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Foreword 

The present supplement to C.G.J. Jacobi's collected works contains the 
second revised edition of the "Lectures on Dynamics" edited by A. Cleb-
sch in 1866 without the five treatises from Jacobi's literary estate added 
to them at that time. According to the plans drawn up for the publica-
tion of Jacobi's collected works the latter along with the major treatise 
"Nova methodus aequtionen differentiales partiellen primi ordinus inter 
numerum variabilium quemcunque propositas integrandi" , (New meth-
ods for the integration of first order partial differential equations of any 
number of variables), also edited by Clebsch, and a few other shorter 
works will form the contents of the fifth volume. 

As has been remarked in the preface to the first edition of the "Lec-
tures", they are based on the not es prepared with great care nad accu-
racy by C. W. Borckhardt who attended the lectures given by Jacobi 
at the University of Königsberg in the winter semester of 1842-43. The 
changes made by Clebsch in the edition of Brochardt's text are minor. 
Also Mr. E. Lottner, the publisher of the new edition, has only made 
slight stylistic changes in certain places where the express ions were not 
precise or sufficiently clear, and for the rest has confined himself to cor-
recting a few printing and computational errors remaining in the first 
edition. 

15 March 1884 Weierstrass 

(Translated by Balgangadharan. Revised by B.Banerjee) 

Note (B. Banerjee) 

We have translated some of Jacobi's expressions as they were in his time 
to retain the fiavoilr of the original. They are: 

1. vis viva(lebendige Kraft) stands for twice the kinetic energy. 
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2. Force function (Kraftfunction) stands for potential or potential 
energy. 

3. The principle of conservation of surface area (Das Princip der Er-
haltung der Flächenräume ) stands for the principle of conservation 
of angular moment um. 



Lecture 1 

Introduction 

These lectures will be concerned with the advantages which, for integrat-
ing the differential equations of motion, one can derive from the special 
form of the equations. In 'Mecanique analytique' one finds everything 
related to the problems of setting up and transforming the differential 
equations, but very little on their integration. This problem is seldom 
posed; the only one that can be considered to be in that direction is the 
Method of Variation of Constants - a method of approximation which 
depends on the special form of the differential equations that occur in 
mechanics. 

Among the large class of problems found in mechanics, we shall con-
sider only those which relate to a system of n mass points, i.e., of n 
bodies whose spatial extension can be neglected and whose masses are 
assumed to be situated at their cent res of gravity. We shall furt her con-
sider only those problems in which the motion (of the system) depends 
only on the configuration of the points and not on their velocities. Thus 
all problems in which the resistance (of the medium) is to be taken into 
account, are excluded. 

We shall first set up the differential equations for the motion of such 
a system and then list the principles which hold for the same. These 
principles are: 

1. The principle of conservation of motion of the cent re of gravity. 
2. The principle of conservation of vis viva. 1 

3. The principle of conservation of surface area (angular momentum). 

lTranslator's notes: 
(a) Jacobi uses this term for twice the "kinetic energy"Le. for the quantity mv2 (in-
stead of the presently accepted definition which appears to have been adopted 
in the post Jacobi era. We use vis viva in the translation) 
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4. The principle of least action, or as it should better be called, the 
principle of least expenditure of force. 

The first three principles give integrals of the system of differential 
equations that have been set up. The last principle gives no integral, but 
only a symbolic formula into which the system of differential equations 
can be combined. However, it is not less important because of that. 
Lagrange had indeed originally derived all his results in mechanics from 
it. Later, when he wanted to derive them rigorously, he gave up the 
principle of least action and took (first in the Paris Academy prize-essay 
on the libration of the moon, and then, in 'Mecanique analy-
tique') the Principle of Virtual Velocities as the basis for his derivations. 
Thus the principle of least action, which was known as the mother of all 
new results, was treated as insignificant. 

I have introduced a new principle2 in mechanics, which agrees with 
the principles of conservation of vis viva and surface area in that it 
gives an integral, but for the rest is of an entirely different character. 
First, it is more general than the above principles; it holds as long as 
the differential equations depend only on the coordinates. Further , the 
above principles give a first integral in the form of a function of the 
coordinates and their derivatives equal to a constant. That is, integrals, 
from which differential equations are derived which on using the given 
differential equations, become identically zero.The new principle leads, 
on the basis of the earlier integrals, to the latter. According to this 
principle, one can, under the supposition that a problem of mechanics 
leads to a first order differential equation of two variables, in general 
obtain the multiplier (integrating factor) of the same. 

In the cases where the other principles reduce the problem to a first 
order differential equation, it can be completely solved using the new 
principle. To these belong, the problem of attraction of a point by a 
fixed center3 , the law of attraction being arbitrary; that of attraction of 

(b) Jacobi uses the phrase "conservation of kinetic energy" for what is presently 
known as "conservation of total energy" . The word 'conservation ' in the context used 
by Jacobi should be understood in the sense of 'change in kinetic energy'= (-) change 
in potential energy'. Incidently, Jacobi never uses the term "potential energy". The 
quantity U (calIed force function by Jacobi) is minus the quantity which is presently 
called potential energy 

2The principle of the last multiplier. Lecture 10 (Lecture 10-18 are devoted to a 
thorough discussion of this) 

3Lecture 16 
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a point by two fixed centres4 , it being assumed that the attraction obeys 
Newton's law and the rotation of a body ab out a point with no external 
forces acting on it. For the problem of attraction by two fixed centres 
besides the application of the older principles it is necessary to use an 
integral found by Euler by a special trick which reduces the problem to 
a first order differential equation of two variables. But this equation is 
very complicated and its integration is one of the great masterpieces of 
Euler. The new principle yields the integrating factor automatically. 

The class of problems for which both the principles of conservation of 
vis viva and that of least action hold are to be specially noted. Hamilton 
has indeed remarked that in this case one can reduce the problem to a 
first order non-linear partial differential equation. If one finds a com-
plete solution of the same, then one obtains all the integral equations5 . 

Hamilton calls the function defined by the partial differential equation 
the characteristic function. 

Hamilton has made this nice connection that he had discovered 
rather inaccessible and obscure, in that he makes the characteristic func-
tion depend at the same time on a second partial differential equation. 
The addition of this consideration makes the discovery unnecessarily 
complicated, since a more detailed investigation6 shows that the second 
partial differential equation is completely superfluous. 

We shall, for distinguishing, introduce the following terminology. We 
shall call the integrals of ordinary differential equations 'integrals' or 'in-
tegral equations' and the integrals of partial differential equation 'solu-
tions'. Further , for a system of differential equations we shall distinguish 
between 'integrals' and 'integral equations'. 'Integrals'7 are the first in-
tegrals which have the following form: a function of the coordinates and 
their derivatives equal to a constant and whose differential coefficient 
becomes identically zero on using the given system of differential equa-
tions, without the help of any other integrals. The rest of the 'integrals' 
are called integral equations. In this sense, the principles of conservation 
of vis viva and surface area give integrals and not integral equations. 

Through Hamilton's discovery the system of integral equations of 
mechanical problems has taken a very remarkable form. N amely, if 

4Lecture 29 
5Translator's note: The term "integral equation" as used by Jacobi is defined 

in foot note 9. In English "integrated equations" would have been more appropriate. 
6See last part of Lecture 19 
7Integrals are a non-parameter family of invariant submanifolds of the vector fields, 

of codimension 
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one differentiates the characteristic function with respect to the ar-
bitrary constants which it contains, it then gives the integral equa-
tions of the given system of differential equations. This is analogous 
to Lagrange's theorem which states that the differential equations of a 
problem for which the principle of least action is valid, can be repre-
sented by the partial differential coefficients of a single function. Al-
though Hamilton has given the form of the integral equations in ques-
tion, which he obtains by means of the characteristic function, he has 
done nothing ab out actually finding them. We shall be concerned with 
this here, and by means of the results so obtained, handle the prob-
lems of attraction by a fixed centre, and by two fixed cent res , and 
the motion of a point not subject to gravity on the tri-axial ellip-
soid8 (Its solution coincides with the finding of the shortest line on the 
ellipsoid). 

The connection discovered by Hamilton also leads to new condu-
sions on the method of variation of constants. This method rests on 
the following: the integrals of a system of differential equations of dy-
namics contain a certain number of arbitrary constants, whose values 
are determined in each special case by the initial positions and initial 
velocities of the moving points. Now if the points collide during their 
motion, then only the values of the constants change, the form of the 
integral equations remain the same. For example, if a planet moves in 
an ellipse around the sun, and during the motion undergoes a collision, 
it will then move in a new ellipse, or perhaps in a hyperbola, in any 
case in a conic section, the form of the equation remains the same. If 
such collisions occur not momentarily but continuously, one can then 
look on the constants themselves as changing continuously, and indeed 
whether these changes precisely represent the action of the perturbing 
force. This theory of variation of constants will appear in a new light in 
the course of our investigations9 . 

The principle of conservation of vis vi va embraces a large dass of 
problems to which, notably, the problem of three bodies belongs, or more 
generally, the problem of motion of n bodies with mutual attraction 10 . 

The more one enquires into the nature of forces, the more one re-
duces everything to mutual attractions and repulsions, and therefore the 
problem of determining the motion of n bodies with mutual attraction 

8Lecture 28 
9Lecture 36 

lOLecture 2 



Lectures in Dynamics 5 

becomes more important. This problem belongs to the category of those 
where our theory is applicable, that is, which reduces to the integration 
of a partial differential equation. Hence one recognises the necessity of 
studying partial differential equations but for 30 yearsll one has been 
concerned with only linear partial differential equations; while nothing 
has happened in the non-linear case. Lagrange had already solved the 
problem for three variables12 . For more variables Pfaff has carried out 
a creditable but incomplete investigation. According to Pfaff, for the 
solution of partial differential equations one must first integrate a sys-
tem of ordinary differential equations. After integrating these one has to 
pose a new system of differential equations which contains two variables 
less; these have to be furt her integrated, and so on, and then finally one 
arrives at the integration of the partial differential equation. Hamilton 
subsequently has, through his reduction of the differential equations of 
motion to a partial differential equation, transformed the problem to a 
more difficult one. Because, according to Pfaff, the integration of partial 
differential equations requires the integration of aseries of systems of 
ordinary differential equations, while the problem of mechanics requires 
only the integration of one system of ordinary differential equations. 
Therefore the inverse reduction would be here of greater importance, 
whereby a partial differential equation is reduced to a system of ordi-
nary differential equations. The first system of Pfaff agrees with that to 
which mechanics leads, and it can be shown that the rest of the system 
can be dispensed with. Thus as in this case the reduction of a problem 
to another frequently inverts progress of science transforms 
the first into the second and the other way round. In such transforma-
tions it is important that the connection between the two problems is 
demonstrated. The connection in quest ion allows us to recognise that 
every progress in the theory of partial differential equations must lead 
to progress in mechanics. 

A deeper study of the differential equations of mechanics shows that 
the number of integrations can always be reduced by half, while the other 
half can be dealt with by quadratures. There is aremarkable theorem 
which states that there is a qualitative difference between the integrals. 
Namely, while certain integrals have no more significance than quadra-
tures, there are others which taken together hold for all the remaining. 

llThe lectures were given in the winter of 1843 
12Lecture 22 
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This theorem can be stated as follows 13 : if one knows, besides the in-
tegral given by the principle of conservation of 'vis viva', two more in-
tegrals of the dynamical equations then one can find a third fram these 
two. An example of this is the so-called area-theorems with regard to 
the three coordinate planes: if two of these hold,14 then the third one 
can be derived from them. 

If in ac cord an ce with the general theorem introduced, one finds from 
two integrals a third one, then one can find a fourth from this and one 
of the earlier ones and so on until one comes back to one of the given 
integrals. There are integrals which, with these operations, exhaust the 
whole system of integral equations, while for others the cycle breaks off 
earlier. This fundamental theorem has been found and lost for the last 
30 years. It originates from Poisson, and was also known to Lagrange, 
who used it as a lemma in the second part of 'Mecanique analytique' 
published after his death. 15 But this theorem has always been taken 
to have a different significance; it was only meant to show that in an 
expansion certain terms are independent of time and it was nG small 
difficulty to find in this fact its present significance. In this theorem lies 
the basis for the integration of first order partial differential equations. 

13See end of Lecture 34 
14See end of Lecture 34 
15Mecanique Analytique, Section VII, 60, 61: Vol. II, pp. 70 of the third edition 



Lecture 2 

The Differential Equations of Motion 

To begin with we shall consider a free 1 system of mass points. We call 
it a system because we assume that the points are subject to external 
forces not independently of one another, in which case one could con-
sider each point by itself, but as they act mutuallyon one another one 
cannot consider any one without considering the others.Further, the sys-
tem is a free one, i.e., one in which the points follow the action of the 
forces unhindered. Let any point of the system have a mass m, and its 
rectangular coordinates at time t be x, y, z and the components of the 
force acting on it X, Y, Z; then one has the well-known equation of 
motion: 

Similar equations hold for all points of the system. X, Y, Z depend 
on the coordinates of all n points and can also contain their derivatives 
with respect to time t, which is always the case when the resistance is 
to be taken into account. 

The above differential equations of motion can be brought into an 
extremely convenient symbolic form, if one multiplies each of them, after 
having making the right hand side zero, by arbitrary factors and adds 
the products. One then obtains the equation 

where the ... refer to similar terms which arise from the remaining 
points of the system. If one demands that this equation hold for all 

ITranslator's note: The term 'free' used by Jacobi should be understood in the 
sense of 'unconstrained'. 
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values of the quantities A, /i, V, . .. , then it represents the entire system 
of differential equations above. For the sake of clarity we shall denote 
the factors A, /i, V, ... , with i5x, i5y, i5z, ... , where the x, y, Z, ... , are 
regarded purely as indices. Our symbolic equation thereby becomes 

where the summation refers to all points of the system. This equation 
must hold for all values of i5x, i5y, i5z, . .. ,. The symbolic representation 
is in itself very important; it will frequently be the case that a symbol 
is considered as a quantity and computations and operations performed 
with it as is usual with quantities. We shall have examples of this later. 

A special treatment is possible in the case in which only attractions 
by a fixed centre or the attractions of points among themselves are to 
be considered. In these cases the components X, Y, Z, ... , can be 
represented as partial derivatives of one and the same quantity. Lagmnge 
has made the important remark that if one connects a fixed point with a 
moving one, the cosines of the angles which this line makes with the three 
coordinate axes are the partial derivatives of a quantity, the distance 
between the two points. Let the fixed point have coordinates a, b, c, the 
moving point x, y, z, and let the radius vector joining the points be r; 
one draws through the fixed point (a, b, c) three straight lines parallel to 
the coordinate axes towards their positive ends. Let the angles which 
the radius vector makes with these lines be 0:, ß". Then one has the 
following equations: 

8r x - a 
- = -- =coso: 
8x r ' 

8r x - b 
- = -- =cosß 8y r ' 

8r x - C 
- = -- =cos,. 
8z r 

If now R is the force with which the point (x, y, z) is attracted by the 
point (a, b, c), then the components which act on the point (x, y, z) in 
the positive direction of the coordinates are: 

_R 8r 
8x' 

_R8r 
8y' 

_R 8r 
8z' 

of if we set J R dr = P, 

8P 8P 8P 
8x 

, 
8y 

, 
8z 
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These components are thus the partial differential coefficients of a quan-
tity -Po This holds also for the mutual attraction of two points P and 
PI. Let their coordinates be x, y, Z and Xl, YI, Zl, and their distance r; 
then 

r 2 = (X - XI)2 + (y - YI)2 + (Z - ZI)2. 

Let R be the force of attraction between P and PI; then the components 
acting on P are -Rg: and the components acting on PI 
are -Raor , -Ra ar , -Raor , which are respectively equal and opposite 

Xl YI Zl 
since 

8r 
8x 

X - Xl 

r 
8r X - Xl 

=----

so or = - JlI.- and so also JlI.- = - or = - or. If one again introduces OX OXI 0YI OY' OZI OZ 

P= J Rdr, 

then the components acting on P are - , - , - and the compo-
. oP op ap nents actmg on PI are - OXI ' - 0Yl ' - OZl . 

Let us now consider n mass points which attract one another. 
Let their masses be ml, m2, ... , m n , their coordinates Xl, YI, Zl; 

X2, Y2, Z2,· .. , Xn , Yn, Zn; let the distance between ml and m2 be denoted 
by rl2 and the integral of that function of rl2 which expresses the at-
traction between the two points be denoted by P12 , where one has to 
consider the product of the masses ml and m2 as a factor entering into 
it. (For Newton's law, for example, Pl2 = - m l m 2 .) These being as-

T12 
sumed, the component of the force which acts on the point ml in the 
direction of the x-coordinates is - O(P12+P13+,,+Pln) and similarly for 

OXI ' 
the two other components. So one has, for the point ml, 

d2XI 8(P12 + ... + P ln ) 
ml dt2 = - 8XI ' 

d2YI 8(P12 + ... + Hn) 
ml dt2 = - 8YI ' 

d2z1 8(P12 + ... + Pln ) 
m l -d-t2- = - ---'---8-=-Z-I----'-

Similar equations hold for the remaining points of the system; for the 
point m2, for example, the quantity enclosed in brackets, whose differ-
ential coefficient is taken, equals P21 + P 23 + ... + P2n. These quantities 
P have however the property that each one of them depends only on the 
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coordinates of the two points whose indices are attached to it. Hence, on 
differentiation with respect to Xl, yr, or Zl, the differential coefficients 
of P23, P24, . .. ,P2n, P 34 , .. . ,Pn-l,n vanish and only the differential co-
efficients of P12, PI 3,' .. ,Pln remain. Thus, the differential equation 
relating to the first point remains entirely unchanged if on the right side 
one introduces for the sum P l 2 + P l3 + ... + Hn in brackets, all the 
remaining PiS. A similar change can be made also in the quantity en-
closed in brackets in the other differential equations, and then one has in 
the differential equations of the entire system the differential coefficients 
of one and the same quantity: 

u = -(H2 + H3 + ... + P ln + P23 + ... + P 2n + ... + Pn-l,n). 

In this manner we have, for any point of the system, the equations 

This observation, that one can introduce the same quantity U in all the 
equations appears very simple; however overlooking this fact had pre-
vented Euler from arriving at the generality of Lagrange's results.Euler 
knew the principle of conservation of vis viva only for the attraction by 
fixed cent res. At the end of Nova methodus inveniendi curvas maximi 
minimive proprietate gaudentes, Euler has in Appendix de motu projec-
torum contented hirnself with very incomplete expressions for the differ-
ential equations for mutual attraction. Daniell Bernoulli was the first 
to observe this in his paper communicated to the Philosophical section 
of the Berlin Academy2 and thereby gave the principle of conservation 
of vis viva its true significance. Lagrange then used the observation for 
the problem which Euler had posed in the essay' de motu projectorum 
and thereby arrived at his principal result. 

The expression U was retained by Hamilton under the name force 
function. The partial differential coefficient of this expression with re-
spect to a coordinate of one of the n masses under consideration gives 
the force with which this mass is attracted by the other masses in the 
direction of that coordinate. 

For the Newton's law of attraction, the force function will be 

2Men. de I'acad. de Berlin, 1748 
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and for the case of three bodies, 

U = mlm2 + mlm3 + m 2m 3 . 
r12 r13 r23 

In the theory of transformation of the differential equations of motion 
into a partial differential equation of the first order, one has always 
to deal only with the force function; hence its introduction is of the 
greatest importance. For the time being we shall use it equally weIl for 
the concise representation of the equations. 

It is of interest to clarify as to how much the limits of the mechanical 
problems can be extended, without giving up the introduction of the 
force function. 

It is not necessary to assurne that the law of attraction between any 
two mass points is the same for all pair of points. On the contrary one 
can make any arbitrary assumption about the force, provided the attrac-
tion depends only on the distance and any of the masses mi is attracted 
by another mass mil with the same force as mil by mi. This remark 
about the extension is not without use. For example,Bessel has raised 
the quest ion whether in the universe the same law of attraction holds 
between any two bodies, not that the function of the distance between 
the two bodies changes but that a body in the solar system, e.g. the 
sun itself, attracts Saturn with a different mass from the one with which 
it attracts Uranus. This hypothesis will not disturb the introduction of 
the 'force function'. Besides the mutual attraction between the masses, 
attraction by fixed cent res can also enter the problem. One can even 
assurne a mathematical fiction, that each one of the fixed centres does 
not act on all the masses, but only on one or on a certain number of 
them. If, for example, the mass mi is attracted by a fixed centre of mass 
k with coordinates a, b, c, then if Newton's law holds the term 

kml 

appears in the force function, and one obtains similar terms for the other 
masses of the system if the fixed centre k acts on them. Finally, constant 
parallel forces, which again need not act on all the masses can appear. If, 
for example, a constant force (like gravity) acts on the mass ml, whose 
components along the directions of the coordinate axes are A, B, r, then 
there appears in the 'force function' U the term AXI + BYl + rZl, and 
similar terms for the other masses of the system, if the constant forces 
A, B, r or others act on them. It is also to be remarked in the case of 
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fixed centres of attraction that if they act on all the masses occurring 
in the problem, obviously. as it always happens in nature, one can look 
upon these as moving masses. Hereby several redundant terms occur in 
the force function, namely those which express the mutual attraction of 
the fixed centres; however these terms are pure constants and vanish by 
every differentiation. 

The symbolic form into which the differential equations of motion 
have been brought was: 

which we can write better as 

In the case where the force function can be introduced, 

and therefore 

äU 
UYi 

äU 
UZi 

( d2Xi d2Yi d2;i) L mi dt2 6Xi + dt2 6Yi + dt2 6Zi 

( äU äU äU) 
= L 8Xi 6Xi + 8Yi 6Yi + äZi 6Zi . 

In this equation here, as in the above, the 6Xi, ... are to be looked 
upon as arbitrary factors, which can take every value, and the Xi 's as 
their indices. However, if one considers for a moment 6Xi, 6Yi, 6Zi as 
infinitesimal increments of Xi, Yi, Zi, then by the mIes of the differential 
calculus, the right side of the last equation would be 

( äU äU äU) L äXi 6Xi + äYi 6Yi + äZi 6Zi = 6U, (2.2) 

and thus one has 

(2.3) 
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Here 8U is provisionally to be seen only as an abbreviation for the sum 
(2.2) and agrees with the same only when one looks upon 8 as an in-
finitesimally small increment. Although this notation has a meaning 
only when the force function exists, one has so far applied it profitably 
in many cases to the equation (2.1) , in order to make the computations 
convenient. However, this can happen only under the proviso that one 
substitutes the partial differential coefficients in the expansion of 8U 
by Xi. Hereby as a rule one arrives at the right results, when one has 
to do with only linear substitutions. This is the bold step that Lagrange 
has taken in his Turin memoir, indeed, without justifying it. 

The notation 8U is very advantageous if one introduces the 
3n new variables ql , ... ,q3n for the coordinates Xl, YI, Zl; X2, Y2, 
Z2, . .. ,Xn; Yn, Zn· One needs only to introduce these new variables in 
U and expand according to the rules of the differential calculus: 

oU oU oU 
8U = + + . .. + 

uql uq2 uq3n 

However, simultaneously one must set 

OXi OXi OXi L OXi -8ql + -8q2 + .. . + --8q3n = -8qs 
Oql Oq2 oq3n oqs s 

for 8Xi. The correctness of this assertion can be seen in the following 
way. 

The 3n differential equations of motion are 

where i takes all values from 1 to n, 1 and n included. If one multiplies 
these 3n equations by respectively and adds, then one has 

uqk uqk uqk 

One obtains 3n such equations in which one inserts for qk all the q 
one after another. These 3n equations represent completely the orig-
inal system of equations, so that one can always substitute the one 
for the other. If we multiply the last system by arbitrary constants 
8ql, 8q2 ,. · . , 8qs, . .. , 8q3n, and add, then we obtain a new symbolic equa-
tion, which replaces the last system of differential equations, and there-
fore the earlier one, completely. 
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This symbolic equation, then, is 

""' ""' m. { d2Xi aXi d2Yi aYi d2zi aZi } <5 = ""' au 15 
L- L- z dt2 a + dt2 a + dt2 a qs L- a qs, s i qs qs qs s qs 

or, if one carries out the summation on the left side in the reverse order, 

This equation is the same into which (2.3) goes over if one substitutes 
for t5U, 2:s t5qs and 2:s 2:s respectively for 
t5xi, <5Yi, <5zi . With this, the rule given above for the substitution of 
new variables is proved. In the transformed equations again the t5qs are 
to be considered furt her as independent quantities and the transformed 
symbolic equation decomposes also into the given second system of 3n 
equations. 

But the importance of our symbolic equations (2.1) and (2.3) does 
not lie in these computational advantages. The true significance of this 
representation consists much more in that it can be preserved when 
the system is no longer free, but equations of constraint which express 
the connections between the points, enter. However, then, the varia-
tions are no more to be treated as entirely arbitrary and independent of 
one another, but as virtual variations, i.e., such as are consistent with 
constraints. If we take, for example, that there are three equations of 
constraint: 

f = 0, <jJ = 0, 'Ij; = 0, 

then the relations which should exist between the variations in order to 
make them virtual, are determined through the following equations: 

t5f = 0, t5<jJ = 0, I5'1j; = 0; 

or, in expanded form: 
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Every equation of constraint then gives a linear relation between the 3n 
variations ... ,6Xi, 6Yi, 6zi , . ... If one has m equations of constraint, and 
therefore m relations between the variations, then one can express all 
the variations through 3n - m of them and obtain, through substitution 
of these, our symbolic equation free of m variations. But the elimination 
of m variations will be extremely complicated. Lagrange has found an 
expedient for dealing with this difficulty by introducing a system of 
multipliers. 

The extension contained in the above of our symbolic equation to 
a system limited by constraints is, as is self-evident, not proved, but is 
only an assertion, historically speaking. It seems necessary to say this 
explicitly, because althoughLaplace has, in "Mecanique celeste" , proved 
this extension as little as it has been done here and has made only a his-
torical claim, one has always taken this for a proof. Poinsot has written a 
paper3 against this opinion and says there quite rightly, that mathemati-
cians delude themselves often traversing a long route, but sometimes also 
on a very short one. On the long route they deceive themselves when 
after very elaborate calculations they arrive at an identity and call it a 
theorem. Our case is a counter-example. 

It is in not all our intention to prove this extension. We would like 
to look upon it more as a principle which need not be proved. This is 
the point of view of many mathematicians, notably that of Gauss.4 

3 Liouvilles Journal Val. 3, p 244 
4possibly Gauss had orally asserted this to Jacobi; no written statement on this 

appears to be found, at least according to the information kindly supplied by Professor 
Schering. 
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The Principle of Conservation of Motion of the 
Centre of Gravity 

We shall now proceed to the proofs of the general principles which hold 
for the mechanical problems considered so far. The first of these is (cf. 
Lecture 1) the principle of conservation of motion of the cent re of gravity. 

Let us first consider the simpler case in which a force function exists, 
so that we have 

We shall assume that U as weIl as the equations of constraint depend 
only on the differences of the coordinates, so that these remain the same 
when one increases all the x by one and the same quantity, and also this 
happens for all Y and all z. Then the assumption 

8Xl = 8X2 = ... = 8xn = A, 
8Yl = 8Y2 = ... = 8Yn = {L, 

8z1 = 8z2 = . .. = 8zn = 1/, 

is one which is compatible with the equations of constraints. With these 
assumptions one obtains 

(3.1 ) 

The right side, however, is equal to O. In fact, since according to our 
assumption U depends only on the differences of the coordinates, one 
can, if Olle sets 



Lectures in Dynamics 17 

give the quantity U, in so far as it depends on the x-coordinates, the 
form 

U = F(6,··· 
Then simultaneously, 

äU äF äU äF äU äF 
äXl ä6' äX2 ä6' , äXn-l , 

äU äF äF äF ----- ... ---

so that 

and similarly 

äXn ä6 ä6 

äU äU äU äU - + - + ... + - = L - = 0, äXl äX2 äXn äXi 

'" äU = 0. 

Accordingly our equation above reduces itself to 

, 

and since this equation must hold for aIl values of A, f.t and 1/, we have, 

Let us now set 

so that A, B, C, as is weIl known, are the coordinates of the cent re of 
gravity of the system; so one can write in place of the above equations 
the foIlowing: 

d2A 
dt2 = 0, (3.2) 

which on integration gives 

A = oJO) + eit, B = ß(O) + ß't, C = ,(0) + ,'t, (3.3) 

Le., the centre of gravity moves in a straight line, whose equations in 
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the running coordinates A, B, C are 

0.' 

B - ß(O) 

ß' 
C _,),(0) 

')" 

and it moves with a constant velo city J 0.'2 + ß,2 + ')"2. 

18 

In the general case in which the force function does not exist, one 
has in place of equation (3.1) the following: 

{ d2xi d2Yi d2 Zi } L mi dt2 A + dt2 I-l + dt2 1/ = L XiA + L Yil-l + L Zil/, 

and since this same holds for all values of A, I-l and 1/, 

or, if one introduces the coordinates of the centre of gravity, 

Le., the centre of gravity moves as though all the forces acting on the 
system can be brought to the centre of gravity by parallel translation of 
themselves, and as though the sum of all the masses are located at the 
cent re of gravity. 

If the forces parallely translated in this manner are in equilibrium in 
their new positions, then 

'" X· - 0 '" v. - 0 '" Z· - 0 6 1.- '6.l i - '6 z- , 

so no accelerating force at all acts at the cent re of gravity. This occurs 
when only mutual attractions act on the system, since then the action 
and reaction have the same point of application and cancel themselves 
out (this case has already been handled above, since, in this case a force 
function always exists); however, it ceases to hold as so on as fixed cent res 
appear in the problem. 

All that has been said up to now naturally holds only when the equa-
tions of constraint depend only on the differences of the x-coordinates, 
y-coordinates and z-coordinates. One such case is the Seilpolygon, 1 if 
one does not take the extension of the wires into account. In order that 

1 A polygon made up of wires with flexible joints. 
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in this case also the force function depends only on the differences of 
the coordinates, the end-points of the wires should not be considered as 
fixed, otherwise these points enter the problem as fixed centres. For an 
entirely free system the equations (3.4) naturally hold under all circum-
stances. If there exists a force function that depends not merely on the 
differences of the coordinates, which is the case when fixed centres or 
constant forces exist, then in this case equations (3.4)hold, but not the 
equations (3.2). 

In the expression "Principle of conservation of motion of the centre 
of gravity" , the word conservation derives from the fact that the motion 
of the cent re of gravity is expressed by the same equations as if there 
were no equations of constraint. If, for example, in the Seilpolygon, 
the connection between the points is fully flexible, then the equations of 
motion of the cent re of gravity are not altered, as they are independent 
of the equations of constraint. The modification is only that the sums 
2:: Xi, 2:: JIi, 2:: Zi, take other values, as soon as the coordinates of the 
individual points become different functions of time. If, moreover these 
sums are constants, which is the case for example when only gravity acts 
on the system, the motion of the cent re of gravity is not changed at all 
by the equations of constraint. 



Lecture 4 

The Principle of Conservation of 'vis viva' 

A hypothesis on the variations that under all circumstances is consistent 
with the equations of constraint is that one sets for each value of i 

dz · 8z· = -tdt. 
t dt 

If we insert these values for the variations in the symbolic equation (2.2) 
of Lecture 2, which holds for the case of existence of a force function, 
then 8U changes into dU and we obtain after division by dt, 

'" m. { d2Xi dXi d2Yi dY.i d2zi dZi } = dU 
L t dt2 dt + dt2 dt + dt2 dt dt . 

This equation admits of direct integrationj its integral is 

"'m. {( dXi)2 (dyi )2 (dZi )2} = U h 2 L t dt + dt + dt + (4.1) 

where h is the arbitrary constant of integration. If we denote by dS i the 
path element covered in the time dt by the element of mass mi, and its 
velo city by Vi, then we have 

and the equaiton above takes the form 

L miv; = U + h. 

This is the theorem of vis viva. The vis viva of a point is the square of 
its velocity multiplied by its masSj the vis vi va of a system is equal to 
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the sum of the vis viva of the individual material points. Accordingly 
equation (4.1) can be thus expressed in words: half the vis viva of a 
system is equal to the force-function plus a constant. 

The principle of conservation of vis vi va is, as its derivation has 
shown, is independent of the equations of constraint, and herein lies the 
major part of its importance. It holds as long as the force function exists. 
In cases where the force-function can be introduced this principle can be 
extended. Hence according to our earlier remark it was Daniel Bernoulli 
who first elevated this principle to its present general significance, while 
before hirn one knew it only for attraction by fixed centres. 

One can eliminate the arbitrary constant h by subtracting the two 
equations (4.1) for two different times, one from the other. Then one 
arrives at the theorem: if a system moves from one position to another, 
then the diJJerence of the vis viva of the system at the beginning and the 
end is equal to the diJJerence between the values of the force function for 
the same instants. The change in the 'vis viva' is thus dependent only 
on the initial and final values of the force function: the intermediate 
values have no influence. To make this clearer, we assurne that a point 
moves on an arbitrary curve from a given initial point to a given end-
point; if now the initial velo city is given, then the final velocity is one 
and the same, whatever be the shape of the curve lying in between. The 
velocity here must be measured naturally according to the actual motion 
followed, in the direction of the tangent to the curve; that part of the 
velocity is not to be taken into account here which is annihilated by the 
resistance when the push originally given to the point does not act in 
the direction of the tangent to the curve. This independence from the 
form of the path followed holds also for a system. As a corollary to this, 
one has the following theorem: if the motion of a system is of such a 
sort that it can return to the same position, the 'vis vi va ' is the same 
after returning, where it is assumed that the principle of vis viva holds 
generally. The word conservation in the name of the principle derives 
from this independence of the form of the path followed, or what is the 
same, of the equations of constraint (since the form of the path followed 
is determined by these). 

The principle of conservation of vis viva has its origin in the theory 
of machines, whose basis, since Carnot, is the same principle. It has 
been laid down in this discipline that half the 'vis viva', that is 
is equal to the work done by the machine, or as one expresses in these 
practical matters, is that which is paid to the machine. This 
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happens in the following way. In the theory of machines one assurnes as 
a matter of principle that, if friction is disregarded, work is done only 
when a mass moves in the direction of the force acting on it (and indeed 
in the sense opposed to its action), while for a motion in a perpendicular 
direction no work is done. One assurnes further that the work done by a 
machine is measured by the product of the acting force and the length 
of the path travelled by the mass set in motion by the force. Pushing a 
weight horizontally is not regarded as doing work, but only lifting it is 
and the work of lifting is measured by the product of the weight lifted 
and the height to which it has been lifted. For example, this is the work, 
which a crane does. 

In a system of mass points, each one of them is the point of appli-
cation of the force acting on it. In so far as this point of application is 
displaced through a motion of the system, the force acting on it must 
also be displaced. But the displacement of the point of application is not 
in general in the direction of the force which is acting on it, but at a cer-
tain angle with it. Therefore, to obtain the work of the system one must 
multiply the force not by the path described, but with the length of the 
projection of the path described in the direction of the the force. The 
c d2x· d2z · h· d . d d h lorces mid[?, mi dt act at t e pomt mi, an m ee t eyact 
parallel to the coordinate axes. The displacement of mi in the element 
of time dt is ds i , the projections of the the same on the co ordinate axes 
are respectively dXi, dYi, dzi , therefore the work required for the forward 
motion of the point mi in the time element dt is 

{ d2xi d2Yi d2 Zi } 
mi dt2 dXi + dt2 dYi + dt2 dZi , 

and for the motion of the entire system in the element of time dt the 
work done is 

when one obtains for the work in the time elapsed from to to t, 

{miVTet=tl) - L miV;(t=to)} . 

This half-difference of the initial and final values of the sum 2:: miVr is 
thus the measure of the würk of the system. This is the probable basis 
für the name (whose origin has been much disputed) vis viva given by 
Leibnitz for this sumo 
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In the case where the force function is a homogeneous function, and 
where one has to do with a free system, one can give a very interesting 
form to the theorem of vis viva which is contained in equation (4.1). Let 
U be a homogeneous function of dimension k; then it is well known that 

If one has to do with a free system one can set 

where w denotes an infinitely small constant, and one obtains on con-
sideration of the equation for the homogeneity of U, 

JU = kUw. 

Hence our symbolic equation (equation (2.2) of Lecture 2) 

( d2xi d2Yi d2 Zi) L mi Xi dt2 + Yi dt2 + Zi dt2 = kU, 

where the common factor w has been omitted. If we add to this the 
equation (4.1) multiplied by 2, we get 

or 

or, also 
d2 2 2 2 "2 mi dt2 (Xi + Yi + Zi) = (k + 2)U + 2h, 

or, if we set X; + Y; + z; = r; and multiply by 2, 

(4.2) 

The expression 2:= mir; can be transformed in aremarkable way, namely 
so that the distances of all points from the origin of coordinates do not 
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occur, but only the distances between the points and the distance of the 
cent re of gravity from the origin. Transformations of this sort are the 
favourite formulas of Lagrange. The one in question one obtains in the 
following way. 

As is easily seen, 

where the sum on the right hand side is extended only over different 
values of i, i', each combination reckoned once. Similar equations hold 
for y and z; if one adds all three, one has 

(2:mi)(2:mi(X;+Y;+Z;)) - (2:mixif - (2: m iYi ) 2 

- (2: mizi f = 2: mimd (Xi - Xi')2 + (Yi - Yi')2 + (Zi - Zi' )2}. 

Now one introduces, as before, the coordinates of the centre of gravity 
and sets 

2: mi = M, 2: m ix i = MA, 2:miYi = MB,2:mizi = MG; 

and furt her denotes the distance of the points mi, mi' from each other 
by rii'; then 

Here one has to substitute in accordance with what we had earlier 

A = 0:(0) + o:'t, B = ß(O) + ß't, G = ,,(0) + ,,'t. 

If one introduces these substitutions and differentiates twice with respect 
to time, then 

d2('" 2) d2(L: m·m·,r2 ) L;1t7iri = 2M(0:'2 + ß,2 + r'2) + i,i' , 

and when one inserts this in the equation (4.2), we get 

d2(L: = (2k + 4)U + 4h _ 2M(0:'2 + ß,2 + ,,'2), 

or finally, when one sets 4h - 2M(0:'2 + ß,2 + ,,'2) = 4h', we have 

d2(L: mimilr2,,) 
___ -=--_1..:..-,1_ = (2k + 4)U + 4h'. 

dt2 
(4.4) 
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In the equation (4.3) the quantities ri are the radius vectors of the 
material points of the system drawn from the origin of the coordinate 
system, vi A2 + B2 + C2 is the radius vector of the centre of gravity 
also measured from the origin. Therefore these quantities change as 
so on as the origin is changed. The quantities rii' on the other hand 
are independent of the choiee of the origin, since they are the relative 
distances of any two points of the system. Let us now choose the centre 
of gravity to be the origin of coordinates, so that A2 + B 2 + C 2 = 0; if 
at the same time we denote the radius vectors measured by Pi from the 
centre of gravity reckoned outwards, then equation (4.3) changes to 

(4.5) 

If one eliminates I: mimi'r;i' from this equation and equation (4.3), then 
it gives 

(4.6) 

i.e., the sum I: mir; taken for any one of the points (when it is con-
sidered as the origin) is equal to the same sum for the centre of gravity 
increased by the sum of the squares of the distances of these points from 
the centre of gravity multiplied by the mass of the point. Hence one 
sees that I: mir; is a minimum for the cent re of gravity and that this 
quantity increases proportionally to the square of the distance from the 
centre of gravity. I: mir; will therefore take a constant value for all 
points which lie on the surface of a sphere with the centre of gravity as 
centre. An analogous result holds for the plane, where the geometrie 
locus of the points for which I: mir; remains constant is a circle. 

The formula (4.6) can also be independently proved. In fact if we 
displace our earlier entirely arbitrary system of coordinates parallel to 
itself, so that the new origin of coordinates falls at the centre of grav-
ity, and denote the coordinates in the new coordinate system of our n 
material points with 6, 7]1, (1; 6, 7]2, (2; ... , 7]n, (n, then we have, for 
any i, 

Xi = + A, Yi = 7]i + B, Zi = (i + C, 

where A, B, C are defined as coordinates of the centre of gravity through 
the equations 
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Therefore 

L mir; = L miX; + L miY; + L miZ; 

= + 2A + A2Lmi + Lm(r,;+ 

Now, however, 

Therefore 

and even so 

(2B L mi''li) + B 2 L mi + L mi(f + 2C L mi(i 

+C2 L m i 

From this we obtain 

L mir; = L + 7]; + (I) + M(A2 + B 2 + C2), 

in agreement with formula (4.6). 
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A similar formula holds for the differentials. From our present for-
mulae, we find the differentials 

dXi = + dA, dYi = d7]i + dB, dZi = d(i + dC, 

L = 0, L mid7]i = 0, L mid(i = 0, 

and from them one obtains 

or, if we divide by dt2 , 

L + dr,; + da) 

+M(dA2 + dB2 + dC2), 

L mi { + (dtir + = 

L mi { + + + 

M { + + (4.7) 
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i.e., the absolute vis viva of the system is equal to the relative vis viva 
of the same with respect to the cent re of gravity (or, as one expresses 
it, about the cent re of gravity), increased by the absolute vis viva of the 
centre of gravity. Therefore, the absolute vis viva of the system is always 
greater than its relative vis viva about the centre of gravity. 

One can introduce the relative vis viva about the cent re of gravity 
into the theorem of conservation of vis viva. This theorem was contained 
in the equation 

"" . {(dXi )2 (dYi )2 (dZi )2} = U h 2 m t dt + dt + dt + . 

If one transforms the left side of this equation by means of equation 
(4.7), then one obtains 

"" m. { (dc'i ) 2 (dTji ) 2 (d(i ) 2} = 
2 t dt + dt + dt 

1 {(dA)2 (dB)2 (dC)2} U + h - 2M Ti + dt + dt . 

However, 

h _ {(dA)2 (dB)2 (dC)2} = h _ ß'2 '2) 2 dt + dt + dt 2 + + , , 

which is the same as what we denoted earlier by h'. And then, we have 

Thus the theorem of vis viva holds for the relative vis vi va ab out the 
cent re of gravity just as for the absolute, only the constant changes from 
h to h'. One should however not forget that it has been assumed here 
that the principle of conservation of motion of the centre of gravity holds. 
Because of this assumption we can substitute of Q,2 + ß,2 + ,'2 for 

( dA)2 (dB)2 (dC)2. 
dt + dt + dt 

Moreover one could have anticipated the result (4.8). In fact, in case 
the principle of conservation of motion of the centre of gravity holds, 
U and the equations of constraint depend only on the differences of the 
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coordinates. So these expressions remain unchanged if one sets ru, (i 
in place of Xi, Vi, Zi, where 

Xi = + A, Yi = 'TJi + B, Zi = (i + C; 

one has furt her 

therefore 
d2Yi 

dt2 ' dt2 
The symbolic equation 

( d2Xi d2Yi d2zi ) L mi dt2 8Xi + dt2 8Yi + dt2 8zi = 8U 

and the equations of constraint of the problem also hold if one substitutes 
'TJi, (i for Xi, Vi, Zi, Le., these equations hold for the relative motion 

about the cent re of gravity just as for the absolute. The same must 
therefore be the case with the derived result- the theorem of vis viva, 
where the constant of integration can change, which actually happens. 

From the above discussion one sees that, if the principle of conserva-
tion of motion of the centre of gravity holds, one has to determine only 
the relative motion of thc system ab out the cent re of gravity. Then one 
finds the motion of the cent re of gravity and one obtains the absolute 
motion of the system through by a simple addition of the two motions. 

The solar system provides an example of this category of problems. 
But we know only its relative motion. We do not have any data to 
determine the motion of the cent re of gravity, since for this there must 
actually exist fixed stars, which is very doubtful, and these must be so 
near to us that they have, in respect of the 40 million mile long line (the 
major axis of the earth's orbit), a measurable parallax. Argelander has 
in recent times sought to determine the ratio ci : ß' : '/" (see equation 
(3.3) of Lecture 3) Le., the direction of motion of the cent re of grav-
ity, following an idea suggested by the eIder Herschel. However this 
determination is based only on probabilistic grounds. 

We now return to equation (4.4) which, in the case where U is a 
homogeneous function of order k, contains the principle of conservation 
of vis vi va in the interesting form 
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Keeping in mi nd equation (4.5) one can write for this 

where Pi is the radius vectors drawn from the centre of gravity. For the 
solar system, k = -1, so one has 

where 
U=6_1_ 1_. 

rii' 
Several remarks can be made on this equation. If the attraction were 
inversely proportional, not to the square of the distance, but to the cube 
of the same, one could integrate the above equation. Since in this case 
k would be = -2, 2k + 4 = 0, then if one abbreviates L. miP; by R, 

d2R = 4h'. 
dt2 

But then the solar system would break up, because a double integration 
gives 

R = 2h't2 + h"t + hilf, 

so R tends to infinity with increasing time. Since R = L. miP;, then 
at least one body of the solar system must move to an infinite distance 
from the cent re of gravity. 

Similar considerations show that for the actual case of the solar sys-
tem i.e., for attraction inversely proportional to the square of the dis-
tance, the constant h' must be negative if the solar system were to be 
stable. In fact so far as only attractive forces act in the solar system, 
the force-function U by its nature is a positive quantity. Now Bessel 
has indeed made the hypothesis that the sun exercises a repulsive force 
against the comets and has related this to the phenomenon that all 
comet tails are turned away from the sun. As this is not yet certain, we 
will disregard this repulsive force for general considerations. Accordingly 
U is definitely a positive quantity. Assuming this, we obtain through 
integration of the equation 
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between the limits 0 and t 

- = fot (2U + 4h')dt, 

or, if 0: denotes the smallest value of U between the limits 0 and t, 

dR dt - > (20: + 4h')t, 

where is the value of for t = o. A second integration of this 
equation between the limits 0 and t gives, if ElD is the value of R for 
t = 0, 

R - ElD - > (0: + 2h')t2 , 

or 
R > ElD + Rbt + (0: + 2h')t2 . 

Here 0: is a positive definite quantity, since U by its nature is positive. 
Now if 2h' were positive, so also would 0: + 2h'; then with increasing t, 
R would increase to infinity, i.e., the solar system would not be stable; 
so 2h' must be negative. But its numerical value cannot be greater than 
the largest value that U takes between 0 and t; if it were otherwise, all 
the elements of the integrals 2 + 2h')dt would be negative, and one 
could therefore set 

dR _ Ro' < -2ßt 
dt ' 

where ß is a positive quantity, namely the smallest numerical value that 
U + 2h' takes between 0 and t; integration gives 

R < ElD + - ßt2 , 

Le., with increasing t, R approaches minus infinity, which is absurd since 
R denotes the sum of squares. One can combine all these considerations 
into the assertion that between the limits of integration U + 2h' can have 
neither purely positive nor purely negative values, assuming the stability 
of the solar system. U + 2h' must then oscillate back and forth from 
positive to negative, i.e., U must oscillate around -2h'. However these 
oscillations of U must be contained between definite finite limits, for if 
it be assumed that U becomes infinite quantity, since U = I: m;:i' , 
this can happen only if two bodies come infinitely elose. Then their 
attraction would become infinitely great, they would not be able to 
separate; so from that time on adefinite rii' = 0, and thereby U = 00, 
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so that if one integrates beyond this time, J J (U + 2h')dt2 , and with it R, 
takes an infinitely large positive value, whatever the value h' has. So the 
other bodies of the solar system must themselves be infinitely furt her 
distant, and thereby the stability the system must be lost. U must then 
make oscillations about - 2h', which are contained between two definite 
finite limits, for which behavior periodic functions whose constant term 
= -2h' give an example. This will be satisfied by the formula for elliptic 
motion. Here U = - 2h' = (except for a common constant factor 
of both quantities), r must also osciIlate about a, which is in fact the 
case; furt her the expansion of in terms of the mean anomaly must 
contain the constant term and this too actually happens. For the 
mutual attraction of two bodies negative values of h' give the elliptic 
motion, h' = 0 corresponds to a parabolic and positive values of h' to a 
hyperbolic motion, which are also in agreement with our resuIts. 

The theorem that U osciIlates about -2h' or U + 2h' about 0 can 
be also expressed as folIows: 2U + 2h' oscillates about U; 2U + 2h' is 
according to equation (4.8), the 'vis viva' (about the centre of gravity); 
so the value of the 'vis viva' must oscillate about the value of the force 
function. If all the distances in the system became very large, then the 
force-function becomes very smalI, and also the vis viva, according to 
the theorem of vis viva. With this the velocities too become very smalI, 
or the more the distances increase the sm aller become the velocities. 
Stability rests on this. 

In this and similar considerations lies the kernel of the celebrated 
investigations of Laplace, Lagrange and Poisson on the stability of the 
planetary system. There exists, namely, the theorem: 

Theorem 4.1 If one assumes the elements of a planetary orbit variable 
and expands the major axis in terms of time, then it occurs only as an 
argument of periodic functions, no term proportional to time ever occurs. 

This theorem was for the first time proved by Laplace only far small 
eccentricities and the first power of the masses.Lagrange extended this 
to arbitrary eccentricities with one stroke of the pen l . Poisson finally 
proved2 that it also holds when one considers the second power of the 
masses. This work is one of his finest. With the consideration of the third 
power of the masses al ready time occurs outside periodic functions, but is 
still multiplied by these; if the fourth power are taken into consideration, 

1 "Mem. de l'Institut, 1808 
2 Journal de l'ecole polytechnique, cat. 15 
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then t occurs even without being multiplied by periodic functions. The 
result for the third power still gives oscillations about a mean value, but 
infinitely large for t = 00; when the fourth power is considered such 
oscillations do not occur at all. One arrives at similar results for small 
oscillations; on consideration of the higher powers of the displacement, 
one arrives here at the result that a small impulse leads, with increasing 
time, always to large oscillations. 

But all these results, to be precise, do not prove anything. For, if 
one neglects the higher powers of the displacement, one assumes that 
time is small, and one cannot derive any conclusions for large values of 
t. Therefore one does not have to wonder - if for the first and second 
powers of the masses time already occurs ouside the periodic functions. 
For the justification for neglecting higher powers of the mass in the 
expansion in terms of the mass lies in the assumption that t does not 
exceed a certain limit. One therefore moves in a circle. 

The pendulum provides an intuitive example for this. The position 
in which the sphere finds itself directly above the point of suspension 
is that of an unstable equilibrium of the pendulum. One obtains here 
the time outside the sine and eosine functions, and concludes from this 
rightly that an infinitely small impulse gives a finite motion. But it 
would be false to conclude from the circumstance that time appears 
outside of periodic functions that the motion of the pendulum is not 
periodic, since in the present case the sphere rotates periodically ab out 
its point of suspension. Similarly it would be false to conclude from the 
results which one obtains taking into account the higher powers of the 
masses in the solar system, that it is unstable. 



Lecture 5 

The Principle of Conservation of Surface Area 

We had made the assumption that the force function U and the equa-
tions of constraint remain unchanged if one changes all the x-coordinates 
through one and the same constant, likewise all the y-coordinates 
through a second and all the z-coordinates through a third, and ob-
tained the principle of conservation of motion of the cent re of gravity. 
This given change of coordinates comes about when one displaces the 
origin, but allows the co ordinate axes to remain parallel. 

We shall now make another assumption: the equations of constraint 
shall remain unchanged if, with the x-axis unchanged, we rotate the y 
and z-axes in their plane through an arbitrary angle. If we set 

y = r cos V, Z = r sin v, 

these do not change with an increase of the angle v through an arbitrary 
angle c5v. If we denote the angle v for different points of the system with 
VI, V2, . .. ,Vi, ... respectively, then U and the equations of constraint 
must remain unchanged when al the v are changed through the same 
angle c5v, Le., they must depend only on the differences Vi - Vi'. This is 
the case of an entirely free system and above all , a case in which only 
the distances between two mass points of the system occur. Through 
introduction of rand v, the expression for any such distance becomes 

rr2 = (Xl - X2)2 + (rl COSVI - r2cosv2)2 + (rl sinvI - r2sinv2)2 

= (Xl - X2)2 + (rr + - 2rlr2 COS(VI - V2), 

Thus it depends only on the difference VI - V2. Also belongs he re the 
case where the points of the system are constrained to move on a surface 
of revolution whose axis of rotation is the x-axis; then the V do not occur 
at all in the equations of constraint. It is furt her to be remarked that 
when fixed points appear in the problem, they must lie on the x-axis. 
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With these assumptions on U and the equations of constraint, all 
the v can be increased simultaneously by dv . The X i remain unchanged 
hereby, but the Yi and Zi will change since 

thus one has 

as the virtual variations of coordinates that hold for our problem. Sub-
stitution of these values in the symbolic equation (2.2) of the Lecture 2 
leads to the equations: 

U remains unchanged for the given displacement and so dU = 0 and one 
has 

(5.1 ) 

We want to remark here that this equation remains valid in the more 
general case where instead of dU on the right side the expression 

appears if only 
(5.2) 

If this expression is not equal to zero, then it occurs on the right side 
of equation (5.1) instead of o. Let us therefore assume that either the 
force function U with the given properties exists or that, in the more 
general case where it does not exist, the equation (5.2) is satisfied. Then 
equation (5.1) holds in the form given above; its left side is however 
integrable and one obtains by integration 

(5.3) 

where adenotes the constant of integration.Further, if one introduces 
polar coordinates ri and Vi, then 5.3 takes the form 

(5.4) 
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The principle of conservation of surface area is contained in this equa-
tion. It is indeed well-known that r2dv is equal to twice the surface 
element in polar coordinates and a subsequent integration of equation 
(5.4) from ° to t gives the theorem: 

Theorem 5.1 If one multiplies every one of the surface areas described 
in the yz-plane by the radius vectors projected in this plane by the mass 
of the point belonging to it, then the sum of the products is proportional 
to time. 

This is the celebrated principle of conservation of surface areas. It 
holds, as stated, when U and the equations of constraint remain un-
changed when one rotates the y and z axes in their plane around the x 
axis, a hypothesis which one can express analytically for the equations of 
constraint thus: that for any equation of constraint f = 0, the equation 

must be satisfied identically. 
That in the transformation y dz - z dy = r 2 dv used earlier, only 

the differential of the quantity v occurs is, in many cases, a very impor-
tant circumstance; it follows from this transformation that y dz - z dy 
multiplied by a homogeneous function of order 2 in y and z is a total 
differential, since it can be represented as a product of dv and a function 
of v alone. 

In the case in which U and the equations of constraint remain un-
changed also when one rotates the x and z axes around the y axis and 
the x and y axes around the z axis, one has besides equation (5.3) two 
more similar ones, namely 

(5.5) 

(5.6) 

This holds, for example, for n bodies moving freely in space. In this case 
one therefore always has four integrals, the three conservation of surface 
area theorems and the theorem of conservation of 'vis viva'. 

