

n

]−1

=
z

z + 1
lim
m→∞

m∏
n=1

{ (
1 + 1

n

)
(z + n)

z + n + 1

}
= z lim

m→∞

m + 1
z + m + 1

= z.

This is one of the most important properties of the Gamma-function. Since Γ(1) = 1, it
follows that, if z is a positive integer, Γ(z) = (z − 1)!.

Example 12.1.5 Prove that
1

Γ (z + 1)
+

1
Γ (z + 2)

+
1

Γ (z + 3)
+ · · ·

=
e

Γ (z)

(
1
z
−

1
1 !

1
z + 1

+
1
2 !

1
z + 2

− · · ·

)
.

Hint. Consider the expression
1
z
+

1
z (z + 1)

+
1

z (z + 1)(z + 2)
+ · · · +

1
z(z + 1) · · · (z + m)

.

It can be expressed in partial fractions in the form
m∑
n=0

an

z + n
, where

an =
(−1)n

n !

{
1 +

1
1 !
+

1
2 !
+ · · · +

1
(m − n) !

}
=
(−1)n

n !

{
e −

∞∑
r=m−n+1

1
r!

}
.

Noting that
∞∑

r=m−n+1
displaystyle 1

r! <
e

(m−n+1) ! , prove that

m∑
n=0

(−1)n

n !
1

z + n

{
∞∑

r=m−n+1

1
r!

}
→ 0

as m→∞ when z is not a negative integer.

12.13 The evaluation of a general class of infinite products
By means of the Gamma-function, it is possible to evaluate the general class of infinite
products of the form

∞∏
n=1

un,where un is any rational function of the index n.

For, resolving un into its factors, we can write the product in the form
∞∏
n=1

{
A(n − a1)(n − a2) · · · (n − ak)

(n − b1) · · · (n − bl)

}
;

and it is supposed that no factor in the denominator vanishes.
In order that this productmay converge, the number of factors in the numeratormust clearly
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be the same as the number of factors in the denominator, and also A = 1 for, otherwise, the
general factor of the product would not tend to the value unity as n tends to infinity.

We have therefore k = l, and, denoting the product by P,we may write

P =
∞∏
n=1

{
(n − a1) · · · (n − ak)

(n − b1) · · · (n − bk)

}
.

The general term in this product can be written(
1 −

a1

n

)
· · ·

(
1 −

ak

n

) (
1 −

b1

n

)−1

· · ·

(
1 −

bk

n

)−1

= 1 −
a1 + a2 + · · · + ak − b1 − · · · − bk

n
+ An,

where An is O(n−2) when n is large. In order that the infinite product may be absolutely
convergent, it is therefore necessary further (§2.7) that

a1 + · · · + ak − b1 − · · · − bk = 0.

We can therefore introduce the factor

exp
{
n−1 (a1 + · · · + ak − b1 − · · · − bk)

}
into the general factor of the product, without altering its value; and thus we have

P =
∞∏
n=1


(
1 − a1

n

)
ea1/n

(
1 − a2

n

)
ea2/n · · ·

(
1 − ak

n

)
eak /n(

1 − b1
n

)
eb1/n

(
1 − b2

n

)
eb2/n · · ·

(
1 − bk

n

)
ebk /n

 .
But it is obvious from the Weierstrassian definition of the Gamma-function that

∞∏
n=1

{(
1 −

z
n

)
ez/n

}
=

1
−zΓ(−z)e−γz

,

and so

P =
b1Γ (−b1)b2Γ(−b2) · · · bkΓ(−bk)

a1Γ(−a1) · · · akΓ(−ak)
=

k∏
m=1

Γ(1 − bm)

Γ(1 − am)
,

a formula which expresses the general infinite product P in terms of the Gamma-function.

Example 12.1.6 Prove that
∞∏
s=1

s(a + b + s)
(a + s)(b + s)

=
Γ(a + 1)Γ(b + 1)
Γ(a + b + 1)

.

Example 12.1.7 Shew that, if a = cos(2π/n) + i sin(2π/n), then

x
(
1 −

x
1n

) (
1 −

x
2n

)
· · · =

(
−Γ(−x

1
n )Γ(−ax

1
n ) · · · Γ(−an−1x

1
n )

)−1
.
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12.14 Connexion between the Gamma-function and the circular functions
We now proceed to establish another most important property of the Gamma-function,
expressed by the equation

Γ(z)Γ(1 − z) =
π

sin πz
.

We have, by the definition of Weierstrass (§12.1),

Γ(z)Γ(−z) = −
1
z2

∞∏
n=1

{(
1 +

z
n

)
e−z/n

}−1 ∞∏
n=1

{(
1 −

z
n

)
ez/n

}−1

= −
π

z sin πz
,

by Example 7.5.1. Since, by §12.12, Γ(1 − z) = −zΓ(−z) we have the result stated.

Corollary 12.1.1 If we assign to z the value 1
2 , this formula gives

{Γ( 12 )}
2 = π;

since, by the formula of Weierstrass, Γ( 12 ) is positive, we have

Γ
( 1

2

)
=
√
π.

Corollary 12.1.2 If ψ(z) = Γ′(z)/Γ(z), then ψ(1 − z) − ψ(z) = π cot πz.

12.15 The multiplication-theorem of Gauss and Legendre
This appears in [236, p. 149]. The case in which n = 2 was given by Legendre.

We shall next obtain the result

Γ(z)Γ
(
z +

1
n

)
Γ

(
z +

2
n

)
· · · Γ

(
z +

n − 1
n

)
= (2π)

1
2 (n−1)n

1
2−nzΓ(nz).

For let

φ(z) =
nnzΓ(z)Γ

(
z + 1

n

)
· · · Γ

(
z + n−1

n

)
nΓ(nz)

.

Then we have, by Euler’s formula (Example 12.1.4),

φ(z) =
nnz

n−1∏
r=0

lim
m→∞

1·2· · ·(m−1)·mz+r/n

(z+ r
n )(z+

r
n +1)· · ·(z+ r

n +m−1)

n lim
m→∞

1·2· · ·(nm−1)·(nm)nz
nz(nz+1)·· ·(nz+nm−1)

= nnz−1 lim
m→∞

{(m − 1)!}nmnz+ 1
2 (n−1)nmn

(nm − 1)!(nm)nz

= lim
m→∞

{(m − 1)!}nm
1
2 (n−1)nmn−1

(nm − 1)!
.
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It is evident from this last equation that φ(z) is independent of z. Thus φ(z) is equal to the
value which it has when z = 1

n
; and so

φ(z) = Γ
(

1
n

)
Γ

(
2
n

)
· · · Γ

(
n − 1

n

)
.

Therefore

{φ(z)}2 =
n−1∏
r=1

{
Γ

( r
n

)
Γ

(
1 −

r
n

)}
=

πn−1

sin π
n

sin 2π
n
· · · sin (n−1)π

n

=
(2π)n−1

n
.

Thus, since φ(n−1) is positive, φ(z) = (2π)(n−1)/2n−1/2, i.e.

Γ(z)Γ
(
z +

1
n

)
· · · Γ

(
z +

n − 1
n

)
= n

1
2−nz(2π)

1
2 (n−1)

Γ(nz). (12.3)

Corollary 12.1.3 Taking n = 2, we have

22z−1
Γ(z)Γ

(
z + 1

2

)
= π1/2

Γ(2z).

This is called the duplication formula..

Example 12.1.8 If B(p,q) =
Γ(p)Γ(q)
Γ(p + q)

, shew that

B(np,nq) = n−nq
B(p,q)B

(
p + 1

n
,q

)
· · · B

(
p + n−1

n
,q

)
B(q,q)B(2q,q) · · · B((n − 1)q,q)

.

12.16 Expansion for the logarithmic derivates of the Gamma-function
We have

{Γ(z + 1)}−1 = eγz
∞∏
n=1

{(
1 +

z
n

)
e−z/n

}
.

Differentiating logarithmically (§4.7), this gives
d log Γ(z + 1)

dz
= −γ +

z
1(z + 1)

+
z

2(z + 2)
+

z
3(z + 3)

+ · · · .

Therefore, since log Γ(z + 1) = log z + log Γ(z), we have

d
dz

log Γ(z) = −γ −
1
z
+ z

∞∑
n=1

1
n(z + n)

.

Differentiating again,

d2

dz2 log Γ(z + 1) =
d
dz

{
z

1(z + 1)
+

z
2(z + 2)

+ · · ·

}
=

1
(z + 1)2

+
1

(z + 2)2
+ · · · . (12.4)

These expansions are occasionally used in applications of the theory.
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12.2 Euler’s expression of Γ(z) as an infinite integral

The infinite integral
∫ ∞

0
e−t tz−1 dt represents an analytic function of z when the real part of

z is positive (if the real part of z is not positive the integral does not converge on account
of the singularity of the integrand at t = 0, §5.32); it is called the Eulerian Integral of the
Second Kind. The name was given by Legendre; see §12.4 for the Eulerian Integral of the
First Kind. It will now be shewn that, when Re z > 0, the integral is equal to Γ(z). Denoting
the real part of z by x, we have x > 0. Now, if2

Π(z,n) =
∫ n

0

(
1 −

t
n

)n
tz−1 dt,

we have Π(z,n) = nz

∫ 1

0
(1 − τ)nτz−1 dτ, if we write t = nτ; it is easily shewn by repeated

integrations by parts that, when x > 0 and n is a positive integer,∫ 1

0
(1 − τ)nτz−1dτ =

[
1
z
τ2(1 − τ)n

]1

0
+

n
z

∫ 1

0
(1 − τ)n−1τ2dτ

...

=
n(n − 1) · · · 1

z(z + 1) · · · (z + n − 1)

∫ 1

0
τz+n−1 dτ,

and soΠ(z,n) =
1 · 2 · · · n

z(z + 1) · · · (z + n)
nz .Hence, byExample 12.1.4,Π(z,n) → Γ(z) as n→∞.

Consequently

Γ(z) = lim
n→∞

∫ n

0

(
1 −

t
n

)n
tz−1dt.

And so, if Γ1(z) =
∫ ∞

0
e−t tz−1dt,we have

Γ1(z) − Γ(z) = lim
n→∞

[∫ n

0

{
e−t −

(
1 −

t
n

)n}
tz−1dt +

∫ ∞

n

e−t tz−1dt
]
.

Now lim
n→∞

∫ ∞

n

e−t tz−1dt = 0, since
∫ ∞

0
e−t tz−1dt converges. To shew that zero is the limit of

the first of the two integrals in the formula for Γ1(z) − Γ(z) we observe that

0 ≤ e−t −
(
1 −

t
n

)n
≤ n−1t2e−t .

Hint. To establish these inequalities, we proceed as follows: when 0 ≤ y < 1,

1 + y ≤ ey ≤ (1 − y)−1,

from the series for ey and (1 − y)−1. Writing t/n for y, we have(
1 +

t
n

)−n
≥ e−t ≥

(
1 −

t
n

)n
,

2 The many-valued function tz−1 is made precise by the equation tz−1 = e(z−1) log t , log t being purely real.
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and so

0 ≤ e−t −
(
1 −

t
n

)n
= e−t

{
1 − e−t

(
1 −

t
n

)n}
≤ e−t

{
1 −

(
1 −

t2

n2

)n}
.

Now, if 0 ≤ a ≤ 1, (1 − a)n ≥ 1 − na by induction when na < 1 and obviously when
na ≥ 1; and, writing t2/n2 for a, we get

1 −
(
1 −

t2

n2

)n
≤

t2

n

and so

0 ≤ e−t −
(
1 −

t
n

)n
≤ e−t t2/n,

which is the required result. This analysis is a modification of that given by Schlömilch [583,
Vol. 2, p. 243]. A simple method of obtaining a less precise inequality (which is sufficient
for the object required) is given by Bromwich [102, p. 459].

From the inequalities, it follows at once that����∫ n

0

{
e−t −

(
1 −

t
n

)n}
tz−1dt

���� ≤ ∫ n

0
n−1e−t tx+1dt

< n−1
∫ ∞

0
e−t tx+1dt → 0,

as n→∞, since the last integral converges.
Consequently Γ1(z) = Γ(z) when the integral, by which Γ1(z) is defined, converges; that is

to say, when the real part of z is positive,

Γ(z) =
∫ ∞

0
e−t tz−1 dt .

And so, when the real part of z is positive, Γ(z) may be defined either by this integral or by
the Weierstrassian product.

Example 12.2.1 Prove that, when Re(z) is positive,

Γ(z) =
∫ 1

0

(
log

1
x

)z−1

dx.

Example 12.2.2 Prove that, if Re(z) > 0 and Re(s) > 0,∫ ∞

0
e−zx xs−1 dx =

Γ(s)
zs

.

Example 12.2.3 Prove that, if Re(z) > 0 and Re(s) > 1,

1
(z + 1)s

+
1

(z + 2)s
+

1
(z + 3)s

+ · · · =
1
Γ(s)

∫ ∞

0

e−xz xs−1 dx
ex − 1

Example 12.2.4 From Example 12.1.2 by using the inequality

0 ≤ e−t −
(
1 −

t
n

)n
≤

t2e−t

n
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deduce that

γ =

∫ 1

0

1 − e−t − e−1/t

t
dt.

12.21 Extension of the infinite integral to the case in which the argument of the
Gamma-function is negative

The formula of the last article is no longer applicable when the real part of z is negative.
Cauchy [123, volume 2, pp. 91–92] and Saalschütz [568, 569] have shewn, however, that, for
negative arguments, an analogous theorem exists. This can be obtained in the following way.

Consider the function

Γ2(z) =
∫ ∞

0
tz−1

(
e−t − 1 + t −

t2

2!
+ · · · + (−1)k+1 tk

k!

)
dt,

where k is the integer so chosen that −k > x > −k − 1, x being the real part of z.
By partial integration we have, when z < −1,

Γ2(z) =
[
tz

z

(
e−t − 1 + t −

t2

2!
+ · · · + (−1)k+1 tk

k!

)]∞
0

+
1
z

∫ ∞

0
tz

(
e−t − 1 + t − · · · + (−1)k

tk−1

(k − 1)!

)
dt .

The integrated part tends to zero at each limit, since x + k is negative and x + k + 1 is
positive: so we have

Γ2(z) =
Γ2(z + 1)

z
.

The same proof applies when x lies between 0 and−1, and leads to the result Γ(z+1) = zΓ2(z)
(0 > x > −1). The last equation shews that, between the values 0 and −1 of x,

Γ2(z) = Γ(z).

The preceding equation then shews that Γ2(z) is the same as Γ(z) for all negative values of
Re(z) less than −1. Thus, for all negative values of Re(z), we have the result of Cauchy and
Saalschütz

Γ(z) =
∫ ∞

0
ts−1

(
e−t − 1 + t −

t2

2!
+ · · · + (−1)k+1 tk

k!

)
dt,

where k is the integer next less than −Re(z).

Example 12.2.5 (Saalschütz) If a function P(µ) be such that for positive values of µ we
have

P(µ) =
∫ 1

0
xµ−1e−x dx,

and if for negative values of µ we define P1(µ) by the equation

P1(µ) =

∫ 1

0
xµ−1

(
e−x − 1 + x − · · · + (−1)k+1 xk

k!

)
dx,
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where k is the integer next less than −µ, shew that

P1(µ) = P(µ) −
1
µ
+

1
1!(µ + 1)

− · · · + (−1)k−1 1
k!(µ + k)

.

12.22 Hankel’s expression of Γ(z) as a contour integral
The integrals obtained for Γ(z) in §§12.2, 12.21 are members of a large class of definite
integrals by which the Gamma-function can be defined. The most general integral of the
class in question is due to Hankel [272]; this integral will now be investigated.

Let D be a contour which starts from a point ρ on the real axis, encircles the origin once

counter-clockwise and returns to ρ. Consider
∫
D

(−t)z−1e−t dt, when Re z > 0 and z is not

an integer. The many-valued function (−t)z−1 is to be made definite by the convention that
(−t)z−1 = e(z−1) log(−t) and log(−t) is purely real when t is on the negative part of the real axis,
so that −π ≤ arg(−t) ≤ π on D.

The integrand is not analytic inside D, but, by Corollary 5.2.1, the path of integration may
be deformed (without affecting the value of the integral) into the path of integration which
starts from ρ, proceeds along the real axis to δ, describes a circle of radius δ counter-clockwise
round the origin and returns to ρ along the real axis.

On the real axis in the first part of this new path we have arg(−t) = −π, so that (−t)z−1 =

e−iπ(z−1) tz−1(where log t is purely real); and on the last part of the new path (−t)z−1 =

eiπ(z−1) tz−1. On the circle we write −t = δeiθ ; then we get∫
D

(−t)z−1e−tdt =
∫ δ

ρ

e−iπ(z−1)tz−1e−t dt +
∫ π

−π

(δeiθ)z−1eδ(cos θ+i sin θ)δeiθi dθ

+

∫ ρ

δ

eiπ(z−1)ts−1e−t dt

= 2i sin(πz)
∫ ρ

δ

tz−1e−tdt + iδz
∫ π

−π

eizθ+δ(cos θ+i sin θ) dθ.

This is true for all positive values of δ ≤ ρ; now make δ→ 0; then δz → 0 and∫ π

−π

eizθ+δ(cos θ+i sin θ) dθ →
∫ π

−π

eizθ dθ

since the integrand tends to its limit uniformly.We consequently infer that∫
D

(−t)z−1e−tdt = −2i sin(πz)
∫ ρ

0
tz−1e−t dt.

This is true for all positive values of ρ; make ρ→∞, and let C be the limit of the contour
D. Then ∫

C

(−t)z−1e−tdt = −2i sin(πz)
∫ ∞

0
tz−1e−t dt .

Therefore

Γ(z) = −
1

2i sin πz

∫
C

(−t)z−1e−t dt. (12.5)
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Now, since the contour C does not pass through the point t = 0, there is no need longer

to stipulate that the real part of z is positive; and
∫
C

(−t)z−1e−t dt is a one-valued analytic

function of z for all values of z. Hence, by §5.5, the equation, just proved when the real part
of z is positive, persists for all values of z with the exception of the values 0,±1,±2, . . ..

Consequently, for all except integer values of z,

Γ(z) = −
1

2i sin πz

∫
C

(−t)z−1e−t dt.

This is Hankel’s formula; if we write 1− z for z and make use of §12.14, we get the further
result that

1
Γ(z)

=
i

2π

∫
C

(−t)−ze−t dt.

We shall write
∫ (0+)

∞

for
∫
C

, meaning thereby that the path of integration starts at ‘infinity’

on the real axis, encircles the origin in the positive direction and returns to the starting point.

Example 12.2.6 Shew that, if Re z > 0 and if a be any positive constant,
∫
(−t)−ze−t dt

tends to zero as ρ→ ∞, when the path of integration is either of the quadrants of circles of
radius ρ + a with centres at −a, the end points of one quadrant being ρ and −a + i(ρ + a),
and of the other ρ and −a − i(ρ + a).

Deduce that

lim
ρ→∞

∫ −a−iρ

−a+iρ

(−t)−ze−t dt = lim
ρ→∞

∫
C

(−t)−ze−t dt,

and hence, by writing t = −a − iu, shew that

1
Γ(z)

=
1

2π

∫ ∞

−∞

ea+iu(a + iu)−z du.

This formula was given by Laplace [410, p. 134], and it is substantially equivalent to Hankel’s
formula involving a contour integral.

Example 12.2.7 (Bourguet, L. [96, 97]) By taking a = 1, and putting t = −1 + i tan θ in
Example 12.2.6, shew that

1
Γ(z)

=
e
π

∫ 1
2 π

0
cos(tan θ − zθ) cosz−2 θ dθ.

Example 12.2.8 By taking as contour of integration a parabola whose focus is the origin,
shew that, if a > 0, then

Γ(z) =
2azea

sin πz

∫ ∞

0
e−at

2
(1 + t2)z−

1
2 cos {2at + (2z − 1) arctan t} dt .
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Example 12.2.9 (St John’s, 1902) Investigate the values of x for which the integral

2
π

∫ ∞

0
tx−1 sin t dt

converges; for such values of x express it in terms of Gamma-functions, and thence shew
that it is equal to

e−γx
∞∏
n=1

{(
1 −

x
2n

)
ex/(2n)

} / ∞∏
n=1

{(
1 +

x
2n − 1

)
e−x/(2n−1)

}
.

Example 12.2.10 (St John’s, 1902) Prove that
∫ ∞

0
(log t)m

sin t
t

dt converges when m > 0,

and, by means of Example 12.2.9, evaluate it when m = 1 and when m = 2.

12.3 Gauss’ expression for the logarithmic derivate of the Gamma-function as an
infinite integral

We shall now express the function
d
dz

log Γ(z) =
Γ′(z)
Γ(z)

as an infinite integral when Re z > 0;

the function in question is frequently written ψ(z). (The results appear in [236, p. 159].) We
first need a new formula for γ.

Take the formula in Example 11.6.2

γ =

∫ 1

0

1 − e−t

t
dt −

∫ ∞

0

e−t

t
dt = lim

δ→0

{∫ 1

δ

dt
t
−

∫ ∞

δ

e−t

t
dt

}
= lim

δ→0

{∫ 1

∆

dt
t
−

∫ ∞

δ

e−t

t
dt

}
,

where ∆ = 1 − eδ, since ∫ δ

∆

dt
t
= log

δ

1 − e−δ
→ 0 as δ→ 0.

Writing t = 1 − e−u in the first of these integrals and then replacing u by t we have

γ = lim
∞→0

{∫ ∞

δ

e−t

1 − e−t
dt −

∫ ∞

δ

e−t

t
dt

}
=

∫ ∞

0

{
1

1 − e−t
−

1
t

}
e−t dt .

This is the formula for γ which was required.
To get Gauss’ formula, take the equation (§12.16)

Γ′(z)
Γ(z)

= −γ −
1
z
+ lim

n→∞

n∑
m=1

(
1
m
−

1
z + m

)
,

and write
1

z + m
=

∫ ∞

0
e−t(z+m)dt; this is permissible when m = 0,1,2, . . . if Re z > 0. It
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follows that

Γ′(z)
Γ(z)

= −γ −

∫ ∞

0
e−zt dt + lim

n→∞

∫ ∞

0

n∑
m=1

(e−mt − e−(m+z)t) dt

= −γ + lim
n→∞

∫ ∞

0

e−t − e−zt − e−(n+1)t + e−(z+n+1)t
1 − e−t

dt

=

∫ ∞

0

(
e−t

t
−

e−zt

1 − e−t

)
dt − lim

n→∞

∫ ∞

0

1 − e−zt

1 − e−t
e−(n+1)t dt.

Now, when 0 < t ≤ 1,
����1 − e−zt

1 − e−t

���� is a bounded function of t whose limit as t → 0 is finite;

and when t ≥ 1, ����1 − e−zt

1 − e−t

���� < 1 + |e−zt |
1 − e−t

<
2

1 − e−t
.

Therefore we can find a number K independent of t such that, on the path of integration,����1 − e−zt

1 − e−t

���� < K;

and so ����∫ ∞

0

1 − e−zt

1 − e−t
e(n+1)t dt

���� < K
∫ ∞

0
e−(n+1)t dt =

K
n + 1

→ 0 as n→∞.

We have thus proved the formula

ψ(z) =
d
dz

log Γ(z) =
∫ ∞

0

����e−tt
−

e−zt

1 − e−t

���� dt,

which is Gauss’ expression of ψ(z) as an infinite integral. It may be remarked that this is the
first integral which we have encountered connected with the Gamma-function in which the
integrand is a single-valued function.

Writing t = log(1 + x) in Gauss’ result, we get, if ∆ = eδ − 1,

Γ′(z)
Γ(z)

= lim
δ→0

∫ ∞

δ

{
e−t

t
−

e−zt

1 − e−t

}
dt

= lim
δ→0

{∫ ∞

δ

e−t

t
dt −

∫ ∞

∆

dx
x(1 + x)z

}
= lim

δ→0

{∫ ∞

∆

e−t

t
dt −

∫ ∞

∆

dx
x(1 + x)z

}
,

since

0 <
∫ 4

δ

e−t

t
dt <

∫ ∆

δ

dt
t
= log

eδ − 1
δ
→ 0

as δ→ 0. Hence
Γ′(z)
Γ(z)

= lim
∆→0

∫ ∞

∆

{
e−x −

1
(1 + x)z

}
dx
x
,
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so that

Γ
′(z) = Γ(z)

∫ ∞

0

{
e−x −

1
(1 + x)z

}
dx
x
,

an equation due to Dirichlet [178, p. 275].

Example 12.3.1 (Gauss) Prove that, if Re z > 0,

ψ(z) =
∫ 1

0

{
1

− log t
−

tz−1

1 − t

}
dt.

Example 12.3.2 (Dirichlet). Shew that

γ =

∫ ∞

0

{
(1 + t)−1 − e−t

}
t−1 dt.

12.31 Binet’s first expression for log Γ(z) in terms of an infinite integral
Binet [73] has given two expressions for log Γ(z) which are of great importance as shewing
the way in which log Γ(z) behaves as |z | → ∞. To obtain the first of these expressions, we
observe that, when the real part of z is positive,

Γ′(z + 1)
Γ(z + 1)

=

∫ ∞

0

{
e−t

t
−

e−tz

et − 1

}
dt,

writing z + 1 for z in §12.3. Now, by Example 6.2.13, we have

log z =
∫ ∞

0

e−t − e−tz

t
dt,

and so, since
1
z
=

∫ ∞

0
e−tz dt,we have

d
dz

log Γ(z + 1) =
1
2z
+ log z −

∫ ∞

0

{
1
2
−

1
t
+

1
et − 1

}
e−tz dt .

The integrand in the last integral is continuous as t → 0; and since
1
2
−

1
t
+

1
et − 1

is
bounded as t → ∞, it follows without difficulty that the integral converges uniformly when
the real part of z is positive; we may consequently integrate from 1 to z under the sign of
integration (§4.44) and we get3

log Γ(z + 1) = (z + 1
2 ) log z − z + 1 +

∫ ∞

0

{
1
2
−

1
t
+

1
et − 1

}
e−tz − e−t

t
dt .

Since
{

1
2
−

1
t
+

1
et − 1

}
is continuous as t → 0 by §7.2, and since

log Γ(z + 1) = log z + log Γ(z),
3 log Γ(z + 1) means the sum of the principal values of the logarithms in the factors of the Weierstrassian
product.
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we have

log Γ(z) =
(
z − 1

2

)
log z − z + 1 +

∫ ∞

0

{
1
2
−

1
t
+

1
et − 1

}
e−tz

t
dt

−

∫ ∞

0

{
1
2
−

1
t
+

1
et − 1

}
e−t

t
dt .

To evaluate the second of these integrals, let4∫ ∞

0

(
1
2
−

1
t
+

1
et − 1

)
e−t

t
dt = I,

∫ ∞

0

(
1
2
−

1
t
+

1
et − 1

)
e−

1
2 t

t
dt = J;

so that, taking z = 1
2 in the last expression for log Γ(z), we get

1
2

log π =
1
2
+ J − I .

Also, since

I =
∫ ∞

0

(
1
2
−

2
t
+

1
et/2 − 1

)
e−t/2

t
dt,

we have

J − I =
∫ ∞

0

(
1
t
−

et/2

et − 1

)
e−t/2 dt

t

=

∫ ∞

0

(
e−t/2

t
−

1
et − 1

)
dt
t
.

And so

J =
∫ ∞

0

{
e−t/2

t
−

1
et − 1

+
1
2

e−t −
e−t

t
+

e−t

et − 1

}
dt
t

=

∫ ∞

0

{
e−t/2 − e−t

t
−

1
2

e−t
}

dt
t

=

∫ ∞

0

{
−

d
dt

(
e−t/2 − e−t

t

)
−

1
2 e−t/2 − e−t

t
−

e−t

2t

}
dt

=

[
−

e−t/2 − e−t

t

]∞
0
+

1
2

∫ ∞

0

e−t − e−t/2

t
dt

= 1
2 +

1
2 log 1

2 .

Consequently I = 1 − 1
2 log(2π).

We therefore have Binet’s result that, when Re z > 0,

log Γ(z) =
(
z − 1

2

)
log z − z + 1

2 log(2π) +
∫ ∞

0

(
1
2
−

1
t
+

1
et − 1

)
e−tz

t
dt .

If z = x + iy,we see that, if the upper bound of����(1
2
−

1
t
+

1
et − 1

)
1
t

����
4 This artifice is due to Pringsheim [538].
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for real values of t is K , then����log Γ(z) −
(
z −

1
2

)
log z + z −

1
2

log(2π)
���� < K

∫ ∞

0
e−tz dt

= K x−1,

so that, when x is large, the terms
(
z − 1

2

)
log z − z + 1

2 log(2π) furnish an approximate
expression for log Γ(z).

Example 12.3.3 (Malmstén) Prove that, when Re(z) > 0,

log Γ(z) =
∫ ∞

0

{
e−zt − e−t

1 − e−t
+ (z − 1)e−t

}
dt
t
.

Example 12.3.4 (Féaux) Prove that, when Re(z) > 0,

log Γ(z) =
∫ ∞

0

{
(z − 1)e−t +

(1 + t)−z − (1 + t)−1

log(1 + t)

}
dt
t
.

Example 12.3.5 (Kummer) From the formula of §12.14 shew that, if 0 < x < 1,

2 log Γ(x) − log π + log sin πx =
∫ ∞

0

{
sinh( 12 − x)t

sinh 1
2 t

− (1 − 2x)e−t
}

dt
t
.

Example 12.3.6 (Kummer [390]) By expanding sinh( 12 − x)t and 1 − 2x in Fourier sine
series, shew from Example 12.3.5 that, if 0 < x < 1,

log Γ(x) =
1
2

log π −
1
2

log sin πx + 2
∞∑
n=1

an sin 2nπx,

where

an =

∫ ∞

0

{
2nπ

t2 + 4n2π2 −
e−t

2nπ

}
dt
t
.

Deduce from Example 12.3.2, that

an =
1

2nπ
(γ + log 2π + log n).

12.32 Binet’s second expression for log Γ(z) in terms of an infinite integral
Consider the application of Example 7.7 to the equation (12.4),

d2

dz2 log Γ(z) =
∞∑
n=0

1
(z + n)2

.

The conditions there stated as sufficient for the transformation of a series into integrals are
obviously satisfied by the function φ(ζ) = 1/(z + ζ)2, if Re z > 0; and we have

d2

dz2 log Γ(z) =
1

2z2 +

∫ ∞

0

dξ
(z + ξ)2

− 2
∫ ∞

0

q(t, z)
e2π − 1

dt + 2 lim
n→∞

∫ ∞

0

q(t, z + n)
e2πt − 1

dt,
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where 2iq(t) =
1

(z + it)2
−

1
(z − it)2

. Since |q(t, z + n)| is easily seen to be less than K1t/n,

where K1 is independent of t and n, it follows that the limit of the last integral is zero. Hence

d2

dz2 log Γ(z) =
1

2z2 +
1
z
+

∫ ∞

0

4tz
(z2 + t2)2

dt
e2π t − 1

. (12.6)

Since
�� 2z
z2+t2

�� does not exceed K (where K depends only on δ) when the real part of z
exceeds δ, the integral converges uniformly and we may integrate under the integral sign
§4.44 from 1 to z. We get

d
dz

log Γ(z) =
1
2z
+ log z + C − 2

∫ ∞

0

t dt
(z2 + t2)(e2πt − 1)

,

where C is a constant. Integrating again,

log Γ(z) =
(
z −

1
2

)
log z + (C − 1)z + C ′ + 2

∫ ∞

0

arctan(t/z)
e2πt − 1

dt,

where C ′ is a constant.
Now, if z is real, 0 ≤ arctan t/z ≤ t/z, and so����log Γ(z) −

(
z −

1
2

)
log z − (C − 1) z − C ′

���� < 2
z

∫ ∞

0

t
e2πt − 1

dt .

But it has been shewn in §12.31 that����log Γ(z) −
(
z −

1
2

)
log z + z −

1
2

log(2π)
����→ 0,

as z →∞ through real values. Comparing these results we see that C = 0,

C ′ =
1
2

log(2π).

Hence for all values of z whose real part is positive,

log Γ(z) =
(
z −

1
2

)
log z − z +

1
2

log(2π) + 2
∫ ∞

0

arctan(t/z)
e2πt − 1

dt,

where arctan u is defined by the equation

arctan u =
∫ u

0

dt
1 + t2 ,

in which the path of integration is a straight line. This is Binet’s second expression for
log Γ(z).

Example 12.3.7 Justify differentiating with regard to z under the sign of integration, so as
to get the equation

Γ′(z)
Γ(z)

= log z −
1
2z
− 2

∫ ∞

0

tdt
(t2 + z2) (e2πt − 1)

.
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12.33 The asymptotic expansion of the logarithms of the Gamma-function
We can now obtain an expansion which represents the function log Γ(z) asymptotically (§8.2)
for large values of |z |, and which is used in the calculation of the Gamma-function.

Let us assume that, if z = x + iy, then x ≥ δ > 0; and we have, by Binet’s second formula,

log Γ (z) =
(
z − 1

2

)
log z − z + 1

2 log (2π) + φ(z),

where

φ(z) = 2
∫ ∞

0

arctan(t/z)
e2πt − 1

dt . (12.7)

Now

arctan(t/z) =
t
z
−

1
3

t3

z3 +
1
5

t5

z5 − · · · +
(−1)n−1

2n − 1
t2n−1

z2n−1 +
(−1)n

zn−1

∫ t

0

u2ndu
u2 + z2 .

Substituting and remembering (§7.2) that∫ ∞

0

t2n−1 dt
e2πt − 1

=
Bn

4n
,

where B1,B2, . . . are Bernoulli’s numbers, we have

φ(z) =
n∑

r=1

(−1)r−1Br

2r(2r − 1)z2r−1 +
2(−1)n

z2n−1

∫ ∞

0

{∫ t

0

u2n du
u2 + z2

}
dt

e2πt − 1
.

Let the upper bound5 of
���� z2

u2 + z2

���� for positive values of u be Kz . Then����∫ ∞

0

{∫ t

0

u2n du
u2 + z2

}
dt

e2πt − 1

���� ≤ Kz |z |−2
∫ ∞

0

{∫ t

0
u2ndu

}
dt

e2πt − 1

≤
Kz Bn+1

4 (n + 1) (2n + 1) |z |2
.

Hence ����2(−1)n

z2n−1

∫ ∞

0

{∫ t

0

u2n du
u2 + z2

}
dt

e2πt−1

���� < KzBn+1

2(n + 1)(2n + 1)|z |2n+1 ,

and it is obvious that this tends to zero uniformly as |z | → ∞ if | arg z | ≤ 1
2 π − ∆, where

1
4 π > ∆ > 0, so that Kz ≤ cosec 2∆.
Also it is clear that if | arg z | ≤ 1

4π (so that Kz = 1) the error in taking the first n terms of
the series

∞∑
r=1

(−1)r−1Br

2r (2r − 1)
1

z2r−1

as an approximation to φ(z) is numerically less than the (n + 1)th term.

5 K−2
s is the lower bound of

{u2 + (x2 − y2)}2 + 4x2y2

(x2 + y2)2
and is consequently equal to

4x2y2

(x2 + y2)2
or 1 as

x2 < y2 or x2 ≥ y2.
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Since, if | arg z | ≤ 1
2 π − ∆,�����z2n−1

{
φ(z) −

n∑
r=1

(−1)r−1Br

2r (2r − 1)

}����� < Bn+1

2(n + 1)(2n + 1) sin2(2∆)
|z |−2

→ 0,

as z →∞, it is clear that

B1

1 · 2 · z
−

B2

3 · 4 · z3 +
B3

5 · 6 · z5 − · · ·

is the asymptotic expansion of φ(z) (§8.2). (The development is asymptotic; for if it converged
when |z | ≥ ρ, by §2.6 we could find K , such that Bn < (2n − 1)2nKρ2n; and then the series
∞∑
n=1

(−1)n−1Bnt2n

(2n)!
would define an integral function; this is contrary to §7.2.)

We see therefore that the series(
z − 1

2

)
log z − z + 1

2 log(2π) +
∞∑
r=1

(−1)r−1Br

2r (2r − 1)z2r−1

is the asymptotic expansion of log Γ(z) when | arg z | ≤ π/2 − ∆.
This is generally known as Stirling’s series. In §13.6 it will be established over the extended

range | arg z | ≤ π − ∆. In particular when z is positive (= x),we have

0 < 2
∫ ∞

0

{∫ t

0

u2n du
u2 + x2

}
dt

e2πt − 1
<

Bn+1

2(n + 1)(2n + 1)x2 .

Hence, when x > 0, the value of φ(x) always lies between the sum of n terms and the sum of
n + 1 terms of the series for all values of n.

In particular 0 < φ(x) < B1
2x , so that φ(x) =

θ
12x where 0 < θ < 1. Hence

Γ(x) = xx−1/2e−x(2π)
1
2 eθ/(12x).

Also, taking the exponential of Stirling’s series, we get

Γ(x) = e−x xx−1/2(2π)1/2
{
1 +

1
12x
+

1
288x2 −

139
51840x3 −

571
2488320x4 +O

(
1
x5

)}
.

This is an asymptotic formula for the Gamma-function. In conjunction with the formula
Γ(x + 1) = xΓ (x), it is very useful for the purpose of computing the numerical value of the
function for real values of x.

Tables of the function log10 Γ(x), correct to 12 decimal places, for values of x between 1
and 2, were constructed in this way by Legendre, and published in [421, vol. 2, p. 85], and
his Traité des fonctions elliptiques [422, p. 489].

It may be observed that Γ(x) has one minimum for positive values of x, when x =
1.4616321 · · · , the value of log10 Γ(x) then being 1̄.9472391 · · · .

Example 12.3.8 (Binet) Obtain the expansion, convergent when Re(z) > 0,

loge Γ(z) =
(
z − 1

2

)
loge z − z + 1

2 loge(2π) + J(z),
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where

J(z) =
1
2

{
c1

z + 1
+

c2

2(z + 1)(z + 2)
+

c3

3(z + 1)(z + 2)(z + 3)
+ · · ·

}
,

in which

c1 =
1
6
, c2 =

1
3
, c3 =

59
90
, c4 =

227
60

,

and generally

cn =
∫ 1

0
(x + 1)(x + 2) · · · (x + n − 1)(2x − 1)x dx.

12.4 The Eulerian integral of the first kind
The name Eulerian Integral of the First Kind was given by Legendre to the integral

B(p,q) =
∫ 1

0
xp−1 (1 − x)q−1 dx,

which was first studied by Euler [200] and Legendre [421, vol. 1, p. 221]. In this integral, the
real parts of p and q are supposed to be positive; and xp−1, (1− x)q−1 are to be understood to
mean those values of e(p−1) log x and e(q−1) log(1−x) which correspond to the real determinations
of the logarithms.

With these stipulations, it is easily seen that B(p,q) exists, as a (possibly improper) integral
(see formula (2) in Example 4.5.1).

We have, on writing (1 − x) for x,

B(p,q) = B(q, p).

Also, integrating by parts,∫ 1

0
xp−1(1 − x)q dx =

[
xp(1 − x)q

p

]1

0
+

q
p

∫ 1

0
xp(1 − x)q−1 dx,

so that B(p,q + 1) =
q
p

B(p + 1,q).

Example 12.4.1 Shew that

B(p,q) = B(p + 1,q) + B(p,q + 1).

Example 12.4.2 Deduce from Example 12.4.1 that

B(p,q + 1) =
q

p + q
B(p,q).

Example 12.4.3 Prove that if n is a positive integer,

B(p,n + 1) =
1 · 2 · · · n

p(p + 1) · · · (p + n)
.

Example 12.4.4 Prove that

B(x, y) =
∫ ∞

0

ax−1

(1 + a)x+y
da.
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Example 12.4.5 Prove that

Γ(z) = lim
n→∞

nzB(z,n).

12.41 Expression of the Eulerian integral of the first kind in terms of the
Gamma-function

We shall now establish the important theorem that

B(m,n) =
Γ(m)Γ(n)
Γ(m + n)

.

First let the real parts of m and n exceed 1
2 ; then

Γ(m) Γ(n) =
∫ ∞

0
e−x xm−1 dx ×

∫ ∞

0
e−yyn−1 dy.

On writing x2 for x and y2 for y, this gives

Γ(m) Γ(n) = 4 lim
R→∞

∫ R

0
e−x

2
x2m−1 dx ×

∫ R

0
e−y

2
y2n−1 dy

= 4 lim
R→∞

∫ R

0

∫ R

0
e−(x

2+y2)x2m−1y2n−1 dx dy.

Now, for the values of m and n under consideration, the integrand is continuous over the
range of integration, and so the integral may be considered as a double integral taken over a
square SR. Calling the integrand f (x, y), and calling QR the quadrant with centre at the origin
and radius R,we have, if TR be the part of SR outside QR,����∫ ∫

SR

f (x, y) dx dy −
∫ ∫

QR

f (x, y) dx dy
���� = ����∫ ∫

TR

f (x, y) dx dy
����

≤

∫ ∫
TR

| f (x, y)| dx dy

≤

∫ ∫
SR

| f (x, y) | dx dy −
∫ ∫

SR/2

| f (x, y)| dx dy

→ 0 as R→∞,

since
∫ ∫

SR
| f (x, y)| dx dy converges to a limit, namely

2
∫ ∞

0
e−x

2
x2m−1 dx × 2

∫ ∞

0
e−yy2n−1 dy.

Therefore

lim
R→∞

∫ ∫
SR

f (x, y) dx dy = lim
R→∞

∫ ∫
QR

f (x, y) dx dy.
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Changing to polar6 coordinates (x = r cos θ, y = r sin θ),we have∫ ∫
QR

f (x, y) dx dy =
∫ R

0

∫ π/2

0
e−r

2
(r cos θ)2m−1(r sin θ)2n−1rdr dθ.

Hence

Γ(m)Γ(n) = 4
∫ ∞

0
e−r

2
r2(m+n)−1dr

∫ π/2

0
cos2m−1 θ sin2n−1 θ dθ

= 2Γ(m + n)
∫ π/2

0
cos2m−1 θ sin2n−1 θ dθ.

Writing cos2 θ = u we at once get

Γ(m)Γ(n) = Γ(m + n) · B(m,n).

This has only been provided when the real parts of m and n exceed 1/2; but it can obviously
be deduced when these are less than 1/2 by Example 12.4.2. This result, discovered by Euler,
connects the Eulerian Integral of the First Kind with the Gamma-function.

Example 12.4.6 Shew that∫ 1

−1
(1 + x)p−1(1 − x)q−1 dx = 2p+q−1 Γ(p)Γ(q)

Γ(p + q)
.

Example 12.4.7 (Jesus, 1901) Shew that, if

f (x, y) =
1
x
− y

1
x + 1

+
y(y − 1)

2!
1

x + 2
−

y(y − 1)(y − 2)
3!

1
x + 3

+ · · · ,

then
f (x, y) = f (y + 1, x − 1),

where x and y have such values that the series are convergent.

Example 12.4.8 (Math. Trip. 1894) Prove that∫ 1

0

∫ 1

0
f (xy)(1 − x)µ−1yµ(1 − y)ν−1 dx dy =

Γ(µ)Γ(ν)

Γ(µ + ν)

∫ 1

0
f (z)(1 − z)µ+ν−1 dz.

12.42 Evaluation of trigonometrical integrals in terms of the Gamma-function

We can now evaluate the integral
∫ π/2

0
cosm−1 x sinn−1 x dx,where m and n are not restricted

to be integers, but have their real parts positive.
For, writing cos2 x = t,we have, as in §12.41,∫ π/2

0
cosm−1 x sinn−1 x dx =

Γ(m2 )Γ(
n
2 )

2Γ(m+n2 )
.

6 It is easily provided by the methods of §4.11 that the areas Am,µ of §4.3 need not be rectangles provided only
that their greatest diameters can be made arbitrarily small by taking the number of areas sufficiency large; so
the areas may be taken to be the regions bounded by radii vectors and circular arcs.
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The well-known elementary formulae for the cases in which m and n are integers can be
at once derived from this result.

Example 12.4.9 (Trinity, 1898) Prove that, when |k | < 1,∫ π/2

0

cosm θ sinn θ dθ
(1 − k sin2 θ)1/2

=
Γ(m+1

2 )Γ(
n+1

2 )

Γ(m+n+1
2 )
√
π

∫ π/2

0

cosm+n θ dθ
(1 − k sin2 θ)(n+1)/2

.

12.43 Pochhammer’s extension of the Eulerian integral of the first kind
This appears in [527]. The use of the double circuit integrals of this section seems to be due
to Jordan [363].

We have seen in §12.22 that it is possible to replace the second Eulerian integral for Γ(z)
by a contour integral which converges for all values of z. A similar process has been carried
out by Pochhammer for Eulerian integrals of the first kind.

Let P be any point on the real axis between 0 and 1; consider the integral

e−πi(α+β)
∫ (1+,0+,1−,0−)

p

tα−1(1 − t)β−1 dt = ε(α, β).

The notation employed is that introduced at the end of §12.22 and means that the path of
integration starts from P, encircles the point 1 in the positive (counter-clockwise) direction
and returns to P, then encircles the origin in the positive direction and returns to P, and so
on.

At the starting-point the arguments of t and 1 − t are both zero; after the circuit (1+) they
are 0 and 2π; after the circuit (0+) they are 2π and 2π; after the circuit (1−) they are 2π and
0 and after the circuit (0−) they are both zero, so that the final value of the integrand is the
same as the initial value.

It is easily seen that, since the path of integration may be deformed in any way so long as
it does not pass over the branch points 0, 1 of the integrand, the path may be taken to be that
shewn in the figure, wherein the four parallel lines are supposed to coincide with the real
axis.

If the real parts of α and β are positive the integrals round the circles tend to zero as the
radii of the circles tend to zero (the reader ought to have no difficulty in proving this); the
integrands on the paths marked a, b, c, d are

ta−1(1 − t)β−1, ta−1(1 − t)β−1e2πi(β−1),

ta−1e2πi(α−1)(1 − t)β−1e2πi(β−1), ta−1e2πi(α−1)(1 − t)β−1

respectively, the arguments of t and 1 − t now being zero in each case.
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Hence we may write ε(α, β) as the sum of four (possibly improper) integrals, thus:

ε(α, β) = eπi(α+β)


1∫
0

tα−1(1 − t)β−1 dt +
∫ 0

1
tα−1(1 − t)β−1e2πiβ dt

+

∫ 1

0
tα−1(1 − t)β−1e2πi(α+β) dt +

∫ 0

1
tα−1(1 − t)β−1e2πia dt

]
.

Hence

ε(α, β) = eπi(α+β)(1 − e2πiα)(1 − e2πiβ)

∫ 1

0
tα−1(1 − t)β−1 dt

= −4 sin(απ) sin(βπ)
Γ(α)Γ(β)

Γ(α + β)

=
−4π2

Γ(1 − α)Γ(1 − β)Γ(α + β)
.

Now ε(α, β) and this last expression are analytic functions of α and of β for all values of
α and β. So, by the theory of analytic continuation, this equality, proved when the real parts
of α and β are positive, holds for all values of α and β. Hence for all values of α and β we
have proved that

ε(α, β) =
−4π2

Γ(1 − α)Γ(1 − β)Γ(α + β)
.

12.5 Dirichlet’s integral
This material appears in [178, pp. 375, 391]. We shall now shew how the repeated integral

I =
∫ ∫

· · ·

∫
f (t1 + t2 + · · · + tn)t

α1−1
1 tα2−1

2 · · · tαn−1
n dt1 dt2 · · · dtn

may be reduced to a simple integral, where f is continuous, αr > 0 (r = 1,2, . . . ,n) and the
integration is extended over all positive values of the variables such that t1 + t2 + · · ·+ tn ≤ 1.

To simplify ∫ 1−λ

0

∫ 1−λ−T

0
f (t + T + λ)tα−1Tβ−1 dt dT

(where we have written t,T, α, β for t1, t2, α1, α2 and λ for t3 + t4 + · · ·+ tn), put t = T(1− v)/v;
the integral becomes (if λ , 0)∫ 1−λ

0

∫ 1

T/(1−λ)
f (λ + T/v)(1 − v)α−1v−α−1Tα+β−1 dv dT .

Changing the order of integration (§4.51), the integral becomes∫ 1

0

∫ (1−λ)v

0
f (λ + T/v)(1 − v)α−1v−α−1Tα+β−1 dT dv.
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Putting T = vτ2, the integral becomes∫ 1

0

∫ 1−λ

0
f (λ + τ2)(1 − v)α−1vβ−1τ

α+β−1
2 dτ2 dv =

Γ(α)Γ(β)

Γ(α + β)

∫ 1−λ

0
f (λ + τ2)τ

α+β−1
2 dτ2.

Hence

I =
Γ(α1)Γ(α2)

Γ(α1 + α2)

∫ ∫
· · ·

∫
f (τ2 + t3 + · · · + tn)τ

α1+α2−1
2 ta3−1

3 · · · tan−1
n dτ2 dt3 · · · dtn,

the integration being extended over all positive values of the variables such that τ2+ t3+ · · ·+

tn ≤ 1.
Continually reducing in this way we get

I =
Γ(α1)Γ(α2) · · · Γ(αn)

Γ(α1 + α2 + · · · + αn)

∫ 1

0
f (τ)τ

∑
α−1 dτ,

which is Dirichlet’s result.

Example 12.5.1 (Dirichlet) Reduce∫ ∫ ∫
f
[( x

a

)α
+

( y
b

)β
+

( z
c

)γ]
xp−1yq−1zr−1 dx dy dz

to a simple integral; the range of integration being extended over all positive values of the
variables such that ( x

a

)α
+

( y
b

)β
+

( z
c

)γ
≤ 1,

it being assumed that a, b, c, α, β, γ, p,q,r are positive.

Example 12.5.2 (Pembroke, 1907) Evaluate
∫ ∫

xpyq dx dy, where m and n are positive
and x ≥ 0, y ≥ 0, xm + yn ≤ 1.

Example 12.5.3 Shew that the moment of inertia of a homogeneous ellipsoid of unit
density, taken about the axis of z, is

4π
15
(a2 + b2)abc,

where a, b, c are the semi-axes.

Example 12.5.4 Shew that the area of the hypocycloid x2/3 + y2/3 = `2/3 is 3π`2/8.

12.6 Miscellaneous examples
Example 12.1 (Trinity, 1897) Shew that

(1 − z)
(
1 +

z
2

) (
1 −

z
3

) (
1 +

z
4

)
· · · =

√
π

Γ(1 + 1
2 z)Γ( 12 −

1
2 z)

.

Example 12.2 (Trinity, 1885) Shew that

lim
n→∞

1
1 + x

1
1 + 1

2 x
1

1 + 1
3 x
· · ·

1
1 + 1

n
x

nx = Γ(x + 1).
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Example 12.3 (Jesus, 1903) Prove that

Γ′(1)
Γ(1)

−
Γ′( 12 )

Γ( 12 )
= 2 log 2.

Example 12.4 (Trinity, 1891) Shew that[
Γ( 14 )

]4

16π2 =
32

32 − 1
·

52 − 1
52 ·

72

72 − 1
·

92 − 1
92 ·

112

112 − 1
· · ·

Example 12.5 (Trinity, 1905) Shew that
∞∏
n=0

[
(n − α) (n + β + γ)
(n + β) (n + γ)

(
1 +

α

n + 1

)]
= −

1
π

sin(πα)B(β, γ).

Example 12.6 (Peterhouse, 1906) Shew that
∞∏
k=1

Γ

(
k
3

)
=

640
36

(
π
√

3

)3

.

Example 12.7 (Trinity, 1904) Shew that, if z = iζ where ζ is real, then

|Γ(z)| =
√

π

ζ sinh(πζ)
.

Example 12.8 (Math. Trip. 1897) When x is positive, shew that

Γ(x)Γ( 12 )

Γ(x + 1
2 )
=

∞∑
n=0

(2n)!
22nn!2

1
x + n

.

(This and some other examples are most easily proved by the result of §14.11.)

Example 12.9 If a is positive, shew that

Γ(z)Γ(a + 1)
Γ(z + a)

=

∞∑
n=0

(−1)n(a)(a − 1)(a − 2) · · · (a − n)
n!

1
z + n

.

Example 12.10 If x > 0 and

P(x) =
∫ 1

0
e−t tx−1 dt,

shew that

P(x) =
1
x
−

1
1!

1
x + 1

+
1
2!

1
x + 2

−
1
3!

1
x + 3

+ · · · ,

and
P(x + 1) = xP(x) − 1/e.

Example 12.11 (Euler) Shew that if λ > 0, x > 0, −π/2 < a < π/2, then∫ ∞

0
tx−1e−λt cos a cos(λt sin a) dt = λ−x Γ(x) cos ax,∫ ∞

0
tx−1e−λt cos a sin(λt sin a) dt = λ−x Γ(x) sin ax.
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Example 12.12 (Euler) Prove that, if b > 0, then, when 0 < z < 2,∫ ∞

0

sin bx
xz

dx =
π

2
bz−1

Γ(z)
cosec

( πz
2

)
,

and, when 0 < z < 1, ∫ ∞

0

cos bx
xz

dx =
π

2
bz−1

Γ(z)
sec

( πz
2

)
.

Example 12.13 (Peterhouse, 1895) If 0 < n < 1, prove that∫ ∞

0
(1 + x)n−1 cos x dx = Γ(n)

{
cos

(nπ
2
− 1

)
−

1
Γ(n + 1)

+
1

Γ(n + 3)
− · · ·

}
.

Example 12.14 (Bourguet [97]) By taking as contour of integration a parabola with its
vertex at the origin, derive from the formula

Γ(a) = −
1

2i sin aπ

∫ (0+)

∞

(−z)a−1e−z dz

the result

Γ(a) =
1

2 sin aπ

∫ ∞

0
e−x

2
xa−1(1 + x2)a/2 [3 sin {x + a arccot(−x)}

+ sin {x + (a − 2) arccot(−x)}] dx,

the arccot denoting an obtuse angle.

Example 12.15 (Math. Trip. 1907) Shew that, if Re an > 0 and
∞∑
n=1

1/a2
n is convergent,

then
∞∏
n=1

[
Γ(an)

Γ(z + an)
exp

{
m∑
n=1

2s

s!
ψ(s)(an)

}]
is convergent when m > 2, where ψ(s)(z) =

ds

dzs
log Γ(z).

Example 12.16 (Legendre) Prove that

d log Γ(z)
dz

=

∫ ∞

0

e−a − e−za

1 − e−a
da − γ

=

∫ ∞

0

[
(1 + a)−1 − (1 + a)−s

] da
a
− γ

=

∫ 1

0

xs−1 − 1
x − 1

dx − γ.

Example 12.17 (Binet) Prove that, when Re(z) > 0,

log Γ(z) =
∫ 1

0

{
xs − x
x − 1

− x(z − 1)
}

dx
x log x

.
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Example 12.18 Prove that, for all values of z except negative real values,

log Γ(z) =
(
z −

1
2

)
log z − z +

1
2

log(2π) +
1
2

{
1

2 · 3

∞∑
r=1

1
(z + r)2

+
2

3 · 4

∞∑
r=1

1
(z + r)3

+
3

4 · 5

∞∑
r=1

1
(z + r)4

+ · · ·

}
.

Example 12.19 Prove that, when Re(z) > 0,

d
dz

log Γ(z) = log z −
∫ 1

0

xs−1

(1 − x) log x
[1 − x + log x] dx.

Example 12.20 Prove that, when Re(z) > 0,

d2

dz2 log Γ(z) =
∫ ∞

0

xe−xs dx
1 − e−x

.

Example 12.21 (Raabe, [546]) If
∫ s+1

s

log Γ(t) dt = u, shew that

du
dz
= log z,

and deduce from §12.33 that, for all values of z except negative real values,

u = z log z − z + 1
2 log(2π).

Example 12.22 (Bourguet) Prove that, for all values of z except negative real values,

log Γ(z) =
(
z − 1

2

)
log z − z + 1

2 log(2π) +
∞∑
n=1

∫ ∞

0

dx
x + z

sin 2nπx
nπ

.

This result is attributed to Bourguet by Stieltjes [606].

Example 12.23 (Binet) Prove that

B(p, p)B
(
p + 1

2, p +
1
2

)
=

π

24p−1p
.

Example 12.24 Prove that, when −t < r < t,

B(t + r, t − r) =
1

4t−1

∫ ∞

0

cosh(2ru) du

cosh2t u
.

Example 12.25 Prove that, when q > 1,

B(p,q) + B(p + 1,q) + B(p + 2,q) + · · · = B(p,q − 1).

Example 12.26 Prove that, when p − a > 0,

B(p − a,q)
B(p,q)

= 1 +
aq

p + q
+

a(a + 1)q(q + 1)
1 · 2 · (p + q)(p + q + 1)

+ · · · .

Example 12.27 (Euler) Prove that

B(p,q)B(p + q,r) = B(q,r)B(q + r, p).
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Example 12.28 (Trinity, 1908) Shew that∫ 1

0
xa−1(1 − x)b−1 dx

(x + p)a+b
=
Γ(a)Γ(b)
Γ(a + b)

1
(1 + p)apb

,

if a > 0, b > 0, p > 0.

Example 12.29 (St John’s, 1904) Shew that, if m > 0, n > 0, then∫ 1

−1

(1 + x)2m−1(1 − x)2n−1

(1 + x2)m+n
dx = 2m+n−2 Γ(m)Γ(n)

Γ(m + n)
;

and deduce that, when a is real and not an integer multiple of π/2,∫ π/2

−π/2

(
cos θ + sin θ
cos θ − sin θ

)cos 2a

dθ =
π

2 sin(π cos2 a)
.

Example 12.30 (Kummer) Shew that, if α > 0, β > 0,∫ 1

0

tα−1

1 + t
dt =

1
2
ψ

(
α + 1

2

)
−

1
2
ψ

(α
2

)
,

and ∫ 1

0

tα−1 − tβ−1

(1 + t) log t
dt = log

Γ(α+1
2 )Γ(

β

2 )

Γ(α2 ) Γ(
β+1

2 )
.

Example 12.31 Shew that, if a > 0, a + b > 0,∫ 1

0

xa−1(1 − xb)

1 − x
dx = lim

δ→0

{
Γ(a) Γ(δ)
Γ(a + δ)

−
Γ(a + b) Γ(δ)
Γ(a + b + δ)

}
= ψ(a + b) − ψ(a).

Deduce that, if in addition a + c > 0, a + b + c > 0,∫ 1

0

xa−1(1 − xb)(1 − xc)

(1 − x)(− log x)
dx = log

Γ(a) Γ(a + b + c)
Γ(a + b) Γ(a + c)

.

Example 12.32 Shew that, if a, b, c be such that the integral converges,∫ 1

0

(1 − xa) (1 − xb) (1 − xc)

(1 − x) (− log x)
dx

= log
Γ(b + c + 1) Γ(c + a + 1) Γ(a + b + 1)

Γ(a + 1) Γ(b + 1) Γ(c + 1) Γ(a + b + c + 1)
.

Example 12.33 (St John’s, 1896) By the substitution cos θ = 1 − 2 tan 1
2φ, shew that∫ π

0

dθ
(3 − cos θ)1/2

=

[
Γ( 14 )

]2

4
√
π

.

Example 12.34 (Clare, 1898) Evaluate in terms of Gamma-functions the integral
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0

sinp x
x

dx, when p is a fraction greater than unity whose numerator and denomina-

tor are both odd integers. Shew that the integral is

1
2

∫ π

0
sinp x

[
1
x
+

∞∑
n=1

(−1)n
(

1
x + nπ

+
1

x − nπ

)]
dx.

Example 12.35 Shew that∫ π/2

0

(
1 + 1

2 sin2 x
)n−1/2

dx =
n!

2n+2√π

n∑
r=0

23r

(2r)!(n − r)!

[
Γ

(
2r + 1

4

)]2

.

Example 12.36 (Euler) Prove that

log B(p,q) = log
(

p + q
pq

)
+

∫ 1

0

(1 − vp)(1 − vq)
(1 − v) log v

dv.

Example 12.37 (Binet) Prove that, if p > 0, p + s > 0, then

B(p, p + s) =
B(p, p)

2s

{
1 +

s(s − 1)
2(2p + 1)

+
s(s − 1)(s − 2)(s − 3)
2 · 4(2p + 1)(2p + 3)

+ · · ·

}
.

Example 12.38 The curve rm = 2m−1am cos mθ is composed of m equal closed loops. Shew
that the length of the arc of half of one of the loops is

a
m

∫ π/2

0

( 1
2 cos x

)1/m−1 dx,

and hence that the total perimeter of the curve is

a
Γ

( 1
2m

)2

Γ
( 1
m

) .
Example 12.39 (Cauchy) Draw the straight line joining the points ±i, and the semicircle
of |z | = 1 which lies on the right of this line. Let C be the contour formed by indenting this
figure at −i, 0, i. By considering∫

C

zp−q−1(z + z−1)p+q−2 dz,

shew that, if p + q > 1,q < 1,∫ π/2

0
cosp+q−2 θ cos(p − q)θ dθ =

π

(p + q − 1)2p+q−1B(p,q)
.

Prove that the result is true for all values of p and q such that p + q > 1.

Example 12.40 If s is positive (not necessarily integral), and − 1
2π ≤ x ≤ 1

2π, shew that

(cos x)s =
1

2s−1
Γ(s + 1){
Γ( 12 s + 1)

}2

{
1
2
+

s
s + 2

cos 2x +
s(s − 2)

(s + 2)(s + 4)
cos 4x + · · ·

}
,

and draw graphs of the series and of the function coss x.
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Example 12.41 (Cauchy) Obtain the expansion

(cos x)s =

a
2s−1 Γ(s + 1)

[
cos ax

Γ( 12 s + 1
2 a + 1)Γ( 12 s − 1

2 a + 1)
+

cos 3ax
Γ( 12 s + 3

2 a + 1)Γ( 12 s − 3
2 a + 1)

+ · · ·

]
,

and find the values of x for which it is applicable.

Example 12.42 (Binet) Prove that, if p > 1
2 ,

Γ(2p) =
22p−1

√
π
{Γ(p)}2

[
2p2

2p + 1

{
1 +

12

2(2p + 3)
+

12 · 32

2 · 4 · (2p + 3)(2p + 5)
+ · · ·

}]1/2

.

Example 12.43 Shew that, if x < 0, x + z > 0, then

Γ(−x)
Γ(z)

{
−x
z
+

1
2
(−x)(1 − x)

z(1 + z)
+

1
3
(−x)(1 − x)(2 − x)

z(1 + z)(2 + z)
+ · · ·

}
=

1
Γ(x + z)

∫ 1

0
t−x−1 {− log(1 − t)} (1 − t)x+z−1 dt,

and deduce that, when x + z > 0,

d
dz

log
Γ(z + x)
Γ(z)

=
x
z
−

1
2

x(x − 1)
z(z + 1)

+
1
3

x(x − 1)(x − 2)
z(z + 1)(z + 2)

− · · · .

Example 12.44 (Binet [73]) Using the result of Example 12.43 above, prove that

log Γ(z + a) = log Γ(z) + a log z −
a − a2

2z

−

∞∑
n=1

a
∫ 1

0 t(l − t)(2 − t) · · · (n − t) dt −
∫ a

0 t(l − t)(2 − t) · · · (n − t) dt

(n + 1)z(z + 1)(z + 2) · · · (z + n)
,

investigating the region of convergence of the series.

Example 12.45 Prove that, if p > 0, q > 0, then

B(p,q) =
pp− 1

2 qq− 1
2

(p + q)p+q−
1
2
(2π)

1
2 eM(p,q),

where

M(p,q) = 2ρ
∫ ∞

0

1
e2πtρ − 1

arctan
{
(t3 + t)ρ3

pq(p + q)

}
dt,

and ρ2 = p2 + q2 + pq.

Example 12.46 If U = 2x/2/Γ(1 − 1
2 x), V = 2x/2/Γ( 12 −

1
2 x), and if the function F(x) be

defined by the equation

F(x) =
√
π

(
V

dU
dx
−U

dV
dx

)
,

shew:
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(a) that F(x) satisfies the equation

F(x + 1) = xF(x) +
1

Γ(1 − x)
;

(b) that, for all positive integral values of x,

F(x) = Γ(x);

(c) that F(x) is analytic for all finite values of x;
(d) that

F(x) =
1

Γ(1 − x)
d
dx

log
Γ

( 1−x
2

)
Γ

(
1 − x

2

) .
Example 12.47 Expand 1/Γ(a) as a series of ascending powers of a.

Note Various evaluations of the coefficients in this expansion have been given by Bourguet
[94]; Schlömilch [585, 586].

Example 12.48 (Alexeiwksky) Prove that the G-function, defined by the equation

G(z + 1) = (2π)
1
2 ze−

1
2 z(z+1)− 1

2γz
2
∞∏
n=1

{(
1 +

z
n

)n
e−z+z

2/(2n)
}

is an integral function which satisfies the relations

G(z + 1) = Γ(z)G(z), G(1) = 1,
(n!)n

G(n + 1)
= 11 · 22 · 33 · · · nn.

The most important properties of the G-function are discussed in Barnes [42].

Example 12.49 Shew that
G′(z + 1)
G(z + 1)

=
1
2

log(2π) +
1
2
− z + z

Γ′(z)
Γ(z)

,

and deduce that

log
G(1 − z)
G(1 + z)

=

∫ s

0
πz cot πz dz − z log(2π).

Example 12.50 Shew that∫ s

0
log Γ(t + 1) dt =

1
2

z log(2π) −
1
2

z(z + 1) + z log Γ(z + 1) − log G(z + 1).
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The Zeta-Function of Riemann

13.1 Definition of the zeta-function
Let s = σ + it where σ and t are real1; then, if δ > 0, the series

ζ(s) =
∞∑
n=1

1
ns

is a uniformly convergent series of analytic functions (§§2.33, 3.34) in any domain in which
σ ≥ 1 + δ; and consequently the series is an analytic function of s in such a domain.
The function is called the zeta-function; although it was known to Euler [197], its most
remarkable properties were not discovered before Riemann [557] who discussed it in his
memoir on prime numbers; it has since proved to be of fundamental importance, not only
in the Theory of Prime Numbers, but also in the higher theory of the Gamma-function and
allied functions.

13.11 The generalised zeta-function
The definition of this function appears to be due to Hurwitz [327].

Many of the properties possessed by the zeta-function are particular cases of properties
possessed by a more general function defined, when σ ≥ 1 + δ, by the equation

ζ(s,a) =
∞∑
n=0

1
(a + n)s

, (13.1)

where a is a constant. For simplicity, we shall suppose that 0 < a ≤ 1, and then we take
arg(a + n) = 0. It is evident that ζ(s,1) = ζ(s). (When a has this range of values, the
properties of the function are, in general, much simpler than the corresponding properties for
other values of a. The results of §13.14 are true for all values of a (negative integer values
excepted); and the results of §§13.12, 13.13, 13.2 are true when Re(a) > 0.)

13.12 The expression of ζ(s,a) as an infinite integral
Since

(a + n)−s Γ(s) =
∫ ∞

0
xs−1e−(n+a)x dx,

1 The letters σ, t will be used in this sense throughout the chapter.

276
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when arg x = 0 and σ > 0 (and a fortiori when σ ≥ (1 + δ)), we have, when σ ≥ 1 + δ,

Γ(s) ζ(s,a) = lim
N→∞

N∑
n=0

∫ ∞

0
xs−1e−(n+a)x dx

= lim
N→∞

{∫ ∞

0

xs−1e−ax

1 − e−x
dx −

∫ ∞

0

xs−1

1 − e−x
e−(N+1+a)x dx

}
.

Now, when x ≥ 0, ex ≥ 1 + x, and so the modulus of the second of these integrals does
not exceed ∫ ∞

0
xσ−2e−(N+a)x dx = (N + a)1−σΓ(σ − 1),

which (when σ ≥ 1 + δ) tends to 0 as N →∞. Hence, when σ ≥ 1 + δ and arg x = 0,

ζ(s,a) =
1
Γ(s)

∫ ∞

0

xs−1e−ax

1 − e−x
dx;

this formula corresponds in some respects to Euler’s integral for the Gamma-function.

13.13 The expression of ζ(s,a) as a contour integral
.

This was given by Riemann for the ordinary zeta-function.
When σ ≥ 1 + δ, consider ∫ (0+)

∞

(−z)s−1e−az

1 − e−z
dz,

the contour of integration being of Hankel’s type (§12.22) and not containing the points
±2nπi (n = 1,2,3, . . .) which are poles of the integrand; it is supposed (as in §12.22) that
| arg(−z)| ≤ π.

It is legitimate to modify the contour, precisely as in §12.22, when2 σ ≥ 1+ δ; and we get∫ (0+)

∞

(−z)s−1e−az

1 − e−z
dz =

{
eπi(s−1) − e−πi(s−1)} ∫ ∞

0

xs−1e−ax

1 − e−x
dx.

Therefore

ζ(s,a) = −
Γ (1 − s)

2πi

∫ (0+)

∞

(−z)s−1e−az

1 − e−z
dz.

Now this last integral is a one-valued analytic function of s for all values of s. Hence the
only possible singularities of ζ(s,a) are at the singularities of Γ(1 − s), i.e. at the points
1,2,3, . . . , and, with the exception of these points, the integral affords a representation of
ζ(s,a) valid over the whole plane. The result obtained corresponds to Hankel’s integral for
the Gamma-function. Also, we have seen that ζ(s,a) is analytic when σ ≥ 1 + δ, and so the
only singularity of ζ(s,a) is at the point s = 1. Writing s = 1 in the integral, we get

1
2πi

∫ (0+)

∞

e−az dz
1 − e−z

,

2 If σ ≤ 1, the integral taken along any straight line up to the origin does not converge.
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which is the residue at z = 0 of the integrand, and this residue is 1. Hence

lim
s→1

ζ(s,a)
Γ(1 − s)

= −1.

Since Γ(1− s) has a single pole at s = 1 with residue −1, it follows that the only singularity
of ζ(s,a) is a simple pole with residue +1 at s = 1.

Example 13.1.1 Shew that, when Re(s) > 0,

(1 − 21−s) ζ(s) =
1
1s
−

1
2s
+

1
3s
−

1
4s
+ · · ·

=
1
Γ(s)

∫ ∞

0

xs−1

ex + 1
dx.

Example 13.1.2 Shew that, when Re(s) > 1,

(2s − 1)ζ(s) = ζ
(
s, 1

2

)
=

2s

Γ(s)

∫ ∞

0

xs−1ex

e2x − 1
dx.

Example 13.1.3 Shew that

ζ(s) = −
21−sΓ(1 − s)
2πi(21−s − 1)

∫ (0+)

∞

(−z)s−1

es + 1
dz,

where the contour does not include any of the points ±πi, ±3πi, ±5πi, . . . .

13.14 Values of ζ(s,a) for special values of s

In the special case when s is an integer (positive or negative),

(−z)s−1 e−az

1 − e−z

is a one-valued function of z. We may consequently apply Cauchy’s theorem, so that

1
2πi

∫ (0+)

∞

(−z)s−1e−az

1 − e−z
dz

is the residue of the integrand at z = 0, that is to say, it is the coefficient of z−s in
(−1)s−1e−az

1 − e−z
.

To obtain this coefficient we differentiate the expansion (§7.2)

−z
e−az − 1
e−z − 1

=

∞∑
n=1

(−1)nφn(a) zn

n!

term-by-term with regard to a, where φn(a) denotes the Bernoullian polynomial. (This is

obviously legitimate, by §4.7, when |z | < 2π, since
z2e−az

e−z − 1
can be expanded into a power

series in z uniformly convergent with respect to a.) Then

z2e−az

e−z − 1
=

∞∑
n=1

(−1)nφ′n(a)zn

n!
. (13.2)
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Therefore if s is zero or a negative integer (= −m), we have

ζ(−m,a) = −
φ′m+2(a)

(m + 1)(m + 2)
.

In the special case when a = 1, if s = −m, then ζ(s) is the coefficient of z1−s in the expansion

of
(−1)sm!z

ez − 1
. Hence, by §7.2

ζ(−2m) = 0; ζ(1 − 2m) =
(−1)mBm

2m
(m = 1,2,3, . . .); ζ(0) = −

1
2
.

These equations give the value of ζ(s) when s is a negative integer or zero.

13.15 The formula of Hurwitz for ζ(s,a) when σ < 0

This appears in [327, p. 95]. Consider −
1

2πi

∫
c

(−z)s−1e−az

1 − e−z
dz taken round a contour C

consisting of a (large) circle of radius (2N+1)π, (N an integer), starting at the point (2N+1)π
and encircling the origin in the positive direction, arg(−z) being zero at z = −(2N + 1)π.

In the region between C and the contour (2Nπ + π,0+), of which the contour of §13.13
is the limiting form, (−z)s−1e−az(1 − e−z)−1 is analytic and one-valued except at the simple
poles ±2πi,±4πi, . . . ,±2Nπi. Hence

1
2πi

∫
C

(−z)s−1e−az

1 − e−z
dz −

1
2πi

∫ (0+)

(2N+1)π

(−z)s−1e−az

1 − e−z
dz =

N∑
n=1

(Rn + R′n),

where Rn, R′n are the residues of the integrand at 2nπi, −2nπi respectively. At the point at
which −z = 2nπe−πi/2, the residue is

(2nπ)s−1e−
1
2 πi(s−1)e−2anπi,

and hence Rn + R′n = 2(2nπ)s−1 sin (sπ/2 + 2πan) . Hence

−
1

2πi

∫ (0+)

(2N+1)π

(−z)s−1e−az

1 − e−z
dz

=
2 sin(sπ/2)
(2π)1−s

N∑
n=1

cos(2πan)
n1−s

+
2 cos(sπ/2)
(2π)1−s

N∑
n=1

sin(2πan)
n1−s −

1
2πi

∫
C

(−z)s−1e−az

1 − e−z
dz.

Now, since 0 < a ≤ 1, it is easy to see that we can find a number K independent of N such
that

��e−az(1 − e−z)−1
�� < K when z is on C. Hence���� 1

2πi

∫
C

(−z)s−1e−az

1 − e−z
dz

���� < K
2π

∫ π

−π

��[(2N + 1)π]s esiθ
�� dθ

< K [(2N + 1)π]s eπ |s |

→ 0 as N →∞ if σ < 0.
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Making N →∞, we obtain the result of Hurwitz that, if σ < 0,

ζ(s,a) =
2Γ(1 − s)
(2π)1−s

[
sin

( sπ
2

) ∞∑
n=1

cos(2πan)
n1−s + cos

( sπ
2

) ∞∑
n=1

sin(2πan)
n1−s

]
,

each of these series being convergent.

13.151 Riemann’s relation between ζ(s) and ζ(1 − s)
If we write a = 1 in the formula of Hurwitz given in §13.15, and employ §12.14, we get the
remarkable result, due to Riemann, that

21−s
Γ(s)ζ(s) cos

( sπ
2

)
= πsζ(1 − s). (13.3)

Since both sides of this equation are analytic functions of s, save for isolated values of s at
which they have poles, this equation, proved when σ < 0, persists (by §5.5) for all values of
s save those isolated values.

Example 13.1.4 If m be a positive integer, shew that

ζ(2m) =
22m−1π2mBm

(2m)!
.

Example 13.1.5 (Riemann) Shew that Γ(s/2)π−s/2ζ(s) is unaltered by replacing s by 1− s.

Example 13.1.6 Deduce from Riemann’s relation that the zeros of Hermite’s integral for
ζ(s) at −2,−4,−6, . . . are zeros of the first order.

13.2 Hermite’s formula for ζ(s,a)
This appears in [296]. Let us apply Plana’s theorem (Example 7.7 in Chapter 7) to the function
φ(z) = (a + z)−s, where arg(a + z) has its principal value.

Define the function q(x, y) by the equation

q(x, y) =
1
2i
[(a + x + iy)−s − (a + x − iy)−s]

= −
[
(a + x)2 + y2]−s/2 sin

(
s arctan

y

x + a

)
.

Since3
���arctan

y

x + a

��� does not exceed the smaller of
π

2
and

| y |

x + a
, we have

|q(x, y)| ≤
{
(a + x)2 + y2}(1−σ)/2 ���y−1 sinh

( πs
2

)��� ,
≤

{
(a + x)2 + y2}−σ/2 ����sinh

y |s |
x + a

���� .
Using the first result when |y | > a and the second when |y | < a, it is evident that, if

σ > 0,
∫ ∞

0
q(x, y) (e2πy − 1)−1 dy is convergent when x ≥ 0 and tends to 0 as x → ∞; also

3 If ξ > 0, arctan ξ =
∫ ξ

0

dt

1 + t2 <

∫ ∞

0

dt

1 + t2 ; and arctan ξ <
∫ ξ

0
dt .
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0
(a + x)−s dx converges if σ > 1. Hence, if σ > 1, it is legitimate to make x2 → ∞ in

the result contained in the example cited; and we have

ζ(s,a) =
1
2

a−s +
∫ ∞

0
(a + x)−s dx + 2

∫ ∞

0
(a2 + y2)−s/2

[
sin

(
s arctan

y

a

)] dy
e2πy − 1

.

So

ζ(s,a) =
1
2

a−s +
a1−s

s − 1
+ 2

∫ ∞

0
(a2 + y2)−s/2

[
sin

(
s arctan

y

a

)] dy
e2πy − 1

.

This is Hermite’s formula4; using the results that, if y ≥ 0,

arctan
y

a
≤

y

a
,

(
y < πa

2

)
; arctan

y

a
<
π

2
(
y > πa

2

)
,

we see that the integral involved in the formula converges for all values of s. Further, the
integral defines an analytic function of s for all values of s.

To prove this, it is sufficient (§5.31) to shew that the integral obtained by differentiating
under the sign of integration converges uniformly; that is to say we have to prove that∫ ∞

0

[
−

1
2

log(a2 + y2)(a2 + y2)−s/2 sin
(
s arctan

y

a

)] dy
e2πy − 1

+

∫ ∞

0

[
(a2 + y2)−s/2 arctan

y

a
cos

(
s arctan

y

a

)] dy
e2πy − 1

converges uniformly with respect to s in any domain of values of s. Now when |s | ≤ ∆,
where ∆ is any positive number, we have���(a2 + y2)−s/2 arctan

y

a
cos

(
s arctan

y

a

)��� < (a2 + y2)∆/2
y

a
cosh

( 1
2π∆

)
;

since
∆

a

∫ ∞

0
(a2 + y2)∆/2

y dy
e2πy − 1

converges, uniform convergence of the second integral is justified using de la Vallée Poussin’s
test in (I) of §4.431.

By dividing the path of integration of the first integral into two parts (0, 1
2πa), ( 12πa, ∞)

and using the results��� sin
(
s arctan

y

a

) ��� < sinh
∆y

a
,
��� sin

(
s arctan

y

a

) ��� < sinh
1
2
π∆

in the respective parts, we can similarly shew that the first integral converges uniformly.
Consequently Hermite’s formula is valid (§5.5) for all values of s, and it is legitimate

to differentiate under the sign of integration, and the differentiated integral is a continuous
function of s.

4 The corresponding formula when a = 1 had been previously given by Jensen.
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13.21 Deductions from Hermite’s formula
Writing s = 0 in Hermite’s formula, we see that ζ (0,a) = 1

2 − a. Making s → 1, from the
uniformity of convergence of the integral involved in Hermite’s formula we see that

lim
s→1

{
ζ(s,a) −

1
s − 1

}
= lim

s→1

a1−s − 1
s − 1

+
1

2a
+ 2

∫ ∞

0

y dy
(a2 + y2)(e2πy − 1)

.

Hence, by the example of §12.32, we have

lim
s→1

(
ζ(s,a) −

1
s − 1

)
= −

Γ′(a)
Γ(a)

.

Further, differentiating the formula for ζ(s,a) and then making s → 0 (this was justified
in §13.2), we get{

d
ds
ζ (s,a)

}
s=0
= lim

s→0

[
−

1
2

a−s log a −
a1−s log a

s − 1
−

a1−s

(s − 1)2

+2
∫ ∞

0

{
−

1
2

log(a2 + y2) · (a2 + y2)−
1
2 s sin

(
s arctan

y

a

)
+(a2 + y2)−s/2 arctan

y

a
cos

(
s arctan

y

a

)} dy
e2πy − 1

]
=

(
a −

1
2

)
log a − a + 2

∫ ∞

0

arctan(y/a)
e2πy − 1

dy.

Hence, by §12.32, {
d
ds
ζ(s,a)

}
s=0
= log Γ(a) − 1

2 log(2π).

These results had previously been obtained in a different manner by Lerch [425]. The
formula for ζ(s,a) from which Lerch derived these results is given in a memoir published by
the Academy of Sciences of Prague. A summary of his memoir is contained in [429].

Corollary 13.2.1 lim
s→1

(
ζ (s) − 1

s−1

)
= γ, ζ ′ (0) = − 1

2 log(2π).

13.3 Euler’s product for ζ(s)
Let σ ≥ 1 + δ; and let 2,3,5, . . . , p, . . . be the prime numbers in order. Then, subtracting the
series for 2−sζ(s) from the series for ζ(s), we get

ζ(s) · (1 − 2−s) =
1
1s
+

1
3s
+

1
5s
+

1
7s
+ · · · ,

all the terms of
∑

n−s for which n is a multiple of 2 being omitted; then in like manner

ζ(s) · (1 − 2−s)(1 − 3−s) =
1
1s
+

1
5s
+

1
7s
+ · · · ,

all the terms for which n is a multiple of 2 or 3 being omitted, and so on; so that

ζ(s) · (1 − 2−s)(1 − 3−s) · · · (1 − p−s) = 1 +
∑′

n−s,
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the prime denoting that only those values of n (greater than p) which are prime to 2,3, . . . , p
occur in the summation. Now, since the first term of

∑′ starts with the prime next greater
than p, ���∑′

n−s
��� ≤∑′

n−1−s ≤

∞∑
n=p+1

n−1−s → 0 as p→∞.

Therefore if σ ≥ 1 + δ, the product ζ(s)
∏
p
(1 − p−s) converges to 1, where the number

p assumes the prime values 2,3,5, . . . only. But the product
∏
p
(1 − p−s) converges when

σ ≥ 1 + δ, for it consists of some of the factors of the absolutely convergent product
∞∏
n=2
(1 − n−s). Consequently we infer that ζ(s) has no zeros at which σ ≥ 1 + δ; for if it had

any such zeros,
∏
p
(1 − p−s) would not converge at them. Therefore, if σ ≥ 1 + δ,

∏
p

(
1 −

1
ps

)
=

1
ζ(s)

.

This is Euler’s result.

13.31 Riemann’s hypothesis concerning the zeros of ζ(s)
It has just been proved that ζ(s) has no zeros at which σ > 1. From the formula (13.3)

ζ(s) =
2s−1πs

Γ(s)
sec

( sπ
2

)
ζ(1 − s)

it is now apparent that the only zeros of ζ(s) for whichσ < 0 are the zeros of sec (sπ/2) /Γ(s),
i.e. the points s = −2,−4, . . ..

Hence all the zeros of ζ(s) except those at −2,−4, . . . lie in that strip of the domain of the
complex variable s which is defined by 0 ≤ σ ≤ 1.

It was conjectured by Riemann, but it has not yet been proved, that all the zeros of ζ(s)
in this strip lie on the line σ = 1

2 ; while it has quite recently been proved by Hardy [279]
that an infinity of zeros of ζ(s) actually lie on σ = 1

2 . It is highly probable that Riemann’s
conjecture is correct, and the proof of it would have far-reaching consequences in the theory
of Prime Numbers.

13.4 Riemann’s integral for ζ(s)
It is easy to see that, if σ > 0,

n−sΓ
( s
2

)
π−s/2 =

∫ ∞

0
e−n

2πx xs/2−1 dx.

Hence, when σ > 0,

ζ(s)Γ
( s
2

)
π−s/2 = lim

N→∞

∫ ∞

0

N∑
n=1

e−n
2πx xs/2−1 dx.
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Now, if ϑ(x) =
∞∑
n=1

e−n
2πx , since, by Example 6.17 of Chapter 6,

1 + 2ϑ(x) = x−1/2 (1 + 2ϑ(1/x)) , (13.4)

we have lim
x→0

x1/2 ϑ (x) = 1/2; and hence
∫ ∞

0
ϑ (x)xs/2−1 dx converges when σ > 1.

Consequently, if σ > 2,

ζ(s)Γ
( s
2

)
π−s/2 = lim

N→∞

[∫ ∞

0
ϑ(x)xs/2−1 dx −

∫ ∞

0

∞∑
n=N+1

e−n
2πx xs/2−1 dx

]
.

Now, as in §13.12, the modulus of the last integral does not exceed∫ ∞

0

{
∞∑

n=N+1

e−n(N+1)πx

}
xσ/2−1 dx =

∫ ∞

0

e−(N+1)2πx xσ/2−1

1 − e−(N+1)πx dx

< {π(N + 1)}−1
∫ ∞

0
e−(N

2+2N )πx xσ/2−2 dx

= {π(N + 1)}−1 {
(N2 + 2N)π

}1−σ/2
Γ (σ/2 − 1)

→ 0 as N →∞, since σ > 2.

Hence, when σ > 2,

ζ(s)Γ
( s
2

)
π−s/2 =

∫ ∞

0
ϑ(x)xs/2−1 dx

=

∫ 1

0

{
− 1

2 +
1
2 x−

1
2 + x−

1
2ϑ(1/x)

}
xs/2−1 dx +

∫ ∞

1
ϑ(x) xs/2−1 dx

= −
1
s
+

1
s − 1

+

∫ 1

∞

x1/2ϑ(x)x−s/2+1
(
−

1
x2

)
dx +

∫ ∞

1
ϑ(x) xs/2−1 dx.

Consequently

ζ(s)Γ
( s
2

)
π−s/2 −

1
s(s − 1)

=

∫ ∞

1
(x(1−s)/2 + xs/2)

ϑ(x)
x

dx.

Now the integral on the right represents an analytic function of s for all values of s, by §5.32,
since on the path of integration

ϑ(x) < e−πx
x∑

n=0

e−mπx ≤ e−πx(1 − e−π)−1.

Consequently, by §5.5, the above equation, proved when σ > 2, persists for all values of s.
If now we put

s =
1
2
+ it,

1
2

s(s − 1)ζ(s)Γ
( s
2

)
π−s/2 = ξ(t),

we have

ξ(t) =
1
2
−

(
t2 + 1

4

) ∫ ∞

1
x−3/4ϑ(x) cos

( 1
2 t log x

)
dx.
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Since ∫ ∞

1
x−3/4ϑ(x)

{ 1
2 log x

}n cos
( 1

2 t log x + 1
2 nπ

)
dx

satisfies the test of Corollary 4.4.1, we may differentiate any number of times under the sign
of integration, and then put t = 0. Hence, by Taylor’s theorem, we have for all values5 of t

ξ(t) =
∞∑
n=0

a2nt2n; (13.5)

by considering the last integral a2n is obviously real. This result is fundamental in Riemann’s
researches.

13.5 Inequalities satisfied by ζ(s,a) when σ > 0

We shall now investigate the behaviour of ζ(s,a) as t → ±∞, for given values of σ. When
σ > 1, it is easy to see that, if N be any integer,

ζ(s,a) =
N∑
n=0

1
(a + n)s

−
1

(1 − s)(N + a)s−1 −

∞∑
n=N

fn(s),

where

fn(s) =
1

1 − s

{
1

(n + 1 + a)s−1 −
1

(n + a)s−1

}
−

1
(n + 1 + a)s

= s
∫ n+1

n

u − n
(u + a)s+1 du.

Now, when σ > 0,

| fn(s)| ≤ |s |
∫ n+1

n

u − n
(u + a)σ+1 du

< |s |
∫ n+1

n

du
(n + a)σ+1

= |s | (n + a)−σ−1.

Therefore the series
∞∑

n=N
fn(s) is a uniformly convergent series of analytic functions when

σ > 0; so that
∞∑

n=N
fn (s) is an analytic function when σ > 0; and consequently, by §5.5, the

function ζ(s,a) may be defined when σ > 0 by the series

ζ(s,a) =
N∑
n=0

1
(a + n)s

−
1

(1 − s)(N + a)s−1 −

∞∑
n=N

fn(s).

5 In this particular piece of analysis it is convenient to regard t as a complex variable, defined by the equation
s = 1

2 + it; and then ξ(t) is an integral function of t .
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Now let btc be the greatest integer in |t |; and take N = btc. Then

|ζ(s,a)| ≤
bt c∑
n=0

|(a + n)−s | +
��{(1 − s)−1(btc + a)1−s

}�� + ∞∑
n= bt c

|s |(n + a)−σ−1

<

bt c∑
n=0

(a + n)−σ + |t |−1(btc + a)1−σ + |s |
∞∑

n= bt c

(n + a)−σ−1.

Using the Maclaurin–Cauchy sum formula (§4.43), we get

|ζ(s,a)| < a−σ +
∫ bt c

0
(a + x)−σ dx + |t |−1(btc + a)1−σ + |s |

∫ ∞

bt c−1
(x + a)−σ−1 dx.

Now when δ ≤ σ ≤ 1 − δ where δ > 0, we have

|ζ(s,a)| < a−σ + (1−σ)−1 {
(a + btc)1−σ − a1−σ}

+ |t |−1(btc + a)1−σ + |s |σ−1(btc − 1+ a)−σ .

Hence ζ(s,a) = O(|t |1−σ), the constant implied in the symbol O being independent of s. But,
when 1 − δ ≤ σ ≤ 1 + δ, we have

|ζ(s,a)| = O(|t |1−σ) +
∫ bt c

0
(a + x)−σ dx

< O(|t |1−σ) +
{
a1−σ + (a + t)1−σ

} ∫ bt c

0
(a + x)−1 dx,

since (a + x)−σ ≤ a1−σ(a + x)−1 when σ ≥ 1, and (a + x)−σ ≤ (a + btc)1−σ(a + x)−1 when
σ ≤ 1, and so

ζ(s,a) = O
{
|t |1−σ log |t |

}
.

When σ ≥ 1 + δ,

|ζ(s,a)| ≤ a−σ +
∞∑
n=1

(a + n)−1−δ = O(1).

13.51 Inequalities satisfied by ζ(s,a) when σ ≤ 0

We next obtain inequalities of a similar nature when σ ≤ δ. In the case of the function ζ(s)
we use Riemann’s relation

ζ(s) = 2sπs−1
Γ(1 − s) ζ(1 − s) sin

( sπ
2

)
.

Now, when σ < 1 − δ,we have, by §12.33,

Γ(1 − s) = O
(
e(

1
2−s) log(1−s)−(1−s)

)
and so

ζ (s) = O
[
exp

{
π

2
|t | +

( 1
2 − σ − it

)
log |1 − s | + i arctan

t
(1 − σ)

}]
ζ (1 − s).
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Since arctan t/(1 − σ) = ± 1
2π + O(t−1), according as t is positive or negative, we see, from

the results already obtained for ζ(s,a), that

ζ (s) = O
(
|t |1/2−σ

)
ζ(1 − s).

In the case of the function ζ(s,a), we have to use the formula of Hurwitz (§13.15) to obtain
the generalisation of this result; we have, when σ < 0,

ζ(s,a) = −i(2π)s−1
Γ(1 − s)

[
esπi/2ζa(1 − s) − e−sπi/2 ζ−a(1 − s)

]
,

where

ζa(1 − s) =
∞∑
n=1

e2nπia

n1−s .

Hence

(1 − e2πia)ζa(1 − s) = e2πia +

N∑
n=2

e2nπia [
ns−1 − (n − 1)s−1]

+(s − 1)
∞∑

n=N+1

e2nπia
∫ n

n−1
us−2 du;

since the series on the right is a uniformly convergent series of analytic functions whenever
σ ≤ 1− δ, this equation gives the continuation of ζa(1− s) over the range 0 ≤ σ ≤ 1− δ; so
that, whenever σ ≤ 1 − δ,we have

| sin πa ζa(1 − s)| ≤ 1 +
N∑
n=2

{
nσ−1 + (n − 1)σ−1} + |s − 1|

∞∑
n=N+1

∫ n

n−1
uσ−2 du.

Taking N = btc,we obtain, as in §13.5,

ζa(1 − s) = O(|t |σ) (δ ≤ σ ≤ 1 − δ)
= O( | t |σ log | t | ) (−δ ≤ σ < δ),

and obviously

ζa(1 − s) = O(1) (σ < −δ).

Consequently, whether a is unity or not, we have the results

ζ(s,a) = O(|t |1/2−σ) (σ ≤ δ)

= O(|t |1/2) (δ ≤ σ ≤ 1 − δ)
= O(|t |1/2 log |t |) (−δ ≤ σ ≤ δ).

We may combine these results and those of §13.5, into the single formula

ζ(s,a) = O(|t |τ(σ) log |t |),
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where6

τ(σ) =


1
2 − σ σ ≤ 0,
1
2 0 ≤ σ ≤ 1

2,

1 − σ 1
2 ≤ σ ≤ 1,

0 σ ≥ 1,

and the log |t | may be suppressed except when −δ ≤ σ ≤ δ or when 1 − δ ≤ σ ≤ 1 + δ.

13.6 The asymptotic expansion of log Γ(z + a)

From Example 12.1.3 it follows that(
1 +

z
a

) ∞∏
n=1

{(
1 +

z
a + n

)
e−z/n

}
=

e−γz Γ(a)
Γ(z + a)

.

Now, the principal values of the logarithms being taken,

log
(
1 +

z
a

)
+ log

∞∏
n=1

{(
1 +

z
a + n

)
e−z/n

}
=

∞∑
n=1

[(
−az

n(a + n)

)
+

∞∑
m=2

(−1)m−1

m
zm

(a + n)m

]
+

∞∑
m=1

(−1)m−1

m
zm

am
.

If |z | < a, the double series is absolutely convergent since
∞∑
n=1

[
a|z |

n(a + n)
− log

(
1 −

|z |
a + n

)
+
|z |

a + n

]
converges.

Consequently

log
e−γzΓ(a)
Γ(z + a)

=
z
a
−

∞∑
n=1

az
n(a + n)

+

∞∑
m=2

(−1)m−1

m
zmζ(m,a).

Now consider −
1

2πi

∫
C

πzs

s sin πs
ζ(s,a) ds, the contour of integration being similar to that

of §12.22 enclosing the points s = 2,3,4, . . . but not the points 1,0,−1,−2, . . .; the residue of

the integrand at s = m (m ≥ 2) is
(−1)m

m
zmζ(m,a); and since, as σ →∞ (where s = σ + it),

ζ(s,a) = O(1), the integral converges if |z | < 1.
Consequently

log
e−yzΓ(a)
Γ(z + a)

=
z
a
−

∞∑
n=1

az
n(a + n)

−
1

2πi

∫
C

πzs

s sin πs
ζ(s,a) ds.

Hence

log
Γ(a)

Γ(z + a)
− z

Γ′(a)
Γ(a)

−
1

2πi

∫
C

πzs

s sin πs
ζ(s,a) ds.

6 It can be proved that τ(σ) may be taken to be 1
2 (1 − σ) when 0 ≤ σ ≤ 1. See Landau [405, §237].
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Now let D be a semicircle of (large) radius N with centre at s = 3
2, the semicircle lying on

the right of the line σ = 3
2 . On this semicircle ζ(s,a) = O(1), |zs | = |z |σ e−t arg s, and so the

integrand is O{|z |σ e−π |t |−t arg z}. The constants implied in the symbol O are independent of
s and z throughout. Hence if |z | < 1 and −π + δ ≤ arg z ≤ π − δ, where δ is positive, the
integrand is O

(
|z |σ e−δ |t |

)
, and hence∫

D

πzs

s sin πs
ζ(s,a) ds→ 0

as N →∞. It follows at once that, if |arg z | ≤ π − δ and |z | < 1,

log
Γ(a)

Γ(z + a)
= −z

Γ′(a)
Γ(a)

+
1

2πi

∫ 3
2+i∞

3
2−i∞

πzs

s sin πs
ζ(s,a) ds.

But this integral defines an analytic function of z for all values of |z | if |arg z | ≤ π − δ.
Hence, by §5.5 the above equation, proved when |z | < 1, persists for all values of |z | when
|arg z | ≤ π − δ.

Now consider
∫ 3

2±iR

−n− 1
2±iR

πzs

s sin πs
ζ(s,a) ds,where n is a fixed integer and R is going to tend

to infinity. By §13.51, the integrand is O
(
zσe−sRRτ(σ)

)
, where −n− 1

2 ≤ σ ≤
3
2 ; and hence if

the upper signs be taken, or if the lower signs be taken, the integral tends to zero as R→∞.
Therefore, by Cauchy’s theorem,

log
Γ(a)

Γ(z + a)
= −z

Γ′(a)
Γ(a)

+
1

2πi

∫ −n− 1
2+i∞

−n− 1
2−i∞

πzs

s sin πs
ζ(s,a) ds +

n∑
m=−1

Rm,

where Rm is the residue of the integrand at s = −m.
Now, on the new path of integration���� πzs

s sin πs
ζ(s,a)

���� < Kz−n−
1
2 e−δ |t |τ(−n−

1
2 ) |t | ,

where K is independent of z and t, and τ(σ) is the function defined in §13.51. Consequently,

since
∫ ∞

−∞

e−δ |t | |t |τ(−n−
1
2 ) dt converges, we have

log
Γ(a)

Γ(z + a)
= −z

Γ′(a)
Γ(a)

+

n∑
m=−1

Rm +O(z−n−
1
2 ),

when |z | is large.

Now, when m is a positive integer, Rm =
(−1)mz−mζ(−m,a)

−m
, and so by §13.14,

Rm =
(−1)mz−mφ′m+2(a)
m(m + 1)(m + 2)

, where φ′m(a) denotes the derivative of Bernoulli’s polynomial.

Also R0 is the residue at s = 0 of

1
s

(
1 + 1

6π
2s2 + · · ·

)
(1 + s log z + · · · )

( 1
2 − a + s ζ ′(0, a) + · · ·

)
,
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and so

R0 =
( 1

2 − a
)

log z + ζ ′(0,a)
=

( 1
2 − a

)
log z + log Γ(a) − 1

2 log(2π),

by §13.21.
And, using §13.21 and writing s = S + 1, R−1 is the residue at S = 0 of

−
1
S
(1 − S + S2 − · · · )

(
1 +

π2S2

6
+ · · ·

)
z(1 + S log z + · · · )

(
1
S
−
Γ′(a)
Γ(a)

+ · · ·

)
.

Hence R−1 = −z log z + z
Γ′(a)
Γ(a)

+ z. Consequently, finally, if |arg z | ≤ π − δ and |z | is large,

log Γ(z + a) =
(
z + a − 1

2

)
log z − z + 1

2 log(2π)

+

n∑
m=1

(−1)m−1φ′m+2(a)
m(m + 1)(m + 2)zm

+O(z−n−
1
2 ).

In the special case when a = 1, this reduces to the formula found previously in §12.33 for a
more restricted range of values of arg z.

The asymptotic expansion just obtained is valid when a is not restricted by the inequality
0 < a ≤ 1; but the investigation of it involves the rather more elaborate methods which are
necessary for obtaining inequalities satisfied by ζ(s,a)when a does not satisfy the inequality
0 < a ≤ 1. But if, in the formula just obtained, we write a = 1 and then put z + a for z, it is
easily seen that, when |arg(z + a)| ≤ π − δ, we have

log Γ(z + a + 1) =
(
z + a + 1

2

)
log(z + a) − z − a + 1

2 log(2π) + o(1);

subtracting log(z + a) from each side, we easily see that when both

|arg(z + a)| ≤ π − δ and |arg z | ≤ π − δ,

we have the asymptotic formula

log Γ(z + a) =
(
z + a − 1

2

)
log z − z + 1

2 log(2π) + o(1),

where the expression which is o(1) tends to zero as |z | → ∞.

13.7 Miscellaneous examples
Example 13.1 (Jensen [359]) Shew that

(2s − 1)ζ(s) =
2s−1s
s − 1

+ 2
∫ ∞

0

( 1
4 + y2)−s/2 sin(s arctan 2y)

dy
e2πy − 1

.

Example 13.2 (Jensen) Shew that

ζ(s) =
2s−1

s − 1
− 2s

∫ ∞

0
(1 + y2)−s/2 sin(s arctan y)

dy
eπy + 1

.

Example 13.3 (Barnes) Discuss the asymptotic expansion of log G(z+a), (Example 12.48)
by aid of the generalised zeta-function.
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Example 13.4 (Dirichlet [176]) Shew that, if σ > 1,

log ζ(s) =
∑
p

∞∑
m=1

1
mpms

,

the summation extending over the prime numbers p = 2,3,5, . . . .

Example 13.5 Shew that, if σ > 1,

−
ζ ′(s)
ζ(s)

=

∞∑
n−1

Λ(n)
ns

,

where Λ(n) = 0 when n is not a power of a prime, and Λ(n) = log p when n is a power of a
prime p.

Example 13.6 (Lerch [429]) Prove that∫ ∞

0

e−x
2

dx(
1 + w2

4x2

) s/2 = π
1
2

Γ( s2 )

∫ ∞

0
e−x

2−wx xs−1 dx.

Example 13.7 (Appell [28]) If

φ(s, x) =
∞∑
n=1

xn

ns
,

where |x | < 1, and Re s > 0, shew that

φ(s, x) =
1
Γ(s)

∫ ∞

0

xzs−1 dz
es − x

and, if s < 1,
lim
x→1
(1 − x)1−sφ(s, x) = Γ(1 − s).

Example 13.8 (Lerch [426]) If x,a, and s be real, and 0 < a < 1, and s > 1, and if

φ(x,a, s) =
∞∑
n=0

e2nπix

(a + n)s
,

shew that

φ(x,a, s) =
1
Γ(s)

∫ ∞

0

e−aszs−1 dz
1 − e2πix−z

and

φ(x,a,1 − s) =
Γ(s)
(2π)s

×
{
eπi(s/2−2ax)φ(−a, x, s) + eπi {−s/2+2a(1−x)}φ(a,1 − x, s)

}
.

Example 13.9 (Hardy) By evaluating the residues at the poles on the left of the straight
line taken as contour, shew that, if k > 0, and | arg y | < π

2 ,

e−y =
1

2πi

∫ k+i∞

k−i∞

Γ(u)y−u du,



292 The Zeta-Function of Riemann

and deduce that, if k > 1
2 ,

1
2πi

∫ k+i∞

k−i∞

Γ(u)
(πx)u

ζ(2u) du = ϑ(x),

and thence that, if a is an acute angle,∫ ∞

0

cosh 1
2 at

t2 + 1
4

ξ(t) dt = π cos(a/4) − π
2 eia/4

(
1 + 2ϑ(eia)

)
.

Example 13.10 (Hardy) By differentiating 2n times under the integral sign in the last result
(Example 13.9) and then making a→ π/2, deduce from Example 6.17 of Chapter 6 that∫ ∞

0

cosh 1
4πt

t2 + 1
4

t2nξ(t) dt =
(−1)nπ

22n cos
π

8
.

By taking n large, deduce that there is no number t0 such that ξ(t) is of fixed sign when t > t0,
and thence that ζ(s) has an infinity of zeros on the line σ = 1

2 .

Note Hardy and Littlewood [281] have shewn that the number of zeros on the line σ = 1
2

for which 0 < t < T is at least O(T) as T →∞; if the Riemann hypothesis is true, the number
is

1
2π

T log T −
1 + log 2π

2π
T +O(log T);

see Landau [405, p. 370].



14

The Hypergeometric Function

14.1 The hypergeometric series
We have already (§2.38) considered the hypergeometric series1

1 +
a · b
1 · c

z +
a(a + 1) · b(b + 1)

1 · 2 · c(c + 1)
z2 +

a(a + 1)(a + 2) · b(b + 1)(b + 2)
1 · 2 · 3 · c(c + 1)(c + 2)

z3 + · · ·

from the point of view of its convergence. It follows from §2.38 and §5.3 that the series
defines a function which is analytic when |z | < 1.

It will appear later (§14.53) that this function has a branch point at z = 1 and that if a cut2
(i.e. an impassable barrier) is made from+1 to+∞ along the real axis, the function is analytic
and one-valued throughout the cut plane. The function will be denoted by F(a, b; c; z).

Many important functions employed in Analysis can be expressed by means of hypergeo-
metric functions. Thus3

(1 + z)n = F(−n, β; β;−z),

log(1 + z) = zF(1,1; 2;−z),

ez = lim
β→∞

F(1, β; 1; z/β).

Example 14.1.1 Shew that

d
dz

F(a, b; c; z) =
ab
c

F(a + 1, b + 1; c + 1; z).

14.11 The value of F(a, b; c; 1) when Re(c − a − b) > 0

This analysis is due to Gauss. A method more easy to remember but more difficult to justify
is given in Example 14.6.2.

1 The name was given by Wallis in 1655 to the series whose nth term is

a(a + b)(a + 2b) · · · (a + (n − 1) b).

Euler used the term hypergeometric in this sense, the modern use of the term being apparently due to Kummer
[388, 389].

2 The plane of the variable z is said to be cut along a curve when it is convenient to consider only such
variations in z which do not involve a passage across the curve in question; so that the cut may be regarded as
an impassable barrier.

3 It will be a good exercise for the reader to construct a rigorous proof of the third of these results.
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The reader will easily verify, by considering the coefficients of xn in the various series,
that if 0 ≤ x < 1, then

c{c − 1 − (2c − a − b − 1)x}F(a, b; c; x) + (c − a)(c − b)xF(a, b; c + 1; x)

= c(c − 1)(1 − x)F(a, b; c − 1; x)

= c(c − 1)

(
1 +

∞∑
n=1

(un − un−1)xn

)
,

where un is the coefficient of xn in F(a, b; c − 1; x).
Nowmake x → 1. By §3.71, the right-hand side tends to zero if 1+

∞∑
n=1
(un−un−1) converges

to zero, i.e. if un → 0, which is the case when Re(c − a − b) > 0. Also, by §2.38 and §3.71,
the left-hand side tends to

c(a + b − c)F(a, b; c; 1) + (c − a)(c − b)F(a, b; c + 1; 1)

under the same condition; and therefore

F(a, b; c; 1) =
(c − a)(c − b)
c(c − a − b)

F(a, b; c + 1; 1).

Repeating this process, we see that

F(a, b; c; 1) =

{
m−1∏
n=0

(c − a + n)(c − b + n)
(c + n)(c − a − b + n)

}
F(a, b; c + m; 1)

=

{
lim
m→∞

m−1∏
n=0

(c − a + n)(c − b + n)
(c + n)(c − a − b + n)

}
lim
m→∞

F(a, b; c + m; 1),

if these two limits exist.
But (§12.13) the former limit is

Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

, if c is not a negative integer; and, if

un(a, b, c) be the coefficient of xn in F(a, b; c; x), and m > |c |, we have

|F(a, b; c + m) − 1| ≤
∞∑
n=1

|un(a, b, c + m)|

≤

∞∑
n=1

un(|a|, |b|,m − |c |)

<
|ab|

m − |c |

∞∑
n=0

un(|a| + 1, |b| + 1,m + 1 − |c |).

Now the last series converges, when m > |c | + |a| + |b| − 1, and is a positive decreasing
function of m; therefore, since (m − |c |)−1 → 0, we have

lim
m→∞

F(a, b; c + m; 1) = 1;

and therefore, finally,

F(a, b; c; 1) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

.
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14.2 The differential equation satisfied by F(a, b; c; z)

The reader will verify without difficulty, by the methods of §10.3 that the hypergeometric
series is an integral valid near z = 0 of the hypergeometric equation (this equation was given
by Gauss).

z(1 − z)
d2u
dz2 + {c − (a + b + 1)z}

du
dz
− abu = 0;

from §10.3, it is apparent that every point is an ‘ordinary point’ of this equation, with the
exception of 0, 1,∞, and that these are ‘regular points’.

Example 14.2.1 Shew that an integral of the equation

z
(
z

d
dz
+ a

) (
z

d
dz
+ b

)
u −

(
z

d
dz
− α

) (
z

d
dz
− β

)
u = 0

is zaF(a + α, b + α;α − β + 1; z).

14.3 Solutions of Riemann’s P-equation by hypergeometric functions
In §10.72 it was observed that Riemann’s differential equation4

d2u
dz2 +

{
1 − α − α′

z − a
+

1 − β − β′

z − b
+

1 − γ − γ ′

z − c

}
du
dz

+

{
αα′(a − b)(a − c)

z − a
+
ββ′(b − c)(b − a)

(z − c)
+
γγ ′(c − a)(c − b)

z − c

}
×

u
(z − a)(z − b)(z − c)

= 0,

by a suitable change of variables, could be reduced to a hypergeometric equation; and,
carrying out the change, we see that a solution of Riemann’s equation is(

z − a
z − b

)α (
z − c
z − b

)γ
F

{
α + β + γ, α + β′ + γ; 1 + α − α′;

(z − a)(c − b)
(z − b)(c − a)

}
,

provided that α−α′ is not a negative integer; for simplicity, we shall, throughout this section,
suppose that no one of the exponent differences α−α′, β− β′, γ − γ ′ is zero or an integer, as
(§10.32) in this exceptional case the general solution of the differential equation may involve
logarithmic terms; the formulae in the exceptional case will be found in Lindelöf’s memoir
[435] to which the reader is referred. See also Klein’s lithographed lectures [372].

Now if α be interchanged with α′, or γ with γ ′, in this expression, it must still satisfy
Riemann’s equation, since the latter is unaffected by this change.

4 The constants are subject to the condition α + α′ + β + β′ + γ + γ′ = 1.
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We thus obtain altogether four expressions, namely,

u1 =

(
z − a
z − b

)α (
z − c
z − b

)γ
F

{
α + β + γ,α + β′ + γ; 1 + α − α′;

(c − b)(z − a)
(c − a)(z − b)

}
,

u2 =

(
z − a
z − b

)α′ ( z − c
z − b

)γ
F

{
α′ + β + γ,α′ + β′ + γ; 1 + α′ − α;

(c − b)(z − a)
(c − a)(z − b)

}
,

u3 =

(
z − a
z − b

)α (
z − c
z − b

)γ′
F

{
α + β + γ ′, α + β′ + γ ′; 1 + α − α′;

(c − b)(z − a)
(c − a)(z − b)

}
,

u4 =

(
z − a
z − b

)α′ ( z − c
z − b

)γ′
F

{
α′ + β + γ ′, α′ + β′ + γ ′; 1 + α′ − α;

(c − b)(z − a)
(c − a)(z − b)

}
,

which are all solutions of the differential equation.
Moreover, the differential equation is unaltered if the triads (α,α′,a), (β, β′, b), (γ, γ ′, c)

are interchanged in any manner. If therefore we make such changes in the above solutions,
they will still be solutions of the differential equation.

There are five such changes possible, for we may write

{b, c,a}, {c,a, b}, {a, c, b}, {c, b,a}, {b,a, c}

in turn in place of {a, b, c}, with corresponding changes of α, α′, β, β′,γ, γ ′.
We thus obtain 4 × 5 = 20 new expressions, which with the original four make altogether

twenty-four series.
The twenty new solutions may be written down as follows:

u5 =

(
z − b
z − c

)β (
z − a
z − c

)α
F

{
β + γ + α, β + γ ′ + α; 1 + β − β′;

(a − c)(z − b)
(a − b)(z − c)

}
,

u6 =

(
z − b
z − c

)β′ ( z − a
z − c

)α
F

{
β′ + γ + α, β′ + γ ′ + α; 1 + β′ − β;

(a − c)(z − b)
(a − b)(z − c)

}
,

u7 =

(
z − b
z − c

)β (
z − a
z − c

)α′
F

{
β + γ + α′, β + γ ′ + α′; 1 + β − β′;

(a − c)(z − b)
(a − b)(z − c)

}
,

u8 =

(
z − b
z − c

)β′ ( z − a
z − c

)α′
F

{
β′ + γ + α′, β′ + γ ′ + α′; 1 + β′ − β;

(a − c)(z − b)
(a − b)(z − c)

}
,

u9 =

(
z − c
z − a

)γ (
z − b
z − a

)β
F

{
γ + α + β, γ + α′ + β; 1 + γ − γ ′;

(b − a)(z − c)
(b − c)(z − a)

}
,

u10 =

(
z − c
z − a

)γ′ ( z − b
z − a

)β
F

{
γ ′ + α + β, γ ′ + α′ + β; 1 + γ ′ − γ;

(b − a)(z − c)
(b − c)(z − a)

}
,
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u11 =

(
z − c
z − a

)γ (
z − b
z − a

)β′
F

{
γ + α + β′, γ + α′ + β′; 1 + γ − γ ′;

(b − a)(z − c)
(b − c)(z − a)

}
,

u12 =

(
z − c
z − a

)γ′ ( z − b
z − a

)β′
F

{
γ ′ + α + β′, γ ′ + α′ + β′; 1 + γ ′ − γ;

(b − a)(z − c)
(b − c)(z − a)

}
,

u13 =

(
z − a
z − c

)α (
z − b
z − c

)β
F

{
α + γ + β,α + γ ′ + β; 1 + α − α′;

(b − c)(z − a)
(b − a)(z − c)

}
,

u14 =

(
z − a
z − c

)α′ ( z − b
z − c

)β
F

{
α′ + γ + β,α′ + γ ′ + β; 1 + α′ − α;

(b − c)(z − a)
(b − a)(z − c)

}
,

u15 =

(
z − a
z − c

)α (
z − b
z − c

)β′
F

{
α + γ + β′, α + γ ′ + β′; 1 + α − α′;

(b − c)(z − a)
(b − a)(z − c)

}
,

u16 =

(
z − a
z − c

)α′ ( z − b
z − c

)β′
F

{
α′ + γ + β′, α′ + γ ′ + β′; 1 + α′ − α;

(b − c)(z − a)
(b − a)(z − c)

}
,

u17 =

(
z − c
z − b

)γ (
z − a
z − b

)α
F

{
γ + β + α,γ + β′ + α; 1 + γ − γ ′;

(a − b)(z − c)
(a − c)(z − b)

}
,

u18 =

(
z − c
z − b

)γ′ ( z − a
z − b

)α
F

{
γ ′ + β + α,γ ′ + β′ + α; 1 + γ ′ − γ;

(a − b)(z − c)
(a − c)(z − b)

}
,

u19 =

(
z − c
z − b

)γ (
z − a
z − b

)α′
F

{
γ + β + α′, γ + β′ + α′; 1 + γ − γ ′;

(a − b)(z − c)
(a − c)(z − b)

}
,

u20 =

(
z − c
z − b

)γ′ ( z − a
z − b

)α′
F

{
γ ′ + β + α′, γ ′ + β′ + α′; 1 + γ ′ − γ;

(a − b)(z − c)
(a − c)(z − b)

}
,

u21 =

(
z − b
z − a

)β (
z − c
z − a

)γ
F

{
β + α + γ, β + α′ + γ; 1 + β − β′;

(c − a)(z − b)
(c − b)(z − a)

}
,

u22 =

(
z − b
z − a

)β′ ( z − c
z − a

)γ
F

{
β′ + α + γ, β′ + α′ + γ; 1 + β′ − β;

(c − a)(z − b)
(c − b)(z − a)

}
,

u23 =

(
z − b
z − a

)β (
z − c
z − a

)γ′
F

{
β + α + γ ′, β + α′ + γ ′; 1 + β − β′;

(c − a)(z − b)
(c − b)(z − a)

}
,

u24 =

(
z − b
z − a

)β′ ( z − c
z − a

)γ′
F

{
β′ + α + γ ′, β′ + α′ + γ ′; 1 + β′ − β;

(c − a)(z − b)
(c − b)(z − a)

}
.

