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Foreword

The present supplement to C.G.J. Jacobi’s collected works contains the
second revised edition of the “Lectures on Dynamics” edited by A. Cleb-
sch in 1866 without the five treatises from Jacobi’s literary estate added
to them at that time. According to the plans drawn up for the publica-
tion of Jacobi’s collected works the latter along with the major treatise
“Nova methodus aequtionen differentiales partiellen primi ordinus inter
numerum variabilium quemcunque propositas integrandi”’ (New meth-
ods for the integration of first order partial differential equations of any
number of variables), also edited by Clebsch, and a few other shorter
works will form the contents of the fifth volume.

As has been remarked in the preface to the first edition of the “Lec-
tures”, they are based on the notes prepared with great care nad accu-
racy by C. W. Borckhardt who attended the lectures given by Jacobi
at the University of Kénigsberg in the winter semester of 1842-43. The
changes made by Clebsch in the edition of Brochardt’s text are minor.
Also Mr. E. Lottner, the publisher of the new edition, has only made
slight stylistic changes in certain places where the expressions were not
precise or sufficiently clear, and for the rest has confined himself to cor-
recting a few printing and computational errors remaining in the first
edition.

15 March 1884 Weierstrass

(Translated by Balgangadharan. Revised by B.Banerjee)

Note (B. Banerjee)

We have translated some of Jacobi’s expressions as they were in his time
to retain the flavour of the original. They are:

1. vis viva(lebendige Kraft) stands for twice the kinetic energy.
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2. Force function (Kraftfunction) stands for potential or potential
energy.

3. The principle of conservation of surface area (Das Princip der Er-
haltung der Flachenridume) stands for the principle of conservation
of angular momentum.



Lecture 1

Introduction

These lectures will be concerned with the advantages which, for integrat-
ing the differential equations of motion, one can derive from the special
form of the equations. In ‘Mécanique analytique’ one finds everything
related to the problems of setting up and transforming the differential
equations, but very little on their integration. This problem is seldom
posed; the only one that can be considered to be in that direction is the
Method of Variation of Constants — a method of approximation which
depends on the special form of the differential equations that occur in
mechanics.

Among the large class of problems found in mechanics, we shall con-
sider only those which relate to a system of n mass points, i.e., of n
bodies whose spatial extension can be neglected and whose masses are
assumed to be situated at their centres of gravity. We shall further con-
sider only those problems in which the motion (of the system) depends
only on the configuration of the points and not on their velocities. Thus
all problems in which the resistance (of the medium) is to be taken into
account, are excluded.

We shall first set up the differential equations for the motion of such
a system and then list the principles which hold for the same. These
principles are:

1. The principle of conservation of motion of the centre of gravity.

2. The principle of conservation of vis viva.!

3. The principle of conservation of surface area (angular momentum).

!Translator’s notes:
(a) Jacobi uses this term for twice the “kinetic energy”i.e. for the quantity mv? (in-
stead of the presently accepted definition %mv:’ which appears to have been adopted
in the post Jacobi era. We use vis viva in the translation)
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4. The principle of least action, or as it should better be called, the
principle of least expenditure of force.

The first three principles give integrals of the system of differential
equations that have been set up. The last principle gives no integral, but
only a symbolic formula into which the system of differential equations
can be combined. However, it is not less important because of that.
Lagrange had indeed originally derived all his results in mechanics from
it. Later, when he wanted to derive them rigorously, he gave up the
principle of least action and took (first in the Paris Academy prize-essay
on the libration of the moon, and then, especially, in ‘Mécanique analy-
tique’) the Principle of Virtual Velocities as the basis for his derivations.
Thus the principle of least action, which was known as the mother of all
new results, was treated as insignificant.

I have introduced a new principle? in mechanics, which agrees with
the principles of conservation of wis viva and surface area in that it
gives an integral, but for the rest is of an entirely different character.
First, it is more general than the above principles; it holds as long as
the differential equations depend only on the coordinates. Further, the
above principles give a first integral in the form of a function of the
coordinates and their derivatives equal to a constant. That is, integrals,
from which differential equations are derived which on using the given
differential equations, become identically zero.The new principle leads,
on the basis of the earlier integrals, to the latter. According to this
principle, one can, under the supposition that a problem of mechanics
leads to a first order differential equation of two variables, in general
obtain the multiplier (integrating factor) of the same.

In the cases where the other principles reduce the problem to a first
order differential equation, it can be completely solved using the new
principle. To these belong, the problem of attraction of a point by a
fixed center3, the law of attraction being arbitrary; that of attraction of

(b) Jacobi uses the phrase “conservation of kinetic energy” for what is presently
known as “conservation of total energy”. The word ‘conservation’ in the context used
by Jacobi should be understood in the sense of ‘change in kinetic energy’= (—) change
in potential energy’. Incidently, Jacobi never uses the term “potential energy”. The
quantity U (called force function by Jacobi) is minus the quantity which is presently
called potential energy

2The principle of the last multiplier. Lecture 10 (Lecture 10-18 are devoted to a
thorough discussion of this)

3Lecture 16
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a point by two fixed centres?, it being assumed that the attraction obeys
Newton’s law and the rotation of a body about a point with no external
forces acting on it. For the problem of attraction by two fixed centres
besides the application of the older principles it is necessary to use an
integral found by Fuler by a special trick which reduces the problem to
a first order differential equation of two variables. But this equation is
very complicated and its integration is one of the great masterpieces of
Euler. The new principle yields the integrating factor automatically.

The class of problems for which both the principles of conservation of
vis viva and that of least action hold are to be specially noted. Hamilton
has indeed remarked that in this case one can reduce the problem to a
first order non-linear partial differential equation. If one finds a com-
plete solution of the same, then one obtains all the integral equations®.
Hamilton calls the function defined by the partial differential equation
the characteristic function.

Hamilton has made this nice connection that he had discovered
rather inaccessible and obscure, in that he makes the characteristic func-
tion depend at the same time on a second partial differential equation.
The addition of this consideration makes the discovery unnecessarily
complicated, since a more detailed investigation® shows that the second
partial differential equation is completely superfluous.

We shall, for distinguishing, introduce the following terminology. We
shall call the integrals of ordinary differential equations ‘integrals’ or ‘in-
tegral equations’ and the integrals of partial differential equation ‘solu-
tions’. Further, for a system of differential equations we shall distinguish
between ‘integrals’ and ‘integral equations’. ‘Integrals’” are the first in-
tegrals which have the following form: a function of the coordinates and
their derivatives equal to a constant and whose differential coefficient
becomes identically zero on using the given system of differential equa-
tions, without the help of any other integrals. The rest of the ‘integrals’
are called integral equations. In this sense, the principles of conservation
of vis viva and surface area give integrals and not integral equations.

Through Hamilton’s discovery the system of integral equations of
mechanical problems has taken a very remarkable form. Namely, if

4Lecture 29

*Translator’s note: The term “integral equation” as used by Jacobi is defined
in footnote 9. In English “integrated equations” would have been more appropriate.

6See last part of Lecture 19

"Integrals are a non-parameter family of invariant submanifolds of the vector fields,
of codimension
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one differentiates the characteristic function with respect to the ar-
bitrary constants which it contains, it then gives the integral equa-
tions of the given system of differential equations. This is analogous
to Lagrange’s theorem which states that the differential equations of a
problem for which the principle of least action is valid, can be repre-
sented by the partial differential coefficients of a single function. Al-
though Hamilton has given the form of the integral equations in ques-
tion, which he obtains by means of the characteristic function, he has
done nothing about actually finding them. We shall be concerned with
this here, and by means of the results so obtained, handle the prob-
lems of attraction by a fixed centre, and by two fixed centres, and
the motion of a point not subject to gravity on the tri-axial ellip-
soid® (Its solution coincides with the finding of the shortest line on the
ellipsoid).

The connection discovered by Hamilton also leads to new conclu-
sions on the method of variation of constants. This method rests on
the following: the integrals of a system of differential equations of dy-
namics contain a certain number of arbitrary constants, whose values
are determined in each special case by the initial positions and initial
velocities of the moving points. Now if the points collide during their
motion, then only the values of the constants change, the form of the
integral equations remain the same. For example, if a planet moves in
an ellipse around the sun, and during the motion undergoes a collision,
it will then move in a new ellipse, or perhaps in a hyperbola, in any
case in a conic section, the form of the equation remains the same. If
such collisions occur not momentarily but continuously, one can then
look on the constants themselves as changing continuously, and indeed
whether these changes precisely represent the action of the perturbing
force. This theory of variation of constants will appear in a new light in
the course of our investigations®.

The principle of conservation of vis viva embraces a large class of
problems to which, notably, the problem of three bodies belongs, or more
generally, the problem of motion of n bodies with mutual attraction'®.

The more one enquires into the nature of forces, the more one re-
duces everything to mutual attractions and repulsions, and therefore the
problem of determining the motion of n bodies with mutual attraction

8Lecture 28
9Lecture 36
10 ecture 2
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becomes more important. This problem belongs to the category of those
where our theory is applicable, that is, which reduces to the integration
of a partial differential equation. Hence one recognises the necessity of
studying partial differential equations but for 30 years'! one has been
concerned with only linear partial differential equations; while nothing
has happened in the non-linear case. Lagrange had already solved the
problem for three variables!?. For more variables Pfaff has carried out
a creditable but incomplete investigation. According to Pfaff, for the
solution of partial differential equations one must first integrate a sys-
tem of ordinary differential equations. After integrating these one has to
pose a new system of differential equations which contains two variables
less; these have to be further integrated, and so on, and then finally one
arrives at the integration of the partial differential equation. Hamilton
subsequently has, through his reduction of the differential equations of
motion to a partial differential equation, transformed the problem to a
more difficult one. Because, according to Pfaff, the integration of partial
differential equations requires the integration of a series of systems of
ordinary differential equations, while the problem of mechanics requires
only the integration of one system of ordinary differential equations.
Therefore the inverse reduction would be here of greater importance,
whereby a partial differential equation is reduced to a system of ordi-
nary differential equations. The first system of Pfaff agrees with that to
which mechanics leads, and it can be shown that the rest of the system
can be dispensed with. Thus as in this case the reduction of a problem
to another frequently inverts itself-the progress of science transforms
the first into the second and the other way round. In such transforma-
tions it is important that the connection between the two problems is
demonstrated. The connection in question allows us to recognise that
every progress in the theory of partial differential equations must lead
to progress in mechanics.

A deeper study of the differential equations of mechanics shows that
the number of integrations can always be reduced by half, while the other
half can be dealt with by quadratures. There is a remarkable theorem
which states that there is a qualitative difference between the integrals.
Namely, while certain integrals have no more significance than quadra-
tures, there are others which taken together hold for all the remaining.

1 The lectures were given in the winter of 1842-1843
121 ecture 22
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This theorem can be stated as follows!3: if one knows, besides the in-
tegral given by the principle of conservation of ‘vis viva’, two more in-
tegrals of the dynamical equations then one can find a third from these
two. An example of this is the so-called area-theorems with regard to
the three coordinate planes: if two of these hold,!* then the third one
can be derived from them.

If in accordance with the general theorem introduced, one finds from
two integrals a third one, then one can find a fourth from this and one
of the earlier ones and so on until one comes back to one of the given
integrals. There are integrals which, with these operations, exhaust the
whole system of integral equations, while for others the cycle breaks off
earlier. This fundamental theorem has been found and lost for the last
30 years. It originates from Poisson, and was also known to Lagrange,
who used it as a lemma in the second part of ‘Mécanique analytique’
published after his death.!®> But this theorem has always been taken
to have a different significance; it was only meant to show that in an
expansion certain terms are independent of time and it was nc small
difficulty to find in this fact its present significance. In this theorem lies
the basis for the integration of first order partial differential equations.

13Gee end of Lecture 34
14Gee end of Lecture 34
15Mécanique Analytique, Section VII, 60, 61: Vol. II, pp. 70 of the third edition
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The Differential Equations of Motion

To begin with we shall consider a free! system of mass points. We call
it a system because we assume that the points are subject to external
forces not independently of one another, in which case one could con-
sider each point by itself, but as they act mutually on one another one
cannot consider any one without considering the others.Further, the sys-
tem is a free one, i.e., one in which the points follow the action of the
forces unhindered. Let any point of the system have a mass m, and its
rectangular coordinates at time ¢ be x, y, z and the components of the
force acting on it X, Y, Z; then one has the well-known equation of
motion: 2 2 2
mﬁf = X, mEt—:;/ =Y, 2z _

Similar equations hold for all points of the system. X, Y, Z depend
on the coordinates of all n points and can also contain their derivatives
with respect to time ¢, which is always the case when the resistance is
to be taken into account.

The above differential equations of motion can be brought into an
extremely convenient symbolic form, if one multiplies each of them, after
having making the right hand side zero, by arbitrary factors and adds
the products. One then obtains the equation

d’z d%y d%z
(magz = X)2+ (g =Y )+ (mgs = 2)v 4 =0,
where the .- refer to similar terms which arise from the remaining

points of the system. If one demands that this equation hold for all

!Translator’s note: The term ‘free’ used by Jacobi should be understood in the
sense of ‘unconstrained’.
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values of the quantities A, u, v, ..., then it represents the entire system
of differential equations above. For the sake of clarity we shall denote
the factors A, u, v,..., with éx, dy, dz,..., where the z, y, z,..., are
regarded purely as indices. Our symbolic equation thereby becomes

S {(m5 - X)ss+ (S —¥)sy+ (mEz - 2)52} <o

where the summation refers to all points of the system. This equation
must hold for all values of éz, dy, dz,...,. The symbolic representation
is in itself very important; it will frequently be the case that a symbol
is considered as a quantity and computations and operations performed
with it as is usual with quantities. We shall have examples of this later.

A special treatment is possible in the case in which only attractions
by a fixed centre or the attractions of points among themselves are to
be considered. In these cases the components X, Y, Z,..., can be
represented as partial derivatives of one and the same quantity. Lagrange
has made the important remark that if one connects a fixed point with a
moving one, the cosines of the angles which this line makes with the three
coordinate axes are the partial derivatives of a quantity, the distance
between the two points. Let the fixed point have coordinates a, b, ¢, the
moving point x, y, z, and let the radius vector joining the points be 7;
one draws through the fixed point (a, b, ¢) three straight lines parallel to
the coordinate axes towards their positive ends. Let the angles which
the radius vector makes with these lines be a,3,7. Then one has the
following equations:

= (-0 + (y -0+ (2 - )%

or x—a or x-b or zT—c
= =cosqa, — = =cosf3, — = = CcoS 7.
r

dr oy 0z r

If now R is the force with which the point (z,y, z) is attracted by the
point (a,b,c), then the components which act on the point (z,y, 2) in
the positive direction of the coordinates are:

or or or
_Ra_fﬂ’ —R_az7 _R5;7
of if we set [ Rdr = P,
_op _op oP

0z’ 0Oy 0z
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These components are thus the partial differential coeflicients of a quan-
tity —P. This holds also for the mutual attraction of two points p and
p1. Let their coordinates be z,y, z and 1, y1, 21, and their distance r;
then

rP=(z-2)’+@y-n)+(E-2a)
Let R be the force of attraction between p and p;; then the components
acting on p are —RZL b —RZ ay, R% and the components acting on p;

are —R2r- v o —R2 ay , —-R2- az , which are respectively equal and opposite
since

or zx—u1 or -1
o r  0r r
or _ _ Or _ _Or or _ _or sos
SO o5 = a1 and so also y = =% b5 = 0 If one again introduces
P= /R dr,

then the components acting on p are —%Z—, ~%§, ——%% and the compo-

: aP aP apP
nents acting on p; are ~ 8z "oy da
Let us now consider n mass points which attract one another.
Let their masses be mi,ms,...,my, their coordinates xz1,y1,21;
T2,Y2, 22, - - s Tn,Yn, 2n; let the distance between m; and mo be denoted
by r12 and the integral of that function of 712 which expresses the at-
traction between the two points be denoted by P2, where one has to
consider the product of the masses m; and my as a factor entering into
(For Newton’s law, for example, Pio = —™122.) These being as-
sumed the component of the force which acts on the point m; in the
__0(P124+P13+-+P1p)
direction of the z-coordinates is REn , and similarly for
the two other components. So one has, for the point my,

d?z;  O(Pia+---+ Pi)

™M T 11
d2y1 _ a(Plg + -+ Pln)
mq = — y
dt? 8y1
d221 B(Pm +-- Pln)
mi = — .
dt2 621

Similar equations hold for the remaining points of the system; for the
point mg, for example, the quantity enclosed in brackets, whose differ-
ential coefficient is taken, equals Po; + Po3 + - - - + Pa,. These quantities
P have however the property that each one of them depends only on the
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coordinates of the two points whose indices are attached to it. Hence, on
differentiation with respect to zi,y1, or 21, the differential coefficients
of Pa3, Pos, ..., Pon, Ps34,...,Py_1, vanish and only the differential co-
efficients of Pjo, Pi3,..., Pi, remain. Thus, the differential equation
relating to the first point remains entirely unchanged if on the right side
one introduces for the sum P35 + Pi3 + --- + Pj, in brackets, all the
remaining P’s. A similar change can be made also in the quantity en-
closed in brackets in the other differential equations, and then one has in
the differential equations of the entire system the differential coefficients
of one and the same quantity:

U=—(Pi2+Pis+-+Pin+Ps+--+Pon+-+Pr_1n)
In this manner we have, for any point of the system, the equations

dQIEi oUu dzyi oU dQZi oU

mi—at = — — = My = —.
VdZ T oz aer oy di2 | 0z

This observation, that one can introduce the same quantity U in all the
equations appears very simple; however overlooking this fact had pre-
vented Euler from arriving at the generality of Lagrange’s results. Fuler
knew the principle of conservation of vis viva only for the attraction by
fixed centres. At the end of Nova methodus inveniendi curvas mazimi
minimive proprietate gaudentes, Euler has in Appendiz de motu projec-
torum contented himself with very incomplete expressions for the differ-
ential equations for mutual attraction. Daniell Bernoulli was the first
to observe this in his paper communicated to the Philosophical section
of the Berlin Academy? and thereby gave the principle of conservation
of vis viva its true significance. Lagrange then used the observation for
the problem which Euler had posed in the essay‘de motu projectorum
and thereby arrived at his principal result.

The expression U was retained by Hamilton under the name force
function. The partial differential coefficient of this expression with re-
spect to a coordinate of one of the n masses under consideration gives
the force with which this mass is attracted by the other masses in the
direction of that coordinate.

For the Newton’s law of attraction, the force function will be

m;m;
U= E 2

Tiiy

2Men. de 'acad. de Berlin, 1748
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and for the case of three bodies,

U= mi1ma + mimsg + m2m3.
T12 T13 T23

In the theory of transformation of the differential equations of motion

into a partial differential equation of the first order, one has always

to deal only with the force function; hence its introduction is of the

greatest importance. For the time being we shall use it equally well for

the concise representation of the equations.

It is of interest to clarify as to how much the limits of the mechanical
problems can be extended, without giving up the introduction of the
force function.

It is not necessary to assume that the law of attraction between any
two mass points is the same for all pair of points. On the contrary one
can make any arbitrary assumption about the force, provided the attrac-
tion depends only on the distance and any of the masses m; is attracted
by another mass m;, with the same force as m;, by m;. This remark
about the extension is not without use. For example,Bessel has raised
the question whether in the universe the same law of attraction holds
between any two bodies, not that the function of the distance between
the two bodies changes but that a body in the solar system, e.g. the
sun itself, attracts Saturn with a different mass from the one with which
it attracts Uranus. This hypothesis will not disturb the introduction of
the ‘force function’. Besides the mutual attraction between the masses,
attraction by fixed centres can also enter the problem. One can even
assume a mathematical fiction, that each one of the fixed centres does
not act on all the masses, but only on one or on a certain number of
them. If, for example, the mass m; is attracted by a fixed centre of mass
k with coordinates a, b, ¢, then if Newton’s law holds the term

kml
V(@1 —a)? + (y1 = b)2 + (21 ~ ¢)?

appears in the force function, and one obtains similar terms for the other
masses of the system if the fixed centre k acts on them. Finally, constant
parallel forces, which again need not act on all the masses can appear. If,
for example, a constant force (like gravity) acts on the mass m;, whose
components along the directions of the coordinate axes are A, B,I', then
there appears in the ‘force function’ U the term Ax; + By; + I'z;, and
similar terms for the other masses of the system, if the constant forces
A, B,T or others act on them. It is also to be remarked in the case of




Lectures in Dynamics 12

fixed centres of attraction that if they act on all the masses occurring
in the problem, obviously-as it always happens in nature, one can look
upon these as moving masses. Hereby several redundant terms occur in
the force function, namely those which express the mutual attraction of
the fixed centres; however these terms are pure constants and vanish by
every differentiation.

The symbolic form into which the differential equations of motion
have been brought was:

Z{(mz% —Xi)533i + (mz% - Yi)5yi

+(mi% - Zi)52i} =0,

which we can write better as

2. 2
Z m; ((2;’ dxi+ Cizt% dyi+ (iizz 5Zi) = Z (Xi593i+Yi5yi+Zi5Zi> (2.1)

In the case where the force function can be introduced,

oU oU oUu
Xi= y Yi=—, Zij=_—,
oz; Y, Byi 0z

and therefore

Zm(dwlé +dy15 i 5)

dt? dt? dt?
BU 8U oUu
In this equation here, as in the above, the dx;,... are to be looked

upon as arbitrary factors, which can take every value, and the z;’s as
their indices. However, if one considers for a moment 8x;, dy;, 02 as
infinitesimal increments of x;, y;, 2;, then by the rules of the differential
calculus, the right side of the last equation would be

Z (aU(s:L‘i + aU(Syi + g—Z

and thus one has

d?z; d*y; 4?2 |
Zmi { ) ox; + ) oy; + ) 6zi} =6U (2.3)
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Here 6U is provisionally to be seen only as an abbreviation for the sum
(2.2) and agrees with the same only when one looks upon 4 as an in-
finitesimally small increment. Although this notation has a meaning
only when the force function exists, one has so far applied it profitably
in many cases to the equation (2.1), in order to make the computations
convenient. However, this can happen only under the proviso that one
substitutes the partial differential coefficients 6U in the expansion of 6U
by X;. Hereby as a rule one arrives at the rlght results, when one has
to do with only linear substitutions. This is the bold step that Lagrange
has taken in his Turin memoir, indeed, without justifying it.

The notation 06U is very advantageous if one introduces the

3n new variables qp,...,qs, for the coordinates xi, y1, z1; T2, Yo,
22, -+ Zn;Yn, 2n. One needs only to introduce these new variables in
U and expand according to the rules of the differential calculus:
ou ou ou
0U = 7—0q1 + 7—0g2 + - + 5—0gsn,
oq 0q2 Oq3n
However, simultaneously one must set
ox; ox; 8 ox;
dq1 . “0q3n = ) 7—0q
oq1 9q2 8 q3n " A 0gs °
for éz;. The correctness of this assertion can be seen in the following
way.
The 3n differential equations of motion are

d%z; ou d?y; OU d?z;, 8U

MR T on "aE oy ™R T o
where i takes all values from 1 to n, 1 and n included. If one multiplies

these 3n equations by qu gq%, g;;, respectively and adds, then one has

Zm' d%z; Ox;  d*y; Oy; 4 d*z; 0z _ 8_U
Y| dt? Ogr  dt? Oqr  dt? Oqr | T Ogqr’

One obtains 3n such equations in which one inserts for g all the g
one after another. These 3n equations represent completely the orig-
inal system of equations, so that one can always substitute the one
for the other. If we multiply the last system by arbitrary constants
0q1,0q2,...,0qs,...,0q3n, and add, then we obtain a new symbolic equa-
tion, which replaces the last system of differential equations, and there-
fore the earlier one, completely.
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This symbolic equation, then, is
d%z; Ox;  d%y; Oy d2z; Oz ou
S m {ftn s Sud, Ladnls, 52 s,
—~ % dt? 9qs  dt? 8qs; = dt? Og g,
or, if one carries out the summation on the left side in the reverse order,

d1 81 dz 82
Z{xzx dtg a_gséqs

2

d Z5 Bzi } oU
= 5(]3

a2 2 5g,°% 905

This equation is the same 1nto which (2.3) goes over if one substitutes
for 6U, Z (5q3 and Zs 5e-00s, s ggféqs,zs g—;ﬁidqs respectively for
éxi, 0y, 521 " With this, the rule given above for the substitution of
new variables is proved. In the transformed equations again the dq, are
to be considered further as independent quantities and the transformed
symbolic equation decomposes also into the given second system of 3n
equations.

But the importance of our symbolic equations (2.1) and (2.3) does
not lie in these computational advantages. The true significance of this
representation consists much more in that it can be preserved when
the system is no longer free, but equations of constraint which express
the connections between the points, enter. However, then, the varia-
tions are no more to be treated as entirely arbitrary and independent of
one another, but as wvirtual variations, i.e., such as are consistent with
constraints. If we take, for example, that there are three equations of
constraint:

f = 07 ¢ = Oa ¢ = Oa
then the relations which should exist between the variations in order to
make them virtual, are determined through the following equations:

0f =0, d¢p=0, Y =0;

or, in expanded form:

of af af
Z (3$i5Ii + a—yiéyi + 5z (521)

o o 8¢
Z (axi&vi + 8—%5% + — B2 5z,)

oY oY oY
Z (Bzi ox; + 8_%5% + B 6z,)

H

H
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Every equation of constraint then gives a linear relation between the 3n
variations ..., dx;, 0y;, 02;, .... If one has m equations of constraint, and
therefore m relations between the variations, then one can express all
the variations through 3n —m of them and obtain, through substitution
of these, our symbolic equation free of m variations. But the elimination
of m variations will be extremely complicated. Lagrange has found an
expedient for dealing with this difficulty by introducing a system of
multipliers.

The extension contained in the above of our symbolic equation to
a system limited by constraints is, as is self-evident, not proved, but is
only an assertion, historically speaking. It seems necessary to say this
explicitly, because although Laplace has, in “Mécanique céleste”, proved
this extension as little as it has been done here and has made only a his-
torical claim, one has always taken this for a proof. Poinsot has written a
paper® against this opinion and says there quite rightly, that mathemati-
cians delude themselves often traversing a long route, but sometimes also
on a very short one. On the long route they deceive themselves when
after very elaborate calculations they arrive at an identity and call it a
theorem. Our case is a counter-example.

It is in not all our intention to prove this extension. We would like
to look upon it more as a principle which need not be proved. This is
the point of view of many mathematicians, notably that of Gauss.*

8 Liouvilles Journal Vol. 3, p 244

“Possibly Gauss had orally asserted this to Jacobi; no written statement on this
appears to be found, at least according to the information kindly supplied by Professor
Schering.