It is a very remarkable circumstance, to which we have already drawn 
attention in the introduction, that of these surface area theorems, either 
only one holds or all three. We shall see it proven as a result of pure 
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computation, as a mere consequence of a mathematical identity, that 
the third surface area theorem always follows from the other two. When 
all the three surface area theorems hold, one can, without affecting the 
generality of the solution, take two of the constants, 0:, ß, r to be zero. 
In every problem these constants are determined by the equations of 
constraint. Whichever way these may be constituted it is always possible 
to change the co ordinate axes so that in the new co ordinate system two 
of the constants vanish. In fact, the new coordinates being "li , (i, the 
general transformation formulae for coordinates are 

The constants a, b, c, a', b', c', a", b" c" satisfy among others the nine equa-
tions 

b' c" - b" c' = a, 
b" c - bc" = a', 
bc' - b' c = a", 

c'a" - c"a' = b, 
c" a - ca" = b', 
ca' - c' a = b", 

So, on considering these equations, 

a'b" - a"b' = c, 
a"b - ab" = c', 
ab' - a'b = c". 

d(i d"li (dzi dyi ) (dXi dZi ) (dYi dXi) "lidi -(idi = a Yidi - zidi +b zidi -xidi +c xidi -Yidi ' 

and therefore, 

L mi ( "li - (i = ao: + bß + Cf. (5.7) 

From this one sees that if the surface theorems hold for all three coordi-
nate planes in one coordinate system, then they hold in every coordinate 
system. 1 We shall represent the new constant ao: + bß + Cf in another 

IThe surface area theorems considered so far, which refer to a fixed origin of 
coordinates, cannot be applied to the solar system, because in space we do not have 
a fixed point. But one can easily convince oneself that if one sets 

Xi = + A, Yi = T}i + B, ,Zi = Ci + C, 

where A, B, C are the coordinates ofthe cent re of gravity (Lecture 3), that the syrface 
area theorems (5.3), (5.5),(5.6) also hold when one substitutes T}i, Ci for Xi, Yi, Zi 

respectively and at the same time changes 0., ß" into 

M(ß(O),' _,(0) ß'), M(r(O)a' - 0.(0),'), M(a(O) ß' - ß(O)a'), 

i.e., those surface area theorems also hold for the case when the cent re of gravity with 
uniform rectilinear motion is chosen as the origin of coordinates. 
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form. If one denotes the angles which the makes with the x, y, z 
axes by l, m, n, then 

a = cosl, b = cosm, c = cosn. 

If one furt her sets 

then one has 

}0:2 + ß2 +,2 

= cos j.1, ' = COS 1/, }0:2 + ß2 +,2 

ao: + bß + c, = }0:2 + ß2 + ,2(cosl cosA + cosmcosj.1 + cosn cos 1/). 

But since cos2 A + cos2 j.1 + cos2 1/ = 1, then A, j.1, 1/ can be looked upon 
as the angles which a certain line L makes with the x, y and z axes. If 
one denotes the angle which this line makes with the by V, then 
one has 

cos l cos A + cos m eos j.1 + cos n cos 1/ = COS V, 

and therefore 

ao: + bß + er = } 0:2 + ß2 + ,2 . eos V. 

The eonstant of the surfaee area theorem for the rJ - (-plane is therefore 

multiplied by the eosine of the angle whieh the makes with the line 
L given by the above construetion. The same holds naturally for the two 
other surfaee area theorems in the new eoordinate system, only we have 
to take in plaee of V the angles V', V" whieh the line L makes with rJ 
and ( axes. If one now allows the to eoincide with theline L, then 
the angle V = 0 and at the same time V' = 90° and V" = 90°, so that 
cos V = 1, eos V' = 0, eos V" = O. Hence one sees that the eonstants 
of the surface area theorem for the and aetually become 
zero and at the same time the constant of the surfaee area theorem for 
the rJ( -plane is ) 0:2 + ß2 + ,2, i.e., equal to the maximum which it can 
attain, since its value in the general form is }0:2 + ß2 +,2 cos V. 

Laplace has named the rJ( -plane determined in this manner-the in-
variant plane. He believed that it could be used to find out whether 
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in the course of thousands of years collisions have occurred in the solar 
system, since they would change the plane's location. Conversely, if two 
measurements at two different times give different positions of this plane 
then collisions must have occurred during that time. This is, however, 
the simplest use of the invariable plane. If we write again for the new 
coordinates the letters x, y, Z introduced earlier, so that the plane yz is 
the invariable plane, then we have the three surface area theorems: 

where E = J a 2 + ß2 + ,2. For the case of two bodies one can give an 
interesting geometrical interpretation to these surface area theorems. In 
this case one has 

This proposition has a simple geometrical meaning. In fact one imagines 
at ml a tangent drawn to the curve described by ml, and considers a 
plane EI laid through this tangent and the origin of coordinates and a 
normal NI drawn to this plane at the origin. Let the eosines of the angle 
which NI makes with the coordinate axes be PI, ql, rl; then one has for 
the point ml the two equations 

PIXI + qIYI + rlZI = 0, 
PI dXI + ql dYI + rl dZI = 0, 
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whieh ean also be written in the form of a double proportion, namely 

When one makes a similar eonstruetion for the point m2, one obtains, 
if one eonstruets the plane E2 eorresponding to EI and the normal N 2 
eorresponding to NI and determines the eosines P2, q2, r2, 

From this it follows that one ean write the equation (5.8) in terms of 
the quantities PI, qI, rI, P2, q2, r2: 

qI : rl = q2 : r2· 

It is easy to find the geometrie meaning of this equation. The equations 
of the lines NI and N 2 are 

x 
PI 

Y 
qI 

z 
and 

x 
P'2 

Y 
q2 

Therefore, one has, the equations of their projeetions on the yz-plane, 

Y 
qI 

z 
and 

y z 
-=-
q2 

However, sinee qI : rl = q2 : r2, these two equations are identieal, i.e., 
NI and N 2 have the same projections on the yz-plane, or again, NI 
and N 2 lie in a plane whieh is perpendieular to the yz-plane and whieh, 
sinee NI and N 2 go through the origin, eontains the x axis. From this it 
follows that the planes EI and E2 cut the yz-plane along the same line. 
So for the free motion of two masses ml and m2 the following theorem 
holds: 

Theorem 5.2 1f one draws tangents at ml and m2 to the paths of the 
two points and considers planes laid through these tangents and the cen-
tre of gravity of the system (this is the origin of coordinates), then these 
cut the invariant plane (the yz-plane) along one and the same straight 
line. 

This geometrie interpretation goes baek to Poinsot. I have made 
an interesting applieation of this to the problem of three bodies (ereIle 
Journal, Bd. 26, p. 115, Math. Werke, Bd I, p. 30). 
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Just as the stability of the planetary system with respect to its di-
mensions can be derived from the theorem of conservation of vis viva, so 
too the principle of conservation of surface areas can be used to prove the 
stability with respect to to the form of the orbit. The proof given earlier 
will show that the major axes of the ellipses in which the planets move 
cannot increase beyond a certain limit. Similarly one can prove from 
the surface area theorem that the eccentricities can vary only between 
certain limits and on this depends the form of the orbits. However, apart 
from the drawback of the earlier proof that on consideration of higher 
powers, secular terms, Le., those which contain the time outside the pe-
riodic functions sine and cosine, occur, this proof is incomplete in that 
it holds only for massive celestial bodies. In the equation from which 
one derives the result in quest ion , the individual terms are multiplied by 
the masses of the celestial bodies, and therefore the bodies with small 
masses influence the entire equatioll so little that one can draw no con-
clusion ab out their eccentricities. In fact the stability of the form of the 
orbit does not hold for comets; it also does not hold for small planets, 
e.g. Mercury, whose mass is so small that up to now it could only be 
estimated by guesswork. The investigations first carried out by Encke, to 
obtain the mass by observation, were possible because the comet named 
after hirn came extraordinarily close to Mercury. 

If, to the mutual attraction of material points, attractions by fixed 
cent res are added, then the principle of conservation of surface areas 
ceases to hold except when these cent res lie in a straight line. Let us 
take this line as the x-axis; then the surface area theorem holds, for 
the yz-plane, but for the other two planes it does not hold. In fact, 
let us consider a material point mi and imagine through it a plane Ei 
parallel to the yz-plane. The resultant of all the attractions which the 
point mi experiences from all the fixed cent res lying on the x-axis will 
be directed from it towards a certain point of the x-axis; one can then 
resolve this force into two, one of which go es along the line through 
mi parallel to the x-axis, and the other from the point mi towards 
the point of intersection of the plane Ei with the x axis, and therefore 
lies in this plane. We shall denote the latter by Qi and resolve it into 
two components parallel to the axes of y and z. If we shift to the 
earlier notation, the component parallel to the y-axis is Qi COS Vi, and 
the component parallel to the z-axis is Qi sin Vi. Hence there comes now, 
in the symbolic equation for the motion, in addition to the earlier 8U, 
the expression 2:= Qi (cos Vi8Yi +sin Vi8zd. We also have, if we understand 
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by U only that part of the force-function which comes from the mutual 
attraction of the points, 

or if we set in the above, 

whereby 8U vanishes, 

( d2zi d2yi ) L mi Yi dt2 - Zi dt2 = 0, 

and therefore by integration, 

L mi (Yi - Z/dti) = a, 

Le., the principle of conservation of surface areas holds for the plane to 
which the line which contains all the fixed centres is perpendicular. In 
this case one has two integrals, the theorem of vis viva and the surface 
area theorem. However, if there are fixed centres which do not lie in 
a straight line occurring in the problem, then the surface area theorem 
does not hold and one has only one integral from the theorem of vis viva. 

If we ass urne further that the centres are not fixed, but one of these 
has a certain motion independent of the other material points of the 
system, so that this motion is a given function of time, then the principle 
of vis viva also ceases to hold. Such cases occur in nature. Here belongs, 
for example, the attraction of a comet by Jupiter and the Sun, where 
the orbits of the Sun and Jupiter are to be seen as given, and the comet 
as a material point which has no influence on their orbits. Here, as 
was mentioned, the principle of vis viva ceases to hold; and this rests 
essentially on this, that one has for the distance r of a point mass (x, y, z) 
from a centre (a, b, c), the differential equation 

x-a y-b z-x 
dr = --dx + --dy + --dz. 

r r r 

But this differential equation assurnes that a, b, c are constant; this ceases 
to hold in our case, and with it the principle of vis viva. One can indeed 
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always represent the force acting on an individual point as the partial 
differential coefficient of a function U, but this function now contains 
the time explicitly, besides the coordinates; it is therefore no more so 
that 

dU = '" (ßU dXi + ßU dYi + ßU dZi ) 
dt ßXi dt ßYi dt ßZi dt ' 

but on the right side now comes also the partial differential coefficient 
au h ßt' so t at 

'" (ßU dXi + ßU dYi + ßU dZi ) = dU _ ßU. 
ßXi dt ßYi dt ßZi dt dt ßt 

Now the differential equation of the theorem of vis viva was 

'" m (dXi d2 Xi dYi d2Yi dZi d2 Zi ) 
2 dt dt2 + dt dt2 + dt dt2 

= '" (ßU dXi + ßU dYi + ßU dZi ) . 
ßXi dt ßYi dt ßZi dt 

This would be integrable if one could set for the right hand side. 
Now, however, one must set it to be - and therefore one cannot 
integrate it anymore. If in the equation 

'" m. (dXi d2 Xi dYi d2Yi dZi d2 Zi) = dU _ ßU 
2 dt dt2 + dt dt2 + dt dt2 dt öt 

one thinks U as the sum U + V, where V contains the time explicitly, 
but U does not, then one has 

'" m. (dXi d2xi dYi d2Yi dZi d2zi ) _ dU dV _ ßV 
t dt dt2 + dt dt2 + dt dt2 - dt + dt öt . (5.9) 

This is the equation which holds in place of the differential equations 
for the principle of vis viva, which, however does not give an integral. 
The principle of surface area also does not hold. One has therefore no 
single principle which gives an integral. Nevertheless I have remarked 
that there exists a hypothesis on the motion of the fixed centres, and 
indeed a hypothesis which comes very dose to the just mentioned case 
occurring in nature. If one assurnes this hypothesis one can, from a 
combination of both the principles, obtain an integral. This hypothesis 
consists in assuming that the fixed cent res move in cirdes with the same 
angular velocity about one and the same axis, so that one has, for the 
coordinates of any one cent re (a, b, c), 

a = constant, b = ß cos nt, c = ß sin nt, 
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where n has the same value for all cent res and the x axis is the common 
axis of rotation. This comes very near to the case found in nature, 
since the Sun and Jupiter move in the ecliptic around their common 
cent re of gravity in ellipses of very small eccentricities (nearly = 210)' 

and consequently they can be considered as circles. Their periods of 
revolution are the same and if one sets this to be T, then one has the 
equation nT = 27f for the determination of n. 

We shall now investigate, using the differential equations, what hap-
pens to the surface area theorem in this case. We shall, for generality 
take besides the centres, not one single material point, but a whole sys-
tem of points, and then in our case the force function will consist of two 
complexes of terms. The first complex arises from the mutual attraction 
of the material points and consists of terms of the form 

or, if as before we introduce ri and Vi, 

The second complex arises from the attraction of the cent res and consists 
of terms of the form 

or, if here also we introduce ri and Vi and at the same time b = ß cos nt, 
c = ßsin nt, 

(5.10) 

Both complexes remain unchanged when one increases all the Vi by the 
same quantity and at the same time t by its nth fraction,that is, if one 
sets for any value of i 

8Vi = n8t, 

which variations are virtual in our case. We shall call the first complex 
of terms U, the second V. 
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In the general symbolic equation 

( d2Xi d2Yi d2zi ) (aU au au) L mi dt2 rSXi + dt2 rSYi + dt2 rSzi = L aXi rSXi + aYi rSYi + aZi rSzi , 

U + V appears in the place of U in this case, so that the right side 
becomes 

( au au au) (av av av) L aXi rSxi + aYi rSYi + aZi rSzi + L aXi rSXi + aYi rSYi + aZi rSzi . 

U does not contain t explicitly, the first sum is therefore equal to rSu; 
but in V, t is indeed contained explicitly and the second sum lacks a; rSt 
to give the complete rSv, i.e., it is equal to rSv - rSt, and one has 

av L mi dt2 rSxi + dt2 rSYi + dt2 rSzi = rSu + rSv - 75t rSt . 

The above variations, however, are so arranged that U and V remain 
unchanged by them, and therefore rSu = 0 and rSv = 0; further, 

so 
(5.11) 

This is the equation which holds in our case in place of the differential 
equation for the principle of conservation of surface areas; V is our 
aggregate of terms of the form (5.10), where n must be the same in all 
the terms, but all other quantities can take values which vary from one 
term to another. Now equation (5.9) was 

( dXi d2xi dYi d2Yi dZi d2 Zi) dU dV av L mi dt dt2 + dt dt2 + dt dt2 = dt + dt - 75t' 
or 

'" {(dXi)2 (dYi )2 (dZi )2} = dU dV _ av. 
2 Z dt dt + dt + dt dt + dt at 

If one subtracts equation (5.11) from this, then one has on integration 

Lmi + itir + 

L ( dZi dYi ) " -n m· Y·_-Z·- =U+V+h. 
Z Z dt Z dt (5.12) 
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This is the principle wh ich arises from the combination of the principles 
of vis viva and of surface areas, and holds if the cent res of attraction 
move with uniform velocity about an axis of rotation. To this cate-
gory belongs, for example, the motion on the surface of the earth or 
in its neighborhood, since the earth is an aggregate of such cent res of 
attraction. In fact, if the density of the earth varied considerably from 
meridian to meridian, the problem must be considered from this point 
of view. Under this assumption, if at the same time the moon were near 
the earth which itself moved more slowly, the attraction of the mo on by 
the earth would be a function also of the hour-angle. Then the moments 
of inertia with respect to different meridian planes would be different, 
and this could be discovered by observation. 



Lecture 6 

The Principle of Least Action 

We co me now to a new principle which does not give an integral, as 
the earlier ones did. This is the principe de la moindre action, wrongly 
called the principle of least action. Its importance lies, first, in the form 
in which it represents the differential equations of motion and secondly 
in that it gives a function which will be a minimum when the differential 
equations are satisfied. Such a minimum exists, indeed, in all problems, 
but one does not as a rule know where. While, therefore, the interest 
of this principle consists precisely in that in general the minimum can 
be given, in earlier times one gave an exaggerated importance to the 
fact that such a minimum exists at all. An example of the principle 
in question appears in Euler's treatise de motu projectorum cited ear-
lier. After Euler hirnself proved it for the attraction by fixed centres, 
he did not succeed in doing so for mutual attractions (between point 
masses) for which the validity of the principle of vis vi va was unknown. 
He contents hirnself, therefore, with saying that, for mutual attractions 
the computation would be very long and the the principle of least action 
must hold because the foundations of asound Metaphysics showed that 
in Nature the forces must necessarily always produce the least action 
(because of the inherent inertia of bodies, according to hirn). But this 
shows neither asound nor any Metaphysics at all and, in fact, Euler 
made this statement because of a misunderstanding of the name least 
action. Maupertuis wanted to express by this name that nature achieves 
its work with the least expenditure of force and this is the real signifi-
cance of the name principe de la moindre action. 

In almost all textbooks, even in the best, those of Poisson, Lagrange 
and Laplace, the principle has been so presented that, in my view, it is 
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impossible to understand. Namdy, it is stated that the integral 

(w he re Vi = denotes the velo ci ty of the point mi) will be a minimum if 
the integral is extended from one configuration of the system to another. 
It is indeed said that this theorem holds only as long as the theorem of vis 
viva holds, but one forgot to say that one must eliminate the time from 
the above integral using the theorem of vis viva and reduce everything 
to space elements. The minimum of the above integral is further to 
be understood in the sense that when the initial and final positions 
are given, the integral, among all possible paths from one position to 
another, would be a minimum for the one actually described. 

Let us eliminate the time from the integral above. If we set Vi = , 

then J '" J L mids; 6 mividsi = dt· 

Eut, according to the theorem of 'vis viva', 

or 

or 

'" mids; = 2(U + h) 6 dt2 ' 

1 
dt 

2(U + h) 
Lmids;· 

If one inserts this value of ft, then it follows that 

The differential equations of motion, integrated, express the 3n coordi-
nates of the problem as a function of time; between any two coordinates, 
one can, however, eliminate the time and give, if one wishes, 3n -1 coor-
dinates expressed by means of one, for example Xl. Under this assump-
tion, one can substitute for L mids; the expression L mi ) 2 dXI and 
then obtain the integral in the form 
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with which only an entirely definite concept is associated. Let us, in 
order to give no preference to any one coordinate, express the integral 
in its earlier form 

We can then express the principle of least action thus: If two positions 
of the system are given (i. e., if one knows the va lues which the other 
3n - 1 coordinates take for Xl = a and Xl = b), and extends the integral 

over the whole path of the system from the first position to the second, 
then its value is a minimum for the actual path among alt possible paths) , 
Le., those which are consistent with the conditions of the system (if they 
are given). Then 

will be aminimum, or, 

(6.1) 

It is difficult to find a metaphysical reason for the principle of least 
action if it is expressed in this correct form, as is necessary. There exist 
minima of an entirely different kind, from which also one can derive the 
differential equations of motion- a method which has many advocates. 

We must impose a limitation on the principle of least action. Namely, 
the minimum of the integral exists not between any two arbitrary po-
sitions of the system, but only when the initial and final positions are 
sufficiently close. We shall presently discuss which limits should not be 
crossed. 

Let us consider first a special case. A single material point moves on 
a given surface driven forward by an initial impulse, without attractive 
forces acting on it. In this case U = 0 and the sum 2: midsr is just mds2 

and then J ds, or s, will be aminimum, i.e., the point describes the 
shortest line on the surface. But the shortest lines have their property 
of being a minimum only between certain limits. For example, on the 
sphere, where the great circles are the shortest lines, this property does 
not hold when one considers a longitude greater than 1800 • In order to 
see this one should not take help of completion to 3600 , which will prove 
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nothing. Sinee the minima need exist only with respeet to lines lying 
infinitely close. One ean eonvinee oneself of this in another way. Let B 
be the pole from A.Let the great eirc1e AaB be extended beyond B to 
C and let the great circ1e AßB lie infinitely near AaB; 

A 

B 

Figure 6.1 

then 
AaBC = AßB+BC = Aß+ßB+BC. 

Further, let ß be infinitely near Band ßC the are of a great circ1e, then 
ßC < ßB + BC, so the broken line Aß + ßC is shorter than the great 
eircle AaBC. On the sphere then, 1800 is the limit for the minimum 
property. In order to determine this limit in general, I have established 
the following theorem whieh I arrived at through a deeper investigation: 

Theorem 6.1 When one draws the shortest lines from a point on a 
surface in various directions, two cases can arise: two infinitely near 
shortest lines either run near each other without intersecting, or they 
intersect and then the successive points of intersection form their en-
veloping curve. In the first case the shortest lines never cease to be the 
shortest; in the second case they are, only up to the point of contact with 
the enveloping curve. 

The first ease holds, as is obvious, for all developable surfaees, sinee 
in a plane two straight lines passing through a point never interseet 
again; further it holds, as I have found, for all eoneavo-eonvex surfaees, 
Le., those in which two mutually perpendicular normal seetions have 
their radii of eurvature on opposite sides; for example, the one-sheeted 
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hyperboloid and the hyperbolic paraboloid. Moreover it should not be 
said that there are no concavo-concave surfaces which belong to this 
category, at least the impossibility of this has not been proved. The 
ellipsoid of revolution gives an example of the second kind. If we take it 
slightly differing from the sphere, then the shortest lines going through 
an arbitrary point on the surface do not indeed, as on the sphere, all 
intersect at the pole, but they form a small enveloping curve in the region 
of the pole. Under these circumstances there appears to be a paradox in 
the considerations on surfaces; for the enveloping curves have in general 
the property that the systems of curves which are enveloped by them 
can never enter the interior of the enveloping curve. So there would 
be a piece of the surface with the property that no shortest line can be 
drawn from a given point to any point in its interior, which is impossible. 
The paradox disappears however on a more precise consideration of the 
enveloping curve as can be seen from Figure 6.2, in which AB CD is 
the enveloping curve which has approximately the form of the evolute 
of an ellipse and EFG represents the shortest line. Here it enters from 

E 
B c 

A D 
G 

Figure 6.2 

E the piece of surface bounded by the enveloping curve, touches the 
curve at a point Fand ceases thence to be the shortest line. This 
property of shortest lines, that they cease to be so, if they touch their 
common enveloping curve has, as has been said, been found through 
deep consideration, but in hindsight it can be understood easily. For, 
if two shortest lines intersect, at the point of intersection, not only the 
first variation, but also the se co nd variation, will be zero; the difference 
reduces to an infinitesimal quantity of the third order, i.e., a minimum 
does not exists any more. 

We now return to the general consideration of the minimum for the 
principle of least action. The arbitrary constants which remain after 
the integration of the differential equations of motion can most easily be 



Lectures in Dynamics 51 

determined by the initial positions and initial veloeities of the motion. 
If these are given all the integration eonstants are determined through 
these, and there eannot be any ambiguities. But far the prineiple of 
least action one takes as given not the initial positions and the initial 
velocities, but the initial and final positions. So in order to determine 
the aetual motion, one must derive the initial velocities from the final 
position by solving the equations. These equations need not be linear, 
so one ean obtain many systems of values of the initial veloeities and to 
these eorrespond the many motions of the system from the given initial 
position to the given final position, all of which give minima in respeet 
of motions lying infinitely close. Now, in so far as one ean allow the 
interval between the initial and end positions to inerease eontinuously 
from zero, the different systems of values which one obtains from the 
solution of equations for the initial velocities also alter. So now with 
this alteration in the system of values there oeeurs the ease that two 
systems of values become equal; so this is the limit beyond whieh no 
minimum oeeurs. 

This theorem wh ich is of little importanee for meehanies in the nar-
rower sense, I have made known in Grelles' Journal l but only as a note 
without proof. As an example of the same we shall ehoose the motion 
of planets around the sun. 

B' 
---'-"--::7\ q 

A 

p' 

Figure 6.3 

Let a foeus A of the ellipse be the loeation of the Sun, a the major 
axis of the ellipse and, in addition, p, q two positions of the planet. If 
we denote position, for the moment unknown, of the se co nd foeus by 
B, then the distanees of the point B from the two planetary positions p 
and q are known; namely the distanees are equal to a - Ap and a - Aq, 
from the well-known property of the ellipse. But this gives for B two 
positions Band B', one above and the other below the line joining p and 

IVol. 17, p. 68 ff 
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q. So there exist two ellipses and accordingly two motions of the planet 
which are possible for the given pieces of the planetary orbit. In order 
that the two solutions coincide, the points Band B' must lie on the line 
connecting p and q, Le., p, Band q must lie on the same straight line, 
and consequently q at pi. The point pi then denotes the limit beyond 
which one may not extend the integral from p without its ceasing to be 
aminimum. 

We now return to the proper mechanical significance of the principle 
of least action. This consists in that the equation (6.1) contains the 
fundamental equations of dynamics for the cases in which the principle 
of 'vis viva' is valid. In fact equation (6.1) was 

After elimination of the time he re we can look upon all coordinates as 
functions of one, e.g., Xl, and write accordingly 

8 J J2(U + h)VL dXI = 0, 

or, 

b J J2(U+h) . { ( dXi ) 2 ( dYi ) 2 ( dZi ) 2} d = 0 m t d + d + d Xl, Xl Xl Xl 

or, if we set, 

8 J J2(U + hhlL mi(x? + Y? + Z?)dXI = o. 
Introducing the notation 

( ) A '" ('2 '2 '2) B 2 U + h = , mi xi + Yi + Zi = , 

we have finally 

8 J P dXI = 0; 

in other words, it gives the following rule: one substitutes in J P dXI, 
Xi + 8Xi, Yi + 8Yi, Zi + 8zi , in place of Xi, Yi Zi respectively, where 8Xi, 
8Yi, 8zi , are arbitrary functions (which do not become infinite inside the 
limits of integration) multiplied by an infinitely small factor a, expands 
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in powers of 0:, and sets the term which is multiplied by the first power 
of 0: equal to zero. Here it is to be remarked that, first, since the limits 
of integration are given, no variation can affect them, that further, on 
the same grounds, all variations must vanish at the limits, and finally, 
8XI is moreover zero since Xl is the independent variable. Hence, one 
obtains according to the rules of calculus of variations, 

Now, 

8 J P dXI = J 8P dXI 

= J L 8Xi + {){)P 8Yi + {){)P 8zi + 
X z Yz Zz xi 

{)P , {)P ,} +-() ,8Yi + -() ,8zi dXI. 
Yi Zi 

d ap J {)P, J {)P d8xi ()P J ax; 
-() ,8XidxI = ()' -d dXI = -() , 8X i - -d 8XidxI, 

Xi Xi Xl Xi Xl 

or, since 8Xi vanishes at the limits of integration, 

However, P = VAVE, A = 2(U + h), B = L mi(x? + Y? + z?), 

= = 

then one has 
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If one now sets (see pg. 47) 

(6.2) 

then one obtains 

aP fB(au d2Xi) 
aXi - dx; = V A aXi - mi dt2 ' 

and similarly for y and z. If one introduces these expressions one gets, 

( aU d2zi )} + aZi - mi dt2 OZi dXl. 

Since these variations should vanish, according to our principle, 

( au _ m d2yi ) oy. 
aYi t dt2 t • 

+ ( aU d2 Z i ).} 
. OZi - mi dt2 (jZi , 

or 

(6.3) 

=oU, 
which is the earlier symbolic equation. 

Equation (6.2) is none other than the theorem of vis vzva. For, 
squaring it one finds 

or, 

L mi{ 2 + 2 + 2} = 2(U + h). 

This was to be expected since we had eliminated time from the principle 
of least action through the principle of vis viva. 



Lecture 7 

Further considerations on the principle of least 
action-The Lagrange multipliers 

Apart from the drawback of the usual way of expressing the principle 
of least action in that one does not introduce the theorem of vis viva 
in the integral, there comes another. This one is that one says that the 
integral shall be the largest or the smallest, instead of saying that its 
first variation should vanish. The confounding of these, by no means 
identical, requirements has become so much of a custom that one can 
hardly ascribe it to the authors as mistakes. One finds in this respect 
astrange quid pro quo between Lagrange and Poisson which refers to 
the shortest line. Lagrange says entirely correctly that in this case the 
integral can never be a maximum, since however long a curve may be 
between two points on a given surface, one can always find a longer one, 
and hence concludes that the integral must always be a minimum. On 
the other hand, Poisson, who knew that the integral, in certain cases, 
namelyon closed surfaces, ceases to be a minimum beyond certain limits, 
concludes from this that in those case it must be a maximum. Both 
conclusions are false; in the case of the shortest line the integral, to be 
sure, can never be a maximum; rather it is either a minimum or neither 
of the two, maximum or minimum. 

The elimination of time from the integral which comes into consider-
ation for the principle of least action, should happen directly using the 
principle of vis viva and not through the principle of surface areas or 
any other integral equation of the problem. Only then one can arrive 
at the principle of least action. Lagrange says in one place that he has 
in the Thrin memoirs derived the differential equations of motion from 
the principle of least action in conjuction with the principle of vis viva. 
Such a way of expression is not admissible according to the remarks 
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made above. Lagrange applied the variational calculus just then dis-
covered by hirn to the principle of least action already used by Euler, 
but needed here the principle of vis viva in the extension which Daniel 
Bernoulli had given it, and in this manner came to the symbolic equa-
tion of dynamics from which we started, and which we want to write 
down here :once again; it was 

(7.1) 

where 8U is to be put on the right side if the principle of vis viva holds. 
If one abstracts from the fact that 8U can be set on right side of the 
above equation in the usual sense of the variational calculus only if the 
quantities Xi, y;, Zi are the partial differential coefficients of a single 
function U, and if one considers it purely as a symbolic abbreviated 
notation, one has 

(7.2) 

also when the theorem of vis viva does not hold. Now this equation, 
as already explained earlier, is still correct when there are equations 
of constraint, but then the variations are no longer independent of one 
another. If one has m equations of constraint 

f = 0, 4> = 0, ... (7.3) 

then there is, between the variations, the m relations 

(7.4) 

By means of these m equations one can eliminate m of the 3n vari-
ations 8Xi, 8Yi, 8zi , . .. from the equation (7.1), and when one sets the 
remaining as independent of one another the symbolic equation (7.1) 
breaks up into the differential equations of motion. But this elimination 
would be very laborious and has moreover some drawbacks; first, one 
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must prefer certain coordinates to the others and one does not obtain 
symmetrie formulae, and besides this, the form of the elimination equa-
tions will be different for different number of equations of constraint. 
Beeause of this cireumstanee the generality of the investigation would 
be rendered very diffieult. Lagrange has overeome all these diffieulties 
through the introduetion of multipliers, a method which Euler had al-
ready frequently applied for the problems "de maximis et minimis". 
Since the variations 8Xi, 8Yi, 8zi, ... oeeur in the equations (7.1) and 
(7.4) linearly, one ean earry out the elimination of m of them in the 
following way: one multiplies the equations (7.4) by A, f-L, . .. , and adds 
them to (7.1). Let the resulting equation be called (L). Now one deter-
mines the factors A, f-L, ... , so that in the equation denoted by (L), m of 
the express ions multiplied by the variations 8Xi, 8Yi, 8zi vanish identi-
eally; then the expression multiplied by the remaining 3n - m variations 
set equal to zero give the differential equations of the problem. In this 
manner one sees that all the expressions multiplied by the 3n variations 
8Xi, 8Yi, 8zi are to be set equal to zero in the equation (L), and then these 
equations are to be so looked upon that m of them define the multipliers 
A, f-L, . •. , the remaining in which the multipliers so determined are sub-
stituted give the differential equations of the problem. In other words, 
if one looks upon all variations as independent, one has to eliminate the 
multipliers A, f-L, ..• from the 3n equations into which the equation (L) 
breaks up, and the remaining 3n - m give the differential equations of 
the problem. However, instead of earrying out this elimination, one does 
bett er by letting the unknown multipliers in the 3n equations to remain 
and base furt her investigations on these. These 3n equations will then 
be of the form 

(7.5) 

where the same multipliers A, f-L, ..• ,oeeur for all the n values of i. This is 
the form that Lagrange has given to the equations of motion of a system 
with arbitrary eonstraints. 

The quantities whieh are added to the forees Xi, }i, Zi express the 
effeet of the system, Le. the modification which the acting forces Xi, 
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Yi, Zi undergo on account of the connectioons between the mass points. 
One arrives at these results also in statics where one proves that if in 
the n points of the system the forces 

A Ö f + JL öcjJ +... ,A Ö f + JL öcjJ + . .. ,A Ö f + JL öcjJ + ... 
ÖXi ÖXi ÖYi ÖYi ÖZi ÖZi 

are brought parallel to the coordinate axes they are cancelled by the con-
straints of the system, whence it follows that the forces annulled by the 
constraints of the system are not determined, but contain indeterminate 
quantities A, JL, .... The introduction of the multipliers A, JL, ... is there-
fore not a mere artifice of computation, but these quantities have their 
well-defined significance in Staties. One ean also arrive at the equation of 
motion (7.5) from the theorem in Statics just stated, where the passage 
from Staties to Mechanics is based on the following consideration: 

The mass points of the system eannot follow the impulses imparted 
to them because of the binding of the system. In order to find out the 
aetual motion, one must therefore introduce sueh forces that will be 
annulled by the constraints of the system. Their introduetion is to be 
regarded as those which allow the points to follow the forees applied to 
them without hindranee; in other words, by introducing forees through 
which the eonstraints of the system are eancelled, one ean regard the 
system as free. This is to be seen as a principle and equation (7.5) is 
obtained direetly from it. 

This principle which has given us the modifications of the aeeeler-
ating forces because of the binding of the system also allows us to find 
the modifications of the instantaneous fore es through the binding of the 
system. The formulae whieh one has to apply he re are absolutely the 
same. If instantaneous impulses ai, bi , Ci aet at the point mi, then the 
impulses modified in respect to the eonstraints of the system are the 
following: 

öf öcjJ 
ai + Al- + JLl- + ... 

ÖXi ÖXi 
öf öcjJ 

bi + A 1- + JL 1- + ... 
ÖYi ÖYi 

(7.6) 

öf öcjJ 
Ci + Al- + JLl- + ... 

ÖZi ÖZi 

where the quantities Al, JLl, ... remain the same for all points. 
If one wants to determine the quantities A, JL, ... and Al, JLl, ... , then 

one must differentiate the equations f = 0, cjJ = 0, . ... For determining 
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the quantities A, f-l, ... one must differentiate twice and substitute from 
equations (7.5) for the second derivatives of the coordinates; for deter-
mining the quantities Al, f-ll, ... , one has to differentiate only once, since 
the instantaneous impulses are proportional to the velocities, i.e., the 
first derivatives. We want to actually develop the equations for deter-
mining Al,f-ll, ... , assuming that the instantaneous impulses ensue at 
the beginning of the motion and that the system is at this instant is 
completely at rest. Under these circumstances we can leave the acceler-
ating fore es entirely out of consideration at the beginning of the motion, 
since these give only infinitely small velocities, and when we construct 
the differential equations 

and so on far the determination of Al, f-ll, ... , we have therefore to set 
the quantities (7.6) for after they have been divided by mi. 
This gives the following result; if one puts 

then one has for the determination of Al, f-l1, ... the equations 

0= A + (f,j)A1 + (f, (P)f-ll + (f, 'IjJ)Vl + .. . 
0= B + (</J,j)A1 + (</J,</J)f-l1 + (</J,'IjJ)V1 + .. . 
0= C + ('IjJ, j)A1 + ('IjJ, </J)f-l1 + ('IjJ, 'IjJ)Vl + .. . 

(7.7) 

and so on. 

The equations for determining A, f-l, ... have the same form only A, B, C 
take different values. We now go back to the differential equations (7.5). 
If we multiply them in order by c5Xi, c5Yi, c5zi and add all the 3n products, 
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then we again obtain the symbolic equations which we had denoted by 
(L), namely 

which is equivalent to the system (7.5). 
For considering the entire extent of the problem which is contained in 

(7.5), we must take into account the case in which time enters explicitly 
into the constraints. Even then equations (7.5) hold. In order to visualise 
how time can be involved in the constraints, we consider for example 
mass points connected to moving cent res whose motions are given, so 
that the cent res act on the mass points without there being any reaction. 
For this assumption it is, however, necessary to assign infinitely large 
masses to the moving centres in relation to the masses of the points. 
In this case equations (7.5) hold at once for the mass points. But the 
moving cent res maintain the given motions unaltered. In fact let M, 
the mass of a centre, be infinitely large and let p one of its coordinates; 
then the force acting in the direction of the coordinate p is proportional 
to M; if we call this M P, then taking into account the binding of the 
system we have 

d2p öf öqy 
M - = MP+A- +/L- + ... 

dt2 öp öp 

But after division by the infinitely large mass M, all the rest ofthe terms 
vanish and we have 

The same holds for the other coordinates, Le., the cent res follow their 
given motions without regard for binding. The values of A, /L, ... and 
Al, /LI, ... here will be of course different from the earlier ones, because 
on differentiation, their partial differential coefficients with respect to 
time will also be added. Thus, for example, to A (equation (7.7)) comes 
the term Wt, similarly to B, and so on. 

Time can also enter the constraints in an entirely different way; for 
example, when the binding between two points becomes slack or is re-
duced, perhaps through a rise in temperature; in which case one can 
attribute all constraints of this sort to moving centres, if one holds fast 
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to the basic theorem that two constraints which lead to the same equa-
tion can be replaced by each other. 

Moreover, time can make the problem more difficult, for example, 
if the masses vary with time. However, up to now, one has not found 
it necessary to make this assumption in the planetary system, since the 
observations far deciding whether this actually occurs have not been 
sufficiently precise. 



Lecture 8 

H amilton's Integral and Lagrange's Second 
Form of Dynamical Equations 

One can substitute another principle in place of the principle of least 
action where also the first variation of an integral vanishes, and from 
which one can derive the differential equations of motion in a still simpler 
way than from the principle of least action. It appears that this principle 
had not been noticed earlier, because he re in general one does not obtain 
a minimum with the vanishing of the variation, as it happens in the case 
of the principle of least action. Hamilton is the first to have started 
out from this principle. We shall use it to formulate the equations of 
motion in the form Lagrange has given them in Mecanique Analytique. 
Let, first, the forces Xi, y,;, Zi be the partial derivatives of a function 
U; further let T be half the 'vis viva' , i.e. , 

then the new principle is contained in the equation 

6 J (T + U) dt = o. (8.1 ) 

This principle is more general in comparision with that of least action 
in so far as he re U can depend on t explicitly, which was excluded in the 
earlier principle. There the time had to be eliminated through the prin-
ciple of vis viva, which holds only when U does not contain t explicitly. 

We shall use equation (8.1) for proving the reduction of the differ-
ential equations of motion to a first order partial differential equation. 
As Hamilton has shown, one can decompose the variation (8.1) by par-
tial integration into two parts, so that one stands outside and the other 
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inside the integral sign and hdth of them must vanish separately. In 
this way the expression under the integral sign equated to zero gives 
the differential equations of the problem, and the expression outside the 
integral sign its integral equations. 

The new principle can be stated completely in the following way: Let 
the positions of the system be given at a given initial time to and a given 
final time tl; then for the determination of the actually ensuing motion, 
one has the equation 

8 J (T + U) dt = o. (8.2) 

Here the integration extends from to to tl, U is the force-function which 
can contain the time explicitly and T is half the 'vis viva'; so one has 

If one carries out the variation prescribed by this principle so that one 
adds the variations 8xi, 8Yi, 8zi to the coordinates according to the rules 
of the calculus of variations and does not vary the independent variable 
t, one gets 

8 J T dt = J 8Tdt = J I:: + + (8.3) 

·f . t d th . d8xi d8Yi d8zi C I I I d or 1 one m ro uces e expressIOns dt ' dt ' dt' lor uXi' uYi' uZi' an 
integrates by parts, 

8 J T d - J'" . ( I d8xi I d8Yi I d8Zi ) t - dt + dt + dt 

= I:: + + 

-J I:: + + z?8zi ) dt 

where are the second differential coefficients of Xi, Yi, Zi with 
respect to t. Since, however, the initial and final positions are given, 
8xi, 8Yi, 8zi vanish at the limits of integration and the term standing 
outside the integral sign is equal to zero, so that 

8 J Tdt=-J dt. 

Then one has 

8 J (T + U) dt = - J {I:: + + - 8U} dt, 
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where 
( äU äU äU) 

6U = L äXi 6Xi + äYi 6Yi + äZi 6zi , 

an equation from which in fact the basic symbolic equation (2.2) of 
dynamics given earlier in the second lecture (page 12) follows. 

The principle contained in equation (8.1) is very useful in the trans-
formation of coordinates. It holds for any coordinate system. Therefore, 
in a new system one has to vary with respect to the new coordinates as 
earlier in the old one, and the entire substitution which is to be carried 
out is limited to the two expressions T and U. 

We shall first apply this to polar coordinates; the transformation 
formulae in this case are 

Yi = Ti sin cPi cos 'l/Ji, Zi = Ti sin cPi sin 'l/Ji. 

From these follow, by differentiation, 

dXi = COS cPi dTi - T sin cPi dcPi, 
dYi = sin cPi cos 'l/Ji dTi + Ti COS cPi sin 'l/Ji dcPi - Ti sin cPi sin 'l/Ji d'l/Ji 
dZi = sin cPi sin 'l/Ji dTi + Ti COS cPi sin 'l/Ji dcPi + Ti sin cPi cos 'l/Ji d'l/Ji; 

and so 
d 2 d 2 d 2 d 2 2d,/,2 2· 2,/, dol.2 Xi + Yi + Zi = Ti + Ti 'Vi + Ti sm 'Vi 'Vi' 

ar 
12 12 12 12 2,/, 12 2· 2,/, 01. 12 Xi + Yi + Zi = Ti + Ti 'Vi + Ti sm 'Vi' 'Vi , 

where 
I dTi ,/,1 = dcPi 0// _ d'l/Ji 

Ti = dt' 'Vt dt' 'Vt - dt . 
Then one has at ance: 

T 1 (/2 12 12) = 2" mi Xi + Yi + Zi 

(/2 2,/,/2 2· 2,/, 01./2) = 2" mi Ti + Ti 'Vi + Ti sm 'Vi' 'Vi . (8.4) 

Under these assumptions and also taking U as expressed in the new co-
ordinates, we shall find the equation which proceeds from 6 J (T +U) dt = 
0, according to the general rules of variational calculus. 

If P is a function of several variables ... p . .. and their differential 
coefficients ... p' ... , where it is assumed that all the p depend on one 
independent variable t, and if the first variation of J P dt vanishes: 

6 J P dt = 0, 
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where the integral is to be taken from to to t, and the p are given 
corresponding to these values of t, then this leads, as the derivat ions 
carried out in the sixth lecture (page 54) have shown, to the equation, 

[
da? öp] o = I:: ap' - - Jp. 
dt öp 

(8.5) 

In our case the quantities p are ri, 4Ji, 'l/Ji, and P = T + U; furt her U 
does not contain the derivatives hence we obtain 

so one has 

or 
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If equations of constraint f = 0, W = 0 ... hold, then the sum >'8f + 
f.18w + . .. comes in addition to 8U on the right side of this equation, 
and one has, in this case 

(8.7) 

Of extreme importance is the transformation of the original coor-
dinates into new ones which are so chosen that, when everything is 
expressed in terms of those, the equations of constraint are satisfied au-
tomatically. Namely, if there are m equations of constraint, then all 
the 3n coordinates admit of expression in terms of 3n - m of them, or 
through 3n - m functions of those. In most cases it is very important to 
introduce not the coordinates themselves but new quantities, in order 
to avoid irrational quantities. für example, for the motion of a point on 
an ellipsoid, t he formulae 

x = acosT}, y = b sin T} cos (, Z = c sin T} sin (, 

which satisfy the equation of the ellipsoid identically are of the great-
est importance. We shall call these new 3n - m = k coordi-
nates ql, ... qk; they shall be so constituted that when one expresses 
Xl, Yl, Zl, X2, Y2, Z2, ... through them and inserts these expressions in the 
m equations of constraint f = 0, w = 0, ... the left sides of these equa-
tions vanish identically, that is, 

(8.8) 
without any relation existing between the q's. Through this the differen-
tial equations of motion will be significantly simplified. Namely, for any 
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coordinate system whatsoever, according to equation (8.5), the general 
basic symbolic equation of dynamics, when equations of constraint hold, 
is 

L - - 8qs = 8U + .-\8 f + /-l80 + ... [dar, ÖTj 
dt öqs 

where the summation sign extends over all q. But the equations (8.8) 
hold identically for all q's; hence, on introducing these quantities, one 
has 8f = 0,80 = 0, ... , etc, and the above equation reduces to 

which breaks up into k differential equations of the form 

(8.9) 

This is the form in which Lagrange had expressed the differential equa-
tions of mechanics already in the old edition of Mecanique analytique. 

If one considers all coordinates expressed through the quantities q, 
one obtains by differentiation 

If one inserts these values in T = 2:: mi (x/2 + y/2 + z/2), one obtains 
an expression which, in relation to the quantities ... , is a ho-
mogeneous function of the se co nd degree whose coefficients are known 
functions of ql, ... , qk. If we set 

then we can also write the equation in (8.9) as 

dps 
dt 

ö(T + U) 
öqs 

(8.10) 
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This is however not yet the final form of the equations of motion, 
rather it requires a furt her transformation; but before we go over to that, 
we shall extend what we did so far to the case in which no force function 
exists, but where in place of 8U in the original symbolic equation of 
motion 2:(Xi8xi + 1i8Yi + Zi8zi)) occurs. If everything is expressed in 
terms of the q's, then 

oU 
8U= La8qs. 

s qs 
If one compares this with the expression 2:(Xi8xi + 1i8Yi + Zi8zd) 
just mentioned and remembers the rule given in Lecture 2 (page 14) 
according to which, for a transformation of coordinates, 

are to be substituted for 8Xi, 8Yi, 8zi respectively, then one sees that in 
place of 2:s 8qs the expression uqs 

enters, and in place of the expression uqs 

(8.11) 

Because of this change, equation (8.9) is replaced by the following: 

d oT u _ Ti - oqs - Qs. (8.12) 

Here one sets for s the values from 1 to k and thus obtains the equations 
of motion in the present case expressed in terms of the quantities q. 

We shall verify equation (8.12) in yet another way, and indeed shall 
start from equation (7.5) 

d2xi of 00 
mi-- = Xi +A- +J.L- + ... 

dt2 OXi OXi 
d2Yi of 00 mi-- =1i+A-+J.L-+··· 
dt2 0Yi 0Yi 
d2 zi of 00 mi-- = Zi + A- + J.L- + ... 
dt2 OZi OZi 
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If one multiplies these equations by !!JJi l2Ei. and sums over i, one aqs ' aqs ' aqs 
obtains, as the multiplier of A, 

However, the expression on the right vanishes according to (8.8), and 
the same holds for the coefficients of f.1, and v; hence one obtains, taking 
into account equation (8.11): 

(8.13) 

In order to verify equation (8.12) we must also show that its left side is 
identical with the left side of this equation. This will be proved in the 
following way. One has 

T 1 ('2 12 12) = 2" mi Xi + Yi + Zi , 

and hence 

One has, however, the differential equations 

It follows from this 

8x' _l 8Xi 
8qs' 

_l 
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further, 

aqs 

aqs 

az' 
aqs 

Substitution of these values in g-Z: and gT gives q. qs 

hence 

70 

whence the identity of equations (8.12) and (8.13) is proved, and at the 
same time the first is verified. 

So, if no force function exists, one has equations of the form (8.12) 
as the equations of motion, but when one such exists, equations of the 
form (8.9), or what is the same, of the form (8.10), namely 

a(T + U) 
aqs 

One gets a noteworthy result from this form of the equations: if 
one can so choose the new variables that one of the qs does not enter 
into the force-function, and in the representation for T, the variables 
qs do not come in, but only their differential coefficients then in 
this circumstance, there always exists an integral of the given system 
of differential equations; in fact Ps = constant, or what is the same, 
grq/ = constant. Since = 0 under the assumptions made, one has . 
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therefore = 0, Ps = constant. This case occurs, for example, in the 
attraction of a point by a fixed centre. If the centre is at the origin of 
coordinates, one has, in polar coordinates (see equation (8.2)), 

- , 
r 

'l/J does not co me into U, and into T also no 'l/J, but only its derivative 
'l/J', so one has 

;; = mr2 sin2 rP 'l/J' = constant, 

or, when one allows the factor m to go into the constant, 

r 2 sin2 rP . 'l/J' = constant, 

which one can also derive from the third equation (8.7). This is the 
principle of surface area in relation to the yz-plane. In fact, 

x = rcosrP, y = r sin rP cos 'l/J, z = r sin rP sin 'l/J, 

and 
z 

tan'l/J = -, 
y 

1 ,yz' - zy' 
-co-s-2 'l/J- . 'l/J = -=---y-'2;---''---, 

or on multiplication by y2 = r2 sin2 rP cos2 'l/J, 

2 . 2 , dz dy r sm rP· 'l/J = y - - z-dt dt' 

and therefore, 

2 . 2 , dz dy 
r sm rP· 'l/J = Y dt - z dt = constant, 

the principle of surface area for the yz-plane. 



Lecture 9 

Hamilton's Form of the Equations of Motion 

After the publication of the first edition of Mecanique analytique, the 
most important step forward in the transformation of the differential 
equation of motion was made by Poisson in a paper which deals with 
the method of variation of constants and which appears in Volume 15 
of the Polytechnique Journal. Here Poisson introduces the quantity 
P = in place of the quantity q'; now since, as already remarked, T is 
a homogeneous function of the second degree in the quantities q' whose 
coefficients depend on q, P is a linear function of the quantities q'; for 
the definition of P one has the k equations of the form Pi = Wi, where Wi 
is linear with respect to ... If one solves these linear equations 
for the quantities q', one then obtains equations of the form = K i 
where the K i 's are linear express ions in P whose coefficients depend on 
the q. We shall insert these express ions for q: in the equation (8.10) of 
Lecture 8, i.e.,in the equation 

dPi = a(T + U) = aT + aU 
dt aqi aqi aqi ' 

where contains only q, while is, besides, a function of the quan-
tities q', indeed, a homogeneous function of the second degree of these 
quantities. If we set = Ki, then is a homogeneous function of 
second degree in the quantities Pi. Hence the above equations will be of 
the form 

dPi _ p-
dt - z, 

where Pi is an expression in P and q and in fact of the second degree with 
respect to p. These equations combined with the equation = o/1t = K i 

give 
dqi _ K. 
dt - z, 

dPi _ p. 
dt - Z· 

(9.1) 



Lectures in Dynamics 73 

This is the form to which Poisson brings the equations of motion where 
K i and Pi contain no variables other than the p's and q's. From this 
system of 2k equations, one obtains the remarkable theorem that 

(9.2) 

of which Poisson obtains the first group exactly in the way described, 
while the remaining can be written down directly from his results. 

The equations(9.2) show that the quantities K i and Pi can be looked 
upon as the partial differential coefficients of a single function with re-
spect to the variables Pi and -qi. Poisson does not make this remark 
which follows without anything furt her from the equation (9.2); still 
less does he try to find out that function. It is Hamilton, rather, who 
has first made this determination, and has greatly simplified the entire 
transformation through the introduction of his characteristic function. 
One would arrive at this almost immediately if one wished to derive 
the theorem of conservation of 'vis viva' from Lagrange's second form 
of the differential equations given in the preceding Lecture, a derivation 
which is not quite obvious. The theorem of kinetic energy is, when one 
considers the case in which time comes in explicitly in the force-function, 

Jau 
T = U - 8t dt + constant, 

or on differentiation, 
d(T - U) au 

dt + 8t = 0 

(Lecture 5, p.44). For deriving this result from Lagrange's second form 
of the differential equations 

a(T + U) 
aqi 

aT 
Pi = -a ' qi 

(contained in equation (8.10)), one proceeds in the following way. T is a 
homogeneous function of the second degree in the quantities q', so that 
one has, as is well known, 

or 
,aT 

T = qi-a ' - T, 
qi 
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and hence, one obtains through total differentiation 

", aT "aT, "aT, "aT dT = qid7ll + 7lIdqi - 7lIdqi -uqi uqi uqi uqt 

or, since the second and third terms mutually cancel, 

" ,aT "aT " ' "aT dT = qid7ll - n-.dqi = qidpi - n-.dqi, uqi uqt uqt 
(9.3) 

which is an identity. If one intro duces he re for daOT, = dPi its value from qi 
(8.10) of the previous lecture, and divides by dt, it gives 

and so we have 
d(T - U) aU 

dt + ßt = O. q.e.d. 

The identity (9.3) leads easily to Hamilton's characteristic function. 
N amely, the partial differential coefficients aaT and aar, = Pi which appear q, qi 
on the right side of equation (9.3) (the differentials of the latter) are 
constructed when T is looked upon as a function of q and q'. But if we 
introduce the quantities Pi instead for the through the linear equations 

= K i already mentioned, then T will thereby be a function of the q 
and P and we shall for the sake of distinction denote by and 
the differential coefficients of T with respect to Pi and qi constructed on 
this hypothesis. Then 

and so from equation (9.3), 

Since this equation is satisfied identically, it follows 

(9.4) 

(9.5) 
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Equation (9.4) shows that there exists a sort of reciprocity between the 
quantities P and q'.For, in combination with the earlier relation 881; = Pi, qi 
we obtain the equations 

= 

a correlation which is analogous to what comes in the theory of surfaces 
of second order. If we set the value of found in (9.5) in equation 
(8.10) of the previous lecture, then we have 

Since U does not at all contain p, and q', so 

ßU = (ßU), so dPi = _(ß(T - U)). 
ßqi ßqi dt ßqi 

Further, since U contains no p, one can write equation (9.4) also as 

dqi = (ß(T - U)). 
dt ßPi 

Then, if we set 
T-U=H (9.6) 

we have 
(9.7) 

from which one sees that H = T - U is the characteristic function. The 
theorem of vis viva is obtained automatically from these equations; for 
from the two equations (9.7) follows 

- -+ - - 0 ( ßH) dPi (ßH) dqi _ 
ßPi dt ßqi dt - , 

and this summed over all i gives 

dH ßH 
---=0 
dt ßt ' 

Le., the theorem of kinetic energy. 
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Since it is self-evident that in the equations (9.7) the quantities p 
and q are to be looked upon as independent variables, one can delete 
the brackets around the differential coefficients and obtain 

H=T-U. (9.8) 

In the more general case where no force-function exists, in place of 
there enters the expression 

where the sum is extended over all x, y, z, and there occurs in place of 
(9.8) the following: 

When there are no equations of constraint, the quantities q coincide with 
the coordinates; the first of the equation (9.8) is an identity, the second 
goes over into the system 

which is the original form of the equations of motion. 



Lecture 10 

The Principle of the Last Multiplier 

Extension of Euler's multipliers to three variables. Setting up the last 
multiplier for this case. 

The principle of the last multiplier accomplishes, in all cases where 
the integration of a system of differential equations of motion is reduced 
to a first order differential equation of two variables, the integration of 
this last equation by giving its multipliers. Here it is assumed that the 
applied forces Xi, Yi, Zi depend only on the coordinates and the time. 

If . d th d' . dx;!f:1li <& . bl I I I we mtro uce e envatlves Tl' dt ' dt ' as new vana es xi' Yi' zi' 
in the original system of differential of motion, then they take 
the following form: 

dXi I -=x-
dt ' 

dYi I Ti = Yi 

dZi I -=z-
dt " 

These are 6n differential equations, but between the 6n variables 
Xi, Yi, Zi, depending on t ocurring in them, there al ready ex-
ist 2m relations, namely 

f = 0, w = 0, ... , 
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Wh t 1· ·tl . J - h f}1 {)w b . en occurs exp ICI y m , W, ... , t e terms {)t' {)t ' .•• , are to e mtro-
duced respectively in addition on the left sides of the last m equations. 
Therefore one has to still find 6n - 2m integral equations. 