Bywriting 0, 1−C, A, B, 0,C−A−B, x forα,α′, β, β′, γ,γ ′,
(z − a)(c − b)
(z − b)(c − a)

respectively, we

obtain 24 solutions of the hypergeometric equation satisfied by F(A,B; C; x). The existence
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of these 24 solutions was first shewn by Kummer [388, 389]. They are obtained in a different
manner in Forsyth [221, Chap. VI].

14.4 Relations between particular solutions of the hypergeometric equation
It has just been shewn that 24 expressions involving hypergeometric series are solutions of
the hypergeometric equation; and, from the general theory of linear differential equations of
the second order, it follows that, if any three have a common domain of existence, there must
be a linear relation with constant coefficients connecting those three solutions.

If we simplify u1, u2, u3, u4; u17, u18, u21, u22 in the manner indicated at the end of §14.3,
we obtain the following solutions of the hypergeometric equation with elements A, B, C, x:

y1 = F(A,B; C; x),

y2 = (−x)1−CF(A − C + 1,B − C + 1; 2 − C; x),

y3 = (1 − x)C−A−BF(C − B,C − A; C; x),

y4 = (−x)1−C(1 − x)C−A−BF(1 − B,1 − A; 2 − C; x),

y17 = F(A,B; A + B − C + 1; 1 − x),

y18 = (1 − x)C−A−BF(C − B,C − A; C − A − B + 1; 1 − x),

y21 = (−x)−BF(A, A − C + 1; A − B + 1; x−1),

y22 = (−x)−AF(B,B − C + 1; B − A + 1; x−1).

If |arg(1− x)| < π, it is easy to see from §2.53 that, when |x | < 1, the relations connecting
y1, y2, y3, y4 must be y1 = y3, y2 = y4, by considering the form of the expansions near x = 0
of the series involved. In this manner we can group the functions u1, . . . ,u24 into six sets of
four5 , viz.

u1,u3,u13,u15; u2,u4,u14,u16; u5,u7,u21,u23;
u6,u8,u22,u24; u9,u11,u17,u19; u10,u12,u18,u20,

such that members of the same set are constant multiples of one another throughout a suitably
chosen domain.

In particular, we observe that u1,u3,u13,u15 are constant multiples of a function which (by
§5.4, §2.53) can be expanded in the form

(z − a)a
{

1 +
∞∑
n=1

en(z − a)n
}

when |z − a| is sufficiently small; when arg(z − a) is so restricted that (z − a)α is one-valued,

5 The special formula

F(A, 1;C; x) =
1

1 − x
F

(
C − A, 1;C;

x

x − 1

)
,

which is derivable from the relation connecting u1 with u13, was discovered in 1730 by Stirling [607, Prop.
VII].
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this solution of Riemann’s equation is usually written P(α). And P(α
′); P(β), P(β

′); P(γ), P(γ
′)

are defined in a similar manner when |z−a|, |z− b|, |z− c | respectively are sufficiently small.
To obtain the relations which connect three members of separate sets of solutions is much

more difficult. The relations have been obtained by elaborate transformations of the double
circuit integrals which will be obtained later in §14.61; but a more simple and singularly
elegant method has recently been discovered by Barnes; of his investigation we shall give a
brief account.

14.5 Barnes’ contour integrals for the hypergeometric function
This appears in [48]. References to previous work on similar topics by Pincherle, Mellin and
Barnes are there given.

Consider
1

2πi

∫ i∞

−i∞

Γ(a + s)Γ(b + s)Γ(−s)
Γ(c + s)

(−z)s ds,

where |arg(−z)| < π, and the path of integration is curved (if necessary) to ensure that the
poles of Γ(a + s)Γ(b + s), viz. s = −a − n, −b − n (n = 0,1,2, . . .) lie on the left of the path
and the poles of Γ(−s), viz. s = 0,1,2, . . . , lie on the right of the path. It is assumed that a
and b are such that the contour can be drawn, i.e. that a and b are not negative integers (in
which case the hypergeometric series is merely a polynomial).

From §13.6 it follows that the integrand is

O
(
|s |a+b−c−1 exp{− arg(−z) Im(s) − π | Im(s)|}

)
as s→∞ on the contour, and hence it is easily seen (§5.32) that the integrand is an analytic
function of z throughout the domain defined by the inequality |argz | ≤ π − δ, where δ is any
positive number.

Now, taking note of the relation Γ(−s)Γ(1 + s) = −π cosec πs, consider

1
2πi

∫
C

Γ(a + s)Γ(b + s)
Γ(c + s)Γ(1 + s)

π(−z)s

sin πs
ds,

where C is the semicircle of radius N + 1
2 on the right of the imaginary axis with centre at

the origin, and N is an integer. Now, by §13.6, we have

Γ(a + s)Γ(b + s)
Γ(c + s)Γ(1 + s)

π(−z)s

sin sπ
= O(Na+b−c−1) ·

(−z)s

sin πs

as N → ∞, the constant implied in the symbol O being independent of arg s when s is on
the semicircle; and, if s =

(
N + 1

2

)
eiθ and |z | < 1, we have

(−z)s cosec πs = O
[
exp

{(
N + 1

2

)
cos θ log |z | −

(
N + 1

2

)
sin θ arg(−z)

−
(
N + 1

2

)
π | sin θ |

}]
= O

[
exp

{(
N + 1

2

)
cos θ log |z | −

(
N + 1

2

)
δ | sin θ |

}]
=


O

[
exp

{
2− 1

2
(
N + 1

2

)
log |z |

}]
0 ≤ |θ | ≤ 1

4π,

O
[
exp

{
−2− 1

2 δ
(
N + 1

2

)}] 1
4π ≤ |θ | ≤

1
2π.
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Hence if log |z | is negative (i.e. |z | < 1), the integrand tends to zero sufficiently rapidly

(for all values of θ under consideration) to ensure that
∫
C

→ 0 as N →∞.

Now ∫ i∞

−i∞

−

{∫ − i(N+ 1
2 )

−i∞

+

∫
C

+

∫ i∞

i(N+ 1
2 )

}
,

by Cauchy’s theorem, is equal to −2πi times the sum of the residues of the integrand at
the points s = 0,1, . . . ,N . Make N → ∞, and the last three integrals tend to zero when
|arg(−z)| ≤ π − δ, and |z | < 1, and so, in these circumstances,

1
2πi

∫ i∞

−i∞

Γ(a + s)Γ(b + s)Γ(−s)
Γ(c + s)

(−z)sds = lim
N→∞

N∑
n=0

Γ(a + n)Γ(b + n)
Γ(c + n)n!

zn,

the general term in this summation being the residue of the integrand at s = n.
Thus, an analytic function (namely the integral under consideration) exists throughout the

domain defined by the inequality |argz | < π, and, when |z | < 1, this analytic function may
be represented by the series

∞∑
n=0

Γ(a + n)Γ(b + n)
Γ(c + n) n!

zn.

The symbol F(a, b; c; z) will, in future, be used to denote this function divided by
Γ(a) Γ(b)/Γ(c).

14.51 The continuation of the hypergeometric series
To obtain a representation of the function F(a, b; c; z) in the form of series convergent when
|z | > 1, we shall employ the integral obtained in §14.5. If D be the semicircle of radius ρ on
the left of the imaginary axis with centre at the origin, it may be shewn6 by the methods of
§14.5 that

1
2πi

∫
D

Γ(a + s)Γ(b + s)Γ(−s)
Γ(c + s)

(−z)s ds→ 0

as ρ → ∞, provided that |arg(−z)| < π, |z | > 1 and ρ → ∞ in such a way that the lower
bound of the distance of D from poles of the integrand is a positive number (not zero).

Hence it can be proved (as in the corresponding work of §14.5) that, when |arg(−z)| < π

and |z | > 1,
1

2πi

∫
Γ(a + s)Γ(b + s)Γ(−s)

Γ(c + s)
(−z)s ds

=

∞∑
n=0

Γ(a + n)Γ(1 − c + a + n)
Γ(1 + n)Γ(1 − b + a + n)

sin (c − a − n)π
cos nπ sin(b − a − n)π

(−z)−a−n

+

∞∑
n=0

Γ(b + n)Γ(1 − c + b + n)
Γ(1 + n)Γ(1 − a + b + n)

sin(c − b − n)π
cos nπ sin(a − b − n)π

(−z)−b−n,

6 In considering the asymptotic expansion of the integrand when |s | is large on the contour or on D, it is
simplest to transform Γ(a + s), Γ(b + s), Γ(c + s) by the relation of §12.14.
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the expressions in these summations being the residues of the integrand at the points s =
−a − n, s = −b − n respectively.

It then follows at once on simplifying these series that the analytic continuation of the
series, by which the hypergeometric function was originally defined, is given by the equation

Γ(a)Γ(b)
Γ(c)

F(a, b; c; z) =
Γ(a)Γ(b − a)
Γ(c − a)

(−z)−aF(a,1 − c + a; 1 − b + a; z−1)

+
Γ(b)Γ(a − b)
Γ(c − b)

(−z)−bF(b,1 − c + b; 1 − a + b; z−1),

where |arg(−z)| < π.
It is readily seen that each of the three terms in this equation is a solution of the hyperge-

ometric equation (see §14.4).
This result has to be modified when a − b is an integer or zero, as some of the poles of

Γ(a+ s)Γ(b+ s) are double poles, and the right-hand side then may involve logarithmic terms,
in accordance with §14.3.

Corollary 14.5.1 Putting b = c, we see that, if |arg(−z)| < π,

Γ(a)(1 − z)−a =
1

2πi

∫ i∞

−i∞

Γ(a + s)Γ(−s)(−z)s ds,

where (1 − z)−a → 1 as z → 0, and so the value of |arg(1 − z)| which is less than π always
has to be taken in this equation, in virtue of the cut (see §14.1) from 0 to +∞ caused by the
inequality |arg(−z)| < π.

14.52 Barnes’ lemma
Barnes’ lemma states that, if the path of integration is curved so that the poles of Γ(γ −
s)Γ(δ − s) lie on the right of the path and the poles of Γ(α + s)Γ(β + s) lie on the left7 , then

1
2πi

∫ i∞

−i∞

Γ(α + s)Γ(β + s)Γ(γ − s)Γ(δ − s) ds =
Γ(α + γ)Γ(α + δ)Γ(β + γ)Γ(β + δ)

Γ(α + β + γ + δ)
.

Write I for the expression on the left.
If C be defined to be the semicircle of radius ρ on the right of the imaginary axis with

centre at the origin, and if ρ → ∞ in such a way that the lower bound of the distance of C
from the poles of Γ(γ − s)Γ(δ − s) is positive (not zero), it is readily seen that

Γ(α + s)Γ(β + s)Γ(γ − s)Γ(δ − s)

=
Γ(α + s)Γ(β + s)

Γ(1 − γ + s)Γ(1 − δ + s)
π2 cosec π(γ − s) cosec π(δ − s)

= O[sα+β+γ+δ−2 exp {−2π | Im(s)|}],

as |s | → ∞ on the imaginary axis or on C.

Hence the original integral converges; and
∫
C

→ 0 as ρ → ∞, when

Re(α + β + γ + δ − 1) < 0. Thus, as in §14.5, the integral involved in I is −2πi times
7 It is supposed that α, β, γ, δ are such that no pole of the first set coincides with any pole of the second set.
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the sum of the residues of the integrand at the poles of Γ(γ − s)Γ(δ − s); evaluating these
residues we get8

I =
∞∑
n=0

Γ(a + γ + n)Γ(β + γ + n)
Γ (n + 1)Γ(1 + γ − δ + n)

π

sin π(δ − γ)

+

∞∑
n=0

Γ(α + δ + n)Γ(β + δ + n)
Γ(n + 1)Γ(1 + δ − γ + n)

π

sin π(γ − δ)
.

And so, using the result of §12.14 freely, by §14.11:

I =
π

sin π(γ − δ)

{
Γ(α + δ)Γ(β + δ)

Γ(1 − γ + δ)
F(α + δ, β + δ; 1 − γ + δ; 1)

−
Γ(α + γ)Γ(β + γ)

Γ(1 − δ + γ)
F(α + γ, β + γ; 1 − δ + γ; 1)

}
=
πΓ(1 − α − β − γ − δ)

sin π(γ − δ)

{
Γ(α + δ)Γ(β + δ)

Γ(1 − α − γ)Γ(1 − β − γ)

−
Γ(α + γ)Γ(β + γ)

Γ(1 − α − δ)Γ(1 − β − δ)

}
=

Γ(α + γ)Γ(β + γ)Γ(α + δ)Γ(β + δ)

Γ(α + β + γ + δ) sin π(α + β + γ + δ) sin π(γ − δ)
{sin π(α + γ) sin π(β + γ) − sin π(α + δ) sin π(β + δ)} .

But

2 sin π(α + γ) sin π(β + γ) − 2 sin π(α + δ) sin π(β + δ)
= cos π(α − β) − cos π(α + β + 2γ) − cos π(α − β) + cos π(α + β + 2δ)
= 2 sin π(γ − δ) sin π(α + β + γ + δ).

Therefore

I =
Γ(α + γ)Γ(β + γ)Γ(α + δ)Γ(β + δ)

Γ(α + β + γ + δ)

which is the required result; it has, however, only been proved when Re(α+ β+γ+δ−1) < 0;
but, by the theory of analytic continuation, it is true throughout the domain through which
both sides of the equation are analytic functions of, say α, and hence it is true for all values
of α, β, γ, δ for which none of the poles of Γ(α+ s)Γ(β+ s), qua function of s, coincide with
any of the poles of Γ(γ − s)Γ(δ − s).

Corollary 14.5.2 Writing s + k, α − k, β − k, γ + k, δ + k in place of s, α, β, γ, δ, we see that
the result is still true when the limits of integration are −k ± i∞, where k is any real constant.

8 These two series converge (§2.38).
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14.53 The connexion between hypergeometric functions of z and of 1 − z

We have seen that, if |arg(−z)| < π,

Γ(a)Γ(b)
Γ(c)

F(a, b; c; z) =
1

2πi

∫ i∞

−i∞

Γ(a + s)Γ(b + s)Γ(−s)
Γ(c + s)

(−z)sds

=
1

2πi

∫ i∞

−i∞

{
1

2πi

∫ −k+i∞

−k−i∞

Γ(a + t)Γ(b + t)Γ(s − t)Γ(c − a − b − t) dt
}

×
Γ(−s) (−z)s

Γ(c − a)Γ(c − b)
ds,

by Barnes’ lemma.
If k be so chosen that the lower bound of the distance between the s contour and the t

contour is positive (not zero), it may be shewn that the order of the integrations9 may be
interchanged.

Carrying out the interchange, we see that if arg(1 − z) be given its principal value,
Γ(c − a)Γ(c − b)Γ(a)Γ(b)

Γ(c)
F(a, b; c; z)

=
1

2πi

∫ −k+i∞

−k−i∞

Γ(a + t)Γ(b + t)Γ(c − a − b − t){
1

2πi

∫ i∞

−i∞

Γ(s − t)Γ(−s)(−z)s ds
}

dt

=
1

2πi

∫ −k+i∞

−k−i∞

Γ(a + t)Γ(b + t)Γ(c − a − b − t)Γ(−t)(1 − z)t dt .

Now, when |arg(1 − z)| < 2π and |1 − z | < 1, this last integral may be evaluated by the
methods of Barnes’ lemma (§14.52); and so we deduce that

Γ(c − a)Γ(c − b)Γ(a)Γ(b)F(a, b; c; z)

= Γ(c)Γ(a)Γ(b)Γ(c − a − b)F (a, b; a + b − c + 1; 1 − z)

+ Γ(c)Γ(c − a)Γ(c − b)Γ(a + b − c)(1 − z)c−a−b

× F(c − a, c − b; c − a − b + 1; 1 − z),

a result which shews the nature of the singularity of F(a, b; c; z) at z = 1.
This result has to be modified if c−a− b is an integer or zero, as then Γ(a+ t)Γ(b+ t)Γ(c−

a− b− t)Γ(−t) has double poles, and logarithmic terms may appear. With this exception, the
result is valid when |arg(−z)| < π, |arg1 − z | < π. Taking |z | < 1, we may make z tend to a
real value, and we see that the result still holds for real values of z such that 0 < z < 1.

14.6 Solution of Riemann’s equation by a contour integral
We next proceed to establish a result relating to the expression of the hypergeometric function
by means of contour integrals.

9 Methods similar to those of §4.51 may be used, or it may be proved without much difficulty that conditions
established by Bromwich [102, §177] are satisfied.
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Let the dependent variable u in Riemann’s P-equation (§10.7) be replaced by a new
dependent variable I, defined by the relation

u = (z − a)α(z − b)β(z − c)γ I .

The differential equation satisfied by I is easily found to be

d2I
dz2 +

{
1 + α − α′

z − a
+

1 + β − β′

z − b
+

1 + γ − γ ′

z − c

}
dI
dz

+
(α + β + γ) {(α + β + γ + 1)z +

∑
a(α + β′ + γ ′ − 1)}

(z − a)(z − b)(z − c)
I = 0,

which can be written in the form

Q(z)
d2I
dz2 − {(λ − 2)Q′(z) + R(z)}

dI
dz

+
{ 1

2 (λ − 2)(λ − 1)Q′′(z) + (λ − 1) R′(z)
}

I = 0,

where

λ = 1 − α − β − γ = α′ + β′ + γ ′,
Q(z) = (z − a)(z − b)(z − c),

R(z) =
∑
(α′ + β + γ)(z − b)(z − c).

It must be observed that the function I is not analytic at ∞, and consequently the above
differential equation in I is not a case of the generalised hypergeometric equation.

We shall now shew that this differential equation can be satisfied by an integral of the form

I =
∫
C

(t − a)α
′+β+γ−1(t − b)α+β

′+γ−1(t − c)α+β+γ
′−1(z − t)−α−β−γ dt,

provided that C, the contour of integration, is suitably chosen.
For, if we substitute this value of I in the differential equation, the condition10 that the

equation should be satisfied becomes∫
C

(t − a)α
′+β+γ−1(t − b)α+β

′+γ−1(t − c)α+β+γ
′−1(z − t)−α−β−γ−2 K dt = 0,

where

K = (λ − 2)
{
Q(z) + (t − z)Q′(z) + 1

2 (t − z)2Q′′(z)
}

+(t − z){R(z) + (t − z)R′(z)}

= (λ − 2){Q(t) − (t − z)3} + (t − z){R(t) − (t − z)2
∑
(α′ + β + γ)}

= −(1 + α + β + γ)(t − a)(t − b)(t − c) +
∑
(α′ + β + γ)(t − b)(t − c)(t − z).

It follows that the condition to be satisfied reduces to
∫
C

dV
dt

dt = 0, where

V = (t − a)α
′+β+γ(t − b)α+β

′+γ(t − c)α+β+γ
′

(t − z)−(1+α+β+γ).
10 The differentiations under the sign of integration are legitimate (§4.2) if the path C does not depend on z and

does not pass through the points a, b, c, z; ifC be an infinite contour or if C passes through the points
a, b, c or z, further conditions are necessary.
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The integral I is therefore a solution of the differential equation, when C is such that V
resumes its initial value after t has described C. Now

V = (t − a)α
′+β+γ−1 (t − b)α+β

′+γ−1 (t − c)α+β+γ
′−1 (z − t)−α−β−γU,

where U = (t − a)(t − b)(t − c)(z− t)−1. Now U is a one-valued function of t; hence, if C be a
closed contour, it must be such that the integrand in the integral I resumes its original value
after t has described the contour.

Hence finally any integral of the type

(z − a)α(z − b)β(z − c)γ
∫
C

(t − a)β+γ+α
′−1(t − b)γ+α+β

′−1

× (t − c)α+β+γ
′−1(z − t)−α−β−γ dt,

where C is either a closed contour in the t-plane such that the integrand resumes its initial
value after t has described it, or else is a simple curve such that V has the same value at its
termini, is a solution of the differential equation of the general hypergeometric function.

Note The reader is referred to the memoirs of Pochhammer [527], and Hobson [314], for
an account of the methods by which integrals of this type are transformed so as to give rise
to the relations of §14.51 and §14.53.

Example 14.6.1 To deduce a real definite integral which, in certain circumstances, repre-
sents the hypergeometric series.

The hypergeometric series F(a, b; c; z) is, as already shewn, a solution of the differential
equation defined by the scheme

P


0 ∞ 1
0 a 0 z

1 − c b c − a − b

 .
If in the integral

(z − a)α
(
1 −

z
b

)β
(z − c)γ

∫
C

(t − a)β+γ+α
′−1

(
1 −

t
b

)γ+α+β′−1

× (t − c)α+β+γ
′−1(t − z)−α−β−γ dt,

which is a constant multiple of that just obtained, we make b→∞ (without paying attention
to the validity of this process), we are led to consider∫

C

ta−c(t − 1)c−b−1(t − z)−a dt .

Now the limiting form of V in question is

t1−c+a (t − 1)c−b (t − z)−1−a,

and this tends to zero at t = 1 and t = ∞, provided Re(c) > Re(b) > 0. We accordingly

consider
∫ ∞

1
ta−c(t − 1)c−b−1(t − z)−a dt, where z is not11 positive and greater than 1. In this

11 This ensures that the point t = 1/z is not on the path of integration.
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integral, write t = u−1; the integral becomes∫ 1

0
ub−1(1 − u)c−b−1(1 − uz)−a du.

We are therefore led to expect that this integral may be a solution of the differential equation
for the hypergeometric series.

The reader will easily see that if Re(c) > Re(b) > 0, and if arg u = arg(1 − u) = 0, while
the branch of 1 − uz is specified by the fact that (1 − uz)−a → 1 as u → 0, the integral just
found is

Γ(b)Γ(c − b)
Γ(c)

F(a, b; c; z).

This can be proved by expanding12 (1 − uz)−a in ascending powers of z when |z | < 1 and
using §12.41.

Example 14.6.2 Deduce the result of (§14.11) from the preceding example.

14.61 Determination of an integral which represents P(α)

We shall now shew how an integral which represents the particular solution P(α) (§14.3) of
the hypergeometric differential equation can be found.

We have seen (§14.6) that the integral

I = (z − a)α(z − b)β(z − c)γ
∫
C

(t − a)β+γ+α
′−1(t − b)γ+α+β

′−1

× (t − c)α+β+γ
′−1(t − z)−α−β−γ dt

satisfies the differential equation of the hypergeometric function, provided C is a closed
contour such that the integrand resumes its initial value after t has described C. Now the
singularities of this integrand in the t-plane are the points a, b, c, z; and after describing the
double circuit contour (§12.43) symbolised by (b+, c+, b−, c−) the integrand returns to its
original value.

Now, if z lie in a circle whose centre is a, the circle not containing either of the points b and
c, we can choose the path of integration so that t is outside this circle, and so |z − a| < |t − a|
for all points t on the path.

Now choose arg(z − a) to be numerically less than π and arg(z − b), arg(z − c) so that they
reduce to arg(a − b), arg(a − c) when z → a, the values of arg(a − b), arg(a − c) being fixed.
Now fix arg(t − a), arg(t − b), arg(t − c) at the point N at which the path of integration starts
and ends; also choose arg(t − z) to reduce to arg(t − a) when z → a.

Then

(z − b)β = (a − b)β
{
1 + β

( z − a
a − b

)
+ · · ·

}
,

(z − c)γ = (a − c)γ
{
1 + γ

( z − a
a − c

)
+ · · ·

}
,

12 The justification of this process by (§4.7) is left to the reader.



14.7 Relations between contiguous hypergeometric functions 307

and since we can expand (t − z)−a−β −γ into an absolutely and uniformly convergent series

(t − a)−a−β−γ
{
1 − (α + β + γ)

a − z
t − a

+ · · ·
}
,

we may expand the integral into a series which converges absolutely.
Multiplying up the absolutely convergent series, we get a series of integer powers of z − a

multiplied by (z − a)α. Consequently we must have

I = (a − b)β(a − c)γP(α)
∫ (b+,c+,b−,c−)

N

(t − a)β+γ+α
′−1

× (t − b)γ+α+β
′−1(t − c)α+β+γ

′−1 dt .

We can define P(α
′), P(β), P(β

′),P(γ), P(γ
′) by double circuit integrals in a similar manner.

14.7 Relations between contiguous hypergeometric functions
Let P(z) be a solution of Riemann’s equation with argument z, singularities a, b, c, and
exponents α, α′, β, β′, γ, γ ′. Further, let P(z) be a constant multiple of one of the six
functions P(α), P(α

′), P(β), P(β
′), P(γ), P(γ

′). Let P`+1,m−1(z) denote the function which is
obtained by replacing two of the exponents, ` and m, in P(z) by ` + 1 and m− 1 respectively.
Such functions P`+1,m−1(z) are said to be contiguous to P(z). There are 6×5 = 30 contiguous
functions, since ` and m may be any two of the six exponents.

It was first shewn by Riemann [556]13 that the function P(z) and any two of its contiguous
functions are connected by a linear relation, the coefficients in which are polynomials in z.
There will clearly be 1

2 × 30 × 29 = 435 of these relations. To shew how to obtain them, we
shall take P(z) in the form

P(z) = (z − a)α(z − b)β(z − c)γ
∫
C

(t − a)β+γ+α
′−1(t − b)γ+α+β

′−1

× (t − c)α+β+γ
′−1 (t − z)α−β−γ dt,

where C is a double circuit contour of the type considered in (§14.61).
First, since the integral round C of the differential of any function which resumes its initial

value after t has described C is zero, we have

0 =
∫
C

d
dt

{
(t − a)α

′+β+γ(t − b)α+β
′+γ−1(t − c)α+β+γ

′−1(t − z)−α−β−γ
}

dt.

On performing the differentiation by differentiating each factor in turn, we get

(α′ + β + γ)P + (α + β′ + γ − 1)Pα′+1, β′−1 + (α + β + γ
′ − 1)Pα′+1, γ′−1

=
(α + β + γ)

z − b
Pβ+1,γ′−1.

Considerations of symmetry shew that the right-hand side of this equation can be replaced
by

(α + β + γ)

z − c
Pβ′−1,γ+1.

13 Gauss had previously obtained 15 relations between contiguous hypergeometric functions.
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These, together with the analogous formulae obtained by cyclical interchange14 of (a, α,α′)
with (b, β, β′) and (c, γ, γ ′), are six linear relations connecting the hypergeometric function
P with the twelve contiguous functions

Pα+1,β′−1, Pβ+1,γ′−1, Pγ+1,α′−1, Pα+1,γ′−1, Pβ+1,α′−1, Pγ+1,β′−1,

Pα′+1,β′−1, Pα′+1,γ′−1, Pβ′+1,γ′−1, Pβ′+1,α′−1, Pγ′+1,α′−1, Pγ′+1,β′−1.

Next, writing t − a = (t − b) + (b − a), and using15 Pα′−1 to denote the result of writing
α′ − 1 for α′ in P, we have

P = Pα′−1,β′+1 + (b − a)Pα′−1.

Similarly P = Pα′−1,γ′+1 + (c − a)Pα′−1. Eliminating Pa′−1 from these equations, we have

(c − b)P + (a − c)Pα′−1,β′+1 + (b − a)Pα′−1,γ′+1 = 0.

This and the analogous formulae are three more linear relations connecting P with the last
six of the twelve contiguous functions written above.

Next, writing (t − z) = (t − a) − (z − a), we readily find the relation

P =
1

z − b
Pβ+1,γ′−1 − (z − a)α+1(z − b)β(z − c)γ

×

∫
C

(t − a)β+γ+α
′−1(t − b)γ+α+β

′−1(t − c)α+β+γ
′−1(t − z)−α−β−γ−1 dt,

which gives the equations

(z − a)−1 {
P − (z − b)−1Pβ+1,γ′−1

}
= (z − b)−1 {

P − (z − c)−1Pγ+1,α′−1
}

= (z − c)−1 {
P − (z − a)−1 Pα+1,β′−1

}
.

These are twomore linear equations between P and the above twelve contiguous functions.
We have therefore now altogether found eleven linear relations between P and these twelve

functions, the coefficients in these relations being rational functions of z. Hence each of these
functions can be expressed linearly in terms of P and some selected one of them; that is,
between P and any two of the above functions there exists a linear relation. The coefficients in
this relation will be rational functions of z, and therefore will become polynomials in z when
the relation is multiplied throughout by the least common multiple of their denominators.

The theorem is therefore proved, so far as the above twelve contiguous functions are
concerned. It can, without difficulty, be extended so as to be established for the rest of the
thirty contiguous functions.

Corollary 14.7.1 If functions be derived from P by replacing the exponents α, α′, β, β′, γ,
γ ′ by α + p, α′ + q, β + r , β′ + s, γ + t, γ ′ + u, where p, q, r , s, t ,u are integers satisfying
the relation

p + q + r + s + t + u = 0,

then between P and any two such functions there exists a linear relation, the coefficients in
which are polynomials in z.
14 The interchange is to be made only in the integrands; the contour C is to remain, unaltered.
15 Pa′−1 is not a function of Riemann’s type since the sum of its exponents at a, b, c is not unity.
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This result can be obtained by connecting P with the two functions by a chain of inter-
mediate contiguous functions, writing down the linear relations which connect them with
P and the two functions, and from these relations eliminating the intermediate contiguous
functions.

Many theorems which will be established subsequently, e.g. the recurrence formulae for
the Legendre functions (§15.21), are really cases of the theorem of this article.

14.8 Miscellaneous examples
Example 14.1 Shew that

F(a, b + 1; c; z) − F(a, b; c; z) =
az
c

F(a + 1, b + 1; c + 1; z).

Example 14.2 Shew that if a is a negative integer while β and γ are not integers, then the
ratio F(α, β;α + β + 1 − γ; 1 − x)

/
F(α, β; γ; x) is independent of x, and find its value.

Example 14.3 If P(z) be a hypergeometric function, express its derivatives
dP
dz

and
d2P
dz2

linearly in terms of P and contiguous functions, and hence find the linear relation between

P,
dP
dz

, and
d2P
dz2 , i.e. verify that P satisfies the hypergeometric differential equation.

Example 14.4 Shew that F { 1
4,

1
4 ; 1; 4z(1−z)} satisfies the hypergeometric equation satisfied

by F( 12,
1
2 ; 1; z). Shew that, in the left-hand half of the lemniscate |z(1 − z)| = 1

4 , these two
functions are equal; and in the right-hand half of the lemniscate, the former function is equal
to F( 12,

1
2 ; 1; 1 − z).

Example 14.5 (Gauss) If Fa+ = F(a + 1, b; c; x), Fa− = F(a − 1, b; c; x) determine the 15
linear relations with polynomial coefficients which connect F(a, b; c; x) with pairs of the six
functions Fa+, Fa−, Fb+, Fb−, Fc+, Fc−.

Example 14.6 Shew that the hypergeometric equation

x(x − 1)
d2y

dx2 − {γ − (α + β + 1)x}
dy
dx
+ αβy = 0

is satisfied by the two integrals (supposed convergent)∫ 1

0
zβ−1(1 − z)γ−β−1(1 − xz)−α dz

and ∫ 1

0
zβ−1(1 − z)α−γ{1 − (1 − x)z}−α dz.

Example 14.7 (Math. Trip. 1896) Shew that, for values of x between 0 and 1, the solution
of the equation

x(1 − x)
d2y

dx2 +
1
2
(α + β + 1)(1 − 2x)

dy
dx
− αβy = 0
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is

A F
(
α

2
,
β

2
;

1
2

; (1 − 2x)2
)
+ B(1 − 2x)F

(
α + 1

2
,
β + 1

2
;

3
2
(1 − 2x)2

)
,

where A,B are arbitrary constants and F(α, β; γ; x) represents the hypergeometric series.

Example 14.8 (Hardy) Shew that

lim
x→1−

[
F(α, β; γ; x)−

k∑
n=0

(−1)n
Γ(α + β − γ − n)Γ(γ − α + n)Γ(γ − β + n)Γ(γ)

n !Γ(γ − α)Γ(γ − β)Γ(α)Γ (β)
(1 − x)n+γ−α−β

]
=
Γ(γ − α − β)Γ(γ)

Γ(γ − α)Γ(γ − β)

where k is the integer such that k ≤ Re(α + β − γ) < k + 1. (This specifies the manner in
which the hypergeometric function becomes infinite when x → 1− provided that α + β − γ
is not an integer.)

Example 14.9 (M. J. M. Hill [308]) Shew that, when Re(γ − α − β) < 0, then

Sn

/
Γ(γ)nα+β−γ

(α + β − γ)Γ(α)Γ(β)
→ 1 as n→∞,

where Sn denotes the sum of the first n terms of the series for F(α, β; γ; 1).

Example 14.10 (Appell [29]) Shew that, if y1, y2 be independent solutions of

d2y

dx2 + P
dy
dx
+Qy = 0,

then the general solution of

d3z
dx3 + 3P

d2z
dx2 +

{
2P2 +

dP
dx
+ 4Q

}
dz
dx
+

{
4PQ + 2

dQ
dx

}
z = 0

is z = Ay1
2 + By1y2 + cy2

2, where A,B,C are constants.

Example 14.11 (Clausen [148]) Deduce from Example 14.10 above that, if a + b + 1
2 = c,

(F(a, b; c; x))2 =
Γ(c)Γ(2c − 1)

Γ(2a)Γ(2b)Γ(a + b)

∞∑
n=0

Γ(2a + n)Γ(a + b + n)Γ(2b + n)
n!Γ(c + n)Γ(2c − 1 + n)

xn.

Example 14.12 (Kummer) Shew that, if |x | < 1
2 and |x(1 − x) | < 1

4 ,

F
(
2α,2β;α + β +

1
2

; x
)
= F

(
α, β;α + β +

1
2

; 4x(1 − x)
)
.

Example 14.13 Deduce from Example 14.12 above that

F
(
2α,2β;α + β +

1
2

;
1
2

)
=
Γ(α + β + 1

2 )Γ(
1
2 )

Γ(α + 1
2 )Γ(β +

1
2 )
.
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Example 14.14 (Watson [647]) Shew that, if ω = e2πi/3 and Re(a) < 1,

F(a,3a − 1 ; 2a;−ω2) = 33(α−1)/2 exp
[
πi(3a − 1)

6

]
Γ(2a)Γ(a − 1

3 )

Γ (3a − 1)Γ( 23 )
,

F(a,3a − 1; 2a;−ω) = 33(α−1)/2 exp
[
−
πi(3a − 1)

6

]
Γ(2a)Γ(a − 1

3 )

Γ(3a − 1)Γ( 23 )
.

Example 14.15 (Heymann [302]) Shew that

F
(
−

1
2

n,−
1
2

n +
1
2

; n +
3
2

;−
1
3

)
=

(
8
9

)n Γ( 43 )Γ(n + 3
2 )

Γ( 32 )Γ(n +
4
3 )
.

Example 14.16 (Cayley [133]. See also Orr [510]) If

(1 − x)α+β−γF(2α,2β; 2γ; x) = 1 + Bx + Cx2 + Dx3 + · · · ,

shew that

F(α, β; γ + 1
2 ; x) F(γ − α, γ − β; γ + 1

2 ; x)

= 1 +
γ

γ + 1
2

Bx +
γ(γ + 1)

(γ + 1
2 )(γ +

3
2 )

Cx2

+
γ(γ + 1)(γ + 2)

(γ + 1
2 )(γ +

3
2 )(γ +

5
2 )

Dx3 + · · · .

Example 14.17 (Le Vavasseur) If the function F(α, β, β′, γ; x, y) be defined by the equation

F(α, β, β′, γ; x, y) =
Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0
uα−1(1 − u)γ−α−1(1 − ux)−β (1 − uy)−β

′

du,

then shew that between F and any three of its eight contiguous functions

F(α ± 1),F(β ± 1),F(β′ ± 1),F(γ ± 1),

there exists a homogeneous linear equation, whose coefficients are polynomials in x and y.

Example 14.18 (Math. Trip. 1893) If γ − α − β < 0, shew that, as x → 1−,

F(α, β; γ; x)
/{

Γ(γ)Γ(α + β − γ)

Γ(α)Γ(β)
(1 − x)γ−α−β

}
→ 1 ,

and that, if γ − α − β = 0, the corresponding approximate formula is

F(α, β; γ; x)
/{

Γ(α + β)

Γ(α)Γ(β)
log

1
1 − x

}
→ 1.

Example 14.19 (Pochhammer) Shew that, when |x | < 1,∫ (x+ , 0+ , x− , 0−)

c

x1−γ(ν − x)γ−α−1να−1(1 − ν)−β dν

= −4eπiγ sin πα sin π(γ − α) ·
Γ(γ − α)Γ(α)

Γ(γ)
F(α, β; γ; x),

where c denotes a point on the straight line joining the points 0, x, the initial arguments of
ν − x and of ν are the same as that of x, and arg(1 − ν) → 0 as ν → 0.
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Example 14.20 (Barnes) If, when |arg(1 − x)| < 2π,

K(x) =
1

2πi

∫ i∞

−i∞

[
Γ(−s)Γ

( 1
2 + s

) ]2
(1 − x)s ds,

and, when |argx | < 2π,

K ′(x) =
1

2πi

∫ i∞

−i∞

[
Γ(−s)Γ

( 1
2 + s

) ]2
xs ds,

by changing the variable s in the integral or otherwise, obtain the following relations:

K(x) = K ′(1 − x), if |arg(1 − x)| < π,

K(1 − x) = K ′(x), if |argx | < π,

K(x) = (1 − x)−1/2K
( x

x − 1

)
, if |arg(1 − x)| < π,

K(1 − x) = x−1/2K
(

x − 1
x

)
, if |argx | < π,

K ′(x) = x−1/2K ′(1/x), if |argx | < π,

K ′(1 − x) = (1 − x)−1/2K ′
(

1
1 − x

)
, if |arg(1 − x)| < π.

Example 14.21 (Barnes) With the notation of the preceding example, obtain the following
results

2K(x) =
∞∑
n=0

[
Γ( 12 + n)

n!

]2

xn,

2πK ′(x) = −
∞∑
n=0

[
Γ( 12 + n)

n!

]2

xn

×

[
log x − 4 log 2 + 4

(
1
1
−

1
2
+ · · · −

1
2n

)]
,

when |x | < 1, |argx | < π; and

K(x) = ∓i(−x)−
1
2 K(1/x) + (−x)−

1
2 K ′(1/x),

when |arg(−x)| < π, the ambiguous sign being the same as the sign of Im(x).

Example 14.22 (Appell [30]) Hypergeometric series in two variables are defined by the
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equations

F1(α; β, β′; γ; x, y) =
∑
m,n

αm+nβmβ
′
n

m!n!γm+n
xmyn,

F2(α; β, β′; γ, γ ′; x, y) =
∑
m,n

αm+nβmβ
′
n

m!n!γmγ ′n
xmyn,

F3(α,α
′, β, β′; γ; x, y) =

∑
m,n

αmα
′
nβmβ

′
n

m!n!γm+n
xmyn,

F4(α, β; γ, γ ′; x, y) =
∑
m,n

αm+nβm+n
m!n!γmγ ′n

xmyn,

where αm = α(α + 1) · · · (α + m − l), and
∑
m,n

means
∞∑

m=0

∞∑
n=0

.

Obtain the differential equations

x (1 − x)
∂2F1

∂x2 + y(1 − x)
∂2F1

∂x∂y
+ {γ − (α + β + 1)x}

∂F1

∂x
− βy

∂F1

∂y
− αβF1 = 0,

x(1 − x)
∂2F2

∂x2 − xy
∂2F2

∂x∂y
+ {γ − (α + β + 1)x}

∂F2

∂x
− βy

∂F2

∂y
− αβF2 = 0,

x(1 − x)
∂2F3

∂x2 + y
∂2F3

∂x∂y
+ {γ − (α + β + 1)x}

∂F3

∂x
− αβF3 = 0,

x(1 − x)
∂2F4

∂x2 − 2xy
∂2F4

∂x∂y
− y2 ∂

2F4

∂y2 + { γ − (α + β + 1)x}
∂F4

∂x

− (α + β + 1)y
∂F4

∂y
− αβF4 = 0,

and four similar equations, derived from these by interchanging x with y and α, β, γ with
α′, β′, γ ′ when α′, β′, γ ′ occur in the corresponding series.

Example 14.23 (Hermite [292]) If α is negative, and if

α = −ν + a,

where ν is an integer and α is positive, shew that

Γ(x) Γ(α)
Γ(x + α)

=

∞∑
n=1

{
Rn

x + n
+ Gn(x)

}
,

where

Rn =
(−1)n(α − 1)(α − 2) · · · (α − n)

n!
G(−n),

G(x) =
(
1 +

x
α − 1

) (
1 +

x
α − 2

)
· · ·

(
1 +

x
α − ν

)
Gn(x) =

G(x) − G(−n)
x + n

.
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Example 14.24 When α < 1, shew that

Γ(x)Γ(α − x)
Γ(α)

=

∞∑
n=1

Rn

x + n
−

∞∑
n=1

Rn

x − α − n
,

where

Rn =
(−1)nα (α + 1) · · · (α + n − 1)

n!
.

Example 14.25 (Hermite [292]) When α > 1, and ν and a are respectively the integral and
fractional parts of α, shew that

Γ(x)Γ(α − x)
Γ(α)

=

∞∑
n=1

G(x)ρn
x + n

−

∞∑
n=1

G(x)ρν+n
x − a − n

− G(x)
[ ρ0

x − a
+

ρ1

x − a − 1
+ · · · +

ρν−1

x − a − ν + 1

]
,

where
G(x) =

(
1 −

x
a

) (
1 −

x
a + 1

)
· · ·

(
1 −

x
a + ν − 1

)
and

ρn =
(−1)na(a + 1) · · · (a + n − 1)

n!
.

Example 14.26 (Saalschütz [570]) (A number of similar results are given by Dougall
[187].) If

fn(x, y, v) =

1 −
(
n
1

)
x(y + v + n − 1)

y(x + v)
+

(
n
2

)
x(x + 1)(y + v + n − 1)(y + v + n)

y(y + 1)(x + v)(x + v + 1)
− · · · ,

where n is a positive integer and
(n

1

)
,
(n

2

)
, . . . are binomial coefficients, shew that

fn(x, y, v) =
Γ(y)Γ(y − x + n)Γ(x + v)Γ(υ + n)
Γ(y − x)Γ(y + n)Γ(v)Γ(x + v + n)

.

Example 14.27 (Dixon [183]) If

F(α, β, γ; δ, ε; x) = 1 +
αβγ

δε + 1
x +

α(α + 1)β(β + 1)γ(γ + 1)
δ(δ + 1)ε(ε + 1)1 · 2

x2 + · · · ,

shew that, when Re(δ + ε − 3
2α − 1) > 0, then

F(α,α − δ + 1, α − ε + 1; δ, ε; 1)

= 2−α
Γ( 12 )Γ(δ)Γ(ε)Γ(δ + ε −

3
2α − 1)

Γ(δ − 1
2α)Γ(ε −

1
2α)Γ(

1
2 +

1
2α)Γ(δ + ε − α − 1)

.

Example 14.28 (Morley [475]) Shew that, if Re(α) < 2
3 , then

1 +
∞∑
n=1

{
α(α + 1) · · · (α + n − 1)

n!

}3

= cos
( πα

2

) Γ(1 − 3
2α)[

Γ(1 − 1
2α)

]3 .
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Example 14.29 (Dixon [184]) If∫ 1

0

∫ 1

0
xi−1(1 − x)j−1yl−1(1 − y)k−1(1 − xy)m−j−k dx dy = B(i, j, k, l,m),

shew, by integrating with respect to x, and also with respect to y, that B(i, j, k, l,m) is a
symmetric function of i + j, j + k, k + l, l + m, m + i. Deduce that

F(α, β, γ; δ, ε; 1)
Γ(δ)Γ(ε)Γ(δ + ε − α − β − γ)

is a symmetric function of δ, ε, δ + ε − α − β, δ + ε − β − γ, δ + ε − γ − α. For a proof of a
special case by Barnes, see [50].

Example 14.30 If

Fn = F(−n, α + n; γ; x)

=
x1−γ(1 − x)γ−α

γ(γ + 1) · · · (γ + n − 1)
dn

dxn
{xγ+n−1(1 − x)α+n−γ},

shew that, when n is a large positive integer, and 0 < x < 1,

Fn =
Γ(γ)

nγ−
1
2
√
π
(sin φ)

1
2−γ(cos φ)γ−α−

1
2 cos{(2n + a)φ −

π

4
(2γ − 1)} +O

(
1

nγ+
1
2

)
,

where x = sin2 φ.

Note This result is contained in the great memoir by Darboux [163, 164]. For a systematic
development of hypergeometric functions in which one (or more) of the constants is large,
see [652].



15

Legendre Functions

15.1 Definition of Legendre polynomials
Consider the expression (1 − 2zh + h2)−

1
2 ; when |2zh − h2 | < 1, it can be expanded in a

series of ascending powers of 2zh − h2. If, in addition, |2zh| + |h|2 < 1, these powers can be
multiplied out and the resulting series rearranged in any manner (§2.52) since the expansion
of [1 − {|2zh| + |h|2}]−

1
2 in powers of |2zh| + |h|2 then converges absolutely. In particular, if

we rearrange in powers of h, we get

(1 − 2zh + h2)−
1
2 = P0(z) + hP1(z) + h2P2(z) + h3P3(z) + · · · ,

where

P0(z) = 1, P1(z) = z, P2(z) =
1
2
(3z2 − 1), P3(z) =

1
2
(5z3 − 3z),

P4(z) =
1
8
(35z4 − 30z2 + 3), P5(z) =

1
8
(63z5 − 70z3 + 15z),

and generally

Pn(z) =
(2n)!

2n(n!)2

{
zn −

n(n − 1)
2(2n − 1)

zn−2 +
n(n − 1)(n − 2)(n − 3)
2 · 4 · (2n − 1)(2n − 3)

zn−4 − · · ·

}
=

m∑
r=0

(−1)r
(2n − 2r)!

2nr!(n − r)!(n − 2r)!
zn−2r,

where m = 1
2 n or 1

2 (n − 1), whichever is an integer.
If a, b and δ be positive constants, b being so small that 2ab + b2 ≤ 1 − δ, the expansion

of (1 − 2zh + h2)−
1
2 converges uniformly with respect to z and h when |z | ≤ a, |h| ≤ b.

The expressions P0(z),P1(z), . . . , which are clearly all polynomials in z, are known as
Legendre polynomials, Pn(z) being called the Legendre polynomial of degree n. Other names
are Legendre coefficients and Zonal Harmonics. They were introduced into analysis in 1784
by Legendre [420].

It will appear later (§15.2) that these polynomials are particular cases of a more extensive
class of functions known as Legendre functions.

Example 15.1.1 By giving z special values in the expression (1 − 2zh + h2)−
1
2 , shew that

Pn(1) = 1, Pn(−1) = (−1)n,

P2n+1(0) = 0, P2n(0) = (−1)n
1 · 3 · · · (2n − 1)

2 · 4 · · · (2n)
.

316
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Example 15.1.2 (Legendre) From the expansion

(1 − 2h cos θ + h2)−
1
2 =

(
1 +

1
2

heiθ +
1 · 3
2 · 4

h2e2iθ + · · ·

)
×

(
1 +

1
2

he−iθ +
1 · 3
2 · 4

h2e−2iθ + · · ·

)
,

shew that

Pn(cos θ) =
1 · 3 · · · (2n − 1)

2 · 4 · · · (2n)

{
2 cos nθ +

1 · (2n)
2 · (2n − 1)

2 cos(n − 2)θ

+
1 · 3 · (2n) · (2n − 2)

2 · 4 · (2n − 1)(2n − 3)
2 cos(n − 4)θ + · · ·

}
.

Deduce that, if θ be a real angle,

|Pn(cos θ)| ≤
1 · 3 · · · (2n − 1)

2 · 4 · · · 2n

{
2 +

1 · (2n)
2 · (2n − 1)

· 2 +
1 · 3 · (2n)(2n − 2)

2 · 4 · (2n − 1)(2n − 3)
· 2 + · · ·

}
= Pn(1),

so that |Pn(cos θ)| ≤ 1.

Example 15.1.3 (Clare, 1905) Shew that, when z = − 1
2,

Pn = P0P2n − P1P2n−1 + P2P2n−2 − · · · + P2nP0.

15.11 Rodrigues’ formula for the Legendre polynomials [561]
It is evident that, when n is an integer,

dn

dzn
(z2 − 1)n =

dn

dzn

{
n∑

r=0

(−1)r
n!

r!(n − r)!
z2n−2r

}
=

m∑
r=0

(−1)r
n!

r!(n − r)!
(2n − 2r)!
(n − 2r)!

zn−2r,

where m = 1
2 n or 1

2 (n − 1), the coefficients of negative powers of z vanishing. From the
general formula for Pn(z) it follows at once that

Pn(z) =
1

2nn!
dn

dzn
(z2 − 1)n;

this result is known as Rodrigues’ formula.

Example 15.1.4 Shew that Pn(z) = 0 has n real roots, all lying between ±1.

15.12 Schläfli’s integral for Pn(z) [579]
From the result of §15.11 combined with §5.22, it follows at once that

Pn(z) =
1

2πi

∫
C

(t2 − 1)n

2n(t − z)n+1 dt,
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where C is a contour which encircles the point z once counter-clockwise; this result is called
Schläfli’s integral formula for the Legendre polynomials.

15.13 Legendre’s differential equation
We shall now prove that the function u = Pn(z) is a solution of the differential equation

(1 − z2)
d2u
dz2 − 2z

du
dz
+ n(n + 1)u = 0,

which is called Legendre’s differential equation for functions of degree n.
For, substituting Schläfli’s integral in the left-hand side, we have, by §5.22,

(1 − z2)
d2Pn(z)

dz2 − 2z
dPn(z)

dz
+ n(n + 1)Pn(z)

=
(n + 1)

2πi

∫
C

(t2 − 1)n

2n(t − z)n+3 {−(n + 2)(t2 − 1) + 2(n + 1)t(t − z)} dt

=
(n + 1)
2πi · 2n

∫
C

d
dt

{
(t2 − 1)n+1

(t − z)n+2

}
dt,

and this integral is zero, since (t2−1)n+1(t− z)−n−2 resumes its original value after describing
C when n is an integer. The Legendre polynomial therefore satisfies the differential equation.

The result just obtained can be written in the form

d
dz

{
(1 − z2)

dPn(z)
dz

}
+ n(n + 1)Pn(z) = 0.

Note It will be observed that Legendre’s equation is a particular case of Riemann’s equation,
defined by the scheme

P

−1 ∞ 1
0 n + 1 0 z
0 −n 0

 .
Example 15.1.5 Shew that the equation satisfied by

drPn(z)
dzr

is defined by the scheme

P

−1 −∞ 1
−r n + r + 1 −r z
0 −n + r 0

 .
Example 15.1.6 If z2 = η, shew that Legendre’s differential equation takes the form

d2y

dη2 +

{
1

2η
−

1
1 − η

}
dy
dη
+

n(n + 1)y
4η(1 − η)

= 0.

Shew that this is a hypergeometric equation.

Example 15.1.7 Deduce Schläfli’s integral for the Legendre functions, as a limiting case
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of the general hypergeometric integral of §14.6. Hint. Since Legendre’s equation is given by
the scheme

P

−1 ∞ 1
0 n + 1 0 z
0 −n 0

 ,
the integral suggested is

lim
b→∞

(
1 −

z
b

)n+1
∫
C

(t + 1)n(t − 1)n lim
b→∞

(
1 −

t
b

)−n
(t − z)−n−1 dt

=

∫
C

(t2 − 1)n(t − z)−n−1 dt,

taken round a contour C such that the integrand resumes its initial value after describing it;
and this gives Schläfli’s integral.

15.14 The integral properties of the Legendre polynomials
We shall now shew that

∫ 1

−1
Pm(z)Pn(z) dz =


0 (m , n),

2
2n + 1

(m = n).

These two results were given by Legendre in 1784 and 1789.

Let {u}r denote
dru
dzr

; then, if r ≤ n, {(z2 − 1)n}r is divisible by (z2 − 1)n−r ; and so, if

r < n, {(z2 − 1)n}r vanishes when z = 1 and when z = −1.
Now, of the two numbers m,n, let m be that one which is equal to or greater than the other.

Then, integrating by parts continually,∫ 1

−1

{
(z2 − 1)m

}
m

{
(z2 − 1)n

}
n

dz =
[{
(z2 − 1)m

}
m−1

{
(z2 − 1)n

}
n

]1
−1 −∫ 1

−1

{
(z2 − 1)m

}
m−1

{
(z2 − 1)n

}
n+1 dz

...

= (−1)m
∫ 1

−1
(z2 − 1)m

{
(z2 − 1)n

}
n+m

dz,

since
{
(z2 − 1)m

}
m−1,

{
(z2 − 1)m

}
m−2 , . . . vanish at both limits.

Now, when m > n,
{
(z2 − 1)n

}
m+n
= 0, since differential coefficients of (z2 − 1)n of order

higher than 2n vanish; and so, when m is greater than n, it follows from Rodrigues’ formula
that ∫ 1

−1
Pm(z)Pn(z) dz = 0.
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When m = n, we have, by the transformations just obtained,∫ 1

−1

{
(z2 − 1)n

}
n

{
(z2 − 1)n

}
n

dz = (−1)n
∫ 1

−1
(z2 − 1)n

d2n

dz2n (z
2 − 1)n dz

= (2n)!
∫ 1

−1
(1 − z2)n dz

= 2 · (2n)!
∫ 1

0
(1 − z2)n dz

= 2 · (2n)!
∫ 1

2 π

0
sin2n+1 θ dθ

= 2 · (2n)!
2 · 4 · · · (2n)

3 · 5 · · · (2n + 1)
,

where cos θ has been written for z in the integral; hence, by Rodrigues’ formula,∫ 1

−1
{Pn(z)}

2 dz =
2 · (2n)!
(2nn!)2

(2n; n!)2

(2n + 1)!
=

2
2n + 1

.

We have therefore obtained both the required results.

Note It follows that, in the language of Chapter 11, the functions
(
n + 1

2

)1/2 Pn(z) are normal
orthogonal functions for the interval (−1,1).

Example 15.1.8 (Clare, 1908) Shew that, if x > 0,∫ 1

−1
(cosh 2x − z)−

1
2 Pn(z) dz =

√
2
(
n + 1

2

)−1 e−(2n+1)x .

Example 15.1.9 (Clare, 1902) If I =
∫ 1

0
Pm(z)Pn(z) dz, then

(i) I = 1/(2n + 1) when m = n,
(ii) I = 0 when m − n is even,

(iii) I =
(−1)µ+ν

2m+n−1(n − m)(n + m + 1)
n!m!
(ν!)2(µ!)2

when n = 2ν + 1, m = 2µ.

15.2 Legendre functions
Hitherto we have supposed that the degree n of Pn(z) is a positive integer; in fact, Pn(z) has
not been defined except when n is a positive integer. We shall now see how Pn(z) can be
defined for values of n which are not necessarily integers.

An analogy can be drawn from the theory of the Gamma-function. The expression z! as
ordinarily defined (viz. as z(z − 1)(z − 2) · · · 2 · 1) has a meaning only for positive integral
values of z; but when the Gamma-function has been introduced, z! can be defined to be
Γ(z + 1), and so a function z! will exist for values of z which are not integers.

Referring to §15.13, we see that the differential equation

(1 − z2)
d2u
dz2 − 2z

du
dz
+ n(n + 1)u = 0
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is satisfied by the expression

u =
1

2πi

∫
C

(t2 − 1)n

2n(t − z)n+1 dt,

even when n is not a positive integer, provided thatC is a contour such that (t2−1)n+1(t−z)−n−2

resumes its original value after describing C.
Suppose then that n is no longer taken to be a positive integer. The function (t2 − 1)n+1(t −

z)−n−2 has three singularities, namely the points t = 1, t = −1, t = z; and it is clear that after
describing a circuit round the point t = 1 counter-clockwise, the function resumes its original
value multiplied by e2πi(n+1); while after describing a circuit round the point t = z counter-
clockwise, the function resumes its original value multiplied by e2πi(−n−2). If therefore C be
a contour enclosing the points t = 1 and t = z, but not enclosing the point t = −1, then the
function (t2 − 1)n+1(t − z)−n−2 will resume its original value after t has described the contour
C. Hence, Legendre’s differential equation for functions of degree n,

(1 − z2)
d2u
dz2 − 2z

du
dz
+ n(n + 1)u = 0,

is satisfied by the expression

u =
1

2πi

∫ (1+,z+)

A

(t2 − 1)n

2n(t − z)n+1 dt,

for all values of n; the many-valued functions will be specified precisely by taking A on the
real axis on the right of the point t = 1 (and on the right of z if z be real), and by taking
arg(t − 1) = arg(t + 1) = 0 and | arg(t − z)| < π at A.

This expression will be denoted by Pn(z), and will be termed the Legendre function of
degree n of the first kind.

We have thus defined a function Pn(z), the definition being valid whether n is an integer
or not.

Note The function Pn(z) thus defined is not a one-valued function of z; for we might take
two contours as shewn in the figure, and the integrals along them would not be the same; to

make the contour integral unique, make a cut in the t plane from −1 to −∞ along the real
axis; this involves making a similar cut in the z plane, for if the cut were not made, then, as
z varied continuously across the negative part of the real axis, the contour would not vary
continuously. It follows, by §5.31, that Pn(z) is analytic throughout the cut plane.
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15.21 The recurrence formulae
We proceed to establish a group of formulae (which are really particular cases of the relations
between contiguous Riemann P-functions which were shewn to exist in §14.7) connecting
Legendre functions of different degrees.

If C be the contour of §15.2, and writing P′n(z) for d
dz

Pn(z), we have

Pn(z) =
1

2n+1πi

∫
C

(t2 − 1)n

(t − z)n+1 dt; P′n(z) =
n + 1

2n+1πi

∫
C

(t2 − 1)n

(t − z)n+2 dt .

Now
d
dt
(t2 − 1)n+1

(t − z)n+1 =
2(n + 1)t(t2 − 1)n

(t − z)n+1 −
(n + 1)(t2 − 1)n+1

(t − z)n+2 ,

and so, integrating,

0 = 2
∫
C

t(t2 − 1)n

(t − z)n+1 dt −
∫
C

(t2 − 1)n+1

(t − z)n+2 dt .

Therefore
1

2n+1πi

∫
C

(t2 − 1)n

(t − z)n
dt =

1
2n+2πi

∫
C

(t2 − 1)n+1

(t − z)n+2 dt −
z

2n+1πi

∫
C

(t2 − 1)n

(t − z)n+1 dt.

Consequently

Pn+1(z) − zPn(z) =
1

2n+1πi

∫
C

(t2 − 1)n

(t − z)n
dt . (15.1)

Differentiating1 , we get

P′n+1(z) − zP′n(z) − Pn(z) = nPn(z),

and so
P′n+1(z) − zP′n(z) = (n + 1)Pn(z) (15.2)

This is the first of the required formulae.
Next, expanding the equation ∫

C

d
dt

{
t(t2 − 1)n

(t − z)n

}
dt = 0,

we find that ∫
C

(t2 − 1)n

(t − z)n
dt + 2n

∫
C

t2(t2 − 1)n−1

(t − z)n
dt − n

∫
C

t(t2 − 1)
(t − z)n+1 dt = 0.

Writing (t2 − 1) + 1 for t2 and (t − z) + z for t in this equation, we get

(n + 1)
∫
C

(t2 − 1)n

(t − z)n
dt + 2n

∫
C

(t2 − 1)n−1

(t − z)n
dt − nz

∫
C

(t2 − 1)n

(t − z)n+1 dt = 0.

Using (15.1), we have at once

(n + 1) {Pn+1(z) − zPn(z)} + nPn−1(z) − nzPn(z) = 0.
1 The process of differentiating under the sign of integration is readily justified by §4.2.
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That is to say
(n + 1)Pn+1(z) − (2n + 1)zPn(z) + nPn−1(z) = 0, (15.3)

a relation2 connecting three Legendre functions of consecutive degrees. This is the second
of the required formulae.

We can deduce the remaining formulae from (15.2) and (15.3) thus:
Differentiating (15.3), we have

(n + 1)
{
P′n+1(z) − zP′n(z)

}
− n

{
zP′n(z) − P′n−1(z)

}
− (2n + 1)Pn(z) = 0.

Using (15.2) to eliminate P′n+1(z), and then dividing by3 n we get

zP′n(z) − P′n−1(z) = nPn(z). (15.4)

Adding (15.2) and (15.4) we get

P′n+1(z) − P′n−1(z) = (2n + 1)Pn(z). (15.5)

Lastly, writing n−1 for n in (15.2) and eliminating P′n−1(z) between the equation so obtained
and (15.4), we have

(z2 − 1)P′n(z) = nzPn(z) − nPn−1(z). (15.6)

The formulae (15.2), (15.3), (15.4), (15.5), (15.6), are called the recurrence formulae.

Note The above proof holds whether n is an integer or not, i.e. it is applicable to the general
Legendre functions. Another proof which, however, only applies to the case when n is a
positive integer (i.e. is only applicable to the Legendre polynomials) is as follows:

Write V = (1− 2hz + h2)−
1
2 . Then, equating coefficients4 of powers of h in the expansions

on each side of the equation

(1 − 2hz + h2)
∂V
∂h
= (z − h)V,

we have nPn(z) − (2n − 1)zPn−1(z) + (n − 1)Pn−2(z) = 0,which is the formula (15.3).
Similarly, equating coefficients of powers of h in the expansions on each side of the

equation

h
∂V
∂h
= (z − h)

∂V
∂z
,

we have

z
dPn(z)

dz
−

dPn−1(z)
dz

= nPn(z),

which is the formula (15.4). The others can be deduced from these.

Example 15.2.1 (Hargreaves) Shew that, for all values of n,

d
dz
{z(Pn

2 + P2
n+1) − 2PnPn+1} = (2n + 3)P2

n+1 − (2n + 1)P2
n.

2 This relation was given in substance by Lagrange [392] in a memoir on probability.
3 If n = 0, we have P0(z) = 1, P−1(z) = 1, and the result (15.4) is true but trivial.
4 The reader is recommended to justify these processes.
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Example 15.2.2 (Trinity, 1900) If

Mn(x) =
[(

d
dz

)n
(zexz cosech z)

]
z=0

,

shew that
dMn(x)

dx
= nMn−1(x) and

∫ 1

−1
Mn(x) dx = 0.

Example 15.2.3 (Clare, 1898) Prove that if m and n are integers such that m ≤ n, both
being even or both odd, ∫ 1

−1

dPm(z)
dz

dPn(z)
dz

dz = m(m + 1).

Example 15.2.4 (Math. Trip. 1897) Prove that, if m, n are integers and m ≥ n,∫ 1

−1

d2Pm(z)
dz2

d2Pn(z)
dz2 dz =

(n − 1)n(n + 1)(n + 2)
48

{3m(m + 1) − n(n + 1) + 6}

× {1 + (−1)n+m}.

15.211 The expression of any polynomial as a series of Legendre polynomials
Let fn(z) be a polynomial of degree n in z. Then it is always possible to choose a0,a1, . . . ,an

so that
fn(z) ≡ a0P0(z) + a1P1(z) + · · · + anPn(z),

for, on equating coefficients of zn, zn−1, . . . on each side, we obtain equations which determine
an,an−1, . . . uniquely in turn, in terms of the coefficients of powers of z in fn(z).

To determine a0,a1, . . . ,an in the most simple manner, multiply the identity by Pr (z), and
integrate. Then, by §15.14, ∫ 1

−1
fn(z)Pr (z) dz =

2ar

2r + 1
,

when r = 0,1,2, . . . ,n; when r > n, the integral on the left vanishes.

Example 15.2.5 (Legendre [421]) Given zn = a0P0(z)+a1P1(z)+ · · ·+anPn(z), determine
a0,a1, . . . ,an.
Hint. Equate coefficients of zn on both sides; this gives

an =
2n(n!)2

(2n)!
.

Let In,m =
∫ 1

−1
znPm(z) dz, so that, by the result just given,

Im,m =
2m+1(m!)2

(2m + 1)!
.

Nowwhen n−m is odd, In,m is the integral of an odd function with limits±1, and so vanishes;
and In,m also vanishes when n − m is negative and even.
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To evaluate In,m when n −m is a positive even integer, we have from Legendre’s equation

m(m + 1)
∫ 1

−1
znPm(z) dz = −

∫ 1

−1
zn

d
dz
{(1 − z2)P′m(z)} dz

= −
[
zn(1 − z2)P′m(z)

]1
−1 + n

∫ 1

−1
zn−1(1 − z2)P′m(z) dz

= n
[
zn−1(1 − z2)Pm(z)

]1
−1

−n
∫ 1

−1
{(n − 1)zn−2 − (n + 1)zn}Pm(z) dz,

on integrating by parts twice; and so

m(m + 1)In,m = n(n + 1)In,m − n(n − 1)In−2,m.

Therefore

In,m =
n(n − 1)

(n − m)(n + m + 1)
In−2,m

=
n(n − 1) · · · (m + 1)

(n − m)(n − 2 − m) · · · 2 · (n + m + 1)(n + m − 1) · · · (2m + 3)
Im,m,

by carrying on the process of reduction.
Consequently

In,m =
2m+1n!( 12 n + 1

2 m)!
( 12 n − 1

2 m)!(n + m + 1)!
,

and so

am =


0, when n − m is odd or negative and

(2m + 1)2mn!( 12 n + 1
2 m)!

( 12 n − 1
2 m)!(n + m + 1)!

when n − m is even and positive.
(15.7)

Example 15.2.6 Express cos nθ as a series of Legendre polynomials of cos θ when n is an
integer.

Example 15.2.7 (St John’s, 1899) Evaluate the integrals∫ 1

−1
zPn(z)Pn+1(z) dz,

∫ 1

−1
z2Pn(z)Pn+1(z) dz.

Example 15.2.8 (Trinity, 1894) Shew that∫ 1

−1
(1 − z2) {P′n(z)}

2 dz =
2n(n + 1)

2n + 1
.

Example 15.2.9 (St John’s, 1898) Shew that

nPn(cos θ) =
n∑

r=1

cos rθPn−r (cos θ).
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Example 15.2.10 (Trinity, 1895) If un =

∫ 1

−1
(1 − z2)nP2m(z) dz, where m < n, shew that

(n − m)(2n + 2m + 1)un = 2n2un−1.

15.22 Murphy’s expression of Pn(z) as a hypergeometric function
This appears in [482]. Murphy’s result was obtained only for the Legendre polynomials.

Since (§15.13) Legendre’s equation is a particular case of Riemann’s equation, it is to be
expected that a formula can be obtained giving Pn(z) in terms of hypergeometric functions.
To determine this formula, take the integral of §15.2 for the Legendre function and suppose
that | 1− z | < 2; to fix the contour C, let δ be any constant such that 0 < δ < 1, and suppose
that z is such that |1 − z | ≤ 2(1 − δ); and then take C to be the circle5 |1 − t | = 2 − δ. Since����1 − z

1 − t

���� ≤ 2 − 2δ
2 − δ

< 1,

we may expand (t − z)−n−1 into the uniformly convergent series6

(t − z)−n−1 = (t − 1)−n−1

{
1 + (n + 1)

z − 1
t − 1

+
(n + 1)(n + 2)

2!

(
z − 1
t − 1

)2

+ · · ·

}
.

Substituting this result in Schläfli’s integral, and integrating term-by-term (§4.7) we get

Pn(z) =
∞∑
r=0

(z − 1)r

2n+1πi
(n + 1)(n + 2) · · · (n + r)

r!

∫ (1+, z+)

A

(t2 − 1)n

(t − 1)n+1+r dt

=

∞∑
r=0

(z − 1)r (n + 1)(n + 2) · · · (n + r)
2n(r!)2

[
dr

dtr
(t + 1)n

]
t=1
,

by §5.22. Since arg(t + 1) = 0 when t = 1, we get[
dr

dtr
(t + 1)n

]
t=1
= 2n−rn(n − 1) · · · (n − r + 1),

and so, when |1 − z | ≤ 2(1 − δ) < 2, we have

Pn(z) =
∞∑
r=0

(n + 1)(n + 2) · · · (n + r) · (−n)(1 − n) · · · (r − 1 − n)
(r!)2

(
1
2
−

1
2

z
)r

= F
(
n + 1,−n; 1;

1
2
−

1
2

z
)
.

This is the required expression; it supplies a reason §14.53 why the cut from −1 to −∞
could not be avoided in §15.2.

Corollary 15.2.1 From this result, it is obvious that, for all values of n,

Pn(z) = P−n−1(z).
5 This circle contains the points t = 1, t = z.
6 The series terminates if n be a negative integer.
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Note When n is a positive integer, the result gives the Legendre polynomial as a polynomial
in 1 − z with simple coefficients.

Example 15.2.11 (Trinity, 1907) Shew that, if m be a positive integer,{
dm+1Pm+n(z)

dzm+1

}
z=1
=

Γ(2m + n + 2)
2m+1 (m + 1)!Γ(n)

.

Example 15.2.12 (Murphy) Shew that the Legendre polynomial Pn(cos θ) is equal to

(−1)nF
(
n + 1,−n; 1; cos2(θ/2)

)
,

and to
cosn (θ/2) × F

(
−n,−n; 1; tan2(θ/2)

)
.

15.23 Laplace’s integrals for Pn(z)

This appears in Laplace’s Mécanique Céleste, [409, Livre XI, Ch. 2.]. For the contour
employed in this section, and for some others introduced later in the chapter, we are indebted
to Mr J. Hodgkinson.

We shall next shew that, for all values of n and for certain values of z, the Legendre
function Pn(z) can be represented by the integral (called Laplace’s first integral)

1
π

∫ π

0
{z + (z2 − 1)

1
2 cos φ}n dφ.

(A) Proof applicable only to the Legendre polynomials.
When n is a positive integer, we have, by §15.12,

Pn(z) =
1

2n+1πi

∫
C

(t2 − 1)n

(t − z)(n+1) dt,

where C is any contour which encircles the point z counter-clockwise. Take C to be the circle
with centre z and radius |z2 − 1|1/2, so that, on C, t = z + (z2 − 1) 1

2 eiφ, where φ may be taken
to increase from −π to π.

Making the substitution, we have, for all values of z,

Pn(z) =
1

2n+1πi

∫ π

−π

(
{z − 1 + (z2 − 1) 1

2 eiφ}{z + 1 + (z2 − 1) 1
2 eiφ}

(z2 − 1) 1
2 eiφ

)n
i dφ

=
1

2π

∫ π

−π

{z + (z2 − 1)
1
2 cos φ}n dφ

=
1
π

∫ π

0
{z + (z2 − 1)

1
2 cos φ}n dφ,

since the integrand is an even function of φ. The choice of the branch of the two-valued
function (z2 − 1) 1

2 is obviously a matter of indifference.
(B) Proof applicable to the Legendre functions, where n is unrestricted.

Make the same substitution as in (A) in Schläfli’s integral defining Pn(z); it is, however,
necessary in addition to verify that t = 1 is inside the contour and t = −1 outside it, and it is
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also necessary that we should specify the branch of {z + (z2 − 1) 1
2 cos φ}n, which is now a

many-valued function of φ.
The conditions that t = 1, t = −1 should be inside and outside C respectively are that the

distances of z from these points should be less and greater than |z2 − 1| 12 . These conditions
are both satisfied if |z − 1| < |z + 1|, which gives Re(z) > 0, and so (giving arg z its principal
value) we must have | arg z | < 1

2π.
Therefore

Pn(z) =
1

2π

∫ π

−π

{z + (z2 − 1)
1
2 cos φ}n dφ,

where the value of arg{z + (z2 − 1) 1
2 cos φ} is specified by the fact that it, being equal to

arg(t2 − 1) − arg(t − z), is numerically less than π when t is on the real axis and on the right
of z (see §15.2).

Now as φ increases from −π to π, z+ (z2−1) 1
2 cos φ describes a straight line in the Argand

diagram going from z − (z2 − 1) 1
2 to z + (z2 − 1) 1

2 and back again; and since this line does not
pass through the origin7 , arg{z + (z2 − 1) 1

2 cos φ} does not change by so much as π on the
range of integration.

Now suppose that the branch of {z + (z2 − 1) 1
2 cos φ}n which has to be taken is such that

it reduces to zne2kπin (where k is an integer) when φ = 1
2π. Then

Pn(z) =
e2nkπi

2π

∫ π

−π

{z + (z2 − 1)
1
2 cos φ}n dφ,

where now that branch of the many-valued function is taken which is equal to zn when
φ = 1

2π. Now make z → 1 by a path which avoids the zeros of Pn(z); since Pn(z) and the
integral are analytic functions of z when | arg z | < 1

2π, k does not change as z describes the
path. And so we get e2nkπi = 1. Therefore, when | arg z | < 1

2π and n is unrestricted,

Pn(z) =
1

2π

∫ π

−π

{z + (z2 − 1)
1
2 cos φ}n dφ,

where arg{z + (z2 − 1) 1
2 cos φ} is to be taken equal to arg z when φ = 1

2π. This expression for
Pn(z), which may, again, obviously be written

1
π

∫ π

0
{z + (z2 − 1)

1
2 cos φ}n dφ,

is known as Laplace’s first integral for Pn(z).

Corollary 15.2.2 From Corollary 15.2.1 it is evident that, when
| arg z | < π

2 ,

Pn(z) =
1
n

∫ π

0

dφ

{z + (z2 − 1) 1
2 cos φ}n+1

,

a result, due to Jacobi [351], known as Laplace’s second integral for Pn(z).
7 It only does so if z is a pure imaginary; and such values of z have been excluded.
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Example 15.2.13 Obtain Laplace’s first integral by considering
∞∑
n=0

hn

∫ π

0
{z + (z2 − 1)

1
2 cos φ}n dφ,

and using Example 6.2.1.

Example 15.2.14 Shew, by direct differentiation, that Laplace’s integral is a solution of
Legendre’s equation.

Example 15.2.15 (Binet) If s < 1, |h| < 1 and

(1 − 2h cos θ + h2)−s =

∞∑
n=0

bn cos nθ,

shew that

bn =
2 sin sπ

π

∫ 1

0

hnxn+s−1 dx
(1 − x)s(1 − xh2)s

.

Example 15.2.16 When z > 1, deduce Laplace’s second integral from his first integral by
the substitution

{z − (z2 − 1)
1
2 cos θ}{z + (z2 − 1)

1
2 cos φ} = 1.

Example 15.2.17 By expanding in powers of cos φ, shew that for a certain range of values
of z,

1
π

∫ π

0
{z + (z2 − 1)

1
2 cos φ}n dφ = znF

(
−

n
2
,
1 − n

2
; 1; 1 − z−2

)
.

Example 15.2.18 Shew that Legendre’s equation is defined by the scheme

P


0 ∞ 1
− 1

2 n 1
2 +

1
2 n 0 ξ

1
2 +

1
2 n − 1

2 n 0

 ,
where z = 1

2 (ξ
1
2 + ξ−

1
2 ).

15.231 The Mehler–Dirichlet integral for Pn(z)
This comes from Dirichlet [174] and Mehler [465].

Another expression for the Legendre function as a definite integral may be obtained in the
following way: For all values of n, we have, by the preceding theorem,

Pn(z) =
1
π

∫ π

0
{z + (z2 − 1)1/2 cos φ}n dφ.

In this integral, replace the variable φ by a new variable h, defined by the equation
h = z + (z2 − 1)1/2 cos φ, and we get

Pn(z) =
i
π

∫ z+(z2−1)1/2

z−(z2−1)1/2
hn(1 − 2hz + h2)−1/2 dh;
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the path of integration is a straight line, arg h is determined by the fact that h = z when
φ = 1

2π, and (1 − 2hz + h2)−1/2 = −i (z2 − 1)1/2 sin φ.
Now let z = cos θ; then

Pn(cos θ) =
i
π

∫ eiθ

e−iθ
hn(1 − 2hz + h2)−1/2 dh.

Now (θ being restricted so that − π2 < θ < π
2 when n is not a positive integer) the path of

integration may be deformed8 into that arc of the circle |h| = 1 which passes through h = 1,
and joins the points h = e−iθ , h = eiθ , since the integrand is analytic throughout the region
between this arc and its chord9 .

Writing h = eiφ we get

Pn(cos θ) =
1
π

∫ θ

−θ

e(n+1/2)iφ dφ
(2 cos φ − 2 cos θ)1/2

,

and so

Pn(cos θ) =
2
π

∫ θ

0

cos(n + 1
2 )φ dφ

{2(cos φ − cos θ)}1/2
;

it is easy to see that the positive value of the square root is to be taken. This is known as
Mehler’s simplified form of Dirichlet’s integral. The result is valid for all values of n.

Example 15.2.19 Prove that, when n is a positive integer,

Pn(cos θ) =
2
π

∫ π

θ

sin(n + 1
2 )φ dφ

{2(cos θ − cos φ)}1/2
.

(Write π − θ for θ and π − φ for φ in the result just obtained.)

Example 15.2.20 Prove that

Pn(cos θ) =
1

2πi

∫
hn dh

(h2 − 2h cos θ + 1)1/2
,

the integral being taken along a closed path which encircles the two points h = e±iθ , and a
suitable meaning being assigned to the radical.

Note Hence (or otherwise) prove that, if θ lie between 1
6π and 5

6π,

Pn(cos θ) =
4
π

2 · 4 · · · 2n
3 · 5 · · · (2n + 1)


cos(nθ + φ)
(2 sin θ) 1

2
+

12

2(2n + 3)
cos(nθ + 3φ)
(2 sin θ) 3

2

+
12 · 32

2 · 4 · (2n + 3)(2n + 5)
cos(nθ + 5φ)
(2 sin θ) 5

2
+ · · · · · ·


,

where φ denotes 1
2θ −

1
4π.

Shew also that the first few terms of the series give an approximate value of Pn(cos θ) for
8 If θ be complex and Re cos θ > 0 the deformation of the contour presents slightly greater difficulties. The
reader will easily modify the analysis given to cover this case.

9 The integrand is not analytic at the ends of the arc but behaves like (h − e±iθ )−1/2 near them; but if the region
be indented §6.23 at e±iθ and the radii of the indentations be made to tend to zero, we see that the
deformation is legitimate.
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all values of θ between 0 and π which are not nearly equal to either 0 or π. And explain how
this theorem may be used to approximate to the roots of the equation Pn(cos θ) = 0. (See
Heine [287, vol. I, p. 171]; Darboux [161].)

15.3 Legendre functions of the second kind
We have hitherto considered only one solution of Legendre’s equation, namely Pn(z). We
proceed to find a second solution.

We have seen (§15.2) that Legendre’s equation is satisfied by∫
(t2 − 1)n(t − z)−n−1 dt,

taken round any contour such that the integrand returns to its initial value after describing it.
Let D be a figure-of-eight contour formed in the following way: let z be not a real number
between ±1; draw an ellipse in the t-plane with the points ±1 as foci, the ellipse being so
small that the point t = z is outside. Let A be the end of the major axis of the ellipse on the
right of t = 1. Let the contour D start from A and describe the circuits (1−, −1+), returning to
A (cf. §12.43), and lying wholly inside the ellipse. Let | arg z | ≤ π and let | arg(z− t)| → arg z
as t → 0 on the contour. Let arg(t + 1) = arg(t − 1) = 0 at A.

Then a solution of Legendre’s equation valid in the plane (cut along the real axis from 1
to −∞) is

Qn(z) =
1

4i sin nπ

∫
D

(t2 − 1)n dt
2n(z − t)n+1 ,

if n is not an integer.
When Re(n + 1) > 0, we may deform the path of integration as in §12.43, and get

Qn(z) =
1

2n+1

∫ 1

−1
(1 − t2)n(z − t)−n−1 dt

(where arg(1 − t) = arg(1 + t) = 0); this will be taken as the definition of Qn(z) when n is
a positive integer or zero. When n is a negative integer (= −m − 1) Legendre’s differential
equation for functions of degree n is identical with that for functions of degree m, and
accordingly we shall take the two fundamental solutions to be Pm(z), Qm(z).

We call Qn(z) the Legendre function of degree n of the second kind.

15.31 Expansion of Qn(z) as a power series
We now proceed to express the Legendre function of the second kind as a power series in
z−1. We have, when the real part of n + 1 is positive,

Qn(z) =
1

2n+1

∫ 1

−1
(1 − t2)n(z − t)−n−1 dt .

Suppose that |z | > 1. Then the integrand can be expanded in a series uniformly convergent
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with regard to t, so that

Qn(z) =
1

2n+1zn+1

∫ 1

−1
(1 − t2)n

(
1 −

t
z

)−n−1

dt

=
1

2n+1zn+1

∫ 1

−1
(1 − t2)n

{
1 +

∞∑
r=1

(
t
z

)r
(n + 1)(n + 2) · · · (n + r)

r!

}
dt

=
1

2nzn+1

[∫ 1

0
(1 − t2)n dt +

∞∑
s=1

(n + 1) · · · (n + 2s)
2s!z2s

∫ 1

0
(1 − t2)nt2s dt

]
,

where r = 2s, the integrals arising from odd values of r vanishing. Writing t2 = u we get
without difficulty, from §12.41,

Qn(z) =
π

1
2 Γ(n + 1)

2n+1Γ(n + 3
2 )

1
zn+1 F

(
1
2

n +
1
2
,
1
2

n + 1; n +
3
2

; z−2
)
.

The proof given above applies only when the real part of (n + 1) is positive (see §4.5); but a
similar process can be applied to the integral

Qn(z) =
1

4i sin nπ

∫
D

1
2n
(t2 − 1)n(z − t)−n−1 dt,

the coefficients being evaluated by writing
∫
D

(t2 − 1)ntr dt in the form

enπi
∫ (1−)

0
(1 − t2)ntr dt + enπi

∫ (−1+)

0
(1 − t2)ntr dt;

and then, writing t2 = u and using §12.43, the same result is reached, so that the formula

Qn(z) =
π

1
2

2n+1
Γ(n + 1)
Γ(n + 3

2 )

1
zn+1 F

(
1
2

n +
1
2
,
1
2

n + 1; n +
3
2

;
1
z2

)
is true for unrestricted values of n (negative integer values excepted) and for all values10 of
z, such that |z | > 1, | arg z | < π.

Example 15.3.1 Shew that, when n is a positive integer,

Qn(z) =
(−2)nn!
(2n)!

dn

dzn

{
(z2 − 1)n

∫ ∞

z

(v2 − 1)−n−1 dv
}
.

It is easily verified that Legendre’s equation can be derived from the equation

(1 − z2)
d2w

dz2 + 2(n − 1)z
dw
dz
+ 2nw = 0,

by differentiating n times and writing u =
dnw

dzn
. Two independent solutions of this equation

are found to be

(z2 − 1)n and (z2 − 1)n
∫ ∞

z

(v2 − 1)−n−1 dv.

10 When n is a positive integer it is unnecessary to restrict the value of arg z.
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It follows that
dn

dzn

{
(z2 − 1)n

∫ ∞

z

(v2 − 1)−n−1 dv
}

is a solution of Legendre’s equation. As this expression, when expanded in ascending powers
of z−1, commences with a term in z−n−1, it must be a constant multiple11 of Qn(z); and
on comparing the coefficient of z−n−1 in this expression with the coefficient of z−n−1 in the
expansion of Qn(z), as found above, we obtain the required result.

Example 15.3.2 Shew that, when n is a positive integer, the Legendre function of the
second kind can be expressed by the formula

Qn(z) = 2nn!
∫ ∞

z

∫ ∞

v

∫ ∞

v

· · ·

∫ ∞

v

(v2 − 1)−n−1 (dv)n+1.

Example 15.3.3 Shew that, when n is a positive integer,

Qn(z) =
n∑
t=0

2n · n!
t!(n − t)!

(−z)n−t
∫ ∞

z

vt(v2 − 1)−n−1 dv.

This result can be obtained by applying the general integration theorem∫ ∞

z

∫ ∞

v

∫ ∞

v

· · ·

∫ ∞

v

f (v) (dv)n+1 =

n∑
t=0

(−z)n−t

t!(n − t)!

∫ ∞

z

vt f (v) dv

to the preceding result.

15.32 The recurrence formulae for Qn(z)

The functions Pn(z) and Qn(z) have been defined by means of integrals of precisely the same
form, namely ∫

(t2 − 1)n(t − z)−n−1 dt,

taken round different contours.
It follows that the general proof of the recurrence formulae for Pn(z), given in §15.21, is

equally applicable to the function Qn(z); and hence that the Legendre function of the second
kind satisfies the recurrence formulae

Q′n+1(z) − zQ′n(z) = (n + 1)Qn(z),

(n + 1)Qn+1(z) − (2n + 1)zQn(z) + nQn−1(z) = 0,
zQ′n(z) −Q′n−1(z) = nQn(z),

Q′n+1(z) −Q′n−1(z) = (2n + 1)Qn(z),

(z2 − 1)Q′n(z) = nzQn(z) − nQn−1(z).

Example 15.3.4 Shew that

Q0(z) =
1
2

log
z + 1
z − 1

, Q1(z) =
1
2

z log
z + 1
z − 1

− 1,

11 Pn(z) contains positive powers of z when n is an integer.
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and deduce that

Q2(z) =
1
2

P2(z) log
z + 1
z − 1

−
3
2

z

and that

Qn(z)
Pn(z)

=
1
2

log
z + 1
z − 1

−
1

z −
12

3z −
22

5z −
32

7z −
. . . −

(n − 1)2

(2n − 1)z

.

Example 15.3.5 Shew by the recurrence formulae that, when n is a positive integer12 ,

1
2

Pn(z) log
(

z + 1
z − 1

)
−Qn(z) = fn−1(z),

where fn−1(z) consists of the positive (and zero) powers of z in the expansion of
1
2 Pn(z) log

(
z+1
z−1

)
in descending powers of z.

Note This example shews the nature of the singularities of Qn(z) at ±1, when n is an
integer, which make the cut from −1 to +1 necessary. For the connexion of the result with
the theory of continued fractions, see Gauss [233], and Frobenius [226]; the formulae of
Example 15.3.4 are due to them.

15.33 The Laplacian integral for Legendre functions of the second kind
This formula was first given by Heine [287, p. 147].

It will now be proved that, when Re(n + 1) > 0,

Qn(z) =
∫ ∞

0

{
z + (z2 − 1)

1
2 cosh θ

}−n−1
dθ,

where arg{z + (z2 − 1) 1
2 cosh θ} has its principal value when θ = 0, if n be not an integer.

First suppose that z > 1. In the integral of §15.3, viz.

Qn(z) =
1

2n+1

∫ 1

−1
(1 − t2)n(z − t)−n−1 dt,

write

t =
eθ(z + 1)1/2 − (z − 1)1/2

eθ(z + 1)1/2 + (z − 1)1/2
,

12 If −1 < z < 1, it is apparent from these formulae that Qn(z + 0i) −Qn(z − 0i) = −πiPn(z). It is convenient
to define Qn(z) for such values of z to be 1

2Qn(z + 0i) + 1
2Qn(z − 0i). The reader will observe that this

function satisfies Legendre’s equation for real values of z.
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so that the range (−1,1) of real values of t corresponds to the range (−∞,∞) of real values
of θ. It then follows (as in (15.1)) by straightforward substitution that

Qn(z) =
1
2

∫ ∞

−∞

{
z + (z2 − 1)

1
2 cosh θ

}−n−1
dθ

=

∫ ∞

0

{
z + (z2 − 1)

1
2 cosh θ

}−n−1
dθ,

since the integrand is an even function of θ.

Note To prove the result for values of z not comprised in the range of real values greater
than 1, we observe that the branch points of the integrand, qua function of z, are at the points
±1 and at points where z + (z2 − 1)1/2 cosh θ vanishes; the latter are the points at which
z = ± coth θ. Hence Qn(z) and∫ ∞

0
{z + (z2 − 1)

1
2 cosh θ}−n−1 dθ

are both analytic13 at all points of the plane when cut along the line joining the points
z = ±1. By the theory of analytic continuation the equation proved for positive values of
z − 1 persists for all values of z in the cut plane, provided that arg {z + (z2 − 1) 1

2 cosh θ}
is given a suitable value, namely that one which reduces to zero when z − 1 is positive.
The integrand is one-valued in the cut plane [and so is Qn(z)] when n is a positive integer;
but arg{z + (z2 − 1) 1

2 cosh θ} increases by 2π as arg z does so, and therefore if n be not a
positive integer, a further cut has to be made from z = −1 to z = −∞. These cuts give the
necessary limitations on the value of z; and the cut when n is not an integer ensures that
arg{z + (z2 − 1) 1

2 } = 2 arg{(z + 1) 1
2 + (z − 1) 1

2 } has its principal value.

Example 15.3.6 Obtain this result for complex values of z by taking the path of integration
to be a certain circular arc before making the substitution

t =
eθ(z + 1) 1

2 − (z − 1) 1
2

eθ(z + 1) 1
2 + (z − 1) 1

2
,

where θ is real.

Example 15.3.7 (Trinity, 1893) Shew that, if z > 1 and coth a = z,

Qn(z) =
∫ a

0
{z − (z2 − 1)

1
2 cosh u}n du,

where arg{z − (z2 − 1) 1
2 cosh u} = 0.

15.34 Neumann’s formula for Qn(z), when n is an integer
This appears in F. Neumann [490]. When n is a positive integer, and z is not a real number
between 1 and −1, the function Qn(z) is expressed in terms of the Legendre function of the
first kind by the relation

Qn(z) =
1
2

∫ 1

−1
Pn(y)

dy
z − y

,

13 It is easy to shew that the integral has a unique derivative in the cut plane.
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which we shall now establish.
When |z | > 1 we can expand the integrand in the uniformly convergent series

Pn(y)

∞∑
m=0

ym

zm+1 .

Consequently
1
2

∫ 1

−1
Pn(y)

dy
z − y

=
1
2

∞∑
m=0

z−m−1
∫ 1

−1
ymPn(y) dy.

The integrals for which m − n is odd or negative vanish (15.7); and so

1
2

∫ 1

−1
Pn(y)

dy
z − y

=
1
2

∞∑
m=0

z−n−2m−1
∫ 1

−1
yn+2mPn (y) dy

=
1
2

∞∑
m=0

z−n−2m−1 2n+1(n + 2m)!(n + m)!
m!(2n + 2m + 1)!

=
2n(n!)2

(2n + 1)!
z−n−1 F

(
n
2
+

1
2
,
n
2
+ 1; n +

3
2

; z−2
)

= Qn(z),

by §15.31. The theorem is thus established for the case in which |z | > 1. Since each side of
the equation

Qn(z) =
1
2

∫ 1

−1
Pn(y)

dy
z − y

represents an analytic function, even when |z | is not greater than unity, provided that z is not
a real number between −1 and +1, it follows that, with this exception, the result is true (§5.5)
for all values of z.

The reader should notice that Neumann’s formula apparently expresses Qn(z) as a one-
valued function of z, whereas it is known to bemany-valued (Example 15.3.4). The reason for
the apparent discrepancy is that Neumann’s formula has been established when the z-plane
is cut from −1 to +1, and Qn(z) is one-valued in the cut plane.

Example 15.3.8 Shew that, when −1 ≤ Re z ≤ 1, |Qn(z) | ≤ | Im z |−1; and that for other
values of z, |Qn(z) | does not exceed the larger of | z − 1 |−1 and | z + 1 |− 1.

Example 15.3.9 Shew that, when n is a positive integer, Qn(z) is the coefficient of hn in
the expansion of

(1 − 2hz + h2)−1/2 arccosh
{

h − z
(z2 − 1)1/2

}
.

Hint. For |h| sufficiently small,
∞∑
n=0

hnQn(z) =
∞∑
n=0

hn

2

∫ 1

−1

Pn(y) dy
z − y

=
1
2

∫ 1

−1

(1 − 2hy + h2)−1/2 dy
(z − y)

= (1 − 2hz + h2)−1/2 arccosh
{

h − z
(z2 − 1)1/2

}
.
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This result has been investigated by Heine [287, vol. I, p. 134] and Laurent [411].

15.4 Heine’s development of (t − z)−1 as a series of Legendre polynomials in z

This appears in [286]. We shall now obtain an expansion which will serve as the basis of a
general class of expansions involving Legendre polynomials. The reader will readily prove
by induction from the recurrence formulae

(2m + 1)tQm (t) − (m + 1)Qm+1(t) − mQm−1(t) = 0,
(2m + 1)zPm(z) − (m + 1)Pm+1(z) − mPm−1(z) = 0,

that
1

t − z
=

n∑
m=0

(2m + 1)Pm(z)Qm(t) +
n + 1
t − z

{Pn+1(z)Qn(t) − Pn(z)Qn+1(t)}.

Using Laplace’s integrals, we have

Pn+1(z)Qn(t) − Pn(z)Qn+1(t) =
1
π

∫ π

0

∫ ∞

0

{z + (z2 − 1) 1
2 cos φ}n

{t + (t2 − 1) 1
2 cosh u}n+1

× [z + (z2 − 1)
1
2 cos φ − {t + (t2 − 1)

1
2 cosh u}−1] dφ du.

Now consider ����� z + (z2 − 1) 1
2 cos φ

t + (t2 − 1) 1
2 cosh u

����� .
Let cosh a, sinh a be the semi-major axes of the ellipses with foci ±1 which pass through z
and t respectively. Let θ be the eccentric angle of z; then

z = cosh(a + iθ),

|z ± (z2 − 1)
1
2 cos φ| = | cosh(a + iθ) ± sinh(a + iθ) cos φ|

= {cosh2 α − sin2 θ + (cosh2 a − cos2 θ)

cos2 φ ± 2 sinh a coshα cos φ}
1
2 .

This is a maximum for real values of φ when cos φ = ∓1; and hence

|z ± (z2 − 1)
1
2 cos φ|2 ≤ 2 cosh2 a − 1 + 2 cosh a(cosh2 a − 1)

1
2 = exp(2α).

Similarly | t + (t2 − 1) 1
2 cosh u | ≤ exp a. Therefore

|Pn+1(z)Qn(t) − Pn(z)Qn+1(t)| ≤ π−1 exp{n(a − α)}
∫ π

0

∫ ∞

0
V dφ du,

where

|V | =

����� z + (z2 − 1) 1
2 cos φ

t + (t2 − 1) 1
2 cosh u

����� + | {t + (t2 − 1)
1
2 cosh u} |−2.

Therefore |Pn+1(z)Qn(t) − Pn(z)Qn+1(t)| → 0, as n → ∞, provided a < α. And further, if

t varies, α remaining constant, it is easy to see that the upper bound of
∫ π

0

∫ ∞

0
V dφ du is
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independent of t, and so Pn+1(z)Qn(t) − Pn(z)Qn+1(t) tends to zero uniformly with regard
to t.

Hence if the point z is in the interior of the ellipse which passes through the point t and
has the points ±1 for its foci, then the expansion

1
t − z

=

∞∑
n=0

(2n + 1)Pn(z)Qn(t)

is valid; and if t be a variable point on an ellipse with foci ±1 such that z is a fixed point
inside it, the expansion converges uniformly with regard to t.

15.41 Neumann’s expansion of an arbitrary function in a series of Legendre
polynomials

This comes from Neumann [485]. See also Thomé [623]. Neumann also gives an expansion,
in Legendre functions of both kinds, valid in the annulus bounded by two ellipses.

We proceed now to discuss the expansion of a function in a series of Legendre polynomials.
The expansion is of special interest, as it stands next in simplicity to Taylor’s series, among
expansions in series of polynomials.

Let f (z) be any function which is analytic inside and on an ellipse C, whose foci are the
points z = ±1. We shall shew that

f (z) = a0P0(z) + a1P1(z) + a2P2(z) + a3P3(z) + · · · ,

where a0, a1, a2, . . . are independent of z, this expansion being valid for all points z in the
interior of the ellipse C. Let t be any point on the circumference of the ellipse.

Then, since
∞∑
n=0
(2n + 1)Pn(z)Qn(t) converges uniformly with regard to t,

f (z) =
1

2πi

∫
C

f (t) dt
t − z

=
1

2πi

∞∑
n=0

∫
C

(2n + 1)Pn(z)Qn(t) f (t) dt

=

∞∑
n=0

anPn(z),

where

an =
2n + 1

2πi

∫
C

f (t)Qn(t) dt.

This is the required expansion; since
∞∑
n=0
(2n + 1)Pn(z)Qn(t) may be proved14 to converge

uniformly with regard to z when z lies in any domain C ′ lying wholly inside C, the expan-
sion converges uniformly throughout C ′. Another form for an can therefore be obtained by
integrating, as in §15.211, so that

an =
(
n + 1

2

) ∫ 1

−1
f (x)Pn(x) dx.

14 The proof is similar to the proof in §15.4 that convergence is uniform with regard to t.
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A form of this equation which is frequently useful is

an =
n + 1

2

2nn!

∫ 1

−1
f (n)(x) · (1 − x2)n dx,

which is obtained by substituting for Pn(x) from Rodrigues’ formula and integrating by parts.
The theorem which bears the same relation to Neumann’s expansion as Fourier’s theorem

bears to the expansion of §9.11 is as follows:
Let f (t) be defined when −1 ≤ t ≤ 1, and let the integral of (1 − t2)−1/4 f (t) exist and be

absolutely convergent; also let

an =
(
n + 1

2

) ∫ 1

−1
f (t)Pn(t) dt .

Then
∑

anPn(x) is convergent and has the sum 1
2 { f (x + 0) + f (x − 0)} at any point x, for

which −1 < x < 1, if any condition of the type stated at the end of §9.43 is satisfied.
For a proof, the reader is referred to memoirs by Hobson [317, 319] and Burkhardt [108].

Example 15.4.1 Shew that, if ρ ≥ 1 be the radius of convergence of the series
∑

cnzn, then∑
cnPn(z) converges inside an ellipse whose semi-axes are 1

2 (ρ + ρ
−1) and 1

2 (ρ − ρ
−1).

Example 15.4.2 If z =
(
y − 1
y + 1

) 1
2

, k2 =
(x − 1) (y + 1)
(x + 1) (y − 1)

, where y > x > 1, prove that∫ 1 dz

{(1 − z2)(1 − k2z2)}
1
2
= {(x + 1)(y − 1)}

1
2

∞∑
n=0

Pn(x)Qn(y).

Hint. Substitute Laplace’s integrals on the right and integrate with regard to φ.

Example 15.4.3 (Frobenius [226]) Shew that

1
2(y − x)

log
(x + 1)(y − 1)
(x − 1)(y + 1)

=

∞∑
n=0

(2n + 1)Qn(x)Qn(y).

15.5 Ferrers’ associated Legendre functions Pm
n (z) and Qm

n (z)

We shall now introduce a more extended class of Legendre functions.
If m be a positive integer and −1 < z < 1, n being unrestricted (when n is a positive

integer it is unnecessary to restrict the value of arg z), the functions

Pm
n (z) = (1 − z2)m/3

dmPn(z)
dzm

, Qm
n (z) = (1 − z2)m/2

dmQn(z)
dzm

will be called Ferrers’ associated Legendre functions of degree n and order m of the first and
second kinds respectively. (Ferrers writes Tm

n (z) for Pm
n (z).)

It may be shewn that these functions satisfy a differential equation analogous to Legendre’s
equation.

For, differentiate Legendre’s equation

(1 − z2)
d2y

dz2 − 2z
dy
dz
+ n(n + 1)y = 0
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m times and write v for
dmy

dzm
.We obtain the equation

(1 − z2)
d2v

dz2 − 2z(m + 1)
dv
dz
+ (n − m)(n + m + 1)v = 0.

Write w = (1 − z2)m/2v, and we get

(1 − z2)
d2w

dz2 − 2z
dw
dz
+

{
n(n + 1) −

m2

1 − z2

}
w = 0.

This is the differential equation satisfied by Pm
n (z) and Qm

n (z).

Note From the definitions given above, several expressions for the associated Legendre
functions may be obtained. Thus, from Schläfli’s formula we have

Pm
n (z) =

(n + 1)(n + 2) · · · (n + m)
2n+1πi

(1 − z2)m/2
∫ (1+,z+)

A

(t2 − 1)n(t − z)−n−m−1 dt,

where the contour does not enclose the point t = −1. Further, when n is a positive integer,
we have, by Rodrigues’ formula,

Pm
n (z) =

(1 − z2)m/2

2nn!
dn+m(z2 − 1)n

dzn+m
.

Example 15.5.1 (Olbricht) Shew that Legendre’s associated equation is defined by the
scheme

P


0 ∞ 1
1
2 m n + 1 1

2 m 1
2 −

1
2 z

− 1
2 m −n − 1

2 m

 .
15.51 The integral properties of the associated Legendre functions

The generalisation of the theorem of §15.14 is the following: When n,r,m are positive
integers and n > m, r > m, then∫ 1

−1
Pm
n (z)P

m
r (z) dz =


0 (r , n),

2
2n + 1

(n + m)!
(n − m)!

(r = n).

To obtain the first result, multiply the differential equations for Pm
n (z), Pm

r (z) by Pm
r (z), Pm

n (z)
respectively and subtract; this gives

d
dz

[
(1 − z2)

{
Pm
r (z)

dPm
n (z)
dz

− Pm
n (z)

dPm
r (z)
dz

}]
+ (n − r)(n + r + 1)Pm

r (z)P
m
n (z) = 0.

On integrating between the limits −1, +1, the result follows when n and r are unequal,
since the expression in square brackets vanishes at each limit. To obtain the second result,
we observe that

Pm+1
n (z) = (1 − z2)1/2

dPm
n (z)
dz

+ mz(1 − z2)−1/2Pm
n (z);
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squaring and integrating, we get∫ 1

−1

[
Pm+1
n (z)

]2
dz =

∫ 1

−1

[
(1 − z2)

{
dPm

n (z)
dz

}2

+ 2mzPm
n (z)

dPm
n (z)
dz

+
m2z2

1 − z2

{
Pm
n (z)

}2
]

dz

= −

∫ 1

−1
Pm
n (z)

d
dz

{
(1 − z2)

dPm
n (z)
dz

}
dz − m

∫ 1

−1

{
Pm
n (z)

}2
dz

+

∫ 1

−1

m2z2

1 − z2 {P
m
n (z)}

2 dz,

on integrating the first two terms in the first lines on the right by parts. If now we use the
differential equation for Pm

n (z) to simplify the first integral in the second line, we at once get∫ 1

−1
{Pm+1

n (z)}2 dz = (n − m)(n + m + 1)
∫ 1

−1
{Pm

n (z)}
2 dz.

By repeated applications of this result we get∫ 1

−1
{Pm

n (z)}
2 dz = (n − m + 1)(n − m + 2) · · · n

× (n + m)(n + m − 1) · · · (n + 1)
∫ 1

−1
{Pn(z)}2 dz,

and so ∫ 1

−1
{Pm

n (z)}
2 dz =

2
2n + 1

(n + m)!
(n − m)!

. (15.8)

15.6 Hobson’s definition of the associated Legendre functions
So far it has been taken for granted that the function (1 − z2)m/2 which occurs in Ferrers’
definition of the associated functions is purely real; and since, in themore elementary physical
applications of Legendre functions, it usually happens that −1 < z < 1, no complications
arise. But as we wish to consider the associated functions as functions of a complex variable,
it is undesirable to introduce an additional cut in the z-plane by giving arg(1− z) its principal
value.

Accordingly, in future, when z is not a real number such that −1 < z < 1, we shall follow
Hobson in defining the associated functions by the equations

Pm
n (z) = (z

2 − 1)m/2
dmPn(z)

dzm
Qm

n (z) = (z
2 − 1)m/2

dmQn(z)
dzm

,

where m is a positive integer, n is unrestricted and arg z, arg(z + 1), arg(z − 1) have their
principal values.

When m is unrestricted, Pm
n (z) is defined by Hobson to be

1
Γ(1 − m)

(
z + 1
z − 1

)m/2
F

(
−n,n + 1; 1 − m; 1

2 −
1
2 z

)
;
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and Barnes has given a definition of Qm
n (z) from which the formula

Qm
n (z) =

sin(n + m)π
sin nπ

Γ(n + m + 1)Γ
( 1

2

)
2n+1Γ(n + 3

2 )

(z2 − 1)m/2

zn+m+1

×F
(
n
2 +

m
2 + 1, n2 +

m
2 +

1
2 ; n + 3

2 ; z−2)
may be obtained.

Throughout this work we shall take m to be a positive integer.

15.61 Expression of Pm
n (z) as an integral of Laplace’s type

If we make the necessary modification in the Schläfli integral of §15.5, in accordance with
the definition of §15.6, we have

Pm
n (z) =

(n + 1)(n + 2) · · · (n + m)
2n+1πi

(z2 − 1)m/2
∫ (1+,z+)

A

(t2 − 1)n(t − z)−n−m−1 dt .

Write t = z + (z2 − 1)1/2eiφ, as in §15.23; then

Pm
n (z) =

(n + 1)(n + 2) · · · (n + m)
2π

(z2 − 1)m/2
∫ 2π+α

α

{z + (z2 − 1)1/2 cos φ}n

{(z2 − 1)1/2eiφ}m
dφ,

where α is the value of φ when t is at A, so that | arg(z2 − 1)1/2 + α | < π.

Now, as in §15.23, the integrand is a one-valued periodic function of the real variable φ
with period 2π, and so

Pm
n (z) =

(n + 1)(n + 2) · · · (n + m)
2π

∫ π

−π

{z + (z2 − 1)1/2 cos φ}ne−miφ dφ.

Since {z + (z2 − 1)1/2 cos φ}n is an even function of φ, we get, on dividing the range of
integration into the parts (−π,0) and (0, π),

Pm
n (z) =

(n + 1)(n + 2) · · · (n + m)
π

∫ π

0
{z + (z2 − 1)1/2 cos φ}n cos mφ dφ.

The ranges of validity of this formula, which is due to Heine (according as n is or is not an
integer), are precisely those of the formula of §15.23.

Example 15.6.1 Shew that, if | arg z | < 1
2π,

Pm
n (z) = (−1)m

n(n − 1) · · · (n − m + 1)
π

∫ π

0

cos mφ dφ
{z + (z2 − 1)1/2 cos φ}n+1 ,

where the many-valued functions are specified as in §15.23.

15.7 The addition-theorem for the Legendre polynomials
This appears in Legendre [421, vol. II, p. 262–269]. An investigation of the theorem based
on physical reasoning will be given subsequently (§18.4).
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Let z = xx ′−(x2−1)1/2(x2−1)1/2 cosω,where x, x ′,ω are unrestricted complex numbers.
Then we shall shew that

Pn(z) = Pn(x)Pn(x ′) + 2
n∑

m=1

(−1)m
(n − m)!
(n + m)!

Pm
n (x)P

m
n (x

′) cos mω.

First let Re(x ′) > 0, so that ���� x + (x2 − 1)1/2 cos(ω − φ)
x ′ + (x ′2 − 1)1/2 cos φ

����
is a bounded function of φ in the range 0 < φ < 2π. If M be its upper bound and if |h| < M−1,

then
∞∑
n=0

hn {x + (x
2 − 1)1/2 cos(ω − φ)}n

{x ′ + (x ′2 − 1)1/2 cos φ}n+1

converges uniformly with regard to φ, and so (§4.7)
∞∑
n=0

hn

∫ π

−π

{x + (x2 − 1)1/2 cos(ω − φ)}n

{x ′ + (x ′2 − 1)1/2 cos φ}n+1 dφ

=

∫ π

−π

∞∑
n=0

hn{x + (x2 − 1)1/2 cos(ω − φ)}n

{x ′ + (x ′2 − 1)1/2 cos φ}n+1 dφ

=

∫ π

−π

dφ
x ′ + (x ′2 − 1)1/2 cos φ − h{x + (x2 − 1)1/2 cos(ω − φ)}

.

Now, by a slight modification of Example 6.2.1 it follows that∫ π

−π

dφ
A + B cos φ + C sin φ

=
2π

(A2 − B2 − C2)1/2
,

where that value of the radical is taken which makes

|A − (A2 − B2 − C2)1/2 | < |(B2 + C2)1/2 |.

Therefore∫ π

−π

dφ
x ′ + (x ′2 − 1)1/2 cos φ − h{x + (x2 − 1)1/2 cos(ω − φ)}

=
2π

[(x ′ − hx)2 − {(x2 − 1)1/2 − h(x2 − 1)1/2 cosω}2 − {h(x2 − 1)1/2 sinω}2]1/2

=
2π

(1 − 2hz + h2)1/2
;

and when h→ 0, this expression has to tend to 2πP0(x ′) by §15.23. Expanding in powers of
h and equating coefficients, we get

Pn(z) =
1

2π

∫ π

−π

{x + (x2 − 1)1/2 cos(ω − φ)}n

{x ′ + (x ′2 − 1)1/2 cos φ }n+1 dφ.

Now Pn(z) is a polynomial of degree n in cosω, and can consequently be expressed in the
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form
1
2

A0 +

n∑
m=1

Am cos mω, where the coefficients A0, A1, . . . , An are independent of ω; to

determine them, we use Fourier’s rule (§9.12), and we get

Am =
1
π

∫ π

−π

Pn(z) cos mω dω

=
1

2π2

∫ π

−π

[∫ π

−π

{x + (x2 − 1)1/2 cos(ω − φ)}n cos mω
{x ′ + (x ′2 − 1)1/2 cos φ}n+1 dφ

]
dω

=
1

2π2

∫ π

−π

[∫ π

−π

{x + (x2 − 1)1/2 cos(ω − φ)}n cos mω
{x ′ + (x ′2 − 1)1/2 cos φ}n+1 dω

]
dφ

=
1

2π2

∫ π

−π

[∫ π

−π

{x + (x2 − 1)1/2 cosψ}n cos m(φ + ψ)
{x ′ + (x ′2 − 1)1/2 cos φ}n+1 dψ

]
dφ,

on changing the order of integration, writing ω = φ + ψ and changing the limits for ψ from
±π − φ to ±π.

Now ∫ π

−π

{x + (x2 − 1)1/2 cosψ}n sin mψ dψ = 0,

since the integrand is an odd function; and so, by §15.61,

Am =
n!

π(n + m)!

∫ π

−π

cos mφ Pm
n (x)

{x ′ + (x ′2 − 1)1/2 cos φ}n+1 dφ

= 2(−1)m
(n − m)!
(n + m)!

Pm
n (x)P

m
n (x

′).

Therefore, when | arg z′ | < 1
2π,

Pn(z) = Pn(x)Pn(x ′) + 2
n∑

m=1

(−1)m
(n − m)!
(n + m)!

Pm
n (x)P

m
n (x

′) cos mω.

But this is a mere algebraical identity in x, x ′ and cosω (since n is a positive integer) and
so is true independently of the sign of Re(x ′). The result stated has therefore been proved.

The corresponding theorem with Ferrers’ definition is

Pn{xx ′ + (1 − x2)1/2(1 − x ′2)1/2 cosω}

= Pn(x)Pn(x ′) + 2
n∑

m=1

(n − m)!
(n + m)!

Pm
n (x)P

m
n (x

′) cos mω.

15.71 The addition theorem for the Legendre functions
Let x, x ′ be two constants, real or complex, whose arguments are numerically less than 1

2π;
and let (x ± 1)1/2, (x ′ ± 1)1/2 be given their principal values; let ω be real and let

z = xx ′ − (x2 − 1)1/2, (x ′2 − 1)1/2 cosω.

Then we shall shew that, if | arg z | < 1
2π for all values of the real variable ω, and n be not
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a positive integer,

Pn(z) = Pn(x)Pn(x ′) + 2
∞∑

m=1

(−1)m
Γ(n − m + 1)
Γ(n + m + 1)

Pm
n (x)P

m
n (x

′) cos mω.

Let coshα, coshα′ be the semi-major axes of the ellipses with foci ±1 passing through x,
x ′ respectively. Let β, β′ be the eccentric angles of x, x ′ on these ellipses so that

−
π

2
< β <

π

2
, −

π

2
< β′ <

π

2
.

Let α + iβ = ξ, α′ + iβ′ = ξ ′, so that x = cosh xi, x ′ = cosh ξ ′. Now as ω passes through
all real values, Re(z) oscillates between

Re(xx ′) ± Re(x2 − 1)1/2(x ′2 − 1)1/2 = cosh(α ± α′) cos(β ± β′),

so that it is necessary that β ± β′ be acute angles positive or negative.
Now take Schläfli’s integral

Pn(z) =
1

2n+1πi

∫ (1+,z+)

A

(t2 − 1)n

(t − z)n+1 dt,

and write

t =
eiφ{e−iω sinh ξ cosh 1

2ξ
′ − cosh ξ sinh 1

2ξ
′} + cosh 1

2ξ
′ − eiω sinh ξ sinh 1

2ξ
′

cosh 1
2ξ
′ + eiφ sinh 1

2ξ
′

.

The path of t, as φ increases from −π to π, may be shewn to be a circle; and the reader
will verify that

t − 1 =
2{ei(φ−ω) cosh 1

2ξ + sinh 1
2ξ}{sinh 1

2ξ cosh 1
2ξ
′ − eiω cosh 1

2ξ sinh 1
2ξ
′}

cosh 1
2ξ
′ + eiφ sinh 1

2ξ
′

,

t + 1 =
2{ei(φ−ω) sinh 1

2ξ + cosh 1
2ξ}{cosh 1

2ξ cosh 1
2ξ
′ − eiω sinh 1

2ξ sinh 1
2ξ
′}

cosh 1
2ξ
′ + eiφ sinh 1

2ξ
′

,

t − z =

{eiφ cosh 1
2ξ
′ + sinh ξ ′}{eiω sinh 1

2ξ sinh2 1
2ξ
′ + e−iω sinh ξ cosh2 1

2ξ
′ − cosh ξ + sinh ξ ′}

cosh 1
2ξ
′ + eiφ sinh 1

2ξ
′

.

Since15 | cosh 1
2ξ
′ | > | sinh 1

2ξ
′ |, the argument of the denominators does not changewhen φ

increases by 2π; for similar reasons, the arguments of the first and third numerators increase
by 2π, and the argument of the second does not change; therefore the circle contains the
points t = 1, t = z, and not t = −1, so it is a possible contour.

Making these substitutions it is readily found that

Pn(z) =
1

2π

∫ π

−π

{x + (x2 − 1)1/2 cos(ω − φ)}n

{x ′ + (x ′2 − 1)1/2 cos φ}n+1 dφ,

and the rest of the work follows the course of §15.7 except that the general form of Fourier’s
theorem has to be employed.
15 This follows from the fact that cos β′ > 0.
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Example 15.7.1 (Heine [287], Neumann [489]) Shew that, if n be a positive integer,

Qn{xx ′ + (x2 − 1)1/2(x ′2 − 1)1/2 cosω}

= Qn(x)Pn(x ′) + 2
∞∑

m=1

Qm
n (x)P

−m
n (x

′) cos mω,

when ω is real, Re(x ′) ≥ 0, and |(x ′ − 1)(x + 1)| < |(x − 1)(x ′ + 1)|.

15.8 The function Cν
n(z)

A function connected with the associated Legendre function Pm
n (z) is the function Cν

n(z),
which for integral values of n is defined to be the coefficient of hn in the expansion of
(1 − 2hz + h2)−ν in ascending powers of h. This function has been studied by Gegenbauer
[240].