Lecture 3

The Principle of Conservation of Motion of the
Centre of Gravity

We shall now proceed to the proofs of the general principles which hold
for the mechanical problems considered so far. The first of these is (cf.
Lecture 1) the principle of conservation of motion of the centre of gravity.

Let us first consider the simpler case in which a force function exists,
so that we have

d?z; d?y; d?z
Zml{ 72 ox; + 72 dy; + 72 521} = §U.

We shall assume that U as well as the equations of constraint depend
only on the differences of the coordinates, so that these remain the same
when one increases all the by one and the same quantity, and also this
happens for all y and all z. Then the assumption

dxy =0x9 = - =81, = A,
dy1 =0ya =+ = 0yn = i,
521=522=-~-:(52nzl/,

is one which is compatible with the equations of constraints. With these
assumptions one obtains

d xl d Ui d?z; oUu oU oUu
i = — — V. 1
Zm {dt2 dt2qu dt? } Zasz+ayi“+azi” (3:1)

The right side, however, is equal to 0. In fact, since according to our
assumption U depends only on the differences of the coordinates, one
can, if one sets

T — 2n = &1, xQ_xn:§27-"7:I;n—l_xnzgn—la
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give the quantity U, in so far as it depends on the z-coordinates, the
form

- Fl(£17 L 7§n—1)~
Then simultaneously,
U _oF  oU _9F  oU _ oF
3.’731 - 851’ 8:1:2 - 8527 7(9.’17”_.1 - 8§n_1’
U _ _9F or _OF
Ay, €y Oy Obn-1’
s that oU  oU oU oU
5z Tors T Bmy = 2wy =

and similarly
Z ayz Z azz

Accordingly our equation above reduces itself to
d Yi d2zi
Zmz{dt’é’ ettty =0
and since this equation must hold for all values of A, 4 and v, we have,
d2£L‘i dzyi d22’i
SmbE =0 Tm=o Smb=o
Let us now set

> omi=M,Y mizi=MA,Y my; = MB,» miz = MC

so that A, B, C, as is well known, are the coordinates of the centre of
gravity of the system; so one can write in place of the above equations
the following:

d’A d’B d*C
W = 0, 5o — 07 0 Oa (32)

dt? dt?
which on integration gives
A=0a0 4+ o/t, B=60 1+ 8¢t,C =+ 4+, (3.3)

i.e., the centre of gravity moves in a straight line, whose equations in
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the running coordinates A, B, C are

A-a® B-p0O (¢ —-40
o = ﬁl = ’)” ’

and it moves with a constant velocity \/a/? + 32 + 2.
In the general case in which the force function does not exist, one
has in place of equation (3.1) the following:

2, 2., 2,.
Zmi{(fitﬁz’\+cfitzz“+cfitzly}:ZX"AJFZY"“+ZZW’

and since this same holds for all values of A, u and v,

d2 . d2 . d2i
ZmiE?:ZXi,Zmi dt‘Z’ =ZYz‘,ZmidTZ=ZZi,

or, if one introduces the coordinates of the centre of gravity,

d’A d’B d*C
M—z =) XoM—m =3 YoM—z =37, (34
i.e., the centre of gravity moves as though all the forces acting on the
system can be brought to the centre of gravity by parallel translation of
themselves, and as though the sum of all the masses are located at the
centre of gravity.

If the forces parallely translated in this manner are in equilibrium in
their new positions, then

> Xi=0,) ;=0 2=0,

so no accelerating force at all acts at the centre of gravity. This occurs
when only mutual attractions act on the system, since then the action
and reaction have the same point of application and cancel themselves
out (this case has already been handled above, since, in this case a force
function always exists); however, it ceases to hold as soon as fixed centres
appear in the problem.

All that has been said up to now naturally holds only when the equa-
tions of constraint depend only on the differences of the z-coordinates,
y-coordinates and z-coordinates. One such case is the Seilpolygon,!® if
one does not take the extension of the wires into account. In order that

1A polygon made up of wires with flexible joints.
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in this case also the force function depends only on the differences of
the coordinates, the end-points of the wires should not be considered as
fixed, otherwise these points enter the problem as fixed centres. For an
entirely free system the equations (3.4) naturally hold under all circum-
stances. If there exists a force function that depends not merely on the
differences of the coordinates, which is the case when fixed centres or
constant forces exist, then in this case equations (3.4)hold, but not the
equations (3.2).

In the expression “Principle of conservation of motion of the centre
of gravity”, the word conservation derives from the fact that the motion
of the centre of gravity is expressed by the same equations as if there
were no equations of constraint. If, for example, in the Seilpolygon,
the connection between the points is fully flexible, then the equations of
motion of the centre of gravity are not altered, as they are independent
of the equations of constraint. The modification is only that the sums
3" Xi, YUY, Y Z;, take other values, as soon as the coordinates of the
individual points become different functions of time. If, moreover these
sums are constants, which is the case for example when only gravity acts
on the system, the motion of the centre of gravity is not changed at all
by the equations of constraint.



Lecture 4

The Principle of Conservation of ‘vis viva’

A hypothesis on the variations that under all circumstances is consistent
with the equations of constraint is that one sets for each value of 3

dyi
dt, 0y, = —dt, 0z = ——dt.

ViT "

If we insert these values for the variations in the symbolic equation (2.2)
of Lecture 2, which holds for the case of existence of a force function,
then 6U changes into dU and we obtain after division by dt,

Z ‘{d%idmi d%y; dy; dzzidzi} dUu
; ax; ayi _

dt?2 dt | dt2 dt | dt? dt [ dt’

. dCL‘i
Tt

dz;
5:(:,' = z

This equation admits of direct integration; its integral is

1 dx; 2 dy; 2 dz; 2

= i —= — = h 4.1

2Zm{<dt)+(dt> +<dt) U+ (4.)
where h is the arbitrary constant of integration. If we denote by ds; the

path element covered in the time dt by the element of mass m;, and its
velocity by v;, then we have

d.’E,' 2 dy,- 2 dzi 2 dsi 2 92
dt dt dt dt

and the equaiton above takes the form

1
EZmiU?:U+h'

This is the theorem of vis viva. The vis viva of a point is the square of
its velocity multiplied by its mass; the vis viva of a system is equal to
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the sum of the vis viva of the individual material points. Accordingly
equation (4.1) can be thus expressed in words: half the vis viva of a
system is equal to the force-function plus a constant.

The principle of conservation of wvis viva is, as its derivation has
shown, is independent of the equations of constraint, and herein lies the
major part of its importance. It holds as long as the force function exists.
In cases where the force-function can be introduced this principle can be
extended. Hence according to our earlier remark it was Daniel Bernoull:
who first elevated this principle to its present general significance, while
before him one knew it only for attraction by fixed centres.

One can eliminate the arbitrary constant h by subtracting the two
equations (4.1) for two different times, one from the other. Then one
arrives at the theorem: if a system moves from one position to another,
then the difference of the vis viva of the system at the beginning and the
end is equal to the difference between the values of the force function for
the same instants. The change in the ‘vis viva’ is thus dependent only
on the initial and final values of the force function: the intermediate
values have no influence. To make this clearer, we assume that a point
moves on an arbitrary curve from a given initial point to a given end-
point; if now the initial velocity is given, then the final velocity is one
and the same, whatever be the shape of the curve lying in between. The
velocity here must be measured naturally according to the actual motion
followed, in the direction of the tangent to the curve; that part of the
velocity is not to be taken into account here which is annihilated by the
resistance when the push originally given to the point does not act in
the direction of the tangent to the curve. This independence from the
form of the path followed holds also for a system. As a corollary to this,
one has the following theorem: if the motion of a system is of such a
sort that it can return to the same position, the ‘vis viva’ is the same
after returning, where it is assumed that the principle of vis viva holds
generally. The word conservation in the name of the principle derives
from this independence of the form of the path followed, or what is the
same, of the equations of constraint (since the form of the path followed
is determined by these).

The principle of conservation of vis viva has its origin in the theory
of machines, whose basis, since Carnot, is the same principle. It has
been laid down in this discipline that half the ‘vis viva’, that is %mivf,
is equal to the work done by the machine, or as one expresses in these

practical matters, %m,-v? is that which is paid to the machine. This
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happens in the following way. In the theory of machines one assumes as
a matter of principle that, if friction is disregarded, work is done only
when a mass moves in the direction of the force acting on it (and indeed
in the sense opposed to its action), while for a motion in a perpendicular
direction no work is done. One assumes further that the work done by a
machine is measured by the product of the acting force and the length
of the path travelled by the mass set in motion by the force. Pushing a
weight horizontally is not regarded as doing work, but only lifting it is
and the work of lifting is measured by the product of the weight lifted
and the height to which it has been lifted. For example, this is the work,
which a crane does.

In a system of mass points, each one of them is the point of appli-
cation of the force acting on it. In so far as this point of application is
displaced through a motion of the system, the force acting on it must
also be displaced. But the displacement of the point of application is not
in general in the direction of the force which is acting on it, but at a cer-
tain angle with it. Therefore, to obtain the work of the system one must
multiply the force not by the path described, but with the length of the
projection of the path described in the direction of the the force. The
forces ml%gl mz%—t%— mi%‘}, act at the point m;, and indeed they act
parallel to the coordinate axes. The displacement of m; in the element
of time dt is ds;, the projections of the the same on the coordinate axes
are respectively dz;, dy;, dz;, therefore the work required for the forward
motion of the point m; in the time element dt is

d2l‘i d2 d2zi
m; { 12 dz; + 72 dyz 72 dzi} ,

and for the motion of the entire system in the element of time dt the
work done is

dQIL'i d d zz 1 2
mi{ a2 4%t g o it T i}_id( m”’l)

when one obtains for the work in the time elapsed from tg to ¢,

1 2 2
5 {mivi(tﬂl) - Z mivi(tzto)} '

This half-difference of the initial and final values of the sum ) miv? is
thus the measure of the work of the system. This is the probable basis
for the name (whose origin has been much disputed) vis viva given by
Leibnitz for this sum.
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In the case where the force function is a homogeneous function, and
where one has to do with a free system, one can give a very interesting
form to the theorem of vis viva which is contained in equation (4.1). Let
U be a homogeneous function of dimension k; then it is well known that

oUu ou ou
Z(xzax Vigy T zazi)—kU.
If one has to do with a free system one can set

0r; = Tiw, Oy = yw, 02 = zw,

where w denotes an infinitely small constant, and one obtains on con-
sideration of the equation for the homogeneity of U,

oU = kUw.
Hence our symbolic equation (equation (2.2) of Lecture 2)
d’z; d%y; d%z;
> m (wi T T Yigg t AT ) = kU,

where the common factor w has been omitted. If we add to this the
equation (4.1) multiplied by 2, we get

> o (dz\' L Ay (T d2zz+ dzi\*
) dt Y g2 dt g T\

= (k+2)U + 2Zh,

or

d:c., dyz dzl _

or, also
2

1 d
5 Zmi@(xf + 92+ 22) = (k+2)U + 2h,

or, if we set :1312 + y? + z? = r;-" and multiply by 2,

i?_(_%gﬂ?) = (2k 4+ 4)U + 4h. (4.2)

The expression Y mir? can be transformed in a remarkable way, namely
so that the distances of all points from the origin of coordinates do not
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occur, but only the distances between the points and the distance of the
centre of gravity from the origin. Transformations of this sort are the
favourite formulas of Lagrange. The one in question one obtains in the
following way.

As is easily seen,

(Z mz) (Z mzxf) - (Z mixi)2 = Z mlmzf(a;f + xf, — 2x;2y)

where the sum on the right hand side is extended only over different
values of i, i/, each combination reckoned once. Similar equations hold
for y and z; if one adds all three, one has

(X m) (X mita? + 92 +2D) - (Zmiwi)Q - (Zmiyi)Q
(i) = S mame{(@i - w0)? + (- ) + (- )7,

Now one introduces, as before, the coordinates of the centre of gravity
and sets

Zmi =M, Zmiiﬂi = MA, Zmzyz = MB,Zmizi =MC;

and further denotes the distance of the points m;, my from each other
by r;; then

MY mir] - M*(A* + B>+ C%) =) mmarl. (4.3)
Here one has to substitute in accordance with what we had earlier
A=a9 +o't, B=pO gt C=~9 141,
If one introduces these substitutions and differentiates twice with respect
to time, then
d*(Y mir}) d*(3 mymar? )
e v/ _9M 2 2 02 1,1 ’
dt? (457 +r%) + Mdt?
and when one inserts this in the equation (4.2), we get
d2(2 mimi'r?i/)
dt?
or finally, when one sets 4h — 2M (o' + 32 + +'?) = 4K/, we have

a2 mimi/T?’i,)
dt?

= (2k +4)U + 4h — 2M(o® + 8% + %),

= (2k + 4)U + 4h'. (4.4)
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In the equation (4.3) the quantities r; are the radius vectors of the
material points of the system drawn from the origin of the coordinate
system, v A2 + B2 + C? is the radius vector of the centre of gravity
also measured from the origin. Therefore these quantities change as
soon as the origin is changed. The quantities r;;; on the other hand
are independent of the choice of the origin, since they are the relative
distances of any two points of the system. Let us now choose the centre
of gravity to be the origin of coordinates, so that A2 + B? + C? = 0; if
at the same time we denote thie radius vectors measured by p; from the
centre of gravity reckoned outwards, then equation (4.3) changes to

MZm,pZQ = Zmimi/r?i,. (4.5)

If one eliminates Y m;m;r2, from this equation and equation (4.3), then
it gives
Zmir? = Z mip? + M(A% + B? + C?); (4.6)

i.e., the sum Y m;r? taken for any one of the points (when it is con-
sidered as the origin) is equal to the same sum for the centre of gravity
increased by the sum of the squares of the distances of these points from
the centre of gravity multiplied by the mass of the point. Hence one
sees that > mir? is a minimum for the centre of gravity and that this
quantity increases proportionally to the square of the distance from the
centre of gravity. Y m;r? will therefore take a constant value for all
points which lie on the surface of a sphere with the centre of gravity as
centre. An analogous result holds for the plane, where the geometric
locus of the points for which 3 m;r? remains constant is a circle.

The formula (4.6) can also be independently proved. In fact if we
displace our earlier entirely arbitrary system of coordinates parallel to
itself, so that the new origin of coordinates falls at the centre of grav-
ity, and denote the coordinates in the new coordinate system of our n
material points with &,71,(1; &€2,m2,(2; - - -, &, Tn, Cn, then we have, for

any i,
zi=&+A, yi=m+B, z=G+C,

where A, B, C are defined as coordinates of the centre of gravity through
the equations

Zmi = M,Zmixi = MA,Zmiyi = MB,Zmizi = MC.
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Therefore
Z miry = Z mz; + Z miy; + Z miz}
=) mi +24) mi& + A2 mi+ Y mni+
(2B mei) + B? Z m; + Z miZ + 202 miG
+C%Y " my
Now, however,

MA=Y mzi=) m&+Y mA=Y m&+MA.

Therefore
2 mlfz = 0,

Zmﬂh‘ =0, Zmz(i = 0.

and even so

From this we obtain
S mir? =Y " mi(& + 1] + ) + M(A*+ B*+ C?),

in agreement with formula (4.6).
A similar formula holds for the differentials. From our present for-
mulae, we find the differentials

dz; = d§; + dA,dy; = dn; + dB, dz; = d§; + dC,

Zmidﬁi =0, Zmidm‘ =0, Zmz’dCz’ =0,

and from them one obtains

> mi(da? +dyf +d2f) = Y m(dE} + dnf + dC7)
+M(dA? + dB? + dC?),

or, if we divide by dt?,
S () (&) + (7)) =
S { () + (3 (&)} +
w{(@) + (@) (G} @
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i.e., the absolute vis viva of the system is equal to the relative wvis viva
of the same with respect to the centre of gravity (or, as one expresses
it, about the centre of gravity), increased by the absolute vis viva of the
centre of gravity. Therefore, the absolute vis viva of the system is always
greater than its relative vis viva about the centre of gravity.

One can introduce the relative vis viva about the centre of gravity
into the theorem of conservation of vis viva. This theorem was contained

in the equation
dzi 2
(%) }— v

s Xm () + (&)

If one transforms the left side of this equation by means of equation

(4.7), then one obtains
X () + (@) + ()]

v { (%) + (%)

oy,

However,

-] (@) + ()

which is the same as what we denoted earlier by hA’. And then, we have

S+ () ()} vem s

dt
Thus the theorem of vis viva holds for the relative vis viva about the
centre of gravity just as for the absolute, only the constant changes from
h to h’. One should however not forget that it has been assumed here
that the principle of conservation of motion of the centre of gravity holds.
Because of this assumption we can substitute of a/2 + 3’2 + 4/ for

(@) + (@) + (&)
dt dt dt /-
Moreover one could have anticipated the result (4.8). In fact, in case

the principle of conservation of motion of the centre of gravity holds,
U and the equations of constraint depend only on the differences of the

dC\ 2 1 |
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coordinates. So these expressions remain unchanged if one sets &, 7;, (;
in place of x;,y;, z;, where

=&+ A, yi=m+B, z=(G+C;

one has further

d2A d’B 2
—_— = 0’ —_— = 0’ ig f— 0;
dt? dt? dt?
therefore
d’z; _ d%¢;  d’y; _ d’n;  d?z _ d?¢;
dt2  de?’  dt2 dt2’ d? T de?
The symbolic equation

2 2 2
Zmi(ddtﬁl Sx; + ‘fit% Syi + ‘fitz’ 62;) = 0U
and the equations of constraint of the problem also hold if one substitutes
&,ni, G for x;,y;, 2, i.e., these equations hold for the relative motion
about the centre of gravity just as for the absolute. The same must
therefore be the case with the derived result- the theorem of vis viva,
where the constant of integration can change, which actually happens.

From the above discussion one sees that, if the principle of conserva-
tion of motion of the centre of gravity holds, one has to determine only
the relative motion of the system about the centre of gravity. Then one
finds the motion of the centre of gravity and one obtains the absolute
motion of the system through by a simple addition of the two motions.

The solar system provides an example of this category of problems.
But we know only its relative motion. We do not have any data to
determine the motion of the centre of gravity, since for this there must
actually exist fixed stars, which is very doubtful, and these must be so
near to us that they have, in respect of the 40 million mile long line (the
major axis of the earth’s orbit), a measurable parallax. Argelander has
in recent times sought to determine the ratio o’ : 3’ : 7/ (see equation
(3.3) of Lecture 3) i.e., the direction of motion of the centre of grav-
ity, following an idea suggested by the elder Herschel. However this
determination is based only on probabilistic grounds.

We now return to equation (4.4) which, in the case where U is a
homogeneous function of order k, contains the principle of conservation
of vis viva in the interesting form

d2(Y mimyr?))
Madt?

= (2k + 4)U + 4h'.
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Keeping in mind equation (4.5) one can write for this

d2(3" m;p?
_ﬁ%ﬁ = (2k +4)U + 44/,

where p; is the radius vectors drawn from the centre of gravity. For the
solar system, k = —1, so one has

d2(Z”Lz‘P3) /
e TV 99U 4
dt2 2 + h,

where

m;rmg
U=Y_ m—
Several remarks can be made on this equation. If the attraction were
inversely proportional, not to the square of the distance, but to the cube
of the same, one could integrate the above equation. Since in this case
k would be = —2, 2k + 4 = 0, then if one abbreviates ) mipf by R,
2

TR _ 4w

dt?
But then the solar system would break up, because a double integration
gives

R=2ht*+ "t + h",

so R tends to infinity with increasing time. Since R = Y m;p?, then
at least one body of the solar system must move to an infinite distance
from the centre of gravity.

Similar considerations show that for the actual case of the solar sys-
tem i.e., for attraction inversely proportional to the square of the dis-
tance, the constant A’ must be negative if the solar system were to be
stable. In fact so far as only attractive forces act in the solar system,
the force-function U by its nature is a positive quantity. Now Bessel
has indeed made the hypothesis that the sun exercises a repulsive force
against the comets and has related this to the phenomenon that all
comet tails are turned away from the sun. As this is not yet certain, we
will disregard this repulsive force for general considerations. Accordingly
U is definitely a positive quantity. Assuming this, we obtain through
integration of the equation

d’R
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between the limits O and ¢

dR — R = /2U+4hd

or, if o denotes the smallest value of U between the limits 0 and t,

dR

— — o> (20 + 40,

where Ry, is the value of %? for t = 0. A second integration of this
equation between the limits 0 and ¢ gives, if Ry is the value of R for
t=0,

R — Ry — Rjt > (a + 2h/)t?

or
R > Ro + Ryt + (a + 2Rr")t2.

Here « is a positive definite quantity, since U by its nature is positive.
Now if 2h’ were positive, so also would a + 2h/; then with increasing ¢,
R would increase to infinity, i.e., the solar system would not be stable;
so 2h' must be negative. But its numerical value cannot be greater than
the largest value that U takes between 0 and t; if it were otherwise, all
the elements of the integrals 2 fot (U + 2h')dt would be negative, and one

could therefore set
dR

dt
where [ is a positive quantity, namely the smallest numerical value that
U + 2h' takes between 0 and t; integration gives

— R < —28t,

R < Ry + Ryt — Bt?,

i.e., with increasing ¢, R approaches minus infinity, which is absurd since
R denotes the sum of squares. One can combine all these considerations
into the assertion that between the limits of integration U +2h’ can have
neither purely positive nor purely negative values, assuming the stability
of the solar system. U + 2h’ must then oscillate back and forth from
positive to negative, i.e., U must oscillate around —2h’. However these
oscillations of U must be contained between definite finite limits, for if
it be assumed that U becomes infinite quantity, since U = Y m’m',
this can happen only if two bodies come infinitely close. Then their
attraction would become infinitely great, they would not be able to
separate; so from that time on a definite r;y = 0, and thereby U = oo,
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so that if one integrates beyond this time, [[(U +2h/)d¢t?, and with it R,
takes an infinitely large positive value, whatever the value h’ has. So the
other bodies of the solar system must themselves be infinitely further
distant, and thereby the stability the system must be lost. U must then
make oscillations about —2h’, which are contained between two definite
finite limits, for which behavior periodic functions whose constant term
= —2h’ give an example. This will be satisfied by the formula for elliptic
motion. Here U = %, —2h' = é (except for a common constant factor
of both quantities), r must also oscillate about a, which is in fact the
case; further the expansion of % in terms of the mean anomaly must
contain the constant term é, and this too actually happens. For the
mutual attraction of two bodies negative values of h’ give the elliptic
motion, A’ = 0 corresponds to a parabolic and positive values of h’ to a
hyperbolic motion, which are also in agreement with our results.

The theorem that U oscillates about —2h’ or U + 2h’ about 0 can
be also expressed as follows: 2U + 2h’ oscillates about U; 2U + 2h/ is
according to equation (4.8), the ‘vis viva’ (about the centre of gravity);
so the value of the ‘vis viva’ must oscillate about the value of the force
function. If all the distances in the system became very large, then the
force-function becomes very small, and also the vis viva, according to
the theorem of vis viva. With this the velocities too become very small,
or the more the distances increase the smaller become the velocities.
Stability rests on this.

In this and similar considerations lies the kernel of the celebrated
investigations of Laplace, Lagrange and Poisson on the stability of the
planetary system. There exists, namely, the theorem:

Theorem 4.1 If one assumes the elements of a planetary orbit variable
and expands the major axis in terms of time, then it occurs only as an
argument of periodic functions, no term proportional to time ever occurs.

This theorem was for the first time proved by Laplace only for small
eccentricities and the first power of the masses. Lagrange extended this
to arbitrary eccentricities with one stroke of the pen!. Poisson finally
proved? that it also holds when one considers the second power of the
masses. This work is one of his finest. With the consideration of the third
power of the masses already time occurs outside periodic functions, but is
still multiplied by these; if the fourth power are taken into consideration,

l«Mem. de I'Institut, 1808
2Journal de 1’école polytechnique, cat. 15
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then ¢ occurs even without being multiplied by periodic functions. The
result for the third power still gives oscillations about a mean value, but
infinitely large for ¢ = oo; when the fourth power is considered such
oscillations do not occur at all. One arrives at similar results for small
oscillations; on consideration of the higher powers of the displacement,
one arrives here at the result that a small impulse leads, with increasing
time, always to large oscillations.

But all these results, to be precise, do not prove anything. For, if
one neglects the higher powers of the displacement, one assumes that
time is small, and one cannot derive any conclusions for large values of
t. Therefore one does not have to wonder — if for the first and second
powers of the masses time already occurs ouside the periodic functions.
For the justification for neglecting higher powers of the mass in the
expansion in terms of the mass lies in the assumption that ¢ does not
exceed a certain limit. One therefore moves in a circle.

The pendulum provides an intuitive example for this. The position
in which the sphere finds itself directly above the point of suspension
is that of an unstable equilibrium of the pendulum. One obtains here
the time outside the sine and cosine functions, and concludes from this
rightly that an infinitely small impulse gives a finite motion. But it
would be false to conclude from the circumstance that time appears
outside of periodic functions that the motion of the pendulum is not
periodic, since in the present case the sphere rotates periodically about
its point of suspension. Similarly it would be false to conclude from the
results which one obtains taking into account the higher powers of the
masses in the solar system, that it is unstable.



Lecture 5

The Principle of Conservation of Surface Area

We had made the assumption that the force function U and the equa-
tions of constraint remain unchanged if one changes all the z-coordinates
through one and the same constant, likewise all the y-coordinates
through a second and all the z-coordinates through a third, and ob-
tained the principle of conservation of motion of the centre of gravity.
This given change of coordinates comes about when one displaces the
origin, but allows the coordinate axes to remain parallel.

We shall now make another assumption: the equations of constraint
shall remain unchanged if, with the z-axis unchanged, we rotate the y
and z-axes in their plane through an arbitrary angle. If we set

Yy =rcosv, z=rsinv,

these do not change with an increase of the angle v through an arbitrary
angle dv. If we denote the angle v for different points of the system with
v1,V2,...,V;,... respectively, then U and the equations of constraint
must remain unchanged when al the v are changed through the same
angle dv, i.e., they must depend only on the differences v; — v;. This is
the case of an entirely free system and above all, a case in which only
the distances between two mass points of the system occur. Through
introduction of r and v, the expression for any such distance becomes

rrf'g = (z1 — 22)? + (r1 cos vy — rocos 1)2)2 + (r1sinv; — o sinvy)?