We first assume that t occurs explicitly neither in Xi, Yj, Zi nor in 
J, w, .... Then by means of one of the 6n equations, say, the equation 
d;/ = or dt = one can eliminate the time from the remaining, 
and then one has a system of 6n - 1 differential equations, the complete 
integration of which requires 6n - 2m - 1 integrals. If these integrations 
are assumed to be carried out, one can express the 6n quantities Xi, Yi, Zi, 

... , through one of them, for example Xl. If in this way we think 
of as expressed as a function of Xl, then the equation dt = gives 

Xl 
an integration 

t + constant = J ; 
Xl 

when the time does not occur explicitly, then the last integration is 
reduced to a simple quadrat ure, and the time is then always associated 
with an arbitrary constant through addition. This occurs, for instance, 
in the elliptic motion of planets. However, if we assume that the system 
of 6n - 1 differential equations, which in obtained on elimination of the 
time, is not completely integrated, but one integration is missed, then 
one has not found 6n - 2m - 1 integrals, but only 6n - 2m - 2; then one 
cannot express a11 the variables through a single one, Xl for example, but 
can through two, Xl and YI for example. In this case there remains one 
differential equation between Xl and YI to be integrated; namely, if one 
eliminates the differential of the time from * = Yi through dt = 

then one has 
dXI : dYI = : 

where and Yi are, according to our assumption, functions of Xl and 
Yl. Now, for this differential equation, the principle set up by me gives 
the multiplier. After one has integrated it with its help one finds, as 
remarked above, the time through a simple quadrature. So, when time 
does not occur explicitly, one needs to perform only 6n - 2m - 2 inte-
grations in order to obtain the last two without any furt her device. 

When, however, the time occurs explicitly, not merely as its differ-
ential, then it cannot be eliminated from the differential equations. If, 
however, then 6n - 2m - 1 integrations can be carried out, by which 
everything is reduced to the integration of a differential equation of the 
form 

dXl - = 0, 
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where is a function of Xl and t; then again one obtains the last integral 
through the principle of the last multiplier. 

After we have seen what the principle under discussion achieves we 
proceed to its derivation. 

Though Euler had already seen in many examples that one can trans-
form first order differential equations of two variables into per feet dif-
ferentials through multipliers and then integrate them, it took hirn very 
long to arrive at the insight that this must be a general property of these 
differential equations. This was because, at that time, for hirn the idea 
of solving the integral equation for the arbitrary constants lay far off. 
If he had been familiar with this idea, he would not have despaired of 
reducing a linear partial differential equation to an ordinary one, a prob-
lem which he held to be more difficult than that of integrating a second 
order differential equation of two variables, which has not been solved 
even today. On the other hand the reduction of linear partial differen-
tial equations to ordinary ones is now considered elementary. Euler had 
also never extended the theory of multipliers to a system of differential 
equations, although the procedure for this case is just as simple, if one 
thinks of the integral equations for the arbitrary constants as solved. 

Let us first consider a differential equation of two variables X and y, 
and indeed let it be given in the form of a proportion 

dx: dy = X: Y, 

which, is identical with the equation 

X dy - Y dx = O. 

If one considers the integral brought to the form F 
obtains by differentiation the equation 

äF äF 
äy dy + äx dx = 0, 

constant, one 

of which the left side ean differ from the left side of the previous differ-
ential equation only by a factor M; so one has 

MX= äF 
äy' 

-MY = äF 
äx' 

and this gives the equation for determining M 

ä(MX) ä(MY) 
äx + äy = O. (10.1) 
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Let us extend the theory of these multipliers M to a system of two 
simultaneous differential equations of three variables. Let it be displayed 
the following form: 

dx : dy : dz = X : Y : Z; (10.2) 

Let the integral equations, solved for the arbitrary constants, be 

1 =ü, c/J = ß; (10.3) 

then one has 

&c/J &qy &r/J 
-& dx + -& dy + -r dz = 0, x y öz 

and hence it follows 

dx : dy : dz = - ) ( &1 &r/J _ &1 &r/J) 
&z &x &x &z 

( &1 &r/J _ &1 &r/J). 
&x &y &y &x 

If one sets 

A ( &1 &c/J _ &1 &r/J) 
&y &z &z &y , 

B ( &1 &c/J _ &1 &c/J) 
&z &x &x &z ' 

C ( &1 &r/J _ &1 &r/J) 
&x &y &y &x ' 

then 
dx : dy : dz = A : B : C, 

which, with the given system of equations(1O.2) leads to the proportion 

A : B : C = X : Y : Z. 

Therefore, there exists a multiplier M with the property 

A=MX, B=MY, C=MZ. 

But A, B, C satisfy the relation 

&A &B &C _ O. 
&x + &y + &z - , 
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one has, therefore, for M the equation 

8(MX) 8(MY) 8(MZ) _ 0 
8x + 8y + 8z -, 

or 

8M 8M 8M {8X 8Y 8Z} 
X 8x + Y 8y + Z 8z + 8x + 8y + 8z M = O. (10.4) 

Since J = a and cjJ = ß are integrals of the system (10.2), so by 
virtue of this dJ and dcjJ must vanish identically, without the help of the 
integral equations. However, 

and consequently one obtains by means ofthe system of equations (10.2), 

(10.5) 

which are to be looked upon as the defining equaitons of the integrals 
of the system (10.2). 

One can hence prove that any function of J and cjJ set equal to a 
constant is indeed an integral of the system (10.2). In fact, if w is any 
function of J and cjJ, one multiplies the equations (10.5) by and 
and adds, then one obtains 

+ Y (8w 8 J + 8w 8cjJ) 
8J 8y 8cjJ 8y 

+ z(8w 8J 8w 8cjJ) = 0 
8 J 8z + 8cjJ 8z ' 

or 
(10.6) 

so w is an integral of (10.2). Conversely, any integral of (10.2) is a 
function of J and cjJ. For, if it be assumed that there exist an integral 
w = r which is not a function of J and cjJ, then equation (10.6) holds 
for w. Now let w be an arbitrary function of J, cjJ and w. Then one 
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multiplies the equaiton (10.5) and (10.6) by and respectively 
and adds and so obtains 

X OW yOW Zow = O. 
ox + oy + OZ ' 

consequently, W is also an integral of equation (10.2). However W is 
an entirely arbitrary function of J, </J and wand these are mutually 
independent. Therefore, one can introduce J, </J, w as new variables in 
place of the original variables x, y, Z and express these original variables 
through J, </J , w. So one can represent any function of x, y, z as a 
function of J, </J, w, and an arbitrary function of J, </J, w is equivalent to 
an arbitrary function of x, y, z. So one can set any function of x, y, z for 
w, i.e., any function of x, y, z set equal to a constant is an integral of the 
system (10.2), which is impossible. So there can be only two mutually 
independent integrals of the system (10.2), and any third is a function 
of the two mutually independent J and </J. 

One can use this result to derive from one value of the multiplier M 
all others. Let N be a second value of this multiplier, so 

If one multiplies the second of these equations by M, the first by N and 
takes the difference of the results, one obtains 

o = X {MON _ N OM } + Y {MON _ N OM } 
OX OX oy oy 

+Z{MON _NOM }, OZ oz 

or, if one divides by M 2 , 

_ Xo(N/M) yo(N/M) ZO(N/M) 
o - ox + oy + oz· 

Then t; = constant is an integral of the system (10.2), and thereby t; 
is a function of J and </J, or 

N = MF(j,</J), (10.7) 
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i.e., il M is one value 01 the multiplier, alt other values are 01 the lorm 
M F (j, cjJ). However, as has been assumed, I = Q and cjJ = ß are integrals 
of (10.2) and so will F(j, cjJ) = constant, i.e., if one takes help of the 
integral equations, all the different values of the multiplier differ from 
one another by a constant factor. 

We shall now see what advantage the knowledge of one value of M 
affords; hereby one does not find the integral itself, as in the case of 
a differential equation of two variables, but one finds by me ans of the 
equations A = MX, B = MY, C = M Z, the values of the quantities 

A=818cjJ_818cjJB=818cjJ_818cjJC=818cjJ_818cjJ 
8y 8z 8z 8y' 8z 8x 8x 8z' 8x 8y 8y 8x' 

The advantage one can derive from these arises only when one already 
knows one integral, e.g., cjJ, and seeks another, I. One intro duces in place 
of one of the variables, e.g., z, the expression cjJ, so that z is represented 
as a function of cjJ, x and y. We shall accordingly think of the required 
integral I expressed through x, y, cjJ, and shall denote the partial dif-
ferential coefficients constructed on this hypothesis by (U), 
then we have 

81 = (81 ) + (81 ) (8cjJ) , 
8x 8x 8cjJ 8x 

81 = (81 ) + (81 ) (8cjJ) , 
8y 8y 8cjJ 8y 

81 = (81 ) + (81 ) (8cjJ) , 
8z 8z 8cjJ 8z 

and obtain for the quantities A, B, C, the expressions 

A = (81) 8cjJ 
8y 8z' 

B = _ ( 81 ) 8cjJ , 
8x 8z 

C = ( 81 ) 8cjJ _ (81) 8cjJ . 
8x 8y 8y 8x 

From these it follows that if one knows the integral cjJ = ß and one value 
of the multiplicator M, one can determine I. Indeed, if one thinks of I 
expressed through x, y and cjJ = ß, then 

or, since dcjJ = 0, 
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But one has, from the above equations for A and B, 

= 
8z 

and therefore, 
df = A dy B dx 

8z 

Since now A = MX and B = MY, so 

M 
df = 8e/> (X dy - Y dx), (10.8) 

8z 

and this gives J (X dy - Y dy) = f = a 
8z 

as the second integral of the system (10.2). Here one must assume X, 
Y as functions of x, y, z, expressed through x, y and q; = ß as given. 
Under this assumption, as we see from (10.8), M/'f/z is the integrating 
factor of the differential equation X dy - Y dx = o. Hence, we have the 
following theorem: 

Theorem 10.1 If the system of differential equations 

dx : dy : dz = X : Y : Z 

is given and one knows, first of all, an integral q; = ß of the same, and, 
secondly, a value of the multiplier M of the system, which satisfies the 
partial differential equation 

then is an integrating factor of the differential equation 

X dy - Y dy = 0, 

it being assumed that from the given factor as well as from X and Y, 
the variable z has been eliminated by virtue of the integral q; = ß already 
found. 
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One might regard this theorem as fruitless. Because, while for the 
knowledge of the second integral J the solution of the partial differential 
equation 

X oJ + yoJ + ZOJ = 0 
ox oy OZ 

is required, to determine M and thence to find the second integral J, we 
have to solve the very complicated differential equation 

(10.9) 

It appears that an easier problem has been turned into a more difficult 
one. However, he re a peculiar situation arises. The partial differential 
equation which defines J, 

X oJ yoJ ZoJ = 0 
ox + oy + OZ ' 

also has the solution J = constant, but this obvious solution does not 
give an integral of the given system and must therefore be excluded. 
Such an exclusion of a solution is not necessary with the multiplier M; 
and if, for example, M set equal to a constant gives a solution of the 
equation (10.9), this value of M can be thought as much a multiplier as 
any other. The case where one can set M = constant occurs if 

(10.10) 

then equation (10.9) reduces to 

oM oM oM 
X OX + Y oy + Z oz = 0; 

one can then set M = constant, 1, for example, and we then have the 
following theorem: 

Theorem 10.2 1J, in the system oJ differential equations 

dx : dy : dz = X : Y : Z, 

X, y, Z are Junctions oJ x, y, z, which satisJy the condition 
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iJ, Jurther, one knows an integral <P = ß oJ the system, by means oJ this 
equation expresses z through the quantities x, y, ß and substitutes the 
value Jound in X, Y, then 

1 
8</> (X dy - Y dx) = J 
8z 

is a perJect differential, and one finds the second integral J = 0: oJ the 
system through a mere quadrature. 

There is yet a second and more general case to be mentioned, which 
includes the one just stated, and in which M can be similarly determined 
in general. If one introduces into the equation (10.4) holding for M, after 
one has brought it by division by MX to the form 

(OM Y oM Z OM) (OX oY OZ) _ 0 
M OX + X oy + X oz + X OX + oy + OZ - , 

the values following from the given system (10.2): 

Y dy Z dz = X dx' = X dx' 

then one obtains 

(OM + oM dy + oM dZ) + (OX + oY + OZ) = 0, 
M OX oy dx oz dx X OX oy oz 

or 

or, finally, 
dlogM + (OX + oY + OZ) = o. 

dx X OX oy OZ 
(10.11) 

If now -:k- (8fx + + is a complete differential coefficient with respect 
to x, so of the form then one has 

dlogM _ 0 
dx +dx-' 

M = Ce-( 

Hence, one obtains the following theorem: 
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Theorem 10.3 Let the given system be dx : dy : dz = X : Y : Z and 
let, lurther, the expression 

+ äY + äZ) 
X äx äy äz 

be equal to i. e., equal to some complete differential coefficient with 
respect to x; finally, let cf; = ß be a known integral 01 the system; then 

8<jJ (X dy - Y dx) 
8z 

is a complete differential, it being assumed here that by virtue 01 the 
integral cf; = ß everything is expressed in terms 01 x and y. 

One can also express the result as follows. Both the variables of the 
differential expression whose integrating factor is given, are not x and 
y, but x and z or y and z. 

We shall give an example of these theorems. First, let there be an 
ordinary differential equation of the second order to be integrated, viz, 

d2y ( dY ) dx2 = 1 x, y, dx = u. 

If one introduces a new variable z = *, then one has two equations 

dy dz 
dx = z, dx = u, 

so 
dx : dy : dz = 1 : z : u; 

then in our earlier notation, 

X = 1, Y = z, Z=u. 

In order to be able to apply the first of the two theorems stated, one 
must have 

äX äY äZ 
äx + äy + äz = 0; 

in the present case, = 0, = 0, = so one has the condition 

äu = o. 
äz ' 

Le., in u, z, or, what is the same, *, should not occur. If one makes 
this assumption, one has the theorem: 
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Theorem 10.4 Let the differential equation to be integrated be 

where f does not contain *; if one knows a first integral 

which is solved for *: 
or 

then 

dy 
dx = 7j;(x, y, 00), 

dy - 7j;(x, y, 00) dx = 0; 

1 
ä,p 
dx 
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expressed in x, y and 00 is the integrating factor of this differential equa-
tion. 

The calculus of variation gives an example of the second theorem. 
The simplest problem of that calculus is that in which the integral 

is to be a minimum or a maximum. This exercise leads to the differential 
equation 

dä'lj; 
äy' 
dx 

y' dy 
dx· 

The first of these gives on expansion 

one has then 
dy' 
dx 

ä'lj; _ ä2 '1j; _ ä2 '1j; , 
äy äxäy' äyäy' Y 

ä2 '1j; =u; 
äy,2 
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or if one sets for brevity 

then 
dy' v 
dx = 82 'IjJ = U. 

8y/2 

Besides, now * = y', so that one has 

dx : dy : dy' = 1 : y' : u. 

89 

Here y' enters in place of the variable which was denoted above by z, 
and also 

x = 1, Y = y', Z = u. 

In order that the second theorem may find an application, the expression 

must be a complete differential in x; in the present case this is equal to 
g; , and the question is whether g; admits representation as a complete 
differential coefficient. We have 

and so 

But at the same time 

ou 
oy' 

v 
u = 82'IjJ' 

8y/2 

and as a consequence of the equation 
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8 8y,2 cancels out in the numerator and denominator of a;' and so one 
has 

or 

äu 
äy' 

äu 
äy' 

Then g;, is in fact a complete differential coefficient in x, and according 
to (10.11), 

a2 'IjJ d log M d log ""tfilZ 
dx dx 

ä2'lj; 
M=C äy'2' 

One has accordingly a theorem which holds for all problems in the cal-
culus of variations in which the integral f 'lj;(x, y, y') dx must be a maxi-
mum or a minimum. In order that this condition must be fulfilled there 
should hold between x and y a differential equation of the second order 

8y' 
dx 

ä'lj; 
äy 

which possesses the following property: if one knows a first integral, 
cjJ(x, y, = a, and brings it to the form dy - F(x, y, a) dx = 0, then 

expressed in terms of x, y and a is an integrating factor of this differ-
ential equation. 

To this category of problems of maxima and minima belongs, for 
ex am pIe , the determination of the shortest line on a given surface. This 
problem leads to a differential equation of the second order; if one knows 
an integral of the same, then the multiplier of the differential equation 
of the first order yet to be integrated is determined. 

What has up to now been said about the simplest case of the calculus 
of variations admits the most general extension in which stands under 
the integral sign a function which contains arbitrarily many variables 
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y, z, u, ... depending on a variable x and the differential coefficients of 
each up to an arbitrary high order. If such a problem can be reduced to 
a first order differential equation of two variables, the final integration 
can always be carried out. But in order to arrive at this result, it is 
necessary to introduce a theorem on the express ions which occurs in the 
solution of linear equations, and which have been called resultants by 
Laplace, determinants by Gauss and alternating functions by Cauchy. 



Lecture 11 

Survey of those properties of determinants that 
are used in the theory of the last multiplier 

If one sets 

P = (a2 - ad(a3 - ad·· · (as - al)·· · (an - ad 
(a3 - a2) ... (as - a2)··· (an - a2) 

then the product P so defined has the property that through a permu-
tation of the quantities al, a2, . .. , an, or what is the same, of the indices 
1,2, . .. , n, it changes only its sign and not its absolute value. Regarding 
these permutations, only the following will be referred to. 

Let us denote the indices 1,2, ... , n after changing their order in an 
entirely arbitrary manner by il, i2, ... , in , and the permutation by which 

1,2 , 3, .. . ,s, ... ,n 

goes over to 
.. . . 
Zl , Z2,· · · ,zs,··· ,Zn 

by J. Howsoever may the permutation J be carried out , one can always 
separate the indices 1, .. . , n into certain groups of such a nature that, 
through the permutation J, all the indices which belong to a group 
permute among themselves, or go over as a whole to another group, so 
that in any case the indices which belong to a group remain together. 
With respect to these groups one can classify the permutations, so that 
for certain of these all groups go over into themselves, for others adefinite 
group of indices go es over into a second, and so on. This by no means 
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exhausted subject is one of the most important in algebra. In all cases 
where the solution of equations has been possible, the reason is to be 
sought here. 

The most important of these classifications of permutations is that 
into positive and negative permutations,in the former P remains un-
changed,in the latter P changes into - P. To the second dass, for exam-
pIe, belongs the simplest case in which one exchanges only two indices 
i, i'. One sees this immediately if one brings P to the form 

where k denotes all indices different from i and i', and k and k' all 
combinations of pairs of indices different from i and i', whereby the 
exchange of the two occuring in the same difference is exduded. To 
decide whether apermutation 

(J) 

is positive or negative, one compares the series at each i with the suc-
ceeding members. If 11 is the number of those cases in which a larger 
i stands before a succeeding smaller, then J is a positive or negative 
permutation according as 11 is even or odd; or, simply, J is positive 
or negative according as one obtains the permutations il, ... ,in from 
1, ... , n, by an even or an odd number of interchanges of two elements. 

In order to pass to determinants from what has gone so far, one 
considers the n 2 quantities 

al, bl , Cl, ... ,PI, 

a2, b2, C2,··· ,P2, 

One forms the product alb2C3··· Pn and permutes the indices in it in all 
possible ways, gives each of the resulting products a plus or a minus sign 
according as the permutation is positive or negative, and sums all these 
products with the sign associated with them. The expression resulting 
thereby: 
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where the double sign must have the meaning given above, is the deter-
minant of the n 2 quantities al, .. . , Pn, and these n 2 quantities will be 
called the elements of the determinantR. One can think of R as aris-
ing from the development of P in such a way that in any term, that 
particular a which does not co me into it may be introduced as a factor 
raised to the Oth power, and then for any value of the index i, places 
ai,bi,ci, ... ,Pi respectively in place of the powers a?,al,a;, ... ,ar- 1 

The determinant R has the following fundamental properties: 

1. If one permutes any two indices i and k, or any two letters, for 
example, a and b, with each other, then R changes to -R. It 
follows then that whenever two rows of quantities coincide with 
each other, so 

or 
gl = hl,g2 = h2, ... ,gn = hn , 

then the determinant vanishes. 
2. The determinant is homogeneous and linear with respect to the 

quantities standing in a row , so with respect to the quantities 
ai, bi , ... , Pi, and also the quantities gl, g2,· .. , gn' Therefore one 
has 

If we set 
aR aR aR 
-a =Ai'-a =Bi""'-a ai bi Pi 

then 

and even so 

But R goes over to - R through exchange of the indices i and k, so, 
as is evident from this, Ai into -Ak, Bi into -Bk, and so on; with 
it, the term in Ai multiplied by bk into the term in - Ak multiplied 
by bi, i.e., in R, aibk and akbi have opposite factors, that is 

a2R a2R 
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Similarly, one has for the three indices i, k, l, 

03R 03R 03R 03R 
oaiobkoez oakobzoci oazobiäck oazobkoci 

03R 03R 
oakobioez oaiobZoq 

, 

and from this follow the representations for R: 

R 

R 

where the summation is to be extended over all combinations of 
the indices 1,2 ... ,n in pairs and tripies. This representation of 
a determinant through products of determinants of lower order 
appears first in a treatise of Laplace on the planetary system in 
the Paris Memoir of 1772. Laplace and emmer in Geneva above all 
are the first who have investigated the properties of determinants 
properly. 

3. The equation introduced above, 

oR oR oR 
R = 91- +92- + ... +9n-, 

091 092 09n 
gives, when one writes a for 9, 

oR oR oR R = a1- + a2 - + ... + an--· oa1 oa2 oan 
To these equations are added n - 1 others, which can be proved 
through this, that R must vanish identically when one sets two 
rows of quantities mutually equal; they give 

oR oR oR o =P1- +P2- + ... +Pn-· oa1 oa2 oan 
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The solution of linear equations rests on these formulae. If one has 
the system 

alXI + blX2 + ... + PIXn = Yl, 
a2XI + b2 X2 + ... + P2 Xn = Y2, 

and multiplies these equations respectively by aaR, aaR, ... , aaR, by 
al a2 an 

aR äR aR t h R h th . . b· abi ' fJb2' ... 'abn e c, w ere as e meanmg glven a ove. 

then one has 

4. With the help of these formulae one proves a noteworthy theorem 
on the variation of the determinant R. One denotes the variations 
of the quantities ai, bi , . .. ,Pi by 8ai, 8bi , . .. ,8Pi, and constructs 
the following n systems of linear equations: 

1) + b1x; + ... + 8al, 
+ b2x; + ... + 8a2, 
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and so on; finally 

) (n) b (n) (n) n alx l + IX2 + ... + PIXn 
(n) b (n) (n) 

a2xl + 2x2 + ... + P2 Xn 

(n) (n) (n) 
anx] + bn x 2 + ... + PnXn UPn· 

Now, 

But according to the above formulae for the solution of equations, 
one has 

and so too, 

... , 

so 
bR = R + + + ... + } , 

or, 
R I "111 (n) U og = xl + x2 + x3 + ... + x n . 



Lecture 12 

The multiplier for systems of differential 
equations with an arbitrary number of 
variables 

We shall make an application of the theorem just given on the variation 
of determinants to a system of differential equations. 

Let the following system be given: 

(12.1) 

This system in which Xl, X 2, ... , X n are arbitrary functions of X" 

Xl, X2, .. · , Xn , is integrated through the following system of equations: 

Xl =!1(x,al,a2, ... ,an ), 

X2 = !2(X, al, a2,.··, an), 

If one inserts here the values of Xl,X2, ... ,Xn in X l ,X2 , ... ,Xn and 
determines also the differential coefficients *, ... , as functions 
of X and the n arbitrary constants al, a2, ... , an, then the system (12.1) 
is identically satisfied by these values, i.e., the equation (12.1) holds 
for all values of the variable X and the arbitrary constants al, ... , an. 
Therefore one can differentiate these with respect to each of these n 
constants. From each of the equations (12.1) arise in this manner n 
equations, in all n systems of such equations each with n equations i.e. 
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n 2 equations, all of the form 

From the first equation = Xl is the following system: 

aXlaXl aX2aXl ÖXn aXl --+--+ ... +--=--
aal aXI aal aX2 Dal aXn dx' 
aXlaXI aX2aXI ÖXn aXI --+--+ ... +-----
aa2 aXI aa2 aX2 aa2 aXn - dx ' 
aXI aXI aX2aXI ÖXn aXI __ + __ + ... + __ = __ n. 

aan aXI aan aX2 aan aXn dx 

99 

Those from the rest of the equations (12.1) are the following systems: 

aXI aX2 aX2aX2 öXn aX2 ____ + ____ + ... + ____ = __ n. 

aan aXl aan aX2 äan aXn dx' 

and so on; finally 

aXI aXn aX2 aXn aXn aXn --+--+ ... +-----
aal aXI aal aX2 öal aXn - dx ' 
aXI aXn aX2 aXn aXn aXn --+ --+ ... + -- ---
aa2 aXI aa2 aX2 aa2 aXn - dx ' 

aXlaXn aX2aXn aXn aXn __ + __ + ... + __ = __ n. 

aan aXI aan aX2 öan aXn dx 

If one compares these systems with those stated in item 4 of the previ-
ous lecture for establishing the theorem on the variation of determinants, 
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then one finds that those go over into these with the following substitu-
tion: 

R 

X' 1 

äXI äX2 äXn 
äQI ,bI = äQI ' ... ,PI = äQI ; 

äXI äX2 äXn 
äQ2 ' b2 = äQ2'···' P2 = äQ2; 

äXn (n) _ äXn (n) _ äXn 
, X 2 .•. , X n - , 

äXI uX2 uXn 

d/dx 

Through this the total differential coefficient of log R with respect to 
x can be expressed in the remarkable form 

where 

dlog R äXI äX2 äXn ------+--+ ... +--
dx - äXI äX2 äXn ' 

R = ± äXI äX2 ... äXn . 
äQI äQ2 äQn 

(12.2) 

After a com plete integration of the system of equations (12.1) one finds R 
from the equation (12.2) through an integration over x. But there exist 
cases in wh ich the determinant R can be given before any integration, 
namely, when the sum + + ... + can be transformed with 

UXI uX2 UXn 

the help of the system (12.1) into a total differential coefficient in x, 
or, what is a still simpler Case, if Xl does not contain Xl, X 2 does not 
contain X2, etc. Then öX1 + ÖX 2 + ... + öXn = 0 so 

ÖXl ÖX2 axn ' 

d log R = 0 R = constant. 
dx ' 

The theorem contained in equation (12.2) has been established first 
by Liouville, and indeed in this form (Liouville Journal, Vol. 3, p. 348). 
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In another form, in which the arbitrary constants Q are replaced by 
independent variables x and these by functions f of the variables x, in 
one of my papers (Grelle Journal, vol. 28, p. 336).Liouville has not used 
any help from this theorem which it affords for integration. Before we 
go into this application, we shall give a somewhat general form to the 
result obtained, wherein we bring in an alteration which indeed appears 
very inessential, without which nevertheless, its applicability would be 
very much limited. 

If one writes the system (12.1) in the form of the proportion 

dx : dXI : dX2 : ... : dXn = 1 : Xl : X2'" : X n, 

multiplying the right hand side by an arbitrary quantity X one gets the 
form considered earlier: 

(12.3) 

if one replaces at the same time Xl, X 2 , . .. X n respectively by the quo-
tients 4"-, ... Through this change, equation (12.2) becomes, 

d log R ö( ) ö( "1 ) ö( ) ----=-- = --+--+ ... +--
dx ÖXI ÖX2 öXn 

= + öX2 + ... + ÖXn ) 
X ÖXI ÖX2 öXn 

_ öX +X2 öX + ... +Xn ÖX). 
X2 ÖXI ÖX2 öXn 

With the help of the equations 

dx' X 
dXn 
dx ' 

the subtracted term on the right hand side of this equation can be 
brought into the form 

(ÖX dXI + öX dX2 + ... + ÖX dxn) 
X ÖXI dx ÖX2 dx öXn dx 

or 

- -

If one inserts this into the expression for d R, then we get 

dlogR = + ÖX2 + ... + ÖXn) _ _ ÖX) 
dx X ÖXI ÖX2 öXn X dx ÖX' 
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or, 

dlog(XR) = (OX + oXI + oX2 + ... + OXn ). 
dx X OX OXI OX2 oXn 

(12.4) 

So if l (BX + BXl + BX 2 + ... + BXn ) can be transformed through x Bx BXl BX2 BXn 
the given system (12.3) into a total differential coefficient in x, or if 
BX + BX1 + BX2 + ... + BXn = 0 then one can determine R before any Bx BXl BX2 Bxn ' 
integration. In the latter case, we have 

where, as earlier 

XR = constant, R = constant 
X ' 

R = '""' ± OXI OX2 ... oXn . 
oaloa2 oan 

We now assurne that the system (12.1) is in fact of such a nature that R 
can be stated before carrying out any integration, and assurne that one 
has found n - 1 integrals, the nth still missing; then one can represent 
the n - 1 integral equations in the form 

X2 = cP2(X, Xl, a2, a3,···, an), 
X3 = cP3(X, Xl, a2, a3,···, an), 

and then remains the differential equation 

to be integrated, the integral of which leads to an equation of the form 

By comparison with the complete integration system above of the dif-
ferential equations (12.1), it follows from this that the function now 
denoted by cPI is the same as that which was denoted by !I above, and 
that the functions cP2, cP3,· .. ,cPn go over respectively into 12,13, ... ,in 
when one substitutes for Xl its value CPI. 

For distinguishing the differential coefficients of the quantities X2, 
X3, . .. Xn, in so far as we look upon them as functions of X, Xl, a2, 
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Q3 , ... , Qn, from the differential coefficients considered hitherto we en-
close them in brackets, 

where i and k can take values from 2 to n , inclusive. For k = 1. one has 

an equation which one can handle under the general formulation when 
one takes into account that 

= = ... = = o. (12.5) 

This gives accordingly the formula 

for from i = 2 to i = n and from k = 1 to k = n. Hence 

R = 

i.e., R is the determinant of the quantities 

If one denotes by R 1 and R2 the determinants into wh ich R goes over 
when one reduces the n quantitites in the second column to their first 
term, for Rl, and to their second term, for R2, then R as a linear 
homogeneous function of the former n quantities is equal to the sum of 
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Rl and R2. But R2 has the common factor and after one has taken 
this out, the quantities in the first and second columns coincide, i.e., 
according to §1 of the preceding lecture R2 is a vanishing determinant, 
and so R is equal to R l , i.e., R is unchanged if the quantities in the 
second column are reduced to their first terms. The same holds for the 
quantities in the third, fourth and nth columns, and this gives R as the 
determinant of the quantities 

8X1 
( 8X2 ), ( 8X3 ), (8Xn ) , 

8C\'l 
, 

8C\'l 8C\'l 8C\'l 

8Xl 
( 8X2 ), ( 8X3 ), (8xn ), 

8C\'2 
, 

8C\'2 8C\'2 8C\'2 

8Xl 
( 8X2 ), ( 8X3 ), ( 8xn ), 

8C\'3 
, 

8C\'3 8C\'3 8C\'3 

8Xl 
( 8X2) , ( 8X3 ), (8xn ). 

8C\'n 
, 

8C\'n 8C\'n 8C\'n 

If one now represents this determinant as a linear homogeneous function 
of the quantities in the first row, and takes into account that according 
to (12.4), all these with the exception of vanish, then we obtain 
R as the product of and i.e., the product of and the 

001 

determinant 

Q = " ± ( 8X2) ... (8xn ), 
L 8C\'2 äC\'3 8C\'n 

(12.6) 

whose elements are those which remain from the last scheme when one 
cancels the first horizontal and first vertical rows. One has, consequently, 

(12.7) 

This equation is of the highest importance. Since according to our 
assumption one can find Ra priori from the given system (12.3) without 
having to perform any integration. Further , Q is known in terms of the 
n -1 integrations al ready performed, therefore the equation (12.7) leads, 
as we then see, to the remaining nth integration, where one determines 
the integrating factor of the differential equaiton 
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in which X and Xl are expressed as functions of x and Xl. Let the 
complete integral of this equation be 

F(x, xd = ClI· (12.8) 

This gives, as solution for Xl, the same expression as what we designated 
above by 

The substitution of this expression for Xl makes (12.8) an identical equa-
tion; so one obtains, on differentiation with respect to ClI, 

or, since 

according to equation (12.7), 

If we denote by N the integrating factor of X dXI - X I dx, then we have 

-NXI = &F 
&x' 

and from the first of these equations, 

N _ 1 &F _ Q 
-X&xI-XR' (12.9) 

N = iR is then the integrating factor of the equation X dXI - X I dx = O. 
Then one has the following theorem: 

Theorem 12.1 If in the system of differential equations 

the expression 
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is a total differential of x, one knows n - 1 integrals of the system from 
which the variables X2, X3, ... ,Xn can be represented as functions of x, Xl 

and n - 1 arbitrary constants of integration through the equations 

X2 (/J2(x,xI,a2, ... ,an), 

X3 4J3(X, Xl, a2,···, an), ... , 
Xn 4Jn(X, Xl, a2,···, an), 

and there remains the only differential equation 

XdXI - Xdx = 0 

to be integrated, then 

N= !:L 
XR 

is an integrating factor of this differential equation, where 

and 
Q = '" ± OX2 . OX3 ... oXn . 

oa2 oa3 oan 

If {){)x + {){)Xl + ... + {){)xn = 0, then X R = constant, and in this case the x Xl X n 
determinant Q itself is the integrating factor of the differential equation 
XdXI - X 1dx = o. 

If one compares (12.4) of this lecture with (10.11) of Lecture 10, it is 
seen that the differential equation which - log X R satisfies, which is of 
n + 1 variables, is that which we found at that time (for a system of two 
differential equations of three variables) for log M. One can therefore 
set 

10gM = -logXR, 

or, 
M=_l_ 

XR' 
and then under the assumptions of the theorem first stated, M Q is the 
integrating factor of the last differential equation X dXI - Xl dx = 0, 
where M is determined from the equation 

xdlogM + oX + oXI + ... + oXn =0. 
dx OX OXI OXn 
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One can construct the above determillant Q in another way. The 
simplest representation is that in the form of a product. Namely, just 
as we eliminated the constant 0:1 from the variables X2, X3, . .. , X n by 
means of Xl, and then represent the determinant R as the product of 

and the determinant Q whose order is one less than the order of 
Q1 

R, so too one can furt her eliminate the constant 0:2 from the variables 
X3, X4, • .. , Xn, by means of X2 and then repr('sent Q as the product of 
fu and the determinant P = '"' ± . DX4 ••• One has to proceed OQ2 OQ3 OQ4 OQn 
in the following way; one eliminates the constant 0:3 from X4, X5,· .. , X n 
by means of X3; the constant 0:4 from X5, X6, . .. , X n by means of X4; and 
so on; so that one obtains the following representation for the integral 
equations: 

Xl = Fl(x, 0:1, 0:2, ... ,00n-l,O:n), 

X2 = F 2 (x, Xl, 0:2, 0:3,···, O:n-l, O:n), 

X3 = F 3 (x,Xl,X2,0:3,0:4, ... ,O:n-l,O:n), (F) 

then 

(12.10) 

where the expressions F I to Fn are to be substituted for the quantities Xl 

to Xn, and for the same mode of representation of the integral equations 
one has 

(12.11) 

The transformation employed he re consists of the following: If the n 
quantities Xl, X2, ... , X n are functions of n others, 0: I, 0:2, ... O:n, so that 

Xl = Il(0:1,0:2, ... ,O:n), 
X2 = 12(0:1,0:2, ... , O:n), 
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and one represents the quantities Xl, ... , X n in the following way through 
successive eliminations: 

Xl = FI(al, a2, a3,···, an-I, an), 
X2 = F2(xI,a2,a3, ... ,an-l,an ), 

(F.) X3 = F3(xI,x2,a3, ... ,an-l,an), 

then 

" ± oft . o!2 ... oin = oFI . oF2 ... oFn 
oal oa2 oan oal oa2 oan ' 

or, if we denote the differential coefficients of the quantities without 
brackets in the first representation and with brackets in the second, 
then 

,,±OXI. OX2 ... oXn = (OXI). (OX2) ... (Oxn). 
Dal oa2 oan oal oa2 oan 

The form (F) of the integral equations is just the one it takes for 
the case of a single differential equation of higher order by successive 
integrations. The successive integrations of the equation 

y(n+l) = i(y(n),y(n-I),y(n-2), ... ,y",y',y,x), 

give 

y(1l) = ft (an, y(n-l), y(n-2), .. . , y", y', y, x), 
(n-I) - f ( (n-2)",) y - 2 an,an-l,y , ... ,y ,y,y,x, 

y" = in-l(an ,an-I, ... ,a2,Y',y,x), 
y' = in(an,an-l, ... ,a2,al,y,x). 

If the present equation y(n+l) = i now belongs to the category for which 
the multiplier M can be determined apriori, then the integrating factor 
for the differential equation of the first order: 

y' = in, 

is MQ, where 
Q _ oYn OYn-1 oy" oy' 

- oan . oan-l ... oa2 . oal . 



Lecture 13 

Functional Determinants. Their application in 
setting up the Partial Differential Equation for 
the Multiplier 

Determinants of the form 

have been called functional determinants by me, "alternating differential 
functions" by Cauchy, who has given so me theorems on these in the 
'Comptes Rendus' of the Paris Academy. Functional determin'ants are 
built up from the n2 partial differential coefficients !!li.f)f) i of n functions 

Xk 
fl, 12,···, fn, each of which depends on n variables Xl, X2,"" X n· 

I have published an article in vol. 22 of Crelle's Journal on functional 
determinants in which the analogy which exists between functional de-
terminullts in problems with many variables and differential coeffficients 
in problems with one variable has been demonstrated. The theorems 
proved therein express this analogy as folIows: 

1. If f is a function of '{J and '{J a function of x, then = ff{p. 
To this corresponds the theorem for n variables: if h,···, fn 

are functions of '{Jl, '{J2, ... , '{Jn, and these are further functions of 
Xl, X2,' .. ,Xn , then 
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2. This can also be expressed in another form: if fand 'P are functions 
of x, then 

df 
d'P 

!!:i 
dx 

dx 

To this one has the analogous theorem for n variables: if 
JI, 12,···, fn and 'Pr, 'P2,· · ·, 'Pn are functions of Xl, X2,···, Xn , 
then 

and therefore, when one sets JI = Xl, 12 = X2, ... , fn = Xn, 

3. From the equation II(x, y) = 0 one obtains 

dy 
dx 

To this one has the analogous theorem; from the is equations be-
tween 2n variables: 

III(YI, ... , Yn, Xl,"" Xn ) = 0, 
II2(YI, ... ,Yn,XI, .. · ,Xn) = 0, 

one has 

4. In order that the equation F(x) = 0 has two equal roots we must 
have F'(x) = O. To this the following is the analogy.ln order that 
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the equations 

FI(XI, ... , Xn) = 0, 
F2(XI, ... , Xn) = 0, 

have two coincident systems of roots, one must have at the same 
time 

5. If for all values of x, the differential coefficient vanishes, it 
follows that F = constant. To this one has the analogy.lf 

L ± 8FI '" 8Fn = ° 
8XI 8xn 

fo1' alt values of Xl, ... ,Xn , the1'e must exist between the n functions 
F I , ... ,Fn an equation 

in which the variables .TI, X2 . ... ,Xn do not enter explicitly. This 
gives in fact, for n = 1, 7r(F) = 0, so F = constant, as it should 
be. 

To these examples of the analogies many others can be added. These 
can be found partly in the article referred 1,0, and partly in "de bi-
nis quibuslibet functionibus homongeneis etc.'" published in vol. 12 of 
C1'elte's Journal. 

Since we proceed from the considerations of functional determinants, 
we are led 1,0 formulate the theory of multipliers of a system of differential 
equations in the general case of n variables in a manner different from 
that given in Lecture 12, namely, in the same way in which we handled 
the case of three variables in Lecture 10. 

Let the system 

dx : dXI : ... : dXn = X: Xl : ... : X n 

be integrated through the equations 
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where 0'1,0'2, ... , an denote arbitrary constants. The direct differentials 
of these are 

8fn 8fn 8fn -dx + -dX1 + ... + --dxn = 0, 
8x 8X1 8xn 

which must be identical with the given system, since the arbitrary con-
stants vanish on differentiation. If one adds to these n equations, linear 
with respect to dx, dX1,'" ,dxn, the identity 

8f 8f 8f 
-dx + -dX1 + ... + -dxn = df 
8x 8X1 8xn 

as the n + lth, where f denotes an arbitrary function of x, Xl, . .. , Xn, 
and applies to these n + 1 equations the method of solution for linear 
equations given in item 3 of Lecture 11, then this gives the values 

R dx = A df, R dX1 = Al df, ... , R dXn = An df 

for dx, dX1, ... , dxn, where 

8f 8ft 8fn 8f 8f 8f 
R= L±---"'- =A-+A1-+···+An-8x 8X1 8xn 8x 8X1 8xn ' 

8R 8R 8R 
A = 8 1ll ' Al = !!.L' ... , An = !!.L' 

8x 8 8x1 8 8xn 

This determination of the quantities A, Al, ... ,An from the expan-
sion of R in partial differential coefficients of f is precisely what will 
serve us in the sequel. Still it is of interest, namely, to follow the anal-
ogy with the case of three variables given in Lecture 10, to derive the 
quantities A in another way, without help from R. First, 

From A one obtains Al, following item 2 of Lecture 11, if one exchanges 
the differentiation with respect to X with Xl and changes the sign. One 
permutes cyclically the differentiations in all the n + 1 variables: in place 
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of those taken in x, Xl, ... ,Xn replace respectively those in Xl, ... ,Xn , X, 
and then alter the sign or preserve it according as the number n + 1 
of variables is even or odd; then A changes to Al. The last rule has 
the advantage that through simple repetition of the same operation Al 
changes to A 2 , A 2 to A 3 and so on. 

When one eliminates df from the values obtained for dx, dXI, ... , 
dxn , this gives 

dx : dXI : ... : dXn = A : Al : ... : An, 

which must agree with the given system 

dx : dXI : ... : dXn = X : Xl : ... : X n. 

Therefore, the proportion 

A : Al : ... : An = X : Xl : ... : X n 

must hold, Le., there must exist a multiplier M of the form 

Now it comes to extending the identical equation satisfied by A proven 
for n = 2 in Lecture 10, to the general case, that is, to prove that the 
equation 

öA ÖAI öAn -+-+ .. ·+-=0 
ÖX ÖXI öXn 

is satisfied. If one takes into account the structure of the quantities A, 
Al, ... , An, one sees easily that on the left side of this equation only 
the first and second differential coefficients of the quantities h, ... , f n 
can occur, and the latter indeed only linearly, i.e., never as a product 
of two differential coefficients of the second order. Furt her , as in A 
no differentiation with respect to X occur, in Al none with respect to 
Xl ,etc., in An none with respect to Xn , the second differential coefficients 
which occur in the expression i!,A + i!,A1 + ... + i!,An cannot be of the 

uX UXl UXn 

form , but can only be of the form Cl 82ls where i and kare distinct. 
UX i uX,UXk 

One can then represent the expression L under consideration as a 
sum of terms of the form 
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The values of are found with the help of the formulae 

and indeed for that, only the two differential coefficients and aaAk are x, Xk 
to be investigated, since manifestly does not occur in the remain-
ing. Now, since the quantities Ai and Ak are themselves determinants, 
they can be represented in the following way: 

Ai = ÖAi öh + ÖAi ö12 + ... + ÖAi öis + ... + öAi öin 
ö!!..i.l ÖXk ö!!.h ÖXk ö!2h.. ÖXk ÖXk ' aXk aXk aXk äXk 

Ak = öAk öh + öAk ö12 + ... + öAk öis + ... + öAk öin 
öf!h. ÖXi ö!!.h ÖXj ö a!. Ö.'"Ci ö/lb. ÖXi' ax, ax, ax, aXi 

From this one obtains the two terms multiplied by as contribution 
to the expression L under consideration. One of these arises from 
Q.& and is ax, 

öAi ö2 is 
äQb. äXiäxk ' aXk 

and the other arises from °a' A k and is Xk 

consequently, 

The formula, contained in item 2 of Lecture 11: 

ö2 R ö2 R ö2 R ö2 R --- = - or + = 0 
öaiöbk öaköbi ' öaiöbk öaköbi 

gives in the present case 
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therefüre = O. In this way, the identity 

äA äAI äAn -+-+···+-=0 äx äXI äXn 

is proved in general. But we have 

A = MX,AI = MXI, ... ,An = MXn ; 

this gives 
ä(MX) ä(MXr) ä(MXn ) 

ä + ä + ... + ä = 0, X Xl Xn 

which is the partial differential equatiün für the multiplier M. 



Lecture 14 

The Second Form of the Equation Defining the 
Multiplier. The Multipliers of Step Wise 
Reduced Differential Equations. The Multiplier 
by the U se of Particular Integrals 

We ean now proeeed to the furt her investigation for n + 1 variables in 
the same way as for three variables in Leeture 10. When we expand the 
partial differential equation for the multiplier M, we get 

öM öM öM {ÖX öXl ÖXn } X-+Xl-+··+Xn-+ -+-+ .. +- M=O. (14.1) öx ÖXl öXn ÖX ÖXl öXn 

This differential equation will also be satisfied by another quantity N if 
one has also 

X-+Xl-+···+Xn-+ -+--+ ... +-- N=O öN öN öN {ÖX öXl ÖXn } 
öx ÖXl öXn ÖX ÖXl öXn 

If we multiply the seeond equation by ir, the first by -lb and subtraet 
one from the other, then we have 

or, 
Xö(N/M) X ö(N/M) ... X ö(N/M) - 0 

Ö +lÖ + +n ö -x Xl X n 

Le., Z. is a solution of the equation 

öf öf öf 
X-+Xl-+···+Xn-=O. ÖX ÖXl öXn 

(14.2) 
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For the complete integration of such an equation, the knowledge of 
n mutually independent solutions /I, 12,.··, fn is necessary, i.e., of n 
functions /I, 12 ... , fn which satisfy the equations 

8fn 8fn 8fn 
X-+Xl-+",+Xn-=ü, 8x 8Xl 8xn 

without one of the n functions being a function of the rest. If one knows 
n such functions, the general solution is 

One proves this by multiplying the n equations above by gJ:, ... , g;:. 
respectively and adding. An (n + l)th solution fn+l which does not 
depend on the other n solutions does not exist. If we ass urne that one 
such existed, then it would follow from the argument just applied that 
any function 

of these n + 1 solutions would again be a solution. Since, however, 
/I,12 ... , fn+l have been taken to be independent of one another, one 
can introduce them as new variables x, Xl, ... , X n , and then an arbitrary 
function of /I, 12, ... , fn, fn+l is the same as an arbitrary function of 
X, Xl, ... , X n . The differential equation in quest ion for f will then be 
satisfied by any arbitrary function of X, Xl, ... , X n , which is impossible. 
So there can exist only n mutually independent solutions /I, 12···, fn. 

These n solutions of the partial differential equation (14.2) have the 
property that they will be constants because of the integral equations of 
the system of ordinary differential equations, 

dx : dXl : ... : Xn = X : Xl : ... : X n (14.3) 

For, these integral equations make the quantities X, Xl, ... ,Xn propor-
tional to the differentials dx, dXl, ... , dxn , one can replace, in the partial 
differential equations satisfied by any function f, that is, in the equation 
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the quantities X, Xl, ... ,Xn by the differentials dx, dXl, ... ,dxn pro-
portional to them, and obtain 

or 
dii = 0. 

and therefore ii = constant. 
If we accept that the Jr, 12 ... , in must be equal to n mutually inde-

pendent arbitrary constants, (}:l, (}:2 •.. ,(}:n, we obtain the most general 
integral of the differential equations (14.3) possible, and therefore 

constitute a complete system, solved for arbitrary constants, of integrals 
of the differential equation. Conversely, if the complete integration of 
the differential equations (14.3) is carried out by n equations with n 
mutually independent arbitrary constants, i.e., by n equations of such 
a nature that it is impossible to get from them a result free of all the 
neonstants obtained by their elimination, and the solution of these n 
equations aecording to the eonstants gives them the values 

then one obtains through a differentiation 

Sinee, however, Jr = (}:l, 12 = (}:2,···, in = (}:n form a complete sys-
tem of integrals of the differential equation (14.3), the differentials dx, 
dXl, ... , dXn are proportional to the quantities X, Xl, ... , X n , so that, 

X ofi + Xl Oii + ... + X n ofi = 0, 
OX OXI OXn 

i.e., Jr, ... , in are solutions of (14.3). 
Therefore it is eompletely the same, whether one says that 

Jr, 12,·· ., in are mutually independent solutions of the partial differ-
ential (14.2), or one says that Jr = (}:l,12 = (}:2,···, in = (}:n form a 
eomplete system of integrals of the differential equations (14.3). Now 
we have seen that 
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are the most general solutions uf equation (14.2). Further Zr satisfies 
just this equation. Hence it follows that if M is a definite solution of the 
equation (14.1) and N any other solution, then Zr must be a function 
of h, 12·.·, In. This gives 

N = MF(h,12,··· ,In); 

if M is a multiplier, then 

MF(h,12,···,In) 

is the general form in which all multipliers are included. Through the in-
tegral equations of the system (14.3), however, we get h = (}:" ... , In = 
(}:n; by use of the integral equations then the general form differs from 
M only through a constant factor. To avoid confusion we shall denote 
adefinite value of the multiplier M by Mo, the general value by M, 
furt her the function of h, 12, ... , In by which Mo must be multiplied tö 
give M by so that M = Then one can write the equations 
given at the end of the previous lecture: 

thus: 
(14.4) 

The partial differential equation (14.1) found for M can be trans-
formed with the help of the differential equations (14.3). Thc equation 

DM 8M 8M (8X 8X1 8Xn ) X-+Xl-+···+Xn-+M -+--+ ... +-- =0, 
8x 8Xl 8xn 8x 8Xl 8xn 

or, what is the same 

taking into account (14.3), changes to 
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or, to 

xdlogM 
dx 

oX oXI oXn + -+-+ .. ·+-=0. 
OX OXI oXn 

(14.5) 

Since the differential equations (14.3) holds for x, Xl, ... , X n , this equa-
tion is completely identical with equation (14.1). Using (14.3) one can 
go over from (14.1) to (14.5) and the other way around. 

The multiplier M can often be determined from the equation (14.5). 
If '{x + '{Xl + ... + '{xn = 0, then one finds M = constant. In other 

uX UXl UXn 

cases, by virtue of the differential equations (14.3), the expression 

can be transformed into a total differential in X, a transformation which 
indeed frequently requires complex analytic devices. If one such is pos-
sible, then one obtains M from (14.5). 

Now, if one has found in some way, a value Mo of the multiplier, 
it can be used for the integration of the system (14.3). For, by means 
of Mo, one can give the integrating factor of that differential equation 
which remains to be integrated after finding n - 1 integrals. From the 
first equation (14.4), one has 

MoX=Aw, 

where wis a function of the n solutions of the partial differential equation 
(14.2), or, as has been proved, a function of n integrals of the system 
(14.3). If we now assurne that one knows n-l of these integrals, namely, 
12,13, ... , in, so that only JI remains to be found, then we introduce in 
place of n - 1 of the independent variables, namely, X2, X3, . .. ,Xn , the 
quantities 12,13, ... , in, and express everything through x, 12, 13,···, in. 
We investigate what changes are thereby brought about in the determi-
nant 

A= ",,±oJI ... oin. 
OXI OXn 

If we write this as a linear function of the partial derivatives of JI: 
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then, according to the fundamental property of determinants, the fol-
lowing equations hold: 

If we now assume 12, /3, ... , fn introduced for X2, X3,··., Xn , so that !I 
is expressed in the form 

and enclose the differential coefficients of !I formed under this hypothesis 
in brackets, then 

and, the earlier equation 

A = (Ö!I)B Ö l, 
Xl 

with 
B1 = '"' ± öh ö/3 ... Öfn. 

ÖX2 ÖX3 ÖXn 

If one substitutes this value of A in the equation 

MoX = Aw, 

then one obtains 
(14.6) 
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Now, since h, which is sought, is an integral of the differential equation 
still remaining: 

X dXl - Xl dx = 0, 

in which the variables X2, X3, . .. ,Xn have been eliminated by means of 
the known n - 1 integrals, so by determining the integrating factor, this 
differential equation must change to 

dh = 0, 

or, 

( äh) äh 8Xl dXl + 8x dx = 0; 

consequently, the integrating factor sought is 

or, according to (14.6), 

Le., one has, identically, 

or, 

(äh ) 
X 8Xl ' 

Mo 
Blw; 

(X dXl - Xl dx) = wdh. 

Here w is an arbitrary function of h, 12, ... ,fn. Meanwhile, with the 
help of the n-l integrals found, 12,13, ... , fn will be equal to constants; 
then w will be a function merely of fl and, moreover, w dh will itself be 
a total differential, just as dh. One can therefore omit w in the divisor 
and obtain *" as the multiplier of the differential equation 

With this we are led to the following theorem: 

Theorem 14.1 Let the system of differential equations 

dx : dXl : dX2 : ... : dXn = X : Xl : X2 : ••. : X n 



Lectures in Dynamics 123 

be given, of which we know n - 1 integrals: 

further one knows a solution M of the differential equation 

xdlogM + aX + aXI + ... + aXn = 0; 
ddx ax aXI aXn 

if by virtue of the preceeding n - 1 integrals, the given system of differ-
ential equations is reduced to a first order differential equation 

X dXI - X I dx = 0, 

of two variables, then its integrating factor is 

M 

This is the same theorem as was given in Lecture 12. There we found 
for the multiplier the expression 

M "" ± aX2 a X3 ... axn . 
aa2 aa3 aan ' 

since, however, 12 = a2, h = a3,"" fn = an, one has, according to 
theorem as functional determinants introduced in Lecture 13, p.ll1, 

"" ± aX2 aX3 ... aXn _ 1 
aa2 aa3 aan - "" ± Bh {!h ... Qb.. , 

U BX2 BX3 BXn 

so that both multipliers are identical. 
The name 'multipliers' belonging to the system of differential equa-

tions (14.3) which we give to the quantity M defined by the equation 
(14.1) or (14.5) commends itself because they coincide with Euler's mul-
tipliers or integrating factors for the case of two variables x and Xl 

Till now we have shown that if the system can be reduced to a differ-
ential equation of two variables through n - 1 integrals, the multiplier of 
this differential equation can be derived from the multiplier of the sys-
tem. But this is only a special case of a more general theorem. Namely, 
if one does not know n - 1 integrals, but only a smaller number, say 
n - k, so that one can reduce the given system of n + 1 variables to 
a system of k + 1 variables, then, as we have in fact seen, the multi-
plier of the reduced system can be determined from the multiplier of 
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the given system. This generalisation will allow us to discuss a quest ion 
concerning multipliers as yet remaining untouched. We have assumed 
up to now that with every integration of the given system of differential 
equations a new arbitrary constant occurs. It is, however, necessary to 
answer the question, whether and in what way the method of last mul-
tiplier can be extended to the case in which the arbitrary constants take 
special values, and in wh ich therefore one cannot arrive at the complete 
integration of the given system of differential equations. In order to see 
how from the multipliers of a given system one can find the multiplier 
of the system reduced to any order, we proceed stepwise. We first take 
an integral equation in = an as given, whereby the order of the system 
can be reduced by one unit, and seek the multiplier of the system so 
reduced. 