It is easily seen that Cν
n(z) satisfies the differential equation

d2y

dz2 +
(2ν + 1)z

z2 − 1
dy
dz
−

n(n + 2ν)
z2 − 1

y = 0.

For all values of n and ν, it may be shewn that we can define a function, satisfying this
equation, by a contour integral of the form

(1 − z2)1/2−ν
∫
C

(1 − t2)n+ν−1/2

(t − z)n+1 dt,

where C is the contour of §15.2; this corresponds to Schläfli’s integral.

The reader will easily prove the following results:

(I) When n is a integer

Cν
n(z) =

(−2)nν(ν + 1) · · · (ν + n − 1)
n!(2n + 2ν − 1)(2n + 2ν − 2) · · · (n + 2ν)

(1 − z2)1/2−ν
dn

dzn
{(1 − z2)n+ν−

1
2 };

since Pn(z) = C1/2
n (z), Rodrigues’ formula is a particular case of this result.

(II) When r is an integer,

Cr+ 1
2

n−r (z) =
1

(2r − 1)(2r − 3) · · · 3 · 1
dr

dzr
Pn(z),

whence

Cr+ 1
2

n−r (z) =
(z2 − 1)−r/3

(2r − 1) · (2r − 3) · · · 3 · 1
Pr
n(z).

The last equation gives the connexion between the functions Cν
n(z) and Pr

n(z).
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(III) Modifications of the recurrence formulae for Pn(z) are the following:

Cν+1
n−1(z) − Cν+1

n−2(z) −
n

2ν
Cν
n(z) = 0,

Cν+1
n (z) − zCν+1

n−1(z) =
n + 2ν

2ν
Cν
n(z),

dCν
n(z)

dz
= 2νCν+1

n−1(z),

nCν
n(z) = (n − 1 + 2ν)zCν

n−1(z) − 2ν(1 − z2)Cν−1
n−2(z).

15.9 Miscellaneous examples
The functions involved in Examples 15.1–15.30 are Legendre polynomials.

Example 15.1 (Math. Trip. 1898) Prove that when n is a positive integer,

Pn(z) =
n∑
0

(n + p)!(−1)p

(n − p)!p!22p+1 {(1 − z)p + (−1)n(1 + z)p}.

Example 15.2 (Math. Trip. 1896) Prove that
∫ 1

−1
z(1 − z2)

dPn

dz
dPm

dz
dz is zero unless

m − n = ±1, and determine its value in these cases.

Example 15.3 (Math. Trip. 1899) Shew (by induction or otherwise) that when n is a positive
integer,

(2n + 1)
∫ 1

z

Pn
2(z) dz =

1 − zPn
2 − 2z(P1

2 + P2
2 + · · · + P2

n−1) + 2(P1P2 + P2P3 + · · · + Pn−1Pn).

Example 15.4 (Clare, 1906) Shew that

zP′n(z) = nPn(z) + (2n − 3)Pn−2(z) + (2n − 7)Pn−4(z) + · · · .

Example 15.5 (Math. Trip. 1904) Shew that

z2 P′′n (z) = n(n − 1)Pn(z) +
p∑

r=1

(2n − 4r + 1){r(2n − 2r + 1) − 2}Pn−2r (z),

where p = 1
2 n or 1

2 (n − 1).

Example 15.6 (Trin. Coll. Dublin) Shew that the Legendre polynomial satisfies the relation

(z2 − 1)2
d2Pn

dz2 = n(n − 1)(n + 1)(n + 2)
∫ z

1
dz

∫ z

1
Pn(z) dz.

Example 15.7 (Peterhouse, 1905) Shew that∫ 1

0
z2Pn+1(z)Pn−1(z) dz =

n(n + 1)
(2n − 1)(2n + 1)(2n + 3)

.
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Example 15.8 (Peterhouse, 1907) Shew that the values of∫ 1

−1
(1 − z2)2P′′′m (z)P

′
n(z) dz

are as follows:

1. 8n(n + 1) when m − n is positive and even,
2. −2n(n2 − 1)(n − 2)/(2n + 1) when m = n,
3. 0 for other values of m and n.

Example 15.9 (Math. Trip. 1907) Shew that

sinn θPn(sin θ) =
n∑

r=0

(−1)r
n!

r!(n − r)!
cosr θPr (cos θ).

Example 15.10 (Clare, 1903) Shew, by evaluating
∫ π

0
Pn(cos θ) dθ (Example 15.3.1), and

then integrating by parts, that∫ 1

−1
Pn(µ) arcsin µ dµ =


0 when n is even

π

{
1 · 3 · · · (n − 2)
2 · 4 · · · (n + 1)

}2

when n is odd.

Example 15.11 (Adams [9]) If m and n be positive integers, and m ≤ n, shew by induction
that

Pm(z)Pn(z) =
m∑
r=0

Am−r Ar An−r

An+m−r

(
2n + 2m − 4r + 1
2n + 2m − 2r + 1

)
Pn+m−2r (z),

where Am =
1 · 3 · 5 · · · (2m − 1)

m!
.

Example 15.12 By expanding in ascending powers of u shew that

Pn(z) =
(−1)n

n!
dn

dzn
(u2 + z2)−1/2,

where u2 is to be replaced by (1 − z2) after the differentiation has been performed.

Example 15.13 (Heun [299]) Shew that Pn(z) can be expressed as a constant multiple
of a determinant in which all elements parallel to the auxiliary diagonal are equal (i.e. all
elements are equal for which the sum of the row-index and column-index is the same); the
determinant containing n rows, and its elements being

z, −
1
3
,

1
3

z, −
1
5
,

1
5

z, . . . ,
1

2n − 1
z.

Example 15.14 (Silva) Shew that, if the path of integration passes above t = 1,

Pn(z) =
2
πi

∫ ∞

0

{z(1 − t2) − 2t(1 − z2)1/2}n

(1 − t2)n+1 dt .
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Example 15.15 (Math. Trip. 1893) By writing cot θ ′ = cot θ − h cosec θ and expanding
sin θ ′ in powers of h by Taylor’s theorem, shew that

Pn(cos θ) =
(−1)n

n!
cosecn+1 θ

dn(sin θ)
d(cot θ)n

.

Example 15.16 (Glaisher [247]) By considering
∞∑
n=0

hnPn(z), shew that

Pn(z) =
1

n!
√
π

∫ ∞

−∞

e−(1−z
2)t2

(
−

d
dz

)n
e−z

2t2
dt.

Example 15.17 (Math. Trip. 1894) The equation of a nearly spherical surface of revolution
is

r = 1 + α{P1(cos θ) + P3(cos θ) + · · · + P2n−1(cos θ)},

where α is small; shew that if α2 be neglected the radius of curvature of the meridian is

1 + α
n−1∑
m=0

{n(4m + 3) − (m + 1)(8m + 3)}P2m+1(cos θ).

Example 15.18 (Trinity, 1894) The equation of a nearly spherical surface of revolution is

r = α {1 + ε Pn(cos θ)},

where ε is small. Shew that if ε3 be neglected, its area is

4πα2
{
1 +

1
2
ε2 n2 + n + 2

2n + 1

}
.

Example 15.19 (Routh [564]) Shew that, if k is an integer and

(1 − 2hz + h2)−k/2 =

∞∑
n=0

αnPn(z),

then

αn =
hn

(1 − h2)k−2
2 1

2 (k−3) (2n + 1)
1 · 3 · 5 · · · (k − 2)

(
h2 ∂

∂x
+

∂

∂y

) 1
2 (k−3)

x−n+k/2−2yn+k/2−2,

where x and y are to be replaced by unity after the differentiations have been performed.

Example 15.20 (Catalan) Shew that∫ 1

−1

1
z − x

{Pn(x)Pn−1(z) − Pn−1(x)Pn(z)} dx = −
2
n
,

∞∑
n=1

1
2n + 1

d
dz

[
Pn(z)

(
1
n

Pn−1(z) +
1

n + 1
Pn+1(z)

)]
= −1.

Example 15.21 Let x2 + y2 + z2 = r2, z = µr , the numbers involved being real, so that
−1 < µ < 1. Shew that

Pn(µ) =
(−1)n rn+1

n!
∂n

∂zn

(
1
r

)
,
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where r is to be treated as a function of the independent variables x, y, z in performing the
differentiations.

Example 15.22 With the notation of Example 15.3.4, shew that

Qn(µ) =
(−1)nrn+1

n!
∂n

∂zn

{
1
2r

log
(
r − z
r + z

)}
,

(n + 1)Pn(µ) + µP′n(µ) =
(−1)nrn+3

n!
∂n

∂zn

(
1
r3

)
.

Example 15.23 Shew that, if |h| and |z | are sufficiently small,

1 − h2

(1 − 2hz + h2)3/2
=

∞∑
n=0

(2n + 1)hnPn(z).

Example 15.24 (Math. Trip. 1894) Prove that

Pn+1(z)Qn−1(z) − Pn−1(z)Qn+1(z) =
2n + 1

n(n + 1)
z.

Example 15.25 (Bauer) If the arbitrary function f (x) can be expanded in the series

f (x) =
∞∑
n=0

αnPn(x),

converging uniformly in a domain which includes the point x = 1, shew that the expansion
of the integral of this function is∫ x

1
f (x) dx = −α0 −

1
3
α1 +

∞∑
n=1

( αn−1

2n − 1
−

αn+1

2n + 3

)
Pn(x).

Example 15.26 (Bauer [58]) Determine the coefficients in Neumann’s expansion of eαz in
a series of Legendre polynomials.

Example 15.27 (Catalan) Deduce from Example 15.25 that

arcsin z =
π

2

∞∑
0

{
1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · 2n

}2

{P2n+1(z) − P2n−1(z)}.

Example 15.28 (Schläfli; Hermite [293]) Shew that

Qn(z) =
1
2

log
(

z + 1
z − 1

)
· Pn(z)−{Pn−1(z)P0(z) +

1
2

Pn−2(z)P1(z)

+
1
3

Pn−3(z)P2(z) + · · · +
1
n

P0(z)Pn−1(z)}.

Example 15.29 (Math. Trip. 1898) Shew that

Qn(z) =
1

2nn!
dn

dzn

{
(z2 − 1)n log

z + 1
z − 1

}
−

1
2

Pn(z) log
z + 1
z − 1

.

Prove also that

Qn(z) =
1
2

Pn(z) log
z + 1
z − 1

− fn−1(z),
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where

fn−1(z) =
2n − 1
1 · n

Pn−1(z) +
2n − 5

3(n − 1)
Pn−3(z) +

2n − 9
5(n − 2)

Pn−5(z) + · · ·

=


kn + (kn − 1) n(n+1)

12

(
z−1

2

)
+

(
kn − 1 − 1

2

) n(n−1)(n+1)(n+2)
1222

(
z−1

2

)2

+
(
kn − 1 − 1

2 −
1
3

) n(n−1)(n−2)(n+1)(n+2)(n+3)
122232

(
z−1

2

)3
+ · · ·

 ,
where kn = 1 + 1

2 +
1
3 + · · · +

1
n
.

The first of these expressions for fn−1(z) was given by Christoffel [145] and he also gives
a generalisation of Example 15.28; the second was given by Stieltjes [298, p. 59].

Example 15.30 Shew that the complete solution of Legendre’s differential equation is

y = APn(z) + BPn(z)
∫ ∞

z

dt
(t2 − 1){Pn(t)}2

,

the path of integration being the straight line which when produced backwards passes through
the point t = 0.

Example 15.31 (Schläfli) Shew that

{z + (z2 − 1)1/2}α =
∞∑

m=0

BmQ2m−α−1(z),

where

Bm = −
α(α − 2m + 1

2 )

2π
Γ(m − 1

2 )Γ(m − α −
1
2 )

m! Γ(m − α + 1)
.

Example 15.32 Shew that, when Re(n + 1) > 0,

Qn(z) =
∫ ∞

z+(z2−1)1/2

h−n−1 dh
(1 − 2hz + h2)1/2

, and

Qn(z) =
∫ z+(z2−1)1/2

0

hn dh
(1 − 2hz + h2)1/2

.

Example 15.33 (Hobson) Shew that

Qm
n (z) = emπi

Γ(n + 1)
Γ(n − m + 1)

∫ ∞

0

cosh mu du
{z + (z2 − 1)1/2 cosh u}n+1 ,

where Re(n + 1) > m.

Example 15.34 Obtain the expansion of Pn(z) when | arg z | < π as a series of powers of
1/z, when n is not an integer, namely

Pn(z) =
tan nπ
π
{Qn(z) −Q−n−1(z)}

=
2nΓ(n + 1

2 )

Γ(n + 1)Γ( 12 )
zn F

(
1 − n

2
,−

n
2
,
1
2
− n,

1
z2

)
+

2−n−1Γ(−n − 1
2 )

Γ(−n)Γ( 12 )
z−n−1 F

(
n
2
+ 1,

n + 1
2

,n +
3
2
,

1
z2

)
.
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[This is most easily obtained by the method of §14.51.]

Example 15.35 (Olbricht) Shew that the differential equation for the associated Legendre
function Pm

n (z) is defined by the schemes16

P


0 ∞ 1

− 1
2 n m − 1

2 n z+(z2−1)1/2
z−(z2−1)1/2

1
2 n + 1

2 −m 1
2 n + 1

2


, P


0 ∞ 1

− 1
2 n 1

2 m 0 1
1−z2

1
2 n + 1

2 − 1
2 m 1

2

 .
Example 15.36 Shew that the differential equation for Cν

n(z) is defined by the scheme

P


−1 ∞ 1
− 1

2 − ν n + 2ν 1
2 − ν z

0 −n 0

 .
Example 15.37 (Math. Trip. 1896) Prove that, if

ys =
(2n + 1)(2n + 3) · · · (2n + 2s − 1)

n(n2 − 1)(n2 − 4) · · · {n2 − (s − 1)2}(n + s)
(z2 − 1)s

dsPn

dzs
,

then

y2 = Pn+2 −
2 (2n + 1)

2n − 1
Pn +

2n + 3
2n − 1

Pn−2,

y3 = Pn+3 −
3(2n + 3)

2n − 1
Pn+1 +

3(2n + 5)
2n − 3

Pn−1 −
(2n + 3)(2n + 5)
(2n − 1)(2n − 3)

Pn−3,

and find the general formula.

Example 15.38 (Math. Trip. 1901) Shew that

Pm
n (cos θ) =

2
√
π

Γ(n + m + 1)
Γ(n + 3

2 )

[
cos{(n + 1

2 )θ −
1
4π +

1
2 mπ}

(2 sin θ)1/2

+
(12 − 4m2)

2(2n + 3)
cos{(n + 3

2 )θ −
3
4π +

1
2 mπ}

(2 sin θ)3/2

+
(12 − 4m2)(32 − 4m2)

2 · 4 · (2n + 3)(2n + 5)
cos{(n + 5

2 )θ −
5
4π +

1
2 mπ}

(2 sin θ)5/2
+ · · ·

]
,

obtaining the ranges of values of m,n and θ for which it is valid.

Example 15.39 (Macdonald [445, 447]) Shew that the values of n, for which P−mn (cos θ)
vanishes, decrease as θ increases from 0 to π when m is positive; and that the number of
real zeros of P−mn (cos θ) for values of θ between −π and π is the greatest integer less than
n − m + 1.

16 See also Example 15.5.1.
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Example 15.40 (Legendre) Obtain the formula
1

2π

∫ π

−π

[
1 − 2h{cosω cos φ + sinω sin φ cos(θ ′ − θ)} + h2]−1/2

dθ

=

∞∑
n=0

hnPn(cosω)Pn(cos φ).

Example 15.41 (Trinity, 1893) If f (x) = x2 for x ≥ 0, and f (x) = −x2 for x < 0, shew
that, if f (x) can be expanded into a uniformly convergent series of Legendre polynomials in
the range (−1,1), the expansion is

f (x) =
3
4

P1(x) −
∞∑
r=1

(−1)r
1 · 3 · · · (2r − 3)

4 · 6 · 8 · · · 2r
4r + 3
2r + 4

P2r+1(x).

Example 15.42 (Gegenbauer [241]) If
1

(1 − 2hz + h2)ν
=
∞∑
n=0

hnCν
n(z), shew that

Cν
n{xx1 − (x2 − 1)1/2(x2

1 − 1)1/2 cos φ}

=
Γ(2ν − 1)
{Γ(ν)}2

n∑
λ=0

(−1)λ
4λΓ(n − λ + 1){Γ(ν + λ)}2(2ν + 2λ − 1)

Γ(n + 2ν + λ)

× (x2 − 1)
1
2λ(x1

2 − 1)
1
2λCν+λ

n−λ(x)C
ν+λ
n−λ(x1)C

ν− 1
2

λ (cos φ)

Example 15.43 (Pincherle [522]) If σn(z) =
∫ e1

0
(t3 − 3tz + 1)−1/2tn dt, where e1 is the

least root of t3 − 3tz + 1 = 0, shew that

(2n + 1)σn+1 − 3(2n − 1)zσn−1 + 2(n − 1)σn−2 = 0,

and

4(4z3 − 1)σ′′′n + 144z2σ′′n − z(12n2 − 24n − 291)σ′n − (n − 3)(2n − 7)(2n + 5)σn = 0,

where σ′′′n =
d3σn(z)

dz3 , etc.

Example 15.44 (Pincherle [520]) If (h3 − 3hz + 1)−1/2 =
∞∑
n=0

Rn(z)hn, shew that

2(n + 1)Rn+1 − 3(2n + 1)zRn + (2n − 1)Rn−2 = 0,
nRn + R′n−2 − zR′n = 0,

and

4(4z3 − 1)R′′′n + 96z2R′′n − z(12n2 + 24n − 91)R′n − n(2n + 3)(2n + 9)Rn = 0,

where R′′′n =
d3Rn

dz3 , etc.

Example 15.45 (Schendel [575]) If An(x) =
1

2nn!(x − 1)
dn

dxn
{(x2 − 1)n(x − 1)}, obtain

the recurrence formula

(n + 1)(2n − 1)An(x) − {(4n2 − 1)x + 1}An−1(x) + (n − 1)(2n + 1)An−2(x) = 0.
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Example 15.46 If n is not negative and m is a positive integer, shew that the equation

(x2 − 1)
d2y

dx2 + (2n + 2)x
dy
dx
= m(m + 2n + 1)y

has the two solutions

Km(x) = (x2 − 1)−n
dm

dxm
(x2 − 1)m+n, Lm(x) = (x2 − 1)−n

∫ 1

−1

(t2 − 1)n

x − t
Km(t) dt,

when x is not a real number such that −1 ≤ x ≤ 1.

Example 15.47 (Clare, 1901) Prove that

{1 − hx − (1 − 2hx + h2)1/2}m = m(x2 − 1)m
∞∑

n=m

hn+m

(n + m)!
1
n

dn+m

dxn+m

(
x2 − 1

2

)n
.

Example 15.48 (Trinity, 1905) If Fα,n(x) =
∞∑

m=0

(m + α)n

m!
xm, shew that

Fα,n (x) =
{

dn

dtn
(eαt+xs

t )

}
t=0
= exPn(x, α),

where Pn(x, α) is a polynomial of degree n in x; and deduce that

Pn+1(x, α) = (x + α)Pn(x, α) + x
d
dx

Pn(x, α).

Example 15.49 (Léauté) If Fn(x) be the coefficient of zn in the expansion of
2hz

ehz − e−kz
exz

in ascending powers of z, so that

F0(x) = 1, F1(x) = x, F2(x) =
3x2 − h2

6
, . . . ,

shew that:

1. Fn(x) is a homogeneous polynomial of degree n in x and h;

2.
dFn(x)

dx
= Fn−1(x) for n ≥ 1;

3.
∫ k

−k

Fn(x) dx = 0 for n ≥ 1;

4. If y = α0F0(x) + α1F1(x) + α2F2(x) + · · · , where α0, α1, α2, . . . are real constants, then

the mean-value of
dr y

dxr
in the interval from x = −h to x = +h is αr .

Example 15.50 (Appell) If Fn(x) be defined as in the preceding example, shew that, when
−h < x < h,

F2m(x) = (−1)m
2h2m

π2m

(
cos

πx
h
−

1
22m cos

2πx
h
+

1
32m cos

3πx
h
+ · · ·

)
,

F2m+1(x) = (−1)m
2h2m+1

π2m+1

(
sin

πx
h
−

1
22m+1 sin

2πx
h
+

1
32m+1 sin

3πx
h
+ · · ·

)
.
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The Confluent Hypergeometric Function

16.1 The confluence of two singularities of Riemann’s equation
We have seen (§10.8) that the linear differential equation with two regular singularities only
can be integrated in terms of elementary functions; while the solution of the linear differential
equation with three regular singularities is substantially the topic of Chapter 14. As the next
type in order of complexity, we shall consider a modified form of the differential equation
which is obtained fromRiemann’s equation by the confluence of two of the singularities. This
confluence gives an equation with an irregular singularity (corresponding to the confluent
singularities of Riemann’s equation) and a regular singularity corresponding to the third
singularity of Riemann’s equation.

The confluent equation is obtained by making c → ∞ in the equation defined by the
scheme

P


0 ∞ c

1
2 + m −c c − k z
1
2 − m 0 k

 .
The equation in question is readily found to be

d2u
dz2 +

du
dz
+

(
k
z
+

1
4 − m2

z2

)
u = 0. (16.1)

We modify this equation by writing u = e−
1
2 zWk ,m(z) and obtain as the equation1

d2W
dz2 +

{
−

1
4
+

k
z
+

1
4 − m2

z2

}
W = 0. (16.2)

The reader will verify that the singularities of this equation are at 0 and ∞, the former
being regular and the latter irregular; and when 2m is not an integer, two integrals of equation
(16.2) which are regular near 0 and valid for all finite values of z are given by the series

Mk ,m(z) = z1/2+me−
1
2 z

{
1 +

1
2 + m − k

1!(2m + 1)
z +
( 12 + m − k)( 32 + m − k)

2!(2m + 1)(2m + 2)
z2 + · · ·

}
,

Mk ,−m(z) = z1/2−me−
1
2 z

{
1 +

1
2 − m − k

1!(1 − 2m)
z +
( 12 − m − k)( 32 − m − k)

2!(1 − 2m)(2 − 2m)
z3 + · · ·

}
.

1 This equation was given by Whittaker [671], forWk ,m(z).
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These series obviously form a fundamental system of solutions.

Note Series of the type above have been considered by Kummer [389, p. 139] and more
recently by Jacobsthal [355] and Barnes [49]; the special series in which k = 0 had been
investigated by Lagrange in 1762–1765 [396, vol. I, p. 480]. In the notation of Kummer,
modified by Barnes, they would be written 1F1

{ 1
2 ± m − k;±2m + 1; z

}
; the reason for

discussing solutions of equation (16.2) rather than those of the equation z
d2y

dz2 − (z − ρ)
dy
dz
−

ay = 0, of which 1F1(a; ρ; z) is a solution, is the greater appearance of symmetry in the
formulae, together with a simplicity in the equations giving various functions of Applied
Mathematics (see §16.2) in terms of solutions of equation (16.2).

16.11 Kummer’s formulae
(I) We shall now shew that, if 2m is not a negative integer, then

z−1/2−mMk ,m(z) = (−z)−1/2−mM−k ,m(−z);

that is to say,

e−z
{

1 +
1
2 + m − k

1!(2m + 1)
z +
( 12 + m − k)( 32 + m − k)

2!(2m + 1)(2m + 2)
z2 + · · ·

}
= 1 −

1
2 + m + k

1!(2m + 1)
z +
( 12 + m + k)( 32 + m + k)

2!(2m + 1)(2m + 2)
z2 − · · · .

For, replacing e−z by its expansion in powers of z, the coefficient of zn in the product of
absolutely convergent series on the left is

(−1)n

n!
F

( 1
2 + m − k,−n; 2m + 1; 1

)
=
(−1)n

n!
Γ(2m + 1)Γ(m + 1

2 + k + n)

Γ(m + 1
2 + k)Γ(2m + 1 + n)

,

by §14.11, and this is the coefficient of zn on the right (the result is still true when m+ 1
2 + k is

a negative integer, by a slight modification of the analysis of §14.11); we have thus obtained
the required result. This will be called Kummer’s first formula.
(II) The equation

M0,m(z) = z1/2+m

{
1 +

∞∑
p=1

z2p

24pp!(m + 1)(m + 2) · · · (m + p)

}
,

valid when 2m is not a negative integer, will be called Kummer’s second formula.
To prove it we observe that the coefficient of zn+m+1/2 in the product

2m+1/2e−z/21F1(m + 1
2 ; 2m + 1; z),

of which the second and third factors possess absolutely convergent expansions, is (§3.73)

( 12 + m)( 32 + m) · · · (n − m + 1
2 )

n!(2m + 1)(2m + 2) · · · (2m + n)
F

(
−n,−2m − n;−n + 1

2 − m; 1
2

)
=
( 12 + m)( 32 + m) · · · (n − m + 1

2 )

n!(2m + 1)(2m + 2) · · · (2m + n)
F

(
− 1

2 n,−m − 1
2 n;−n + 1

2 − m; 1
)
,
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by Kummer’s relation (see Chapter 14, Examples 14.12 and 14.13)

F(2α,2β;α + β + 1
2 ; x) = F{α, β;α + β + 1

2 ; 4x(1 − x)},

valid when 0 ≤ x ≤ 1
2 ; and so the coefficient of zn+m+1/2 (by §14.11) is

( 12 + m)( 32 + m) · · · (n − m + 1
2 )

n!(2m + 1)(2m + 2) · · · (2m + n)
Γ(−n + 1

2 − m)Γ( 12 )

Γ( 12 − m − 1
2 n)Γ( 12 −

1
2 n)

=
Γ( 12 − m)Γ( 12 )

n!(2m + 1)(2m + 2) · · · (2m + n)Γ( 12 − m − 1
2 n)Γ( 12 −

1
2 n)

,

and when n is odd this vanishes; for even values of n (= 2p) it is

Γ( 12 − m)(− 1
2 )(−

3
2 ) · · · (

1
2 − p)

(2p)!22p(m + 1
2 )(m +

3
2 ) · · · (m + p − 1

2 )(m + 1)(m + 2) · · · (m + p)Γ( 12 − m − p)

=
1 · 3 · · · (2p − 1)

(2p)! 23p(m + 1)(m + 2) · · · (m + p)
=

1
24p · p!(m + 1)(m + 2) · · · (m + p)

.

16.12 Definition of the function Wk ,m(z)

The functionWk ,m(z)was defined by means of an integral in this manner byWhittaker [671].
The solutions Mk ,±m(z) of equation (16.2) of §16.1 are not, however, the most convenient to
take as the standard solutions, on account of the disappearance of one of them when 2m is
an integer.

The integral obtained by confluence from that of §14.6, when multiplied by a constant
multiple of ez/2, is2

Wk ,m(z) = −
1

2πi
Γ

(
k + 1

2 − m
)

e−z/2zk
∫ (0+)

∞

(−t)−k−
1
2+m (1 + t/z)k−

1
2+m e−t dt.

It is supposed that arg z has its principal value and that the contour is so chosen that the
point t = −z is outside it. The integrand is rendered one-valued by taking | arg(−t)| ≤ π

and taking that value of arg(1 + t/z) which tends to zero as t → 0 by a path lying inside
the contour. Under these circumstances it follows from §5.32 that the integral is an analytic
function of z. To shew that it satisfies equation (16.2), write

v =

∫ (0+)

∞

(−t)−k−
1
2+m(1 + t/z)k−

1
2+me−t dt;

and we have without difficulty3

d2v

dz2 +

(
2k
z
− 1

)
dv
dz
+

1
4 − m2 + k(k − 1)

z2 v

= −
(k − 1

2 + m)
z2

∫ (0+)

∞

d
dt

{
t−k+1/2+m (1 + t/z)k−3/2+m e−t

}
dt

= 0,
2 A suitable contour has been chosen and the variable t of §14.6 replaced by −t .
3 The differentiations under the sign of integration are legitimate by Corollary 4.4.1.
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since the expression in braces tends to zero as t → +∞; and this is the condition that e−z/2zkv
should satisfy (16.2).

Accordingly the function Wk ,m(z) defined by the integral

−
1

2πi
Γ

(
k + 1

2 − m
)

e−
1
2 z zk

∫ (0+)

∞

(−t)−k−
1
2+m (1 + t/z)k−

1
2+m e−t dt

is a solution of the differential equation (16.2).
The formula for Wk ,m(z) becomes nugatory when k − 1

2 − m is a negative integer. To
overcome this difficulty, we observe that whenever Re

(
k − 1

2 − m
)
≤ 0 and k − 1

2 − m is not
an integer, we may transform the contour integral into an infinite integral, after the manner
of §12.22; and so, when Re

(
k − 1

2 − m
)
≤ 0,

Wk ,m(z) =
e−

1
2 z zk

Γ( 12 − k + m)

∫ ∞

0
t−k−

1
2+m (1 + t/z)k−

1
2+m e−t dt .

This formula suffices to define Wk ,m(z) in the critical cases when m + 1
2 − k is a positive

integer, and so Wk ,m(z) is defined for all values of k and m and all values of z except negative
real values4 .

Example 16.1.1 Solve the equation

d2u
dz2 +

(
a +

b
z
+

c
z2

)
u = 0

in terms of functions of the type Wk ,m(z), where a, b, c are any constants.

16.2 Expression of various functions by functions of the type Wk ,m(z)

It has been shewn5 that various functions employed in Applied Mathematics are expressible
by means of the function Wk ,m(z); the following are a few examples:

(I) The Error function6 which occurs in connexion with the theories of Probability, Errors of
Observation, Refraction and Conduction of Heat is defined by the equation

Erfc(x) =
∫ ∞

x

e−t
2

dt,

where x is real.

4 When z is real and negative,Wk ,m(z) may be defined to be eitherWk ,m(z + 0i) orWk ,m(z − 0i), whichever
is more convenient.

5 Whittaker [671]; this paper contains a more complete account than is given here.
6 This name is also applied to the function

Erf(x) =
∫ x

0
e−t

2
dt =

√
π

2
− Erfc(x).
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Writing t = x2(w2 − 1) and then w = s/x in the integral for W− 1
4 ,

1
4
(x2), we get

W− 1
4 ,

1
4
(x2) = x−

1
2 e−

1
2 x

2
∫ ∞

0

(
1 + t/x2)−1/2

e−t dt

= 2x
3
2 e−

1
2 x

2
∫ ∞

1
ex2
(1 − w2) dw

= 2x
1
2 e

1
2 x

2
∫ ∞

x

e−s
2

ds,

and so the error function is given by the formula

Erfc(x) = 1
2 x−

1
2 e−

1
2 x

2
W− 1

4 ,
1
4
(x2).

Other integrals which occur in connexion with the theory of Conduction of Heat, e.g.∫ b

a

e−t
2−x2/t2

dt, can be expressed in terms of error functions, and so in terms of Wk ,m

functions.

Example 16.2.1 Shew that the formula for the error function is true for complex values
of x.

(II) The Incomplete Gamma-function, studied by Legendre and others7 , is defined by the
equation

γ(n, x) =
∫ x

0
tn−1e−t dt .

By writing t = s − x in the integral for W 1
2 (n−1), 1

2 n
(x), the reader will verify that

γ(n, x) = Γ(n) − x
1
2 (n−1)e−

1
2 xW 1

2 (n−1), 1
2 n
(x).

(III) The Logarithmic-integral function, which has been discussed by Euler and others8 , is
of considerable importance in the higher parts of the Theory of Prime Numbers; see Landau
[405]. It is defined, when | arg(− log z)| < π, by the equation

li(z) =
∫ z

0

dt
log t

.

On writing s − log z = u and then u = − log t in the integral for

W− 1
2 ,0
(− log z),

it may be verified that

li(z) = −(− log z)−
1
2 z

1
2 W− 1

2 ,0
(− log z).

It will appear later thatWeber’s Parabolic Cylinder functions (§16.5) and Bessel’s Circular
Cylinder functions (Chapter 17) are particular cases of the Wk ,m function. Other functions
of like nature are given in the Miscellaneous Examples at the end of this chapter.

7 Legendre [421, vol. I, p. 339]; Hočevar [324]; Schlömilch [584]; Prym [545].
8 Euler [201]; Soldner [597]; Bessel [69]; Laguerre [397]; Stieltjes [605].
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Note The error function has been tabulated by Encke [195], and Burgess [107]. The
logarithmic-integral function has been tabulated by Bessel and by Soldner. Jahnke & Emde
[356], and Glaisher [253], should also be consulted.

16.3 The asymptotic expansion of Wk ,m(z), when |z | is large
From the contour integral by whichWk ,m(z)was defined, it is possible to obtain an asymptotic
expansion for Wk ,m(z) valid when | arg z | < π. For this purpose, we employ the result given
in Chapter 5, Example 5.6, that(

1 +
t
z

)λ
= 1 +

λ

1
t
z
+ · · · +

λ(λ − 1) · · · (λ − n + 1)
n !

tn

zn
+ Rn(t, z),

where

Rn(t, z) =
λ(λ − 1) · · · (λ − n)

n!

(
1 +

t
z

)λ ∫ t/z

0
un(1 + u)−λ−1 du.

Substituting this in the formula of §16.12 and integrating term-by-term, it follows from
the result of §12.22 that

Wk ,m(z) = e−
1
2 z zk

{
1 +

m2 − (k − 1
2 )

2

1!z
+
{m2 − (k − 1

2 )
2}{m2 − (k − 3

2 )
2}

2!z2

+ · · · +
{m2 − (k − 1

2 )
2}{m2 − (k − 3

2 )
2} · · · {m2 − (k − n + 1

2 )
2}

n!zn

+
1

Γ(−k + 1
2 + m)

∫ ∞

0
t−k−

1
2+mRn(t, z)e−t dt

}
provided that n be taken so large that Re

(
n − k − 1

2 + m
)
> 0.

Now, if | arg z | ≤ π − α and |z | > 1, then

1 ≤ | (1 + t/z) | ≤ 1 + t Re(z) ≥ 0
|1 + t/z | ≥ sinα Re(z) ≤ 0

}
,

and so9

|Rn(t, z)| ≤
����λ(λ − 1) · · · (λ − n)

n !

���� (1 + t) |λ |

(sinα) |λ |

∫ |t/z |

0
un(1 + u) |λ | du.

Therefore

|Rn(t, z)| <
����λ(λ − 1) · · · (λ − n)

n !

���� (1 + t) |λ |

(sinα) |λ |
|t/z |n+1(1 + t) |λ |(n + 1)−1,

since 1 + u < 1 + t. Therefore, when |z | > 1,����� 1
Γ(−k + 1

2 + m)

∫ ∞

0
t−k−

1
2+mRn(t, z)e−t dt

����� = O
{∫ ∞

0
t−k+

1
2+m+n(1 + t)2 |λ | |z |−n−1e−t dt

}
= O(z−n−1),

9 It is supposed that λ is real; the inequality has to be slightly modified for complex values of λ.
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since the integral converges. The constant implied in the symbol O is independent of arg z,
but depends on α, and tends to infinity as α→ 0. That is to say, the asymptotic expansion of
Wk ,m(z) is given by the formula

Wk ,m(z) ∼ e−
1
2 z zk

×

{
1 +

∞∑
n=1

{
m2 − (k − 1

2 )
2
} {

m2 − (k − 3
2 )

2
}
· · ·

{
m2 − (k − n + 1

2 )
2
}

n!zn

}
for large values of |z | when | arg z | ≤ π − α < π.

16.31 The second solution of the equation for Wk ,m(z)

The differential equation (16.2) of §16.1 satisfied byWk ,m(z) is unaltered if the signs of z and
k are changed throughout. Hence, if | arg(−z)| < π, W−k ,m(−z) is a solution of the equation.
Since, when | arg z | < π,

Wk ,m(z) = e−z/2zk
{
1 +O

(
z−1)} ,

whereas, when | arg(−z)| < π,

W−k ,m(−z) = ez/2(−z)−k
{
1 +O

(
z−1)} ,

the ratio Wk ,m(z)/W−k ,m(−z) cannot be a constant, and so Wk ,m(z) and W−k ,m(−z) form a
fundamental system of solutions of the differential equation.

16.4 Contour integrals of the Mellin–Barnes type for Wk ,m(z)

Consider now

I =
e−z/2zk

2πi

∫ i∞

−i∞

Γ(s)Γ(−s − k − m + 1
2 )Γ(−s − k + m + 1

2 )

Γ(−k − m + 1
2 )Γ(−k + m + 1

2 )
zs ds, (16.3)

where | arg z | < 3
2π, and neither of the numbers k ±m + 1

2 is a positive integer or zero10; the
contour has loops if necessary so that the poles of Γ(s) and those of Γ

(
−s − k − m + 1

2

)
×

Γ
(
−s − k + m + 1

2

)
are on opposite sides of it.

It is easily verified, by §13.6, that, as s→∞ on the contour,

Γ(s)Γ
(
−s − k − m + 1

2

)
Γ

(
−s − k + m + 1

2

)
= O(e−3π |s |/2 |s |−2k−1/2),

and so the integral represents a function of z which is analytic at all points11 in the domain
| arg z | ≤ 3

2π − α <
3
2π.

Now choose N so that the poles of Γ
(
−s − k − m + 1

2

)
Γ

(
−s − k + m + 1

2

)
are on the right

of the line Re(s) = −N − 1
2 ; and consider the integral taken round the rectangle whose

corners are ±iξ, −N − 1
2 ± iξ, where ξ is positive12 and large. The reader will verify that,

10 In these cases the series of §16.3 terminates andWk ,m(z) is a combination of elementary functions.
11 The integral is rendered one-valued when Re(z) < 0 by specifying arg z.
12 The line joining ±iξ may have loops to avoid poles of the integrand as explained above.
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when | arg z | ≤ 3
2π − α, the integrals

∫ −N− 1
2−iξ

−iξ

and
∫ −N− 1

2+iξ

iξ

tend to zero as ξ → ∞; and

so, by Cauchy’s theorem,

e−z/2zk

2πi

∫ i∞

−i∞

Γ(s)Γ(−s − k − m + 1
2 )Γ(−s − k + m + 1

2 )

Γ(−k − m + 1
2 )Γ(−k + m + 1

2 )
zs ds

= e−
1
2 z zk

{
N∑
n=0

Rn +
1

2πi

∫ −N− 1
2+i∞

−N− 1
2−i∞

Γ(s)Γ(−s − k − m + 1
2 )Γ(−s − k + m + 1

2 )

Γ(−k − m + 1
2 )Γ(−k + m + 1

2 )
zs ds

}
,

where Rn is the residue of the integrand at s = −n.
Write s = −N − 1

2 + it, and the modulus of the last integrand is

|z |−N−
1
2 O

{
e−α |t | |t |N−2k} ,

where the constant implied in the symbol O is independent of z. Since
∫ ±∞

e−α |t | |t |N−2k dt

converges, we find that

I = e−z/2zk
{

N∑
n=0

Rn +O(|z |−N−1/2)

}
.

But, on calculating the residue Rn, we get

Rn =
Γ(n − k − m + 1

2 )Γ(n − k + m + 1
2 )

n!Γ(−k − m + 1
2 )Γ(−k + m + 1

2 )
(−1)nz−n

=

{
m2 − (k − 1

2 )
2
} {

m2 − (k − 3
2 )

2
}
· · ·

{
m2 − (k − n + 1

2 )
2
}

n!zn
,

and so I has the same asymptotic expansion as Wk ,m(z).
Further, I satisfies the differential equation for Wk ,m(z); for, on substituting∫ i∞

−i∞

Γ(s)Γ
(
−s − k − m + 1

2

)
Γ

(
−s − k + m + 1

2

)
zs ds

for v in the expression (given in §16.12)

z2 d2v

dz2 + 2kz
dv
dz
+

(
k − m − 1

2

) (
k + m − 1

2

)
v − z2 dv

dz
,

we get ∫ i∞

−i∞

Γ(s)Γ
(
−s − k − m + 3

2

)
Γ

(
−s − k + m + 3

2

)
zs ds

−

∫ ∞i

−∞i

Γ(s + 1)Γ
(
−s − k − m + 1

2

)
Γ

(
−s − k + m + 1

2

)
zs+1 ds

=

(∫ i∞

−i∞

−

∫ 1+i∞

1−i∞

)
Γ(s)Γ

(
−s − k − m +

3
2

)
Γ

(
−s − k + m + 3

2

)
zs ds.

Since there are no poles of the last integrand between the contours, and since the integrand
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tends to zero as |s | → ∞, s being between the contours, the expression under consideration
vanishes, by Cauchy’s theorem; and so I satisfies the equation for Wk ,m(z).

Therefore I = AWk ,m(z) + BW−k ,m(−z), where A and B are constants. Making |z | → ∞
when Re(z) > 0 we see, from the asymptotic expansions obtained for I and W∓k ,m(±z), that
A = 1, B = 0. Accordingly, by the theory of analytic continuation, the equality

I = Wk ,m(z)

persists for all values of z such that | arg z | < π; and, for values13 of arg z such that
π ≤ | arg z | < 3

2π, Wk ,m(z) may be defined to be the expression I.

Example 16.4.1 Shew that

Wk ,m(z) =
e−

1
2 z

2πi

∫ i∞

−i∞

Γ(s − k)Γ(−s − m + 1
2 )Γ(−s + m + 1

2 )

Γ(−k − m + 1
2 )Γ(−k + m + 1

2 )
zs ds,

taken along a suitable contour.

Example 16.4.2 Obtain Barnes’ integral for Wk ,m(z) by writing

1
2πi

∫ i∞

−i∞

Γ(s)Γ(−s − k − m + 1
2 )

Γ(−k − m + 1
2 )

zst−s ds

for (1 + t/z)k−
1
2+m in the integral of §16.12 and changing the order of integration.

16.41 Relations between Wk ,m(z) and Mk ,±m(z)

If we take the expression

F(s) ≡ Γ(s)Γ
(
−s − k − m + 1

2

)
Γ

(
−s − k + m + 1

2

)
which occurs in Barnes’ integral for Wk ,m(z), and write it in the form

π2Γ(s)
Γ(s + k + m + 1

2 )Γ(s + k − m + 1
2 ) cos(s + k + m)π cos(s + k − m)π

,

we see, by §13.6, that, when Re(s) ≥ 0, we have, as |s | → ∞,

F(s) = O
[
exp

{(
−s − 1

2 − 2k
)

log s + s
}]

sec(s + k + m)π sec(s + k − m)π.

Hence, if | arg z | < 3
2π,

∫
F(s)zs ds, taken round a semicircle on the right of the imaginary

axis, tends to zero as the radius of the semicircle tends to infinity, provided the lower bound of
the distance of the semicircle from the poles of the integrand is positive (not zero). Therefore

Wk ,m(z) = −
e−

1
2 z zk · (

∑
R′)

Γ(−k − m + 1
2 )Γ(−k + m + 1

2 )
,

13 It would have been possible, by modifying the path of integration in §16.3, to have shewn that that integral
could be made to define an analytic function when | arg z | < 3π/2. But the reader will see that it is
unnecessary to do so, as Barnes’ integral affords a simpler definition of the function.
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where
∑

R′ denotes the sum of the residues of F(s) at its poles on the right of the contour
(cf. §14.5) which occurs in equation (16.3) of §16.4.

Evaluating these residues we find without difficulty that, when | arg z | < 3
2π, and 2m is not

an integer14 ,

Wk ,m(z) =
Γ(−2m)

Γ( 12 − m − k)
Mk ,m(z) +

Γ(2m)
Γ( 12 + m − k)

Mk ,−m(z).

Example 16.4.3 (Barnes) Shew that, when | arg(−z)| < 3
2π and 2m is not an integer,

W−k ,m(−z) =
Γ(−2m)

Γ( 12 − m + k)
M−k ,m(−z) +

Γ(2m)
Γ( 12 + m + k)

M−k ,−m(−z).

These results are given in the notation explained in §16.1.

Example 16.4.4 When − 1
2π < arg z < 3

2π; and −
3
2π < arg(−z) < 1

2π, shew that

Mk ,m(z) =
Γ(2m + 1)
Γ( 12 + m − k)

ekπiW−k ,m(−z) +
Γ(2m + 1)
Γ( 12 + m + k)

e(
1
2+m+k)πiWk ,m(z).

Example 16.4.5 (Barnes) Obtain Kummer’s first formula (§16.11) from the result

zne−z =
1

2πi

∫ i∞

−i∞

Γ(n − s)zs ds.

16.5 The parabolic cylinder functions. Weber’s equation
Consider the differential equation satisfied by w = z−

1
2 Wk ,− 1

4

( 1
2 z2); it is

1
z

d
dz

{
1
z

d(wz
1
2 )

dz

}
+

{
−

1
4
+

2k
z2 +

3
4

z4

}
wz

1
2 = 0;

this reduces to
d2w

dz2 +

{
2k −

1
4

z2
}
w = 0.

Therefore the function

Dn(z) = 2
1
2 n+

1
4 z−

1
2 W 1

2 n+
1
4 ,−

1
4

( 1
2 z2)

satisfies the differential equation

d2Dn(z)
dz2 +

(
n + 1

2 −
1
4 z2) Dn(z) = 0.

Accordingly Dn(z) is one of the functions associated with the parabolic cylinder in har-
monic analysis (see Weber [655] and Whittaker [670]); the equation satisfied by it will be
called Weber’s equation.
14 When 2m is an integer some of the poles are generally double poles, and their residues involve logarithms of

z. The result has not been proved when k − 1
2 ±m is a positive integer or zero, but may be obtained for such

values of k and m by comparing the terminating series forWk ,m(z) with the series for Mk ,±m(z).
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From §16.41, it follows that

Dn(z) =
Γ( 12 )2

1
2 n+

1
4 z−

1
2

Γ( 12 −
1
2 n)

Mn
2 +

1
4 ,−

1
4

( 1
2 z2) + Γ(− 1

2 )2
1
2 n+

1
4 z−

1
2

Γ(− 1
2 n)

Mn
2 +

1
4 ,

1
4

( 1
2 z2)

when |arg z | < 3
4π. But

z−
1
2 Mn

2 +
1
4 ,−

1
4

( 1
2 z2) = 2−

1
4 e−

1
4 z

2

1F1
(
− n

2 ; 1
2 ; 1

2 z2) ,
z−

1
2 Mn

2 +
1
4 ,

1
4

( 1
2 z2) = 2−

3
4 ze−

1
4 z

2

1F1
( 1

2 −
n
2 ; 3

2 ; 1
2 z2) ,

and these are one-valued analytic functions of z throughout the z-plane. Accordingly Dn(z)
is a one-valued function of z throughout the z-plane; and, by §16.4, its asymptotic expansion
when | arg z | < 3

4π is

e−
1
4 z

2
zn

{
1 −

n(n − 1)
2z2 +

n(n − 1)(n − 2)(n − 3)
2 · 4z4 − · · ·

}
.

16.51 The second solution of Weber’s equation
Since Weber’s equation is unaltered if we simultaneously replace n and z by −n − 1 and ±iz
respectively, it follows that D−n−1(iz) and D−n−1(−iz) are solutions of Weber’s equation, as
is also Dn(−z).

It is obvious from the asymptotic expansions of Dn(z) and D−n−1(ze
1
2 πi), valid in the range

− 3
4π < arg z < 1

4π, that the ratio of these two solutions is not a constant.

16.511 The relation between the functions Dn(z),D−n−1(±iz)
From the theory of linear differential equations, a relation of the form

Dn(z) = aD−n−1(iz) + bD−n−1(−iz)

must hold when the ratio of the functions on the right is not a constant.
To obtain this relation, we observe that if the functions involved be expanded in ascending

powers of z, the expansions are

Γ( 12 )2
n
2

Γ( 12 −
n
2 )
+
Γ(− 1

2 )2
n
2 −

1
2

Γ(− 1
2 n)

z + · · ·

and

a

{
Γ( 12 )2

− 1
2 n−

1
2

Γ(1 + n
2 )
+
Γ(− 1

2 )2
− n

2 −1

Γ( 12 +
n
2 )

iz + · · ·

}
+ b

{
Γ( 12 )2

− 1
2 n−

1
2

Γ(1 + 1
2 n)
−
Γ(− 1

2 )2
− n

2 −1

Γ( 12 +
n
2 )

iz + · · ·

}
.

Comparing the first two terms we get

a = (2π)−
1
2 Γ(n + 1) e

1
2 nπi, b = (2π)−

1
2 Γ(n + 1)e−

1
2 nπi,

and so

Dn(z) =
Γ(n + 1)
√

2π

[
enπi/2D−n−1(iz) + e−nπi/2D−n−1(−iz)

]
.
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16.52 The general asymptotic expansion of Dn(z)

So far the asymptotic expansion of Dn(z) for large values of z has only been given (§16.5) in
the sector | arg z | < 3

4π. To obtain its form for values of arg z not comprised in this range we
write −iz for z and −n − 1 for n in the formula of the preceding section, and get

Dn(z) = enπiDn(−z) +

√
2π

Γ(−n)
e

1
2 (n+1)πiD−n−1(−iz).

Now, if 5
4π > arg z > 1

4π, we can assign to −z and −iz arguments between ± 3
4π; and

arg(−z) = arg z − π, arg(−iz) = arg z − 1
2π; and then, applying the asymptotic expansion of

§16.5 to Dn(−z) and D−n−1(−iz), we see that, if 5
4π > arg z > 1

4π,

Dn(z) ∼e−
1
4 z

2
zn

{
1 −

n(n − 1)
2z2 +

n(n − 1)(n − 2)(n − 3)
2 · 4z4 − · · ·

}
−

√
2π

Γ(−n)
enπie

1
4 z

2
z−n−1

{
1 +
(n + 1)(n + 2)

1 · 2z2 +
(n + 1)(n + 2)(n + 3)(n + 4)

2 · 4z4 + · · ·

}
.

This formula is not inconsistent with that of §16.5 since in their common range of validity,
viz. 1

4π < arg z < 3
4π, e

1
2 z

2
z−2n−1 is o(z−m) for all positive values of m.

To obtain a formula valid in the range − 1
4π > arg z > − 5

4π, we use the formula

Dn(z) = e−nπiDn(−z) +

√
2π

Γ(−n)
e−

1
2 (n+1)πiD−n−1(iz),

and we get an asymptotic expansion which differs from that which has just been obtained
only in containing e−nπi in place of enπi .

Since Dn(z) is one-valued and one or other of the expansions obtained is valid for all
values of arg z in the range −π ≤ arg z ≤ π, the complete asymptotic expansion of Dn(z) has
been obtained.

16.6 A contour integral for Dn(z)

Consider
∫ (0+)

∞

e−zt−
1
2 t

2
(−t)−n−1 dt, where | arg(−t)| ≤ π; it represents a one-valued analytic

function of z throughout the z-plane (§5.32) and further(
d2

dz2 − z
d
dz
+ n

) ∫ (0+)

∞

e−zt−
1
2 t

2
(−t)−n−1 dt =

∫ (0+)

∞

d
dt
{e−zt−

1
2 t

2
(−t)−n} dt = 0,

the differentiations under the sign of integration being easily justified; accordingly the integral
satisfies the differential equation satisfied by e

1
4 z

2
Dn(z); and therefore

e−
1
4 z

2
∫ (0+)

∞

e−zt−
1
2 t

2
(−t)−n−1 dt = aDn(z) + bD−n−1(iz),

where a and b are constants.
Now, if the expression on the right be called En(z), we have

En(0) =
∫ (0+)

∞

e−
1
2 t

2
(−t)−n−1 dt, E ′n(0) =

∫ (0+)

∞

e−
1
2 t

2
(−t)−n dt .
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To evaluate these integrals, which are analytic functions of n, we suppose first that
Re(n) < 0; then, deforming the paths of integration, we get

En(0) = −2i sin(n + 1)π
∫ ∞

0
e−

1
2 t

2
t−n−1 dt

= 2−n/2i sin nπ
∫ ∞

0
e−uu−n/2−1 du

= 2−n/2i sin(nπ)Γ
(
− n

2

)
.

Similarly E ′n(0) = −2(1−n)/2i sin(nπ)Γ( 12 (1− n)). Both sides of these equations being analytic
functions of n, the equations are true for all values of n; and therefore

b = 0, a =
Γ( 12 −

1
2 n)

Γ( 12 )2n/2
2−

1
2 ni sin(nπ)Γ

(
− n

2

)
= 2iΓ(−n) sin nπ.

Therefore

Dn(z) = −
Γ(n + 1)

2πi
e−

1
4 z

2
∫ (0+)

∞

e−zt−
1
2 t

2
(−t)−n−1 dt .

16.61 Recurrence formulae for Dn(z)

Form the equation

0 =
∫ (0+)

∞

d
dt

{
e−zt−

1
2 t

2
(−t)−n−1

}
dt

=

∫ (0+)

∞

{
−z(−t)−n−1 + (−t)−n + (n + 1)(−t)−n−2} e−zt−

1
2 t

2
dt,

after using §16.6, we see that

Dn+1(z) − zDn(z) + nDn−1(z) = 0.

Further, by differentiating the integral of §16.6, it follows that

D′n(z) +
1
2 zDn(z) − nDn−1(z) = 0.

Example 16.6.1 Obtain these results from the ascending power series of §16.5.

16.7 Properties of Dn(z) when n is an integer
When n is an integral, we may write the integral of §16.6 in the form

Dn(z) = −
n!e− 1

4 z
2

2πi

∫ (0+) e−zt−
1
2 t

2

(−t)n+1 dt .

If now we write t = v − z, we get

Dn(z) = (−1)n
n!e 1

4 z
2

2πi

∫ (z+) e−
1
2 v

2

(v − z)n+1 dv

= (−1)ne
1
4 z

2 dn

dzn

(
e−

1
2 z

2
)
,
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a result due to Hermite [289].
Also, if m and n be unequal integers, we see from the differential equations that

Dn(z)D′′m(z) − Dm(z)D′′n (z) + (m − n)Dm(z)Dn(z) = 0,

and so

(m − n)
∫ ∞

−∞

Dm(z)Dn(z) dz =
[
Dn(z)D′m(z) − Dm(z)D′n(z)

]∞
−∞

= 0,

by the expansion of §16.5 in descending powers of z (which terminates and is valid for all
values of arg z when n is a positive integer). Therefore if m and n are unequal positive integers∫ ∞

−∞

Dm(z)Dn(z) dz = 0.

On the other hand, when m = n, we have

(n + 1)
∫ ∞

−∞

{Dn(z)}
2 dz =

∫ ∞

−∞

Dn(z)
{
D′n+1(z) +

1
2 zDn+1(z)

}
dz

= [Dn(z)Dn+1(z)]
∞
−∞

+

∫ ∞

−∞

{ 1
2 zDn(z)Dn+1(z) − Dn+1(z)D′n(z)

}
dz

=

∫ ∞

−∞

{Dn+1(z)}
2 dz,

on using the recurrence formula, integrating by parts and then using the recurrence formula
again. It follows by induction that∫ ∞

−∞

{Dn(z)}
2 dz = n!

∫ ∞

−∞

{D0(z)}
2 dz

= n!
∫ ∞

−∞

e−
1
2 z

2
dz

= (2π)
1
2 n!,

by Corollary 12.1.1 and §12.2.
It follows at once that if, for a function f (z), an expansion of the form

f (z) = a0D0(z) + a1D1(z) + · · · + anDn(z) + · · ·

exists, and if it is legitimate to integrate term-by-term between the limits −∞ and∞, then

an =
1

(2π) 1
2 n!

∫ ∞

−∞

Dn(t) f (t) dt .
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16.8 Miscellaneous examples
Example 16.1 Shew that, if the integral is convergent, then

Mk ,m(z) =
Γ(2m + 1)zm+ 1

2 2−2m

Γ( 12 + m + k)Γ( 12 + m − k)

×

∫ 1

−1
(1 + u)−

1
2+m−k(1 − u)−

1
2+m+k e

1
2 zu du.

Example 16.2 Shew that

Mk ,m(z) = z
1
2+m e−z/2 lim

ρ→∞
F

( 1
2 + m − k, 1

2 + m − k + ρ; 2m + 1; z/ρ
)
.

Example 16.3 Obtain the recurrence formulae

Wk ,m(z) = z
1
2 Wk− 1

2 ,m−
1
2
(z) +

( 1
2 − k + m

)
Wk−1,m(z),

Wk ,m(z) = z
1
2 Wk− 1

2 ,m+
1
2
(z) +

( 1
2 − k − m

)
Wk−1,m(z),

zW ′
k ,m(z) =

(
k − 1

2 z
)

Wk ,m(z) −
{
m2 −

(
k − 1

2

)2
}

Wk−1,m(z).

Example 16.4 Prove that Wk ,m(z) is the integral of an elementary function when either of
the numbers k − 1

2 ± m is a negative integer.

Example 16.5 Shew that, by a suitable change of variables, the equation

(a2 + b2x)
d2y

dx2 + (a1 + b1x)
dy
dx
+ (a0 + b0x)y = 0

can be brought to the form

ξ
d2η

dξ2 + (c − ξ)
dη
dξ
− aη = 0.

Derive this equation from the equation for F(a, b; c; x) by writing x = ξ/b and making
b→∞.

Example 16.6 Shew that the cosine integral of Schlömilch and Besso [71], defined by the
equation

Ci(z) =
∫ ∞

z

cos t
t

dt,

is equal to
1
2

z−
1
2 e

1
2 iz+

1
4 πiW− 1

2 ,0
(−iz) +

1
2

z−
1
2 e−

1
2 iz−

1
4 πiW− 1

2 ,0
(iz).

Shew also that Schlömilch’s function, defined in [582] by the equations

S(ν, z) =
∫ ∞

0
(1 + t)−νe−zt dt = zν−1ez

∫ ∞

z

e−u

uν
du,

is equal to zν/2−1ez/2W− 1
2ν,

1
2−

1
2ν
(z).
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Example 16.7 Express in terms of Wk ,m functions the two functions

Si(z) ≡
∫ z

0

sin t
t

dt, Ei(z) ≡
∫ ∞

z

e−t

t
dt .

The results of Examples 16.8, 16.9, 16.10 belowwere communicated to us byMr. Bateman.

Example 16.8 Shew that Sonine’s polynomial [598], defined by the equation

Tn
m(z) =

zn

n!(m + n)!0!
−

zn−1

(n − 1)!(m + n − 1)!1!

+
zn−2

(n − 2)!(m + n − 2)! 2!
− · · · ,

is equal to
1

n!(m + n)!
z−

1
2 (m+1)ez/2Wn+ 1

2 m+
1
2 ,

1
2 m
(z).

Example 16.9 Shew that the function φm(z) defined by Lagrange [394] in 1762–1765
and by Abel [5, p. 284] as the coefficient of hm in the expansion of
(1 − h)−1e−hz/(1−k) is equal to

(−1)m

m!
z−1/2 ez/2Wm+ 1

2 ,0
(z).

Example 16.10 Shew that the Pearson–Cunningham function [517, 158], ωn,m(z), defined
as

e−z(−z)n−
1
2 m

Γ(n − 1
2 m + 1)

{
1 −
(n + 1

2 m)(n − 1
2 m)

z

+
(n + 1

2 m)(n + 1
2 m − 1)(n − 1

2 m)(n − 1
2 m − 1)

2!z2 − · · ·

}
,

is equal to

(−1)n− 1
2 m

Γ(n − 1
2 m + 1)

z−
1
2 (m+1)e−z/2Wn+ 1

2 ,
1
2 m
(z).

Example 16.11 (Whittaker) Shew that, if | arg z | < 1
4π and | arg(1 + t)| ≤ π,

Dn(z) =
Γ( 12 n + 1)

2− 1
2 (n−1)πi

∫ (−1+)

−∞

e
1
4 z

2t(1 + t)−
1
2 n−1(1 − t)

1
2 (n−1) dt .

Example 16.12 Shew that, if n be not a positive integer and if | arg z | < 3
4π, then

Dn(z) =
1

2πi
e−

1
4 z

2
∫ i∞

−i∞

Γ( 12 t − 1
2 n)Γ(−t)

Γ(−n)
(
√

2)t−n−2zt dt,

and that this result holds for all values of arg z if the integral be
∫ (0−)

∞

, the contours enclosing

the poles of Γ(−t) but not those of Γ( t−n2 ).
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Example 16.13 Shew that, if | arg a| < 1
2π,∫ (0+)

x

e(
1
4−a)z

2
zmDn(z) dz =

π3/22n/2−meπi(m−
1
2 )

Γ(−m)Γ( 12 m − 1
2 n + 1)a 1

2 (m+1)

× F
(
−

n
2
,
m + 1

2
;

m − n
2
+ 1; 1 −

1
2a

)
.

Example 16.14 (Watson) Deduce from Example 16.13 that, if the integral is convergent,
then ∫ x

0
e−

3
4 z

2
zmDm+1(z) dz =

√
2
−1−m

Γ(m + 1) sin
(
(1 − m) π4

)
.

Example 16.15 (Watson) Shew that, if n be a positive integer, and if

En(x) =
∫ ∞

−∞

e−
1
4 z

2
(z − x)−1Dn(z) dz,

then En(x) = ±ie∓nπi
√

2πΓ(n + 1)e− 1
4 x

2
D−n−1(∓ix), the upper or lower signs being taken

according as the imaginary part of x is positive or negative.

Example 16.16 (Adamoff) Shew that, if n be a positive integer,

Dn(x) = (−1)µ2n+2(2π)−
1
2 e

1
4 x

2
∫ x

0
une−2u2

{
cos
sin

}
(2xu) du,

where µ is 1
2 n or 1

2 (n− 1), whichever is an integer, and the cosine or sine is taken as n is even
or odd.

Example 16.17 (Adamoff) Shew that, if n be a positive integer,

Dn(x) = (−1)µ
√

2
π

√
n
n+1

e
1
4 x

2
e−

1
2 n(J1 + J2 − J3),

where

J1 =

∫ ∞

−∞

e−n(v−1)2
{
cos
sin

}
(xv
√

n) dv,

J2 =

∫ ∞

0
σ(v)

{
cos
sin

}
(xv
√

n) dv,

J3 =

∫ 0

−∞

e−n(v−1)2
{
cos
sin

}
(xv
√

n) dv,

and σ(v) = e
1
2 n(1−v

2)vn − e−n(v−1)2 .

Example 16.18 (Adamoff) With the notation of the preceding examples, shew that, when
x is real,

J1 = π
1
2 n−

1
2 e−

1
4 x

2
{
cos
sin

}
(xv
√

n) dv

while J3 satisfies both the inequalities

|J3 | <
2e−n

|x |
√

n
, |J3 | <

( π
2n

) 1
2

e−n.
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Shew also that as v increases from 0 to 1, σ(v) decreases from 0 to a minimum at v = 1− h1

and then increases to 0 at v = 1; and as v increases from 1 to∞, σ(v) increases to a maximum
at 1 + h2 and then decreases, its limit being zero; where

1
2

√
3

2n
< h1 <

√
3

2n
,

1
2

√
3

2n
< h2 <

√
3

2n
,

and |σ(1 − h1)| < An−
1
2 , σ(1 + h2) < An−

1
2 , where A = 0.0742 · · · .

Example 16.19 (Adamoff) By employing the second mean-value theorem when necessary,
shew that

Dn(x) =
√

2
√

n
n
e−n/2

[
cos

(
x
√

n − 1
2 nπ

)
+
ωn(x)
√

n

]
,

where ωn(x) satisfies both the inequalities

|ωn(x)| <
3.35 · · ·
|x |
√
π

e
1
4 x

2
, |ωn(0)| <

1
6
√

n
,

when x is real and n is an integer greater than 2.

Example 16.20 (Milne) Shew that, if n be positive but otherwise unrestricted, and if m be
a positive integer (or zero), then the equation in z

Dn(z) = 0

has m positive roots when 2m − 1 < n < 2m + 1.



17

Bessel Functions

17.1 The Bessel coefficients
In this chapter we shall consider a class of functions known as Bessel functions or cylindrical
functions which have many analogies with the Legendre functions of Chapter 15. Just as
the Legendre functions proved to be particular forms of the hypergeometric function with
three regular singularities, so the Bessel functions are particular forms of the confluent
hypergeometric function with one regular and one irregular singularity. As in the case of the
Legendre functions, we first introduce a certain set of the Bessel functions as coefficients in
an expansion. This procedure is due to Schlömilch [581].

For all values of z and t (t = 0 excepted), the function

e
1
2 z

(
t−

1
t

)
can be expanded by Laurent’s theorem in a series of positive and negative powers of t. If the
coefficient of tn, where n is any integer positive or negative, be denoted by Jn(z), it follows,
from §5.6, that

Jn(z) =
1

2πi

∫ (0+)

u−n−1e
1
2 z (u−1/u) du.

To express Jn(z) as a power series in z, write u = 2t/z; then

Jn(z) =
1

2πi

( z
2

)n ∫ (0+)

t−n−1 exp
(
t − z2/4t

)
dt;

since the contour is any one which encircles the origin once counter-clockwise, we may take
it to be the circle |t | = 1; as the integrand can be expanded in a series of powers of z uniformly
convergent on this contour, it follows from §4.7 that

Jn(z) =
1

2πi

∞∑
r=0

(−1)r

r!

( z
2

)n+2r
∫ (0+)

t−n−r−1et dt . (17.1)

Now the residue of the integrand at t = 0 is 1/(n + r)! by §6.1, when n + r is a positive
integer or zero; when n+r is a negative integer the residue is zero. Therefore, if n is a positive
integer or zero,

Jn(z) =
∞∑
r=0

(−1)r ( z2 )
n+2r

r!(n + r)!

=
zn

2nn !

{
1 −

z2

22 · 1(n + 1)
+

z4

24 · 1 · 2(n + 1)(n + 2)
− · · ·

}
;

373
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whereas, when n is a negative integer equal to −m,

Jn(z) =
∞∑

r=m

(−1)r
(
z
2

)2r−m

r!(r − m)!
=

∞∑
s=0

(−1)m+s( 12 z)m+2s

(m + s)!s!
,

and so Jn(z) = (−1)mJm(z).
The function Jn(z), which has now been defined for all integral values of n, positive and

negative, is called the Bessel coefficient of order n; the series defining it converges for all
values of z. We shall see later (§17.2) that Bessel coefficients are a particular case of a class
of functions known as Bessel functions.

The series by which Jn(z) is defined occurs in a memoir by Euler [206], on the vibrations
of a stretched circular membrane, an investigation dealt with below in §18.51; it also occurs
in a memoir by Lagrange [393] on elliptic motion. The earliest systematic study of the
functions was made in 1824 by Bessel in [70]; special cases of Bessel coefficients had,
however, appeared in researches published before 1769; the earliest of these is in a letter,
dated Oct. 3, 1703, from Jakob Bernoulli to Leibniz [424], in which occurs a series which is
now described as a Bessel function of order 1

3 ; the Bessel coefficient of order zero occurs in
1732 in Daniel Bernoulli’s memoir on the oscillations of heavy chains [65]. In reading some
of the earlier papers on the subject, it should be remembered that the notation has changed,
what was formerly written Jn(z) being now written Jn(2z).

Example 17.1.1 (Math. Trip. 1896) Prove that if

2b(1 + θ2)

(1 − 2uθ − θ2)2 + 4b2θ2 = A1 + A2θ + A3θ
2 + · · · ,

then eas sin bz = A1J1(z)+ A2J2(z)+ A3J3(z)+ · · · . Hint. For, if the contour D in the u-plane
be a circle with centre u = 0 and radius large enough to include the zeros of the denominator,
we have

e
1
2 z(u−

1
u )

2b
( 1
u2 +

1
u4

)(
1 − 2a

u
− 1

u2

)2
+ 4bz

u2

=

∞∑
n=1

e
1
2 z(u−

1
u )Anu−n−1,

the series on the right converging uniformly on the contour; and so, using §4.7 and replacing
the integrals by Bessel coefficients, we have

1
2πi

∫
D

e
1
2 z(u−

1
u )

2b
( 1
u2 +

1
u4

)(
1 − 2a

u
− 1

u2

)2
+ 4bz

u2

du

=
1

2πi

∫
D

e
1
2 z(u−

1
u )

(
A1

u2 +
A2

u3 +
A3

u4 + · · ·

)
du

= A1J1(z) + A2J2(z) + A3J3(z) + · · · .

In the integral on the left write 1
2 (u − u−1) − a = t, so that as u describes a circle of radius

eβ, t describes an ellipse with semi-axes cosh β and sinh β with foci at −a ± i; then we have
∞∑
n=1

AnJn(z) =
1

2π i

∫
es(t+a)b dt

t2 + b2 ,

the contour being the ellipse just specified, which contains the zeros of t2 + b2. Evaluating
the integral by §6.1, we have the required result.
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Example 17.1.2 (K. Neumann and Schläfli) Shew that, when n is an integer,

Jn (y + z) =
∞∑

m=−∞

Jm(y)Jn−m(z).

Hint. Consider the expansion of each side of the equation

exp
{

1
2
(y + z)

(
t −

1
t

)}
= exp

{
1
2
y

(
t −

1
t

)}
· exp

{
1
2

z
(
t −

1
t

)}
.

Example 17.1.3 Shew that

eiz cosφ = J0(z) + 2i cos φJ1(z) + 2i2 cos 2φJ2(z) + · · · .

Example 17.1.4 (K. Neumann and E. Lommel) Shew that if r2 = x2 + y2

J0(r) = J0(x)J0(y) − 2J2(x)J2(y) + 2J4(x)J4(y) − · · · .

17.11 Bessel’s differential equation
We have seen that, when n is an integer, the Bessel coefficient of order n is given by the
formula

Jn(z) =
1

2πi

( z
2

)n ∫ (0+)

t−n−1 exp
(
t −

z2

4t

)
dt .

From this formula we shall now shew that Jn(z) is a solution of the linear differential
equation

d2y

dz2 +
1
z

dy
dz
+

(
1 −

n2

z2

)
y = 0,

which is called Bessel’s equation for functions of order n.
For we find on performing the differentiations (§4.2) that

d2Jn(z)
dz2 +

1
z

dJn(z)
dz

+

(
1 −

n2

z2

)
Jn(z)

=
1

2πi

( z
2

)n ∫ (0+)

t−n−1
{
1 −

n + 1
t
+

z2

4t2

}
exp

(
t −

z2

4t

)
dt

= −
1

2πi

( z
2

)n ∫ (0+) d
dt

{
t−n−1 exp

(
t −

z2

4t

)}
dt

= 0,

since t−n−1 exp(t − z2/4t) is one-valued. Thus we have proved that

d2Jn(z)
dz2 +

1
z

dJn(z)
dz

+

(
1 −

n2

z2

)
Jn(z) = 0.

The reader will observe that z = 0 is a regular point and z = ∞ an irregular point, all other
points being ordinary points of this equation.
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Example 17.1.5 (St John’s, 1899) By differentiating the expansion

e
1
2 z(t−

1
t ) =

∞∑
n=−∞

tnJn(z)

with regard to z and with regard to t, shew that the Bessel coefficients satisfy Bessel’s
equation.

Example 17.1.6 The function Pm
n

(
1 − z2

2n2

)
satisfies the equation defined by the scheme

P


4n2 ∞ 0
1
2 m n + 1 1

2 m z2

− 1
2 m −n − 1

2 m

 .
Shew that Jm(z) satisfies the confluent form of this equation obtained by making n→∞.

17.2 The solution of Bessel’s equation when n is not necessarily an integer
We now proceed, after the manner of §15.2, to extend the definition of Jn(z) to the case when
n is any number, real or complex. It appears by methods similar to those of §17.11 that, for
all values of n, the equation

d2y

dz2 +
1
z

dy
dz
+

(
1 −

n2

z2

)
y = 0

is satisfied by an integral of the form

y = zn
∫
C

t−n−1 exp
(
t −

z2

4t

)
dt

provided that t−n−1 exp
(
t − z2

4t

)
resumes its initial value after describing C and that differen-

tiations under the sign of integration are justified.
Accordingly, we define Jn(z) by the equation

Jn(z) =
zn

2n+1πi

∫ (0+)

−∞

t−n−1 exp
(
t −

z2

4t

)
dt,

the expression being rendered precise by giving arg z its principal value and taking | arg t | ≤ π
on the contour.

To express this integral as a power series, we observe that it is an analytic function of z;
and we may obtain the coefficients in the Taylor’s series in powers of z by differentiating
under the sign of integration (§§5.32 and 4.44). Hence we deduce that

Jn(z) =
zn

2n+1π i

∞∑
r=0

(−1)r z2r

22rr !

∫ (0+)

−∞

et t−n−r−1 dt

=

∞∑
r=0

(−1)r zn+2r

2n+2r ! Γ (n + r + 1)
,

by §12.22. This is the expansion in question.
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Accordingly, for general values of n, we define the Bessel function Jn(z) by the equations

Jn(z) =
1

2π i

( z
2

)n ∫ (0+)

−∞

t−n−1 exp
(
t −

z2

4t

)
dt

=

∞∑
r=0

(−1)r zn+2r

2n+2rr ! Γ(n + r + 1)
.

This function reduces to a Bessel coefficient when n is an integer; it is sometimes called
a Bessel function of the first kind.

The reader will observe that since Bessel’s equation is unaltered by writing −n for n,
fundamental solutions are Jn(z), J−n(z), except when n is an integer, in which case the
solutions are not independent. With this exception the general solution of Bessel’s equation
is

αJn(z) + βJ−n(z),

where α and β are arbitrary constants.
A second solution of Bessel’s equation when n is an integer will be given later (§17.6).

17.21 The recurrence formulae for the Bessel functions
As the Bessel function satisfies a confluent form of the hypergeometric equation, it is to
be expected that recurrence formulae will exist, corresponding to the relations between
contiguous hypergeometric functions indicated in §14.7.

To establish these relations for general values of n, real or complex, we have recourse to
the result of §17.2. On writing the equation

0 =
∫ (0+)

−∞

d
dt

{
t−n exp

(
t −

z2

4t

)}
dt

at length, we have

0 =
∫ (0+)

−∞

(
t−n +

1
4

z2t−n−2 − nt−n−1
)

exp
(
t −

z2

4t

)
dt

= 2πi
{
(2z−1)n−1Jn−1(z) +

1
4

z2(2z−1)n+1Jn+1(z) − n(2z−1)nJn(z)
}
,

and so

Jn−1(z) + Jn+1 (z) =
2n
z

Jn (z). (17.2)

Next we have, by §4.44,

d
dz
{z−nJn(z)} =

1
2n+1π i

d
dz

∫ (0+)

−∞

t−n−1 exp
(
t −

z2

4t

)
dt

= −
z

2n+2π i

∫ (0+)

−∞

t−n−2 exp
(
t −

z2

4t

)
dt

= −z−nJn+1(z),
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and consequently, if primes denote differentiations with regard to z,

J ′n(z) =
n
z

Jn(z) − Jn+1(z). (17.3)

From (17.2) and (17.3) it is easy to derive the other recurrence formulae

J ′n(z) =
1
2
{Jn−1(z) − Jn+1(z)} (17.4)

and
J ′n(z) = Jn−1(z) −

n
z

Jn(z). (17.5)

Example 17.2.1 Obtain these results from the power series for Jn(z).

Example 17.2.2 Shew that
d
dz
{znJn(z)} = znJn−1(z).

Example 17.2.3 Shew that J ′0(z) = −J1(z).

Example 17.2.4 Shew that

16J(iv)n (z) = Jn−4(z) − 4Jn−2(z) + 6Jn(z) − 4Jn+2(z) + Jn+4(z).

Example 17.2.5 Shew that
J2(z) − J0(z) = 2J ′′0 (z).

Example 17.2.6 Shew that

J2(z) = J ′′0 (z) − z−1J ′0(z).

17.211 Relation between two Bessel functions whose orders differ by an integer
From the last article can be deduced an equation connecting any two Bessel functions whose
orders differ by an integer, namely

z−n−r Jn+r (z) = (−1)r
dr

(z dz)r
{z−nJn(z)} ,

where n is unrestricted and r is any positive integer. This result follows at once by induction
from formula (17.3), when it is written in the form

z−n−1Jn+1 (z) = −
d

z dz
{z−nJn(z)} .

17.212 The connexion between Jn(z) and Wk ,m functions
The reader will verify without difficulty that, if in Bessel’s equation we write y = z−

1
2 v and

then write z = x/2i,we get

d2v

dx2 +

(
−

1
4
+

1
4 − n2

x2

)
v = 0,

which is the equation satisfied by W0,n(x); it follows that

Jn(z) = Az−
1
2 M0,n(2iz) + Bz−

1
2 M0,−n(2iz).
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Comparing the coefficients of z±n on each side we see that

Jn(z) =
z−

1
2

22n+ 1
2 in+

1
2 Γ(n + 1)

M0,n(2iz),

except in the critical cases when 2n is a negative integer; when n is half of a negative odd
integer, the result follows from Kummer’s second formula (§16.11).

17.22 The zeros of Bessel functions whose order n is real
The relations of §17.21 enable us to deduce the interesting theorem that between any two
consecutive real zeros of z−nJn(z), there lies one and only one zero z−nJn+1(z). Proofs of this
theorem have been given by Bôcher [79], Gegenbauer [242] and Porter [535].

For, from relation (17.3) when written in the form

z−nJn+1(z) = −
d
dz
{z−nJn(z)} ,

it follows from Rolle’s theorem that between each consecutive pair of zeros of z−nJn(z) there
is at least one zero of z−nJn+1(z). Rolle’s theorem is proved in [111, I. p. 157] for polynomials.
It may be deduced for any functions with continuous differential coefficients by using the
first mean-value theorem (§4.14).

Similarly, from relation (17.5) when written in the form

zn+1Jn(z) =
d
dz

{
zn+1Jn+1(z)

}
,

it follows that between each consecutive pair of zeros of zn+1Jn+1(z) there is at least one zero
of zn+1Jn(z).

Further, z−nJn(z) and d
dz
{z−nJn(z)} have no common zeros; for the former function satisfies

the equation

z
d2y

dz2 + (2n + 1)
dy
dz
+ zy = 0,

and it is easily verified by induction on differentiating this equation that if both y and
dy
dz

vanish for any value of z, all differential coefficients of y vanish, and y is zero by §5.4.
The theorem required is now obvious except for the numerically smallest zeros ±ξ of

z−nJn(z), since (except for z = 0), z−nJn(z) and zn+1Jn(z) have the same zeros. But z = 0 is
a zero of z−nJn+1(z), and if there were any other positive zero of z−nJn+1(z), say ξ1, which
was less than ξ, then zn+1Jn(z) would have a zero between 0 and ξ1, which contradicts the
hypothesis that there were no zeros of zn+1Jn(z) between 0 and ξ.

The theorem is therefore proved.

Note See also Examples 17.3.3 and 17.3.4, and Example 17.19 at the end of the chapter.
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17.23 Bessel’s integral for the Bessel coefficients
We shall next obtain an integral first given by Bessel in the particular case of the Bessel
functions for which n is a positive integer; in some respects the result resembles Laplace’s
integrals given in §15.23 and §15.33 for the Legendre functions.

In the integral of §17.1, viz.

Jn(z) =
1

2πi

∫ (0+)

u−n−1ez(u−1/u)/2 du,

take the contour to be the circle |u| = 1 and write u = eiθ, so that

Jn(z) =
1

2π

∫ π

−π

e−niθ+iz sin θ dθ.

Bisect the range of integration and in the former part write −θ for θ; we get

Jn(z) =
1

2π

∫ π

0
eniθ−iz sin θ dθ +

1
2π

∫ π

0
e−niθ+iz sin θ dθ,

and so

Jn(z) =
1
π

∫ π

0
cos(nθ − z sin θ) dθ,

which is the formula in question.

Example 17.2.7 Shew that, when z is real and n is an integer,

|Jn(z)| ≤ 1.

Example 17.2.8 Shew that, for all values of n (real or complex), the integral

y =
1
π

∫ π

0
cos(nθ − z sin θ) dθ

satisfies
d2y

dz2 +
1
z

dy
dz
+

(
1 −

n2

z2

)
y =

sin nπ
π

(
1
z
−

n
z2

)
,

which reduces to Bessel’s equation when n is an integer. Hint. It is easy to shew, by differen-
tiating under the integral sign, that the expression on the left is equal to

−
1
π

∫ π

0

d
dθ

{(
n
z2 +

cos θ
z

)
sin(nθ − z sin θ)

}
dθ.

17.231 The modification of Bessel’s integral when n is not an integer
We shall now shew that, for general values of n,

Jn(z) =
1
π

∫ π

0
cos(nθ − z sin θ) dθ −

sin nπ
π

∫ ∞

0
e−nθ−z sinh θ dθ, (17.6)

when Re z > 0. This result is due to Schläfli, [577]. This obviously reduces to the result of
§17.23 when n is an integer.



17.2 Bessel’s equation when n is not necessarily an integer 381

Taking the integral of §17.2, viz.

Jn(z) =
zn

2n+1πi

∫ (0+)

−∞

t−n−1 exp
(
t −

z2

4t

)
dt,

and supposing that z is positive, we have, on writing t = 1
2 uz,

Jn(z) =
1

2πi

∫ (0+)

−∞

u−n−1 exp
{

1
2

z
(
u −

1
u

)}
du.

But, if the contour be taken to be that of the figure consisting of the real axis from −1
to −∞ taken twice and the circle |u| = 1, this integral represents an analytic function of z
when Re (zu) < 0 as |u| → ∞ on the path, i.e. when |arg z | < 1

2π; and so, by the theory
of analytic continuation, the formula (which has been proved by a direct transformation for
positive values of z) is true whenever Re z > 0. Hence

Jn(z) =
1

2πi

{∫ −1

−∞

+

∫
C

+

∫ −∞

−1

}
u−n−1 exp

{
1
2

z
(
u −

1
u

)}
du,

where C denotes the circle |u| = 1, and arg u = −π on the first path of integration while
arg u = +π on the third path.

Writing u = te∓iπ in the first and third integrals respectively (so that in each case arg t = 0),
and u = eiθ in the second, we have

Jn(z) =
1

2π

∫ π

−π

e−niθ+iz sin θ dθ +
{

e(n+1)πi

2πi
−

e−(n+1)πi

2πi

} ∫ ∞

1
t−n−1e

1
2 z(−t+

1
t ) dt .

Modifying the former of these integrals as in §17.23 and writing eθ for t in the latter, we
have at once

Jn(z) =
1
π

∫ π

0
cos(nθ − z sin θ) dθ +

sin(n + 1)π
π

∫ ∞

0
e−nθ−z sinh θ dθ,

which is the required result, when |arg z | < 1
2π.

When |arg z | lies between 1
2π and π, since Jn(z) = e±nπiJn(−z),we have

Jn(z) =
e±nπi

π

{∫ π

0
cos(nθ + z sin θ) dθ − sin nπ

∫ ∞

0
e−nθ+z sinh θ dθ

}
, (17.7)

the upper or lower sign being taken as arg z > 1
2π or < − 1

2π.

When n is an integer (17.6) reduces at once to Bessel’s integral, and (17.7) does so when
we make use of the equation Jn(z) = (−1)nJ−n(z),which is true for integer values of n.
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Equation (17.6), as already stated, is due to Schläfli [576, p. 148], and equation (17.7) was
given by Sonine [598].

These trigonometric integrals for the Bessel functions may be regarded as corresponding
to Laplace’s integrals for the Legendre functions. For (see Example 17.1.6) Jm(z) satisfies
the confluent form (obtained by making n→∞) of the equation for Pm

n (1 − z2/2n2).
But Laplace’s integral for this function is a multiple of∫ π

0

1 −
z2

2n2 +

{(
1 −

z2

2n2

)2

− 1

}1/2

cos φ

n

cos mφ dφ

=

∫ π

0

{
1 +

iz
n

cos φ +O(n−2)

}n
cos mφ dφ.

The limit of the integrand as n → ∞ is eiz cosφ cos mφ, and this exhibits the similarity of
Laplace’s integral for Pm

n (z) to the Bessel–Schläfli integral for Jm(z).

Example 17.2.9 (Callandreau [112]) From the formula J0(x) =
1

2π

∫ π

−π

e−ix cosφ dφ, by a

change of order of integration, shew that, when n is a positive integer and cos θ > 0,

Pn(cos θ) =
1

Γ(n + 1)

∫ ∞

0
e−x cos θ J0(x sin θ)xn dx.

Example 17.2.10 Shew that, with Ferrers’ definition of Pm
n (cos θ),

Pm
n (cos θ) =

1
Γ(n − m + 1)

∫ ∞

0
e−x cos θ Jm(x sin θ)xndx

when n and m are positive integers and cos θ > 0. See Hobson [313].

17.24 Bessel functions whose order is half an odd integer
We have seen (§17.2) that when the order n of a Bessel function Jn(z) is half an odd integer,
the difference of the roots of the indicial equation at z = 0 is 2n,which is an integer. We now
shew that, in such cases, Jn(z) is expressible in terms of elementary functions.

For

J1/2(z) =
(

2z
π

)1/2 {
1 −

z2

2 · 3
+

z4

2 · 3 · 4 · 5
− · · ·

}
=

(
2
πz

)1/2

sin z,

and therefore (§17.211) if k is a positive integer

Jk+1/2(z) =
(−1)k(2z)k+

1
2

π
1
2

dk

d(z2)k

(
sin z

z

)
.

On differentiating out the expression on the right, we obtain the result that

Jk+1/2(z) = Pk sin z +Qk cos z,

where Pk , Qk are polynomials in z−
1
2 .

Example 17.2.11 Shew that J− 1
2
(z) =

(
2
πz

)1/2

cos z.
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Example 17.2.12 Prove by induction that if k be an integer and n = k + 1
2 , then

Jn(z) =
(

2
πz

)1/2

×

[
cos

(
z − 1

2 nπ − 1
4π

) {
1 +

∑
r=1

(−1)r (4n2 − 12)(4n2 − 32) · · · {4n2 − (4r − 1)2}
(2r) ! 26r z2r

}
+ sin

(
z − 1

2 nπ − 1
4π

) ∑
r=1

(−1)r (4n2 − 12)(4n2 − 32) · · · {4n2 − (4r − 3)2}
(2r − 1)! 26r−3z2r−1

]
,

the summations being continued as far as the terms with the vanishing factors in the numer-
ators.

Example 17.2.13 Shew that zk+
1
2

dk

d(z2)k

(
cos z

z

)
is a solution of Bessel’s equation for

Jk+ 1
2
(z).

Example 17.2.14 (Lommel) Shew that the solution of zm+
1
2

d2m+1y

dz2m+1 + y = 0 is

y = z
1
2 m+

1
4

2m∑
p=0

cp
{
J−m− 1

2
(2apz

1
2 ) + iJm+ 1

2
(2apz

1
2 )

}
,

where c0, c1, . . . , c2m are arbitrary and a0,a1, . . . ,a2m are the roots of a2m+1 = i.

17.3 Hankel’s contour integral for Jn(z)

This appears in [273]. Consider the integral

y = zn
∫ (1+,−1−)

A

(t2 − 1)n−
1
2 cos(zt) dt,

where A is a point on the right of the point t = 1, and

arg(t − 1) = arg(t + 1) = 0

at A; the contour may conveniently be regarded as being in the shape of a figure of eight.
We shall shew that this integral is a constant multiple of Jn(z). It is easily seen that the

integrand returns to its initial value after t has described the path of integration; for (t −1)n− 1
2

is multiplied by the factor e(2n−1)πi after the circuit (1+) has been described, and (t + 1)n− 1
2 is

multiplied by the factor e−(2n−1)πi after the circuit (−1−) has been described.
Since

∞∑
r=0

(−1)r (zt)2r
(2r)! (t

2 − 1)n−1/2 converges uniformly on the contour, we have

y =

∞∑
r=0

(−1)r zn+2r

(2r)!

∫ (1+,−1−)

A

t2r (t2 − 1)n−1/2 dt,

(see §4.7). To evaluate these integrals, we observe firstly that they are analytic functions of n
for all values of n, and secondly that, when Re (n + 1

2 ) > 0, we may deform the contour into
the circles |t − 1| = δ, |t + 1| = δ and the real axis joining the points t = ±(1− δ) taken twice,
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and then we may make δ → 0; the integrals round the circles tend to zero and, assigning to
t − 1 and t + 1 their appropriate arguments on the modified path of integration, we get, if
arg(1 − t2) = 0 and t2 = u,∫ (1+,−1−)

A

t2τ(t2 − 1)n−1/2 dt

= e(n−1/2)πi
∫ −1

1
t2τ(1 − t2)n−1/2 dt + e−(n−1/2)πi

∫ 1

−1
t2τ(1 − t2)n−1/2 dt

= −4i sin
(
n − 1

2

)
π

∫ 1

0
t2τ(1 − t2)n−1/2 dt

= −2i sin
(
n − 1

2

)
π

∫ 1

0
uτ−1/2(1 − u)n−1/2 du

= 2i sin
(
n + 1

2

)
πΓ

(
r + 1

2

)
Γ

(
n + 1

2

)
/Γ(n + r + 1).

Since the initial and final expressions are analytic functions of n for all values of n, it
follows from §5.5 that this equation, proved when Re

(
n + 1

2

)
> 0, is true for all values of n.

Accordingly

y =

∞∑
r=0

(−1)r zn+2r2i sin(n + 1
2 ) πΓ(r +

1
2 )Γ(n +

1
2 )

(2r)!Γ(n + r + 1)

= 2n+1i sin
(
n + 1

2

)
πΓ

(
n + 1

2

)
Γ

( 1
2

)
Jn(z),

on reduction.
Accordingly, when

{
Γ

( 1
2 − n

)}−1
, 0, we have

Jn(z) =
Γ( 12 − n)( 12 z)n

2πiΓ
( 1

2

) ∫ (1+,−1−)

A

(t2 − 1)n−1/2 cos(zt) dt .

Corollary 17.3.1 When Re
(
n + 1

2

)
> 0,we may deform the path of integration, and obtain

the result

Jn(z) =

(
z
2

)n
Γ

(
n + 1

2

)
Γ

( 1
2

) ∫ 1

−1
(1 − t2)n−1/2 cos(zt) dt

=
2
(
z
2

)n
Γ

(
n + 1

2

)
Γ

( 1
2

) ∫ π/2

0
sin2n φ cos(z cos φ) dφ.

Example 17.3.1 Shew that, when Re
(
n + 1

2

)
> 0,

Jn(z) =

(
z
2

)n
Γ

(
n + 1

2

)
Γ

( 1
2

) ∫ π

0
e±iz cosφ sin2n φ dφ.

Example 17.3.2 Obtain the result

Jn(z) =

(
z
2

)n
Γ

(
n + 1

2

)
Γ

( 1
2

) ∫ π

0
cos(z cos φ) sin2n φ dφ,

when Re (n) > 0, by expanding in powers of z and integrating (§4.7) term-by-term.



17.4 Connexion between Bessel coefficients and Legendre functions 385

Example 17.3.3 Shew that when − 1
2 < n < 1

2 , Jn(z) has an infinite number of real zeros.
Hint. Let z =

(
m + 1

2

)
π where m is zero or a positive integer; then by the corollary above

Jn
(
mπ + 1

2π
)
=

zn

2n−1Γ
(
n + 1

2

)
Γ

( 1
2

) { 1
2 u0 − u1 + u2 − · · · + (−1)mum

}
,

where

ur =

�����∫ 2r+1
2m+1

2r−1
2m+1

(1 − t2)n−1/2 cos
{(

m + 1
2

)
πt

}
dt

�����
=

∫ 1/(m+ 1
2 )

0

{
1 −

(
t +

2r − 1
2m + 1

)2
}n−1/2

sin
{(

m + 1
2

)
πt

}
dt,

so, since n− 1
2 < 0, um > um−1 > um−2 > · · · , and hence Jn

(
mπ + 1

2π
)
has the sign of (−1)m.

This method of proof, for n = 0, is due to Bessel.

Example 17.3.4 Shew that if n be real, Jn(z) has an infinite number of real zeros; and
find an upper limit to the numerically smallest of them. Hint. Use Example 17.3.3 combined
with §17.22.

17.4 Connexion between Bessel coefficients and Legendre functions
We shall now establish a result due to Heine [287], which renders precise the statement of
§17.11, Example 17.1.6 concerning the expression of Bessel coefficients as limiting forms
of hypergeometric functions. The apparently different result given in [287] is due to the
difference between Heine’s associated Legendre function and Ferrers’ function.

When | arg(1± z)| < π, n is unrestricted and m is a positive integer, it follows by differen-
tiating the formula of §15.22 that, with Ferrers’ definition of Pm

n (z),

Pm
n (z) =

Γ(n + m + 1)
2m · m ! Γ(n − m + 1)

(1 − z)
1
2 m(1 + z)

1
2 m

×F
(
−n + m,n + 1 + m; m + 1; 1

2 −
1
2 z

)
,

and so, if | arg z | < 1
2π, | arg

(
1 − 1

4 z2/n2) | < π, we have

Pm
n

(
1 −

z2

2n2

)
=

Γ(n + m + 1)zmn−m

2m · m ! Γ(n − m + 1)

(
1 −

z2

4n2

)m/2
×F

(
−n + m,n + 1 + m; m + 1; 1

4 z2n−2) .
Now make n → +∞ (n being positive, but not necessarily integral), so that, if δ = n−1,

δ→ 0 continuously through positive values. Then

Γ(n + m + 1)n−m

Γ(n − m + 1)nm
→ 1,

by §13.6, and (
1 − z2/4n2)m/2 → 1.
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Further, the (r + 1)th term of the hypergeometric series is

(−1)r
(1 − mδ)(1 + mδ + rδ)

(
1 − (m + 1)2δ2) (

1 − (m + 2)2δ2) · · · (1 − (m + r − 1)2δ2)
(m + 1)(m + 2) · · · (m + r) · r!

×

( z
2

)2r
;

this is a continuous function of δ and the series of which this is the (r + 1)th term is easily
seen to converge uniformly in a range of values of δ including the point δ = 0; so, by §3.32,
we have

lim
n→∞

[
n−mPm

n

(
1 −

z2

2n2

)]
=

zm

2m · m!

∞∑
r=0

(−1)r
(
z
2

)r
(m + 1)(m + 2) · · · (m + r) r !

= Jm(z),

which is the relation required.

Example 17.4.1 Shew that

lim
n→∞

[
n−mPm

n

(
cos

z
n

)]
= Jm(z).

The special case of this when m = 0 was given by Mehler [464]; see also [465].

Example 17.4.2 Shew that Bessel’s equation is the confluent form of the equations defined
by the schemes

P


0 ∞ c
n ic 1

2 + ic z
−n −ic 1

2 − ic

 , eisP


0 ∞ c
n 1

2 0 z
−n 3

2 − 2ic 2ic − 1

 ,
P


0 ∞ c2

1
2 n 1

2 (c − n) 0 z2

− 1
2 n − 1

2 (c + n) n + 1

 ,
the confluence being obtained by making c→∞.

17.5 Asymptotic series for Jn(z) when |z | is large
We have seen (§17.212) that

Jn(z) =
z−1/2

22n+1/2 e
1
2 (n+

1
2 )πi Γ(n + 1)

M0,n(2iz),

where it is supposed that | arg z | < π, − 1
2π < arg(2iz) < 3

2π. But for this range of values of z

M0,n(2iz) =
Γ(2n + 1)
Γ

( 1
2 + n

) e(n+
1
2 )πi W0,n(2iz) +

Γ(2n + 1)
Γ

( 1
2 + n

) W0,n(−2iz)

by Example 16.4.4, if − 3
2π < arg(−2iz) < 1

2π; and so, when | arg z | < π,

Jn(z) =
1

(2πz)1/2

{
e

1
2 (n+

1
2 )πiW0,n(2iz) + e−

1
2 (n+

1
2 )πiW0,n(−2iz)

}
.
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But, for the values of z under consideration, the asymptotic expansion of W0,n(±2iz) is

e∓iz
{
1 ±
(4n2 − 12)

8iz
+
(4n2 − 12)(4n2 − 32)

2!(8iz)2
± · · ·

+
(±1)r

{
4n2 − 12

} {
4n2 − 32

}
· · ·

{
4n2 − (2r − 1)2

}
r!(8iz)r

+O(z−r )

}
,

and therefore, combining the series, the asymptotic expansion of Jn(z), when |z | is large and
| arg z | < π, is

Jn(z) ∼
(

2
πz

) 1
2 [

cos
(
z −

nπ
2
−
π

4

)
×

{
1 +

∞∑
r=1

(−1)r
{
4n2 − 12

} {
4n2 − 32

}
· · ·

{
4n2 − (4r − 1)2

}
(2r)!26r z2r

}
+ sin

(
z −

nπ
2
−
π

4

) ∞∑
r=1

(−1)r
{
4n2 − 12

} {
4n2 − 32

}
· · ·

{
4n2 − (4r − 3)2

}
(2r − 1)!26r−3z2r−1

]
=

(
2
πz

) 1
2 [

cos
(
z −

nπ
2
−
π

4

)
·Un(z) − sin

(
z −

nπ
2
−
π

4

)
· Vn(z)

]
,

where Un(z), −Vn(z) have been written in place of the series.
The reader will observe that if n is half an odd integer these series terminate and give the

result of Example 17.2.12.
Even when z is not very large, the value of Jn(z) can be computed with great accuracy

from this formula. Thus, for all positive values of z greater than 8, the first three terms of the
asymptotic expansion give the value of J0(z) and J1(z) to six places of decimals.

This asymptotic expansion was given by Poisson [530, p. 350] (for n = 0) and by Jacobi
(for n = 0) and by Jacobi [353, p. 94] (for general integral values of n) for real values of z.
Complex values of z were considered by Hankel [273] and several subsequent writers. The
method of obtaining the expansion here given is due to Barnes [49]. Asymptotic expansions
for Jn(z) when the order n is large have been given by Debye [168] and Nicholson [495].

An approximate formula for Jn(nx) when n is large and 0 < x < 1, namely

xn exp
{
n
√

1 − x2
}

(2πn)1/2(1 − x2)1/4
{
1 +
√

1 − x2
}n ,

was obtained by Carlini in 1817 in a memoir reprinted in Jacobi [354, vol. VII, pp. 189–245].
The formula was also investigated by Laplace [409, vol. V, 1827] in 1827, on the hypothesis
that x is purely imaginary. A more extended account of researches on Bessel functions of
large order is given in [676].

Example 17.5.1 By suitably modifying Hankel’s contour integral (§17.3), shew that, when
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| arg z | < 1
2π and Re

(
n + 1

2

)
> 0,

Jn(z) =
1

Γ
(
n + 1

2

)
(2πz)

1
2

[
ei(z−

1
2 nπ−

1
2 π)

∫ ∞

0
e−uun− 1

2

(
1 +

iu
2z

)n− 1
2

du

+e−i(z−
1
2 nπ−

1
4 π)

∫ ∞

0
e−uun− 1

2

(
1 −

iu
2z

)n− 1
2

du

]
;

and deduce the asymptotic expansion of Jn(z) when |z | is large and | arg z | < 1
2π. Hint. Take

the contour to be the rectangle whose corners are ±1, ±1 + iN, the rectangle being indented
at ±1, and make N →∞; the integrand being (1 − t2)n−

1
2 eist .

Example 17.5.2 Shew that, when | arg z | < π
2 and Re

(
n + 1

2

)
> 0,

Jn(z) =
2n+1zn

Γ
(
n + 1

2

)
π

1
2

∫ π/2

0
e−2z cotφ cosn−

1
2 φ cosec2n+1 φ sin

{
z −

(
n − 1

2

)
φ
}

dφ.

Hint. Write u = 2z cot φ in the preceding example.

Example 17.5.3 (Schafheitlin, [573]) Shew that, if | arg z | < 1
2π and Re

(
n + 1

2

)
> 0, then

Aeiz zn
∫ ∞

0
vn−

1
2 (1 + iv)n−

1
2 e−2vz dv + Be−iz zn

∫ ∞

0
vn−

1
2 (1 − iv)n−

1
2 e−2vz dv

is a solution of Bessel’s equation. Further, determine A and B so that this may represent
Jn(z).

17.6 The second solution of Bessel’s equation when the order is an integer
We have seen in §17.2 that, when the order n of Bessel’s differential equation is not an
integer, the general solution of the equation is

αJn(z) + βJ−n(z),

where α and β are arbitrary constants. When, however, n is an integer, we have seen that

Jn(z) = (−1)nJ−n(z),

and consequently the two solutions Jn(z) and J−n(z) are not really distinct. We therefore
require in this case to find another particular solution of the differential equation, distinct
from Jn(z), in order to have the general solution.

We shall now consider the function

Yn(z) = 2πenπi
Jn(z) cos nπ − J−n(z)

sin 2nπ
,

which is a solution of Bessel’s equation when 2n is not an integer. The introduction of this
function Yn(z) is due to Hankel [273, p. 472]. When n is an integer, Yn(z) is defined by the
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limiting form of this equation, namely

Yn(z) = lim
ε→0

2πe(n+ε)πi
Jn+ε(z) cos(nπ + επ) − J−n−ε(z)

sin 2(n + ε)π

= lim
ε→0

2πenπi

sin 2επ
{(−1)nJn+ε(z) − J−n−ε(z)}

= lim
ε→0

ε−1 {Jn+ε(z) − (−1)nJ−n−ε(z)} .

To express Yn(z) in terms of Wk ,m functions, we have recourse to the result of §17.5, which
gives

Yn(z) = lim
e→0

ε−1

(2πz)
1
2

[{
e

1
2 (n+ε+

1
2 )πiW0,n+ε(2iz) + e−

1
2 (n+ε+

1
2 )πiW0,n+ε(−2iz)

}
−(−1)n

{
e

1
2 (−n−ε+

1
2 )πiW0,n+ε(2iz) + e−

1
2 (−n−ε+

1
2 )πiW0,n+ε(−2iz)

}]
,

remembering that Wk ,m = Wk ,−m. Hence, since1 lim
e→0

W0,n+ε(2iz) = W0,n(2iz), we have

Yn(z) =
(
π

2z

) 1
2 {

e(
1
2 n+

3
4 )πiW0,n(2iz) + e−(

1
2 n+

3
4 )πiW0,n(−2iz)

}
.

This function (n being an integer) is obviously a solution of Bessel’s equation; it is called a
Bessel function of the second kind.

Another function (also called a function of the second kind) was first used by Weber [657,
p. 148] and by Schläfli [578, p. 17]. It is defined by the equation

Yn(z) =
Jn(z) cos nπ − J−n(z)

sin nπ
=

Yn(z) cos nπ
πenπi

,

or by the limits of these expressions when n is an integer. This function which exists for
all values of n is taken as the canonical function of the second kind by Nielsen [500], and
formulae involving it are generally (but not always) simpler than the corresponding formulae
involving Hankel’s function.

The asymptotic expansion for Yn(z), corresponding to that of §17.5 for Jn(z), is that, when
|arg z | < π and n is an integer,

Yn(z) ∼
(

2
πz

)1/2 [
sin

(
z − 1

2 nπ − 1
4π

)
Un(z) + cos

(
z − 1

2 nπ − 1
4π

)
Vn(z)

]
,

where Un(z) and Vn(z) are the asymptotic expansions defined in §17.5, their leading terms
being 1 and (4n2 − 1)/8z respectively.

Example 17.6.1 (Hankel) Prove that

Yn(z) =
dJn(z)

dn
− (−1)n

dJ−n(z)
dn

,

where n is made an integer after differentiation.

Example 17.6.2 Shew that if Yn(z) be defined by the equation of Example 17.6.1, it is a
solution of Bessel’s equation when n is an integer.

1 This is most easily seen from the uniformity of the convergence with regard to ε of Barnes’ contour integral
(§16.4) forW0,n+ε (2iz).
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17.61 The ascending series for Yn(z)

The series of §17.6 is convenient for calculatingYn(z)when |z | is large. To obtain a convenient
series for small values of |z |, we observe that, since the ascending series for J±(n+ε)(z) are
uniformly convergent series of analytic functions2 of ε, each termmay be expanded in powers
of ε and this double series may then be arranged in powers of ε (§§5.3, 5.4).

Accordingly, to obtain Yn(z), we have to sum the coefficients of the first power of ε in the
terms of the series

∞∑
r=0

(−1)r ( 12 z)n+2r+ε

r!Γ(n + ε + r + 1)
− (−1)n

∞∑
r=0

(−1)r ( 12 z)−n+2r−ε

r!Γ(−n − ε + r + 1)
.

Now, if s be a positive integer or zero and t a negative integer, the following expansions in
powers of ε are valid:( z

2

)n+ε+2r
=

( z
2

)n+2r
{
1 + ε log

(
1
2

z
)
+ · · ·

}
,

1
Γ(s + ε + 1)

=
1

Γ(s + 1)

{
1 − ε

Γ′(s + 1)
Γ(s + 1)

+ · · ·

}
=

1
Γ(s + 1)

{
1 − ε

(
−γ +

s∑
m=1

m−1

)
+ · · ·

}
,

1
Γ(t + ε + 1)

= −
sin(t + ε)π

π
Γ(−t − ε) = (−1)t+1εΓ(−t) + · · · ,

where γ is Euler’s constant (§12.1).
Accordingly, picking out the coefficient of ε, we see that

Yn(z) = log
( z
2

) [
∞∑
r=0

(−1)r ( z2 )
n+2r

r! Γ(n + r + 1)
+ (−1)n

∞∑
r=0

(−1)r ( z2 )
−n+2r

r! Γ(−n + r + 1)

]
+

∞∑
r=0

(−1)r ( z2 )
n+2r

r! Γ(n + r + 1)

(
γ −

n+r∑
m=1

1
m

)
+ (−1)n

∞∑
r=n

(−1)r ( z2 )
−n+2r

r! Γ(−n + r + 1)

(
γ −

n−r∑
m=1

1
m

)
+ (−1)n

n−1∑
r=0

(−1)r ( z2 )
−n+2r

r!
(−1)r−n+1

Γ(n − r),

and so

Yn(z) =
∞∑
r=0

(−1)r ( z2 )
n+2r

r! (n + r)!

{
2 log

( z
2

)
+ 2γ −

n+r∑
m=1

1
m
−

r∑
m=1

1
m

}
−

n−1∑
r=0

( z2 )
−n+2r (n − r − 1)!

r!
.

2 The proof of this is left to the reader.
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When n is an integer, fundamental solutions3 of Bessel’s equations, regular near z = 0, are
Jn(z) and Yn(z) or Yn(z).
Karl Neumann [486, p. 41] took as the second solution the function Y (n)(z) defined by the

equation

Y (n)(z) =
1
2

Yn(z) + Jn(z)(log 2 − γ);

but Yn(z) and Yn(z) are more useful for physical applications.

Example 17.6.3 Shew that the function Yn(z) satisfies the recurrence formulae

nYn(z) =
1
2

z (Yn+1(z) + Yn−1(z)) and Y ′n(z) =
1
2
(Yn−1(z) − Yn+1(z)) .

Shew also that Hankel’s function Yn(z) and Neumann’s function Y (n)(z) satisfy the same
recurrence formulae. Note. These are the same as the recurrence formulae satisfied by Jn(z).

Example 17.6.4 (Schläfli [576]) Shew that, when |arg z | < 1
2π,

πYn(z) =
∫ π

0
sin(z sin θ − nθ) dθ −

∫ ∞

0
e−z sinh θ {

enθ + (−1)ne−nθ
}

dθ.

Example 17.6.5 Shew that

Y (0)(z) = J0(z) log z + 2
(
J2(z) − 1

2 J4(z) + 1
3 J6(z) − · · ·

)
.

17.7 Bessel functions with purely imaginary argument
The function4

In(z) = i−nJn(iz) =
∞∑
r=0

( z2 )
n+2r

r!(n + r)!

is of frequent occurrence in various branches of applied mathematics; in these applications
z is usually positive.

The reader should have no difficulty in obtaining the following formulae:

(i) In−1(z) − In+1(z) = 2n
z

In(z).

(ii) d
dz
{znIn(z)} = znIn−1(z).

(iii) d
dz
{z−nIn(z)} = z−nIn+1(z).

(iv)
d2In(z)

dz2 +
1
z

dIn(z)
dz
−

(
1 +

n2

z2

)
In(z) = 0.

(v) When Re
(
n + 1

2

)
> 0, In(z) =

zn

2nΓ( 12 )Γ(n +
1
2 )

∫ π

0
cosh(z cos φ) sin2n φ dφ.

3 Euler [202, pp. 187, 233] gave a second solution (involving a logarithm) of the equation in the special cases
n = 0, n = 1.

4 This notation was introduced by Basset [51, p. 17]; in 1886 he had defined In(z) as inJn(iz); [52].
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(vi) When − 3
2π < arg z < 1

2π, the asymptotic expansion of In(z) is

In(z) ∼
ez

(2πz)1/2

[
1 +

∞∑
r=1

(−1)r
{4n2 − 12}{4n2 − 32} · · · {4n2 − (2r − 1)2}

r! 23r zr

]
+

e−(n+
1
2 )πie−z

(2πz)1/2

[
1 +

∞∑
r=1

{4n2 − 12}{4n2 − 32} · · · {4n2 − (2r − 1)2}
r! 23r zr

]
,

the second series being negligible when |arg z | < 1
2π. The result is easily seen to be valid

over the extended range − 3
2π < arg z < 3

2π if we write e±(n+
1
2 )πi for e−(n+

1
2 )πi, the upper or

lower sign being taken according as arg z is positive or negative.

17.71 Modified Bessel functions of the second kind
When n is a positive integer or zero, I−n(z) = In(z); to obtain a second solution of the
modified Bessel equation (iv) above, we define5 the function Kn(z) for all values of n by the
equation

Kn(z) =
(
π

2z

)1/2

cos nπW0,n(2z),

so that Kn(z) = π
2 (I−n(z) − In(z)) cot nπ.

Whether n be an integer or not, this function is a solution of the modified Bessel equation,
and when |arg z | < 3

2π it possesses the asymptotic expansion

Kn(z) ∼
(
π

2z

)1/2

e−z cos(nπ)

[
1 +

∞∑
r=1

{4n2 − 12}{4n2 − 32} · · · {4n2 − (2r − 1)2}
r! 23r zr

]
for large values of |z |.

When n is an integer, Kn(z) is defined by the equation

Kn(z) = lim
ε→0

π

2
{I−n−ε(z) − In+ε(z)} cot πε,

which gives (cf. §17.61)

Kn(z) = −
∞∑
r=0

( z2 )
n+2r

r!(n + r)!

{
log

z
2
+ γ −

1
2

n+r∑
m=1

1
m
−

1
2

r∑
m=1

1
m

}
+

1
2

n−1∑
r=0

( z
2

)−n+2r (−1)n−r (n − r − 1)!
r!

5 The notation Kn(z) was used by Basset [52, p. 11] to denote a function which differed from the function now
defined by the omission of the factor cos nπ, and Basset’s notation has since been used by various writers,
notably Macdonald. The object of the insertion of the factor is to make In(z) and Kn(z) satisfy the same
recurrence formulae. Subsequently Basset [51, p. 19] used the notation Kn(z) to denote a slightly different
function, but the latter usage has not been followed by other writers. The definition of Kn(z) for integral
values of n which is given here is due to Gray and Mathews [259, p. 68], and is now common (see
Example 17.40), but the corresponding definition for non-integral values has the serious disadvantage that the
function vanishes identically when 2n is an odd integer. The function was considered by Riemann [555] and
Hankel [273, p. 498].
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as an ascending series.

Example 17.7.1 Shew that Kn(z) satisfies the same recurrence formulae as In(z).

17.8 Neumann’s expansion of an analytic function in a series of Bessel coefficients
We shall now consider the expansion of an arbitrary function f (z), analytic in a domain
including the origin, in a series of Bessel coefficients, in the form

f (z) = a0J0(z) + a1J1(z) + a2J2(z) + · · · ,

where α0, α1, α2, . . . are independent of z. This appears in Neumann [487] and Kapteyn [365].
Assuming the possibility of expansions of this type, let us first consider the expansion of

1/(t − z); let it be

1
t − z

= O0(t)J0(z) + 2O1(t)J1(z) + 2O2(t)J2(z) + · · · ,

where the functions On(t) are independent of z.
We shall now determine conditions which On(t) must satisfy if the series on the right is

to be a uniformly convergent series of analytic functions; by these conditions On(t) will be
determined, and it will then be shewn that, if On(t) is so determined, then the series on the
right actually converges to the sum 1/(t − z) when |z | < |t |.

Since
(
∂

∂t
+
∂

∂z

)
1

t − z
= 0,we have

O′0(t)J0(z) + 2
∞∑
n=1

O′n(t)Jn(z) +O0(t)J ′0(z) + 2
∞∑
n=1

On(t)J ′n(z) ≡ 0,

so that, on replacing 2J ′n(z) by Jn−1(z) − Jn+1(z), we find{
O′0(t) +O1(t)

}
J0(z) +

∞∑
n=1

{
2O′n(t) +On+1(t) −On−1(t)

}
Jn(z) = 0.

Accordingly the successive functionsO1(t), O2(t), O3(t), . . . are determined by the recurrence
formulae

O1(t) = −O0
′(t), On+1(t) = On−1(t) − 2O′n(t),

and, putting z = 0 in the original expansion, we see that O0(t) is to be defined by the equation
O0(t) = 1/t. These formulae shew without difficulty that On(t) is a polynomial of degree n
in 1/t.

We shall next prove by induction that On(t), so defined, is equal to

1
2

∫ ∞

0
e−tu

[{
u +
√

u2 + 1
}n
+

{
u −
√

u2 + 1
}n]

du

when Re (t) > 0. For the expression is obviously equal to O0(t) or O1(t) when n is equal to 0



394 Bessel Functions

or 1 respectively; and
1
2

∫ ∞

0
e−tu

{
u ±
√

u2 + 1
}n−1

du −
d
dt

∫ ∞

0
e−tu

{
u ±
√

u2 + 1
}n

du

=
1
2

∫ ∞

0
e−tu

{
u ±
√

u2 + 1
}n−1 {

1 + 2u2 ± 2u
√

u2 + 1
}

du

=
1
2

∫ ∞

0
e−tu

{
u ±
√

u2 + 1
}n+1

du,

whence the induction is obvious.
Writing u = sinh θ, we see that, according as n is even or odd, see [321, §§79, 264],

1
2

[{
u +
√

u2 + 1
}n
+

{
u −
√

u2 + 1
}n]
=

{
cosh
sinh

}
nθ

= 2n−1
{
sinhn θ +

n(n − 1)
2(2n − 2)

sinhn−2 θ

+
n(n − 1)(n − 2)(n − 3)
2 · 4(2n − 2)(2n − 4)

sinhn−4 θ + · · ·

}
,

and hence, when Re (t) > 0, we have on integration,

On(t) =
2n−1n !

tn+1

{
1 +

t2

2 (2n − 2)
+

t4

2 · 4 (2n − 2) (2n − 4)
+ · · ·

}
,

the series terminating with the term in tn or tn−1; now, whether Re(t) be positive or not, On(t)
is defined as a polynomial in 1/t; and so the expansion obtained for On(t) is the value of
On(t) for all values of t.

Example 17.8.1 Shew that, for all values of t,

On(t) =
1

2tn+1

∫ ∞

0
e−x

[{
x +
√

x2 + t2
}n
+

{
x −
√

x2 + t2
}n]

dx,

and verify that the expression on the right satisfies the recurrence formulae for On(t).