= (r) — m2)2 + (r? + r% — 27179 cos(vy — va),

Thus it depends only on the difference v; — va. Also belongs here the
case where the points of the system are constrained to move on a surface
of revolution whose axis of rotation is the z-axis; then the v do not occur
at all in the equations of constraint. It is further to be remarked that
when fixed points appear in the problem, they must lie on the z-axis.
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With these assumptions on U and the equations of constraint, all
the v can be increased simultaneously by év. The z; remain unchanged
hereby, but the y; and z; will change since

Yi = T;CO8V;, z; = T;sinu;
thus one has
dx; =0, Oy = —r;sinv;dv = —z;0v, 8z = rjcosv;dv = y;0v

as the virtual variations of coordinates that hold for our problem. Sub-
stitution of these values in the symbolic equation (2.2) of the Lecture 2
leads to the equations:

d*y; d?z;
61)2?77,1' {—23—652— +yzW} = 5U,

U remains unchanged for the given displacement and so U = 0 and one

has ) )
d 24 d Yi
Zml(yz iy ) =0, (5.1)
We want to remark here that this equation remains valid in the more
general case where instead of U on the right side the expression

> (Xibz; + Yibyi + Zibz:),

appears if only
Z(Yizi — Ziyi) = 0. (5.2)

If this expression is not equal to zero, then it occurs on the right side
of equation (5.1) instead of 0. Let us therefore assume that either the
force function U with the given properties exists or that, in the more
general case where it does not exist, the equation (5.2) is satisfied. Then
equation (5.1) holds in the form given above; its left side is however
integrable and one obtains by integration

dzz dyi
, 5.3
2 mi { TS A (5:3)
where o denotés the constant of integration.Further, if one introduces
polar coordinates r; and v;, then 5.3 takes the form

dv;
> mr 3d—t’ = a. (5.4)
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The principle of conservation of surface area is contained in this equa-
tion. It is indeed well-known that r2dv is equal to twice the surface
element in polar coordinates and a subsequent integration of equation
(5.4) from 0 to t gives the theorem:

Theorem 5.1 If one multiplies every one of the surface areas described
in the yz-plane by the radius vectors projected in this plane by the mass
of the point belonging to it, then the sum of the products is proportional
to time.

This is the celebrated principle of conservation of surface areas. It
holds, as stated, when U and the equations of constraint remain un-
changed when one rotates the y and z axes in their plane around the z
axis, a hypothesis which one can express analytically for the equations of
constraint thus: that for any equation of constraint f = 0, the equation

2 (s, ~155) =
Yi 24
must be satisfied identically.

That in the transformation y dz — z dy = 2 dv used earlier, only
the differential of the quantity v occurs is, in many cases, a very impor-
tant circumstance; it follows from this transformation that y dz — z dy
multiplied by a homogeneous function of order 2 in y and z is a total
differential, since it can be represented as a product of dv and a function
of v alone.

In the case in which U and the equations of constraint remain un-
changed also when one rotates the x and z axes around the y axis and
the z and y axes around the z axis, one has besides equation (5.3) two
more similar ones, namely

Yol —n) =2 (55)
Zmi (mz% - yl%) =". (5.6)

This holds, for example, for n bodies moving freely in space. In this case
one therefore always has four integrals, the three conservation of surface
area theorems and the theorem of conservation of ‘vis viva’.

It is a very remarkable circumstance, to which we have already drawn
attention in the introduction, that of these surface area theorems, either
only one holds or all three. We shall see it proven as a result of pure
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computation, as a mere consequence of a mathematical identity, that
the third surface area theorem always follows from the other two. When
all the three surface area theorems hold, one can, without affecting the
generality of the solution, take two of the constants, a, 3, to be zero.
In every problem these constants are determined by the equations of
constraint. Whichever way these may be constituted it is always possible
to change the coordinate axes so that in the new coordinate system two
of the constants vanish. In fact, the new coordinates being &;,n;, ;, the
general transformation formulae for coordinates are

& =ar; +by; +cz, mi=dr;+by+cz, G=d "z + by + .

The constants a, b, ¢ a' bI,CI a” b”C” satisfy among others the nine equa-
y Uy &y Uy ) ’
tions

1!
b —b'd =a, da" —"a =, a't’ —ad't =,
‘ bl/c _ bcll — a/, cl/a _ ca/l — b/, al/b . abll — C/,
/ / " / / /! / /
bc' —bec=ad", ca —ca=1, ab —a'b="".

So, on considering these equations,
d¢; dn; dz; dy; dx; dz; dy; dzx;
va el ) e ) e )
and therefore,
déi dni\
Zmz(ﬂza _QE) = aa + b3 + cv. (5.7)
From this one sees that if the surface theorems hold for all three coordi-

nate planes in one coordinate system, then they hold in every coordinate
system.! We shall represent the new constant ac + b3 + ¢y in another

!The surface area theorems considered so far, which refer to a fixed origin of
coordinates, cannot be applied to the solar system, because in space we do not have
a fixed point. But one can easily convince oneself that if one sets

zi=€+A yi=m+B, ,z=G+C,

where A, B, C are the coordinates of the centre of gravity (Lecture 3), that the syrface
area theorems (5.3), (5.5),(5.6) also hold when one substitutes &;,n;,(: for x4, ¥, 2
respectively and at the same time changes a, 3, into

M(BOy =408), MV - o), M@ - V),

i.e., those surface area theorems also hold for the case when the centre of gravity with
uniform rectilinear motion is chosen as the origin of coordinates.
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form. If one denotes the angles which the £-axis makes with the z, y, z
axes by [, m, n, then

a = cosl, b = cosm, C = COST.

If one further sets
a B
= COS A,
/a2_+_/32+,72 /a2+132+72

y

Va4 32 4+ ~2

= cos i, = cos v,

then one has

ac + b3 + ¢y = Va2 + 32 + y%(coslcos A + cosm cos p + cosn cos v).

But since cos? A 4 cos? pt + cos? v = 1, then A, u,v can be looked upon
as the angles which a certain line L makes with the z, y and 2z axes. If
one denotes the angle which this line makes with the £-axis by V, then
one has

coslcos A 4+ cosmcos yu + cosncosv = cosV,

and therefore

ac+bB+cy=+a2+3%2+~2-cosV.

The constant of the surface area theorem for the i — (-plane is therefore
Va2 + (2 + 2

multiplied by the cosine of the angle which the £-axis makes with the line
L given by the above construction. The same holds naturally for the two
other surface area theorems in the new coordinate system, only we have
to take in place of V the angles V', V which the line L makes with 7
and ¢ axes. If one now allows the &-axis to coincide with the line L, then
the angle V = 0 and at the same time V/ = 90° and V" = 90°, so that
cosV =1, cosV’' =0, cosV” = 0. Hence one sees that the constants
of the surface area theorem for the £n- and £(-planes actually become
zero and at the same time the constant of the surface area theorem for
the n¢-plane is /a? + 32 + 42, i.e., equal to the maximum which it can
attain, since its value in the general form is /a2 + 82 +v2cos V.
Laplace has named the n¢-plane determined in this manner—the in-
variant plane. He believed that it could be used to find out whether
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in the course of thousands of years collisions have occurred in the solar
system, since they would change the plane’s location. Conversely, if two
measurements at two different times give different positions of this plane
then collisions must have occurred during that time. This is, however,
the simplest use of the invariable plane. If we write again for the new
coordinates the letters z, y, z introduced earlier, so that the plane yz is
the invariable plane, then we have the three surface area theorems:

Zmz(yi%zt—i - Zz%) =€,
Zm,(zld;i xﬁ%):(),
Sy -u'g) =0

where € = \/a? + (32 + +2. For the case of two bodies one can give an
interesting geometrical interpretation to these surface area theorems. In
this case one has

ml(yléil— dy1)+m2(y dZQ— dyQ)

€

dt dt dt dt
T\ T g =2 T a) T
dyl dIl d 2 dﬂ?g _
m (01— g ) (gl ) =0

By elimination of m; and ms from the last two equations, it follows that

(5.8)

This proposition has a simple geometrical meaning. In fact one imagines
at m; a tangent drawn to the curve described by m;, and considers a
plane F; laid through this tangent and the origin of coordinates and a
normal N; drawn to this plane at the origin. Let the cosines of the angle
which N; makes with the coordinate axes be p1, q1, 71; then one has for
the point m; the two equations

P1T1 + q1y1 + 121 =0,
p1 dxy + q1 dy1 + 11 dzg =0,
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which can also be written in the form of a double proportion, namely

p1:q1:71 = (1 dzy — 21 dyn) < (21 doy — @1 dzy) : (21 dyr — y1 dxy).

When one makes a similar construction for the point ms, one obtains,
if one constructs the plane Fy corresponding to £; and the normal Ny
corresponding to N; and determines the cosines pa, g2, 72,

P2 :qe T2 = (Y2 dzg — 23 dya) : (22 dx2 — T2 d22) : (x2 dy2 — y2 dx2).

From this it follows that one can write the equation (5.8) in terms of
the quantities p1, g1, 71, P2, g2, T2:

qir:7T1=4q2:T2.

It is easy to find the geometric meaning of this equation. The equations
of the lines Ny and Ny are
x y z x y z

—=2=— and — =< =—.
N q1 1 P2 q2 T2

Therefore, one has, the equations of their projections on the yz-plane,

z z
y_2 and Ez—.

qa Q@ T2
However, since q; : 71 = ¢o : r2, these two equations are identical, i.e.,
N; and Ny have the same projections on the yz-plane, or again, N;
and Ny lie in a plane which is perpendicular to the yz-plane and which,
since N; and N go through the origin, contains the z axis. From this it
follows that the planes F; and Es cut the yz-plane along the same line.

So for the free motion of two masses m; and my the following theorem
holds:

Theorem 5.2 If one draws tangents at mi and mqy to the paths of the
two points and considers planes laid through these tangents and the cen-
tre of gravity of the system (this is the origin of coordinates), then these
cut the invariant plane (the yz-plane) along one and the same straight
line.

This geometric interpretation goes back to Poinsot. I have made
an interesting application of this to the problem of three bodies (Crelle
Journal, Bd. 26, p. 115, Math. Werke, Bd I, p. 30).
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Just as the stability of the planetary system with respect to its di-
mensions can be derived from the theorem of conservation of vis viva, so
too the principle of conservation of surface areas can be used to prove the
stability with respect to to the form of the orbit. The proof given earlier
will show that the major axes of the ellipses in which the planets move
cannot increase beyond a certain limit. Similarly one can prove from
the surface area theorem that the eccentricities can vary only between
certain limits and on this depends the form of the orbits. However, apart
from the drawback of the earlier proof that on consideration of higher
powers, secular terms, i.e., those which contain the time outside the pe-
riodic functions sine and cosine, occur, this proof is incomplete in that
it holds only for massive celestial bodies. In the equation from which
one derives the result in question, the individual terms are multiplied by
the masses of the celestial bodies, and therefore the bodies with small
masses influence the entire equation so little that one can draw no con-
clusion about their eccentricities. In fact the stability of the form of the
orbit does not hold for comets; it also does not hold for small planets,
e.g. Mercury, whose mass is so small that up to now it could only be
estimated by guesswork.The investigations first carried out by Encke, to
obtain the mass by observation, were possible because the comet named
after him came extraordinarily close to Mercury.

If, to the mutual attraction of material points, attractions by fixed
centres are added, then the principle of conservation of surface areas
ceases to hold except when these centres lie in a straight line. Let us
take this line as the z-axis; then the surface area theorem holds, for
the yz-plane, but for the other two planes it does not hold. In fact,
let us consider a material point m; and imagine through it a plane E;
parallel to the yz-plane. The resultant of all the attractions which the
point m; experiences from all the fixed centres lying on the z-axis will
be directed from it towards a certain point of the z-axis; one can then
resolve this force into two, one of which goes along the line through
m; parallel to the z-axis, and the other from the point m; towards
the point of intersection of the plane F; with the z axis, and therefore
lies in this plane. We shall denote the latter by ¢); and resolve it into
two components parallel to the axes of y and 2. If we shift to the
earlier notation, the component parallel to the y-axis is @Q; cosv;, and
the component parallel to the z-axis is J; sin v;. Hence there comes now,
in the symbolic equation for the motion, in addition to the earlier 6U,
the expression Y |, Q;(cos v;0y;+sin v;6z;). We also have, if we understand
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by U only that part of the force-function which comes from the mutual
attraction of the points,

d i d Vi d?z;
Zm’{dt? + 32 %t g0 }
=0U + Z Qi(cosv;0y; + sinwv;6z;),
or if we set in the above,
ox; = 0,0y; = —r;sinv;dv = —z;0v,62; = 1; cos v;0v = y;0v,

whereby 6U vanishes,

2,
Zmz(yz di2 ‘_zi(fi_tg—z) =0,

and therefore by integration,

T () =

i.e., the principle of conservation of surface areas holds for the plane to
which the line which contains all the fixed centres is perpendicular. In
this case one has two integrals, the theorem of vis viva and the surface
area theorem. However, if there are fixed centres which do not lie in
a straight line occurring in the problem, then the surface area theorem
does not hold and one has only one integral from the theorem of vis viva.

If we assume further that the centres are not fixed, but one of these
has a certain motion independent of the other material points of the
system, so that this motion is a given function of time, then the principle
of vis viva also ceases to hold. Such cases occur in nature. Here belongs,
for example, the attraction of a comet by Jupiter and the Sun, where
the orbits of the Sun and Jupiter are to be seen as given, and the comet
as a material point which has no influence on their orbits. Here, as
was mentioned, the principle of vis viva ceases to hold; and this rests
essentially on this, that one has for the distance r of a point mass (z, y, 2)
from a centre (a, b, c), the differential equation

- - _
drzmradx+y dy—}—z i

dz.

But this differential equation assumes that a, b, ¢ are constant; this ceases
to hold in our case, and with it the principle of vis viva. One can indeed
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always represent the force acting on an individual point as the partial
differential coeflicient of a function U, but this function now contains
the time explicitly, besides the coordinates; it is therefore no more so

that dU oU dz; U dy; U d
X Yi 2
-3 ( )

at Oz, dt | Oy dt | 9z dt)
but on the right side now comes also the partial differential coefficient
au
St so that
Z (8U% LU 8Udy1 + BUdzz) dU 8U
Ox; dt Oy dt O0z; dt dt ot

Now the differential equation of the theorem of vis viva was

Sy (mide, didy dud sy
‘\dt dt?2  dt dt2 ' dt dt?
_Z(adel 8U@+8Udzl)
Oxr; dt ~ Oy; dt = Oz dt

This would be integrable if one could set 9¥ for the right hand side.

Now, however, one must set it to be 4 dt — %—(tj and therefore one cannot

integrate it anymore. If in the equation

Z (dmld T; %dgyi %szi) dU 8U
dt dt? dt dt2 ' dt dt2) " dt = ot

one thinks U as the sum U + V', where V contains the time explicitly,
but U does not, then one has

) .(dwid%i dy; d°y; gﬁd%) U dv 9V

== £ = - - 5.
dt dt? dt dt? dt dt? dt + dt ot (5.9)

This is the equation which holds in place of the differential equations
for the principle of vis viva, which, however does not give an integral.
The principle of surface area also does not hold. One has therefore no
single principle which gives an integral. Nevertheless I have remarked
that there exists a hypothesis on the motion of the fixed centres, and
indeed a hypothesis which comes very close to the just mentioned case
occurring in nature. If one assumes this hypothesis one can, from a
combination of both the principles, obtain an integral. This hypothesis
consists in assuming that the fixed centres move in circles with the same
angular velocity about one and the same axis, so that one has, for the
coordinates of any one centre (a, b, c),

a = constant, b= fBcosnt, c¢= f3sinnt,
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where n has the same value for all centres and the x axis is the common
axis of rotation. This comes very near to the case found in nature,
since the Sun and Jupiter move in the ecliptic around their common
centre of gravity in ellipses of very small eccentricities (nearly = 515),
and consequently they can be considered as circles. Their periods of
revolution are the same and if one sets this to be T, then one has the
equation nT = 27 for the determination of n.

We shall now investigate, using the differential equations, what hap-
pens to the surface area theorem in this case. We shall, for generality
take besides the centres, not one single material point, but a whole sys-
tem of points, and then in our case the force function will consist of two
complexes of terms. The first complex arises from the mutual attraction
of the material points and consists of terms of the form

V(@i — )2+ (yi — yir)? + (20 — 2¢)2

b

or, if as before we introduce r; and v;,

m;m;

\/(xl — )2+ 712+ 712 — 2rry cos(v; — vyr)
The second complex arises from the attraction of the centres and consists
of terms of the form
mip
Vizi—a) + (i - )2 + (z — o)

or, if here also we introduce r; and v; and at the same time b = 3 cos nt,
¢ = Bsinnt,

mipt

\/(xl —a)2 + 72+ B2 —2r;Bcos(v; — nt)'

(5.10)

Both complexes remain unchanged when one increases all the v; by the
same quantity and at the same time ¢ by its nth fraction,that is, if one
sets for any value of i

dv; = nét,

which variations are virtual in our case. We shall call the first complex
of terms U, the second V.
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In the general symbolic equation

Py . d%z oU U . U
Zmz( b+ oy en) = Y ( 5,07 5, Ot (%Zézz),

U + V appears in the place of U in this case, so that the right side
becomes

S (Gembui+ godui+ 5bs) + 3 (5pde + 50w+ 0.

(3

U does not contain ¢ explicitly, the first sum is therefore equal to 6U
but in V, t is indeed contained explicitly and the second sum lacks & S Y 5t
to give the complete 6V, i.e., it is equal to 0V — oV S¢6t, and one has

d?x; d?y; d?z ov
S mi (St om + Ty + n) = U + 6V — oot
The above variations, however, are so arranged that U and V remain
unchanged by them, and therefore U = 0 and 6V = 0; further,

dz; = 0,0y; = —r;sinv;0v; = —nz;dt, 6z; = r; cos v;0v; = ny;0t,

SO
d2yi 1%
ny m (yz dt2 T ) R (5.11)

This is the equation which holds in our case in place of the differential
equation for the principle of conservation of surface areas; V is our
aggregate of terms of the form (5.10), where » must be the same in all
the terms, but all other quantities can take values which vary from one
term to another. Now equation (5.9) was

S (iﬁ”_i Po;  dyiddy | du d2zi> dv v 9V
Mi\g a2 " dt a2 T dt de2) " dt | dt ot
or

dx; dy; |2
'Z {( ) +(E) & T
If one subtracts equation (5.11) from this, then one has on integration
dr;\2 dyi\2 dz;\?
’Z {(dt) dt)+dt)}

_anl(yldzl ‘Zt) U+V+h. (512

dz\2\ _dU dV 9V
(@)}
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This is the principle which arises from the combination of the principles
of vis viva and of surface areas, and holds if the centres of attraction
move with uniform velocity about an axis of rotation. To this cate-
gory belongs, for example, the motion on the surface of the earth or
in its neighborhood, since the earth is an aggregate of such centres of
attraction. In fact, if the density of the earth varied considerably from
meridian to meridian, the problem must be considered from this point
of view. Under this assumption, if at the same time the moon were near
the earth which itself moved more slowly, the attraction of the moon by
the earth would be a function also of the hour-angle. Then the moments
of inertia with respect to different meridian planes would be different,
and this could be discovered by observation.



Lecture 6

The Principle of Least Action

We come now to a new principle which does not give an integral, as
the earlier ones did. This is the principe de la moindre action, wrongly
called the principle of least action. Its importance lies, first, in the form
in which it represents the differential equations of motion and secondly
in that it gives a function which will be a minimum when the differential
equations are satisfied. Such a minimum exists, indeed, in all problems,
but one does not as a rule know where. While, therefore, the interest
of this principle consists precisely in that in general the minimum can
be given, in earlier times one gave an exaggerated importance to the
fact that such a minimum exists at all. An example of the principle
in question appears in Euler’s treatise de motu projectorum cited ear-
lier. After Fuler himself proved it for the attraction by fixed centres,
he did not succeed in doing so for mutual attractions (between point
masses) for which the validity of the principle of vis viva was unknown.
He contents himself, therefore, with saying that, for mutual attractions
the computation would be very long and the the principle of least action
must hold because the foundations of a sound Metaphysics showed that
in Nature the forces must necessarily always produce the least action
(because of the inherent inertia of bodies, according to him). But this
shows neither a sound nor any Metaphysics at all and, in fact, Euler
made this statement because of a misunderstanding of the name least
action. Maupertuis wanted to express by this name that nature achieves
its work with the least expenditure of force and this is the real signifi-
cance of the name principe de la moindre action.

In almost all textbooks, even in the best, those of Poisson, Lagrange
and Laplace, the principle has been so presented that, in my view, it is
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impossible to understand. Namely, it is stated that the integral

/ Z mividsi

(where v; = % denotes the velocity of the point m;) will be a minimum if
the integral is extended from one configuration of the system to another.
It is indeed said that this theorem holds only as long as the theorem of vis
viva holds, but one forgot to say that one must eliminate the time from
the above integral using the theorem of vis viva and reduce everything
to space elements. The minimum of the above integral is further to
be understood in the sense that when the initial and final positions
are given, the integral, among all possible paths from one position to
another, would be a minimum for the one actually described.

Let us eliminate the time from the integral above. If we set v; = 4{;7’

then )
/ S mevids: = / 2 mads;
dt

But, according to the theorem of ‘vis viva’,

1
5Zm,ivf:UJrh,

or
mlds?

dt?

1 2(U + h)
dat  \| S mids?’

If one inserts this value of —dl—t, then it follows that

/Zmividsi :/m\/Zmids?.

The differential equations of motion, integrated, express the 3n coordi-
nates of the problem as a function of time; between any two coordinates,
one can, however, eliminate the time and give, if one wishes, 3n —1 coor-
dinates expressed by means of one, for example ;. Under this assump-
tion, one can substitute for 3 m;ds? the expression 3 m; (%)Qdm% and
then obtain the integral in the form

[ VAT () o

=2(U + h),

or
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with which only an entirely definite concept is associated. Let us, in
order to give no preference to any one coordinate, express the integral

in its earlier form
2(U + h) \/Z mzds

We can then express the principle of least action thus: If two positions
of the system are given (i.e., if one knows the values which the other
3n — 1 coordinates take for t1 = a and z1 = b), and extends the integral

[ VTS mads?

over the whole path of the system from the first position to the second,
then its value is a minimum for the actual path among all possible paths),
i.e., those which are consistent with the conditions of the system (if they

are given). Then
/\/2(U+ h)\/Zmids?

will be a minimum, or,

5 [ VRU R/ midst =0, (6.1)

It is difficult to find a metaphysical reason for the principle of least
action if it is expressed in this correct form, as is necessary. There exist
minima of an entirely different kind, from which also one can derive the
differential equations of motion—a method which has many advocates.

We must impose a limitation on the principle of least action. Namely,
the minimum of the integral exists not between any two arbitrary po-
sitions of the system, but only when the initial and final positions are
sufficiently close. We shall presently discuss which limits should not be
crossed.

Let us consider first a special case. A single material point moves on
a given surface driven forward by an initial impulse, without attractive
forces acting on it. In this case U = 0 and the sum 5" m;ds? is just mds?
and then [ds, or s, will be a minimum, i.e., the point describes the
shortest line on the surface. But the shortest lines have their property
of being a minimum only between certain limits. For example, on the
sphere, where the great circles are the shortest lines, this property does
not hold when one considers a longitude greater than 180°. In order to
see this one should not take help of completion to 360°, which will prove
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nothing. Since the minima need exist only with respect to lines lying
infinitely close. One can convince oneself of this in another way. Let B
be the pole from A.Let the great circle AaB be extended beyond B to
C and let the great circle AGB lie infinitely near AaB,;

A

B
Figure 6.1

then
AaBC = ABB + BC = A3 + 3B + BC.

Further, let 8 be infinitely near B and 8C the arc of a great circle, then
BC < BB + BC, so the broken line A3 + BC is shorter than the great
circle AaBC. On the sphere then, 180° is the limit for the minimum
property. In order to determine this limit in general, I have established
the following theorem which I arrived at through a deeper investigation:

Theorem 6.1 When one draws the shortest lines from a point on a
surface in various directions, two cases can arise: two infinitely near
shortest lines either run near each other without intersecting, or they
intersect and then the successive points of intersection form their en-
veloping curve. In the first case the shortest lines never cease to be the
shortest; in the second case they are, only up to the point of contact with
the enveloping curve.

The first case holds, as is obvious, for all developable surfaces, since
in a plane two straight lines passing through a point never intersect
again; further it holds, as I have found, for all concavo-convex surfaces,
i.e., those in which two mutually perpendicular normal sections have
their radii of curvature on opposite sides; for example, the one-sheeted
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hyperboloid and the hyperbolic paraboloid. Moreover it should not be
said that there are no concavo-concave surfaces which belong to this
category, at least the impossibility of this has not been proved. The
ellipsoid of revolution gives an example of the second kind. If we take it
slightly differing from the sphere, then the shortest lines going through
an arbitrary point on the surface do not indeed, as on the sphere, all
intersect at the pole, but they form a small enveloping curve in the region
of the pole. Under these circumstances there appears to be a paradox in
the considerations on surfaces; for the enveloping curves have in general
the property that the systems of curves which are enveloped by them
can never enter the interior of the enveloping curve. So there would
be a piece of the surface with the property that no shortest line can be
drawn from a given point to any point in its interior, which is impossible.
The paradox disappears however on a more precise consideration of the
enveloping curve as can be seen from Figure 6.2, in which ABCD is
the enveloping curve which has approximately the form of the evolute
of an ellipse and FF'G represents the shortest line. Here it enters from

E
B o}

G
Figure 6.2

E the piece of surface bounded by the enveloping curve, touches the
curve at a point F and ceases thence to be the shortest line. This
property of shortest lines, that they cease to be so, if they touch their
common enveloping curve has, as has been said, been found through
deep consideration, but in hindsight it can be understood easily. For,
if two shortest lines intersect, at the point of intersection, not only the
first variation, but also the second variation, will be zero; the difference
reduces to an infinitesimal quantity of the third order, i.e., a minimum
does not exists any more.

We now return to the general consideration of the minimum for the
principle of least action. The arbitrary constants which remain after
the integration of the differential equations of motion can most easily be
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determined by the initial positions and initial velocities of the motion.
If these are given all the integration constants are determined through
these, and there cannot be any ambiguities. But for the principle of
least action one takes as given not the initial positions and the initial
velocities, but the initial and final positions. So in order to determine
the actual motion, one must derive the initial velocities from the final
position by solving the equations. These equations need not be linear,
so one can obtain many systems of values of the initial velocities and to
these correspond the many motions of the system from the given initial
position to the given final position, all of which give minima in respect
of motions lying infinitely close. Now, in so far as one can allow the
interval between the initial and end positions to increase continuously
from zero, the different systems of values which one obtains from the
solution of equations for the initial velocities also alter. So now with
this alteration in the system of values there occurs the case that two
systems of values become equal; so this is the limit beyond which no
minimum occurs.

This theorem which is of little importance for mechanics in the nar-
rower sense, I have made known in Crelles’ Journal® but only as a note
without proof. As an example of the same we shall choose the motion
of planets around the sun.