For the given system 

dx : dXI : ... : dXn = X : Xl : ... : X n , (14.7) 

the multiplier M is defined through the equation (14.1) or (14.5). If we 
however take all integrals of the system as known, then the solution of a 
differential equation is no more necessary and one can find M directly, 
indeed from any of the equations 

where 

A 

and so on, and w is a function of JI, 12 ... , in. If we consider the first of 
the these equations, then 

If one assurnes that the integral in = an has been found, and that Xn 
occurs in it, then Xn can be represented through in and the remain-
ing variables x; if this expression for Xn is substituted in JI, ... , in-I, 
then these quantities are functions of Xl, X2, ... , Xn-l and in. Enclosing 
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within brackets the differential coefficients formed under this hypothesis, 
one obtains the following values for the elements of the determinant A: 

+ 

+ 

) + 

As shown on Lecture 12, page 105, one can omit here those terms of the 
first n - 1 columns which are proportional to the elements of the last 
column; thereby the first n - 1 elements of the last row now vanish, so 
that '/JE- will be a factor of the determinant, and one obtains therefore UX n 

- 8fn" (8ft) (8fn-l) MX L± ... -!)-- , 

uXn UXI UXn-1 

or since fn = an, 

-( 8fn" (8 ft ) (8fn-l) MX =w ft,h, .. L..t± ... -!)- • (14.8) 
uXn UXI UXn-1 

Now, by virtue ofthe integral fn = an, Xn and dXn have been eliminated 
from the given system (14.3), and one is thereby led to the reduced 
system 

dx : dXI : ... : dXn-1 = X : Xl : ... : X n- l . (14.9) 

If J1 is a multiplier of this system, one has for its determination the 
equation 
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where F is an arbitrary function of h, 12, .. . ,fn-l. A value of J-L cor-
responds to the choice F = w(h, 12, . .. ,fn-l, Q:n), which is determined 
by the equation 

From this last and (14.8) one obtains through division 

MI = Bfn J-L ;:} ,or J-L = ä In . UXn 
äXn 

M 

This expression is then the multiplier of the system (14.9). 
One can proceed furt her in the same way. If one knows an inte-

gral fn-l = Q:n-l of the system (14.9), and reduces it thereby to the 
following: 

dx : dXI : ... : dXn -2 = X : Xl : ... : X n - 2 , 

where Xn-l is eliminated, then the multiplier of this system is 

M 

If through a new integral fn-l = Q:n-l one eliminates the variable Xn -2, 
then one obtains as multiplier of the resulting system the expression 

M 

where the brackets signify that fn-l to be expressed through fn and 
Xl, X2,· .. ,Xn-l and fn-2 through fn, fn-l and Xl, X2, . .. , Xn -2. If one 
proceeds thus, one comes finally to the differential equation 

or 

whose multiplier is 
M 
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where the differentiations are to be so understood that the functions 
in, i n-l, ... ,12 have been taken as expressed in the form 

in = 'Pn(X,XI,X2,X3,'" ,Xn-2,Xn-I,Xn), 
in-l = 'Pn-I(X, Xl, X2, X3,···, Xn-2, Xn-l, in), 
in-2 = 'Pn-2(X, Xl, X2, X3, ' .. ,Xn-2, in-I, in), 

In this step by step reduction, the integral equation appearing each time 
is used to eliminate one variable. The first integral in = an for example, 
is used to express Xn through x, Xl, ... ,Xn-l alld an and to substitute 
the resulting values in X, Xl, ... , X n - l . Here we have so far looked upon 
an as an arbitrary constant; however, it is easy to see that nothing is 
changed in this reasoning if one sets for an adefinite value an. Only, in 
this case the reduced system is no longer equivalent to the given one, but 
corresponds only to the speical case in which in the integral equation 
in = an, the arbitrary constant has the special value an. Although in 
the course of the integration one gives the arbitrary constant an a special 
value and thereby may introduce a special integral of the given system 
in the calculation, still one must know the complete integral in = an, 
because the knowledge of in is necessary for the determination of the 
multiplier f-L from M. It would then not suffice to know a particular 
integral Xn = if>(x, Xl, ... , xn-d without arbitrary constant, but one 
must know how the particular integral is arrived at from the complete 
integral, and what value one has given the arbitrary constant. Herein 
lies an extension of the principle of the last multiplier, which may be 
expressed in the following way: 

Given the system oi differential equations 

let an integral of the same with an arbitrary constant be known and 
brought to the form in = an = constant. One gives the constant any 
particular value an whatever and solves in = an ior Xn and inserts its 
value thus obtained in X, Xl, . .. , X n- l . From this one obtains the first 
reduced system of differential equations 

dx: dXI : .. ·dXn-1 = X: Xl:" ·Xn- l , 
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which, however, has no more the generality of the given system, but 
represents only the case an = an. Further, for the first reduced system 
of differential equations let an integml with an arbitrary constant be 
known and brought to the form fn-l = an-l = constant. One gives the 
constant an-l the special value an-l and solves fn-l = an-l for Xn-l 
and inserts this value thus obtained in the quantities X , X I, . .. , X n- l , 
so that this gives the second reduced system of differential equations 

dx: dXI : .. ·dXn-2 = X: Xl:·· ·Xn- 2 ; 

and one proceeds in this way until one comes to the differential equation 

then the multiplier of the last differential equation is 

M 

Here, however, fn, fn-l, ... , h are no more n - 1 integrals of the given 
system, but only fn = an is one such; fn-l = an-l is an integral of 
the first reduced system, which represents the special case an = an 
of the given system; fn-2 = Ctn -2 is an integral of the second reduced 
system which represents the special case Ctn-l = an-l ofthe first reduced 
system, and so on. 

With this the scope which can be given to the principle of last mul-
tiplier is exhausted. We now go to its applications. 



Lecture 15 

The Multiplier for Systems of Differential 
Equations with Higher Differential Coefficients. 
Applications to a System of Mass Points 
Without Constraints 

All our eonsiderations up to now eoneerned systems of differential equa-
tions with only first order differential eoefficients. One ean look upon 
systems of this sort as a special ease of those in which differential co-
efficients of arbitrary order occur. But also, conversely, one can, by 
increasing the number of variables, reduce a system with higher order 
differential coefficients to the form of a system containing only first order 
differential coefficients, so that each becomes a special case of the other. 
We shall first concern ourselves with this reduction of an arbitrary sys-
tem into another in which only differential coefficients of the first order 
occur. Let there be a system of i differential equations of i + 1 variables 
t, x, y, z, ... ; of which t is looked upon as the independent and x, y, z, ... 
as the dependent variables. Let the highest differential coefficients which 
occur in these differential equations be mth in x, nth in y, pth in z, etc. 
If we further assume that we can solve for these highest differential co-
efficients, so that the differential equations take the following form: 

(15.1) 

where the highest differential eoefficients of x, y, Z etc. which occur in 
A, B, C, ... are of the (m - 1)th, (n - 1)th, (p - 1)th order, then this is 
the canonical form of the differential equations that are to be studied. 
Any given system cannot always directly be reduced to this canonical 
form (15.1); for example, this will not go through if in one of the differ-

t · 1 t' h h' h t d·a t' 1 ffi' t dffix dPz d en la equa IOns teIg es lueren la coe elen s dtffi' dtn , dtP , . •• 0 

not occur. One must then add the differentiation for elimination. For 
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example, sllppose in the eqllation llnder consideration the highest differ-
. 1 ffi' dm-/J.x dn-vy dP- rr Z d'f < < h entla coe Clents are dtm-/J.' dtn - v , dtp-rr , ... , an 1 f-l _ v _ 7r' .. ,t en 

one differentiates f-l times with respect to t and llses the eqllation so ob-
tained for eliminating from the remaining eqllations. If, among the 
eqllations arising from this eliminaton, there is again one in which none 
of the highest differential coefficients of y, z, . .. ,occur, one has to differ-
entiate these anew, and so on. This consideration sllffices to show that 
the redllction to the canonical form is possible in every case, but at the 
moment there is no general method for this reduction. To prove one such 
wOllld be a very fine exercise l ; it is the same as the problem of determin-
ing the nllmber of arbitrary constants which arise in the integration of a 
given system of differential equations. This nllmber arises directly from 
the canonical form, it is m + n + p + .... The problem of determining 
the degree of the eliminating eqllation for a given system of algebraic 
eqllations has therefore a certain similarity with the problem in qllestion. 

A special case of the canonical form is that in which one eliminates all 
the variables y, Z, . .. except two, t and x, and arranges them according 
to the order of the differential coefficient of x with respect to t. This 
elimination is, however, llnnecessary for our consideration; we need only, 
as was remarked, to aSSllme the differential eqllations redllced to the 
form (15.1), where the highest differential coefficients in A, B, C, ... are 
the (m - l)th in x, (n - l)th in y, (p - l)th in Z, .... 

This assllmed, we shall introduce m + n + p + .. , - i new variables, 
namely, 

d d ' d(m-2) 
, _ "_ (m-I) _ X 

X - dt' x - dt"'" x - dt ' 

, _ dy "_ dy' (n-I) _ d(n-2)y 
y - dt' y - di' ... , y - dt ' (15.2) 

, _ dz "_ dz' (p-l) _ d(p-2) z 
z - dt' z - di' ... , z dt 

1 Jacobi himself has solved this problem; one finds indication of this in his essay on 
the multiplier (Grelles Journal, vol. XXIX, p. 369) where a further paper concerned 
with this problem expected later is referred to. Of the two statements on the present 
problem found in the supplement was one contained in the first edition of these Lec-
tures, which contains a complete exposition of the results, the other, which contains 
the proof, one finds in volume 64 of the Mathematical Journal (de investigande or-
derie the de investigando ordine systematis acquationum differentialum valgarium 
cujuseunque). Both articles now find their place in Volume 5. (Publisher's note) 
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One can then represent these equations along with the equations (15.1) 
as the following system 

{ 
dt : dx : dx' : .. . : dx( m-I) } {I : x' : x" : ... : A} 

: dy : dy' : ... : dy(n-I) : y' : y" : ... : B 
:dz:dz':···:dz(p-l) = :z':z":···:C . 

... . . . 
(15.3) 

If one applies the general theory to this system, then one obtains the 
differential equation for the multiplier: 

0= dlogM + oA + oB + oC + ... 
dt ox(m-I) oy(n-I) OZ(p-l) (15.4) 

One can then give M in all cases in which the sum 

oA oB OC ------,,.------::-;- + + + . . . ox(m-I) oy(n-I) oz(p-I) 

is a total differential coefficient. If, for example, 

oA oB oC 
------,---c- + + + . . . = ° ox(m-I) oy(n-I) oz(p-I) 

which namely is the case when A contains no B no C no 
dp - 1 
dtP-f, and so on, then one has 

M = a constant 

and then according to our theory, when one has reduced the differential 
equations (15.1) to a first order differential equation of two variables,one 
can give its integrating factor. 

This consideration would not be of very great interest if no such case 
occurred in practice. However, it does. Namely, so long as the motion 
of a free system of mass points depends solelyon their configuration, so 
that the resistance of the medium does not come into consideration, the 
differential equations of motion are 

(15.5) 

where Xi,}i, Zi contain no first differential coefficients; therefore one 
has 

o}i 
O ' = 0, 

Yi 
OZi = ° 
O ' , z· t 
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so 
dlogM __ 0 

dt ' 
M = constant, 

and the principle of last multiplier is applicable. However, as we shall 
conclude later, its application finds itself also in a system bound by 
constraints. 

A special case that merits consideration is the one in which the quan-
tities A, B, C in the canonical form of the differential equations 

dPz 
-=A dtP , (15.6) 

do not depend on t. In this case one can eliminate t entirely, and indeed 
very simply by leaving out in the differential equations (15.3), dt on 
the left hand side and the corresponding term 1 on the right hand side. 
One obtains in this way a system whose order is one ullit less,that is, 
equal to m + n + p + ... - 1. If one has integrated this system and 
thereby expressed all variables, and therefore also x', by one variable, 
for example x, then t is obtained, as already mentioned earlier, from the 
differential equation 

Then one has 

dx - x' dt = O. 

dx 
dt = -" x JdX 

t= 7+C. 
So one finds t through a simple quadrature. 

If now we have a multiplier M which is independent of t (here belongs 
the case in which + &yf!l) + &z1:?-1) + ... = 0, therefore M = 
constant), then this value of M gives the last multiplier of the system 
of order m + n + p + ... - 1, from which t has been eliminated. One 
can then carry out both the last integrations. On the other hand, if one 
has only one value of M which contains t, then one has no use for the 
(m + n + p + ... - l)th integration but only for the (m + n + p + ... )th, 
which leads to the value of t and is already reduced to a quadrat ure. 
And indeed this use lies in that one can save one quadrat ure and can 
determine t by solving an equation. In fact, according to the first of the 
equations (14.4) of the preceeding lecture, we have, for the multiplier M 
of the system of order n holding between the variables x, Xl, X2, ... , Xn 

and denoted there by (14.3), the formula 

MX=WL±8h 812 ... 8f n , 
8X18x2 8xn 

(15.7) 
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where h = al, 12 = a2, ... , fn = an represent the integrals of the 
former system and;:;; is a function of h , 12, . . . , fn, i.e., since these quan-
tities become constant through the integrals of the system, represents a 
constant. This we shall apply to system (15.6) . If 

are integrals of the reduced system obtained from (15.6) on elimination 
of t, and if 

f = t - J = constant 

is the last integral (15.6) leading to the value of t, then one obtains 
from the formula (15.7), in wh ich t, x, x', ... ,x(m-l), y, y' , . .. ,y(n-l), 
Z, z', . .. , z(p-l) , ... have been inserted in place of x, Xl, ... , xn and at 
the same time 1 in place of X , the formula 

M = ;:;;" ± af ah ah ... afm-l afm ... 
ax ax' ax" ax(m-l) ay 

afm+n-lafm+n afm+n+p-l 
ay(n-l) az az(p-l) 

for the multiplier M of the system (15.6). However, f = t - f where 
x' is a given function of x and therefore 

af 1 af af af 
ax = - x" ax' = 0, ax" = 0, . .. , a z(p-l) = 0, etc. 

and with this, 

1 L ah ah afm+n+p-l M = - constant- ±--_... . . . . 
x' ax' ax" az(p-l) 

The right side of this equation is also a multiplier of the system of order 
(m + n + p + ... - 1) , which is independent of t ; so (15.7) gives for the 
multiplier of this system, which will be denoted by /-L , the formula 

, " ah ah afm+n+p-l /-LX = constant "... (1)· .. , 
uX uX az p-

where /-L is an expression independent of t, as is self-evident. We then 
have 

M = constant /-L, 
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and since M depends on t by assumption, t is obtained by solving this 
equation. Meanwhile we know, by virtue of the determination of t, 
already known: 

t = J dx + constant, x' 
that the constant must be additively related to t; since the relation of 
t to the constant also goes over for the above equation for M, M must 
be of the form 

where N is independent of t. Then one obtains using logarithms 

mt = log + log constant. 

If A, B, C, .. . do not depend on t, then M, if it also does not depend on 
t, gives the last but one integration. On the other hand, if M depends on 
t, one can then avoid the quadrat ure using the knowledge of M, which 
would otherwise be necessary for the determination of t. 

To the first case belong the differential equations (15.5)that hold for 
the motion of a system of n mass points, since the unknown value M = 
constant of the multiplier of these is independent of t. The differential 
equations (15.5) from a system of order 6n which, according to our 
method, is represented through 6n + 1 variables Xi, Yi, Zi, Z:, and 
t. If one knows 6n - 2 = v integrals that do not depend on t, 

of this system, one can then express all the dependent variables through 
two, say Xl and Yl, between which holds the first order differential equa-
tion, yet to be integrated: 

So the integrating factor R of the last equation can be given. If one 
denotes the remaining 6n - 2 = v variables Xi, Yi, Y:, Zi, Z: of the 6n 
except Xl and Yl by Pl,P2,··· ,Pv, then 

where it is assumed that for the variables PI, ... ,Pv, the values given by 
the integrals h = 0:1, h = 0:2,"" Iv = O:v have been substituted. If the 
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given LI integral equations are solved neither for the variables PI, ... ,Pv 
nor for the arbitrary constants 0:1,0:2, ... , O:v, and they are denoted by 

W1 = 0, W2 = 0, ... ,Wv = 0, 

then according to the theorem on functional determinants stated in Lec-
ture 13, one obtains for the integrating factor R, the fraction 

With the assumption made above that the integral equations are solved 
for the arbitrary constants, one has to set Wi = fi - O:i; then the nu-
merator of the fraction reduces to 1 and the integrating factor would 
be 

R- 1 
- "± Qb.?!h. ... f!.k . 

D 8P18p2 8pv 

A comprehensive case in which the determinant formed by the numer-
ator of the above fraction is significantly simplified is that in which W1 
contains only 0:1, W2 only 0:1 and 0:2 etc. and in general Wi depends only 
on 0:1, 0:2, ... , O:i; then the determinant 

reduces to the form 
ÖW1 ÖW2 öWv 
öa1 Ö0:2 ... öO:v . 

Naturally, this form of the integral equations can always be realized 
through successive elimination. The analogous case for the denominator 
is the one in which W1 contains only PI of all the variables PI,··· ,Pv, W2 
only PI and P2 etc., Wi only PI, P2, ... ,Pi. Then the determinant 

reduces to the only term 

ÖW1 ßW2 ßwv 
ÖP1 ßP2 ... ßpv . 

If we do not know LI complete integrals but only LI special ones, i.e., 
those in which the constants 0:1,0:2, ... ,O:v are given special values, then 
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we can very weH build the determinant in the denominator of R, but not 
the one in the numerator of R, and so for this purpose it is necessary 
to know under what form the constants enter in the integrals. However, 
if it is stipulated, without the arbitrary constants being assigned spe-
cial values, that in W1 only 01, in W2 only 01, 02 and so on, in Wi only 
01,02, ... ,Oi come in, then we need only to know the form in which 
01 comes in W1, 02 in W2, . .. , 0i in Wi, . .. , Ov in wv , in order to know 
how to build the determinant in the numerator of R. We do not on the 
contrary need to know hOWW2 depends on 01, W3 on 01 and 02, ... , Wi 
on 01,02, ... , Oi-1, for, as we have seen, the entire determinant reduces 
to aaW1 ... aaw". This case occurs in the integration of an ordinary dif-al a2 a" 
ferential equation of higher order, if it is assumed that one can carry out 
the integration completely, but then to integrate furt her , the arbitrary 
constant must be given a special value. 



Lecture 16 

Examples of the Search for Multipliers. 
Attraction of a Point by a Fixed Centre 
Resisting Medium and in Empty Space 

. In a 

In order to show the applicability of the theory of multipliers, we shall 
first consider a case in which, deviating from all other examples to which 
these investigations relate, Xi, }i, Zi will be functions not merely of the 
coordinates, but will also of the velocities, so that M is not a constant. 
This case is that of a planet which moves around the sun in a resisting 
medium. Without taking into ac count the resistance, it is weIl known 
that the equations for the motion of a planet are the following: 

d2x = d2y = _k2}L d2z = 
dt2 r 3 'dt2 r 3 'dt2 r 3 ' 

where x, y, z are the heliocentric coordinates of the planet, r its distance 
from the sun and k 2 the attraction which the sun exerts at unit distance. 
If v = J x'2 + y'2 + z'2 is the velo city of the planet in the direction of the 
tangent to its trajectory and V the resistance in the same direction, then 
the components of the resistance along the axes of x, y, z are respectively 

Vx' 
v 

Vy' 
v 

Vz' 
v 

These quantities are to be added to the right si des of the differential 
equations, with the same sign as those the terms based on the attraction 
have. The equations of motion then become 

d2z 2 z V z' -=-k ---
dt2 r3 v 

If we take the resistance proportional to the nth power of the velocity 

V = fv n , 
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where f is a constant, one has the following differential equations 

d2x = _ fvn-1x' = A 
dt2 r3 ' 

d2y = _k2}L _ fvn-1y' = B 
dt2 r3 ' 

d2z = _ fvn-1z' = C. 
dt2 r3 

138 

(16.1) 

Comparison of this system with the general form (15.1) and (15.3) of 
the last lecture gives m = n = p = 2; then one obtains, according to the 
formula (15.4) of the same lecture, for the multiplier M of the system 
(16.1), 

0- dlogM 8A 8B 8C 
- dt + 8x' + 8y' + 8z" 

or, if the expressions for A, B, C are inserted, 

dlogM _ {8(vn- 1X') 8(vn- 1y') 8(vn- 1z')} 
dt - f 8x' + 8y' + 8 z' 

{ n-l ( n-2 ( ,8v ,8v ,8v ) } 
= f 3v + n - l)v x 8x' + y 8y' + z 8z' . 

But 

and so 

and hence 

ÖV 
GX' 

x' 
v 

8v y' 
GY' v 

8v 
GZ' 

z' 
v 

, 8v , 8v , 8v x'2 + y'2 + z'2 
x-+y-+z-= =v, 

8x' 8y' 8z' v 

dlog M . )f n-l 
dt = (n + 2 v . (16.2) 

For n = -2, then, one has Al = constant. This case, however, does not 
occur in nature, as otherwise the resistance must become smaller the 
faster the planet moves. We shall then investigate whether without this 
assumption for n, vn - 1 can be changed into a total differential coefficient. 
The theorems of conservation of vis viva and surface area do not hold 
for this problem. Let us investigate instead what forms the equations 
corresponding to them take here. To obtain the equation analogous to 
the theorem of vis viva, one must multiply the three equations (16.1) by 
x', y', z' respectively and add; this gives 

d2x d2y d2z k2 
x' dt2 + y' dt2 + Z' dt2 = - r3 (xx' + yy' + zz') - fv n- 1(x'2 + y'2 + z'2). 
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Now, 

X'2 + y'2 + z'2 
d2x d2y d2z 

x' dt2 + y' dt2 + z' dt2 

xx' + yy' + zz' 

then 

or 

and 

v2, x 2 + y2 + z2 = r2, 
dv 

v dt' 
dr 

r dt; 

I J vn+1dt = + k2. 
2 r 
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This is indeed a remarkable result; but we need, not J vn+1dt, but 
J vn-1dt. 

To obtain the equations corresponding to the surface area theorem, 
we have to build from equation (16.1) the expressions 

d2 z d d2 y d2 x. h' . , x(ji2' an x dt 2 - Y dt 2 ,t lS glves 

d2z d2y n-l(' ') y dt2 - Z dt2 = - I v y z - zy , 

d2x d2z n-l" 
Zdt2 -x dt2 =-Iv (zx -zx), 

d2y d2x n-l" 
x dt2 -y dt2 = -Iv (xy -xy), 

and on integration, 

-I J v n - 1 dt log(yz' - y' z) - log Q 

log( zx' - z' x) - log ß 
log(xy' - x' y) - log /'; 

(16.3) 

where log Q, log ß, log/, are arbitrary constants of integration. One 
obtains from this first the sought for integral J vn - 1 dt, and secondly, 
two integral equations, namely 

yz' - y' Z 
Q 

zx' - z'x xy' - x'y 

ß /' 
(16.4) 
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which state that the ratios of the quantities yz' - zy', zx' - xz', xy' - yx' 
are constants, a result which could have been foreseen. For, as the planet 
cannot cease to move in a plane in a resisting medium, the quantities in 
question, which, multiplied by dt represent the projections of the surface 
element described by the heliocentric radius vector, behave, aeeording 
to a well-known theorem, lik.e the eosines of the angles which the normal 
to the orbit of the planet makes with the three eoordinate axes. 

We deduee from equations (16.2) and (16.3) that 

J xy' - yx' 
logM=(n+2)j vn - 1 dt=-(n+2)log 'Y ' 

therefore 
'Yn +2 

M = ...,--------,-"7 
(xy' - yx,)n+2' 

or, leaving out the constant 'Yn+2 , 

M= 1 
(xy' - yx,)n+2 

Thereby we ean in faet apply the principle of the last multiplier to this 
problem. The given system (16.1) is of the sixth order and leads, after 
elimination of t, to a redueed system of order five. Meanwhile, sinee 
the motion takes plaee in a plane, we ean let one eoordinate plane, for 
example, the xy-plane, eoincide with the plane of the orbit; then z is to 
be set equal to 0, and the last equation (16.1) vanishes and there remains 
a system of the fourth order and after elimination of ta redueed system 
of third order remains. However, we do not have a single integral of this 
last system. Beeause, of the three equations whieh hold in plaee of the 
surfaee-area theorem,now there exists only one, and it is not an integral 
equation. It leads only to J vn - 1 dt, the third expression given in (16.3). 
If now one has found for the system of the third order in quest ion two 
integrals with two arbitrary eonstants al and a2, so that x' and y' can 
be represented as functions of x and y, and there remains then only the 
differential equation of the first order 

x' dy - y' dx = 0 

to be integrated. Its multiplier is 

ax' !!JL _ ax' !!JL 
aal aa2 aa2 aal 

(xy' - x,y)n+2 . 



Lectures in Dynamics 141 

As a second example of the last multiplier, we shall take one in which 
we obtain for the multiplier not an unknown differential equation, but 
one for which all integrations occurring can be carried out, namely the 
motion of a planet around the sun in a non-resisting medium. One ob-
serves easily that the motion must proceed in a plane and that therefore 
one obtains only a system of the fourth order, and after elimination of 
t, of the third order. Herein the principles of conservation of vis viva 
and that of surface area give two integrals and the principle of the last 
multiplier the last. For this problem then the integration can be carried 
out completely, as one sees apriori. The system of differential equations 
to be integrated is, as we have already seen above, 

(16.5) 

where k 2 denotes the attraction of the sun at unit distance. Let the two 
integrals that the principles of vis viva and surface area give be 

h = 0,12 = ß, 
where hand 12 are functions of x, y, x' and y' Then one finds as last 
multiplier for the remaining differential equation of x and y the expres-
sion 

( ax' ay' ax' a y') M 
M ao aß - aß ao = IJhflh _ IJhflh' 

ax' ay' ay' ax' 
where M is the multiplier of the system (16.5). But since we have to do 
with an entirely free motion, M = constant, according to the preceding 
lecture. One can then set M = 1 and obtain as the last multiplier 

1 
Qb. flh _ Qb. flh . ( 16.6) 
ax' ay' ay' ax' 

If we now imagine the quantities x' and y' expressed in terms of x and 
y through the equations f1 = 0 and 12 = ß, and substitute in the 
differential equation 

x' dy - y' dx = 0, (16.7) 

then this is the equation for which the expression (16.6) must be the 
multiplier. This we shall prove by carrying out the computation. 

When we multiply the equations (16.5) by x' and y' respectively and 
add, we obtain the theorem of 'vis viva', 

,d2x ,d2 y 2 XX' + yy' 2 r' 
x dt2 + Y dt2 = - k r3 = - k r2 ' 
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and, on integration, 
1 k2 
_(x'2 + y'2) = - + a. (16.8) 
2 r 

One obtains the principle of surface area when one derives from the 
. d2 y d2 x 0 b . . equatlOn x(j]T - Y(j]T = Y mtegratlOn 

xy' - x'y = ß. (16.9) 

Our two integrals then are 

1 ('2 '2) k2 " !1 = - x + Y - - = a, h = xY - yx = ß· 2 r 

From this, one obtains 

Ö!l , 
öx' = x, 

ö!I , 
öy' = y, 

öh 
öx' = -y, 

and by (16.6), the multiplier of (16.7) will be 

1 1 
ah lJh _ !li.l ah 
ax' ay' ay' ax' xx' + yy" 

Le., the expression 
x' dy - y' dx 

xx' + yy' 

öh 
öy' = x; 

(16.10) 

is a total differential. This we have to prove by determining x' and y' 
from the equation (16.8) and (16.9). For abbreviation we write 

then we have the equations 

k 2 
- +a =.\; r 

x,2 + y,2 = 2.\, xy' - x'y = ß 

for the determination of x' and y'. The second of these equations is 
already linear in x' and y', and it now depends on deriving a second 
linear equation. This one can do best through the well-known identity 

If one inserts in this the values for x,2 + y,2 and xy' - x'y, then one 
obtains 

xx' + yy' = V2.\r2 - ß2. 
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One has then the equation 

yy' + xx' = J2Ar2 - ß2, xy' - yx' = ß, 

and these give 

r 2y' = ßx + yJ2Ar2 - ß2, r 2x' = -ßy + xJ2Ar2 - ß2. 

If one divides both the equations by 

r 2(yy' + xx') = r 2J2Ar2 - ß2, 

one obtains 

y' ßx y x' ßy X 

r 2 J2Ar2 - ß2 + r 2 ' xx' + yy' = - r 2 J2Ar2 - ß2 + r 2 ' xx' + yy' 

and if one inserts these values in (16.10), 

x'dy-y'dx ß(xdx+ydy) xdy-ydx --=----=-----,--=- +---"------."...::--
xx' + yy' r 2 J2Ar2 - ß2 r 2 · 

Now x dx + y dy = r dr, furt her when we substitute for A its value, 

where R is a function solely of r; then 

x' dy - y' dx ß dr x dy - y dx ---..,---,-- = - - - + -----cc---
xx' + yy' VR r r 2 

The first term on the right side is a total differential since it is equal 
to dr multiplied by a function of r. The second term has the form 
al ready introduced in Lecture 5 (p. 44) of a product of x dy - y dx 
and a homogeneous function of order -2 in x and y, which can always 
be represented as a product of a function of the quotient and its 
differential, and is therefore a perfect differential. In the present case 
one has 

x dy - y dx 
r2 

-=- = d arctan JL 
1 + un 2 x 

The expression is then a perfect differential, which was to be 
proved. 

We shall next go on to the differential equations of motion of a system 
that is not free. 



Lecture 17 

The Multiplier of the Equations of Motion of a 
System U nder Constraint in the first Langrange 
Form 

We have shown in Lecture 7 (page 59) that the differential equations of 
a system which is bound through the equations of constraint 

c.p = 0, 'ljJ = 0, CJ = 0, ... 

can be brought to the following form: 

d2xi oc.p 0'ljJ oCJ 
mi-- = Xi +.A- + J-L- + v- + ... , 

dt2 OXi 8Xi 8Xi 
d2Yi oc.p 0'ljJ oCJ 

mi -- = Yi + .A- + J-L- + v- + ... , 
dt2 0Yi 0Yi 0Yi 
d2 Zi oc.p 8'ljJ oCJ 

mi-- = Zi +.A- + J-L- + v- + ... , 
dt2 8zi OZi OZi 

where the multipliers .A, J-L, V, . .. are to be determined, as already re-
marked there, by differentiating the equations c.p = 0, 'ljJ = 0, CJ = 0, ... 
twice. When we determine.A, J-L, V, . .. , we find, as we shall show presently, 
that these quantities are not independent of x', y', z'. One cannot there-
fore set the multiplier M equal to 1 here, one must go back for this 
determination to equation (15.4) of Lecture 15, p. 132. According to 
this the multiplier M for the system of differential equations 

dPz 
dtP = C, ... , 

is defined through the equation 

° _ d log M + oA + oB + oC + ... 
- dt ox(rn-I) oy(n-I) oz(p-I) . 
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In the present case, this gives 

+ ... , 
where on the right hand side, to each of the multipliers '\, J..l, 1/, ... corre-
sponds a sumo For the application of the theory of multipliers M, it is 
necessary that the right hand side of this equation be a total differential 
coefficient. In order to investigate whether this is the case, one must 
find out the values of '\, J..l, 1/, .•• , or at least those of their differential 
coefficients with respect to For determining these values, one 
differentiates twice in succession with respect to tone of these equations 
of constraint, <p = O. The first differentiation gives 

the second differentiation leads to the equation 

(a<p" a<p" a<p,,) 
aXi xi + aYi Yi + aZi Zi + u = 0, 

where u represents the part of the result which arises from the differenti-
ation of the factors ft, and is a homogeneous function of order 
2 in the 3n quantities If one denotes through the sequence 
Pl,P2,··· ,P3n the complex of all 3n coordinates Xi, Yi, Zi, then one can 
give the function u the form 

a2<p 12 a2<p I I 
U = !1 2 Pi + 2 aa PiPk' uPi Pt Pk 

where the last sum is to be extended over mutually distinct values of i 
and k. In the same way one is led through two-fold differentiations from 
the other equations of constraint to the equations 
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where, according to the notation for the coordinates introduced above, 
the functions v, W, . .. , have the values 

Now in order to obtain A, p, /J, ••. , one has to insert in these equations 
the values of z:' derived from the given system. Then the equation 
obtained from 'P by differentiating twice gives 

or 

if one sets 

One obtains for each single one of the equations of constraints 'P = 0, 7jJ = 
0, W = 0, ... , one such linear equation between the quantities A, p, /J, .••. 

If one intro duces as in Lecture 7, p.61, the notation 



Lectures in Dynamics 147 

so that 
(F, <I» = (<I> , F), 

and sets 
a = (ep, ep), b = (ep, 7j;), c = (ep, w), .. . 

a' = (7j;, ep), b' = (7j;, 7j; ), c' = (7j;, w), .. . 
" (- ) b" ,- 01.) " (--) a = w,ep, = ,c = W,w , ... 

so that between these quantities the equations 

a' = b, a" = c, b" = c', ... 

then one has the equations 

UI + aA + bp, + CI/ + ... = 0, 
VI + a' A + b' p, + c' 1/ + ... = 0, 
WI + a"A + b"p, + C"1/ + ... = 0, 

for the determination of A, p" 1/, . • .. Instead of solving these for A, p" 1/, ... 

and deriving , -3;r, ... by differentiation from the values so found, it is 
better to differe'ntiate these linear equations directly, as the computation 
is then simplified considerably. The quantities a, b, c, ... , a', b', c', ... do 
not at all contain the differential coefficients and are therefore 
to be looked upon as constants for these differentiations; further, the 
quantities UI, VI, WI, ... differ from u, V, W, ... respectively only by ex-
pressions which also do not involve the differential coefficients 
and therefore ili!:J.. = 8u 8Vl = k and so on· then one obtains 8x; 8Xi ' 8x; 8Xi ' , 
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The function u was defined through the equation 

where the quantities P denote the 3n coordinates Xi, Vi, Zi and in the 
second sum on the right side i is different from k. Through differentiation 
with respect to it gives 

f) 3n f)2 
U '" 'P, 8' = 2 f) .f) Pk' 
Pi k=l Pt Pk 

or if we set again Xi for Pi and Xk, Yb Zk for the quantities Pk, 

However, the sum on the right is the total differential coefficient of 
with respect to t and so one has 

d!JL 
f)u = 2 oX; 

dt' 

In this equation one can write Y or Z for X, as is obvious. Futher one 
writes v, w, ... for u and at the same time sets 'l/J, W, . .. for 'P. One has 
then 

äu d!JL v d°1/; äw d OW _ = 2 ax, = 2 ax; - = 
dt dt dt , ... 

and analogous equations for the partial differential coefficients with re-
spect to and z:. Hereby the linear equations above for the quantities 
a>.. 0/1 0// h . th C 11 . . axr, axr, ox' , ... c ange mto e 10 owmg. , , , 

f)A f)v 
2--' +a-+b-+c-+"'=O, dt f)xi f)xi f)xi 

d a1/; 
oX ,f)A ,f)v 

2--' +a - +b - +c - + ... = ° dt f)xi f)Xi f)xi ' 

d OW f)A f) f)v 
2 oX; + a"- + b" + c"- + ... = O. 

dt f)xi f)xi f)xi 
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In order to solve these linear equations one must, as is weH known, 
construct the determinant of the quantities 

a, b,c, .. . 
a', b', c', .. . 
"b" " a, ,C , ... 

or, in abbreviated notation, the determinant 

R = L ±ab' c" ... ; 

then in order to determine g;, one has to multiply the above equations 
b aR aR aR d bt· ' b dd·t· y aa' aa' , aa" , . . . an 0 aln y a I lOn 

8 ' A aXi aXi aXi o = R + 2 8a & + 2 8a' & + 2 8a" & + ... 

Similarly one obtains 

da'lj; d aw _ 8j..l 8R -aXi 8R aXi 8R aXi 
o - R + 2 8b & + 2 8b' & + 2 8b" & + ... 

a a a d 8w a d 8w _ v R aXi R aXi R aXi o - R + 2 ac & + 2 8c' & + 2 8c" & + ... 

Analogous equations hold for the differential coefficients of A, j..l, v, ... 
with respect to The values of aH these differential coefficients are 
to be inserted in the expression given above for d11M, wh ich one can 
arrange in the following way: 
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Then one obtains for the product of Rand the first of the three sums 
on the right side the result 

However, as we have seen, the elements of the determinallt are related, 

b = a', c = a", , c' = b", ... , 

and therefore from a well-known theorem on the solution of linear equa-
tions follow the relations 

oR oR oR oR oR oR 
ob oa' ' oc oa" ' oe' ob" ' ... 

From these considerations one can give to the right hand side of the 
equations above the form 
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··f . BR BR BR BR BR BR t . I or, agam 1 one wntes Ba' + Bb' Ba" + Be' Bb" + Be" ... e c respectlve y 
c 2 BR 2 BR 2 BR lor Ba' , Ba" , Bb" , ... , 

If one sets the analogous values for the two sums ocurring in the expres-
sion for d M and reminds oneself of the val ues of 

a, a', a", ... , b, b', b", ... , e, c', e", ... , 

then one obtains 

and so 

RdlogM 
dt 

äR da äR da' äR da" 
äa dt + äa' Ti + äa" dt + ... 

äR db äR db' äR db" 
+ äb dt + äb' dt + äb" dt + ... 

öR de öR de' öR de" 
+ äe dt + äe' dt + äe" dt + ... 
+ ... 
dR 
dt ' 

RdlogM = dR 
dt dt ' 

or, with the omission of the constant factor, 

M=R. 

One can also derive from the peculiar form of the quantities 

a, a', a", ... , b, b', b", ... , e, e', e", ... , 
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aremarkable representation for their determinant. We have set above 

a = (<p, <p), a' = (<p, 1/J), a" = (<p,w), .. . 
b= (1/J,<p),b' = (1/J,1/J),b" = (1/J,w), .. . 
c= (w,<p),c' = (w,1/J),c" = (w,w), .. . 

where the quantities enclosed in brackets are similar to the expression 

These sums can be represented somewhat more simply if, as in the be-
ginning of this Lecture, p.147, all the 3n coordinates are denoted by 
the same letter and 3n indices attached. If instead of the coordinates 
themselves we introduce quantities proportional to them and set 

so that the 3n quantities JmiXi' JmiYi, JmiZi are identical with the 
3n quantities 6,6, ... ,6n, then the expansion for (<p,1/J) goes over into 
the form 

in which the summation extends from i = 1 to i = 3n. Determinants 
whose elements are related in the way presented here can be represented 
as the sum of four squares (see my article "de formatione et proprietat-
ibus determinantium" ,Grelles Journal, Vol. 22, p. 285). If m is the 
nu mb er of functions <p, 1/J, W, ... ,(, or what is the same, of the equations 
of constraint holding for the mechanical system, and one constructs all 
possible determinants of the form 

where i, i', i", ... ,i(m-l) denote any m different numbers of the series 
1,2, ... , 3n, then the sum of the squares of these determinants is equal 
to R. In the article mentioned above,I have made a nice application 
of this theorem, first published by Gauchyl, to the method of least 
squares. For the case of a point which moves on a given surface, the 

1 Journal de l'ecole polytechnique,cah. 17 
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equation to this surface <p = 0 is the single constraint; thereby the par-
tial determinants from whose squares R can be put together reduce to 
!!:e.. - _1_!!:L !!:e.. - _1_!!:e.. !!:e.. - _1_!!:e.. so that 
86 - .fii'il 8Xl ' 86 - .fii'il 8Yl ' 86 - .fii'il 8zi ' 

R __ 1 {( 8<p ) 2 + (8<P) 2 + (8<P) 2} 
- m1 8X1 8Y1 ÖZ1' 

The case m = 3n which naturally does not occur in Mechanics (since 
the number of equations of constraint can at most be equal to 3n - 1) 
is the simplest relating to the theorem on determinants. For, then the 
determinant R reduces to a single square. 

Through the equation M = R = 2:: ±ab' eil ... , we have found, for 
a system bound by any constraints whatsoever the multiplier of the 
system for the first Lagrange form of the differential equations and with 
it, under the assumption that all but one of the integrals are known, 
also the last multiplier. 



Lecture 18 

The Multiplier for the Equations of Motion of a 
Constrained System in Hamiltonian Form 

We shall now seek the multiplier of the differential equation of a con-
strained system in the Hamiltonian form of the differential equations. 
Let T be half the vis viva, n the number of mass points, m the number 
of equations of constraint. Since along with i, k also will be used to 
denote a term in aseries, the number 3n - m will not be denoted by k, 
but by J-l. In Lecture 8, p. 67, we have so represented the 3n coordinates 
as functions of 3n - m new variables ql, q2, ... ,q3n-m that the equations 
of constraint are satisfied identically on substitution of coordinates ex-
pressed in this way. We obtained T as a homogeneous function of second 
order of the quantities whose coefficients can contain the quantities 
qi. We introduced furt her the quantities Pi = aar, in place of qi and 

qi 
thus obtained in Lecture 9, p. 77, the differential equations of motion 
depending on the 2(3n - m) variables qi and Pi in a form that holds also 
in the case in which no force function exists: 

where 
(äXk äYk äzk ) Qi = + Ykß. + Zkß. . 

k=l qt qt qt 

These differential equations can also be written in the following way: 
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If one applies the theory of multipliers to this system, then it gives 

Since, in the problems we consider Xi, }i, Zi depend only on the coordi-
nates Xi, Yi, Zi and not on their differential coefficients, so the functions 
Qi also contain only the variables qi and not their differential coefficients, 
and therefore also none of the variables Pi. Therefore 

and 

d log M (PT (PT 
dt = L ßPißqi - ßqißpi = 0, 

M = constant. 

One can therefore set M = 1, so that the multiplier here has the same 
value as for an entirely free system. In order to obtain the last multiplier 
for this case, one must eliminate t, which we assurne does not explicitly 
occur in Qi, from the system of differential equations of order 2j.t: 

ßT 
ßPi' 

where i runs from 1 to j.t. If one knows for the thereby reduced system 
of order 2j.t - 1, 2j.t - 2 integral equations 

with as many constants a1, a2,"" a21l-2, then by virtue of these one 
can express all 2j.t variables through two of those, say q1 and q2; then 
there is only one differential equation 

to be integrated, whose multiplier is 
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If the forces Xi, Yi, Zi are the partial differential coefficients of one 
function U, which can also depend explicitly on t, so that 

ßU ßU ßU 
Xi = = =-, 

UXi UYi ßZi 

then Qi = and the differential equation of motion go over (see p. 
76?), if one sets 

into the simple form 

dqi 
dt 

T-U=H, 

ßH 
ßPi' 

The furt her investigations, which form the kernel of these Lectures, will 
be tied to this Hamiltonian form of the differential equations. Everything 
up to now is to be looked upon as an introduction to it. 



Lecture 19 

Hamilton's Partial Differential Equation and its 
Extension to the Isoperimetric Problem 

Hamilton's form of the differential equations of motion was derived in 
Lectures 8 and 9 from the principle that if the initial and final values 
of the coordinates are given, the variation of the integral J (T + U) dt 
must vanish. One can express this principle more generally so that it 
holds when not the initial and final values but other conditions which 
obtain at the limits are given. In this case, namely, it is not the entire 
variation of the integral J (T + U) dt which is to be set equal to zero, 
but only that part standing under the integral sign; the variation can 
then be expressed without the integral sign, or what is the same, the 
variation will be a total differential coefficient. In order to make this 
clear, we must go back to the derivation given in Lecture 8. 

Let T be half the vis viva and U the force function which can depend, 
besides the coordinates, on t explicitly. One thinks of the 3n coordinates 
as functions of the 3n - m = /-l new variables ql, q2, ... , qJl' so represented 
that the m equations of constraint are fulfilled identically through these 
expressions; further , let 

T+ U = <Pi 

one has then, since <p is a function of the quantities ql, . . . , qJl and , , 
ql' ... , qJl' 
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However, 

and if one integrates between the lower limit T and the upper limit t, 
and denotes the value corresponding to the lower limit T by an index 0 

attached above, 

Now as q: does not occur in U, 

(19.1) 

and furt her , in consequence of the differential equation in Lagrange's 
second form given in equation (8.9), the entire expression under the 
integral sign on the right hand side is 

d 8T 8(T + U) _ 8q; 

8qi dt 

Therefore, there remains for the variation sought for only the part free 
of the integral sign, and one has 

Under the earlier assumption the initial and final values of q were given, 
so 8qi = 0 and 8q'i = 0, and then the right side of the last equation 
vanishes. This is not the case according to the present more general 
assumption. In order to understand correctly the sense in which the 
variation is taken, one must remind oneself that the part under the in-
tegral sign of the variation sought for vanishes only by virtue of the 
differential equations of motion which are assumed to be satisfied. The 



Lectures in Dynamics 159 

quantities qi and as weH as the quantities Pi must therefore be con-
sidered as given functions of t and 2p constants, and the variations 8qi 
are merely the alterations of qi, which rest on the alteration of the val-
ues of the 2p arbitrary constants. The values of these variations which 
correspond to the lower limit T of the integral are the quantities 8qf. If 
we denote by V the integral whose variation is being considered, and so 
set 

V = J tpdt = J (T + U)dt, 

the last formula can be written as 

(19.2) 

8V = Pl8ql + P28q2 + ... + pi8qi + ... + p/l8q/l 
05:0 0 ,0 0,0 0,0 (193) -PI uql - P2uq2 - ... - Pi uqi - ... - P/luq/l' . 

an expression to which the form 8t is to be added when one does not 
consider t to be an independent variable. 

This representation for the variation of V is very important. After 
integration of the differential equations of motion, one can represent 
aH variables and therefore r.p as a function of t and the 2p integration 
constants, and from this representation of tp, one obtains also V, through 
quadrat ure, as a function of t and the previous 2p constants. The choice 
of these quantitities which form the system of constants in the integral 
equations remains at our disposal. If we chose for these the 2p initial 
values qf, pf, then the system of 2p + 1 variables t, qi, Pi and the 2p 
constants qf, pi together form a system of 4p + 1 quantities which, by 
virtue of the integral equations are bound to one another by 2p relations, 
and of which any 2p can be looked upon as functions of the remaining 
2p + 1. If, for example, we imagine the values of the 2p quantities pi,pi 
as expressed in terms of the 2p + 1 quantities t, qi, qf and substitute 
these values of p? in V, which is al ready known to us as a function of 
the 2p + 1 quantities t, qf, pi, then V = J r.pdt is given as a function 
of the 2p + 1 quantities t, q!, q2,· .. , q/l' q'l, q:]., ... , If one varies this 
expression of V, keeping t unchanged, then 

av av av 
8V = -8ql + -8q2 + ... + -8q/l 

aql aq2 aq/l 
av ,0 av x 0 av x 0 +-uql + -uq2 + ... + -uq . 
aq'l aq:]. /l 

If one compares this with the expression (19.3) of 8V, then one obtains 

av av 0 

-a = Pi, a 0 = -Pi· (19.4) qi qi 
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On the other hand, according to the definition of V given in (19.2), 

dV 
ep = dt' 

But t is firstly contained in V explicitly and in addition, through the 
variables ql, q2, ... ,ql" implicitly; therefore one has 

dV ßV ßV dqi 
ep = dt = 8t + L ßqi dt; 

or, with the help of (19.4), 

ßV I 
0= 8t + LPiqi - ep, 

an equation, which, on introducing the function 

(19.5) 

changes to the following: 

(19.6) 

The equation (19.6), when 'ljJ is represented in the proper form, is a 
partial differential equation for V. In fact, the quantities and the 
quantities Pi introduced above through the equation 

ßep 
uqi 

(19.1) 

form, as we know, two systems of quantities such that, with the help of 
qi and t, the one can be substituted for the other. Therefore any given 
expression of 3/1 + 1 variables t, qi, can be represented at the same 
time as a function of the 2/1 + 1 variables t, qi, and as a function of the 
2/1 + 1 variables t, qi,Pi. One such expression is 

(19.5) 

If we represented 'ljJ as a function of the quantities t, qi, Pi and substitute 
for Pi, according to the first of the equation (19.4), the partial differ-
ential coefficient then finally 'ljJ is expressed through the quantities 
t, ql, q2, .. " qll, gV, gV, .. . , gV, and the equation (19.6) takes the form 

r uq! uq2 uqJl 

ßV ( ßV ßV ßV) 
!l+'ljJ t,ql,q2, ... =0. ut uql uq2 uql' 
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This is Hamilton's differential equation which V = f <pdt satisfies, if 
one looks upon it as a function of t, ql, q2,· .. , qj.L and q'l, q2, ... , The 
integration of the differential equations of motion gives a solution of 
this partial differential equation which contains /-L arbitrary constants 

o 0 0 
ql' q2'···' qw 

Everything that has been said up to now holds not only far problems 
of mechanics, but also when <p, instead of being equal to T + U, is 
an arbitrary function of t,ql,q2, ... ,qj.L, ... In problems of 
mechanics, however, 'ljJ acquires a simple significance, as has already been 
shown in lecture 9. If then one substitutes for <p the value <p = T + U in 

'ljJ = - <p, 

where U depends only on qi and T is a homogeneous function of the 
quantities then 

Pi 
ßT 
ß " qi 

'""' ,ßT = 2T, 
qi 

T-U=H, 

and the partial differential equation goes over to 

The results of the considerations up to now for problems of mechanics 
can be expressed the following way: 

If 
f)T 

H = T - U, Pi = -f) " 
qi 

and H is expressed through the quantities Pi, qi, then 

ßqi ßH ßPi ßH 
dt ßPi ' dt ßqi 

are the differential equations of motion. One considers the motion in 
the interval from T to t and introduce the initial values q'l, q2' ... , and 
P'l, P2, ... , as arbitrary constants in the integral equations. Further, 
one sets 

ßV 
Pi = -ß . qi 
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in H; then 
ßV H=O 
ßt + 

162 

is a partial differential equation of the first order which defines V as a 
function of the variables t, ql, q2,···, q/-L" Now one forms the integral 

l t (T + U)dt, 

where T + U is, by virtue of the integral equations, a function merely 
of t and the 2/1 constants q'l, q2' ... , PI' P2' ... and expresses the 
result of the quadrature through t,ql,q2, ... ,q/1 and ql,q2, ... then 
the value of the integral so represented, 

V = l t (T + U)dt 

is a solution of the partial differential equation 

ßV 75t+ H =O. 

If an arbitrary function ip of the quantities qi, q:, t, takes the place of 
T + U, one must at the same time substitute in place of the differential 
equations of motion those which let the variation of the part 5 J ipdt 
under the integral sign vanish. In order to make this analogy complete, 
one must bring these differential equations to the same form as that to 
Hamilton's form of the differential equations of motion.One also replaces 
the differential coefficients q: by Pi = !!.!:eaa I, introduces the function 'IjJ = 

qi 
I:Piq: - ip and then proceeds similarly as in lecture 9. If one forms the 
variation of the function '1/;, 

and one substitutes for Sip its value 

'" ßip '" I ßip Sip = ßqi Sqi + PiSqi + ßt 8t, 

which also contains a term proportional to 8t, if one does not choose the 
independent variable. Then one obtains 
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If one compares this expression for 6'1j; with that which one obtains when 
'Ij; is represented as a function of qi, Pi and t, that is, with the expression 

where the partial differential coefficients formed with the assumptions 
given above, are enc10sed in brackets for c1arity. Then from the compar-
ison follows 

Through the second of these three equations, the differential equation 

which must be satisfied in order that the part 6 J c.pdt of the variation 
under the integral sign vanishes, is transformed to 

dPi = _ (8'1j;) 
dt 8qi 

while the first of the three equations is identical with 

dqi = (8'1j;) . 
dt 0Pi 

So the differential equations of all isoperimetrie problem in which only 
the first differential coefficients appear under the given integral take the 
form 

dqi = (8'1j;) dPi = _ (8'1j;) 
dt 8Pi' dt 8qi 

and the integration of these always leads to a solution of the partial 
differential equation of the first order 

8V 8t + 'Ij; = O. 

Omitting the brackets around the differential coefficients 
now no longer necessary for distinguishing them, one can express the 
result obtained for the general case thus: Let c.p be a given junction 



Lectures in Dynamics 164 

oft,ql,q2, ... ,qJ.L and ... one introduces for the differential 
coeffcients new variables 

sets 

oep 
uqi 

'lj; = - ep, 

and expresses the function 'lj; through the variables Pi, qi and tj then the 
equations 

dqi o'lj; dPi o'lj; 
dt 0Pi ' di Oqi 

are the differential equations which must be fulfilled in order that the 
parts of the variation 8 J epdt under the integral sign must vanish. One 
denotes further the values of the 2J.L variables for the lower limit T by 
q'l, q2' ... , PI' P2' ... and introduces these quantities instead of the 
arbitrary constants in the integral equations of the system. Finally, if 
one sets 

then 

oV 
uqi 

oV ./. = 0 ot + 'f/ 

is a first order partial differential equation which defines V as a function 
of the variables t, ql, ... ,qJ.L" If one now forms the integral 

where, by virtue of the integral equations, ep is a function merely of t and 
the 2J.L constants q'l, q2' ... , PI' P2' ... and expresses the result of 
the quadrature as a function of t, ql, q2, ... , qJ.L and q'l, q2' ... then 
the value of the integral so represented: 

V = lt epdt, 

is a solution of the partial differential equation 

oV fit + 'lj; = o. 
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The connection between the functions i.p and 7/J contained in equation 
(19.5) pro duces a sort of reciprocity between them. Namely, if one sets 

where 
Öi.p 

Pi = -ö ' qi 

and i.p is looked upon as a function of % and t, then at the same time 

I ö7/J 
qi = -ö ' Pi 

it being assumed that 7/J is looked upon as a function of qi, Pi and tj 

therefore one has also 

(19.7) 

in which equation the quantities are to be introduced in place of the 
Pi by means of the equations 

I ö7/J 
qi = -ö . 

Pi 

Then, through equation (19.7), to any given function 7/J of t and the 
quantities qi and Pi, one can find a corresponding function i.p of t and 
the quantities qi and accordingly the equation + 7/J = 0 represents 
the most general partial differential equation of the first order which de-
fines V as a function of t, ql, q2, ... , qj.L' which does not contain V itself 
and which is solved for C:;;. Herein this is aremarkable connection be-
tween two problems lying far from each other, the isoperimetric problem 
of the kind described and the integration of first order partial differen-
tial equations. This connection can be extended to other isoperimetrie 
problems in which differential coefficients higher than the first appear 
under the integral. 

The solution found for the partial differential equation + i.p = 0 
contains, as we have seen, the f1 arbitrary constants q'l, q2' ... and 
since the quantity V itself does not occur, one can add to this solu-
tion another arbitrary constant and then one has a solution with f1 + 1 
arbitrary constants. The solution V is therefore what one calls a com-
plete solution of a first order partial differential equation, since one such 



Lectures in Dynamics 166 

must contain as many mutually independent constants as the mutually 
independent variables which occur the differential equation. 

Just as the integration of the isoperimetrie equations or the equa-
tions of motion give this complete solution of the partial differential 
equation + 'l/J = 0, so also, conversely, from the complete solutions, 
assumed known, one can form the integral equations of the isoperimet-
rie or differential equations of mechanics, and these are contained in the 
equation 

8V 8V ° 
= Pi, !:l ° = -Pi' uqi uqi 

(19.4) 

already considered above (p.162), which also hold for the isoperimetrie 
problem in question. We have then represented the integral equation 
under the same from as the differential equations earlier, namely by 
means of the partial differential coefficients of one function V. This is the 
discovery of Hamilton who has named the function V principal junction. 
The second of the equations contained in (19.4), = pOt" gives the actual 

qi 

integral equation; the first system = Pi gives the quantities Pi or 
as functions of t and qi with f.l constants qi. This is the system of the 
first integral equations, but it is of great importance that these also can 
be represented through the partial differential coefficients of V. We shall 
see later that the f.l constants contained in V need not be the initial 
values of qi, but if one only knows generally a complete solution V of 
the partial differential equation + V' = 0, then the integral equations 
can always be expressed by the partial differential coefficients of this 
solution with respect to the constants contained in them. 