17.81 Proof of Neumann’s expansion
Themethod of §17.8 merely determined the coefficients in Neumann’s expansion of 1/(t− z),
on the hypothesis that the expansion existed and that the rearrangements were legitimate. To
obtain a proof of the validity of the expansion, we observe that

Jn(z) =
( z2 )

n

n !
{1 + θn} , On(t) =

2n−1n !
tn+1 {1 + φn} ,

where θn → 0, φn → 0 as n→∞, when z and t are fixed. Hence the series

O0(t)J0(z) + 2
∞∑
n=1

On(t)Jn(z) ≡ F(z, t)

is comparable with the geometrical progression whose general term is zn/tn+1, and this
progression is absolutely convergent when |z | < |t |, and so the expansion for F(z, t) is
absolutely convergent (§2.34) in the same circumstances.
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Again if |z | ≤ r , |t | ≥ R, where r < R, the series is comparable with the geometrical
progression whose general term is rn/Rn+1, and so the expansion for F(z, t) converges
uniformly throughout the domains |z | ≤ r and |t | ≥ R by §3.34. Hence, by §5.3, term-by-
term differentiations are permissible, and so(

∂

∂t
+
∂

∂z

)
F(z, t) = O′0(t) J0 (z) + 2

∞∑
n=1

O′n(t)Jn(z) +O0(t) J ′0(z) + 2
∞∑
n=1

On(t) J ′n(z)

=
{
O′0(t) +O1(t)

}
J0(z) +

∞∑
n=1

{
2O′n(t) +On+1(t) −On−1(t)

}
Jn(z)

= 0,

by the recurrence formulae.

Since
(
∂

∂t
+
∂

∂z

)
F(z, t) = 0, it follows that F(z, t) is expressible as a function of t − z; and

since F(0, t) = O0(t) = 1/t, it is clear that F(z, t) = 1/(t − z). It is therefore proved that

1
t − z

= O0(t) J0(z) + 2
∞∑
n=1

On(t) Jn(z), (17.8)

provided that |z | < |t |.
Hence, if f (z) be analytic when |z | ≤ r , we have, when |z | < r ,

f (z) =
1

2πi

∫
f (t)

t − z
dt

=
1

2πi

∫
f (t)

{
O0(t)J0(z) + 2

∞∑
n=1

On(t)Jn(z)

}
dt

= J0(z) f (0) +
1
πi

∞∑
n=1

Jn(z)
∫

On(t) f (t) dt,

by §4.7, the paths of integration being the circle |t | = r; and this establishes the validity of
Neumann’s expansion when |z | < r and f (z) is analytic when |z | ≤ r .

Example 17.8.2 (K. Neumann) Shew that

cos z = J0(z) − 2J2(z) + 2J4(z) − · · · ,

sin z = 2J1(z) − 2J3(z) + 2J5(z) − · · · .

Example 17.8.3 (K. Neumann) Shew that( z
2

)n
=

∞∑
r=0

(n + 2r)(n + r − 1)!
r!

Jn+2r (z).
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Example 17.8.4 (W. Kapteyn) Shew that, when |z | < |t |,

O0(t)J0(z) + 2
∞∑
n=1

On(t)Jn(z) =
∞∑

n=−∞

Jn(z)
∫ ∞

0
t−n−1e−x

{
x +
√

x2 + t2
}n

dx

=

∫ ∞

0

e−x

tn+1

∞∑
n=−∞

Jn(z)
{
x +
√

x2 + t2
}n

dx

=
1
t

∫ ∞

0
exp

( zx
t
− x

)
dx

=
1

t − z
.

17.82 Schlömilch’s expansion of an arbitrary function in a series of Bessel
coefficients of order zero

Schlömilch [581] (see also Chapman [142]) has given an expansion of quite a different
character from that of Neumann. His result may be stated thus:

Any function f (x), which has a continuous differential coefficient with limited total fluc-
tuation for all values of x in the closed range (0, π),may be expanded in the series

f (x) = a0 + a1J0(x) + a2J0(2x) + a3J0(3x) + · · · ,

valid in this range, where

a0 = f (0) +
1
π

∫ π

0
u
∫ π/2

0
f ′(u sin θ) dθ du,

an =
2
π

∫ π

0
u cos nu

∫ π/2

0
f ′(u sin θ) dθ du (n > 0).

Schlömilch’s proof is substantially as follows:
Let F(x) be the continuous solution of the integral equation

f (x) =
2
π

∫ π/2

0
F(x sin φ) dφ.

Then (§11.81)

F(x) = f (0) + x
∫ π/2

0
f ′(x sin θ) dθ.

In order to obtain Schlömilch’s expansion, it is merely necessary to apply Fourier’s theorem
to the function F(x sin φ). We thus have

f (x) =
2
π

∫ π/2

0
dφ

{
1
π

∫ π

0
F(u) du +

2
π

∞∑
n=1

∫ π

0
cos nu cos(nx sin φ)F(u) du

}
=

1
π

∫ π

0
F(u) du +

2
π

∞∑
n=1

∫ π

0
cos nu F(u)J0(nx) du,

the interchange of summation and integration being permissible by §4.7 and §9.44.
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In this equation, replace F(u) by its value in terms of f (u). Thus we have

f (x) =
1
π

∫ π

0

{
f (0) + u

∫ π/2

0
f ′(u sin θ) dθ

}
du

+
2
π

∞∑
n=1

J0(nx)
∫ ∞

0
cos nu

{
f (0) + u

∫ π/2

0
f ′(u sin θ) dθ

}
du,

which gives Schlömilch’s expansion.

Example 17.8.5 (Math. Trip. 1895) Shew that, if 0 ≤ x ≤ π, the expression

π2

4
− 2

{
J0(x) +

1
9

J0(3x) +
1
25

J0(5x) + · · ·
}

is equal to x; but that, if π ≤ x ≤ 2π, its value is

x + 2π arccos(π/x) − 2
√

x2 − π2,

where arccos(π/x) is taken between 0 and π
3 . Find the value of the expression when x lies

between 2π and 3π.

17.9 Tabulation of Bessel functions
Hansen used the asymptotic expansion (§17.5) to calculate tables of Jn(x) which are given
by Lommel in [441]. Meissel [466] tabulated J0(x) and J1(x) to 12 places of decimals from
x = 0 to x = 15.5, while the British Assoc. Report (1909), p. 33, gives tables by which Jn(x)
and Yn(x) may be calculated when x > 10. Tables of J 1

3
(x), J 2

3
(x), J− 1

3
(x), J− 2

3
(x) are given

by Dinnik [171].
Tables of the second solution of Bessel’s equation have been given by the followingwriters:

B. A. Smith [594] (see also [469]), Aldis [16], Airey [14]. The functions In(x) have been
tabulated in the British Assoc. Reports, (1889) p. 28, (1893) p. 223, (1896) p. 98, (1907)
p. 94; also by Aldis [15], by Isherwood [338] and by E. Anding [18].

Tables of Jn(x
√

i), a function employed in the theory of alternating currents in wires, have
been given in the British Assoc. Reports, 1889, 1893, 1896 and 1912; by Kelvin [627], by
Aldis [16] and by Savidge [572]. Formulae for computing the zeros of J0(z) were given by
Stokes [610] and the 40 smallest zeros were tabulated byWillson and Peirce [682]. The roots
of an equation involving Bessel functions were computed by Kalähne [364]. A number of
tables connected with Bessel functions are given in British Assoc. Reports, 1910–1914, and
also by Jahnke & Emde [356].

17.10 Miscellaneous examples
Example 17.1 (K. Neumann) Shew that

cos(z sin θ) = J0(z) + 2J2(z) cos 2θ + 2J4(z) cos 4θ + · · · ,
sin(z sin θ) = 2J1(z) sin θ + 2J3(z) sin 3θ + 2J5(z) sin 5θ + · · ·

Example 17.2 By expanding each side of the equations of Example 17.1 in powers of sin θ,
express zn as a series of Bessel coefficients.
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Example 17.3 By multiplying the expansions for exp
{
z
2 (t − 1/t)

}
and exp

{
− z

2 (t − 1/t)
}

and considering the terms independent of t, shew that

{J0(z)}
2
+ 2 {J1(z)}

2
+ 2 {J2(z)}

2
+ 2 {J3(z)}

2
+ · · · = 1.

Deduce that, for the Bessel coefficients, |J0(z)| ≤ 1, |Jn(z)| ≤ 1/
√

2, for n ≥ 1, when z is
real.

Example 17.4 (Bourget [94]) If Jk
m(z) =

1
π

∫ π

0
2k cosk u cos(mu− z sin u) du (this function

reduces to a Bessel coefficient when k is zero and m an integer), shew that

Jk
m(z) =

∞∑
p=0

1
p!

( z
2

) p
N−m,k ,p,

where N−m,k ,p is the Cauchy number defined by the equation

N−m,k ,p =
1

2π

∫ π

−π

e−miu(eiu + e−iu)k(eiu − e−iu)p du.

Shew further that;
Jk
m(z) = Jk−1

m−1(z) + Jk−1
m+1(z),

and zJk+2
m (z) = 2mJk+1

m (z) − 2(k + 1)
{

Jk
m−1(z) − Jk

m+1(z)
}
.

Example 17.5 (Bourget) If v and M are connected by the equations

M = E − e sin E, cos v =
cos E − e

1 − e cos E
, where |e| < 1,

shew that

v = M + 2(1 − e2)
1
2

∞∑
m=1

∞∑
k=0

(
1
2

e
)k

Jmk(me)
1
m

sin mM,

where Jk
m(z) is defined as in Example 17.4.

Example 17.6 (Math. Trip. 1893) Prove that, if m and n are integers,

Pm
n (cos θ) =

cmn
rn

Jm

(
(x2 + y2)

1
2
∂

∂z

)
zn,

where z = r cos θ, x2 + y2 = r2 sin2 θ, and cmn is independent of z.

Example 17.7 Shew that the solution of the differential equation

d2y

dz2 −
φ′

φ

dy
dz
+

{
1
4

(
φ′

φ

)2

−
1
2

d
dz

(
φ′

φ

)
−

1
4

(
ψ ′′

ψ ′

)2

+
1
2

d
dz

(
ψ ′′

ψ ′

)
+

(
ψ2 − ν2 + 1

4

) (
ψ ′

ψ

)2
}
y

= 0,

where φ and ψ are arbitrary functions of z, is

y =

(
φψ

ψ ′

) 1
2

{AJν(ψ) + BJ−ν (ψ)}.
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Example 17.8 (Trinity, 1908) Shew that

J1(x) + J3(x) + J5(x) + · · · =
1
2

[
J0(x) +

∫ x

0
{J0(t) + J1(t)} dt − 1

]
.

Example 17.9 (Schläfli [576] and Schönholzer [588]) Shew that

Jµ(z)Jν(z) =
∞∑
n=0

(−1)nΓ(µ + ν + 2n + 1)( z2 )
µ+ν+2n

n!Γ(µ + n + 1)Γ (ν + n + 1)Γ(µ + ν + n + 1)

for all values of µ and ν.

Example 17.10 (Math. Trip. 1899) Shew that, if n is a positive integer and m + 2n + 1 is
positive,

(m − 1)
∫ x

0
xmJn+1(x)Jn−1(x) dx = xm+1{Jn+1(x)Jn−1(x) − J2

n(x)} + (m + 1)
∫ x

0
xmJ2

n(x) dx.

Example 17.11 Shew that

J3(z) + 3
dJ0(z)

dz
+ 4

d3J0(z)
dz3 = 0.

Example 17.12 Shew that

Jn+1(z)
Jn(z)

=

1
2 z/n(n + 1)

1 −
( 12 z)2/(n + 1)(n + 2)

1 −
( 12 z)2/(n + 2)(n + 3)

1 −
. . .

.

Example 17.13 (Lommel) Shew that

J−n(z) Jn−1(z) + J−n+1(z)Jn(z) =
2 sin nπ
πz

.

Example 17.14 If
Jn+1(z)
zJn(z)

be denoted by Qn(z), shew that

dQn(z)
dz

=
1
z
−

2(n + 1)
z

Qn(z) + z{Qn(z)}2.

Example 17.15 (K. Neumann) Shew that, if R2 = r2 + r2
1 − 2rr1 cos θ and r1 > r > 0,

J0(R) = J0(r)J0(r1) + 2
∞∑
n=1

Jn(r) Jn(r1) cos nθ,

Y0(R) = J0(r)Y0(r1) + 2
∞∑
n=1

Jn(r)Yn(r1) cos nθ.

Example 17.16 (K. Neumann) Shew that, if Re (n + 1
2 ) > 0,∫ 1

2 π

0
J2n (2z cos θ) dθ =

π

2
{Jn (z) }2.
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Example 17.17 (Math. Trip. 1896) Shew how to express z2nJ2n(z) in the form AJ2(z) +
BJ0(z), where A and B are polynomials in z; and prove that

J4(
√

6) + 3J0(
√

6) = 0, 3J6(
√

30) + 5J2(
√

30) = 0.

Example 17.18 Shew that, if α , β and n > −1,

(α2 − β2)

∫ x

0
x Jn(αx)Jn(βx) dx = x

{
Jn(αx)

d
dx

Jn(βx) − Jn(βx)
d
dx

Jn (αx)
}
,

2α2
∫ x

0
x{Jn(αx)}2 dx = (α2x2 − n2){Jn(ax)}2 +

{
x

d
dx

Jn(αx)
}2

.

Example 17.19 (Lommel [441]) Prove that, if n > −1, and Jn(α) = Jn(β) = 0 while α , β,∫ 1

0
x Jn(αx)Jn(βx) dx = 0, and

∫ 1

0
x{Jn(αx)}2 dx =

1
2
{Jn+1(α)}

2.

Hence prove that, when n > −1, the roots of Jn(x) = 0, other than zero, are all real and
unequal. Hint. If α could be complex, take β to be the conjugate complex.

Example 17.20 Let x1/2 f (x) have an absolutely convergent integral in the range 0 ≤ x ≤ 1;
let H be a real constant and let n ≥ 0. Then, if k1, k2, . . . denote the positive roots of the
equation

k−n{k J ′n(k) + H Jn(k)} = 0,

shew that, at any point x for which 0 < x < 1 and f (x) satisfies one of the conditions of
§9.43, f (x) can be expanded in the form

f (x) =
∞∑
r=1

Ar Jn (kr x),

where

Ar =

[∫ 1

0
x{Jn(kr x)}2 dx

]−1 ∫ 1

0
x f (x) Jn(kr x) dx.

In the special case when H = −n, k1 is to be taken to be zero, the equation determining
k1, k2, . . . being Jn+1(k) = 0, and the first term of the expansion is A0xn where

A0 = (2n + 2)
∫ 1

0
xn+1 f (x) dx.

Discuss, in particular, the case when H is infinite, so that Jn(k) = 0, shewing that

Ar = 2{Jn+1(kr )}−2
∫ 1

0
x f (x) Jn(kr x) dx.

Note This result is due to Hobson [318]; see alsoW. H. Young [686]. The formal expansion
was given with H infinite (when n = 0) by Fourier and (for general values of n) by Lommel;
proofs were given by Hankel and Schläfli. The formula when H = −n was given incorrectly
by Dini [170], the term A0xn being printed as A0, and this error was not corrected by Nielsen.
See Bridgeman [98] and Chree [144]. The expansion is usually called the Fourier–Bessel
expansion.
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Example 17.21 (Clare, 1900) Prove that, if the expansion

α2 − x2 = A1J0(λ1x) + A2J0(λ2x) + · · ·

exists as a uniformly convergent series when −α ≤ x ≤ α, where λ1, λ2, . . . are the positive
roots of J0 (λα) = 0, then An = 8{αλn3 J1(λnα) }

−1.

Example 17.22 (Math. Trip. 1906) If k1, k2, . . . are the positive roots of Jn(kα) = 0, and if

xn+2 =

∞∑
r=1

Ar Jn(kr x),

this series converging uniformly when 0 ≤ x ≤ α, then

Ar =
2an−1

kr 2 (4n + 4 − α2kr 2) ÷
dJn(krα)

da
.

Example 17.23 (Sonine [598]) Shew that

Jn(x) =
xn−m

2n−m−1 Γ(n − m)

∫ π
2

0
Jm(x sin θ) cos2n−2m−1 θ sinm+1 θ dθ

when n > m > −1.

Example 17.24 (Nicholson [497]) Shew that, if σ > 0,∫ ∞

0
cos(t3 − σt) dt =

πσ1/2

3
√

3

{
J1/3

(
2σ3/2

33/2

)
+ J−1/3

(
2σ3/2

33/2

)}
.

Example 17.25 (Math. Trip. 1904) If m be a positive integer and u > 0, deduce from
Bessel’s integral formula that∫ ∞

0
e−x sinhuJm(x) dx = e−mu sech u.

Example 17.26 (Sonine [598]) Prove that, when x > 0,

J0(x) =
2
π

∫ ∞

0
sin(x cosh t) dt, Y0(x) = −

2
π

∫ ∞

0
cos(x cosh t) dt.

Hint. Take the contour of §17.1 to be the imaginary axis indented at the origin and a semicircle
on the left of this line.

Example 17.27 (Weber [656]) Shew that∫ ∞

0
x−1J0(xt) sin x dx =

{
π
2 0 < t < 1
arccosec t t > 1

and that ∫ ∞

0
x−1J1(xt) sin x dx =

{
t−1{1 − (1 − t2)1/2} 0 < t < 1
t−1 t > 1
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Example 17.28 (Poisson [531]; see also Stokes [609]) Shew that

u =
∫ π

0
enr cos θ{A + B log(r sin2 θ)} dθ

is the solution of
d2u
dr2 +

1
r

du
dr
− n2u = 0.

Example 17.29 (Math. Trip. 1901) Prove that no relation of the form
k∑

s=0

NsJn+s(x) = 0

can exist for rational values of Ns, n and x except relations which are satisfied when the
Bessel functions are replaced by arbitrary solutions of the recurrence formula of (17.2).
Hint. Express the left-hand side in terms of Jn(x) and Jn+1(x), and shew by Example 17.12
that Jn+1(x)/Jn(x) is irrational when n and x are rational.

Example 17.30 (Hargreave [282]; Macdonald [444]) Prove that, when Re (n) > − 1
2,

Jn(z) =
zn

2n−1Γ(n + 1
2 )Γ (

1
2 )

(
1 +

d2

dz2

)n−1/2 (
sin z

z

)
,

−Yn(z) =
zn

2n−1Γ(n + 1
2 )Γ(

1
2 )

(
1 +

d2

dz2

)n−1/2 (
cos z

z

)
.

Here, (
1 +

d2

dz2

)n−1/2

means

1 +
n − 1

2

1!
d2

dz2 +
(n − 1

2 ) (n −
3
2 )

2!
d4

dz4 + · · · .

Hint. Write
eiz

z
=

∫ 1

i∞

ieizt dt.

Example 17.31 (Hobson) Shew that, when Re (m + 1
2 ) > 0,(

2
π

) 1
2
∫ π

2

0
Jm(z sin θ) sinm+1 θdθ = z−

1
2 Jm+ 1

2
(z).

Example 17.32 (Weber [654]; Math. Trip. 1898) Shew that, if 2n + 1 > m > −1,∫ ∞

0
x−n+mJn(ax) dx = 2−n+man−m−1 Γ( 12 m + 1

2 )

Γ(n − 1
2 m + 1

2 )
.

Example 17.33 (Lommel) Shew that

z
π
=

∞∑
p=0

2p + 1
2
{Jp+ 1

2
(z)}2.
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Example 17.34 (Math. Trip. 1894) In the equation

d2y

dz2 +
1
z

dy
dz
+

(
1 +

n2

z2+

)
y = 0,

n is real; shew that a solution is given by

cos(n log z) −
∞∑

m=1

(−1)mz2m cos(um − n log z)

22mm! (1 + n2)
1
2 (4 + n2)

1
2 · · · (m2 + n2)

1
2
,

where um denotes
m∑
r=1

arctan(n/r).

Example 17.35 (Cauchy [128]; Nicholson [496]) Shew that, when n is large

Jn(n) = 2−
2
3 3−

1
6 π−1

Γ

(
1
3

)
n−

1
3 +O(n−1).

Example 17.36 (Mehler [464]) Shew that

K0(x) =
∫ ∞

0

t J0(t x)
1 + t2 dt .

Example 17.37 (Math. Trip. 1900) Shew that

eλ cos θ = 2n−1
Γ(n)

∞∑
k=0

(n + k)Cn
k (cos θ)λ−nIn+k(λ).

Example 17.38 (Sonine [598]) Shew that, if

W =
∫ ∞

0
Jm(ax)Jm(bx)Jm(cx)x1−m dx,

a, b, c being positive, and m is a positive integer or zero, then

W =


0 if (a − b)2 > c2,

a−mb−mc−m

23m−1π
1
2 Γ

(
m+

1
2

) {2 ∑
b2c2 −

∑
a4}m−

1
2 if (a + b)2 > c2 > (a − b)2,

0 if (a + b)2 > c2.

Example 17.39 (Macdonald [448]) Shew that, if n > −1, m > − 1
2 and

W =
∫ ∞

0
Jn(ax)Jn(bx)Jm(cx)x1−m dx,

a, b, c being positive, then

W =


0 if (a − b)2 > c2,

(2π)− 1
2 am−1bm−1c−m(1 − µ2)

1
4 (2m−1)P

1
2−m

n− 1
2
(µ) if (a + b)2 > c2

> (a − b)2,( 1
2π

)− 1
2 am−1bm−1c−m sin(m−n)π

π
e(m−

1
2 )πi(µ2

1 − 1) 1
4 (2m−1)Q

1
2−m

n− 1
2
(µ1) if c2 > (a + b)2,

where µ = (a2 + b2 − c2)/2ab, and µ1 = −µ.
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Example 17.40 (Math. Trip. 1898; Basset [52]) Shew that, if Re (m + 1
2 ) > 0,

Im(z) =
zm

2mΓ(m + 1
2 )Γ(

1
2 )

∫ π

0
cosh(z cos φ) sin2m φ dφ,

and, if | arg z | < 1
2π,

Km(z) =
zmΓ

( 1
2

)
cos mπ

2mΓ(m + 1
2 )

∫ ∞

0
e−z coshφ sinh2m φ dφ.

Prove also that

Km(z) =
(2z)m
√
π
Γ

(
m + 1

2

)
cos mπ

∫ ∞

0
(u2 + z2)−m−

1
2 cos u du.

Hint. The first integral may be obtained by expanding in powers of z and integrating term-
by-term. To obtain the second, consider

zm
∫ (1+, −1+1)

∞

e−st (t2 − 1)m−
1
2 dt,

where initially arg(t − 1) = arg(t + 1) = 0. Take |t | > 1 on the contour, expand (t2 − 1)m− 1
2 in

descending powers of t, and integrate term-by-term. The result is

2ie2mπi sin(2mπ)Γ(2m)2−mΓ(1 − m)I−m(z).

Also, deforming the contour by flattening it, the integral becomes

2ie2mπizm sin 2mπ
∫ ∞

1
e−st(t2 − 1)m−

1
2 dt + 2ie2mπizm cos mπ

∫ 1

−1
e−st(1 − t2)m−

1
2 dt;

and consequently

I−m(z) − Im(z) =
21−m sin(mπ)zm

Γ
( 1

2

)
Γ(m + 1

2 )

∫ ∞

1
e−st(t2 − 1)m−

1
2 dt .

Example 17.41 (K. Neumann) Shew that On(z) satisfies the differential equation

d2On(z)
dz2 +

3
z

dOn(z)
dz

+

{
1 −

n2 − 1
2

}
On(z) = gn,

where

gn =

{
z−1 if n is even
nz−2 if n is odd.

Example 17.42 (K. Neumann) If f (z) be analytic throughout the ring-shaped region
bounded by the circles c, C whose centres are at the origin, establish the expansion

f (z) =
1
2
α0J0(z) + α1J1(z) + α2J2(z) + · · · +

1
2
β0O0(z) + β1O1(z) + β2O2(z) + · · · ,

where

αn =
1
πi

∫
C

f (t)On(t) dt, βn =
1
πi

∫
C

f (t)Jn(t) dt .
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Example 17.43 (Math. Trip. 1905) Shew that, if x and y are positive,∫ ∞

0

e−βx

β
J0(ky)k dk =

e−ir

r
,

where r =
√

x2 + y2 and β =
√

k2 − 1 or i
√

1 − k2, according as k > 1 or k < 1.

Example 17.44 Shew that, with suitable restrictions on n and on the form of the function
f (x),

f (x) =
∫ ∞

0
Jn(t x) t

{∫ ∞

0
f (x ′)Jn(t x ′)x ′ dx ′

}
dt .

Note A proof with an historical account of this important theorem is given by Nielsen
[500, p. 360–363]. It is due to Hankel, but (in view of the result of §9.7) it is often called the
Fourier–Bessel integral.

Example 17.45 (K. Neumann) If C be any closed contour, and m and n are integers, shew
that ∫

C

Jm(z)Jn(z) dz =
∫
C

Om(z)On(z) dz =
∫
C

Jm(z)On(z) dz = 0,

unless C contains the origin and m = n; in which case the first two integrals are still zero, but
the third is equal to πi (or 2πi, if m = 0) if C encircles the origin once counter-clockwise.

Example 17.46 (K. Neumann) Shew that, if

ap,q =
(−1)p

p! q!
,

and if n be a positive integer, then

z−2n =

n∑
m=1

an−m,n+m−1O2m−1(z),

while

z1−2n = an−1,n−1O0(z) + 2
n−1∑
m=1

am−1,n+m−1O2m(z).

Example 17.47 (K. Neumann) If

Ωn(y) =

n∑
m=0

22m (m!)2

(2m)!
n2(n2 − 12)(n2 − 22) · · · (n2 − (m − 1)2)

y2m+2 ,

shew that

(y2 − x2)−1 = Ω0(y)J2
0 (x) + 2

∞∑
n=1

Ωn(y)J2
n(x)

when the series on the right converges.

Example 17.48 (Macdonald [446]) Shew that, if c > 0, Re (n) > −1, and Re (a ± b)2 > 0,
then

Jn(a)Jn(b) =
1

2πi

∫ c+∞i

c−∞i

t−1 exp{(t2 − a2 − b2)/(2t)} In(ab/t) dt .
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Example 17.49 (Gegenbauer [239]) Deduce from Example 17.48, or otherwise prove, that

(a2 + b2 − 2ab cos θ)−
1
2 nJn{(a2 + b2 − 2ab cos θ)

1
2 }

= 2n
Γ(n)

∞∑
m=0

(m + n)a−nb−nJm+n(a)Jm+n(b)Cn
m(cos θ).

Example 17.50 (Schafheitlin [573]; Math. Trip. 1903) Shew that

y =

∫
C

Jm(t) Jn
(
tz1/2

)
tk−1 dt

satisfies the equation

d2y

dz2 +

(
1
z
+

k
z − 1

)
dy
dz
+

(
k2 − m2 +

n2

z

)
y

4z(z − 1)
= 0

if
ktk Jm(t) Jn

(
tz1/2

)
− tk+1 J ′m(t) Jn

(
tz1/2

)
+ z1/2tk+1Jm(t)J ′m

(
tz1/2

)
resumes its initial value after describing the contour. Deduce that, when 0 < z < 1,∫ ∞

0
Ja−β(t) Jγ−1

(
tz

1
2

)
ta+β−γ dt =

Γ(a)z
1
2 (γ−1)

2γ−a−βΓ(1 − β)Γ(γ)
F(a, β; γ; z).
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The Equations of Mathematical Physics

18.1 The differential equations of mathematical physics
The functions which have been introduced in the preceding chapters are of importance in
the applications of mathematics to physical investigations. Such applications are outside the
province of this book; but most of them depend essentially on the fact that, by means of
these functions, it is possible to construct solutions of certain partial differential equations,
of which the following are among the most important:

(I) Laplace’s equation

∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2 = 0,

which was originally introduced in a memoir [408, p. 252] on Saturn’s rings.
If (x, y, z) be the rectangular coordinates of any point in space, this equation is satisfied by

the following functions which occur in various branches of mathematical physics:

(i) The gravitational potential in regions not occupied by attracting matter.
(ii) The electrostatic potential in a uniform dielectric, in the theory of electrostatics.
(iii) The magnetic potential in free aether, in the theory of magnetostatics.
(iv) The electric potential, in the theory of the steady flow of electric currents in solid

conductors.
(v) The temperature, in the theory of thermal equilibrium in solids.
(vi) The velocity potential at points of a homogeneous liquid moving irrotationally, in

hydrodynamical problems.

Notwithstanding the physical differences of these theories, the mathematical investigations
are much the same for all of them: thus, the problem of thermal equilibrium in a solid when
the points of its surface are maintained at given temperatures is mathematically identical with
the problem of determining the electric intensity in a region when the points of its boundary
are maintained at given potentials.

(II) The equation of wave motions

∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2 =

1
c2
∂2V
∂t2 .

407
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This equation is of general occurrence in investigations of undulatory disturbances propagated
with velocity c independent of the wave length; for example, in the theory of electric waves
and the electro-magnetic theory of light, it is the equation satisfied by each component of the
electric or magnetic vector; in the theory of elastic vibrations, it is the equation satisfied by
each component of the displacement; and in the theory of sound, it is the equation satisfied
by the velocity potential in a perfect gas.

(III) The equation of conduction of heat

∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2 =

1
k
∂V
∂t
.

This is the equation satisfied by the temperature at a point of a homogeneous isotropic body;
the constant k is proportional to the heat conductivity of the body and inversely proportional
to its specific heat and density.

(IV) Two-dimensional wave motion
A particular case of the preceding equation, when the variable z is absent, is

∂2V
∂x2 +

∂2V
∂y2 =

1
c2
∂2V
∂t2 .

This is the equation satisfied by the displacement in the theory of transverse vibrations of a
membrane; the equation also occurs in the theory of wave motion in two dimensions.

(V) The equation of telegraphy

LK
∂2V
∂t2 + KR

∂V
∂t
=
∂2V
∂x2 .

This is the equation satisfied by the potential in a telegraph cable when the inductance L, the
capacity K , and the resistance R per unit length are taken into account.

It would not be possible, within the limits of this chapter, to attempt an exhaustive account
of the theories of these and the other differential equations of mathematical physics; but,
by considering selected typical cases, we shall expound some of the principal methods
employed, with special reference to the uses of the transcendental functions.

18.2 Boundary conditions
A problem which arises very frequently is the determination, for one of the equations of
§18.1, of a solution which is subject to certain boundary conditions; thus we may desire to
find the temperature at any point inside a homogeneous isotropic conducting solid in thermal
equilibrium when the points of its outer surface are maintained at given temperatures. This
amounts to finding a solution of Laplace’s equation at points inside a given surface, when
the value of the solution at points on the surface is given.
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Amore complicated problem of a similar nature occurs in discussing small oscillations of
a liquid in a basin, the liquid being exposed to the atmosphere; in this problem we are given,
effectively, the velocity potential at points of the free surface and the normal derivate of the
velocity potential where the liquid is in contact with the basin.

The nature of the boundary conditions, necessary to determine a solution uniquely, varies
very much with the form of differential equation considered, even in the case of equations
which, at first sight, seem very much alike. Thus a solution of the equation

∂2V
∂x2 +

∂2V
∂y2 = 0

(which occurs in the problem of thermal equilibrium in a conducting cylinder) is uniquely
determined at points inside a closed curve in the x–y-plane by a knowledge of the value of
V at points on the curve; but in the case of the equation

∂2V
∂x2 −

1
c2
∂2V
∂t2 = 0

(which effectively only differs from the former in a change of sign), occurring in connexion
with transverse vibrations of a stretched string, where V denotes the displacement at time t
at distance x from the end of the string, it is physically evident that a solution is determined

uniquely only if both V and
∂V
∂t

are given for all values of x such that 0 ≤ x ≤ l, when t = 0
(where l denotes the length of the string).

Physical intuitions will usually indicate the nature of the boundary conditions which
are necessary to determine a solution of a differential equation uniquely; but the existence
theorems, which are necessary from the point of view of the pure mathematician, are usually
very tedious and difficult (see Forsyth [220, §§216–220], where an apparently simple problem
is discussed).

18.3 A general solution of Laplace’s equation
It is possible to construct a general solution of Laplace’s equation in the form of a definite
integral (see Whittaker [672]). This solution can be employed to solve various problems
involving boundary conditions.

Let V(x, y, z) be a solution of Laplace’s equation which can be expanded into a power
series in three variables valid for points of (x, y, z) sufficiently near a given point (x0, y0, z0).
Accordingly we write

x = x0 + X, y = y0 + Y, z = z0 + Z;

and we assume the expansion

V = a0 + a1X + b1Y + c1Z + a2X2 + b2Y 2 + c2Z2 + 2d2Y Z + 2e2Z X + 2 f2XY + · · · ,

it being supposed that this series is absolutely convergent whenever

|X |2 + |Y |2 + |Z |2 ≤ a,

where a is some positive constant (the functions of applied mathematics satisfy this condi-
tion). If this expansion exists, V is said to be analytic at (x0, y0, z0). It can be proved by the
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methods of §§3.7, 4.7 that the series converges uniformly throughout the domain indicated
and may be differentiated term-by-term with regard to X,Y or Z any number of times at
points inside the domain.

If we substitute the expansion in Laplace’s equation, which may be written

∂2V
∂X2 +

∂2V
∂Y 2 +

∂2V
∂Z2 = 0,

and equate to zero (§3.73) the coefficients of the various powers of X,Y and Z , we get an
infinite set of linear relations between the coefficients, of which

a2 + b2 + c2 = 0

may be taken as typical.
There are 1

2 n(n−1) of these relations1 between the 1
2 (n+2)(n+1) coefficients of the terms

of degree n in the expansion of V , so that there are only 1
2 (n+ 2)(n+ 1) − 1

2 n(n− 1) = 2n+ 1
independent coefficients in the terms of degree n in V . Hence the terms of degree n in V
must be a linear combination of 2n+ 1 linearly independent particular solutions of Laplace’s
equation, these solutions being each of degree n in X,Y and Z .

To find a set of such solutions, consider (Z + iX cos u + iY sin u)n; it is a solution of
Laplace’s equation which may be expanded in a series of sines and cosines of multiples of
u, thus:

n∑
m=0

gm(X,Y, Z) cos mu +
n∑

m=1

hm(X,Y, Z) sin mu,

the functions gm(X,Y, Z) and hm(X,Y, Z) being independent of u. The highest power of Z
in gm(X,Y, Z) and hm(X,Y, Z) is Zn−m and the former function is an even function of Y , the
latter an odd function, hence the functions are linearly independent. They therefore form a
set of 2n + 1 functions of the type sought.

Now by Fourier’s rule2 (§9.12)

πgm(X,Y, Z) =
∫ π

−π

(Z + iX cos u + iY sin u)n cos mu du,

πhm(X,Y, Z) =
∫ π

−π

(Z + iX cos u + iY sin u)n sin mu du,

and so any linear combination of the 2n + 1 solutions can be written in the form∫ π

−π

(Z + iX cos u + iY sin u)n fn(u) du,

where fn(u) is a rational function of eiu.
Now it is readily verified that, if the terms of degree n in the expression assumed for V

1 If ar ,s ,t (where r + s + t = n) be the coefficient of XrY sZ t inV , and if the terms of degree n − 2 in
∂2V

∂X2 +
∂2V

∂Y2 +
∂2V

∂Z2
be arranged primarily in powers of X and secondarily in powers of Y , the coefficient ar ,s ,t does not occur in
any term after Xr−2Y sZ t (or XrY s−2Z t if r = 0 or 1), and hence the relations are all linearly independent.

2 2π must be written for π in the coefficient of g0(X ,Y , Z).
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be written in this form, the series of terms under the integral sign converges uniformly if
|X |2 + |Y |2 + |Z |2 be sufficiently small, and so (§4.7) we may write

V =
∫ π

−π

∞∑
n=0

(Z + iX cos u + iY sin u)n fn(u)du.

But any expression of this form may be written

V =
∫ π

−π

F(Z + iX cos u + iY sin u,u) du,

where F is a function such that differentiations with regard to X,Y or Z under the sign of
integration are permissible. And, conversely, if F be any function of this type, V is a solution
of Laplace’s equation.

This result may be written

V =
∫ π

−π

f (z + ix cos u + iy sin u,u) du,

on absorbing the terms −z0 − ix0 cos u− iy0 sin u into the second variable; and, if differentia-
tions under the sign of integration are permissible, this gives a general solution of Laplace’s
equation; that is to say, every solution of Laplace’s equation which is analytic throughout the
interior of some sphere is expressible by an integral of the form given.

This result is the three-dimensional analogue of the theorem that

V = j(x + iy) + g(x − iy)

is the general solution of
∂2V
∂x2 +

∂2V
∂y2 = 0.

Remark 18.3.1 A distinction has to be drawn between the primitive of an ordinary differen-
tial equation and general integrals of a partial differential equation of order higher than the
first. For a discussion of general integrals of such equations, see Forsyth [219, chapter 12].

Two apparently distinct primitives are always directly transformable into one another by

means of suitable relations between the constants; thus in the case of
d2y

dx2 + y = 0, we
can obtain the primitive C sin(x + ε) from A cos x + B sin x by defining C and ε by the
equations C sin ε = A, C cos ε = B. On the other hand, every solution of Laplace’s equation
is expressible in each of the forms∫ π

−π

f (x cos t + y sin t + iz, t) dt,
∫ π

−π

g(y cos u + z sin u + ix,u) du;

but if these are known to be the same solution, there appears to be no general analytical
relation, connecting the functions f and g, which will directly transform one form of the
solution into the other.

Example 18.3.1 Shew that the potential of a particle of unit mass at (a, b, c) is

1
2π

∫ π

−π

du
(z − c) + i(x − a) cos u + i(y − b) sin u
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at all points for which z > c.

Example 18.3.2 Shew that a general solution of Laplace’s equation of zero degree in x, y, z
is ∫ π

−π

log(x cos t + y sin t + iz)g(t) dt,

if
∫ π

−π

g(t) dt = 0. Express the solutions
x

z + r
and log

r + z
r − z

in this form, where

r2 = x2 + y2 + z2.

Example 18.3.3 Shew that, in the case of the equation

p1/2 + q1/2 = x + y

(where p = ∂z/∂x, q = ∂z/∂y), integrals of Charpit’s subsidiary equations (see Forsyth
[221, chapter 9]), are

(i) p1/2 − x = y − q1/2 = a,
(ii) p = q + a2.

Deduce that the corresponding general integrals are derived from

(i) z = 1
3 (x + a)3 + 1

3 (y − a)3 + F(a), 0 = (x + a)2 − (y − a)2 + F ′(a);
(ii) 4z = 1

3 (x + y)3 + 2a2(x − y) − a4(x + y)−1 +G(a), 0 = 4a(x − y) − 4a3(x + y)−1 +G′(a)

and thence obtain a differential equation determining the function G(a) in terms of the
function F(a) when the two general integrals are the same.

18.31 Solutions of Laplace’s equation involving Legendre functions
If an expansion for V , of the form assumed in §18.3, exists when

x0 = y0 = z0 = 0,

we have seen that we can express V as a series of expressions of the type∫ π

−π

(z + ix cos u + iy sin u)n cos mu du,∫ π

−π

(z + ix cos u + iy sin u)n sin mu du,

where n and m are integers such that 0 ≤ m ≤ n. We shall now examine these expressions
more closely.

If we take polar coordinates, defined by the equations

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ,
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we have ∫ π

−π

(z + ix cos u + iy sin u)n cos mu du

= rn
∫ π

−π

{cos θ + i sin θ cos(u − φ)}n cos mu du

= rn
∫ π−φ

−π−φ

{cos θ + i sin θ cosψ}n cos m(φ + ψ) dψ

= rn
∫ π

−π

{cos θ + i sin θ cosψ}n cos m(φ + ψ) dψ

= rn cos mφ
∫ π

−π

{cos θ + i sin θ cosψ}n cos mψ dψ,

since the integrand is a periodic function of ψ and

(cos θ + i sin θ cosψ)n sin mψ

is an odd function ofψ. Therefore (§15.61),with Ferrers’ definition of the associatedLegendre
function, ∫ π

−π

(z + ix cos u + iy sin u)n cos mu du =
2πimn !
(n + m) !

rnPm
n (cos θ) cos mφ.

Similarly ∫ π

−π

(z + ix cos u + iy sin u)n sin mu du =
2πim · n !
(n + m) !

rnPn
m(cos θ) sin mφ.

Therefore rnPm
n (cos θ) cos mφ and rnPm

n (cos θ) sin mφ are polynomials in x, y, z and are
particular solutions of Laplace’s equation. Further, by §18.3, every solution of Laplace’s
equation, which is analytic near the origin, can be expressed in the form

V =
∞∑
n=0

rn
{

AnPn(cos θ) +
n∑

m=1

(A(m)n cos mφ + B(m)n sin mφ)Pm
n (cos θ)

}
.

Any expression of the form

AnPn(cos θ) +
n∑

m=1

(A(m)n cos mφ + B(m)n sin mφ)Pm
n (cos θ),

where n is a positive integer, is called a surface harmonic of degree n; a surface harmonic of
degree n multiplied by rn is called a solid harmonic (or a spherical harmonic) of degree n.

The curves on a unit sphere (with centre at the origin) on which Pn(cos θ) vanishes are
n parallels of latitude which divide the surface of the sphere into zones, and so Pn(cos θ) is
called (see §15.1) a zonal harmonic; and the curves on which

{ cos
sin

}
mφ · Pm

n (cos θ) vanishes
are n − m parallels of latitude and 2m meridians, which divide the surface of the sphere
into quadrangles whose angles are right angles, and so these functions are called tesseral
harmonics.

A solid harmonic of degree n is evidently a homogeneous polynomial of degree n in x, y, z
and it satisfies Laplace’s equation.
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It is evident that, if a change of rectangular coordinates3 is made by rotating the axes
about the origin, a solid harmonic (or a surface harmonic) of degree n transforms into a solid
harmonic (or a surface harmonic) of degree n in the new coordinates.

Spherical harmonics were investigated with the aid of Cartesian coordinates by W. Thom-
son in 1862, see [626] and Thomson and Tait [628, pp. 171–218]; they were also investigated
independently in the same manner at about the same time by Clebsch [149].

Example 18.3.4 If coordinates r, θ, φ are defined by the equations

x = r cos θ, y = (r2 − 1)1/2 sin θ cos φ, z = (r2 − 1)1/2 sin θ sin φ,

shew that Pm
n (r)P

m
n (cos θ) cos mφ satisfies Laplace’s equation.

18.4 The solution of Laplace’s equation which satisfies assigned boundary
conditions at the surface of a sphere

We have seen (§18.31) that any solution of Laplace’s equation which is analytic near the
origin can be expanded in the form

V(r, θ, φ) =
∞∑
n=0

rn
{

AnPn(cos θ) +
n∑

m=1

(A(m)n cos mφ + B(m)n sin mφ)Pm
n (cos θ)

}
;

and, from §3.7, it is evident that if it converges for a given value of r , say a, for all values of θ
and φ such that 0 ≤ θ ≤ π, −π ≤ φ ≤ π, it converges absolutely and uniformly when r < a.

To determine the constants, we must know the boundary conditions which V must satisfy.
A boundary condition of frequent occurrence is thatV is a given bounded integrable function
of θ and φ, say f (θ, φ), on the surface of a given sphere, which we take to have radius a, and
V is analytic at points inside this sphere.

We then have to determine the coefficients An, A
(m)
n , B(m)n from the equation

f (θ, φ) =
∞∑
n=0

an

{
AnPn(cos θ) +

n∑
m=1

(A(m)n cos mφ + B(m)n sin mφ)Pm
n (cos θ)

}
.

Assuming that this series converges uniformly throughout the domain 0 ≤ θ ≤ π,
−π ≤ φ ≤ π, (this is usually the case in physical problems), multiplying by

Pm
n (cos θ)

{ cos
sin

}
mφ,

integrating term-by-term (§4.7) and using the results of §§15.14 and 15.51 on the integral

3 Laplace’s operator
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 is invariant for changes of rectangular axes.
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properties of Legendre functions, we find that∫ π

−π

∫ π

0
f (θ ′, φ′)Pm

n (cos θ ′) cos mφ′ sin θ ′ dθ ′ dφ′ = πan 2
2n + 1

(n + m)!
(n − m)!

A(m)n ,∫ π

−π

∫ π

0
f (θ ′, φ′)Pm

n (cos θ ′) sin mφ′ sin θ ′ dθ ′ dφ′ = πan 2
2n + 1

·
(n + m)!
(n − m)!

B(m)n ,∫ π

−π

∫ π

0
f (θ ′, φ′)Pn(cos θ ′) sin θ ′ dθ ′ dφ′ = 2πan 2

2n + 1
An.

Therefore, when r < a,

V(r, θ, φ) =
∞∑
n=0

2n + 1
4π

( r
a

)n ∫ π

−π

∫ π

0
f (θ ′, φ′)

{
Pn(cos θ)Pn(cos θ ′)

+ 2
n∑

m=1

(n − m)!
(n + m)!

Pn
m(cos θ)Pm

n (cos θ ′) cos m(φ − φ′)

}
sin θ ′ dθ ′ dφ′.

The series which is here integrated term-by-term converges uniformly when r < a, since
the expression under the integral sign is a bounded function of θ, θ ′, φ, φ′, and so (§4.7)

4πV(r, θ, φ) =
∫ π

−π

∫ π

0
f (θ ′, φ′)

∞∑
n=0

(2n + 1)
( r

a

)n {
Pn(cos θ)Pn(cos θ ′)

+ 2
n∑

m=1

(n − m)!
(n + m)!

Pm
n (cos θ)Pm

n (cos θ ′) cos m(φ − φ′)

}
sin θ ′ dθ ′ dφ′.

Now suppose that we take the line (θ, φ) as a new polar axis and let (θ ′1, φ
′
1) be the new

coordinates of the line whose old coordinates were (θ ′, φ′); we consequently have to replace
Pn(cos θ) by 1 and Pm

n (cos θ) by zero; and so we get

4πV(r, θ, φ) =
∫ π

−π

∫ π

0
f (θ ′, φ′)

∞∑
n=0

(2n + 1)
( r

a

)n
Pn(cos θ ′1) sin θ ′1 dθ ′1 dφ′1

=

∫ π

−π

∫ π

0
f (θ ′, φ′)

∞∑
n=0

(2n + 1)
( r

a

)n
Pn(cos θ ′1) sin θ ′ dθ ′ dφ′.

If, in this formula, we make use of the result of Example 15.23 of Chapter 15 we get

4πV(r, θ, φ) =
∫ π

−π

∫ π

0
f (θ ′, φ′)

a(a2 − r2) sin θ ′dθ ′dφ′

(r2 − 2ar cos θ ′1 + a2)
3
2
,

and so

V(r, θ, φ) =
a(a2 − r2)

4π

∫ π

−π

∫ π

0

f (θ ′, φ′) sin θ ′dθ ′ dφ′

[r2 − 2ar{cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′)} + a2]
3
2
.

In this compact formula the Legendre functions have ceased to appear explicitly.
The last formula can be obtained by the theory ofGreen’s functions. For properties of such

functions the reader is referred to Thomson and Tait [628].
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Remark 18.4.1 From the integrals for V(r, θ, φ) involving Legendre functions of cos θ ′1
and of cos θ, cos θ ′ respectively, we can obtain a new proof of the addition theorem for the
Legendre polynomial.

For let

χn(θ
′, φ′) = Pn(cos θ ′1)−

{
Pn(cos θ)Pn(cos θ ′)

+ 2
n∑

m=1

(n − m)!
(n + m)!

Pn
m(cos θ)Pn

m(cos θ ′) cos m(φ − φ′)

}
,

and we get, on comparing the two formulae for V(r, θ, φ),

0 =
∫ π

−π

∫ π

0
f (θ ′, φ′)

∞∑
n=0

(2n + 1)
( r

a

)n
χn(θ

′, φ′) sin θ ′ dθ ′ dφ′.

If we take f (θ ′, φ′) to be a surface harmonic of degree n, the term involving rn is the only
one which occurs in the integrated series; and in particular, if we take f (θ ′, φ′) = χn(θ

′, φ′),

we get ∫ π

−π

∫ π

0
{χn(θ

′, φ′)}2 sin θ ′ dθ ′ dφ′ = 0.

Since the integrand is continuous and is not negative it must be zero; and so χn(θ ′, φ′) ≡ 0;
that is to say we have proved the formula

Pn(cos θ ′1) = Pn(cos θ)Pn(cos θ ′) + 2
n∑

m=1

(n − m)!
(n + m)!

Pm
n (cos θ)Pm

n (cos θ ′) cos m(φ − φ′),

wherein it is obvious that

cos θ ′1 = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′),

from geometrical considerations.
We have thus obtained a physical proof of a theorem proved elsewhere (§15.7) by purely

analytical reasoning. (The absence of the factor (−1)m which occurs in §15.7 is due to the
fact that the functions now employed are Ferrers’ associated functions.)

Example 18.4.1 Find the solution of Laplace’s equation analytic inside the sphere r = 1
which has the value sin 3θ cos φ at the surface of the sphere.
Solution. 8

15r3P1
3 (cos θ) cos φ − 1

5rP1
1 (cos θ) cos φ.

Example 18.4.2 Let fn(r, θ, φ) be equal to a homogeneous polynomial of degree n in x, y, z.
Shew that∫ π

−π

∫ π

0
fn(a, θ, φ)Pn{cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′)}a2 sin θ dθ dφ

=
4πa2

2n + 1
fn(a, θ ′, φ′).

Hint. Take the direction (θ ′, φ′) as a new polar axis.
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18.5 Solutions of Laplace’s equation which involve Bessel coefficients
A particular case of the result of §18.3 is that∫ π

−π

ek(z+ix cosu+iy sinu) cos mu du

is a solution of Laplace’s equation, k being any constant and m being any integer.
Taking cylindrical-polar coordinates (ρ, φ, z) defined by the equations

x = ρ cos φ, y = ρ sin φ,

the above solution becomes

ekz
∫ π

−π

eikρ cos(u−φ) cos mu du = ekz
∫ π

−π

eikρ cos v cos m(v + φ) · dv

= 2ekz
∫ π

0
eikρ cos v cos mv cos mφ dv

= 2ekz cos(mφ)
∫ π

0
eikρ cos v cos mv dv,

and so, using Example 17.1.3 we see that 2πimekz cos(mφ)Jm(kρ) is a solution of Laplace’s
equation analytic near the origin.

Similarly, from the expression∫ π

−π

ek(z+ix cosu+iy sinu) sin mu du,

where m is an integer, we deduce that 2πimekz sin(mφ)Jm(kρ) is a solution of Laplace’s
equation.

18.51 The periods of vibration of a uniform membrane
This is based upon Euler [205], Poisson [533] and Bourget [95]. For a detailed discussion of
vibrations of membranes, see also Rayleigh [550]. The equation satisfied by the displacement
V at time t of a point (x, y) of a uniform plane membrane vibrating harmonically is

∂2V
∂x2 +

∂2V
∂y2 =

1
c2
∂2V
∂t2 ,

where c is a constant depending on the tension and density of the membrane. The equation
can be reduced to Laplace’s equation by the change of variable given by z = cti. It follows,
from §18.5, that expressions of the form

Jm(kρ)
{

sin
cos

}
(mφ)

{
sin
cos

}
(ckt)

satisfy the equation of motion of the membrane.
Take as a particular case a drum, that is to say a membrane with a fixed circular boundary

of radius R. Then one possible type of vibration is given by the equation

V = Jm(kρ) cos mφ cos ckt,
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provided that V = 0 when ρ = R; so that we have to choose k to satisfy the equation

Jm(kR) = 0.

This equation to determine k has an infinite number of real roots (Example 17.3.3),
k1, k2, k3, . . . say. A possible type of vibration is then given by

V = Jm(kr ρ) cos mφ cos ckr t (r = 1,2,3, . . .).

This is a periodic motion with period 2π/(ckr ); and so the calculation of the periods depends
essentially on calculating the zeros of Bessel coefficients (see §17.9).

Example 18.5.1 The equation of motion of air in a circular cylinder vibrating perpendicu-
larly to the axis OZ of the cylinder is

∂2V
∂x2 +

∂2V
∂y2 =

1
c2
∂2V
∂t2 ,

V denoting the velocity potential. If the cylinder have radius R, the boundary condition is

that
∂V
∂ρ
= 0 when ρ = R. Shew that the determination of the free periods depends on finding

the zeros of J ′m(ζ) = 0.

18.6 A general solution of the equation of wave motions
It may be shewn4 by the methods of §18.3 that a general solution of the equation of wave
motions

∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2 =

1
c2
∂2V
∂t2

is

V =
∫ π

−π

∫ π

−π

f (x sin u cos v + y sin u sin v + z cos u + ct,u, v) du dv,

where f is a function (of three variables) of the type considered in §18.3.
Regarding an integral as a limit of a sum, we see that a physical interpretation of this

equation is that the velocity potential V is produced by a number of plane waves, the
disturbance represented by the element

f (x sin u cos v + y sin u sin v + z cos u + ct,u, v) δu δv

being propagated in the direction (sin u cos v, sin u sin v,cos u) with velocity c. The solution
therefore represents an aggregate of plane waves travelling in all directions with velocity c.

18.61 Solutions of the equation of wave motions which involve Bessel functions
We shall now obtain a class of particular solutions of the equation of wave motions, useful
for the solution of certain special problems.

In physical investigations, it is desirable to have the time occurring by means of a factor
4 See the paper previously cited [672, p. 342–345] or [646].
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sin ckt or cos ckt, where k is constant. This suggests that we should consider solutions of
the type

V =
∫ π

−π

∫ π

0
eik(x sinu cos v+y sinu sin v+z cosu+ct) f (u, v) du dv.

Physically this means that we consider motions in which all the elementary waves have
the same period.

Now let the polar coordinates of (x, y, z) be (r, θ, φ) and let (ω,ψ) be the polar coordinates
of the direction (u, v) referred to new axes such that the polar axis is the direction (θ, φ), and
the plane ψ = 0 passes through OZ; so that

cosω = cos θ cos u + sin θ sin u cos(φ − v),
sin u sin(φ − v) = sinω sinψ.

Also, take the arbitrary function f (u, v) to be Sn(u, v) sin u, where Sn denotes a surface
harmonic in u, v of degree n; so that we may write

Sn(u, v) = S̄n(θ, φ;ω,ψ),

where (§18.31) S̄n is a surface harmonic in ω, ψ of degree n. We thus get

V = eikct
∫ π

−π

∫ π

0
eikr cosω S̄n(θ, φ;ω,ψ) sinω dω dψ.

Now we may write (§18.31)

S̄n(θ, φ;ω,ψ) =An(θ, φ)Pn(cosω)

+

n∑
m=1

{
A(m)n (θ, φ) cos mψ + B(m)n (θ, φ) sin mψ

}
Pm
n (cosω),

where An(θ, φ), A
(m)
n (θ, φ) and B(m)n (θ, φ) are independent of ψ and ω.

Performing the integration with respect to ψ, we get

V = 2πeikct An(θ, φ)

∫ π

0
eikr cosωPn(cosω) sinω dω

= 2πeikct An(θ, φ)

∫ 1

−1
eikrµPn(µ) dµ

= 2πeikct An(θ, φ)

∫ 1

−1
eikrµ

1
2nn!

dn

dµn
(µ2 − 1)n dµ,

by Rodrigues’ formula (§15.11); on integrating by parts n times and using Hankel’s integral
(Corollary 17.3.1), we obtain the equation

V =
2π
2nn

eikct An(θ, φ)(ikr)n
∫ 1

−1
eikrµ(1 − µ2)n dµ

= (2π)
3
2 in eikct(kr)−

1
2 Jn+ 1

2
(kr)An(θ, φ),

and so V is a constant multiple of eikctr−
1
2 Jn+ 1

2
(kr)An(θ, φ).

Now the equation of wave motions is unaffected if we multiply x, y, z and t by the same
constant factor, i.e. if we multiply r and t by the same constant factor leaving θ and φ
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unaltered; so that An(θ, φ) may be taken to be independent of the arbitrary constant k which
multiplies r and t.

Hence
lim
k→0

eikctr−
1
2 k−n−

1
2 Jn+ 1

2
(kr)An(θ, φ)

is a solution of the equation of wave motions; and therefore rnAn(θ, φ) is a solution (inde-
pendent of t) of the equation of wave motions, and is consequently a solution of Laplace’s
equation; it is, accordingly, permissible to take An(θ, φ) to be any surface harmonic of degree
n; and so we obtain the result that

r−1/2Jn+ 1
2
(kr)Pm

n (cos θ)
{ cos

sin

}
(mφ)

{ cos
sin

}
(ckt)

is a particular solution of the equation of wave motions.

18.611 Application of §18.61 to a physical problem
The solution just obtained for the equation of wave motions may be used in the following
manner to determine the periods of free vibration of air contained in a rigid sphere.

The velocity potentialV satisfies the equation of wave motions and the boundary condition

is that
∂V
∂r
= 0 when r = a, where a is the radius of the sphere. Hence

V = r−1/2Jn+ 1
2
(kr)Pm

n (cos θ)
{ cos

sin

}
(mφ)

{ cos
sin

}
(ckt)

gives a possible motion if k is so chosen that

d
dr
{r−1/2Jn+ 1

2
(kr)}r=a = 0.

This equation determines k; on using §17.24, we see that it may be written in the form

tan ka = fn(ka),

where fn(ka) is a rational function of ka.
In particular the radial vibrations, in which V is independent of θ and φ, are given by

taking n = 0; then the equation to determine k becomes simply

tan ka = ka;

and the pitches of the fundamental radial vibrations correspond to the roots of this equation.

18.7 Miscellaneous examples
Example 18.1 If V be a solution of Laplace’s equation which is symmetrical with respect
to OZ , and if V = f {z} on OZ , shew that if f (ζ) be a function which is analytic in a domain
of values (which contains the origin) of the complex variable ζ , then

V =
1
π

∫ π

0
f {z + i(x2 + y2)

1
2 cos φ} dφ

at any point of a certain three-dimensional region.
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Deduce that the potential of a uniform circular ring of radius c and of mass M lying in the
plane XOY with its centre at the origin is

M
π

∫ π

0
[c2 + {z + i(x2 + y2)

1
2 cos φ}2]−

1
2 dφ.

Example 18.2 (Dougall) If V be a solution of Laplace’s equation, which is of the form
emiφF(ρ, z), where (ρ, φ, z) are cylindrical coordinates, and if this solution is approximately
equal to ρmemiφ f (z) near the axis of z, where f (ζ) is of the character described in Exam-
ple 18.1, shew that

V =
m ! ρm emiφ

Γ(m + 1
2 )Γ(

1
2 )

∫ π

0
f (z + iρ cos t) sin2m t dt.

Example 18.3 (Forsyth [217]) If u be determined as a function of x, y and z by means of
the equation

Ax + By + Cz = 1,

where A,B,C are functions of u such that

A2 + B2 + C2 = 0,

shew that (subject to certain general conditions) any function of u is a solution of Laplace’s
equation.

Example 18.4 (Sylvester [616]) A,B are two points outside a sphere whose centre is C. A
layer of attracting matter on the surface of the sphere is such that its surface density σP at P
is given by the formula

σP → (AP · BP)−1.

Shew that the total quantity of matter is unaffected by varying A and B so long as CA · CB
and AĈB are unaltered; and prove that this result is equivalent to the theorem that the surface
integral of two harmonics of different degrees taken over the sphere is zero.

Example 18.5 (Appell [32]) Let V(x, y, z) be the potential function defined analytically
as due to particles of masses λ + iµ, λ − iµ at the points (a + ia′, b + ib′, c + ic′) and
(a − ia′, b − ib′, c − ic′) respectively. Shew that V(x, y, z) is infinite at all points of a certain
real circle, and if the point (x, y, z) describes a circuit intertwined once with this circle the
initial and final values of V(x, y, z) are numerically equal, but opposite in sign.

Example 18.6 Find the solution of Laplace’s equation analytic in the region for which
a < r < A, it being given that on the spheres r = a and r = A the solution reduces to

∞∑
n=0

cnPn(cos θ),
∞∑
n=0

CnPn(cos θ),

respectively.

Example 18.7 (Trinity, 1893) Let O′ have coordinates (0,0, c), and let

PÔZ = θ, PÔ′Z = θ ′, PO = r, PO′ = r ′.
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Shew that

Pn(cos θ ′)
r ′n+1 =

{
Pn (cos θ)
rn+1 + (n + 1) cPn+1(cos θ)

rn+2 +
(n+1)(n+2)

2!
c2Pn+2(cos θ)

rn+3 + · · · , if r > c

(−1)n
{

1
cn+1 + (n + 1) rP1(cos θ)

cn+2 +
(n+1)(n+2)

2 !
r2P2(cos θ)

cn+3 + · · ·
}

if r < c.

Obtain a similar expansion for r ′nP′n(cos θ).

Example 18.8 (St John’s, 1899) At a point (r, θ, φ) outside a uniform oblate spheroid whose
semi-axes are a, b and whose density is ρ, shew that the potential is

4πρa2b
[

1
3r
−

m2

3 · 5
P2(cos θ)

r3 +
m4

5 · 7
P4(cos θ)

r5 − · · ·

]
,

where m2 = a2 − b2 and r > m. Obtain the potential at points for which r < m,

Example 18.9 (Bauer [57]) Shew that

eir cos θ =
( 1

2π
) 1

2

∞∑
n=0

in(2n + 1)r−
1
2 Pn(cos θ)Jn+ 1

2
(r).

Example 18.10 (Lamé) Shew that if x±iy = h cos h(ξ±iη), the equation of two-dimensional
wave motions in the coordinates ξ and η is

∂2V
∂ξ2 +

∂2V
∂η2 =

h2

c2 (cosh2 ξ − cos2 η)
∂2V
∂t2 .

Note Examples 18.10, 18.11, 18.12 and 18.14 are most easily proved by using Lamé’s
result, [400], that if (λ, µ, ν) be orthogonal coordinates for which the line-element is given by
the formula

(δx)2 + (δy)2 + (δz)2 = (H1δλ)
2 + (H2δµ)

2 + (H3δν)
2,

Laplace’s equation in these coordinates is

∂

∂λ

(
H2H3

H1

∂V
∂λ

)
+

∂

∂µ

(
H3H1

H2

∂V
∂µ

)
+

∂

∂ν

(
H1H2

H3

∂V
∂ν

)
= 0.

A simple method (due toW. Thomson [625]) of proving this result, by means of arguments
of a physical character, is reproduced by Lamb [398, §111]. Analytical proofs, based on
Lamé’s proof, are given by Bertrand [68, p. 181–187] and Goursat [256, p. 155–159];
and a most compact proof is due to Neville [491]. Another proof is given by Heine [287,
p. 303–306].

Example 18.11 (Niven [503]) Let x = (c+r cos θ) cos φ, y = (c+r cos θ) sin φ, z = r sin θ;
shew that the surfaces for which r , θ, φ respectively are constant form an orthogonal system;
and shew that Laplace’s equation in the coordinates r , θ, φ is

∂

∂r

{
r(c + r cos θ)

∂V
∂r

}
+

1
r
∂

∂θ

{
(c + r cos θ)

∂V
∂θ

}
+

r
c + r cos θ

∂2V
∂φ2 = 0.

Example 18.12 (Hicks [303]) Let P have cartesian coordinates (x, y, z) and polar coordi-
nates (r, θ, φ). Let the plane POZ meet the circle x2 + y2 = k2, z = 0 in the points α, γ; and
let

αP̂γ = ω, log(Pα/Pγ) = σ.



18.7 Miscellaneous examples 423

Shew that Laplace’s equation in the coordinates σ,ω, φ is

∂

∂σ

{
sinhσ

coshσ − cosω
∂V
∂σ

}
+

∂

∂ω

{
sinhσ

coshσ − cosω
∂V
∂ω

}
+

1
sinhσ(coshσ − cosω)

∂2V
∂φ2 = 0;

and shew that a solution is

V = (coshσ − cosω)
1
2 cos nω cos mφPm

n− 1
2
(coshσ).

Example 18.13 Shew that

(R2 + ρ2 − 2Rρ cos φ + c2)−
1
2 =

∞∑
m=0

e−
1
2 mπi

π

∫ ∞

0
dk

∫ π

−π

e−ck Jm(kρ)eikR cos n cos mu du,

and deduce an expression for the potential of a particle in terms of Bessel functions.

Example 18.14 (Lamé) Shew that if a, b, c are constants and λ, µ, ν are confocal coordi-
nates, defined as the roots of the equation in ε

x2

a2 + ε
+

y2

b2 + ε
+

z2

c2 + ε
= 1,

then Laplace’s equation may be written

∆λ(µ − ν)
∂

∂λ

{
∆λ
∂V
∂λ

}
+ ∆µ(ν − λ)

∂

∂µ

{
∆µ

∂V
∂µ

}
+ ∆ν(λ − µ)

∂

∂ν

{
∆ν
∂V
∂ν

}
= 0,

where ∆λ =
√
(a2 + λ)(b2 + λ)(c2 + λ).

Example 18.15 (Bateman [53]) Shew that a general solution of the equation of wave
motions is

V =
∫ π

−π

F(x cos θ + y sin θ + iz, y + iz sin θ + ct cos θ, θ) dθ.

Example 18.16 If U = f (x, y, z, t) be a solution of

1
a2
∂U
∂t
=
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2 ,

prove that another solution of the equation is

U = t−
3
2 f

(
x
t
,
y

t
,

z
t
,−

1
t

)
exp

(
−

x2 + y2 + z2

4a2t

)
.

Example 18.17 (Bateman [53]) Shew that a general solution of the equation of wave
motions, when the motion is independent of φ, is∫ π

−π

f (z + iρ cos θ, ct + ρ sin θ) dθ

+

∫ b

0

∫ π

−π

arcsin h
(

a + z + ct cos θ
ρ sin θ

)
F(a, θ) dθ da,

where ρ, φ, z are cylindrical coordinates and a, b are arbitrary constants.
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Example 18.18 (Bateman [54]) If V = f (x, y, z) is a solution of Laplace’s equation, shew
that

V =
1

(x − iy)
1
2

f
(

r2 − a2

2(x − iy)
,

r2 + a2

2i(x − iy)
,

az
x − iy

)
is another solution.

Example 18.19 (Bateman [54]) If U = f (x, y, z, t) is a solution of the equation of wave
motions, shew that another solution is

U =
1

z − ct
f
(

x
z − ct

,
y

z − ct
,

r2 − 1
2(z − ct)

,
r2 + 1

2c(z − ct)

)
.

Example 18.20 (Bateman [54]) If l = x − iy, m = z + iω, n = x2 + y2 + z2 + ω2 and
λ = x + iy, µ = z − iω, ν = −1, so that lλ + mµ + nν = 0, shew that any homogeneous
solution, of degree zero, of

∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2 +

∂2U
∂ω2 = 0

satisfies
∂2U
∂l∂λ

+
∂2U
∂m∂µ

+
∂2U
∂n∂ν

= 0;

and obtain a solution of this equation in the form

l−αλ−α
′

m−βµ−β
′

n−γν−γ
′

P


a, b, c
α, β, γ, ζ

α′, β′, γ ′

 ,
where lλ = (b − c)(ζ − a), mµ = (c − a)(ζ − b), nν = (a − b)(ζ − c).

Example 18.21 (Blades [75]) Note. The functions introduced in this example and the next
are known as internal and external spheroidal harmonics respectively.

If (r, θ, φ) are spheroidal coordinates, defined by the equations

x = c(r2 + 1)
1
2 sin θ cos φ, y = c(r2 + 1)

1
2 sin θ sin φ, z = cr cos θ,

where x, y, z are rectangular coordinates and c is a constant, shew that, when n and m are
integers, ∫ π

−π

Pn

(
x cos t + y sin t + iz

c

) { cos
sin

}
(mt) dt

= 2π
(n − m)!
(n + m)!

Pm
n (ir)P

m
n (cos θ)

{ cos
sin

}
(mφ).

Example 18.22 (Jeffery [358]) With the notation of Example 18.21, shew that, if z , 0,∫ π

−π

Qn

(
x cos t + y sin t + iz

c

) { cos
sin

}
(mt) dt = 2π

(n − m)!
(n + m)!

Qm
n (ir)P

m
n (cos θ)

{ cos
sin

}
(mφ).
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Example 18.23 (Donkin [186]; Hobson [322]) Prove that the most general solution of
Laplace’s equation which is of degree zero in x, y, z is expressible in the form

V = f
(

x + iy
r + z

)
+ F

(
x − iy
r + z

)
,

where f and F are arbitrary functions.
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Mathieu Functions

19.1 The differential equation of Mathieu
The preceding five chapters have been occupied with the discussion of functions which
belong to what may be generally described as the hypergeometric type, and many simple
properties of these functions are now well known.

In the present chapter we enter upon a region of Analysis which lies beyond this, and
which is, as yet, only very imperfectly explored.

The functions which occur in Mathematical Physics and which come next in order of com-
plication to functions of hypergeometric type are called Mathieu functions; these functions
are also known as the functions associated with the elliptic cylinder. They arise from the
equation of two-dimensional wave motion, namely

∂2 V
∂x2 +

∂2 V
∂y2 =

1
c2

∂2 V
∂t2 .

This partial differential equation occurs in the theory of the propagation of electromagnetic
waves; if the electric vector in the wave-front is parallel to OZ and if E denotes the electric
force, while (Hx, Hy, 0) are the components of magnetic force, Maxwell’s fundamental
equations are

1
c2

∂E
∂t
=
∂Hy

∂x
−
∂Hx

∂y
,

∂Hx

∂t
= −

∂E
∂y

,
∂Hy

∂t
=
∂E
∂x

,

c denoting the velocity of light; and these equations give at once

1
c2

∂2E
∂t2 =

∂2E
∂x2 +

∂2E
∂y2 .

In the case of the scattering of waves, propagated parallel to OX , incident on an elliptic
cylinder for which OX and OY are axes of a principal section, the boundary condition is that
E should vanish at the surface of the cylinder.

The same partial differential equation occurs in connexion with the vibrations of a uni-
form plane membrane, the dependent variable being the displacement perpendicular to the
membrane; if the membrane be in the shape of an ellipse with a rigid boundary, the boundary
condition is the same as in the electromagnetic problem just discussed.

The differential equation was discussed by Mathieu [457, p. 137] in 1868 in connexion
with the problem of vibrations of an elliptic membrane in the following manner: Suppose
that the membrane, which is in the plane XOY when it is in equilibrium, is vibrating with

426
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frequency p. Then, if we write

V = u(x, y) cos(pt + ε),

the equation becomes
∂2u
∂x2 +

∂2u
∂y2 +

p2

c2 u = 0.

Let the foci of the elliptic membrane be (±h,0,0), and introduce new real variables. (The
introduction of these variables is due to Lamé, who called ξ the thermometric parameter.
They are more usually known as confocal coordinates. See Lamé [404, 1ere Leçon].) Let ξ,
η, defined by the complex equation

x + iy = h cosh(ξ + iη),

so that x = h cosh ξ cos η, y = h sinh ξ sin η. The curves, on which ξ or η is constant, are
evidently ellipses or hyperbolas confocalwith the boundary; if we take ξ ≥ 0 and−π < η ≤ π,
to each point (x, y,0) of the plane corresponds one and only one1 value of (ξ, η).

The differential equation for u transforms into2

∂2u
∂ξ2 +

∂2u
∂η2 +

h2p2

c2 (cosh2 ξ − cos2 η) u = 0.

If we assume a solution of this equation of the form

u = F(ξ)G(η),

where the factors are functions of ξ only and of η only respectively, we see that{
1

F(ξ)
d2F(ξ)

dξ2 +
h2p2

c2 cosh2 ξ

}
= −

{
1

G(η)
d2G(η)

dη2 −
h2p2

c2 cos2 η

}
.

Since the left-hand side contains ξ but not η, while the right-hand side contains η but
not ξ, F(ξ) and G(η) must be such that each side is a constant, A, say, since ξ and η are
independent variables. We thus arrive at the equations

d2F(ξ)
dξ2 +

(
h2p2

c2 cosh2 ξ − A
)

F(ξ) = 0,
d2G(η)

dη2 −

(
h2p2

c2 cos2 η − A
)

G(η) = 0.

By a slight change of independent variable in the former equation, we see that both of
these equations are linear differential equations, of the second order, of the form

d2u
dz2 + (a + 16q cos 2z)u = 0,

where a and q are constants. (Their actual values are a = A − h2p2/(2c2), q = h2p2/(32c2);
the factor 16 is inserted to avoid powers of 2 in the solution.) It is obvious that every point
(infinity excepted) is a regular point of this equation.

This is the equation which is known as Mathieu’s equation and, in certain circumstances
(§19.2), particular solutions of it are calledMathieu functions.

1 This may be seen most easily by considering the ellipses obtained by giving ξ various positive values. If the
ellipse be drawn through a definite point (ξ, η) of the plane, η is the eccentric angle of that point on the ellipse.

2 A proof of this result, due to Lamé, is given in numerous textbooks; see the Note to Example 18.10,
Chapter 18.
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19.11 The form of the solution of Mathieu’s equation
In the physical problems which suggested Mathieu’s equation, the constant a is not given
a priori, and we have to consider how it is to be determined. It is obvious from physical
considerations in the problem of the membrane that u(x, y) is a one-valued function of
position, and is consequently unaltered by increasing η by 2π; and the condition3 G(η+2π) =
G(η) is sufficient to determine a set of values of a in terms of q. And it will appear later
(§§19.4, sub:19.41) that, when a has not one of these values, the equation

G(η + 2π) = G(η)

is no longer true.
When a is thus determined, q (and thence p) is determined by the fact that F(ξ) = 0 on

the boundary; and so the periods of the free vibrations of the membrane are obtained.
Other problems ofMathematical Physics which involveMathieu functions in their solution

are

(i) Tidal waves in a cylindrical vessel with an elliptic boundary,
(ii) Certain forms of steady vortex motion in an elliptic cylinder,
(iii) The decay of magnetic force in a metal cylinder (Maclaurin [450]).

The equation also occurs in a problem of Rigid Dynamics which is of general interest (Young
[685]).

19.12 Hill’s equation
A differential equation, similar to Mathieu’s but of a more general nature, arises in Hill’s
[306] method of determining the motion of the Lunar Perigee4 , and in Adams’ determination
of the motion of the Lunar Node [8]. Hill’s equation is

d2u
dz2 +

(
θ0 + 2

∞∑
n=1

θn cos 2nz

)
u = 0.

The theory of Hill’s equation is very similar to that of Mathieu’s (in spite of the increase in
generality due to the presence of the infinite series), so the two equations will, to some extent,
be considered together. In the astronomical applications θ0, θ1, . . . are known constants, so
the problem of choosing them in such a way that the solution may be periodic does not arise.
The solution of Hill’s equation in the Lunar Theory is, in fact, not periodic.

19.2 Periodic solutions of Mathieu’s equation
We have seen that in physical (as distinguished from astronomical) problems the constant a
in Mathieu’s equation has to be chosen to be such a function of q that the equation possesses
a periodic solution.

Let this solution be G(z); then G(z), in addition to being periodic, is an integral function
of z. Three possibilities arise as to the nature of G(z):

3 An elementary analogue of this result is that a solution of d2u
dz2 + au = 0 has period 2π if, and only if, a is the

square of an integer.
4 Hill’s memoir was originally published in 1877 at Cambridge, U.S.A.
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(i) G(z) may be an even function of z;
(ii) G(z) may be an odd function of z;
(iii) G(z) may be neither even nor odd.

In case (iii), 1
2 {G (z) + G (−z)} is an even periodic solution and 1

2 {G (z) − G (−z)} is an
odd periodic solution of Mathieu’s equation, these two solutions forming a fundamental
system. It is therefore sufficient to confine our attention to periodic solutions of Mathieu’s
equation which are either even or odd. These solutions, and these only, will be calledMathieu
functions.

It will be observed that, since the roots of the indicial equation at z = 0 are 0 and 1,
two even (or two odd) periodic solutions of Mathieu’s equation cannot form a fundamental
system. But, so far, there seems to be no reason why Mathieu’s equation, for special values
of a and q, should not have one even and one odd periodic solution; for comparatively small
values of |q | it can be seen [Example 19.3.3, (ii) and (iii)] that Mathieu’s equation has two
periodic solutions only in the trivial case in which q = 0; the result that there are never pairs
of periodic solutions for larger values of |q | is a special case of a theorem due to Hille [309].
See also Ince [335].

19.21 An integral equation satisfied by even Mathieu functions
It will now be shewn that, if G(η) is any even Mathieu function, then G(η) satisfies the
homogeneous integral equation

G(η) = λ
∫ π

−π

ek cosη cos θG(θ) dθ,

where k =
√

32q. This result is suggested by the solution of Laplace’s equation given in
§18.3. This integral equation and the expansions of §19.3 were published byWhittaker [673]
in 1912. The integral equation was known to him as early as 1904 [55, p. 193].

For, if x+iy = h cosh(ξ+iη) and if F(ξ) andG(η) are solutions of the differential equations

d2F(ξ)
dξ2 − (A + m2h2 cosh2 ξ)F(ξ) = 0,

d2G(η)
dη2 + (A + m2h2 cos2 η)G(η) = 0,

then, by §19.1, F(ξ)G(η)emiz is a particular solution of Laplace’s equation. If this solution
is a special case of the general solution∫ π

−π

f (h cosh ξ cos η cos θ + h sinh ξ sin η sin θ + iz, θ) dθ,

given in §18.3, it is natural to expect that

f (υ, θ) ≡ F(0)emυφ(θ),

where φ(θ) is a function of θ to be determined. The constant F(0) is inserted to simplify the
algebra. Thus

F(ξ)G(η)emiz =

∫ π

−π

F(0)φ(θ) exp {mh cosh ξ cos η cos θ + mh sinh ξ sin η sin θ + miz} dθ.
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Since ξ and η are independent, we may put ξ = 0; and we are thus led to consider the
possibility of Mathieu’s equation possessing a solution of the form

G(η) =
∫ π

−π

emh cosη cos θφ(θ) dθ.

19.22 Proof that the even Mathieu functions satisfy the integral equation
It is readily verified (§5.31) that, if φ(θ) be analytic in the range (−π, π) and if G(η) be defined
by the equation

G(η) =
∫ π

−π

emh cosη cos θφ(θ) dθ,

then G(η) is an even periodic integral function of η and

d2G(η)
dη2 + (A + m2h2 cos2 η)G(η)

=

∫ π

−π

{
m2h2(sin2 η cos2 θ + cos2 η) − mh cos η cos θ + A

}
emh cosη cos θφ(θ) dθ

= −
[
{mh sin θ cos η φ(θ) + φ′(θ)} emh cosη cos θ ]π

−π

+

∫ π

−π

{
φ′′(θ) + (A + m2h2 cos2 θ)φ(θ)

}
emh cosη cos θ dθ,

on integrating by parts.
But if φ(θ) be a periodic function (with period 2π) such that

φ′′(θ) + (A + m2h2 cos2 θ)φ(θ) = 0,

both the integral and the integrated part vanish; that is to say, G(η), defined by the integral,
is a periodic solution of Mathieu’s equation.

Consequently G(η) is an even periodic solution of Mathieu’s equation if φ(θ) is a periodic
solution of Mathieu’s equation formed with the same constants; and therefore φ(θ) is a
constant multiple of G(θ); let it be λG(θ). In the case when the Mathieu equation has two
periodic solutions, if this case exist, we have φ(θ) = λG(θ) + G1(θ) where G1(θ) is an odd
periodic function; but ∫ π

−π

emh cosη cos θG1(θ) dθ

vanishes, so the subsequent work is unaffected.
If we take a and q as the parameters of the Mathieu equation instead of A and mh, it is

obvious that mh =
√

32q = k. We have thus proved that, if G(η) be an even periodic solution
of Mathieu’s equation, then

G(η) = λ
∫ π

−π

ek cosη cos θG(θ) dθ,

which is the result stated in §19.21.
From §11.23, it is known that this integral equation has a solution only when λ has one

of the ‘characteristic values’. It will be shewn in §19.3 that for such values of λ, the integral
equation affords a simple means of constructing the even Mathieu functions.
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Example 19.2.1 Shew that the odd Mathieu functions satisfy the integral equation

G(η) = λ
∫ π

−π

sin(k sin η sin θ)G(θ) dθ.

Example 19.2.2 Shew that both the even and the odd Mathieu functions satisfy the integral
equation

G(η) = λ
∫ π

−π

eik sinη sin θG(θ) dθ.

Example 19.2.3 Shew that when the eccentricity of the fundamental ellipse tends to zero,
the confluent form of the integral equation for the even Mathieu functions is

Jn(x) =
1

2πin

∫ π

−π

eix cos θ cos nθ dθ.

19.3 The construction of Mathieu functions
We shall now make use of the integral equation of §19.21 to construct Mathieu functions;
the canonical form of Mathieu’s equation will be taken as

d2u
dz2 + (a + 16q cos 2z)u = 0.

In the special case when q is zero, the periodic solutions are obtained by taking a = n2,
where n is any integer; the solutions are then

1, cos z, cos 2z, . . . , sin z, sin 2z, . . . .

The Mathieu functions, which reduce to these when q→ 0, will be called

ce0(z,q), ce1(z,q), ce2(z,q), . . . , se1(z,q), se2(z,q), . . . .

Tomake the functions precise, we take the coefficients of cos nz and sin nz in the respective
Fourier series for cen(z,q) and sen(z,q) to be unity. The functions cen(z,q), sen(z,q) will be
called Mathieu functions of order n.

Let us now construct ce0(z,q). Since ce0(z,0) = 1, we see that λ → (2π)−1 as q → 0.
Accordingly we suppose that, for general values of q, the characteristic value of λ which
gives rise to ce0(z,q) can be expanded in the form

(2πλ)−1 = 1 + α1q + α2q2 + · · · ,

and that ce0(z,q) = 1+ qβ1(z)+ q2β2(z)+ · · · ,where α1, α2, . . . are numerical constants and
β1(z), β2(z), . . . are periodic functions of z which are independent of q and which contain no
constant term.

On substituting in the integral equation, we find that

(1 + α1q + α2q2 + · · · )
(
1 + qβ1(z) + q2β2(z) + · · ·

)
=

1
2π

∫ π

−π

(
1 +

√
32q cos z cos θ + 16q cos2 z cos2 θ + · · ·

)
×

(
1 + qβ1(θ) + q2β2(θ) + · · ·

)
dθ.
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Equating coefficients of successive powers of q in this result and making use of the fact that
β1(z), β2(z), . . . contain no constant term, we find in succession

α1 = 4, β1(z) = 4 cos 2z,

α2 = 14, β2(z) = 2 cos 4z,
...

...

and we thus obtain the following expansion:

ce0(z,q) =1 +
(
4q − 28q3 + 27 ·29

9 q5 − · · ·

)
cos 2z +

(
2q2 − 160

9 q4 + · · ·
)

cos 4z

+
( 4

9 q3 − 13
3 q5 + · · ·

)
cos 6z +

( 1
18 q4 − · · ·

)
cos 8z +

( 1
225 q5 − · · ·

)
cos 10z + · · · ,

the terms not written down being O(q6) as q→ 0.
The value of a is

−32q2 + 224q4 −
210 · 29

9
q6 +O(q8);

it will be observed that the coefficient of cos 2z in the series for ce0(z,q) is −a/(8q).
The Mathieu functions of higher order may be obtained in a similar manner from the same

integral equation and from the integral equation of Example 19.2.1. The consideration of the
convergence of the series thus obtained is postponed to §19.61.

Example 19.3.1 (Whittaker) Obtain the following expansions:

(i) ce0(z,q) = 1 +
∞∑
r=1

{
2r+1qr

r! r!
−

2r+3r(3r + 4)qr+2

(r + 1)!(r + 1)!
+O(qr+4)

}
cos 2rz;

(ii)

ce1(z,q) = cos z+
∞∑
r=1

{
2rqr

(r + 1)!r!
−

2r+1rqr+1

(r + 1)!(r + 1)!

+
2rqr+2

(r − 1)!(r + 2)!
+O(qr+3)

}
cos(2r + 1)z;

(iii)

se1(z,q) = sin z+
∞∑
r=1

{
2rqr

(r + 1)! r !
+

2r+1rqr+1

(r + 1)!(r + 1)!

+
2rqr+2

(r − 1) ! (r + 2) !
+O(qr+3)

}
sin(2r + 1)z,

(iv)

ce2(z,q) =
{
−2q +

40
3

q3 +O(q5)

}
+ cos 2z

+

∞∑
r=1

{
2r+1qr

r ! (r + 2) !
+

2r+1r(47r2 + 222r + 247) qr+2

32 · (r + 2)!(r + 3)!
+O(qr+4)

}
cos(2r + 2)z,
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where, in each case, the constant implied in the symbol O depends on r but not on z. The
leading terms of these series, as given in Example 19.4 at the end of the chapter, were
obtained by Mathieu.

Example 19.3.2 (Mathieu) Shew that the values of a associated with (i) ce0(z,q), (ii)
ce1(z,q), (iii) se1(z,q), (iv) ce2(z,q) are respectively:

(i) − 32q2 + 224q4 − 210 ·29
9 q6 +O(q8);

(ii) 1 − 8q − 8q2 + 8q3 − 8
3 q4 +O(q5);

(iii) 1 + 8q − 8q2 − 8q3 − 8
3 q4 +O(q5);

(iv) 4 + 80
3 q2 − 6104

27 q4 +O(q6).

Example 19.3.3 Shew that, if n be an integer,

ce2n+1(z,q) = (−1)n se2n+1(z + 1
2π,−q).

19.31 The integral formulae for the Mathieu functions
Since all the Mathieu functions satisfy a homogeneous integral equation with a symmetrical
nucleus (Example 19.2.3), it follows (§11.61) that∫ π

−π

cem(z,q) cen(z,q) dz = 0 (m , n),∫ π

−π

sem(z,q) sen(z,q) dz = 0 (m , n),∫ π

−π

cem(z,q) sen(z,q) dz = 0.

Example 19.3.4 Obtain expansions of the form:

exp(k cos z cos θ) =
∞∑
n=0

An cen(z,q) cen(θ,q),

cos(k sin z sin θ) =
∞∑
n=0

Bn cen(z,q) cen(θ,q),

sin(k sin z sin θ) =
∞∑
n=0

Cn sen(z,q) sen(θ,q),

where k =
√

32q.

Example 19.3.5 Obtain the expansion

eiz sinφ =

∞∑
n=−∞

Jn(z)eniφ

as a confluent form of the last two expansions of Example 19.3.4.
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19.4 The nature of the solution of Mathieu’s general equation; Floquet’s theory
We shall now discuss the nature of the solution of Mathieu’s equation when the parameter
a is no longer restricted so as to give rise to periodic solutions; this is the case which is of
importance in astronomical problems, as distinguished from other physical applications of
the theory.

The method is applicable to any linear equation with periodic coefficients which are
one-valued functions of the independent variable; the nature of the general solution of
particular equations of this type has long been perceived by astronomers, by inference from
the circumstances in which the equations arise. These inferences have been confirmed by
the following analytical investigation which was published in 1883 by Floquet [211, p. 47].
Floquet’s analysis is a natural sequel to Picard’s theory of differential equations with doubly-
periodic coefficients (§20.1), and to the theory of the fundamental equation due to Fuchs and
Hamburger.

Let g(z), h(z) be a fundamental system of solutions of Mathieu’s equation (or, indeed,
of any linear equation in which the coefficients have period 2π); then, if F(z) be any other
integral of such an equation, we must have

F(z) = Ag(z) + Bh(z),

where A and B are definite constants.
Since g(z + 2π), h(z + 2π) are obviously solutions of the equation5 , they can be expressed

in terms of the continuations of g(z) and h(z) by equations of the type

g(z + 2π) = α1g(z) + α2h(z), h(z + 2π) = β1g(z) + β2h(z),

where α1, α2, β1, β2 are definite constants; and then

F(z + 2π) = (Aα1 + Bβ1)g(z) + (Aα2 + Bβ2)h(z).

Consequently F(z + 2π) = kF(z), where k is a constant6 , if A and B are chosen so that

Aα1 + Bβ1 = k A, Aα2 + Bβ2 = kB.

These equations will have a solution, other than A = B = 0, if, and only if,���� α1 − k β1

α2 β2 − k

���� = 0;

and if k be taken to be either root of this equation, the function F(z) can be constructed so
as to be a solution of the differential equation such that

F(z + 2π) = kF(z).

Defining µ by the equation k = e2πµ and writing φ(z) for e−µzF(z), we see that

φ(z + 2π) = e−µ(z+2π)F(z + 2π) = φ(z).
5 These solutions may not be identical with g(z), h(z) respectively, as the solution of an equation with periodic
coefficients is not necessarily periodic. To take a simple case, u = ez sin z is a solution of
du
dz
− (1 + cot z)u = 0.

6 The symbol k is used in this particular sense only in this section. It must not be confused with the constant k
of §19.21, which was associated with the parameter q of Mathieu’s equation.
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Hence the differential equation has a particular solution of the form eµzφ(z), where φ(z) is
a periodic function with period 2π.

We have seen that in physical problems, the parameters involved in the differential equation
have to be so chosen that k = 1 is a root of the quadratic, and a solution is periodic. In general,
however, in astronomical problems, in which the parameters are given, k , 1 and there is no
periodic solution.

In the particular case of Mathieu’s general equation or Hill’s equation, a fundamental
system of solutions7 is then eµzφ(z), e−µzφ(−z), since the equation is unaltered by writing
−z for z; so that the complete solution of Mathieu’s general equation is then

u = c1eµzφ(z) + c2e−µzφ(−z),

where c1, c2 are arbitrary constants, and µ is a definite function of a and q.

Example 19.4.1 Shew that the roots of the equation���� α1 − k β1

α2 β2 − k

���� = 0,

are independent of the particular pair of chosen solutions, g(z) and h(z).

19.41 Hill’s method of solution
Now that the general functional character of the solution of equations with periodic coef-
ficients has been found by Floquet’s theory, it might be expected that the determination of
an explicit expression for the solutions of Mathieu’s and Hill’s equations would be a com-
paratively easy matter; this however is not the case. For example, in the particular case of
Mathieu’s general equation, a solution has to be obtained in the form

y = eµzφ(z),

where φ(z) is periodic and µ is a function of the parameters a and q. The crux of the problem
is to determine µ; when this is done, the determination of φ(z) presents comparatively little
difficulty.

The first successful method of attacking the problem was published by Hill in the memoir
cited in §19.12; since the method for Hill’s equation is no more difficult than for the special
case of Mathieu’s general equation, we shall discuss the case of Hill’s equation, viz.

d2u
dz2 + J(z)u = 0,

where J(z) is an even function of z with period π. Two cases are of interest, the analysis
being the same in each:

(I) The astronomical case when z is real and, for real values of z, J(z) can be expanded in
the form

J(z) = θ0 + 2θ1 cos 2z + 2θ2 cos 4z + 2θ3 cos 6z + · · · ;

the coefficients θn are known constants and
∞∑
n=0

θn converges absolutely.

7 The ratio of these solutions is not even periodic; still less is it a constant.
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(II) The case when z is a complex variable and J(z) is analytic in a strip of the plane
(containing the real axis), whose sides are parallel to the real axis. The expansion of J(z)

in the Fourier series θ0 + 2
∞∑
n=1

θn cos 2nz is then valid (§9.11) throughout the interior of

the strip, and, as before,
∞∑
n=0

θn converges absolutely.

Defining θ−n to be equal to θn, we assume

u = eµz
∞∑

n=−∞

bne2niz

as a solution of Hill’s equation.

Note In case (II) this is the solution analytic in the strip (§§10.2, 19.4); in case (I) it will
have to be shewn ultimately (see the note at the end of §19.42) that the values of bn which
will be determined are such as to make

∞∑
n=−∞

n2bn absolutely convergent, in order to justify

the processes which we shall now carry out.

On substitution in the equation, we find

∞∑
n=−∞

(µ + 2ni)2 bne(µ+2ni)z +

(
∞∑

n=−∞

θn e2niz

) (
∞∑

n=−∞

bn e(µ+2ni)z

)
= 0.

Multiplying out the absolutely convergent series and equating coefficients of powers of
e2iz to zero (§9.6, §9.632), we obtain the system of equations

(µ + 2ni)2 bn +

∞∑
n=−∞

θm bn−m = 0 (n = . . . ,−2,−1,0,1,2, . . .).

If we eliminate the coefficients bn determinantally (after dividing the typical equation by
θ0 − 4n2 to secure convergence) we obtain8 Hill’s determinantal equation:������������������

...
...

...
...

...
...

...
...

...

· · ·
(iµ+4)2−θ0

42−θ0

−θ1
42−θ0

−θ2
42−θ0

−θ3
42−θ0

−θ4
42−θ0

· · ·

· · ·
−θ1

22−θ0

(iµ+2)2−θ0
22−θ0

−θ1
22−θ0

−θ2
22−θ0

−θ3
22−θ0

· · ·

· · ·
−θ2

02−θ0

−θ1
02−θ0

(iµ)2−θ0
02−θ0

−θ1
02−θ0

−θ2
02−θ0

· · ·

· · ·
−θ3

22−θ0

−θ2
22−θ0

−θ1
22−θ0

(iµ−2)2−θ0
22−θ0

−θ1
22−θ0

· · ·

· · ·
−θ4

42−θ0

−θ3
42−θ0

−θ2
42−θ0

−θ1
42−θ0

(iµ−4)2−θ0
42−θ0

· · ·

...
...

...
...

...
...

...
...

...

������������������
= 0.

We write ∆(iµ) for the determinant, so the equation determining µ is

∆(iµ) = 0.
8 Since the coefficients bn are not all zero, we may obtain the infinite determinant as the eliminant of the system
of linear equations by multiplying these equations by suitably chosen cofactors and adding up.
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19.42 The evaluation of Hill’s determinant
We shall now obtain an extremely simple expression for Hill’s determinant, namely

∆(iµ) ≡ ∆(0) − sin2
(
πiµ
2

)
cosec2

( π
2
√
θ0

)
.

Adopting the notation of §2.8, we write

∆(iµ) ≡ [Am,n],

where

Am,n =
(iµ − 2m)2 − θ0

4m2 − θ0
, Am,n =

−θm−n
4m2 − θ0

(m , n).

The determinant [Am,n] is only conditionally convergent, since the product of the principal
diagonal elements does not converge absolutely (§§2.81, 2.7). We can, however, obtain an
absolutely convergent determinant, ∆1(iµ), by dividing the linear equations of §19.41 by
θ0 − (iµ− 2n)2 instead of dividing by θ0 − 4n2. We write this determinant ∆1(iµ) in the form
[Bm,n], where

Bm,m = 1, Bm,n =
−θm−n

(2m − iµ)2 − θ0
(m , n).

The absolute convergence of
∞∑
n=0

θn secures the convergence of the determinant [Bm,n],

except when µ has such a value that the denominator of one of the expressions Bm,n vanishes.
From the definition of an infinite determinant (§2.8) it follows that

∆(iµ) = ∆1(iµ) lim
p→∞

p∏
n=−p

{
θ0 − (iµ − 2n)2

θ0 − 4n2

}
,

and so

∆(iµ) = −∆1(iµ)
sin π

2 (iµ −
√
θ0) sin π

2 (iµ +
√
θ0)

sin2( π2

√
θ0)

.

Now, if the determinant ∆1(iµ) be written out in full, it is easy to see: (i) that ∆1(iµ) is an
even periodic function of µwith period 2i; (ii) that ∆1(iµ) is an analytic function (cf. §§2.81,
3.34, 5.3) of µ (except at its obvious simple poles), which tends to unity as the real part of µ
tends to ±∞.

If now we choose the constant K so that the function D(µ), defined by the equation

D(µ) ≡ ∆1(iµ) − K
{
cot π2 (iµ +

√
θ0) − cot π2 (iµ −

√
θ0)

}
,

has no pole at the point µ = i
√
θ0, then, since D(µ) is an even periodic function of µ, it

follows that D(µ) has no pole at any of the points

2ni ± i
√
θ0,

where n is any integer.
The function D(µ) is therefore a periodic function of µ (with period 2i) which has no poles,

and which is obviously bounded as Re (µ) → ±∞. The conditions postulated in Liouville’s
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theorem (§5.63) are satisfied, and so D(µ) is a constant; making µ → +∞, we see that this
constant is unity.

Therefore
∆1(iµ) = 1 + K

{
cot π2 (iµ +

√
θ0) − cot π2 (iµ −

√
θ0)

}
,

and so

∆(iµ) = −
sin π

2 (iµ −
√
θ0) sin π

2 (iµ −
√
θ0)

sin2( π2

√
θ0)

+ 2K cot( π2
√
θ0).

To determine K , put µ = 0; then

∆(0) = 1 + 2K cot( π2
√
θ0).

Hence, on subtraction,

∆(iµ) = ∆(0) −
sin2( π2 iµ)

sin2( π2

√
θ0)

,

which is the result stated.
The roots of Hill’s determinantal equation are therefore the roots of the equation

sin2
( π

2
iµ

)
= ∆(0) sin2

( π
2
√
θ0

)
.

When µ has thus been determined, the coefficients bn can be determined in terms of b0

and cofactors of ∆(iµ); and the solution of Hill’s differential equation is complete.

Note In case (I) of §19.41, the convergence of
∑
|bn | follows from the rearrangement

theorem of §2.82; for
∑

n2 |bn | is equal to |b0 |
∞∑

m=−∞
|Cm,0 | ÷ |C0,0 |,where Cm,n is the cofactor

of Bm,n in ∆(iµ); and
∑
|Cm,0 | is the determinant obtained by replacing the elements of the

row through the origin by numbers whose moduli are bounded.
It was shewn by Hill that, for the purposes of his astronomical problem, a remarkably good

approximation to the value of µ could be obtained by considering only the three central rows
and columns of his determinant.

19.5 The Lindemann–Stieltjes theory of Mathieu’s general equation
Up to the present, Mathieu’s equation has been treated as a linear differential equation
with periodic coefficients. Some extremely interesting properties of the equation have been
obtained by Lindemann [437] by the substitution ζ = cos2 z, which transforms the equation
into an equation with rational coefficients, namely

4ζ(1 − ζ)
d2u
dζ2 + 2(1 − 2ζ)

du
dζ
+ (a − 16q + 32qζ)u = 0.

Note This equation, though it somewhat resembles the hypergeometric equation, is of higher
type than the equations dealt with in Chapters 14 and 16, inasmuch as it has two regular
singularities at 0 and 1 and an irregular singularity at ∞; whereas the three singularities of
the hypergeometric equation are all regular, while the equation for Wk ,m(z) has one irregular
singularity and only one regular singularity.
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We shall now give a short account of Lindemann’s analysis, with some modifications due
to Stieltjes [603]. The analysis is very similar to that employed by Hermite in his lectures at
the École Polytechnique in 1872–1873 [297, p. 118–122] in connexion with Lamé’s equation.
See §23.7.

19.51 Lindemann’s form of Floquet’s theorem
Since Mathieu’s equation (in Lindemann’s form) has singularities at ζ = 0 and ζ = 1, the
exponents at each being 0, 1

2 , there exist solutions of the form

y00 =
∞∑
n=0

anζ
n, y01 = ζ

1/2
∞∑
n=0

bnζ
n,

y10 =
∞∑
n=0

a′n(1 − ζ)n, y11 = (1 − ζ)1/2
∞∑
n=0

b′n(1 − ζ)
n;

the first two series converge when |ζ | < 1, the last two when |1 − ζ | < 1.
When the ζ-plane is cut along the real axis from 1 to +∞ and from 0 to −∞, the four

functions defined by these series are one-valued in the cut plane; and so relations of the form

y10 = αy00 + βy01, y11 = γy00 + δy01

will exist throughout the cut plane.
Now suppose that ζ describes a closed circuit round the origin, so that the circuit crosses

the cut from−∞ to 0; the analytic continuation of y10 is αy00− βy01 (since y00 is unaffected by
the description of the circuit, but y01 changes sign) and the continuation of y11 is γy00 − δy01;
and so Ay2

10 + By2
11 will be unaffected by the description of the circuit if

A(αy00 + βy01)
2 + B(γy00 + δy01)

2 ≡ A(αy00 − βy01)
2 + B(γy00 − δy01)

2;

i.e., if Aαβ + Bγδ = 0. Also Ay2
10 + By2

11 obviously has not a branch-point at ζ = 1, and
so, if Aαβ + Bγδ = 0, this function has no branch-points at 0 or 1, and, as it has no other
possible singularities in the finite part of the plane, it must be an integral function of ζ .

The two expressions

A1/2 y10 + i B1/2 y11, A1/2 y10 − i B1/2 y11

are consequently two solutions of Mathieu’s equation whose product is an integral function
of ζ . This amounts to the fact (§19.4) that the product of eµzφ(z) and e−µzφ(−z) is a periodic
integral function of z.

19.52 The determination of the integral function associated with Mathieu’s equation
The integral function F(z) ≡ Ay10

2 + By11
2, just introduced, can be determined without

difficulty; for, if y10 and y11 are any solutions of

d2u
dζ2 + P(ζ)

du
dζ
+Q(ζ)u = 0,



440 Mathieu Functions

their squares (and consequently any linear combination of their squares) satisfy the equation
(see Appell [31])

d3y

dζ3 + 3P(ζ)
d2y

dζ2 +
[
P′(ζ) + 4Q(ζ) + 2 {P(ζ)}2

] dy
dζ
+ 2 [Q′(ζ) + 2P(ζ)Q(ζ)] y = 0;

in the case under consideration, this result reduces to

ζ(1 − ζ)
d3F(ζ)

dζ3 +
3
2
(1 − 2ζ)

d2F(ζ)
dζ2 + (a − 1 − 16q + 32qζ)

dF(ζ)
dζ

+ 16qF(ζ) = 0.

Let the Maclaurin series for F(ζ) be
∞∑
n=0

cnζn; on substitution, we easily obtain the recur-

rence formula for the coefficients cn, namely

vn+1cn+2 = uncn+1 + cn,

where

un = −
(n + 1)

{
(n + 1)2 − a + 16q

}
16q(2n + 1)

, vn = −
n(n + 1)(2n + 1)

32q(2n − 1)
.

At first sight, it appears from the recurrence formula that c0 and c1 can be chosen arbitrarily,
and the remaining coefficients c2, c3, . . . calculated in terms of them; but the third order
equation has a singularity at ζ = 1, and the series thus obtained would have only unit radius
of convergence. It is necessary to choose the value of the ratio c1/c0 so that the series may
converge for all values of ζ .

The recurrence formula, when written in the form

(cn/cn+1) = un +
vn+1

(cn+1/cn+2)
,

suggests the consideration of the infinite continued fraction

un +
vn+1

un+1 +
vn+2

un+2 +
. . .

= lim
m→∞


un +

vn+1

un+1 +
. . .

vn+m

un+m


.

The continued fraction on the right can be written (see Sylvester [618, p. 446])

un =
K(n,n + m)

K(n + 1,n + m)
,

where

K(n,n + m) =

�����������
1 vn+1/un 0 · · · · · ·

−u−1
n+1 1 vn+2/un+1 · · · · · ·

0 −u−1
n+2 1 · · · · · ·

...
...

...
...

...

· · · · · · · · · −u−1
n+m 1

�����������
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The limit of this, as m → ∞, is a convergent determinant of von Koch’s type (by Exam-
ple 2.8.1); and since

∞∑
r=n

���� vr+1

urur+1

����→ 0 as n→∞,

it is easily seen that K(n,∞) → 1 as n→∞.
Therefore, if

cn
cn+1

=
unK(n,∞)

K(n + 1,∞)
,

then cn satisfies the recurrence formula and, since cn+1/cn → 0 as n → ∞, the resulting
series for F(ζ) is an integral function. From the recurrence formula it is obvious that all the
coefficients cn are finite, since they are finite when n is sufficiently large. The construction
of the integral function F(ζ) has therefore been effected.

19.53 The solution of Mathieu’s equation in terms of F(ζ)

If w1 and w2 be two particular solutions of

d2u
dζ2 + P(ζ)

du
dζ
+Q(ζ)u = 0,

then (Abel [3], primes denote differentiations with regard to ζ)

w2w
′
1 − w1w

′
2 = C exp

{
−

∫ ζ

0
P(ζ) dζ

}
,

where C is a definite constant. Taking w1 and w2 to be those two solutions of Mathieu’s
general equation whose product is F(ζ), we have

w′1
w1
−
w′2
w2
=

C
ζ1/2(1 − ζ)1/2F(ζ)

,
w′1
w1
−
w′2
w2
=

F ′(ζ)
F(ζ)

,

the latter following at once from the equation w1w2 = F(ζ).
Solving these equations for w′1/w1 and w′2/w2, and then integrating, we at once get

w1 = γ1{F(ζ)}1/2 exp
{

C
2

∫ ζ

0

dζ
ζ1/2(1 − ζ)1/2F(ζ)

}
,

w2 = γ2{F(ζ)}1/2 exp
{
−

C
2

∫ ζ

0

dζ
ζ1/2(1 − ζ)1/2F(ζ)

}
,

where γ1, γ2 are constants of integration; obviously no real generality is lost by taking
c0 = γ1 = γ2 = 1.

From the former result we have, for small values of |ζ |,

w1 = 1 + Cζ1/2 + 1
2 (c1 + C2)ζ +O(ζ3/2),

while, in the notation of §19.51, we have a1/a0 = −a/2 + 8q.
Hence C2 = 16q − a − c1. This equation determines C in terms of a, q and c1, the value

of c1 being
K(1,∞)

u0K(0,∞)
.
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Example 19.5.1 If the solutions ofMathieu’s equation be e±µzφ(±z), where φ(z) is periodic,
shew that

πµ = ±C
∫ π

0

dz
F(cos2 z)

.

Example 19.5.2 (Stieltjes) Shew that the zeros of F(ζ) are all simple, unless C = 0. Hint.
If F(ζ) could have a repeated zero, w1 and w2 would then have an essential singularity.

19.6 A second method of constructing the Mathieu function
So far, it has been assumed that all the various series of §19.3 involved in the expressions
for ceN (z,q) and seN (z,q) are convergent. It will now be shewn that ceN (z,q) and seN (z,q)
are integral functions of z and that the coefficients in their expansions q which converge
absolutely when |q | is sufficiently small. (The essential part of this theorem is the proof of the
convergence of the series which occur in the coefficients; it is already known (§§10.2, 10.21)
that solutions of Mathieu’s equation are integral functions of z, and (in the case of periodic
solutions) the existence of the Fourier expansion follows from §9.11.)

To obtain this result for the functions ceN (z,q), we shall shew how to determine a particular
integral of the equation

d2u
dz2 + (a + 16q cos 2z)u = ψ(a,q) cos Nz

in the form of a Fourier series converging over the whole z-plane, where ψ(a,q) is a function
of the parameters a and q. The equation ψ(a,q) = 0 then determines a relation between a
and q which gives rise to a Mathieu function. The reader who is acquainted with the method
of Frobenius [227] as applied to the solution of linear differential equations in power series
will recognise the resemblance of the following analysis to his work.

Write a = N2 + 8p, where N is zero or a positive or negative integer. Mathieu’s equation
becomes

d2u
dz2 + N2u = −8(p + 2q cos 2z)u.

If p and q are neglected, a solution of this equation is u = cos Nz = U0(z), say. To obtain
a closer approximation, write −8(p + 2q cos 2z)U0(z) as a sum of cosines, i.e. in the form

−8 {q cos(N − 2)z + p cos Nz + q cos(N + 2)z} = V1(z), say.

Then, instead of solving
d2u
dz2 + N2u = V1(z), suppress the terms9 in V1(z) which involve

cos Nz; i.e. consider the function W1(z) where10

W1(z) = V1(z) + 8p cos Nz.

9 The reason for this suppression is that the particular integral of
d2u

dz2 + N2u = cos Nz contains non-periodic
terms.

10 Unless N = 1, in which caseW1(z) = V1(z) + 8(p + q) cos z.
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A particular integral of

d2u
dz2 + N2u = W1(z)

is

u = 2
{

q
1(1 − N)

cos(N − 2)z +
q

1(1 + N)
cos(N + 2)z

}
= U1(z), say.

Now express −8(p + 2q cos 2z)U1(z) as a sum of cosines; calling this sum V2(z), choose
α2 to be such a function of p and q that V2(z)+ α2 cos Nz contains no term in cos Nz; and let
V2(z) + α2 cos Nz = W2(z).

Solve the equation
d2u
dz2 + N2u = W2(z), and continue the process. Three sets of functions

Um(z), Vm(z), Wm(z) are thus obtained, such that Um(z) and Wm(z) contain no term in cos Nz
when m , 0:

Wm(z) = Vm(z) + αm cos Nz, Vm(z) = −8(p + 2q cos 2z)Um−1(z),

and
d2Um(z)

dz2 + N2Um(z) = Wm(z),

where αm is a function of p and q but not of z.
It follows that{

d2

dz2 + N2
} n∑

m=0

Um(z) =
n∑

m=1

Wm(z)

=

n∑
m=1

Vm(z) +

(
n∑

m=1

αm

)
cos Nz

= −8(p + 2q cos 2z)
n−1∑
m=0

Um−1(z) +

(
n∑

m=1

αm

)
cos Nz.

Therefore, if U(z) =
∞∑

m=0
Um(z) be a uniformly convergent series of analytic functions

throughout a two-dimensional region in the z-plane, we have (§5.3)

d2U(z)
dz2 + (a + 16q cos 2z)U(z) = ψ(a,q) cos Nz,

where

ψ(a,q) =
∞∑

m=1

αm.

It is obvious that, if a be so chosen that ψ(a,q) = 0, then U(z) reduces to ceN (z).
A similar process can obviously be carried out for the functions seN (z,q) by making use

of sines of multiples of z.
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19.61 The convergence of the series defining Mathieu functions
We shall now examine the expansion of §19.6 more closely, with a view to investigating the
convergence of the series involved.

When n ≥ 1, we may obviously write

Un(z) =
∗∑

r=1

βn,r cos(N − 2r)z +
n∑

r=1

αn,r cos(N + 2r)z,

the asterisk denoting that the first summation ceases at the greatest value of r for which
r ≤ 1

2 N .

Since
{

d2

dz2 + N2
}

Un+1(z) = αn+1 cos Nz − 8(p + 2q cos 2z)Un(z), it follows on equating

coefficients of cos(N ± 2r)z on each side of the equation11 that

αn+1 = 8q(αn,1 + βn,1)

r(r + N)αn+1,r = 2
{
pαn,r + q(αn,r−1 + αn,r+1)

}
(r = 1,2, . . .),

r(r − N)βn+1,r = 2
{
pβn,r + q(βn,r−1 + βn,r+1)

}
(r ≤ 1

2 N).

These formulae hold universally with the following conventions12:

(i) αn,0 = βn,0 = 0 for n = 1, 2 . . .; αn,r = βn,r = 0, r > n;
(ii) β

n,
1
2 N+1

= βn, 1
2 N−1 when N is even and r = 1

2 N;

(iii) β
n,

1
2 (N+1)

= β
n,

1
2 (N−1)

when N is odd and r = 1
2 (N − 1).

The reader will easily obtain the following special formulae:

(I) α1 = 8p, for N , 1; α1 = 8(p + q), for N = 1;
(II) αn,n =

(2q)nN !
n ! (N+n) ! , for N , 0; αn,n =

2n+1qn

(n!)2 , for N = 0.
(III) αn,r and βn,r are homogeneous polynomials of degree n in p and q.

If
∞∑
n=r

αn,r = Ar,

∞∑
n=r

βn, r = Br,

we have

ψ(a,q) = 8p + 8q (A1 + B1) (N , 1),
r(r + N)Ar = 2 {pAr + q(Ar−1 + Ar+1)} (A)
r (r − N)Br = 2 {pBr + q(Br−1 + Br+1)} , (B)

where A0 = B0 = 1 and Br is subject to conventions due to (ii) and (iii) above.
Now write wr = −q {r(r + N) − 2p}−1, w′r = −q {r(r − N) − 2p}−1. The result of elimi-

nating A1, A2, . . . , Ar−1, Ar+1, . . . from the set of equations (A) is

Ar∆0 = (−1)rw1w2 · · ·wr∆r,

11 When N = 0 or 1 these equations must be modified by the suppression of all the coefficients βn ,r .
12 The conventions (ii) and (iii) are due to the fact that cos z = cos(−z), cos 2z = cos(−2z).
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where ∆r is the infinite determinant of von Koch’s type (§2.82)

∆r =

���������
1 wr+1 0 0 · · ·

wr+2 1 wr+2 0 · · ·

0 wr+3 1 wr+3 · · ·
...

...
...

...
...

���������
The determinant converges absolutely (Example 2.8.1) if no denominator vanishes; and

∆r → 1 as r → ∞ (cf. §19.52). If p and q be given such values that ∆0 , 0, 2p , r(r + N),
where r = 1,2,3, . . ., the series

∞∑
r=1

(−1)rw1w2 · · ·wr∆r∆0
−1 cos(N + 2r)z

represents an integral function of z.
In like manner BrD0 = (−1)rw′1w

′
2 · · ·w

′
rDr , where Dr is the finite determinant�������

1 w′r+1 0 · · ·

w′r+2 1 w′r+2 · · ·
...

...
...

...

������� ,
the last row being

0,0, . . . ,0,2w′ 1
2 N
, 1

or

0,0, . . . ,0,w′ 1
2 (N−1),1 + w′ 1

2 (N−1)

according as N is even or odd.

The series
∞∑
n=0

Un(z) is therefore

cos Nz + ∆0
−1
∞∑
r=1

(−1)rw1w2 · · ·wr∆r cos(N + 2r)z

+ D0
−1

r< 1
2 N∑

r=1

(−1)rw′1w
′
2 · · ·w

′
rDr cos(N − 2r)z,

these series converging uniformly in any bounded domain of values of z, so that term-by-term
differentiations are permissible.

Further, the condition ψ(a,q) = 0 is equivalent to p = q
(
w1∆1
∆0
+

w′1 D1

D0

)
, i.e.

p∆0D0 − q(w1∆1D0 + w
′
1D1∆0) = 0.

If we multiply by

∞∏
r=1

{
1 −

2p
r(r + N)

} r< 1
2 N∏

r=1

{
1 −

2p
r(r − N)

}
,
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the expression on the left becomes an integral function of both p and q, Ψ(a,q), say; the
terms of Ψ(a,q), which are of lowest degrees in p and q, are respectively p and

q2
{

1
N − 1

−
1

N + 1

}
.

Now expand

1
2πi

∫
p

Ψ(N2 + 8p,q)
∂Ψ(N2 + 8p,q)

∂p
dp

in ascending powers of q (cf. §7.31), the contour being a small circle in the p-plane, with
centre at the origin, and |q | being so small that Ψ(N2 + 8p,q) has only one zero inside the
contour. Then it follows, just as in §7.31, that, for sufficiently small values of |q |, we may
expand p as a power series in q commencing13 with a term in q2; and if |q | be sufficiently
small D0 and ∆0 will not vanish, since both are equal to 1 when q = 0.

On substituting for p in terms of q throughout the series for U(z), we see that the series
involved in ceN (z,q) are absolutely convergent when |q | is sufficiently small.

The series involved in seN (z,q) may obviously be investigated in a similar manner.

19.7 The method of change of parameter
This appears inWhittaker [674]. Themethods ofHill and of Lindemann–Stieltjes are effective
in determining µ, but only after elaborate analysis. Such analysis is inevitable, as µ is by
no means a simple function of q; this may be seen by giving q an assigned real value and
making a vary from −∞ to +∞; then µ alternates between real and complex values, the
changes taking place when, with the Hill–Mathieu notation, ∆(0) sin2( 12π

√
a) passes through

the values 0 and 1; the complicated nature of this condition is due to the fact that ∆(0) is an
elaborate expression involving both a and q.