4

qB/

Figure 6.3

Let a focus A of the ellipse be the location of the Sun, a the major
axis of the ellipse and, in addition, p,q two positions of the planet. If
we denote position, for the moment unknown, of the second focus by
B, then the distances of the point B from the two planetary positions p
and q are known; namely the distances are equal to a — Ap and a — Ag,
from the well-known property of the ellipse. But this gives for B two
positions B and B’, one above and the other below the line joining p and

Vol. 17, p. 68 ff
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q. So there exist two ellipses and accordingly two motions of the planet
which are possible for the given pieces of the planetary orbit. In order
that the two solutions coincide, the points B and B’ must lie on the line
connecting p and ¢, i.e., p, B and ¢ must lie on the same straight line,
and consequently q at p’. The point p’ then denotes the limit beyond
which one may not extend the integral from p without its ceasing to be
a minimum.

We now return to the proper mechanical significance of the principle
of least action. This consists in that the equation (6.1) contains the
fundamental equations of dynamics for the cases in which the principle
of ‘vis viva’ is valid. In fact equation (6.1) was

§ [ VETFRS mads? = o

After elimination of the time here we can look upon all coordinates as
functions of one, e.g., 1, and write accordingly

5 [VAT RS mi(5) de =0,
or,

s [ VTR o { (22 () + (22)°) ass =

or, if we set,

dz; dy; dz;
¥ — x;’ yl — y;, 1 — Z:’
dz; dz; dz,

6/ V2(U + h)\/Zmi(ac;2 + y;2 + z,2)dz; = 0.

Introducing the notation

2U+h) =4, Y mi(z?+y’+2°)=B, VAVB=P,

6/Pda:1=0;

in other words, it gives the following rule: one substitutes in [ P dz,
x; + 0x;, yi + 0yi, z + 0z;, in place of x;, y; 2; respectively, where dz;,
dy;, 0z;, are arbitrary functions (which do not become infinite inside the
limits of integration) multiplied by an infinitely small factor «, expands

we have finally
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in powers of «, and sets the term which is multiplied by the first power
of a equal to zero. Here it is to be remarked that, first, since the limits
of integration are given, no variation can affect them, that further, on
the same grounds, all variations must vanish at the limits, and finally,
dx1 is moreover zero since x7 is the independent variable. Hence, one
obtains according to the rules of calculus of variations,

5/Pdm1=/5Pd:c1

oP.  OP .,
/Z {8,’1}16:131 ——5yz + 8_,21'62:1 + '5;;—5171

”L

+—-5 + 8—52 }dml

oy, 0z,
Now,
aPéa: ‘dx 2]ialéxialx = Qgéx- - / d% —bz;dx
oz} 1= oz, dx; 1—8332 ¢ LD

or, since dx; vanishes at the limits of integration,
daP

OP oz
——(5.'13;d$1 = —'/:l—l'(5$1dl'1

Similar equations hold for y; and z;. The use of these gives

5/PdiL‘1=

oP

/Z (g—i_ di})‘szﬁ (%— d?c_i{)(syi

oP
op da
+ (5‘% dI] )621J d.’L‘l

However, P = vVAVB, A=2(U+h),B= Zmzw +yl+z)

\/—5 \/EQE _ \/E "
8:1:2 Adr;, axz x; Boz, VB miti;

then one has

2] JAdz
a_P _ dadI; _ BoU d(ml ﬁd:cl)
Ox; dzx; A bz; dzxy '
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If one now sets (see pg. 47)

NE

dxy, = dt, (6.2)

oP
op o _ [BU_,, duy
8(131' da:l - A Bxi ¢ dt2 ’
and similarly for y and z. If one introduces these expressions one gets,
0 / P d(L‘l =
d2x,~ ou d%y;
o =2\ s
[Vix (an iz ) e (ayz- " dt?) v
oUu d2z,~
+ (6—2'1 - mz—dt—2)5z,}d:r1
Since these variations should vanish, according to our principle,
ou d%x; ou d%y;
0= Z { (axi mi—g )(5@ + (—az - mizﬁ>5yi

oU d22i -
+ (a—mzw)bzl},

then one obtains

or
d2z; d? Yi d?z;
Zm,(ﬁ&rz%- —2 Ovi + 502 )
= Z 5x1 oU —O0y; + a—UJzi (6.3)
8961 Oyi 0z

= o0U,
which is the earlier symbolic equation.
Equation (6.2) is none other than the theorem of wvis viva. For,

squaring it one finds
Bdz? = Adt?,

d.’L‘i 2 dyi 2 dzi 2}
D N Bhieid tad == =2 h).
Zml{(dt) +(dt T\ @ (U+h)
This was to be expected since we had eliminated time from the principle
of least action through the principle of vis viva.

or,
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Further considerations on the principle of least
action—The Lagrange multipliers

Apart from the drawback of the usual way of expressing the principle
of least action in that one does not introduce the theorem of vis viva
in the integral, there comes another. This one is that one says that the
integral shall be the largest or the smallest, instead of saying that its
first variation should vanish. The confounding of these, by no means
identical, requirements has become so much of a custom that one can
hardly ascribe it to the authors as mistakes. One finds in this respect
a strange quid pro quo between Lagrange and Poisson which refers to
the shortest line. Lagrange says entirely correctly that in this case the
integral can never be a maximum, since however long a curve may be
between two points on a given surface, one can always find a longer one,
and hence concludes that the integral must always be a minimum. On
the other hand, Poisson, who knew that the integral, in certain cases,
namely on closed surfaces, ceases to be a minimum beyond certain limits,
concludes from this that in those case it must be a maximum. Both
conclusions are false; in the case of the shortest line the integral, to be
sure, can never be a maximum; rather it is either a minimum or neither
of the two, maximum or minimum.

The elimination of time from the integral which comes into consider-
ation for the principle of least action, should happen directly using the
principle of vis viva and not through the principle of surface areas or
any other integral equation of the problem. Only then one can arrive
at the principle of least action. Lagrange says in one place that he has
in the Turin memoirs derived the differential equations of motion from
the principle of least action in conjuction with the principle of vis viva.
Such a way of expression is not admissible according to the remarks
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made above. Lagrange applied the variational calculus just then dis-
covered by him to the principle of least action already used by Fuler,
but needed here the principle of vis viva in the extension which Daniel
Bernoulli had given it, and in this manner came to the symbolic equa-
tion of dynamics from which we started, and which we want to write
down here ‘'once again; it was

d? d*z; d dy; d2zi

=Y {Xibz; + Yidy; + Zibz} (7.1)

where 6U is to be put on the right side if the principle of vis viva holds.
If one abstracts from the fact that 6U can be set on right side of the
above equation in the usual sense of the variational calculus only if the
quantities X;, Y;, Z; are the partial differential coefficients of a single
function U, and if one considers it purely as a symbolic abbreviated
notation, one has

d? :r, d Yi d?z;
Zml{ + =5 O+ g 0 ~}=6U, (7.2)

also when the theorem of vis viva does not hold. Now this equation,
as already explained earlier, is still correct when there are equations
of constraint, but then the variations are no longer independent of one
another. If one has m equations of constraint

f=0,6=0,... (7.3)

then there is, between the variations, the m relations
0 f 6 f 0 f
—dy; ;| =0,
z (3.’131 Ay; ™ 821

005 Dby 095\ _ 74
5 (e 85+85z1)_o, (7.4)

By means of these m equations one can eliminate m of the 3n vari-
ations dx;, dy;, dz;, ... from the equation (7.1), and when one sets the
remaining as independent of one another the symbolic equation (7.1)
breaks up into the differential equations of motion. But this elimination
would be very laborious and has moreover some drawbacks; first, one
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must prefer certain coordinates to the others and one does not obtain
symmetric formulae, and besides this, the form of the elimination equa-
tions will be different for different number of equations of constraint.
Because of this circumstance the generality of the investigation would
be rendered very difficult. Lagrange has overcome all these difficulties
through the introduction of multipliers, a method which Fuler had al-
ready frequently applied for the problems “de maximis et minimis”.
Since the variations dx;, dy;, dz;,... occur in the equations (7.1) and
(7.4) linearly, one can carry out the elimination of m of them in the
following way: one multiplies the equations (7.4) by A, y,..., and adds
them to (7.1). Let the resulting equation be called (L). Now one deter-
mines the factors A, 4, ..., so that in the equation denoted by (L), m of
the expressions multiplied by the variations dx;, dy;, d2; vanish identi-
cally; then the expression multiplied by the remaining 3n —m variations
set equal to zero give the differential equations of the problem. In this
manner one sees that all the expressions multiplied by the 3n variations
dx;, dy;, 62; are to be set equal to zero in the equation (L), and then these
equations are to be so looked upon that m of them define the multipliers
A, 4, . . ., the remaining in which the multipliers so determined are sub-
stituted give the differential equations of the problem. In other words,
if one looks upon all variations as independent, one has to eliminate the
multipliers A, p, ... from the 3n equations into which the equation (L)
breaks up, and the remaining 3n — m give the differential equations of
the problem. However, instead of carrying out this elimination, one does
better by letting the unknown multipliers in the 3n equations to remain
and base further investigations on these. These 3n equations will then
be of the form

d*y; of ¢

LYy %0 7.5
migE = YitA g Fugo (7.5)
dQZCi 8f 8(;5
mlF*Zz+/\6_,zi+M3_%+".’

where the same multipliers A, u, . . .,occur for all the n values of 4. This is
the form that Lagrange has given to the equations of motion of a system
with arbitrary constraints.

The quantities which are added to the forces Xj;, Y;, Z; express the
effect of the system, i.e. the modification which the acting forces X,



Lectures in Dynamics 58

Y;, Z; undergo on account of the connectioons between the mass points.
One arrives at these results also in statics where one proves that if in
the n points of the system the forces

of 0¢ of | 99 of  09¢

8xi +'u5x_i+... ’)\ayi +u8yi + .- ’)\_82+u52_i+...

are brought parallel to the coordinate axes they are cancelled by the con-
straints of the system, whence it follows that the forces annulled by the
constraints of the system are not determined, but contain indeterminate
quantities A, y, . ... The introduction of the multipliers A, y, . .. is there-
fore not a mere artifice of computation, but these quantities have their
well-defined significance in Statics. One can also arrive at the equation of
motion (7.5) from the theorem in Statics just stated, where the passage
from Statics to Mechanics is based on the following consideration:

The mass points of the system cannot follow the impulses imparted
to them because of the binding of the system. In order to find out the
actual motion, one must therefore introduce such forces that will be
annulled by the constraints of the system. Their introduction is to be
regarded as those which allow the points to follow the forces applied to
them without hindrance; in other words, by introducing forces through
which the constraints of the system are cancelled, one can regard the
system as free. This is to be seen as a principle and equation (7.5) is
obtained directly from it.

This principle which has given us the modifications of the acceler-
ating forces because of the binding of the system also allows us to find
the modifications of the instantaneous forces through the binding of the
system. The formulae which one has to apply here are absolutely the
same. If instantaneous impulses a;, b;, ¢; act at the point m;, then the
impulses modified in respect to the constraints of the system are the
following:

A

of . ¢
@i+ Mgt gt

of o
bi + A= — 4 7.6
i+ layi+ulay¢+ (7.6)
af o¢
S - 4.
¢+ lazi +u18zi +
where the quantities A1, i1, ... remain the same for all points.
If one wants to determine the quantities A, u, ... and Ay, pq, ..., then

one must differentiate the equations f = 0,¢ = 0,.... For determining
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the quantities A, u, ... one must differentiate twice and substitute from
equations (7.5) for the second derivatives of the coordinates; for deter-
mining the quantities A1, 41, . .., one has to differentiate only once, since
the instantaneous impulses are proportional to the velocities, i.e., the
first derivatives. We want to actually develop the equations for deter-
mining Ap, 41, ..., assuming that the instantaneous impulses ensue at
the beginning of the motion and that the system is at this instant is
completely at rest. Under these circumstances we can leave the acceler-
ating forces entirely out of consideration at the beginning of the motion,
since these give only infinitely small velocities, and when we construct
the differential equations

of de;  Of dy; ~ Of dz |

Z{Bxiﬁ+8yi dt +8zz dt =0,
8(15 dacz 8¢ dyi 8¢ dZZ' _

Z{a—x; @t oy dt "oz dt) "

and so on for the determination of Ay, i1,..., we have therefore to set
the quantities (7.6) for %, %%, édz—ti after they have been divided by m;.

This gives the following result; if one puts
1 (3f 8 f 0 f
A= — < —a; b;
Z my; {8.% 8y t oz 8~1 ’

1 99, , 09
B= Zmz{axl T o T 0 }
~ 1 (Of 8f OFf of 8f3f

_y~ L (8100 0700 0f %

then one has for the determination of Aj, u1,... the equations

0=A+(f, )M+ (fio)m + (fd)vr + -
0= B+ (¢ )\ + (¢, 0)p1 + (¢, ¥)v1 + -+ (7.7)
0=C+ W, Hd+ @, Q) + (¥, )vy + -+

and so on.

The equations for determining A, u, ... have the same form only A, B,C
take different values. We now go back to the differential equations (7.5).
If we multiply them in order by dz;, dy;, d2; and add all the 3n products,
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then we again obtain the symbolic equations which we had denoted by
(L), namely

d21‘1‘ d2y,; dQZi
Zmi (dt2 dz; + 712 dy; + a2 521') =6U+ASf+pdop+---, (7.8)

which is equivalent to the system (7.5).

For considering the entire extent of the problem which is contained in
(7.5), we must take into account the case in which time enters explicitly
into the constraints. Even then equations (7.5) hold. In order to visualise
how time can be involved in the constraints, we consider for example
mass points connected to moving centres whose motions are given, so
that the centres act on the mass points without there being any reaction.
For this assumption it is, however, necessary to assign infinitely large
masses to the moving centres in relation to the masses of the points.
In this case equations (7.5) hold at once for the mass points. But the
moving centres maintain the given motions unaltered. In fact let M,
the mass of a centre, be infinitely large and let p one of its coordinates;
then the force acting in the direction of the coordinate p is proportional
to M; if we call this M P, then taking into account the binding of the
system we have

d?p of  0¢

M =2 = MP + A=
TAG, TGt

dt?

But after division by the infinitely large mass M, all the rest of the terms
vanish and we have

d*p _

ez

The same holds for the other coordinates, i.e., the centres follow their
given motions without regard for binding. The values of A, y,... and
A1, i1, ... here will be of course different from the earlier ones, because
on differentiation, their partial differential coefficients with respect to
time will also be added. Thus, for example, to A (equation (7.7)) comes
the term g—{, similarly to B, %if and so on.

Time can also enter the constraints in an entirely different way; for
example, when the binding between two points becomes slack or is re-
duced, perhaps through a rise in temperature; in which case one can

attribute all constraints of this sort to moving centres, if one holds fast
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to the basic theorem that two constraints which lead to the same equa-
tion can be replaced by each other.

Moreover, time can make the problem more difficult, for example,
if the masses vary with time. However, up to now, one has not found
it necessary to make this assumption in the planetary system, since the
observations for deciding whether this actually occurs have not been
sufficiently precise.



Lecture 8

Hamzlton’s Integral and Lagrange’s Second
Form of Dynamical Equations

One can substitute another principle in place of the principle of least
action where also the first variation of an integral vanishes, and from
which one can derive the differential equations of motion in a still simpler
way than from the principle of least action. It appears that this principle
had not been noticed earlier, because here in general one does not obtain
a minimum with the vanishing of the variation, as it happens in the case
of the principle of least action. Hamilton is the first to have started
out from this principle. We shall use it to formulate the equations of
motion in the form Lagrange has given them in Mecanique Analytique.
Let, first, the forces X;, Y;, Z; be the partial derivatives of a function
U; further let T be half the ‘vis viva’, i.e.,

1 9 1 dz; 2 dy; 2 dz; 2 .
T‘ﬁzm”’i‘ﬁzm’{(dt) +<§ @) (7

then the new principle is contained in the equation

6/(T+U) dt = 0. (8.1)

This principle is more general in comparision with that of least action
in so far as here U can depend on t explicitly, which was excluded in the
earlier principle. There the time had to be eliminated through the prin-
ciple of vis viva, which holds only when U does not contain t explicitly.

We shall use equation (8.1) for proving the reduction of the differ-
ential equations of motion to a first order partial differential equation.
As Hamilton has shown, one can decompose the variation (8.1) by par-
tial integration into two parts, so that one stands outside and the other
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inside the integral sign and both of them must vanish separately. In
this way the expression under the integral sign equated to zero gives
the differential equations of the problem, and the expression outside the
integral sign its integral equations.

The new principle can be stated completely in the following way: Let
the positions of the system be given at a given initial time tg and a given
final time ty; then for the determination of the actually ensuing motion,
one has the equation

5 / (T +U) dt = 0. (8.2)

Here the integration extends from ¢y to t1, U is the force-function which
can contain the time explicitly and T is half the ‘vis viva’; so one has
1 2 2 ”2 dx; dyz dz;

T:§Zmi(‘ri +y +2 ), $§=d—tl, yg:aa Zz{:d_tz’
If one carries out the variation prescribed by this principle so that one
adds the variations dx;, dy;, dz; to the coordinates according to the rules
of the calculus of variations and does not vary the independent variable
t, one gets

5/T dt = /6Tdt = /Z m;(Z;6x; + yi0y; + z162;) (8.3)

or if one introduces the expressions d‘foi, %tﬂ’ dgf", for dz, oy}, dz;, and

integrates by parts,

/Tdt /ZW(ldt + ! df + 2 dt)
= Z m;i(xix; + yidy; + 2562;)

— /Z m; () dz; + yi yi + 21 62;) dt

where z},y}, z! are the second differential coeflicients of z;,y;, z; with
respect to ¢t. Since, however, the initial and final positions are given,
dx;, 0y;, dz; vanish at the limits of integration and the term standing
outside the integral sign is equal to zero, so that

(S/T dt = —/{Zmi($;,5$z+yzl5y1+z//521)} dt.

Then one has

5/(T+U) dt = —/{Zmi(xg'ﬁxi-%yféyi+zl'-’6zi) —5U} dt
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where oU. oU_  oU
an equation from which in fact the basic symbolic equation (2.2) of
dynamics given earlier in the second lecture (page 12) follows.

The principle contained in equation (8.1) is very useful in the trans-
formation of coordinates. It holds for any coordinate system. Therefore,
in a new system one has to vary with respect to the new coordinates as
earlier in the old one, and the entire substitution which is to be carried
out is limited to the two expressions T' and U.

We shall first apply this to polar coordinates; the transformation
formulae in this case are

T; = 1 COS P;, Yy; = T sin ¢; cos ¥, z; = r;sin ¢; sin ;.
From these follow, by differentiation,

dx; = cos ¢; dr; — rsin ¢; do;,

dy; = sin ¢; cos i; dr; + r; cos ¢; sin ; dp; — 7; sin ¢; sin¥; dip;

dz; = sin ¢; sin ¥; dr; + r; cos ¢; sin ¢; d¢; + r; sin ¢; cos ¥; di;;

and so
dr? + dyf + dz} = dr? + r}de] + r} sin® ¢idy?,
or
zi? + % + 2% =% +ri¢* +risin® ¢; - i,
where dr do da
i i i
TQ:E‘, (75:: dr’ "/);: dt

Then one has at once:
1
T = 3 Z mi(z:? + 4% + 2/%)

1 .
=3 Z mi(ri"? + r2¢ + r2sin? ¢; - %) (8.4)

Under these assumptions and also taking U as expressed in the new co-
ordinates, we shall find the equation which proceeds from ¢ [(T+U) dt =
0, according to the general rules of variational calculus.

If P is a function of several variables ...p... and their differential
coefficients ...p’ ..., where it is assumed that all the p depend on one
independent variable ¢, and if the first variation of [ P dt vanishes:

5/Pdt=0,
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where the integral is to be taken from ty to ¢, and the p are given
corresponding to these values of ¢, then this leads, as the derivations
carried out in the sixth lecture (page 54) have shown, to the equation,

daP 8P

B o
O_Z{Uf__a_p

In our case the quantities p are rl, qbl, ¥;, and P = T + U; further U

(8.5)

does not contain the derivatives i, ¢}, 1}; hence we obtain
[l or ) [l om av),
N dt Or; Or;| ° dt  8¢; 0¢i|

s [don_or _ou
dt 0Py Oy

Now, according to (8.3),

OT o 0T _ oy 0T _ o

8_7'2 (AR X a¢)/ ad)/
gT (r2¢z’2 + 7;sin ¢z'¢)z’2), g*(]];_ 2m17" Sln(2¢z) a
Ti ]
oT
;i 0
so one has

0= Z { (ﬂ'- - 7”1(,‘251 - T SiIl2 ¢iwzl2) } (57‘7,+
d(r;#;) 1
Z {mi<T — = sm(2¢,) ) 3¢, } S+
2

d sin? i ) oU _
Z { dt oy } o,

or
2 : d27'i ” ”
my { <‘d't2 - 7‘1¢ - T3 Sln ¢1wz )6Tz

d(rig;) 1 ” (r sin” g
(d_t_gn Sin(26:)v; )6@ ——‘dT—‘W”}

oUu . U oU
> (5;5“- 5500+ %wi) = oU.
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If equations of constraint f = 0, = 0... hold, then the sum A§f +
1éw + --- comes in addition to U on the right side of this equation,
and one has, in this case

2.
> m; { (%{{- —ri¢i> — rysin® ¢i¢i'2)(57‘i+
driel) 1 o o012 se + ATEsin 6))
<_dt— - Eri Sln(2¢z)d"z >6¢z + _—dt_éwz} =
SU +X6f + p0T + -, (8.6)

an equation which breaks up in 3n equations of the following form:

2
{d i rlqﬁl -7 sin2 (i)iwi/?} Qg + /\Q‘i + ,U.gw + -

dt? 8 or;
‘ d(r1~2¢>;’) 1 2| of ow
m {288 Lo} = 202 B2 s
d(r? sin? ¢; ") _ou of ow
T A T T

Of extreme importance is the transformation of the original coor-
dinates into new ones which are so chosen that, when everything is
expressed in terms of those, the equations of constraint are satisfied au-
tomatically. Namely, if there are m equations of constraint, then all
the 3n coordinates admit of expression in terms of 3n — m of them, or
through 3n — m functions of those. In most cases it is very important to
introduce not the coordinates themselves but new quantities, in order
to avoid irrational quantities. For example, for the motion of a point on
an ellipsoid, the formulae

T = acosm, y = bsinncos(, z = csinnsin(,

which satisfy the equation of the ellipsoid identically are of the great-
est importance. We shall call these new 3n — m = &k coordi-
nates qi,...qk: they shall be so constituted that when one expresses
r1,Y1, 21, X2, Y2, 22, .. . through them and inserts these expressions in the
m equations of constraint f = 0,w = 0,... the left sides of these equa-
tions vanish identically, that is,

flqi,-. . qx) =0,0(q1,...,qx) =0,... (8.8)

without any relation existing between the ¢’s. Through this the differen-
tial equations of motion will be significantly simplified. Namely, for any
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coordinate system whatsoever, according to equation (8.5), the general
basic symbolic equation of dynamics, when equations of constraint hold,

is o7
> Yoq _ OT
dt 0qs
where the summation sign extends over all ¢. But the equations (8.8)

hold identically for all ¢’s; hence, on introducing these quantities, one
has 6f = 0,0w = 0,..., etc, and the above equation reduces to

8qs = U + A\6f + ud + -

[ _or
dt 9qs

which breaks up into k differential equations of the form

dgs = o0U,

Ay OT _oU

This is the form in which Lagrange had expressed the differential equa-
tions of mechanics already in the old edition of Mécanique analytique.

If one considers all coordinates expressed through the quantities g,
one obtains by differentiation

Ox; ox; ox;
/ (N} T 7 1/
== — . _|— e
xl aql q1 + 8q2 q2 + 8qk qk
9yi , , Oy Ay
PO o O% L O
0z; 0z; 0z;
p_ 9% 0 0%, L 0%
2 = aql qQ1 + 8q2 g2 + + 8qk qk

If one inserts these values in T = % S mi(zi? 4 yi'? + 2;"?), one obtains
an expression which, in relation to the quantities qf,...,q, is a ho-
mogeneous function of the second degree whose coefficients are known
functions of q1,...,qk. If we set

or
aq‘/g - pS?

then we can also write the equation in (8.9) as

dps O(T+U)

= T (8.10)
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This is however not yet the final form of the equations of motion,
rather it requires a further transformation; but before we go over to that,
we shall extend what we did so far to the case in which no force function
exists, but where in place of U in the original symbolic equation of
motion > (X;0z; + Y;dy; + Z;02;)) occurs. If everything is expressed in

terms of the ¢’s, then
ou
oU = Es 8—35(13

If one compares this with the expression Y (X;0z; + Y;0y; + Z;02;))
just mentioned and remembers the rule given in Lecture 2 (page 14)
according to which, for a transformation of coordinates,

ox; 8yz 0z;
6_%6QSa 8 5q37 8 (5(157

are to be substituted for éz;, 5y,, dz; respectively, then one sees that in
place of 7.2 s 9a. U 5g, the expression

81‘, Byi 0z;
ZZ ( 6‘13 + Ziga;)(sq.s

fau

enters, and in place o the expression

ozx; Jy; 0z;
Q=) (X 30t Yaqs Zla—qs). (8.11)

i
Because of this change, equation (8.9) is replaced by the following:

gy ar

Here one sets for s the values from 1 to k and thus obtains the equations
of motion in the present case expressed in terms of the quantities q.

We shall verify equation (8.12) in yet another way, and indeed shall
start from equation (7.5)

e O 05
o dt? ox; T;

d dyi _ of ow

iz =Y, + /\a + u@yz +

d2z,- af
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If one multiplies these equations by Bg ,gg—i, gfl and sums over ¢, one
obtains, as the multiplier of A,

) Of dxi | Of Oy Of Oyi\ _ 0f(ar,---, ax)
O0x; dqs  Oy; Oqs  Oy; Ogs 0qs '

However, the expression on the right vanishes according to (8.8), and
the same holds for the coefficients of . and v; hence one obtains, taking
into account equation (8.11):

d g 8.131 dei Byi dzzi 6‘zi _
Xz: { dt2 g, T e dgs T Ogs | @ (8:.13)

In order to verify equation (8.12) we must also show that its left side is
identical with the left side of this equation. This will be proved in the
following way. One has

1
= 3 Z mi(l'z‘,Q + yi’Q + Zi,2),

and hence

oT oz,
aq, =2m ( ;

i

oT 0yl 07
B4, ‘27"1( TYiq, " 5g, )"

L " Oy; ' azz( >

‘0q,  'Oq,

One has, however, the differential equations

oz; oz; oz;
! (B i / 1 7
x; = 8q1 -1 + 8 4> S R an k>
Oy 8y 0yi
! (2 I ) I 1 7
/ + 2 cee gt
Yi= o1 T 5g, 2 o Oy, &
0z; 0z; 0z;
A (4 T/ 1/
Z; = o YL +o0t oar G-

It follows from this

Ozy _0mi Oy _ Oy 0n _ 0u

dq, 0Ogs° 0Oq. O8¢5’ 0Oq, Ogs’
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further,
oz, 0%z - 82z, " L P, _dgh
v — coe q = R
dqs  0gs0q1 "t " BgsOgy 2 T og0a kT Tdt
O _ Oy o, Py P _ dg
OQS 8qsa(h ! 3(138 q2 2 aQSBQk dt ’
d
0z, _ %z g 9%z Gt 0%2; g = da;s.
ags 5qs8q1 qu&n dgs0qx *  dt

Substitution of these values in gq; and 6T

O S (22 4y 02
oq,, ‘0qs " Oqgs
yide; lo] Oz;
oT _ ' ()q; /dﬁ(% /da—qsk
g5 —Xi:m (Il at Vg tETg

- gives

hence

gk ar Z <dx Oz, _dy, dy; _ d azi)

dt _a_qsz dt 8qs  dt 9gs dt Bq,
d’z; 0x;  d%y; Oyi  d%z; Oz
(Lt i £a0m)
- dt? 0q,  dt? 0q,  dt? Oq,

whence the identity of equations (8.12) and (8.13) is proved, and at the
same time the first is verified.