Hamilton who has presented his discovery in two articles in the Philo-
sophical Transactions,l defines V not only through the one partial dif-
ferential equation 9ft + 'l/J = 0 but he also gives also a second partial 
differential equation which V should satisfy. However, one can omit 
this because it can be derived from the one already given and because 
its addition only takes away the simplicity from the investigation. For 
the question of determining a function satlsfying two simultaneous par-
tial differential equations cannot in general be answered by the current 
methods of analysis. 

In order to derive the second partial differential equation from the 
equation + 'l/J = 0 already found, we need the following theorem, 
which is easy to prove. 

11834, Part II and 1835, Part I 
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Let a system of n ordinary differential equations hold between n + 1 
variables t, xl, X2, ... ,Xn, and let the values of the remaining variables 
corresponding to the initial value T of t, be Xl' x 2, ... and suppose 
that the given system of differential equations are satisfied by the system 
of integral equations 

h(t, T, Xl' x2, ... , 
h(t,T,xl ,x2, ... (A) 

Xn fn(t, T, Xl' x 2, . .. 
Then one obtains an equivalent system of integral equations through in-
terchange of the variables t, Xl, X2, ... ,Xn with their initial values T, Xl' 
x2, ... so that one saves entirely the troublesome task of elimina-
tions a"td without further computation represents the integral equations 
solved for the arbitrary constants in the following way: 

h(T,t,Xl,X2, ... ,Xn ) 
h(T, t, Xl, X2,···, Xn ) (B) 

The proof of this theorem is the following. If the given system of 
differential equations satisfies the system of integral equations 

Xl Fl (t, al, a2, ... ,an) 
X2 F2(t, al, a2,···, an) (C) ......... 
Xn Fn(t, al, a2,· .. ,an), 

then the same system of equations follows for the initial values, namely, 

Fl (T, al, a2, ... ,an) 
F2(T, al, a2,···, an) (D) 

The system (A) must arise out of (C) and (D) through elimination of 
al, a2, ... ,an' But the systems (C) and (D) transform into each other 
if one interchanges t with T, and likewise Xl with xl' X2 with X2, ... ,Xn 
with Consequently one can make the same interchange in (A), and 
the system (B) given by this must be equivalent to (A). 
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Aremarkable result can be derived from this theorem. The equations 
(B) are integrals, i.e. such integral equations which, if one differentiates 
them with the help of the differential equations give a result that van-
ishes identically. Any of the equations (A), on the contrary, contains 
n constants none of which is superfiuous (supervacanea).2 We obtain 
all the integral equations one after the other, if we differentiate one of 
them e.g. Xl = h (t, T, x2, . .. taking the help of the differen-
tial equations and continues the operations. Such an advantage one 
cannot in general follow from the knowledge of an integral: constant 
= F(t, T, Xl, X2, ... , Xn ) where T denotes a special value of t. However, if 
it be the case that the constant is precisely the value of a variable, e.g. 
Xl, corresponding to the value T of t, then one can derive all integral 
equations from one integral with only one constant. This case arises 
as soon as the function F(t, T, Xl, . .. , Xn ) reduces to Xl for t = T; then 
according to the theorem above, one can interchange the variaßle with 
its initial value and obtain from one integral 

constant = F(t, T, Xl, X2,· .. ,Xn ), 

the integral equation 

Xl = F(T, t, x2, ... , 
from which all the others can be derived through successive differentia-
tion. 

We shall now see what becomes of V with the interchange of the 
variables with their initial values. Let the isoperimetric or dynamical 
differential equations be integrated using the system 

ql XI(t, al, a2,···, a2/L),PI = WI(t, al, a2,···, a2/L) , 
q2 X2(t, al, a2,···, a2/L),P2 = W2(t, al, a2,···, a2/L), 

q/L X/L(t, al, a2,···, a2/L),p/L = w/L(t, al, a2,···, a2/L). 
If one sets the initial value T for t, then one has at the same time 

XI(T, al, a2,···, = WI(T, al, a2,···, a2/L) , 
X2(T, al, a2,···, = WI(T, al, a2,···, a2/L)' 

2See the article " dilucidationes de aequatt. diff. vulgo systematis", Grelles Jour. 
Vol. 23. 
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In the integral 

v = l t 
'{Jdt 

'{J is a function of t,q1,q2, ... ,qp" P1,P2, ... ,Pp" and so, after inserting 
the values of q1, q2, ... , qP,' P1,P2, .. · ,Pp, from the integral equations, a 
function merely of t, (}: 1, (}:2, ... , (}:2p,' One can accordingly set 

and obtain 

v = l t '{Jdt = <1>(t, (}:1, ... , (}:p,) - <1>(7, (}:1,···, (}:2p,). 

The quantity V determined in this way will be a complete solution of the 
partial differential equation + 'ljJ = 0 if the constants (}:1, (}:2,···, (}:2p, 
are eliminated by virtue of the above 2ft equations for q1, q2, ... , qP,' 
q'l, q2' ... , But, of these 2ft differential equations, one half go es over 
into the other half if one interchanges t with 7 and the quantities qi 
with the quantities qi. Therefore, each of the quantities (}:1, (}:2, •.. , (}:p" 

as a function of t, q1, q2, ... , qP,' q'l, q2, ... , must be of such 
a nature that it remains unchanged when t is interchanged with 7, q1 
with q'l, q2 with q2, ... , qP, with From this it becomes clear that this 
interchange transforms, 

into 
V = <1>(7, (}:1, (}:2, ... , 0:2p,) - <1>(t, 0:1, 0:2,"" 0:2p,), 

i.e. into - V. 
Till now we have not made any special assumption about the dif-

ferential equations in all our discussions. In order to study the case 
considereq by Hamilton we must now assume that the variable t does 
not occur in '{J explicitly. This occurs in mechanics when the time t 
is not contained in the force function U and consequently also not in 
'ljJ = H = T - U. Then only the differential of t enters in the differential 
equations of motion: 

dt : dq1 : dq2 : ... : dqp, : dP1 : ... : dpp, = 1 : 
ö'ljJ ö'ljJ ö'ljJ ö'ljJ ö'ljJ 
ÖPl : ÖP2 : ... : öPp, : - öqi : ... : - öqp,; 
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By omitting dt and 1, one eliminates the time entirely, expresses all 
variables, after integration of the remaining system, through one, e.g. 
ql, and determines this last as a function of time if one solves for ql the 
equation 

t - T = l q1 dql 
o 81j; 

ql 0Pl 

arising by integration from the differential formula 

Then one obtains ql as a function of t - T, and since the remaining vari-
ables have already been expressed as function of ql, all variables depend 
only on the difference t - T. This holds also for the function V which 
likewise contains both the quantities t and T only in the combination 
e = t - T, and one has therefore 

av 
at 

av 
aT 

If now one interchanges t, ql, q2, . .. qJ1. with the initial: values 
T, q'l, Q2' ... then V changes to - V and e to - e, and remains un-
changed. If further, '!/Ja denotes the value into which '!/J go es over when 
the quantities qi and Pi = are interchanged with qf and = - , 
then the equation 

changes to av av o = ae + '!/Ja = - aT + '!/Ja. 

This is Hamilton's second partial differential equation which, we have 
now proved, can be derived from the first exchanging the variables with 
their initial values. 
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Proof that the integral equations derived from a 
complete solution of Hamilton's partial 
differential equation actually satisfy the system 
of ordinary differential equations. Hamilton's 
equation for free motion 

We shall now take the reverse step and prove how starting from the par-
tial differential equations under consideration one is led to the dynamical 
or isoperimetrie equations.Let 

av 
8t 

(20.1) 

be an arbitrary partial differential equation of the first order, which 
does not contain V itself, so that is any function of the quantities 
t,q1,q2,···,qJl,P1,P2' ... 'PJl' where Pi = Suppose one knows a 
complete solution oi the partial differential equation (20.1), i. e. a so-
lution which contains only J1 arbitrary constants 0:1,0:2, ... ,00Jl except 
for those related to V through addition. If one sets now 

av av av 
-a =ß1'-a =ß2'···'-a =ßw 

0:1 0:2 O:Jl 
(20.2) 

where ß1, ß2, ... , ßJl denote new arbitrary constants, then these equa-
tions, along with the equation 

av av av 
aql =Pl, aq2 =P2,···, aqJl =PJl 

are the integral equations oi the differential equations 

dqi dPi 
dt api ' dt - aqi ' (20.3) 

where i takes the values 1,2, ... , J1. 
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In order to prove this theorem, we have to observe that if the com-
plete solution, assumed known, is substituted for V in the partial differ-
ential equation (20.1), the left hand side of the same must be an identi-
cally vanishing function of the quantities t, ql, q2, ... , qJ.L, 0:1,0:2, ... ,O:J.L 
and that accordingly, its partial differential coefficient with respect to 
any one of these quantities vanishes identically. 

To derive the first half of the differential equation (20.3) from the 
equation (20.2), we proceed in the following way. If we differentiate the 
equation (20.2) with respect to t, we obtain the system of equations 

o 

o 

o i)2V ä 2V dql ä2V dq2 ä2V dqJ.L 
äO:J.Lät + äO:J.Läql dt + äO:J.Läq2 dt + ... + äO:J.LäqJ.L dt . 

(20.4) 

It would now amount to this: to solve these equations, linear with re-
spect to d:J/, d:Jt, ... , and to show that the values arising 1rom the 
solution are identical with the quantities &&1/J , &&1/J , ••• , &01/J • But this iden-

PI P2 
tity can be obtained also without solving the equations if one proves 
that the quantities o/ft and the quantities satisfy the same sys-
tem of linear equations. For this proof one must differentiate partially 
the partial differential equation + 'ljJ = 0 with respect to the con-
stants 0:1,0:2, ... ,0:/" and hereby observe that of the quantities t, qi and 
Pi of which 'ljJ is a function, only the last, Pi, contain the constants 
0:1,0:2, ... ,O:w Differentiation with respect to O:i gives 

and since 
äV äV äV 

PI = äql ' P2 = äq2'···' PJ.L = äqJ.L' 

°Pk - 02V b . f h . C • - 1 2 so, BQi - OQiOqk' one 0 tams rom t ese equatlOns lor z - , , ... , J.l, a 
system of differential equations which differs from the system (20.4) only 
in that, the quantities enter in the place of Hence we conclude 
that = (See the rernark on the following page). 
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For the derivation of the second half of the differential equations 
(20.3), the equations = - we take the help of the second half of 
the integral equations, i.e., the equations 

8V 
uqi 

which form the first system of integral equations, since they represent 
relations between the quantities qi and and the f-t arbitrary constants. 
The equation Pi = gives, on total differentiation in t, 

If . 0Pl . I C 02V 02V o2V d we wnte " . , ... , " . respectlve y lor ... an vq, vq, vq, uq,uql uq,uq2 vq,vqJ.L 
th I d d . d t· dql - o'IjJ _ o'IjJ _ o'IjJ use e a rea y enve equa Ions dt - OPl' dt - 0P2'· ··' dt - oPJ.L' 

one obtains 

(20.5) 

On thE'J-other hand, if we differentiate the equation + 1j; = 0 partially 
with respect to qi, we find 

and this equation substracted from (20.5) leads to the result 

dPi = dt - 8qi· 

With this, the second half of the differential equations is also derived 
and the theorem stated above is completely proved. It is important that 
accarding to the result derived, the f-t constants contained in V can be 
chosen arbitrarily, and need not be the initial values ql' q2' ... since 
for introducing the initial values one has to solve equations or resort to 
elimination to carry out troublesome operations in most cases. These 
can now be avoided. 

One point of the preceding proof deserves a special mention. Since 
we saw that the equation (20.4) set up for the quantities hold also 
far the quantities we concluded from this that the quantities 
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and are equal to one another. However, we are justified in reaching 
this conclusion only when the quantities o/Jt take finite and completely 
determined values through the system of linear equations (20.4). Now 
this holds always for a system of linear equations as long as the equa-
tions do not contradict one another or as long as one or more are not 
consequences of the remaining. In the first of these cases the values of 
the variables will be infinite, in the second case undetermined; the two 
cases differ only through the values of the entirely constant terms, for, 
assuming that the last equation of the system follows from the others, 
these, multiplied by suitable constants and added should give the last. 
Now if one alters in the last equation the constant term by an arbitrary 
amount, then it does not follow from the others, but contradicts them. 
Both cases therefore agree that if one takes the constant terms to the left 
hand side, the right hand side of one equation, say the last, must be rep-
resented by the sum of the right hand sides of the remaining equations 
multiplied by suitable factors. If one inserts for the coefficients standing 
in the last horizontal row the representation arising from this by virtue 
of the remaining, the determinant R of the equation in question reduces 
to a sum of determinants each of whom has two identical horizontal 
rows, and hence vanishes. Therefore R wil be also equal to zero, and so 
the exceptional case in which the above proof becomes invalid occurs (in 
so far as the coefficients of the linear equations remain finite, which we 
always assurne) only if the determinant of the linear equations vanishes. 
The coefficients of the linear equatins (20.4) are 

82V 82V 82V 
8a18ql' 8a 18q2'···' 8a18qf.L' 

82V 82V 82V 82V 

Consequently, one can represent this determinant as a functional deter-
minant in following two ways: 

8 8V 8°V 8 8V 8 8V 8 8V 
R= 8a2 ••• 8a" = 8a2 ••• 8a" 

8ql 8q2 8qf.L 8al 8a2 8af.L 

From this two fold representation of R follows incidentally a gel'teral the-
orem on function of 2f-L variables ql, q2,·.·, qf.L' a1, a2,·.·, a w If R were 
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equal to zero, then aeeording to §5 of leeture 13 (page 112) the quantities 
aav , aav , .. . , aav , eonsidered as functions of ql, q2, ... ,q", would not be 

Qj Q2 QJL r 

independent of one another, i.e., there must exist an equation involv-
. av av av t h' h d t . mg -a '-a , ... , a-' ClI, Cl2, Cl'" W le oes not eon aln ql, q2,"·, q". Qj Q2 QJL r r 

From the seeond representation for R, it follows equally that between 
av av av h . . h' h d -a '-a , .. . , -a ' ql, q2 , . . . q", t t ere must eXIst an equatlOn w le oes qj q2 qJL r 

not eontain ClI, Cl2, . .. ClJl' One has then a partial differential equation of 
the form 

o = F (t, ql, q2, ... , qJl' 88V , 88V , ... , 88V ) , 
ql q2 qJl 

Le., a partial differential equation of the first order, whieh thc assumed 
solution V must satisfy and whieh does not eontain This is however 
impossible sinee V should aetually be a complete solution of +'IjJ = O. 
N amely, in order that 

satisfy the eoneept of a complete solution, it is neeessary that one needs 
all the J.L + 1 differential eoeffieients 

8V 
8t 

81 8V 
8t' 8ql 

81 8V 
8ql' 8q2 

81 8V 
8q2"" , 8qJl (20.6) 

for the elimination of the J.L + 1 eonstants ClI, Cl2, ... ,Cl, C. If one ean 
eliminate all the J.L + 1 eonstants without using the equation = 
so that one arrives at an equation of the form 

F(t, ql , q2, ... , qJl' 88V , 88V , ... , 88V) = 0, 
ql q2 qJl 

and we assume that for the elimination of the eonstants we ean miss no 
more of the equations (20.6) than the one = M, while eaeh of the 
remaining equations is required for that. Then it must be possible for 
one of the eonstants ClI, Cl2, ... , ClJl to take a particular value without 
one of the equations = M eeasing to be required for the elimination 
of the constants. Then between J.L equations one can in general eliminate 
only f..l- 1 quantities. The constant to which one gives a special value is 
thereby superfluous (supervacanea), and the function 1 is to be looked 
upon as involving only f..l - 1 eonstants. Henee V = 1 + C is not a 
complete solution of the partial differential equation + 'IjJ = 0, but 
only of the equation F = 0, which contradicts our assumption. The 
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determinant R can then never be zero, and with this, the conclusion 
that we drew in the proof of the equation (20.3) is valid . 

In concluding this lecture we shall actually form the partial differen-
tial equation + 'lj; = 0 for the free motion of n mass points. In this 
case, 'lj; = T - U, the 3n coordinators Xi, Yi, ... ,Zi are to be inserted for 
the quantities qi and since T = I: + yt + zn, it follows from 
the equations Pi = that in place of the quantities Pi the quantities 

uqi 

enter here. Since at the same time P is to be set equal 
to one has the equations 

8V 
8zi ' 

or x' = ßV y' = ßV z' = ßV. The substitution of these values 
t mi ßXi' t mi ßYi' t mi ßZi 

in T gives 

T = L ( 2 + 2 + 2 ) 

and since U is a function of time and the quantities ql, i.e. the coordi-
nates Xi, Yi, Zi, so one has 

8V + (8V)2 + (8V)2 + (8V)2 _ U 
8t 2 L mi (8Xi 8Yi 8zi ) - . (20.7) 

This is the first order partial differential equation on whose solution 
the integration of the differential equations of motion depends for the 
case where the motion is entirely free and a force function U that may 
contain besides the coordinates the time t explicitly, exists. If one has 
a complete solution of equation (20.7), Le., a value of V, which contains 
3n constants al, a2,"" a3n in addition to the additive constants, then 
the equations 

8V 
-8 =ßi' 

ai 

that hold for i = 1,2, . .. 3n, are the integral equations of the differential 
equations of motion 

d2xi 8U d2Yi 8U d2zi 8U 
mi dt2 = 8Xi' mi dt2 = 8Yi' mi dt2 = 8zi ' 

(i = 1,2, ... n) whose first integrals are contained in the system 

8V dXi 8V dYi 8V dZi --m·- --m·- --m·-8Xi - t dt ' 8Yi - t dt ' 8zi - t dt . 



Lecture 21 

Investigation of the case in which t does not 
occur explicitly 

The case where t does not occur explicitly in 'lj;., already introdudced 
above, requires special consideration. In this case the partial differential 
equation + 'lj; = 0 can be reduced to another which contains one 
variable less. This rests on a very remarkable transformation of partial 
differential equations through which one of the independent variables 
and the partial differential coefficient belonging to it reverse their roles. 

Let z be a function of n variables Xl, X2, ... Xn so that if PI, P2, ... ,Pn 
denote the partial differential coefficients of z with respect to Xl, 

(21.1 ) 

If one transfers the term Pldxl to the left hand side and furt her subtracts 
xldpl from both sides, then equation (21.1) changes into 

or, if we set 
(21.2) 

Then 

Therefore, if y = z - PIXI is looked upon as a function of 
PI, X2, X3, ... , Xn , one has 

ßy ßy ßy ßy 
ßPI = -Xl, ßX2 = P2, ßX3 = P3,···, ßXn = Pn· 
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If now z satisfies the first order partial differential equation: 

o 

(21.3) 

and if we substitute in place of z the new variable y = z - PIXI and in 
place of Xl the new variable _!:!JLaa , then the partial differential equation 

PI 
(21.3) transforms into 

0= F( - , X2, X3,·.·, Xn,PI, " , ... , ,). 
UPI UX2 UX3 uXn 

(21.4) 

This transformation which appears in the third volume of Euler's In-
tegral Calculus is of special importance if Xl does not occur in (21.3); 
for then, likewise !:!JLaa does not occur in (21.4) and therefore PI can be PI 
looked upon as a constant while integrating. Let us apply this to the 
equation 

ß!)V +7/J(ql,q2, ... q/-L' ... , =0. 
ut uQI uQ2 uQ/-L 

(21.5) 

Since t does not occur in 7/J" it takes the place of Xl in the formula given 
above. We introduce for t, the new independent variable 

ßV 
a=-

ßt 

and for V, the new dependent variable 

so that 

and 
ßV 
ßQI 

ßV 
W = V - t- = V-ta 

ßt ' 

ßW t=--
ßa' 

ßW ßV ßW ßV 
BQI ' ßQ2 ßQ2 ' ... , ßQ/-L 

We can also prove the formula for this transformation without using the 
differential equation 
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In fact V is a function of t, ql, q2, . .. , qJ.L and the arbitrary constants 
al, a2, ... , an. If we set 

öV W=V-t-öt' 

and introduce in W a new variable a for t by means of the equation 

öV 
&=a. 

then t is a function a and of the quantities other than t occurring in V, 
and 

W = V -ta 

is a function of a, ql, q2,··., qJ.L and of the constants al, a2,.··, aw Ob-
serving therefore the different significance of the differetiation for the 
functions V and W, one has 

öW 
öa 
öW 
öqi 
öW 
öai 

= 

öV öt öt ---a--t--t öt öa öa - , 
öV öV öt öt öV -+---a-=-
öqi öt öqi Öqi Öqi ' 
öV öV öt öt öV -+---a-=-. 
öai öt öai öai öai 

If then, according to our assumption, the time t does not occur explicitly 
in the function 'f/; of the equation (21.5), we introduce for t and V the 
new variables a and W through the equations 

öV 
öt = a, 

and transform (21.5) into 

öV V-t-=W öt 

( öW öW ÖW) a+'f/; ql,q2,···,qJ.L -ö ,-ö , .. ·,-ö =0. ql q2 qJ.L 
(21.6) 

After integration of this equation one finds V from the equation V -
= W, which, after = a and t = - have been substituted it 

goes over into 
öW 

V=W-a öa' 

Further in V, t is to be introduced again in place of a and indeed so by 
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me ans of the equation 

which is to be solved for a. 

aw 
-=-t aa ' 

180 

It seems at first sight as though a complete solution V of equation 
(21.5) does not follow in this way from a complete solution W of equation 
(21.6). Since the number of constants in W is J1, so likewise J1 constants 
occur in the derived solution V. But if V is to be a complete solution, 
it must contain J1 + 1 constants. One can easily include the missing 
constant in the following way. Since t itself does not occur in equation 
(21.5), but only so a solution V of equation (21.5) does not ce ase to 
be one such if one increases or decreases t bywe an arbitrary constant, 
so we write t - r in place of t. Thereby the transformation formula 
W = V - which holds between V and W changes into 

av W = V - (t - r)7!it = V - a(t - r). 

and t is no longer introduced through the equation = -t, but 
through the equation 

aw 
-- = r - t. aa 

Then V contains the required number J1 + 1 of constants, namely the 
J1 - 1 constants a1, a2, ... ,a/l-1 which occur in W besides the constant 
added to W, the additive constant itself, and the constant r related to 
t. The integral equations of the isoperimetric equation are therefore 

av av av av -a = ß1, -a = ß2, ... , -a-· - = ß/l-1, and -a = constant. 
a1 a2 a/l-1 r 

Since r occurs only in the combination t - r, so 

av av 
= ßt' 

so one can replace the last of the J1 integral equations by 

av 
7!it = constant. 

Hence, it follows that the equation = a by means of which we intro-
duce a for t is an integral and that a must be considered a constant. 
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As we have seen, the two equations 0: and = T -; t are 
equivalent; moreover, the partial differential coefficients and 
where i represents the number from 1 to J-l - 1, are equal; then one can 
represent the integral equation directly, without the help of V, through 
Wand obtain them in the form 

aw aw aw aw 
-a =ßl'-a =ß2'···'-a-- =ßJ1-1'-a =T-t. 

0:1 0:2 0:J1-1 0: 
(21.7) 

Likewise one can represent the first integral equation 

av av av 
aql =Pl, aq2 =P2,···, aqJ1 =PJ1 

through Wand since = obtain them in the form 

aw aw aw 
aql = PI, aq2 = P2,· .. , aqJ1 = Pw (21.8) 

In the case of mechanics 'I/J = T - U, and therefore we have the 
theorem: 1f the force function U does not contain the time t explicitly, 
so that the theorem of vis viva holds, one expresses half the 'vis viva' T 
through the quantities qi and Pi = g-z;. Therefore one substitutes in the q, 
equation for 'vis viva' 

o = 0: + 'I/J = 0: + T - U, 

in place of Pi, so that this equation goes over to a partial differential 
equation for W. 1f one knows a complete solution of the same which con-
tains the J-l - 1 constants 0:1, 0:2, ... , 0:J1-1 besides the constant additively 
related to W, then 

are the integral equations of the differential equations of motion, to which 
one can also add the first system of integral equations 

aw aw aw aw 
aql =Pl, aq2 =P2,···, aqJ1-1 =PJ1-1, aqJ1 =Pw 

The 2J-l constants contained in the integral equations are 

0:1,0:2, ... , 0:J1-1, 0:, 
ßl, ß2, ... , ßJ1 -1, T. 
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In the case of an entirely free system, 11 = 3n, and furt her in place of 
the quantities Pi, enter the quantities 

then 
1 L 1 {( ')2 (')2 , 2} T = - - mixi + miYi + (mizi) 
2 mi 

and the partial differential equation takes the form 

- - -- + - + - =U-o: 1 1 {(ÖW)2 (ÖW)2 (ÖW)2} 
2 L mi ÖXi ÖYi ÖZi . 



Lecture 22 

Lagrange's method of integration of first order 
partial differential equations in two independent 
variables. Application to problems of mechanics 
which depend only on two defining parameters. 
The free motion of a point on a plane and the 
shortest line on a surface 

After we have reduced the problems of mechanics to the integration of 
a non-linear first order partial differential equation, we must concern 
ourselves with the integration of the same, i.e., with the search for a 
complete solution. 

Very fine investigations of the integration of partial differential equa-
tions appear in the third part of Euler's Integral Calculus. Though he 
treats only special cases, he is so successful in describing them that 
his results, for the most part, require little or no addition of the general 
methods found later. Euler's works have, moreover, the great merit that 
the problems, considered as fully as possible, can be solved completely. 
His examples therefore always give the entire content of his methods 
according to the state of science existing then. It is, as a rule, an en-
richment of the same if one can add anything new to Euler's examples, 
since he would have seldom missed examples solvable by his methods. 

Lagrange has given his general method of integration of first order 
partial differential equations, which is a completely new idea in Integral 
Calculus,for the first time in a paper which is in the proceedings of the 
Berlin Academy for the year 1772. This work contains the reduction of 
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first order nonlinear partial differential equations to linear ones. The 
not ions of complete and general solutions are introduced deriving the 
latter from the former and the method of finding complete solutions are 
given. Everything, however, is restricted to the case of three variables 
of which only two are mutually independent. Lagrange 's method is the 
following. Suppose a first order partial differential equation is givenj 

'ljJ(x, y, z, p, q) = 0, 

where x and y are the independent variables, z the dependent, and 

so, that relation 
dz = pdx + qdy 

holds between the differentials of the three variables. If the given differ-
ential equation, solved for q gives 

q = X(x,y,z,p) 

then one has 
dz =pdx+ X(x,y,z,p)dy. 

In order to find a complete solution of z, i.e., a solution which contains 
two arbitrary constants, it is obviously only necessary to find a value p = 
w(x, y, z, a) which, substituted in the expression dz = pdx + Xdy, makes 
it a total differential. Then it remains to determine z from the equation 
dz = pdx+Xdy. The last requires the integration of a first order ordinary 
differential equation through which, besides a, a second constant b enters 
z. So it amounts to this: to determine pas a function of W of x, y, z and 
an arbitrary constant aso that the expression pdx + X(x, y, z,p)dy is a 
complete differential. For this it is required that p differentiated with 
respect to y gives the same value as X differentiated with respect to x, 
i.e., the equation 

or 
äX + äX p = _ äX äp + äp + (X _ äX p) äp 
äx äz äp äx äy äp äz 
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must be satisfied. Since X is a known function of x, y, Z,p, this is a lin-
ear partial differential equation for p, which contains three independent 
variables x, y, z and the given problem is reduced to finding, for this lin-
ear partial differential equation for p, one solution p = w(x, y, z, a) with 
one arbitrary constant a. This circumstance that one needs to know only 
one solution was brought out by Lagrange in an involved way. 

Let us now consider the special case in which 'Ij; and hence X, does 
not depend on z. The given partial differential equation then takes the 
simpler form 

"iJ!(x, y,p, q) = O. (22.1) 

In this case one can so determine p as a function of x, y, a, without z, 
that pdx + Xdy is a total differential. Since now as weIl as ?z vanish, 
the linear partial differential equation far p reduces to 

Instead of assuming that the partial differential equation (22.1) is to 
be solved for q, we would rather solve it in its original form. If, further, 
we assume the equation p = w(x, y, a) is solved not for p, but for a and 
brought to the form f (x, y, p) = a, then we have the formulae 

ox oq MI OX oq 
oll! 

-ff, op 
ox ox op op - oll!' 

Bq oq 
8p {il 8p {!1. 

ox ßy = -f!1. -f!1. ox 8y op op 

to use, and when we insert these values in the above partial differential 
equation for p, it go es over to the foIlowing partial differential equation 
for f: 

8"iJ! 0 f + 8"iJ! 8 f _ 8"iJ! 8 f = o. 
8p ox oq oy ox op 

(22.2) 

If one knows a solution of this equation without constants, then in the 
present case no furt her integration of a differential equation is required 
for the determination of a complete solution Z of (22.1). So, ifwe set the 
preceding solution f equal to an arbitrary constant a, and determine p 
and q as functions of x and y from the equation 

f(x, y,p) = a 
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combined with the given differential equation 

1J!(x,y,p,q) = 0, 

then these will be of such a nature that pdx + qdy is a total differential, 
since the condition (22.2) required for that is fulfiIled, and one thereby 
obtains z from the formula 

z = J(PdX + qdy) 

by simple quadrature, so that the second constant contained in the com-
plete solution z is additively connected with z. This could have been 
foreseen, since z itself is missing in equation (22.1). 

It now comes to finding one solution of the linear partial differential 
equation (22.2) in which, by virtue of the equation (22.1), the partial 
differential coefficients are assumed to be functions of x, y 
and p, without q. But it is weIl known that this linear partial differential 
equation (22.2) is none other (see Lecture 10, p.92) than the defining 
equation of that function f of x, y and p which, set equal to a constant, 
gives an integral of the system of ordinary differential equation 

ö1J! ö1J! ö1J! 
dx : dy : dp : -ö : -ö : - -ö . p q x (22.3) 

The entire investigation is thereby reduced to finding one integral of the 
system (22.3) of ordinary differential equation:;;. 

We can complete this system further by seeking with the help of the 
equation 1J! = 0, the quantity to which dq is proportional. Differentiation 
of the equation 1J! = ° gives 

But according to the differential equation (22.3), one has the proportion 

ö1J! ö1J! 
dx : dp = öp : - öx ' 

so that dx + dp itself vanishes; therefore dy + dq must also 
vanish and one obtains 
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The system (22.3) is therefore complete: 

8w 8w 8w 8w 
dx : dy : dp : dq = 8p : 8q : - 8x : - 8y , (22.4) 

a result symmetrial with respect to x and p on the one hand and y and 
q on the other, from which the correctness of the computation follows. 
This system says that in place of (22.3) we mayaIso allow q to occur in 
the function J, if we generalize the method of integration appropriately. 
N amely, we can look upon the equation J (x, y, p) = a as the result of 
elimination of q between an equation 

F(x, y,p, q) = a (22.5) 

and w(x, y,p, q) = 0, so that if X denotes as above the value of q arising 
from the solution of the equation W = 0, we have identically 

F(x, y,p, X) = J(x, y,p). 

Therefore F(x, y, p, X) must satisfy the partial differential equation 
(22.2), which leads to the differential equation 

8w 8F + 8w 8F _ 8w 8F + 8F (8W 8X + 8w 8X _ 8w 8 X ) = 0 
8p 8x 8q 8y 8x 8p 8X 8p 8x 8q 8y 8x 8p 

for F. But since X satisfies the equation w(x, y, p, X) = 0 identically, so 
one has 

ßw 8w 8w 
8X _ 8x 8X _ 8y 8X 8p 
8x 8w ' 8 8w ' 8 - 8w ' 

8x Y 8x P 8x 

Hereby the expression on the left hand side of the above equation mul-
tiplied by reduces to - and one has 

8w 8F 8w 8F 8w 8F 8w 8F --+--------=0. 
8p 8x 8q 8y 8x 8p 8y 8q 

(22.6) 

Therefore, it follows that F = a is in fact an integral of the system 
of differential equations (22.4). Since J(x,y,p) = a is the result of 
elimination of q between F(x, y,p, q) = a and w(x, y,p, q) = 0, so the 
same values of p and q follow from the equations F(x, y, p, q) = a and 
w(x,y,p,q) = 0 as from J(x,y,p) = a and w(x,y,p,q) = O. Moreover, 
if one observes that W = 0 is an integral of the differential equation 
(22.4), and indeed a general one if the function W contained a constant 
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additively connected to it, otherwise a particular one, then one can 
collect together the results in the following theorem 

If the partial differential equation 

\I!(x,y,p,q) =0 (22.1) 

is given, where p = q = one forms the system of ordinary differ-
ential equations 

ä\I! ä\I! ä\I! ä\I! 
dx : dy : dp : dq = äp : äq : - äx : - äy . (22.4) 

If one knows apart from the integral \I! = 0, given apriori, another 

F(x,y,p,q) = 0, (22.5) 

one determines from (22.1) and (22.5) p and q as functions of x and y; 
then one obtains z though the formula 

z = J (pdx + qdy) 

by means of a simple quadrature. 
The equations (22.4) are of the same form as the differential equa-

tions of motion, only in place of the quantities ql, q2, PI, P2, 7j; + 0:, w, 
the quantities x,y,p,q, \I!,z occur here. Consequently we obtain a new 
integral equation from (22.4) if we differentiate z with respect to the 
arbitrary constant contained therein and set the result equal to another 
arbitrary constant. Such a constant contained in z is a; we have then in 
the equation 

äz = J (äP dx + äq dY) = b 
äa äa äa 

the third integral of the system (22.4). That we are led to it by a simple 
quadrat ure is a significant use we have derived from the reduction of the 
system of ordinary differential equations (22.4) to the partial differential 
equation (22.1). In order to extend the analogy with the differential 
equations of motion completely, we add to the proportion (22.4) dt on 
the left hand side, 1 to the right, then, as we have seen in the previous 
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lecture, t will be determined through the equation 

Bz J (BP Bq) - = -dx + -dy = T - t, 
Ba Ba Ba 

where a is the constant contained in W = 'l.j; + a. 
After Hamilton had found the reduction of the differential equations 

of dynamics to a first order partial differential equation, one needed then 
to apply to them only the methods known for 65 years in order to obtain 
important results for all problems of mechanics which contain only two 
quantiities ql and q2 to be determined. 

If the theorem of vis viva holds for the problems of mechanics under 
consideration, then in the equation 0 = W = a + 'l.j;, the function 'l.j; has 
the value 

'l.j;=T-U, 

The equation 
T= U -a, 

which expresses he re the theorem of vis viva and in which U is a func-
tion of ql and q2 alone and T a function of ql, q2, PI, P2, goes over on 
substitution of the values PI = P2 = to the partial differential 

uql uq2 ' 
equation for W, and the differential equations of motion will be 

Let the second integral, free from t of this differential equation which 
is necessary for the determination of the complete solution W be 

as one has then 
W = J (PIdql + P2 dq2), 

the third integral, free from t, of the differential equations of motion, is 

BW =b 
Ba ' 

and t is introduced through the equation 

BW 
Ba = T - t. 



Lectures in Dynamics 190 

This result can be expressed thus, independently of the theory of partial 
differential equations: 

1J, in a problem oJ mechanics which contains only two quantities ql 
and q2 to be determined, and in which the theorem oJ 'vis viva' holds 
and besides, iJ one knows another integral F(ql,q2,PI,P2) = a, where 
PI = P2 = then one determines the quantities PI and P2 Jrom 

ql q2 
the equations 'ljJ = T - U = -a and F = a as Junctions oJ qI and q2, a 
and a; then the two remaining integrals are given by the equations 

b, 

= T -t, 

so that the complete integration oJ the differential equations oJ motion, 
z. e. oJ the system 

ß'ljJ ß'ljJ ß'ljJ ß'ljJ 
dt : dql : dq2 : dPI : dP2 = 1 : ßPI : ßP2 : - ßql : - ßq2 

is contained in these Jour integrals. 
These are entirely new formulae; they hold for the motion of a point 

in a plane or on a curved surface, if the theorem of vis viva holds. 
For free motion in the plane, if the mass of the point is set equal to 

unity, one has 

d2x _ ßU d2y _ ßU T _ (,2 ,2) 
dt2 - ßx' dt2 - ßy' - 2 x + Y , 

and the theorem of vis viva is contained in the integral 

1 (t2 ,2) "2 x +y = U - a. 

If one knows a second integral Le., a second equation according to which 
a function of x, y, x', y' will be equal to an arbitrary constant a and if 
from the two one determines x' and y' as functions of x, y, a and a, then 
the equation of the trajectory is 

J (ßx' dY') ßa dx + ßa dy = b, 

and the time is expressed through the equation 

J (ßx' ßy') -dx + -dy = T - t. ßa ßa 
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I had already communicated these formulae to the Paris Academy 
in the year 1836 as the simplest result of the reduction of problems 
of mechanics to partial differential equations. For the interest these 
formulae evoke and as they are derived for the most elementary example 
of mechanics, they deserve to find a place in text-books. They are 
already included in the teaching of students in polytechnics. Poisson has 
given a proof, or rat her a verification of the same, in Liovilles Journal. 1 

A second case included in the above formulae is that in which a point 
given an initial push moves on a given surface. Such a point describes 
the shortest line whose determination depends on a second order differ-
ential equation. According to the earlier considerations, it follows that 
if one knows an integral of these differential equations, one can derive 
the equation holding between the coordinates along the trajectory by a 
simple quadrature. Since the force function vanishes in this case, the 
partial differential equation will be 

T + 0: = O. 

If x, y, , z are the coordinates of the moving point, then 

If one looks upon x and y as the quantities to be determined, denoted 
as above by ql and q2, then one has to substitute the value arising from 
the equation of the surface 

dz = pdx + qdy, 

and obtain 
2T = dx2 + dy2 + (pdx + qdy)2 

dt2 ' 
or, 

2T = X,2 + y,2 + (px' + qy')2. 

If 'fJ are the quantities denoted above by PI and P2, then 

8T , (' ') 8x' = x + p px + qy , 

8T , (' ') 8y' = y + q px + qy , 

(1 + p2 + q2)(px' + qy') 

1 Vo1.2, p.335 
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If one sets 

one finds, on solving for x' and y', 

x' 

y' 

and since for T, as a homogenous function of the second order in x' and 
y', one can apply the formula 

so this gives 

2T 

öT, öT, , , 
2T = öx' x + öy' y = x + TJY , 

e + r? _ + qTJ)2 
1 + p2 + q2 

(1 + + (1 + p2)TJ2 -
1 + p2 + q2 

The partial differential equation for W is therefore 

This equation can be transformed in various ways by introducing two 
new variables in place of x and y. The following example of this will lead 
to a substitution with the help of which we shall determine the shortest 
lines on a tri-axial ellipsoid. 

The cases introduced also belong to the applications of the principle 
of the last multiplier which performs the last integration for problems 
of mechanics with an arbitrary large number of pieces to be determined. 
We are then led to the same result through entirely different considera-
tions. 



Lecture 23 

The reduction of the partial differential 
equation for those problems in which the 
principle of conservation of centre of gravity 
holds 

We shall now investigate what use can be derived for the partial differ-
ential equation from the principle of conservation of centre of gravity. 

As so on as the variables can be so chosen that one of them does 
not occur in the partial differential equation T = U - ex, but only the 
differential coefficient of W with respect to these variables, we can, by 
the same kind of transformation as that by which W was derived from 
V, omit this variable in question from the differential equation and so 
reduce the number of variables occurring in it. 

If we consider the case of a free system of n mass points, where 
T = ! L mi(x? + Y? + z?), then we have (See Lecture 21, pp.185) the 
partial differential equation 

- - -- + - + - -U-ex 1 1 ([ÖW] 2 [ÖW] 2 [ÖW] 2) 
2 L mi ÖXi ÖYi ÖZi - . (23.1) 

If the principle of conservation of cent re of gravity holds, then U depends 
only on the difference of the coordinates, so that if one puts 

6 = Xl - Xn, 6 = X2 - Xn,· .. = Xn-l - Xn 
the function U, considered as a function of the x-coordinates, can be 
represented solely the quantities We denote the partial differential 
coefficients of W with square brackets when we consider W as a func-
tion of XI,X2, ... ,Xn, and without them when considered a function of 
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This formula, gives to the sum L ..l.. 2 appearing in equation (23.1) m l UX t 

the new form 

where i runs from 1 to n, and s from 1 to n - ]. 
After the introduction of this transformation in the partial differen-

tial equation (23.1), the original variables Xl,X2, ... ,Xn-l,Xn are co m-
pletely replaced by 6,6, ... , X n , and the variable X n itself does 
not occur any more, but only the derivative of W with respect to it. 
Therefore, we introduce for X n the new variable cl' by means of the 
equation aw , 

8xn = 0:, 

and for W, the new variable to be looked upon as a function of 6, 
6,· .. and a: 

where 0:0 is an arbitrary constant. On using the equations 

8W aWl 

86"'" 

the expression (23.2) now goes over to 

aw 
' 

and when we substitute the right hand side of (23.3) in (23.1) and we 
notice that for differentiation with respect to Yi or Zi, the derivatives of 
Wand W 1 are the same, (23.1) changes into a partial differential equa-
tion for W1, in which only the variable 0:' occurs but not the differential 
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coefficient c;:,1. In order to make the passage back again from a ' and 
W1 to X n and W, one uses the equations 

aW1 
aa' = ao - X n , 

One can simplify the expression (23.3) still further, if one transforms 
the linear terms in the partial differential coefficients of the dependent 
variable through a new transformation, which is analogous to the trans-
formation of the equation of a section of a sphere with reference its 
centre. If one sets 

where 91,92, ... ,9n-1 denote constants yet to be determined, so that 

then the expression (23.3) goes over to 

1 [aw] 2 L mi aXi = 

(23.4) 

Let Si be one of the indices s. If one looks on the right hand side 
of (23.4) for the term multiplied by the first power of and sets its 
coefficients equal to zero, then one has 

9s' _ a ' - L: 9s = O. 
m s, m n 

(23.5) 

This equation must hold for the n - 1 values of Si. If one multiplies these 
by m s, and sums from Si = 1 to Si = n - 1, then one obtains first of all 
the value of 2:9s, namely 

or, if one introduces as in Lecture 3 the notation 
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then 

a'(l- :), 
ci - Lgs 

a' 
= M mn . 

If one substitutes these values in (23.5), one finds for gs', the simple 
value 

a' 
gs' = Mms" 

so that the formula for transformation of W 1 into W2 is determined in 
the following way: 

(23.6) 

Through substitution of the values gs in (23.4), the part independent of 
in this expression will be 

and one obtains 

L [8W]2 = L (8W2)2 + _1 (L 8W2)2 + a,2. (23.7) 
mi 8Xi m s m n M 

If one inserts this expression in equation (23.1) and observes that W1 

differs from W2 by a quantity which does not depend upon the variables 
Yi and Zi, then for differentiation with respect to Yi or Zi, not only the 
derivatives of Wand W 1 , but also those of Wl and W2 are equal. Then 
the equation (23.1) changes into a partial differential equation for the 
dependent variable W2. This differential equation does not contain any 
more the 3n independent variables Xi, Vi, Zi, but only 3n -1, since the n 
variables X are replaced by the n-1 and the newly introduced 
quantity a' is to be considered a constant since the differential coefficient 
of W2 with respect to this does not appear. After one has integrated 
the partial differential equation for W2 and determined W 1 from W2 
using the equation (23.6), there occurs, as already remarked above, the 
introduction of X n by means of equation = ao - X n ,. This, on 
substitution of Wl by W2, changes into 
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This equation is likewise an integral of the differential equations of mo-
tion, which can be reduced to the partial differential equation (23.1), 
and indeed the one which is to be added after choosing the integral ex-
isting between the 3n - 1 variables Yi, Zi, entirely analogously as the 
equation T - t = = through which t is introduced to form the 
last integral. 

If one puts together both transformations 

W 

then one obtains the formula 

ci Ln , 
W,2 = W - - m· x· + 0: 0:0 M t t , 

i=l 

in which, since W itself does not appear in the equation (23.1), one can 
omit the term 0:'0:0 because of the arbitrary constant connected with W. 

Even as by this transformation the n variables Xi in the partial dif-
ferential equation (23.1) can be reduced to n - 1 variables = X s - X n , 
so one can, by two new transformations of the same sort, reduce the 2n 
variables Yi and Zi to 2(n - 1) variables TJs = Ys - Yn and (s = Zs - Zn, 
and if finally one puts all the transformations together into one, then 
one has the following theorem: 

In the case of a free system of n mass points for which the differential 
equations of motion can be reduced to the partial differential equation 

- - -- + - + - =U-o: 1 1 {[8W]2 [8W]2 [8W]2} 
2 L mi 8Xi 8Yi 8zi ' (23.1) 

if one sets 

6 Xl - = X2 - Xn,··· = Xn-l - Xn 
TJl Yl - Yn, TJ2 = Y2 - Yn, ... ,TJn-l = Yn-l - Yn 
(1 = Zl - Zn, (2 = Z2 - Zn, ... ,(n-l = Zn-l - Zn. 

and introduces for W the new dependent variable 
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then the partial differential equation (23.1) is transformed into 

L _1 {( ön ) 2 + (ön) 2 + (ön) 2} 
2 m s Ö7]s ö(s 

1 { ( ön ) 2 ( ön ) 2 ( ön ) 2 } + 2mn L + L Ö7]s + L ö(s = U - ß, 
(23.8) 

where 
2 2 2 

0/ + ß' + "(' 
ß = 0: + 2M 

After integration of this partial differential equation for n, the variables 
X n, Yn, Zn are introduced through the equation 

0:0 - X n 

ßo - Yn 

"(0 - Zn = 

and finally the variable t is determined by the equation 

ön 
T - t = öo:. 

However, as the four constants, 0:', ß', "(' and 0: have been uni ted into 
one constant ß, so one 11as 

ön 
öo:' 

0:' ön ön 
M öß' öß' 

ß' ön ön 
M öß' Ö"(' 

and hereby the above four equations go over to the following: 

0:0 - X n 

ßo - Yn 

"(0 - Zn 
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The last three formulae agree with those given in Lecture 3 (p.18) for 
the rectlinear motion of the cent re of gravity when one brings them to 
the form 

ci ao + -(t - T) 
M 
ß' ßo + -(t - T) M 

" ,0 + -(t - T) 
M 

since the quantities on the right side are none other than the coordinates 
of the cent re of gravity. 
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Motion of a planet around the sun - Solution in 
polar coordinates 

The treatment of some examples by Hamilton's method will lead to 
further general observations. The motion of a planet around the sun 
constitutes the first example. 

In the case of a system of n free mass points, the partial differential 
equation to which the differential equations of motion can be reduced is 
the following (See p. 185): 

T = - - -- + - + - = U - a. 1 1 {(8W)2 (8W)2 (8W)2} 
2 L mi 8Xi ÖYi ÖYi 

For the motion of a planet whose heliocentric coordinates are x, y, z, this 
sum reduces to one term. Further if we set the mass of the planet equal 
to 1 and denote the attractive force of the sun at unit distance by k 2 . 

then the force function is U = kr2 , where r2 = x2 + y2 + z2, and one has 

(24.1) 

Since the radius vector occurs on the right side of this equation, it is 
appropriate to introduce polar coordinate, in place of rectangular coor-
dinates, using the formulae 

x = rcosrp,y = rsinrpcos'ljJ,z = rsinrpsin'ljJ. 

Then half the vis viva will be 

1 (2 2 2) 1 (2 2 2 2. 2 2) T = 2" x' + y' + z' = 2" r' + r rp' + r sm r.p. 'ljJ' , 
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so ßT ,ßT 2,ßT 2.2 , ßr' = r , ß<p' = r <p , fnI;' = r sm <p'l/J. 

201 

These quantities are the earlier quantities p, so to be set equal to 
öW öW. so one has 
ö<p' ö'IjJ' 

r' = ßW <p' = ßW 'l/J' = 1 ßW ßr ' r2 ß<p , r2 sin2 <p ß'l/J ' 
and therefore becomes 

1 {(ßW)2 1 (ßW)2 1 (ßW)2} T = 2 ßr + r2 ß<p + r2 sin 2 <p ß'l/J . 
The partial differential equation (24.1) is transforned in polar coordi-
nates as follows: 

1 {(ßW)2 1 (ßW)2 1 (ßW)2} k2 
2 ßr + r2 ß<p + r2 sin2 <p ß'l/J = -;: - a. (24.2) 

We shall integrate this equation by splitting it into many equations, each 
of which contains only one independent variable. If we set alone the first 
term on the left equal to the one on the right hand side, we get 

(ßW)2 = k2 -a, 
2 ßr r 

a differential equation which contains only one independent variable r, 
and then remains the equation 

( ßW)2 1 (ßW)2 ß<p + sin2 <p ß'l/J = 0, 

which does not contain r any more. We can carry out this splitting still 
more generally, in that we can add and subtract the term on the right 
hand side of the equation (24.2), and then split the equation into the 
two: 

1 (ßW)2 k2 ß 1 {(ßW)2 1 (ßW)2} 2 ßr = -;: - a - r2' 2 ß<p + sin2 <p ß'l/J = ß· 

The integral of the first equation is 
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and if one substitutes this value in the second, one obtains far F( <p, 'lj;) 
the differential equation 

1 {(ßF)2 1 (ßF)2} 2" ß<p + sin2 <p ß'lj; = ß· 

This partial differential equations can be split furhter into two parts, 
each of wh ich contains only one independent variable. Namely, one 
adds and subtracts on the right hand side the term ± and splits the 

sm 'P 
equation into 

1 (ßF) 2 _ ß "I and -21 2 = "I. 2" ßcjy - - sin2 <p U<v 

The integral of the first equation is 

F(<p,'lj;) = J 2"1 
2ß - -.-2- d<p + f('lj;) , 

sm <p 

and it follows from the second, f ( 'lj;) must satisfy the equation 

i.e., 

then 

F(<p,'lj;) = J 
and finally, 

(ßf)2 = 
2 ö'lj; "I 

2"1 r.c: 2ß - -. -2-d<p + V 2'Y'lj;, 
sm <p 

JJ2k2 2ß J W = -;:- - 2a - -;:2dr + 2"1 r.c: 2ß - -.-2-d<P + V 2'Y'lj;. 
sm <p 

(24.3) 

This is a complete solution of the differential equation (24.2) since it 
contains the required number of arbitrary constants. So one obtains the 
integral equations of the motion in the form 

äW I ßW I ßW I 

ßa = a - t, ßß = ß, ß'Y = "I , 
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where ci is eonstant denoted earlier by T. Carrying out the differentia-
tion, 

t - (i 

ß' 

It is to be remarked that the method by which we have integrated the 
equation (24.2) ean be extended to an arbitrary number of variables. 
This rests on the following. When one has n variables, if one sets 

Xl r eos!.pl, 
X2 r sin !.p I eos !.p2, 

X3 r sin !.pI sin !.p2 eos !.p3, 

Xn-l r sin!.pl sin!.p2 sin!.p3 ... sin !.pn-2 eos !.pn-l, 

Xn r sin!.pl sin!.p2 sin!.p3 ... sin !.pn-2 sin !.pn-l, 

then 

dxi + + ... + = dr2 + r 2 d!.pi + r 2 sin 2 !.p I + 
2·2 ·2 d2 2·2·2 ·2 d2 r sm !.pI sm !.p2 !.p3 + ... + r sm !.pI sm !.p2··· sm !.pn-2 !.pn-l. 

The above method ean therefore be used without any modifieation if the 
right hand side of the partial differential equation ean be brought to the 
form 

The arbitrary eonstants ß, 'Y which oeeur in the integral equation (24.4) 
above have very remarkable properties which make their introduetion 
very important in perturbation problems. It is therefore interesting to 
investigate the geometrie signifieance of these eonstants. This ean be 
done the following way. 
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If one sets the expression under the radical sign in the integral over 
r, equal to zero, one obtains an equation of the seeond degree in r, whose 
roots represent the largest and smallest values which the radius veetor 
ean take. The roots of the equation 

are a(1 + e) and a(1 - e), where a is the semi major axis and e the 
eeeentrieity of the planetry orbit. These give the equation 

k2 ß 2 2 - = 2a, - = a (1 - e ), 
a a 

so 
k 2 k 2 2 k 2 p a = - ß = -a(1- e ) =--
2a' 2 2 2 

(24.5) 

where pis the parameter. 
If one sets the expression under the square-root sign in the integral 

over 'P, equal to zero, then one obtains the largest or the smallest value 
of sin 'P, namely Now eos'P = where x denotes the distanee of the 
planet from the ecliptic (the yz-plane), eonsequently eos'P ean deerease 
up to zero. Thus there is no minimum but only a maximum for eos 'P, 
and it is 'P = 90° - J, where J is the inclination of the planetary orbit 
to the ecliptie. To this value therefore eorresponds the minimum value 
fi f' . V ß 0 sm 'P, l.e., 

sin(90° - J) = eos J, (24.6) 

k 
eos J. Jß = "2 eos J. y'p. (24.7) 

In order to determine the geometrie signifieanee of the eonstants 
a', ß', "'(', one must first fix the limits in the integrals oeeurring in (24.4). 
N amely, one ean take for the lower limit of one of these integrals either a 
given numerieal value or such a value which makes the square-root eon-
tained in the integral vanish. If we make the latter assumption, whieh 
we do in the following, these limits depend on the arbitrary eonstants 
a, ß, ",(, and sinee the integral equations (24.4) arise from the equation 
(24.3) through differentiation with respeet to these eonstants, one may 
think that new terms must be added to the equation (24.4), whieh arise 
from these limits. But the additional term are, aeeording to the known 
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rules of differentiation, multiplied by the values whieh the functions 
under the integral sign in equation (24.4) take for the lower limits of 
integration and sinee these values vanish, equations (24.4) remain unal-
tered. 

Under these assumptions, we let the integral in r oeeurring in the 
first equation in (24.4) start from the value a(l - e), whieh r takes at 
the perihelion, as the lower limit of integration. In ease the upper limit 
falls on this value of r, then the first equation (24.4) gives t - a' = 0, 
i.e., 

a' = The time at which the planet passes through the perihelion 
(24.8) 

To find the signifieance of ß', one determines first the value of the integral 
in c.p oeeuring in the seeond equation (24.4): 

<P = J dc.p = J sin c.pdc.p 
J2ß - 2,1 sin2 c.p J2ß - 2, - 2ß eos2 c.p , 

after taking as its lower limit as c.p = 90° - J. Through the substitutions 

eos c.p = V eos rJ, sin c.pdc.p = V sin rJdrJ· 

this go es over to 

i.e., 

<P= drJ· 

At the lower limit c.p = 90° - J, aeeording to equation (24.6), sinc.p = 
eos J = so eos c.p = J ß?; therefore eos rJ = 1, sin rJ = O. Aeeord-
ingly, the integral over rJ is to be taken from the lower limit rJ = 0 and 
then 

<P __ 1_ 
- ..j2ßrJ, 

so that the seeond equation in (24.4) go es over into 

ß' = - J dr + _l_rJ 
r 2 J2k2 Ir - 2a - 2ßlr2 ..j2ß. 
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P 

E 

B 

From the relation between <p and 'Tl, one can recognise the geometrical 
significance of 'Tl. <p is the hypotenuse of a right angled spherical tri angle 
whose sides are 'Tl and 90° - J. Now let EE be the ecliptic, P its pole, 
BB the plane of the planetary orbit, 0 the ascending node. We draw 
through P, at right angles to BB, the great circle PQ which meets EE 
in R; then QR = J, so PQ = 90° - J. Further, if the radius vector 
taken from the cent re of the sphere, the sun, to the planet meets the 
surface of the sphere in p, then pP = <p, and hence it follows that 
cos<p = sin J. cos(pQ) , i.e. 