It is, however, possible to express µ and a in terms of q and of a new parameter σ, and
the results are very well adapted for purposes of numerical computation when |q | is small.
(They have been applied to Hill’s problem by Ince [332].)

The introduction of the parameter σ is suggested by the series for ce1(z,q) and se1(z,q)
given in Example 19.3.1; a consideration of these series leads us to investigate the potential-
ities of a solution of Mathieu’s general equation in the form y = eµzφ (z), where

φ(z) = sin(z − σ) + a3 cos(3z − σ) + b3 sin(3z − σ) + a5 cos(5z − σ) + b5 sin(5z − σ) + · · · ,

the parameter σ being rendered definite by the fact that no term in cos(z − σ) is to appear in
φ(z); the special functions se1(z,q), ce1(z,q) are the cases of this solution in which σ is 0 or
1
2π.
On substituting this expression in Mathieu’s equation, the reader will have no difficulty in

13 If N = 1 this result has to be modified, since there is an additional term q on the right and the term
q2/(N − 1) does not appear.
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obtaining the following approximations, valid for14 small values of q and real values of σ:

µ = 4q sin 2σ − 12q3 sin 2σ − 12q4 sin 4σ +O(q5),

a = 1 + 8q cos 2σ + (−16 + 8 cos 4σ)q2 − 8q3 cos 2σ
+

( 256
3 − 88 cos 4σ

)
q4 +O(q5),

a3 = 3q2 sin 2σ + 3q3 sin 4σ +
(
− 274

9 sin 2σ + 9 sin 6σ
)

q4 +O(q5),

b3 = q + q2 cos 2σ +
(
− 14

3 + 5 cos 4σ
)

q3 +
(
− 74

9 cos 2σ + 7 cos 6σ
)

q4 +O(q5),

a5 =
14
9 q3 sin 2σ + 44

27 q4 sin 4σ +O(q5),

b5 =
1
3 q2 + 4

9 q3 cos 2σ +
(
− 155

54 +
82
27 cos 4σ

)
q4 +O(q5),

a7 =
35
108 q4 sin 2σ +O(q5), b7 =

1
18 q3 + 1

12 q4 cos 2σ +O(q5),

a9 = O(q5), b9 =
1

180 q4 +O(q5),

the constants involved in the various functions O(q5) depending on σ.
The domains of values of q and σ for which these series converge have not yet been

determined15 . If the solution thus obtained be calledΛ(z, σ,q), thenΛ(z, σ,q) andΛ(z,−σ,q)
form a fundamental system of solutions of Mathieu’s general equation if µ , 0.

Example 19.7.1 Shew that, if σ = 0.5 × i and q = 0.01, then

a = 1.124,841,4 · · · , µ = i × 0.046,993,5 · · · ;

shew also that, if σ = i and q = 0.01, then

a = 1.321,169,3 · · · , µ = i × 0.145,027,6 · · · .

Example 19.7.2 Obtain the equations

µ = 4q sin 2σ − 4qa3,

a = 1 + 8q cos 2σ − µ2 − 8qb3,

expressing µ and a in finite terms as functions of q, σ, a3 and b3.

Example 19.7.3 Obtain the recurrence formulae

{−4n(n + 1) + 8q cos 2σ − 8qb3 ± 8qi(2n + 1)(a3 − sin 2σ)} z2n+1 + 8q(z2n−1 + z2n+3) = 0,

where z2n+1 denotes b2n+1 + ia2n+1 or b2n+1 − ia2n+1, according as the upper or lower sign is
taken.

19.8 The asymptotic solution of Mathieu’s equation
If in Mathieu’s equation

d2u
dz2 +

(
a +

1
2

K2 cos 2z
)

u = 0

14 The parameters q and σ are to be regarded as fundamental in this analysis, instead of a and q as hitherto.
15 It seems highly probable that, if |q | is sufficiently small, the series converge for all real values of σ, and also

for complex values of σ for which | Imσ | is sufficiently small. It may be noticed that, when q is real, real and
purely imaginary values of σ correspond respectively to real and purely imaginary values of µ.
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we write k sin z = ξ, we get

(ξ2 − k2)
d2u
dξ2 + ξ

du
dξ
+ (ξ2 − M2)u = 0,

where M2 ≡ a + 1
2 k2.

This equation has an irregular singularity at infinity. From its resemblance to Bessel’s
equation, we are led to write u = eiξξ−

1
2 v, and substitute

v = 1 + (a1/ξ) + (a2/ξ
2) + · · ·

in the resulting equation for v; we then find that

a1 = −
1
2 i

( 1
4 − M2 + K2) , a2 = t

1
8

( 1
4 − M2 + k2) ( 9

4 − M2 + k2) + 1
4

k2,

the general coefficient being given by the recurrence formula

2i(r + 1)ar+1 =
{ 1

4 − M2 + k2 + r(r + 1)
}
+ (2r − 1)ik2ar−1 − (r2 − 2r + 3

4 ) k
2ar−2.

The two series

eiξξ−
1
2

(
1 +

a1

ξ
+

a2

ξ2 + · · ·

)
, e−iξξ−

1
2

(
1 +

a1

ξ
+

a2

ξ2 − · · ·

)
are formal solutions of Mathieu’s equation, reducing to the well-known asymptotic solutions
of Bessel’s equation (§17.5) when k → 0. The complete formulae which connect them with
the solutions e±µzφ(±z) have not yet been published, though some steps towards obtaining
them have been made by Dougall [188].

19.9 Miscellaneous examples
Example 19.1 Shew that, if k =

√
32q,

2π ce0(z,q) = ce0(0,q)
∫ π

−π

cos(k sin z sin θ) ce0(θ,q) dθ.

Example 19.2 Shew that the even Mathieu functions satisfy the integral equation

G(z) = λ
∫ π

−π

J0{ik(cos z + cos θ)}G(θ) dθ.

Example 19.3 Shew that the equation

(az2 + c)
d2u
dz2 + 2az

du
dz
+ (λ2cz2 + m)u = 0

(where a, c, λ, m are constants) is satisfied by

u =
∫

eλzsv(s) ds

taken round an appropriate contour, provided that v(s) satisfies

(as2 + c)
d2v(s)

ds2 + 2as
dv(s)

ds
+ (λ2cs2 + m)v(s) = 0,
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which is the same as the equation for u.
Derive the integral equations satisfied by the Mathieu functions as particular cases of this

result.

Example 19.4 (Mathieu) Shew that, if powers of q above the fourth are neglected, then

ce1(z,q) = cos z + q cos 3z + q2( 13 cos 5z − cos 3z)

+ q3( 1
18 cos 7z − 4

9 cos 5z + 1
3 cos 3z)

+ q4( 1
180 cos 9z − 1

12 cos 7z + 1
6 cos 5z + 11

9 cos 3z),

se1(z,q) = sin z + q sin 3z + q2 ( 13 sin 5z + sin 3z)

+ q3( 1
18 sin 7z + 4

9 sin 5z + 1
3 sin 3z)

+ q4( 1
180 sin 9z + 1

12 sin 7z + 1
6 sin 5z − 11

9 sin 3z),

ce2(z, p) = cos 2z + q( 23 cos 4z − 2) + 1
6 q2 cos 6z

+ q3 ( 1
45 cos 8z + 43

47 cos 4z + 40
3 )

+ q4( 1
540 cos 10z + 293

540 cos 6z).

Example 19.5 (Mathieu) Shew that

ce3 = cos 3z + q(− cos z + 1
2 cos 5z) + q2(cos z + 1

10 cos 7z)

+ q3(− 1
2 cos z + 7

40 cos 5z + 1
90 cos 9z) +O(q4),

and that, in the case of this function

a = 9 + 4q2 − 8q3 +O(q4).

Example 19.6 Shew that, if y(z) be a Mathieu function, then a second solution of the
corresponding differential equation is

y(z)
∫ s

{y(t)}−2 dt .

Shew that a second solution16 of the equation for ce0(z,q) is

z ce0(z,q) − 4q sin 2z − 3q2 sin 4z − · · · .

Example 19.7 If y(z) be a solution of Mathieu’s general equation, shew that

y(z + 2π) + y(z − 2π)
y(z)

is constant.

Example 19.8 Express the Mathieu functions as series of Bessel functions in which the
coefficients are multiples of the coefficients in the Fourier series for the Mathieu functions.
Hint. Substitute the Fourier series under the integral sign in the integral equations of §19.22.

Example 19.9 Shew that the confluent form of the equations for cen(z,q) and sen(z,q),
when the eccentricity of the fundamental ellipse tends to zero, is, in each case, the equation
satisfied by Jn(ik cos z).
16 This solution is called in0(z, q); the second solutions of the equations satisfied by Mathieu functions have

been investigated by Ince [333]. See also §19.2.
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Example 19.10 Obtain the parabolic cylinder functions of Chapter 16 as confluent forms
of the Mathieu functions, by making the eccentricity of the fundamental ellipse tend to unity.

Example 19.11 Shew that cen(z,q) can be expanded in series of the form
∞∑

m=0

Am cos2m z or
∞∑

m=0

Bm cos2m+1 z,

according as n is even or odd; and that these series converge when | cos z | < 1.

Example 19.12 With the notation of Example 19.11, shew that, if

cen(z,q) = λn
∫ π

−π

ek cos s cos θ cen(θ,q) dθ,

then λn is given by one or other of the series

A0 = 2πλn
∞∑

m=0

2m
22m(m!)2

Am, B0 = 2πλnk
∞∑

m=0

(2m + 1)!
22m+1m!(m + 1)!

Bm,

provided that these series converge.

Example 19.13 Shew that the differential equation satisfied by the product of any two
solutions of Bessel’s equation for functions of order n is

ϑ(ϑ − 2n)(ϑ + 2n)u + 4z2(ϑ + 1)u = 0,

where ϑ denotes z d
dz
.

Shew that one solution of this equation is an integral function of z; and thence, by the
methods of §§19.5–19.53, obtain the Bessel functions, discussing particularly the case in
which n is an integer.

Example 19.14 Shew that an approximate solution of the equation

d2u
dz2 + (A + k2 sinh2 z)u = 0

is
u = C(cosech z)1/2 sin(k cosh z + ε),

where C and ε are constants of integration; it is to be assumed that k is large, A is not very
large and z is not small.
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Elliptic Functions. General Theorems and the
Weierstrassian Functions

20.1 Doubly-periodic functions
A most important property of the circular functions sin z, cos z, tan z, . . . is that, if f (z)
denote any one of them,

f (z + 2π) = f (z),

and hence f (z + 2nπ) = f (z), for all integer values of n. It is on account of this property
that the circular functions are frequently described as periodic functions with period 2π. To
distinguish them from the functions which will be discussed in this and the two following
chapters, they are called singly-periodic functions.

Let ω1, ω2 be any two numbers (real or complex) whose ratio1 is not purely real. A
function which satisfies the equations

f (z + 2ω1) = f (z), f (z + 2ω2) = f (z),

for all values of z for which f (z) exists, is called a doubly-periodic function of z, with periods
2ω1, 2ω2. A doubly-periodic function which is analytic (except at poles), and which has no
singularities other than poles in the finite part of the plane, is called an elliptic function.

Note What is now known as an elliptic integral2 occurs in the researches of Jakob Bernoulli
on the Elastica. Maclaurin, Fagnano, Legendre, and others considered such integrals in
connexion with the problem of rectifying an arc of an ellipse; the idea of ‘inverting’ an
elliptic integral (§21.7) to obtain an elliptic function is due to Abel, Jacobi and Gauss.

The periods 2ω1, 2ω2 play much the same part in the theory of elliptic functions as is
played by the single period in the case of the circular functions.

Before actually constructing any elliptic functions, and, indeed, before establishing the
existence of such functions, it is convenient to prove some general theorems (§20.11–§20.14)
concerning properties common to all elliptic functions; this procedure, though not strictly
logical, is convenient because a large number of the properties of particular elliptic functions
can be obtained at once by an appeal to these theorems.

Example 20.1.1 The differential coefficient of an elliptic function is itself an elliptic
function.

1 If ω2/ω1 is real, the parallelograms defined in §20.11 collapse, and the function reduces to a singly-periodic
function when ω2/ω1 is rational; and when ω2/ω1 is irrational, it has been shewn by Jacobi [350] that the
function reduces to a constant.

2 A brief discussion of elliptic integrals will be found in §22.7–§22.741.
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20.11 Period-parallelograms
The study of elliptic functions is much facilitated by the geometrical representation afforded
by the Argand diagram.

Suppose that in the plane of the variable z we mark the points 0, 2ω1, 2ω2, 2ω1+2ω2, and,
generally, all the points whose complex coordinates are of the form 2mω1 + 2nω2, where m
and n are integers.

Join in succession consecutive points of the set 0, 2ω1, 2ω1 + 2ω2, 2ω2, 0, and we obtain
a parallelogram. If there is no point ω inside or on the boundary of this parallelogram (the
vertices excepted) such that

f (z + ω) = f (z)

for all values of z, this parallelogram is called a fundamental period-parallelogram for an
elliptic function with periods 2ω1, 2ω2.

It is clear that the z-plane may be covered with a network of parallelograms equal to the
fundamental period-parallelogram and similarly situated, each of the points 2mω1 + 2nω2

being a vertex of four parallelograms.
These parallelograms are called period-parallelograms, or meshes; for all values of z, the

points z, z + 2ω1, . . . , z + 2mω1 + 2nω2, . . . manifestly occupy corresponding positions in the
meshes; any pair of such points are said to be congruent to one another. The congruence of
two points z, z′ is expressed by the notation z′ ≡ z mod 2ω1, 2ω2.

From the fundamental property of elliptic functions, it follows that an elliptic function
assumes the same value at every one of a set of congruent points; and so its values in any
mesh are a mere repetition of its values in any other mesh.

For purposes of integration it is not convenient to deal with the actual meshes if they have
singularities of the integrand on their boundaries; on account of the periodic properties of
elliptic functions nothing is lost by taking as a contour, not an actualmesh, but a parallelogram
obtained by translating a mesh (without rotation) in such a way that none of the poles of the
integrands considered are on the sides of the parallelogram. Such a parallelogram is called a
cell. Obviously the values assumed by an elliptic function in a cell are a mere repetition of
its values in any mesh.

A set of poles (or zeros) of an elliptic function in any given cell is called an irreducible
set; all other poles (or zeros) of the function are congruent to one or other of them.

20.12 Simple properties of elliptic functions
Theorem (I) The number of poles of an elliptic function in any cell is finite.

For, if not, the poles would have a limit point, by the two-dimensional analogue of §2.21.
This point is (§5.61) an essential singularity of the function; and so, by definition, the function
is not an elliptic function.

Theorem (II) The number of zeros of an elliptic function in any cell is finite.

For, if not, the reciprocal of the function would have an infinite number of poles in the
cell, and would therefore have an essential singularity; and this point would be an essential
singularity of the original function, which would therefore not be an elliptic function. This
argument presupposes that the function is not identically zero.
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Theorem (III) The sum of the residues of an elliptic function f (z), at its poles in any cell
is zero.

Let C be the contour formed by the edges of the cell, and let the corners of the cell be t,
t + 2ω1, t + 2ω1 + 2ω2, t + 2ω2.

Note In future, the periods of an elliptic function will not be called 2ω1, 2ω2 indifferently;
but that one will be called 2ω1 which makes the ratio ω2/ω1 have a positive imaginary part;
and then, if C be described in the sense indicated by the order of the corners given above,
the description of C is counter-clockwise.

Throughout the chapter, we shall denote by the symbol C the contour formed by the edges
of a cell.

The sum of the residues of f (z) at its poles inside C is

1
2πi

∫
C

f (z) dz =
1

2πi

{∫ t+2ω1

t

+

∫ t+2ω1+2ω2

t+2ω1

+

∫ t+2ω2

t+2ω1+2ω2

+

∫ t

t+2ω2

}
f (z) dz.

In the second and third integrals write z+2ω1, z+2ω2 respectively for z, and the right-hand
side becomes

1
2πi

∫ t+2ω1

t

{ f (z) − f (z + 2ω2)} dz −
1

2πi

∫ t+2ω2

t

{ f (z) − f (z + 2ω1)} dz,

and each of these integrals vanishes in virtue of the periodic properties of f (z); and so∫
C

f (z) dz = 0, and the theorem is established.

Theorem (IV: Liouville’s theorem3) An elliptic function, f (z), with no poles in a cell is
merely a constant.

For if f (z) has no poles inside the cell, it is analytic (and consequently bounded) inside
and on the boundary of the cell (Corollary 3.6.2), that is to say, there is a number K such that
| f (z)| < K when z is inside or on the boundary of the cell. From the periodic properties of
f (z) it follows that f (z) is analytic and | f (z)| < K for all values of z; and so, by §5.63, f (z)
is a constant.

(This modification of the theorem of §5.63 is the result on which Liouville based his
lectures on elliptic functions.) It will be seen later that a very large number of theorems
concerning elliptic functions can be proved by the aid of this result.

20.13 The order of an elliptic function
It will now be shewn that, if f (z) be an elliptic function and c be any constant, the number
of roots of the equation

f (z) = c

which lie in any cell depends only on f (z), and not on c; this number is called the order of
the elliptic function, and is equal to the number of poles of f (z) in the cell.

3 This modification of the theorem of §5.63 is the result on which Liouville based his lectures on elliptic
functions.
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By §6.31, the difference between the number of zeros and the number of poles of f (z) − c
which lie in the cell C is

1
2πi

∫
C

f ′(z)
f (z) − c

dz.

Since f ′(z+2ω1) = f ′(z+2ω2) = f ′(z), by dividing the contour into four parts, precisely,
as in §20.12 Theorem (III), we find that this integral is zero.

Therefore the number of zeros of f (z) − c is equal to the number of poles of f (z) − c; but
any pole of f (z) − c is obviously a pole of f (z) and conversely; hence the number of zeros
of f (z) − c is equal to the number of poles of f (z), which is independent of c; the required
result is therefore established.

Note In determining the order of an elliptic function by counting the number of its irre-
ducible poles, it is obvious, from §6.31, that each pole has to be reckoned according to its
multiplicity.

The order of an elliptic function is never less than 2; for an elliptic function of order
1 would have a single irreducible pole; and if this point actually were a pole (and not an
ordinary point) the residue there would not be zero, which is contrary to the Theorem (III)
above.

So far as singularities are concerned, the simplest elliptic functions are those of order 2.
Such functions may be divided into two classes: (i) those which have a single irreducible
double pole, at which the residue is zero in accordance with (III) above; (ii) those which have
two simple poles at which, by (III), the residues are numerically equal but opposite in sign.

Functions belonging to these respective classes will be discussed in this chapter and in
Chapter 22 under the names of Weierstrassian and Jacobian elliptic functions respectively;
and it will be shewn that any elliptic function is expressible in terms of functions of either of
these types.

20.14 Relation between the zeros and poles of an elliptic function
We shall now shew that the sum of the affixes of a set of irreducible zeros of an elliptic
function is congruent to the sum of the affixes of a set of irreducible poles.

For, with the notation previously employed, it follows, from §6.3, that the difference
between the sums in question is

1
2πi

∫
C

z f ′(z)
f (z)

dz =
1

2πi

{∫ t+2ω1

t

+

∫ t+2ω1+2ω2

t+2ω1

+

∫ t+2ω2

t+2ω1+2ω2

+

∫ t

t+2ω2

}
z f ′(z)

f (z)
dz

=
1

2πi

∫ t+2ω1

t

{
z f ′(z)

f (z)
−
(z + 2ω2) f ′(z + 2ω2)

f (z + 2ω2)

}
dz

−
1

2πi

∫ t+2ω2

t

{
z f ′(z)

f (z)
−
(z + 2ω1) f ′(z + 2ω1)

f (z + 2ω1)

}
dz

=
1

2πi

{
−2ω2

∫ t+2ω1

t

f ′(z)
f (z)

dz + 2ω1

∫ t+2ω2

t

f ′(z)
f (z)

dz
}

=
1

2πi
{
−2ω2 [log f (z)]t+2ω1

t + 2ω1 [log f (z)]t+2ω2
t

}
,
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on making use of the substitutions used in §20.12 and of the periodic properties of f (z) and
f ′(z).
Now f (z) has the same values at the points t+2ω1, t+2ω2 as at t, so the values of log f (z)

at these points can only differ from the value of log f (z) at t by integer multiples of 2πi, say
−2nπi, 2mπi; then we have

1
2πi

∫
C

z f ′(z)
f (z)

dz = 2mω1 + 2nω2,

and so the sum of the affixes of the zeros minus the sum of the affixes of the poles is a period;
and this is the result which had to be established.

20.2 The construction of an elliptic function. Definition of ℘(z)
It was seen in §20.1 that elliptic functionsmay be expected to have some properties analogous
to those of the circular functions. It is therefore natural to introduce elliptic functions into
analysis by some definition analogous to one of the definitions which may be made the
foundation of the theory of circular functions.

One mode of developing the theory of the circular functions is to start from the series
∞∑

m=−∞
(z −mπ)−2; calling this series (sin z)−2, it is possible to deduce all the known properties

of sin z; the method of doing so is briefly indicated in §20.222.
The analogous method of founding the theory of elliptic functions is to define the function

℘(z) by the equation4

℘(z) =
1
z2 +

∑′

m,n

{
1

(z − 2mω1 − 2nω2)
2 −

1
(2mω1 + 2nω2)

2

}
,

where ω1, ω2 satisfy the conditions laid down in §20.1, and §20.12 Theorem (III); the sum-
mation extends over all integer values (positive, negative and zero) of m and n, simultaneous
zero values of m and n excepted.

For brevity, we write Ωm,n in place of 2mω1 + 2nω2, so that

℘(z) = z−2 +
∑′

m,n

{
(z −Ωm,n)

−2 −Ω−2
m,n

}
.

When m and n are such that |Ωm,n | is large, the general term of the series defining ℘(z) is
O(|Ωm,n |

−3), and so (§3.4) the series converges absolutely and uniformly (with regard to z)
except near its poles, namely the points Ωm,n. Therefore (§5.3), ℘(z) is analytic throughout
the whole z-plane except at the points Ωm,n, where it has double poles.

The introduction of this function ℘(z) is due to Weierstrass [663, p. 245–255]. The
subject-matter of the greater part of this chapter is due to Weierstrass, and is contained in his
lectures, of which an account has been published by Schwarz [589]. See also Cayley [132]

4 Throughout the chapter
∑
m,n

will be written to denote a summation over all integer values of m and n, a prime

being inserted (
∑
m,n

′) when the term for which m = n = 0 has to be omitted from the summation. It is also

customary to write ℘′(z) for the derivative of ℘(z). The use of the prime in two senses will not cause
confusion.
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and Eisenstein [193, 194]. We now proceed to discuss properties of ℘(z), and in the course
of the investigation it will appear that ℘(z) is an elliptic function with periods 2ω1, 2ω2.

Note For purposes of numerical computation the series for ℘(z) is useless on account of
the slowness of its convergence. Elliptic functions free from this defect will be obtained in
Chapter 21.

Example 20.2.1 Prove that

℘(z) =
(
π

2ω1

)2
[
−

1
3
+

∞∑
n=−∞

cosec2
(

z − 2nω2

2ω1
π

)
−

∞∑′

n=−∞

cosec2
(

nω2

ω1
π

)]
.

20.21 Periodicity and other properties of ℘(z)
Since the series for ℘(z) is a uniformly convergent series of analytic functions, term-by-term
differentiation is legitimate (§5.3), and so

℘′(z) =
d
dz
℘(z) = −2

∑
m,n

1
(z −Ωm,n)

3 .

The function ℘′(z) is an odd function of z; for, from the definition of ℘′(z), we at once get

℘′(−z) = 2
∑
m,n

(z +Ωm,n)
−3.

But the set of points −Ωm,n is the same as the setΩm,n and so the terms of ℘′(z) are just the
same as those of −℘′(−z), but in a different order. But, the series for ℘′(z) being absolutely
convergent (§3.4), the derangement of the terms does not affect its sum, and therefore

℘′(−z) = −℘′(z).

In like manner, the terms of the absolutely convergent series∑′

m,n

{
(z +Ωm,n)

−2 −Ω−2
m,n

}
are the terms of the series ∑′

m,n

{
(z −Ωm,n)

−2 −Ω−2
m,n

}
in a different order, and hence

℘(−z) = ℘(z);

that is to say, ℘(z) is an even function of z.
Further,

℘′(z + 2ω1) = −2
∑
m,n

(z −Ωm,n + 2ω1)
−3;

but the set of points Ωm,n − 2ω1 is the same as the set Ωm,n, so the series for ℘′(z + 2ω1) is a
derangement of the series for ℘′(z). The series being absolutely convergent, we have

℘′(z + 2ω1) = ℘
′(z);
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that is to say, ℘′(z) has the period 2ω1; in like manner it has the period 2ω2.
Since ℘′(z) is analytic except at its poles, it follows from this result that ℘′(z) is an elliptic

function.
If now we integrate the equation ℘′(z + 2ω1) = ℘

′(z), we get

℘(z + 2ω1) = ℘(z) + A,

where A is constant. Putting z = −ω1 and using the fact that ℘(z) is an even function, we get
A = 0, so that

℘(z + 2ω1) = ℘(z);

in like manner ℘(z + 2ω2) = ℘(z).
Since ℘(z) has no singularities but poles, it follows from these two results that ℘(z) is an

elliptic function.
There are othermethods of introducing both the circular and elliptic functions into analysis;

for the circular functions the following may be noticed:

(1) The geometrical definition in which sin z is the ratio of the side opposite the angle z to
the hypotenuse in a right-angled triangle of which one angle is z. This is the definition
given in elementary text-books on Trigonometry; from our point of view it has various
disadvantages, some of which are stated in the Appendix.

(2) The definition by the power series

sin z = z −
z3

3!
+

z5

5!
− · · ·

(3) The definition by the product

sin z = z
(
1 −

z2

π2

) (
1 −

z2

22π2

) (
1 −

z2

32π2

)
· · ·

(4) The definition by ‘inversion’ of an integral

z =
∫ sin z

0
(1 − t2)−

1
2 dt .

The periodicity properties may be obtained easily from (4) by taking suitable paths of
integration (cf. Forsyth [220, §104]), but it is extremely difficult to prove that sin z defined
in this way is an analytic function.

The reader will see later (§§22.82, 22.1, 20.42, 20.22 and Example 20.5.4) that elliptic
functions may be defined by definitions analogous to each of these, with corresponding
disadvantages in the cases of the first and fourth.

Example 20.2.2 Deduce the periodicity of ℘(z) directly from its definition as a double
series. Hint. It is not difficult to justify the necessary derangement.
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20.22 The differential equation satisfied by ℘(z)
We shall now obtain an equation satisfied by ℘(z), which will prove to be of great importance
in the theory of the function.

The function ℘(z) − z−2, which is equal to
∑′

m,n

{
(z −Ωm,n)

−2 −Ω−2
m,n

}
, is analytic in a

region of which the origin is an internal point, and it is an even function of z. Consequently,
by Taylor’s theorem, we have an expansion of the form

℘(z) − z−2 = 1
20g2z2 + 1

28g3z4 +O(z3)

valid for sufficiently small values of |z |. It is easy to see that

g2 = 60
∑′

m,n

Ω
−4
m,n, g3 = 140

∑′

m,n

Ω
−6
m,n.

Thus ℘(z) = z−2 + 1
20g2z2 + 1

28g3z4 +O(z6); differentiating this result, we have

℘′(z) = −2z−3 + 1
10g2z + 1

7g3z3 +O(z5).

Cubing and squaring these respectively, we get

℘3(z) = z−6 + 3
20g2z−2 + 3

28g3 +O(z2),

(℘′)2(z) = 4z−6 − 2
5g2z−2 − 4

7g3 +O(z2).

Hence (℘′)2(z) − 4℘3(z) = −g2z−2 − g3 +O(z2), and so

(℘′)2(z) − 4℘3(z) + g2℘(z) + g3 = O(z2).

That is to say, the function (℘′)2(z) − 4℘3(z) + g2℘(z) + g3, which is obviously an elliptic
function, is analytic at the origin, and consequently it is also analytic at all congruent points.
But such points are the only possible singularities of the function, and so it is an elliptic
function with no singularities; it is therefore a constant (by Liouville’s theorem). On making
z → 0, we see that this constant is zero.

Thus, finally, the function ℘(z) satisfies the differential equation

(℘′)2(z) = 4℘3(z) − g2℘(z) − g3,

where g2 and g3 (called the invariants) are given by the equations

g2 = 60
∑′

m,n

Ω
−4
m,n, g3 = 140

∑′

m,n

Ω
−6
m,n.

Conversely, given the equation (
dy
dz

)2

= 4y3 − g2y − g3,

if numbers ω1, ω2 can be determined5 such that

g2 = 60
∑′

m,n

Ω
−4
m,n, g3 = 140

∑′

m,n

Ω
−6
m,n,

5 The difficult problem of establishing the existence of such numbers ω1 and ω2 when g2 and g3 are given is
solved in §21.73.
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then the general solution of the differential equation is

y = ℘(±z + α),

where α is the constant of integration. This may be seen by taking a new dependent variable

u defined by the equation6 y = ℘(u), when the differential equation reduces to
(

du
dz

)2

= 1.

Since ℘(z) is an even function of z, we have y = ℘(z ± α), and so the solution of the
equation can be written in the form

y = ℘(z + α)

without loss of generality.

Example 20.2.3 Deduce from the differential equation that, if

℘(z) = z−2 +

∞∑
n=1

c2nz2n,

then

c2 =
g2

22 · 5
, c4 =

g3

22 · 7
, c6 =

g2
2

24 · 3 · 52 ,

and

c8 =
3g2g3

24 · 5 · 7 · 11
, c10 =

g3
2

25 · 3 · 53 · 13
+

g2
3

24 · 72 · 13
, c12 =

g2
2g3

25 · 3 · 52 · 7 · 11
.

20.221 The integral formula for ℘(z)
Consider the equation

z =
∫ ∞

ζ

(4t3 − g2t − g3)
− 1

2 dt,

determining z in terms of ζ ; the path of integration may be any curve which does not pass
through a zero of 4t3 − g2t − g3.

On differentiation, we get (
dζ
dz

)2

= 4ζ3 − g2ζ − g3,

and so ζ = ℘(z + α), where α is a constant.
Make ζ →∞; then z → 0, since the integral converges, and so α is a pole of the function

℘; i.e., α is of the form Ωm,n, and so ζ = ℘(z +Ωm,n) = ℘(z).

The result that the equation z =
∫ ∞

ζ

(4t3 − g2t − g3)
− 1

2 dt is equivalent to the equation

ζ = ℘(z) is sometimes written in the form

z =
∫ ∞

℘(z)

(4t3 − g2t − g3)
− 1

2 dt .

6 This equation in u always has solutions, by §20.13
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20.222 An illustration from the theory of the circular functions
The theorems obtained in §20.2–§20.221 may be illustrated by the corresponding results
in the theory of the circular functions. Thus we may deduce the properties of the function
cosec2 z from the series

∞∑
m=−∞
(z − mπ)−2 in the following manner:

Denote the series by f (z); the series converges absolutely and uniformly7 (with regard to
z) except near the points mπ at which it obviously has double poles. Except at these points,
f (z) is analytic. The effect of adding any multiple of π to z is to give a series whose terms
are the same as those occurring in the original series; since the series converges absolutely,
the sum of the series is unaffected, and so f (z) is a periodic function of z with period π.

Now consider the behaviour of f (z) in the strip for which − 1
2π ≤ Re (z) ≤ 1

2π. From the
periodicity of f (z), the value of f (z) at any point in the plane is equal to its value at the
corresponding point of the strip. In the strip f (z) has one singularity, namely z = 0; and f (z)
is bounded as z →∞ in the strip, because the terms of the series for f (z) are small compared
with the corresponding terms of the comparison series

∞∑
m=−∞

m−2.

In a domain including the point z = 0, f (z) − z−2 is analytic, and is an even function; and
consequently there is a Maclaurin expansion

f (z) − z−2 =

∞∑
n=0

a2nz2n,

valid when |z | < π. It is easily seen that

a2n =
2

π2n+2 (2n + 1)
∞∑

m=1

m−2n−2,

hence a0 =
1
3 and a2 = 6π−4

∞∑
m=1

m−4 = 1
15 . Hence, for small values of |z |

f (z) = z−2 + 1
3 +

1
15 z2 +O(z4).

Differentiating this result twice, and also squaring it, we have

f ′′(z) = 6z−4 +
2
15
+O(z2), f 2(z) = z−4 +

2
3

z−2 +
11
45
+O(z2).

It follows that

f ′′(z) − 6 f 2(z) + 4 f (z) = O(z2).

That is to say, the function f ′′(z) − 6 f 2(z)+ 4 f (z) is analytic at the origin and it is obviously
periodic. Since its only possible singularities are at the points mπ, it follows from the
periodic property of the function that it is an integral function. Further, it is bounded as
z → ∞ in the strip − 1

2π ≤ Re(z) ≤ 1
2π, since f (z) is bounded and so is8 f ′′(z). Hence

f ′′(z)−6 f 2(z)+4 f (z) is bounded in the strip, and therefore from its periodicity it is bounded

7 By comparison with the series
∞∑

m=−∞
m−2.

8 The series for f ′(z) may be compared with
∞∑

m=−∞
m−4.
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everywhere. By Liouville’s theorem (§5.63) it is therefore a constant. By making z → 0,we
see that the constant is zero. Hence the function cosec2(z) satisfies the equation

f ′′(z) = 6 f 2(z) − 4 f (z).

Multiplying by 2 f ′(z) and integrating, we get

f ′2(z) = 4 f 2(z) ( f (z) − 1) + c,

where c is a constant, which is easily seen to be zero on making use of the power series for
f ′(z) and f (z).We thence deduce that

2z =
∫ ∞

f (z)

t−1(t − 1)−
1
2 dt,

when an appropriate path of integration is chosen.

Example 20.2.4 If y = ℘(z) and primes denote differentiations with regard to z, shew that

3y′′2

4y′4
−

y′′′

2y′3
=

3
16

{
(y − e1)

−2 + (y − e2)
−2 + (y − e3)

−2}
−

3
8
y(y − e1)

−1(y − e2)
−1(y − e3)

−1,

where e1, e2, e3 are the roots of the equation 4t3 − g2t − g3 = 0. Hint. We have y′2 =

4y3 − g2y − g3 = 4(y − e1)(y − e2)(y − e3). Differentiating logarithmically and dividing by
y′, we have

2y′′

y′2
=

3∑
r=1

(y − er )−1.

Differentiating again, we have

2y′′′

y′3
−

4y′′2

y′4
= −

3∑
r=1

(y − er )−2.

Adding this equation multiplied by 1
4 to the square of the preceding equation, multiplied by

1
16 , we readily obtain the desired result.

It should be noted that the left-hand side of the equation is half the Schwarzian derivative
(see Cayley [137]) of z with respect to y; and so z is the quotient of two solutions of the
equation

d2v

dy2 +

{
3

16

3∑
r=1

(y − er )−2 −
3
8
y

3∏
r=1

(y − er )−1

}
v = 0.

Example 20.2.5 Obtain the properties of homogeneity of the function ℘(z); namely that

℘

(
λz

���ω1

ω2

)
= λ−2℘

(
z
���ω1

ω2

)
℘(λz; λ−4g2, λ

−6g3) = λ
−2℘(z; g2,g3),

where ℘
(
z
���ω1
ω2

)
denotes the function formed with periods 2ω1, 2ω2 and ℘(z; g2,g3) denotes

the function formed with invariants g2, g3. Hint. The former is a direct consequence of the
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definition of ℘(z) by a double series; the latter may then be derived from the double series
defining the g invariants.

20.3 The addition-theorem for the function ℘(z)
The function ℘(z) possesses what is known as an addition-theorem; that is to say, there exists
a formula expressing ℘(z + y) as an algebraic function of ℘(z) and ℘(y) for general values of
z and y. It is, of course, unnecessary to consider the special cases when y, or z, or y + z is a
period.

Consider the equations

℘′(z) = A℘(z) + B, ℘′(y) = A℘(y) + B,

which determine A and B in terms of z and y unless ℘(z) = ℘(y), i.e. unless9 z ≡ ±y mod
(2ω1,2ω2).

Now consider ℘′(ζ) − A℘(ζ) − B, qua function of ζ . It has a triple pole at ζ = 0 and
consequently it has three, and only three, irreducible zeros, by §20.13; the sum of these is
a period, by §20.14, and as ζ = z, ζ = y are two zeros, the third irreducible zero must be
congruent to −z − y. Hence −z − y is a zero of ℘′(ζ) − A℘(ζ) − B, and so

℘′(−z − y) = A℘(−z − y) + B.

Eliminating A and B from this equation and the equations by which A and B were defined,
we have ������ ℘(z) ℘′(z) 1

℘(y) ℘′(y) 1
℘(z + y) −℘′(z + y) 1

������ = 0.

Since the derived functions occurring in this result can be expressed algebraically in terms
of ℘(z), ℘(y), ℘(z+ y) respectively (§20.22), this result really expresses ℘(z+ y) algebraically
in terms of ℘(z) and ℘(y). It is therefore an addition-theorem.

Other methods of obtaining the addition-theorem are indicated in Examples 20.3.1 and
20.3.2, and §20.312.

A symmetrical form of the addition-theoremmay be noticed, namely that, if u+v+w = 0,
then ������℘(u) ℘′(u) 1

℘(v) ℘′(v) 1
℘(w) ℘′(w) 1

������ = 0.

20.31 Another form of the addition-theorem
Retaining the notation of §20.3, we see that the values of ζ , which make ℘′(ζ) − A℘(ζ) − B
vanish, are congruent to one of the points z, y,−z − y.

9 The function ℘(z) − ℘(y), qua function of z, has double poles at points congruent to z = 0, and no other
singularities; it therefore (§20.13) has only two irreducible zeros; and the points congruent to z = ±y

therefore give all the zeros of ℘(z) − ℘(y).
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Hence (℘′)2(ζ)−{A℘(ζ) + B}2 vanisheswhen ζ is congruent to any of the points z, y,−z−y.
And so

4℘3(ζ) − A2℘2(ζ) − (2AB + g2)℘(ζ) − (B2 + g3)

vanishes when ℘(ζ) is equal to any one of ℘(z), ℘(y), ℘(z + y).
For general values of z and y, ℘(z), ℘(y) and ℘(z + y) are unequal and so they are all the

roots of the equation

4Z3 − A2Z2 − (2AB + g2)Z − (B2 + g3) = 0.

Consequently, by the ordinary formula for the sum of the roots of a cubic equation,

℘(z) + ℘(y) + ℘(z + y) = 1
4 A2,

and so

℘(z + y) =
1
4

{
℘′(z) − ℘′(y)
℘(z) − ℘(y)

}2

− ℘(z) − ℘(y),

on solving the equations by which A and B were defined.
This result expresses ℘(z + y) explicitly in terms of functions of z and of y.

20.311 The duplication formula for ℘(z)
The forms of the addition-theorem which have been obtained are both nugatory when y = z.
But the result of §20.31 is true, in the case of any given value of z, for general values of y.
Taking the limiting form of the result when y approaches z, we have

lim
y→z

℘(z + y) =
1
4

lim
y→z

{
℘′(z) − ℘′(y)
℘(z) − ℘(y)

}2

− ℘(z) − lim
y→z

℘(y).

From this equation, we see that, if 2z is not a period, we have

℘(2z) =
1
4

lim
h→0

{
℘′(z) − ℘′(z + h)
℘(z) − ℘(z + h)

}2

− 2℘(z)

=
1
4

lim
h→0

{
−h℘′′(z) +O(h2)

−h℘′(z) +O(h2)

}2

− 2℘(z),

on applying Taylor’s theorem to ℘(z + h), ℘′(z + h); and so

℘(2z) =
1
4

{
℘′′(z)
℘′(z)

}2

− 2℘(z),

unless 2z is a period. This result is called the duplication formula.

Example 20.3.1 Prove that

1
4

{
℘′(z) − ℘′(y)
℘(z) − ℘(y)

}2

− ℘(z) − ℘(z + y),

qua function of z, has no singularities at points congruent with z = 0, ±y; and, by making
use of Liouville’s theorem, deduce the addition-theorem.
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Example 20.3.2 Apply the process indicated in Example 20.3.1 to the function������ ℘(z) ℘′(z) 1
℘(y) ℘′(y) 1

℘(z + y) −℘′(z + y) 1

������
and deduce the addition-theorem.

Example 20.3.3 Shew that

℘(z + y) + ℘(z − y) = {℘(z) − ℘(y)}−2 [{
2℘(z)℘(y) − 1

2g2
}
{℘(z) + ℘(y)} − g3

]
.

Hint. By the addition-theorem we have

℘(z + y) + ℘(z − y) =
1
4

{
℘′(z) − ℘′(y)
℘(z) − ℘(y)

}2

− ℘(z) − ℘(y)

+
1
4

{
℘′(z) + ℘′(y)
℘(z) − ℘(y)

}2

− ℘(z) − ℘(y),

=
1
2
℘′2(z) + ℘′2(y)

{℘(z) − ℘(y)}2
− 2 {℘(z) + ℘(y)} .

Replacing ℘′2(z) and ℘′2(y) by 4℘3(z) − g2℘(z) − g3 and 4℘3(y) − g2℘(y) − g3 respectively,
and reducing, we obtain the required result.

Example 20.3.4 (Trinity, 1905) Shew, by Liouville’s theorem, that
d
dz
{℘(z − a) ℘(z − b)}

= ℘(a − b) {℘′(z − a) + ℘′(z − b)} − ℘′(a − b) {℘(z − a) − ℘(z − b)} .

20.312 Abel’s method for proving the addition-theorem for ℘(z).
The following outline of a method of establishing the addition-theorem for ℘(z) is instructive,
though a completely rigorous proof would be long and tedious. This method is due to Abel
[2, 4].

Let the invariants of ℘(z) be g2, g3; take rectangular axes OX , OY in a plane, and consider
the intersections of the cubic curve

y2 = 4x3 − g2x − g3

with a variable line y = mx + n. If any point (x1, y1) be taken on the cubic, the equation in z

℘(z) − x1 = 0

has two solutions +z1,−z1 (§20.13) and all other solutions are congruent to these two.
Since (℘′)2(z) = 4℘3(z) − g2℘(z) − g3,we have (℘′)2(z) = y2

1 ; choose z1 to be the solution
for which ℘′(z1) = +y1, not −y1. A number z1 thus chosen will be called the parameter of
(x1, y1) on the cubic. Now the abscissae x1, x2, x3 of the intersections of the cubic with the
variable line are the roots of

φ(x) ≡ 4x3 − g2x − g3 − (mx + n)2 = 0,

and so φ(x) ≡ 4(x − x1)(x − x2)(x − x3).
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The variation δxr in one of these abscissae due to the variation in position of the line
consequent on small changes δm, δn in the coefficients m, n is given by the equation

φ′(xr )δxr +
∂φ

∂m
δm +

∂φ

∂n
δn = 0,

and so φ′(xr )δxr = 2(mxr + n)(xrδm + δn), whence
3∑

r=1

δxr
mxr + n

= 2
3∑

r=1

xrδm + δn
φ′(xr )

,

provided that x1, x2, x3 are unequal, so that φ′(xr ) , 0.
Now, if we put x(xδm + δn)/φ(x), qua function of x, into partial fractions, the result is

3∑
r=1

Ar

(x − xr )
,

where

Ar = lim
x→xr

x(xδm + δn)
(x − xr )
φ(x)

= xr (xrδm + δn) lim
x→xr

(x − xr )
φ(x)

=
xr (xrδm + δn)

φ′(xr )
,

by Taylor’s theorem.

Putting x = 0, we get
3∑

r=1
δxr/yr = 0, i.e.,

3∑
r=1

δzr = 0. That is to say, the sum of the

parameters of the points of intersection is a constant independent of the position of the line.
Vary the line so that all the points of intersection move off to infinity (no two points

coinciding during this process), and it is evident that z1 + z2 + z3 is equal to the sum of the
parameters when the line is the line at infinity; but when the line is at infinity, each parameter
is a period of ℘(z) and therefore z1 + z2 + z3 is a period of ℘(z). Hence the sum of the
parameters of three collinear points on the cubic is congruent to zero. This result having
been obtained, the determinantal form of the addition-theorem follows as in §20.3.

20.32 The constants e1, e2, e3

It will now be shewn that ℘(ω1), ℘(ω2), ℘(ω3) (where ω3 = −ω1 − ω2), are all unequal; and,
if their values be e1, e2, e3, then e1, e2, e3 are the roots of the equation 4t3 − g2t − g3 = 0.

First consider ℘′(ω1). Since ℘′(z) is an odd periodic function, we have

℘′(ω1) = −℘
′(−ω1) = −℘

′(2ω1 − ω1) = −℘
′(ω1),

and so ℘′(ω1) = 0. Similarly ℘′(ω2) = ℘
′(ω3) = 0.

Since ℘′(z) is an elliptic function whose only singularities are triple poles at points
congruent to the origin, ℘′(z) has three, and only three (§20.13), irreducible zeros. Therefore
the only zeros of ℘′(z) are points congruent to ω1, ω2, ω3.

Next consider ℘(z) − e1. This vanishes at ω1, and, since ℘′(ω1) = 0, it has a double zero
at ω1. Since ℘(z) has only two irreducible poles, it follows from (§20.13) that the only zeros
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of ℘(z) − e1 are congruent to ω1. In like manner, the only zeros of ℘(z) − e2, ℘(z) − e3 are
double zeros at points congruent to ω2, ω3, respectively.

Hence e1 , e2 , e3. For if e1 = e2, then ℘(z) − e1 has a zero at ω2, which is a point not
congruent to ω1.

Also, since (℘′)2(z) = 4℘3(z)−g2℘(z)−g3 and since ℘′(z) vanishes atω1,ω2,ω3, it follows
that 4℘3(z) − g2℘(z) − g3 vanishes when ℘(z) = e1, e2 or e3. That is to say, e1, e2, e3 are the
roots of the equation

4t3 − g2t − g3 = 0.

From the well-known formulae connecting roots of equations with their coefficients, it
follows that

e1 + e2 + e3 = 0,
e2e3 + e3e1 + e1e2 = −

1
4g2,

e1e2e3 =
1
4g3.

Example 20.3.5 When g2 and g3 are real and the discriminant g2
3 − 27g2

3 is positive, shew
that e1, e2, e3 are all real; choosing them so that e1 > e2 > e3, shew that

ω1 =

∫ ∞

e1

(4t3 − g2t − g3)
− 1

2 dt, and ω3 = −i
∫ e3

−∞

(g3 + g2t − 4t3)−
1
2 dt,

so that ω1 is real and ω3 a pure imaginary.

Example 20.3.6 Shew that, in the circumstances of Example 20.3.5, ℘(z) is real on the
perimeter of the rectangle whose corners are 0, ω3, ω1 + ω3, ω1.

20.33 The addition of a half-period to the argument of ℘(z)
From the form of the addition-theorem given in §20.31, we have

℘(z + ω1) + ℘(z) + ℘(ω1) =
1
4

{
℘′(z) − ℘′(ω1)

℘(z) − ℘(ω1)

}2

,

and so, since

℘′2(z) = 4
3∏

r=1

{℘(z) − er } ,

we have

℘(z + ω1) =
{℘(z) − e2} {℘(z) − e3}

℘(z) − e1
− ℘(z) − e1

i.e.

℘(z + ω1) = e1 +
(e1 − e2) (e1 − e3)

℘(z) − e1
,

on using the result e1 + e2 + e3 = 0; this formula expresses ℘(z + ω1) in terms of ℘(z).

Example 20.3.7 Shew that

℘
( 1

2ω1
)
= e1 ± {(e1 − e2) (e1 − e3)}

1/2 .
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Example 20.3.8 (Math. Trip. 1913) From the formula for ℘(z + ω2) combined with the
result of Example 20.3.7, shew that

℘
( 1

2ω1 + ω2
)
= e1 ∓ {(e1 − e2) (e1 − e3)}

1/2 .

Example 20.3.9 Shew that the value of ℘′(z)℘′(z + ω1) ℘
′(z + ω2) ℘

′(z + ω3) is equal to
the discriminant of the equation 4t3 − g2t − g3 = 0. Hint. Differentiating the result of §20.33,
we have

℘′(z + ω1) = −(e1 − e2) (e1 − e3) ℘
′(z) {℘(z) − e1}

−2 ;

from this and analogous results, we have

℘′(z)℘′(z + ω1) ℘
′(z + ω2) ℘

′(z + ω3)

= (e1 − e2)
2 (e2 − e3)

2 (e3 − e1)
2 ℘′4(z)

3∏
r=1

{℘(z) − er }
−2

= 16 (e1 − e2)
2 (e2 − e3)

2 (e3 − e1)
2,

which is the discriminant g3
2 − 27g3

2 in question.

Example 20.3.10 (Math. Trip. 1913) Shew that, with appropriate interpretations of the
radicals,

℘′
( 1

2ω1
)
= −2 {(e1 − e2) (e1 − e3)}

1
2

{
(e1 − e2)

1
2 + (e1 − e3)

1
2

}
.

Example 20.3.11 Shew that, with appropriate interpretations of the radicals,

{℘(2z) − e2}
1
2 + {℘(2z) − e3}

1
2 {℘(2z) − e3}

1
2 {℘(2z) − e1}

1
2

+ {℘(2z) − e1}
1
2 {℘(2z) − e2}

1
2 = ℘(z) − ℘(2z).

20.4 Quasi-periodic functions. The function ζ(z)
We shall next introduce the function ζ(z) defined by the equation10

dζ(z)
dz
= −℘(z),

coupled with the condition lim
z→0

{
℘(z) − z−1

}
= 0.

Since the series for ℘(z) − z−2 converges uniformly throughout any domain from which
the neighbourhoods of the points11 Ω′m,n are excluded, we may integrate term-by-term (§4.7)
and get

ζ(z) − z−1 = −

∫ z

0

{
℘(z) − z−2} dz

= −
∑′

m,n

∫ x

0

{
(z −Ωm,n)

−2 −Ω−2
m,n

}
dz,

10 This function should not, of course, be confused with the zeta-function of Riemann, discussed in Chapter 13.
11 The symbol Ω′m,n is used to denote all the points Ωm,n with the exception of the origin (cf. §20.2).
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and so

ζ(z) =
1
z
+

∑′

m,n

{
1

z −Ωm,n

+
1

Ωm,n

+
z

Ω2
m,n

}
.

The reader will easily see that the general term of this series is

O (|Ωm,n |
−3) as |Ωm,n | → ∞;

and hence (cf. §20.2), ζ(z) is an analytic function of z over the whole z-plane except at simple
poles (the residue at each pole being +1) at all the points of the set Ωm,n.

It is evident that

−ζ(−z) =
1
z
+

∑′

m,n

{
1

z +Ωm,n

−
1

Ωm,n

+
z

Ω2
m,n

}
,

and, since this series consists of the terms of the series for ζ(z) deranged in the same way as
in the corresponding series of §20.21, we have, by §2.52,

ζ(−z) = −ζ(z),

that is to say, ζ(z) is an odd function of z.
Following up the analogy of §20.222, we may compare ζ(z)with the function cot z defined

by the series

z−1 +

∞∑
m=−∞

{
(z − mπ)−1 + (mπ)−1}

the equation
d
dz

cot z = − cosec2 z corresponding to
d
dz
ζ(z) = −℘(z).

20.41 The quasi-periodicity of the function ζ(z)
The heading of §20.4 was an anticipation of the result, which will now be proved, that ζ(z)
is not a doubly-periodic function of z; and the effect on ζ(z) of increasing z by 2ω1, or by
2ω2 will be considered. It is evident from (20.12) in §20.12 that ζ(z) cannot be an elliptic
function, in view of the fact that the residue of ζ(z) at every pole is +1.

If now we integrate the equation ℘(z + 2ω1) = ℘(z),we get

ζ(z + 2ω1) = ζ(z) + 2η1,

where 2η1 is the constant introduced by integration; putting z = −ω1 and taking account of the
fact that ζ(z) is an odd function, we have η1 = ζ(ω1). In like manner, ζ(z+2ω2) = ζ(z)+2η2,
where η2 = ζ(ω2).

Example 20.4.1 (Frobenius and Stickelberger, [229]). Prove by Liouville’s theorem that, if
x + y + z = 0, then

{ζ(x) + ζ(y) + ζ(z)}2 + ζ ′(x) + ζ ′(y) + ζ ′(z) = 0.

Note This result is a pseudo-addition-theorem. It is not a true addition-theorem since ζ ′(x),
ζ ′(y), ζ ′(z) are not algebraic functions of ζ(x), ζ(y), ζ(z).
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Example 20.4.2 (Math. Trip. 1894) Prove by Liouville’s theorem that������1 ℘(x) ℘2(x)
1 ℘(y) ℘2(y)

1 ℘(z) ℘2(z)

������
2/ ������1 ℘(x) ℘′(x)

1 ℘(y) ℘′(y)

1 ℘(z) ℘′(z)

������ = ζ(x + y + z) − ζ(x) − ζ(y) − ζ(z).

Obtain a generalisation of this theorem involving n variables.

20.411 The relation between η1 and η2

We shall now shew that

η1ω2 − η2ω1 =
πi
2
.

To obtain this result consider
∫
C

ζ(z) dz taken round the boundary of a cell. There is one

pole of ζ(z) inside the cell, the residue there being +1. Hence∫
C

ζ(z) dz = 2πi.

Modifying the contour integral in the manner of §20.12, we get

2πi =
∫ t+2ω1

t

{ζ(z) − ζ(z + 2ω2)} dz −
∫ t+2ω2

t

{ζ(z) − ζ(z + 2ω1)} dz

= −2η2

∫ t+2ω1

t

dt + 2η1

∫ t+2ω2

t

dt,

and so 2πi = −4η2ω1 + 4η1ω2,which is the required result.

20.42 The function σ(z)
We shall next introduce the function σ(z), defined by the equation

d
dz

logσ(z) = ζ(z)

coupled with the condition lim
z→0

σ(z)/z = 1.
On account of the uniformity of convergence of the series for ζ(z), except near the poles

of ζ(z), we may integrate the series term-by-term. Doing so, and taking the exponential of
each side of the resulting equation, we get

σ(z) = z
∏′

m,n

{(
1 −

z
Ωm,n

)
exp

(
z

Ωm,n

+
z2

2Ω2
m,n

)}
;

the constant of integration has been adjusted in accordance with the condition stated.
By themethods employed in §§20.2, 20.12, 20.4, the reader will easily obtain the following

results:

(I) The product for σ(z) converges absolutely and uniformly in any bounded domain of
values of z.
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(II) The function σ(z) is an odd integral function of z with simple zeros at all the points
Ωm,n.

The function σ(z) may be compared with the function sin z defined by the product

z
∞∏′

m=−∞

{(
1 −

z
mπ

)
ez/(mπ)

}
,

the relation
d
dz

log sin z = cot z corresponding to
d
dz

logσ(z) = ζ(z).

20.421 The quasi-periodicity of the function σ(z)
If we integrate the equation

ζ(z + 2ω1) = ζ(z) + 2η1,

we get σ(z + 2ω1) = ce2η1zσ(z), where c is the constant of integration; to determine c, we
put z = −ω1, and then

σ(ω1) = −ce−2η1ω1σ(ω1).

Consequently c = −e2η1ω1, and σ(z + 2ω1) = −e2η1(z+ω1)σ(z). In like manner σ(z + 2ω2) =

e2η2(z+ω2)σ(z).
These results exhibit the behaviour of σ(z) when z is increased by a period of ℘(z). If,

as in §20.32, we write ω3 = ω1 − ω2, then three other sigma-functions are defined by the
equations

σr (z) = e−ηr z
σ(z + ωr )

σ(ωr )
(r = 1,2,3).

The four sigma-functions are analogous to the four theta-functions discussed in Chapter 21
(see §21.9).

Example 20.4.3 Shew that, if m and n are any integers,

σ(z + 2mω1 + 2mω2)

= (−1)m+nσ(z) exp
{
(2mη1 + 2nη2)z + 2m2η1ω1 + 4mnη1ω2 + 2n2η2ω2

}
,

and deduce that η1ω2 − η2ω1 is an integer multiple of 1
2πi.

Example 20.4.4 Shew that, if q = exp(πiω2/ω1), so that |q | < 1, and if

F(z) = exp
(
η1z2

2ω1

)
sin

(
πz

2ω1

) ∞∏
n=1

{
1 − 2q2n cos

πz
ω1
+ q4n

}
,

then F(z) is an integral function with the same zeros as σ(z) and also F(z)/σ(z) is a
doubly-periodic function of z with periods 2ω1, 2ω2.

Example 20.4.5 Deduce from Example 20.4.4, by using Liouville’s theorem, that

σ(z) =
2ω1

π
exp

(
η1z2

2ω1

)
sin

(
πz

2ω1

) ∞∏
n=1

{
1 − 2q2n cos(πz/ω1) + q4n

(1 − q2n)2

}
.

Example 20.4.6 Obtain the result of Example 20.4.5 by expressing each factor on the right
as a singly infinite product.
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20.5 Formulae expressing any elliptic function in terms of Weierstrassian
functions with the same periods

There are various formulae analogous to the expression of any rational fraction as

(I) a quotient of two sets of products of linear factors,
(II) a sum of partial fractions; of the first type there are two formulae involving sigma-

functions and Weierstrassian elliptic functions respectively; of the second type there is
a formula involving derivatives of zeta-functions.

These formulae will now be obtained.

20.51 The expression of any elliptic function in terms of ℘(z) and ℘′(z)
Let f (z) be any elliptic function, and let ℘(z) be the Weierstrassian elliptic function formed
with the same periods 2ω1, 2ω2.

We first write

f (z) =
1
2
[ f (z) + f (−z)] +

1
2

[
f (z) − f (−z)

℘′(z)

]
℘′(z).

The functions
f (z) + f (−z), { f (z) − f (−z)} /℘′(z)

are both even functions, and they are obviously elliptic functions when f (z) is an elliptic
function.

The solution of the problem before us is therefore effected if we can express any even
elliptic function φ(z), say, in terms of ℘(z).

Let a be a zero of φ(z) in any cell; then the point in the cell congruent to −a will also be a
zero. The irreducible zeros of φ(z) may therefore be arranged in two sets, say a1,a2, . . . ,an

and certain points congruent to −a1,−a2, . . . ,−an. In like manner, the irreducible poles may
be arranged in two sets, say b1, b2, . . . , bn and certain points congruent to −b1,−b2, . . . ,−bn.

Consider now the function12

1
φ(z)

n∏
r=1

{
℘(z) − ℘(ar )

℘(z) − ℘(br )

}
.

It is an elliptic function of z, and clearly it has no poles; for the zeros of φ(z) are zeros (of the
same order of multiplicity) of the numerator of the product, and the zeros of the denominator
of the product are poles (of the same order) of φ(z). Consequently by Liouville’s theorem it
is a constant, A1, say.

Therefore

φ(z) = A1

n∏
r=1

{
℘(z) − ℘(ar )

℘(z) − ℘(br )

}
,

12 If any one of the points ar or br is congruent to the origin, we omit the corresponding factor ℘(z) − ℘(ar ) or
℘(z) − ℘(br ). The zero (or pole) of the product and the zero (or pole) of φ(z) at the origin are then of the
same order of multiplicity. In this product, and in that of §20.53, factors corresponding to multiple zeros and
poles have to be repeated the appropriate number of times.
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that is to say, φ(z) has been expressed as a rational function of ℘(z).
Carrying out this process with each of the functions

f (z) + f (−z), { f (z) − f (−z)} /℘′(z)

we obtain the theorem that any elliptic function f (z) can be expressed, in terms of the
Weierstrassian elliptic functions ℘(z) and ℘′(z) with the same periods, the expression being
rational in ℘(z) and linear in ℘′(z).

20.52 The expression of any elliptic function as a linear combination of
zeta-functions and their derivatives

Let f (z) be any elliptic function with periods 2ω1, 2ω2. Let a set of irreducible poles of f (z)
be a1,a2, . . . ,an, and let the principal part (§5.61) of f (z) near the pole ak be

ck ,1
z − ak

+
ck ,2

(z − ak)
2 + · · · +

ck ,rk
(z − ak)

rk
.

Then we can shew that

f (z) = A2 +

n∑
k=1

{
ck ,1ζ(z − ak) − ck ,2ζ ′(z − ak) + · · · +

(−1)rk−1ck ,rk
(rk − 1)!

ζ (rk−1)(z − ak)

}
,

where A2 is a constant, and ζ (s)(z) denotes
ds

dzs
ζ(z). Denoting the summation on the right

by F(z), we see that

F(z + 2ω1) − F(z) =
n∑

k=1

2η1ck ,1,

by §20.41, since all the derivatives of the zeta-functions are periodic. But
n∑

k=1
ck ,1 is the sum

of the residues of f (z) at all of its poles in a cell, and is consequently (§20.12) zero. Therefore
F(z) has period 2ω1, and similarly it has period 2ω2; and so f (z)−F(z) is an elliptic function.

Moreover F(z) has been so constructed that f (z) − F(z) has no poles at the points
a1,a2, . . . ,an; and hence it has no poles in a certain cell. It is consequently a constant,
A2, by Liouville’s theorem.
Thus the function f (z) can be expanded in the form

A2 +

n∑
k=1

rk∑
s=1

(−1)s−1

(s − 1)!
ck ,s ζ (s−1)(z − ak).

This result is of importance in the problem of integrating an elliptic function f (z) when
the principal part of its expansion at each of its poles is known; for we obviously have∫ z

f (z) dz = A2z +
n∑

k=1

[
ck ,1 logσ(z − ak)

+

rk∑
s=2

(−1)s−1

(s − 1) !
ck ,s ζ (s−2) (z − ak)

]
+ C,

where C is a constant of integration.
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Example 20.5.1 Shew by the method of this article that

℘2(z) = 1
6℘
′′(z) + 1

12g2,

and deduce that ∫ z

℘2(z) dz = 1
6℘
′(z) + 1

12g2z + C,

where C is a constant of integration.

20.53 The expression of any elliptic function as a quotient of sigma-functions
Let f (z) be any elliptic function, with periods 2ω1 and 2ω2, and let a set of irreducible zeros
of f (z) be a1,a2, . . . ,an. Then (§20.14) we can choose a set of poles b1, b2, . . . , bn such that
all poles of f (z) are congruent to one or other of them and

a1 + a2 + · · · + an = b1 + b2 + · · · + bn.

Multiple zeros or poles are, of course, to be reckoned according to their degree ofmultiplicity;
to determine b1, b2, . . . , bn, we choose b1, b2, . . . , bn−1, b′n to be the set of poles in the cell in
which a1,a2, . . . ,an lie, and then choose bn, congruent to b′n, in such a way that the required
equation is satisfied.

Consider now the function
n∏

r=1

σ(z − ar )

σ(z − br )
.

This product obviously has the same poles and zeros as f (z); also the effect of increasing z
by 2ω1 is to multiply the function by

n∏
r=1

exp {2η1(z − ar )}

exp {2η1(z − br )}
= 1.

The function therefore has period 2ω1 (and in like manner it has period 2ω2), and so the
quotient

f (z)
/ n∏

r=1

σ(z − ar )

σ(z − br )

is an elliptic function with no zeros or poles. By Liouville’s theorem, it must be a constant,
A3 say. Thus the function f (z) can be expressed in the form

f (z) = A3

n∏
r=1

σ (z − ar )

σ(z − br )
.

An elliptic function is consequently determinate (save for a multiplicative constant) when
its periods and a set of irreducible zeros and poles are known.

Example 20.5.2 Shew that

℘(z) − ℘(y) = −
σ(z + y)σ(z − y)

σ2(z)σ2(y)
.
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Example 20.5.3 Deduce by differentiation, from Example 20.5.1, that

1
2
℘′(z) − ℘′(y)
℘(z) − ℘(y)

= ζ(z + y) − ζ(z) − ζ(y),

and by further differentiation obtain the addition-theorem for ℘(z).

Example 20.5.4 If
n∑

r=1
ar =

n∑
r=1

br , shew that

n∑
r=1

σ(ar − b1)σ(ar − b2) · · ·σ(ar − bn)

σ(ar − a1)σ(ar − a2) · · · ∗ · · ·σ(ar − an)
= 0,

the ∗ denoting that the vanishing factor σ(ar − ar ) is to be omitted.

Example 20.5.5 Shew that

℘(z) − er =
σ2
r (z)
σ2(z)

(r = 1,2,3).

[It is customary to define {℘(z) − er }
1/2 to mean σr (z)/σ(z), not −σr (z)/σ(z).]

Example 20.5.6 Establish, by Example 20.5.1, the three-term equation, namely,

σ(z + a)σ(z − a)σ(b + c)σ(b − c) + σ(z + b)σ(z − b)σ(c + a)σ(c − a)

+ σ(z + c)σ(z − c)σ(a + b)σ(a − b) = 0.

This result is due to Weierstrass; see p. 47 of the edition of his lectures by Schwarz [589].

The equation is characteristic of the sigma-function; it has been proved by Halphen [268,
Vol. I, p. 187] that no function essentially different from the sigma-function satisfies an
equation of this type. See Example 20.38.

20.54 The connexion between any two elliptic functions with the same periods
We shall now prove the important result that an algebraic relation exists between any two
elliptic functions, f (z) and φ(z), with the same periods. For, by §20.51, we can express f (z)
and φ(z) as rational functions of the Weierstrassian functions ℘(z) and ℘′(z) with the same
periods, so that

f (z) = R1(℘(z), ℘′(z)), φ(z) = R2(℘(z), ℘′(z)),

where R1 and R2 denote rational functions of two variables.
Eliminating ℘(z) and ℘′(z) algebraically from these two equations and

(℘′)2(z) = 4℘3(z) − g2℘(z) − g3,

we obtain an algebraic relation connecting f (z) and φ(z); and the theorem is proved.
A particular case of the proposition is that every elliptic function is connected with its

derivate by an algebraic relation.
If now we take the orders of the elliptic functions f (z) and φ(z) to be m and n respectively,

then, corresponding to any given value of f (z) there is (§20.13) a set of m irreducible values
of z, and consequently there are m values (in general distinct) of φ(z). So, corresponding to
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each value of f , there are m values of φ and, similarly, to each value of φ correspond n values
of f .

The relation between f (z) and φ(z) is therefore (in general) of degree m in φ and n in f .
The relation may be of lower degree. Thus, if f (z) = ℘(z), of order 2, and φ(z) = ℘2(z), of
order 4, the relation is f 2 = φ.

As an illustration of the general result take f (z) = ℘(z), of order 2, and φ(z) = ℘′(z), of
order 3. The relation should be of degree 2 in φ and of degree 3 in f ; this is, in fact, the case,
for the relation is φ2 = 4 f 3 − g2 f − g3.

Example 20.5.7 If u, v, w are three elliptic functions of their argument of the second order
with the same periods, shew that, in general, there exist two distinct relations which are linear
in each of u, v, w namely

Auvw + Bvw + Cwu + Duv + Eu + Fv + Gw + H = 0,
A′uvw + B′vw + C ′wu + D′uv + E ′u + F ′v + G′w + H ′ = 0,

where A,B, . . . ,H ′ are constants.

20.6 On the integration of
(
a0x4 + 4a1x3 + 6a2x2 + 4a3x + a4

)−1/2

It will now be shewn that certain problems of integration, which are insoluble by means of
elementary functions only, can be solved by the introduction of the function ℘(z).

Let a0x4 + 4a1x3 + 6a2x2 + 4a3x + a4 ≡ f (x) be any quartic polynomial which has no
repeated factors; and let its invariants (see Burnside and Panton [111]) be

g2 ≡ a0a4 − 4a1a3 + 3a2
2,

g3 ≡ a0a2a4 + 2a1a2a3 − a3
2 − a0a2

3 − a2
1a4.

Let z =
∫ x

x0

{ f (t)}−
1
2 dt,where x0 is any root of the equation f (x) = 0; then, if the function

℘(z) be constructed (see §21.73) with the invariants g2 and g3, it is possible to express x as
a rational function of ℘(z; g2,g3).

Note The reason for assuming that f (x) has no repeated factors is that, when f (x) has
a repeated factor, the integration can be effected with the aid of circular or logarithmic
functions only. For the same reason, the case in which a0 = a1 = 0 need not be considered.

By Taylor’s theorem, we have

f (t) = 4A3(t − x0) + 6A2(t − x0)
2 + 4A1(t − x0)

3 + A0(t − x0)
4,

(since f (x0) = 0),where

A0 = a0, A1 = a0x0 + a1, A2 = a0x2
0 + 2a1x0 + a2,

A3 = a0x3
0 + 3a1x2

0 + 3a2x0 + a3.

On writing (t − x0)
−1 = τ, (x − x0)

−1 = ξ,we have

z =
∫ ∞

ξ

{
4A3τ

3 + 6A2τ
2 + 4A1τ + A0

}− 1
2 dτ.
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To remove the second term in the cubic involved, write13

τ = A−1
3

(
σ − 1

2 A2
)
, ξ = A−1

3
(
s − 1

2 A2
)
,

and we get

z =
∫ ∞

3

{
4σ3 − (3A2

2 − 4A1 A3)σ − (2A1 A2 A3 − A3
2 − A0 A2

3)
}− 1

2 dσ.

The reader will verify, without difficulty, that 3A2
2 − 4A1 A3 and 2A1 A2 A3 − A3

2 − A0 A2
3 are

respectively equal to g2 and g3, the invariants of the original quartic, and so s = ℘(z; g2,g3).
Now x = x0 + A3

{
s − 1

2 A2
}−1, and hence

x = x0 +
1
4 f ′(x0)

{
℘(z; g2,g3) −

1
24 f ′′(x0)

}−1
,

so that x has been expressed as a rational function of ℘(z; g2,g3).
This formula for x is to be regarded as the integral equivalent of the relation

z =
∫ x

x0

{ f (t)}−
1
2 dt.

Example 20.6.1 With the notation of this article, shew that

{ f (x)}
1
2 =

− f ′(x0)℘
′(z)

4
{
℘(z) − 1

24 f ′′(x0)
}2 .

Example 20.6.2 (Weierstrass) Shew that, if

z =
∫ x

a

{ f (t)}−
1
2 dt,

where a is any constant, not necessarily a zero of f (x), and f (x) is a quartic polynomial with
no repeated factors, then

x = a +
{ f (a)}

1
2 ℘′(z) + 1

2 f ′(a)
{
℘(z) − 1

24 f ′′(a)
}
+ 1

24 f (a) f ′′′(a)

2
{
℘(z) − 1

24 f ′′(a)
}2
− 1

48 f (a) f iv(a)

the function ℘(z) being formed with the invariants of the quartic f (x).

Note This result was first published in 1865, in an Inaugural-dissertation at Berlin by
Biermann, who ascribed it to Weierstrass. An alternative result, due to Mordell [473], is that,
if

z =
∫ x,y

a,b

y dx − x dy√
f (x, y)

,

where f (x, y) is a homogeneous quartic whose Hessian is h(x, y), then we may take

x = a℘′(z)
√

f + 1
2℘(z) fb +

1
2 hb,

y = b℘′(z)
√

f − 1
2℘(z) fa −

1
2 ha,

where f and h stand for f (a, b) and h(a, b), and suffixes denote partial differentiations.
13 This substitution is legitimate since A3 , 0; for the equation A3 = 0 involves f (x) = 0 having x = x0 as a

repeated root.



20.7 The uniformisation of curves of genus unity 477

Example 20.6.3 Shew that, with the notation of Example 20.6.1

℘(z) =
{ f (x) f (a)}

1
2 + f (a)

2(x − a)2
+

f ′(a)
4(x − a)

+
f ′′(a)
24

,

and

℘′(z) = −
{

f (x)
(x − a)3

−
f ′(x)

4(x − a)2

}
{ f (a)}

1
2 −

{
f (a)
(x − d)3

+
f ′(a)

4(x − a)2

}
{ f (x)}

1
2 .

20.7 The uniformisation of curves of genus unity
The theorem of §20.6 may be stated somewhat differently thus:

If the variables x and y are connected by an equation of the form

y2 = a0x4 + 4a1x3 + 6a2x2 + 4a3x + a4,

then they can be expressed as one-valued functions of a variable z by the equations

x = x0 +
1
4

f ′(x0)
{
℘(z) − 1

24 f ′′(x0)
}−1

y = −
1
4

f ′(x0)℘
′(z)

{
℘(z) − 1

24 f ′′(x0)
}−2

where f (x) = a0x4 + 4a1x3 + 6a2x2 + 4a3x + a4x0 is any zero of f (x), and the function ℘(z)
is formed with the invariants of the quartic; and z is such that

z =
∫ x

x0

{ f (t)}−
1
2 dt.

This term employs the word uniform in the sense one-valued. To prevent confusion with the
idea of uniformity as explained in Chapter 3, throughout the present work we have used the
phrase one-valued function as being preferable to uniform function.

It is obvious that y is a two-valued function of x and x is a four-valued function of y;
and the fact, that x and y can be expressed as one-valued functions of the variable z, makes
this variable z of considerable importance in the theory of algebraic equations of the type
considered; z is called the uniformising variable of the equation

y2 = a0x4 + 4a1x3 + 6a2x2 + 4a3x + a4.

The reader who is acquainted with the theory of algebraic plane curves will be aware
that they are classified according to their deficiency or genus, a number whose geometrical
significance is that it is the difference between the number of double points possessed by the
curve and the maximum number of double points which can be possessed by a curve of the
same degree as the given curve.

Curves whose deficiency is zero are called unicursal. If f (x, y) = 0 is the equation of a
unicursal curve, it is well known (see Salmon [571, Chapter 2]) that x and y can be expressed
as rational functions of a parameter. Since rational functions are one-valued, this parameter
is a uniformising variable for the curve in question.

Next consider curves of genus unity; let f (x, y) = 0 be such a curve; then it has been
shewn by Clebsch [150] that x and y can be expressed as rational functions of ξ and η where
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η2 is a polynomial in ξ of degree three or four. (A proof of the result of Clebsch is given by
Forsyth [220, §248]. See also Cayley [134].)

Hence, by §20.6, ξ and η can be expressed as rational functions of ℘(z) and ℘′(z) (these
functions being formed with suitable invariants), and so x and y can be expressed as one-
valued (elliptic) functions of z, which is therefore a uniformising variable for the equation
under consideration.

When the genus of the algebraic curve f (x, y) = 0 is greater than unity, the uniformisation
can be effected by means of what are known as automorphic functions. Two classes of such
functions of genus greater than unity have been constructed, the first byWeber [658], the other
by Whittaker [669]. The analogue of the period-parallelogram is known as the ‘fundamental
polygon’. In the case ofWeber’s functions this polygon is ‘multiply-connected’, i.e. it consists
of a region containing islands which have to be regarded as not belonging to it; whereas in
the case of the second class of functions, the polygon is ‘simply-connected’, i.e. it contains
no such islands. The latter class of functions may therefore be regarded as a more immediate
generalisation of elliptic functions. See Ford [213].

20.8 Miscellaneous examples
Example 20.1 Shew that

℘(z + y) − ℘(z − y) = −℘′(z)℘′(y) {℘(z) − ℘(y)}−2 .

Example 20.2 (Math. Trip. 1897) Prove that

℘(z) − ℘(z + y + w) = 2
∂

∂z

∑
℘2(z) {℘(y) − ℘(w)}∑
℘′(z) {℘(y) − ℘(w)}

,

where, on the right-hand side, the subject of differentiation is symmetrical in z, y, and w.

Example 20.3 (Trinity, 1898) Shew that������℘
′′′(z − y) ℘′′′(y − w) ℘′′′(w − z)
℘′′(z − y) ℘′′(y − w) ℘′′(w − z)
℘(z − y) ℘(y − w) ℘(w − z)

������ = 1
2
g2

������℘
′′′(z − y) ℘′′′(y − w) ℘′′′(w − z)
℘(z − y) ℘(y − w) ℘(w − z)

1 1 1

������ .
Example 20.4 (Math. Trip. 1897) If y = ℘(z) − e1, y′ =

dy
dz

; shew that y is one of the
values of {

y′
(
y −

1
4

d2

dz2 log y′
) 1

2

+ (e1 − e2)(e1 − e3)

} 1
2

.

Example 20.5 (Math. Trip. 1896) Prove that∑
{℘(z) − e} {℘(y) − ℘(w)}2 {℘(y + w) − e}

1
2 {℘(y − w) − e}

1
2 = 0,

where the sign of summation refers to the three arguments z, y, w, and e is any one of the
roots e1, e2, e3.
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Example 20.6 (Math. Trip. 1894) Shew that

℘′(z + w1)

℘′(z)
= −

{
℘

( 1
2w1

)
− ℘(w1)

℘(z) − ℘(w1)

}2

.

Example 20.7 (Math. Trip. 1894) Prove that

℘(2z) − ℘(w1) = {℘
′(z)}−2 {

℘(z) − ℘
( 1

2w1
)}2 {

℘(z) − ℘
(
w2 +

1
2w1

)}2
.

Example 20.8 (Trinity, 1908) Shew that

℘(u + v) ℘(u − v) =

{
℘(u)℘(v) + 1

4g2
}2
+ g3 {℘(u) + ℘(v)}

{℘(u) − ℘(v)}2
.

Example 20.9 (Math. Trip. 1914) If ℘(u) have primitive periods 2ω1, 2ω2 and f (u) =
{℘(u) − ℘(ω2)}

1/2, while ℘1(u) and f1(u) are similarly constructed with periods 2ω1/n and
2ω2, prove that

℘1(u) = ℘(u) +
n−1∑
m=1

{℘ (u + 2mω1/n) − ℘ (2mω1/n)} ,

and

f1(u) =

n−1∏
m=0

f (u + 2mω1/n)

n−1∏
m=1

f (2mω1/n)
.

The first of the formulae is due to Kiepert [371].

Example 20.10 (Burnside [110]) If x = ℘(u + a), y = ℘(u − a), where a is constant, shew
that the curve on which (x, y) lies is(

xy + cx + cy + 1
4g2

)2
= 4(x + y + c)

(
cxy − 1

4g3
)
,

where c = ℘(2a).

Example 20.11 (Trinity, 1909) Shew that

2(℘′′)3(u) − 3g2(℘
′′)2(u) + g3

2 = 27
{
(℘′)2(u) + g3

}2
.

Example 20.12 (Trinity, 1905) If z =
∫ x

−∞

(
x4 + 6cx2 + e2)− 1

2 dx, verify that

x =
1
2℘
′(z)

℘(z) + c
,

the elliptic function being formed with the roots −c, 1
2 (c + e), 1

2 (c − e).
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Example 20.13 (Math. Trip. 1897) If m be any constant, prove that

1
℘′(y)

∫
em{℘(z)−℘(y)}℘′2(z) dz

℘(z) − ℘(y)
+ ℘′(z)

∫
em{℘(z)−℘(y)} dy
℘(z) − ℘(y)

= −
1
2

∑
r

∫ ∫
em{℘(z)−℘(y)}℘′2(z) dz dy
{℘(z) − er } {℘(y) − er }

,

where the summation refers to the values 1, 2, 3 of r; and the integrals are indefinite.

Example 20.14 (Hermite [295]) Let R(x) = Ax4 + Bx3 +Cx2 + Dx + E , and let ξ = φ(x)
be the function defined by the equation

x =
∫ ξ

{R(ξ)}−
1
2 dξ,

where the lower limit of the integral is arbitrary. Shew that

2φ′(a)
φ(x + y) − φ(a)

=
φ′(a + y) + φ′(a)
φ(a + y) − φ(a)

+
φ′(a − y) + φ′(a)
φ(a − y) − φ(a)

−
φ′(a + y) − φ′(x)
φ(a + y) − φ(x)

−
φ′(a − y) − φ′(x)
φ(a − y) − φ(x)

.

This formula is an addition-formula which is satisfied by every elliptic function of order 2.

Example 20.15 (De Brun [104]) Shew that, when the change of variables

ξ ′ =
ξ

η
, η′ =

ξ3

η2

is applied to the equations

η2 + η(1 + pξ) + ξ3 = 0, du −
dξ

2η + 1 + pξ
= 0,

they transform into the similar equations

(η′)2 + η′(1 + pξ ′) + (ξ ′)3 = 0, du −
dξ ′

2η′ + 1 + pξ ′
= 0.

Shew that the result of performing this change of variables three times in succession is a
return to the original variables ξ, η; and hence prove that, if ξ and η be denoted as functions
of u by E(u) and F(u) respectively, then

E(u + A) =
E(u)
F(u)

, F(u + A) =
E3(u)
F2(u)

,

where A is one-third of a period of the functions E(u) and F(u).
Shew that

E(u) = 1
12 p2 − ℘(u; g2,g3),

where g2 = 2p + 1
12 p4, g3 = −1 − 1

6 p3 − 1
216 p6.
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Example 20.16 (Math. Trip. 1913) Shew that

℘′(z) =
2σ(z + ω1)σ(z + ω2)σ(z − ω1 − ω2)

σ3(z)σ(ω1)σ(ω2)σ(ω1 + ω2)
,

and

℘′′(z) =
6σ(z + a)σ(z − a)σ(z + c)σ(z − c)

σ4(z)σ2(a)σ2(c)
,

where ℘(a) = ( 1
12g2)

1
2 , ℘(c) = −( 1

12g2)
1
2 .

Example 20.17 (Math. Trip. 1895) Prove that

℘(z − a) ℘(z − b) =℘(a − b) {℘(z − a) + ℘(z − b) − ℘(a) − ℘(b)}

+ ℘′(a − b) {ζ(z − a) − ζ(z − b) + ζ(a) − ζ(b)} + ℘(a)℘(b).

Example 20.18 (Math. Trip. 1910) Shew that

1
2

{
℘′(u) + ℘′(w)
℘(u) − ℘(w)

−
℘′(v) + ℘′(w)

℘(v) − ℘(w)

}
= −ζ(w − u) + ζ(w − v) + ζ(v) − ζ(u).

Example 20.19 (Math. Trip. 1912) Shew that

ζ(u1) + ζ(u2) + ζ(u3) − ζ(u1 + u2 + u3)

=
2{℘(u1) − ℘(u2)} {℘(u2) − ℘(u3)} {℘(u3) − ℘(u1)}

℘′(u1){℘(u2) − ℘(u3) } + ℘′(u2) {℘(u3) − ℘(u1)} + ℘′(u3) {℘(u1) − ℘(u2)}
.

Example 20.20 Shew that

σ(x + y + z)σ(x − y)σ(y − z)σ(z − x)
σ3(x)σ3(y)σ3(z)

= 1
2

������1 ℘(x) ℘′(x)
1 ℘(y) ℘′(y)

1 ℘(z) ℘′(z)

������
Obtain the addition-theorem for the function ℘(z) from this result.

Example 20.21 (Frobenius and Stickelberger [228]. See also Kiepert [370]; Hermite [290].)
Shew by induction, or otherwise, that���������

1 ℘(z0) ℘′(z0) · · · ℘(n−1)(z0)

1 ℘(z1) ℘′(z1) · · · ℘(n−1)(z1)
...

...
...

...
...

1 ℘(zn) ℘′(zn) · · · ℘(n−1)(zn)

���������
= (−1)

1
2 n(n−1)1! 2! · · · n!

σ(z0 + z1 + · · · + zn)
∏
σ(zλ − zµ)

σn+1(z0) · · ·σn+1(zn)
,

where the product is taken for pairs of all integral values of λ and µ from 0 to n, such that
λ < µ.

Example 20.22 (Math. Trip. 1911) Express��������
1 ℘(x) ℘2(x) ℘′(x)
1 ℘(y) ℘2(y) ℘′(y)

1 ℘(z) ℘2(z) ℘′(z)
1 ℘(u) ℘2(u) ℘′(u)

��������
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as a fraction whose numerator and denominator arc products of sigma-functions. Deduce
that if α = ℘(x), β = ℘(y), γ = ℘(z), δ = ℘(u),where x + y + z + u = 0, then

(e2 − e3){(α − e1)(β − e1) (γ − e1) (δ − e1)}
1
2

+ (e3 − e1){(α − e2)(β − e2)(γ − e2)(δ − e2)}
1
2

+ (e1 − e2){(α − e3)(β − e3)(γ − e3)(δ − e3)}
1
2

= (e2 − e3)(e3 − e1)(e1 − e2).

Example 20.23 (Math. Trip. 1905) Shew that

2ζ(2u) − 4ζ(u) =
℘′′(u)
℘′(u)

,

3ζ(3u) − 9ζ(u) =
℘′3(u)

℘4(u) − 1
2g2℘2(u) − g3℘(u) − 1

48g
2
2

.

Example 20.24 (Math. Trip. 1912) Shew that
σ(2u)
σ4(u)

= −℘′(u),
σ(3u)
σ9(u)

= 3℘(u)℘′2(u) −
1
4
℘′′2(u),

and prove that σ(nu)/{σ(u)}n
2 is a doubly-periodic function of u.

Example 20.25 (Math. Trip. 1895) Prove that

ζ(z − a) − ζ(z − b) − ζ(a − b) + ζ(2a − 2b) =
σ(z − 2a + b)σ(z − 2b + a)
σ(2b − 2a)σ(z − a)σ(z − b)

.

Example 20.26 (Math. Trip. 1897) Shew that, if z1 + z2 + z3 + z4 = 0, then{∑
ζ (zr )

}3
= 3

{∑
ζ (zr )

} {∑
℘ (zr )

}
+

∑
℘′ (zr ) ,

the summations being taken for r = 1, 2, 3, 4.

Example 20.27 (Painlevé [514]) Shew that every elliptic function of order n can be ex-
pressed as the quotient of two expressions of the form

a1℘(z + b) + a2℘
′(z + b) + · · · + an℘

(n−1) (z + b) ,

where b, a1,a2, . . . ,an are constants.

Example 20.28 (Math. Trip. 1914) Taking e1 > e2 > e3, ℘(ω) = e1, ℘(ω′) = e3, consider
the values assumed by

ζ(u) − uζ(ω′)/ω′

as u passes along the perimeter of the rectangle whose corners are −ω, ω, ω + ω′, −ω − ω′.

Example 20.29 (Math. Trip. 1912) Obtain an integral of the equation

1
w

d2w

dz2 = 6℘(z) + 3b

in the form
d
dz

[
σ(z + c)
σ(z)σ(c)

exp
{

z℘′(c)
b − 2℘(c)

− zζ(c)
}]
,
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where c is defined by the equation

(b2 − 3g2) ℘(c) = 3(b3 + g3).

Also, obtain another integral in the form

σ(z + a1)σ(z + a2)

σ2(z)
exp{−zζ(a1) − zζ(a2)},

where ℘(a1)+ ℘(a2) = b, ℘′(a1)+ ℘
′(a2) = 0, and neither a1 + a2 nor a1 − a2 is congruent to

a period.

Example 20.30 (Math. Trip. 1893) Prove that

g(z) =
σ(z + z1)σ(z + z2)σ(z + z3)σ(z + z4)

σ{2z + 1
2 (z1 + z2 + z3 + z4)}

is a doubly-periodic function of z, such that

g(z) + g(z + ω1) + g(z + ω2) + g(z + ω1 + ω2)

= −2σ
{ 1

2 (z2 + z1 − z1 − z4)
}
σ

{ 1
2 (z3 + z1 − z2 − z4)

}
σ

{ 1
2 (z1 + z2 − z3 − z4)

}
.

Example 20.31 (Math. Trip. 1894) If f (z) be a doubly-periodic function of the third order,
with poles at z = c1, z = c2, z = c3, and if φ(z) be a doubly-periodic function of the second
order with the same periods and poles at z = α, z = β, its value in the neighbourhood of
z = α being

φ(z) =
λ

z − α
+ λ1(z − α) + λ2(z − α)2 + · · · ,

prove that

1
2
λ2 { f ′′(α) − f ′′(β)} − λ { f (α) + f ′(β)}

3∑
1

φ(c1)+

{ f (α) − f (β)}

{
3λλ1 +

3∑
1

φ(c2)φ (c3)

}
= 0.

Example 20.32 (Math. Trip. 1893) If λ(z) be an elliptic function with two poles a1, a2, and
if z1, z2, . . . , z2n be 2n constants subject only to the condition

z1 + z2 + · · · + z2n = n(a1 + a2),

shew that the determinant whose ith row is

1, λ(zi), λ2(zi), . . . , λn(zi), λ1(zi), λ(zi)λ1(zi), λ2(zi)λ1(zi), . . . , λn−2(zi)λ1(zi)

where λ1(zi) denotes the result of writing zi for z in the derivative of λ(z), vanishes identically.

Example 20.33 (Kiepert [371]) Deduce from Example 20.21 by a limiting process, or
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otherwise prove, that���������
℘′(z) ℘′′(z) · · · ℘(n−1)(z)
℘′′(z) ℘′′′(z) · · · ℘(n)(z)
...

...
...

...

℘(n−1)(z) ℘(n)(z) · · · ℘(2n−3)(z)

��������� = (−1)n−1{1! 2! · · · (n − 1)!}2
σ(nu)
{σ(u)}n2 .

Example 20.34 (Math. Trip. 1895) Shew that, provided certain conditions of inequality
are satisfied,

σ(z + y)

σ(z)σ(y)
e−η1zy/ω1 =

π

2ω1

(
cot

πz
2ω1
+ cot

πy

2ω1

)
+

2π
ω1

∑
q2mn sin

π

ω1
(mz + ny),

where the summation applies to all positive integer values of m and n, and q = exp(πiω2/ω1).

Example 20.35 (Math. Trip. 1896) Assuming the formula

σ(z) = e
η1z

2

2ω1
2ω1

π
sin

πz
2ω1

∞∏
n=1

1 − 2q2n cos πz
ω1
+ q4n

(1 − q2n)2
,

prove that

℘(z) = −
η1

ω1
+

(
π

2ω1

)2

cosec2 πz
2ω1
− 2

(
π

ω1

)2 ∞∑
n=1

nq2n

1 − ζ2n cos
nπz
ω1

when z satisfies the inequalities

−2 Re
(
ω2

iω1

)
< Re

(
z

iω1

)
< 2 Re

(
ω2

iω1

)
.

Example 20.36 (Trinity, 1898) Shew that if 2ω̄ be any expression of the form 2mω1+2nω2

and if
x = ℘

( 2
5 ω̄

)
+ ℘

( 4
5 ω̄

)
,

then x is a root of the sextic

x6 − 5g2x4 − 40g3x3 − 5g2
2 x2 − 8g2g3x − 5g2

3 = 0,

and obtain all the roots of the sextic.

Example 20.37 (Dolbnia [185]) Shew that∫ {
(x2 − a)(x2 − b)

}− 1
4 dx = −

1
2

log
σ(z − z0)

σ(z + z0)
+

i
2

log
σ(z − iz0)

σ(z + iz0)
,

where

x2 = a +
1

6(℘2(z) − ℘2(z0))
, g2 =

2b
3a(a − b)

, g3 = 0, ℘2(z0) =
1

6(a − b)
.

Example 20.38 (Hermite [294]) Prove that every analytic function f (z) which satisfies the
three-term equation ∑

a,b,c

f (z + a) f (z − a) f (b + c) f (b − c) = 0,
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for general values of a, b, c and z, is expressible as a finite combination of elementary
functions, together with a sigma-function (including a circular function or an algebraic
function as degenerate cases). Hint. Put z = a = b = c = 0, and then f (0) = 0; put b = c,
and then f (a − b) + f (b − a) = 0, so that f (z) is an odd function.

If F(z) is the logarithmic derivative of f (z), the result of differentiating the relation with
respect to b, and then putting b = c, is

f (z + a) f (z − a) f (2b) f ′(0)
f (z + b) f (z − b) f (a + b) f (a − b)

= F(z + b) − F(z − b) + F(a − b) − F(a + b).

Differentiate with respect to b, and put b = 0; then

f (z + a) f (z − a){ f ′(0)}
{ f (z) f (a)}2

= F ′(z) − F ′′(a).

If f ′(0) were zero, F ′(z) would be a constant and, by integration, f (z) would be of the form
A exp(Bz + Cz2), and this is an odd function only in the trivial case when it is zero.
If f ′(0) , 0, and we write F ′(z) = −φ(z), it is found that the coefficient of a4 in the

expansion of
12 f (z + a) f (z − a)/{ f (z)}2

is 6{φ(z)}2 − φ′′(z), and the coefficient of a4 in 12{ f (a)}2{φ(a) − φ(z)} is a linear function
of φ(z). Hence φ′′(z) is a quadratic function of φ(z); and when we multiply this function by
φ′(z) and integrate we find that

{φ′(z)}2 = 4{φ(z)}3 + 12A{φ(z)}2 + 12Bφ(z) + 4C,

where A, B, C are constants. If the cubic on the right has no repeated factors, then, by §20.6,
φ(z) = ℘(z + a) + A,where a is a constant, and on integration

f (z) = σ(z + a) exp(− 1
2 Az2 − Kz − L),

where K and L are constants; since f (z) is an odd function a = K = 0, and

f (z) = σ(z) exp{− 1
2 Az2 − L}.

If the cubic has a repeated factor, the sigma-function is to be replaced (cf. §20.222) by the
sine of a multiple of z, and if the cubic is a perfect cube the sigma-function is to be replaced
by a multiple of z.
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The Theta-Functions

21.1 The definition of a theta-function
When it is desired to obtain definite numerical results in problems involving elliptic functions,
the calculations are most simply performed with the aid of certain auxiliary functions known
as theta-functions. These functions are of considerable intrinsic interest, apart from their
connexion with elliptic functions, and we shall now give an account of their fundamental
properties.

The theta-functions were first systematically studied by Jacobi [349], who obtained their
properties by purely algebraical methods; and his analysis was so complete that practically
all the results contained in this chapter (with the exception of the discussion of the problem
of inversion in §§21.7 et seq.) are to be found in his works. In accordance with the general
scheme of this book, we shall not employ the methods of Jacobi, but the more powerful
methods based on the use of Cauchy’s theorem. These methods were first employed in the
theory of elliptic and allied functions by Liouville in his lectures and have since been given
in several treatises on elliptic functions, the earliest of these works being that by Briot and
Bouquet [100].

Note The first function of the theta-function type to appear in Analysis was the partition
function1

∞∏
n=1
(1 − xnz)−1 of Euler [207, §304]; by means of the results given in §21.3, it is

easy to express theta-functions in terms of partition functions. Euler also obtained properties
of products of the type

∞∏
n=1

(1 ± xn),

∞∏
n=1

(1 ± x2n),

∞∏
n=1

(1 ± x2n−1).

The associated series
∞∑
n=0

m
1
2 n(n+3),

∞∑
n=0

m
1
2 n(n+1) and

∞∑
n=0

mn2 had previously occurred in the

posthumous work of Jakob Bernoulli [66, p. 55]. Theta-functions also occur in Fourier [223,
p. 265].

The theory of theta-functions was developed from the theory of elliptic functions by Jacobi
in his Fundamenta Nova Theoriae Functionum Ellipticarum (1829) [349], reprinted in his
Ges. Werke [354, Vol. I, pp. 49–239]; the notation there employed is explained in §21.62.

1 The partition function and associated functions have been studied by Gauss [238, vol. II, p. 16–21; vol. III,
p. 433–480] and Cauchy [126]. For a discussion of properties of various functions involving what are known
as Basic numbers (which are closely connected with partition functions) see Jackson [340, 341, 342, 343] and
Watson [649]. A fundamental formula in the theory of Basic numbers was given by Heine [287, vol. I, p. 107].

486
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In his subsequent lectures, he introduced the functions discussed in this chapter; an account
of these lectures (1838) is given by Borchardt [84]. The most important results contained in
them seem to have been discovered in 1835, cf. Kronecker [387].

Let τ be a (constant) complex number whose imaginary part is positive; and write q = eπiτ ,
so that |q | < 1. Consider the function ϑ(z,q), defined by the series

ϑ(z,q) =
∞∑

n=−∞

(−1)nqn2
e2niz,

qua function of the variable z. If A be any positive constant, then, when |z | ≤ A, we have���qn2
e±2niz

��� ≤ |q |n2
e2nA,

n being a positive integer. Now d’Alembert’s ratio (§2.36) for the series
∞∑

n=−∞
|q |n

2
e2nA is

|q |2n+1e2A, which tends to zero as n → ∞. The series for ϑ(z,q) is therefore a series of
analytic functions, uniformly convergent (§3.34) in any bounded domain of values of z, and
so it is an integral function (§5.3, §5.64).

It is evident that

ϑ(z,q) = 1 + 2
∞∑
n=1

(−1)nqn2
cos 2nz,

and that ϑ(z + π,q) = ϑ(z,q); further

ϑ(z + πτ,q) =
∞∑

n=−∞

(−1)nqn2
q2n e2niz

= −q−1e−2iz
∞∑

n=−∞

(−1)n+1q(n+1)2 e2(n+1)iz,

and so ϑ(z + πτ,q) = −q−1 e−2izϑ(z,q).
In consequence of these results, ϑ(z,q) is called a quasi doubly-periodic function of z.

The effect of increasing z by π or πτ is the same as the effect of multiplying ϑ(z,q) by 1 or
−q−1e−2iz , and accordingly 1 and −q−1e−2iz are called the multipliers or periodicity factors
associated with the periods π and πτ respectively.

21.11 The four types of theta-functions
It is customary to write ϑ4(z,q) in place of ϑ(z,q); the other three types of theta-functions
are then defined as follows: The function ϑ3(z,q) is defined by the equation

ϑ3(z,q) = ϑ4
(
z + 1

2π,q
)
= 1 + 2

∞∑
n=1

qn2
cos 2nz.
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Next, ϑ1(z,q) is defined in terms of ϑ4(z,q) by the equation

ϑ1(z,q) = −ieiz+
1
4 πiτϑ4

(
z + 1

2πτ,q
)

= −i
∞∑

n=−∞

(−1)nq

(
n+

1
2

)2

e(2n+1)iz,

and hence2

ϑ1(z,q) = 2
∞∑
n=0

(−1)nq

(
n+

1
2

)2

sin(2n + 1)z.

Lastly, ϑ2(z,q) is defined by the equation

ϑ2(z,q) = ϑ1
(
z + 1

2π,q
)
= 2

∞∑
n=0

q(n+
1
2 )

2

cos(2n + 1)z.

Writing down the series at length, we have

ϑ1(z,q) = 2q
1
4 sin z − 2q

9
4 sin 3z + 2q

25
4 sin 5z − · · · ,

ϑ2(z,q) = 2q
1
4 cos z + 2q

9
4 cos 3z + 2q

25
4 cos 5z + · · · ,

ϑ3(z,q) = 1 + 2q cos 2z + 2q4 cos 4z + 2q9 cos 6z + · · · ,

ϑ4(z,q) = 1 − 2q cos 2z + 2q4 cos 4z − 2q9 cos 6z + · · · .

It is obvious that ϑ1(z,q) is an odd function of z and that the other theta-functions are even
functions of z.

The notation which has now been introduced is a modified form of that employed in the
treatise of Tannery and Molk [620]; the only difference between it and Jacobi’s notation is
that ϑ4(z,q) is written where Jacobi would have written ϑ(z,q). There are, unfortunately,
several notations in use; a scheme, giving the connexions between them, will be found in
§21.9.

For brevity, the parameter q will usually not be specified, so that ϑ1(z), . . . will be written
for ϑ1(z,q), . . . . When it is desired to exhibit the dependence of a theta-function on the
parameter τ, it will be written ϑ(z |τ). Also ϑ2(0), ϑ3(0), ϑ4(0),will be replaced by ϑ2, ϑ3, ϑ4

respectively; and ϑ′1 will denote the result of making z equal to zero in the derivate of ϑ1(z).

Example 21.1.1 Shew that

ϑ3(z,q) = ϑ3(2z,q4) + ϑ2(2z,q4),

ϑ4(z,q) = ϑ3(2z,q4) − ϑ2(2z,q4).

Example 21.1.2 Obtain the results

ϑ1(z) = −ϑ2
(
z + 1

2π
)
= −iMϑ3

(
z + 1

2π +
1
2πτ

)
= −iMϑ4

(
z + 1

2πτ
)
,

ϑ2(z) = Mϑ3
(
z + 1

2πτ
)
= Mϑ4

(
z + 1

2π +
1
2πτ

)
= ϑ1

(
z + 1

2π
)
,

ϑ3(z) = ϑ4
(
z + 1

2π
)
= Mϑ1

(
z + 1

2π +
1
2πτ

)
= Mϑ2

(
z + 1

2πτ
)
,

ϑ4(z) = −iMϑ1
(
z + 1

2πτ
)
= −iMϑ2

(
z + 1

2π +
1
2πτ

)
= ϑ3

(
z + 1

2π
)
,

2 Throughout the chapter, the many-valued function qλ is to be interpreted to mean exp(λπiτ).
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where M = q
1
4 eiz .

Example 21.1.3 Shew that the multipliers of the theta-functions associated with the periods
π, πτ are given by the scheme

ϑ1(z) ϑ2(z) ϑ3(z) ϑ4(z)
π −1 −1 1 1
πτ −N N N −N

where N = q−1 e−2iz .

Example 21.1.4 If ϑ(z) be any one of the four theta-functions and ϑ′(z) its derivative with
respect to z, shew that

ϑ′(z + π)
ϑ(z + π)

=
ϑ′(z)
ϑ(z)

,
ϑ′(z + πτ)
ϑ(z + πτ)

= −2i +
ϑ′(z)
ϑ(z)

.

21.12 The zeros of the theta-functions
From the quasi-periodic properties of the theta-functions it is obvious that if ϑ(z) be any one
of them, and if z0 be any zero of ϑ(z), then

z0 + mπ + nπτ

is also a zero of ϑ(z), for all integral values of m and n.
It will now be shewn that if C be a cell with corners t, t + π, t + π + πτ, t + πτ, then ϑ(z)

has one and only one zero inside C.
Since ϑ(z) is analytic throughout the finite part of the z-plane, it follows, from §6.31, that

the number of its zeros inside C is
1

2πi

∫
C

ϑ′(z)
ϑ(z)

dz.

Treating the contour after the manner of §20.12, we see that

1
2πi

∫
C

ϑ′(z)
ϑ(z)

dz =
1

2πi

∫ t+π

t

{
ϑ′(z)
ϑ(z)

−
ϑ′(z + πτ)
ϑ(z + πτ)

}
dz

−
1

2πi

∫ t+πτ

t

{
ϑ′(z)
ϑ(z)

−
ϑ′(z + π)
ϑ(z + π)

}
dz

=
1

2πi

∫ t+π

t

2i dz,

by Example 21.1.4. Therefore
1

2πi

∫
C

ϑ′(z)
ϑ(z)

dz = 1,

that is to say, ϑ(z) has one simple zero only inside C; this is the theorem stated.
Since one zero of ϑ1(z) is obviously z = 0, it follows that the zeros of ϑ1(z), ϑ2(z), ϑ3(z),

ϑ4(z) are the points congruent respectively to 0, 1
2π,

1
2π +

1
2πτ,

1
2πτ. The reader will observe

that these four points form the corners of a parallelogram described counter-clockwise.
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21.2 The relations between the squares of the theta-functions
It is evident that, if the theta-functions be regarded as functions of a single variable z, this
variable can be eliminated from the equations defining any pair of theta-functions, the result
being a relation3 between the functions which might be expected, on general grounds, to
be non-algebraic; there are, however, extremely simple relations connecting any three of the
theta-functions; these relations will now be obtained.

Each of the four functions ϑ2
1(z), ϑ

2
2(z), ϑ

2
3(z), ϑ

2
4(z) is analytic for all values of z and has

periodicity factors 1, q−2 e−4iz associated with the periods π, πτ; and each has a double zero
(and no other zeros) in any cell.

From these considerations it is obvious that, if a, b, a′ and b′ are suitably chosen constants,
each of the functions

aϑ2
1(z) + bϑ2

4(z)

ϑ2
2(z)

,
a′ϑ2

1(z) + b′ϑ2
4(z)

ϑ2
3(z)

is a doubly-periodic function (with periods π, πτ) having at most only a simple pole in each
cell. By §20.13, such a function is merely a constant; and obviously we can adjust a, b, a′,
b′ so as to make the constants, in each of the cases under consideration, equal to unity.

There exist, therefore, relations of the form

ϑ2
2(z) = aϑ2

1(z) + bϑ2
4(z), ϑ2

3(z) = a′ϑ2
1(z) + b′ϑ2

4(z).

To determine a, b, a′, b′, give z the special values 1
2πτ and 0; since

ϑ2
( 1

2πτ
)
= q−

1
4ϑ3, ϑ4

( 1
2πτ

)
= 0, ϑ1

( 1
2πτ

)
= iq−

1
4ϑ4,

we have ϑ2
3 = −aϑ2

4 , ϑ
2
2 = bϑ2

4 ; ϑ
2
2 = −a′ϑ2

4 , ϑ
2
3 = b′ϑ2

4 . Consequently, we have obtained the
relations

ϑ2
2(z)ϑ

2
4 = ϑ

2
4(z)ϑ

2
2 − ϑ

2
1(z)ϑ

2
3,

ϑ2
3(z)ϑ

2
4 = ϑ

2
4(z)ϑ

2
3 − ϑ

2
1(z)ϑ

2
2 .

If we write z + 1
2π for z, we get the additional relations

ϑ2
1(z)ϑ

2
4 = ϑ

2
3(z)ϑ

2
2 − ϑ

2
2(z)ϑ

2
3,

ϑ2
4(z)ϑ

2
4 = ϑ

2
3(z)ϑ

2
3 − ϑ

2
2(z)ϑ

2
2 .

By means of these results it is possible to express any theta-function in terms of any other
pair of theta-functions.

Corollary 21.2.1 Writing z = 0 in the last relation, we have

ϑ4
2 + ϑ

4
4 = ϑ

4
3,

that is to say

16q(1 + q1·2 + q2·3 + q3·4 + · · · )4 + (1 − 2q + 2q4 − 2q9 + · · · )4

= (1 + 2q + 2q4 + 2q9 + · · · )4.

3 The analogous relation for the functions sin z and cos z is, of course, sin2 z + cos2 z = 1.
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21.21 The addition-formulae for the theta-functions
The results just obtained are particular cases of formulae containing two variables; these
formulae are not addition-theorems in the strict sense, as they do not express theta-functions
of z + y algebraically in terms of theta-functions of z and y, but all involve theta-functions
of z − y as well as of z + y, z and y.

To obtain one of these formulae, consider ϑ3(z + y)ϑ3(z − y) qua function of z. The
periodicity factors of this function associated with the periods π and πτ are 1 and q−1e−2i(z+y) ·

q−1e−2i(z−y) = q−2e−4iz .
But the function aϑ2

3(z) + bϑ2
1(z) has the same periodicity factors, and we can obviously

choose the ratio a : b so that the doubly-periodic function

aϑ2
3(z) + bϑ2

1(z)
ϑ3(z + y)ϑ3(z − y)

has no poles at the zeros of ϑ3(z − y); it then has, at most, a single simple pole in any cell,
namely the zero of ϑ3(z + y) in that cell, and consequently (§20.13) it is a constant, i.e.
independent of z; and, as only the ratio a : b is so far fixed, we may choose a and b so that
the constant is unity.

We then have to determine a and b from the identity in z,

aϑ2
3(z) + bϑ2

1(z) ≡ ϑ3(z + y)ϑ3(z − y).

To do this, put z in turn equal to 0 and 1
2π +

1
2πτ, and we get

aϑ2
3 = ϑ

2
3(y),

bϑ2
1
( 1

2π +
1
2πτ

)
= ϑ3

( 1
2π +

1
2πτ + y

)
ϑ3

( 1
2π +

1
2πτ − y

)
;

and so a = ϑ2
3(y)/ϑ

2
3 and b = ϑ2

1(y)/ϑ
2
3 .

We have therefore obtained an addition-formula, namely

ϑ3(z + y)ϑ3(z − y)ϑ2
3 = ϑ

2
3(y)ϑ

2
3(z) + ϑ

2
1(y)ϑ

2
1(z).

The set of formulae, of which this is typical, will be found in Examples 21.1 and 21.2 at
the end of this chapter.

21.22 Jacobi’s fundamental formulae
The addition-formulae just obtained are particular cases of a set of identities first given by
Jacobi [354, vol. I, p. 505] who obtained them by purely algebraical methods; each identity
involves as many as four independent variables, w, x, y, z.

Let w′, x ′, y′, z′ be defined in terms of w, x, y, z by the set of equations

2w′ = −w + x + y + z,

2x ′ = w − x + y + z,

2y′ = w + x − y + z,

2z′ = w + x + y − z.
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Readers will easily verify that the connexion betweenw, x, y, z andw′, x ′, y′, z′ is a reciprocal
one4 . For brevity5 , write [r] for ϑr (w)ϑr (x)ϑr (y)ϑr (z) and [r]′ for ϑr (w′)ϑr (x ′)ϑr (y′)ϑr (z′).

Consider [3], [1]′, [2]′, [3]′, [4]′ qua functions of z. The effect of increasing z by π or πτ
is to transform the functions in the first row of the following table into those in the second or
third row respectively.

[3] [1]′ [2]′ [3]′ [4]′

(π) [3] −[2]′ −[1]′ [4]′ [3]′

(πτ) N[3] −N[4]′ N[3]′ N[2]′ −N[1]′

For brevity, N has been written in place of q−1e−2is. Hence both −[1]′ + [2]′ + [3]′ + [4]′
and [3] have periodicity factors 1 and N , and so their quotient is a doubly-periodic function
with, at most, a single simple pole in any cell, namely the zero of ϑ3(z) in that cell.

By §20.13, this quotient is merely a constant, i.e. independent of z and considerations of
symmetry shew that it is also independent of w, x and y.

We have thus obtained the result

A[3] = −[1]′ + [2]′ + [3]′ + [4]′,

where A is independent of w, x, y, z; to determine A put w = x = y = z = 0, and we get

Aϑ3
4 = ϑ4

2 + ϑ
4
3 + ϑ

4
4 ;

and so, by Corollary 21.2.1, we see that A = 2. Therefore

2[3] = −[1]′ + [2]′ + [3]′ + [4]′. (i)

This is one of Jacobi’s formulae; to obtain another, increase w, x, y, z (and therefore also
w′, x ′, y′, z′) by 1

2π; and we get

2[4] = [1]′ − [2]′ + [3]′ + [4]′. (ii)

Increasing all the variables in (i) and (ii) by 1
2πτ, we obtain the further results

2[2] = [1]′ + [2]′ + [3]′ − [4]′, (iii)
2[1] = [1]′ + [2]′ − [3]′ + [4]′. (iv)

Note There are 256 expressions of the form ϑp(w)ϑq(x)ϑr (y)ϑs(z) which can be obtained
from ϑ3(w)ϑ3(x)ϑ3(y)ϑ3(z) by increasing w, x, y, z by suitable half-periods, but only those
in which the suffixes p, q, r , s are either equal in pairs or all different give rise to formulae
not containing quarter-periods on the right-hand side.

Example 21.2.1 Shew that

[1] + [2] = [1]′ + [2]′, [2] + [3] = [2]′ + [3]′,
[1] + [4] = [1]′ + [4]′, [3] + [4] = [3]′ + [4]′,
[1] + [3] = [2]′ + [4]′, [2] + [4] = [1]′ + [3]′.

4 In Jacobi’s work the signs of w, x′, y′, z′ are changed throughout so that the complete symmetry of the
relations is destroyed; the symmetrical forms just given are due to H. J. S. Smith [596].

5 The idea of this abridged notation is to be traced in H. J. S. Smith’s memoir. It seems, however, not to have
been used before Kronecker [385].
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Example 21.2.2 By writing w + 1
2π, x + 1

2π for w, x (and consequently y′ + 1
2π, z′ + 1

2π for
y′, z′), shew that

[3344] + [2211] = [4433]′ + [1122]′,

where [3344] means ϑ3(w)ϑ3(x)ϑ4(y)ϑ4(z), etc.

Example 21.2.3 Shew that

2[1234] = [3412]′ + [2143]′ − [1234]′ + [4321]′.

Example 21.2.4 Shew that

ϑ4
1(z) + ϑ

4
3(z) = ϑ

4
2(z) + ϑ

4
4(z).

21.3 Jacobi’s expressions for the theta-functions as infinite products
We shall now establish the result [349, p. 145]

ϑ4(z) = G
∞∏
n=1

(1 − 2qm−1 cos 2z + q4n−2),

(where G is independent of z), and three similar formulae.
Let

f (z) =
∞∏
n=1

(1 − q2n−1e2iz)

∞∏
n=1

(1 − q2n−1 e−2iz);

each of the two products converges absolutely and uniformly in any bounded domain of
values of z, by §3.341, on account of the absolute convergence of

∞∑
n=1

q2n−1; hence f (z) is

analytic throughout the finite part of the z-plane, and so it is an integral function.
The zeros of f (z) are simple zeros at the points where

e2iz = e(2n+1)πiτ, (n = . . . ,−2,−1,0,1,2, . . .)

i.e. where 2iz = (2n+1)πiτ+2mπi; so that f (z) and ϑ4(z) have the same zeros; consequently
the quotient ϑ4(z)/ f (z) has neither zeros nor poles in the finite part of the plane.

Now, obviously f (z + π) = f (z); and

f (z + πτ) =
∞∏
n=1

(1 − q2n+1 e2iz)

∞∏
n=1

(1 − q2n−3 e−2iz)

= f (z)(1 − q−1 e−2iz)/(1 − qe2iz)

= −q−1 e−2iz f (z).

That is to say f (z) and ϑ4(z) have the same periodicity factors (Example 21.1.3). Therefore
ϑ4(z)/ f (z) is a doubly-periodic function with no zeros or poles, and so (§20.12) it is a
constant G, say; consequently

ϑ4(z) = G
∞∏
n=1

(1 − 2q2n−1 cos 2z + q4n−2).
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(It will appear in §21.42 that G =
∞∏
n=1
(1 − q2n).)

Write z + 1
2π for z in this result, and we get

ϑ3(z) = G
∞∏
n=1

(1 + 2q2n−1 cos 2z + q4n−2).

Also

ϑ1(z) = −iq
1
4 eizϑ4

(
z + 1

2πτ
)

= −iq
1
4 eizG

∞∏
n=1

(1 − q2n e2iz)

∞∏
n=1

(1 − q2n−2 e−2iz)

= 2Gq
1
4 sin z

∞∏
n=1

(1 − q2n e2iz)

∞∏
n=1

(1 − q2n e−2iz),

and so

ϑ1(z) = 2Gq
1
4 sin z

∞∏
n=1

(1 − 2q2n cos 2z + q4n),

while

ϑ2(z) = ϑ1
(
z + 1

2π
)

= 2Gq
1
4 cos z

∞∏
n=1

(1 + 2q2n cos 2z + q4n).

Example 21.3.1 (Jacobi) Shew that{
∞∏
n=1

(1 − q2n−1)

}8

+ 16q

{
∞∏
n=1

(1 + q2n)

}8

=

{
∞∏
n=1

(1 + q2n−1)

}8

.

Jacobi [349, p. 90] describes this result as ‘aequatio identica satis abstrusa’.

21.4 The differential equation satisfied by the theta-functions
Wemay regardϑ3(z |τ) as a function of two independent variables z and τ; and it is permissible
to differentiate the series for ϑ3(z |τ) any number of times with regard to z or τ, on account
of the uniformity of convergence of the resulting series (Corollary 4.7.1); in particular

∂2ϑ3(z |τ)
∂z2 = −4

∞∑
n=−∞

n2 exp(n2πiτ + 2niz)

= −
4
πi
∂ϑ3(z |τ)
∂τ

.