So, if no force function exists, one has equations of the form (8.12)
as the equations of motion, but when one such exists, equations of the
form (8.9), or what is the same, of the form (8.10), namely

b, _orrv) ot
dt ~  9qs Ps = aq.’

One gets a noteworthy result from this form of the equations: if
one can so choose the new variables that one of the gs; does not enter
into the force-function, and in the representation for 7', the variables
gs do not come in, but only their differential coefficients ¢/, then in
this circumstance, there always exists an integral of the given system
of differential equations; in fact p; = constant, or what is the same,

% = constant. Since a(g;U) = 0 under the assumptions made, one has
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therefore %;—5 = 0, ps = constant. This case occurs, for example, in the
attraction of a point by a fixed centre. If the centre is at the origin of

coordinates, one has, in polar coordinates (see equation (8.2)),
a 1 2202 )2 2
U=-, T=§m(r + 729" + 1’ sin” ¢ Y'°);
T

1 does not come into U, and into T also no 1, but only its derivative
7', so one has

ar )

5 = mr?sin? ¢ ¢ = constant,

or, when one allows the factor m to go into the constant,

r?sin? ¢ -4’ = constant,

which one can also derive from the third equation (8.7). This is the
principle of surface area in relation to the yz-plane. In fact,

T = rCos ¢, y =rsin¢cosy, z =rsin¢siny,
and ) , ,
z yz' — 2y
t = Y = o9
wY =y cos? ¢ y?
or on multiplication by y? = 2 sin? ¢ cos? ¥,
dz dy
2 a2 /
T . — —_——
and therefore,
d d
r? sin® oy = y-d—j - zd—?; = constant,

the principle of surface area for the yz-plane.
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Hamilton’s Form of the Equations of Motion

After the publication of the first edition of Mécanique analytique, the
most important step forward in the transformation of the differential
equation of motion was made by Poisson in a paper which deals with
the method of variation of constants and which appears in Volume 15
of the Polytechnique Journal. Here Poisson introduces the quantity
p= gg, in place of the quantity q’; now since, as already remarked, T is
a homogeneous function of the second degree in the quantities ¢’ whose
coefficients depend on ¢, p is a linear function of the quantities ¢'; for
the definition of p one has the k equations of the form p; = @;, where w;
is linear with respect to ¢i,...,q,. If one solves these linear equations
for the quantities ¢’, one then obtains equations of the form ¢, = K;
where the K;’s are linear expressions in p whose coefficients depend on
the g. We shall insert these expressions for ¢, in the equation (8.10) of

Lecture 8, i.e.,in the equation
@* oT+U) 8T+8_U

dt d¢;  9¢;  9g;’

where g;i_ contains only g, while g—g is, besides, a function of the quan-
1 1

tities ¢/, indeed, a homogeneous function of the second degree of these
quantities. If we set ¢; = Kj, then '66_3:7 is a homogeneous function of
second degree in the quantities p;. Hence the above equations will be of

the form p
Di
_Ei? - ]Dza
where P; is an expression in p and ¢ and in fact of the second degree with
respect to p. These equations combined with the equation ¢} = % = K;
give
di _ . d

- ) = i ]-
dt dt B (9:1)
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This is the form to which Poisson brings the equations of motion where
K; and P; contain no variables other than the p’s and ¢’s. From this
system of 2k equations, one obtains the remarkable theorem that
O0K; 0Ky OK; 0Py or;, 0Py 9.2)
Opy  Opi’ Ogy opi’ dqy  0qi’ '
of which Poisson obtains the first group exactly in the way described,
while the remaining can be written down directly from his results.

The equations (9.2) show that the quantities K; and P; can be looked
upon as the partial differential coefficients of a single function with re-
spect to the variables p; and —¢;. Poisson does not make this remark
which follows without anything further from the equation (9.2); still
less does he try to find out that function. It is Hamilton, rather, who
has first made this determination, and has greatly simplified the entire
transformation through the introduction of his characteristic function.
One would arrive at this almost immediately if one wished to derive
the theorem of conservation of ‘vis viva’ from Lagrange’s second form
of the differential equations given in the preceding Lecture, a derivation
which is not quite obvious. The theorem of kinetic energy is, when one
considers the case in which time comes in explicitly in the force-function,

T=U- / —— dt + constant,

or on differentiation,
d(T -U) 4 ou
dt ot
(Lecture 5, p.44). For deriving this result from Lagrange’s second form
of the differential equations

dpi _ (T +U) _or
dt ~  8q; pz_@q’-

1

=0

(contained in equation (8.10)), one proceeds in the following way. T is a
homogeneous function of the second degree in the quantities ¢’, so that
one has, as is well known,

oT oT
oT = ¢, 2 4 ¢ &= =3¢
qlaq/1 +q28qé +--+q ka/ q;Di,

or

oT
_ ’
T_Zqia_q,_ =T,

1
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and hence, one obtains through total differentiation

oT oT
/ /
dr =Yg d Z 9 2% ~ 2 5%
or, since the second and third terms mutually cancel,
oT , oT
dT =Y qid a aq a—qid(h’ = qidpi— ) a—qidqi, (9.3)
which is an identity. If one introduces here for dg T = = dp; its value from

(8.10) of the previous lecture, and divides by dt, it gives

dl’ o( T+U oT dg;
dt Z Z 0q; dt
BU ,_dUu U

0g; %= dt ot’

and so we have AT -U) oU
% + i = 0. q.e.d.

The identity (9.3) leads easily to Hamz’lton s characteristic function.
Namely, the partial differential coefficients 2 Yo L and g 7= Di which appear
on the right side of equation (9.3) (the differentials of the latter) are
constructed when 7T is looked upon as a function of ¢ and ¢'. But if we
introduce the quantities p; instead for the g} through the linear equations

= K, already mentioned, then T will thereby be a function of the ¢
and p and we shall for the sake of distinction denote by ( ) and ( )
the differential coeflicients of T with respect to p; and ¢; constructed on
this hypothesis. Then

oT oT
dT = P ap; + <——>d~,
5 (g )+ 2 ()
and so from equation (9.3),
oT
5 (5, )+ (5 ) o= Tl - T
Since this equation is satisfied identically, it follows
oT ,
= q 94
(5) - & (9.4

or or
(%) - % (9.5)
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Equation (9.4) shows that there exists a sort of reciprocity between the

quantities p and ¢’.For, in combination with the earlier relation g—g = p;,

we obtain the equations

o _ TN _
8(1; = Di, 8?1 - Qia

a correlation which is analogous to what comes in the theory of surfaces
of second order. If we set the value of g—g; found in (9.5) in equation
(8.10) of the previous lecture, then we have

d_ (o1 U
dt  \9g dq;

Since U does not at all contain p, and ¢/, so

dq  \0q;)’ dt Jg; '

Further, since U contains no p, one can write equation (9.4) also as

="

Then, if we set
T-U=H (9.6)

we have
dg;

_ (6H dpi  (OH
dt (31%')’ dt (8qi>’ &)

from which one sees that H = T — U is the characteristic function. The
theorem of vis viva is obtained automatically from these equations; for
from the two equations (9.7) follows

OH\dpi (OH\dg _
8[),' dt qu dt o

and this summed over all ¢ gives

dH OH _

a ot

i.e., the theorem of kinetic energy.
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Since it is self-evident that in the equations (9.7) the quantities p
and ¢ are to be looked upon as independent variables, one can delete
the brackets around the differential coefficients and obtain

dg; _ 0H dpi _ OH
dt op;’ dt 0q;’

H=T-U. (9.8)

In the more general case where no force-function exists, in place of g—g
1
there enters the expression

_ Oor oy 0z
Q_Z(Xa—%+Y-a—q—i+Zaqi>,

where the sum is extended over all z,y, z, and there occurs in place of
(9.8) the following:

dg; oT dp; oT
= iz——ﬂLsz

dt — op;’ dt dg;
When there are no equations of constraint, the quantities q coincide with

the coordinates; the first of the equation (9.8) is an identity, the second
goes over into the system

d’z; OU d%y; _ou d?z; OU

™R T am V@R oy AR om

which is the original form of the equations of motion.
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The Principle of the Last Multiplier

Extension of Euler’s multipliers to three variables. Setting up the last
multiplier for this case.

The principle of the last multiplier accomplishes, in all cases where
the integration of a system of differential equations of motion is reduced
to a first order differential equation of two variables, the integration of
this last equation by giving its multipliers. Here it is assumed that the
applied forces X;,Y;, Z; depend only on the coordinates and the time.

If we introduce the derivatives %, %, %, as new variables z/, y., 2.,
in the original system of differential equations of motion, then they take

the following form:

dz} af 0w dz;
midt —Xi_‘_/\al‘i_‘_'ual’i_*_“.’ —Zi—t_hxi
dy; of Ow dy; ,
iy e = ... A
dz; of ow dz;

These are 6n differential equations, but between the 6n variables
Ti, ¥i, Ziy 5, Vs, 2 depending on t ocurring in them, there already ex-
ist 2m relations, namely

f=0, w=0,...,
of , of , of \_
Z (8.’17,’xi+ ayzyz+ 6zizi —07

Z 8&$,+_3_57_,+@Z, =0
al‘i ¢ 8y,-yi Bz,-i IR
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When t occurs explicitly in f,@,.. ., the terms %{, %—‘?, ..., are to be intro-
duced respectively in addition on the left sides of the last m equations.
Therefore one has to still find 6n — 2m integral equations.

We first assume that ¢ occurs explicitly neither in X;,Y;, Z; nor in
f,@,.... Then by means of one of the 6n equations, say, the equation
d—;tl =z} or dt = Ei;Tl, one can eliminate the time from the remaining,
and then one has a system of 6n — 1 differential equations, the complete
integration of which requires 6n — 2m — 1 integrals. If these integrations
are assumed to be carried out, one can express the 6n quantities x;, y;, z;,
x}, Yy}, 2}, ..., through one of them, for example z;. If in this way we think

of z) as expressed as a function of z;, then the equation dt = ‘f,l gives
1

an integration

d:IIl
t+ constant = [ —~;
Zy

when the time does not occur explicitly, then the last integration is
reduced to a simple quadrature, and the time is then always associated
with an arbitrary constant through addition. This occurs, for instance,
in the elliptic motion of planets. However, if we assume that the system
of 6n — 1 differential equations, which in obtained on elimination of the
time, is not completely integrated, but one integration is missed, then
one has not found 6n — 2m — 1 integrals, but only 6n — 2m — 2; then one
cannot express all the variables through a single one, x; for example, but
can through two, z; and y; for example. In this case there remains one
differential equation between x; and y; to be integrated; namely, if one
eliminates the differential of the time from édyt_1 = y} through dt = 4;%,
then one has '
dxy : dy; = x) : yi,

where | and y{ are, according to our assumption, functions of z; and
y1. Now, for this differential equation, the principle set up by me gives
the multiplier. After one has integrated it with its help one finds, as
remarked above, the time through a simple quadrature. So, when time
does not occur explicitly, one needs to perform only 6n — 2m — 2 inte-
grations in order to obtain the last two without any further device.

When, however, the time occurs explicitly, not merely as its differ-
ential, then it cannot be eliminated from the differential equations. If,
however, then 6n — 2m — 1 integrations can be carried out, by which
everything is reduced to the integration of a differential equation of the
form

dry — ridt = 0,
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where 7] is a function of 1 and t; then again one obtains the last integral
through the principle of the last multiplier.

After we have seen what the principle under discussion achieves we
proceed to its derivation.

Though Fuler had already seen in many examples that one can trans-
form first order differential equations of two variables into perfect dif-
ferentials through multipliers and then integrate them, it took him very
long to arrive at the insight that this must be a general property of these
differential equations. This was because, at that time, for him the idea
of solving the integral equation for the arbitrary constants lay far off.
If he had been familiar with this idea, he would not have despaired of
reducing a linear partial differential equation to an ordinary one, a prob-
lem which he held to be more difficult than that of integrating a second
order differential equation of two variables, which has not been solved
even today. On the other hand the reduction of linear partial differen-
tial equations to ordinary ones is now considered elementary. Fuler had
also never extended the theory of multipliers to a system of differential
equations, although the procedure for this case is just as simple, if one
thinks of the integral equations for the arbitrary constants as solved.

Let us first consider a differential equation of two variables x and y,
and indeed let it be given in the form of a proportion

dr :dy=X:Y,
which, is identical with the equation
Xdy—-Y dz=0.
If one considers the integral brought to the form F' = constant, one

obtains by differentiation the equation

OF OF
5y—dy+5;da:—0,

of which the left side can differ from the left side of the previous differ-
ential equation only by a factor M; so one has

oF oF
oy’ oz’
and this gives the equation for determining M
O(MX) + o(MY)
ox Ay

=0. (10.1)
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Let us extend the theory of these multipliers M to a system of two
simultaneous differential equations of three variables. Let it be displayed
the following form:

dr:dy:dz2=X:Y :Z, (10.2)

Let the integral equations, solved for the arbitrary constants, be

f=CY, ¢:ga (103)
then one has
of af Bf 8(1) 0¢ .
3.0t a—d y+5odz=0, = 8 5,2 =0,

and hence it follows

dx:dy:dz—(g%_g%> . (a_fa_d)_gi%)

Oydz 020y 0z 0x Ox 0z
0f9¢ _0f0¢\
Oor 0y Oyox
If one sets
A = Qf?ﬂLﬂ%)
~ \9ydz 0z0y)’
B — foé’f_a_f?f>
N 0z 0xr Oz 0z
c - (9fo¢ _0f0¢
~ \0z 0y Oyor
then

dr:dy:dz=A:B:C,
which, with the given system of equations(10.2) leads to the proportion
A:B:C=X:Y:Z2
Therefore, there exists a multiplier M with the property
A=MX, B=MY, C=MZ.

But A, B, C satisfy the relation

0A 0B 0C

%—+5y—+@—=0;
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one has, therefore, for M the equation

OMX) oO(MY) O(MZ)
or + oy + 0z

=0,

or

oM OM 8M+{8_X oy aZ}MZO_ (104)

X " Yoy v 2%, "oz "oy T a2

Since f = a and ¢ = [ are integrals of the system (10.2), so by
virtue of this df and d¢ must vanish identically, without the help of the
integral equations. However,

of of of 0¢ 24 9¢

Y e+ Ty gz dp= L4+ Lay + L4
af axdx+8y y+82 5 49 oz x+8y y+82 “

and consequently one obtains by means of the system of equations (10.2),

of of of
Xop t Y5, + 25, =0
o6 0p _0p

(10.5)

which are to be looked upon as the defining equaitons of the integrals
of the system (10.2).

One can hence prove that any function of f and ¢ set equal to a
constant is indeed an integral of the system (10.2). In fact, if & is any
function of f and ¢, one multiplies the equations (10.5) by % and g%
and adds, then one obtains

owdf Owd owdf Owdp
X(a—f% %%) * Y(é?a—y%a—y)
owdf Owdp _
Z(a_f$+”87¢5>‘0’

or
ow ow 0w

X—+Y—+27— =0 10.6

Oz + Oy + 0z 0 (10.6)

so w is an integral of (10.2). Conversely, any integral of (10.2) is a

function of f and ¢. For, if it be assumed that there exist an integral

w = r which is not a function of f and ¢, then equation (10.6) holds

for . Now let w be an arbitrary function of f, ¢ and @. Then one
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multiplies the equaiton (10.5) and (10.6) by 22, 22 and 22 respectively
af? 9¢ Ow
and adds and so obtains

consequently, w is also an integral of equation (10.2). However w is
an entirely arbitrary function of f, ¢ and w and these are mutually
independent. Therefore, one can introduce f, ¢, @ as new variables in
place of the original variables z, y, z and express these original variables
through f, ¢, @. So one can represent any function of z, y, 2z as a
function of f, ¢, @, and an arbitrary function of f, ¢, @ is equivalent to
an arbitrary function of z, y, 2. So one can set any function of z, y, z for
w, i.e., any function of z, y, z set equal to a constant is an integral of the
system (10.2), which is impossible. So there can be only two mutually
independent integrals of the system (10.2), and any third is a function
of the two mutually independent f and ¢.

One can use this result to derive from one value of the multiplier M
all others. Let IV be a second value of this multiplier, so

oM oM oM 0X oY 07
Y I —_ —_— jmand
X8m+ Oy +Z@z+{8:1:+8y+8z}M 0
ON ON ON 60X 98Y 0Z
X5 TV oy T %2 {%*@*E}N*O'

If one multiplies the second of these equations by M, the first by N and
takes the difference of the results, one obtains

0 = X{MaN NQM}—FY{MB—]Y—N%}

or oz oy oy
ON oM

or, if one divides by M?,

ON/M) | ON/M)  , O(N/M)

0=X—%5, By P

Then % = constant is an integral of the system (10.2), and thereby %
is a function of f and ¢, or

N = MF(f,¢), (10.7)
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i.e., if M is one value of the multiplier, all other values are of the form
MF(f,¢). However, as has been assumed, f = « and ¢ = (3 are integrals
of (10.2) and so will F(f,$) = constant, i.e., if one takes help of the
integral equations, all the different values of the multiplier differ from
one another by a constant factor.

We shall now see what advantage the knowledge of one value of M
affords; hereby one does not find the integral itself, as in the case of
a differential equation of two variables, but one finds by means of the
equations A = MX,B = MY,C = MZ, the values of the quantities

0f0¢ 9f0¢ , 0f04 0f0¢ ., 0f0¢ 09f0¢

Oy 08z 0z0y’ 0z 0r 0Oz 9z’ drdy Oyor

The advantage one can derive from these arises only when one already
knows one integral, e.g., ¢, and seeks another, f. One introduces in place
of one of the variables, e.g., z, the expression ¢, so that z is represented
as a function of ¢, x and y. We shall accordingly think of the required
integral f expressed through z, y, ¢, and shall denote the partial dif-
ferential coefficients constructed on this hypothesis by (gﬁ), (%5), (—g—f);

then we have %:<%>+<g£>< )
5 () ()(E)
#-(3)-(2)()

and obtain for the quantities A, B, C, the expressions

f _ f f\o¢ (Of
A= (ay)az B=- (833)82 ¢= <6z)3y <8y>6:r'

From these it follows that if one knows the integral ¢ = 3 and one value
of the multiplicator M, one can determine f. Indeed, if one thinks of f
expressed through z, y and ¢ = 3, then

- (e (o (o

-or, since d¢ = 0,
of f
v= (3w>d +<f‘9y) v
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But one has, from the above equations for A and B,
(8 f) A (8 f ) B
a2 ) = 35 -yl Balit-ret!
Jy 9 Oz o

Ady— Bdz
& =g
0z

Since now A = M X and B = MY, so

and therefore,

M
df = 55(X dy - Y dz), (10.8)
0z

and this gives

[z ay-vay=7=a

Oz
as the second integral of the system (10.2). Here one must assume X,
Y as functions of z, y, 2, expressed through z, y and ¢ = (3 as given.
Under this assumption, as we see from (10.8), M/ %f is the integrating
factor of the differential equation X dy — Y dx = 0. Hence, we have the
following theorem:

Theorem 10.1 If the system of differential equations
dr:dy:dz2=X:Y:2

is given and one knows, first of all, an integral ¢ = 3 of the same, and,
secondly, a value of the multiplier M of the system, which satisfies the
partial differential equation

XD OO (0 o o7
oz Oy 0z or Jy 0z

} M =0,
then M/ %‘f s an integrating factor of the differential equation
Xdy—-Y dy=0,

it being assumed that from the given factor as well as from X and Y,
the variable z has been eliminated by virtue of the integral ¢ = 3 already
found.
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One might regard this theorem as fruitless. Because, while for the
knowledge of the second integral f the solution of the partial differential
equation

is required, to determine M and thence to find the second integral f, we
have to solve the very complicated differential equation

X3M+Y3M+28M 3—X+?X+Q§ M =0.
dx Oy 0z

oz T oy T8 (10.9)

It appears that an easier problem has been turned into a more difficult
one. However, here a peculiar situation arises. The partial differential
equation which defines f,
of  of  ,of
X 9z + Y_GZ +7Z Fyol 0,

also has the solution f = constant, but this obvious solution does not
give an integral of the given system and must therefore be excluded.
Such an exclusion of a solution is not necessary with the multiplier M;
and if, for example, M set equal to a constant gives a solution of the
equation (10.9), this value of M can be thought as much a multiplier as
any other. The case where one can set M = constant occurs if

0X 0Y 0Z
6—w+a—y+$ = 0; (10.10)

then equation (10.9) reduces to

oM _OM _dM
X e tY 5, t25, =0

one can then set M = constant, 1, for example, and we then have the
following theorem:

Theorem 10.2 If, in the system of differential equations
dr:dy:dz=X:Y:Z,
X,Y, Z are functions of x, y, z, which satisfy the condition

0X dY 0Z _

5;_’__3;—{_5—0;
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if, further, one knows an integral ¢ = (8 of the system, by means of this
equation expresses z through the quantities x, y, B and substitutes the
value found in X, Y, g—‘f; then

1
@(Xdy—de)=f
0z

is a perfect differential, and one finds the second integral f = « of the
system through a mere quadrature.

There is yet a second and more general case to be mentioned, which
includes the one just stated, and in which M can be similarly determined
in general. If one introduces into the equation (10.4) holding for M, after
one has brought it by division by M X to the form

L (OM YoM ZOMY 1 (0X Ov 0z\
M\dz X0y X 0z X\ozx 0Oy 0z)

the values following from the given system (10.2):

Y dy Z  dx

X dr’ X dz’
then one obtains

1(8M OM dy 8Mdz> 1 <8X )% 6Z)

bl

M\oz Vogar T o) TxX\or Ty T 5
or
1 dM 1(aX Y a_z>_0

Mdzr " x\3z Ty T8
or, finally,

dlogM 1 <8X oY 8Z> _o. (10.11)

_— — + —_—
dr + X\ Oz + dy Oz
If now % (%ig + %’;— + %-f) is a complete differential coefficient with respect

to x, so of the form %, then one has

dlogM  df
dr + dz 0,
M = Ce 5.

Hence, one obtains the following theorem:
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Theorem 10.3 Let the given system bedx : dy :dz2 = X :Y : Z and
let, further, the expression

1 /06X + Y + 0z
X\o0x Oy 0z

be equal to %, i.e., equal to some complete differential coefficient with
respect to x; finally, let ¢ = 3 be a known integral of the system; then

6—6

0z
is a complete differential, it being assumed here that by virtue of the
integral ¢ = (8 everything is expressed in terms of x and y.

One can also express the result as follows. Both the variables of the
differential expression whose integrating factor is given, are not x and
y, but  and z or y and z.

We shall give an example of these theorems. First, let there be an
ordinary differential equation of the second order to be integrated, viz,

d*y dy
proi f(m,y, %> = u.

If one introduces a new variable z = %, then one has two equations

dy dz
5 =%, - =1u,
dzx dx
o)
dr:dy:dz=1:z2:u;
then in our earlier notation,
X =1, Y =2, Z =u.

In order to be able to apply the first of the two theorems stated, one
must have

ox ov oz _,
ox oy 9z

in the present case, %—)z( =0, %’yﬁ =0, %—f = %; so one has the condition

Oou

0z
i.e., in u, 2z, or, what is the same, %, should not occur. If one makes
this assumption, one has the theorem:

0;
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Theorem 10.4 Let the differential equation to be integrated be

d’y
dz?

= f(x,y),

where f does not contain %; if one knows a first integral

dy
d’(xvya E) = Q,

which is solved for :

d
= @ya),
or
dy - w(wa Y, a) d.’L‘ = Oa
then
1
X
o

expressed in x, y and « is the integrating factor of this differential equa-
tion.

The calculus of variation gives an example of the second theorem.
The simplest problem of that calculus is that in which the integral

d
/w(x,y, d%) dx

is to be a minimum or a mazimum. This exercise leads to the differential

equation
Y
dW _ oY ’ @

dr ~ oy’ Y= 4

The first of these gives on expansion

oy O OWdy Oy
oxdy  Oydy y oy?dr Oy’

one has then
’ ¥ _ 0 %
dy __ Oy 0zdy’ 8y3y’y _
82
dx 8_21}15
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or if one sets for brevity

_op Oy Py, Pdy
T Oy Ox0y  Oydy v= Oy'? dx’

then
dy’' v
_ = = U.
82
N

Besides, now % =1/, so that one has
de:dy:dy =1:9 :u.

Here 3y enters in place of the variable which was denoted above by =z,
and also
X=1,Y=9y,Z=u.

In order that the second theorem may find an application, the expression
1/0X + )4 4 0z
X\ 0z Oy 0=z

must be a complete differential in x; in the present case this is equal to

%, and the question is whether g—;‘, admits representation as a complete

differential coefficient. We have

and so

But at the same time
v _ v e o oW
oy  Oydy Oxdy? Oydy? oyoy'

__ (0% 00%dy
 \ 0z dy?  Oyoy?dx

I

and as a consequence of the equation

o Py
T oy? dzx’
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2 . -
gy—}/’g cancels out in the numerator and denominator of (%i,, and so one
has

88% |, 9 %pdy |, 8 *dy
Ou _ weayr toyoytd T oy oyt ds
r T 52 )
% o7t
or ) o2
d 0%y P
@ _ d—z‘—'gay, _ leg 902
7 T T 52 -
Oy 5271,/:, dz

Then % is in fact a complete differential coefficient in z, and according
to (10.11),

2
dlogM _ dlog 5%
de =~ dz
0%y

One has accordingly a theorem which holds for all problems in the cal-
culus of variations in which the integral [ (z,y,y’) dz must be a maxi-
mum or a minimum. In order that this condition must be fulfilled there
should hold between x and y a differential equation of the second order
o
da—;fi W

dx_gy_

which possesses the following property: if one knows a first integral,
o(x,y, %) = a, and brings it to the form dy — F(z,y,a) dz = 0, then

1 0%
Y 7,2
% dy

expressed in terms of x, y and « is an integrating factor of this differ-
ential equation.