'Tl = pQ = 90° - Op. 

Op is the distance of the planet from the ascending node 0, which we 
shall denote by (. Accordingly, 

90° - (, 

ß' -J dr + _1_(90° - (). 
r2 J2k2 /r - 20: - 2ß/r2 V2!3 

In order to determine ß', one needs now only to take the point of time in 
which the planet passes through the perihelion. Then the integral over 
r will be zero and one obtains 

1 ß' = fi'l7S (90° - distance of the perihelion from the ascending node). 
y2ß 

(24.9) 
Finally, " is given by the third equation (24.4). For <p = 90 - J, Le., 
when the radius vector of the planet meets the sphere in Q, the integral 
over <p will be zero and one obtains 

, 1 , 
, = 
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where 'Ij;' represents the value of the angle '1/' corresponding to the point 
Q. Since tan'l/; = t, 'Ij;' denotes the angle which the y axis makes with 
the plane PQ R, i.e., if the y axis passes through the equinoctial point 
V, 'Ij;' = V R = V 0 + 0 R = longitude of the ascending node +900 • One 
then has 

1 ,'= + longitude of the ascending node). 
y2, 

(24.10) 

With this aB the constants occuring in equation (24.4) are determined. 
For the integration of the partial differential equation (24.2) we could 

have also used the circumstance that 'Ij; itself does not occur in (24.2), 
but only Consequently the transformation to be applied is: 

This would have then led us to the partial differential equation involving 
only two independent variables: 

The integration of this will require a procedure which is not essentially 
different from the one applied above. 



Lecture 25 

Solution of the same problem by introducing 
the distances of the planet from two fixed points 

Aremarkable relation exists between two radius veetors of the planetary 
orbit and the are eonneeting their end-points. One is led to it if one 
proeeeds from the ordinary differential equations of elliptic motion, but 
through complicated calculations. We shall derive these relations with-
out difficulty from the partial differential equation and for this we have 
only to assurne that W can be represented by the heliocentric radius 
vector rand the distance p of the planet from one other point M,. The 
correctness of this hypothesis is not apriori evident 1 without furt her 
consideration. However it will be confirmed by calculations. 

Let the coordinates of the point be (a, b, c) so that 

With the hypothesis made above that W can be expressed in terms of 
rand p, one has 

ßW 
ßx 
ßW 
ßy 

ßW 
ßz 

ßW ßr ßW ßp ßW x ßW x - a --+-----+---ßr ßx ßp ßx - ßr r ßp p , 
ßW ßr ßW ßp ßW y ßW y - b --+-----+---ßr ßy ßp ßy - ßr r ßp p , 
ßW ßr ßW ßp ßW z ßW z - c --+--=--+---. 
ßr ßz ßp ßz ßr r ßp p 

1 The proof of this requires the result from the surface area theorem that the motion 
of the planet takes place in a plane, and the well-known fact that for a moving point on 
the plane, the distances from two fixed points can be looked upon as the determining 
elements. 
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These values are to be inserted in the partial differential equation 

( ßW)2 + (ßW)2 + (ßW)2 = 2k2 _ 20:, 
ßx ßy ßz r 

(25.1) 

and then the left hand side changes to 

( ßW)2 (ßW)2 1 ßW ßW - + - +{2x(x-a)+2y(y-b)+2z(z-c)}---& rp& 

The quantity within brackets is equal to r 2 + p2 - r6 where r6 = a2 + 
b2 - c2 . Therefore (25.1) changes to 

( ßW)2 + (ßW)2 + r 2 + p2 - r6 ßW ßW = 2k2 _ 20:. 
ßr ßp rp ßr ßp r 

One can get rid of the product of the two partial differential coefficients 
if one introduces in place of rand p their surn and difference, 

er = r + p, er' = r - p, 

so that 
ßW ßW ßW ßW ßW ßW 
-=-+--=---
ßr ßer ßer" ßp ßer. ßer' . 

Then one has 

2 ( + 2 '+ r 2 + :: - Tfi { - n 
2k2 

= - - 20:, 
r 

and on rnultiplication by rp, 

{ 2 2} (ßW) 2 { 2 2} (ßW) 2 2 (r + p) - ro ßer - (r - p) - ro ßer' = 2p(k - o:r), 

or, after substituting for r, p their values 

1 , 1 ( ') r= 2"(er+er),p= 2" er-er , 

finally 

(ß )2 ()2 2 2 W P 2 ßW 2 ,1 2 ,2 (er -ro) - -(er. -ro) - = k (er-er )--o:(er -er ). 
ßer ßer' 2 

(25.2) 
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This partial differential equation can be integrated by the method, intro-
duced in the previous lecture, of splitting it into two ordinary differential 
equations, one of which contains only er and and the other only a' 
and If one imagines an arbitrary constant ß added and substracted 
at the same time on the right hand side, one is led to the two differential 
equations 

( )
2 

2 2 BW 
(a - ro) Ba 

1 2 2 --Qa +k a+ß 
2 ' 

( ,2 2) (BW)2 a - ro --
Ba' 

1 ,2 2' - + k a + ß 
2 ' 

and hence for W we get 

The signs of the two quantities under the square-root, or what is the 
same, of the integral,are arbitrary and independent of one another. One 
may therefore choose for Weither the surn or the difference of the two 
integrals. One arrives at the right integral equations with either of the 
two assumptions, and one can therefore choose one or the other of the 
expressions on the grounds of greater or lesser simplicity of the result-
ing formulae. Let us decide for the difference and set for the sake of 
brevity 

(25.3) 

then we have as a solution of equation (25.2) the expression 

W = J davF(a) - J da' vF(a'), (25.4) 

to which we can also give the form 

W = jer ds..{F(s). 
er' 

(4*) 



Lectures in Dynamics 211 

Thus follows the formula, for example, for the introduction of time in 
the elliptic motion of a planet 

t - ci 

where the right hand side in general consists of elliptic integrals. How-
ever, as is well-known, time can be expressed by ares of a circle. There-
fore there are consequences for elliptic integrals which lead to the fun-
damental theorem of addition. 

The expression (25.4) is a complete solution of the partial differential 
equation (25.2) since one can, besides the arbitrary constant ß, still 
add a second constant C to it. But the expression (25.4) is also a 
complete solution of the partial differential equation (25.1). For, in this 
connection, not only ß and C, but also a, b, c are arbitrary constants, 
since they do not occur in(25.1) but in the expression (25.4). As a 
solution of (25.1) then, (25.4) contains more than the required number 
of constants i.e. there are superfluous constants among them. If one 
wants to use such complete solutions of a partial differential equation 
containing superfluous constants for the integration of the system of 
ordinary differential equations connected with it, one can always set the 
differential coefficients with respect to all the constants equal to new 
arbitrary constants, but these new constants are no longer independent 
of one another. On the other hand, one is free to use these superfluous 
constants at one's discretion. In the present case they can be used to 
transform the elliptic integral f dsJ F( s) out of which the expression 
(4*) of W is constructed, into a circular one. This transformation takes 
place also for the elliptic integrals derived from this which occur in the 
partial derivatives of W with respect to the constants contained in F(s). 

This specialisation of the integral f ds J F (s) can happen in two 
ways. The first consists in making the numerator - !as2 + k 2 s + ß of 
F( s) into a complete square, the second is that this numerator has a 
common divisor s - ro with the denominator s2 - rö of F(s). 

We choose the second way, and indeed on following grounds. If one 
derives the integral equations from (4*) without having to make any 
specialization of the constants, and from these the equation a' = 
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which, since a is contained in CJ, CJ' and ro takes the form 

, = )oCJ _ rpt:J\( ,)oCJ' J J_ F(CJ) _ Jd' F(CJ') a +a uu 2 2 a CJ 2 2' ua ua CJ - r 0 CJ' - r 0 

(25.5) 

then one is not allowed to have the lower limits of integration of the 
elliptic integrals occurring here to be x = a, y = b, Z = c, because then 
p = 0, CJ = CJ' = ro and the integrands would become infinite because 
of the (-3/2)th powers of CJ2 - ra , CJ,2 - rö contained in them. The 
integrals in (25.5) becoming infinite is not prevented by the first way 
of specializing mentioned above, but by the second method. Since it is 
necessary to set p = 0, in the foirmulae to be derived so we choose the 
second method. 

If we also assume that the numerator of F(s) vanishes for s = ro, so 
that we obtain the relation between ß and ro: 

Thereby 

so 

1 22 ß = -aro - k ro· 2 

1a 1 W = ds -- - -a. 
a' S + ro 2 

(25.6) 

(25.7) 

This is the formula for W which on differentiation gives the remarkable 
formulae for elliptic motion, discovered by Euler and Lambert, and used 
by Olbers and Gauss for determining the elements of the orbit. 

The system of the first integral equations will be formed through the 
formulae 

dx oW dy oW dz oW = = = dt ox ' dt oy , dt 0 z . 

We have already expressed above aa': and through and 
and the latter quantities through and If we use these relations 

. aw aw V k 2 1 V k 2 1 and msert for & and a;;r, then values a+ro - "2 a and - a'+ro - "2 a 
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given by (25.7), we obtain the equations' 

dx 
dt 

dy 
dt 

dz 
dt = 

(x x-a) -+--r p 

(x x-a) - ----
r p 

(y Y-b) - ----
r p 

(z z-c) -+--r p 

(z z-c) - ----
r p 

k2 1 
-- --Q 
a +ro 2 

k2 1 
- -Q 

a' + ro 2' 

k2 1 
- -Q 

a' + ro 2' 

k2 1 
- -Q 

a' + ro 2' 
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(25.8) 

whose correctness one can test if one squares them and adds and thereby, 
as one should, derives the theorem of vis viva. 

The system of integral equations holding between the coordinates 
will be found through the formulae 

, _ 8W b' _ äW '_ 8W 
a - 8a' - 8b' c - {Jc' 

and a', b', c' denote new arbitrary constants. Prom equation (25.7) one 
obtains 

{JW 
8a 

= 1 k2 a 1a ds 
2 ro a' (s + r )2 / - I Q o V s+ro 2 

äa +-8a 
k2 1 8a' 

----Q--
a + ro 2 äa 

k2 1 
--- --Q 
a' + ro 2' 

or, if one inserts for their values _ x;a , 
account that 

x-a and takes into p 

k 2 1 
-- --Q 
S + ro 2' 
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then 

8W 
8a _ 

( a x - a) - -+--
TO P 

k2 1 
--- --(t 

a +TO 2 

k 2 1 
-----(t 

a' + TO 2' 
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On using these values and the corresponding values of one 
obtains the integral equations sought for in the following form: 

a' 

b' 

c' 

( a x - a) - -+--
TO P 

k 2 1 
--,--- --(t 

a' + TO 2' 

TO P 

1 
--,--- --(t 

a' + 1'0 2' 

( c z -c) I k 2 1 
TO - -P- Y a + TO - 2(t 

( c z -c) - -+--
TO P 

k2 1 
-----(t 

a' + TO 2' 
(25.9) 

The constants a', b', c', can be determined by settting P = 0, which is 
an admissible value for p, since in consequence of the specialization of 
the constants contained in (25.6), the point (a, b, c) will be a point on 
the path of the planet2 . 

2In order to prove this assertion, it is necessary to go back to the not yet specialized 
value (25.4) of W. It is a complete solution of the partial differential equation (25.2), 
and on introduction of the equation of the plane of the planet's orbit, the problem 
of the motion of the planet will be reduced to the last, if one seeks a solution in 
the variables, a, a' and looks upon a, b, C as arbitrary but given constants. Hence it 
follows that if one derives from (25.4) the new equation ß' = where ß' denotes 
an arbitrary constant which together with the equation of the plane of the planet's 
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orbit determines the orbit. Differentiation with respect to ß gives 

if one sets for abbreviation 

This is the transcedental form of the integral of the differential equation 

0- da da' 
- J f(a) - J f(a') . 

Its integral equation in algebraic form, in consequence of EuleT's addition theorem for 
elliptic integrals, and indeed according to the form given it by Lagrange (Miscellanea 
Taurinensia, IV, p.lIO) is the following 

(I) 

where C 2 denotes the constant of integration. 
From the condition that the point (a, b, c) lies on the planetary orbit, i.e. that we 

can set p = 0, it follows x = a, y = b, z = C, T = Ta , a = a' = Ta. We first investigate 
the case in which p is infinitely smalI. 

Let () be the angle which the radius vector Ta of the sun to the point (a, b, c) 
makes with the tangent to the planetary orbit at the point (a, b, c) directed to the 
infinitesimally dose point (x, y, z), then one has, for infinitely small values of p. 

T - Ta = p cos () 

and in consequence of this, 

a - Ta = T - Ta + p = (1 + cos ())p, 

a' - Ta = T - Ta - p = (1 - cos())p. (Il) 

Hence one obtains that, for infinitely small values of p, both the quantities J f(a) 
and J f(a') become proportional to JP, and that on the left hand side of equation 
(I) the numerator J f(a) + J f(a') is proportional to JP, the denominator a - a' 
proportional to p, and the entire function becomes infinite, while the right hand side 
has a finite value. The value p = 0 is admissible only if the function 

has the factor s - Ta twice, which for s = a and s = a' and for infinitely small values 
of p, becomes proportional to p, that is, when between ß and Ta one has the relation 
stated above: 

1 2 2 ß = 2"CXTa - k Ta· (25.6) 
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Since we can let the moving point (x, y, z) coincide with the fixed 
point (a, b, c), the fractions x;a, 7' z;c appear under the form g. Their 
real values are cos cos 1], cos (, if we denote by 1], ( the angles which 
the tangent to the planetary orbit at (a, b, c) makes with the x, y, z. axes. 
Moreover a = a' = ro, then the relations 

I I[=fa a - - -(}: 
2ro 2' 

b' {[+ - 2 cos 1] - - - (}: 
2ro 2' 

c' {[+ (25.10) -cos( - --(}: 
2ro 2 

follow from the equations (25.9). These same values arise with opposite 
signs from the equation (25.8) for the quantities 1t-, if one sets 
p = 0, and accordingly then -a', _bi, -c' are the components of the 
velocity of the planet at the point (a, b, c)3. 

3If one squares the equations (25.9) and adds them, one obtains the relation be-
tween a', b', c': 

,2 ,2 ,2 (k2 ) a + b + c = 2 TO - 0 , 

which is not hing other than the theorem of vis viva for the point (a, b, c). This rela-
tion between the constants a', b', c' confirms what was remarked above in the text 
about the behaviour of solutions with superftuous constants, and shows that the three 
equations (25.9) are satisfied by only two of them. These two to which they can be 
reduced can be obtained in the following way. If one eliminates from (25.9) both the 
redical signs contained in them, then one obtains 

(bc' - b' c)x + (ca' - c' a)y + (ab' - a'b)z = 0 (III) 

as the equation of the plane of the planetary orbit, which satisfied by the values x = a, 
y = b, z = c. If one multiplies further the equations (25.9) by a, b, c in order and adds 
them, one obtains 

-(aa' + bb' + cc') 

J k2 1 J k2 1 = (0" + TO)(O"' - TO) -- - -0 + (0" - TO)(O"' + TO) -- - -0 
2 2 

(IV) 

as the equation of the orbital curve in the plane of the orbit. It is easy to verify the 
identity of this result with that contained in equation (I) of the preceding remark. If 
one keeps the earlier definition of the angle (}, one has 

, " J k2 1 aa + bb + cc = -2To cos(} - - -20; 
2To 



Lectures in Dynamics 217 

It only remains to introduce time, which can be done with the for-
mula a' - t = BW or Ba. ' 

(25.11) 

This integral leads to an are of a circle ; if one brings it to the appro-
priate form, one obtains the formula given by Gauss in theoria motus4. 

The assumption a = 0 corresponds to a parabolic motion. It gives the 
formulae which serve to determine the elements of a comet's orbit. 

While the equations from (25.7) to (25.11) hold for two radius vectors 
r, ro drawn from the focus and the are connecting them in the motion of 
a planet taking place in a conic section, they give more general formulae 
for this motion if the choice (25.6) is not made, so the point (a, b, c) 
does not lie on the planetary orbit . Likewise the equation (25.4) holds 
for W in the equation as weIl as in the integral equations derived from 
it appears the difference of two elliptic integrals which are of the same 
form and differ only in their arguments a, a'. According to the addition 
theorem for elliptic integrals, this difference can be transformed into 
one integral with a new argument a", increased by an algebraic and a 
circular or logarithmic function of a and a'. As we know, the integral 
equations do not contain any elliptic integrals, so the new argumentalf 
which depends aigebraically on a and a' must be equal to a constant. 
The equation a" = constant is therefore one of the integral equations5 , 
and is indeed the equation of the orbit, while the remaining algebraic 
and logarithmic parts supply the rest of the integral equations. 

The general formulae following from (25.4) have also the remarkable 
property that, except for a modification to be mentioned,that they still 
hold when a second attracting force acts towards the point (a, b, c). Then 
a, b, c are no more arbitrary but given constants. We have besides a only 
one constant ß and we are no longer free to dispose them off arbitrarily. 
The modification undergone by the present partial differential equation 

hence on consideration of the equation (II) it emerges that the equation (IV) leads to 
an identical result für infinitely small values üf p, it being assumed that the radicals J - J (1/":-ro - both then approach the value J ;r2o - taken with the 
same sign. 

4See Grelles Journal vo1.17, p.122 
5See the remark on p.217 
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(25.2) of which the right hand side is 

2 ( ') 1 (2 ,2) (k2 ) k a - a - 2a a - a = 2rp -:;: - a , 
k,2 

consists in that a second term p arising from the attraction towards 
the point (a, b, c) is added to the force function U = kr

2 , which changes 
the right hand side into 

(k2 k,2 ) 2 , ,2 , 1 2 ,2 
2rp - + - - a = k (a - a ) + k (a + a ) - -a(a - a ). 

r p 2 

Accordingly the partial differential equation (25.2) go es over to the fol-
lowing 

2 2 (ÖW)2 ,2 2 (ÖW)2 (a - ro) - - (a - ro) -
öa öa' 

(k2 + k,2)a _ 

- { (k2 _ kP)a' _ } . 

Since one can resolve this equation into two ordinary differential equa-
tions 

one obtains for W the solution 

W = J da 
ß + (k2 + k,2)a - !aa2 

a 2 - rö 

± J da' 
ß + (k2 - k,2)a' - !aa,2 

a,2 - rö 
in which the two elliptic integrals differ not only in their arguments but 
also in their forms. For the problem of attraction towards two fixed 
cent res in space the number of constants occurring here is not sufficient. 
For the problem in the plane, on the other hand (and the problem in 
space can be reduced to it), the above value of W is a complete solution. 

= ß' gives the orbit of the point, = a' - t, the time. 



Lecture 26 

Elliptic Coordinates 

The main difficulty in the integration of a given differential equation 
appears to be in the choice of the right variables. There is no general 
rule for finding them. One must therefore adopt the reverse procedure: 
introduce a special substitution and investigate which problems can be 
adapted to the use of this substitution. I have communicated such a 
substitution to the Berlin Academy in a note, also published it in Grelles 
Journal l , and quoted aseries of problems, specially from mechanics, 
where it can be applied. Its applicability rests primarily on the fact that 
the expression 

takes a simple form in the new coordinates.We permit ourselves to go 
through problems one after another, the problem of attraction by two 
fixed cent res considered in passing in the previous lecture being one 
of them. We begin by stating the rem ar kable substitution mentioned 
above, and for the sake of generality, for an arbitrary number of vari-
ables. Consider the equation 

2 2 2 
X n _ 1 + +... -

al + A a2 + A an + A 
(26.1) 

The quantities al, a2, ... an can be ordered according to their magnitude, 
so that al < a2 < a3 < ... < an. 

Thus each of the differences a2 - al, a3 - a2, ... is positive. The 
numerators are all positive as is indicated by the fact that they are all 

lVoI.XIX, p.309 
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squares. If one multiples the equation (26.1) by (al +A)(a2+A) ... (an + 
A), one obtains an equation of the n-th degree in A, whose roots will be 
Al, A2, ... An. It is easy to prove that all these roots are positive. In fact, 
we let A run through all values from -00 to 00 and investigate what 
values the left hand side of the equation (26.1), which we denote by L, 
will assurne thereby. For A = -00, L = 0; with increasing A, L will be 
negative and run through all negative values until it becomes infinite 
for A = -an. 8ince an is the largest of the numbers al, a2, ... an, A first 
reaches the value -an, i.e. an +A is the first denominator which vanishes. 
Until A reaches the value -an, an + A is negative and as an + A nears 
0, a:l'\ = -00. When A increases further, an + A becomes positive, a:l'\ 
makes a jump from -00 to 00, and since the remaining factors are finite 
and indeed negative, what was shown for a:l'\ holds also for L. If A 
increases furt her and comes elose to -an-I, then L = -00; therefore at 
least one root of this equation lies in this interval, and indeed only one 
because L stays continuous from A = -an to A = -an-I, At A = -an-I, 
L again makes a jump from -00 to 00, and the same holds for the 
furt her progress of A, so that in each of the intervals -an to -an-I, 
-an-l to -an-2, . .. , -a3 to -a2, -a2 to -al lies one and only one root 
of the equation. If now A exceeds the value -al, then L = +00, and 
as A increases furt her to +00 L takes the value below 0; in this interval 
-al to 00 must likewise lie one root. So we have concluded that the 
eqootion (26.1) has n real roots Al, A2, ... , An. We shall take these roots 
ordered according to magnitude, so that Al lies between +00 and -al, 
A2 between -al and -a2, and so on, finally An between -an-l and -an. 
Thus 

Al > A2 > A3 > ... > An. 

When one inserts these values for A in equation (26.1), we get the fol-
lowing system of identical equations: 

X 2 x2 
_---"1_ + 2 + 
al + Al a2 + Al 

x2 x2 
_---"1_ + 2 + 
al + A2 a2 + A2 

(8) 

x 2 x 2 
_---"1_ + 2 + 
al + An a2 + An 

If we look upon a's as constants, X and A on the contrary as variables, 
their mutual dependence is of such a nature that, while Al, A2, ... , An 
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are found from quantities xI , ... , x; through solution of the equation 
(26.1) of degree n, conversely XI, ... x; are to be determined as functions 
of Al, ... An through a system of linear equations. 80 it comes to the 
solution of the system (8), for which we choose, among the different 
applicable methods, that of successive elimination. We first eliminate x;. For example, we subtract the first equation multiplied by an + Al 
from the second multiplied by an + A2 and obtain 

On using the identity 

an + A2 
al + A2 

(al - an)(A2 - At) 
(al +A2)(al +AI)' 

and after cancelling the term A2 - Al common to all terms, this equation 
goes over to 

One makes the same elimination between the first and the third equa-
tion, the first and the fourth equation and so on, finally the first and the 
n-th equation of the system (8), and thus obtains the following system 
of equations of order n - 1: 

(al - an)xI (a2 -
(al + At}(al + A2) (a2 + At}(a2 + A2) 

(an-l -+ ... + = 1 
(an-l + AI)(an-1 + A2) 

(al - an) 2 (a2 - an) 
xl + 

(al + At}(al + A3) (a2 + At)(a2 + A3) 
(an-l - an) 2 1 + ... + x 1= 

(an-l + At)(an-l + A3) n-
(al - an}xI (a2 - an)x§ 

(al + At}(al + An) (a2 + At}(a2 + An) 
(an-l -+ ... + = 1 

(an-l + At}(an-l + An) 



Lectures in Dynamics 222 

From this first reduced system of order n - 1 one can go over in the 
same way to a second reduced system of order n - 2, where one only 
need remark that if one looks upon 

al - an 2 a2 - an 2 an-l - an 2 
Xl' X2,···, Xn-2 al+AI a2+AI an-l+Al 

as new variables the system (81) is reduced to the form of the sytem (8). 
80 one obtains the second reduced system 

(al - an)(al - an-I) 2 (a2 - an)(a2 - an-I) 2 

(al + AI)(al + A2)(al + A3) Xl + (a2 + AI)(a2 + "\2)(a2 + A3) X2 + ... 
(an-2 - an)(an-2 - an-r) 2 } + ( )( )( ) X n 2 = 1 ..... . an-2 + Al an-2 + A2 an-2 + A3 -

(al - an)(al - an-I) 2 (a2 - an)(a2 - an-l) 2 

(al + Ar)(al + A2)(al + A4) Xl + (a2 + Al)(a2 + A2)(a2 + A4) X2 + ... 
(an-2 - an)(an-2 - an-I) 2 1} + X 2 = (an-2 + Al)(an-2 + A2)(an-2 + A4) n-

(al - an)(al - an-I) 2 

(al + Ar)(al + A2)(al + A3) Xl + ... 
(an-2 - an)(an-2 - an-I) 2 + X n 2 = l. (an-2 + Al)(an-2 + A2)(an-2 + A3) -

(82 .) 

When one proceeds in this way, one comes finally to a system (Sn-I) 
which contains only one variable xI and consists of only one equation. 
This equation whose form is determined by the process of computation 
is 

(al - an)(al - an-r) ... (al - a2) 2 1 
(al + AI)(al + A2) ... (al + An_r)(al + An) Xl = . 

and thus one obtains the following values arising from the solution (8): 

(al + Ar)(al + A2) ... (al + An-d(al + An) 
(al - a2)(al - a3) ... (al - an) 

(a2 + Ar)(a2 + A2) ... (a2 + Am-I)(a2 + Am) 
(a2 - al)(a2 - a3) .. . (a2 - an) 

(am - al)(am - a2) ... (am - am-l)(am - am+r) .. . (am - an) 
(an + AI)(an +A2) ... (an +An) 

(an - ar)(an - a2) ... (an - an-I)· 
(26.2) 
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8ince these express ions become equal to squares they must be positivee, 
as can be easily shown. In the expression for xi, for example, the first 
factor in the numerator is positive and remaining negative, so the nu-
merator has the same sign as (_1)n-l; in the denominator all n - 1 
factors are negative, so it has the same sign as the numerator; conse-
quently the fraction is positive. A similar result holds for the values of 
h . . .. 2 2 2 t e remammg quantItles x2' X3'· .. , xn" 

One can also verify the equations (26.2) if one substitutes them in 
the system (8.) and shows that it is identically satisfied. For this one 
needs a known lemma from the theory of decomposition into partial 
fractions, according to which the sum 

vanishes for s = 1,2, ... , n - 2, and is equal to 1 for s = n - 1, while for 
any higher value n -1 + r of s, it is equal to the sum of the combinations 
with repetitions of r of the elements al, ... , an, a theorem, whose con-
sequences I have discussed in my inaugural dissertation.2 The equation 
of the system (8) corresponding to Ai is 

In order that this be satisfied by the values (26.2) of xi, ... x;, the 
equation 

must be an identity, which is in fact verified by the theorem mentioned 
above, since in the numerator is the highest power of am and this 
has coefficient 1. 

The quantities xi, . .. , x; defined by the formula (26.2) satisfy 
yet another equation which is given immediately through the theorem 
stated. Namely, if one divides not only by am + Ai but also by the 
prod uct of the factors am + Ai, am + Ak, w he re Ai, Ak denote two different 
roots of the equation (26.1), then one obtains a sum which differs from 

2Disquisitianes analyticae de fractianibus simplicibus, Berelini 1825 (CalI. Warks, 
Val. III, p.3 f.f) 



Lectures in Dynamics 224 

the right side of equation (26.3) only through this, that the numerator 
is raised, not up to the (n - l)th power with respect to am, but to the 
(n - 2)th. Therefore, the sum will be zero and one has the equation 

(26.4) 

Let us investigate what the left hand side of equation (26.4) becomes 
when Ai, Ak are no longer different roots, but one and the same root of 
equation (26.1). The quest ion is then what value the expression 

(26.5) 

has if it is expressed only through A. The substitution of the values (26.2) 
for x; gives 

m=l 

The numerator of the fraction under the summation sign is a function 
of degree n - 1 in am. If we set in it for every am + As the expression 
am + Ai + As - Ai and develop the numerator in powers of am + Ai, then 
the term free of (am + Ai) is 

All the remaining terms of the expression put together and divided by 
the factor am + Ai of the denominator form a function of degree n - 2 
in am, and therefore fall off on summation in consequence of the stated 
lemma. Accordingly this expression for Mi reduces to 
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and since according to the theory of decomposition in partial fractions 
it is known that 

nIl 

L am + Ai - (am - a1) ... (am - am-d(am - am+d ... (am - an) m=l 
(_l)m-1 

= 
(al + Ai) ... (an + Ad 

finally one has for Mi the value 

Mi = (Al - Ai) ... (Ai - Ai-1)(Ai - Ai+1) ... (Ai - An) 
( a1 + Ai) (a2 + Ai) ... (an + Ai) 

Le. one has the equation 

x 2 x2 
-:------,1,--:-;:- + . . . + n 
(al + Ai)2 (an + Ai)2 

(Ai - Al) ... (Ai - Ai-d(Ai - Ai+d ... (Ai - An) 
( a1 + Ai) (a2 + Ai) ... (an + Ai) 

(26.6) 

(26.7) 

This result can be derived in another way, which is somewhat simpler. 
One sets 

(26.8) 

so that the equation u = 0 is identical with equation (26.1); then Mi 
defined by equation (26.5) can, with the help of u, be expressed in the 
form 

and one can therefore derive equation (26.6) for Mi if one replaces 
the variables xi, ... x; by A1, ... ,An on the right side ofequation (8). 
In order to obtain this transformation one multiples u by the prod-
uct of the denominators (al + A) ... (an + A) and then obtains a ra-
tional integral function of order n in A, which vanishes for the values 
Al, ... , An of A and in w hich the coefficient of Anis uni ty. One has then 
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( a 1 + A) ... (an + A) U = (A - A d ... (A - An), or 

U= 
(A - Al) ... (A - An) 
(al + A) ... (an +A)' 

(8*) 

an equation by comparison of which with (26.8) one concludes, inciden-
tally, that the values (26.2) of the quantities XI, ... can be defined as 
thc negatives of the numerators of the partial fractions (al ... , 
in the decomposition of the function (8*). If we differentiate the expres-
sion (8*) with respect to A and set A = Ai, we obtain 

Mi = ( >'=>'i 

(Ai - Ad ... (Ai - Ai-d(Ai - Ai+d ... (Ai - An) 
(al + Ai)(a2 + Ai) ... (an + Ai) 

in agreement with (26.6). 
The results obtained up to now enable us to add to the above substi-

tution, without furt her computation, the differential formulae following 
from the same. If one takes the logarithms of the values of contained 
in the equation (26.2) and then differentiates, one has 

Hence follows the formula for the sum of the squares of the differentials 
of Xl, ... ,Xn : 

According to equation (24.4), the coefficient of dAl.dA2 vanishes and 
likewise the coefficients of all products of differentials of two distinct 
A'S would be zero. The coefficients of dAI, ... are, on the contrary, 
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according to equation (26.5), the quantities MI, M 2 , ... , Mn; so we have 

(26.9) 

where the coefficients Mi are defined in equation (26.6). If one gives an 
extension to n dimensions of the not ion of vis viva + x;2 + of 
a freely moving point of mass 1, and sets T = + ... + then 
by virtue of equation (26.9) one can represent this expression T also 
through the variables A and their different coefficients with respect to t 
and obtain 

(26.10) 

The extension to n dimensions mentioned corresponds to the Hamilto-
nian partial differential equation whose left side is the expression 

This arises from T if one substitutes there 

8T 8W 8T 
8XI' 8x;' 

8W 8T 
8X2'···' 

One finds the expression to which the above one goes over on changing 
the variables x to the variables A, according to Lecture 19, if one uses 
in the transformed expression the 2T the equations: 

8T 
8A' I 

8W 8T 8W 8T 

In the present case, according to equation (26.10), 

h t t \, 4 aw . so one as 0 se Ai = Mi aAi In 
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and obtain in this way 

where Mi is to be determined in accordance with (26.6), or what is the 
same 
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Geometrie significance of elliptic coordinates on 
the plane and in space. Quadrature of the 
surface of an ellipsoid. Rectification of its lines 
of curvature 

Let us now examine more closely the geometrie significance that the 
substitution, introduced in the preceding lecture, has for n = 2 and 
n = 3. For the case of two variables one has the equation 

x2 x2 
__ 1_ + __ 2_ = l. 
al + A a2 + A 

If one looks upon Xl and X2 as orthogonal coordinates, this is then the 
equation of a conie section and in fact of an ellipse when A lies between 
the limits -al, and +00, so that both the denominators are positive. It 
is an equation of a hyperbola if A lies between -al and -a2, that is, the 
first denominator is negative and the second positive. If A varies while 
al and a2 remain constant, then this equation represents a system of 
confocal conic sections. If Xl and X2 are given, then there are always 
two values of A which satisfy the equations, one of which lies between 
-al and 00 and the other between -al and -a2 i.e. of the system of 
confocal co nie sections, two always pass through a given point, and in 
fact one is an ellipse and the other a hyperbola. The variables Al and 
A2 introduced for Xl and X2 therefore, speaking geometrieally, represent 
the points in the plane determlned through the ellipse and the hyperbola 
which go through them and have two given points for foei. If one sets Al 
= constant, one obtains all points on an ellipse of the system of confocal 
conic sections. If one sets A2 = constant, then this we get all points on 
a hyperbola. The two systems of confocal ellipses and hyperbolas have 
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this in eommon with the ordinary co ordinate system, that two eurves of 
one system do not interseet and that any eurve of one system interseets 
with all eurves of the other system orthogonally. In fact if one of the 
ellipses and one of the hyperbolas interseet at the point (Xl, X2) then, 

then the normals at the points (Xl, X2) to the ellipse and the hyperbola 
form with the eoordinate axes angles whose eosines behave as 88E : 88E 

Xl X2 

and similarly 88H : 88H. If these norm als are to be mutually orthogonal, 
Xl X2 

then the relation 

or 

oE oH + oE oH = 0 
OXI . OXI OX2 . OX2 ' 

X 2 x2 
___ -:-=-1 __ ---,- + 2 = 0 
(al + Ad(al + A2) (a2 + Ad(a2 + A2) 

must hold. Sinee this is identieal with the equation (26.4) of the preeed-
ing leet ure , the orthogonality of the ellipse and the hyperbola is hereby 
proved. From this arises a simplifieation for the determination of the 
surfaee element. In general this is equal to 

in the present ease one needs only to multiply the are lengths of the 
ellipse and the hyperbola with eaeh other. Aeeording to formula (26.9) 
of the preeeding leeture, the square of the element of are of an arbitrary 
eurve is 

4(dxi + dx§) Al - A2 dA2 A2 - Al dA2 
(al + Ad(a2 + Al) 1 + (al + A2)(a2 + A2) 2' 

(27.1) 

This gives the element of an are of an ellipse if one sets Al = eonstant, 
so that dAl = 0, and that of a hyperbola if one sets A2 = eonstant, so 
that dA2 = O. The elements of are are therefore 
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and the surface element is the product of these, i.e. 

Entirely analogous considerations hold for three variables, i.e. for 
three-dimensional space. Let Xl, X2, X3 be rectangular coordinates; then 
the equation 

represents when ).. varies, a system of confocal surfaces of the second 
degree. The theorems on confocal surfaces of the second degree (i.e. 
those in which the principal sections have the same foci) belong to the 
most remarkable ones in analytic geometry; I have made known some of 
the most important ones for the first time in Vol.XII of Grelle 's JournalI. 
Since Ghasles, in his historique"2, designates these as new, 
without mentioning the priority of my work, we must remind ourselves 
that, in this work, all articles written in German in Grelles Journal have 
been ignored.3 

The confocal surfaces can be divided in three systems; a system of 
ellipsoids for which ).. lies between -al and +00, a system of hyperboloids 
of one sheet for which ).. lies between -al and -a2, and a system of 
hyperboloids of two sheets for which ).. lies between -a2 and -a3. In the 
first case the denominators al + )..1, a2 +).. a3 +).. are all positive; in the 
second case al +).. and is negative, while a2 +).. and a3 +).. are positive; 
the third case al + ).. and a2 + ).. are negative and a3 + ).. positive. For 
every point (Xl,X2,X3) three values of)", )..1,)..2,)..3 exist, which satisfy 
the above equation, and in fact, )..1 corresponds to an ellipsoid, )..2 to 
an one-sheeted hyperboloid and )..3 to a two-sheeted hyperboloid. Of 
a given system of confocal surfaces of the second degree, through a 
given point pass one ellipsoid, one one-sheeted hyperboloid and one two-
sheeted hyperboloid. Each of these three systems intersects the other 
two orthogonally. Einet has proved for the first time that the curves 
of intersection are, at the same time, the lines of curvature of these 
surfaces. Gharles Dupin has shown in his "Developpments de geometrie" 

1 Letter to Steiner, p.137 
2Note XXXI, p 384 
3 Aper<;u historique, p. 215, Remark 
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that this theorem always holds when three systems of surfaees interseet 
mutually orthogonally. Lame has in more reeent times made interesting 
applieations of the theory of eonfoeal surfaees to mathematieal physies. 

That these eonfoeal surfaees passing through a given point in spaee 
interseet at right angles follows from the geometrie signifieanee of equa-
tion (26.4) of the previous leeture. It is self-evident also that the three 
eurves of interseetion of every two of these eonfoeal surfaees are at right 
angles to one another. Henee it follows that any two of the elements 
of ares of these eurves of interseetion multiplied by eaeh other lead to 
the surface element of the eonfoeal surfaee eontaining the two elements 
of are, and that the produet of all three elements of ares of the eurves 
of intersections represents the volume element in the eoordinate system 
(Al, A2, A3). 

The expression for the square of the element of are of any spaee-eurve 
is, aeeording to formula (26.9) of the previous leeture 

dxi + + 

If one sets one of the quantities Al, A2, A3 eonstant in this expression, 
then it refers to a eurve whieh lies on one of the confoeal surfaees, for 
example, on an ellipsoid for a eonstantAl. If one furt her sets in the 
expression two of the quantities Al, A2, A3 eonstant, then it refers to the 
interseetion eurve mentioned above, and in fact to those whieh lie on a 
confoeal ellipsoid if one sets Al and A2 or Al and A3 constant. On the 
other hand we get the curves of intersection of two eonfoeal hyperboloids 
if we set A2 and A3 constant. Aeeordingly, one obtains the elements of 
ares of the curves of interseetion on an ellipsoid 

(27.3) 
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and far the surfaces element of the ellipsoid 

..\2 - ..\3 d..\ d..\ 
4 23 
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(al + "\2)(a2 + "\2)(a3 + "\2)(al + "\3)(a2 + "\3)(a3 + ..\3)' 

If one integrates this differential and extends it over all possible values 
of ..\2 and "\3, i.e. from..\2 = -a2 to ..\2 = -al, and from ..\3 = -a3 
to ..\3 = -a2, then one obtains an octant of the whole surface of the 
ellipsoid. This double integral, however, breaks up into the sum of two 
products of simple integrals and gives for the surface of the ellipsoid the 
expression 

(al + "\2)(a2 + "\2)(a3 + ..\2)' 

-(..\3 -..\d 

(al + "\2)(a2 + "\2)(a3 + ..\2)' 

-(..\3 - ..\2) 
(27.4) 

which is made up of elliptic integrals. This is the way in which Legen-
dre4 has found the quadrat ure of the surface of the ellipsoid, His work 
is of the greatest importance because thereby, for the first time, the 
lines of curvatures were applied as the analytical tool for the transfor-
mation of coordinates. If in the expression above, one takes the integrals 
over arbitrarily narrow limits, one obtains then, not the surface of the 
whole ellipsoid, but a piece of it which is enclosed between two lines of 
curvature of one kind and two of the other kind. 

In order to obtain the volume element, one must multiply the surface 
element of the ellipsoid with the element of arc of the curve of intersec-
tion formed by the two hyperboloids. For this element of arc one obtains, 
when one sets ..\2 and ..\3 constant, the expression 

4Exercises de calcul integral, I, p.185, or Traite de fonictiones elliptiques, I, p.352, 
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consequently, the volume element is 

When one integrates this differential thrice, and in fact over such limits 
as do not exceed the possible values of Al, A2, and A3, one arrives at 
aspace which is bounded by two confocal ellipsoids, two confocal one-
sheeted hyperboloids and two confocal two-sheeted hyperboloids. The 
triple integral breaks up completely into six terms each of which is a 
product of these simple integrals. 

The two elements of are 

which we multiplied together for the quadrat ure of the ellipsoid, are, 
according to Binet's theorem, the elements of the lines of curvature on 
the ellipsoid. The integration of the elements gives the length of the lines 
of curvature, and we obtain for the length of their ares the integrals 

and 

(27.5) 

which belong to Abelian integrals and indeed of the genus which follows 
next to the elliptic integrals. 
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The shortest line on the tri-axial ellipsoid. The 
problem of map projection 

The formulae of the last two lectures lead to a very simple way of de-
termining the shortest line on a tri-axial ellipsoid, already mentioned in 
lecture 22 (p.194), but not carried out so far. This will be described 
by a mass point constrained to remain on the surface of the ellipsoid, 
without any force acting on it , only driven by an initial push. So the 
force function U vanishes in this case. 

If Xl, X2, X3 denote the rectangular coordinates, referred to the axes 
of the ellipsoid, of the moving point, then the constraint which holds 
in order that it remain on the ellipsoid , is expressed by the equation of 
constraint 

It now depends on representing Xl, X2, X3 as functions of two new vari-
ables so that these inserted in the equation of constraint, satisfy it iden-
tically. Such values are those which we have found for xi, x5 in 
).1, ).2,).3 if we look upon ).1 as constant, ).2,).3 as variable. We have 
to express the vis viva through the quantities ).2, ).3, which take the 
place of the variables denoted earlier by q, and their differential coeffi-
dents ).; = d;t2 , ).; = then to introduce for ).;,).; the new variables 
/12 = g[, , /13 = g[, , which correspond to the quantities denoted earlier 

2 3 

b d - aT - aw - aT - aw I h· T d y p, an to set /12 - - a>"2' /13 - - a>"3· n t IS way expresse 
through ).2, ).3 , and the equation T + Q: = 0, which we can write 
in the form T = h if one sets Q: = -h, is the partial differential equation 
of the problem, through which W is defined as a function of ).2 and ).3. If 
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one restriets the number of variables in equation (26.10) of lecture 26 to 
three, then one obtains for the 'vis viva' 2T the transformation formula 

,2 ,2 ,2 1 ,2 1 ,2 1 ,2 
2T = Xl + X2 + X3 = 4MIAI + 4M2A2 + 4M3A3' 

where 

(al + AI)(a2 + AI)(a3 + Al)' 
(A2 - Ad(A2 - A3) 

(al + A2)(a2 + A2)(a3 + A2)' 
(A3 - AI)(A3 - A2) 

Since, however, the motion takes place on an ellipsoid, so Al is constant, 
= 0 and 

Hence we have 
8T 
8N 2 

A; 

1 , 8W 8T 1 I 8W 
4 M2A2 = 8A2' = 4 M3A3 = 8A3' 
4 8W, 4 8W 

M2 8A2 ,A3 = M3 8A3' 
and one obtains for 2T the expression 

4 (8W)2 4 (8W)2 
2T = M2 8A2 + M3 8A3 

The partial differential equation sought for is accordingly 

T = 2(al + A3)(a2 + A2)(a3 + A2) (8W)2 
(A2 - Ad(A2 - A3) 8A2 

+2 (al + A3)(a2 + A3)(a3 + A3) (8W) 2 _ h 
(A3 - Ad(A3 - A2) 8A2 -, 

or, 

(al + A2)(a2 + A2)(a3 + A2) (8W) 2 

A2 - Al 8A2 

_ (al + A3)(a2 + A3)(a3 + A3) (8W)2 
A3 - Al 8A3 

1 
= "2h(A2 - A3). (28.1) 
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This partial differential equation again splits up into two ordinary differ-
ential equations, each of which contains only one independent variable. 
Again, if one adds and subtracts an arbitrary constant on the right hand 
side, one obtains the two ordinary differential equations 

(al + ),2)(a2 + ),2)(a3 + ),2) 

),2 - ),1 

( a 1 + ),3) (a2 + ),3) (a3 + ),3) 

),3 - ),1 

1 
"2 h (),2 + ß) 

1 "2 h (),3 + ß). 

The coefficient of 2 is positive, since of the three factors in the 
numerator only the first is negative and ),2 - ),1 is in any case negative, 
therefore h(),2 + ß) must be positive; the coefficient of (g;:) 2 on the 

3 
contrary is negative, since the first two factors of the numerator are neg-
ative and the denominator ),3-),1 also negative, consequently 
must be negative. The constant h is however positive, because it is equal 
to half the vis viva, a positive quantity by its nature. Since, ),2 + ß must 
be positive, ),3 + ß negative, one has the inequalities 

two conditions that are mutually consistent since ),2 > ),3. 
We obtain the following complete solution of the partial differential 

equation (28.1) from the above ordinary differential equations, 

W = 
(al + ),2)(a2 + ),2)(a3 + ),2) 

(),3 - ),t)(),3 + ß) } 
(al + ),3)(a2 + ),3)(a3 + ),3) . 

(28.2) 

One obtains from this the equation for the shortest line on the triaxial 
ellipsoid, = constants, or 

constant 

(28.3) 
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The equation for the time is T - t = = - or sinee W depends 
on h through the factor Jh, and aeeordingly = 21 w, 

1 
t-T= -W 2h . (28.4) 

If s denotes the are of the shortest line, reckoned from the point on 
which the moving point finds itself at time T, then the theorem of vis 
vi va gives T = = h, ds = v2hdt, 

s = V2h(t - T). 

Hence one obtains, by comparing with (28.4), the equation for the are 
s = vkW, or 

s 
(al + A2)(a2 + A2)(a3 + A2)' 

(A3 - At)(A3 + ß) } 
(al + A3)(a2 + A3)(a3 + A3) , 

whereby also the length of the shortest line is calculated. 
We have thus solved a problem hitherto considered unsolvable, by 

merely using the partial differential equation. Though the substitu-
tion applied is an essential requirement for this solution, the method 
of reduction to a partial differential equation simplifies the proeedure 
signifieantly. In fact, Minding found that, when he wished to apply the 
substitution published by me,he would not have been able to overeome 
the difficulties in the usual way of integrating an ordinary differential 
equation if he did not already know my result. 

Through the same substitution, which has already given us the solu-
tion of many difficult problems, we can also settle the problem of map-
projection for the tri-axial ellipsoid. Among the different ways of repre-
senting a eurved surface on a plane, as is necessary for a map, one prefers, 
above all, the method of projection in which infinitely small elements re-
main similar. In the preceding century Lambert had been concerned with 
various aspects of this projection, of which one can learn in detail from 
his contributions to mathematics. Because, of these Lambert's colleague 
at that time, Lagrange, was induced to undertake an investigation from 
the same standpoint and gave the solution completely for all surfaces of 
revolution. The Copenhagan Academy which later announced a prize 
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for the solution of this problem for all curved surfaces awarded it to the 
treatise sent in by Gauss. In this, Lagarange's work, to which only little 
had to be added, finds no mention. 

The leading idea for the solution of the problem of map projection is 
the following. Suppose one connects a point on the surface with points 
infinitesimaly elose, and the same is done for corresponding points on 
the plane. Then in order that the infinitesimally small elements be 
similar, the eorresponding lengths must be proportional, and conversely 
if the corresponding lengths are proportional, then the infinitely small 
elements are similar. This proportionality is to be expressed analytically. 

Let the coordinates x, y, Z of a point on the surface be given as func-
tions of two quantities p, q; then the square of the element of arc of any 
curve on the surface is represented by the expression 

The square of the corresponding element of are in the plane is 

where u and v denote rectangular coordinates in the plane. In order 
that the infinitely small elements of length be mutually proportional, 
dcr 2 must be equal to mds2 , where m ean be any function of p and q. 
The correlation system between the quantities /1, v and p, q must be such 
that the equation 

hold, where y'm represents the similarity-ratio. 
This differential equation can be satisfied in the following way. One 

resolves Adp2 + 2Bdpdq + Cdq2 into two linear factors 

v'Adp+ (JA + Je -S; n) dq, 

v'Adp+ (:A - Je -S; n) dq, 

and considers mitself resolved into the factors a + bR and a - bR; 
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then the differential equation above breaks up into the following two: 

du + dvV-l = (a + bV-l) 

{JAdP+ + JC- R) d+ 
du - dvV-l (a - bV-l) 

{JAdP+ - JC- R) dq} 

If one ean now determine a and b so that the right hand sides of these 
equations beeame perfeet differentials, then one obtains u and v by in-
tegration as functions of p and q, Determining the integrating faetor 
a ± bR is not hing else than integrating the differential equations 

o vAdp+ + Jc- R) dq, 

o vAdp + ( - Je - R) dq 

and this integration is the problem to be solved finally, If B = 0, then 
factors a + bR and a - bR must be found whieh make 

V Adp + vC V - Idq and V Adp - vC V - Idq 

integrable, and then va2 + b2 is the similarity-ratio, 
If the surfaee is a tri-axial ellipsoid, on introducing the quantities 

).1, ).2,).3 of which ).1 is set eonstant, one obtains, as a eonsequenee of 
equation (27,2) of Leeture 27, for the element of are of any eurve on the 
same, the expression 

ds2 + C 
().2 - ).t)().2 - ).3) 

4 (al + ).2)(a2 + ).2)(a3 + ).2) 

1 ().3 - ).t)().3 - ).2) d).2 
+4 (al + ).3)(a2 + ).3)(a3 + ).3) 3' 
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and one has to find the factors which make the express ions 

1 
2 

(A2 - Ad(A2 - A3) dA2 
(al + A2)(a2 + A2)(a3 + A2) 

1 
-
2 

1 
2 

(A3 - Al)(A3 - A2) dA2 _ 1 
(al + A3)(a2 + A3)(a3 + A3) J 
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integrable. These factors are for both expression, therefore a = 

b = 0, and the differential equations which give the correlation 
between u, v and p, q are 

du+dvH = A2 - Al dA2 
(al + A2)(a2 + A2)(a3 + A2) 

Al - A3 H dA3 
(al + A3)(a2 + A3)(a3 + A3) , 

du - dvH A2 - Al dA2 
(al + A2)(a2 + A2)(a3 + A2) 

Al - A3 H dA3. 
(al + A3)(a2 + A3)(a3 + A3) 

Hence it follows that 

and the similarity ratio is 



Lectures in Dynamics 242 

and the quantity y'm so determined must then be multiplied by the 
length on the ellipsoid in order to give the corresponding length in the 
plane. 

The formulae we have found for the shortest line on the tri-axial 
ellipsoid undergoes an important change for the case of an ellipsoid of 
revolution. There are two cases to be distinguished; the first is that of 
the oblate spheroid in which the two bigger axes are equal, where then 
a2 = a3; the second is that of the prolate spheroid in which the two 
smaller axes are equal, so a2 = al. We shall consider only the first of 
these two cases, the second is to be handled entirely analogously. Here 
one proceeds in the well-known way, namely one supposes the difference 
between a2 and a3 to be infinitesimal and finally lets them coincide. So 
at first let 

where w denotes an infinitesimal quantity. According to the general 
considerations, ).3 lies between -a2 and -a3, so in the present case 
between -a2 and - (a2 + w); one can therefore set 

Le., 

Hence it follows that 

-w sin2 c.p, 
w - w sin2 c.p = w cos2 c.p 
-w.2 sin c.p cos c.pdc.p. 

We have to substitute this in the equation of the shortest line, i.e. in 
the equation 

constant. (28.5) 
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Of the factors under the radical in the first integral, a2 + A2 and a3 + A2 
become equal, the integral is transformed into an elliptic integral. The 
second, however, goes over to 

-2 

and equation (28.5) takes the form 

A2 - Al _ 2 
(al + A2)(ß + A2) ( ) (ß ) c.p = constant. 

al - a2 - a2 

The express ions for the coordinates of a point on the tri-axial ellipsoid 
were 

(al + AJ)(al + A2)(al + A3) 
(al -a2)(al - a3) 

(a2 + AI)(a2 + A2)(a2 + A3) 
(a2 - al)(a2 - a3) 

(a3 + AI)(a3 + A2)(a3 + A3) 
(a3 - al)(a3 - a2) 

In the case of the oblate spheroid these become, 

Since the general formulae for X2 and X3 are interchanged if a2 and a3 
are interchanged, a superficial consideration would make us believe that 
when a2 = a3, also X2 must be equal to X3; this, however, as we see, is 
by no means the case. The formulae holding then are the same which 
one obtains when one expresses through A2 and A3 the coordinates Xl 

and J + of the meridians of the spheroid after the substitution 
holding for the plane, and introduces the angle c.p for the longitude on 
the spheroid. 
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One obtains, also for the map-projection, considered previously, spe-
cial formulae for application to the spheroid. This special case of projec-
tion is called stereographic. Its characteristic properly is that homolo-
gous curves on the surface and on the plane intersect at the same angle. 
This is another expression for the similarly of the infinitesimal elements. 

The partial differential equations whose integration gave us the equa-
tion of the shortest line on the ellipsoid was of the form 

fP'2) - f(A3) 
A2 - A3 

constant, 

where 
f(A) = (al + A)(a2 + A)(a3 + A). 

A - Al 

There is a constant on the right hand side of this equation, because we 
have assumed that the moving point is not subject to any force other 
than an initial push. One can now pose the question: of what nature 
should be the force acting on the point in order that the differential 
equation emerging can be integrated by the same method as has been 
used so far. For this purpose it must be possible to bring the force 
function, as one sees easily,to the form, 

X(A2) + V;(A3) 
A2 - A3 

because then the separation into two ordinary differential equations suc-
ceeds. But one cannot in general attach any mechanical significance to 
this analytical form; we shall consider only one case where one such 
is possible, namely the case in which the force function has the form 

A2 _A2 
A2 + A3, the expression that can be brought to the form and so 
belongs to the category under discussion. This case corresponds to the 
mechanical problem in which the point moving on the surface of an el-
lipsoid is subject to a force which attracts it towards the centre with a 
magnitude proportional to its distance from the same. In fact, in this 
case the force which acts on the point in the direction of the radius-
vector extending from the cent re is kr, consequently the force function 
is !kr2 = !k(xI + + x§). Let us recall the general expression for 

... expressed in terms of Al,A2, ... ,An given in lecture 26, 
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equation (26.2); this expression is 

(am - al)(am - a2) ... (am - am-d(am - am+d··· (am - an) 
+ (Al + A2 + ... + + ... + AIA2 ... An . 

According to the well- known theorem on partial fractions the remark-
able formula 

For n = 3, 

In the case considered by us Al is constant, so we obtain for the force-
function 

so that in this case the partial differential equation can be integrated 
with the same ease as earlier. 