Consequently, the function ϑ3(z |τ) satisfies the partial differential equation

πi
4
∂2y

∂z2 +
∂y

∂τ
= 0.

The reader will readily prove that the other three theta-functions also satisfy this equation.
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21.41 A relation between theta-functions of zero argument
The remarkable result that

ϑ′1(0) = ϑ2(0)ϑ3(0)ϑ4(0)

will now be established. Several proofs of this important proposition have been given, but
none are simple. Jacobi’s original proof [354, vol. I, pp. 515–517], though somewhat more
difficult than the proof given here, is well worth study. For a different method of proof of the
preliminary formula given in the text, see Example 21.21. It is first necessary to obtain some
formulae for differential coefficients of all the theta-functions.

Since the resulting series converge uniformly, except near the zeros of the respective theta-
functions, we may differentiate the formulae for the logarithms of theta-functions, obtainable
from §21.3, as many times as we please.

Denoting differentiations with regard to z by primes, we thus get

ϑ′3(z) = ϑ3(z)

[
∞∑
n=1

2iq2n−1 e2iz

1 + q2n−1 e2iz −

∞∑
n=1

2iq2n−1 e−2iz

1 + q2n−1 e−2iz

]
,

ϑ′′3 (z) = ϑ
′
3(z)

[
∞∑
n=1

2iq2n−1 e2iz

1 + q2n−1 e2iz −

∞∑
n=1

2iq2n−1 e−2iz

1 + q2n−1 e−2iz

]
+ϑ3(z)

[
∞∑
n=1

(2i)2q2n−1 e2iz

(1 + q2n−1 e2iz)2
+

∞∑
n=1

(2i)2q2n−1 e−2iz

(1 + q2n−1 e−2iz)2

]
.

Making z → 0, we get

ϑ′3(0) = 0, ϑ′′3 (0) = −8ϑ3(0)
∞∑
n=1

q2n−1

(1 + q2n−1)2
.

In like manner,

ϑ′4(0) = 0, ϑ′′4 (0) = 8ϑ4(0)
∞∑
n=1

q2n−1

(1 − q2n−1)2
,

ϑ′2(0) = 0, ϑ′′2 (0) = ϑ2(0)

[
−1 − 8

∞∑
n=1

q2n

(1 + q2n)2

]
;

and, if we write ϑ1(z) = sin z × φ(z), we get

φ′(0) = 0, φ′′(0) = 8φ(0)
∞∑
n=1

q2n

(1 − q2n)2
.

If, however, we differentiate the equation ϑ1(z) = sin z × φ(z) three times, we get

ϑ′1(0) = φ(0), ϑ′′′1 (0) = 3φ′′(0) − φ(0).

Therefore
ϑ′′′1 (0)
ϑ′1(0)

= 24
∞∑
n=1

q2n

(1 − q2n)2
− 1;
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and

1+
ϑ′′2 (0)
ϑ2(0)

+
ϑ′′3 (0)
ϑ3(0)

+
ϑ′′4 (0)
ϑ4(0)

= 8

[
−

∞∑
n=1

q2n

(1 + q2n)2
−

∞∑
n=1

q2n−1

(1 + q2n−1)2
+

∞∑
n=1

q2n−1

(1 − q2n−1)2

]
= 8

[
−

∞∑
n=1

qn

(1 + qn)2
+

∞∑
n=1

qn

(1 − qn)2
−

∞∑
n=1

q2n

(1 − q2n)2

]
,

on combining the first two series and writing the third as the difference of two series. If we
add corresponding terms of the first two series in the last line, we get at once

1 +
ϑ′′2 (0)
ϑ2(0)

+
ϑ′′3 (0)
ϑ3(0)

+
ϑ′′4 (0)
ϑ4(0)

= 24
∞∑
n=1

q2n

(1 − q2n)2
= 1 +

ϑ′′′1 (0)
ϑ′1(0)

.

Utilising the differential equations of §21.4, this may be written

1
ϑ′1(0|τ)

dϑ′1(0|τ)
dτ

=
1

ϑ2(0|τ)
dϑ2(0|τ)

dτ
+

1
ϑ3(0|τ)

dϑ3(0|τ)
dτ

+
1

ϑ4(0|τ)
dϑ4(0τ)

dτ
.

Integrating with regard to τ, we get

ϑ′1(0,q) = Cϑ2(0,q)ϑ3(0,q)ϑ4(0,q),

where C is a constant (independent of q). To determine C, make q→ 0; since

lim
q→0

q−
1
4ϑ′1 = 2, lim

q→0
q−

1
4ϑ2 = 2, lim

q→0
ϑ3 = 1, lim

q→0
ϑ4 = 1,

we see that C = 1; and so

ϑ′1 = ϑ2ϑ3ϑ4,

which is the result stated.

21.42 The value of the constant G

From the result just obtained, we can at once deduce the value of the constant G which was
introduced in §21.3.

For, by the formulae of that section,

ϑ′1 = φ(0) = 2q
1
4 G

∞∏
n=1

(1 − q2n)2, ϑ2 = 2q
1
4 G

∞∏
n=1

(1 − q2n)2,

ϑ′3 = G
∞∏
n=1

(1 + q2n−1)2, ϑ4 = G
∞∏
n=1

(1 + q2n−1)2,
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and so, by §21.41, we have

∞∏
n=1

(1 − q2n)2 = G2
∞∏
n=1

(1 + q2n)2
∞∏
n=1

(1 + q2n−1)2
∞∏
n=1

(1 − q2n−1)2.

Now all the products converge absolutely, since |q | < 1, and so the following rearrange-
ments are permissible:{

∞∏
n=1

(1 − q2n−1)

∞∏
n=1

(1 − q2n)

}
×

{
∞∏
n=1

(1 + q2n−1)

∞∏
n=1

(1 + q2n)

}
=

∞∏
n=1

(1 − qn)

∞∏
n=1

(1 + qn)

=

∞∏
n=1

(1 − q2n),

the first step following from the consideration that all positive integers are comprised under
the forms 2n − 1 and 2n.

Hence the equation determining G is

∞∏
n=1

(1 − q2n)2 = G2,

and so G = ±
∞∏
n=1
(1 − q2n).

To determine the ambiguity in sign, we observe that G is an analytic function of q (and
consequently one-valued) throughout the domain |q | < 1; and from the product for ϑ3(z),
we see that G → 1 as q → 0. Hence the plus sign must always be taken; and so we have
established the result

G =
∞∏
n=1

(1 − q2n).

Example 21.4.1 Shew that

ϑ′1 = 2q
1
4 G3.

Example 21.4.2 Shew that

ϑ4 =

∞∏
n=1

(1 − q2n−1)(1 − qn).

Example 21.4.3 Shew that

1 + 2
∞∑
n=1

qn2
=

∞∏
n=1

(1 − q2n)(1 + q2n−1)2.
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21.43 Connexion of the sigma-function with the theta-functions
It has been seen (Example 20.4.6) that the function σ(z |ω1,ω2), formed with the periods
2ω1, 2ω2, is expressible in the form

σ(z) =
2ω1

π
exp

(
η1z2

2ω1

)
sin

(
πz

2ω1

) ∞∏
n=1

{(
1 − 2q2n cos

πz
ω1
+ q4n

)
(1 − q2n)−2

}
,

where q = exp(πiω2/ω1).
If we compare this result with the product of §21.4 for ϑ1(z |τ), we see at once that

σ(z) =
2ω1

π
exp

(
η1z2

2ω1

)
·

1
2

q−1/4
∞∏
n=1

(1 − q2n)−3ϑ1

(
πz

2ω1

����ω2

ω1

)
.

To express η1 in terms of theta-functions, take logarithms and differentiate twice, so that

−℘(z) =
η1

ω1
−

(
π

2ω1

)2

cosec2
(
πz

2ω1

)
+

(
π

2ω1

)2
[
φ′′(ν)

φ(ν)
−

{
φ′(ν)

φ(ν)

}2
]
,

where ν =
πz

2ω1
and the function φ is that defined in §21.41.

Expanding in ascending powers of z and equating the terms independent of z in this result,
we get

0 =
η1

ω1
−

1
3

(
π

2ω1

)2

+

(
π

2ω1

)2
φ′′(0)
φ(0)

,

and so

η1 = −
π2

12ω1

ϑ′′′1

ϑ′1
.

Consequently σ(z |ω1,ω2) can be expressed in terms of theta-functions by the formula

σ(z |ω1,ω2) =
2ω1

πϑ′1
exp

(
−
ν2ϑ′′′1

6ϑ′1

)
ϑ1

(
ν

����ω2

ω1

)
,

where ν =
πz

2ω1
.

Example 21.4.4 Prove that

η2 = −

(
π2ω2ϑ

′′
1

12ω2
1ϑ
′
1
+

πi
2ω1

)
.

21.5 The expression of elliptic functions by means of theta-functions
It has just been seen that theta-functions are substantially equivalent to sigma-functions, and
so, corresponding to the formulae of §§20.5–20.53, there will exist expressions for elliptic
functions in terms of theta-functions. From the theoretical point of view, the formulae
of §§20.5–20.53 are the more important on account of their symmetry in the periods,
but in practice the theta-function formulae have two advantages: (i) that theta-functions
are more readily computed than sigma-functions; (ii) that theta-functions have a specially
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simple behaviour with respect to the real period, which is generally the significant period in
applications of elliptic functions in Applied Mathematics.

Let f (z) be an elliptic function with periods 2ω1, 2ω2; let a fundamental set of zeros
(α1, α2, . . . , αn) and poles (β1, β2, . . . , βn) be chosen, so that

n∑
r=1

(αr − βr ) = 0,

as in §20.53.
Then, by the methods of §20.53, the reader will at once verify that

f (z) = A3

n∏
r=1

{
ϑ1

(
πz − παr

2ω1

����ω2

ω1

) /
ϑ1

(
πz − πβr

2ω1

����ω2

ω1

)}
,

where A3 is a constant; and if
mr∑
m=1

Ar ,m(z − βr )−m

be the principal part of f (z) at its pole βr , then, by the methods of §20.52,

f (z) = A2 +

m∑
r=1

{
mr∑
r=1

(−1)m−1 Ar ,m

(m − 1)!
dm

dzm
log ϑ1

(
πz − πβr

2ω1

����ω2

ω1

)}
,

where A2 is a constant.
This formula is important in connexion with the integration of elliptic functions. An

example of an application of the formula to a dynamical problem will be found in §22.741.

Example 21.5.1 Shew that

ϑ2
3(z)

ϑ2
1(z)
= −

ϑ2
3

ϑ
′2
1

d
dz

ϑ′1(z)
ϑ1(z)

+
ϑ3ϑ

′′
3

ϑ′31
,

and deduce that ∫ π/2

z

ϑ2
3(z)

ϑ2
1(z)

dz =
ϑ2

3

ϑ′21

ϑ′1(z)
ϑ1(z)

+
( π

2
− z

) ϑ3ϑ
′′
3

ϑ′31
.

21.51 Jacobi’s imaginary transformation
If an elliptic function be constructed with periods 2ω1, 2ω2, such that

Im (ω2/ω1) > 0,

it might be convenient to regard the periods as being 2ω2,−2ω1; for these numbers are periods
and, if Im(ω2/ω1) > 0, then also Im (−ω1/ω2) > 0. In the case of the elliptic functions which
have been considered up to this point, the periods have appeared in a symmetrical manner
and nothing is gained by this point of view. But in the case of the theta-functions, which are
only quasi-periodic, the behaviour of the function with respect to the real period π is quite
different from its behaviour with respect to the complex period πτ. Consequently, in view of
the result of §21.43, we may expect to obtain transformations of theta-functions in which the
period-ratios of the two theta-functions involved are respectively τ and −1/τ.
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The transformations of the four theta-functions were first obtained by Jacobi [346], who
obtained them from the theory of elliptic functions; but6 Poisson [532, p. 592] had pre-
viously obtained a formula identical with one of the transformations and the other three
transformations can be obtained from this one by elementary algebra. A direct proof of the
transformations is due to Landsberg [407], who used the methods of contour integration.
(This method is indicated in Example 6.17 of Chapter 6.) The investigation of Jacobi’s for-
mulae, which we shall now give, is based on Liouville’s theorem; the precise formula which
we shall establish is

ϑ3(z |τ) = (−iτ)−
1
2 exp

(
z2

πiτ

)
ϑ3

(
z
τ

���� − 1
τ

)
,

where (−iτ)−
1
2 is to be interpreted by the convention | arg(−iτ)| < 1

2π.

For brevity, we shall write −1/τ ≡ τ′, q′ = exp(πiτ′).
The only zeros of ϑ3(z |τ) and ϑ3(τ

′z |τ′) are simple zeros at the points at which

z = mπ + nπτ + 1
2π +

1
2πτ, τ′z = m′π + n′πτ′ + 1

2π +
1
2πτ

′

respectively, where m, n, m′, n′ take all integer values; taking m′ = −n − 1, n′ = m, we see
that the quotient

ψ(z) ≡ exp
(

z2

πiτ

)
ϑ3

(
z
τ

���� − 1
τ

) /
ϑ3(z |τ)

is an integral function with no zeros.
Also

ψ(z + πτ)/ψ(z) = exp
(

2zπτ + π2τ2

πiτ

) /
q−1e−2iz = 1,

while

ψ(z − π)/ψ(z) = exp
(
−2zπ + π2

πiτ

)
× q′−1e−2iz/r = 1.

Consequently ψ(z) is a doubly-periodic function with no zeros or poles; and so (§20.12)
ψ(z) must be a constant, A (independent of z). Thus,

Aϑ3(z |τ) = exp(iτ′z2/π)ϑ3(zτ′ |τ′)

and writing z + 1
2π, z + 1

2πτ, z + 1
2π +

1
2πτ in turn for z, we easily get

Aϑ4(z |τ) = exp(iτ′z2/π)ϑ2(zτ′ |τ′),

Aϑ2(z |τ) = exp(iτ′z2/π)ϑ4(zτ′ |τ′),

Aϑ1(z |τ) = −i exp(iτ′z2/π)ϑ1(zτ′ |τ′).

We still have to prove that A = (−iτ)
1
2 ; to do so, differentiate the last equation and then put

z = 0; we get

Aϑ′1(0|τ) = −iτ′ϑ′1(0|τ
′).

6 The special case of the formula in which z = 0 had been given earlier by Poisson, [531, p. 420].
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But
ϑ′1(0|τ) = ϑ2(0|τ)ϑ3(0|τ)ϑ4(0|τ)

and
ϑ′1(0|τ

′) = ϑ2(0|τ′)ϑ3(0|τ′)ϑ4(0|τ′);

on dividing these results and substituting, we at once get A−2 = −iτ′, and so A = ±(−iτ)
1
2 .

To determine the ambiguity in sign, we observe that

Aϑ3(0|τ) = ϑ3(0|τ′),

both the theta-functions being analytic functions of τ when Im (τ) > 0; thus A is analytic
and single-valued in the upper half τ-plane. Since the theta-functions are both positive when
τ is a pure imaginary, the plus sign must then be taken. Hence, by the theory of analytic
continuation, we always have

A = +(−iτ)
1
2 ;

this gives the transformation stated.
It has thus been shewn that

∞∑
n=−∞

en
2πiτ+2niz =

1
√
−iτ

∞∑
n=−∞

e(z−nπ)
2/(πiτ).

Example 21.5.2 Shew that
ϑ4(0|τ)
ϑ3(0|τ)

=
ϑ2(0|τ′)
ϑ3(0|τ′)

when ττ′ = −1.

Example 21.5.3 Shew that
ϑ2(0|τ + 1)
ϑ3(0|τ + 1)

= e
1
4 πi
ϑ2(0|τ)
ϑ4(0|τ)

.

Example 21.5.4 Shew that
∞∏
n=1

(
1 − q2n−1

1 + q2n−1

)
= ±2

1
2 q′

1
8

∞∏
n=1

(
1 + q′2n

1 + q′2n−1

)
;

and shew that the plus sign should be taken.

21.52 Landen’s type of transformation
A transformation of elliptic integrals (§22.7), which is of historical interest, is due to Lan-
den (§22.42); this transformation follows at once from a transformation connecting theta-
functions with parameters τ and 2τ, namely

ϑ3(z |τ)ϑ4(z |τ)
ϑ4(2z |2τ)

=
ϑ3(0|τ)ϑ4(0|τ)
ϑ4(0|2τ)

,

which we shall now prove.
The zeros of ϑ3(z |τ)ϑ4(z |τ) are simple zeros at the points where z =

(
m + 1

2

)
π+

(
n + 1

2

)
πτ
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and z = mπ +
(
n + 1

2

)
πτ, with m and n taking all integral values; these are the points where

2z = mπ +
(
n + 1

2

)
π · 2τ, which are the zeros of ϑ4(2z |2τ). Hence the quotient

ϑ3(z |τ)ϑ4(z |τ)
ϑ4(2z |2τ)

has no zeros or poles. Moreover, associated with the periods π and πτ, it has multipliers
1 and (q−1e−2iz)(−q−1e−2iz)/(−q−2e−4iz) = 1; it is therefore a doubly-periodic function, and
is consequently (§20.12) a constant. The value of this constant may be obtained by putting
z = 0 and we then have the result stated.

If we write z + 1
2πτ for z, we get a corresponding result for the other theta-functions,

namely
ϑ2(z |τ)ϑ1(z |τ)
ϑ1(2z |2τ)

=
ϑ3(0|τ)ϑ4(0|τ)
ϑ4(0|2τ)

.

21.6 The differential equations satisfied by quotients of theta-functions
From Example 21.1.3 it is obvious that the function ϑ1(z)/ϑ4(z) has periodicity factors −1,
+1 associated with the periods π, πτ respectively; and consequently its derivative

ϑ′1(z)ϑ4(z) − ϑ′4(z)ϑ1(z)

ϑ2
4(z)

has the same periodicity factors.
But it is easy to verify that ϑ2(z)ϑ3(z)/ϑ2

4(z) has periodicity factors −1, +1; and conse-
quently, if φ(z) be defined as the quotient

ϑ1
′(z)ϑ4(z) − ϑ4

′(z)ϑ1(z)
ϑ2(z)ϑ3(z)

,

then φ(z) is doubly-periodic with periods π and πτ; and the only possible poles of φ(z) are
simple poles at points congruent to 1

2π and 1
2π +

1
2πτ. Now consider φ

(
z + 1

2πτ
)
; from the

relations of §21.11, namely

ϑ1
(
z + 1

2πτ
)
=iq−

1
4 e−izϑ4(z), ϑ4

(
z + 1

2πτ
)
= iq−

1
4 e−izϑ1(z),

ϑ2
(
z + 1

2πτ
)
=q−

1
4 e−izϑ3(z), ϑ3

(
z + 1

2πτ
)
= q−

1
4 e−izϑ2(z),

we easily see that

φ
(
z + 1

2πτ
)
=
−ϑ′4(z)ϑ1(z) + ϑ′1(z)ϑ4(z)

ϑ3(z)ϑ2(z)
.

Hence φ(z) is doubly-periodic with periods π and 1
2πτ; and, relative to these periods, the only

possible poles of φ(z) are simple poles at points congruent to 1
2π. Therefore (§20.12), φ(z) is

a constant; andmaking z → 0, we see that the value of this constant is {ϑ1
′ϑ4}/{ϑ2ϑ3} = ϑ4

2.

We have therefore established the important result that

d
dz

{
ϑ1(z)
ϑ4(z)

}
= ϑ2

4
ϑ2(z)
ϑ4(z)

·
ϑ3(z)
ϑ4(z)

;
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writing ξ ≡ ϑ1(z)/ϑ4(z) and making use of the results of §21.2, we see that(
dξ
dz

)2

= (ϑ2
2 − ξ

2ϑ2
3)(ϑ

2
3 − ξ

2ϑ2
2).

This differential equation possesses the solution ϑ1(z)/ϑ4(z). It is not difficult to see that
the general solution is ±ϑ1(z + α)/ϑ4(z + α) where α is the constant of integration; since
this quotient changes sign when α is increased by π, the negative sign may be suppressed
without affecting the generality of the solution.

Example 21.6.1 Shew that

d
dz

{
ϑ2(z)
ϑ4(z)

}
= −ϑ2

3
ϑ1(z)
ϑ4(z)

ϑ3(z)
ϑ4(z)

.

Example 21.6.2 Shew that

d
dz

{
ϑ3(z)
ϑ4(z)

}
= −ϑ2

2
ϑ1(z)
ϑ4(z)

ϑ2(z)
ϑ4(z)

.

21.61 The genesis of the Jacobian elliptic function sn u

The differential equation (
dξ
dz

)2

= (ϑ2
2 − ξ

2ϑ2
3)(ϑ

2
3 − ξ

2ϑ2
2),

which was obtained in §21.6, may be brought to a canonical form by a slight change of
variable.

Write7 ξϑ3/ϑ2 = y, zϑ2
3 = u; then, if k

1
2 be written in place of ϑ2/ϑ3, the equation

determining y in terms of u is (
dy
du

)2

= (1 − y2)(1 − k2y2).

This differential equation has the particular solution

y =
ϑ3

ϑ2

ϑ1

ϑ4

(uϑ3
−2)

(uϑ3
−2)

.

The function of u on the right has multipliers −1, +1 associated with the periods πϑ2
3 ,

πτϑ3
2; it is therefore a doubly-periodic function with periods 2πϑ2

3 , πτϑ
2
3 . In any cell, it has

two simple poles at the points congruent to 1
2πτϑ3

2 and πϑ2
3 +

1
2πτϑ

2
3 ; and, on account of

the nature of the quasi-periodicity of y, the residues at these points are equal and opposite in
sign; the zeros of the function are the points congruent to 0 and πϑ2

3 .
It is customary to regard y as depending on k rather than on q; and to exhibit y as a

function of u and k, we write8

y = sn(u, k), or simply y = sn u.
7 Notice, from the formulae of §21.3, that ϑ2 , 0, ϑ3 , 0 when |q | < 1, except when q = 0, in which case the
theta-functions degenerate; the substitutions are therefore legitimate.

8 Jacobi and other early writers used the notation sinam in place of sn.
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It is now evident that sn(u, k) is an elliptic function of the second of the types described in
§20.13; when q→ 0 (so that k → 0), it is easy to see that sn(u, k) → sin u.

The constant k is called the modulus; if k ′
1
2 = ϑ4/ϑ3, so that k2 + k ′2 = 1, k ′ is called the

complementary modulus. The quasi-periods πϑ2
3, πτϑ

2
3 are usually written 2K,2iK ′, so that

sn(u, k) has periods 4K , 2iK ′. From §21.51, we see that 2K ′ = πϑ2
3(0|τ

′), so that K ′ is the
same function of τ′ as K is of τ, when ττ′ = −1.

Example 21.6.3 Shew that

d
dz
ϑ2(z)
ϑ4(z)

= −ϑ2
3
ϑ1(z)
ϑ4(z)

ϑ3(z)
ϑ4(z)

;

and deduce that, if

y =
ϑ4

ϑ2

ϑ2(z)
ϑ4(z)

, and u = zϑ2
3,

then (
dy
du

)2

= (1 − u2)(k ′2 + k2u2).

Example 21.6.4 Shew that

d
dz
ϑ3(z)
ϑ4(z)

= −ϑ2
2
ϑ1(z)
ϑ4(z)

ϑ2(z)
ϑ4(z)

;

and deduce that, if y =
ϑ4

ϑ3

ϑ3(z)
ϑ4(z)

, and u = zϑ2
3 , then(

dy
du

)2

= (1 − u2)(u2 − k ′2).

Example 21.6.5 Obtain the following results:(
2kK
π

) 1
2

= ϑ2 = 2q
1
4 (1 + q2 + q6 + q12 + q20 + · · · ),(

2K
π

) 1
2

= ϑ3 = 1 + 2q + 2q4 + 2q9 + · · · ,(
2k ′K
π

) 1
2

= ϑ4 = 1 − 2q + 2q4 + 2q9 − · · · ,

K ′ = Kπ−1 log(1/q).

These results are convenient for calculating k, k ′, K , K ′ when q is given.

21.62 Jacobi’s earlier notation. The theta-function Θ(u) and the eta-function H(u)

The presence of the factors ϑ−2
3 in the expression for sn(u, k) renders it sometimes desirable

to use the notation which Jacobi employed in the Fundamenta Nova [349], and subsequently
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discarded. The function which is of primary importance with this notation is Θ(u), defined
by the equation

Θ(u) = ϑ4(uϑ3
−2 |τ),

so that the periods associated with Θ(u) are 2K and 2iK ′.
The function Θ(u + K) then replaces ϑ3(z); and in place of ϑ1(z) we have the function

H(u) defined by the equation

H(u) = −iq−
1
4 eiπu/(2K)Θ(u + iK ′) = ϑ1(uϑ−2

3 |τ),

and ϑ2(z) is replaced by H(u + K).
The reader will have no difficulty in translating the analysis of this chapter into Jacobi’s

earlier notation.

Example 21.6.6 If Θ′(u) =
dΘ(u)

du
, shew that the singularities of

Θ′(u)
Θ(u)

are simple poles at

the points congruent to iK ′ (mod 2K , 2iK ′); and the residue at each singularity is 1.

Example 21.6.7 Shew that

H′(0) =
π

2
K−1H(K)Θ(0)Θ(K).

21.7 The problem of inversion
Up to the present, the Jacobian elliptic function sn(u, k) has been implicitly regarded as
depending on the parameter q rather than on the modulus k; and it has been shewn that it
satisfies the differential equation(

d sn u
du

)2

= (1 − sn2 u)(1 − k2 sn2 u), (21.1)

where

k2 =
ϑ4

2(0,q)
ϑ4

3(0,q)
. (21.2)

But, in those problems of Applied Mathematics in which elliptic functions occur, we have
to deal with the solution of the differential equation(

dy
du

)2

= (1 − y2)(1 − k2y2)

in which the modulus k is given, and we have no a priori knowledge of the value of q; and,
to prove the existence of an analytic function sn(u, k) which satisfies this equation, we have
to shew that a number τ exists9 such that

k2 =
ϑ4

2(0|τ)
ϑ4

3(0|τ)
. (21.3)

When this number τ has been shewn to exist, the function sn(u, k) can be constructed as a
9 The existence of a number τ, for which Imτ > 0, involves the existence of a number q such that |q | < 1. An
alternative procedure would be to discuss the differential equation directly, after the manner of Chapter 10.



506 The Theta-Functions

quotient of theta-functions, satisfying the differential equation and possessing the properties
of being doubly-periodic and analytic except at simple poles; and also

lim
u→0

sn(u, k)
u

= 1.

That is to say, we can invert the integral

u =
∫ y

0

dt

(1 − t2)
1
2 (1 − k2t2)

1
2
,

so as to obtain the equation y = sn(u, k).
The difficulty, of course, arises in shewing that the equation

c =
ϑ4

2(0|τ)
ϑ4

3(0|τ)
, (21.4)

(where c has been written for k2), has a solution.
When 0 < c < 1, it is easy to shew that a solution exists. (This is the case which is of

practical importance.) From the identity given in Corollary 21.2.1, it is evident that it is
sufficient to prove the existence of a solution of the equation 1 − c = ϑ4

4(0|τ)/ϑ
4
3(0|τ),which

may be written

1 − c =
∞∏
n=1

(
1 − q2n−1

1 + q2n−1

)8

. (21.5)

Now, as q increases from 0 to 1, the product on the right is continuous and steadily decreases
from 1 to 0; and so (§3.63) it passes through the value 1−c once and only once. Consequently
a solution of the equation in τ exists and the problem of inversion may be regarded as solved.

21.71 The problem of inversion for complex values of c. The modular functions f (τ),
g(τ), h(τ)

The problem of inversion may be regarded as a problem of Integral Calculus, and it may
be proved, by somewhat lengthy algebraical investigations involving a discussion of the
behaviour of ∫ ν

0
(1 − t2)−

1
2 (1 − k2t2)−

1
2 dt,

when y lies on a ‘Riemann surface’, that the problem of inversion possesses a solution. For an
exhaustive discussion of this aspect of the problem, the reader is referred to Hancock [271].

It is, however, more in accordance with the spirit of this work to prove by Cauchy’s method
(§6.31) that the equation c = ϑ4

2(0|τ)/ϑ
4
3(0|τ) has one root lying in a certain domain of the

τ-plane and that (subject to certain limitations) this root is an analytic function of c, when
c is regarded as variable. It has been seen that the existence of this root yields the solution
of the inversion problem, so that the existence of the Jacobian elliptic function with given
modulus k will have been demonstrated.

The method just indicated has the advantage of exhibiting the potentialities of what are
known as modular functions. The general theory of these functions (which are of great
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importance in connexion with the Theories of Transformation of Elliptic Functions) has been
considered in a treatise by Klein and Fricke [378].

Let

f (τ) = 16eπiτ
∞∏
n=1

{
1 + e2nπiτ

1 + e(2n−1)πiτ

}8

=
ϑ4

2(0|τ)
ϑ4

3(0|τ)
,

g(τ) =

∞∏
n=1

{
1 − e(2n−1)πiτ

1 + e(2n−1)πiτ

}8

=
ϑ4

4(0|τ)
ϑ4

3(0|τ)
,

h(τ) = − f (τ)/g(τ).

Then, if ττ′ = −1, the functions just introduced possess the following properties:

f (τ + 2) = f (τ), g(τ + 2) = g(τ), f (τ) + g(τ) = 1,
f (τ + 1) = h(τ), f (τ′) = g(τ), g(τ′) = f (τ),

by Corollary 21.2.1 and Example 21.5.2.
It is easy to see that as Im (τ) → +∞, the functions 1

16 e−πiτ f (τ) = f1(τ) and g(τ) tend
to unity, uniformly with respect to Re (τ), when −1 ≤ Re (τ) ≤ 1; and the derivatives of
these two functions (with regard to τ) tend uniformly to zero in the same circumstances. This
follows from the expressions for the theta-functions as power series in q, it being observed
that |q | → 0 as Im (τ) → +∞.

21.711 The principal solution of f (τ) − c = 0
It has been seen in §6.31 that, if f (τ) is analytic inside and on any contour, 2πi times the
number of roots of the equation f (τ) − c = 0 inside the contour is equal to∫

1
f (τ) − c

df (τ)
dτ

dτ,

taken round the contour in question.
Take the contour ABCDEFE ′D′C ′B′A shewn in the figure, it being supposed temporarily

that f (τ) − c has no zero actually on the contour. The values of f (τ) at points on the contour
are discussed in §21.712.

The contour is constructed in the following manner: FE is drawn parallel to the real axis,
at a large distance from it. AB is the inverse of FE with respect to the circle |τ | = 1. BC is
the inverse of ED with respect to |τ | = 1,D being chosen so that D1 = A0. By elementary
geometry, it follows that, since C and D are inverse points and 1 is its own inverse, the circle
on D1 as diameter passes throughC; and so the arcCD of this circle is the reflexion of the arc
AB in the line Re (τ) = 1

2 . The left-hand half of the figure is the reflexion of the right-hand
half in the line Re (τ) = 0.

It will now be shewn that, unless10 c ≥ 1 or c ≤ 0, the equation f (τ) − c = 0 has one, and
only one, root inside the contour, provided that FE is sufficiently distant from the real axis.
This root will be called the principal root of the equation.

To establish the existence of this root, consider
∫

1
f (τ) − c

df (τ)
dτ

dτ taken along the

10 It is shewn in §21.712 that, if c ≥ 1 or c ≤ 0, then f (τ) − c has a zero on the contour.
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various portions of the contour. Since f (τ + 2) = f (τ), we have{∫
DE

+

∫
E′D′

}
1

f (τ) − c
df (τ)

dτ
dτ = 0.

Also, as τ describes BC and B′C ′, τ′(= −1/τ) describes E ′D′ and ED respectively; and
so {∫

BC

+

∫
C′B′

}
1

f (τ) − c
df (τ)

dτ
dτ =

{∫
BC

+

∫
C′B′

}
1

g(τ′) − c
dg(τ′)

dτ
dτ

=

{∫
E′D′
+

∫
DE

}
1

g(τ′) − c
dg(τ′)

dτ′
dτ′

= 0,

because g(τ′ + 2) = g(τ′), and consequently corresponding elements of the integrals cancel.
Since f (τ ± 1) = h(τ), we have{∫

D′C′
+

∫
CD

}
1

f (τ) − c
df (τ)

dτ
dτ =

∫
B′AB

1
h(τ) − c

dh(τ)
dτ

dτ;

but, as τ′ describes B′AB, τ describes EE ′, and so the integral round the complete contour
reduces to∫

EE′

{
1

f (τ) − c
df (τ)

dτ
+

1
h(τ′) − c

dh(τ′)
dτ

+
1

f (τ′) − c
df (τ′)

dτ

}
dτ

=

∫
EE′

{
1

f (τ) − c
df (τ)

dτ
−

1
h(τ){1 − ch(τ)}

dh(τ)
dτ

+
1

g(τ) − c
dg(τ)

dτ

}
dτ.

Now as EE ′ moves off to infinity11 , f (τ) − c→ −c , 0, g(τ) − c→ 1− c , 0, and so the
11 It has been supposed temporarily that c , 0 and c , 1.
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limit of the integral is

− lim
∫
EE′

1
1 − c · h(τ)

d
dτ
{log h(τ)} dτ

= lim
∫
E′E

1
1 − c · h(τ)

{
πi +

d log f1(τ)
dτ

−
d log g(τ)

dτ

}
dτ.

But 1 − c · h(τ) → 1, f1(τ) → 1, g1(τ) → 1,
df1(τ)

dτ
→ 0,

dg(τ)
dτ
→ 0, and so the limit of

the integral is ∫
E′E

πi dτ = 2πi.

Now, if we choose EE ′ to be initially so far from the real axis that f (τ) − c, 1 − ch(τ),
g(τ) − c have no zeros when τ is above EE ′, then the contour will pass over no zeros of
f (τ) − c as EE ′ moves off to infinity and the radii of the arcs CD, D′C ′, B′AB diminish to
zero; and then the integral will not change as the contour is modified, and so the original
contour integral will be 2πi, and the number of zeros of f (τ) − c inside the original contour
will be precisely 1.

21.712 The values of the modular function f (τ) on the contour considered
We now have to discuss the point mentioned at the beginning of §21.711, concerning the
zeros of f (τ) − c on the lines12 joining ±1 to ±1 + i∞ and on the semicircles of 0BC1,
(−1)C ′B′0.

As τ goes from 1 to 1 + i∞ or from −1 to −1 + i∞, f (τ) goes from −∞ to 0 through real
negative values. So, if c is negative, we make an indentation in DE and a corresponding
indentation in D′E ′; and the integrals along the indentations cancel in virtue of the relation
f (τ + 2) + f (τ).
As τ describes the semicircle 0BG1, τ′ goes from −1 + i∞ to −1, and f (τ) = g(τ′) =

1− f (τ′), and goes from1 to+∞ through real values; it would be possible tomake indentations
in BC and B′C ′ to avoid this difficulty, but we do not do so for the following reason: the
effect of changing the sign of the imaginary part of the number c is to change the sign of the
real part of τ. Now, if 0 < Re (c) < 1 and Im (c) be small, this merely makes τ cross 0F by
a short path; if Re (c) < 0, τ goes from DE to D′E ′ (or vice versa) and the value of q alters
only slightly; but if Re (c) > 1, τ goes from BC to B′C ′, and so q is not a one-valued function
of c so far as circuits round c = +1 are concerned; to make q a one-valued function of c, we
cut the c-plane from +1 to +∞; and then for values of c in the cut plane, q is determined as
a one-valued analytic function of c, say q(c), by the formula q(c) = eπiτ(c) where

τ(c) =
1

2πi

∫
τ

f (τ) − c
df (τ)

dτ
dτ,

as may be seen from §6.3, by using the method of §5.22.
If c describes a circuit not surrounding the point c = 1, q(c) is one-valued, but τ(c) is

one-valued only if, in addition, the circuit does not surround the point c = 0.

12 We have seen that EE′ can be so chosen that f (τ) − c has no zeros either on EE′ or on the small circular arcs.
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21.72 The periods, regarded as functions of the modulus
Since K = 1

2πϑ
2
3(0,q)we see from §21.712 that K is a one-valued analytic function of c(= k2)

when a cut from 1 to +∞ is made in the c-plane; but since K ′ = −iτK , we see that K ′ is
not a one-valued function of c unless an additional cut is made from 0 to −∞; it will appear
later (§22.32) that the cut from 1 to +∞ which was necessary so far as K is concerned is not
necessary as regards K ′.

21.73 The inversion-problem associated with Weierstrassian elliptic functions
It will now be shewn that, when invariants g2 and g3 are given, such that g3

2 , 27g2
3 , it

is possible to construct the Weierstrassian elliptic function with these invariants; that is to
say, we shall shew that it is possible to construct periods 2ω1, 2ω2 such that the function
℘(z |ω1,ω2) has invariants g2 and g3. On the actual calculation of the periods, see R. T. A.
Innes [337].

The problem is solved if we can obtain a solution of the differential equation(
dy
dz

)2

= 4y3 − g2y − g3

of the form y = ℘(z |ω1,ω2).We proceed to effect the solution of the equation with the aid of
theta-functions.

Let ν = Az, where A is a constant to be determined presently. By the methods of §21.6, it
is easily seen that

ϑ′2(ν)ϑ1(ν) − ϑ
′
1(ν)ϑ2(ν) = −ϑ3(ν)ϑ4(ν)ϑ

2
2,

and hence, using the results of §21.2, we have{
d
dz
ϑ2

2(ν)

ϑ2
1(ν)

ϑ2
3ϑ

2
4

}2

= 4A2
(
ϑ2

2(ν)

ϑ2
1(ν)

ϑ2
3ϑ

2
4

) (
ϑ2

2(ν)

ϑ2
1(ν)

ϑ2
3ϑ

2
4 + ϑ

4
4

) (
ϑ2

2(ν)

ϑ2
1(ν)

ϑ2
3ϑ

2
4 + ϑ

4
3

)
.

Now let e1, e2, e3 be the roots of the equation 4y3 − g2y − g3 = 0, chosen in such an order
that (e1 − e2)/(e1 − e3) is not13 a real number greater than unity or negative.

In these circumstances the equation

e1 − e2

e1 − e3
=
ϑ4

4(0|τ)
ϑ4

3(0|τ)

possesses a solution (§21.712) such that Im (r) > 0; this equation determines the parameter
τ of the theta-functions, which has, up till now, been at our disposal.

Choosing τ in this manner, let A be next chosen so that14 A2ϑ4
4 = e1−e2. Then the function

y = A2ϑ
2
2(ν |τ)

ϑ2
1(ν |τ)

ϑ2
3(0|τ)ϑ

2
4(0|τ) + e1

13 If
ei − e j

ei − ek
> 1, then 0 <

ei − ek

ei − e j
< 1; and if

ei − e j

ei − ek
< 0, then 1 −

ei − e j

ei − ek
> 1, and

e j − ei

e j − ek
=

{
1 −

ei − ek

ei − e j

}−1

< 1. The values 0, 1,∞ of (e1 − e2)/(e1 − e3) are excluded since g3
2 , 27g2

3 .
14 The sign attached to A is a matter of indifference, since we deal exclusively with even functions of ν and z.
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satisfies the equation (
dy
dz

)2

= 4(y − e1)(y − e2)(y − e3).

The periods of y, qua function of z, are πA, πτ/A; calling these 2ω1, 2ω2 we have
Im (ω2/ω1) > 0. The function ℘(z |ω1,ω2) may be constructed with these periods, and it is
easily seen that

℘(z) − A2ϑ
2
2(ν |τ)

ϑ2
1(ν |τ)

ϑ2
3(0|τ)ϑ

2
4(0|τ) − e1

is an elliptic function with no pole at the origin15; it is therefore a constant, C, say.
If G2, G3 be the invariants of ℘(z |ω1,ω2), we have

4℘3(z) − G2℘(z) − G3 = ℘
′2(z) = 4{℘(z) − C − e1}{℘(z) − C − e2}{℘(z) − C − e3},

and so, comparing coefficients of powers of ℘(z), we have

0 = 12C, G2 = g2 − 12C2, G3 = g3 − g2C + 4C3.

Hence C = 0, G2 = g2, G3 = g3; and so the function ℘(z |ω1,ω2) with the required invariants
has been constructed.

21.8 The numerical computation of elliptic functions
The series proceeding in ascending powers of q are convenient for calculating theta-functions
generally, evenwhen |q | is as large as 0.9. But it usually happens in practice that themodulus k
is given and the calculation of K , K ′ and q is necessary. It will be seen later (§§22.301, 22.32)
that K , K ′ are expressible in terms of hypergeometric functions, by the equations

K =
π

2
F

(
1
2
,
1
2

; 1; k2
)
, K ′ =

π

2
F

(
1
2
,
1
2

; 1; k ′2
)

;

but these series converge slowly except when |k | and |k ′ | respectively are quite small; so that
the series are never simultaneously suitable for numerical calculations.

To obtain more convenient series for numerical work, we first calculate q as a root of the
equation k = ϑ2

2(0,q)/ϑ
2
3(0,q), and then obtain K from the formula K = 1

2πϑ
2
3(0,q) and K ′

from the formula
K ′ = π−1K loge(1/q).

The equation k = ϑ2
2(0,q)/ϑ

2
3(0,q) is equivalent to

16
√

k ′ = ϑ4(0,q)/ϑ3(0,q).

Writing 2ε =
1 −
√

k ′

1 +
√

k ′
(so that 0 < ε < 1

2 when 0 < k < 1), we get

2ε =
ϑ3(0,q) − ϑ4(0,q)
ϑ3(0,q) + ϑ4(0,q)

=
ϑ2(0,q4)

ϑ3(0,q4)
.

We have seen (§§21.71–21.712) that this equation in q4 possesses a solution which is an
15 The terms in z−2 cancel, and there is no term in z−1 because the function is even.
16 In numerical work 0 < k < 1, and so q is positive and 0 <

√
k′ < 1.
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analytic function of ε4 when |ε | < 1
2 ; and so q will be expansible in a Maclaurin series in

powers of ε in this domain. The theta-functions do not vanish when |q | < 1 except at q = 0,
so this gives the only possible branch point.

It remains to determine the coefficients in this expansion from the equation

ε =
q + q9 + q25 + · · ·

1 + 2q4 + 2q16 + · · ·
,

which may be written q = ε + 2q4ε − q9 + 2q16ε − q25 + · · · ; the reader will easily verify by
continually substituting ε + 2q4ε − q0 + · · · for q wherever q occurs on the right that the first
two terms17 are given by

q = ε + 2ε5 + 15ε9 + 150ε13 +O(ε17).

It has just been seen that this series converges when |ε | < 1
2 .

Note The first two terms of this expansion usually suffice; thus, even if k be as large as√
0.8704 = 0.933 · · · , ε = 1

8,2ε
5 = 0.0000609,15ε9 = 0.0000002.

Example 21.8.1 Given k = k ′ = 1/
√

2, calculate q, K , K ′ by means of the expansion just
obtained, and also by observing that τ = i, so that q = e−π .

q = 0.0432139, K = K ′ = 1.854075.

21.9 The notations employed for the theta-functions
The following scheme indicates the principal systems of notation which have been employed
by various writers; the symbols in any one column all denote the same function.

ϑ1(πz) ϑ2(πz) ϑ3(πz) ϑ(πz) Jacobi
ϑ1(z) ϑ2(z) ϑ3(z) ϑ4(z) Tannery and Molk
θ1(ωz) θ2(ωz) θ3(ωz) θ(ωz) Briot and Bouquet
θ1(z) θ2(z) θ3(z) θ0(z) Weierstrass, Halphen, Hancock
θ(z) θ1(z) θ3(z) θ2(z) Jordan, Harkness and Morley

The notation employed by Hermite, H. J. S. Smith and some other mathematicians is
expressed by the equation

θµ,ν(x) =
∞∑

n=−∞

(−1)nνq
1
4 (2n+µ)

2
eiπ(2n+µ)x/a; (µ = 0,1; ν = 0,1)

with this notation the results of Example 21.1.3 take the very concise form

θµ,ν(x + a) = (−1)µθµ,ν(x), θµ,ν(x + aτ) = (−1)νq−1 e−2iπx/aθµ,ν(x).

Cayley employs Jacobi’s earlier notation (§21.62). The advantage of the Weierstrassian
notation is that unity (instead of π) is the real period of θ3(z) and θ0(z). Jordan’s notation
exhibits the analogy between the theta-functions and the three sigma-functions defined
in §20.421. The reader will easily obtain relations, similar to that of §21.43, connecting θr (z)
with σr (2ω1z) when r = 1, 2, 3.
17 This expansion was given by Weierstrass [663, p. 276].
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21.10 Miscellaneous examples
Example 21.1 (Jacobi) Obtain the addition-formulae

ϑ1(y + z)ϑ1(y − z)ϑ2
4 = ϑ

2
3(y)ϑ

2
2(z) − ϑ

2
2(y)ϑ

2
3(z)

= ϑ2
1(y)ϑ

2
4(z) − ϑ

2
4(y)ϑ

2
1(z),

ϑ2(y + z)ϑ2(y − z)ϑ2
4 = ϑ

2
4(y)ϑ

2
2(z) − ϑ

2
1(y)ϑ

2
3(z)

= ϑ2
2(y)ϑ

2
4(z) − ϑ

2
3(y)ϑ

2
1(z),

ϑ3(y + z)ϑ3(y − z)ϑ2
4 = ϑ

2
4(y)ϑ3

2(z) − ϑ2
1(y)ϑ

2
2(z)

= ϑ2
3(y)ϑ

2
4(z) − ϑ

2
2(y)ϑ

2
1(z),

ϑ4(y + z)ϑ4(y − z)ϑ2
4 = ϑ

2
3(y)ϑ

2
3(z) − ϑ

2
2(y)ϑ

2
2(z)

= ϑ2
4(y)ϑ

2
4(z) − ϑ

2
1(y)ϑ

2
1(z).

Example 21.2 (Jacobi) Obtain the addition-formulae

ϑ4(y + z)ϑ4(y − z)ϑ2
2 = ϑ

2
4(y)ϑ

2
2(z) + ϑ

2
3(y)ϑ

2
1(z)

= ϑ2
2(y)ϑ

2
4(z) + ϑ

2
1(y)ϑ

2
3(z),

ϑ4(y + z)ϑ4(y − z)ϑ2
3 = ϑ

2
4(y)ϑ

2
3(z) + ϑ

2
2(y)ϑ

2
1(z)

= ϑ2
3(y)ϑ

2
4(z) + ϑ

2
1(y)ϑ

2
2(z);

and, by increasing y by half periods, obtain the corresponding formulae for

ϑr (y + z)ϑr (y − z)ϑ2
2 and ϑr (y + z)ϑr (y − z)ϑ2

3,

where r = 1,2,3.

Example 21.3 (Jacobi) Obtain the formulae

ϑ1(y ± z)ϑ2(y ∓ z)ϑ3ϑ4 = ϑ1(y)ϑ2(y)ϑ3(z)ϑ4(z)

± ϑ3(y)ϑ4(y)ϑ1(z)ϑ2(z),

ϑ1(y ± z)ϑ3(y ∓ z)ϑ2ϑ4 = ϑ1(y)ϑ3(y)ϑ2(z)ϑ4(z)

± ϑ2(y)ϑ4(y)ϑ1(z)ϑ3(z),

ϑ1(y ± z)ϑ4(y ∓ z)ϑ2ϑ3 = ϑ1(y)ϑ4(y)ϑ2(z)ϑ3(z)

± ϑ2(y)ϑ3(y)ϑ1(z)ϑ4(z),

ϑ2(y ± z)ϑ3(y ∓ z)ϑ2ϑ3 = ϑ2(y)ϑ3(y)ϑ2(z)ϑ3(z)

∓ ϑ1(y)ϑ4(y)ϑ1(z)ϑ4(z),

ϑ2(y ± z)ϑ4(y ∓ z)ϑ2ϑ4 = ϑ2(y)ϑ4(y)ϑ2(z)ϑ4(z)

∓ ϑ1(y)ϑ3(y)ϑ1(z)ϑ3(z),

ϑ3(y ± z)ϑ4(y ∓ z)ϑ3ϑ4 = ϑ3(y)ϑ4(y)ϑ3(z)ϑ4(z)

∓ ϑ1(y)ϑ2(y)ϑ1(z)ϑ2(z).

Example 21.4 (Jacobi) Obtain the duplication-formulae

ϑ2(2y)ϑ2ϑ
2
4 = ϑ

2
2(y)ϑ

2
4(y) − ϑ

2
1(y)ϑ

2
3(y),

ϑ3(2y)ϑ3ϑ
2
4 = ϑ

2
3(y)ϑ

2
4(y) − ϑ

2
1(y)ϑ

2
2(y),

ϑ4(2y)ϑ3
4 = ϑ

4
3(y) − ϑ

4
2(y) = ϑ

4
4(y) − ϑ

4
1(y).
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Example 21.5 (Jacobi) Obtain the duplication-formulae

ϑ1(2y)ϑ2ϑ3ϑ4 = 2ϑ1(y)ϑ2(y)ϑ3(y)ϑ4(y).

Example 21.6 Obtain duplication-formulae from the results indicated in Example 21.2.

Example 21.7 Shew that, with the notation of §21.22,

[1] − [2] = [4]′ − [3]′, [1] − [3] = [1]′ − [3]′, [1] − [4] = [2]′ − [3]′,
[2] − [3] = [1]′ − [4]′, [2] − [4] = [2]′ − [4]′, [3] − [4] = [2]′ − [1]′.

Example 21.8 (Jacobi) Shew that

2[1122] = [1122]′ + [2211]′ − [4433]′ + [3344]′,
2[1133] = [1133]′ + [3311]′ − [4422]′ + [2244]′,
2[1144] = [1144]′ + [4411]′ − [3322]′ + [2233]′,
2[2233] = [2233]′ + [3322]′ − [4411]′ + [1144]′,
2[2244] = [2244]′ + [4422]′ − [3311]′ + [1133]′,
2[3344] = [3344]′ + [4433]′ − [2211]′ + [1122]′.

Example 21.9 Obtain the formulae

2π−1Kk
1
2 = 2q

1
4

∞∏
n=1

{(1 − q2n)2(1 − q2n−1)−2},

k
1
2 k ′−

1
2 = 2q

1
4

∞∏
n=1

{(1 + q2n)2(1 − q2n−1)−2}.

Example 21.10 (Jacobi) Deduce the following results from Example 21.9:
∞∏
n=1

(1 − q2n−1)6 = 2q
1
4 k ′k−

1
2 ,

∞∏
n=1

(1 + q2n−1)6 = 2q
1
4 (kk ′)−

1
2 ,

∞∏
n=1

(1 − q2n)6 = 2π−3q−
1
2 kk ′K3,

∞∏
n=1

(1 + q2n)6 =
1
4

q−
1
2 kk ′−

1
2 ,

∞∏
n=1

(1 − qn)6 = 4π−3q−
1
4 k

1
2 k ′2K3,

∞∏
n=1

(1 + qn)6 =
1
2

q−
1
4 k

1
2 k ′−1.

Example 21.11 By considering
∫

ϑ4
′(z)

ϑ4(z)
e2niz dz taken along the contour formed by the

parallelogram whose corners are − 1
2π,

1
2π,

1
2π+πτ, −

1
2π+πτ, shew that, when n is a positive

integer,

(1 − q2n)

∫ π/2

−π/2

ϑ4
′(z)

ϑ4(z)
e2niz dz = 2πiqn,

and deduce that, when | Im (z)| < 1
2 Im (πτ),

ϑ′4(z)
ϑ4(z)

= 4
∞∑
n=1

qn sin 2nz
1 − q2n .
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Example 21.12 (Jacobi) Obtain the following expansions:

ϑ′1(z)
ϑ1(z)

= cot z + 4
∞∑
n=1

q2n sin 2nz
1 − q2n ,

ϑ′2(z)
ϑ2(z)

= − tan z + 4
∞∑
n=1

(−1)nq2n sin 2nz
1 − q2n ,

ϑ′3(z)
ϑ3(z)

= 4
∞∑
n=1

(−1)nqn sin 2nz
1 − q2n ,

each expansion being valid in the strip of the z-plane in which the series involved is absolutely
convergent.

Example 21.13 (Math. Trip. 1908) Shew that, if | Im y | < Im πτ and | Im z | < Im πτ, then

ϑ1(y + z)ϑ′1
ϑ1(y)ϑ1(z)

= cot y + cot z + 4
∞∑

m=1

∞∑
n=1

q2mn sin(2my + 2nz).

Example 21.14 (Math. Trip. 1903) Shew that, if | Im (z)| < 1
2 Im (πτ), then

Kk
1
2

π

ϑ4

ϑ4(z)
=

1
2
α0 +

∞∑
n=1

αn cos 2nz,

where αn = 2
∞∑

m=0
(−1)mq(m+

1
2 )(2n+m+

1
2 ).Hint. Obtain a reduction formula for an by considering∫

{ϑ4(z)}−1 e2niz dz taken round the contour of Example 21.11.

Example 21.15 Shew that

ϑ′1(z)
ϑ1(z)

−

[
cot z + 4

∞∑
n=1

q2n sin 2z
1 − 2q2n cos 2z + q4n

]
is a doubly-periodic function of z with no singularities, and deduce that it is zero. Prove
similarly that

ϑ2
′(z)

ϑ2(z)
= − tan z − 4

∞∑
n=1

q2n sin 2z
1 + 2q2n cos 2z + q4n ,

ϑ3
′(z)

ϑ3(z)
= −4

∞∑
n=1

q2n−1 sin 2z
1 + 2q2n−1 cos 2z + q4n−2 ,

ϑ4
′(z)

ϑ4(z)
= 4

∞∑
n=1

q2n−1 sin 2z
1 − 2q2n−1 cos 2z + q4n−2 .

Example 21.16 Obtain the values of k, k ′, K , K ′ correct to six places of decimals when
q = 1

10 . Answer. k = 0.895769, k ′ = 0.444518, K = 2.262700, K ′ = 1.658414.

Example 21.17 Shew that, if w + x + y + z = 0, then, with the notation of §21.22,

[3] + [1] = [2] + [4],
[1234] + [3412] + [2143] + [4321] = 0.
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Example 21.18 Shew that
ϑ′4(y)

ϑ4(y)
+
ϑ′4(z)
ϑ4(z)

−
ϑ′4(y + z)
ϑ4(y + z)

= ϑ2ϑ3
ϑ1(y)ϑ1(z)ϑ1(y + z)
ϑ4(y)ϑ4(z)ϑ4(y + z)

.

Example 21.19 By putting x = y = z,w = 3x in Jacobi’s fundamental formulae:

ϑ3
1(x)ϑ1(3x) + ϑ3

4(x)ϑ4(3x) = ϑ3
4(2x)ϑ4,

ϑ3
3(x)ϑ3(3x) − ϑ3

4(x)ϑ4(3x) = ϑ3
2(2x)ϑ2,

ϑ3
2(x)ϑ2(3x) + ϑ3

4(x)ϑ4(3x) = ϑ3
3(2x)ϑ3.

Example 21.20 (Trinity, 1882) Deduce from Example 21.19 that

{ϑ3
1(x)ϑ1(3x)ϑ2

4 + ϑ
3
4(x)ϑ4(3x)ϑ2

4}
2
3

+ {ϑ3
3(x)ϑ3(3x)ϑ2

2 − ϑ
3
4(x)ϑ4(3x)ϑ2

2}
2
3

= {ϑ3
2(x)ϑ2(3x)ϑ2

3 + ϑ
3
4(x)ϑ4(3x)ϑ2

3}
2
3 .

Example 21.21 Deduce from Liouville’s theorem that
2ϑ1(z)ϑ2(z)ϑ3(z)ϑ4(z)
ϑ1(2z)ϑ2(0)ϑ3(0)ϑ4(0)

is constant, and, by making z → 0, that it is equal to 1. Hence, by comparing coefficients of
z2 in the expansions of

log
ϑ1(2z)
2ϑ1(z)

and log
ϑ2(z)
ϑ2(0)

+ log
ϑ3(z)
ϑ3(0)

+ log
ϑ4(z)
ϑ4(0)

by Maclaurin’s theorem, deduce that

ϑ1
′′′(0)

ϑ1
′(0)
=
ϑ2
′′(0)

ϑ2(0)
+
ϑ3
′′(0)

ϑ3(0)
+
ϑ4
′′(0)

ϑ4(0)
.

Hence, after the manner of §21.41, deduce that

ϑ′1(0) = ϑ2(0)ϑ3(0)ϑ4(0).

This method of obtaining the preliminary formula of §21.41 was suggested to the authors by
Mr. C. A. Stewart.



22

The Jacobian Elliptic Functions

22.1 Elliptic functions with two simple poles
In the course of proving general theorems concerning elliptic functions at the beginning of
Chapter 20, it was shewn that two classes of elliptic functions were simpler than any others
so far as their singularities were concerned, namely the elliptic functions of order 2. The first
class consists of those with a single double pole (with zero residue) in each cell, the second
consists of those with two simple poles in each cell, the sum of the residues at these poles
being zero.

An example of the first class, namely ℘(z), was discussed at length in Chapter 20; in the
present chapter we shall discuss various examples of the second class, known as Jacobian
elliptic functions. These functions were introduced by Jacobi, but many of their properties
were obtained independently by Abel, who used a different notation. See §22.7.

It will be seen (§22.122) that, in certain circumstances, the Jacobian functions degenerate
into the ordinary circular functions; accordingly, a notation (invented by Jacobi and modified
by Gudermann and Glaisher) will be employed which emphasises an analogy between the
Jacobian functions and the circular functions.

From the theoretical aspect, it is most simple to regard the Jacobian functions as quotients
of theta-functions (§21.61). But as many of their fundamental properties can be obtained
by quite elementary methods, without appealing to the theory of theta-functions, we shall
discuss the functions without making use of Chapter 21 except when it is desirable to do so
for the sake of brevity or simplicity.

22.11 The Jacobian elliptic functions, sn u, cn u, dn u

It was shewn in §21.61 that if

y =
ϑ3

ϑ2

ϑ1(u/ϑ2
3)

ϑ4(u/ϑ2
3)

;

the theta-functions being formed with parameter τ, then(
dy
du

)2

= (1 − y2)(1 − k2y2),

where k1/2 = ϑ2(0|τ)/ϑ3(0|τ). Conversely, if the constant k (called the modulus1) be given,
then, unless k2 ≥ 1 or k2 ≤ 0, a value of τ can be found (§§21.7–21.712) for which

1 If 0 < k < 1, and θ is the acute angle such that sin θ = k, then θ is called the modular angle.
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ϑ4
2(0|τ)/ϑ

4
3(0|τ) = k2, so that the solution of the differential equation(

dy
du

)2

= (1 − y2)(1 − k2y2)

subject to the condition
(

dy
du

)
u=y=0

= 1 is

y =
ϑ3

ϑ2

ϑ1(u/ϑ2
3)

ϑ4(u/ϑ2
3)

the theta-functions being formed with the parameter τ which has been determined.
The differential equation may be written

u =
∫ y

0
(1 − t2)−

1
2 (1 − k2t2)−

1
2 dt,

and, by the methods of §21.73, it may be shewn that, if y and u are connected by this integral
formula, y may be expressed in terms of u as the quotient of two theta-functions, in the form
already given.

Thus, if

u =
∫ y

0
(1 − t2)−1/2 (1 − k2t2)−1/2 dt,

y may be regarded as the function of u defined by the quotient of the theta-functions, so that
y is an analytic function of u except at its singularities, which are all simple poles; to denote
this functional dependence, we write

y = sn(u, k),

or simply y = sn u, when it is unnecessary to emphasise the modulus. The modulus will
always be inserted when it is not k.

The function sn u is known as a Jacobian elliptic function of u, and

sn u =
ϑ3

ϑ2

ϑ1(u/ϑ3
2)

ϑ4(u/ϑ3
2)
. (A)

Note Unless the theory of the theta-functions is assumed, it is exceedingly difficult to shew
that the integral formula defines y as a function of u which is analytic except at simple poles.
See Hancock [271].

Now write

cn(u, k) =
ϑ4

ϑ2

ϑ2(u/ϑ3
2)

ϑ4(u/ϑ3
2)

(B)

dn(u, k) =
ϑ4

ϑ3

ϑ3 (u/ϑ3
2)

ϑ4 (u/ϑ3
2)
. (C)

Then, from the relation of §21.6, we have
d

du
sn u = cn u dn u (I)
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and from the relations of §21.2 we have

sn2 u + cn2 u = 1 (II)

k2 sn2 u + dn2 u = 1 (III)

and, obviously,
cn 0 = dn 0 = 1. (IV)

Note We shall now discuss the properties of the functions sn u, cn u, dn u as defined by the
equations (A), (B), (C) by using the four relations (I), (II), (III), (IV); these four relations
are sufficient to make sn u, cn u, dn u determinate functions of u. It will be assumed, when
necessary, that sn u, cn u, dn u are one-valued functions of u, analytic except at their poles;
it will also be assumed that they are one-valued analytic functions of k2 when cuts are made
in the plane of the complex variable k2 from 1 to +∞ and from 0 to −∞.

22.12 Simple properties of sn u, cn u, dn u

From the integral

u =
∫ y

0
(1 − t2)−1/2(1 − k2t2)−1/2 dt, (22.1)

it is evident, on writing −t for t, that, if the sign of y be changed, the sign of u is also changed.
Hence sn u is an odd function of u.

Since sn(−u) = − sn(u), it follows from (II) that cn(−u) = ± cn u; on account of the
one-valuedness of cn u, by the theory of analytic continuation it follows that either the upper
sign, or else the lower sign, must always be taken. In the special case u = 0, the upper sign
has to be taken, and so it has to be taken always; hence cn(−u) = cn(u), and cn u is an even
function of u. In like manner, dn u is an even function of u.

These results are also obvious from the definitions (A), (B) and (C) of §22.11.
Next, let us differentiate the equation sn2 u + cn2 u = 1; on using equation (I), we get

d cn u
du

= − sn u dn u;

in like manner, from equations (III) and (I) we have
d dn u

du
= −k2 sn u cn u.

22.121 The complementary modulus
If k2 + k ′2 = 1 and k ′ → +1 as k → 0, k ′ is known as the complementary modulus. On
account of the cut in the k2-plane from 1 to +∞, k ′ is a one-valued function of k.

Note With the aid of the theta-functions, we can make k ′1/2 one-valued, by defining it to be

ϑ4(0|τ)/ϑ3(0|τ).

Example 22.1.1 Shew that, if

u =
∫ 1

y

(1 − t2)−
1
2 (k ′2 + k2 t2)−

1
2 dt
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then y = cn(u, k). Also, shew that, if

u =
∫ 1

y

(1 − t2)−
1
2 (t2 − k ′2)−

1
2 dt,

then y = dn(u, k). These results are sometimes written in the form

u =
∫ 1

cnu
(1 − t2)−

1
2 (k ′2 + k2t2)−

1
2 dt =

∫ 1

dnu
(1 − t2)−

1
2 (t2 − k ′2)−

1
2 dt .

22.122 Glaisher’s notation for quotients
A short and convenient notation has been invented by Glaisher [252] to express reciprocals
and quotients of the Jacobian elliptic functions; the reciprocals are denoted by reversing the
order of the letters which express the function, thus

ns u = 1/sn u, nc u = 1/cn u, nd u = 1/dn u;

while quotients are denoted by writing in order the first letters of the numerator and denom-
inator functions, thus

sc u = sn u/cn u, sd u = sn u/dn u, cd u = cn u/dn u,

cs u = cn u/sn u, ds u = dn u/sn u, dc u = dn u/cn u.

Note Jacobi’s notation for the functions sn u, cn u, dn u was sinam u, cosam u, ∆ am u,
the abbreviations now in use being due to Gudermann [262], who also wrote tn u, as an
abbreviation for tanam u, in place of what is now written sc u.

The reason for Jacobi’s notation was that he regarded the inverse of the integral

u =
∫ φ

0
(1 − k2 sin2 θ)−

1
2 dθ

as fundamental, and wrote2 φ = am u; he also wrote ∆φ = (1 − k2 sin2 φ)
1
2 for

dφ
du
.

Example 22.1.2 Obtain the following results:

u =
∫ scu

0
(1 + t2)−

1
2 (1 + k ′2t2)−

1
2 dt =

∫ ∞

csu
(t2 + 1)−

1
2 (t2 − k ′2)−

1
2 dt

=

∫ sdu

0
(1 − k ′2t2)−

1
2 (1 + k2t2)−

1
2 dt =

∫ ∞

dsu
(t2 − k ′2)−

1
2 (t2 + k2)−

1
2 dt

=

∫ 1

cdu
(1 − t2)−

1
2 (1 − k2t2)−

1
2 dt =

∫ ∞

dcu
(t2 − 1)−

1
2 (t2 − k2)−

1
2 dt

=

∫ ∞

nsu
(t2 − 1)−

1
2 (t2 − k2)−

1
2 dt =

∫ ncu

1
(t2 − 1)−

1
2 (K ′2t2 + k2)−

1
2 dt

=

∫ ndu

1
(t2 − 1)−

1
2 (1 − K ′2t2)−

1
2 dt .

2 Jacobi [349, p. 30]. As k → 0, amu → u.
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22.2 The addition-theorem for the function sn u

We shall now shew how to express sn(u+3) in terms of the Jacobian elliptic functions of u and
3; the result will be the addition-theorem for the function sn u; it will be an addition-theorem
in the strict sense, as it can be written in the form of an algebraic relation connecting sn u,
sn 3, sn(u + 3).

Note There are numerous methods of establishing the result; the one given is essentially
due to Euler [199]3 , who was the first to obtain (in 1756, 1757) the integral of

dx
√

X
+

dy
√

Y
= 0

in the form of an algebraic relation between x and y, when X denotes a quartic function of
x and Y is the same quartic function of y. Three other methods are given as examples, at
the end of this section. Another method is given by Legendre [422, vol. I, p. 20], and an
interesting geometrical proof was given by Jacobi [344].

Suppose that u and 3 vary while u + 3 remains constant and equal to α, say, so that
d3
du
= −1.

Now introduce, as new variables, s1 and s2 defined by the equations

s1 = sn u, s2 = sn 3,

so that4

Ûs1
2 = (1 − s2

1) (1 − k2s2
1), and Ûs2

2 = (1 − s2
2) (1 − k2s2

2)

since Û32 = 1.
Differentiating with regard to u and dividing by 2 Ûs1 and 2 Ûs2 respectively, we find that, for

general values of u and 3 (i.e. those values for which cn u dn u and cn 3 dn 3 do not vanish)

Üs1 = −(1 + k2)s1 + 2k2s3
1, Üs2 = −(1 + k2)s2 + 2k2s3

2 .

Hence, by some easy algebra,

Üs1s2 − Üs2s1

Ûs2
1s2

2 − Ûs
2
2s2

1
=

2k2s1s2(s2
1 − s2

2)

(s2
2 − s2

1)(1 − k2s2
1s2

2)
,

and so

( Ûs1s2 − Ûs2s1)
−1 d

du
( Ûs1s2 − Ûs2s1) = (1 − k2s2

1s2
2)
−1 d

du
(1 − k2s2

1s2
2);

on integrating this equation we have
Ûs1s2 − Ûs2s1

1 − k2s2
1s2

2
= C,

3 Euler had obtained some special cases of this result a few years earlier.
4 For brevity, we shall denote differential coefficients with regard to u by dots, thus

Û3 ≡
d3

du
, Ü3 ≡

d23

du2 .
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where C is the constant of integration.
Replacing the expressions on the left by their values in terms of u and 3 we get

cn u dn u sn 3 + cn 3 dn 3 sn u
1 − k2 sn2 u sn2 3

= C.

That is to say, we have two integrals of the equation du + d3 = 0, namely

(i) u + 3 = α, and

(ii)
sn u cn 3 dn 3 + sn 3 cn u dn u

1 − k2 sn2 u sn2 3
= C,

each integral involving an arbitrary constant. By the general theory of differential equations
of the first order, these integrals cannot be functionally independent, and so

sn u cn 3 dn 3 + sn 3 cn u dn u
1 − k2 sn2 u sn2 3

is expressible as a function of u + 3; call this function f (u + 3).
On putting 3 = 0, we see that f (u) = sn u; and so the function f is the sn function. We

have thus demonstrated the result that

sn(u + 3) =
sn u cn 3 dn 3 + sn 3 cn u dn u

1 − k2 sn2 u sn2 3
,

which is the addition-theorem. Using an obvious notation (due to Glaisher [250]), we may
write

sn(u + 3) =
s1c2d2 + s2c1d1

1 − k2s1
2s2

2 .

Example 22.2.1 Obtain the addition-theorem for sin u by using the results(
d sin u

du

)2

= 1 − sin2 u,
(

d sin 3
d3

)2

= 1 − sin2
3.

Example 22.2.2 (Abel) Prove from first principles that(
∂

∂3
−

∂

∂u

)
s1c2d2 + s2c1d1

1 − k2s1
2s2

2 = 0,

and deduce the addition-theorem for sn u.

Example 22.2.3 (Cayley) Shew that

sn(u + 3) =
s1

2 − s2
2

s1c2d2 − s2c1d1
=

s1c1d2 + s2c2d1

c1c2 + s1d1s2d2
=

s1d1c2 + s2d2c1

d1d2 + k2s1s2c1c2
.

Example 22.2.4 (Jacobi) Obtain the addition-theorem for sn u from the results

ϑ1(y + z)ϑ4(y − z)ϑ2ϑ3 = ϑ1(y)ϑ4(y)ϑ2(z)ϑ3(z) + ϑ2(y)ϑ3(y)ϑ1(z)ϑ4(z),

ϑ4(y + z) ϑ4(y − z)ϑ2
4 = ϑ

2
4(y)ϑ

2
4(z) − ϑ

2
1(y)ϑ

2
1(z),

given in Chapter 21, Examples 21.1 and 21.3.
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Example 22.2.5 Assuming that the coordinates of any point on the curve

y2 = (1 − x2) (1 − k2x2)

can be expressed in the form (sn u,cn u dn u), obtain the addition-theorem for sn u by Abel’s
method (§20.312).

Note Consider the intersections of the given curve with the variable curve y = 1+mx+nx2;
one is (0,1); let the others have parameters u1, u2, u3, of which u1, u2 may be chosen arbitrarily
by suitable choice of m and n. Shew that u1 + u2 + u3 is constant, by the method of §20.312,
and deduce that this constant is zero by taking

m = 0, n = − 1
2 (1 + k2).

Observe also that, by reason of the relations

(k2 − n2) x1x2x3 = 2m, (k2 − n2) (x1 + x2 + x3) = 2mn,

we have

x3(1 − k2x2
1 x2

2) = x3 −

(
1 +

n2

k2 − n2

)
2mx1x2

= x3 − 2mx1x2 − nx1x2(x1 + x2 + x3)

= (x1 + x2 + x3 − nx1x2x3) − (x1 + x2) − 2mx1x2 − nx1x2(x1 + x2)

= −x1y2 − x2y1.

22.21 The addition-theorems for cn u and dn u

We shall now establish the results

cn(u + 3) =
cn u cn 3 − sn u sn 3 dn u dn 3

1 − k2 sn2 u sn2 3
,

dn(u + 3) =
dn u dn 3 − k2 sn u sn 3 cn u cn 3

1 − k2 sn2 u sn2 3
;

the most simple method of obtaining them is from the formula for sn(u + 3).
Using the notation introduced at the end of §22.2, we have

(1 − k2s2
1s2

2)
2 cn2(u + 3) = (1 − k2s2

1s2
2)

2{1 − sn2(u + 3)}

= (1 − k2s2
1s2

2)
2 − (s1c2d2 + s2c1d1)

2

= 1 − 2k2s2
1s2

2 + k4s4
1s4

2 − 2s1s2c1c2d1d2

− s2
1(1 − s2

2)(1 − k2s2
2) − s2

2(1 − s2
1)(1 − k2s2

1)

= (1 − s2
1)(1 − s2

2) + s2
1s2

2(1 − k2s2
1)(1 − k2s2

2) − 2s1s2c1c2d1d2

= (c1c2 − s1s2d1d2)
2

and so

cn(u + 3) = ±
c1c2 + s1s2d1d2

1 − k2s1
2s2

2 .

But both of these expressions are one-valued functions of u, analytic except at isolated
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poles and zeros, and it is inconsistent with the theory of analytic continuation that their
ratio should be +1 for some values of u, and −1 for other values, so the ambiguous sign is
really definite; putting u = 0, we see that the plus sign has to be taken. The first formula is
consequently proved.

The formula for dn(u + 3) follows in like manner from the identity

(1 − k2s2
1s2

2)
2 − k2(s1c2d2 + s2c1d1)

2

≡ (1 − k2s2
1)(1 − k2s2

2) + k4s2
1s2

2(1 − s2
1)(1 − s2

2) − 2k2s1s2c1c2d1d2,

the proof of which is left to the reader.

Example 22.2.6 (Jacobi) Shew that

dn(u + 3) dn(u − 3) =
d2

2 − k2s1
2c2

2

1 − k2s1
2s2

2 .

Note A set of 33 formulae of this nature connecting functions of u+ 3 and of u− 3 is given
in Jacobi [349, p. 32–34].

Example 22.2.7 (Cayley) Shew that
∂

∂u
cn u + cn 3

sn u dn 3 + sn 3 dn u
=

∂

∂3

cn u + cn 3
sn u dn 3 + sn 3 dn u

,

so that (cn u+cn 3)/(sn u dn 3+sn 3 dn u) is a function of u+3 only; and deduce that it is equal to
{1+cn(u+3)}/sn(u+3). Obtain a corresponding result for the function (s1c2+s2c1)/(d1+d2).

Example 22.2.8 (Jacobi) Shew that

1 − k2 sn2(u + 3) sn2(u − 3) = (1 − k2 sn4 u)(1 − k2 sn4
3)(1 − k2 sn2 u sn2

3)−2,

k ′2 + k2 cn2(u + 3) cn2(u − 3) = (k ′2 + k2 cn4 u)(k ′2 + k2 cn4
3)(1 − k2 sn2 u sn2

3)−2.

Example 22.2.9 Obtain the addition-theorems for cn(u + 3), dn(u + 3) by the method of
Example 22.2.1.

Example 22.2.10 Using Glaisher’s abridged notation [251], namely

s, c, d = sn u, cn u, dn u, and S, C, D = sn 2u, cn 2u, dn 2u,

prove that

S =
2scd

1 − k2s4 , C =
1 − 2s2 + k2s4

1 − k2s4 , D =
1 − 2k2s2 + k2s4

1 − k2s4 ,

s =
(1 + S)1/2 − (1 − S)1/2

(1 + kS)1/2 + (1 − kS)1/2
.

Example 22.2.11 (Glaisher) With the notation of Example 22.2.10, shew that

s2 =
1 − C
1 + D

=
1 − D

k2(1 + C)
=

D − k2C − k ′2

k2(D − C)
=

D − C
k ′2 + D − k2C

,

c2 =
D + C
1 + D

=
D + k2C − k ′2

k2(1 + C)
=

k ′2(1 − D)
k2(D − C)

=
k ′2(1 + C)

k ′2 + D − k2C
,

d2 =
k ′2 + D + k2C

1 + D
=

D + C
1 + C

=
k ′2(1 − C)

D − C
=

k ′2(1 + D)
k ′2 + D − k2C

.
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22.3 The constant K

We have seen that, if

u =
∫ y

0
(1 − t2)−1/2(1 − k2t2)−1/2 dt,

then y = sn(u, k).
If we take the upper limit to be unity (the path of integration being a straight line), it is

customary to denote the value of the integral by the symbol K , so that sn(K, k) = 1.

Note It will be seen in §22.302 that this definition of K is equivalent to the definition as
1
2πϑ

2
3 in §22.61.

It is obvious that cn K = 0 and dn K = ±k ′; to fix the ambiguity in sign, suppose 0 < k < 1,
and trace the change in (1− k2t2)

1
2 as t increases from 0 to 1; since this expression is initially

unity and as neither of its branch points (at t = ±k−1) is encountered, the final value of the
expression is positive, and so it is +k ′; and therefore, since dn K is a continuous function of
k, its value is always +k ′.

The elliptic functions of K are thus given by the formulae

sn K = 1, cn K = 0, dn K = k ′.

22.301 The expression of K in terms of k
In the integral defining K , write t = sin φ, and we have at once

K =
∫ π/2

0
(1 − k2 sin2 φ)−1/2 dφ.

When |k | < 1, the integrand may be expanded in a series of powers of k, the series
converging uniformly with regard to φ (by §3.34, since sin2n φ ≤ 1); integrating term-by-
term (§4.7), we at once get

K =
π

2
F

( 1
2,

1
2 ; 1; k2) = π

2
F

( 1
2,

1
2 ; 1; c

)
,

where c = k2. By the theory of analytic continuation, this result holds for all values of c when
a cut is made from 1 to +∞ in the c-plane, since both the integrand and the hypergeometric
function are one-valued and analytic in the cut plane.

Example 22.3.1 (Legendre [422]) Shew that

d
dk

(
kk ′2

dK
dk

)
= kK .

22.302 The equivalence of the definitions of K
Taking u = 1

2πϑ
2
3 in §21.61, we see at once that sn( 12πϑ3

2) = 1 and so cn( 12πϑ
2
3) = 0.

Consequently, 1 − sn u has a double zero at 1
2πϑ

2
3 . Therefore, since the number of poles of

sn u in the cell with corners 0, 2πϑ2
3 , π(τ + 1) ϑ2

3 , π(τ − 1) ϑ2
3 is two, it follows from §20.13

that the only zeros of 1 − sn u are at the points u = 1
2π(4m + 1 + 2nτ)ϑ2

3 , where m and n are
integers. Therefore, with the definition of §22.3,

K =
π

2
(4m + 1 + 2nτ)ϑ2

3 .
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Now take τ to be a pure imaginary, so that 0 < k < 1, and K is real; and we have n = 0,
so that

π

2
(4m + 1)ϑ2

3 =

∫ π/2

0
(1 − k2 sin2 φ)−

1
2 dφ,

where m is a positive integer or zero; it is obviously not a negative integer.

If m is a positive integer, since
∫ a

0
(1 − k2 sin2 φ)−

1
2 dφ is a continuous function of a and

so passes through all values between 0 and K as a increases from 0 to 1
2π, we can find a value

of a less than 1
2π, such that

K
(4m + 1)

=
π

2
ϑ2

3 =

∫ a

0
(1 − k2 sin2 φ)−

1
2 dφ;

and so sn( 12πϑ
2
3) = sin a < 1, which is untrue, since sn( 12πϑ

2
3) = 1. Therefore m must be

zero, that is to say we have
K = 1

2πϑ
2
3 .

But both K and π
2 ϑ

2
3 are analytic functions of k when the c-plane is cut from 1 to +∞,

and so, by the theory of analytic continuation, this result, proved when 0 < k < 1, persists
throughout the cut plane.

The equivalence of the definitions of K has therefore been established.

Example 22.3.2 By considering the integral∫ (1+)

0
(1 − t2)−

1
2 (1 − k2t2)−

1
2 dt,

shew that sn 2K = 0.

Example 22.3.3 Prove that

sn 1
2 K = (1 + k ′)−

1
2 , cn 1

2 K = k ′
1
2 (1 + k ′)−

1
2 , dn 1

2 K = k ′
1
2 .

Note Notice that when u = 1
2 K , cn 2u = 0. The simplest way of determining the signs

to be attached to the various radicals is to make k → 0, k ′ → 1, and then sn u, cn u, dn u
degenerate into sin u, cos u, 1.

Example 22.3.4 Prove, by means of the theory of theta-functions, that

cs 1
2 K = dn 1

2 K = k ′
1
2 .

22.31 The periodic properties (associated with K) of the Jacobian elliptic functions
The intimate connexion of K with periodic properties of the functions sn u, cn u, dn u, which
may be anticipated from the periodic properties of theta-functions associated with 1

2π, will
now be demonstrated directly from the addition-theorem.

By §22.2, we have

sn(u + K) =
sn u cn K dn K − sn K cn u dn u

1 − k2 sn2 u sn2 K
= cd u.
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In like manner, from §22.21,

cn(u + K) = −k ′ sd u, dn(u + K) = k ′ nd u.

Hence

sn(u + 2K) =
cn(u + K)
dn(u + K)

= −
k ′ sd u
k ′ nd u

= − sn u,

and, similarly,
cn(u + 2K) = − cn u, dn(u + 2K) = dn u.

Finally,
sn(u + 4K) = − sn(u + 2K) = sn u, cn(u + 4K) = cn u.

Thus 4K is a period of each of the functions sn u, cn u, while dn u has the smaller period
2K .

Example 22.3.5 Obtain the results

sn(u + K) = cd u, cn(u + K) = −k ′ sd u, dn(u + K) = k ′ nd u,

directly from the definitions of sn u, cn u, dn u as quotients of theta-functions.

Example 22.3.6 Shew that cs u cs(K − u) = k ′.

22.32 The constant K ′

We shall denote the integral ∫ 1

0
(1 − t2)−1/2 (1 − k ′2t2)−1/2 dt (22.2)

by the symbol K ′, so that K ′ is the same function of k ′2 (= c′) as K is of K2 (= c); and so

K ′ =
π

2
F

(
1
2
,

1
2

; 1; k ′2
)
,

when the c′-plane is cut from 1 to +∞, i.e. when the c-plane is cut from 0 to −∞.

Note To shew that this definition of K ′ is equivalent to the definition of §21.61, we observe
that if ττ′ = −1, then K is the one-valued function of k2, in the cut plane, defined by the
equations

K =
π

2
ϑ2

3(0|τ), k2 = ϑ4
2(0|τ)/ϑ

4
3(0|τ),

while, with the definition of §21.51,

K ′ =
1
2
πϑ2

3(0|τ
′), k ′2 = ϑ4

2(0|τ
′)/ϑ4

3(0|τ
′),

so that K ′ must be the same function of (k ′)2 as K is of k2; and this is consistent with the
integral definition of K ′ as ∫ 1

0
(1 − t2)−1/2 (1 − k ′2t2)−1/2 dt . (22.3)
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It will now be shewn that, if the c-plane be cut from 0 to −∞ and from 1 to +∞, then, in
the cut plane, K ′ may be defined by the equation

K ′ =
∫ 1/k

1
(s2 − 1)−

1
2 (1 − k2s2)−

1
2 ds.

First suppose that 0 < k < 1, so that 0 < k ′ < 1, and then the integrals concerned are real.
In the integral ∫ 1

0
(1 − t2)−

1
2 (1 − k ′2t2)−

1
2 dt

make the substitution
s = (1 − k ′2t2)−

1
2 ,

which gives

(s2 − 1)
1
2 = k ′t(1 − k ′2t2)−

1
2 ,

(1 − k2s2)
1
2 = k ′(1 − t2)

1
2 (1 − k ′2t2)−

1
2 ,

ds
dt
=

k ′2t

(1 − k ′2t2)
3
2
,

it being understood that the positive value of each radical is to be taken. On substitution, we
at once get the result stated, namely that

K ′ =
∫ 1/k

1
(s2 − 1)−

1
2 (1 − k2s2)−

1
2 ds,

provided that 0 < k < 1; the result has next to be extended to complex values of k.

Note Consider
∫ 1/k

0
(1 − t2)−

1
2 (1 − k2t2)−

1
2 dt, the path of integration passing above the

point 1, and not crossing the imaginary axis5 . The path may be taken to be the straight lines
joining 0 to 1 − δ and 1 + δ to k−1 together with a semicircle of (small) radius δ above the
real axis. If (1− t2)

1
2 and (1− k2t2)

1
2 reduce to +1 at t = 0, the value of the former at 1+ δ is

e−
1
2 πiδ

1
2 (2 + δ)

1
2 = −i(t2 − 1)

1
2 ,

where each radical is positive; while the value of the latter at t = 1 is +k ′ when k is real, and
hence by the theory of analytic continuation it is always +k ′.

Make δ→ 0, and the integral round the semicircle tends to zero like δ 1
2 ; and so∫ 1/k

0
(1 − t2)−

1
2 (1 − k2t2)−

1
2 dt = K + i

∫ 1/k

1
(t2 − 1)−

1
2 (1 − k2t2)−

1
2 dt.

Now ∫ 1/k

0
(1 − t2)−

1
2 (1 − k2t2)−

1
2 dt =

∫ 1

0
(k2 − u2)−

1
2 (1 − u2)−

1
2 du,

which6 is analytic throughout the cut plane, while K is analytic throughout the cut plane.
5 Re k > 0 because | arg c | < π.
6 The path of integration passes above the point u = k.
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Hence
∫ 1/k

1
(t2−1)−

1
2 (1− k2t2)−

1
2 dt is analytic throughout the cut plane, and as it is equal

to the analytic function K ′ when 0 < k < 1, the equality persists throughout the cut plane;
that is to say

K ′ =
∫ 1/k

1
(t2 − 1)−

1
2 (1 − k2t2)−

1
2 dt,

when the c-plane is cut from 0 to −∞ and from 1 to +∞.

Since

K + iK ′ =
∫ 1/k

0
(1 − t2)−

1
2 (1 − k2t2)−

1
2 dt,

we have sn(K + iK ′) = 1/k, dn(K + iK ′) = 0; while the value of cn(K + iK ′) is the value of
(1− t2)

1
2 when t has followed the prescribed path to the point 1/k, and so its value is −ik ′/k,

not +ik ′/k.

Example 22.3.7 Shew that

1
2

∫ 1

0

{
t(1 − t) (1 − k2t)

}− 1
2 dt =

1
2

∫ ∞

1/k2

{
t(t − 1) (k2t − 1)

}− 1
2 dt = K,

1
2

∫ 0

−∞

{
−t(1 − t) (1 − k2t)

}− 1
2 dt =

1
2

∫ 1/k2

1

{
t(t − 1) (1 − k2t)

}− 1
2 dt = K ′.

Example 22.3.8 Shew that K ′ satisfies the same linear differential equation as K given in
Example 22.3.1.

22.33 The periodic properties (associated with K + iK ′) of the Jacobian elliptic
functions

If we make use of the three equations

sn(K + iK ′) = k−1, cn(K + iK ′) = −ik ′/k, dn(K + iK ′) = 0,

we get at once, from the addition-theorems for sn u,cn u,dn u, the following results:

sn(u + K + iK ′) =
sn u cn(K + iK ′) dn(K + iK ′) + sn(K + iK ′) cn u dn u

1 − k2 sn2 u sn2(K + iK ′)
= k−1 dc u,

and similarly

cn(u + K + iK ′) = −ik ′k−1 nc u,

dn(u + K + iK ′) = ik ′ sc u.

By repeated applications of these formulae we have
sn(u + 2K + 2iK ′′) = − sn u,
cn(u + 2K + 2iK ′) = cn u,
dn(u + 2K + 2iK ′) = − dn u,


sn(u + 4K + 4iK ′) = sn u,
cn(u + 4K + 4iK ′) = cn u,
dn(u + 4K + 4iK ′) = dn u.
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Hence the functions sn u and dn u have period 4K + 4iK ′, while cn u has the smaller period
2K + 2iK ′. The double periodicity of sn u may be inferred from dynamical considerations.
See Whittaker [678, §44].

22.34 The periodic properties (associated with iK ′) of the Jacobian elliptic functions
By the addition-theorem we have

sn(u + iK ′) = sn(u − K + K + iK ′)

= k−1 dc(u − K)

= k−1 ns u.

Similarly we find the equations

cn(u + iK ′) = −ik−1 ds u,

dn(u + iK ′) = −i cs u.

By repeated applications of these formulae we have
sn(u + 2iK ′) = sn u,
cn(u + 2iK ′) = − cn u,
dn(u + 2iK ′) = − dn u,


sn(u + 4iK ′) = sn u,
cn(u + 4iK ′) = cn u,
dn(u + 4iK ′) = dn u.

Hence the functions cn u and dn u have period 4iK ′, while sn u has the smaller period 2iK ′.

Example 22.3.9 Obtain the formulae

sn(u + 2mK + 2niK ′) = (−1)m sn u,

cn(u + 2mK + 2niK ′) = (−1)m+n cn u,

dn(u + 2mK + 2niK ′) = (−1)n dn u.

22.341 The behaviour of the Jacobian elliptic functions near the origin and near iK ′

We have
d

du
sn u = cn u dn u,

d3

du3 sn u = 4k2 sn2 u cn u dn u − cn u dn u (dn2 u + k2 cn2 u).

Hence, by Maclaurin’s theorem, we have, for small values of |u|,

sn u = u −
1
6
(1 + k2)u3 +O(u5),

on using the fact that sn u is an odd function. In like manner

cn u = 1 −
1
2

u2 +O(u4),

dn u = 1 −
1
2

k2u2 +O(u4).
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It follows that

sn(u + iK ′) = k−1 ns u

=
1
ku

{
1 −

1
6
(1 + k2) u2 +O(u4)

}−1

=
1
ku
+

1 + k2

6k
u +O(u3);

and similarly

cn(u + iK ′) =
−i
ku
+

2k2 − 1
6k

iu +O(u3),

dn(u + iK ′) = −
i
u
+

2 − k2

6
iu +O(u3).

It follows that at the point iK ′ the functions sn 3, cn 3, dn 3 have simple poles with residues
k−1, −ik−1, −i respectively.

Example 22.3.10 Obtain the residues of sn u, cn u, dn u at iK ′ by the theory of theta-
functions.

22.35 General description of the functions sn u, cn u, dn u

The foregoing investigations of the functions sn u, cn u and dn u may be summarised in the
following terms:

(I) The function sn u is a doubly-periodic function of u with periods 4K,2iK ′. It is analytic
except at the points congruent to iK ′ or to 2K + iK ′ (mod 4K , 2iK ′); these points are
simple poles, the residues at the first set all being k−1; and the residues at the second set
all being −k−1 and the function has a simple zero at all points congruent to 0 (mod 2K ,
2iK ′).

It may be observed that sn u is the only function of u satisfying this description; for if
φ(u) were another such function, sn u − φ(u) would have no singularities and would be a
doubly-periodic function; hence (§20.12) it would be a constant, and this constant vanishes,
as may be seen by putting u = 0; so that φ(u) ≡ sn u.

When 0 < k2 < 1, it is obvious that K and K ′ are real, and sn u is real for real values of u
and is a pure imaginary when u is a pure imaginary.

(II) The function cn u is a doubly-periodic function of u with periods 4K and 2K +2iK ′. It is
analytic except at points congruent to iK ′ or to 2K + ik ′mod 4K , 2K +2iK ′; these points
are simple poles, the residues at the first set being −ik−1, and the residues at the second
set being ik−1; and the function has a simple zero at all points congruent to K mod 2K ,
2iK ′.

(III) The function dn u is a doubly-periodic function of u with periods 2K and 4iK ′. It is
analytic except at points congruent to iK ′ or to 3iK ′ (mod 2K , 4iK ′); these points are
simple poles, the residues at the first set being −i, and the residues at the second set
being i; and the function has a simple zero at all points congruent to K + iK ′mod 2K ,
2iK ′.
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Note To see that the functions have no zeros or poles other than those just specified, recourse
must be had to their definitions in terms of theta-functions.

22.351 The connexion between Weierstrassian and Jacobian elliptic functions
If e1, e2, e3 be any three distinct numbers whose sum is zero, and if we write

y = e3 +
e1 − e3

sn2(λ u, k)
,

we have (
dy
du

)2

= 4(e1 − e3)
2λ2 ns2 λu cs2 λu ds2 λu

= 4(e1 − e3)
2λ2 ns2 λu(ns2 λu − 1)(ns2 λu − k2)

= 4λ2(e1 − e3)
−1(y − e3)(y − e1)

{
y − k2(e1 − e3) − e3

}
.

Hence, if λ2 = e1 − e3 and k2 = (e2 − e3)/(e1 − e3), then y satisfies the equation7(
dy
du

)2

= 4y3 − g2y − g3,

and so

e3 + (e1 − e3) ns2
{
u(e1 − e3)

1
2 ,

√
e2 − e3

e1 − e3

}
= ℘(u + a; g2,g3),

where a is a constant. Making u→ 0, we see that a is a period, and so

℘(u; g2,g3) = e3 + (e1 − e3) ns2
{
u(e1 − e3)

1
2

}
,

the Jacobian elliptic function having its modulus given by the equation

k2 =
e2 − e3

e1 − e3
.

22.4 Jacobi’s imaginary transformation
The result of §21.51, which gave a transformation from theta-functions with parameter τ to
theta-functions with parameter τ′ = −1/τ, naturally produces a transformation of Jacobian
elliptic functions; this transformation is expressed by the equations

sn(iu, k) = i sc(u, k ′), cn(iu, k) = nc(u, k ′), dn(iu, k) = dc(u, k ′)

(Jacobi [349, p. 34–35]). Abel [2, p. 104] derives the double periodicity of elliptic functions
from this result. (See a letter of Jan. 12, 1828, from Jacobi to Legendre [354, p. 402].)

Suppose, for simplicity, that 0 < c < 1 and y > 0; let∫ iy

0
(1 − t2)−

1
2 (1 − k2t2)−

1
2 dt = iu,

7 The values of g2 and g3 are, as usual, − 1
4
∑
e2 e3 and 1

4e1e2e3.
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so that iy = sn(iu, k); take the path of integration to be a straight line, and we have

cn(iu, k) = (1 + y2)
1
2 , dn(iu, k) = (1 + k2y2)

1
2 .

Now put y = η/(1 − η2)
1
2 , where 0 < η < 1, so that the range of values of t is from 0 to

iη/(1 − η2)
1
2 and hence, if t = it1/(1 − t2

1 )
1
2 , the range of values of t1 is from 0 to η. Then

dt = i(1 − t2
1 )
− 3

2 dt1, (1 − t2)
1
2 = (1 − t2

1 )
− 1

2 ,

1 − k2t2 = (1 − k ′2t2
1 )
− 1

2 (1 − t2
1 )
− 1

2 ,

and we have

iu =
∫ η

0
(1 − t2

1 )
− 1

2 (1 − k ′2t2
1 )
− 1

2 i dt1,

so that η = sn(u, k ′) and therefore y = sc(u, k ′).We have thus obtained the result that

sn(iu, k) = i sc(u, k ′).

Also cn(iu, k) = (1 + y2)
1
2 = (1 − η2)−

1
2 = nc(u, k ′), and

dn(iu, k) = (1 − k2y2)
1
2 = (1 − k ′2η2)

1
2 (1 − η2)−

1
2 = dc(u, k ′).

Now sn(iu, k) and i sc(u, k ′) are one-valued functions of u and k (in the cut c-plane) with
isolated poles. Hence by the theory of analytic continuation the results proved for real values
of u and k hold for general complex values of u and k.

22.41 Proof of Jacobi’s imaginary transformation by the aid of theta-functions
The results just obtained may be proved very simply by the aid of theta-functions. Thus, from
§21.61,

sn(iu, k) =
ϑ3(0|τ)
ϑ2(0|τ)

ϑ1(iz |τ)
ϑ4(iz |τ)

,

where z = u/ϑ2
3(0|τ), and so, by §21.51,

sn(iu, k) =
ϑ3 (0|τ′)
ϑ4 (0|τ′)

−iϑ1 (izτ′ |τ′)
ϑ2 (izτ′ |τ′)

= −i sc(3, k ′),

where 3 = izτ′ϑ2
3(0|τ

′) = izτ′(−iτ)ϑ2
3(0|τ) = −u, so that, finally, sn(iu, k) = i sc(u, k ′).

Example 22.4.1 Prove that cn(iu, k) = nc(u, k ′), dn(iu, k) = dc(u, k ′) by the aid of theta-
functions.

Example 22.4.2 Shew that

sn
( 1

2 iK ′, k
)
= i sc

( 1
2 K ′, k ′

)
= ik−

1
2 ,

cn
( 1

2 iK ′, k
)
= (1 + k)

1
2 k−

1
2 ,

dn
( 1

2 iK ′, k
)
= (1 + k)

1
2 .

Note There is great difficulty in determining the signs of sn 1
2 iK ′, cn 1

2 iK ′, dn 1
2 iK ′, if any

method other than Jacobi’s transformation is used.
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Example 22.4.3 Shew that

sn 1
2 (K + iK ′) =

(1 + k)
1
2 + i(1 − k)

1
2

√
2k

,

cn 1
2 (K + iK ′) =

(1 − i)
√

k ′
√

2k
,

dn 1
2 (K + iK ′) =

k ′
1
2 {(1 + k ′)

1
2 − i(1 − k)

1
2 }

√
2

.

Example 22.4.4 (Glaisher) If 0 < k < 1 and if θ be the modular angle, shew that

sn 1
2 (K + iK ′) = e

1
4 πi−

1
2 iθ
√

cosec θ,

cn 1
2 (K + iK ′) = e−

1
4 πi
√

cot θ,

dn 1
2 (K + iK ′) = e−

1
2 iθ
√

cos θ.

22.42 Landen’s transformation
This appears in [406]. We shall now obtain the formula∫ φ1

0
(1 − k2

1 sin2 θ1)
− 1

2 dθ1 = (1 + k ′)
∫ φ

0
(1 − k2 sin2 θ)−

1
2 dθ,

where
sin φ1 = (1 + k ′) sin φ cos φ (1 − k2 sin2 φ)−

1
2

and
k1 = (1 − k ′)/(1 + k ′).

This formula, of which Landen was the discoverer, may be expressed bymeans of Jacobian
elliptic functions in the form

sn {(1 + k ′)u, k1} = (1 + k ′) sn(u, k) cd(u, k),

on writing φ = am u, φ1 = am u1.

To obtain this result, we make use of the equations of §21.52, namely
ϑ3(z |τ) ϑ4(z |τ)
ϑ4(2z |2τ)

=
ϑ2(z |τ) ϑ1(z |τ)
ϑ1(2z |2τ)

=
ϑ3(0|τ)ϑ4(0|τ)
ϑ4(0|2τ)

.

Write8 τ1 = 2τ, and let k1, Λ, Λ′ be the modulus and quarter-periods formed with
parameter τ1; then the equation

ϑ1(z |τ) ϑ2(z |τ)
ϑ3(z |τ) ϑ4(z |τ)

=
ϑ1(2z |τ1)

ϑ4(2z |τ1)

may obviously be written

k sn(2Kz/π, k) cd(2Kz/π, k) = k
1
2
1 sn(4∆z/π, k1). (A)

8 It will be supposed that | Reτ | < 1
2 , to avoid difficulties of sign which arise if Re (τ1) does not lie between ±1.

This condition is satisfied when 0 < k < 1, for τ is then a pure imaginary.
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To determine k1 in terms of k, put z = π/4, and we immediately get

k
1 + k ′

= k1/2
1 ,

which gives, on squaring, k1 = (1 − k ′)/(1 + k ′), as stated above.
To determineΛ, divide equation (A) by z, and thenmake z → 0; andwe get 2Kk = 4k1/2

1 Λ,
so that Λ = 1

2 (1 + k ′)K . Hence, writing u in place of 2Kz/π, we at once get from (A)

(1 + k ′) sn(u, k) cd(u, k) = sn {(1 + k ′)u, k1} ,

since 4Λz/π = 2Λu/K = (1 + k ′) u; so that Landen’s result has been completely proved.

Example 22.4.5 Shew that Λ′/Λ = 2K ′/K , and thence that Λ′ = (1 + k ′)K ′.

Example 22.4.6 Shew that

cn {(1 + k ′)u, k1} =
{
1 − (1 + k ′) sn2(u, k)

}
nd(u, k),

dn {(1 + k ′)u, k1} =
{
k ′ + (1 − k ′) cn2(u, k)

}
nd(u, k).

Example 22.4.7 Shew that

dn(u, k) = (1 − k ′) cn {(1 + k ′)u, k1} + (1 + k ′) dn {(1 + k ′)u, k1} ,

where k = 2k
1
2
1 /(1 + k1).

22.421 Transformations of elliptic functions
The formula of Landen is a particular case of what is known as a transformation of elliptic
functions; a transformation consists in the expression of elliptic functions with parameter τ
in terms of those with parameter (a + bτ)/(c + dτ), where a, b, c, d are integers. We have
had another transformation in which a = −1, b = 0, c = 0, d = 1, namely Jacobi’s imaginary
transformation. For the general theory of transformations, which is outside the range of this
book, the reader is referred to Jacobi [349], to Klein and Fricke [378], and to Cayley [136].

Example 22.4.8 By considering the transformation τ2 = τ ± 1, shew, by the method of
§22.42, that

sn(k ′u, k2) = k ′ sd(u, k),

where k2 = ±ik/k ′, and the upper or lower sign is taken according as Re τ < 0 or Re τ > 0;
and obtain formulae for cn(k ′u, k2) and dn(k ′u, k2).

22.5 Infinite products for the Jacobian elliptic functions
The products for the theta-functions, obtained in §21.3, at once yield products for the Jacobian
elliptic functions [349, p. 84–115]; writing u = 2K x/π, we obviously have, from §22.11,
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formulae (A), (B) and (C),

sn u = 2q
1
4 k−

1
2 sin x

∞∏
n=1

{
1 − 2q2n cos 2x + q4n

1 − 2q2n−1 cos 2x + q4n−2

}
,

cn u = 2q
1
4 k ′

1
2 k−

1
2 cos x

∞∏
n=1

{
1 + 2q2n cos 2x + q4n

1 − 2q2n−1 cos 2x + q4n−2

}
,

dn u = k ′
1
2

∞∏
n=1

{
1 + 2q2n−1 cos 2x + q4n−2

1 − 2q2n−1 cos 2x + q4n−2

}
.

From these results the products for the nine reciprocals and quotients can be written down.
There are twenty-four other formulae which may be obtained in the following manner:
From the duplication-formulae in Example 22.2.10 we have

1 − cn u
sn u

= sn
(u
2

)
dc

(u
2

)
,

1 + dn u
sn u

= ds
(u
2

)
nc

(u
2

)
,

dn u + cn u
sn u

= cn
(u
2

)
ds

(u
2

)
.

Take the first of these, and use the products for sn 1
2 u, cn 1

2 u, dn 1
2 u; we get

1 − cn u
sn u

=
1 − cos x

sin x

∞∏
n=1

{
1 − 2(−q)n cos x + q2n

1 + 2(−q)n cos x + q2n

}
,

on combining the various products. Write u + K for u, x + 1
2π for x, and we have

dn u + k ′ sn u
cn u

=
1 + sin x

cos x

∞∏
n=1

{
1 + 2(−q)n sin x + q2n

1 − 2(−q)n sin x + q2n

}
.

Writing u + iK ′ for u in these formulae we have

k sn u + i dn u = i
∞∏
n=1

{
1 + 2i(−1)nqn− 1

2 sin x − q2n−1

1 − 2i(−1)nqn− 1
2 sin x − q2n−1

}
,

and the expression for k cd u + ik ′ nd u is obtained by writing cos x for sin x in this product.
From the identities (1 − cn u)(1 + cn u) ≡ sn2 u, (k sn u + i dn u)(k sn u − i dn u) ≡ 1, etc.,

we at once get four other formulae, making eight in all; the other sixteen follow in the same
way from the expressions for ds 1

2 u nc 1
2 u and cn 1

2 u ds 1
2 u. The reader may obtain these as an

example, noting specially the following:

sn u + i cn u = ie−ix
∞∏
n=1

{
(1 − q4n−3e2ix)(1 − q4n−1e−2ix)

(1 − q4n−1e2ix)(1 − q4n−3e−2ix)

}
.

Example 22.5.1 Shew that

dn
(

K + iK ′

2

)
= k ′

1
2

∞∏
n=1

{
(1 + iq2n− 1

2 )(1 − iq2n− 3
2 )

(1 − iq2n− 1
2 )(1 + iq2n− 3

2 )

}
= k ′

1
2

∞∏
n=0

{
1 − (−1)n iqn+ 1

2

1 + (−1)n iqn+ 1
2

}
.
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Example 22.5.2 (Jacobi [349]) Deduce from Example 22.5.1 and from Example 22.4.4
that, if θ be the modular angle, then

e−
1
2 iθ =

∞∏
n=0

{
1 − (−1)n iqn+ 1

2

1 + (−1)n iqn+ 1
3

}
,

and thence, by taking logarithms, obtain Jacobi’s result

1
4
θ =

∞∑
n=0

(−1)n arctan qn+ 1
2 = arctan

√
q − arctan

√
q3 + arctan

√
q5 − · · · ,

‘quae inter formulas elegantissimas censeri debet’.

Example 22.5.3 (Jacobi [349]) By expanding each term in the equation

log sn u = log(2q
1
4 ) −

log k
2
+ log sin x +

∞∑
n=1

{log(1 − q2n e2ix)

+ log(1 − q2n e−2ix) − log(1 − q2n−1 e2ix) − log(1 − q2n−1 e−2ix)}

in powers of e±2ix , and rearranging the resulting double series, shew that

log sn u = log(2q
1
4 ) −

log k
2
+ log sin x +

∞∑
m=1

2qm cos 2mx
m(1 + qm)

,

when | Im z | < π
2 Im τ. Obtain similar series for log cn u, log dn u.

Example 22.5.4 (Glaisher [248]) Deduce from Example 22.5.3 that∫ K

0
log sn u du = −

1
4
πK ′ −

1
2

K log k .

22.6 Fourier series for the Jacobian elliptic functions
If u ≡ 2K x/π, sn u is an odd periodic function of x (with period 2π), which obviously
satisfies Dirichlet’s conditions (§9.2) for real values of x; and therefore (§9.22) we may
expand sn u as a Fourier sine-series in sines of multiples of x, thus

sn u =
∞∑
n=1

bn sin nx,

the expansion being valid for all real values of x. It is easily seen that the coefficients bn are
given by the formula

πibn =

∫ π

−π

sn u exp(nix) dx.

(These results are substantially due to Jacobi [349, p. 101].) To evaluate this integral, consider∫
sn u exp(nix) dx taken round the parallelogram whose corners are −π, π, πτ, −2π + πτ.

From the periodic properties of sn u and exp(nix), we see that
∫ πτ

π

cancels
∫ −π

−2π+πτ
; and so,
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since −π + 1
2πτ and 1

2 πτ are the only poles of the integrand (qua function of x) inside the
contour, with residues9

−k−1 ( 1
2πK

)
exp

(
−niπ + 1

2 nπiτ
)

and k−1 ( 1
2πK

)
exp

( 1
2 nπiτ

)
respectively, we have{∫ π

−π

−

∫ πτ

−2π+πτ

}
sn u exp(nix) dx =

π2i
Kk

q
1
2 n {1 − (−1)n} .

Writing x − π + πτ for x in the second integral, we get

{1 + (−1)nqn}

∫ π

−π

sn u exp(nix) dx =
π2i
Kk

q
1
2 n {1 − (−1)n} .

Hence,

bn =


0 when n is even,

2π
Kk

q
1
2 n

1 − qn
when n is odd.

Consequently

sn u =
2π
Kk

{
q

1
2 sin x
1 − q

+
q

3
2 sin 3x
1 − q3 +

q
5
2 sin 5x
1 − q5 + · · ·

}
,

when x is real; but the right-hand side of this equation is analytic when q
1
2 n exp(nix) and

q
1
2 n exp(−nix) both tend to zero as n → ∞, and the left-hand side is analytic except at the

poles of sn u.
Hence both sides are analytic in the strip (in the plane of the complex variable x) which is

defined by the inequality | Im x | < 1
2π Im τ. And so, by the theory of analytic continuation,

we have the result

sn u =
2π
Kk

∞∑
n=0

qn+ 1
2 sin(2n + 1)x
1 − q2n+1 ,

(where u = 2K x/π), valid throughout the strip | Im x | < 1
2π Im τ.

Example 22.6.1 Shew that, if u = 2K x/π, then

cn u =
2π
Kk

∞∑
n=0

qn+ 1
2 cos(2n + 1)x
1 + q2n+1 ,

dn u =
π

2K
+

2π
K

∞∑
n=1

qn cos 2nx
1 + q2n ,

am u =
∫ u

0
dn t dt = x +

∞∑
n=1

2qn sin 2nx
n(1 + q2n)

,

these results being valid when | Im x | < 1
2π Im τ.

9 The factor 1
2π/K has to be inserted because we are dealing with sn(2Kx/π).
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Example 22.6.2 By writing x + 1
2π for x in results already obtained, shew that, if

u = 2K x/π and | Im x | <
1
2
π Im τ,

then

cd u =
2π
Kk

∞∑
n=0

(−1)n qn+ 1
2 cos(2n + 1)x

1 − q2n+1 ,

sd u =
2π

Kkk ′

∞∑
n=0

(−1)n qn+ 1
2 sin(2n + 1)x

1 + q2n+1 ,

nd u =
π

2Kk ′
+

2π
Kk ′

∞∑
n=1

(−1)n qn cos 2nx
1 + q2n .

22.61 Fourier series for reciprocals of Jacobian elliptic functions
In the result of §22.6, write u + iK ′ for u and consequently x + 1

2πτ for x; then we see that,
if 0 > Im x > −π Im τ,

sn(u + iK ′) =
2π
Kk

∞∑
n=0

qn+ 1
2 sin(2n + 1)(x + 1

2πτ)

1 − q2n+1 ,

and so (§22.34)

ns u = −
iπ
K

∞∑
n=0

qn+ 1
2

{
qn+ 1

2 e(2n+1)ix − q−n−
1
2 e−(2n+1)ix

} /
(1 − q2n+1),

= −
iπ
K

∞∑
n=0

{
2iq2n+1 sin(2n + 1)x + (1 − q−2n−1)e−(2n+1)ix} /

(1 − q2n+1),

=
2π
K

∞∑
n=0

q2n+1 sin(2n + 1)x
1 − q2n+1 −

iπ
K

∞∑
n=0

e−(2n+1)ix .

That is to say

ns u =
π

2K
cosec x +

2π
K

∞∑
n=0

q2n+1 sin(2n + 1)x
1 − q2n+1 .

But, apart from isolated poles at the points x = nπ, each side of this equation is an analytic
function of x in the strip in which

π Im τ > Im x > −π Im τ

a strip double the width of that in which the equation has been proved to be true; and so,
by the theory of analytic continuation, this expansion for ns u is valid throughout the wider
strip, except at the points x = nπ.

Example 22.6.3 Obtain the following expansions, valid throughout the strip | Im x | <
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π Im τ except at the poles of the first term on the right-hand sides of the respective expansions:

ds u =
π

2K
cosec x −

2π
K

∞∑
n=0

q2n+1 sin(2n + 1)x
1 + q2n+1 ,

cs u =
π

2K
cot x −

2π
K

∞∑
n=1

q2n sin(2nx)
1 + q2n ,

dc u =
π

2K
sec x −

2π
K

∞∑
n=0

(−1)n q2n+1 cos(2n + 1)x
1 − q2n+1 ,

nc u =
π

2Kk ′
sec x −

2π
Kk ′

∞∑
n=0

(−1)n q2n+1 cos(2n + 1)x
1 + q2n+1 ,

sc u =
π

2Kk ′
tan x −

2π
Kk ′

∞∑
n=1

(−1)n q2n sin 2nx
1 + q2n .

22.7 Elliptic integrals

An integral of the form
∫

R(w, x) dx, where R denotes a rational function of w and x, and

w2 is a quartic, or cubic function of x (without repeated factors), is called an elliptic integral.
Strictly speaking, it is only called an elliptic integral when it cannot be integrated by means
of the elementary functions, and consequently involves one of the three kinds of elliptic
integrals introduced in §22.72.

Note Elliptic integrals are of considerable historical importance, owing to the fact that a
very large number of important properties of such integrals were discovered by Euler and
Legendre before it was realised that the inverses of certain standard types of such integrals,
rather than the integrals themselves, should be regarded as fundamental functions of analysis.

The first mathematician to deal with elliptic functions as opposed to elliptic integrals was
Gauss (§22.8), but the first results published were by Abel [2] and Jacobi. Jacobi announced
his discovery in two letters (dated June 13, 1827 and August 2, 1827) to Schumacher, who
published extracts from them in [345] in September 1827 – the month in which Abel’s
memoir appeared.

The results obtained byAbel were brought to the notice of Legendre by Jacobi immediately
after the publication by Legendre of [422]. In the supplement (tome iii. (1828), p. 1),
Legendre comments on their discoveries in the following terms: “À peine mon ouvrage
avait-il vu le jour, à peine son titre pouvait-il être connu des savans étrangers, que j’appris,
avec autant d’étonnement que de satisfaction, que deux jeunes géomètres, MM. Jacobi (C.-
G.-J.) de Koenigsberg et Abel de Christiania, avaient réussi, par leurs travaux particuliers, á
perfectionner considérablement la théorie des fonctions elliptiques dans ses points les plus
élevés.”

An interesting correspondence between Legendre and Jacobi was printed in [423]; in
one of the letters Legendre refers to the claim of Gauss to have made in 1809 many of
the discoveries published by Jacobi and Abel. The validity of this claim was established
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by Schering (see Gauss [238, vol. III, pp. 493–494]), though the researches of Gauss [238,
vol. III, pp. 404–460] remained unpublished until after his death.

We shall now give a brief outline of the important theorem that every elliptic integral
can be evaluated by the aid of theta-functions, combined with the elementary functions of
analysis; it has already been seen (§20.6) that this process can be carried out in the special
case of

∫
w−1 dx, since the Weierstrassian elliptic functions can easily be expressed in terms

of theta-functions and their derivatives (§21.73).

Note The most important case practically is that in which R is a real function of x and
w, which are themselves real on the path of integration; it will be shewn how, in such
circumstances, the integral may be expressed in a real form.

Since R(w, x) is a rational function of w and x we may write

R(w, x) ≡ P(w, x)/Q(w, x),

where P and Q denote polynomials in w and x; then we have

R(w, x) ≡
wP(w, x)Q(−w, x)
wQ(w, x)Q(−w, x)

.

Now Q(w, x)Q(−w, x) is a rational function of w2 and x, since it is unaffected by changing
the sign of w; it is therefore expressible as a rational function of x.

If now we multiply out wP(w, x)Q(−w, x) and substitute for w2 in terms of x wherever it
occurs in the expression, we ultimately reduce it to a polynomial in x and w, the polynomial
being linear in w. We thus have an identity of the form

R(w, x) ≡
R1(x) + wR2(x)

w
,

by reason of the expression for w2 as a quartic in x; where R1 and R2 denote rational functions
of x.

Now
∫

R2(x) dx can be evaluated by means of elementary functions only. The integration
of rational functions of one variable is discussed in textbooks on Integral Calculus; so the

problem is reduced to that of evaluating
∫

w−1R1(x) dx. To carry out this process it is

necessary to obtain a canonical expression for w2, which we now proceed to do.

22.71 The expression of a quartic as the product of sums of squares
It will now be shewn that any quartic (or cubic10) in x (with no repeated factors) can be
expressed in the form{

A1(x − α)2 + B1(x − β)2
} {

A2(x − α)2 + B2(x − β)2
}
,

where, if the coefficients in the quartic are real A1, B1, A2, B2, α, β are all real.

10 In the following analysis, a cubic may be regarded as a quartic in which the coefficient of x4 vanishes.
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To obtain this result, we observe that any quartic can be expressed in the form S1S2 where
S1, S2 are quadratic in x, say11

S1 ≡ a1x2 + 2b1x + c1, S2 ≡ a2x2 + 2b2x + c2.