To this category of problems of maxima and minima belongs, for
example, the determination of the shortest line on a given surface. This
problem leads to a differential equation of the second order; if one knows
an integral of the same, then the multiplier of the differential equation
of the first order yet to be integrated is determined.

What has up to now been said about the simplest case of the calculus
of variations admits the most general extension in which stands under
the integral sign a function which contains arbitrarily many variables
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Y, 2,U,... depending on a variable x and the differential coefficients of
each up to an arbitrary high order. If such a problem can be reduced to
a first order differential equation of two variables, the final integration
can always be carried out. But in order to arrive at this result, it is
necessary to introduce a theorem on the expressions which occurs in the
solution of linear equations, and which have been called resultants by
Laplace, determinants by Gauss and alternating functions by Cauchy.



Lecture 11

Survey of those properties of determinants that
are used in the theory of the last multiplier

If one sets

P=(az—a1)(azs—a1) - (as —a1) - (a, — a1)

(a3"a2)"'(as_a2)"'(an“(12)

(an - an-—l)»

then the product P so defined has the property that through a permu-
tation of the quantities a1, ag, ..., ay, or what is the same, of the indices
1,2,...,n, it changes only its sign and not its absolute value. Regarding
these permutations, only the following will be referred to.

Let us denote the indices 1,2,...,n after changing their order in an
entirely arbitrary manner by i1, 32, ..., iy, and the permutation by which

1,2,3,...,s8,...,n

goes over to

21522y .o ylgy.eoyln

by J. Howsoever may the permutation J be carried out, one can always
separate the indices 1,...,n into certain groups of such a nature that,
through the permutation J, all the indices which belong to a group
permute among themselves, or go over as a whole to another group, so
that in any case the indices which belong to a group remain together.
With respect to these groups one can classify the permutations, so that
for certain of these all groups go over into themselves, for others a definite
group of indices goes over into a second, and so on. This by no means
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exhausted subject is one of the most important in algebra. In all cases
where the solution of equations has been possible, the reason is to be
sought here.

The most important of these classifications of permutations is that
into positive and negative permutations,in the former P remains un-
changed,in the latter P changes into —P. To the second class, for exam-
ple, belongs the simplest case in which one exchanges only two indices
i, 7. One sees this immediately if one brings P to the form

P = *(a; — ay) [ [(ai — ax) [ [ (ar — ar) [ [ (ax — aw),

where k denotes all indices different from ¢ and 4/, and k and k' all
combinations of pairs of indices different from ¢ and i/, whereby the
exchange of the two occuring in the same difference is excluded. To
decide whether a permutation

1,2,...,n. } )

i17i27"'aln

is positive or negative, one compares the series at each ¢ with the suc-
ceeding members. If 4 is the number of those cases in which a larger
i stands before a succeeding smaller, then J is a positive or negative
permutation according as p is even or odd; or, simply, J is positive
or negative according as one obtains the permutations i1,...,7, from
1,...,n, by an even or an odd number of interchanges of two elements.

In order to pass to determinants from what has gone so far, one
considers the n? quantities

ai,by,c1,. .., p1,
GQ,bQ,CQ, ey P2,
AnybpyCny ooy P

One forms the product aibscs - - - p,, and permutes the indices in it in all
possible ways, gives each of the resulting products a plus or a minus sign
according as the permutation is positive or negative, and sums all these
products with the sign associated with them. The expression resulting
thereby:

R= Z taibacs - - - pn,
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where the double sign must have the meaning given above, is the deter-
minant of the n? quantities a,,...,p,, and these n? quantities will be
called the elements of the determinantR. One can think of R as aris-
ing from the development of P in such a way that in any term, that
particular a which does not come into it may be introduced as a factor
raised to the Oth power, and then for any value of the index i, places

0 .1 2 n—1

a;, b;, c;,...,p; respectively in place of the powers a;,a;,af,...,a;

The determinant R has the following fundamental properties:

1. If one permutes any two indices ¢ and k, or any two letters, for
example, a and b, with each other, then R changes to —R. It
follows then that whenever two rows of quantities coincide with
each other, so

ai = ak,b; = bk, ..., pi = P,
or

g1 =h1,92 =ha,...,gn = hy,
then the determinant vanishes.

2. The determinant is homogeneous and linear with respect to the
quantities standing in a row , so with respect to the quantities

ai, bi,...,pi, and also the quantities gy, g9,...,9,. Therefore one
has
R= g—jai+ggbi+"'+g—§p"’
R—a—R-gl%-a—sz-*- +8Rg
og 092 Agn”"
If we set
i . QE - B: OR P
Oa; v ob; D Op; v
then

R = Aja; + Bib; + - -+ + Pip;,
and even so
R = Aiar + Brag + - , +Pipr.

But R goes over to — R through exchange of the indices i and k, so,
as is evident from this, A; into — Ay, B; into — By, and so on; with
it, the term in A; multiplied by b into the term in — A multiplied
by b;, i.e., in R, a;by and aib; have opposite factors, that is
0’R _ O’R
da;0by ~ Dardb;’




Lectures in Dynamics 95

Similarly, one has for the three indices i, k, [,

R B R . 8°R _ O°R
8a;0bde;  Oarpdbdc;  0a;db;dck,  Oa;Obrdc;
O°R 0°R

" Dardbioe,  Da0bdcy’
and from this follow the representations for R:

52
R = ZZ(aibk—akbi)é‘aia—R;k‘;

R = Z Z Z {ai(bker — biek) + ak(bie; — bicy)
9R
0a;0b,0c;’

where the summation is to be extended over all combinations of
the indices 1,2...,n in pairs and triples. This representation of
a determinant through products of determinants of lower order
appears first in a treatise of Laplace on the planetary system in
the Paris Memoir of 1772. Laplace and Cramerin Geneva above all
are the first who have investigated the properties of determinants

+al(bz~ck - bkci)}

properly.
3. The equation introduced above,
R = OR + B_R + + _aﬁ
=0 8g1 g2 892 gn 8gn,
gives, when one writes a for g,
R=a 2}1 +a B_R +--4a _(95
~ M8a; " 8y " ar,

To these equations are added n — 1 others, which can be proved
through this, that R must vanish identically when one sets two
rows of quantities mutually equal; they give

OR OR OR
O—bla—m+b2%+-”+bnﬁ
V_.OR__OR_  OR

" oa; " 7 0ay " Ban

OR OR OR

0=plga +P28—‘12+"'+pn8—
n
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The solution of linear equations rests on these formulae. If one has

the system

a1x1 +bizz + - + p1Ta = y1,

az®1 + boxa + -+ + pexn = Y2,

anx1 + bpxo + - + PnTn = Yn,
and r’nultiplies these equations respectively by g—lﬁ, gf—z, cee g{%, by
g—lﬁ, g—gz, R aan etc, where R has the meaning given above:

R=3 taiby-pn

then one has

6a1 80.2 8an ’
Rl‘gz ?ﬁy1+_8£y2+...+a_R_yn

b, Dby obn "

op Op2 Opn

4. With the help of these formulae one proves a noteworthy theorem
on the variation of the determinant R. One denotes the variations
of the quantities a;, b;,...,p; by da;,db;,...,dp;, and constructs
the following n systems of linear equations:

1) a1$'1 +b1$/2+"'+plxiz = day,
agx) 4+ boxh + -+ poxl, = bay,
anty +bpzh + - -+ ppzi, = dag;

2) ai +b+---+pial = &by,
agx] + baxy + -+ - 4+ pox, = Oby,

an®y| + bpxy + -+ ppxp = Oby;
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and so on; finally

n) alx(l m) + bla: (n) + +p1x£1 Q- op1,
agzrl ) 4 by :v2 "l = Op,
ana:]n) + bnxén) -+ pnrgl Moo= Opn.

Now,
OR OR OR

But according to the above formulae for the solution of equations,
one has

Rz} = OR —da; + — il —dag + - 8 6an = Z —6a1,

da, dasy Oa;
and so too,
Rz} = ggdb,-, Rzl = gRécz, ..., Ra{
= Z Jpz,
&)
OR = R{a +af +af + - e},
or,

SlogR=zx) +af +af +--- +z.



Lecture 12

The multiplier for systems of differential
equations with an arbitrary number of
variables

We shall make an application of the theorem just given on the variation
of determinants to a system of differential equations.
Let the following system be given:

dxy dxo dx; dzy
— =X, —=Xq9,...,—=X;,...,— = X, 12.1
dz b iz 2 dz YU dr i (12.1)
This system in which X, Xs,...,X, are arbitrary functions of z,,
T1,Z2,...,Tn, is integrated through the following system of equations:
Ty = fl(x’aha?a"' aa’n)a
12 = fo(z,01,0,...,00),
Tn = folz,01,Q9,...,ap).
If one inserts here the values of x1,x9,...,2, in X1, X5,...,X, and
determines also the differential coefficients %, %, e ‘%;L as functions
of z and the n arbitrary constants a;, ag, . .., an, then the system (12.1)
is identically satisfied by these values, i.e., the equation (12.1) holds
for all values of the variable x and the arbitrary constants a,..., ay.

Therefore one can differentiate these with respect to each of these n
constants. From each of the equations (12.1) arise in this manner n
equations, in all n systems of such equations each with n equations i.e.
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n? equations, all of the form

dfes 09X, 011  9Xidxy | 0Xdzy
dx - (9.’171 6ak 63?2 Bak aﬂjn 50%.

From the first equation ‘fi—’;l = X, is the following system:

Or1 0X; Oxg 080X,
86!1 3:171 8041 a{EQ
8331 8X1 8$2 (9X1
8a2 0.1‘1 8&2 8.’172
8$1 8X1 81‘2 aXl
Oay, 01 Oay Oxo

and so on; finally

31’1 8X2 (9372 8X2
Oay Oxz1  Oay Oz
81‘1 (9X2 (91'2 8X2 L.
8(12 8.’1)1 6&2 61‘2
8x1 8X2 8.7:'2 (9X2 4.
oo, 0x1  Oay, Oxs
3:1:1 8Xn (9:132 8Xn o
8a1 3$1 8a1 8.772
3:171 BXn 81'2 8Xn
6a2 63:1 3012 (9:172
(911/‘1 BXn 8.732 8Xn
day,, 021 Oay, Oxo

Oz, 0X, dg=t
daq Oz,  dz ’
0z, 0X, d52
day 0z,  dz’
al'n 8X1 _ dg‘z”i:
day, Oz,  dz

Those from the rest of the equations (12.1) are the following systems:

p 5]
Ox, 0X2 _ da—%
Oay Oz, de ’
o’
aiL‘n 8X2 _ da%
Oag Oz, dz '’
Oz, 80X, dg
day, Ox,  dz '
Oz, 0X,, _ dg—i";
day Oz, dr ’
Oxn 0X, d%f;f}
dag 0r,  dz ’
Oz, 0Xn %L
da,, Oz,  dz

If one compares these systems with those stated in item 4 of the previ-
ous lecture for establishing the theorem on the variation of determinants,
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then one finds that those go over into these with the following substitu-
tion:

W On, _0m 02,
1 = 6(11’ 1—8017"'7171 aal
o = 2T, 9m 02,
2 - 8a2’ 2_8025"'71)2 (9012
w _ Om,  Om Do
n - a n, n_aan7"'7pn_aan7
01 O0xo oy,
R = S taby..pp=Y = Ly
Z b2 P Z Oaq Oan Oay,
x, = ___8X1 xh = ——8X1 oz = 0%
! 0z1 Y Oxy T Bz’
8X2 3X2 a)(2
1 — 1 — . 1 —
1 Ox1 2 Oxy’ »In Oz’
(n) 0X, (n) _ 0X, (n) _ o0X,,
. = o2, , T e — . = Bz
b = d/dz

Through this the total differential coefficient of log R with respect to
x can be expressed in the remarkable form
dlogR . 6X1 E)Xg aXn
dr  ~ Oz +6:1:2 + +8a:n’

(12.2)

where

B Oz Oxa oz,
R= Ziﬁal das  Oay’

After a complete integration of the system of equations(12.1) one finds R
from the equation (12.2) through an integration over z. But there exist
cases in which the determinant R can be given before any integration,
namely, when the sum 6—X—L + 5 a—)& +0+ 5 a—Xﬂ can be transformed with
the help of the system (12 1) 1nto a total dlﬁerentlal coefficient in z,
or, what is a still simpler case, if X; does not contain x;, X9 does not

contain xo, etc. Then %fll %—fj + - %ﬁ =0, so
dlog R
BT - 0, R = constant.
dx

The theorem contained in equation (12.2) has been established first
by Liouville, and indeed in this form (Liouville Journal, Vol. 3, p. 348).
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In another form, in which the arbitrary constants « are replaced by
independent variables x and these by functions f of the variables z, in
one of my papers (Crelle Journal, vol. 28, p. 336). Liouville has not used
any help from this theorem which it affords for integration. Before we
go into this application, we shall give a somewhat general form to the
result obtained, wherein we bring in an alteration which indeed appears
very inessential, without which nevertheless, its applicability would be
very much limited.
If one writes the system (12.1) in the form of the proportion

dr:dxy:dzg:---:drp=1:X1: X9 : Xp,

multiplying the right hand side by an arbitrary quantity X one gets the
form considered earlier:

dr:dry:drg:---:idrp,=X:X1: X9+ : X, (12.3)
if one replaces at the same time X1, Xo, ... X, respectively by the quo-
tients %, %, ey %ﬂ Through this change, equation (12.2) becomes,

dlogR _ 0(%) . 0(%) s (%)

dr ox 0xo Oz,

_ 1 8X1+8X2+ +8Xn
- 31?1 8.’172 axn

1/ 0X  0X 0X
+ X e x. 22,
b <Xla o T 0, +X”axn)

With the help of the equations

X, _doy Xp_doy X, _da

X de’ X de’ X T dz’
the subtracted term on the right hand side of this equation can be
brought into the form

1 ?ﬁd_xl_Fadeg_*_ +8den
0xry dr = Oxzy dx oz, dzx

or
_1/dX 90X
X\dz Oz)
If one inserts this into the expression for M, then we get
dlogR_i 3X1+8X2+ +8X i{(: oX
dr o, 0xo oz, X dx or
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or,

dlog(XR) (6X 0X1 0X» 8Xn>‘ (12.4)

dz oz 9z, 0m T Ba,

So if + ( S T ot 611 + az + -+ Q(—’L) can be transformed through
the given system (12 3) into a total differential coefficient in x, or if
%—f + %i(ll + %—)Z(ZZ . %%f = 0, then one can determine R before any
integration. In the latter case, we have

constant

constant, R 5

where, as earlier

R:Ziaxl dxy Own.

8(11 (90[2 Ban
We now assume that the system (12.1) is in fact of such a nature that R
can be stated before carrying out any integration, and assume that one
has found n — 1 integrals, the nth still missing; then one can represent
the n — 1 integral equations in the form

2 = Po(x, 21, 0,03, ..., 0p),
x3 = ¢3(x,T1,00,03,...,05),
Tn = ¢n($,x1,a2,a3, .. '1an)$

and then remains the differential equation
XdiEl - X1 dr =0
to be integrated, the integral of which leads to an equation of the form

1 = ¢1(z,a1,00,...,00).

By comparison with the complete integration system above of the dif-
ferential equations (12.1), it follows from this that the function now
denoted by ¢; is the same as that which was denoted by f; above, and
that the functions ¢o, ¢3,..., ¢, go over respectively into fo, f3,..., fn
when one substitutes for z; its value ¢;.

For distinguishing the differential coefficients of the quantities xo,
x3,...Zy, in so far as we look upon them as functions of z,x1,as,
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as,...,0n, from the differential coefficients considered hitherto we en-
close them in brackets,

ox; . ox; 4 ox; \ 011

Bak - 8ak 81‘1 Bak’

where 7 and k can take values from 2 to n, inclusive. For k = 1, one has
O0z; [ 0x; O

da;  \ 0z ) day’

an equation which one can handle under the general formulation when
one takes into account that

Ora\ _ (0Oz3\ _ [0z
(5ar) = Gar) == ()0 o

This gives accordingly the formula
oz; [ Ox; + ox; _Bﬂ
dar  \ Oy oz, ) day,’
for from 7 = 2 to ¢ = n and from k = 1 to k = n. Hence

3:1:1 81‘2 8:62 8:r,1

Ziaal {(6012) + <6m1)%}
oz, 4 Oz, \ 0z
Oay, oz ) 0oy, |’

i.e., R is the determinant of the quantities

8131 (812) (81:3) 81'1 (6333) <3I3) 611 <617n) (axn> d’ T1
6(11 ’ 601 6371 aal ’ 6al 6-’731 aal o (8] axl 6&1 ’
611 (6332) (81'2 6331 <61'3> (8373> 6331 (axn) (6xn> aml
daz ' \ Oz Oz, 3112 e 01 ) daz’ "\ o Oz1 ) Baa’
6.’1}1 8&3 e aag Brl 8&3 ’

% % Oxr2\ 8z1 [ Oxs
aaa’ 6(13 a.’L‘1 3013 8(13

Oz, ([ Ox2 Oz2 8:53 Qﬂ Oz Ozn + Ozn | Oz
Oa, ' \ Ban oz, dan 8z1 ) Oa,” T\ Oan Oz ) Ban”
If one denotes by R; and Rj the determinants into which R goes over
when one reduces the n quantitites in the second column to their first

term, for R;, and to their second term, for Ry, then R as a linear
homogeneous function of the former n quantities is equal to the sum of
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R; and Ry. But Ry has the common factor (g—if) and after one has taken
this out, the quantities in the first and second columns coincide, i.e.,
according to §1 of the preceding lecture R is a vanishing determinant,
and so R is equal to R, i.e., R is unchanged if the quantities in the
second column are reduced to their first terms. The same holds for the
quantities in the third, fourth and nth columns, and this gives R as the
determinant of the quantities

B.’I)g

o) L

0z, (022

80(1’ 801

31171 (91'2 6.1?3

802’ (902 8 T
@)

ory 0o
8013 ’ 303

al‘l 81‘2 83?3
Oa,’ \Oa,)’ \Oa,/’
If one now represents this determinant as a linear homogeneous function

of the quantities in the first row, and takes into account that according
o (12.4), all these with the exceptlon of Ii vanish, then we obtain

R as the product of 2% Ba and b_g_’ i.e., the product of 2%+ aal and the
al

() ()

whose elements are those which remain from the last scheme when one
cancels the first horizontal and first vertical rows. One has, consequently,

determinant

r=2%¢ (12.7)
301

This equation is of the highest importance. Since according to our
assumption one can find R a priori from the given system (12.3) without
having to perform any integration. Further, @ is known in terms of the
n— 1 integrations already performed, therefore the equation (12.7) leads,

as we then see, to the remaining nth integration, where one determines
the integrating factor of the differential equaiton

Xdl‘l - de.’L‘ = 0,
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in which X and X; are expressed as functions of z and z;. Let the
complete integral of this equation be

F(z,z1) = a;. (12.8)

This gives, as solution for z;, the same expression as what we designated
above by
1 = ¢(x,01,Q0,...,0,).

The substitution of this expression for z; makes (12.8) an identical equa-
tion; so one obtains, on differentiation with respect to a;,

OF Om _
8.’31 50(1 N
or, since
oz, _ R
Oay B Q
according to equation (12.7),
oF _Q
8271 B R.

If we denote by N the integrating factor of Xdx; — X;dx, then we have

OF OF
NX=—-—, -NX =—
811’ ! 8:1"

and from the first of these equations,

10F _ Q

N=xX0z. " Xk

(12.9)

N = XQR is then the integrating factor of the equation Xdr; — X;dx = 0.
Then one has the following theorem:

Theorem 12.1 If in the system of differential equations
dr:dry:dery: - idrp,=X:X1:X9:---: X},

the expression

l _8_)(_+%+..'+6Xn
X\ 0z On Oxy,
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is a total differential of x, one knows n — 1 integrals of the system from
which the variables x9, 3, ...,x, can be represented as functions of x, T,
and n — 1 arbitrary constants of integration through the equations

T2 = ¢2(1’,$1,a2,...,an),
T3 = ¢3($7x17a27"‘7an)3"'3
Tn = ¢n(:c,:c1,a2,...,an),

and there remains the only differential equation
Xdr, — Xdz =0

to be integrated, then
Q

~ XR
is an integrating factor of this differential equation, where

N

1 (8x  9X X
(E+51++ % )de

XR — ef X Oz

and

. 8332 (9:133 an
Q - Z iaag 8013 8an'

If %—f—k%%l%—- . -+%:" =0, then X R = constant, and in this case the
determinant @ itself is the integrating factor of the differential equation
Xd:l?l - de.’L‘ = 0.

If one compares (12.4) of this lecture with (10.11) of Lecture 10, it is
seen that the differential equation which — log X R satisfies, which is of
n + 1 variables, is that which we found at that time (for a system of two
differential equations of three variables) for log M. One can therefore
set

log M = —log XR,

or,
1
M=—
XR’

and then under the assumptions of the theorem first stated, MQ is the
integrating factor of the last differential equation Xdx; — X1dz = 0,
where M is determined from the equation

dloeM 06X 08X 0X,
og hatinlel _l_+....+ n

X =
dz + ox + o oz,

0.
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One can construct the above determinant @ in another way. The
simplest representation is that in the form of a product. Namely, just
as we eliminated the constant «; from the variables xs,z3,...,z, by
means of z1, and then represent the determinant R as the product of
92 and the determinant Q whose order is one less than the order of

fa
R, so too one can further eliminate the constant as from the variables

x3,T4,...,ZTn, by means of o and then represent @) as the product of
oz H — O3  Oxq . Oz,

52 and the determinant P.— Z t5ar  gar -+ gax. One has to proceed
in the following way; one eliminates the constant a3 from z4,zs,..., 2,
by means of z3; the constant a4 from zs, x¢, . . ., 2, by means of z4; and

so on; so that one obtains the following representation for the integral
equations:

z1 = Fi(z,00,02,...,00-1,00),

z9 = Fy(x,xy, 09,3, ..,0n_1,0p),
CL‘3:F3($,$1,$2,a3,a4,...,an_l,(ln), (F)
mn - Fn(z‘smlvl‘Qv . vrn—l»an);

then

81‘1 ) 81‘2 8.7;"
Jdoy Oas Oay,

R= , (12.10)

where the expressions F) to F}, are to be substituted for the quantities
to n, and for the same mode of representation of the integral equations
one has

I
_Bag aag Ban'

Q (12.11)

The transformation employed here consists of the following: If the n

quantities z, z9,...,x, are functions of n others, ay,as,...a,, so that
Iy = fl(al,QQ, e ,an),
TIo = f2(011,a2, e ,an),

Tn = falag,ag, ..., ap),
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and one represents the quantities xy,...,x, in the following way through
successive eliminations:
= Fi(a1,02,03,...,00-1,0an),
T9 = FQ(ZE ,(2,03,... ,an_l,an),
(F.) ¢ x3 = F3(r1,22,03,...,Qn-1,Qp),
| T = Fu(z1,22, ..., Tno1,Qn),
then

Ziafl 8f2 N Ofn _ OF 8F2 ”8Fn

da; Oaz  Oan, Oa; Baz oy’
or, if we denote the differential coefficients of the quantities without
brackets in the first representation and with brackets in the second,

then
Ziaxl Oy 0z, (O0z; Oxo Qa:_n
da; Oagy doy,  \ Oy Oag Oo, )’
The form (F) of the integral equations is just the one it takes for

the case of a single differential equation of higher order by successive
integrations. The successive integrations of the equation

y(n+l) = f(y(n)’ y(n'"l)’ y(n_2)7 R y”? y,’ y’ 1")’

give
y™ = filan,y™ Y,y Yy @),
y(n—l) = f2(ana Qn—1, y(n_2)7 s 7y”7 ylv Y, CL‘),

y” = fn—l(an7an—la o ,01271/,1/,10),

y, = fn(anaan—la ey 02»041,1/717)-

If the present equation y(®*t1) = f now belongs to the category for which
the multiplier M can be determined a priori, then the integrating factor
for the differential equation of the first order:

y = fns
is M@, where

- 6an - 8an_1 802 . Bal’
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Functional Determinants. Their application in
setting up the Partial Differential Equation for
the Multiplier

Determinants of the form

500 0f  0f

dr, Ory Oz,

have been called functional determinants by e, “alternating differential
functions” by Cauchy, who has given some theorems on these in the
‘Comptes Rendus’ of the Paris Academy. Functional determinants are
built up from the n? partial differential coefficients g& of n functions
f1, f2,. .., Jn, each of which depends on n variables x1,x9,...,Ty.

I have published an article in vol. 22 of Crelle’s Journal on functional
determinants in which the analogy which exists between functional de-
terminats in problems with many variables and differential coeffficients
in problems with one variable has been demonstrated. The theorems
proved therein express this analogy as follows:

. . . d d
1. If f is a function of ¢ and ¢ a function of z, then a{z =4

do
%f. To this corresponds the theorem for n variables: if fi,..., fa
are functions of 1,92, ...,¥n, and these are further functions of
r1,T2,...,Tn, then

0fi 0fa Ofn 0fi 0fs Ofn
Ziaxl dxy  Oxp, (Zi&pl O0po 84,0”)‘

Zi&m Opa  Opn
0z Oxo Oz,
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2. This can also be expressed in another form: if f and ¢ are functions

of x, then

L

dp %‘5'
To this one has the analogous theorem for n variables: if
fi, fo,..., fn and @1,09,...,9, are functions of x1,z9,...,Tn,
then

Ziafl (Ofa  Ofn _
Op1 Ops  Opy

Ofi 8fr  Ofn dp1 Op2  Opn
(Z iaxl 8:1:2 (9a:n Z * o1 Oxo o Oxy )’
and therefore, when one sets fi; = z1, fo = zo,..., fn = 2p,

o, 6.732 .’E 3901 39071,
.. =1 27 .
Z i&pl 8902 /Z ail?] 8l‘n

3. From the equation II(x,y) = 0 one obtains

oIl

@ _ _ oz
— e

dx %

To this one has the analogous theorem; from the is equations be-
tween 2n variables:

Mi(y1y e s Yny Ty -+ -y Zp) = 0,
Hz(y17"’7yn,$l7"‘7xn):0’
On(yiy- e s Yny 1y - -+, Tp) =0,

one has

n Oy1 Oya  Oyn _
D" g Fe Be =

o1, a1l ann> oI, oI, oIl
(Ziazl R /(Ziayl B2 ayn)'

4. In order that the equation F'(z) = 0 has two equal roots we must
have F'(z) = 0. To this the following is the analogy.In order that
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the equations

Fl(:cl,...,xn) = 0,
Fb(xl,.‘.,xn):: 0,

Fn(flfl,..-,xn) :07

have two coincident systems of roots, one must have at the same
time

5. If for all values of z, the differential coefficient %—5 vanishes, it
follows that F' = constant. To this one has the analogy.If

Z BFI... L
8.11 61‘,1

for all values of x1, ..., x,, there must exist between the n functions
Fy,..., F, an equation

m(Fi,...,F,) =0

in which the variables x1,xs....,x, do not enter explicitly. This
gives in fact, for n = 1, n(F) = 0, so F' = constant, as it should
be.