One can extend these considerations still furt her and take it that 
the force is not directed to the centre of the ellipsoid. In the case just 
considered, the force in the direction of the radius-vector was kr, there-
fore the components of the force in the direction of the coordinate axes 
are kXI, kX2, kX3. If we now give the coordinates different coefficients 
ml, m2, m3, then the integration would still be possible ifwe impose an 
equation of constraint on these constants. In fact, if the components in 
the directions of the coordinates axes are mIXI, m2X2, m3x3, then the 
force- function has the expression 

1 (al + AI)(al + A2)(al + A3) 
2 (al - a2)(al - a3) 

1 (a2 + Ad(a2 + A2)(a2 + A3) + - m2 
2 (a2 - ad(a2 - a3) 

1 (a3 + Ad(a3 + A2)(a3 + A3) -m3 2 (a3 - ad(a3 - a2) , 
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which can be represented in the form 

and is therefore of the right form if C vanishes, i.e., if 

If this equation of constraint is satisfied by the values ml, m2, m3, then 
the earlier integration methods can be used. 



Lecture 29 

Attraction of a point by two fixed cent res 

We now consider the motion of a point attracted by two fixed centres. 
Let us restrict ourselves first to the case in which the motion takes place 
in a plane, which is always the case when the direction of the initial 
veloeity lies in the same plane as the line joining the fixed centres. Let 
this connecting line be the axis X2, and the axis Xl is at right angles 
to it at the mid point between the centres at a distance 2f from each 
other. If we now express Xl and X2 in terms of Al and A2 and choose the 
constants al and a2 of the substitution in such a way that the two cent res 
fall at the foei of the confocal system, then the differential equation to 
be integrated is 

(al + A2)(a2 + A2) 
A2 - Al 

1 1 = -U +-h 22' 

when U likewise must be expressed in terms OfAl and A2. 

(29.1) 

U the distances of the attracted point from the two centres are rand 
rl, then one has 

or 

According to the fundamental property of the ellipse, 
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the substitution 

(29.2) 

leads further, as we know, to the equation 

therefore 

r 2 

2a2 +)'1 + A2 + 2y'r-(a-I-+-A-I)-(a-2-+-A-2) 

{ Va2 + Al + Va2 + A2} 2, 

ri XI + + f2 - 2fx2 
2a2 + Al + A 2 - 2 y'r-( a-2-+----,-A-:-I)-:-( a-2-+----,-A--:-2 ) 

{ Va2 -+- Al - y' a2 + A2 } 2. 

So 

If one substitutes these expressions in the force-function 

U = m + ml = mrl + ml r , 
r rl rrl 

it gives 
(m + mI)Ja2 + Al - (m - mI)Ja2 + A2 U= . 

Al - A2 

If one inserts this value of U in the partial differential equation (29.1) 
and multiplies by Al - A2, then one obtains 

( aW)2 (aW)2 (al + AI)(a2 + AI) aAl - (al + A2)(a2 + A2) aA2 

1 1 
= 2hAI + 2(m + mr)va2 + Al 

- {thA2 + - mI)va2 + A2}' (29.3) 
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and by introducing an arbitrary constant ß, this equation can be resolved 
into two ordinary differential equations 

(ßW)2 + + mlh/a2 + Al + ß 
ßAI (al + AI)(a2 + Al) 

(ßW)2 + - mlh/a2 + A2 + ß 
ßA2 (al + A2)(a2 + A2) 

so 

W J dAI 
+ + md.)a2 + Al + ß 

(al + Ad(a2 + Al) 

+ J dA2 
+ - ml).)a2 + A2 + ß (29.4) 

(al + A2)(a2 + A2) 

If we want to eliminate the irrational quantity under the square root 
sign, we set 

and obtain 

W 

+ J dq 

2(hp2 + (m + mdp + 2ß - ha2) 
p2 _ j2 

2(hq2 + (m - ml)q + 2ß - ha2) 
q2 _ j2 

Prom (29.4), the integral equations are obtained in the form 

I ßW ßW 
ß = ßß' t - T = ßh . 

In the first volume of the Thrin Memoirs Lagrange has attempted 
to find the force which one can add to the attraction towards two fixed 
centres to carry out the integration, without Euler's solution of this 
problem ceasing to hold. Although this investigation did not lead to 
any new results, it is still of great interest, and in fact not only for the 
state of science of that time, but also of the present. The force which, 
according to Lagrange, one can add is an attraction proportional to the 
distance, directed to a point lying at the middle of the two fixed centres. 
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This agrees fully with what we find, in retrospect, for the shortest line on 
the ellipsoid. Since through this force the term !k(xI + = !k(AI + 
A2 + al + a2) comes in addition in the force function, so does on the 
right hand side of the partial differential equation i.e. in !U(AI - A2), 
the expression 'lj;(AI) - 'lj;(A2), if one sets 'lj;(A) = {A2 + (al + a2)A} . 
At the same time 'lj;(Ad and 'lj;(A2) are respectively the terms by wh ich 
the numerators under the square root sign in the integrals in Al and A2 
of the expression for W in (29.4) are to be increased. 

Through the above formula we have completely solved the problem 
of attraction of a point by two fixed centres when the motion takes place 
in a plane; it remains now yet to reduce the general case to this. This 
happends through the principle of surface area. 

In order to treat the problem in its greatest generality, we shall 
assurne that a point is attracted not by two, but by an arbitrary number 
of fixed cent res which lie in a straight line. Then, and even when a 
constant force acts parallel to this line, the principle of surface area 
holds with respect to the plane which is at right angles to this line. If 
now the initial velocity of the moving point lies on the same plane as the 
straight line, then the whole motion takes place on that plane, and one 
has no need to apply the surface area theorem. If, on the other hand, 
the initial velocity does not lie on the same plane as that line, then 
the point describes a curve of double curvature. Here it is of the great 
advantage to resolve the motion into two components. If one thinks of a 
plane through the point and the line which contains the centres, one can 
take that this rotates about the line and further, that the point itself 
moves on the rotating plane. In general, this resolution, which is possible 
under all circumstances, will not provide any simplification, but in the 
case considered it is possible, through the principle of surface area, to 
separate the motion of the point in the plane from the rotatory motion, 
so that one first seeks the motion of the point on the plane and after 
this has been found, obtains the angle of rotation of this plane (reckoned 
from a definite position of the same) through a simple quadrature. As 
we shall see, the differential equations of motion of this point in the 
rotating plane differs from the differential equations one obtains if the 
motion remains entirely on a plane. The only difference is that a term 
is added, which is proportional to where r represents the distance of r 
the point from the line containing the centres. Let this li ne on which 
the fixed centres lie be the x-axis; if we furt her represent the differential 
equations of motion of the point in the usual way, without actually 
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writing down the expression for the force, through the formula 

then the equation of constraint 

yZ - zY = 0 

holds. This equation which says that the forces Y, Z behave as the 
coordinates y, z, i.e. the directions of their components go through the 

d2 y x-axis is equivalent to the principle of surface area; for, if one sets (Ji'r 

and for Y and Z, then one obtains 

and hence, by integrating 

dz dy 
y- - z- = 0:. dt dt 

In order to separate the motion of the point on the plane passing through 
the x-axis from the rotational motion of this plane, we must set 

y = r cos cp, z = r sin cp, 

so that x, rare the coordinates of the point in the rotating plane and cp 
the angle of rotation, reckoned from the x - y-plane. 

Then one has 

dr 
dt 

c!JL dz ( )
2 

Y dt + ZlH 
3 (y2+ z2)2 

The last two terms combined into a single one give 

(y2 + z2) { + - + f 
3 (y2 + z2)2 
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or, according to a well-known formula 

2 2 dy dz dy dz dz dy { ( )2 ( )2} ( )2 ( )2 (y + z ) dt + dt = Y dt + z dt + Y dt - z dt ' 

this is 
(y dZ _ 

dt dt 
3 , 

(y2 + z2)2 

or, finally, on using the surface area theorem, 

One has then the equation 

d2 y 2 Y Z 2 Y(Ji'I + Z(Ji'I a y + Z a +-J y2 + z2 r3 - r r3 . 

Now let R be the force wh ich acts on the point in the direction at right 
angles to the x-axis thus it is the resultant of the forces Y, Z. Then one 
has 

and therefore 

Y 

yY+zZ 

Z = , , 
r r 
y2 + z2 

r 

d2r a 2 
-d =R+3"' t r 

So we have the two equations of motion of the point in the rotating 
plane in the form 

d2x d2r a 2 
dt2 = X, dt2 = R + r 3 ' (29.5) 

In the case we are considering the force is entirely independent of the 
rotation angle tp, so X and R depend only on x and r. One can there-
fore integrate both the equations and obtain, after determining x and 
r through the integral equations as functions of t, the rotation angle tp 
from the surface-area theorem. This changes, on introduction of rand 
tp, into 

(29.6) 
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so that <p is determined through the formula 

<p = a J 
We have accordingly reduced the original system of differential equations 
of the sixth order in x, y, z, t into a system of the fourth order in x, r, t; 
and since t does not enter in this explicitly, one can reduce it to one of 
the third order, by which one brings it to the form 

dx : dr : dx' : dr' = x' : r' : X : ( R + . (29.7) 

If one knows two integrals of this system, then one obtains a third 
through the principle of the last multiplier, and hence the time, through 
quadrature. If, far example, all the variables x, x' and r' are expressed 
through r, then 

t = J 
With the help of this equation one can express <p, befare r is expressed 
through t, as an integral over r: 

<p = aJ 
r r 

It now turns out that for solving the problem completely, one has 
only to know two integrals of the system (29.7) of the third order. But 
then the theorem of vis vi va which, as is well-known,always holds for 
attraction by fixed cent res and for mutual attraction, gives one of these 
integrals. In fact, if in the equation 

H + = j(Xdx+YdY+ZdZ), 

we set, 

Y 
y Z 
-R,z = -R, r r 

Ydy + Zdz = R ydy + zdz = Rdr 
r ' 

furt her , 

( dy )2 (dZ)2 = (dr)2 r2 (d<P)2 
dt + dt dt + dt 



Lectures in Dynamics 254 

or, since = according to the surface area theorem, 

( dy )2 (dZ)2 (dr)2 a 2 
dt + dt = dt + r2 ' 

then one obtains 

1 { (dX) 2 (dr ) 2} J 1 a2 - - + - = (Xdx+Rdr) ---
2 dt dt 2 r2 ' 

which is an integral equation of the system (29.7). It now comes to 
finding a single integral. The problem of attraction of a point by an 
arbitrary number of fixed cent res which lie on a line, and on which a 
constant force parallel to this line can act, is accordingly reduced to 
finding a single integral equation of a system of the second order. 

If there are only two fixed centres, one finds this integral equation by 
the method explained at the beginning of this lecture. The coordinates 
x and rare the same as those which were denoted above by X2 and xl; 
but the force function is no longer the same. If the entire motion takes 
place in a plane, its value is J(Xdx + Rdr) , but now, on the other hand, 
there comes in addition the term -! or in the earlier rotation, 

In order that after the addition of this term to the force function the 
partial differential equation (29.1) be integrable by the same method, 
one must be able to bring it to the form Al (X(AJ) + 'l/J(A2)), and this 
is actually the case. Since from (29.2) 

and so by decomposition into partial fractions, 
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On the right hand side of equation (29.3), or what is the same, to 
!U(AI - A2) there appears the expression 

and consequently we obtain the partial differential equation 

From this one gets 

w 

(29.8) 

and hence, by differentiation with respect to the constant ß, the sought 
for second integral equation of the system (29.7): 

(29.9) 

This is the equation of the curve which the moving point describes in the 
rotating plane. There is now only the determination of the rotation angle 
cp to be carried out, for which, however, a difficulty remains. Namely, if 
one expresses the differential of cp, which by equation (29.6) is given in 
the present notation by 
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in terms of Al and A2, then one does not obtain a complete differential. 
For, the differential of t is given, when one substitutes its value (29.8) 
for W in the equation serving for the determination of the time 

in the form 

BW 
t - T = Bh ' 

and this expression multiplied by 

0: o:(al - a2) 
xI (al + AI)(al + A2) 

does not directly give a total differential, but it can be trasformed into 
one with the help of equation (29.9) connecting the variables Al and A2. 

One can avoid this difficulty if one reduces the problem of attraction 
by two fixed centres also in three dimensions wholly to a partial differen-
tial equation, without regard to any special considerations. The general 
partial differential equation for a free motion for which the theorem of 
vis vi va holds is 

( BW)2 (BW)2 (BW)2 Bx + By + Bz = 2U + 2h. 

If we introduce polar coordinates for y and z and set 

y = rcos<p, z = rsin<p, 

then we obtain 

( BW)2 (BW)2 1 (BW)2 Bx + Br + r2 B<p = 2U + 2h. 

Since the variable <p does not occur in U one can, in accordance with 
the general method used often, set 

where WI is a function only of x, rand not <po Therefore 

BW BWI BW BWI BW 
----- ----- ---0: Bx - Bx ' Br - Br ' B<p - , 
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and the partial differential equation for W changes into 

( 8;:1 ) 2 + (8;::1 ) 2 = 2U _ ;: + 2h .. (29.10) 

This differential equation agrees exactly with what we have obtained 
above through the reduction of the motion in three dimensions to the 
motion on the rotating plane. The earlier consideration also showed that 
if the term is removed from U, the constant 0: introduced now is 
exactly the same as the one so designated earlier. The expression (29.8) 
given above for W therefore satisfies the differential equation (29.10) for 
Wl and one finds W from the same equation, through the relation 

W = Wl + o:<p. 

Hence follow the two integral equations 

ß' - 8W _ 8Wl '_ 8W _ 8Wl 
- 8ß - 8ß ,0: - 80: - 80: + ep, 

of which the first is the one we already found above, while the second 
leads to the value of ep through the equation 0:' - ep = Here the 
expression (29.8) for W is to be substituted in place of Wl. The two 
integral equations together define the curve of double curvature on which 
the point moves, and therefore 

where 

W 

ß' = and 0:' - ep = 

!hAl + !(m + mlh/a2 + Al - + ß 
(al + Al)(a2 + Al) 

and time is expressed through the equation 
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On carrying out the differentiation, one obtains the ready formulae 

ß' 

+ 
, 

<p-a 

+ 

t - T 

+ 

258 

Here also one can, as above, remove the irrational quantities under the 
square raot sign if one intraduces in place of Al, A2 the quantities 

as variables. 



Lecture 30 

Abel's Theorem 

Finally, in order to exhibit a specially remarkable example of the impor-
tance of the substitution introduced in Lecture 26, which has already 
given us the solutions of aseries of problems of mechanics, we shall apply 
it to Abel's theorem. This theorem likewise concerns a certain system of 
ordinary differential equations and gives two different systems of integral 
equations of the same, one of which is expressed through transcenden-
tal functions and other though purely algebraic ones. These systems 
of integral equations, so different in form, are nevertheless completely 
identical. 

According to our method, the system of ordinary differential equa-
tions is reduced to a first order partial differential equation. A complete 
solution of this is sought, and the differential coefficients of the same 
with respect to arbitrary constants, set equal to new constants, lead to 
the system of integral equations. The solution of the partial differen-
tial equation, however, can take forms very different from one another. 
Looking for these different forms, one obtains the forms of different sys-
tems of integral equations which, however, must agree with one another 
in their meaning. This i8 the way in which we shall prove Abel's theorem. 
We proceed from the partial differential equation 

( 8V)2 + (8V)2 + ... + (8V)2 =2h, (30.1) 
8Xl 

which, for n = 3, corresponds to the simplest mechanical problem, of 
rectilinear uniform motion in three dimensions. This replaces the ordi-
nary differential equations 

d2xl = 0 d2x2 = 0 d2xn 
dt2 ' dt2 ' ... , dt2 = O. 
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By the use of substitution introduced in Lecture 26, one obtains Abers 
theorem, and indeed in a much more explicit form, than was given by 
Abel. 

Since the variables Xl, X2, ... ,Xn themselves do not occur in the equa-
tion (30.1), one obtains a complete solution V if one sets 

(30.2) 

Because the constants, al, a2, ... , an have to satisfy only the condition 

so that 
an = J2h - - - ... -

and V contains therefore n - 1 constants, except for one constant which 
one can still add, it is a complete solution. As integral equations one 
obtains 

av I av I av I av 
= al' = a2'···' = an-I' = t - T, Ual Ua2 Uan-l U 

or, 

al I 
Xl - --Xn al 

an 
a2 I X2 - -Xn a2 
an 

1 
t - T, 

and finally, if one substitutes the last equation in the others, 

Xl 

X2 a2(t - T) + a;, 
... , 

Xn-l an-l (t - T) + 
Xn an(t - T) (30.3) 

which in fact are the equations of rectilinear motion for n = 3. 
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If we now introduce the variables A in place of the variables x in 
equation (30.1), we then obtain, according to formula (26.12) of Lecture 
26, 

(30.4) 

One does not know immediately in what way the variables in this equa-
tion can be separated from one another. But it is only necessary to 
remind oneself of the lemma from the theory of partial fractions given 
in Lecture 26 (p.226), from which the following formula: 

2 
= 

i=n 
L 
i=l 

+ '+ ,2 ,n-2 lh,n-l C CI/\i C2/\i + ... + Cn-2/\i + '2 /\i 

(Ai - AI)(Ai - A2) ... (Ai - Ai-I)(Ai - Ai+l) ... (Ai - An) 
(30.5) 

where c, Cl, ... ,Cn -2 are arbitrary constants,is obtained, and is substi-
tuted for !h in (30.4). If the following equation derived from the pre-
ceding one, 

is satisfied and one equates on both si des the corresponding terms and in 
this way breaks up the partial differential equation (30.6) into n ordinary 
differential equations 
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for i = 1,2, ... , n; then one obtains for V the complete solution 

(30.7) 

and hence follow the integral equations 

ßV I ßV I ßV I ßV 
=CI""'-!':l-- =cn -2' !':lh =t-T, 

uC UCI UCn-2 u 

which, on introducing the notation 

1 f().,) = (c + Cl)., + C2).,2 + ... + Cn_21 ).,n-2 + 2h).,n-l) 

(al + ).,)(a2 +).,) ... (an + ).,), 

take the form 

(30.8) 

These are the transcendental integral equations of the system of ordinary 
differential equations 

(30.9) 

while the algebraic integral equations of the system are given in (30.3). 
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Abel 's theorem consists in this algebraic integration of the differential 
equations (30.9), and indeed he re it appears in a form which has the 
advantage over the form given originally by Abel, essentially to make 
investigations easier, otherwise associated with difficult investigations 
of the reality of the variables and the limits within which one has to 
take them. The above proof of Abel's theorem is therefore something 
essentially new. Though Richelot has later l derived these results from 
Abel's theorem itself, it is the method given he re which has led to it first 
and in a natural way. 

Since the constants c, Cl, ... ,Cn -2 are entirely arbitrary, one must so 
determine them that the express ions standing under the radical sign, 
fP'i), are positive, and with this all integrals are real. 

Abel's theorem does not follow quite completely from whatever has 
been done so far. Because, for the function f(>') is of the (2n - 1)th, 
that is of odd order and it is therefore necessary to consider specially 
the other case where f(>') is of order 2n and that appears here as more 
general. One obtains that by adding other terms to the constant 2h 
on the right hand side of the partial differential equation (30.1). The 
integration method applied remains valid if one adds to h the sum of 
the squares xI + + ... + x; multiplied by a constant k. In terms of 
the variables >. this expression takes the form 

If we introduce for h a new constant 

we have on the right hand side of (30.4) the expression + + 
>'2 + ... + >'n) in place of If by use of the lemma mentioned above 
we transform the same in a way analogous to equation (30.5), then we 
find that the right sides of equation (30.5) and (30.6) do not change any 
furt her than that under the summation sign in the numerator, the term 

occurs, and h changes into h'. In the transcendental equation (30.8) 
of Abel's theorem now appears correspondingly, in place of the earlier 

1 Grelles Journal XXIII, p.354 
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function f(>") of order 2n - 1, the function of order 2n; 

f(>") = {c + Ci>" + C2>..2 + ... + Cn_2>..n-2 + >..n-l + 
(al + >..)(a2 + >..) ... (an + >..). (30.10) 

The algebraic integral equations are a little more complicated in this 
case. The partial differential equation expressed in terms of Xl, 

X2, ... ,Xn becomes 

( öV ) 2 ( öV ) 2 ( öV ) 2 - + - + ... + - = 2h+2k(xI+x§+ ... (30.11) 
ÖXI ÖX2 öXn 

and therefore can be separated as folIows, 

( öV ) 2 ( öV ) 2 ( öV ) 2 ÖXI = 2kxI + ßI, ÖX2 = 2kx§ + ß2 ... , ÖXn = + ßn, 

where 
ßI + ß2 + ... + ßn = 2h. 

From this one finds 

If one now thinks of ßn as expressed with the help of the above relation 
through hand the remaining ß's, and denotes the differential coeffi-
eients constructed on this hypothesis by brackets, then to the ordinary 
differential equations corresponding to the partial differential equation 
(30.11) belong the integrals 

( öV ) ,( öV ) , (ÖV) , (ÖV) ÖßI = ßI , Öß2 = ß2,···, Ößn-1 = ßn- l , öh = t - T. 

If, on the contrary, one denotes without brackets the differential coeffi-
cients of V formed without considering the relation between the quan-
tities ßI, ß2, ... , ßn, then 

( ÖV) = öV _ öV (ÖV) = öV _ öV (ÖV) = 2 ( öV ) 
ÖßI ÖßI ößn' Öß2 Öß2 ößn' ... , öh ößn· 

One can therefore give a symmetrical form to the integral equations by 
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introducing the notation Tl, T2, ... Tn for the eonstants 2ßi - T, -
T, ... ,-T, 

These equations, to be sure, do not immediately express an algebraic 
relation between the variables x. But the relation appears immediately 
if one determines the values of all integrals leading to eireular ares or all 
those leading to logarithms, and notices that the values of the variables 
x are expressed, either in terms of sines and eosines, or in terms expo-
nentials, whose argument multiplied by t gives one and the the same 
eonstant. Therefore one obtains algebraie relations if one eliminates t 
between the above equations. The values of the variables x ean be given 
in the form 

X n = 

sin [v'-2k(t+Tl)] , 

sin [v'-2k(t+T2)] ' 

J -';n sin [v' -2k(t + Tn )] . 

The relations resulting from the elimination of t between these equations 
ean be so represented that only one is of seeond degree and the rest linear 
in Xl, X2, ... Xn,. 

The system of ordinary differential equations whieh eorresponds to 
the partial differential equation (30.11) is 

d2xl d2x2 d2xn 
dt2 = 2kxl, dt2 = 2kx2, ... , dt2 = 2kxn. (30.12) 

One sees from the preciding that if one starts from the differential equa-
tion (30.9) in Al, A2, ... , An, under the assumption that j(A) is an in-
tegral function (30.10) of degree 2n, and earries out the substitution 
of the variables Xl, X2, ... ,Xn for Al, A2, ... , An, one must arrive at the 
simple differential equations for Xl, X2, ... , Xn (30.12). I have given this 
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method of investigation in my article on Abel's theorem in Vo1.24 of 
Grelles Journal, without going to the source uncovered here. 

In the first volume of the Turin Memoirs, in the article on the attrac-
tion by two fixed centres, Lagrange has proved in an analogous way the 
fundamental theorem of elliptic transcendents, which is a special case 
(n = 2) of this investigation. 



Lecture 31 

General investigations of the partial differential 
equations of the first order. Different forms of 
the integrability conditions 

We shall now concern ourselves with the general investigations of first 
order partial differential equations. We assume that the function to be 
found does not itself appear in the differential equation. This assumption 
is not an essential restriction since the general case can always be reduced 
to this. In fact, if the given differential equation contains the function 
V to be found has the form 

then one intro duces a new independent variable q and a new dependent 
variables W through the equation 

W=qV; 

then 
8W 8W 8V 8W 8V 
8q = V, 8q1 = q 8q1 ' ... '8qn = q 8qn ' 

so 
V _ 8W 8V _ 1 8W 8V = 1 8W 

- 8q '8q1 - q 8q1 , ... , 8qn q 8qn . 

Therefore the given differential equation goes over into the following: 
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which indeed contains one more independent variable q, in which, how-
ever, W itself does not occur, but only its differential coefficients with 
respect to ql, q2, ... ,qn, q. We can therefore confine ourselves, without 
limiting the generality,to the case where 

<p (aav , aav , ... , aav , ql , q2, ... ,qn) = 0 
ql q2 qn 

is the given differential equation and V itself does not occur in the 
equation. If for brevity we set 

av -a =Pi, qi 

we have accordingly the equation 

(31.1) 

If, for determining V, we wish to apply the same method that we used, 
following Lagrange, for the case n = 2, in Lecture 22, then we must find 
the quantities PI, P2, ... ,Pn as functions of ql, q2, ... , qn so that 

(31.2) 

becomes a complete differential. But here we run into a peculiar diffi-
culty. Since the equation (31.1) is al ready a relation between the quan-
tities P and q, so we need yet another n - 1 relations in order to express 
all the quantities PI,P2, ... ,Pn through ql, q2,··., qn. We have then n-1 
functions of the variables ql, q2, ... ,qn at our disposal and must so deter-
mine these that the expression (31.2) is a total differential. In order to 
satisfy this requirement, the n(n2-1) equations of constraint of the form 

or, introducing the abbreviated notation 

the n(n2-1) equations of constraint 

(i, k) = 0 
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must be fulfilled, while we have only n -1 functions at our disposal. For 
n = 2, indeed these numbers are equal, namely 1. In all other cases the 
first number is greater than the second. 

This difficulty has prevented analysts up to now from extendng La-
garange's method to a larger number of variables. We shall not allow 
this to deter us, since we know apriori that the problem, though it 
appears overdetermined, admits of a solution. We shall investigate how 
one can satisfy equations of constraint with n - 1 functions. 

There is one circumstance to be noticed right away, which is of ad-
vantage in this investigation. Because of it the equations of con-
straint will be brought into relation with one another. Namely, if i, i', i/l 
are three arbitrary indices, then one has the identity 

8( " '/1) 8('/1") 8(' ") 2 ,2 2 ,2 _2_,_2 __ 0 
8 + 8' + 8" - . qi qi qi 

It does not indeed follow yet that if (i", ii) = 0 and (i, i') = 0, also (i", i') 
vanishes, but only that the last expression is independent of % so that 
if for any value of qi it vanishes, it is always equal to zero. 

In order to treat the above question exhaustively, we must first trans-
form the constraint equations. In the present form of these equations, 

= '?f!.!s., p's are looked upon only as functions of q i.e. we assurne that 
vQk vQ, 
the n relations between the quantitites P and q, of which one is given by 
the equation (31.1), while we have at our disposal the remaining n - 1, 
have been solved for the n quantities PI, P2, ... ,Pn" For the investigtion 
in quest ion this form is too explicit. We shall make another hypothesis 
on the expression of PI , P2, ... ,Pn; and assurne that we have 

Pn expressed as a function of ql, q2, ... qn 

Pn-I expressed as a function of Pn, ql, q2,··· qn, 

Pn-2 expressed as a function of Pn-I, Pn, ql, q2,· .. , qn, 

Pi expressed as a function of PH 1, ... , Pn-l, Pn, ql, q2, ... , qn, 

PI expressed as afunction of P2, P3, ... , Pn-I, Pn, ql, q2, ... , qn' 

We shall write without brackets the differential coefficients of Pi with 
respect to PHI,PH2, ... ,Pn, ql,q2, ... qn obtained on this hypothesis, 
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while we shall enclose in brackets the differential coefficients formed 
under the original hypothesis, according to which all P are functions only 
of ql, q2, .. . , qn' This change in the way of representation requires that 
we should convert the differential coefficients appearing in the n( n2-1) 

constraint equations and now bracketed into others, which will be done 
now. 

We can arrange the n(n2-1) equations of constraint in the following 
way: 

( ) , ... , ( ::) = , ... , 

( BPn-l) (BPn) 
Bqn = Bqn-l (31.3) 

Any one these equations, say = after the term on the right 
is brought to the left, is denoted by (i, k) = 0, so that the equations in 
the mth row, for example 

are represented in abbreviated form by 

(m, m + 1) = 0, (m, m + 2) = 0, ... , (m, n) = 0. 

Now if i is any one of the indices m + 1, m + 2, ... , n, then one has 
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or, if we replace .. . , by the differential coeffi-
eients of Pi with the help of the equations of condition (31.3), 

The equations of constraint of the mth row, if we write them in the 
reverse order starting with (m, n) = 0, will therefore be 

aPm ( aPn ) 
aPm+ 1 aqm+ 1 

+ aPm ( aPn ) aPm (apn ) 
aPm+2 aqm+2 + ... + aPn aqn 

+- -aPm _ ( aPn ) 
aqn - aqm ' 

aPm (aPn-1) 
aPm+ 1 aqm+ 1 

+ aPm (aPn-1) + ... + aPm (aPn-1) 
aPm+2 aqm+2 aPn aqn 

aPm _ (aPn-1) +-- --aqn-l - aqm ' 
.. . .. ......... . ..... . .................. 

aPm ( aPi ) 
aPm+ 1 aqm+ 1 

+ aPm ( aPi ) aPm ( aPi ) 
aPm+2 aqm+2 + ... + aPn aqn 

+ aPm = ( aPi ) , 
aqi äqm 

......... 
aPm (apm+ 1 ) 

aPm+ 1 aqm+ 1 
+ aPm (apm+ 1 ) + ... + aPm (aPm+ 1 ) 

aPm+2 aqm+2 aPn aqn 

+ aPm = (aPm+1 ) , 
aqm+l aqm 

(31.4) 

a system of equations which, after shifting the term on the right hand 
side to the left hand side, we can represent in the abbreviated notation 

(( m, n)) = 0, (( m, n - 1)) = 0, ... , (( m, i)) = 0, ... , (( m, m + 1)) = 0. 

These equations are no longer identical with those in the mth row of 
the system (31.3) , because in their construction we have taken the help 
of the equations of the following row of this system. The relation of the 
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equations of the two systems are expressed by the connection 

((m,i)) = ( .) apm ( 1·) apm (. 1·) m, Z - -a-- m + , Z - ••• , --a-- Z - , Z 
Pm+l Pi-l 

aPm (..) aPm ( . ) +-- z,z+l + ... +-- z,n. 
api+l aPn 

If however one applies to all the horizontal rows of the system (31.3) 
the same transformation by means of which the equations (31.4) were 
derived from the mth horizontal row, then the transformed system is 
identical with the original system (31.3). In order to see this, we write 
the transformed system in the reverse order, so the following: 

Then 

((n - 1, n)) 
((n - 2, n)) 
((n - 3, n)) 

= 0, 
0, ((n - 2, n - 1)) = 0, 
0, ((n - 3, n - 1)) = 0, ((n - 3, n - 2)) = 0. 

((n -l,n)) = (n -l,n), 
apn - 2 ( ) ((n - 2, n)) = (n - 2, n) - -- n - 1, n , 
apn-l 
aPn-3 ((n - 3,n)) = (n - 3,n) - --(n - 2,n) 
apn-2 

apn-3 ---(n - 1, n), 
apn-l 

) aPn-2 ( ) ((n - 2, n - 1)) = (n - 2, n - 1 + -a- n - 2, n , 
Pn 

apn-3 ( ) ((n - 3,n -1)) = (n - 3,n -1) - -- n - 2,n - 1 
aPn-2 

aPn-3 +-a-(n - 1, n), 
Pn 

aPn-3 ((n-3,n-2)) =(n-3,n-2)+--(n-2,n-1) 
aPn-l 

aPn-3 +-a-(n - 2, n), 
Pn 

Thus one sees that the original equations follow from the new equations, 
so that the two systems are equivalent. 
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In order to remove from the system of equations (31.4) the bracketed 
differential coefficients entirely, one builds from the same the new system 

((m,n)) 

((m,n - 1)) 

((m, i)) 

((m,m + 1)) -

0, 

OPn-l (( ) 
-!'l-- m,n) = 0, 

UPn 
......... 

0Pi ' ) ) OPi ( ) ) 1 - ... - - m,n = 0, 
0Pi+l oPn 

OPm+l )) OPm+l ( ) --((m,m+2 - ... _--( m,n )=0; 
OPm+2 oPn 

then by virtue of the equations 

the bracketed differential coefficients disappear entirely from the new 
system and one has 

OPm oPn 
OPm+lOqm+l 

oPm OPn-l 

OPm 0Pi 
OPm+loqm+l 

OPm oPn oPm oPn oPm oPn + --+ ... +--+-=-
OPm+20qm+2 oPn oqn oqn oqm 

oPm OPn-l oPm OPn-l oPm OPn-l + --+ ... +---+-----
OPm+2 oqm+2 oPn oqn oqn-l oPn 
oPm OPn-l -- ---
oqn oqm 

OPm 0Pi oPm 0Pi oPm 0Pi + --+ ... +--+----
OPm+2 o qm+2 oPn oqn oqi 0Pi+l 
OPm 0Pi oPm 0Pi oPm 0Pi -- - ---- - ---

oqi+l OPi+2oqi+2 oPn oqn oqm 
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This system is equivalent to the system (31.4), so that not only the 
equations (31.4) can be derived from the equation (31.5) but also the 
latter from the former, as is evident from the construction of the equation 
(31.5) . 

All equations of system (31.5) are contained in the following general 
scheme: 

+ 

or 
k=n k=n L aPm aPi _ L aPi aPm + aPm _ aPi = o. 

k=m+1 aPk aqk k=i+l aPk aqk aqi aqm 

This equation is, with the exception of the last two terms, entirely sym-
metrical; for though the second sum is extended only over the values i + 1 
to n while the first only extends over the values m + 1 to i, this rests on 
the fact that in our hypothesis on Pi, only the variables Pi+l,Pi+2, ... Pn 
occur, but not the variables Pl, P2, ... ,Pi-l, so that the quantities !!l!i.aa i 

Pk 
are different from zero only for k > i. 

However, we can consider the problem of transformation of the con-
straint equations in a still more general way. Any one of them is 

(i, i') = 0, or 

where Pi, Pi' depend only on the quantities ql, q2, ... , qn. If we now as-
sume that Pi contains, besides the quantities ql, q2,··· qn, also Pk,P>" ... , 
and likewise Pi' contains besides the quantities ql, q2, ... ,qn also 
Pk', PA', ... , and we write the differential coefficients with this hypothesis 
without brackets, then 

or, if we replace the differential coefficients ), ... , ) , 
), ... by the differential coefficients of Pi', and of Pi, which are equal 
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according to the equations of condition (31.3), 

8Pi + 8Pi (8Pi/ ) + 8Pi (8Pi/ ) + ... = 8Pi 
8qi' apx aqx ap).. aq).. aqi' 

+ L 8Pi (8Pi/ ) , 
8px 8qx 

X 

8Pi' + 8Pi' (8Pi) + 8Pi' (8Pi) + ... = 8Pi' 
8qi 8px' 8qx' 8p)..' 8q)..' 8qi 

+ L 8Pi' (aPi ), 
x' 8px' 8qx' 

275 

where the summation over X extends over the values X, A, ... , and the 
summation over X' over the values X', A', .... Through the introduction 
of these expressions, the equation of constraint (i, i' ) = 0 changes into 

8Pi _ 8Pi' + L 8Pi (8Pi/ ) _ L 8Pi' (8Pi ) = o. 
aqi' 8qi x 8px 8qx x' 8px' 8qx' 

(31.6) 

One can prove in general that the difference between the two sums which 
contain the bracketed differential coefficients does not change its value 
when the brackets are removed. In fact, 

therefore 

L 8Pi (8Pi / ) _ L 8Pi' (8Pi ) 
X apx 8qx x' apx' 8qx' 

L 8Pi 8pi' _ L 8Pi' 8Pi + L L 8Pi api' (8Pxl ) 

X apx aqx k' 8Pk' 8qk' k x' apx 8px' 8qx 

-L L 8Pi' 8Pi (8Px ); 
x' X 8px' 8px 8qx' 

However, since the two double sums cancel each other because of the 
constraint equations (OZV) = ), we have 

uqx uqx , 
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and (31. 6) changes into 

8Pi _ 8pi' + L 8Pi 8Pi' _ L 8Pi' 8Pi = 0, 
8qi' 8qi x 8px 8qx x' 8px' 8qx' 

(31. 7) 

an equation which differs from the earlier only by the omission of the 
brackets. 

Although we have derived (31. 7) from (i, i') = 0, the two equations 
are not equivalent since we have used for the transformation only the 
following among the remaining equations of condition 

and indeed for all values of X and X'. 
Let us apply formula (31.7) to the case where the quantities PI and 

P2 are expressed as functions of P3, P4, ... Pn ql, q2, ... , qn. Here we have 
to set i = 1, i' = 2 and X as weIl as X' take all values from 3 to n. We 
have therefore 

(31.8) 

In this equation, only the first two terms are asymmetrical and this is 
because of the preference we have given to the quantities PI and P2, in 
that we have assumed that they are expressed explicitly through the 
remaining variables. The asymmetry disappears if we assurne instead of 
this that there exist two equations which contain all these quantitites 
PI, P2, ... ,Pn and ql, q2, ... , qn, and that one can solve these for arbitrary 
quantitites Pi and Pi' even as for PI and P2. Let the two equations be 

'P = a, 1/J = b, 

where 'P and 1/J are functions of PI, P2, ... ,Pn, ql, q2, ... ,qn and a, b 
denote constants. Then through this complete symmetry is restored. 
The partial differential coefficients of PI and P2 which occur in equation 
(31.8) are replaced by the partial differential coefficients of 'P and 1/J. 
Since equation (31.8) has the form 

(31.8*) 
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then for the transformation intended, it is required to express the quan-
tities {!J!.l - f!E1. and fu f!E1. - i2El through the partial differential 8q2 8ql 8Pk 8qk 8Pk 8qk 
coefficients of ep and '1/). Here we must consider, by virtue of the equa-
tions ep = a and 1jJ = b, the quantities PI,P2, as funcctions of all the 
remaining P3,P4, ... ,Pn, ql, q2, .. ·, qn,· These, however, are considered 
independent of one another. By differentiation of the equation ep = a 
and 1jJ = b we obtain 

8ep 8Pl + 8ep 8P2 + 8ep = 0 
8PI 8ql 8P2 8ql 8ql ' 
81jJ 8Pl + 81jJ 8P2 + 81jJ = 0 
8Pl 8ql 8P2 8ql 8ql ' 

From these are obtained, on introducing the notation 

the values 
8ep 81jJ 81jJ 8ep 
8Pl 8ql - 8Pl 8ql ' 
8ep 81jJ 81jJ 8ep 
8P2 8q2 8P2 8q2 
8ep 81jJ 8ep 81jJ 81jJ 8ep 81jJ 8ep --+--------
8Pl 8ql 8P2 8q2 8PI 8qI 8P2 8q2 . 

(31.9) 

On differentiation of the equation ep = a and 'lj; = b with respect to Pk 
and qk, we obtain 

8ep 8PI + 8ep 8P2 + 8ep _ 0 
8Pl 8qk 8P2 8qk 8qk - , 
81jJ 8Pl + 81jJ 8P2 + 8'lj; = o. 
8Pl 8qk 8P2 8qk 8qk 

(31.10) 

Hence, on retaining the above meaning for N, for the partial differential 
coefficients of PI and P2 with respect to Pk and qk through solution of 
the linear equations standing one below the other, we obtain the values 

N 8pI 
8Pk 

_N 8pI 
8Pk 

8ep 81jJ _ 81jJ 8ep N 8PI _ 8ep 81jJ _ 81jJ 8ep 
8P2 8Pk 8P2 8Pk ' 8qk - 8P2 8qk 8P2 8qk 
8ep 81jJ _ 81jJ 8ep _N8p2 = 8ep 81jJ _ 81jJ 8ep 
8PI 8Pk 8Pl 8Pk' 8qk 8Pl 8Pk 8Pl 8qk' 
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and if we now form the expression I 2 - 2 i!Elu I, then we obtain an 
Pk qk Pk qk 

equation whose left hand side is divisible by the square of N, while the 
right hand side contains only Nasa factor. After cancelling the common 
divisor N on both sides, we obtain the formula 

(31.11) 

In the derivation of the above equation one can avoid removing the 
common divisor N if, for example, one solves far !:!!LUU and !:!!Lua the two 

PI P2 
equations standing in the first horizontal row in equations (31.10) and in 
the expression obtained for !:!!LUU ,substitutes in place of aUP2 and 2 their 

PI Pk qk 
values obtained above. Using formulas (31.9) and (31.11) the equation 
(31.8*) is transformed into 

o = a'fJ a7jJ + a'fJ a7jJ _ a7jJ a'fJ _ a7jJ a'fJ + { a'fJ a7jJ _ a7jJ a'fJ } 
aPI aql aP2 aq2 aPI aql aP2 aq2 L aPk aqk aPk aqk . 

k=3 

On combining all the terms we then have a sum extended from 1 to n: 

(31.12) 

and hence the theorem: 
If'fJ = a and 7jJ = bare two arbitrary ones of the n equations which 

so determine PI, P2, ... ,Pn as functions of ql, q2, ... ,qn that 

is a complete differential, then they must satisfy the conditions 

{ 
!!.:L u1jJ !!.:L !li!... .!!::L a1jJ o = + uPb + ... + UPä$qna _ _ !:!!L _ !!.3l!...-!:!!L _ .. . _ _!:!!L 

UPI uql UP2 uq2 uPn aqn 
(31.13) 

and indeed this equation is an identity since the arbitrary constants a 
and b do not occur in it. 

The equation (31.12) includes the result given in (31.7) as a special 
case. For, if one takes the functions 'fJ and 7jJ of the form 

'fJ Pi - f(pk,P>',"" ql, q2,···, qn), 
7jJ Pi' - F(pk,P>-',"" ql, q2,···, qn), 

then equation (31.12) transformsr into the equation (31.7). 



Lecture 32 

Direct proof of the most general form of the 
integrability condition. Introduction of the 
function H, wh ich set equal to an arbitrary 
constant determines the p as functions of the q 

We shall prove directly the theorem we arrived at the end of the last 
lecture. 

Let us suppose that we have solved the n equations which make 
PIdql +P2dq2+·· ·+Pndqn a complete differential, and to which the equa-
tions c.p = a, 'IjJ = b belong, and these have been solved for PI, P2, ... Pn, 
and that these values have been substituted in the equations c.p = a and 
'IjJ = b so that these are satisfied identically. Consequently one obtains, 
by partial differentiation of c.p = a and 'IjJ = b with respect to any q, 
an identical equation if the p's are looked upon as functions of the q's. 
Thus, differentation of c.p = a with respect to qi gives 

or, 

äc.p (OPI) + äc.p (OP2) + ... + oc.p (Opn) + oc.p _ 0 
0PI Oqi 0P2 Oqi oPn Oqi Oqi - , 

k-n 
oc.p (OPk) + oc.p _ 0 
0Pk äqi Oqi - . 

Similarly, differentiation of 'IjJ = b with respect to qk gives 

i=n ä'IjJ (äPi ) ä'IjJ L- - +--0 
i=1 äPi äqk äqk - . 

If one multiplies the first of these equations with and sums from 1 
to n for i, and multiplies the second by !!::Laß and sums from 1 to n for k, 

Pk 
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then one obtains the two results: 

i=n k=n a'ljJ a'P (aPk ) i=n a'ljJ a'P 
L L ap· apk aq· + L ap' aq. = 0, 
i=1 k=1 l l i=1 l l 

If one subtracts one equation from the other, then the double sums 
cancel; p's being determined from the n equations which make PIdql + 
P2dq2 + ... + Pndqn a complete differential, = (1:), there remains 

or 
k=n { a'P a'ljJ a'ljJ a'P} t; apk aqk - apk aqk = 0, (32.1) 

a result which agrees with equation (31.12) of the previous lecture. One 
sees from this proof that for the derivation of equation (32.1) all the 
equations of constraint 

are necessary, since only in virtue of this equality does the double sum 
extended over all values of i and k cancel. 

As already remarked earlier the equation (32.1) assurnes nothing 
more than that the equations 'P = a and 'ljJ = bare any two such equa-
tions as would make PI dql + P2dq2 + ... + Pndqn a complete differential. 
In this generality a and b can be arbitrary constants as weIl as defi-
nite numerical values, e.g. zero. Also we need not fix anything as to 
the nature of the functions 'P, 'ljJ. The functions can themselves contain 
arbitrary constants but also can be without them. 

According to these different circumstances one needs to check, 
whether the equation (32.1) is an identity or not. If a and b are not arbi-
trary constants, then it need not be an identity, but can be satisfied by 
the functions 'P = a and 'ljJ = b themselves. This case, however, seldom 
occurs. More frequently, if the equation (32.1) is not identically satisfied, 
it is a third among the n equations which makes PIdql +P2dq2+·· +Pndqn 
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into a complete differential. Then from the equation (32.1) and one of 
the equations r.p = a, 'ljJ = b, a fourth equation is derived by simple differ-
entiation. This again is either an identity, or a consequence of the three 
known up to now, or finally a fourth equation of the system, and so on. 
So it can come ab out that from r.p = a and 'ljJ = b one can through more 
differentiation derive n different equations wh ich exhaust the system of 
n equations, but one cannot obtain more than n independent equations 
(r.p = a and 'ljJ = b included), since all must be satisfied by the n values of 
PI,P2, ... ,Pn which make PIdql + P2dq2 + ... + Pndqn a complete differ-
ential. We see that if we do not fix the character of the equations r.p = a, 
'ljJ = b, then we cannot also say anything definite about the nature of 
equation (32.1). 

A more definite determination can be made if we add to the require-
ment that r.p = a, 'ljJ = b belong to the system of n equations which make 
PIdql + P2dq2 + ... + Pndqn a complete differential, also that 

be a complete solution of the given partial differential equation which 
must contain also n - 1 arbitrary constants besides the constant which 
comes in V through addition. Let us assurne that the given differential 
equation itself contains an undetermined constant hand is solved for it 
and has the form 

and the complete solution V contains n - 1 other arbitrary constants 
hl ,h2, ... ,hn -l; then 

8V 8V 8V 
8qI = PI, 8q2 = P2, ... '8qn = Pn 

are the right equations which make PI dql + P2dq2 + ... + Pndqn a complete 
differential and its integral a complete solution of the partial differential 
equation. We think of these n equations as solved for the neonstants 
h, hl , h2, ... , hn - I contained therein and the result brought to the form 

where H, H I , H I , ... , Hn- I are functions only of PI, P2,··· ,Pn, ql, 
q2,.· . ,qn, then the first equation h = H is obviously none other than 
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the given partial differential equation, since it is the only one which is 
free from the arbitrary constants h1 , h2 , ... , hn - 1 . There exist then in 
any case, as we see, besides the given differential equation h = H, n - 1 
furt her such equations, linearly independent of one another, of the form 

of such a nature that when the quantities Pl,P2,'" ,Pn are determined 
from these equations, J(PIdql +P2dq2+" '+Pndqn) is a complete solution 
of the partial differential equation h = H. It is impossible to derive from 
these n equations 

any other which would be entirely free of the constants h, h l , ... , hn - I ; 

for, otherwise we could eliminate one of the quantities P from this equa-
tion and from h = Hand then arrive at a partial differential equation 
in which the number of variables for the differentiation would be one 
less than in the given one, and which neverthless satisfies the expression 
V = J(PIdql + P2dq2 + ... + Pndqn)' V cannot therefore be a complete 
solution of the equation h = H. It is therefore impossible to get rid of 
all the constants at one stroke. Hence, it follows that if we derive an 
equation from the n equations h = H, hl = H I, ... , hn- 1 = Hn- 1 and 
obtain an equation free from all constants h, hl, ... , hn-l, then this must 
be an identity. This equation must similarly be satisfied by the values 
of the quantities PI, P2,'" ,Pn which we determined from the previous 
n equations. But these values of PI, P2, ... ,Pn contain further many 
independent quantities h, h l , ... , hn - I ; therefore, any derived equation, 
if it is identically satisfied after the substitution of the values of PI, 
P2, ... ,Pn must be an identity also before the substitution. One such 
derived equation is the equation (32.1) if there the quantities H were 
substituted for t.p and 'IjJ; therefore 

8Hi 8Hi , 8Hi 8Hi , 8Hi 8Hi , ---+---+ ... +----
8PI Bql 8P2 8q2 8Pn 8qn 

8Hi , 8Hi 8Hi , 8Hi 8Hi , 8Hi ------- .. ·---=0 
8PI 8qI 8P2 8q2 8Pn 8qn 

is an identity. Thus in the case where t.p = a and 'IjJ = b belong to the 
system of equations hi = H i , there remains no doubt about the nature of 
the equation (32.1). Indeed we know that it must be an identity. There-
fore the n(n2-1) equations which we obtain if we substitute for t.p and 'IjJ 
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all combinations in pairs of the quantities H i , the equations of constraint 
must be satisfied by these quantities. We have in this way n(n2-1) fur-
ther equations of constraint which must be fulfilled by the n functions 
of which one H, is known, while the remaining, H 1 , H 2 , ... , H n - l are to 
be found. 

We now introduce the notation 

(which bears no relation to the notation (i, k) introduced in the previous 
lecture), so that for any arbitrary values of H i , Hk. 

If now h = H, hl = H 1, ... ,hn- l = H n- l are the equations which make 
V into a complete solution of the given partial differential equation h = 
H, then the quantities H must satisfy the constraint equations 
which one obtains when one sets in 

all possible combinations of two of the numbers 0,1, ... ,n - 1 for the 
indices i, k different from each other. 

These n(n2-1) equations of constraint are necessary in order that the 
values of PI, P2, ... ,Pn arising from the equations hi = Hi make the 
expression 

a complete differential and its integral a complete solution of the given 
partial differential equation. It now remains to prove only that they 
are sufficient, Le. when they are fulfilled, P1dql + P2dq2 + ... + Pndqn is 
actually a complete differential and with it the n(n2-1) equations 

hold. (The se co nd part of the assertion, that J(P1dql + ... + Pndqn) is 
a complete solution follows automatically from this, since the constants 
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h l , h2, ... , hn - I are arbitrary and mutually independent). We have then 
to conclude that from the equations of constraint 

the equations of constraint 

follow, just as above the former have been derived from the latter. 
In order to lead to this proof, we must return to the equations which 

appeared at the beginning of this lecture for the direct proof of the 
equation (32.1). If we start only from the assumption that ep = a, 7./J = b 
belong to the system of n equations which serve for the determination 
of PI, P2, ... ,Pn as functions of ql, q2, ... ,qn, and that ep = a, 7./J = bare 
satisfied identically by these expressions of PI, P2, ... ,Pn in ql, q2, ... ,qn, 
then we obtain the equations 

i=n a7./J aep + ap·aq· - , 
i=1 

k=n aep a7./J 
+ L apk aqk = O. 

k=1 

If we then assurne the equations of constraint - = 0, the 
double sums cancel on subtraction and we obtain the new form of the 
equations of constraint. Now, where we cannot assurne the constraint 
equations = but want to prove them, we obtain on taking 
the difference of the two equations above and if we set Ha and Hß in 
place of the functions ep,7./J, 

° 
i-n 

+ {aHa aHß _ aHß aHa}. 
ap· aq· ap· aq· i=1 

(32.2) 

This simple sum which forms the second member on the right hand side 
of this equation is none other than the expression denoted above by 
(Ha, Hß). The double sum which forms the first term can be reduced to 
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n(n2-1) terms, since the terms for which i = k vanish. Of the remaining, 
any two of which go over into each other on interchanging i and k, can 
be combined into one. In this way equation (32.2) is transformed into 

° = ,,{8Ha 8Hß _ 8Hß 8Ha } {(8Pi ) + (8Pk )} + (Ha, Hß), 
8Pk 8Pi 8Pk 8Pi 8qk 8qi l,k 

(32.2*) 
where the summation is extended over all combinations of i, k different 
from each other. One obtains n(n2-1) such equations when one sets for 
Ha, Hß any two different ones of H, H1 , •.. , Hn- 1 • So one obtains a 
system of equation wh ich are linear in the express ions -

and in which the (Ha, Hß) form the constant terms. It is to be 
proved that when the last quantities vanish, the first would all became 
equal to zero. Now in a system of linear equations, the vanishing of 
the unknown is always a necessary consequence of the vanishing of the 
constant terms if the determinant of the system is not equal to zero, 
in which case the values of the unknown remain undetermined. That 
this exceptional case does not occur he re one can prove, without finding 
out the value of the determinant in question, through this that one can 
derive in the following simple way the solution formulae far (32.2*) from 
the form of the equations of the system given in (32.2). One puts for 
abbreviation 

8Ha (0'.) 
8Pi = ai , 

and denotes by R the deterrninant formed by the n 2 quantities 
where 0: takes the values 0,1, ... ,n - 1 and i the values 1,2, ... , n so 
that 

Further one sets 
A(n) = 8R 

l 8a;a) . 

On introducing these notations and interchanging 0: and ß, equations 
(32.2) can be written in the following way: 

i=n k=n 

_ (:k)} = (Hn,Hß). 
i=l k=l qk ql 

(32.3) 

This equation holds not only when distinct values from the series 
0,1,2, ... n - 1 one sets for 0: and ß, but also when both the indices are 
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equal to one and the same value. In this last case the equation (32.3) is 
an identity, since in the only formally different equation (32.2*), all the 
terms then vanish individually. 

If one multiplies equation (32.3) with where rand s de-
note numbers from the series 1,2 .... ,n, then one may, according to the 
remark just made, sum from 0 to n - lover each the indices a and ß 
independently of each other. If one changes in the result the order of 
summation, which on the one hand is made over i and k and over a and 
ß on the other, and denote by Mik the double sum 

n=O ß=O n=O ß=O 

then this gives 

i=n k=n n=n-I ß=n-I 
- = L L 

i=1 k=1 qk qt n=O ß=O 
(32.4) 

The simple sums whose product Mik represents l are equal to to 0 or R 
according as i is different from rand k from s, or i coincides with rand 
k with s. Hence 

Mik = 0 

except when i = rand k = s, and in this case, Mr,s = R 2 . Equation 
(32.4) then changes into 

Hence one sees that if (Hn, Hß) are all equal to 0, as we ass urne , 
then all the quantities (t:;) - also vanish, unless R is equal to 
zero. But the vanishing of the expression 

R _ ± '" (n-I) _ ±8H 8HI 8Hn- 1 
- aIa2a3···an - -8 -8 ... 8 Pi P2 Pn 

signifies that the functions H, HI, ... , Hn- I of the quantities PI, 
P2, ... ,Pn are not independent of one another. Then the equations 

lSee Lecture 11, §3. 
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H = h, H I = h l , ... , H n - I = hn - I are not sufficient to determine the 
variables PI, P2, ... ,Pn as function of ql, q2, ... , qn. Except for this sin-
gle and obvious exceptional case, one can conversely derive the original 
equations of constraint 

from the n(n2-1) equations of constraint 



Lecture 33 

On the simultaneous solutions of two linear 
partial differential equations 

The problem of integrating the given partial differential equation H = h 
is now red uced to finding n - 1 functions H I, H 2, ... , H n-I, independent 
of one another and also of H, of the variables PI, P2, ... ,Pn, ql, q2, ... , qn, 
which satisfy the n(n2-1) equations of constraint 

(for the values 0,1, .. . ,n - 1 of the indices 0: and ß), and which one 
has to set equal to n - 1 mutually independent arbitrary constants 
h l , h2 , . . . , hn - I . Between any one of these n - 1 functions, e.g. H I , and 
the function H known to us, also the equation of constraint (H, H I ) = 0, 
holds i.e. H I satisfies the partial differential equation 

ßH ßH1 ßH ßHI + --+ ... +---
ßP2 ßq2 ßpn ßqn 
ßH ßH1 ßH ßHI ßH ßH1 _ ° 
ßql ßPI - ßq2 ßp2 - ... - ßqn ßPn - , 

or what is the same, H I = h l is an integral of the system of isoperimetric 
differential equations1 

dql : dq2 : .. . : dqn : dPl : dP2 : ... : dqn 
ßH ßH ßH ßH ßH ßH 
ßPI . ßP2 : ... : ßpn : - ßql : - ßq2 : ... : - ßqn ' 

lSee Lecture 19, p 172 
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which, for H = T - U, goes over to the system of differen-
tial equations of mechanics. A similar relation holds for the func-
tions H2, ... ,Hn- I which satisfy the analogous equations of constraint 
(H, H2) = 0, ... , (H, Hn-I) = 0. All n - 1 equations 

are therefore integrals of the system of isoperimetric differential 
equations given above. But this determination of the functions 
H I , H2," . ,Hn- I is not sufficient. Through this only the equations of 
constraint 

(H, HI) = 0, (H, H2) = 0, ... , (H, Hn-I) = ° 
are satisfied, and the remaining - (n - 1) = (n-I)2(n-2) equations 
of constraint (Ha, Hß) = ° which, with the exception of H, hold between 
any two of the n -1 functions H I , H2, . .. , Hn- I, will not be satisfied by 
the value of the functions so determined unless one has chosen the n - 1 
integrals just for that purpose. We cannot even know apriori whether for 
the first of the functions sought for, H I , an entirely arbitrary integral 
may be taken, and whether the remaining n - 2 functions can be so 
determined that they, along with Hand H I , also satisfy all the previous 
conditions. 