Now, λ being a constant, S1 − λS2 will be a perfect square in x if

(a1 − λa2)(c1 − λc2) − (b1 − λb2)
2 = 0.

Let the roots of this equation be λ1, λ2; then, by hypothesis, numbers α, β exist such that

S1 − λ1S2 ≡ (a1 − λ1a2)(x − α)2, S1 − λ2S2 ≡ (a1 − λ2a2)(x − β)2;

on solving these as equations in S1, S2, we obviously get results of the form

S1 ≡ A1(x − α)2 + B1(x − β)2, S2 ≡ A2(x − α)2 + B2(x − β)2,

and the required reduction of the quartic has been effected.

Note If the quartic is real and has two or four complex factors, let S1 have complex factors;
then λ1 and λ2 are real and distinct since

(a1 − λa2)(c1 − λc2) − (b1 − λb2)
2

is positive when λ = 0 and negative12 when λ = a1/a2.

When S1 and S2 have real factors, say (x − ξ1)(x − ξ ′1), (x − ξ2)(x − ξ ′2), the condition that
λ1 and λ2 should be real is easily found to be

(ξ1 − ξ2)(ξ
′
1 − ξ2)(ξ1 − ξ

′
2)(ξ

′
1 − ξ

′
2) > 0,

a condition which is satisfied when the zeros of S1 and those of S2 do not interlace; this was,
of course, the reason for choosing the factors S1 and S2 of the quartic in such a way that their
zeros do not interlace.

22.72 The three kinds of elliptic integrals

Letα, β be determined by the rule just obtained in §22.71, and, in the integral
∫

w−1R1(x) dx,

take a new variable t defined by the equation13 t = (x − α)/(x − β); we then have

dx
w
= ±

(α − β)−1 dt

{(A1t2 + B1)(A2t2 + B2)}
1/2 .

11 If the coefficients in the quartic are real, the factorisation can be carried out so that the coefficients in S1 and
S2 are real. In the special case of the quartic having four real linear factors, these factors should be associated
in pairs (to give S1 and S2) in such a way that the roots of one pair do not interlace the roots of the other pair;
the reason for this will seen in the note at the end of the section.

12 Unless a1 : a2 = b1 : b2, in which case S1 ≡ a1(x − a)2 + B1, and S2 ≡ a2(x − a)2 + B2.
13 It is rather remarkable that Jacobi did not realise the existence of this homographic substitution; in his

reduction he employed a quadratic substitution, equivalent to the result of applying a Landen transformation
to the elliptic functions which we shall introduce.
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If we write R1(x) in the form ±(α − β)Rs(t),where Rs is rational, we get∫
R1(x) dx

w
=

∫
Rs(t) dt

{(A1t2 + B1)(A2t2 + B2)}
1/2 .

Now R3(t) + R3(−t) = 2R4(t2), R3(t) + R3(−t) = 2tR5(t2), where R4 and R5 are rational
functions of t2, and so

R3(t) = R4(t2) + tR5(t2).

But
∫ {
(A1t2 + B1)(A2t2 + B2)

}−1/2
tR5(t2) dt can be evaluated in terms of elementary func-

tions by taking t2 as a new variable (see, e.g., Hardy [280]); so that, if we put R4(t2) into
partial fractions, the problem of integrating

∫
R(w, x) dx has been reduced to the integration

of integrals of the following types:∫
t2m {
(A1t2 + B1)(A2t2 + B2)

}− 1
2 dt,∫

(1 + Nt2)−m
{
(A1t2 + B1)(A2t2 + B2)

}− 1
2 dt;

in the former of these m is an integer, in the latter m is a positive integer and N , 0.
By differentiating expressions of form

t2m−1 {
(A1t2 + B1)(A2t2 + B2)

} 1
2 , t(1 + Nt2)1−m

{
(A1t2 + B1) (A2t2 + B2)

} 1
2 ,

it is easy to obtain reduction formulae bymeans of which the above integrals can be expressed
in terms of one of the three canonical forms:

(i)
∫ {
(A1t2 + B1)(A2t2 + B2)

}− 1
2 dt;

(ii)
∫

t2
{
(A1t2 + B1)(A2t2 + B2)

}− 1
2 dt,

(iii)
∫
(1 + Nt2)−1

{
(A1t2 + B1) (A2t2 + B2)

}− 1
2 dt.

These integrals were called by Legendre [421, vol. I, p. 19] elliptic integrals of the first,
second and third kinds, respectively.

The elliptic integral of the first kind presents no difficulty, as it can be integrated at once
by a substitution based on the integral formulae of §§22.121, 22.122; thus, if A1, B1, A2, B2

are all positive and A2B1 > A1B2, we write

A
1
2
1 t = B

1
2
1 cs(u, k)

[
k ′2 = A1B2/A2B1

]
.

Example 22.7.1 Verify that, in the case of real integrals, the following scheme gives all pos-
sible essentially different arrangements of sign, and determine the appropriate substitutions
necessary to evaluate the corresponding integrals.

A1 + + − + + −

B1 + − + − − +

A2 + + + + − −

B2 + + + − + +
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Example 22.7.2 (Glaisher) Shew that∫
sn u du =

1
2k

log
1 − k cd u
1 + k cd u

,

∫
cn u du = k−1 arctan(k sd u)∫

dn u du = am u,
∫

sc u du =
1

2k ′
log

dn u + k ′

dn u − k ′
,∫

ds u du =
1
2

log
1 − cn u
1 + cn u

,

∫
dc u du =

1
2

log
1 + sn u
1 − sn u

,

and obtain six similar formulae by writing u + K for u.

Example 22.7.3 Prove, by differentiation, the equivalence of the following twelve expres-
sions:

u − k2
∫

sn2 u du, k ′2u + k2
∫

cn2 u du,∫
dn2 u du, u − dn u cs u −

∫
ns2 u du,

k ′2u + dn u sc u − k ′2
∫

nc2 u du, k2 sn u cd u + k ′2
∫

nd2 u du,

dn u sc u − k ′2
∫

sc2 u du, k ′2u + k2 sn u cd u + k2k ′2
∫

sd2 u du,

u + k2 sn u cd u − k2
∫

cd2 u du, − dn u cs u −
∫

cs2 u du,

k ′2u − dn u cs u −
∫

ds2 u du, u + dn u sc u −
∫

dc2 u du.

Example 22.7.4 (Jacobi; Glaisher [252]) Shew that

d2 snn u
du2 = n(n − 1) snn−2 u − n2(1 + k2) snn u + n(n + 1)k2 snn+2 u,

and obtain eleven similar formulae for the second differential coefficients of cnn u, dnn u, . . . ,
ndn u. What is the connexion between these formulae and the reduction formula for∫

tn{(A1t2 + B1)(A2t2 + B2)}
−1/2 dt?

Example 22.7.5 By means of §20.6 shew that, if a and b are positive,∫ a

−a

{(a2 − x2)(x2 + b2)}−
1
2 dx =

∫ ∞

e1

(4s3 − g2s − g3)
− 1

2 ds,

where e1 is the real root of the cubic and

g2 =
1

12 (a
2 − b2)2 − a2b2, g3 = −

1
216 (a

2 − b2){(a2 − b2)2 + 36a2b2};

and prove that, if g2 = 0, then a and b are given by the equations

a2 − b2 = −3(2g3)
1
3 , a2 + b2 = 2

√
3|2g3 |

1
3 .
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Example 22.7.6 Deduce from Example 22.7.5, combined with the integral formula for
cn u, that, if g3 is positive,∫ ∞

e1

(4s3 − g3)
− 1

2 ds = 2(a2 + b2)−
1
2 K,

∫ ∞

e1

(4s3 − g3)
− 1

2 ds = 2(a2 + b2)−
1
2 K ′,

where a2 = (
√

3 − 3
2 ) (2g3)

1
3 , b2 = (

√
3 + 3

2 ) (2g3)
1
3 and the modulus is a(a2 + b2)−

1
2 .

22.73 The elliptic integral of the second kind. The function E(u)

To reduce an integral of the type∫
t2{(A1t2 + B1)(A2t2 + B2)}

− 1
2 dt,

we employ the same elliptic function substitution as in the case of that elliptic integral of
the first kind which has the same expression under the radical. We are thus led to one of the
twelve integrals ∫

sn2 u du,
∫

cn2 u du, . . . ,

∫
nd2 u du.

By Example 22.7.3, these are all expressible in terms of u, elliptic functions of u and∫
dn2 u du; it is convenient to regard

E(u) ≡
∫ u

0
dn2 u du

as the fundamental elliptic integral of the second kind, in terms of which all others can be
expressed; when the modulus has to be emphasised, we write E(u, k) in place of E(u). This
notation was introduced by Jacobi [347, p. 373]. In the Fundamenta Nova [349], he wrote
E(am u) where we write E(u).

We observe that
dE(u)

du
= dn2 u, E(0) = 0.

Further, since dn2 u is an even function with double poles at the points 2mK + (2n+ 1)iK ,
the residue at each pole being zero, it is easy to see that E(u) is an odd one-valued14 function
of u with simple poles at the poles of dn u.

It will now be shewn that E(u) may be expressed in terms of theta-functions; the most
convenient type to employ is the function Θ(u).

Consider
d

du

{
Θ′(u)
Θ(u)

}
;

it is a doubly-periodic function of u with double poles at the zeros of Θ(u), i.e. at the poles
of dn u, and so, if A be a suitably chosen constant,

dn2 u − A
d

du

{
Θ′(u)
Θ(u)

}
14 Since the residues of dn2 u are zero, the integral defining E(u) is independent of the path chosen (§6.1).
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is a doubly-periodic function of u, with periods 2K , 2iK ′, with only a single simple pole
in any cell. It is therefore a constant; this constant is usually written in the form E/K . To
determine the constant A, we observe that the principal part of dn2 u at iK ′ is −(u − iK ′)−2,
by §22.341; and the residue of Θ′(u)/Θ(u) at this pole is unity, so the principal part of

d
du

{
Θ′(u)
Θ(u)

}
is −(u − iK ′)−2. Hence A = 1, so

dn2 u =
d

du

{
Θ′(u)
Θ(u)

}
+

E
K
.

Integrating and observing that Θ′(0) = 0, we get

E(u) = Θ′(u)/Θ(u) + uE/K .

Since Θ′(K) = 0, we have E(K) = E; hence

E =
∫ k

0
dn2 u du =

∫ π/2

0
(1 − k2 sin2 φ)

1
2 dφ =

π

2
F

(
− 1

2,
1
2 ; 1; k2) .

It is usual (cf. §22.3) to call K and E the complete elliptic integrals of the first and second
kinds. Tables of them qua functions of the modular angle are given by Legendre [422, vol.
II].

Example 22.7.7 Shew that E(u + 2nK) = E(u) + 2nE , where n is any integer.

Example 22.7.8 By expressing Θ(u) in terms of the function ϑ4(
1
2πu/K), and expanding

about the point u = iK ′, shew that

E = 1
3 {2 − k2 − ϑ

′′′

1 /(ϑ
4
3ϑ

′

1)}K .

22.731 The zeta-function Z(u)
The function E(u) is not periodic in either 2K or in 2iK ′, but, associated with these periods,
it has additive constants 2E , {2iK ′E − πi}/K; it is convenient to have a function of the same
general type as E(u) which is singly-periodic, and such a function is

Z(u) ≡ Θ′(u)/Θ(u);

from this definition, we have15

Z(u) = E(u) − uE/K, Θ(u) = Θ(0) exp
{∫ u

0
Z(t) dt

}
.

15 The integral in the expression for Θ(u) is not one-valued as Z(t) has residue 1 at its poles; but the difference of
the integrals taken along any two paths with the same end points is 2nπi where n is the number of poles
enclosed, and the exponential of the integral is therefore one-valued, as it should be, since Θ(u) is one-valued.
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22.732 The addition-formulae for E(u) and Z(u)
Consider the expression

Θ′(u + 3)
Θ(u + 3)

−
Θ′(u)
Θ(u)

−
Θ′(3)

Θ(3)
+ k2 sn u sn 3 sn(u + 3)

qua function of u. It is doubly-periodic16 (periods 2K and 2iK ′) with simple poles congruent
to iK ′ and to iK ′ − 3; the residue of the first two terms at iK ′ is −1, and the residue of
sn u sn(u + 3) is k−1 sn 3 sn(iK ′ + 3) = k−2. Hence the function is doubly-periodic and has no
poles at points congruent to iK ′ or (similarly) at points congruent to iK ′ − 3. By Liouville’s
theorem, it is therefore a constant, and, putting u = 0, we see that the constant is zero.

Hence we have the addition-formulae

Z(u) + Z(3) − Z(u + 3) = k2 sn u sn u sn(u + 3),
E(u) + E(3) − E(u + 3) = k2 sn u sn u sn(u + 3).

Note Since Z(u) and E(u) are not doubly-periodic, it is possible to prove that no algebraic
relation can exist connecting themwith sn u, cn u and dn u, so these are not addition-theorems
in the strict sense. A theorem due to Weierstrass states that an analytic function, f (z),
possessing an addition-theorem in the strict sense must be either (i) an algebraic function of
z, or (ii) an algebraic function of exp(πiz/ω), or (iii) an algebraic function of ℘(z |ω1,ω2);
where ω, ω1, ω2, are suitably chosen constants. See Forsyth [220, Chapter 13].

22.733 Jacobi’s imaginary transformation of Z(u)
From §21.51 it is fairly evident that there must be a transformation of Jacobi’s type for the
function Z(u). To obtain it [349, p. 161], we translate the formula

ϑ2(ix |τ) = (−iτ)1/2 exp(−iτ′x2/π)ϑ4(ixτ′ |τ′)

into Jacobi’s earlier notation, when it becomes

H(iu + K, k) = (−iτ)
1
2 exp

(
πu2

4KK ′

)
Θ(u, k ′),

and hence

cn(iu, k) = (−iτ)
1
2 exp

(
πu2

4KK ′

)
ϑ4(0|τ)
ϑ2(0|τ)

Θ(u, k ′)
Θ(iu, k)

.

Taking the logarithmic differential of each side, we get, on making use of §22.4,

Z(iu, k) = i dn(u, k ′) sc(u, k ′) − iZ(u, k ′) −
πiu

2KK ′
.

16 2iK ′ is a period since the additive constants for the first two terms cancel.
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22.734 Jacobi’s imaginary transformation of E(u)
It is convenient to obtain the transformation of E(u) directly from the integral definition; we
have

E(iu, k) =
∫ iu

0
dn2
(t, k) dt =

∫ u

0
dn2
(it ′, k)i dt ′

= i
∫ u

0
dc2
(t ′, k ′) dt ′,

on writing t = it ′ and making use of §22.4.
Hence, from Example 22.7.3, we have

E(iu, k) = i
{
u + dn(u, k ′) sc(u, k ′) −

∫ u

0
dn2
(t ′, k ′) dt ′

}
,

and so
E(iu, k) = iu + i dn(u, k ′) sc(u, k ′) − iE(u, k ′).

This is the transformation stated.
It is convenient towrite E ′ to denote the same function of k ′ as E is of k, i.e. E ′ = E(K ′, k ′),

so that
E(2iK ′, k) = 2i(K ′ − E ′).

22.735 Legendre’s relation
From the transformations of E(u) and Z(u) just obtained, it is possible to derive a remarkable
relation connecting the two kinds of complete elliptic integrals, namely

EK ′ + E ′K − KK ′ =
π

2
.

For we have, by the transformations of §§22.733, 22.734,

E(iu, k) − Z(iu, k) = iu − i {E(u, k ′) − Z(u, k ′)} +
πiu

2KK ′
,

and on making use of the connexion between the functions E(u, k) and Z(u, k), this gives

iuE/K = iu − i {uE ′/K ′} + πiu/(2KK ′).

Since wemay take u , 0, the result stated follows at once from this equation; it is the analogue
of the relation η1ω2 − η2ω2 = πi/2 which arose in the Weierstrassian theory (§20.411).

Example 22.7.9 Shew that

E(u + K) − E(u) = E − k2 sn u cd u.

Example 22.7.10 Shew that

E(2u + 2iK ′) = E(2u) + 2i(K ′ − E ′).

Example 22.7.11 Deduce from Example 22.7.10 that

E(u + iK ′) =
1
2

E(2u + 2iK ′) +
1
2

k2 sn2(u + iK ′) sn(2u + 2iK ′)

= E(u) + cn u ds u + i(K ′ − E ′).
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Example 22.7.12 Shew that

E(u + K + iK ′) = E(u) − sn u dc u + E + i(K ′ − E ′).

Example 22.7.13 (Jacobi) Obtain the expansions, valid when | Im x | < 1
2π Im τ,

(kK)2 sn2 u = K2 − KE − 2π2
∞∑
n=1

nqn cos 2nx
1 − q2n , KZ(u) = 2π

∞∑
n=1

qn sin 2nx
1 − q2n .

22.736 Properties of the complete elliptic integrals regarded as functions of the
modulus

If, in the formulae E =
∫ π/2

0
(1− k2 sin2 φ)

1
2 dφ, we differentiate under the sign of integration

(§4.2), we have

dE
dk
= −

∫ π/2

0
k sin2 φ(1 − k2 sin2 φ)−

1
2 dφ =

E − K
k

.

Treating the formula for K in the same manner, we have

dK
dk
=

∫ π/2

0
k sin2 φ(1 − k2 sin2 φ)−

1
2 dφ = k

∫ K

0
sd2 u du

=
1

kk ′2

{∫ K

0
dn2 u du −

[
k
′2u

]K
0

}
,

by Example 22.7.3 so that
dK
dk
=

E
kk ′2
−

K
k
.

If we write k2 = c, k ′2 = c′, these results assume the forms

2
dE
dc
=

E − k
c

, 2
dK
dc
=

E − Kc′

cc′
.

Example 22.7.14 Shew that

2
dE ′

dc
=

K ′ − E ′

c′
, 2

dK ′

dc
=

cK ′ − E ′

cc′
.

Example 22.7.15 Shew, by differentiation with regard to c, that EK ′ + E ′K − KK ′ is
constant.

Example 22.7.16 (Legendre) Shew that K and K ′ are solutions of

d
dk

{
kk ′2

du
dk

}
= ku,

and that E and E ′ − K ′ are solutions of

k
′2 d

dk

(
k

du
dk

)
+ ku = 0.
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22.737 The values of the complete elliptic integrals for small values of k
From the integral definitions of E and K it is easy to see, by expanding in powers of k, that

lim
k→0

K = lim
k→0

E =
π

2
and

lim
k→0

K − E
k2 =

π

4
.

In like manner,

lim
k→0

E ′ =
∫ π/2

0
cos φ dφ = 1.

It is not possible to determine lim
k→0

K ′ in the same way because (1 − k
′2 sin2 φ)−1/2 is

discontinuous at φ = 0, k = 0; but it follows from Example 14.21 on page 312 that, when
| arg k | < π,

lim
k→0

{
K ′ − log

4
k

}
= 0.

This result is also deducible from the formulae 2iK ′ = πkϑ2
3 , k = ϑ2

2/ϑ
2
3, by making

q → 0; or it may be proved for real values of k by the following elementary method. By
§22.32,

K ′ =
∫ 1

k

(t2 − k2)−
1
2 (1 − t2)−

1
2 dt;

now, when k < t <
√

k, (1− t2) lies between 1 and 1− k; and, when
√

k < t < 1, (t2 − k2)/t2

lies between 1 and 1 − k . Therefore K ′ lies between∫ √
k

k

(t2 − k2)−
1
2 dt +

∫ 1

√
k

t−1(1 − t2)−
1
2 dt

and

(1 − k)−
1
2

{∫ √
k

k

(t2 − k2)−
1
2 dt +

∫ 1

√
k

t−1(1 − t2)
1
2 dt

}
;

and therefore

K ′ = (1 − θk)−
1
2

{
log
√

k +
√

k − k2

k
− log

√
k

1 +
√

1 − k

}
= (1 − θk)−

1
2

[
2 log

{
1 +
√

1 − k
}
− log k

]
,

where 0 ≤ θ ≤ 1. Now

lim
k→0

[
2(1 − θk)−

1
2 log

{
1 +
√

1 − k
}
− log 4

]
= 0, lim

k→0

{
1 − (1 − θk)−

1
2

}
log k = 0,

and therefore lim
k→0
{K ′ − log(4/k)} = 0,which is the required result.

Example 22.7.17 Deduce Legendre’s relation from Example 22.7.15 by making k → 0.
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22.74 The elliptic integral of the third kind
To evaluate an integral of the type17∫

(1 + Nt2)−1 {
(A1t2 + B1)(A2t2 + B2)

}− 1
2 dt

in terms of known functions, we make the substitution made in the corresponding integrals
of the first and second kinds (§§22.72, 22.73). The integral is thereby reduced to∫

α + β sn2 u
1 + ν sn2 u

du = αu + (β − αν)
∫

sn2 u
1 + ν sn2 u

du,

where α, β, ν are constants; if ν = 0,−1,∞ or −k2 the integral can be expressed in terms of
integrals of the first and second kinds; for other values of ν we determine the parameter a
by the equation ν = −k2 sn2 a, and then it is evidently permissible to take as the fundamental
integral of the third kind

Π(u,a) =
∫ u

0

k2 sn a cn a dn a sn2 u
1 − k2 sn2 a sn2 u

du.

To express this in terms of theta-functions, we observe that the integrand may be written
in the form

k2 sn u sn a {sn(u + a) + sn(u − a)} = Z(u − a) − Z(u + a) + 2Z(a),

by the addition-theorem for the zeta-function; making use of the formula Z(u) = Θ′(u)/Θ(u),
we at once get

Π(u,a) =
1
2

log
Θ(u − a)
Θ(u + a)

+ uZ(a),

a result which shews thatΠ(u,a) is a many-valued function of u with logarithmic singularities
at the zeros of Θ(u ± a).

Example 22.7.18 (Legendre) Obtain the addition-formula18

Π(u,a) + Π(3,a) − Π(u + 3,a) =
1
2

log
Θ(u + 3 + a)Θ(u − a)Θ(υ − a)
Θ(u + 3 − a)Θ(u + a)Θ(3 + a)

=
1
2

log
1 − k2 sn a sn u sn 3 sn(u + 3 − a)
1 + k2 sn a sn u sn 3 sn(u + 3 + a)

.

Hint.Take x : y : z : w = u : 3 : ±a : u + 3 ± a in Jacobi’s fundamental formula

[4] + [1] = [4]′ + [1]′.

Example 22.7.19 (Legendre; Jacobi) Shew that

Π(u,a) − Π(a,u) = uZ(a) − aZ(u).

This is known as the formula for interchange of argument and parameter.
17 Legendre [421, p. 17], [422, vol. I, pp. 14–18, 74, 75]; Jacobi [349, pp. 137–172]; we employ Jacobi’s

notation, not Legendre’s.
18 No fewer than 96 forms have been obtained for the expression on the right. See Glaisher [249].



552 The Jacobian Elliptic Functions

Example 22.7.20 (Jacobi) Shew that

Π(u + a) + Π(u, b) − Π(u,a + b)

=
1
2

log
1 − k2 sn a sn b sn u sn(a + b − u)
1 + k2 sn a sn b sn u sn(a + b + u)

+ uk2 sn a sn b sn(a + b).

This is known as the formula for addition of parameters.

Example 22.7.21 (Jacobi) Shew that

Π(iu, ia + K, k) = Π(u,a + K ′, k ′).

Example 22.7.22 (Jacobi) Shew that

Π(u + 3,a + b) + Π(u − 3,a − b) − 2Π(u,a) − 2Π(3, b)
= −k2 sn a sn b {(u + 3) sn(a + b) − (u − 3) sn(a − b)}

+
1
2

log
1 − k2 sn2(u − a) sn2(3 − b)
1 + k2 sn2(u + a) sn2(3 + b)

,

and obtain special forms of this result by putting 3 or b equal to zero.

22.741 A dynamical application of the elliptic integral of the third kind
It is evident from the expression for Π(u,a) in terms of theta-functions that if u, a, k are real,
the average rate of increase of Π(u,a) as u increases is Z(a), since Θ(u ± a) is periodic with
respect to the real period 2K .

This result determines the mean precession about the invariable line in the motion of a
rigid body relative to its centre of gravity under forces whose resultant passes through its
centre of gravity. It is evident that, for purposes of computation, a result of this nature is
preferable to the corresponding result in terms of sigma-functions and Weierstrassian zeta-
functions, for the reasons that the theta-functions have a specially simple behaviour with
respect to their real period – the period which is of importance in Applied Mathematics –
and that the q-series are much better adapted for computation than the product by which the
sigma-function is most simply defined.

22.8 The lemniscate functions

The integral
∫ x

0
(1 − t4)−1/2 dt occurs in the problem of rectifying the arc of the lemniscate.

The equation of the lemniscate being r2 = a2 cos 2θ, it is easy to derive the equation(
ds
dr

)2

=
a4

a4 − r4 from the formula
(

ds
dr

)2

= 1+
(
r dθ
dr

)2

. If the integral be denoted by φ, we

shall express the relation between φ and x by writing x = sinlemn φ. (Gauss [238, vol. III,
p. 404] wrote sl and cl for sinlemn and coslemn.) In like manner, if

φ1 =

∫ 1

x

(1 − t4)−1/2 dt,
1
2
ω̃ =

∫ 1

0
(1 − t4)−1/2 dt,

we write x = coslemn φ1, and we have the relation

sinlemn φ = coslemn
( 1

2 ω̃ − φ
)
.
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These lemniscate functions, which were the first functions19 defined by the inversion of an
integral, can easily be expressed in terms of elliptic functions with modulus 1/

√
2; for, from

the formula (Example 22.1.2)

u =
∫ sdu

0

{
(1 − k ′2y2)(1 + k2y2)

}− 1
2 dy,

it is easy to see (on writing y = t
√

2) that

sinlemn φ = 2−
1
2 sd(φ

√
2,1/
√

2);

similarly, coslemn φ = cn(φ
√

2,1/
√

2). Further, 1
2 ω̃ is the smallest positive value of φ for

which

cn(φ
√

2,1/
√

2) = 0,

so that ω̃ =
√

2K0, the suffix attached to the complete elliptic integral denoting that it is
formed with the particular modulus 1/

√
2. This result renders it possible to express K0 in

terms of Gamma-functions, thus

K0 = 2
1
2

∫ 1

0
(1 − t4)−

1
2 dt = 2−

3
2

∫ 1

0
u−

3
4 (1 − u)−

1
2 du = 2−

3
2 Γ

( 1
4

)
Γ

( 1
2

)
/Γ

( 3
4

)
= 1

4π
− 1

2
{
Γ( 14 )

}2
,

a result first obtained by Legendre [421, vol. I, p. 209]. The value of K0 is 1.85407468 · · · ,
where ω̃ = 2.62205756 · · · . Since k = k ′ when k = 1/

√
2, it follows that K0 = K ′0, and so

q0 = e−π .

Example 22.8.1 Express K0 in terms of Gamma-functions by using Kummer’s formula
(see Chapter 14 Example 14.12).

Example 22.8.2 By writing t = (1 − u2)
1
2 in the formula

E0 =

∫ 1

0
(1 − 1

2 t2)
1
2 (1 − t2)−

1
2 dt,

shew that

2
1
2 E0 =

∫ 1

0
(1 − u4)−

1
2 du +

∫ 1

0
u2(1 − u4)−

1
2 du,

and deduce that 2E0 − K0 = 2π 3
2
{
Γ ( 14 )

}−2
.

Example 22.8.3 Deduce Legendre’s relation (§22.735) from Example 22.8.2 combined
with Example 22.7.15.

Example 22.8.4 Shew that

sinlemn2 φ =
1 − coslemn2 φ

1 + coslemn2 φ
.

19 Gauss [234, p. 404]. The idea of investigating the functions occurred to Gauss on January 8, 1797.



554 The Jacobian Elliptic Functions

22.81 The values of K and K ′ for special values of k

It has been seen that, when k = 1/
√

2, K can be evaluated in terms of Gamma-functions, and
K = K ′; this is a special case of a general theorem (see Abel [4, p. 184]) that, whenever

K ′

K
=

a + b
√

n
c + d

√
n
,

where a, b, c, d, n are integers, k is a root of an algebraic equation with integral coefficients.
This theorem is based on the theory of the transformation of elliptic functions and is

beyond the scope of this book; but there are three distinct cases in which k, K , K ′ all have
fairly simple values, namely:

(I) k =
√

2 − 1, K ′ = K
√

2;
(II) k = sin π

12 , K ′ = K
√

3;
(III) k = tan2 π

8 , K ′ = 2K .

Of these we shall give a brief investigation. For some similar formulae of a less simple nature,
see Kronecker [383, 384].

(I) The quarter-periods with the modulus
√

2 − 1.
Landen’s transformation gives a relation between elliptic functions with any modulus k and
those with modulus k1 = (1− k ′)/(1+ k ′); and the quarter-periods Λ, Λ′ associated with the
modulus k1 satisfy the relation Λ′/Λ = 2K ′/K .

If we choose k so that k1 = k ′, then Λ = K ′ and k ′1 = k so that Λ′ = K; and the relation
Λ′/Λ = 2K ′/K gives Λ′2 = 2Λ2. Therefore the quarter-periods Λ, Λ′ associated with the
modulus k1 given by the equation k1 = (1 − k1)/(1 + k1) are such that Λ′ = ±Λ

√
2; i.e. if

k1 =
√

2 − 1, then Λ′ = Λ
√

2 (since Λ, Λ′ obviously are both positive).

(II) The quarter-periods associated with the modulus sin π
12 .

The case of k = sin π
12 was discussed by Legendre [421, vol. I, pp. 59, 210], [422, vol. I,

pp. 59–60]; he obtained the remarkable result that, with this value of k,

K ′ = K
√

3.

This result follows from the relation between definite integrals∫ 1

−∞

(1 − x3)−
1
2 dx =

√
3
∫ ∞

1
(x3 − 1)−

1
2 dx.

To obtain this relation, consider
∫
(1 − z3)−

1
2 dz taken round the contour formed by the part

of the real axis (indented at z = 1 by an arc of radius R−1) joining the points 0 and R, the
line joining Re

1
2 πi to 0 and the arc of radius R joining the points R and Re

1
2 πi; as R → ∞,

the integral round the arc tends to zero, as does the integral round the indentation, and so, by
Cauchy’s theorem,∫ 1

0
(1 − x3)−

1
2 dx + i

∫ ∞

1
(x3 − 1)−

1
2 dx + e

1
8 πi

∫ 0

∞

(1 + x3)−
1
2 dx = 0,
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on writing x and xeπi/8 respectively for z on the two straight lines. Writing

I1 =

∫ 1

0
(1 − x3)−

1
2 dx = I2 =

∫ ∞

1
(x3 − 1)−

1
2 dx,

I3 =

∫ ∞

0
(1 + x3)−

1
2 dx =

∫ 0

−∞

(1 − x3)−
1
2 dx,

we have I1 + iI2 =
1
2 (1 + i

√
3)I3; so, equating real and imaginary parts, I1 =

1
2 I3, I2 =

1
2 I3
√

3,
and therefore I1 + I3 − I2

√
3 = 1

2 I3 + I3 −
3
2 I3 = 0,which is the relation stated20 .

Now, by Example 22.7.6,

I2 = 4(α2 + β2)−
1
2 K, I1 + I3 = 4(α2 + β2)−

1
2 K ′,

where the modulus is α(α2 + β2)−
1
2 and

α2 = 2
√

3 − 3, β2 = 2
√

3 + 3,

so that k2 = 1
4 (2 −

√
3) = sin2 π

12 .We therefore have

3−
1
4 · 2K = 3−

3
4 · 2K ′ = I2 = 3

1
2 I1 = 3−

1
2

∫ 1

0
t−

2
3 (1 − t)−

1
2 dt = 1

3π
1
2 Γ

( 1
6

)
/Γ

( 2
3

)
,

when the modulus k is sin π
12 .

(III) The quarter-periods with the modulus tan2 π
8 .

If, in Landen’s transformation (§22.42), we take k = 1/
√

2, we have Λ′/Λ = 2K ′/K = 2;
now this value of k gives

k1 =

√
2 − 1
√

2 + 1
= tan2 π

8
;

and the corresponding quarter-periods Λ, Λ′ are 1
2 (1 + 1/

√
2)K0 and (1 + 1/

√
2)K0.

Example 22.8.5 Discuss the quarter-periods when k has the values

(2
√

2 − 2)
1
2 , sin(5π/12), and 2

5
4 (
√

2 − 1).

Example 22.8.6 (Glaisher [244]) Shew that

2
1
4 e−

1
24 π =

∞∏
n=0

(1 + e−(2n+1)π); 3
1
4 e−

1
18 π
√

3 =
∞∏
n=1

(1 − e−2nπ/
√

3).

Example 22.8.7 Express the coordinates of any point on the curve y2 = x3 − 1 in the form

x = 1 +
3 1

2 (1 − cn u)
1 + cn u

, y =
2 · 3 3

4 sn u dn u
(1 + cn u)2

,

where themodulus of the elliptic functions is sin π
12 , and shew that dx

du
= 3− 1

4 y.By considering∫ ∞

1
y−1 dx = 3−

1
4

∫ 2K

0
du, evaluate K in terms of Gamma-functions when k = sin π

12 .

20 Another method of obtaining the relation is to express I1, I2, I3 in terms of Gamma-functions by writing t
1
3 ,

t−
1
3 , (t−1 − 1)

1
3 respectively for x in the integrals by which I1, I2, I3 are defined.
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Example 22.8.8 Shew that, when y2 = x3 − 1,∫ ∞

1
y−3(x − 1)2dx =

[
−

2
3
y−1(1 − x−1)2

]∞
1
+

4
3

∫ ∞

1
(x−2y−1 − x−3y−1) dx;

and thence, by using Example 22.2.2 and expressing the last integral in terms of Gamma-
functions by the substitution x = t−

1
3 , obtain the formula of Legendre [421, p. 60] connecting

the first and second complete elliptic integrals with modulus sin π
12 :

π

4
√

3
= K

{
E −

√
3 + 1
2
√

3
K

}
.

Example 22.8.9 By expressing the coordinates of any point on the curve y2 = 1− x3 in the
form

x = 1 −
3 1

2 (1 − cn 3)
1 + cn 3

, y =
2 · 3 3

4 sn 3 dn 3
(1 + cn 3)2

,

in which the modulus of the elliptic functions is sin 5π
12 , and evaluating{∫ 0

−∞

+

∫ 1

0

}
y−3(1 − x)2 dx

in terms of Gamma-functions, obtain Legendre’s result that when k = sin π
12,

π
√

3
4
= K ′

{
E ′ −

√
3 − 1
2
√

3
K ′

}
.

It is interesting to observe that, when Legendre had proved by differentiation that EK ′ +
E ′K − KK ′ is constant, he used the results of Examples 22.2.3 and 22.2.4 to determine the
constant, before using the methods of Examples 22.8.3 and 22.7.17.

22.82 A geometrical illustration of the functions sn u, cn u, dn u

A geometrical representation of Jacobian elliptic functions with k = 1/
√

2 is afforded by the
arc of the lemniscate, as has been seen in §22.8; to represent the Jacobian functions with
any modulus k, (0 < k < 1), we may make use of a curve described on a sphere, known
as Seiffert’s spherical spiral; Seiffert [591]. Take a sphere of radius unity with centre at the
origin, and let the cylindrical polar coordinates of any point on it be (ρ, φ, z), so that the arc
of a curve traced on the sphere is given by the formula21

(ds)2 = ρ2 (dφ)2 + (1 − ρ2)−1 (dρ)2.

Seiffert’s spiral is defined by the equation

φ = ks,

where s is the arc measured from the pole of the sphere (i.e. the point where the axis of z
meets the sphere) and k is a positive constant, less than unity22 .
21 This is an obvious transformation of the formula (dδ)2 = (ds)2 + ρ2 (dφ)2 + (dz)2 when ρ and z are

connected by the relation ρ2 + z2 = 1.
22 If k > 1, the curve is imaginary.
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For this curve we have

(ds)2(1 − k2ρ2) = (1 − ρ2)−1(dρ)2,

and so, since s and ρ vanish together,

ρ = sn(s, k).

The cylindrical polar coordinates of any point on the curve expressed in terms of the arc
measured from the pole are therefore

(ρ, φ, z) = (sn s, ks,cn s);

and dn s is easily seen to be the cosine of the angle at which the curve cuts the meridian.
Hence it may be seen that, if K be the arc of the curve from the pole to the equator, then sn s
and cn s have period 4K , while dn s has period 2K .

22.9 Miscellaneous examples
Example 22.1 (Math. Trip. 1904) Shew that one of the values of{(

dn u + cn u
1 + cn u

)1/2

+

(
dn u − cn u

1 − cn u

)1/2
} {(

1 − sn u
dn u − k ′ sn u

)1/2

+

(
1 + sn u

dn u + k ′ sn u

)1/2
}

is 2(1 + k ′).

Example 22.2 (Math. Trip. 1911) If x + iy = sn2(u+ i3) and x − iy = sn2(u− i3), shew that{
(x − 1)2 + y2} 1

2 = (x2 + y2)
1
2 dn(2u) + cn(2u).

Example 22.3 Shew that

{1 ± cn(u + 3)} {1 ± cn(u − 3)} =
(cn u ± cn 3)2

1 − k2 sn2 u sn2 3
.

Example 22.4 (Jacobi) Shew that

1 + cn(u + 3) cn(u − 3) =
cn2 u + cn2 3

1 − k2 sn2 u sn2 3
.

Example 22.5 (Math. Trip. 1909) Express
1 + cn(u + 3) cn(u − 3)
1 + dn(u + 3) dn(u − 3)

as a function of sn2 u +

sn2 3.

Example 22.6 (Jacobi) Shew that

sn(u − 3) dn(u + 3) =
sn u dn u cn 3 − sn 3 dn 3 cn u

1 − k2 sn2 u sn2 3
.

Example 22.7 (Math. Trip. 1914) Shew that

{1 − (1 + k ′) sn u sn(u + k)} {1 − (1 − k ′) sn u sn(u + K)} = {sn(u + K) − sn u}2 .
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Example 22.8 Shew that

sn
(
u + 1

2 K
)
= (1 + k ′)−

1
2

k ′ sn u + cn u dn u
1 − (1 − k ′) sn2 u

,

sn
(
u + 1

2 iK ′
)
= k−

1
2
(1 + k) sn u + i cn u dn u

1 + k sn2 u
.

Example 22.9 (Jacobi) Shew that

sin {am(u + 3) + am(u − 3)} =
2 sn u cn u dn 3

1 − k2 sn2 u sn2 3
,

cos {am(u + 3) − am(u − 3)} =
cn2 3 − sn2 3 dn2 u
1 − k2 sn2 u sn2 3

.

Example 22.10 (Trinity, 1903) Shew that

dn(u + 3) dn(u − 3) =
ds2 u ds2

3 + k2k ′2

ns2 u ns2 3 − k2 ,

and hence express [
℘(u + 3) − e2

℘(u + 3) − e3
·
℘(u − 3) − e2

℘(u − 3) − e3

]1/2

as a rational function of ℘(u) and ℘(3).

Example 22.11 (Trinity, 1906) From the formulae for cn(2K−u) and dn(2K−u) combined
with the formulae for 1 + cn 2u and 1 + dn 2u, shew that(

1 − cn
2K
3

) (
1 + dn

2K
3

)
= 1.

Example 22.12 (Trinity, 1906) With notation similar to that of §22.2, shew that

c1d2 − c2d1

s1 − s2
=

cn(u1 + u2) − dn(u1 + u2)

sn(u1 + u2)
;

and deduce that, if u1 + u2 + u3 + u4 = 2K, then

(c1d2 − c2d1)(c3d4 − c4d3) = k ′2(s1 − s2)(s3 − s4).

Example 22.13 (Math. Trip. 1907) Shew that, if u + 3 + w = 0, then

1 − dn2 u − dn2
3 − dn2 w + 2 dn u dn 3 dnw = k4 sn2 u sn2

3 sn2 w.

Example 22.14 (Math. Trip. 1910) By Liouville’s theorem or otherwise, shew that

dn u dn(u + w) − dn 3 dn(3 + w) =
k2 {sn 3 cn u sn(3 + w) cn(u + w) − sn u cn 3 sn(u + w) cn(3 + w)} .

Example 22.15 (Math. Trip. 1894) Shew that∑
cn u2 cn u3 sn(u2 − u3) dn u1 + sn(u2 − u3) sn(u3 − u1) sn(u1 − u2) dn u1 dn u2 dn u3 = 0,

the summation applying to the suffices 1, 2, 3.
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Example 22.16 Obtain the formulae

sn 3u = A/D, cn 3u = B/D, dn 3u = C/D,

where

A = 3s − 4(1 + k2)s3 + 6k2s5 − k4s9,

B = c
{
1 − 4s2 + 6k2s4 − 4k4s6 + k4s8} ,

C = d
{
1 − 4k2s2 + 6k2s4 − 4k2s6 + k4s8} ,

D = 1 − 6k2s4 + 4k2(1 + k2)s6 − 3k4s8,

and s = sn u, c = cn u, d = dn u.

Example 22.17 (Trinity, 1912) Shew that

1 − dn 3u
1 + dn 3u

=

(
1 − dn u
1 + dn u

) (
1 + a1 dn u + a2 dn2 u + a3 dn3 u + a4 dn4 u

1 − a1 dn u + a2 dn2 u − a3 dn3 u − a4 dn4 u

)2

,

where a1, a2, a3, a4 are constants to be determined.

Example 22.18 (Math. Trip. 1908) If P(u) =
(

1 + dn 3u
1 + dn u

) 1
2

, shew that

P(u) + P(u + 2iK ′)
P(u) − P(u + 2iK ′)

= −
sn 2u cn u
cn 2u sn u

.

Determine the poles and zeros of P(u) and the first term in the expansion of the function
about each pole and zero.

Example 22.19 (Glaisher [245]) Shew that

sn(u1 + u2 + u3) =
A
D
, cn(u1 + u2 + u3) =

B
D
, dn(u1 + u2 + u3) =

C
D
,

where

A = s1s2s3

{
−1 − k2 + 2k2

∑
s2

1 − (k
2 + k4)

∑
s2

2s2
3 + 2k4s2

1s2
2s2

3

}
+

∑ {
s1c2c3d2d3

(
1 + 2k2s2

2s2
3 − k2

∑
s2

2s2
3

)}
,

B = c1c2c3

{
1 − k2

∑
s2

2s2
3 + 2k4s2

1s2
2s2

3

}
+

∑ {
c1s2s3d2d3

(
−1 + 2k2s2

2s2
3 + 2k2s2

1 − k2
∑

s2
2s2

3

)}
,

C = d1d2d3

{
1 − k2

∑
s2

2s2
3 + 2k2s2

1s2
2s2

3

}
+ k2

∑ {
d1s2s3c2c3

(
−1 + 2k2s2

2s2
3 + 2s2

1 − k2
∑

s2
2s2

3

)}
,

D = 1 − 2k2
∑

s2
2s2

3 + 4(k2 + k4)s2
1s2

2s2
3 − 2k4s2

1s2
2s2

3

∑
s2

1 + k4
∑

s4
2s4

3,

and the summations refer to the suffices 1, 2, 3.
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Example 22.20 (Cayley [130]) Shew that

sn(u1 + u2 + u3) =
A′

D′
, cn(u1 + u2 + u3) =

B′

D′
, dn(u1 + u2 + u3) =

C ′

D′
,

where

A′ =
∑

s1c2c3d2d3 − s1s2s3

(
1 + k2 − k2

∑
s2

1 + k4s2
1s2

2s2
3

)
,

B′ = c1c2c3
(
1 − k4s2

1s2
2s2

3
)
− d1d2d3

∑
s2s3c1d1,

C ′ = d1d2d3
(
1 − k2s2

1s2
2s2

3
)
− k2c1c2c3

∑
s2s3c1d1,

D′ = 1 − k2
∑

s2
2s2

3 + (k
2 + k4)s2

1s2
2s2

3 − k2s1s2s3

∑
s1c2c3d2d3.

Example 22.21 (Cayley [131]) By applying Abel’s method (§20.312) to the intersections
of the twisted curve x2 + y2 = 1, z2 + k2x2 = 1 with the variable plane l x + my + nz = 1,
shew that, if

u1 + u2 + u3 + u4 = 0,

then ��������
s1 c1 d1 1
s2 c2 d2 1
s3 c3 d3 1
s4 c4 d4 1

�������� = 0.

Obtain this result also from the equation

(s2 − s1)(c3d4 − c4d3) + (s4 − s3)(c1d2 − c2d1) = 0,

which may be proved by the method of Example 22.12.

Example 22.22 (Forsyth [215]) Shew that

(s2
4 − s2

3)(c
2
1 d2

2 − c2
2 d2

1 ) = (s
2
2 − s2

1)(c
2
3 d2

4 − c2
4 d2

3 ),

by expressing each side in terms of s1, s2, s3, s4; and deduce from Example 22.21 that, if
u1 + u2 + u3 + u4 = 0, then

s4c1d2 + s3c2d1 + s2c3d4 + s1c4d3 = 0,
s4c2d1 + s3c1d2 + s2c4d3 + s1c3d4 = 0.

Example 22.23 (Gudermann [262]) Deduce from Jacobi’s fundamental theta-function
formulae that, if u1 + u2 + u3 + u4 = 0, then

k ′2 − k2k ′2s1s2s3s4 + k2c1c2c3c4 − d1d2d3d4 = 0. (22.4)

Example 22.24 (H. J. S. Smith [595]) Deduce from Jacobi’s fundamental theta-function
formulae that, if u1 + u2 + u3 + u4 = 0, then

k ′2(s1s2c3c4 − c1c2s3s4) − d1d2 + d3d4 = 0,
k ′2(s1s2 − s3s4) + d1d2c3c4 − c1c2d3d4 = 0,

s1s2d3d4 − d1d2s3s4 + c3c4 − c1c2 = 0.
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Example 22.25 (Math. Trip. 1905) If u1 + u2 + u3 + u4 = 0, shew that the cross-ratio of
sn u1, sn u2, sn u3, sn u4 is equal to the cross-ratio of sn(u1 + K), sn(u2 + K), sn(u3 + K),
sn(u4 + K).

Example 22.26 (Math. Trip. 1913) Shew that������sn2(u + 3) sn(u + 3) sn(u − 3) sn2(u − 3)
cn2(u + 3) cn(u + 3) cn(u − 3) cn2(u − 3)
dn2
(u + 3) dn(u + 3) dn(u − 3) dn2

(u − 3)

������ = −8k ′2s1s3
2c1c2d1d2

(1 − k2s2
1s2

2)
3.

Example 22.27 (Math. Trip. 1901) Find all systems of values of u and 3 for which sn2(u+i3)
is real when u and 3 are real and 0 < k2 < 1.

Example 22.28 (Math. Trip. 1902) If k ′ = 1
4 (a
−1 − a)2, where 0 < a < 1, shew that

sn2
(

K
4

)
=

4a3

(1 + a2)(1 + 2a − a2)
,

and that sn2 ( 3K
4

)
is obtained by writing −a−1 for a in this expression.

Example 22.29 (Math. Trip. 1899) If the values of cn z, which are such that cn(3z) = a,
are c1, c2, . . . , c9, shew that

3k4
9∏

r=1

cr + k ′4
9∑

r=1

cr = 0.

Example 22.30 (King’s, 1900) If

a + sn(u + 3)
a + sn(u − 3)

=
b + cn(u + 3)
b + cn(u − 3)

=
c + dn(u + 3)
c + dn(u − 3)

,

and if none of sn 3, cn u, dn u, 1− k2 sn2 u sn2 3 vanishes, shew that u is given by the equation

k2(k ′2a2 + b2 − c2) sn2 u = k ′2 + k2b2 − c2.

Example 22.31 (Math. Trip. 1912) Shew that

1 − sn
(

2K x
π

)
= (1 − sin x)

∞∏
n=1

{
(1 − q2n−1)2

(1 + q2n)2
(1 − 2qn sin x + q2n)2

(1 − 2q2n−1 cos 2x + q4n−2)

}
.

Example 22.32 (Math. Trip. 1904) Shew that

1 − sn
( 2Kx
π

){
dn

( 2Kx
π

)
− k ′ sn

( 2Kx
π

)} 1
2
=

∞∏
n=1

{
1 − 2q2n−1 sin x + q4n−2

1 + 2q2n−1 sin x + q4n−2

}
.

Example 22.33 (Trinity, 1904) Shew that if k be so small that k4 may be neglected, then

sn u = sin u − 1
4 k2 cos u · (u − sin u cos u),

for small values of u.
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Example 22.34 (Math. Trip. 1907) Shew that, if | Im x | < π
2 Im τ, then

log cn
(

2K x
π

)
= log cos x −

∞∑
n=1

4qn sin2 nx
n {1 + (−q)n}

.

Hint. Integrate the Fourier series for sn
( 2Kx
π

)
dc

( 2Kx
π

)
.

Example 22.35 (Math. Trip. 1906) Shew that∫ K/4

0

1 − k2 sn4 u

cn2 u dn2 u
du =

{
(1 + k ′)

1
2 − 1

}
/k ′

3
4 .

Hint. Express the integrand in terms of functions of 2u.

Example 22.36 (Math. Trip. 1912) Shew that∫
cn 3 du

sn 3 − sn u
= log

ϑ1(
1
2 x + 1

2 y −
1
2π)ϑ1(

1
2 x + 1

2 y −
1
2π −

1
2πτ)

ϑ1(
1
2 x − 1

2 y)ϑ1(
1
2 x − 1

2 y −
1
2πτ)

− x
ϑ′1(y +

1
2πτ)

ϑ1(y +
1
2πτ)

,

where 2K x = πu, 2Ky = π3.

Example 22.37 (Math. Trip. 1903) Shew that

(1 + k ′)k ′2
∫ K

0

sn3 u du

(1 + cu u) dn2 u
= 1.

Example 22.38 (St John’s, 1914) Shew that

k
∫ α+β

α−β

sn u du = log
1 + k snα sn β
1 − k snα sn β

.

Example 22.39 (Math. Trip. 1902) By integrating
∫

e2iz dn u cs u dz round a rectangle

whose corners are ± 1
2π, ±

1
2π +∞ i (where 2Kz = πu) and then integrating by parts, shew

that, if 0 < k2 < 1, then∫ K

0
cos

( π u
K

)
log sn u du =

K
2

tanh
( 1

2π iτ
)
.

Example 22.40 Shew that K and K ′ satisfy the equation

c(1 − c)
d2u
dc2 + (1 − 2c)

du
dc
−

1
4

u = 0,

where c = k2; and deduce that they satisfy Legendre’s equation for functions of degree − 1
2

with argument 1 − 2k2.

Example 22.41 Express the coordinates of any point on the curve x3 + y3 = 1 in the form

x =
2 · 3 1

4 sn u dn u − (1 − cn u)2

2 · 3 1
4 sn u dn u + (1 − cn u)2

, y =
2 11

6 cos π
12 (1 − cn u){1 + tan π

12 cn u}

2 · 3 1
4 sn u dn u + (1 − cn u)2

,

the modulus of the elliptic functions being sin π
12 ; and shew that∫ 1

x

(1 − x3)−
8
3 dx =

∫ y

0
(1 − y3)−

2
3 dy = 2−

8
3 · 3

1
4 u.
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Shew further that the sum of the parameters of three collinear points on the cubic is a period.
See Richelot [554] and Cayley [138]. A uniformising variable for the general cubic in the
canonical form

X3 + Y 3 + Z3 + 6mXY Z = 0

has been obtained by Bobek [77, p. 251]. Dixon [181] has developed the theory of elliptic
functions by taking the equivalent curve x3 + y3 − 3axy = 1 as fundamental, instead of the
curve y2 = (1 − x2)(1 − k2x2).

Example 22.42 (Math. Trip. 1911) Express
∫ 2

0
{(2x − x2)(4x2 + 9)}−

1
2 dx in terms of a

complete elliptic integral of the first kind with a real modulus.

Example 22.43 (Math. Trip. 1899) If u =
∫ ∞

x

{(t + 1)(t2 + t + 1)}−
1
2 dt, express x in terms

of Jacobian elliptic functions of u with a real modulus.

Example 22.44 (Math. Trip. 1914) If u =
∫ ∞

0
(1 + t2 − 2t4)−

1
2 dt, express x in terms of u

by means of either Jacobian or Weierstrassian elliptic functions.

Example 22.45 (Trinity, 1881) Shew that

e−π + e−9π + e−25π + · · · =
(2 1

4 − 1)Γ( 14 )

2 11
4 π

3
4

.

Example 22.46 (Gauss [238]; Math. Trip. 1895) When a > x > β > γ, reduce the integrals∫ a

x

{(a − t)(t − β)(t − γ)}−
1
2 dt,

∫ x

β

{(a − t)(t − β)(t − γ)}−
1
2 dt

by the substitutions

x − γ = (a − γ) dn2 u, x − γ = (β − γ) nd2
3

respectively, where k2 = (α − β)/(a − γ). Deduce that, if u + 3 = K , then

1 − sn2 u − sn2
3 + k2 sn2 u sn2

3 = 0.

By the substitution y = (a − t)(t − β)/(t − γ) applied to the above integral taken between
the limits β and a, obtain the Gaussian form of Landen’s transformation,∫ π/2

0
(a2

1 cos2 θ + b2
1 sin2 θ)−

1
2 dθ =

∫ π/2

0
(a2 cos2 θ + b2 sin2 θ)−

1
2 dθ,

where a1, b1 are the arithmetic and geometric means between a and b.

Example 22.47 (Math. Trip. 1903) Shew that

sc u = −k ′−1{ζ(u − K) − ζ(u − K − 2iK ′) − ζ(2iK ′)},

where the zeta-functions are formed with periods 2ω1, 2ω2 = 2K,4iK ′.



564 The Jacobian Elliptic Functions

Example 22.48 (Math. Trip. 1911) Shew that E − k ′2K satisfies the equation

4cc′
d2u
dc2 = u,

where c = k2, and obtain the primitive of this equation.

Example 22.49 (Trinity, 1906) Shew that

n
∫ 1

0
knK ′ dk = (n − 1)

∫ 1

0
kn−2E ′ dk,

(n + 2)
∫ 1

0
knE ′ dk = (n + 1)

∫ 1

0
knK ′ dk .

Example 22.50 (Trinity, 1896) If u =
1
2

∫ x

0
{t(1 − t)(1 − ct)}−

1
2 dt, shew that

c(c − 1)
d2u
dc2 + (2c − 1)

du
dc
+

1
4

u =
1
4

{
x(1 − x)
(1 − cx)3

} 1
2

.

Example 22.51 (Math. Trip. 1906) Shew that the primitive of

du
dk
+

u2

k
+

k
1 − k2 = 0

is u =
A(E − K) + A′E ′

AE + A′(E ′ − K ′)
,where A, A′ are constants.

Example 22.52 (Math. Trip. 1910) Deduce from the addition-formula for E(u) that, if

u1 + u2 + u3 + u4 = 0,

then (sn u1 sn u2 − sn u3 sn u4) sn(u1 + u2) is unaltered by any permutation of suffices.

Example 22.53 (Math. Trip. 1913) Shew that

E(3u) − 3E(u) =
−8k2s3c3d3

1 − 6k2s4 + 4(k2 + k4)s6 − 3k4s8 .

Example 22.54 (Math. Trip. 1904) Shew that

3k4
∫ 2k

0
u cd4 u du = 2K

{
(2 + k2)K − 2 (1 + k2) E

}
.

Hint. Write u = K + 3.

Example 22.55 (Math. Trip. 1908) By considering the curves y2 = x(1 − x)(1 − k2x),
y = l + mx + nx2, shew that, if u1 + u2 + u3 + u4 = 0, then

E(u1) + E(u2) + E(u3) + E(u4) = k

{
4∑

r=1

sr2 + 2c1c2c3c4 − 2s1s2s3s4 − 2

} 1
2

.
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Example 22.56 (Forsyth [216]) By the method of Example 22.21, obtain the following
seven expressions for E(u1) + E(u2) + E(u3) + E(u4) when u1 + u2 + u3 + u4 = 0:

−k2s1s2s3s4

1 + k2s1s2s3s4

4∑
r=1

crdr

sr
,

k2d1d2d3d4

k2 + d1d2d3d4

4∑
r=1

srcr
dr

,

k2c1c2c3c4

k2c1c2c3c4 − k ′2

4∑
r=1

srdr

cr
,

k2s1s2s3s4d1d2d3d4

k2k ′2s1s2s3s4 − d1d2d3d4

4∑
r=1

cr
srdr

,

−k2c1c2c3c4d1d2d3d4

d1d2d3d4 + k2c1c2c3c4

4∑
r=1

sr
crdr

,
k2s1s2s3s4 + c1c2c3c4

c1c2c3c4 + k ′2s1s2s3s4

4∑
r=1

dr

srcr
,

− k2 {
(s1s2s3s4)

−1 + (c1c2c3c4)
−1 + k4(d1d2d3d4)

−1}−1
4∑

r=1

1
srcrdr

.

Example 22.57 (Jacobi) Shew that(
2k
π

)2

ns2
(

2K x
π

)
= cosec2 x +

4K(K − E)
π2 − 8

∞∑
n=1

nq2n cos 2nx
1 − q2n ,

when | Im x | < π Im τ; and, by differentiation, deduce that

6
(

2K
π

)4

ns4
(

2K x
π

)
=6 cosec4 x + 4

[
(1 + k2)

(
2K
π

)2

− 1

]
cosec2 x

+ 64(1 + k2)
K3(K − E)

π4 − 2k2
(

2K
π

)4

− 32
∞∑
n=1

n

[
(1 + k2)

(
2K
π

)2

− n2

]
q2n cos 2nx

1 − q2n .

Shew also that, when | Im x | < π
2 Im τ,

sn3
(

2K x
π

)
=

∞∑
n=0

{
1 + k2

2k3 −
(2n + 1)2

2k3

( π
2K

)2
}

2πqn+ 1
2 sin(2n + 1)x

k(1 − q2n+1)
.

Example 22.58 (Ramanujan [548]) Shew that, if a be the semi-major axis of an ellipse
whose eccentricity is sin π

12 , the perimeter of the ellipse is

a
(
π
√

3

) 1
2
{(

1 +
1
√

3

)
Γ( 13 )

Γ( 56 )
+

2Γ( 56 )
Γ( 13 )

}
.

Example 22.59 (Trinity, 1882) Deduce from Example 21.19 of Chapter 21 that

k2 cn3(2u) =
−k ′2 + dn3 u dn(3u)
1 + k2 sn3 u sn(3u)

, dn3
(2u) =

k ′2 + k2 cn3 u cn(3u)
1 + k2 sn3 u sn(3u)

.

Example 22.60 From the formula sd(iu, k) = i sd(u, k ′) deduce that

1
K

∞∑
n=0

(−1)nqn+ 1
2

1 + q2n+1 sinh
(
(n + 1

2 )
πu
K

)
=

1
K ′

∞∑
n=0

(−1)nqn+ 1
2

1

1 + q2n+1
1

sin
(
(n + 1

2 )
πu
K ′

)
,
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where q = exp(−πK ′/K), q1 = exp(−πK/K ′), and u lies inside the parallelogram whose
vertices are ±iK ±K ′. By integrating from u to K ′, from 0 to u and again from u to K ′, prove
that

π3

64
(K ′2 − K2 − u2) + K2

∞∑
n=0

(−1)nqn+ 1
2

(2n + 1)3(1 + q2n+1)
cosh

(
(n + 1

2 )
πu
K

)
= K ′2

∞∑
n=0

(−)nqn+ 1
2

1

(2n + 1)3(1 + q2n+1
1 )

cos
(
(n + 1

2 )
πu
K ′

)
.

A formula which may be derived from this by writing u = ξ + iη, where ξ and η are real,
and equating imaginary parts on either side of the equation was obtained by Thompson and
Tait [626, p. 249], but they failed to observe that their formula was nothing but a consequence
of Jacobi’s imaginary transformation. The formula was suggested to Thompson and Tait by
the solution of a problem in the theory of Elasticity.
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Ellipsoidal Harmonics and Lamé’s Equation

23.1 The definition of ellipsoidal harmonics
It has been seen earlier in this work (§18.4) that solutions of Laplace’s equation, which are
analytic near the origin and which are appropriate for the discussion of physical problems
connected with a sphere, may be conveniently expressed as linear combinations of functions
of the type

rnPn(cos θ), rnPm
n (cos θ)

cos
sin

mφ,

where n and m are positive integers (zero included).
When Pn(cos θ) is resolved into a product of factors which are linear in cos2 θ (multiplied

by cos θ when n is odd), we see that, if cos θ is replaced by z/r , then the zonal harmonic
rnPn(cos θ) is expressible as a product of factors which are linear in x2, y2 and z2, the whole
being multiplied by z when n is odd. The tesseral harmonics are similarly resoluble into
factors which are linear in x2, y2 and z2 multiplied by one of the eight products 1, x, y, z, yz,
zx, xy, xyz.

The surfaces on which any given zonal or tesseral harmonic vanishes are surfaces on
which either θ or φ has some constant value, so that they are circular cones or planes, the
coordinate planes being included in certain cases.

When we deal with physical problems connected with ellipsoids, the structure of spheres,
cones and planes associated with polar coordinates is replaced by a structure of confocal
quadrics. The property of spherical harmonics which has just been explained suggests the
construction of a set of harmonics which shall vanish on certain members of the confocal
system.

Such harmonics are known as ellipsoidal harmonics; theywere studied by Lamé [402, 403]
in the early part of the nineteenth century by means of confocal coordinates. The expressions
for ellipsoidal harmonics in terms of Cartesian coordinates were obtained many years later by
W. D. Niven [504], and the following account of their construction is based on his researches.

The fundamental ellipsoid is taken to be

x2

a2 +
y2

b2 +
z2

c2 = 1,

and any confocal quadric is

x2

a2 + θ
+

y2

b2 + θ
+

z2

c2 + θ
= 1,

where θ is a constant. It will be necessary to consider sets of such quadrics, and it conduces

567
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to brevity to write

x2

a2 + θp
+

y2

b2 + θp
+

z2

c2 + θp
− 1 ≡ Θp,

x2

a2 + θp
+

y2

b2 + θp
+

z2

c2 + θp
≡ Kp .

The equation of any member of the set is then Θp = 0. The analysis is made more definite
by taking the x-axis as the longest axis of the fundamental ellipsoid and the z-axis as the
shortest, so that a > b > c.

23.2 The four species of ellipsoidal harmonics
A consideration of the expressions for spherical harmonics in factors indicates that there are
four possible species of ellipsoidal harmonics to be investigated. These are included in the
scheme 

x, yz,
1, y, zx, xyz

z, xy,

Θ1Θ2 · · ·Θm,

where one or other of the expressions in { } is to multiply the product Θ1Θ2 · · ·Θm.
If we write for brevity

Θ1Θ2 · · ·Θm = Π(Θ),

any harmonic of the form Π(Θ) will be called an ellipsoidal harmonic of the first species.
A harmonic of any of the three forms1 xΠ(Θ), yΠ(Θ), zΠ(Θ) will be called an ellipsoidal
harmonic of the second species. A harmonic of any of the three forms yzΠ(Θ), zxΠ(Θ),
xyΠ(Θ) will be called an ellipsoidal harmonic of the third species. And a harmonic of the
form xyzΠ(Θ) will be called an ellipsoidal harmonic of the fourth species.

The terms of highest degree in these species of harmonics are of degrees 2m, 2m+1, 2m+2,
2m + 3 respectively. It will appear subsequently (§23.26) that 2n + 1 linearly independent
harmonics of degree n can be constructed, and hence that the terms of degree n in these
harmonics form a fundamental system (§18.3) of harmonics of degree n.

We now proceed to explain in detail how to construct harmonics of the first species and
to give a general account of the construction of harmonics of the other three species. The
reader should have no difficulty in filling up the lacunae in this account with the aid of the
corresponding analysis given in the case of functions of the first species.

23.21 The construction of ellipsoidal harmonics of the first species
As a simple case let us first consider the harmonics of the first species which are of the
second degree. Such a harmonic must be simply of the form Θ1.

Now the effect of applying Laplace’s operator, namely

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

1 The three forms will be distinguished by being described as different types of the species.
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to
x2

a2 + θ1
+

y2

b2 + θ1
+

z2

c2 + θ1
− 1

is
2

a2 + θ1
+

2
b2 + θ1

+
2

c2 + θ1
,

and so Θ1 is a harmonic if θ1 is a root of the quadratic equation

(θ + b2)(θ + c2) + (θ + c2)(θ + a2) + (θ + a2)(θ + b2) = 0.

This quadratic has one root between −c2 and −b2 and another between −b2 and −a2. Its
roots are therefore unequal, and, by giving θ1 the value of each root in turn, we obtain two2

ellipsoidal harmonics of the first species of the second degree.
Next consider the general product Θ1Θ2 · · ·Θm; this product will be denoted by Π(Θ) and

it will be supposed that it has no repeated factors – a supposition which will be justified later
(§23.43). If we temporarily regardΘ1,Θ2, . . . ,Θm as a set of auxiliary variables, the ordinary
formula of partial differentiation gives

∂Π(Θ)

∂x
=

m∑
p=1

∂Π(Θ)

∂Θp

∂Θp

∂x
=

m∑
p=1

∂Π(Θ)

∂Θp

·
2x

a2 + θp
,

and, if we differentiate again,

∂2Π(Θ)

∂x2 =

m∑
p=1

∂Π(Θ)

∂Θp

·
2

a2 + θp
+

∑
p,q

∂2Π(Θ)

∂Θp∂Θq

.
8x2

(a2 + θp)(a2 + θq)
,

where the last summation extends over all unequal pairs of the integers 1,2, . . . ,m. The terms
for which p = q may be omitted because none of the expressions Θ1,Θ2, . . . ,Θm enters into
Π(Θ) to a degree higher than the first.

It follows that the result of applying Laplace’s operator to Π(Θ) is
m∑
p=1

∂Π(Θ)

∂Θp

{
2

a2 + θp
+

2
b2 + θp

+
2

c2 + θp

}
+

∑
p,q

∂2Π(Θ)

∂Θp∂Θq

{
8x2

(a2 + θp)(a2 + θq)
+

8y2

(b2 + θp)(b2 + θq)
+

8z2

(c2 + θp)(c2 + θq)

}
.

Now ∑( x, y, z
a, b, c

) x2

(a2 + θp)(a2 + θq)
=
Θp − Θq

θq − θp

and ∂Π(Θ)/∂Θp consists of the product Π(Θ) with the factor Θp omitted, while
∂2Π(Θ)/∂Θp∂Θq consists of the product Π(Θ) with the factors Θp and Θq omitted. That is
to say

Θp

∂2Π(Θ)

∂Θp∂Θq

=
∂Π(Θ)

∂Θq

, Θq

∂2Π(Θ)

∂Θp∂Θq

=
∂Π(Θ)

∂Θ
.

2 The complete set of 5 ellipsoidal harmonics of the second degree is composed of these two together with the
three harmonics yz, zx, xy, which are of the third species.
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If we make these substitutions, we see that[
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

]
Π(Θ)

may be written in the form

m∑
p=1

∂Π(Θ)

∂Θp

{
2

a2 + θp
+

2
b2 + θp

+
2

c2 + θp
+

m∑′

q=1

8
θp − θq

}
,

the prime indicating that the term for which q = p has to be omitted from the summation.
If Π(Θ) is to be a harmonic it is annihilated by Laplace’s operator; and it will certainly be

so annihilated if it is possible to choose θ1, θ2, . . . , θm so that each of the equations

1
a2 + θp

+
1

b2 + θp
+

1
c2 + θp

+
∑′ 4

θp − θq
= 0

is satisfied, where p takes the values 1,2, . . . ,m.
Now let θ be a variable and let Λ1(θ) denote the polynomial of degree m in θ

m∏
q=1

(θ − θq).

If Λ′1(θ) denotes dΛ1(θ)/dθ; then, by direct differentiation, it is seen that Λ′1(θ) is equal to
the sum of all products of θ − θ1, θ − θ2, . . . , θ − θm,m − 1 at a time, and Λ′′1 (θ) is twice the
sum of all products of the same expressions, m − 2 at a time. Hence, if θ be given the special
value θp, the quotient Λ′′1 (θp)/Λ

′
1(θp) becomes equal to twice the sum of the reciprocals of

θp − θ1, θp − θ2, . . . , θp − θm (the expression θp − θp being omitted).

Consequently the set of equations derived from the hypothesis that
m∏
p=1

Θp is a harmonic

shews that the expression

1
a2 + θ

+
1

b2 + θ
+

1
c2 + θ

+
2Λ′′1 (θ)
Λ′1(θ)

vanishes whenever θ has any of the special values θ1, θ2, . . . , θm.
Hence the expression

(a2 + θ)(b2 + θ)(c2 + θ)Λ′′1 (θ) +
1
2

{ ∑
a,b,c

(b2 + θ)(c2 + θ)

}
Λ
′
1(θ)

is a polynomial in θ which vanishes when θ has any of the values θ1, θ2, . . . , θm, and so it has
θ − θ1, θ − θ2, . . . , θ − θm as factors. Now this polynomial is of degree m + 1 in θ and the
coefficient of θm+1 is m(m + 1

2 ). Since m of the factors are known, the remaining factor must
be of the form

m
(
m + 1

2

)
θ + 1

4C,

where C is a constant which will be determined subsequently.
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We have therefore shewn that

(a2 + θ)(b2 + θ)(c2 + θ)Λ′′1 (θ) +
1
2

{ ∑
a,b,c

(b2 + θ)(c2 + θ)

}
Λ
′
1(θ)

=
{
m

(
m + 1

2

)
θ + 1

4C
}
Λ1(θ).

That is to say, any ellipsoidal harmonic of the first species of (even) degree n is expressible
in the form

n/2∏
p=1

{
x2

a2 + θp
+

y2

b2 + θp
+

z2

c2 + θp
− 1

}
where θ1, θ2, . . . , θ 1

2 n
are the zeros of a polynomial Λ1(θ) of degree 1

2 n; and this polynomial
must be a solution of a differential equation of the type

4
√
(a2 + θ)(b2 + θ)(c2 + θ)

d
dθ

[√
(a2 + θ)(b2 + θ)(c2 + θ)

dΛ1(θ)

dθ

]
= {n(n + 1)θ + C}Λ1(θ).

This equation is known as Lamé’s differential equation. It will be investigated in consid-
erable detail in §23.4, and in the course of the investigation it will be shewn that: (I) there
are precisely 1

2 n + 1 different real values of C for which the equation has a solution which is
a polynomial in θ of degree 1

2 n; and (II) these polynomials have no repeated factors.
The analysis of this section may then be reversed step by step to establish the existence of

1
2 n+1 ellipsoidal harmonics of the first species of (even) degree n, and the elementary theory
of the harmonics of the first species will then be complete. The corresponding results for
harmonics of the second, third and fourth species will now be indicated briefly, the notation
already introduced being adhered to so far as possible.

23.22 Ellipsoidal harmonics of the second species

We take x
m∏
p=1

Θp as a typical harmonic of the second species of degree 2m + 1. The result of

applying Laplace’s operator to it is

x

[
m∑
p=1

∂Π(Θ)

∂Θp

{
6

a2 + θp
+

2
b2 + θp

+
2

c2 + θp

}
+

∑
p,q

∂2Π(Θ)

∂Θp∂Θq

{
8x2

(a2 + θp)(a2 + θq)
+

8y2

(b2 + θp)(b2 + θq)
+

8z2

(c2 + θp)(c2 + θq)

}]
,

and this has to vanish. Consequently, if

Λ2(θ) ≡

m∏
q=1

(θ − θq),
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we find, by the reasoning of §23.21, that Λ2(θ) is a solution of the differential equation

(a2 + θ)(b2 + θ)(c2 + θ)Λ′′2 (θ)

+ 1
2 {3(b

2 + θ)(c2 + θ) + (c2 + θ)(a2 + θ) + (a2 + θ)(b2 + θ)}Λ′2(θ)

=

{
m

(
m +

3
2

)
θ +

1
4

C2

}
Λ2(θ),

where C2 is a constant to be determined.
If now we write Λ2(θ) ≡ Λ(θ)/

√
a2 + θ, we find that Λ(θ) is a solution of the differential

equation

4
√
(a2 + θ)(b2 + θ)(c2 + θ)

d
dθ

[√
(a2 + θ)(b2 + θ)(c2 + θ)

dΛ(θ)
dθ

]
= {(2m + 1)(2m + 2)θ + C}Λ(θ),

where C = C2 + b2 + c2. It will be observed that the last differential equation is of the same
type as the equation derived in §23.21, the constant n being still equal to the degree of the
harmonic, which, in the case now under consideration, is 2m + 1.

Hence the discussion of harmonics of the second species is reduced to the discussion
of solutions of Lamé’s differential equation. In the case of harmonics of the first type the
solutions are required to be polynomials in θmultiplied by

√
a2 + θ; the corresponding factors

for harmonics of the second and third types are
√

b2 + θ and
√

c2 + θ respectively. It will be
shewn subsequently that precisely m+ 1 values of C can be associated with each of the three
types, so that, in all, 3m + 3 harmonics of the second species of degree 2m + 1 are obtained.

23.23 Ellipsoidal harmonics of the third species

We take yz
m∏
p=1
(Θp) as a typical harmonic of the third species of degree 2m+ 2. The result of

applying Laplace’s operator to it is

yz

[
m∑
p=1

∂Π(Θ)

∂Θp

{
2

a2 + θp
+

6
b2 + θp

+
6

c2 + θp

}
+

∑
p,q

∂2Π(Θ)

∂Θp∂Θq

{
8x2

(a2 + θp)(a2 + θq)
+

8y2

(b2 + θp)(b2 + θq)
+

8z2

(c2 + θp)(c2 + θq)

}]
,

and this has to vanish. Consequently, if

Λ3(θ) ≡

m∏
q=1

(θ − θq),

we find, by the reasoning of §23.21, that Λ3(θ) is a solution of the differential equation

(a2 + θ)(b2 + θ)(c2 + θ)Λ′′3 (θ)

+ 1
2 {(b

2 + θ)(c2 + θ) + 3(c2 + θ)(a2 + θ) + 3(a2 + θ)(b2 + θ)}Λ′3(θ)

=

{
m

(
m +

5
2

)
θ +

1
4

C3

}
Λ3(θ),
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where C3 is a constant to be determined.
If now we write Λ3(θ) ≡ Λ(θ)/

√
(b2 + θ)(c2 + θ), we find that Λ(θ) is a solution of the

differential equation

4
√
(a2 + θ)(b2 + θ)(c2 + θ)

d
dθ

[√
(a2 + θ)(b2 + θ)(c2 + θ)

dΛ(θ)
dθ

]
= {(2m + 2)(2m + 3)θ + C}Λ(θ),

where C = C3 + 4a2 + b2 + c2.

It will be observed that the last equation is of the same type as the equation derived in
§23.21, the constant n being still equal to the degree of the harmonic, which, in the case now
under consideration, is 2m + 2.

Hence the discussion of harmonics of the third species is reduced to the discussion of solu-
tions of Lamé’s differential equation. In the case of harmonics of the first type, the solutions
are required to be polynomials in θ multiplied by

√
(b2 + θ)(c2 + θ); the corresponding fac-

tors for harmonics of the second and third types are
√
(c2 + θ)(a2 + θ) and

√
(a2 + θ)(b2 + θ)

respectively. It will be shewn subsequently that precisely m+1 values of C can be associated
with each of the three types, so that, in all, 3m + 3 harmonics of the third species of degree
2m + 2 are obtained.

23.24 Ellipsoidal harmonics of the fourth species

The harmonic of the fourth species of degree 2m + 3 is expressible in the form xyz
m∏
p=1

Θp.

The result of applying Laplace’s operator to it is

xyz

[
m∑
p=1

∂Π(Θ)

∂Θp

{
6

a2 + θp
+

6
b2 + θp

+
6

c2 + θp

}
+

∑
p,q

∂2Π(Θ)

∂Θp∂Θq

{
8x2

(a2 + θp)(a2 + θq)
+

8y2

(b2 + θp)(b2 + θq)
+

8z2

(c2 + θp)(c2 + θq)

}]
,

and this has to vanish. Consequently, if Λ4(θ) ≡
m∏
q=1
(θ − θq), we find by the reasoning of

§23.21 that Λ4(θ) is a solution of the equation

(a2 + θ)(b2 + θ)(c2 + θ)Λ′′4 (θ) +
3
2

{ ∑
a,b,c

(b2 + θ)(c2 + θ)

}
Λ
′
4(θ)

=

{
m

(
m +

7
2

)
θ +

1
4

C4

}
Λ4(θ),

where C4 is a constant to be determined.
If now we write

Λ4(θ) ≡ Λ(θ)/
√
(a2 + θ)(b2 + θ)(c2 + θ),
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we find that Λ(θ) is a solution of the differential equation

4
√
(a2 + θ)(b2 + θ)(c2 + θ)

d
dθ

[√
(a2 + θ)(b2 + θ)(c2 + θ)

dΛ(θ)
dθ

]
= {(2m + 3)(2m + 4)θ + C}Λ(θ),

where C = C4 + 4(a2 + b2 + c2).

It will be observed that the last equation is of the same type as the equation derived in
§23.21, the constant n being still equal to the degree of the harmonic which, in the case now
under consideration, is 2m + 3.

Hence the discussion of harmonics of the fourth species is reduced to the discussion of
solutions of Lamé’s differential equation. The solutions are required to be polynomials in θ
multiplied by

√
(a2 + θ)(b2 + θ)(c2 + θ). It will be shewn subsequently that precisely m + 1

values of C can be associated with solutions of this type, so that m + 1 harmonics of the
fourth species of degree 2m + 3 are obtained.

23.25 Niven’s expressions for ellipsoidal harmonics in terms of homogeneous
harmonics

If Gn(x, y, z) denotes any of the harmonics of degree n which have just been tentatively
constructed, then Gn(x, y, z) consists of a finite number of terms of degrees n,n− 2,n− 4, . . .
in x, y, z. If Hn(x, y, z) denotes the aggregate of terms of degree n, it follows from the
homogeneity of Laplace’s operator that Hn(x, y, z) is itself a solution of Laplace’s equation,
and it may obviously be obtained from Gn(x, y, z) by replacing the factors Θp, which occur
in the expression of Gn(x, y, z) as a product, by the factors Kp.

It has been shewn by Niven [504, pp. 243–245] that Gn(x, y, z) may be derived from
Hn(x, y, z) by applying to the latter function the differential operator

1 −
D2

2(2n − 1)
+

D4

2 · 4 · (2n − 1)(2n − 3)
−

D6

2 · 4 · 6 · (2n − 1)(2n − 3)(2n − 5)
+ · · · ,

where D2 stands for

a2 ∂
2

∂x2 + b2 ∂
2

∂y2 + c2 ∂
2

∂z2 ;

and terms containing powers of D higher than the nth may be omitted from the operator.
We shall now give a proof of this result for any harmonic of the first species. The proofs

for harmonics of the other three species are left to the reader as examples. A proof applicable
to functions of all four species has been given by Hobson [312]. In constructing the proof
given in the text, several modifications have been made in Niven’s proof.

For such harmonics the degree is even and we write

Gn(x, y, z) =
n/2∏
p=1

Θp =

n/2∏
p=1

(Kp − 1) = Sn − Sn−2 + Sn−4 − · · · ,

where Sn,Sn−2,Sn−4, . . . are homogeneous functions of degrees n,n−2,n−4, . . . respectively,
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and

Sn = Hn(x, y, z) =
n/2∏
p=1

Kp .

The function Sn−2r is evidently the sum of the products of K1,K2, . . . ,K 1
2 n

taken 1
2 n − r at a

time.
If K1,K2, . . . ,K 1

2 n
be regarded as an auxiliary system of variables, then, by the ordinary

formula of partial differentiation

∂Sn−2r

∂x
=

n/2∑
p=1

∂Sn−2r

∂Kp

∂Kp

∂x

=

n/2∑
p=1

∂Sn−2r

∂Kp

·
2x

a2 + θp
;

and, if we differentiate again,

∂2Sn−2r

∂x2 =

n/2∑
p=1

∂Sn−2r

∂Kp

2
a2 + θp

+
∑
p,1

∂2Sn−2r

∂Kp∂Kq

8x2

(a2 + θp)(a2 + θq)
.

The terms in ∂2Sn−2r/∂Kp
2 can be omitted because each of the functions Kp does not

occur in Sn−2r to a degree higher than the first. It follows that

D2Sn−2r =

n/2∑
p=1

∂Sn−2r

∂Kp

{
2a2

a2 + θp
+

2b2

b2 + θp
+

2c2

c2 + θp

}
+

∑
p,q

∂2Sn−2r

∂Kp∂Kq

{
8a2x2

(a2 + θp)(a2 + θq)
+

8b2y2

(b2 + θp)(b2 + θq)
+

8c2z2

(c2 + θp)(c2 + θq)

}
.

It will now be shewn that the expression on the right is a constant multiple of Sn−2r−2.
We first observe that∑( x, y, z

a, b, c

) a2x2

(a2 + θp)(a2 + θq)
=
θpKp − θqKq

θp − θq

and that, by the differential equation of §23.21,∑
a,b,c

a2

a2 + θp
= 3 − θp

∑
a,b,c

1
a2 + θp

= 3 + θp
n/2∑
q=1

′ 4
θp − θq

,

so that

D2Sn−2r = 6
n/2∑
p=1

∂Sn−2r

∂Kp

+ 8
n/2∑
p=1

θp
∂Sn−2r

∂Kp

{
n/2∑
q=1

′ 1
θp − θq

}
+ 8

∑
p,q

∂2Sn−2r

∂Kp∂Kq

θpKp − θqKq

θp − θq
.

Now ∂Sn−2r/∂Kp is the sum of the products of the expressions K1,K2, . . . ,K 1
2 n

(Kp being
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omitted) taken 1
2 n − r − 1 at a time; and Kq∂

2Sn−2r/∂Kp∂Kq consists of those terms of this
sum which contain Kq as a factor. Hence

∂Sn−2r

∂Kp

− Kq

∂2Sn−2r

∂Kp∂Kq

is equal to the sum of the products of the expressions K1,K2, . . . ,Kn/2 (both Kp and Kq being
omitted) taken n

2 − r − 1 at a time; and therefore, by symmetry, we have

∂Sn−2r

∂Kp

− Kq

∂2Sn−2r

∂Kp∂Kq

=
∂Sn−2r

∂Kp

− Kq

∂2Sn−2r

∂Kp∂Kq

,

so that
∂2Sn−2r

∂Kp∂Kq

=

{
∂Sn−2r

∂Kp

−
∂Sn−2r

∂Kq

} /
(Kq − Kp).

On substituting by this formula for the second differential coefficients, it is found that

D2Sn−2r =

n/2∑
p=1

∂Sn−2r

∂Kp

[
6 + 8θp

n/2∑
q=1

′ 1
θp − θq

− 8
n/2∑
q=1

′ θpKp − θqKq

(θp − θq)(Kp − Kq)

]
=

n/2∑
p=1

∂Sn−2r

∂Kp

[
6 − 8

n/2∑
q=1

′ Kq

Kp − Kq

]
= (4n − 2)

n/2∑
p=1

∂Sn−2r

∂Kp

− 8
∑
p,q

{
Kp

∂Sn−2r

∂Kp

− Kq

∂Sn−2r

∂Kq

} /
(Kp − Kq).

Now we may write Sn−2r in the form

Sn−2r + KpSn−2r−2 + KqSn−2r−2 + KpKqSn−2r−4,

where S2m denotes the sum of the products of the expressions K1,K2, . . . ,Kn/2 (with Kp and
Kq both being omitted) taken m at a time; and we then see that

Kp

∂Sn−2r

∂Kp

− Kq

∂Sn−2r

∂Kq

= (Kp − Kq)Sn−2r−2.

Hence

D2Sn−2r = (4n − 2)
n/2∑
p=1

∂Sn−2r

∂Kp

− 8
∑
p,1

Sn−2r−2.

Now it is clear that the expression on the right is a homogeneous symmetric function of
K1,K2, . . . ,Kn/2 of degree n/2 − r − 1, and it contains no power of any of the expressions
K1,K2, . . . ,Kn/2 to a degree higher than the first. It is therefore a multiple of Sn−2r−2. To
determine the multiple we observe that when Sn−2r−2 is written out at length it contains

(n/2
r=1

)
terms while the number of terms in

(4n − 2)
n/2∑
p=1

∂Sn−2r

∂Kp

− 8
∑
p,q

Sn−2r−2
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is
1
2

n(4n − 2)
(
n/2 − 1

r

)
− 8

(
n/2
2

)
·

(
n/2 − 2
r − 1

)
.

The multiple is therefore[
1
2

n(4n − 2)
(
n/2 − 1

r

)
− 8

(
n/2
2

)
·

(
n/2 − 2
r − 1

)] / (
n/2

r + 1

)
and this is equal to (2r + 2)(2n − 2r − 1). It has consequently been proved that

D2Sn−2r = (2r + 2)(2n − 2r − 1)Sn−2r−2.

It follows at once by induction that

Sn−2r =
D2rSn

2 · 4 · · · 2r · (2n − 1)(2n − 3) · · · (2n − 2r + 1)
,

and the formula

Gn(x, y, z) =

[
n/2∑
r=0

(−1)rD2r

2 · 4 · · · 2r · (2n − 1)(2n − 3) · · · (2n − 2r + 1)

]
Hn(x, y, z)

is now obvious when Gn(x, y, z) is an ellipsoidal harmonic of the first species.

Example 23.2.1 Prove Niven’s formula when Gn(x, y, z) is an ellipsoidal harmonic of the
second, third or fourth species.

Example 23.2.2 Obtain the symbolic formula

Gn(x, y, z) = Γ
( 1

2 − n
)
·
( 1

2 D
)n+ 1

2 I−n− 1
2
(D) · Hn(x, y, z).

23.26 Ellipsoidal harmonics of degree n

The results obtained and stated in §§23.21–23.24 shew that when n is even, there are n/2+ 1
harmonics of the first species and 3

2 n harmonics of the third species; when n is odd there are
3
2 (n + 1) harmonics of the second species and 1

2 (n − 1) harmonics of the fourth species, so
that, in either case, there are 2n + 1 harmonics in all. It follows from §18.3 that, if the terms
of degree n in these harmonics are linearly independent, they form a fundamental system of
harmonics of degree n; and any homogeneous harmonic of degree n is expressible as a linear
combination of the homogeneous harmonics which are obtained by selecting the terms of
degree n from the 2n + 1 ellipsoidal harmonics.

In order to prove the results concerning the number of harmonics of degree n and to
establish their linear independence, it is necessary to make an intensive study of Lamé’s
equation; but before we pursue this investigation we shall study the construction of ellipsoidal
harmonics in terms of confocal coordinates.

Note These expressions for ellipsoidal harmonics are of historical importance in view of
Lamé’s investigations, but the expressions which have just been obtained by Niven’s method
are, in some respects, more suitable for physical applications.

For applications of ellipsoidal harmonics to the investigation of the Figure of the Earth,
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and for the reduction of the harmonics to forms adapted for numerical computation, the
reader is referred to the memoir by G. H. Darwin [165].

23.3 Confocal coordinates
If (X,Y, Z) denote current coordinates in three-dimensional space, and if a, b, c are positive
(a > b > c), the equation

X2

a2 +
Y 2

b2 +
Z2

c2 = 1

represents an ellipsoid; the equation of any confocal quadric is

X2

a2 + θ
+

Y 2

b2 + θ
+

Z2

c2 + θ
= 1,

and θ is called the parameter of this quadric.
The quadric passes through a particular point (x, y, z) if θ is chosen so that

x2

a2 + θ
+

y2

b2 + θ
+

z2

c2 + θ
= 1.

Whether θ satisfies this equation or not, it is convenient to write

1 −
x2

a2 + θ
−

y2

b2 + θ
−

z2

c2 + θ
≡

f (θ)
(a2 + θ)(b2 + θ)(c2 + θ)

,

and, since f (θ) is a cubic function of θ, it is clear that, in general, three quadrics of the
confocal system pass through any particular point (x, y, z).

To determine the species of these three quadrics, we construct the following table.

θ f (θ)
−∞ −∞

−a2 −x2(a2 − b2)(a2 − c2)

−b2 y2(a2 − b2)(b2 − c2)

−c2 −z2(a2 − c2)(b2 − c2)

+∞ +∞

It is evident from this table that the equation f (θ) = 0 has three real roots λ, µ, ν, and if
they are arranged so that λ > µ > ν, then

λ > −c2 > µ > −b2 > ν > −a2;

and also f (θ) ≡ (θ − λ)(θ − µ)(θ − ν).
From the values of λ, µ, ν it is clear that the surfaces, on which θ has the respective values

λ, µ, ν, are an ellipsoid, an hyperboloid of one sheet and an hyperboloid of two sheets.
Now take the identity in θ,

1 −
x2

a2 + θ
−

y2

b2 + θ
−

z2

c2 + θ
≡
(θ − λ)(θ − µ)(θ − ν)

(a2 + θ)(b2 + θ)(c2 + θ)
,
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and multiply it, in turn, by a2 + θ, b2 + θ, c2 + θ; and after so doing, replace θ by −a2, −b2,
−c2 respectively. It is thus found that

x2 =
(a2 + λ)(a2 + µ)(a2 + ν)

(a2 − b2)(a2 − c2)
,

y2 = −
(b2 + λ)(b2 + µ)(b2 + ν)

(a2 − b2)(b2 − c2)
,

z2 =
(c2 + λ)(c2 + µ)(c2 + ν)

(a2 − c2)(b2 − c2)
.

From these equations it is clear that, if (x, y, z) be any point of space and if λ, µ, ν denote
the parameters of the quadrics confocal with

X2

a2 +
Y 2

b2 +
Z2

c2 = 1

which pass through the point, then (x2, y2, z2) are uniquely determinate in terms of (λ, µ, ν)
and vice versa.

The parameters (λ, µ, ν) are called the confocal coordinates of the point (x, y, z) relative to
the fundamental ellipsoid

X2

a2 +
Y 2

b2 +
Z2

c2 = 1.

It is easy to shew that confocal coordinates form an orthogonal system; for consider the
direction cosines of the tangent to the curve of intersection of the surfaces (µ) and (ν); these
direction cosines are proportional to (

∂x
∂λ
,
∂y

∂λ
,
∂z
∂λ

)
,

and since
∂x
∂λ

∂x
∂µ
+
∂y

∂λ

∂y

∂µ
+
∂z
∂λ

∂z
∂µ
=

1
4

∑
a,b,c

a2 + ν

(a2 − b2)(a2 − c2)
= 0,

it is evident that the directions (
∂x
∂λ
,
∂y

∂λ
,
∂z
∂λ

)
,

(
∂x
∂µ

,
∂y

∂µ
,
∂z
∂µ

)
are perpendicular; and, similarly, each of these directions is perpendicular to(

∂x
∂ν
,
∂y

∂ν
,
∂z
∂ν

)
.

It has therefore been shewn that the three systems of surfaces, on which λ, µ, ν respectively
are constant, form a triply orthogonal system.

Hence the square of the line-element, namely (δx)2 + (δy)2 + (δz)2, is expressible in the
form (H1δλ)

2 + (H2δµ)
2 + (H3δν)

2, where

H2
1 =

(
∂x
δλ

)2

+

(
∂y

δλ

)2

+

(
∂z
δλ

)2

,
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with similar expressions in µ and ν for H2
2 and H2

3 .
To evaluate H2

1 in terms of (λ, µ, ν), observe that

H2
1 =

1
4x2

(
∂x2

δλ

)2

+
1

4y2

(
∂y2

δλ

)2

+
1

4z2

(
∂z2

δλ

)2

=
1
4

∑
a,b,c

(a2 + µ)(a2 + ν)

(a2 + λ)(a2 − b2)(a2 − c2)
.

But, if we express
(λ − µ)(λ − ν)

(a2 + λ)(b2 + λ)(c2 + λ)
,

qua function of λ, as a sum of partial fractions, we see that it is precisely equal to∑
a,b,c

(a2 + µ)(a2 + ν)

(a2 + λ)(a2 − b2)(a2 − c2)
,

and consequently

H2
1 =

(λ − µ)(λ − ν)

4(a2 + λ)(b2 + λ)(c2 + λ)
.

The values of H2
2 and H2

3 are obtained from this expression by cyclical interchanges of
(λ, µ, ν).

Note Formulae equivalent to those of this section were obtained by Lamé [401].

Example 23.3.1 With the notation of this section, shew that

x2 + y2 + z2 = a2 + b2 + c2 + λ + µ + ν.

Example 23.3.2 Shew that

4H2
1 =

x2

(a2 + λ)2
+

y2

(b2 + λ)2
+

z2

(c2 + λ)2
.

23.31 Uniformising variables associated with confocal coordinates
It has been seen in §23.3 that when the Cartesian coordinates (x, y, z) are expressed in terms
of the confocal coordinates (λ, µ, ν), the expressions so obtained are not one-valued functions
of (λ, µ, ν). To avoid the inconvenience thereby produced, we express (λ, µ, ν) in terms of
three new variables (u, v,w) respectively by writing

℘(u) = λ + 1
3 (a

2 + b2 + c2),

℘(v) = µ + 1
3 (a

2 + b2 + c2),

℘(w) = ν + 1
3 (a

2 + b2 + c2),

the invariants g2 and g3 of the Weierstrassian elliptic functions being defined by the identity

4(a2 + λ)(b2 + λ)(c2 + λ) ≡ 4℘3(u) − g2℘(u) − g3.
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The discriminant associated with the elliptic functions (cf. Example 20.3.9) is

16 (a2 − b2)2(b2 − c2)2(c2 − a2)2,

and so it is positive; and, therefore3 , of the periods 2ω1, 2ω2 and 2ω3, 2ω1 is positive while
2ω3 is a pure imaginary; and 2ω2 has its real part negative, since ω1 + ω2 + ω3 = 0; the
imaginary part of ω2 is positive since Imω2/ω1 > 0.

In these circumstances e1 > e2 > e3, and so we have

3e1 = a2 + b2 − 2c2, 3e2 = c2 + a2 − 2b2, 3e3 = b2 + c2 − 2a2.

Next we express (x, y, z) in terms of (u, v,w); we have

x2 =
(a2 + λ) (a2 + µ) (a2 + ν)

(a2 − b2) (a2 − c2)

=
{℘(u) − e3} {℘(v) − e3} {℘(w) − e3}

(e1 − e3) (e2 − e3)

=
σ3

2(u) σ3
2(v) σ3

2(w)

σ2(u) σ2(v) σ2(w)
.
σ2(ω1) σ

2(ω2)

σ3
2(ω1) σ3

2(ω2)
,

by Example 20.5.4. Therefore, by §20.421, we have

x = ±e−η3ω3σ2(ω3)
σ3(u)σ3(v)σ3(w)

σ(u)σ(v)σ(w)

and similarly

y = ±e−η2ω2σ2(ω2)
σ2(u)σ2(v)σ2(w)

σ(u)σ(v)σ(w)

z = ±e−η1ω1σ2(ω1)
σ1(u)σ1(v)σ1(w)

σ(u)σ(v)σ(w)
.

The effect of increasing each of u, v, w by 2ω3 is to change the sign of the expression
given for x while the expressions for y and z remain unaltered; and similar statements hold
for increases by 2ω2 and 2ω1; and again each of the three expressions is changed in sign by
changing the signs of u, v, w.

Hence, if the upper signs be taken in the ambiguities, there is a unique correspondence
between all sets of values of (x, y, z), real or complex, and all the sets of values of (u, v,w)
whose three representative points lie in any given cell.

The uniformisation is consequently effected by taking
x = e−η3ω3σ2(ω3)

σ3(u)σ3(v)σ3(w)

σ(u)σ(v)σ(w)
,

y = e−η2ω2σ2(ω3)
σ2(u)σ2(v)σ2(w)

σ(u)σ(v)σ(w)
,

z = e−η1ω1σ2(ω1)
σ1(u)σ1(v)σ1(w)

σ(u)σ(v)σ(w)
.

Formulae which differ from these only by the interchange of the suffixes 1 and 3 were
given by Halphen [269, p. 459].

3 See §20.32, Example 20.3.5.
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23.32 Laplace’s equation referred to confocal coordinates
It has been shewn by Lamé and by W. Thomson that Laplace’s equation when referred to
any system of orthogonal coordinates (λ, µ, v) assumes the form

∂

∂λ

{
H2 H3

H1
·
∂V
∂λ

}
+

∂

∂µ

{
H3 H1

H2
·
∂V
∂µ

}
+

∂

∂ν

{
H1 H2

H3
·
∂V
∂ν

}
= 0,

where (H1,H2,H3) are to be determined from the consideration that

(H1δλ)
2 + (H2δµ)

2 + (H3δν)
2

is to be the square of the line-element. Although W. Thomson’s proof of this result, based
on arguments of a physical character, is extremely simple, all the analytical proofs are either
very long or else severely compressed.

It has, however, been shewn by Lamé [403, pp. 133–136] that, in the special case in which
(λ, µ, ν) represent confocal coordinates, Laplace’s equation assumes a simple form obtainable
without elaborate analysis; when the uniformising variables (u, v,w) of §23.31 are adopted
as coordinates, the form of Laplace’s equation becomes still simpler.

By straightforward differentiation it may be proved that, when any three independent
functions (λ, µ, v) of (x, y, z) are taken as independent variables, then

∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2

transforms into ∑
λ,µ,ν

[(
∂λ

∂x

)2

+

(
∂λ

∂y

)2

+

(
∂λ

∂z

)2
]
∂2V
∂λ2

+ 2
∑
λ,µ,ν

[
∂µ

∂x
∂ν

∂x
+
∂µ

∂y

∂ν

∂y
+
∂µ

∂z
∂ν

∂z

]
∂2V
∂µ∂ν

+
∑
λ,µ,ν

[
∂2λ

∂x2 +
∂2λ

∂y2 +
∂2λ

∂z2

]
∂V
∂λ

.

In order to reduce this expression, we observe that λ satisfies the equation

x2

a2 + λ
+

y2

b2 + λ
+

z2

c2 + λ
= 1

and so, by differentiation with x, y, z as independent variables,

2x
a2 + λ

−

{
x2

(a2 + λ)2
+

y2

(b2 + λ)2
+

z2

(c2 + λ)2

}
∂λ

∂x
= 0,

2
a2 + λ

−
4x

(a2 + λ)2
∂λ

∂x
+2

{
x2

(a2 + λ)3
+

y2

(b2 + λ)3
+

z2

(c2 + λ)3

} (
∂λ

∂x

)2

−

{
x2

(a2 + λ)2
+

y2

(b2 + λ)2
+

z2

(c2 + λ)2

}
∂2λ

∂x2 = 0.
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Hence
2x

a2 + λ
= 4H3

1
∂λ

∂x
,

2
a2 + λ

−
2x2

(a2 + λ)3H2
1
+

x2

2H4
1 (a

2 + λ)2

∑( x, y, z
a, b, c

) x2

(a2 + λ)3
= 4H2

1
∂2λ

∂x2 ,

with similar equations in µ, ν and y, z.

From equations of the first type it is seen that the coefficient of
∂2V
∂λ2 is

1
H2

1
and the

coefficient of
∂2V
∂µ∂ν

is zero; and if we add up equations of the second type obtained by

interchanging x, y, z cyclically, it is found that

4H2
1

{
∂2λ

∂x2 +
∂2λ

∂y2 +
∂2λ

∂z2

}
=

∑
a,b,c

2
a2 + λ

,

with similar equations in µ and ν.
If, for brevity, we write √

(a2 + λ)(b2 + λ)(c2 + λ) ≡ ∆λ,

with similar meanings for ∆µ and ∆ν, we see that

∂2λ

∂x2 +
∂2λ

∂y2 +
∂2λ

∂z2 =
∆2
λ

(λ − µ) (λ − ν)

{
2

a2 + λ
+

2
b2 + λ

+
2

c2 + λ

}
=

4∆λ
(λ − µ) (λ − ν)

d∆λ
dλ

,

and so Laplace’s equation assumes the form∑
λ,µ,ν

4
(λ − µ) (λ − ν)

[
∆

2
λ

∂2V
∂λ2 + ∆λ

d∆λ
dλ

∂V
∂λ

]
= 0,

that is to say

(µ − ν)∆λ
∂

∂λ

{
∆λ
∂V
∂λ

}
+ (ν − λ)∆µ

∂

∂µ

{
∆µ

∂V
∂µ

}
+ (λ − µ)∆ν

∂

∂ν

{
∆ν
∂V
∂ν

}
= 0.

The equivalent equation with (u, v,w) as independent variables is simply

{℘(v) − ℘(w)}
∂2V
∂u2 + {℘(w) − ℘(u)}

∂2V
∂v2 + {℘(u) − ℘(v)}

∂2V
∂w2 = 0,

or, more briefly,

(µ − ν)
∂2V
∂u2 + (ν − λ)

∂2V
∂v2 + (λ − µ)

∂2V
∂w2 = 0.

The last three equations will be regarded as canonical forms of Laplace’s equation in the
subsequent analysis.
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23.33 Ellipsoidal harmonics referred to confocal coordinates
When Niven’s function Θp, defined as

x2

a2 + θp
+

y2

b2 + θp
+

z2

c2 + θp
− 1,

is expressed in terms of the confocal coordinates (λ, µ, ν) of the point (x, y, z), it assumes the
form

−
(λ − θp)(µ − θp)(ν − θp)

(a2 + θp)(b2 + θp)(c2 + θp)
,

and consequently, when constant factors of the form

−(a2 + θp)(b2 + θp)(c2 + θp)

are omitted, ellipsoidal harmonics assume the form
x, yz

1, y, zx, xyz
z, xy,


m∏
p=1

(λ − θp)

m∏
p=1

(µ − θp)

m∏
p=1

(ν − θp).

If now we replace x, y, z by their values in terms of λ, µ, ν, we see that any ellipsoidal
harmonic is expressible in the form of a constant multiple of ΛMN, where Λ is a function of
λ only, and M and N are the same functions of µ and ν respectively as Λ is of λ. Further Λ
is a polynomial of degree m in λ multiplied, in the case of harmonics of the second, third or
fourth species, by one, two or three of the expressions

√
a2 + λ,

√
b2 + λ,

√
c2 + λ.

Since the polynomial involved in Λ is
m∏
p=1
(λ − θp), it follows from a consideration of

§§23.21–23.24 that Λ is a solution of Lamé’s differential equation

4
√
(a2 + λ)(b2 + λ)(c2 + λ)

d
dλ

[√
(a2 + λ)(b2 + λ)(c2 + λ)

dΛ
dλ

]
= {n(n + 1)λ + C}Λ,

where n is the degree of the harmonic in (x, y, z).
This result may also be attained from a consideration of solutions of Laplace’s equation

which are of the type4

V = ΛMN,

where Λ, M, N are functions only of λ, µ, ν respectively.
For if we substitute this expression in Laplace’s equation, as transformed in §23.32, on

division by V , we find that

℘(v) − ℘(w)

Λ

d2Λ

du2 +
℘(w) − ℘(u)

M
d2M
dv2 +

℘(u) − ℘(v)
N

d2N
dw2 = 0.

4 A harmonic which is the product of three functions, each of which depends on one coordinate only, is
sometimes called a normal solution of Laplace’s equation. Thus normal solutions with polar coordinates are
(§18.31)

rnPm
n (cos θ)cos

sin mφ.
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The last two terms, qua functions of u, are linear functions of ℘(u), and so
1
Λ

d2Λ

du2 must
be a linear function of ℘(u); since it is independent of the coordinates v and w, we have

1
Λ

d2Λ

du2 = {K℘(u) + B} ,

where K and B are constants.
If we make this substitution in the differential equation, we get a linear function of ℘(u)

equated (identically) to zero, and so the coefficients in this linear function must vanish; that
is to say

K{℘(v) − ℘(w)} −
1
M

d2M
dv2 +

1
N

d2N
dw2 = 0,

B{℘(v) − ℘(w)} +
℘(w)

M
d2M
dv2 −

℘(v)

N
d2N
dw2 = 0,

and on solving these with the observation that ℘(v) − ℘(w) is not identically zero, we obtain
the three equations

d2Λ

du2 = {K℘(u) + B}Λ,

d2M
dv2 = {K℘(v) + B} M,

d2N
dw2 = {K℘(w) + B} N.

When λ is taken as independent variable, the first equation becomes

4∆λ
d
dλ

{
∆λ

dΛ
dλ

}
= {Kλ + B + 1

3 K(a2 + b2 + c2)}Λ,

and this is the equation already obtained for Λ, the degree n of the harmonic being given by
the formula

n(n + 1) = K .

We have now progressed so far with the study of ellipsoidal harmonics as is convenient
without making use of properties of Lamé’s equation.

We now proceed to the detailed consideration of this equation.

23.4 Various forms of Lamé’s differential equation
We have already encountered two forms of Lamé’s equation, namely

4∆λ
d
dλ

{
∆λ

dΛ
dλ

}
= {n(n + 1)λ + C}Λ,

and this may also be written

d2Λ

dλ2 +

{
1
2

a2 + λ
+

1
2

b2 + λ
+

1
2

c2 + λ

}
dΛ
dλ
=

{n(n + 1)λ + C}Λ
4(a2 + λ)(b2 + λ)(c2 + λ)

,
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which may be termed the algebraic form; and

d2Λ

du2 = {n(n + 1)℘(u) + B}Λ,

which, since it contains the Weierstrassian elliptic function ℘(u), may be termed the Weier-
strassian form; the constants B and C are connected by the relation

B + 1
3 n(n + 1)(a2 + b2 + c2) = C.

If we take ℘(u) as a new variable, which will be called ξ, we obtain the slightly modified
algebraic form (cf. §10.6)

d2Λ

dξ2 +

{
1
2

ξ − e1
+

1
2

ξ − e2
+

1
2

ξ − e3

}
dΛ
dξ
=

{n(n + 1)ξ + B}Λ
4(ξ − e1)(ξ − e2)(ξ − e3)

.

This differential equation has singularities at e1, e2, e3 at which the exponents are 0, 1
2 in

each case; and a singularity at infinity, at which the exponents are − 1
2 n, 1

2 (n + 1).

Note The Weierstrassian form of the equation has been studied by Halphen [268, II,
pp. 457–531]. The algebraic forms have been studied by Stieltjes [604], Klein [374], and
Bôcher [78].

The more general differential equation with four arbitrary singularities at which the ex-
ponents are arbitrary (save that the sum of all the exponents at all the singularities is 2) has
been discussed by Heun [300]; the gain in generality by taking the singularities arbitrary is
only apparent, because by a homographic change of the independent variable one of them
can be transferred to the point at infinity, and then a change of origin is sufficient to make
the sum of the complex coordinates of the three finite singularities equal to zero.

Another important form of Lamé’s equation is obtained by using the notation of Jacobian
elliptic functions; if we write

z1 = u
√

e1 − e3,

the Weierstrassian form becomes
d2Λ

dz1
2 =

[
n(n + 1)

{
e3

e1 − e3
+ ns2 z1

}
+

B
e1 − e3

]
Λ,

and putting z1 = α − iK ′, where 2iK ′ is the imaginary period of sn z1, we obtain the simple
form

d2Λ

dα2 = {n(n + 1)k2 sn2 α + A}Λ,

where A is a constant connected with B by the relation B + e3n(n + 1) = A(e1 − e3).

Note The Jacobian form has been studied by Hermite [291], published separately, Paris,
1885.

In studying the properties of Lamé’s equation, it is best not to use one form only, but
to take the form best fitted for the purpose in hand. For practical applications the Jacobian
form, leading to the theta-functions, is the most suitable. For obtaining the properties of
the solutions of the equation, the best form to use is, in general, the second algebraic form,
though in some problems analysis is simpler with the Weierstrassian form.
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23.41 Solutions in series of Lamé’s equation
Let us now assume a solution of Lamé’s equation, which may be written

4(ξ − e1)(ξ − e2)(ξ − e3)
d2Λ

dξ2 + (6ξ
2 − 1

2g2)
dΛ
dξ
− {n(n + 1)ξ + B}Λ = 0,

in the form

Λ =

∞∑
r=0

br (ξ − e2)
n/2−r .

The series on the right, if it is a solution, will converge (§10.31) for sufficiently small
values of |ξ − e2 |; but our object will be not the discussion of the convergence but the choice
of B in such a way that the series may terminate, so that considerations of convergence will
be superfluous.

The result of substituting this series for Λ on the left-hand side of the differential equation
and arranging the result in powers of ξ − e2 is minus the series

4
∞∑
r=0

(ξ − e2)
n/2−r+1[r(n − r + 1

2 )br − {3e2(n/2 − r + 1)2 − 1
4 n(n + 1)e2 −

1
4 B}br−1

+ (e1 − e2)(e2 − e3)(
1
2 n − r + 2)( 12 n − r + 3

2 )br−2],

in which the coefficients br with negative suffixes are to be taken to be zero.
Hence, if the series is to be a solution, the relation connecting successive coefficients is

r(n − r + 1
2 )br = {3e2(

1
2 n − r + 1)2 − 1

4 n(n + 1)e2 −
1
4 B}br−1

− (e1 − e2)(e2 − e3)(
1
2 n − r + 2)( 12 n − r + 3

2 )br−2,

and (
n −

1
2

)
b1 =

{
3
4

n2e2 −
1
4

n(n + 1)e2 −
1
4

B
}

b0.

If we take b0 = 1, as we may do without loss of generality, the coefficients br are seen to
be functions of B with the following properties:

(i) br is a polynomial in B of degree r;
(ii) the sign of the coefficient of Br in br is that of (−1)r , provided that r ≤ n: the actual

coefficient of Br is
(−1)r

2 · 4 · · · 2r(2n − 1)(2n − 3) · · · (2n − 2r + 1)
;

(iii) if e1, e2, e3, and B are real and e1 > e2 > e3, then, if br−1 = 0, the values of br and br−2

are opposite in sign, provided that r < 1
2 (n + 3) and r < n.

Now suppose that n is even and that we choose B in such a way that

bn/2+1 = 0.

If this choice is made, the recurrence formula shews that

bn/2+2 = 0,
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by putting r = 1
2 n + 2 in the formula in question; and if both bn/2+1 and bn/2+2 are zero the

subsequent recurrence formulae are satisfied by taking

bn/2+3 = bn/2+4 = · · · = 0.

Hence the condition that Lamé’s equation should have a solution which is a polynomial in
ξ is that B should be a root of a certain algebraic equation of degree n/2+ 1, when n is even.

When n is odd, we take b 1
2 (n+1) to vanish and then b 1

2 (n+3) also vanishes, and so do the
subsequent coefficients; so that the condition, when n is odd, is that B should be a root of a
certain algebraic equation of degree 1

2 (n + 1).
It is easy to shew that, when e1 > e2 > e3, these algebraic equations have all their roots real.

For the properties (ii) and (iii) shew that, qua functions of B, the expressions b0, b1, b2, . . . , br

form a set of Sturm’s functions [615] when r < 1
2 (n + 3), and so the equation

b 1
2 n+1 = 0 or b 1

2 (n+1) = 0

has all its roots real and unequal. This procedure is due to Liouville [439].
Hence, when the constants e1, e2, e3 are real (which is the case of practical importance, as

was seen in §23.31), there are 1
2 n + 1 real and distinct values of B for which Lamé’s equation

has a solution of the type
n/2∑
r=0

br (ξ − e2)
n/2−r

when n is even; and there are 1
2 (n+1) real and distinct values of B for which Lamé’s equation

has a solution of the type
1
2 (n−1)∑
r=0

br (ξ − e2)
n/2−r

when n is odd.

Note When the constants e1, e2, e3 are not all real, it is possible for the equation satisfied
by B to have equal roots; the solutions of Lamé’s equation in such cases have been discussed
by Cohn [152].

Example 23.4.1 Discuss solutions of Lamé’s equation of the types

(i) (ξ − e1)
1
2

∞∑
r=0

b′r (ξ − e2)
1
2 n−r−

1
2 ,

(ii) (ξ − e3)
1
2

∞∑
r=0

b′′r (ξ − e2)
1
2 n−r−

1
2 ,

(iii) (ξ − e1)
1
2 (ξ − e3)

1
2

∞∑
r=0

b′′′r (ξ − e2)
1
2 n−r−1,

obtaining the recurrence relations

(i) r
(
n − r + 1

2

)
b′r =

{
3e2

( 1
2 n − r + 1

2

)2
+ (e2 − e3)

( 1
2 n − r + 3

4

)
− 1

4 n(n + 1)

e2 −
1
4 B

}
b′r−1 − (e1 − e2)(e2 − e3)

( 1
2 n − r + 3

2

) ( 1
2 n − r + 1

)
b′r−2,
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(ii) r(n − r + 1
2 )b
′′
r =

{
3e2

( 1
2 n − r + 1

2

)2
− (e1 − e3)(

1
2 n − r + 3

4 ) −
1
4 n(n + 1)

e2 −
1
4 B

}
b′′r−1 − (e1 − e2)(e2 − e3)

( 1
2 n − r + 3

2

) ( 1
2 n − r + 1

)
b′′r−2,

(iii) r(n − r + 1
2 )b
′′′
r =

{
3e2

( 1
2 n − r + 1

2

)2
− 1

4 e2(n2 + n + 1) − 1
4 B

}
b′′′r−1

− (e1 − e2)(e2 − e3)(
1
2 n − r + 1)( 12 n − r + 1

2 )b
′′′
r−2.

Example 23.4.2 With the notation of Example 23.4.1 shew that the numbers of real distinct
values of B for which Lamé’s equation is satisfied by terminating series of the several species
are

(i) 1
2 (n − 1) or 1

2 (n − 2);
(ii) 1

2 (n − 1) or 1
2 (n − 2);

(iii) 1
2 (n − 2) or 1

2 (n − 3).

23.42 The definition of Lamé functions
When we collect the results which have been obtained in §23.41, it is clear that, given the
equation

d2Λ

du2 = [n(n + 1)℘(u) + B]Λ,

n being a positive integer, there are 2n + 1 values of B for which the equation has a solution
of one or other of the four species described in §§23.21–23.24.

If, when such a solution is expanded in descending powers of ξ, the coefficient of the
leading term ξn/2 is taken to be unity, as was done in §23.41, the function so obtained is
called a Lamé function of degree n, of the first kind, of the first (second, third or fourth)
species. The 2n + 1 functions so obtained are denoted by the symbol

Em
n (ξ); (m = 1,2, . . . ,2n + 1),

and, when we have to deal with only one such function, it may be denoted by the symbol

En(ξ).

Note Tables of the expressions representing Lamé functions for n = 1,2, . . . ,10 have been
compiled by Guerritore [263].

Example 23.4.3 Obtain the five Lamé functions of degree 2, namely

λ + 1
3
∑

a2 ± 1
3

√∑
a4 −

∑
b2c2,

√
λ + b2

√
λ + c2,

√
λ + c2

√
λ + a2,

√
λ + a2

√
λ + b2.

Example 23.4.4 Obtain the seven Lamé functions of degree 3, namely√
(λ + a2)(λ + b2)(λ + c2),

and six functions obtained by interchanges of a, b, c in the expressions
√
λ + a2

[
λ + 1

5 (a
2 + 2b2 + 2c2) ± 1

5

√
a4 + 4b4 + 4c4 − 7b2c2 − c2a2 − a2b2

]
.
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23.43 The non-repetition of factors in Lamé functions
It will now be shewn that all the rational linear factors of Em

n (ξ) are unequal. This result
follows most simply from the differential equation which Em

n (ξ) satisfies; for, if ξ − ξ1 be any
factor of Em

n (ξ), where ξ1 is not one of the numbers e1, e2 or e3, then ξ1 is a regular point of
the equation (§10.3), and any solution of the equation which, when expanded in powers of
ξ − ξ1, does not begin with a term in (ξ − ξ1)

0 or (ξ − ξ1)
1 must be identically zero.