To these examples of the analogies many others can be added. These
can be found partly in the article referred to, and partly in “de bi-
nis quibuslibet functionibus homongeneis etc.”’ published in vol. 12 of
Crelle’s Journal.

Since we proceed from the considerations of functional determinants,
we are led to formulate the theory of multipliers of a system of differential
equations in the general case of n variables in a manner different from
that given in Lecture 12, namely, in the same way in which we handled
the case of three variables in Lecture 10.

Let the system

dr:dxy:---:dep,=X:X1:---: X,
be integrated through the equations

flzala"'vfn:an’
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where oy, a9, ..., a, denote arbitrary constants. The direct differentials
of these are

8fl af1 0f1

8I EEId +‘ 8$ dzn-O
Ofa Of2 ofa ,
9z —~dx + B2, dry +---+ Bz, x, =0,
Ofn O fn Ofn ,
Ey dx + 8.’[)1 dri+ -+ a—l‘nd.??n =0,

which must be identical with the given system, since the arbitrary con-
stants vanish on differentiation. If one adds to these n equations, linear
with respect to dx,dzxy, ..., dz,, the identity

of of 3f

d+‘—d1+ %

£ Bz dz, = df

as the n + 1th, where f denotes an arbitrary function of x,xy,...,Zn,
and applies to these n + 1 equations the method of solution for linear
equations given in item 3 of Lecture 11, then this gives the values

Rdr = Adf,Rdz, = Ardf,...,Rdz, = A, df

for dx,dzy,...,dz,, where

R= Ziafafl...af" Ag+A1 of "'+An‘(?i

Oz Oz oz, oz Oz Oz,
OR OR OR
/4" E)A£,14 6_4L7 ..,14 == Eiézr.
oz Oxn,
This determination of the quantities A, Ay, ..., A, from the expan-

sion of R in partial differential coefficients of f is precisely what will
serve us in the sequel. Still it is of interest, namely, to follow the anal-
ogy with the case of three variables given in Lecture 10, to derive the
quantities A in another way, without help from R. First,

oft  Ofn
A= Ziaxl Oxn’

From A one obtains A;, following item 2 of Lecture 11, if one exchanges
the differentiation with respect to x with x; and changes the sign. One
permutes cyclically the differentiations in all the n+1 variables: in place
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of those taken in z, z1, ..., z, replace respectively those in z1,...,x,, ,
and then alter the sign or preserve it according as the number n + 1
of variables is even or odd; then A changes to A;. The last rule has
the advantage that through simple repetition of the same operation A;
changes to As, A2 to Az and so on.

When one eliminates df from the values obtained for dz, dz1,...,
dx,, this gives

dr:dry: - :dep,=A:A1: -1 Ay,
which must agree with the given system
de:dry:-- :dr,=X:X1:---: X,.
Therefore, the proportion
A A A, =X X1 X,
must hold, i.e., there must exist a multiplier M of the form
MX=AMX,=A,...,.MX, = A,.

Now it comes to extending the identical equation satisfied by A proven
for n = 2 in Lecture 10, to the general case, that is, to prove that the
equation

0A 0A 0A,

E.;,_a;l__;_..._;. o, =
is satisfied. If one takes into account the structure of the quantities A,
A1, ..., Ay, one sees easily that on the left side of this equation only
the first and second differential coefficients of the quantities fi,..., fa
can occur, and the latter indeed only linearly, i.e., never as a product
of two differential coefficients of the second order. Further, as in A
no differentiation with respect to x occur, in A; none with respect to
x1,etc., in A, none with respect to x,,, the second differential coefficients

which occur in the expression g_,;x + %;‘—11 + o+ g‘;‘: cannot be of the

0

ox Tk
One can then represent the expression Y %%i under consideration as a
sum of terms of the form

2
form ié_s—, but can only be of the form 5%3& where i and k are distinct.

‘(s) 62fs
ik al'zaxk
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The values of Fl(: ) are found with the help of the formulae

_ 0fofi  Ofn _ ,0f  , 0f Ofn
R=) 5 ae 5z, oz T N5, T T,
OR OR
A; = QT_L’A}C = aT_L,
oz; ory

and indeed for that, only the two differential coefficients g—i? and g—’;’: are

2
to be investigated, since a—‘zz—g;—k manifestly does not occur in the remain-
ing. Now, since the quantities A; and Ay are themselves determinants,
they can be represented in the following way:

4 o OAioh | 0AiOfy | OAi Of | OAi Ofn
Y 9%L gz 2L Oy, 02 oz, 92n oz’
Oxy, Oz Oxy, Oxy,
A = 0A, 0f1  0Ax Ofa 0A; Of;s 0Ay Ofn

p= kO TR Tk s TR D
6%% Ox; 82—{2 Ox; Bg—gfcj O, 8%% Oz;

2
From this one obtains the two terms multiplied by 6-278'% as contribution

to the expression ) g‘;"' under consideration. One of these arises from
1

dA e

oo- and is

0A; 0%fs
a% 0x;0xy ’
6Ik

and the other arises from g’;k and is
A, O%f,
agx% O0z;0xy’
consequently,
Fi(’:) - 38;{; ggé - 32?_2:2& + aiazg%'
Oxy oz, Oz, ~ Oxy Oz~ Ox;

The formula, contained in item 2 of Lecture 11:
O’R O’R O’R 9’R
= - , Oor + =0
8ai8bk Bakabi Baiabk aakabi
gives in the present case
O’R 9’R

+ =0
8f a0fs Af ndfs
aﬁxiaaxk a&ckaax-
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therefore Fi(,:) = 0. In this way, the identity

8_A+6—A1_+”.+8An_0
dr 0On Oz,

is proved in general. But we have
A=MX, A1 =MXy,...,A, = MXy;

this gives
o(MX n
(MX)  oMXy) | OMXn)
ox oz, oxy,

which is the partial differential equation for the multiplier M.

0,
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The Second Form of the Equation Defining the
Multiplier. The Multipliers of Step Wise
Reduced Differential Equations. The Multiplier
by the Use of Particular Integrals

We can now proceed to the further investigation for n + 1 variables in
the same way as for three variables in Lecture 10. When we expand the
partial differential equation for the multiplier M, we get

oM 3M oM 0X 90X 9% 0X, 0X
Ox oz 1 Oxn Oxr Ox oxy,

xo¥  x M x, 0N + --+—"}M=O. (14.1)

This differential equation will also be satisfied by another quantity NV if
one has also
ON ON ON +{6X 00X, 8X"}N=O

X 4 Xy g+ Xy okl diniet SRR
8w+ 18w1+ + Oz, 6m+8x1+ +8:vn

If we multiply the second equation by ﬁ, the first by %g and subtract
one from the other, then we have

ON oM ON oM
M Na@lg”4+XMa””1 Mooy 4oy, Mo~ Now
M?2 M?2 n M?2 -
or,
8(N/M O(N/M O(N/M
X(/)+X1(/)+_,_+Xn(/):0
oz or, Oz,

ie., % is a solution of the equation

OF L x, 90 . 1 x, 9L (14.2)

X oz 3 oz,
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For the complete integration of such an equation, the knowledge of

n mutually independent solutions fi, fa,..., fn is necessary, i.e., of n
functions f1, fa ..., fn which satisfy the equations
0fh 0f1 oh
+ X1=— + X, 2 =
Bz TXgg Tt g, =0
0f2 3f2 Ofo
X—+X; + Xp=—==0,
gz " Ngg, Tt Angy, =0
3fn Ofn Ofn
X— Xpn=— =0,
oz TN T T g,

without one of the n functions being a function of the rest. If one knows
n such functions, the general solution is

F(f1,..., fn)
oF

One proves this by multiplying the n equations above by 2 3 f Y T
respectively and adding. An (n + 1)th solution f,+; which does not
depend on the other n solutions does not exist. If we assume that one
such existed, then it would follow from the argument just applied that
any function

o(fi, fa-e v, frt1)

of these n + 1 solutions would again be a solution. Since, however,
f1, f2. .., fayr1 have been taken to be independent of one another, one
can introduce them as new variables x, z1,...,Z,, and then an arbitrary
function of fi, fo,..., fn, fn+1 is the same as an arbitrary function of
x,T1,...,Tn. The differential equation in question for f will then be
satisfied by any arbitrary function of z,z1,...,x,, which is impossible.
So there can exist only n mutually independent solutions fi, fo..., fa.

These n solutions of the partial differential equation (14.2) have the
property that they will be constants because of the integral equations of
the system of ordinary differential equations,

dr:dei: iz, =X:X7:-: X, (14.3)

For, these integral equations make the quantities X, X3, ..., X,, propor-
tional to the differentials dx, dx1, ..., dz,, one can replace, in the partial
differential equations satisfied by any function f,that is, in the equation

81 of; i
% iy x, 2

X
X5 T 550 o,

=0,
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the quantities X, X1,...,X,, by the differentials dz,dz,...,dz, pro-
portional to them, and obtain

of; Of; Ofi
oz s or dz1+ 8:1:

——dz, =0,

or
df; = 0.

and therefore f; = constant.

If we accept that the fi, fo..., f, must be equal to n mutually inde-
pendent arbitrary constants, aj, a2 ..., an, we obtain the most general
integral of the differential equations (14.3) possible, and therefore

fl:al’fQ:a2a"~afi:aia--'7fn:an

constitute a complete system, solved for arbitrary constants, of integrals
of the differential equation. Conversely, if the complete integration of
the differential equations (14.3) is carried out by n equations with n
mutually independent arbitrary constants, i.e., by n equations of such
a nature that it is impossible to get from them a result free of all the
n constants obtained by their elimination, and the solution of these n
equations according to the constants gives them the values

fl:alaf2:a27"'7fi:aia"'vfn:a’na

then one obtains through a differentiation

ofi ofi Ofi
——dx dx zn = 0.
oz + Bz, ry+ -+ 77— (9:En
Since, however, fi = a1, fo = ao,..., fn = ay form a complete sys-

tem of integrals of the differential equation (14.3), the differentials dz,
dry,...,dx, are proportional to the quantities X, Xi, ..., Xy, so that,

afz fz af'L
8 +X 6 1 +X”£;

i.e., fi,...,fn are solutions of (14.3).

Therefore it is completely the same, whether one says that
f1, fa, ..., fn are mutually independent solutions of the partial differ-
ential (14.2), or one says that fi = oy, fo = ag,..., fn = o, form a
complete system of integrals of the differential equations (14.3). Now
we have seen that

X—

=0,

F(flaf?a"'afn)
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are the most general solutions of equation (14.2). Further % satisfies
just this equation. Hence it follows that if M is a definite solution of the
equation (14.1) and N any other solution, then % must be a function

of fi,fo..., fn- This gives
N = MF(f1, f2,-., fn);

if M is a multiplier, then

MF(fy, fay.--s fn)

is the general form in which all multipliers are included. Through the in-
tegral equations of the system (14.3), however, we get fi = ay,..., fn =
an; by use of the integral equations then the general form differs from
M only through a constant factor. To avoid confusion we shall denote
a definite value of the multiplier M by My, the general value by M,
further the function of fi, fo,..., fn by which My must be multiplied to
give M by %, so that M = M()%. Then one can write the equations
given at the end of the previous lecture:

MX = A MX, = Ay,...,MXn = Ap,

thus:
MyX = A0, Mo X1 = Ay0,..., MyX,, = A,Q. (14.4)

The partial differential equation (14.1) found for M can be trans-
forined with the help of the differential equations (14.3). The equation

oM BM oM 0X 0X; 0X, .
or, what is the same
oM X,0M X, oM
X(a "X on, +"'+Yaxn>
0X 90X, 0X,
M =0
* 8$+81+ +(9xn)

taking into account (14.3), changes to

d]\/[ X 8X1 0X,
M-+ 2224 20 =
— + (8 + &Cn) 0,
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or, to
dlog M 0X 090X, 00X,
X . = 0. .
dx + Bz + — 92y + -+ Bz, 0 (14.5)
Since the differential equations (14.3) holds for z, x1,...,z,, this equa-

tion is completely identical with equation (14.1). Using (14.3) one can
go over from (14.1) to (14.5) and the other way around.

The multlplier M can often be determined from the equation (14.5).
If %X %%f—ll + - %i&k = 0, then one finds M = constant. In other
cases, by virtue of the differential equations (14.3), the expression

8x+8x1+.+8xn

(6X 0X1 8Xn)

can be transformed into a total differential in x, a transformation which
indeed frequently requires complex analytic devices. If one such is pos-
sible, then one obtains M from (14.5).

Now, if one has found in some way, a value My of the multiplier,
it can be used for the integration of the system (14.3). For, by means
of My, one can give the integrating factor of that differential equation
which remains to be integrated after finding n — 1 integrals. From the
first equation (14.4), one has

MyX = Aw,

where wis a function of the n solutions of the partial differential equation
(14.2), or, as has been proved, a function of n integrals of the system
(14.3). If we now assume that one knows n—1 of these integrals, namely,
f2, f3,- .., fn, so that only f; remains to be found, then we introduce in
place of n — 1 of the independent variables, namely, x9,3,...,Z,, the
quantities fo, f3, ..., fn, and express everything through z, fo, f3,..., fn.
We investigate what changes are thereby brought about in the determi-
nant

0ft  Ofa
A= Ziaasl Bz,

If we write this as a linear function of the partial derivatives of f:

Ohp 4.4 0hp

A= oy O0zxn,
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then, according to the fundamental property of determinants, the fol-
lowing equations hold:

af2 3f2 0f2

0= . 1 8 232 4+ + aman
_ s, O L 0f

0= Orq B+ Oxo B, 2T 8xn oz, o
6fn 0 fn O fn

——B; + — —B,,.

0= B2s 1+ 57 2B 2+ -+ a:EnB
If we now assume fo, f3,..., fn introduced for xz9,23,...,T,, so that fi

is expressed in the form

fl = (b(xvxlyf2a'-' 7f’n)a

and enclose the differential coefficients of f; formed under this hypothesis
in brackets, then

0fi _ (0N (0A1\0f2  (OH\Ofs . (0f)0Ofn
% - <6$1>-+ <6f2)8x1 + <8f3>8.’b'1 oot (8fn>8x1’

Oft _ [(0f1\0fe 0f1 0f3 0f1\ 0fn
s = (3 e+ (57 ) s+ + (57 o
Ofi _ (0f1\0f 0f1\ 0fs O0f1\ Ofn
o= (oo (8 ae+ o+ (57 o
and, the earlier equation
o
A= (8.’121)31’

Ziab dfs  Ofa

— |

[ &)

—

with

Oxg 03  Ozp

If one substitutes this value of A in the equation

MyX = Aw,
then one obtains

o
MoX = ( 63’; 1>Blw. (14.6)
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Now, since f1, which is sought, is an integral of the differential equation
still remaining:
Xdry—X,dz =0,

in which the variables x9, z3,...,z, have been eliminated by means of
the known n — 1 integrals, so by determining the integrating factor, this
differential equation must change to

dfi =0,
or,
Ofi ofi
—)d ——dz = 0;
<8x1) mt 8z T
consequently, the integrating factor sought is
1 (0fi
X (9:L‘1 ’
or, according to (14.6),
My
B&’

i.e., one has, identically,

%(X d.’I)l - X1 dl‘) = (Qfl)dl‘l + (%%)dl‘ = dfl,

Biw ox1
or,
%f(X dzry — X3 dr) = wdf;.
Here @ is an arbitrary function of fi, fo,..., fn. Meanwhile, with the

help of the n — 1 integrals found, fs, fs,..., fn will be equal to constants;
then @ will be a function merely of f; and, moreover, w df; will itself be
a total differential, just as df;. One can therefore omit w in the divisor
and obtain %IQ as the multiplier of the differential equation

Xd.’l)l —X1 dr = 0.
With this we are led to the following theorem:
Theorem 14.1 Let the system of differential equations

dr :dzy:dry:- - :idr,=X:X1: Xq:--- 1 Xy
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be given, of which we know n — 1 integrals:
f2 = a27f3 = a37"~7fn = Qp;

further one knows a solution M of the differential equation

dlog M +Q(_+ 0X, L 0X,,
ddz or 0n1 or,

if by virtue of the preceeding n — 1 integrals, the given system of differ-
ential equations is reduced to a first order differential equation

del—dem:0,

of two variables, then its integrating factor is

M
Zi%%...%'

Oz Ox3 Ozn

This is the same theorem as was given in Lecture 12. There we found
for the multiplier the expression

6.%2 8:173 3£L‘n .
Mziaaz daz  Oay’

since, however, fo = a9, fs = as,..., fn = an, one has, according to
theorem as functional determinants introduced in Lecture 13, p.111,

Ziaiﬂz 81’3 8acn 1
= 3f2 0 0fn’
Oas Oas  Oan, Eim'%m% e 8_.1%

so that both multipliers are identical.

The name ‘multipliers’ belonging to the system of differential equa-
tions (14.3) which we give to the quantity M defined by the equation
(14.1) or (14.5) commends itself because they coincide with Euler’s mul-
tipliers or integrating factors for the case of two variables z and

Till now we have shown that if the system can be reduced to a differ-
ential equation of two variables through n — 1 integrals, the multiplier of
this differential equation can be derived from the multiplier of the sys-
tem. But this is only a special case of a more general theorem. Namely,
if one does not know n — 1 integrals, but only a smaller number, say
n — k, so that one can reduce the given system of n + 1 variables to
a system of k + 1 variables, then, as we have in fact seen, the multi-
plier of the reduced system can be determined from the multiplier of
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the given system. This generalisation will allow us to discuss a question
concerning multipliers as yet remaining untouched. We have assumed
up to now that with every integration of the given system of differential
equations a new arbitrary constant occurs. It is, however, necessary to
answer the question, whether and in what way the method of last mul-
tiplier can be extended to the case in which the arbitrary constants take
special values, and in which therefore one cannot arrive at the complete
integration of the given system of differential equations. In order to see
how from the multipliers of a given system one can find the multiplier
of the system reduced to any order, we proceed stepwise. We first take
an integral equation f, = a, as given, whereby the order of the system
can be reduced by one unit, and seek the multiplier of the system so
reduced.
For the given system

de:dry:---ide,=X:X7:--: Xp, (14.7)

the multiplier M is defined through the equation (14.1) or (14.5). If we
however take all integrals of the system as known, then the solution of a
differential equation is no more necessary and one can find M directly,
indeed from any of the equations

MX =30A,MX, =3A;,...,MX, = GAn,

where
_ 0fi 0fa  Ofn
4 = Z iaxl Oxy Oz,
_ n 0f1 Ofs  Ofn-10fn
A = (=) Zi(%g Ox3 0z, Ox’
and so on, and W is a function of fi, f2..., fn. If we consider the first of

the these equations, then

Mx ZW(fl’f%m’fn)ZiBm’8:102’” Oxy’

If one assumes that the integral f, = a, has been found, and that z,
occurs in it, then z, can be represented through f, and the remain-
ing variables x; if this expression for z, is substituted in fi,..., fn-1,
then these quantities are functions of z1,z9,...,z,—1 and f,. Enclosing
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within brackets the differential coefficients formed under this hypothesis,
one obtains the following values for the elements of the determinant A:
oh 011 \0fn (082, (0£2\Ofs  (Ofums
0z, 8f, ) 0z1’ \ 0z, 8f, ) 0z '\ 0y
+ afn—l afn afn
Ofn Bxl 83:1
o Ofi\Ofn (Of2) | (0F2\0fn  (Ofuc
8332 3fn 81‘2 8%2 afn a:EQ Y 8:132
+ 8fn—l afn afn
8fn 6902 3.”132
0f \ , (951 9 (O, (0f) 0
O0Tn—1 afn al‘n—l, 0Tn—1 afn 0%n_1 Y
8fn—1 + afn—l afn afn
O0tn_1 afn O0Tpn_1 ' 0%n—1 ’
0f1\0fn (0f2)0fn Ofn-1)0fn Ofn
Ofn ) 0z’ \Ofn ) 0z’ '\ Ofn ) Ozy Oz
As shown on Lecture 12, page 105, one can omit here those terms of the
first n — 1 columns which are proportional to the elements of the last
column; thereby the first n — 1 elements of the last row now vanish, so
that ga% will be a factor of the determinant, and one obtains therefore
_ Ofn 0fi\  (0faa
MX—(.U(fl,---,fn l?f’n) zi<8:c1) (8.’1371_.1 ]
or since f, = ap,
~ 0] f n 8f 1 af n—1
X = ceos fro1,0n |- . .
B foreo s Frtyan) 5 Zi(am) (%n_l) (148)

Now, by virtue of the integral f, = an, x, and dz, have been eliminated
from the given system (14.3), and one is thereby led to the reduced
system

dr:dxi:-- dzpn1=X:Xy7:- 1 Xpn_1. (14.9)

If p is a multiplier of this system, one has for its determination the

equation
Of1\ (Ofs 0fn-1
nE = in(axl)(&w) (3%—1)’
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where F' is an arbitrary function of fi, fo,..., fn—1. A value of yu cor-
responds to the choice F' = &(f1, f2,..., fn—1, @n), which is determined
by the equation

. f1\ [ 0fa Ofn-1
pX = w(f1,f2,--wfn—lva")zi(3_$1) (5;;) <8xn—1)'

From this last and (14.8) one obtains through division

Ofn
M/Nza—wn, Or L= B~

Ozn

This expression is then the multiplier of the system (14.9).

One can proceed further in the same way. If one knows an inte-
gral f,_1 = an—1 of the system (14.9), and reduces it thereby to the
following:

dr:dry: - :drxpo=X:X1:: Xn_o,

where x,_; is eliminated, then the multiplier of this system is

M
Ofn (afn_l )
Oxn \ Oz,
If through a new integral f,_ 1 = a,—1 one eliminates the variable x,_o,

then one obtains as multiplier of the resulting system the expression

M
Ofn (8fn_1 ) ((3fn—2 )> ’
an (9(1,‘”;1 aIn—?

where the brackets signify that f,_; to be expressed through f, and
Z1,T9,...,Ln_1 and f,_o through f,, fn—1 and x;,22,...,2,—2. If one
proceeds thus, one comes finally to the differential equation

dx :dx1 = X : Xq,

or
Xd:IIl—Xl da:zO,
whose multiplier is
M
Ofn Ofn—r | Of2

Oy OTpn -1 Oz2
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where the differentiations are to be so understood that the functions

fny fn—1,--., fo have been taken as expressed in the form
fn = Son(x7 X1,22,23,.-+,Tn-2,Tn-1, xn)a
fn—l = ‘Pn—l(xaxlam%x&' c ey Tn—2,Tn—-1, f'n)a
fn—2 = So'n,—Q(:L‘a T1,X2,T3,...,Tn-2, fn—h fn)7

f2 = QDQ(IL‘,.’El,.’EQ,fg,. . '7fn—27fn—17fn)'

In this step by step reduction, the integral equation appearing each time
is used to eliminate one variable. The first integral f, = «,, for example,
is used to express x, through z,x1,...,xn—1 aud «a, and to substitute
the resulting values in X, X1,..., X,_1. Here we have so far looked upon
an as an arbitrary constant; however, it is easy to see that nothing is
changed in this reasoning if one sets for o, a definite value a,. Only, in
this case the reduced system is no longer equivalent to the given one, but
corresponds only to the speical case in which in the integral equation
fn = an, the arbitrary constant has the special value a,. Although in
the course of the integration one gives the arbitrary constant o, a special
value and thereby may introduce a special integral of the given system
in the calculation, still one must know the complete integral f, = a,,
because the knowledge of f, is necessary for the determination of the
multiplier g from M. It would then not suffice to know a particular
integral z, = ®(x,z1,...,2,—1) without arbitrary constant, but one
must know how the particular integral is arrived at from the complete
integral, and what value one has given the arbitrary constant. Herein
lies an extension of the principle of the last multiplier, which may be
expressed in the following way:

Given the system of differential equations
d.’L':d.’L‘l : "-d(L'an;Xl . Xn’

let an integral of the same with an arbitrary constant be known and
brought to the form f, = an, = constant. One gives the constant any
particular value a, whatever and solves f, = a, for x, and inserts its
value thus obtained in X, X1,...,X,_1. From this one obtains the first
reduced system of differential equations

dr:dxy:---dep1=X:X1: - Xpoq,
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which, however, has no more the generality of the given system, but
represents only the case a, = ay. Further, for the first reduced system
of differential equations let an integral with an arbitrary constant be
known and brought to the form fn,_1 = an_1 = constant. One gives the
constant ay,_1 the special value an_1 and solves f,_1 = an_1 for Tp_1
and inserts this value thus obtained in the quantities X, Xq,...,Xn-1,
so that this gives the second reduced system of differential equations

dr:dxy: - drpo=X:X1: - Xp_o;
and one proceeds in this way until one comes to the differential equation
dr:dry = X : Xq;

then the multiplier of the last differential equation is

M
Ofn Ofn—r Of2°
9zpn Ozn-1° Ox2
Here, however, f,, fn-1,...,fo are no more n — 1 integrals of the given
system, but only f, = a, is one such; f,_1 = a,_1 is an integral of
the first reduced system, which represents the special case o, = an

of the given system; f,_2 = a,_2 is an integral of the second reduced
system which represents the special case a1 = a,—j of the first reduced
system, and so on.

With this the scope which can be given to the principle of last mul-
tiplier is exhausted. We now go to its applications.