Again, if ξ1 were one of the numbers e1, e2 or e3, the indicial equation appropriate to ξ1

would have the roots 0 and 1
2 , and so the expansion of Em

n (ξ) in ascending powers of ξ1 would
begin with a term in (ξ − ξ1)

0 or (ξ − ξ1)
1
2 .

Hence, in no circumstances has Em
n (ξ), qua function of ξ, a repeated factor.

The determination of the numbers θ1, θ2, . . . , θm introduced in §§23.21–23.24 may now
be regarded as complete; for it has been seen that solutions of Lamé’s equation can be
constructed with non-repeated factors, and the values of θ1, θ2, . . . which correspond to the
roots of Em

n (ξ) = 0 satisfy the equations which are requisite to ensure that Niven’s products
are solutions of Laplace’s equation.

It still remains to be shewn that the 2n + 1 ellipsoidal harmonics constructed in this way
form a fundamental system of solutions of degree n of Laplace’s equation.

23.44 The linear independence of Lamé functions
It will now be shewn that the 2n+1 Lamé functions Em

n (ξ)which are of degree n are linearly
independent; that is to say, that no linear relation can exist which connects them identically
for general values of ξ.

In the first place, if such a linear relation existed in which functions of different species
were involved, it is obvious that by suitable changes of signs of the radicals

√
ξ − e1,

√
ξ − e2,√

ξ − e3 we could obtain other relations which, on being combined by addition or subtraction
with the original relation, would give rise to two (or more) linear relations each of which
involved functions restricted not merely to be of the same species but also of the same type.

Let one of these latter relations, if it exists, be∑
amEm

n (ξ) ≡ 0 (am , 0)

and let this relation involve r of the functions.
Operate on this identity r − 1 times with the operator

d2

du2 − n(n + 1)ξ.

The results of the successive operations are∑
am(Bm

n )
sEm

n (ξ) ≡ 0 (s = 1,2, . . . ,r − 1),

where Bm
n is the particular value of B which is associated with Em

n (ξ).
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Eliminate a1,a2, . . . ,ar from the r equations now obtained; and it is found that���������
1 1 1 · · · 1
B1
n B2

n B3
n · · · Br

n
...

...
...

...
...

(B1
n)

r−1 (B2
n)

r−1 · · · · · · (Br
n)

r−1

��������� = 0.

Now the only factors of the determinant on the left are differences of the numbers Bm
n , and

these differences cannot vanish, by §23.41. Hence the determinant cannot vanish and so the
postulated relation does not exist.

The linear independence of the 2n+1 Lamé functions of degree n is therefore established.

23.45 The linear independence of ellipsoidal harmonics
Let Gm

n (x, y, z) be the ellipsoidal harmonic of degree n associated with Em
n (ξ), and let

Hm
n (x, y, z) be the corresponding homogeneous harmonic.
It is now easy to shew that not only are the 2n+1 harmonics of the type Gm

n (x, y, z) linearly
independent, but also the 2n + 1 harmonics of the type Hm

n (x, y, z) are linearly independent.
In the first place, if a linear relation existed between harmonics of the typeGm

n (x, y, z), then,
when we expressed these harmonics in terms of confocal coordinates (λ, µ, ν), we should
obtain a linear relation betweenLamé functions of the type Em

n (ξ)where ξ = λ+ 1
3 (a

2+b2+c2),
and it has been seen that no such relation exists.

Again, if a linear relation existed between homogeneous harmonics of the type Hm
n (x, y, z),

by operating on the relation with Niven’s operator (§23.25),

1 −
D2

2(2n − 1)
+

D4

2 · 4(2n − 1)(2n − 3)
− · · · ,

we should obtain a linear relation connecting functions of the type Gm
n (x, y, z), and since it

has just been seen that no such relation exists, it follows that the homogeneous harmonics of
degree n are linearly independent.

23.46 Stieltjes’ theorem on the zeros of Lamé functions
It has been seen that any Lamé function of degree n is expressible in the form

(θ + a2)κ1(θ + b2)κ2(θ + c2)κ3 ·

m∏
p=1

(θ − θp),

where κ1, κ2, κ3 are equal to 0 or 1
2 and the numbers θ1, θ2, . . . , θm are real and unequal both

to each other and to −a2, −b2, −c2; and 1
2 n = m + κ1 + κ2 + κ3. When κ1, κ2, κ3 are given the

number of Lamé functions of this degree and type is m + 1.
The remarkable result has been proved by Stieltjes [604] that these m+ 1 functions can be

arranged in order in such a way that the rth function of the set has r − 1 of its zeros5 between
5 The zeros −a2, −b2, −c2 are to be omitted from this enumeration, θ1, θ2, . . . , θm only being taken into
account.
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−a2 and −b2 and the remaining m− r + 1 of its zeros between −b2 and −c2, and, incidentally,
that, for all the m + 1 functions, θ1, θ2, . . . , θm lie between −a2 and −c2.

To prove this result, let φ1, φ2, . . . , φm be any real variables such that{
−a2 ≤ φp ≤ −b2, (p = 1,2, . . . ,r − 1)
−b2 ≤ φp ≤ −c2, (p = r,r + 1 . . . ,m)

and consider the product

Π =

m∏
p=1

[
|(φp + a2)|κ1+

1
4 · |(φp + b2)|κ2+

1
4 · |(φp + c2)|κ3+

1
4

] ∏
p,q

|(φp − φq)|.

This product is zero when all the variables φp have their least values and also when all have
their greatest values; when the variables φp are unequal both to each other and to −a2, −b2,
−c2, then Π is positive and it is obviously a continuous bounded function of the variables.

Hence there is a set of values of the variables for which Π attains its upper bound, which
is positive and not zero (cf. §3.62).

For this set of values of the variables the conditions for a maximum give

∂ logΠ
∂φ1

=
∂ logΠ
∂φ2

= · · · = 0,

that is to say

κ1 +
1
4

φp + a2 +
κ2 +

1
4

φp + b2 +
κ3 +

1
4

φp + c2 +

m∑′

q=1

1
φp − φq

= 0,

where p assumes in turn the values 1,2, . . . ,m.
Now this system of equations is precisely the system bywhich θ1, θ2, . . . , θp are determined

(cf. §§23.21–23.24); and so the system of equations determining θ1, θ2, . . . , θm has a solution
for which {

−a2 < θp < −b2, (p = 1,2, . . . ,r − 1)
−b2 < θp < −c2, (p = r,r + 1 . . . ,m).

Hence, if r has any of the values 1,2, . . . ,m + 1, a Lamé function exists with r − 1 of its
zeros between −a2 and −b2 and the remaining m − r + 1 zeros between −b2 and −c2.

Since there are m + 1 Lamé functions of the specified type, they are all obtained when r
is given in turn the values 1,2, . . . ,m + 1; and this is the theorem due to Stieltjes.

An interesting statical interpretation of the theorem was given by Stieltjes, namely that if
m + 3 particles which attract one another according to the law of the inverse distance are
placed on a line, and three of these particles, whose masses are κ1 +

1
4 , κ2 +

1
4 , κ3 +

1
4 , are

fixed at points with coordinates −a2, −b2, −c2, the remainder being of unit mass and free to
move on the line, then logΠ is the gravitational potential of the system; and the positions of
equilibrium of the system are those in which the coordinates of the moveable particles are
θ1, θ2, . . . , θm, i.e. the values of θ for which a certain one of the Lamé functions of degree
2(m + κ1 + κ2 + κ3) vanishes.

Example 23.4.5 (Stieltjes) Discuss the positions of the zeros of polynomials which satisfy
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an equation of the type

d2Λ

dθ2 +

r∑
s=1

1 − αs

θ − αs

dΛ
dθ
+

φr−2(θ)
r∏

s=1
(θ − αs)

Λ = 0,

where φr−2(θ) is a polynomial of degree r − 2 in θ in which the coefficient of θr−2 is

−m

{
m + r − 1 −

r∑
x=1

αs

}
,

m being a positive integer, and the remaining coefficients in φr−2(θ) are determined from the
consideration that the equation has a polynomial solution.

23.47 Lamé functions of the second kind
The functions Em

n (ξ), hitherto discussed, are known as Lamé functions of the first kind. It is
easy to verify that an independent solution of Lamé’s equation

d2Λ

du2 =
{
n(n + 1)ξ + Bm

n

}
Λ

is the function Fm
n (ξ) defined by the equation

Fm
n (ξ) = (2n + 1)Em

n (ξ)

∫ u

0

du{
Em
n (ξ)

}2 ,

and Fm
n (ξ) is termed a Lamé function of the second kind. This definition of the function

Fm
n (ξ) is due to Heine [285].
From this formula it is clear that, near u = 0,

Fm
n (ξ) = (2n + 1)u−n {1 +O(u)}

∫ u

0
u2n {1 +O(u)} du = un+1 {1 +O(u)} ,

and we obviously have

Em
n (ξ) = u−n {1 +O(u)} .

It is clear from these results that Fm
n (ξ) can never be a Lamé function of the first kind, and

so there is no value of Bm
n for which Lamé’s equation is satisfied by two Lamé functions of

the first kind of different species or types.
It is possible to obtain an expression for Fm

n (ξ) which is free from quadratures, analogous
to Christoffel’s formula for Qn(z), given on Chapter 15, Example 15.29. We shall give
the analysis in the case when Em

n (ξ) is of the first species. The only irreducible poles of
1/

{
Em
n (ξ)

}2, qua function of u, are at a set of points u1,u2, . . . ,un which are none of them
periods or half periods.

Near any one of these points we have an expansion of the form

Em
n (ξ) = k1(u − ur ) + k2(u − ur )

2 + k3(u − ur )
3 + · · · ,

and, by substitution of this series in the differential equation, it is found that k2 is zero.
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Hence the principal part of 1/
{
Em
n (ξ)

}2 near ur is

1
k1

2(u − ur )
2 ,

and the residue is zero.
Hence we can find constants Ar such that{

Em
n (ξ)

}−2
−

n∑
r=1

Ar℘(u − ur )

has no poles at any points congruent to any of the points ur ; it is therefore a constant A, by
Liouville’s theorem, since it is a doubly periodic function of u.

Hence ∫ u

0

du{
Em
n (ξ)

}2 = Au −
n∑

r=1

Ar {ζ(u − ur ) + ζ(ur )} .

Now the points ur can be grouped in pairs whose sum is zero, since Em
n (ξ) is an even

function of u.
If we take un−r = −ur+1, we have∫ u

0

du{
Em
n (ξ)

}2 = Au −
n/2∑
r=1

Ar {ζ(u − ur ) + ζ(u + ur )}

= Au − 2ζ(u)
n/2∑
r=1

Ar −

n/2∑
r=1

Ar℘
′(u)

℘(u) − ℘(ur )
,

and therefore

Fm
n (ξ) = (2n + 1)

{
Au − 2ζ(u)

n/2∑
r=1

Ar

}
Em
n (ξ) + ℘

′(u)wn/2−1(ξ),

where wn/2−1(ξ) is a polynomial in ξ of degree n/2 − 1.

Example 23.4.6 Obtain formulae analogous to this expression for Fm
n (ξ) when Em

n (ξ) is of
the second, third or fourth species.

23.5 Lamé’s equation in association with Jacobian elliptic functions
All the results which have so far been obtained in connexion with Lamé functions of course
have their analogues in the notation of Jacobian elliptic functions, and, in the hands ofHermite
(see §23.71), the use of Jacobian elliptic functions in the discussion of generalisations of
Lamé’s equation has produced extremely interesting results.

Unfortunately it is not possible to use Jacobian elliptic functions in which all the variables
involved are real, without a loss of symmetry.

The symmetrical formulae may be obtained by taking new variables α, β, γ defined by
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the equations 
α = iK ′ + u

√
e1 − e3,

β = iK ′ + v
√

e1 − e3,

γ = iK ′ + w
√

e1 − e3,

and then the formulae of §23.31 are equivalent to
x = k2

√
a2 − c2 snα sn β sn γ,

y = −(k2/k ′)
√

a2 − c2 cnα cn β cn γ,
z = (i/k ′)

√
a2 − c2 dnα dn β dn γ,

the modulus of the elliptic functions being√
a2 − b2

a2 − c2 .

The equation of the quadric of the confocal system on which α is constant is

X2

(a2 − b2) sn2 α
−

Y 2

(a2 − b2) cn2 α
−

Z2

(a2 − c2) dn2 α
= 1.

This is an ellipsoid if α lies between iK ′ and K + iK ′; the quadric on which β is constant is
an hyperboloid of one sheet if β lies between K + iK ′ and K; and the quadric on which γ is
constant is an hyperboloid of two sheets if γ lies between 0 and K; andwith this determination
of (α, β, γ) the point (x, y, z) lies in the positive octant.

It has already been seen (§23.4) that, with this notation, Lamé’s equation assumes the
form

d2Λ

dα2 =
{
n(n + 1)k2 sn2 α + A

}
Λ,

and the solutions expressible as periodic functions of α will be called6 Em
n (α). The first

species of Lamé’s function is then a polynomial in sn2 α, and generally the species may be
defined by a scheme analogous to that of §23.2

snα, cnα dnα,
1, cnα, dnα snα, snα cnα dnα

dnα, snα cnα,


∏
p

(sn2 α − sn2 αp).

23.6 The integral equation satisfied by Lamé functions of the
first and second species

We shall now shew that, if Em
n (α) is any Lamé function of the first species (n being even)

or of the second species (n being odd) with snα as a factor, then Em
n (α) is a solution of the

integral equation7

Em
n (α) = λ

∫ 2K

−2K
Pn(k snα sn θ)Em

n (θ) dθ;

6 There is no risk of confusing these with the corresponding functions Em
n (ξ).

7 This integral equation and the corresponding formulae of (§23.62) associated with ellipsoidal harmonics were
given by Whittaker [675]. Proofs of the formulae involving functions of the third and fourth species have not
been previously published.
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where λ is one of the ‘characteristic numbers’ (§11.23).
To establish this result we need the lemma that Pn(k snα sn θ) is annihilated by the partial

differential operator
∂2

∂α2 −
∂2

∂θ2 − n(n + 1)k2(sn2 α − sn2 θ).

To prove the lemma, observe that, when µ is written for brevity in place of k snα sn θ, we
have {

∂2

∂α2 −
∂2

∂θ2

}
Pn(k snα sn θ) = k2 {

cn2 α dn2 α sn2 θ − cn2 θ dn2 θ sn2 α
}

P′′n (µ)

+ 2k3 snα sn θ(sn2 α − sn2 θ)P′n(µ)

= k2(sn2 α − sn2 θ)
[
(µ2 − 1)P′′n (µ) + 2µ P′n(µ)

]
= k2(sn2 α − sn2 θ)n(n + 1)Pn(µ),

when we use Legendre’s differential equation (§15.13). And the lemma is established.
The result of applying the operator

∂2

∂α2 − n(n + 1)k2 sn2 α − Am
n

to the integral ∫ 2K

−2K
Pn(k snα sn θ)Em

n (θ) dθ

is now seen to be∫ 2K

−2K

{
∂2

∂α2 − n(n + 1)k2 sn2 α − Am
n

}
Pn(k snα sn θ)Em

n (θ) dθ

=

∫ 2K

−2K

[{
∂2

∂θ2 − n(n + 1)k2 sn2 θ − Am
n

}
Pn(k snα sn θ)

]
Em
n (θ) dθ,

and when we integrate twice by parts this becomes[
∂Pn(k snα sn θ)

∂θ
Em
n (θ) − Pn(k snα sn θ)

dEm
n (θ)

dθ

]2K

−2K

+

∫ 2K

−2K
Pn(k snα sn θ)

{
d2

dθ2 − n(n + 1)k2 sn2 θ − Am
n

}
Em
n (θ) dθ = 0.

Hence it follows that the integral∫ 2K

−2K
Pn(k snα sn θ)Em

n (θ) dθ

is annihilated by the operator

d2

dα2 − n(n + 1)k2 snα − Am
n ,

and it is evidently a polynomial of degree n in sn2 α. Since Lamé’s equation has only one
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integral of this type8 , it follows that the integral is a multiple of Em
n (α) if it is not zero; and

the result is established.

Note It appears that every characteristic number associated with the equation

f (α) = λ
∫ 2K

−2K
Pn(k snα sn θ) f (θ)

yields a solution of Lamé’s equation; cf. Ince [334].

Example 23.6.1 Shew that the nucleus of an integral equation satisfied by Lamé functions
of the first species (n being even) or of the second species (n being odd) with cnα as a factor,
may be taken to be

Pn

(
ik
k ′

cnα cn θ
)
.

Example 23.6.2 Shew that the nucleus of an integral equation satisfied by Lamé functions
of the first species (n being even) or of the second species (n being odd) with dn α as a factor,
may be taken to be

Pn

(
1
k ′

dnα dn θ
)
.

23.61 The integral equation satisfied by Lamé functions of the third and fourth
species

The theorem analogous to that of §23.6, in the case of Lamé functions of the third and fourth
species, is that any Lamé function of the fourth species (n being odd) or of the third species
(n being even) with cnα dnα as a factor, satisfies the integral equation

Em
n (α) = λ

∫ 2K

−2K
cnα dnα cn θ dn θP′′n (k snα sn θ)Em

n (θ) dθ.

The preliminary lemma is that the nucleus

cnα dnα cn θ dn θP′′n (k snα sn θ),

like the nucleus of §23.6, is annihilated by the operator

∂2

∂α2 −
∂2

∂θ2 − n(n + 1)k2(sn2 α − sn2 θ).

To verify the lemma observe that

∂2

∂α2

{
cnα dnαP′′n (k snα sn θ)

}
= k2 cn3 α dn3 α sn2 θPiv

n (µ)

− 3k snα cnα dnα sn θ(dn2α + k2 cn2 α)P′′′n (µ)

− cnα dnα(dn2 α + k2 cn2 α − 4k2 sn2 α)P′′n (µ),

8 The other solution when expanded in descending powers of snα begins with a term in (snα)−n−1.
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and so {
∂2

∂α2 −
∂2

∂θ2

}
.
{
cnα dnα cn θ dn θP′′n (k snα sn θ)

}
= k cnα dnα cn θ dn θ(sn2 α − sn2 θ)

{
(µ2 − 1)Piv

n (µ)

+6µP′′′n (µ) + 6P′′n (µ)
}

= k2 cnα dnα cn θ dn θ(sn2 α − sn2 θ)
d3

dµ3

{
(µ2 − 1)P′n(µ)

}
= k2n(n + 1) cnα dnα cn θ dn θ(sn2 α − sn2 θ)P′′n (µ),

and the lemma is established. The proof that Em
n (α) satisfies the integral equation now follows

precisely as in the case of the integral equation of §23.6.

Example 23.6.3 Shew that the nucleus of an integral equation which is satisfied by Lamé
functions of the fourth species (n being odd) or of the third species (n being even) with sn a
dn a as a factor, may be taken to be

sn a dn a sn θ dn θP′′n

(
ik
k ′

cn a cn θ
)
.

Example 23.6.4 Shew that the nucleus of an integral equation which is satisfied by Lamé
functions of the fourth species (n being odd) or of the third species (n being even) with
sn a cn a as a factor, may be taken to be

sn a cn a sn θ cn θP′′n

(
1
k ′

dn a dn θ
)
.

Example 23.6.5 Obtain the following three integral equations satisfied by Lamé functions
of the fourth species (n being odd) and of the third species (n being even):

(i) k2 sn2 aEm
n (a) = λ cn a dn a ds

∫ 2K
−2K Pn(k sn a sn θ) d

dθ

{
1

cn θ dn θ
dEm

n (θ)

dθ

}
dθ,

(ii) −k2 cn2 aEm
n (a) = λk ′2 sn a dn a

∫ 2K

−2K
Pn

(
ik
k ′

cn a cn θ
)

d
dθ

{
1

sn θ dn θ
dEm

n (θ)

dθ

}
dθ,

(iii) k2 dn2 aEm
n (a) = λk ′2 sn a cn a

∫ 2K

−2K
Pn

(
1
k ′

dn a dn θ
)

d
dθ

{
1

sn θ cn θ
dEm

n (θ)

dθ

}
dθ;

in the case of functions of even order, the functions of the different types each satisfy one of
these equations only.

23.62 Integral formulae for ellipsoidal harmonics
The integral equations just considered make it possible to obtain elegant representations
of the ellipsoidal harmonic Gm

n (x, y, z) and of the corresponding homogeneous harmonic
Hm

n (x, y, z) in terms of definite integrals.
From the general equation formula of §18.3, it is evident that Hm

n (x, y, z) is expressible in
the form

Hm
n (x, y, z) =

∫ π

−π

(x cos t + y sin t + iz)n f (t) dt,
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where f (t) is a periodic function to be determined.
Now the result of applying Niven’s operator D2 to (x cos t + y sin t + iz)n is

n(n − 1)(a2 cos2 t + b2 sin2 t − c2)(x cos t + y sin t + iz)n−2,

and so, by Niven’s formula (§23.25) we find that Gm
n (x, y, z) is expressible in the form

Gm
n (x, y, z) =∫ π

−π

{
A

n −
n(n − 1)

2(2n − 1)
A

n−2
B

2 +
n(n − 1)(n − 2)(n − 3)
2 · 4(2n − 1)(2n − 3)

A
n−4
B

4 − · · ·

}
f (t) dt,

where A ≡ x cos t + y sin t + iz, B ≡
√
(a2 − c2) cos2 t + (b2 − c2) sin2 t, so that

Gm
n (x, y, z) =

2n(n!)2

(2n)!

∫ π

−π

B
nPn

(
x cos t + y sin t + iz√

(a2 − c2) cos2 t + (b2 − c2) sin2 t

)
f (t) dt .

Now write sin t ≡ cd θ, the modulus of the elliptic functions being, as usual, given by the
equation

k2 =
a2 − b2

a2 − c2 .

The new limits of integration are −3K and K , but they may be replaced by −2K and 2K
on account of the periodicity of the integrand.

It is thus found that

Gm
n (x, y, z) =

∫ 2K

−2K
Pn

(
k ′x sn θ + y cn θ + iz dn θ

√
b2 − c2

)
φ(θ) dθ,

where φ(θ) is a periodic function of θ, independent of x, y, z, which is, as yet, to be
determined.

If we express the ellipsoidal harmonic as the product of three Lamé functions, with the
aid of the formulae of §23.5 we find that

Em
n (α)E

m
n (β)E

m
n (γ) = C

∫ 2K

−2K
Pn(µ)φ(θ) dθ,

where C is a known constant and

µ ≡k2 snα sn β sn γ sn θ − (k2/k ′2) cnα cn β cn γ cn θ
− (1/k ′2) dnα dn β dn γ dn θ.

If the ellipsoidal harmonic is of the first species or of the second species and first type, we
now give β and γ the special values β = K , γ = K + iK ′, and we see that

C
∫ 2K

−2K
Pn(k snα sn θ) φ(θ) dθ

is a solution of Lamé’s equation, and so, by §23.6, φ(θ) is a solution of Lamé’s equation
which can be no other9 than a multiple of Em

n (θ).

9 If φ(θ) involved the second solution, the integral would not converge.
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Hence it follows that

Gm
n (x, y, z) = λ

∫ 2K

−2K
Pn

(
k ′x sn θ + y cn θ + iz dn θ

√
b2 − c2

)
Em
n (θ) dθ,

where λ is a constant.
If Gm

n (x, y, z) be of the second species and of the second or third type we put β = 0,
γ = K + iK ′, or β = 0, γ = K respectively, and we obtain anew the same formula.

It thus follows that if Gm
n (x, y, z) be any ellipsoidal harmonic of the first or second species,

then

Gm
n (x, y, z) = λ

∫ 2K

−2K
Pn(µ)Em

n (θ) dθ,

Hm
n (x, y, z) = λ

(2n)!
2n(n!)2(b2 − c2)n/2

∫ π

−π

(k ′x sn θ + y cn θ + iz dn θ)nEm
n (θ) dθ,

where µ ≡ (k ′x sn θ + y cn θ + iz dn θ)/
√

b2 − c2.

23.63 Integral formulae for ellipsoidal harmonics of the third and fourth species
In order to obtain integral expressions for harmonics of the third and fourth species, we turn
to the equation of §23.62, namely

Em
n (α)E

m
n (β)E

m
n (γ) = C

∫ 2K

−2K
Pn(µ)φ(θ) dθ,

where

µ ≡ k2 snα sn β sn γ sn θ − (k2/k ′2) cnα cn β cn γ cn θ − (1/k ′2) dnα dn β dn γ dn θ;

this equation is satisfied by harmonics of any species.
Suppose now that Em

n (α) is of the fourth species or of the first type of the third species so
that it has cnα dnα as a factor.

We next differentiate the equation with respect to β and γ, and then put β = K , γ = K+iK ′.
It is thus found that

Em
n (α)

[
d

dβ
Em
n (β)

]
β=K

[
d

dγ
Em
n (γ)

]
γ=K+iK ′

= C
∫ 2K

−2K

[
∂2Pn(µ)

∂β∂γ

]
(β=K ,γ=K+iK ′)

φ(θ) dθ.

Now [
∂Pn(µ)

∂γ

]
γ=K+iK ′

= −(i/k ′) dnα dn β dn θP′n(µ),

so that [
∂2Pn(µ)

∂β ∂γ

]
(β=K ,γ=K+iK ′)

= −k cnα dnα dn θ dn θP′′n (k snα sn θ).

Hence ∫ 2K

−2K
cnα dnα cn θ dn θP′′n (k snα sn θ)φ(θ) dθ
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is a solution of Lamé’s equation with cnα dnα as a factor; and so, by §23.61, φ(θ) can be
none other than a constant multiple of Em

n (α).
We have thus found that the equation

Gm
n (x, y, z) = λ

∫ 2K

−2K
Pn(µ)Em

n (θ) dθ

is satisfied by any ellipsoidal harmonic which has cnα dnα as a factor; the corresponding
formula for the homogeneous harmonic is

Hm
n (x, y, z) = λ

(2n)!
2n(n!)2(b2 − c2)n/2

∫ 2K

−2K
(k ′x sn θ + y cn θ + iz dn θ)nEm

n (θ) dθ.

Example 23.6.6 Shew that the equation of this section is satisfied by the ellipsoidal har-
monics which have sn a dn a or sn a cn a as a factor.

23.7 Generalisations of Lamé’s equation
Two obvious generalisations of Lamé’s equation at once suggest themselves. In the first, the
constant B has not one of the characteristic values Bm

n , for which a solution is expressible as
an algebraic function of ℘(u); and in the second, the degree n is no longer supposed to be
an integer. The first generalisation has been fully dealt with by Hermite [291] and Halphen
[269, pp. 494–502] but the only case of the second which has received any attention is that
in which n is half of an odd integer; this has been discussed by Brioschi [99], Halphen [269,
pp. 471–473] and Crawford [157].

We shall now examine the solution of the equation

d2Λ

du2 = {n(n + 1)℘(u) + B}Λ,

where B is arbitrary and n is a positive integer, by the method of Lindemann–Stieltjes already
explained in connexion with Mathieu’s equation (§§19.5, 19.52).

The product of any pair of solutions of this equation is a solution of

d3X
du3 − 4{n(n + 1)℘(u) + B}

dX
du
− 2n(n + 1)℘′(u)X = 0,

by §19.52. The algebraic form of this equation is

4(ξ − e1)(ξ − e2)(ξ − e3)
d3X
dξ3 + 3(6ξ2 − 1

2g2)
d2X
dξ2

− 4{(n2 + n − 3)ξ + B}
dX
dξ
− 2n(n + 1)X = 0.

If a solution of this in descending powers of ξ − e2 be taken to be

X =
∞∑
r=0

cr (ξ − e2)
n−r, (c0 = 1)
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the recurrence formula for the coefficients cr is

4r(n − r + 1
2 )(2n − r + 1)cr

= (n − r + 1){12e2(n − r)(n − r + 2) − 4e2(n2 + n − 3) − 4B}cr−1

− 2(n − r + 1)(n − r + 2)(e1 − e2)(e2 − e3)(2n − 2r + 3)cr−2.

Write r = n + 1, and it is seen that cn+1 = 0; then write r = n + 2 and cn+2 = 0; and the
recurrence formulae with r > n + 2 are all satisfied by taking

cn+3 = cn+4 = · · · = 0.

Hence Lamé’s generalised equation always has two solutions whose product is of the form
n∑

r=0

cr (ξ − e2)
n−r .

This polynomial may be written in the form
n∏

r=1

{℘(u) − ℘(ar )},

where a1,a2, . . . ,an are, as yet, undetermined as to their signs; and the two solutions of
Lamé’s equation will be called Λ1, Λ2.

Two cases arise: (I) when Λ1/Λ2 is constant; (II) when Λ1/Λ2 is not constant.
(I) The first case is easily disposed of; for unless the polynomial

n∏
r=1

{ξ − ℘(ar )}

is a perfect square in ξ, multiplied possibly by expressions of the type ξ − e1, ξ − e2, ξ − e3,
then the algebraic form of Lamé’s equation has an indicial equation, one of whose roots is
1
2 , at one or more of the points ξ = ℘(ar ); and this is not the case (§23.43).
Hence the polynomial must be a square multiplied possibly by one or more of ξ − e1,

ξ − e2, ξ − e3, and then Λ1 is a Lamé function, so that B has one of the characteristic values
Bm
n ; and this is the case which has been discussed at length in §§23.1–23.47.

(II) In the second case we have (§19.53)

Λ1
dΛ2

du
− Λ2

dΛ1

du
= 2C,

where C is a constant which is not zero. Then
d logΛ2

du
−

d logΛ1

du
=

2C
X
,

d logΛ2

du
−

d logΛ1

du
=

1
X

dX
du
,

so that
d logΛ1

du
=

1
2X

dX
du
−
C

X
,

d logΛ2

du
=

1
2X

dX
du
+
C

X
.
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On integration, we see that we may take

Λ1 =
√

X exp
{
−C

∫
du
X

}
.

Again, if we differentiate the equation

1
Λ1

dΛ1

du
=

1
2X

dX
du
−
C

X
,

we find that
1
Λ1

d2Λ1

du2 −

{
1
Λ1

dΛ1

du

}2 1
2X

d2X
du2 −

1
2X2

(
dX
du

)2

+
C

X2
dX
du
,

and hence, with the aid of Lamé’s equation, we obtain the interesting formula

n(n + 1)℘(u) + B =
1

2X
d2X
du2 −

(
1

2X
dX
du

)2

+
C2

X2 .

If now ξr ≡ ℘(ar ), we find from this formula (when multiplied by X2), that, if u be given
the special value ar , then (

dX
dξ

)2

ξ=ξr

=
4C2

℘′2(ar )
.

We now fix the signs of a1,a2, . . . ,an by taking(
dX
dξ

)
ξ=ξr

=
2C
+℘′(ar )

.

And then, if we put 2C/X , qua function ξ, into partial fractions, it is seen that

2C
X
=

n∑
r=1

℘′(ar )

ξ − ℘(ar )
=

n∑
r=1

{ζ(u − ar ) − ζ(u + ar ) + 2ζ(ar )} ,

and therefore

Λ1 =

[
n∏

r=1

{℘(u) − ℘(ar )}

] 1
2

× exp

[
1
2

n∑
r=1

{logσ(ar + u) − logσ(ar − u) − 2uζ(ar )}

]
,

whence it follows that (§20.53, Example 20.5.2)

Λ1 =

n∏
r=1

{
σ(ar + u)
σ(u)σ(ar )

}
exp

{
−u

n∑
r=1

ζ(ar )

}
,

and

Λ2 =

n∏
r=1

{
σ(ar − u)
σ(u)σ(ar )

}
exp

{
u

n∑
r=1

ζ(ar )

}
.

The complete solution has therefore been obtained for arbitrary values of the constant B.
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23.71 The Jacobian form of the generalised Lamé equation
We shall now construct the solution of the equation

d2Λ

dα2 =
{
n(n + 1)k2 sn2 α + A

}
Λ,

for general values of A, in a form resembling that of §23.6.
The solution which corresponds to that of §23.6 is seen to be

Λ =

n∏
r=1

{
H(α + αr )
Θ(α)

}
eρα,

where ρ,α1, α2, . . . , αn are constants to be determined. This solution was published in 1872
in Hermite’s lithographed notes of his lectures delivered at the École polytechnique.

On differentiating this equation it is seen that

1
Λ

dΛ
dα
=

n∑
r=1

{
H′(α + αr )
H(α + αr )

−
Θ′(α)

Θ(α)

}
+ ρ

=

n∑
r=1

{Z(α + αr + iK ′) − Z(α)} + ρ + 1
2 nπi/K,

so that
1
Λ

d2Λ

dα2 −

{
1
Λ

dΛ
dα

}2

=

n∑
r=1

{
dn2
(α + αr + iK ′) − dn2 α

}
,

and therefore, since Λ is a solution of Lamé’s equation, the constants ρ, α1, α2, . . . , αn are to
be determined from the consideration that the equation

n(n + 1)k2 sn2 α + A =
n∑

r=1

{
dn2
(α + αr + iK ′) − dn2 α

}
+

[
n∑

r=1

{Z(α + αr + iK ′) − Z(α)} + ρ + 1
2 nπi/K

]2

is to be an identity; that is to say

n2k2 sn2 α + n + A +
n∑

r=1

cs2(α + αr )

≡

[
n∑

r=1

{Z(α + αr + iK ′) − Z(α)} + ρ + 1
2 nπi/K

]2

.

Nowboth sides of the proposed identity are doubly periodic functions ofαwith periods 2K ,
2iK ′, and their singularities are double poles at points congruent to −iK ′, −α1,−α2, . . . ,−αn;
the dominant terms near −iK ′ and −αr are respectively

n2

(α + iK ′)2
, −

1
(α + αr )2

in the case of each of the expressions under consideration.
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The residues of the expression on the left are all zero and so, if we choose ρ, α1, α2, . . . , αn

so that the residues of the expression on the right are zero, it will follow from Liouville’s
theorem that the two expressions differ by a constant which can be made to vanish by proper
choice of A.

We thus obtain n + 2 equations connecting ρ, α1, α2, . . . , αn with A, but these equations
are not all independent.

It is easy to prove that, near −αr ,

n∑
r=1

{Z(α + αr + iK ′) − Z(α)} + ρ + 1
2 nπi/K

=
1

α + αr
+

n∑′

p=1

Z(αp − αr + iK ′) + nZ(αr ) + ρ + 1
2 (n − 1)πi/K +O(α + αr ),

where the prime denotes that the term for which p = r is omitted; and, near −iK ′,

n∑
r=1

{Z(α + αr + iK ′) − Z(α)} + ρ + 1
2 nπi/K

= −
n

α + iK
+

n∑
r=1

Z(αr ) + ρ +O(α + iK ′).

Hence the residues of[
n∑

r=1

{Z(α + αr + iK ′) − Z(α)} + ρ + 1
2 nπi/K

]2

will all vanish if ρ, α1, α2, . . . , αn are chosen so that the equations
n∑′

p=1

Z(αp − αr + iK ′) + nZ(αr ) + ρ + 1
2 (n − 1)πi/K = 0,

n∑
r=1

Z(αr ) + ρ = 0

are all satisfied.
The last equation merely gives the value of ρ, namely

−

n∑
r=1

Z(αr ),

and, when we substitute this value in the first system, we find that

n∑′

p=1

[Z(αp + αr + iK ′) + Z(αr ) − Z(αp) +
1
2πi/K] = 0,

where r = 1,2, . . . ,n. By §22.735, Example 22.7.10, the sum of the left-hand sides of these
equations is zero, so they are equivalent to n − 1 equations at most; and, when α1, α2, . . . , αn
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have any values which satisfy them, the difference[
n2k2 sn2 α + n + A +

n∑
r=1

cs2(α + αr )

]
−

[
n∑

r=1

{
Z(α + αr + iK ′) + Z(α) − Z(αr ) +

1
2
πi/K

}]2

is constant. By taking α = 0, it is seen that the constant is zero if

n + A +
n∑

r=1

cs2 αr =

[
n∑

r=1

{
Z(αr + iK ′) − Z(αr ) + 1

2πi/K
}]2

,

i.e. if {
n∑

r=1

cnαr dsαr

}2

−

n∑
r=1

ns2 αr = A.

We now reduce the system of n equations; with the notation of §22.2, if functions of ap,
ar be denoted by the suffixes 1 and 2, it is easy to see that

Z(ap − ar + iK ′) + Z(ar ) − Z(ap) +
1
2πi/K

= Z(ap − ar + iK ′) + Z(ar ) − Z(ap + iK ′) + c1d1/s1

= k2 sn(ap + iK ′) sn ar sn(ap + iK ′ − ar ) + c1d1/s1

=
s2

s1 sn(ap − ar )
+

c1d1

s1

=
s2(s1c2d2 + s2c1d1) + c1d1(s2

1 − s2
2)

s1(s2
1 − s2

2)

=
s1c1d1 + s2c2d2

s2
1 − s2

2
.

Consequently a solution of Lamé’s equation

d2Λ

dα2 =
{
n(n + 1)k2 sn2 α + A

}
Λ

is

Λ =

n∏
r=1

[
H(α + αr )
Θ(α)

exp {−αZ(αr )}
]
,

provided that α1, α2, . . . , αn be chosen to satisfy the n independent equations comprised in
the system

n∑′

p=1

snαp cnαp dnαp + snαr cnαr dnαr
sn2 αp − sn2 αr

= 0,[
n∑

r=1

cnαr dsαr

]2

−

n∑
r=1

ns2 αr = A;
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and if this solution of Lamé’s equation is not doubly periodic, a second solution is
n∏

r=1

[
H(α − αr )
Θ(α)

exp {αZ(αr )}
]
= 0.

The existence of a solution of the system of n + 1 equations follows from §23.7.

23.8 Miscellaneous examples
Example 23.1 (Niven [504]) Obtain the formula

Gn(x, y, z) =
2nn
(2n) !

∫ ∞

0
D2nPn

( u
D

)
e−u du · Hn(x, y, z).

Example 23.2 (Hobson [312]) Shew that

Hn

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
1√

x2 + y2 + z2
=
(−1)n(2n) !

2nn!
Hn(x, y, z)

(x2 + y2 + z2)n+
1
2
.

Example 23.3 (Niven [505] and Hobson [312]) Shew that the ‘external ellipsoidal har-
monic’ Fm

n (ξ)E
m
n (η)E

m
n (ζ) is a constant multiple of

Hn

(
∂

∂x
,
∂

∂y
,
∂

∂z

) (
1 +

D2

2 · (2n + 3)
+

D4

2 · 4(2n + 3)(2n + 5)
+ · · ·

)
1√

x2 + y2 + z2
.

Example 23.4 (Haentzschel [266]) Discuss the confluent form of Lamé’s equation when
the invariants g2 and g3 of the Weierstrassian elliptic function are made to tend to zero;
express the solution in terms of Bessel functions.

Example 23.5 (Hermite) If 3 denotes H(a+µ)
Θ(a)

exp [{λ − Z(µ)} α], where λ and µ, are con-
stants, shew that Lamé’s equation has a solution which is expressible as a linear combination
of

dn−13

dan−1 ,
dn−33

dan−3 ,
dn−53

dan−5 , . . . ,

where λ2 and sn2 µ are algebraic functions of the constant A.

Example 23.6 (Stenberg [602]) Obtain solutions of

1
w

d2w

dz2 = 12k2 sn2 z − 4(1 + k2) ± 5
√

1 − k2 + k4.

Example 23.7 (Heun [301]) Discuss the solution of the equation

z(z − 1)(z − a)
d2y

dz2 +
[
(a + β + 1)z2 − {a + β − δ + 1 + (γ + δ)a} z + aγ

] dy
dz
+ aβ(z − q)y

= 0

in the form of the series

1 + αβ
∞∑
n=1

Gn(q)(z/α)n

n! γ(γ + 1) · · · (γ + n)
,
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where

G1(q) = q,

G2(q) = αβq2 + {(α + β − δ + 1) + (γ + δ)α} q − αγ,

Gn+1(q) = [n {(α + β − δ + n) + (γ + δ + n − 1)α} + αβq]Gn(q)

− (α + n − 1)(β + n − 1)(γ + n − 1)nαGn−1(q).

Example 23.8 (Heun [300]) Shew that the exponents at the singularities 0,1, α,∞ of Heun’s
equation are

(0,1 − γ), (0,1 − δ), (0,1 − ε), (α, β),

where γ + δ + ε = α + β + 1.

Example 23.9 (Heun, [300]) Obtain the following group of variables for Heun’s equation,
corresponding to the group

z, 1 − z,
1
z
,

1
1 − z

,
z

z − 1
,

z − 1
z

,

for the hypergeometric equation:

z, 1 − z,
1
z
,

1
1 − z

,
z

z − 1
,

z − 1
z

,

z
α
,

α − z
α

,
α

z
,

α

α − z
,

z
z − α

,
z − α

z
,

z − α
1 − α

,
z − 1
α − 1

,
1 − α
z − α

,
α − 1
z − 1

,
z − α
z − 1

,
z − 1
z − α

,

z − α
α(z − 1)

,
(α − 1)z
α(z − 1)

,
α(z − 1)

z − α
,

α(z − 1)
(α − 1)z

,
z − α
(1 − α)z

,
(1 − α)z

z − α
.

Example 23.10 If the series of Example 23.7 be called

F(α,q;α, β, γ, δ; z),

obtain 192 solutions of the differential equation in the form of powers of z, z − 1 and z − α
multiplied by functions of the type F. Heun gives 48 of these solutions.

Example 23.11 If u = 2υ, shew that Lamé’s equation

d2Λ

du2 = {n(n + 1)℘(u) + B}Λ

may be transformed into

d2L
dυ2 − 2n

℘′′(υ)

℘′(υ)

dL
dυ
+ 4 {n(2n − 1)℘(υ) − B} L = 0,

by the substitution

Λ = {℘′(υ)}−n L.
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Example 23.12 (Brioschi [99]; Halphen) If ζ = ℘(υ), shew that a formal solution of the
equation of Example 23.11 is

L =
∞∑
r=0

br (ζ − e2)
a−r,

provided that (a − 2n)(a − n + 1
2 ) = 0 and that

4(a − r − 2n)
(
a − r − n + 1

2

)
br

+
[
12e2(a − r + 1)(a − r − 2n + 1) + 4e2n(2n − 1) − 4B

]
br−1

− 4(e1 − e2)(e2 − e3)(a − r + 2)
(
a − r − n + 3

2

)
br−2 = 0.

Example 23.13 (Brioschi and Halphen) Shew that, if n is half of an odd positive integer, a
solution of the equation of Example 23.11 expressible in finite form is

L =
n− 1

2∑
r=0

br (ζ − e2)
2n−r,

provided that

4r
(
n − r + 1

2

)
br + [12e2(2n − r + 1)(r − 1) − 4e2n(2n − 1) + 4B]br−1

+ 4(e1 − e2)(e2 − e3)(2n − r + 2)
(
n − r + 3

2

)
br−2 = 0,

and B is so determined that bn+ 1
2
= 0.

Example 23.14 (Crawford) Shew that, if n is half of an odd integer, a solution of the
equation of Example 23.11 expressible in finite form is

L ′ =
n− 1

2∑
p=0

b′p(ζ − e2)
n−p− 1

2 ,

provided that

4p
(
n + p + 1

2

)
b′p −

[
12e2

(
n − p + 1

2

) (
n + p − 1

2

)
− 4e2n(2n − 1)

+4B] b′p−1 + 4(e1 − e2)(e2 − e3)
(
n − p + 3

2

)
(p − 1)b′p−2 = 0

and b′
n+ 1

2
= 0 is the equation which determines B.

Example 23.15 (Crawford) With the notation of Examples 23.13 and 23.14 shew that, if

b′p = (−1)p(e1 − e2)
p(e2 − e3)

pcn−p− 1
2
,

the equations that determine c0, c1, . . . , cn− 1
2
and those that determine b0, b1, . . . , bn− 1

2
are

identical; and deduce that, if one of the solutions of Lamé’s equation (in which n is half of
an odd integer) is expressible as an algebraic function of ℘(v), so also is the other.

Example 23.16 Prove that the values of B determined in Example 23.13 are real when e1,
e2 and e3 are real.
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Example 23.17 (Halphen [267]) Shew that the complete solution of

1
Λ

d2Λ

du2 =
3
4
℘(u)

is

Λ =

{
℘′

(
1
2

u
)}− 1

2
{

A℘
(

1
2

u
)
+ B

}
,

where A and B are arbitrary constants.

Example 23.18 (Jamet [357]) Shew that the complete solution of

1
Λ

d2Λ

da2 =
3
4

k2 sn2 a −
1
4
(1 + k2)

is

Λ =

{
sn

1
2
(C − a) cn

1
2
(C − a) dn

1
2
(C − a)

}− 1
2
{

A + B sn2 1
2
(C − a)

}
,

where A and B are arbitrary constants and C = 2K + iK ′.



Appendix

The Elementary Transcendental Functions

A.1 On certain results assumed in Chapters 1 to 4
It was convenient, in the first four chapters of this work, to assume some of the properties
of the elementary transcendental functions, namely the exponential, logarithmic and circular
functions; it was also convenient tomake use of a number of results which the reader would be
prepared to accept intuitively by reason of his familiarity with the geometrical representation
of complex numbers by means of points in a plane.

To take two instances, (i) it was assumed (§2.7) that lim(exp z) = exp(lim z), and (ii) the
geometrical concept of an angle in the Argand diagram made it appear plausible that the
argument of a complex number was a many-valued function, possessing the property that
any two of its values differed by an integer multiple of 2π.

The assumption of results of the first type was clearly illogical; it was also illogical to base
arithmetical results on geometrical reasoning. For, in order to put the foundations of geometry
on a satisfactory basis, it is not only desirable to employ the axioms of arithmetic, but it is
also necessary to utilise a further set of axioms of a more definitely geometrical character,
concerning properties of points, straight lines and planes1 . And, further, the arithmetical
theory of the logarithm of a complex number appears to be a necessary preliminary to the
development of a logical theory of angles.

Apart from this, it seems unsatisfactory to the aesthetic taste of the mathematician to
employ one branch of mathematics as an essential constituent in the structure of another;
particularly when the former has, to some extent, a material basis whereas the latter is of a
purely abstract nature2 .

The reasons for pursuing the somewhat illogical and unaesthetic procedure, adopted in
the earlier part of this work, were, firstly, that the properties of the elementary transcendental
functions were required gradually in the course of Chapter 2, and it seemed undesirable that
the course of a general development of the various infinite processes should be frequently
interrupted in order to prove theorems (with which the reader was, in all probability, already
familiar) concerning a single particular function; and, secondly, that (in connexion with the

1 It is not our object to give any account of the foundations of geometry in this work. They are investigated by
various writers, such as Whitehead [667] and Mathews [456]. A perusal of Chapters i, xx, xxii and xxv of the
latter work will convince the reader that it is even more laborious to develop geometry in a logical manner,
from the minimum number of axioms, than it is to evolve the theory of the circular functions by purely
analytical methods. A complete account of the elements both of arithmetic and of geometry has been given by
Whitehead and Russell [668].

2 Cf. Merz [467, p. 631 Note 2 and p. 707 Note 1], where a letter from Weierstrass to Schwarz is quoted. See
also Sylvester [616], [618, p. 50].
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612 The Elementary Transcendental Functions

assumption of results based on geometrical considerations) a purely arithmetical mode of
development of Chapters 1 to 4, deriving no help or illustrations from geometrical processes,
would have very greatly increased the difficulties of the reader unacquaintedwith themethods
and the spirit of the analyst.

A.11 Summary of the Appendix
The general course of the Appendix is as follows:

In §§A.2–A.22, the exponential function is defined by a power series. From this definition,
combined with results contained in Chapter 2, are derived the elementary properties (apart
from the periodic properties) of this function. It is then easy to deduce corresponding
properties of logarithms of positive numbers (§§A.3–A.33).

Next, the sine and cosine are defined by power series from which follows the connexion
of these functions with the exponential function. A brief sketch of the manner in which the
formulae of elementary trigonometry may be derived is then given (§§A.4–A.42).

The results thus obtained render it possible to discuss the periodicity of the exponential
and circular functions by purely arithmetical methods (§§A.5, A.51).

In §§A.52–A.522, we consider, substantially, the continuity of the inverse circular func-
tions. When these functions have been investigated, the theory of logarithms of complex
numbers (§A.6) presents no further difficulty.

Finally, in §A.7, it is shewn that an angle, defined in a purely analytical manner, possesses
propertieswhich are consistentwith the ordinary concept of an angle, based on our experience
of the material world.

It will be obvious to the reader that we do not profess to give a complete account of the
elementary transcendental functions, but we have confined ourselves to a brief sketch of the
logical foundations of the theory3 . The developments have been given by writers of various
treatises, such as Hobson [321]; Hardy [277]; and Bromwich [102].

A.12 A logical order of development of the elements of analysis
The reader will find it instructive to read Chapters 1 to 4 and the Appendix a second time in
the following order:

Chapter 1 (omitting4 all of §1.5 except the first two paragraphs).
Chapter 2 to the end of §2.61 (omitting the examples in §§2.31–2.61).
Chapter 3 to the end of §3.34 and §§3.5–3.73.
The Appendix, §§A.2–A.6 (omitting §§A.32, A.33).
Chapter 2, the examples of §§2.31–2.61.
Chapter 3, §§3.341–3.4.
Chapter 4, inserting §§A.32, A.33, A.7 after §4.13.
Chapter 2, §§2.7–2.82.
He should try thus to convince himself that (in that order) it is possible to elaborate a

3 In writing the Appendix, frequent reference has been made to the article on Algebraic Analysis in the
Encyklopä die der Math. Wissenschaften by Pringsheim and Faber, to the same article translated and revised
by Molk for the Encyclopédie des Sciences Math., and to Tannery, Introduction à la Théorie des Fonctions
d’une Variable (Paris, 1904).

4 The properties of the argument (or phase) of a complex number are not required in the text before Chapter 5.
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purely arithmetical development of the subject, in which the graphic and familiar language
of geometry5 is to be regarded as merely conventional.

A.2 The exponential function exp z

The exponential function, of a complex variable z, is defined by the series6

exp z = 1 +
z
1!
+

z2

2!
+

z3

3!
+ · · · = 1 +

∞∑
n=1

zn

n!
.

This series converges absolutely for all values of z (real and complex) by D’Alembert’s
ratio test (§2.36) since lim

n→∞
|z/n| = 0 < 1; so the definition is valid for all values of z.

Further, the series converges uniformly throughout any bounded domain of values of z;
for, if the domain be such that |z | ≤ R when z is in the domain, then

|zn/n!| ≤ Rn/n!,

and the uniformity of the convergence is a consequence of the test of Weierstrass (§3.34), by

reason of the convergence of the series 1 +
∞∑
n=1

Rn

n!
, in which the terms are independent of z.

Moreover, since, for any fixed value of n, zn/n ! is a continuous function of z, it follows
from §3.32 that the exponential function is continuous for all values of z; and hence (cf. §3.2),
if z be a variable which tends to the limit ζ , we have

lim
z→ζ

exp z = exp ζ .

A.21 The addition-theorem for the exponential function, and its consequences
From Cauchy’s theorem on multiplication of absolutely convergent series (§2.53), it follows
that7

(exp z1)(exp z2) =

(
1 +

z1

1!
+

z2
1

2!
+ · · ·

) (
1 +

z2

1 !
+

z2
2

2 !
+ · · ·

)
= 1 +

z1 + z2

1!
+

z2
1 + 2z1z2 + z2

2

2!
+ · · ·

= exp(z1 + z2),

5 For example ‘a point’ for ‘an ordered number-pair’, ‘the circle of unit radius with centre at the origin’ for ‘the
set of ordered number-pairs (x, y) which satisfy the condition x2 + y2 = 1’, ‘the points of a straight line’ for
‘the set of ordered number-pairs (x, y) which satisfy a relation of the type Ax + By +C = 0’, and so on.

6 It was formerly customary to define exp z as lim
n→∞

(
1 +

z

n

)n
, cf. Cauchy [120, pp. 167, 168, 309]. Cauchy also

derived the properties of the function from the series, but his investigation when z is not rational is
incomplete. See also Schlömilch [587, pp. 29, 178, 246]. Hardy [276] has pointed out that the limit definition
has many disadvantages.

7 The reader will at once verify that the general term in the product series is

(zn1 +

(
n

1

)
zn−1

1 z2 +

(
n

2

)
zn−2

1 z2
2 + · · · + z

n
2 )/n! = (z1 + z2)

n/n!.
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so that exp(z1 + z2) can be expressed in terms of exponential functions of z1 and of z2 by the
formula

exp(z1 + z2) = (exp z1)(exp z2).

This result is known as the addition-theorem for the exponential function. From it, we see
by induction that

(exp z1)(exp z2) · · · (exp zn) = exp(z1 + z2 + · · · + zn),

and, in particular,
{exp z} {exp(−z)} = exp 0 = 1.

From the last equation, it is apparent that there is no value of z for which exp z = 0; for, if
there were such a value of z, since exp(−z) would exist for this value of z, we should have
0 = 1.

It also follows that, when x is real, exp x > 0; for, from the series definition, exp x ≥ 1
when x ≥ 0; and, when x ≤ 0, exp x = 1/exp(−x) > 0.

Further, exp x is an increasing function of the real variable x; for, if k > 0,

exp(x + k) − exp x = exp x · {exp k − 1} > 0,

because exp x > 0 and exp k > 1.
Also, since {exp h − 1} /h = 1+ (h/2!)+ (h2/3!)+ · · · , and the series on the right is seen

(by the methods of §A.2) to be continuous for all values of h, we have

lim
h→0

exp h − 1
h

= 1,

and so
d exp z

dz
= lim

h→0

exp(z + h) − exp z
h

= exp z.

A.22 Various properties of the exponential function
Returning to the formula (exp z1)(exp z2) · · · (exp zn) = exp(z1 + z2 + · · · + zn), we see that,
when n is a positive integer,

(exp z)n = exp(nz),

and
(exp z)−n = 1/(exp z)n = 1/exp(nz) = exp(−nz).

In particular, taking z = 1 and writing e in place of exp 1 = 2.71828 · · · , we see that,
when m is an integer, positive or negative,

em = exp m = 1 + (m/1!) + (m2/2!) + · · ·

Also, if µ be any rational number (say p/q, where p and q are integers, q being positive)

(exp µ)q = exp µq = exp p = ep,

so that the qth power of exp µ is ep; that is to say, exp µ is a value of ep/q = eµ, and it is
obviously (§A.21) the real positive value.
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If x be an irrational-real number (defined by a section in which a1 and a2 are typical
members of the L-class and the R-class respectively), the irrational power ex is most simply
defined as exp x; we thus have, for all real values of x, rational and irrational,

ex = 1 +
x

1 !
+

x2

2 !
+ · · · ,

an equation first given by Newton8 .
It is, therefore, legitimate to write ex for exp x when x is real, and it is customary to write

ez for exp z when z is complex. The function ez (which, of course, must not be regarded as
being a power of e), thus defined, is subject to the ordinary laws of indices, viz.

Fez · eζ = ez+ζ, e−z = 1/e−z .

Note Tannery [619] practically defines ex , when x is irrational, as the only number X such
that ea1 ≤ X ≤ ea2 , for every a1 and a2. From the definition we have given it is easily seen
that such a unique number exists. For exp x(= X) satisfies the inequality, and if X ′(, X) also
did so, then

exp a2 − exp a1 = ea2 − ea1 ≥ |X ′ − X |,

so that, since the exponential function is continuous, a2 − a1 cannot be chosen arbitrarily
small, and so (a2,a1) does not define a section.

A.3 Logarithms of positive numbers
It has been seen (§§A.2, A.21) that, when x is real, exp x is a positive continuous increasing
function of x, and obviously exp x → +∞ as x → +∞, while

exp x = 1/exp(−x) → 0 as x → −∞.

If, then, a be any positive number, it follows from §3.63 that the equation in x,

exp x = a,

has one real root and only one. This root (which is, of course, a function of a) will be written9

Loge a or simply Log a; it is called the Logarithm of the positive number a. 10

Since a one-one correspondence has been established between x and a, and since a is
an increasing function of x, it must be that x be increasing function of a; that is to say, the
Logarithm is an increasing function.

Example A.3.1 Deduce from §A.21 that Log a + Log b = Log ab.
8 Newton [494] (written before 1669, but not published till 1711); it was also given both by Newton and by
Leibniz in letters to Oldenburg in 1676; it was first published by Wallis in 1685 in his Treatise on Algebra,
p. 343. The equation when x is irrational was explicitly stated by Schlömilch [587, p. 182].

9 This is in agreement with the notation of most textbooks, in which Log denotes the principal value (see §A.6)
of the logarithm of a complex number.

10 Many mathematicians define the Logarithm by the integral formula given in §A.32. The reader should consult
a memoir by Hurwitz [330] on the foundations of the theory of the logarithm.
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A.31 The continuity of the Logarithm
It will now be shewn that, when a is positive, Log a is a continuous function of a.

Let
Log a = x, Log(a + h) = x + k,

so that

ex = a, ex+k = a + h, 1 +
h
a
= ek .

First suppose that h > 0, so that k > 0, and then

1 + h/a = 1 + k + 1
2 k2 + · · · > 1 + k,

and so 0 < k < h/a; that is to say, 0 < Log(a + h) − Log a < h/a.
Hence, h being positive, Log(a + h) − Log a can be made arbitrarily small by taking h

sufficiently small.
Next, suppose that h < 0, so that k < 0, and then a/(a + h) = e−k . Hence (taking

0 < −h < 1
2 a, as is obviously permissible) we get

a/(a + h) = 1 + (−k) + 1
2 k2 + · · · > 1 − k,

and so −k < −1 + a/(a + h) = −h/(a + h) < −2h/a. Therefore, whether h be positive or
negative, if ε be an arbitrary positive number and if |h| be taken less than both 1

2 a and 1
2 aε,

we have
| Log(a + h) − Log a | < ε,

and so the condition for continuity (§3.2) is satisfied.

A.32 Differentiation of the Logarithm
Retaining the notation of §A.31, we see, from results there proved, that, if h → 0 (a being
fixed), then also k → 0. Therefore, when a > 0,

d Log a
da

= lim
k→0

k
ex+k − ex

=
1
ex
=

1
a
.

Since Log 1 = 0, we have, by §4.13, Example 4.1.8,

Log a =
∫ a

1
t−1 dt.

A.33 The expansion of Log(1 + a) in powers of a

From §A.32 we have

Log(1 + a) =
∫ a

0
(1 + t)−1 dt

=

∫ a

0

{
1 − t + t2 − · · · + (−1)n−1tn−1 + (−1)ntn(1 + t)−1} dt

= a − 1
2 a2 + 1

3 a3 − · · · + (−1)n−1 1
n

an + Rn,
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where Rn = (−1)n
∫ a

0
tn(1 + t)−1 dt .

Now, if −1 < a < 1, we have

|Rn | ≤

∫ | a |

0
tn(1 − |a|)−1 dt

= |a|n+1 {(n + 1)(1 − |a|)}−1

→ 0 as n→∞.

Hence, when −1 < a < 1, Log(1 + a) can be expanded into the convergent series11

Log(1 + a) = a − 1
2 a2 + 1

3 a3 − · · · =

∞∑
n=1

(−1)n−1an/n.

If a = +1,

|Rn | =

∫ 1

0
tn(1 + t)−1 dt <

∫ 1

0
tn dt = (n + 1)−1 → 0 as n→∞,

so the expansion is valid when a = +1; it is not valid when a = −1.

Example A.3.2 Shew that

lim
n→∞

(
1 +

1
n

)n
= e.

Hint. We have

lim
n→∞

n log
(
1 +

1
n

)
= lim

n→∞

(
1 −

1
2n
+

1
3n2 − · · ·

)
= 1,

and the result required follows from the result of §A.2 that lim
z→ζ

ez = eζ .

A.4 The definition of the sine and cosine
The functions12 sin z and cos z are defined analytically by means of power series, thus

sin z = z −
z3

3!
+

z5

5!
− · · · =

∞∑
n=0

(−1)nz2n+1

(2n + 1)!
,

cos z = 1 −
z2

2!
+

z4

4!
− · · · = 1 +

∞∑
n=1

(−1)nz2n

(2n)!
;

these series converge absolutely for all values of z (real and complex) by §2.36, and so the
definitions are valid for all values of z.

On comparing these series with the exponential series, it is apparent that the sine and

11 This method of obtaining the logarithmic expansion is, in effect, due to Wallis [644].
12 These series were given by Newton [494], see §A.22 footnote. The other trigonometrical functions are defined

in the manner with which the reader is familiar, as quotients and reciprocals of sines and cosines.
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cosine are not essentially new functions, but they can be expressed in terms of exponential
functions by the equations13

2i sin z = exp(iz) − exp(−iz), 2 cos z = exp(iz) + exp(−iz).

It is obvious that sin z and cos z are odd and even functions of z respectively; that is to say

sin(−z) = − sin z, cos(−z) = cos z.

A.41 The fundamental properties of sin z and cos z

It may be proved, just as in the case of the exponential function (§A.2), that the series for
sin z and cos z converge uniformly in any bounded domain of values of z, and consequently
that sin z and cos z are continuous functions of z for all values of z.

Further, it may be proved in a similar manner that the series

1 −
z2

3!
+

z4

5!
− · · ·

defines a continuous function of z for all values of z, and, in particular, this function is
continuous at z = 0, and so it follows that

lim
z→0

sin z
z
= 1.

A.42 The addition-theorems for sin z and cos z

By using Euler’s equations (§A.4), it is easy to prove from properties of the exponential
function that

sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2

and
cos(z1 + z2) = cos z1 cos z2 + sin z1 sin z2;

these results are known as the addition-theorems for sin z and cos z.
It may also be proved, by using Euler’s equations, that

sin2 z + cos2 z = 1.

By means of this result, sin(z1 + z2) can be expressed as an algebraic function of sin z1 and
sin z2, while cos(z1 + z2) can similarly be expressed as an algebraic function of cos z1 and
cos z2; so the addition-formulae may be regarded as addition-theorems in the strict sense
(cf. §20.3 and the Note on page 547).

By differentiating Euler’s equations, it is obvious that

d sin z
dz

= cos z,
d cos z

dz
= − sin z.

13 These equations were derived by Euler [they were given in a letter to Johann Bernoulli in 1740 and published
in [198, p. 279] from the geometrical definitions of the sine and cosine, upon which the theory of the circular
functions was then universally based.
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Example A.4.1 Shew that

sin 2z = 2 sin z cos z, cos 2z = 2 cos2 z − 1;

these results are known as the duplication-formulae.

A.5 The periodicity of the exponential function
If z1 and z2 are such that exp z1 = exp z2, then, multiplying both sides of the equation by
exp(−z2), we get exp(z1 − z2) = 1; and writing γ for z1 − z2, we see that, for all values of z
and all integral values of n,

exp(z + nγ) = exp z · (exp γ)n = exp z.

The exponential function is then said to have period γ, since the effect of increasing z by
γ, or by an integral multiple thereof, does not affect the value of the function.

It will now be shewn that such numbers γ (other than zero) actually exist, and that all the
numbers γ, possessing the property just described, are comprised in the expression

2nπi, (n = ±1,±2,±3, . . .)

where π is a certain positive number14 which happens to be greater than 2
√

2 and less than 4.

A.51 The solution of the equation exp γ = 1

Let γ = α + iβ, where α and β are real; then the problem of solving the equation exp γ = 1
is identical with that of solving the equation

expα · exp iβ = 1.

Comparing the real and imaginary parts of each side of this equation, we have

expα · cos β = 1, expα · sin β = 0.

Squaring and adding these equations, and using the identity cos2 β + sin2 β ≡ 1, we get

exp 2α = 1.

Now if α were positive, exp 2α would be greater than 1, and if α were negative, exp 2α
would be less than 1; and so the only possible value for α is zero. It follows that cos β = 1,
sin β = 0. Now the equation sin β = 0 is a necessary consequence of the equation cos β = 1,
on account of the identity cos2 β + sin2 β ≡ 1. It is therefore sufficient to consider solutions
(if such solutions exist) of the equation cos β = 1.

Instead, however, of considering the equation cos β = 1, it is more convenient to consider
the equation15 cos x = 0.

It will now be shewn that the equation cos x = 0 has one root, and only one, lying between
14 The fact that π is an irrational number, whose value is 3.14159 · · · , is irrelevant to the present investigation.

For an account of attempts at determining the value of π, concluding with a proof of the theorem that π
satisfies no algebraic equation with rational coefficients, see Hobson’s monograph [320].

15 If cos x = 0, it is an immediate consequence of the duplication-formulae that cos 2x = −1 and thence that
cos 4x = 1, so, if x is a solution of cos x = 0, it follows that 4x is a solution of cos β = 1.
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0 and 2, and that this root exceeds
√

2; to prove these statements, wemake use of the following
considerations:

(I) The function cos x is certainly continuous in the range 0 ≤ x ≤ 2.
(II) When 0 ≤ x ≤

√
2, we have16

1 −
x2

2!
≥ 0,

x4

4!
−

x6

6!
≥ 0,

x8

8!
−

x10

10!
≥ 0, . . . ,

and so, when 0 ≤ x ≤
√

2, cos x > 0.
(III) The value of cos 2 is

1 − 2 +
2
3
−

26

720

(
1 −

4
7 · 8

)
−

210

10!

(
1 −

4
11 · 12

)
− · · · = −

1
3
− · · · < 0.

(IV) When 0 < x ≤ 2,

sin x
x
=

(
1 −

x2

6

)
+

x4

120

(
1 −

x2

6 · 7

)
+ · · · > 1 −

x2

6
≥

1
3
,

and so, when 0 ≤ x ≤ 2, sin x ≥ 1
3 x.

It follows from (II) and (III) combined with the results of (I) and of §3.63 that the equation
cos x = 0 has at least one root in the range

√
2 < x < 2, and it has no root in the range

0 ≤ x ≤
√

2.
Further, there is not more than one root in the range

√
2 < x < 2; for, suppose that there

were two, x1 and x2 (with x2 > x1); then 0 < x2 − x1 < 2 −
√

2 < 1, and

sin(x2 − x1) = sin x2 cos x1 − sin x1 cos x2 = 0,

and this is incompatible with (IV) which shews that sin(x2 − x1) ≥
1
3 (x2 − x1).

The equation cos x = 0 therefore has one and only one root lying between 0 and 2. This
root lies between

√
2 and 2, and it is called 1

2π; and, as stated in the footnote to §A.5, its
actual value happens to be 1.57079 · · · .

From the addition-formulae, it may be proved at once by induction that

cos nπ = (−1)n, sin nπ = 0,

where n is any integer. In particular, cos 2nπ = 1, where n is any integer.
Moreover, there is no value of β, other than those values which are of the form 2nπ, for

which cos β = 1; for if there were such a value, it must be real17 , and so we can choose the
integer m so that

−π ≤ 2mπ − β < π.

We then have

sin |mπ − 1
2 β | = ± sin(mπ − 1

2 β) = ± sin 1
2 β = ±2−

1
2 (1 − cos β)

1
2 = 0,

and this is inconsistent18 with sin |mπ − 1
2 β | ≥

1
3 |mπ −

1
2 β | unless β = 2mπ.

16 The symbol ≥ may be replaced by > except when x =
√

2 in the first place where it occurs, and except when
x = 0 in the other places.

17 The equation cos β = 1 implies that exp iβ = 1, and we have seen that this equation has no complex roots.
18 The inequality is true by (IV) since 0 ≤ |mπ − 1

2β | ≤
1
2π < 2.
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Consequently the numbers 2nπ, (n = 0,±1,±2, . . .), and no others, have their cosines
equal to unity.

It follows that a positive number π exists such that exp z has period 2πi and that exp z has
no period fundamentally distinct from 2πi.

The formulae of elementary trigonometry concerning the periodicity of the circular func-
tions, with which the reader is already acquainted, can now be proved by analytical methods
without any difficulty.

Example A.5.1 Shew that sin π/2 is equal to 1, not to −1.

Example A.5.2 Shew that tan x > x when 0 < x < 1
2π. Hint. For cos x > 0 and

sin x − x cos x =
∞∑
n=1

x4n−1

(4n − 1)!

{
4n − 2 −

x2

4n + 1

}
,

and every term in the series is positive.

Example A.5.3 Shew that 1−
x2

2
+

x4

24
−

x6

720
is positive when x = 25

16 , and that 1−
x2

2
+

x4

24
vanishes when x = (6 − 2

√
3)

1
2 = 1.5924 · · · ; and deduce that19

3.125 < π < 3.185.

A.52 The solution of a pair of trigonometrical equations
Let λ, µ be a pair of real numbers such that λ2 + µ2 = 1. Then, if λ , −1, the equations

cos x = λ, sin x = µ

have an infinity of solutions of which one and only one lies between20 −π and π.
First, let λ and µ be not negative; then (§3.63) the equation cos x = λ has at least one

solution x1 such that 0 ≤ x1 ≤
1
2π, since cos 0 = 1, cos 1

2π = 0. The equation has not two
solutions in this range, for if x1 and x2 were distinct solutions we could prove (cf. §A.51) that
sin(x1 − x2) = 0, and this would contradict §A.51 (IV), since

0 < | x2 − x1 | ≤
1
2π < 2.

Further, sin x1 = +
√

1 − cos2 x1 = +
√

1 − λ2 = µ, so x1 is a solution of both equations.
The equations have no solutions in the ranges (−π,0) and ( 12π, π) since, in these ranges, either
sin x or cos x is negative. Thus the equations have one solution, and only one, in the range
(−π, π).

If λ or µ (or both) is negative, we may investigate the equations in a similar manner; the
details are left to the reader.

It is obvious that, if x1 is a solution of the equations, so also is x1 + 2nπ, where n is any
integer, and therefore the equations have an infinity of real solutions.

19 See De Morgan [167, p. 316], for reasons for proving that π > 3 1
8 .

20 If λ = −1, ±π are solutions and there are no others in the range (−π, π).
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A.521 The principal solution of the trigonometrical equations
The unique solution of the equations cos x = λ, sin x = µ (where λ2 + µ2 = 1) which lies
between −π and π is called the principal solution21 , and any other solution differs from it by
an integer multiple of 2π.

The principal value22 of the argument of a complex number z(, 0) can now be defined
analytically as the principal solution of the equations

|z | cos φ = Re z, |z | sin φ = Im z,

and then, if z = |z |(cos θ + i sin θ), we must have θ = φ + 2nπ, and θ is called a value of the
argument of z, and is written arg z (cf. §1.5).

A.522 The continuity of the argument of a complex variable
It will now be shewn that it is possible to choose such a value of the argument θ(z), of a
complex variable z, that it is a continuous function of z, provided that z does not pass through
the value zero.

Let z0 be a given value of z and let θ0 be any value of its argument; then, to prove that θ(z)
is continuous at z0, it is sufficient to shew that a number θ1 exists such that θ1 = arg z1 and
that |θ1 − θ0 | can be made less than an arbitrary positive number ε by giving |z1 − z0 | any
value less than some positive number η.

Let z0 = x0+ iy0, z1 = x1+ iy1. Also let |z1− z0 | be chosen to be so small that the following
inequalities are satisfied23:

(I) | x1 − x0 | <
1
2 |x0 |, provided that x0 , 0,

(II) | y1 − y0 | <
1
2 |y0 |, provided that y0 , 0,

(III) |x1 − x0 | <
1
4ε |z0 |, |y1 − y0 | <

1
4ε |z0 |.

From (I) and (II) it follows that x0x1 and y0y1 are not negative, and

x0x1 ≥
1
2

x2
0, y0y1 ≥

1
2
y2

0,

so that x0x1 + y0y1 ≥
1
2 |z0 |

2.

Now let that value of θ1 be taken which differs from θ0 by less than π; then, since x0 and x1

have not opposite signs and y0 and y1 have not opposite signs24 , it follows from the solution
of the equations of §A.52 that θ1 and θ0 differ by less than 1

2π.
Now tan(θ1 − θ0) =

x0y1 − x1y0

x0x1 + y0y1
, and so (§A.51 example A.5.2),

|θ1 − θ0 | ≤
|x0y1 − x1y0 |

x0x1 + y0y1

=
|x0(y1 − y0) − y0(x1 − x0)|

x0x1 + y0y1

≤ 2|z0 |
−2 {|x0 | · |y1 − y0 | + |y0 | · |x1 − x0 |} .

21 If λ = −1, we take +π as the principal solution.
22 The term principal value was introduced in 1845 by Björling; see [74].
23 (I) or (II) respectively is simply to be suppressed in the case (i) when x0 = 0, or (ii) when y0 = 0.
24 The geometrical interpretation of these conditions is merely that z0 and z1 are not in different quadrants of the

plane.
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But |x0 | ≤ |z0 | and also |y0 | ≤ |z0 |; therefore

| θ1 − θ0 | ≤ 2| z0 |
−1 {| y1 − y0 | + | x1 − x0 |} < ε.

Further, if we take |z1 − z0 | less than 1
2 |x0 |, (if x0 , 0) and 1

2 |y0 |, (if y0 , 0) and 1
4ε |z0 |,

the inequalities (I), (II), (III) above are satisfied; so that, if η be the smallest of the three
numbers25 1

2 | x0 |, 1
2 | y0 |, 1

4ε | z0 |, by taking |z1 − z0 | < η, we have |θ1 − θ0 | < ε; and this is
the condition that θ(z) should be a continuous function of the complex variable z.

A.6 Logarithms of complex numbers
The number ζ is said to be a logarithm of z if z = eζ .

To solve this equation in ζ , write ζ = ξ + iη,where ξ and η are real; and then we have

z = eξ (cos η + i sin η).

Taking the modulus of each side, we see that |z | = eξ , so that (§A.3), ξ = Log | z |; and
then

z = | z | · (cos η + i sin η),

so that η must be a value of arg z.
The logarithm of a complex number is consequently a many-valued function, and it can

be expressed in terms of more elementary functions by the equation

log z = log |z | + i arg z.

The continuity of log z (when z , 0) follows from §§A.31 and A.522, since |z | is a
continuous function of z.

The differential coefficient of any particular branch of log z (§5.7) may be determined as
in §A.32; and the expansion of §A.33 may be established for log(1 + a) when |a| < 1.

Corollary A.6.1 If az be defined to mean ez log a, az is a continuous function of z and of a
when a , 0.

A.7 The analytical definition of an angle
Let z1, z2, z3 be three complex numbers represented by the points P1, P2, P3 in the Argand
diagram. Then the angle between the lines (§A.12, footnote) P1P2 and P1P3 is defined to be
any value of arg(z3 − z1) − arg(z2 − z1).

It will now be shewn26 that the area (defined as an integral), which is bounded by two radii
of a given circle and the arc of the circle terminated by the radii, is proportional to one of the
values of the angle between the radii, so that an angle (in the analytical sense) possesses the
property which is given at the beginning of all textbooks on Trigonometry27 .
25 If any of these numbers is zero, it is to be omitted.
26 The proof here given applies only to acute angles; the reader should have no difficulty in extending the result

to angles greater than 1
2π, and to the case whenOX is not one of the bounding radii.

27 Euclid’s definition of an angle does not, in itself, afford a measure of an angle; it is shewn in treatises on
Trigonometry (cf. Hobson [321, ch. 1]) that an angle is measured by twice the area of the sector which the
angle cuts off from a unit circle whose centre is at the vertex of the angle.
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Let (x1, y1) be any point (both of whose coordinates are positive) of the circle x2+ y2 = a2,
(a > 0). Let θ be the principal value of arg(x1 + iy1), so that 0 < θ < 1

2π. Then the area
bounded by OX and the line joining (0,0) to (x1, y1) and the arc of the circle joining (x1, y1)

to (a,0) is
∫ a

0
f (x) dx, where28

f (x) = x tan θ (0 ≤ x ≤ a cos θ),
f (x) = (a2 − x2)

1
2 (a cos θ ≤ x ≤ a),

if an area be defined as meaning a suitably chosen integral.

It remains to be proved that
∫ a

0
f (x) dx is proportional to θ.

Now∫ a

0
f (x)dx =

∫ a cos θ

0
x tan θ dx +

∫ a

a cos θ
(a2 − x2)

1
2 dx

= 1
2 a2 sin θ cos θ + 1

2

∫ a

a cos θ

{
a2(a2 − x2)−

1
2 +

d
dx

x(a2 − x2)
1
2

}
dx

= 1
2 a2

∫ a

a cos θ
(a2 − x2)−

1
2 dx

= 1
2 a2

{∫ 1

0
(1 − t2)−

1
2 dt −

∫ cos θ

0
(1 − t2)−

1
2 dt

}
= 1

2 a2 { 1
2π − (

1
2π − θ)

}
= 1

2 a2θ,

on writing x = at and using the example worked out on Chapter 4.
That is to say, the area of the sector is proportional to the angle of the sector. To this extent,

we have shewn that the popular conception of an angle is consistent with the analytical
definition.

28 The reader will easily see the geometrical interpretation of the integral by drawing a figure.
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Fluctuation, 54

total, 54
Formula for addition of parameters, 552
Formula for interchange of argument and

parameter, 551
Foundations of arithmetic and geometry, 611
Fourier constants, 168
Fourier series, 163–200

associated with a function, 168
coefficients in, 171
convergence of, 179–183
differentiation of, 172
discontinuities of, 171, 173
distinction between any trigonometrical series

and, 163, 167
expansion of Mathieu functions in, 433, 436, 442
expansions of a function in, 167, 168, 180
expansions of Jacobian elliptic functions in, 537,

539
Fejér’s theorem on, 174
Hurwitz–Liapounoff theorem on, 185
Parseval’s theorem on, 187
series of sines and series of cosines, 169
summability of, 174, 183
uniformity of convergence of, 172, 183, 184
see also Trigonometric series

Fourier’s integral theorem, 195
Fourier’s theorem on integrals, 193, 219
Fourier’s theorem, Dirichlet’s statement of, 164,

167, 181
Fourier–Bessel

expansion, 400
integral, 405

Fourth species of ellipsoidal harmonic, 568
construction of, 573

Fredholm’s integral equation, 221–225, 237
Functionality, concept of, 40
Functions

branches of, 105
identity of two, 97
limits of, 40
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principal parts of, 100
which cannot be continued, 96
without essential singularities, 104
see also under the names of special functions or

special types of functions, e.g. Legendre
functions, Analytic functions

Fundamental cell, xlviii
Fundamental formulae of Jacobi connecting

theta-functions, 491, 514
Fundamental period parallelogram, 452

polygon (of automorphic functions), 478
Fundamental system of solutions of a linear

differential equation, 203, 207, 410
Fundamental systems of solutions of a linear

differential equation, 590
Gamma-function [Γ(z)], 243–275

asymptotic expansion of, 261
circular functions and, 248
complete elliptic integrals and, 565
contour integral (Hankel’s) for, 253, 254
difference equation satisfied by, 245
differential equations and, 244
duplication formula, 249
Euler’s, 250
Euler’s integral of the first kind and, 264
Euler’s integral of the second kind and, 250
Euler’s product, 245
incomplete form of, 359
integrals for, (Binet’s), 257–260
minimum value of, 262
modified by Cauchy and Saalschütz, 252
modified by Hankel, 253
multiplication formula, 248
series, (Kummer’s), 259
Stirling’s, 261
trigonometrical integrals and, 265
Weierstrassian product, 243, 244
see also Eulerian integrals and Logarithmic

derivate of the Gamma-function [ψ(−z)]
Gauss’

discovery of elliptic functions, 451
integral for Γ′(z)/Γ(z), 255
transformation of elliptic integrals, 563

Gauss’ discovery of lemniscate functions, 553
Gegenbauer’s function [Cn

v (z)], 346
addition-formula, 353
differential equation for, 346
recurrence formulae, 347
relation involving Bessel functions and, 405, 406
relation with Legendre functions, 346
Rodrigues’ formula (analogue), 346
Schläfli’s integral (analogue), 346

Genus of a plane curve, 477
Geometric series, 17
Gibbs’ phenomenon, 200
Glaisher’s notation for quotients and reciprocals of

elliptic functions, 520, 524

Greatest of the limits, 12
Green’s functions, 415
Hadamard’s lemma, 220
Half-periods of Weierstrassian elliptic functions,

466
Hankel’s

Bessel function of the second kind Yn(z), 388
integral for [Γ(z)], 253
integral for Jn(z), 383

Hardy’s
convergence theorem, 159
test for uniform convergence, 48

Harmonics
solid and surface, 413
spheroidal, 424
Sylvester’s theorem concerning integrals of, 421
tesseral, 413, 567
zonal, 316, 413, 567
see also Ellipsoidal harmonics

Heat, equation of conduction of, 408
Heine’s expansion of (t − z)−1 in series of Legendre

polynomials, 337
Heine–Borel theorem (modified), 51
Hermite’s equation, 211, 216, 359, 364

see also Parabolic cylinder functions
Hermite’s formula for the generalised zeta-function

ζ(s,a), 280–282
Hermite’s solution of Lamé’s equation, 604–606
Heun’s equation, 607, 608

integrable systems, xli
Hill’s equation, xxx, 428, 435–438

Hill’s method of solution, 435
integrable systems, xlviii

Hill’s infinite determinant, xlviii, 34, 38, 436, 437
evaluation of, 437

Hobson’s associated Legendre functions, 341
Holomorphic, 82
Homogeneity of Weierstrassian elliptic functions,

461
Homogeneous harmonics (associated with

ellipsoid), 574, 607
ellipsoidal harmonics derived from (Niven’s

formula), 574
linear independence of, 591

Homogeneous integral equations, 225, 228
Hurwitz’

definition of the generalised zeta-function ζ(s,a),
276

formula for ζ(s,a), 279
theorem concerning Fourier constants, 185

Hypergeometric equation, see Hypergeometric
functions

Hypergeometric functions, 293–315
Barnes’ integrals, 299, 301
contiguous, 307
continuation of, 300
differential equation for, 209, 214, 295
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functions expressed in terms of, 293, 326
of two variables (Appell’s), 312
relations between twenty-four expressions

involving, 296, 298, 303
Riemann’s P-equation and, 215, 295
series for (convergence of), 22, 293
squares and products of, 310
value of F(a, b; c; 1), 293, 305
values of special forms of hypergeometric

functions, 310, 315
see also Bessel functions, Confluent

hypergeometric functions and Legendre
functions

Hypergeometric series, see Hypergeometric
functions

Hypothesis of Riemann on zeros of ζ(s), 283, 292
Identically vanishing power series, 56
Identity of two functions, 97
Imaginary argument, Bessel functions with [In(z)

and Kn(z)], 391, 392, 404
Imaginary part (I) of a complex number, 8
Imaginary transformation (Jacobi’s)

of E(u) and Z(u), 547
of elliptic functions, 533, 547, 565
of theta-functions, 124, 499

Improper integrals, 72
Incomplete Gamma-functions [γ(n, x)], 359
Increasing sequence, 10
Indenting a contour, 117
Indicial equation, 205
Inequality

Abel’s, 15
Hadamard’s, 220
satisfied by ζ(s,a), 285, 286
satisfied by Bessel coefficients, 398
satisfied by Legendre polynomials, 317
satisfied by parabolic cylinder functions, 371

Infinite determinants, see Determinants
Infinite integrals, 67

convergence of, 67–69
differentiation of, 72
evaluation of, 110–124
representing analytic functions, 91
theorems concerning, 71
uniform convergence of, 68, 70, 71
see also Integrals and Integration

Infinite products, 30
absolute convergence of, 30
convergence of, 30
divergence to zero, 31
expansions of functions as, 137, 138
expressed by means of theta-functions, 498
uniform convergence of, 47

Infinity, 10, 101
essential singularity at, 102
point at, 101
pole at, 102

zero at, 102
Integers

positive, 3
signless, 3

Integrability of continuous functions, 60
Riemann’s condition of, 59

Integrable systems, xxxvi
Heun’s equation, xli
Hill’s equation, xlviii

Integral
Borel’s, 141

and analytic continuation, 142
Cauchy’s, 118
Dirichlet’s, 267

Integral equations, 219–240
Abel’s, 219, 238, 239
Fredholm’s, 221–225, 237
homogeneous, 225, 228
Liouville–Neumann method of solution of, 230
nucleus of, 221
numbers (characteristic) associated with, 228
numerical solutions of, 219
of the first and second kinds, 221, 229
satisfied by Lamé functions, 595–598
satisfied by Mathieu functions, 429
satisfied by parabolic cylinder functions, 240
Schlömilch’s, 238
solutions in series, 237
Volterra’s, 229
with variable upper limit, 221, 229

Integral formulae
for ellipsoidal harmonics, 598
for the Jacobian elliptic functions, 518, 520
for the Weierstrassian elliptic function, 459

Integral functions, 104
and Lamé’s equation, 601
and Mathieu’s equation, 439

Integral properties
of Bessel functions, 233, 319, 340, 399, 400, 405
of Legendre functions, 233, 319, 340
of Mathieu functions, 433
of Neumann’s function, 405
of parabolic cylinder functions, 367

Integral theorem
Fourier’s, 193, 219
of Fourier–Bessel, 405

Integrals, 58–80
along curves (equivalence of), 85
complex, 75, 76
differentiation of, 64
double, 65
double circuit, 266, 306
evaluation of, 110–124
for derivatives of an analytic function, 88
functions represented by, see under the names of

the special functions, 72
improper, 72
lower, 58
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of harmonics (Sylvester’s theorem), 421
of irrational functions, 474
of periodic functions, 111
of rational functions, 540
principal value of, 72, 116
regular, 208
repeated, 65, 73
representing areas, 623
round a contour, 83
upper, 58
see also Elliptic integrals, Infinite integrals and

Integration
Integration, 58

complex, 75
contour-, 75
general theorem on, 60
general theorem on complex, 76
of asymptotic expansions, 156
of integrals, 65, 72, 73
of series, 77
problem connected with cubics or quartics and

elliptic functions, 475, 540
see also Infinite integrals and Integrals

Interior, 42
Internal spheroidal harmonics, 424
Invariants of Weierstrassian elliptic functions, 459
Inverse factorials, expansions in series of, 143
Inversion of elliptic integrals, 451, 474, 476, 505,

510, 540
Irrational functions, integration of, 474
Irrational-real numbers, 5
Irreducible set of zeros or poles, 452
Irregular points (singularities) of differential

equations, 204, 210
Iterated functions, 231
Jacobi’s

discovery of elliptic functions, 451
earlier notation for theta-functions, 504
fundamental theta-function formulae, 491, 513
imaginary transformations, 532, 533, 547, 566

Jacobi’s zeta-function, see Zeta-function of Jacobi
Jacobian elliptic functions [sn u, cn u, dn u], 454,

503, 517–566
addition-theorems for, 521, 559, 565
complementary, 504, 519
connexion with Weierstrassian functions, 532
definitions of am u, ∆φ, sn u (sinam u), cn u, dn u,

503
definitions of am u, ∆φ, sn u (sinam u), cn u,

dn u, 520
differential equations satisfied by, 502, 518
differentiation of, 519
duplication formulae for, 524
Fourier series for, 537, 539, 565
general description of, 531
geometrical illustration of, 552, 556
Glaisher’s notation for quotients and reciprocals

of, 520

infinite products for, 535
integral formulae for, 518, 520
Jacobi’s imaginary transformation of, 527, 532,

533
Lamé functions expressed in terms of, 597, 604
Landen’s transformation of, 534
parametric representation of points on curves by,

552, 555, 556, 563
periodicity of, 504, 526, 529, 530
poles of, 453, 530, 531
quarter periods, K , iK ′, of, 504, 525
residues of, 531
Seiffert’s spherical spiral and, 556
triplication formulae, 559, 565
values of, when u is 1

2 K , 1
2 iK ′ or 1

2 (K + iK ′), 526
values of, when u is 1

2 K , 1
2 iK ′ or 1

2 (K + iK ′),
533, 534

values of, when the modulus is small, 561
see also Elliptic functions, Elliptic integrals,

Lemniscate functions, Theta-functions and
Weierstrassian elliptic functions

Jordan’s condition, 183
Jordan’s lemma, 114
Kernel, 221
Klein’s theorem on linear differential equations

with five singularities, 211
Korteweg–de Vries equation, xxxvi
Kummer’s formulae for confluent hypergeometric

functions, 356
series for log Γ(z), 259

Lacunary function, 97
Lagrange’s expansion, 133, 152

form for the remainder in Taylor’s series, 94
Lamé functions

defined, 587, 589
expressed as algebraic functions, 587, 608
expressed by Jacobian elliptic functions,

604–606
expressed by Weierstrassian elliptic functions,

601–603
integral equations satisfied by, 595–598
linear independence of, 590
of second kind, 593
reality and distinctness of zeros of, 588, 590, 609
values of, 589
zeros of (Stieltjes’ theorem), 591

Lamé’s equation, 211, 212, 567–610
derived from theory of ellipsoidal harmonics,

568–574, 584–585
different forms of, 585, 604
generalised, 211, 213, 601, 604, 607, 608
series solutions of, 587, 608, 609
solutions expressed in finite form, 482, 587,

607–609
solutions of a generalised equation in finite form,

601, 604
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see also Lamé functions and Ellipsoidal
harmonics

Landen’s transformation of Jacobian elliptic
functions, 501, 534, 563

Laplace’s equation, 407
its general solution, 409
normal solutions of, 584
solution with given boundary conditions, 414
solutions involving functions of Legendre and

Bessel, 412, 417
symmetrical solution of, 420
transformations of, 422, 429, 582, 584

Laplace’s integrals for Legendre polynomials and
functions, 327, 328, 334, 342, 355

Laurent’s expansion, 98
Laurent’s theorem, 98
Least of limits, 12
Lebesgue’s lemma, 177
Left (L-) class, 4
Legendre functions, 316–354

Pn(z), Qn(z), Pm
n (z), Qm

n (z) defined, 331, 339,
340

Pn(z),Qn(z),Pm
n (z),Q

m
n (z) defined, 320

addition-theorem for, 344
Bessel functions and, 382, 385, 423
degree of, 339
differential equation for, 211, 320, 339
distinguished from Legendre polynomials, 320
expansion of a function as a series of, 351
expansions in ascending series, 326, 342, 347
expansions in descending series, 316, 331, 342,

351
expressed by Murphy as hypergeometric

functions, 326, 327
expression of Qn(z) in terms of Legendre

polynomials, 334, 335, 350
Ferrers’ functions associated with, 339
first kind of, 321
Gegenbauer’s function Cv

n (z), associated with,
346

Hobson’s functions associated with, 341
integral connecting Bessel functions with, 382
integral properties of, 340
Laplace’s integrals for, 327, 334, 351
Mehler–Dirichlet integral for, 329
order of, 342
recurrence formulae for, 322, 333
Schläfli’s integral for, 318
second kind of, 331–335, 340, 342
summation of ΣhnPn(z) and ΣhnQn(z), 316
zeros of, 317, 331, 352

Legendre polynomials [Pn(z)], 93, 316
addition-theorem for, 342, 416
degree of, 316
differential equation for, 211, 318
expansion in ascending series, 326, 347
expansion in descending series, 316, 351

expansion of a function as a series of, 324, 338,
347, 353

expressed by Murphy as a hypergeometric
function, 326, 327

Heine’s expansion of (t − z)−1 as a series of, 337
integral connecting Bessel functions with, 382
integral properties of, 233, 319
Laplace’s equation and, 412
Laplace’s integrals for, 327, 328
Mehler–Dirichlet integral for, 329
Neumann’s expansion in series of, 338
numerical inequality satisfied by, 317
recurrence formulae for, 322, 323
Rodrigues’ formula for, 233, 317
Schläfli’s integral for, 318
summation of ΣhnPn(z), 316
zeros of, 317, 331
see also Legendre functions

Legendre’s equation, 211, 213, 318
for associated functions, 340
second solution of, 331
see also Legendre functions and Legendre

polynomials
Legendre’s functions

see also Legendre polynomials and Legendre’s
equation

Legendre’s relation between complete elliptic
integrals, 548

Lemniscate functions [sinlemn φ and coslemn φ],
552, 553

Liapounoff’s theorem concerning Fourier
constants, 185

Limit
Cauchy’s condition for existence of, 12
of a function, 40
of a sequence, 10

increasing, 10
-point (the Bolzano–Weierstrass theorem), 11

Limit to the value of a complex integral, 76
Limiting circle, 97
Limits, greatest of and least of, 12
Lindemann’s theory of Mathieu’s equation, 438

the similar theory of Lame’s equation, 601
Linear differential equations, 201–218, 407–425

Bessel’s, for circular cylinder functions, 211,
359, 375, 376, 392

confluence of, 210
equation for conduction of heat, 408
equation of telegraphy, 408
equation of the third order with regular integrals,

218
equation of wave motions, 408, 418, 423
equations with r singularities, 217
equations with five singularities (the

Klein–Bôcher theorem), 211
equations with three singularities, 214
equations with two singularities, 216
exponents of, 205



662 Subject index

fundamental system of solutions of, 203, 207
Gauss’, for hypergeometric functions, 209, 214,

295
Gegenbauer’s, 346
Hermite’s, 211, 216, 359, 364
Hill’s, 428, 435
irregular singularities of, 204, 210
Jacobi’s, for theta-functions, 486
Lamé’s, 211, 571–572, 585–589, 601–606
Laplace’s, 407, 409, 567, 582
Legendre’s, for zonal and surface harmonics,

211, 318, 339
Mathieu’s for elliptic cylinder functions, 211
Mathieu’s, for elliptic cylinder functions, 427
Neumann’s, 405
ordinary point of, 201
regular integral of, 208
regular point of, 204
Riemann’s, for P-functions, 214, 295, 303, 307
singular points of, 201
solution of, 201, 203
Stokes’, 211
uniqueness of, 203
Weber’s, for parabolic cylinder functions, 211,

216, 359
Whittaker’s for confluent hypergeometric

functions, 355
Liouville’s method of solving integral equations,

230
Liouville’s theorem, 103, 453
Lipschitz’s condition, 183
Logarithm, 615

continuity of, 616, 623
differentiation of, 623
expansion of, 616, 623
of complex numbers, 623

Logarithmic derivate of the Gamma-function
[ψ(−z)], 248, 249

Binet’s integrals for, 257–260
circular functions and, 248
Dirichlet’s integral for, 257
Gauss’ integral for, 255

Logarithmic derivate of the Riemann zeta-function,
290

Logarithmic-integral function [li z], 359
Lower integrals, 58
Lunar perigee and node, motions of, 428
M-test for uniformity convergence, 47
Macaurin’s (and Euler’s) expansion

test for convergence of infinite integrals, 69
Maclaurin’s (and Euler’s) expansion, 127

failure of, 102, 109
series, 92

Many-valued functions, 105
Mathematical Physics, equations of, 210, 407–425

see also Linear differential equations and the
names of special functions

Mathieu functions [cen(z,q), sen(z − q), inn(z,q)],
426–450

construction of, 431, 442
convergence of series in, 444
expansions as Fourier series, 431, 433, 442
integral equations satisfied by, 431
integral formulae, 433
of order n, 431
second kind of, 449

Mathieu’s equation, 211, 212, 426–450
by Lindemann and Stieltjes, 438
by the method of change of parameter, 446
general form, solutions by Floquet, 434
second solution of, 435, 441
solutions in asymptotic series, 447
the integral function associated with, 439
see also Hill’s equation

Mean-value theorems, 62, 63, 94
Mehler’s integral for Legendre functions, 329
Mellin’s (and Barnes’) type of contour integral,

299, 361
Membranes, vibrations of, 374, 417, 426
Mesh, 452
Methods of ‘summing’ series, 158–159
Modified Heine–Borel theorem, 51
Modular

-surface, 40
Modular angle, 517
Modular functions, 506

equation connected with, 507
Modulus, 452

complementary, 519
of a complex number, 7
of Jacobian elliptic functions, 517
periods of elliptic functions regarded as

functions of the, 510, 525, 527
Monogenic, 82

distinguised from analytic, 97
Monotonic, 54
Morera’s theorem (converse of Cauchy’s theorem),

86, 109
Motions of lunar perigee and node, 428
Multiplication formula

for Γ(z), 248
for the sigma-function, 484

Multiplication of absolutely convergent series, 27
of asymptotic expansions, 156
of convergent series (Abel’s theorem), 55, 57

Multipliers of theta-functions, 487
Murphy’s formulae for Legendre functions and

polynomials, 326, 327
Neumann’s

definition of Bessel functions of the second kind,
391

expansions in series of Legendre and Bessel
functions, 338, 393

(F. E. Neumann’s) integral for the Legendre
function of the second kind, 335
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method of solving integral equations, 230
Neumann’s function [On(z)], 393

differential equation satisfied by, 405
expansion of, 393
expansion of functions in series of, 395, 404
integral for, 393
integral properties of, 405
recurrence formulae for, 394

Non-uniform convergence, 43
and discontinuity, 45

Normal functions, 233
Normal solutions of Laplace’s equation, 584
Notations

for Bessel functions, 374, 391, 392
for Legendre functions, 341, 342
for quotients and reciprocals of elliptic functions,

520, 524
for theta-functions, 488, 504

Nucleus of an integral equation, 221
symmetric, 231, 237

Numbers, 3–9
basic, 486
Bernoulli’s, 125
Cauchy’s, 398
characteristic, 228
complex, 6
irrational, 5
irrational-real, 5
pairs of, 6
rational, 3
rational-real, 5
real, 5

Odd functions, 114, 170
of Mathieu, [sen(z,q)], 429

Open, 42
Order (O and o)

of Bernoullian polynomials, 126
of Bessel functions, 374
of elliptic functions, 453
of Legendre functions, 339
of poles of a function, 100
of terms in a series, 23
of the factors of a product, 31
of zeros of a function, 92

Ordinary discontinuity, 41
Ordinary point of a linear differential equation, 201
Orthogonal

functions, 233
Oscillation, 10
P-equation, Riemann’s, 214, 355
connexion with the hypergeometric equation,

215, 295
relations between, 307
solutions of, 304
transformations of, 215

Painlevé equation, xxxv
Painlevé functions, xxxv

Parabolic cylinder functions
see also Weber’s equation

Parabolic cylinder functions [Dn(z)], 364
contour integral for, 366
differential equation for, 211, 216, 364
expansion in a power series, 364
expansion of a function as a series of, 368
general asymptotic expansion of, 366
inequalities satisfied by, 372
integral equation satisfied by, 240
integral properties, 367
integrals involving, 370
integrals representing, 370
properties when n is an integer, 367, 370, 372
recurrence formulae, 367
relations between different kinds of [Dn(z) and

D−n−1(±iz)], 365
zeros of, 372

Parallelogram of periods, 452
Parameter

change of (method of solving Mathieu’s
equation), 446

connected with theta-functions, 487, 488
formula for addition of, 552
formula for interchange with argument, 551
of a point on a curve, 464, 523, 555, 560, 563
of members of confocal systems of quadrics, 578
of third kind of elliptic integral, 551
thermometric, 427

Partial differential equations, property of, 411, 412
see also Linear differential equations

Partition function, 486
Parts, real and imaginary, 8
Pearson’s function [ωn,m(z)], 370
Period-parallelogram, 452

fundamental, 452
Periodic coefficients, equations with (Floquet’s

theory of), 434
Periodic functions [Dn(z)]
see also Fourier series and Doubly periodic

functions
Periodic functions, integrals involving, 111, 266
Periodic solutions of Mathieu’s equation, 428
Periodicity

factors, 487
of elliptic functions, 451, 456, 504, 526, 529, 530
of theta-functions, 487

Periodicity of circular and exponential functions,
619–621

Periods of elliptic functions, 451
qua functions of the modulus, 510, 525, 527, 549

Phase, 9
Pincherle’s functions (modified Legendre

functions), 353
Plana’s expansion, 147
Pochhammer’s extension of Eulerian integrals, 266
Point

at infinity, 101
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limit-, 11
representative, 8
singular, 201, 210

Point at infinity
for an equation, 209

Poles of a function, 100
at infinity, 102
irreducible set of, 452
number in a cell, 452
relations between zeros of elliptic functions and,

454
residues at, 454, 531
simple, 100

Polygon, (fundamental) of automorphic functions,
478

Polynomials
expressed as series of Legendre polynomials, 324
of Abel, 370
of Bernoulli, 126
of Legendre, see Legendre polynomials
of Sonine, 370

Popular conception of an angle, 623
of continuity, 40

Positive integers, 3
Power series, 28

Abel’s theorem, 55
circle of convergence of, 28
continuity of, 55
identically vanishing, 56
Maclaurin’s expansion in, 92
radius of convergence of, 28
series derived from, 29
Taylor’s expansion in, 91
uniformity of convergence of, 55

Prime number theorem, xliv
Principal

part of a function, 100
solution of a certain equation, 507
value of an integral, 72, 116
value of the argument of a complex number, 9,

622
Principle of convergence, 12
Pringsheim’s theorem on summation of double

series, 26
Products of Bessel functions, 398, 399, 403, 405,

450
of hypergeometric functions, 310

q-series, l
Quarter periods

see also Elliptic integrals
Quarter periods K , iK ′, 504, 525, 527
Quartic, canonical form of, 541

integration problem connected with, 475, 540
Quasi-periodicity, 467, 470, 487
Quaternion, 7
Quotients

of elliptic functions (Glaisher’s notation), 520,
539

of theta-functions, 502
Radius of convergence of power series, 28, 29
Rational functions, 104

expansions in series of, 134
Rational numbers, 3
Rational-real numbers, 5
Real functions of real variables, 54
Real numbers, rational and irrational, 5
Real part (R) of a complex number, 8
Reality of characteristic numbers, 235
Rearrangement

of convergent series, 23
of double series, 26
of infinite determinants, 35
of infinite products, 31

Reciprocal functions, Volterra’s, 226
Reciprocals of elliptic functions (Glaisher’s

notation), 539
Recurrence formulae

for Bessel functions, 377, 392
for confluent hypergeometric functions, 369
for Gegenbauer’s function, 347
for Legendre functions, 322, 323, 333
for Neumann’s function, 394
for parabolic cylinder functions, 367
see also Contiguous hypergeometric functions

Region, 42
Regular, 82

distribution of discontinuities, 220
integrals of equations of third order, 218
integrals of linear differential equations, 208
points (singularities) of linear differential

equations, 204
Relations

between Bessel functions, 378, 389
between confluent hypergeometric functions

W±k ,m(±z) and Mk ,±m(z), 363
between contiguous hypergeometric functions,

307
between elliptic functions, 474
between parabolic cylinder functions Dn(±z) and

Dn−1(±iz), 365
between poles and zeros of elliptic functions, 454
between Riemann zeta-functions ζ(s) and

ζ(l − s), 280
see also Recurrence formulae

Remainder after n terms of a series, 14
in Taylor’s series, 94

Removable discontinuity, 41
Repeated integrals, 65, 73
Representative point, 8
Residues, 110–124

defined, 110
of elliptic functions, 447, 524

Riemann hypothesis, see Hypothesis of Riemann
on zeros of ζ(s)

Riemann surface, 506
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Riemann’s
associated function, 188, 189, 191
condition of integrability, 59
equations satisfied by analytic functions, 83
hypothesis concerning ζ(s), xxxvi, xxxix, 283,

292
lemmas, 177, 189, 191
P-equation, 214, 295, 304, 307
transformation of, 215
see also Hypergeometric functions

theorem on trigonometrical series, 191
theory of trigonometrical series, 187–193
Zeta-function, see Zeta-function, ζ(s), ζ(s,a),

(of Riemann)
Riemann’s zeta-function, see Zeta-function of

Riemann
Riesz’ method of ‘summing’ series, 159
Right (R-) class, 4
Rodrigues’ formula

for Legendre polynomials, 317
modified, for Gegenbauer’s function, 346

Roots of an equation
number of, 120
number of (inside a contour), 119, 123
of Weierstrassian elliptic functions (e1, e2, e3),

466
Schläfli’s Bessel function of the second kind,
[Yn(z)], 389

Schläfli’s integral
for Bessel functions, 380, 391
for Legendre polynomials and functions, 318,

320
modified, for Gegenbauer’s function, 346

Schlömilch’s
expansion in series of Bessel coefficients, 396
function, 369
integral equation, 238

Schmidt’s theorem, 232
Schwarz’ lemma, 192
Second kind

Bessel function of
Hankel’s, 389
modified, 392
Neumann’s, 391
Weber–Schläfli, 389

elliptic integral of [E(u), Z(u)], 545
Eulerian integral of, 250

extended, 253
integral equation of, 221, 229
Lamé functions of, 593
Legendre functions of, 331–335, 340, 342

Second mean-value theorem, 63
Second solution

of Bessel’s equation, 388, 391, 392
modified, 392

of Legendre’s equation, 331
of Mathieu’s equation, 435, 449

of the hypergeometric equation, 298
confluent form, 361

of Weber’s equation, 365
Second species of ellipsoidal harmonics, 568

construction of, 571
Section, 4
Seiffert’s spherical spiral, 556
Sequences, 10

decreasing, 11
increasing, 10

Series
of variable terms

see also Uniformity of convergence
summable (C1), 158
summable (Cr), 159
summable (Rr), 159
summable (B), 142
see also Asymptotic expansions, Convergence,

Expansions, Fourier series, Trigonometrical
series and Uniformity of convergence

Series (infinite series), 13
absolutely convergent, 17
change of order of terms in, 23
conditionally convergent, 17
convergence of, 17
differentiation of, 29, 77, 90
divergence of, 13
geometric, 17
integration of, 29, 77
methods of summing, 158–159
multiplication of, 27, 55, 57
of analytic functions, 89
of cosines, 169
of cotangents, 140
of inverse factorials, 143
of rational functions, 134
of variable terms, 43
order of terms in, 23
remainder of, 14
solutions of differential and integral equations in,

201–209, 237
Taylor’s, 91

Set, irreducible (of zeros or poles), 452
Sigma-functions of Weierstrass [σ(z), σ1(z), σ2(z),

σ3(z)], 470
addition-formula for, 474, 484
analogy with circular functions, 469
duplication formulae, 482, 484
expression of elliptic functions by, 473
four types of, 470
quasi-periodic properties, 470
singly infinite product for, 470
theta-functions connected with, 470, 498, 512
three-term equation involving, 484
triplication formula for, 482

Signless integers, 3
Simple curve, 41

pole, 100
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Simply-connected region, 477
Sine

see also Circular functions
Sine-integral [Si(z)], 370

-series (Fourier series), 169
Singly periodic functions

see also Circular functions
Singly-periodic functions, 451
Singular points (singularities) of linear differential

equations, 201, 210
Singularities, 82, 100, 203, 210

at infinity, 102
confluence of, 210, 355
equations with r , 217
equations with five, 210
equations with three, 214, 218
equations with two, 216
essential, 100, 102
irregular, 204, 210
regular, 204

Sinus amplitudinus, li
Solid harmonics, 413
Solitons, xxxvi
Solution of Riemann’s P-equation by

hypergeometric functions, 295, 300
Solutions of differential equations, see Chapters 10,

18, 23, and under the names of special
equations

Solutions of integral equations, see Chapter 11
Sonine’s polynomial [Tm

n (z)], 370
Species (various) of ellipsoidal harmonics, 568
Spherical harmonics, 413

see also Harmonics
Spherical spiral, Seiffert’s, 556
Spheroidal harmonics, 424
Squares of Bessel functions, 398, 399

of hypergeometric functions, 310
of theta-functions (relations between), 490

Statement of Fourier’s theorem, Dirichlet’s, 164,
167, 168, 181

Steadily tending to zero, 16
Stieltjes’ theorem on zeros of Lamé functions, 591

generalised, 592
theory of Mathieu’s equation, 439

Stirling’s series, 262
Stirling’s series for the Gamma-function, 261
Stokes’ equation, 211
Stolz’ condition for convergence of double series,

25
Strings, vibrations of, 163
Successive substitutions, method of, 230
Summability, methods of, 157–159

of Fourier series, 174
uniform, 159

Summable (C1), 158
Summable (Cr), 159
Summable (Rr), 159
Summable (B) series, 142

Surface harmonic, 413
Surface, modular-, 40
Surfaces, nearly spherical, 349
Sylvester’s theorem concerning integrals of

harmonics, 421
Symmetric nucleus, 231, 237
Tabulation

of complete elliptic integrals, 546
of Gamma-functions, 262

Tabulation of Bessel functions, 397
Taylor’s series, 91

failure of, 98, 109
remainder in, 94

Teixeira’s extension of Bürmann’s theorem, 131,
133

Telegraphy, equation of, 408
Tesseral harmonics, 413

factorisation of, 567
Tests for convergence, see Infinite integrals, Infinite

products and Series
Thermometric parameter, 427
Theta-functions [ϑ1(z), ϑ2(z), ϑ3(z), ϑ4(z) or ϑ(z),

θ(u)], 486–516
abridged notation for products, 492
addition-formulae, 491
connexion with sigma-functions, 498, 512
duplication formulae, 513
expression of elliptic functions by, 498
four types of, 487
fundamental formulae (Jacobi’s), 491, 514
infinite products for, 493, 498
Jacobi’s first notation, θ(u) and H(u), 504
multipliers, 487
notations, 512
parameters q, τ, 486
partial differential equation satisfied by, 494
periodicity factors, 487
periods, 487
quotients of, 502
quotients yielding Jacobian elliptic functions,

503
squares of (relations between), 490
transformation of

Jacobi’s imaginary, 124, 499
Landen’s, 501

triplication formulae for, 516
with zero argument (ϑ2, ϑ3, ϑ4, ϑ′1), 495
zeros of, 489

Third kind of elliptic integral, Π(u,a),, 551
a dynamical application of, 552

Third order, linear differential equations of, 218,
310, 440, 450

Third species of ellipsoidal harmonics, 568
construction of, 572

Three kinds of elliptic integrals, 542
Three-term equation involving sigma-functions,

484
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Total fluctuation, 54
Tracy–Widom distribution, xlvii
Transcendental functions, see under the names of

special functions
Transformations of elliptic functions and

theta-functions, 535
Jacobi’s imaginary, 499, 532, 533, 547
Landen’s, 501, 534
of Riemann’s P-equation, 215

Trigonometrical equations, 621, 622
Trigonometrical integrals, 111

and Gamma-functions, 265
Trigonometrical series, 163–200

convergence of, 164
Riemann’s theorem, 191
Riemann’s theory of, 187–193
values of coefficients in, 167
which are not Fourier series, 163, 167
see also Fourier series

Triplication formulae
for Jacobian elliptic functions and E(u), 559, 565
for sigma-functions, 482
for theta-functions, 516
for zeta-functions, 482

Twenty-four solutions of the hypergeometric
equation, 296, 298

relations between, 300, 303
Two variables, continuous functions of, 64

hypergeometric functions (Appell’s) of, 312
Types of ellipsoidal harmonics, 568
Ulam problem, xlvi
Unicursal, 477
Uniformisation, 477

of curves of higher genus, l
Uniformising variables, 477

associated with confocal coordinates, 580
Uniformity

concept of, 51
of continuity, 52
of summability, 159

Uniformity of convergence, 40–57
condition for, 44
defined, 43
Hardy’s test for, 48
of Fourier series, 183–185
of infinite integrals, 68, 70, 71
of infinite products, 47
of power series, 55
of series, 43
Weierstrass’ M-test for, 47

Uniformly convergent
infinite integrals, properties of, 71
series of analytic functions, 89, 90

differentiation of, 90
Uniqueness

of an asymptotic expansion, 157
of solutions of linear differential equations, 203

Upper bound, 53
Upper integrals, 58
Upper limit

integral equation with variable, 221, 229
to the value of a complex integral, 76, 89

Value, absolute
of ζ(s) for special values of s, 278, 280
of K , K ′ for special values of k, 550, 553, 554
of Jacobian elliptic functions of 1

2 K , 1
2 iK ′,

1
2 (K + iK ′), 526, 533, 534

of particular hypergeometric functions, 293, 305,
310, 315

of the argument of a complex number, 9, 622
of the coefficients in Fourier series and

trigonometrical series, 167, 168, 171, 179
see also Modulus

Vanishing of power series, 56
Variable terms (series of), see Uniformity of

convergence
Variable upper limit, integral equation with, 221
Variable, uniformising, 477

upper limit, integral equation with, 229
Vibrations

of air in a sphere, 420
of circular membranes, 417
of elliptic membranes, 426
of strings, 163

Volterra’s integral equation
reciprocal functions, 226

Wave motions, equation of, 408
general solution, 418, 423
solution involving Bessel functions, 418

Weber’s Bessel function of the second kind [Yn(z)],
389

Weber’s equation, 211, 213, 216, 359, 365
see also Parabolic cylinder functions

Weierstrass’
factor theorem, 138
M-test for uniform convergence, 47
product for the Gamma-function, 243
theorem on limit points, 11

Weierstrassian elliptic function [℘(z)], 451–485
Abel’s method, 464
addition-theorem for, 462
analogy with circular functions, 460
definition of {℘(z) − er }

1
2 , 473

differential equation for, 458
discriminant of, 467
duplication formula, 463
expression of ℘(z) − ℘(y) by sigma-functions,

473
expression of elliptic functions by, 471
half-periods, 466
homogeneity properties, 461
integral formula for, 459
integration of irrational functions by, 475
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invariants of, 458
inversion problem for, 510
Jacobian elliptic functions and, 532
periodicity, 456
roots e1, e2, e3, 466
see also Sigma-functions of Weierstrass [σ(z),

σ1(z), σ2(z), σ3(z)] and Zeta-function,
ζ(z), (of Weierstrass)

Whittaker equation, xliv
Whittaker functions, xliv

see also Confluent hypergeometric functions
Wronski’s expansion, 149
Zero argument, theta-functions with, 495
Zeros of a function, 92

at infinity, 102
connected with zeros of its derivative, 120
irreducible set of, 452
number of, in a cell, 452
order, 92
poles (relation between), 454
simple, 92

Zeros of functions
Bessel’s, 379, 385, 397, 400
Lamé’s, 589, 591, 609
Legendre’s, 317, 331, 352
parabolic cylinder, 372
Riemann’s zeta-, 279, 280, 283, 292
theta-, 489

Zeta-function, Z(u), (of Jacobi), 546
addition-formula for, 547
connexion with E(u), 547
Jacobi’s imaginary transformation of, 547
see also Jacobian elliptic functions

Zeta-function, ζ(s), ζ(s,a), (of Riemann), xxix,
xxxii, xxxix, 276–292

Euler’s product for, 282
generalised by Hurwitz), 276
Hermite’s integral for, 280
Hurwitz’ integral for, 279
inequalities satisfied by, 285, 286
irrational values, xl
logarithmic derivative of, 290
multiple values, xxxix
Riemann’s hypothesis concerning, 292
Riemann’s integrals for, 277, 283
Riemann’s relation connecting ζ(s) and ζ(1 − s),

280
values of, for special values of s, 278, 280
zeros of, 279, 280, 283, 292

Zeta-function, ζ(z), (of Weierstrass), 467
addition-formula, 468
analogy with circular functions, 468
constants η1, η2 connected with, 468
duplication formulae for, 482
expression of elliptic functions by, 471, 472
quasi-periodicity, 467
triplication formulae for, 482

see also Weierstrassian elliptic functions
Zonal harmonics, 316, 413

factorisation of, 567
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