Lecture 15

The Multiplier for Systems of Differential
Equations with Higher Differential Coefficients.
Applications to a System of Mass Points
Without Constraints

All our considerations up to now concerned systems of differential equa-
tions with only first order differential coefficients. One can look upon
systems of this sort as a special case of those in which differential co-
efficients of arbitrary order occur. But also, conversely, one can, by
increasing the number of variables, reduce a system with higher order
differential coefficients to the form of a system containing only first order
differential coefficients, so that each becomes a special case of the other.
We shall first concern ourselves with this reduction of an arbitrary sys-
tem into another in which only differential coefficients of the first order
occur. Let there be a system of ¢ differential equations of ¢ 4+ 1 variables
t,z,y,z,...; of which ¢ is looked upon as the independent and z,y, z, . ..
as the dependent variables. Let the highest differential coefficients which
occur in these differential equations be mth in x, nth in y, pth in z, etc.
If we further assume that we can solve for these highest differential co-
efficients, so that the differential equations take the following form:
d"x dy _ dPz

- = = =C,... .
dtm T dtn T dtp ’ (15.1)

where the highest differential coefficients of z,y, z etc. which occur in
A,B,C,... are of the (m — 1)th, (n — 1)th, (p — 1)th order, then this is
the canonical form of the differential equations that are to be studied.
Any given system cannot always directly be reduced to this canonical
form (15.1); for example, this will not go through if in one of the differ-
ential equations the highest differential coefficients %;%, %, “%, ... do
not occur. One must then add the differentiation for elimination. For
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example, suppose in the equation under consideration the highest differ-
ential coefficients are ‘fi:l,;ff, ‘z:f,/, ‘;’;:f, .oandifuy <v<mw---, then
one differentiates yu times with respect to ¢ and uses the equation so ob-
tained for eliminating % from the remaining equations. If, among the
equations arising from this eliminaton, there is again one in which none
of the highest differential coefficients of y, z, .. .,occur, one has to differ-
entiate these anew, and so on. This consideration suffices to show that
the reduction to the canonical form is possible in every case, but at the
moment there is no general method for this reduction. To prove one such
would be a very fine exercise!; it is the same as the problem of determin-
ing the number of arbitrary constants which arise in the integration of a
given system of differential equations. This number arises directly from
the canonical form, it is m +n + p + ---. The problem of determining
the degree of the eliminating equation for a given system of algebraic
equations has therefore a certain similarity with the problem in question.

A special case of the canonical form is that in which one eliminates all
the variables y, z, ... except two, ¢t and z, and arranges them according
to the order of the differential coefficient of = with respect to ¢t. This
elimination is, however, unnecessary for our consideration; we need only,
as was remarked, to assume the differential equations reduced to the
form (15.1), where the highest differential coefficients in A, B, C, ... are
the (m — 1)thinz, (n — 1)thiny, (p —1)thin z,....

This assumed, we shall introduce m + n + p + --- — ¢ new variables,
namely,
dz dz’ dm=2y
19 o 4 . (m-1) _ 4 7%
TTaT T a0 at
y = &y Y = A y b = "y
dt’ dat’ dt (15.2)
Z, —_ % z// —_ d_z, .. Z(p“l) — (i(p—_2)f
dt’ dat’ dt

! Jacobi himself has solved this problem; one finds indication of this in his essay on
the multiplier (Crelles Journal, vol. XXIX, p. 369) where a further paper concerned
with this problem expected later is referred to. Of the two statements on the present
problem found in the supplement was one contained in the first edition of these Lec-
tures, which contains a complete exposition of the results, the other, which contains
the proof, one finds in volume 64 of the Mathematical Journal (de investigande or-
derie the de investigando ordine systematis acquationum differentialum valgarium
cujuseunque). Both articles now find their place in Volume 5. (Publisher’s note)
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One can then represent these equations along with the equations (15.1)
as the following system

dt :dr:dz’ ;- dz(m=1) Lozl g i A
cdydy' c - dy™™D ) iy iy B
:dZ:dz/:.-.:dz(p_l) - 'ZI'Z//"":C . (15.3)

If one applies the general theory to this system, then one obtains the
differential equation for the multiplier:

_ dlogM 0A 0B oC

0= Y 5D T e TG T (15.4)
One can then give M in all cases in which the sum
0A " 0B L oC +
dzm=1) " gyn=1 " gy-1) T
is a total differential coeflicient. If, for example,
0A + 0B + oC —0
5zm D T oy T oo T
which namely is the case when A contains no fid;n—,;_lj@, B no Z:T__lly, C no

p—1
%—t;_—f—, and so on, then one has

M = a constant

and then according to our theory, when one has reduced the differential
equations (15.1) to a first order differential equation of two variables,one
can give its integrating factor.

This consideration would not be of very great interest if no such case
occurred in practice. However, it does. Namely, so long as the motion
of a free system of mass points depends solely on their configuration, so
that the resistance of the medium does not come into consideration, the
differential equations of motion are

_d2.’L‘i . ‘ _d2yi v ‘d2zi
mljté_ = Ay, mz‘ét?“ i mzﬁ

where X;,Y;, Z; contain no first differential coefficients; therefore one
has

=Z;,... (15.5)

=% T o

2 2

0X; 0 o0Y; 6Z1-:0,
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E)
dlog M

dt

and the principle of last multiplier is applicable. However, as we shall
conclude later, its application finds itself also in a system bound by
constraints.

A special case that merits consideration is the one in which the quan-
tities A, B, C in the canonical form of the differential equations

=0, M = constant,

d™x d"y dPz

dt—m—A, d—tT;—B, W_A’ (15.6)
do not depend on t. In this case one can eliminate ¢ entirely, and indeed
very simply by leaving out in the differential equations (15.3), dt on
the left hand side and the corresponding term 1 on the right hand side.
One obtains in this way a system whose order is one unit less,that is,
equal to m +n + p+ --- — 1. If one has integrated this system and
thereby expressed all variables, and therefore also z’, by one variable,
for example z, then t is obtained, as already mentioned earlier, from the
differential equation

dr —x' dt = 0.
Then one has p d
dt=2 t= —$+C’
X

So one finds t through a simple quadrature.

If now we have a multiplier M which is independent of t (here belongs
the case in which ?,f 5+ (n 5+ 62(,, i + -+ = 0, therefore M =
constant), then thls value of M gives the last multiplier of the system
of order m +n + p+ --- — 1, from which ¢ has been eliminated. One
can then carry out both the last integrations. On the other hand, if one
has only one value of M which contains ¢, then one has no use for the
(m+n+p+---—1)th integration but only for the (m +n+p+---)th,
which leads to the value of ¢t and is already reduced to a quadrature.
And indeed this use lies in that one can save one quadrature and can
determine ¢ by solving an equation. In fact, according to the first of the
equations (14.4) of the preceeding lecture, we have, for the multiplier M
of the system of order n holding between the variables z,z1,22,...,Zn
and denoted there by (14.3), the formula

0fi0fs Ofn
Z iawl 612 ‘ a_xn’ (15.7)



Lectures in Dynamics 133

where fi = a1, fo = a9, ..., fn = «, represent the integrals of the
former system and @ is a function of fi, fa,..., fn, i.e., since these quan-
tities become constant through the integrals of the system, represents a
constant. This we shall apply to system (15.6). If

fl = a1, f2 = Qa2y... 7f’m+n+p+--~—1 = Om4ntpt—1

are integrals of the reduced system obtained from (15.6) on elimination

of t, and if
dz
f=t— | — = constant
x

is the last integral (15.6) leading to the value of ¢, then one obtains
from the formula (15.7), in which ¢, z, 2/,..., 2™V y o, ...y,
z, 2',...,2%P71) . have been inserted in place of z, z1,...,z, and at
the same time 1 in place of X, the formula
~Zi3f3f1 Ofr  Ofm-1 Ofm
Oz 0z’ 0z Qz(m=1) Qy
afm+n—1 afm-’—n L afm+n+p—1 .
Oy(n-1) 9z 0z(P—1)

for the multiplier M of the system (15.6). However, f =t — ‘i—‘f, where
z’ is a given function of z and therefore

of _ 1 9f _ of of

oz 7or Vo - % 50D

and with this,

=0, etc.

afl 3f2 L afm+n+p—1 L
o' oz 9z(P-1) '

M=- constant— Z +—

The right side of this equation is also a multiplier of the system of order
(m+n+p+---—1), which is independent of ¢; so (15.7) gives for the
multiplier of this system, which will be denoted by p, the formula

afl 6f2 . 8fm+n+p—l L
oz’ oz" 8z(P-1) ’

px’ = constant Z:I:

where p is an expression independent of ¢, as is self-evident. We then
have
M = constant p,
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and since M depends on ¢t by assumption, ¢ is obtained by solving this
equation. Meanwhile we know, by virtue of the determination of ¢,
already known:

dx
t= [ — + constant,
T

that the constant must be additively related to t; since the relation of
t to the constant also goes over for the above equation for M, M must
be of the form

eth’

where N is independent of ¢. Then one obtains using logarithms
_ H
mt = log N + log constant.

If A,B,C,...do not depend on t, then M, if it also does not depend on
t, gives the last but one integration. On the other hand, if M depends on
t, one can then avoid the quadrature using the knowledge of M, which
would otherwise be necessary for the determination of .

To the first case belong the differential equations (15.5)that hold for
the motion of a system of n mass points, since the unknown value M =
constant of the multiplier of these is independent of ¢t. The differential
equations (15.5) from a system of order 6m which, according to our
method, is represented through 6n + 1 variables z;, x}, y;, ¥}, 2, 2., and
t. If one knows 6n — 2 = v integrals that do not depend on t,

fl :a17f2:a2""7f1):av’

of this system, one can then express all the dependent variables through
two, say x1 and y;, between which holds the first order differential equa-
tion, yet to be integrated:

xy dy) — yidz, = 0.

So the integrating factor R of the last equation can be given. If one
denotes the remaining 6n — 2 = v variables ;, z}, yi, ¥}, zi, 2z, of the 6n
except 7 and y; by p1,p2,..., Dy, then

_ Op1 Op2  Op,
R_Zian 8&2 Ba,,’

where it is assumed that for the variables py, ..., p,, the values given by
the integrals f1 = a1, fo = a9, ..., f, = a,, have been substituted. If the
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given v integral equations are solved neither for the variables p1,...,p,
nor for the arbitrary constants oy, ag,...,q,, and they are denoted by
w1 =0,w9=0,...,0, =0,

then according to the theorem on functional determinants stated in Lec-
ture 13, one obtains for the integrating factor R, the fraction
0w, Ow ow
re it

Z Ouy Owy Owy
Op1 Op2-+- Opy

With the assumption made above that the integral equations are solved
for the arbitrary constants, one has to set @; = f; — «a;; then the nu-
merator of the fraction reduces to 1 and the integrating factor would

be
1

R:ZiQ&Q&...Q&'

Op1 Op2 Opy

A comprehensive case in which the determinant formed by the numer-
ator of the above fraction is significantly simplified is that in which w;
contains only aj, W9 only a; and ag etc. and in general @; depends only
on a1, qs,...,q;; then the determinant

Zi&ﬂl 0ws 0w,
8a1 aag 3011,

reduces to the form

Ol By Oy,

da1 Doz Ba,”
Naturally, this form of the integral equations can always be realized
through successive elimination. The analogous case for the denominator
is the one in which @, contains only p; of all the variables p1,...,p,, &9
only p; and ps etc., W; only p1,pa,...,p;. Then the determinant

Z iawl 0wy 0w,
Oay Oan Oay,
reduces to the only term
0w 0wy 0w,

dp1 dp2  Op,

If we do not know v complete integrals but only v special ones, i.e.,
those in which the constants a1, g, ..., a, are given special values, then
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we can very well build the determinant in the denominator of R, but not
the one in the numerator of R, and so for this purpose it is necessary
to know under what form the constants enter in the integrals. However,
if it is stipulated, without the arbitrary constants being assigned spe-
cial values, that in @; only a1, in We only a1, as and so on, in @; only
a1,a9,...,0; come in, then we need only to know the form in which
oy comes in Wy, a9 in Wq,..., a; in W;,..., a, in @, in order to know
how to build the determinant in the numerator of R. We do not on the
contrary need to know how ws depends on a3, ws on a3 and ag, ..., W;
on a,qs,...,0;1, for, as we have seen, the entire determinant reduces
to %‘% —% e %. This case occurs in the integration of an ordinary dif-
ferential equation of higher order, if it is assumed that one can carry out
the integration completely, but then to integrate further, the arbitrary
constant must be given a special value.



Lecture 16

Examples of the Search for Multipliers.
Attraction of a Point by a Fixed Centre in a
Resisting Medium and in Empty Space

In order to show the applicability of the theory of multipliers, we shall
first consider a case in which, deviating from all other examples to which
these investigations relate, X, Y;, Z; will be functions not merely of the
coordinates, but will also of the velocities, so that M is not a constant.
This case is that of a planet which moves around the sun in a resisting
medium. Without taking into account the resistance, it is well known
that the equations for the motion of a planet are the following:

Pz _ oz Py gy Pz g,z

dt2 T rd 42 T3 2 ¥y
where z, y, z are the heliocentric coordinates of the planet, r its distance
from the sun and k2 the attraction which the sun exerts at unit distance.
If v = \/2'2 + y'?2 + 22 is the velocity of the planet in the direction of the
tangent to its trajectory and V the resistance in the same direction, then
the components of the resistance along the axes of x, y, z are respectively

Ve VY VY

9 bl

v v v
These quantities are to be added to the right sides of the differential
equations, with the same sign as those the terms based on the attraction
have. The equations of motion then become

de__kQE_V_a:’ dzy_~k2y vy sz__Qi_Vz’

az r3 v ' d? r3 v ' odiz r3 v

If we take the resistance proportional to the nth power of the velocity

V= fu",
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where f is a constant, one has the following differential equations

d?z x —

dt2 ___k,2 f 1 ,:A,

d2

EZQ——_ka forly = B, (16.1)
d2

z
— _kz n—1 S =C.
dt? r3 A =C
Comparison of this system with the general form (15.1) and (15.3) of
the last lecture gives m = n = p = 2; then one obtains, according to the
formula (15.4) of the same lecture, for the multiplier M of the system
(16.1),
dlogM 8A 0B JdC
= e T
dt ox! oy = 07
or, if the expressions for A, B, C are inserted,
dlog M _ ¢ o(v 1) N o(v™ly) N o(v™12")
dt oz’ oy’ 0z

ov , Ov , Ov
— n—1 _ n=2( 1YY
— f{3v +(n—1) (:1: B +y 3?! +z 55 )}

But
v ¥ v ¥y v 2
G " oy w97
and so
, Ov , Ov LJov 2?4y 4
z % +vy c‘)_y’ z -5; = ——1-]— =,
and hence
dk;gtM = (n+2)fv" L (16.2)
For n = —2, then, one has M = constant. This case, however, does not

occur in nature, as otherwise the resistance must become smaller the
faster the planet moves. We shall then investigate whether without this
assumption for n, v"~! can be changed into a total differential coefficient.
The theorems of conservation of vis viva and surface area do not hold
for this problem.Let us investigate instead what forms the equations
corresponding to them take here. To obtain the equation analogous to
the theorem of vis viva, one must multiply the three equations (16.1) by
x',y, 2’ respectively and add; this gives
d2 d2y d2 k‘2

07T i ’ / / n—1/_r2 2 "”
x—d?+ydt2+ dt2 —-ﬁ(l’.’b +yy +ZZ)—f’U (I +vy + 2 )
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Now,
24?422 = 2yt 4=
d2 A2y d%z dv
TwtVE e T Y
' +yy +z2 = rﬁ~
dt’
then dv k2 dr
— n+1
Vo T ez Y
or
1@ = ﬁé@ fotl
2 dt dt
and

2
f/ n+1dt 1'0 +E_

This is indeed a remarkable result; but we need, not [ov"*ldt, but

fv"_ldt.
To obtain the equations corresponding to the surface area theorem,
we have to bu11d from equation (16.1) the expressions yEﬁ - Z{zii =, z‘f;’” -
thz, and CEW yw; this gives
d*z d%y
Vg~ g = I -2,
d*z d*z
g~ Vgm = I e =2,
d’y d’z _
g~ Vap ~ VT ey - o),
and on integration,
—f/v"_1 dt = log(yz —y'2) —loga
= log(zx’ — 2'z) —log 8
= log(zy —2'y) —log;
(16.3)

where loga, log 3, logy are arbitrary constants of integration. One

obtains from this first the sought for integral [ v™~1 dt, and secondly,
two integral equations, namely

ye' —y'z oz’ —2x  xy -2y

a 8 v

(16.4)
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which state that the ratios of the quantities y2' — 2y/, z2’ — 2/, zy/ — yx’
are constants, a result which could have been foreseen. For, as the planet
cannot cease to move in a plane in a resisting medium, the quantities in
question, which, multiplied by dt represent the projections of the surface
element described by the heliocentric radius vector, behave, according
to a well-known theorem, like the cosines of the angles which the normal
to the orbit of the planet makes with the three coordinate axes.
We deduce from equations (16.2) and (16.3) that

r
log M = (n+2)f/v"”1 dt:_(n+2)1ogfy_7_yi,

therefore
7n+2

 (zy -yt
or, leaving out the constant y**2

1
 (ay —ya')" T2

Thereby we can in fact apply the principle of the last multiplier to this
problem. The given system (16.1) is of the sixth order and leads, after
elimination of ¢, to a reduced system of order five. Meanwhile, since
the motion takes place in a plane, we can let one coordinate plane, for
example, the zy-plane, coincide with the plane of the orbit; then z is to
be set equal to 0, and the last equation (16.1) vanishes and there remains
a system of the fourth order and after elimination of ¢ a reduced system
of third order remains. However, we do not have a single integral of this
last system. Because, of the three equations which hold in place of the
surface-area theorem,now there exists only one, and it is not an integral
equation. It leads only to [ v™~! dt, the third expression given in (16.3).
If now one has found for the system of the third order in question two
integrals with two arbitrary constants oy and ag, so that 2’ and ¢ can
be represented as functions of x and y, and there remains then only the
differential equation of the first order

'dy—y dr=0

to be integrated. Its multiplier is

oz’ Oy’ _ 9z’ 9y
Hday Oag Oag Oay

(zy — a'y)™+?
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As a second example of the last multiplier, we shall take one in which
we obtain for the multiplier not an unknown differential equation, but
one for which all integrations occurring can be carried out, namely the
motion of a planet around the sun in a non-resisting medium. One ob-
serves easily that the motion must proceed in a plane and that therefore
one obtains only a system of the fourth order, and after elimination of
t, of the third order. Herein the principles of conservation of vis viva
and that of surface area give two integrals and the principle of the last
multiplier the last. For this problem then the integration can be carried
out completely, as one sees a priori. The system of differential equations
to be integrated is, as we have already seen above,

2 2
Tz Ly 2y (16.5)
dt? 37 dt? r3
where k? denotes the attraction of the sun at unit distance. Let the two
integrals that the principles of vis viva and surface area give be

fl :Ot,f2=,8,

where f; and fo are functions of z,y,z’ and 3’ Then one finds as last
multiplier for the remaining differential equation of x and y the expres-

sion
<8$ oy 0z’ oy ) M

da 88 98 Oa On 0L _ 9h 0k
y’ dy’ oz’

where M is the multiplier of the system (16.5). But since we have to do

with an entirely free motion, M = constant, according to the preceding
lecture. One can then set M = 1 and obtain as the last multiplier

1

0f10fs _ 0f10fs"
oz’ oy’ oy’ ox’

(16.6)

If we now imagine the quantities ' and y’ expressed in terms of x and
y through the equations fi = a and fo = (3, and substitute in the
differential equation

' dy—y dz =0, (16.7)

then this is the equation for which the expression (16.6) must be the
multiplier. This we shall prove by carrying out the computation.
When we multiply the equations (16.5) by ' and y' respectively and
add, we obtain the theorem of ‘vis viva’,
(A2 d%y 2 xT + yy'

_ 2’"
i e X
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and, on integration,

1 12 2 k2

5(:1: + vy )ZT—FO(. (168)
One obtams the prlnciple of surface area when one derives from the
equation :v%g - ym = 0 by integration

ry — 2’y = B. (16.9)

Our two integrals then are

1 k?
fi= 5(’33’2 +y?) - - o, fo=ay —yz' = 6.
From this, one obtains
ofh _ 4 0h_ . Ofr 0f2 _

ax,_mv 8y,—y’ ax,"“ Y, 'a—y,“'rv
and by (16.6), the multiplier of (16.7) will be

1 1
/ A
5%55_ EyL—L zx' + yy
i.e., the expression
"dy—y' d
ray—yar (16.10)
zx' + yy

is a total differential. This we have to prove by determining x’ and 3’
from the equation (16.8) and (16.9). For abbreviation we write

2
—4a=X
r

then we have the equations
.’El2 +y/2 — 2/\’33,!/ —x'y — ﬁ

for the determination of ' and 3. The second of these equations is
already linear in 2’ and ¥/, and it now depends on deriving a second
linear equation. This one can do best through the well-known identity

(@ +y?)(@® + %) = (2’ + yy')* + (2 — a'y)*.

If one inserts in this the values for 2> + y'? and zy’ — z'y, then one
obtains

2xr? = (22’ +yy' )2+ 6%, wd gy = V2N - B2
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One has then the equation
yy' +xz’ = /222 - 32, xzy —yx' =3,
and these give
r?y = Bz +y\/2Ar2 — 32, %' = —By+ z\/2Ar2 - B2,
If one divides both the equations by
P + 2 = BE R,
one obtains

vy B Ly By I
zr' +yy  r2ea?— g2 rPad +yy 2 o2 - ¥

and if one inserts these values in (16.10),

dy—yde  Blxdr+ydy)  rdy—yde

za' +yy r2\/2Xr?2 — 32 r2

Now = dz + y dy = r dr, further when we substitute for A its value,

V222 — 32 = \/2ar? + 2k2r — 32 = VR,
where R is a function solely of r; then

x’dy—y’d:c__iﬁ+a:dy—ydx
zz’+yy VR 2 ’

The first term on the right side is a total differential since it is equal
to dr multiplied by a function of r. The second term has the form
already introduced in Lecture 5 (p. 44) of a product of z dy — y dz
and a homogeneous function of order —2 in x and y, which can always
be represented as a product of a function of the quotient % and its
differential, and is therefore a perfect differential. In the present case
one has

_ d(¥
l”dyTdeI _ (I) 5 :darctang
1+ (%) g
2’ dy—y' dz

The expression is then a perfect differential, which was to be
proved.
We shall next go on to the differential equations of motion of a system

that is not free.

zx'+yy’



Lecture 17

The Multiplier of the Equations of Motion of a
System Under Constraint in the first Langrange
Form

We have shown in Lecture 7 (page 59) that the differential equations of
a system which is bound through the equations of constraint

=0, v=0, w=0,...

can be brought to the following form:

d%z; Oy oY Ow
2y okl
M dt? 1+A6.’L'i +M8:L‘z +U6:Bi + ’
d%y; Oy oY ow
Bl RN VY bl dnd I
Car T T Gy ey ey T
d?z; Op oY ow
Nudied Ry, JRETE Waik - ...
Mg T e e T Vem T
where the multipliers A, u,v,... are to be determined, as already re-
marked there, by differentiating the equations ¢ = 0,9 = 0,w = 0,...
twice. When we determine A, p, v, . . ., we find, as we shall show presently,

that these quantities are not independent of z’, ¢, 2. One cannot there-
fore set the multiplier M equal to 1 here, one must go back for this
determination to equation (15.4) of Lecture 15, p. 132. According to
this the multiplier M for the system of differential equations

d"z @ _ Pz C
dm 77 din T de o T
is defined through the equation
_dlog M 0A 0B oC

0

it T agmn T gyey Yo T
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In the present case, this gives
dlogM Op OX  Op X  Oyp O
dt Z (6:1:z oz * o Oy; Oy tou 0z; 6z

oY du 81/) B,u oY O
+ Z (83:1 oz, (9yz 8y o O0z; 02! )

+...,

where on the right hand side, to each of the multipliers A, u, v, ... corre-
sponds a sum. For the application of the theory of multipliers M, it is
necessary that the right hand side of this equation be a total differential
coefficient. In order to investigate whether this is the case, one must
find out the values of A, u,v,..., or at least those of their differential
coefficients with respect to z},y., 2;. For determining these values, one
differentiates twice in succession with respect to t one of these equations
of constraint, ¢ = 0. The first differentiation gives

dp ¢ ,  Op -
Z (8$im1+ ayiyi+ Bzizi _0,

the second differentiation leads to the equation

Oy " Op ?__Se .
Z(@xz +8yy +8 tu=0,

where u represents the part of the result which arises from the differenti-

ation of the factors 3—5“1, g;ﬁ, g;ﬁ, and is a homogeneous function of order

2 in the 3n quantities x},y},2]. If one denotes through the sequence

P1,D2,- - ., P3n the complex of all 3n coordinates x;, y;, 2;, then one can
give the function u the form
(9 (,0 /2 62Q0
U = + 2 E E —X oo},

where the last sum is to be extended over mutually distinct values of ¢
and k. In the same way one is led through two-fold differentiations from
the other equations of constraint to the equations

a_d} " 8¢ Vi __,(éj_ll
Z(Bmizi+6yzy -l-(9 ] +v=20,

0, 0, O ~
Z(@x L+ g tg A ) tw=0,
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where, according to the notation for the coordinates introduced above,
the functions v, w, ..., have the values

%y

U:Za_p?pf zzza ap Pipk,
9% n

wzza‘—lﬁpl 2223})319 Pipk:

Now in order to obtain A, u,v,..., one has to insert in these equations
the values of 27/, 3/, 2/ derived from the given system. Then the equation
obtained from ¢ by differentiating twice gives

By oy O
5 e e T }
. N
+Za—?-—f{n+A—ai+ug;p+ 8w+---}

8yl m; 0 ayz
op 1 Op oy ow
L Zi A2 bR G
2.5 mi{ T e e T 0
or
uy+ar+bp+cv+---=0,
if one sets

Ox; 0x; Oy; Oy; Oz Oz

-3 )
Zi(a¢a¢+gf@+a¢aw)
X )

1 (0p 8p Opdp Opd
;1_(99¢+_90<p+99¢

m; al‘i 81‘1' 8yi ayl Gzi 822-
1 6(,985}+8_<p65;+8g08&
Or; 0r; Oy; Oy; 0z 0z

P P
ul—u-i-ZmZ(asz +a—‘pY+8“:Z>.

One obtains for each single one of the equations of constraints ¢ = 0,9 =
0,w = 0,..., one such linear equation between the quantities A, y, v,
If one introduces as in Lecture 7, p.61, the notation

1 (OF 0 OF 9 OF 0P
(F.®) :ZE<%axi * ooy T azlaz)
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so that
(F7(I)) = ((I)vF)v

and sets
a=(p,¢),b=(p,9),c=(p,w),...
a' = (¥,9),b = (¥,9),¢ = (¥,0),...
a’" = (@,9),b = (@,¢),d = (@,d),...

so that between these quantities the equations
ad=bd =ct =¢,...

hold.Further, if one sets

—ut Y Op,, . 0¢,
Uy =u+ z<a$z 8—%K+3—21_Z1,),
B oy, oY,
v1—v+g Z(&EZ 8_%E+£;Zz>a

ow ow
wl_erZml(amz 8—in2+8—ZiZ¢),

then one has the equations

uyt+al+bu+cv+--- =0,

v+adA+Vu+cdv+---=0,

wy+ad' A+ pu+d'v+-- =0,
for the determination of A\, 4, v, . ... Instead of solving these for A, u, v,
and deriving 2 ax, , —gg’ci,, .. by differentiation from the values so found, it is
better to differentiate these linear equations directly, as the computation
is then simplified considerably. The quantities a,b,c,...,a’,b,c,... do

not at all contain the differential coeflicients z}, 3/, 2/, and are therefore
to be looked upon as constants for these differentiations; furthe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>