A more precise investigation shows that in fact H I can be chosen 
entirely arbitrarily among the integrals and it needs to satisfy only the 
condition 

Whatever function H I one may take corresponding to this condition, 
there always exists a second function H 2 which simultaneously satisfies 
both the conditions 

that further, whatever function H2 one may take corresponding to both 
these conditions, there always exists a third one, H3, which simultane-
ously satisfies all the three conditions 

One can continue in this way until all the functions H I , H2, ... , Hn- I 
are determined. 
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We see that the present investigation forces on us the necessity of 
answering the question, whether and under wh at conditions is it possible 
to satisfy several partial differential equations simultaneously. 

In order to handle this question in its greatest generality, let the 
linear partial differential equation be of the form 

Ao ö! + Al Ö! + A2 Ö! + ... + An Ö! = o. 
ÖXo ÖXI ÖX2 ÖXn 

We shall denote by A(f) the left side of this equation in which Ao, 
Al, ... An are given functions of Xo, Xl, ... ,Xn, so that we can look upon 
the construction of such an expression as an operation done on the un-
known function f. Let then 

Ö! ö! ö! i=n ö! 
A(f) = Ao- +AI- + ... +An- = LAi-, 

öxo ÖXI öXn . ÖXi 
z=O 

and similarly, 

Ö! ö! ö! k=n ö! 
B(f) = Bo- +BI- + ... +Bn- = LBk-. 

öxo ÖXI öXn ÖXk 
k=ü 

A(f) and B(f) are two different operators of this sort with which one 
can operate on the function !. If we apply the two operators one after 
the other, we get, according as we begin with the operation A or the 
operation B, the two expression B(A(f)) and A(B(f)) which are defined 
through the equations 

A(B(f)) 

In both the expressions, only the terms multiplied by the second order 
differential coefficients of ! are in general equal. In the difference of the 
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two only those terms remain which contain the first order differential 
coefficients of f. For the difference, which we shall call C(f), we obtain 

or, if we introduce the notation 

then 

, i=n ß f ß f ß f ß f 
C(f) = 2: Ci - = Co- +C1 - + ... +Cn-· 

i=O ßXi ßxo ßXl ßXn 

If, as we shall assume in the following investigation, the n + 1 equa-
tions hold: 

Co = 0, Cl = 0, ... , Cn = 0, 

so that for the values 0, 1, ... ,n of the index i the equations 

B Q.&+B Q.&+,,·+B Q.& 08xQ 18xl n8x,. 
A dB A dB A oB-- 0=- 1=-"'-8xo 8Xl ndxn 

are satisfied, then one has 

C(f) = B(A(f)) - A(B(f)) = ° 
or, 

B(A(f)) = A(B(f)) , 

i.e. it is equally valid whether one first applies the operation A and then 
the operation B, or first the operation Band then the operation A. 
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This independence of the order in which the operations A and B 
are applied is of great importance since it allows extension to an arbi-
trary number of repetitions of both the operations. If one denotes by 
A2 A3 Am th t' A l' d t' th' t' , , ... , e opera IOn app le Wlce, nce, ... ,m lmes one 
after the other, and likewise by B 2 , B3, ... , Bn the operation B applied 
twice, thrice, ... , m times, one after the other, then from the equation 
B(A(J)) = A(B(J)) follow the more general relation, 

Bm' (Am(J)) = Am(Bm' (J)). 

Prom this result one can derive the greatest use in the investigations 
of the two linear partial differential equations which satisfy the n + 1 
equations of constraint Ci = 0, 

A(J) = 0, B(J) = 0, 

partly to find the solutions of any single differential equation, partly 
their simultaneous solutions. If one assurnes that a solution fI of the 
differential equation A(J) = 0 is known to us, one has identically 

A(fI) = 0, 

from which follows 
B(A(fI)) = B(O) = O. 

But by our assumption, the n + 1 equations of constraint Ci = 0 are 
satisfied, so one can reverse the sequence of the operations A and B, so 
form the equation 

B(A(JI)) = 0 

one obtains the equation 

A(B(JI)) = 0, 

Le., B(Jd is likewise a solution of A(J) = O. According to the nature of 
this solution three cases have to be distinguished, whereby one has to 
remember that the partial differential equation A(J) = 0 has, besides fI 
still n - 1 solutions 12,13, ... , In independent of one another and of fI, 
and moreover the obvious solution I = constant. It may be that either 
B(Jd is first, a solution 12 independent of fI, or second, a function of 
fI which can also be a constant; third, it must be regarded as a special 
case when B(Jd is found equal to the constant value zero. We have 
then the three cases 

B(JI) = 12, B(fI) = F(fI), B(fI) = O. 
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In the first case, we have found from the solution fI of the partial dif-
ferential equation A(J) = 0 a second solution 12 = B(Jd; in the third 
case we have equally A(Jd = 0 and B(Jd = 0, i.e., fI is a simultaneous 
solution of A(J) = 0 and B(J) = 0; the second case will be discussed 
later. 

In the first case, where B(Jd is a new solution 12, one can pro-
ceed furt her in the same way, namely, since A(12) = 0, one so obtains 
B(A(12)) = B(O) = 0, by reversing the two operations 

0= A(B(12)) = A(B2(Jd), 

i.e., B 2(Jd is a likewise a solution of A(J) = O. Here again one has to 
distinguish three cases, namely 

In the first case one has a third solution 13 = B 2 (Jd of A(J) = 0, 
independent of fI and 12; in the third case, 12 = B(Jd is a simultaneous 
solution of A(J) = 0 and B(J) = 0; we shall come back later to the 
second case in which B 2(Jd is a function of the earlier solutions fI 
and 12 = B(Jd which can also go over into a non-vanishing constant. 
Through repeated applications of the operation B, from one solution fI 
arise the series of functions fI, B(Jd, B 2 (fI), B 3 (fI), ... , all of which 
satisfy the partial differential equation A(J) = O. Now, either the first 
n quantities of this series are mutually independent functions and form 
a complete system of solutions of the equation A(J) = 0 ... or one 
of the preceding quantities, say Bm(fI), is already a function of the 
foregoing fI, B(fI), B 2 (Jd, . .. ,Bm- l (Jd, wh ich mayaiso reduce to a 
nonvanishing constant, or to zero. 

The case unfavourable to the finding of the solution of A(J) = 0 
in which the entire cycle is not run through makes easy to find the 
simultaneous solutions of A(J) = 0 and B(J) = O. 

The most general solution of A(J) = 0 is an arbitrary function of n 
of its mutually independent solutions fI, 12, ... , In. In order to obtain a 
simultaneous solution of A(J) = 0 and B(J) = 0, this arbitrary function 
of fI, 12, ... ,In must be so determined that it also satisfies B(J) = 
O. For this purpose, if we introduce in the expression B(J), for n of 
the n + 1 variables xo, Xl, . .. , X n , e.g. for Xl, X2, ... , X n , the functions 
fI, 12, ... , In as new variables and represent the differential coefficients 
of I constructed under this new hypothesis with (3t), 3t, 3k, ... , i/;; , 
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where the new differential coefficient (*k) is completely different from 
the earlier .gL, then we have vXO 

81 ( 81 ) k=n 81 81k 
8xo = 8xo + L 81k 8xo' k=l 

and if i denotes the numbers from 1 to n, 

therefore 

81 _ k=n 81 8fk. 
8x' - L 81k 8x· ' 

I k=l I 

or, finally, since B/I/t is none other than B(fk), 

( 81 ) k=n 81 
BU) = Bo 8xo + B(fk) 8fk' 

Now I, if it is a solution of AU) = 0, can depend only on the functions 
Ik, but does not depend on Xo; so one has (*k) = 0, and the equation 
BU) = 0 reduces to 

i.e., to 
81 81 81 

B(h) 8!I + B(h) 812 + ... + B(Jn) 81n = o. 
But as a consequence of the n + 1 constraints assumed, 

holding for i = 0,1, ... , n, the solution li of A(J) = 0 and at the 
same time B(Ji) a solution of A(J) = 0, the obvious solution I = con-
stant reckoned along with this; consequently, all the quantities B(!I), 
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B(12), . .. ,B(fn) are solutions of A(f) = 0; and since the most gen-
eral solution of A(f) = 0 is an arbitrary function of JI, 12, ... ,In, all 
the functions B(JI), B(12), ... , B(fn) are functions of the quantities 
JI, 12,···, In; consequently, the equation 

81 81 81 
B(ft) 8JI + B(12) 812 + ... + B(fn) 8In = 0 

is a partial differential equation which defines I as a function 
of JI, 12, .. · ,In· It admits n - 1 mutually independent solutions 
'PI, 'P2,···, 'Pn-l and its most general solution, which represents equally 
the most general simultaneous solution of A(f) = 0 and B(f) = 0, 
is therefore an arbitrary function F('Pl, 'P2, ... , 'Pn-l) of the preceding 
n - 1 mutually independent solutions. Accordingly, such simultaneous 
solutions exist if the n + 1 conditions Ci = 0 are satisfied. 

We now show the use which the repeated application of the operation 
B on the solution JI of A(f) = 0 can be put to when it comes to 
the determination not of the most general solution but to a particular 
simultaneous solution of A(f) = 0 and B(f) = O. I assume the quantities 
B(JI) = 12, B 2(JI) = 13,·· ., Bm-l(ft) = Im, where m is less than or at 
most equal to n, to be solution of A(f) = 0, independent of one another 
and of JI. On the other hand Bm(f) is not a solution independent of 
JI, 12,·· ., Im; then there are two cases to be distinguished: 

1. If Bm(ft) is equal to a function F(fl, 12,···, Im) of JI, 12, ... , Im, 
which can also go over into a constant nonvanishing value, then it 
is possible so to determine the simultaneous solution of A(f) = 0 
and B(f) = 0 always that they depend only on JI, 12,.··, Im, but 
do not contain the remaining Im+l, Im+2,"" In. Then through 
this hypothesis the above partial differential equation which defines 
the simultaneous solution I as a function of 11,12,· .. ,In reduces 
to the following: 

which coincides with the system of ordinary differential equations 

dJI : d12 : ... : dl m-l : df m 

= 12: 13: .. ·: Im: F(JI,12, .. ·,fm). 
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If we introduce in this system the furt her variable t so that one 
sets the m equal ratios equal to the ratio dt : 1, then one has 

dfI dh dfm-1 dfm dt = 12, dt = 13,···, -;{t = fm, dt = F(f1,h,··· ,fm), 

or 

dfI d2 fI dm- 1 fI dfm dm fI 
12 = dt' 13 = dt2 , ... , fm = dtm- 1 'dt = dtm ' 

and consequently, 

If now = constant is any integral whatsoever free of t of this 
mth differential equation, then f = is a simultaneous solution 
of A(f) = 0 and B(f) = O. 

2. If Bm(fI) = 0, then one has 0 = B(Bm- 1(fd) = B(fm) and 0 = 
A(fm); so fm = B m- 1(fI) is a simultaneous solution of A(f) = 0 
and B(f) = O. 

There is an exception to the result obtained in 1. for m = 1, i.e., 
when already B(f1) is itself a function of fI or reduces to a constant 
different from zero. This one sees already from that the differential 
equation between fI and t is then of the first order, and so possesses no 
integral free of t. The partial differential equation which defines f as a 
function of fI, 12, ... , fm then changes to 

ßf 
ßfI = 0, 

and gives the obvious solution f = constant, which is not useful. In this 
case one cannot make any use of the solution fI alone, but it is necessary 
to know a second solution 12 of the equation A(f) = O. If one applies 
the operation B to 12 as to fI earlier, and if B(h) is not a function 
of 12 alone, then one obtains, according to the previous procedure, a 
simultaneous solution of A(f) = 0 and B(f) = 0 from h. If, on the 
other hand, B(h) is a function of 12 alone, so that a simultaneous 
solution cannot be found from 12 alone, then one finds one such through 
simultaneous use of f1 and h. That is, if 

B(fI) = cI>(fI), B(h) = '11(12), 
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then one can assume that j is a function of fI and halone, and one 
obtains for the determination of this function the partial differential 
equation 

öj öj 
<p(fI) öfI + \I!(h) öh = 0, 

which leads to the ordinary differential equation 

dfI : dh = <p(fI) : \I!(h) , 

and the expression J dfI J dh 
f = <PUd - \I!(h) 

gives the simultaneous solution sought for. 



Lecture 34 

Application of the preceding investigation to 
the integration of partial differential equations 
of the first order, and in particular, to the case 
of mechanics. The theorem on the third 
integral derived from two given integrals of 
differential equations of dynamics 

In order to apply the results obtained in the investigation of the pre-
vious lecture on the simultaneous solutions of linear partial differential 
equations to the case which led us to this investigation and from wh-
cih we proceed to the integration of the partial differential equation 
H = h (p.290), we shall first replace the n + 1 independent variables 
Xo, Xl, ... ,Xn by an even number 2n of variables Xl, X2, ... ,X2n, where 
indices we shall begin with 1 instead of 0, so that the expression AU) 
and BU) are now defined through the equations 

AU) = Al 01 +A2 01 + ... 
OXI OX2 OX2n 

BU) BI 01 + B2 01 + ... + B2n 01 , 
OXI OX2 OX2n 

and the 2n equations of constraint 

hold for i = 1,2, ... , 2n. Further, we may put p and q in place of the 2n 
independent variables so that 
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and finally, let the coefficients Ai, Bi be determined through the equa-
tions 

Then we obtain 

AU) 8ip 81 + 8ip 81 + ... + 8ip 81 
8Pl 8ql 8P2 8q2 8Pn 8qn 

8ip 81 8ip 81 8ip 81 
- 8ql 8Pl - 8q2 8P2 - ... - 8qn 8Pn ' 

BU) 87jJ 81 + 87jJ 81 + ... + 87jJ 
8Pl 8ql 8P2 8q2 8Pn 8qn 

87jJ 81 87jJ 81 87jJ 81 
- 8ql 8Pl - 8q2 8P2 - ... - 8qn 8Pn ' 

or, in the notation introduced in lecture 32 (p.285), 

AU) = (ip,f), 
BU) = (7jJ,1)· 

In order to obtain the values of the 2n quantities Ci for i = 1, 2, ... ,2n, 
we divide them into two groups Ci and Cn+i for i = 1,2, ... , n; then one 
obtains 

Ci B(Ai ) - A(Bi ) = (7jJ, ::) - (ip, z:) , 
Cn+i B(An+d - A(Bn+d = (7jJ, - - (ip, - , 

or, when one takes into account the identity 
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Since the expression (<p, 'l/J) is a linear function of the differential coeffi-
cients of <p as weIl as the differential coefficients of 'l/J, the right sides of 
these equations are nothing but the derivatives of (<p, 'l/J) with respect to 
Pi and qi, so, 

ö(<p,'l/J) 
ÖPi 

Ö(<p,'l/J) 
Öqi 

and aIl the 2n equations of constraint Ci = 0, Cn +i = 0 are satisfied far 
i = 1,2, ... , n, so long as 

identicaIly, Le., so long as f = 'l/J is a solution of the linear partial 
differential equation AU) = (<p, f) = O. If this one equation of condition 

is satisfied, then there always exist simultaneous solutions of the equa-
tions 

(<p, f) = 0, ('l/J, f) = 0, 

and one can utilise the results of the preceding lecture for their deter-
mination. 

The assertion made at the begining of the preceding lecture is hereby 
proved, according to which, if H 1 is any function whatsoever satisfying 
the condition (H, Hd = 0, a second function H2 can always be deter-
mined which satisfies simultaneously both the conditions (H, H2 ) = 0 
and (H 1, H 2) = O. Indeed the investigation of the preceding lecture gives 
not only the proof of the existence, but also the me ans for the deter-
mination of H2. The furt her continuation of the preceding investigation 
then gives, under the assumption of the function H 1 and H 2 so defined, 
the me ans of determining the new function H3, which satisfies simulta-
neously the three conditions (H1 , H3) = 0, (H2 , H3) = 0, (H, H3) = 0 
and so on. 

In the preceding lecture we have determined not only the simulta-
neous solutions of two linear partial differential equations AU) = 0, 
BU) = 0, which satisfy the conditions Ci = B(Ai ) - A(Bi ) = 0, but 
what is no less important, derived from one solution h of AU) = 0, 
through repeated application of the operation B, aseries of new solutions 
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B(fI) = 12, B(12) = h,···, BUm-d = Im, until the repetition of 
that order leads to a solution BUm) = Im+I which is a function 
F(fI, 12,···, Im) of the previous ones, or is a constant which, in par-
ticular, can also be zero. 

As we make an application of this to the present case we need a mod-
ification which rests on the following circumstance. In general AU) = 0 
possesses the obvious solution I =constant and besides this, and the 
solution I = fI which from the start is known to uso In the special case, 
however, where AU) = (<p,f), BU) = ('l/J,f), while the equations of 
constraint Ci = 0 are satisfied through the identity (<p, 'l/J) = O. If I = fI 
is a solution of (<p, f) = 0 we know already a second solution 'l/J besides 
fI. Moreover, in addition to the obvious solution I = constant, there is 
the special solution I = <po Hence Im+I is not a new solution if it be-
comes equal to a function F(<p, 'l/J, fI, 12,.··, Im), which contains <p and 
'l/J besides fI , 12,··· ,Im. With this in mind and without explicitly men-
tioning the case where the function F reduces to a constant including 
zero but including it in the notation F(<p,'l/J,fI,12, ... ,Jm), we obtain 
the resu1t: 

If fI is a solution of the partial differential equation (<p, f) = 0 
defining I, and if the constraint equation (<p, 'l/J) = 0 is satisfied, then 
('l/J,ld = 12 is in turn a solution of (<p, f) = 0, and indeed in general a 
new solution. In particular cases, however, the solution can be a function 
F( <p, 'l/J, fI) of 'l/J, fI including the obvious one <po If one continues this and 
sets ('l/J,12) = h, ('l/J, h) = 14, ... , ('l/J, Im-I) = Im, ('l/J,Jm) = Im+l, one 
will in general obtain further new solutions h, 14, ... , Im of (<p, f) = 0, 
until Im+I becomes a function F(<p, 'l/J, fI, 12,···, Im) of the already 
known 'l/J, fI, 12,···, fm and the obvious solution <po 

When one allows the function <p to coincide with the function H, 
which forms the left hand side of the partial differential equation H = h, 
then it is appropriate to change the remmaining notations also. We set 
<p = H, 'l/J = H1 , fI = H2, 12 = H3 and so on, and the above result 
becomes: 

If the equations (H, Hd = 0 and (H, H2) = 0 are satisfied, i.e., 
if Hl and H 2 are solutions of the linear partial differential equation 
(H, Hi ) = 0 defining Hi , then (HI, H2) = H3 is likewise a solution of 
this differential equation and indeed in general a new solution. In spe-
cial cases H3 is a function of H, Hl, H2. If one continues with this op-
eration and sets (HI, H3) = H4, (Hl, H4) = H5,··., (H1, Hm-d = Hm 
(H1 , Hm) = Hm+1 , one obtains in general new solutions H4• H5, ... , Hm 



Lectures in Dynamics 302 

of (H, Hi ) = 0 until H m +l is a function of the already known 
H, H l , .... ,Hm , including the obvious solution H. l 

However, as we know, it is of equal significance whether we say that 
Hi are solutions of the linear partial differential equation (H, Hi ) = 0 
defining H i , i.e., the equation 

+ 

or whether we say that H l set equal to an arbitrary constant is an 
integral of the system of ordinary differential equations 

dql : dq2 : ... : dqn : dPl : dP2 : ... : dpn 
öH öH öH öH öH öH 
ÖPl : ÖP2 : . . . : öPn : - öql : - Öq2 : . .. : oqn ' 

Le., an integral free from t of the isoperimetric differential equations 

dql öH dq2 öH dqn öH 
-

OPl' Ti ÖP2" ' " dt = , 
dt öPn 

dPI öH dP2 öH dpn öH 
-

- Öql' dt , ... , , 
dt Öq2 dt öqn 

which, when one sets H = T - U, where T represents half the 'vis 
viva' and U the force function, transform into the system of differential 
equations of motion. We can therefore express the result obtained in the 
following form: 

Let the system of isoperimetrie differential equations 

in which H represents a function of the variables ql, q2, .. ·, qn, PI, 
P2,'" ,Pn, without t, and which for H = T - U goes over to the sys-
tem of differential equations of dynamies, be given. 1f one knows two 

lIt is not to be overlooked that the quantities H 1, H 2 ,H3 , . • • denote here any 
solutions whatsoever of the equation (H, Hi ) = 0, and not the special system of these 
solutions which, set equal to constants, forms the equation leading to the complete 
solution of the partial differential equation H = h. (See Lecture 32, p.291) 
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integrals HI = hl , H 2 = h2 of this system free from t and one forms the 
expression 

then 

8HI 8H2 8HI 8H2 8HI 8Hn --+--+ ... +--
äPI äql äP2 äq2 äpn äqn 
äH2 äHI äH2 äHI äH2 äHI 
&PI äql - äP2 äq2 - ... - äP2 äql ' 

H3 = h3, 
where h3 denotes a third arbitrary constant, is in general a new integral 
of the system. In special cases H3 may be a function of H, H I and H2, 01' 

a constant numerical value, not excluding zero. In these cases H3 = h3 
is not a new integral but an equation which is satisfied identically under 
the assumption of the earlier integrals H I = h l , H2 = h2 and the obvious 
integral H = h. If one continues this operation and builds from H I and 
H3 01' H2 and H3 the expression (HI , H3) 01' (H2, H3), this set equal to 
a constant, gives a further new integral etc. 

This is one of the most remarkable theorems of the entire integral 
eakulus, and for the special ease in whieh one sets H = T - U, a funda-
mental theorem of analytieal meehanies. Namely, it shows that when the 
theorem of vis viva holds, one ean in general derive from two integrals of 
the differential equations of motion a third by a simple differentiation, 
from that a fourth, ete. So that one obtains either all integrals, or at 
least a number of them. 

After I diseovered this theorem I eommunicated it to the Aeademies 
of Berlin and Paris as an entirely new diseovery. But I notieed soon 
after that this theorem had already been diseovered and forgotton for 
30 years, beeause one did not appreciate its real meaning, but had only 
used it as a lemma in an entirely different problem. 

If one had integrated the above differential equations for adefinite 
problem of meehanies and would, using the so-ealled perturbation the-
ory developed by Lagrange and Laplace, determine the modifieations of 
the motion by the addition of new sm aller forees , then one would be led 
to a new expression put together from Pi and Qi, which is independent 
of time - a result which belongs to the greatest diseoveries of the Ge-
ometers mentioned.Poisson, who earried out the investigation somewhat 
differently, found this expression independent of t to be precisely of the 
form (Hi , Hk). This theorem of Poisson was eelebrated beeause of the 
diffieulty of its proof. But one attaehed so little value to it that La-
grange did not mention it even onee in the seeond edition of Meeanique 
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Analytique, but preferred his own formulas as simpler. But precisely 
this formula of Poisson agrees esstentially with the one given above. 
For, if those expressions (Hi, Hk) which for Poisson enter as coefficients 
in the perturbing function are independent of time, then they must be 
functions which in the original problem must be equal to constants. But 
this remark was missed by the Geometers earlier, and it needed in fact 
a fresh discovery to consider the true significane of the theorem. 

A peculiar circumstance had contributed to the fact that nobody 
recognised the importance of this theorem discovered so long ago. 
Namely, the cases in which one applied the theorem were precisely those 
in which the newly constructed expression gave no new integral, but in 
which the resulting expression was identically equal to zero, or equal to 
a number different from zero, say = 1. These cases which in the gen-
eral theory appear as exceptional are very frequent in practice. In order 
that an integral combined with a second should lead to all integrals one 
after another, must be one which is peculiar to the particular problem. 
But the first integrals which are found for a given problem are as a rule 
just those which follow from general principles (e.g. the conservation of 
surface area) , and so are not peculiar to the specific problem. Therefore 
one cannot expect that all integrals could be derived from them. 

We see that a certain polarity, i.e. a qualitative difference exists 
between the integrals. Earlier one did not know that any integral held 
for many equal values, and the only use one could make of them was to 
reduce the order of the system by one. But we see now that there exist 
certain integrals H 1 = h 1 and H2 = h2 from which one can derive all 
the other integrals. This case is indeed general. That is, if the equations 
H 1 = h 1 , H2 = h2 , ... , Hm = hm represent all the integrals and one 
constructs frm the left hand sides of these an arbitrary function 

which can be given in advance, then one can, in an overwhelming major-
ity of cases, derive from H m +1 and one of the given integrals, e.g. from 
Hm +1 and H 1 , all the remaining ones, and this is the general case, since 
H m +1 set equal to an arbitrary constant represents the most general 
form of an integral. The first integrals that one finds in the solution 
of a problem are not, as a rule, as H m +1 is, got together from those 
which belong specifically to the problem and the ones given by a general 
principle, but they are ordinary, only of a general nature, and therefore 
one does not obtain from them all the integrals of the problem. 
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The application of the general theorem to free motion gives the fol-
lowing theorem. 

1f one knows two integrals cp = h1 , 'lj; = h2, independent of t, of the 
system 

d2Xi äU d2Yi äU d2 Zi äU 
m-- = - m-- = - m-- = -

dt2 dXi' dt2 äYi' dt2 äzi ' 
and one constructs the expression 

(<p, 'lj;) = L { ä<p ä'lj; + ä<p ä'lj; + äcp ä'lj; 
mi äXi äYi äZi 

ä'lj; ä<p ä'lj; ä<p ä'lj; ä<p } ---------
äXi äYi äZi 

then, in general, 
(<p, 'lj;) = h3 

is a new integral; in special cases, however, (cp, 'lj;) can also be a function 
of the constants h1 h2 and the constant h it occurring in the 'vis viva' 
T - U = h, is a pure numerical value, and indeed can also be equal to 
zero. 

In this way one can derive from the two surface-area theorems the 
third one. For this purpose we have only to set 

then 

therefore 

äcp 
äXi 
ä<p 
äx' t 
ä'lj; 
äXi 
ä<p 

t 

(<p, 'lj;) = L - YizD, 

and so the third surface area theorem is 

(<p,'lj;)=h3 . 
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Poisson, in his famous treatise on the variation of constants in Vol.15 
of the Journal of the Polytechnic School, makes an application of the 
perturbation theorems mentioned above to the perturbations of a rota-
tory motion about a fixed point. For this he is required to carry out the 
same computational operations as those which we have just made. That 
is why his computations contain the derivation of the third surface-area 
theorem, but he does not utter a single word on this remarkable result. 

Similar observations can be made if one adds to the three surface-
area theorems the three equations of conservation of the motion of the 
centre of gravity and investigate from how many of these six integrals 
the remaining arise. 



Leeture 35 

The two elasses of integrals w hieh one 0 btains 
aeeording to Hamilton's method for problems 
of meehanics. Determination of the value of 
('P, 'ljJ) for them 

If from the system of differential equations 

dt : dql : dq2 : ... : dqn : dPI : dP2 : ... : dpn 
_ 1 . aH . aH. . aH. aH. aH. . aH 
- . aPl . aP2 . . . . . aPn . - aql . - aq2 ..... - aqn ' (35.1) 

which has obviously the integral H = h, two integrals H I = hl, H2 = h2, 
independent of t, are given, one cannot, as we have seen, in general say 
apriori whether (HI , H2) set equal to an arbitrary constant is a new 
integral or whether it reduces to a constant dependent on h, h l , h2 , or to a 
pure number, or even to zero. This quest ion can be decided completely if 
H I = h l and H 2 = h2 are integrals which belong to the system provided 
by Hamilton's partial differential equation. Indeed, we shall see that if 
rp =constant and 'l/J =constant are two ofHamilton's integrals then (rp, 'l/J) 
is either = 0 or = ±l. Two integrals of this system then never give a new 
integral. In order to prove this theorem we need a lemma that shows 
what the expression (rp, 'l/J) becomes if, in rp and 'l/J, besides the quantities 
ql,q2,· .. ,qn, PI,P2,···,Pn, also other quantities WI,W2,.··,Wk, ... ,wm 
occur, which are functions of ql, Q2, ... , qn and PI, P2, ... , Pn. In this case 
one can form the differential coefficients of rp and 'l/J in the variables P and 
q, as weIl as of the expression (rp, 'l/J), in two different ways, according as 
one does take account of the variables P and q in WI, W2, ... , Wk, ... , wn 
or not. If we denote the differential coefficients formed in these two ways 
of rp and 'l/J with and without brackets, and the expression built from rp 
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and 'lj; with double brackets ((<p, 'lj;)) or with simple brackets (<p, 'lj;), then 

((<p, 'lj;)) L { (;:) - } 
l 

(35.2) 

(35.3) 

The summation over i extends over 1,2, ... , n, and far the bracketed 
differential coefficients in (35.2) the following equations hold, 

in which the summations over k and k' are to be taken from 1 to m. If 
one substitutes these in the expression (35.2), one obtains a simple sum 
in i, a double sum in i and k(or k'), and a tripIe sum in i, k, k'. Namely, 

((<p,'lj;)) = L (;: - + 
l 

"". (ß<p ß'lj; ßWk' ß<p ß'lj; ßWk') 
+ L: 7 ßPi ßWk' ßqi - ßqi ßWk' ßPi 

" " (ß'lj; ß<p ßWk ß'lj; ß<p ßWk) L: L: ßPi ßWk ßqi ßqi ßWk ßPi 

""" ß<p ß'lj; (ßWk ßWk' ßWk' ßWk) 
+ L: L: 7 ßWk ßWk' ßPi ßqi - ßPi ßqi ' 

and if one reverses the order of summation in the double and tripIe sums 
and takes into ac count the definition given in (35.3) of the expression 
(<p, 'lj;) enclosed in simple brackets, one gets, 

Since the summations in k and k' are extended over the same values from 
1 to m, one can write k in place of k' in the second term. In the last term 
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the numbers for which the values of k and k' coincide vanish because of 
the factor (Wk' Wk' ). In the remaining numbers one can combine every 
two into one since (w k' , W k) = - (w k, W k' ). Therefore one needs to take 
this sum only for combinations of any two values of k and k' different 
from each other and take (Wk, Wk')' multiplied by (.!:!.':Laa_ a8..1/J - aaj; a8..'f ); 

Wk Wk' Wk Wk' 

so one obtains finally 

(35.4) 

For later use, we shall specialize the formula (35.4) by substituting for 
the quantities W1, W2, .. . , Wn , the n functions H, H1, ... , Hn - 1 already 
considered earlier, 1 free of arbitrary constants, and depending only on 
the values ofthe variables ql, q2,"" qn, PI,P2,··· ,Pn, which, set equal to 
n mutually independent arbitrary constants h, hl , ... , hn - I , determine 
the variables PI, P2, ... ,Pn represented as functions of the variables ql, 
q2, ... ,qn, so that 

is a complete differential and its integral a complete solution V of the 
partial differential equation H = h. Then, as we have seen, we have 
evidently 

(Hk, Hk') = 0, 

and consequently, in the general formula (35.4), the double sum in k and 
k' vanishes, and we obtain 

(35.5) 

where the summation is extended from k = 0 to k = n - l. 
We now specialize this formula still furt her . According to our as-

sumption upto now, the functions rp and 'ljJ contain the variables P 
and q first, explicitly, and secondly, implicitly, through the functions 
H, H1, ... , Hn - I . At present we ass urne that the functions rp and 'ljJ con-
tain the variables P only in the second way, that is, only implicitly, a form 

lSee Lecture 32, p.283 
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which can always be arrived at through the introduction of the n quan-
tities H as the new variables in place of the n quantities q. Consequently 
by this <p and 'ljJ are expressed solely by ql, q2,· .. , qn, H, H 1, ... ,Hn- 1. 

So with this hypothesis there is an essential simplification for the ex-
press ions appearing in equation (35.5): 

Since the differential coefficients vanish for all values of i, 

and the general expression (35.5) for ((<p, 'ljJ)) now takes the simple form 

((<p,'ljJ)) = _ ß'ljJ ß<p ßHk + ß<p ß'ljJ ßHk. 
ßHk ßq· ßp' ßHk ßq· ßp' k i t t k i t t 

(35.6) 

In this equation is contained the specialization of lemma (35.4) which 
we have to use for the consideration of Hamilton's form of the integrals. 

In order to write down, under these assumptions, the integrals of the 
system of differential equation (35.1) in Hamilton's form, let, with the 
notaion already used, 

be the equations which so determine the values of Pl,P2, ... ,Pn, that 

is a complete solution of the partial differential equation H = h. Then, 
as we know,2 the integral equations of the system (35.1) in Hamilton's 

2See lecture 20, p.184 
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form are 
öV öV 

PI, = P2, ... , = Pn, uq2 uqn 
,öV , öV , 

t+h'öhl =hl'···'öhn_1 =hn- I , (35.7) 

where h', , ... denote new arbitrary constants. But these inte-
gral equations are not all as yet solved for the arbitrary constants. In 
order to obtain them in this form, i.e. as integrals, in our terminology, 
let us substitute for the first half of the integral equations (35.7) the 
integrals equivalent to them 

and in the second half of the same, which are already solved for the arbi-
trary constants h', ... , we substitute for h, h l , ... ,hn- I their 
values H,HI, ... ,Hn- l . Then, if H', ... denote the func-
tions of the variables ql, q2, ... , qn, PI, P2, ... ,Pn into which the quanti-

. öV öV öV h h h· b·· b . h bes öh' Öhl ' ... 'Öhn-l go over t roug t lS su stItutlOn, we 0 tam t e 
integral equations of the second row of the system (35.7) in the form of 
the integrals 

H' = t + h', = = h;, ... = 

The quantities H', , ... contain the variables PI, P2, ... ,Pn only 
implicitly by means of the quantities H, HI, ... ,Hn- I , since the func-
tion V and its differential coefficients , ... , depend only on 
ql, q2,· .. , qn, H, H I , ... , Hn- I . Then H', HL ... , are precisely of 
the form in which the quantities cp and 'I/J in equation (35.6) have been 
represented und er our assumption. The same holds, as is self-evident, 
for the quantities H, H I , ... , Hn- I if we consider them as functions of 
themselves, only then also the variables ql, q2, ... , qn do not co me into 
them explicitly. The formula (35.6) for ((cp, 'I/J)) then can be applied to 
express ions of the form Hß)) or Hß)), where we shall omit 
double brackets from now on for simplifying our notation. 

If in (35.6) one sets, first, cp = and 'I/J = Hß, where 0: and ß 
represent numbers of the series 0,1, ... , n - 1, then we get, 

öH' öH' öH öH' öH' öH 
'" ß", 00 k '" 00'" ß k - L.t ÖHk L.t öq- öp- + L.t ÖHk L.t öq- öp_· k i t t k i t t 

(35.8) 
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But, according, to our definition of 

H' = öV 
a öha ' 

assuming that in the Hk's are substituted for the hk'S Since from 
the equation 

v = J (pI dql + P2 dq2 + ... + Pndqn) 

which determines V, the expression 

follows for the differential coefficients of V with respect to ha . Hence 
partial differentiation with respect to qi, gives 

After replacement of the quantities hk by the corresponding quantities 
one obtains, 

(35.9) 

On using this equation, the sum over i occurring in formula (35.8) has 
the simple expression, 

" 
öq· öp· i l l 

" öHßöHk 
öq öp· i l l 

or, since gZ! vanishes for all values of k different from a, and equals 1 
when k = a, 

öH' öH' 
H ß) = - ö;:' + öH;' 
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The right hand side of this equation is equal to zero; for, if V' denotes 
the function into which V changes when the hk are replaced by the 
corresponding Hk, then 

H' = 8V' I 8V' I 8V' I 8V' 
8H ,H1 = 8H1 ' H2 = 8H2'···' Hn = 8Hn' 

hence 

and therefore it follows 
= o. 

In order to transform expressions of the form Hß) we set, in 
(35.6), <p = 'ljJ = Hß for <p and 'ljJ. Then we have 

Hß) = _ '" 8Hß '" 8Hk + '" '" 8Hß 8Hk . 
8Hk 8q· 8p· 8Hk 8q· 8p. (35.10) 

k i t t k i t t 

Using the equation (35.9), the first sum over i becomes, 

The second sum over i, on the contrary, vanishes, because we look upon 
ql, q2,· · ·, qn and H, H1 , . .. , Hn- 1 as independent variables. Thus Hß 
contains no qi and the differential coefficients are all equal to zero. 
In this way, equation (35.10) changes into 

and since is equal to either 0 or 1 according to whether ß is different 
from or the same as a. Therefore, one has, for any two mutually distinct 
values of a and ß, 

= 0, 

and on the other hand, when a = ß, 

Ha) = -1. 

Finally, according to the equations of constraint through which the 
quantities H are defined, 
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We have thus obtained the following identical equations for Ho. and 
H " 0.' 

of which the first two hold for all values of Cl' and ß, the last however only 
for mutually distinct values of Cl' and ß, while for Cl' = ß, the equation 

holds. One can combine these results in the following theorem: 
If the system of isoperimetric differential equations 

dql 8H dq2 8H dqn 8H 
-

8PI' dt 8P2""" dt = , 
dt 8Pn 

dPI 8H dP2 8H dPn 8H 
(35.1) -

- 8ql' dt = - 8q2"'" dt = , 
dt 8qn 

be given, in which H denotes a given function of the variables ql, q2, 
... , qn, PI, P2, ... , Pn, and which for H = T - U go over into the system 
of differential equations of dynamics in case the principle of conservation 
of vis viva holds. One considers the partial differential equation 

H=h, 

in which we set PI = P2 = ... , Pn = to which the system 
can be reduced. Let 

be the equations which, along with H = h, so determine PI, P2, ... , Pn 
asfunctions ofql , q2 , ... ,qn that 

is a complete differential, and its integral 

is a complete solution of the partial differential equation H = h . 
If one now denotes by H', ... , the functions of the vari-
ables ql, q2, ... , qn, PI, P2, ... , Pn to which the differential coefficients 
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av av av h h h h h ah' ah1 , ••• , ahn - 1 go over, w en t e constants , 1, ... , n-1 are re-
placed by the functions H, H 1, ... , Hn -1, and one puts the integrals be-
longing to the system of differential equations (35.1) in the Hamiltonian 
form, i. e. in the equations 

H = h,H1 = h1, 

H' = t + h', = 
H2 = h2, ... , Hn - 1 = hn - 1 , 

= h;, ... , = 

then the 2n functions H, H 1 , ... , Hn - 1 , H', HL ... which form 
the left hand sides of these integrals have the property that when one 
substitutes in the expression 

any two of the 2n quantities H,H1 , ... ,Hn - 1 , H',HL ... for <p 
and 'ljJ, it vanishes, with certain exceptions of combinations of Hand 
H',H1 and ... ,Hn - 1 and any of which when substituted for 
<p and 'ljJ, makes the expression (<p, 'ljJ) equal to unity. 

By means of this theorem one can obtain very simple formulas for 
the variations of constant, which will form the subject matter of the 
next lecture. 



Lecture 36 

Perturbation theory 

When the theory of variations of constants is applied in Dynamies, one 
assumes that the system of differential equations of motion changes in 
that to the characteristic function H a characteristic function n is added, 
which may contain besides the variables ql, q2, ... , qn, Pl , P2, ... ,Pn, also 
time explicitly, so that the differential equations change into the follow-
ing: 

dqi 8H an dPi 8H 8n 
Ti = 8Pi + 8Pi' dt - 8qi - 8qi' (36.1) 

If nissmall compared to H. one can use the values of the variables Pi 
and qi of the unperturbed problem (with n = 0) as approximate val-
ues in the perturbed problem, and so represent the new values Pi and 
qi that they have the same analytic form, but that in place of the ear-
lier arbitrary constants (or elements, in astronomical terminology) new 
functions of time appear. Unlike in the unperturbed problem where the 
variables Pi and qi are to be looked upon as variables to be determined,in 
the perturbed problem one seeks rat her those functions which occur in 
the place of the arbitrary constants or elements, i.e. the perturbed el-
ements will be the variables of the new problem. This guarantees the 
advantage that one obtains as first approximations, not functions of time 
which have constants, but the constants themselves, the elements of the 
unperturbed problem. 

We are now concerned with the setting up of the differential equa-
tions for the perturbed elements. We remind ourselves first of Hamil-
ton's form of the integrals of the unperturbed problem, so the system 
considered in the preceding lecture: 

H=h, 
H' = h' +t, 

H 1 = h1 , ... , H n - 1 = hn - 1 , 

= ... , = (36.2) 
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and we denote any integral independent of t of the unperturbed problem 
by 

rp = a, 

w here rp is a function of the variables ql, q2, ... , qn, PI, P2, ... ,Pn, and a 
represents an arbitrary constant, so that rp must represented as a func-
tion of 2n - 1 variables H, H I , ... , H n- I , HL ... , and a similar 
function of 2n -1 constants h,hl, ... ,hn- l , ... In the per-
turbed problem a is no longer a constant, so that is no more equal 
to zero, and one obtains more terms for on using the differential 
equations (36.1), the expression 

da 
dt 

or, what is the same, 

i=n (8rp 8H 8rp 8H) 
8qi 8Pi - 8Pi 8qi 

i=n (8rp 8n 8rp 8n) 
+ 8qi 8Pi - 8Pi 8qi ' 

da 
dt = (H, rp) + (n, rp). (36.3) 

Since rp = a is an integral independent of t of the unperturbed problem, 
rp satisfies the linear partial differential equation (H, rp) = 0, and the 
expression for reduces to 

da 
dt = (n, rp). (36.3*) 

The right hand side of this equation contains, besides t appear-
ing explicitly in n, the 2n variables ql, q2, ... ,qn, PI, P2, ... ,Pn, for 
which, however, we wish to introduce the 2n functions H, HI, ... , Hn- I , 

Hi, ... as new variables. The introduction of these new vari-
ables in n transforms (n, rp) to 

(36.4) 
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If we now introduce the new variables also in 'P and take into account 
that 'P is independent of one of them, H', so that -iW vanishes, then we 
obtain for (Hk, 'P), 'P) the transformation 

But according to the theorem proved in the previous lecture, all the 
express ions (Hk, Hs), (Hk, (Hk, Hs), (Hk, vanish, with the ex-
ception ofthose (Hk, Hs ) in which k and s have the same value, 
and of these the first will be equal to + 1 and the last to -1. Thereby 
the expression for (Hk, 'P), 'P), reduce to the simple values 

As a consequence, equation (36.4) goes over into 

k=n-l ön ö'P k=n-l ön ö'P 
(n,'P) = L 8H 8H' - L 8H' öH ' 

k=l k k k=O k k 

and equation (36.3)* finally gives for the value 

(36.5) 

The partial differential coefficients of the perturbation function are here 
multiplied by the quantities and - :lfk ' so by expressions which do 
not contain t explicitly, since t does not co me in 'P. This is the famous 
theorem of Poisson. 

If we specialize the formula (36.5) by substituting for 'P the indi-
vidual functions H, H1, ..• , Hn-l, ... , and accordingly for a, 
the quantities h, h1 , ... , hn - 1 , ... , at the same time, then we 
obtain, for k = 0,1, ... ,n -1, 

ön 
öH' ' k 

(36.6) 
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and for k = 1, ... , n - 1, 
dh' __ k 

dt 

319 

(36.7) 

It now remains to consider that integral of the unperturbed problem 
through which the time is introduced, i.e., the integral 

H' = h' + t. 
Since now h' + t enters in place of a and H' in place of 'P, so equation 
(36.3) changes into 

dh' ( ') ( , dt + 1 = H, H + 0" H ), 

and since (H, H') = 1, one obtains 

dh' = (0, H') 
dt " 

an equation precisely of the form (36.3)*, only h' and H' appear in place 
of a and 'P. Since in equation (36.4) H' can be introduced in place of 
'P, one obtains (0" H') is equal to the partial differential coefficient gji, 
and so finally 

dh' on 
dt oH' 

i.e. equation (36.7) holds also for k = O. 
The equations (36.2) which give the integrals of the unperturbed 

problem, are for the perturbed only the defining equations of the 
new variables h,hl, ... ,hn - l , ... and serve to express 
the old variables Ql,Q2, ... ,qn, Pl,P2, ... ,Pn or functions of these, H, 
Hl, ... ,Hn - l , H',Hf, ... ,H:'_l' through the new variables. While 
one carries out these substitutions in the perturbation function, so 
replaces in it H, H l , ... ,Hn - l , H', H{, ... by h,hl, ... ,hn - l , 
h' + t, ... , the differential coefficients tJik , go over to 

, , and one obtains for the variables, which in the perturbed prob-
lem take the place of the constants of the unperturbed, the differential 
equations 

dh on dhl on dhn - l on 
- oh" dt Bh' , ... , -- ---- , 

dt 1 dt 
dh' on on on 

(36.8) -
oh'dt ohl "" , dt dt ohn - l 
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This system is of a form similar to the differential equations of the 
unperturbed problem, only in place of the variables qI , q2 , ... , qn , PI , 
P2, ... ,Pn and their function H, the variables h, h 1, .. . , hn- I , h', 
... and the function -0 appear, of which moreover, the last con-
tains the time t explicitly. The integration of this system is therefore, 
according to the earlier general consideration,I equivalent to a complete 
solution of the partial differential equation 

öS _ 0 = 0 
öt ' 

which defines S as a function of t, .h, hI , . .. , hn - I , after the variables 
h', ... have been replaced by the differential coefficients 
as as 
ahl ' ... , ahn- l . 

The differential equations of the perturbation problem formulated 
here agree with those given by Lagrange and Laplace in that the per-
turbed elements are the variables sought, and that the right hand sides 
of the differential equations are expressed through the differential co-
efficients of the perturbation function with respect to the perturbed 
elements. But for them, in general, aIl differential coefficients of the 
perturbation function occur in every differential equation and the coef-
ficients of the same are express ions of the form (<p, 'ljJ), the construction 
of which is very laborious. One finds something eIoser to what is given 
here in Lagrange's Mecanique Analytique, in which the necessary lengthy 
computations are shortened with the greatest skill, as weIl as in Encke's 
Astronomical Year book of 1837. In the simplest case of planetary per-
turbations, one has, according to the older formulae, to compute 15 
expressions of the form (<p, 'ljJ). 

It was possible for us to simplify the differential equations because 
we assumed the elements of the unperturbed problem to be precisely in 
the form that they are given by Hamilton's method, so that in each only 
one differential coefficient of the perturbing function occurs, and that 
the coefficient of the same is reduced to either plus or minus 1. This 
choice of the elements is of the greatest importance.It is for this reason 
that we discussed the geometrical significance of the arbitrary constants 
introduced in Hamilton's method for the determination of planetary mo-
tion. 

Instead of introducing the variables hk, in place of the original 
variables Pi and qi in the system of ordinary differential equations and 

lSee Lecture 20, p.173 
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then leading in an indirect way to the partial differential equation -
o = 0, we shall, in the sequel, pose the problem of introducing these 
new variables directly in the partial differential equation 

av 8i+ H + O =O, (36.9) 

which belongs to the perturbation problem expressed in its original vari-
ables. We assume a complete solution Vo of the partial differential equa-
tion of the unperturbed problem 

avo H = 0 at + , (36.10) 

as known. This is required for the determination of the new variables 
hk and and we shall go directly from the partial differential equation 
(36.9) to the partial differential equation 

-0 =0. (36.11) 

The partial differential equation (36.9), in which the quantities PI, 
P2, ... ,Pn are replaced by the partial differential coefficients aav, aav, ql q2 
... , aav , is equivalent to the total differential equation qn 

(36.12) 

h . H d n .. I f av av av w ere m an H,PI,P2,.·· ,Pn enter agam m pace 0 -a '-a , ... , -a . ql q2 qn 
While we introduce as new variables the functions which in the un-

perturbed problem are equal to arbitrary constants, we have to effect a 
substitution which is of the same nature as the one considered in Lec-
ture 21, but more general than that. In the present case, as there, not 
only are the new variables to be introduced far the independent vari-
ables ql, q2,"" qn, t and the function V found but the new variables are 
dependent on PI, P2, ... ,Pn, i.e. the differential coefficients of V with re-
spect to ql, q2, ... , qn. The transformation under discussion takes place 
in the following way. 

The partial differential equation of the unperturbed problem is 

avo H = 0 at + , 
which, in Lecture 21, we have reduced to the equation 

H=h 
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through the substitution 

Va = W - ht. 

The complete solution W of this partial differential equation is a function 
of ql, q2,· .. , qn which contains, besides h, the n - 1 arbitrary constants 
h l , h2 , . . . , hn- 1 . If we have found them, then the system of integral 
equations of the unperturbed problem is 

8W 8W 8W 
8ql = PI, 8q2 = P2,···, 8qn = Pn, 

8W ,8W, 8W , 
8h = t + h ' 8hl = h l ,· .. '8hn- 1 = hn- 1 · 

Since h, h1, . .. ,hn- I are constants in the unperturbed problem, W sat-
isfies the total differential equation 

In the perturbation problem, on the contrary, there enter functions of 
time in place oft he arbitrary constants, h, h1 , ... , hn- 1 are variables and 
there comes in the complete differential of W in addition the sum 

aw aw aw 
8h dh + ah1 dhl + ... + 8hn dhn 

= (t + h')dh + + ... + 
One has then in the perturbation problem 

dW = P1dql + P2dq2 + ... + Pndqn + (t + h')dh 
dh 1 + ... + dhn- 1 (36.13) 

This equation will be satisfied identically by the integral equations if 
one looks upon the earlier constants as variables, Le. if the integral 
equations are no longer those of the unperturbed but of the perturbed 
problem. Therefore in these the equation is an identity. Therefore the 
total differential equation for dV is not altered if we subtract the equa-
tion (36.13) for dW from the former. Let us take the difference with 
opposite signs,so that it gives 

d(W - V) = (H + n)dt + (t + h')dh + 
dh1 + ... + 
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By the integral equation of the perturbation problem, however, H = h 
identically, consequently the terms H dt + tdh standing on the right hand 
side can be combined into d(ht). If we bring this quantity to the left side, 
we obtain 

d(W - ht - V) = ndt + h'dh + + ... + 
or, if we set 

W - ht - V = Va - V = S, 
then 

dS = ndt + h'dh + + ... + 
and this total differential equation is equivalent to the partial differential 
equation obtained above, 

öS _ n = 0 
öt ' (36.11 ) 

in which the quantities h', , ... are to be replaced by the dif-
C • 1 ffi' aB aB aB F' 11 h . 1 d' iX • 1 lerentIa coe Clents ah' ahl ' ... , 8hn -l' ma y, t e partm l11erentm 
equation (36.11) is the same as that to which the system of ordinary 
differential equations (36.8) can be reduced. Thus we have been led in 
the shortest way to the same system of differential equations 

dh ön dh 1 ön dhn- 1 ön 
dt 

dh' 
dt 

öh" 
ön 
öh' 

----
dt , ... 'dt 

ön ön 
dt öhn - 1 

which we had found earlier in a different way. 

(36.8) 

This system of differential equations has the advantage that one finds 
the first corrections to the elements through me re quadratures. This 
follows if one looks upon the elements as constants in n and gives them 
the values they have in the unperturbed problem. Then n will be a 
function merely of time t" and the corrected elements would be given 
through simple quadratures. The determination of the higher corrections 
is a difficult problem which cannot be gone into here. 

Another remarkable system of formulae exists that is connected like-
wise to the introduction of the constants h, h1, ... , hn - 1 , h', ... , 

as elements. Namely, of the two principal forms under wh ich we 
can represent the integral equations, we have so far considered these: 

H=h, 
H' = h' + t, 

H 1 = h1, ... , H n - 1 = hn - 11 

= 1 ••• 1 = 1 
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in which the equations are solved for the abitrary constants hk and 
hk, and Hk and are functions solely of the variables ql, q2, ... , qn, 
PI, P2, ... , Pn· The second principal form is that in which the 2n vari-
ables ql, q2, ... , qn, PI, P2, ... , Pn· are represented as functions of t and 
the constants h, h I, ... , hn - I , h', , ... , According as one chooses 
one form or the other, in perturbation theory, one has to do with either 
the partial differential coefficients of the quantities Hk and in the 
variables qi and Pi in the arbitrary constants hk and hk, Le., one must 
either, as Poisson, form the differential coefficients with respect to the 
variables of the functions which become equal to the elements, or, as 
Lagrange, the differential coefficients of the variables with respect to the 
elements. In either case one has to construct a system of 4n2 differen-
tial coefficients. The constants hk and hk which one obtains through 
Hamilton's form of the integral equations have the remarkable property, 
besides the one already mentioned, that the two systems of differential 
coefficients are either equal or opposite. 

According to the theorem proved in the previous Lecture one has, 
namely 

(Hi , Hd = 0, ... , (Hi , Hi- I) = 0, 
(Hi, Hi) = 0, (Hi , Hi+d = 0, ... , (Hi , Hn-d = O. 
(Hi , HD = 0, ... , (Hi , HLd = 0, 
(Hi , HD = 1, (Hi , HI+I) = 0, ... , (Hi , = O. 

(36.14) 

In these 2n equations, the 2n partial differential coefficients of Hi : 

8qI ' 8q2 ' ... , 8qn ' 8PI ' 8P2 ' ... , 8Pn ' 

which we intend to consider as the unknowns of the system, enter lin-
early. As coefficients of these 2n unknowns we find in the equations 
(36.14) the 2n quantities 

8H 8H 8H 8H 8H 8H 
- 8PI ' - 8P2 ' ... , - 8Pn ' 8qI ' 8q2 ' ... , 8qn ' 

and the corresponding quantities arising from the partial differentiation 
of H I,H2, ... ,Hn- l , HL ... ,HI_I' HI,HI+I, ... On the right 
hand sides of all the equation (36.14) stands 0, with the single exception 
of the equation whose coefficients are differential coefficients of H: and 
in which the right hand side is equal to unity. 
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One obtains a similar system of linear equations, i.e. a system in 
which the coefficients and the right hand sides are entirely the same, 
for the differential coefficients of -Pl, -P2,···, -Pn, ql, q2,···, qn with 
respect to In fact, the integrals 

H=h, 
H' = t + h, 

H 1 = h l , ... , H i = hi , ... , H n - l = hn - l , 

= ... ,H{ = ... = 
become identical equations if one considers in them the variables ql, 
q2, ... , qn, PI, P2,··· ,Pn replaced by their values in t and the 2n arbitrary 
constants. Therefore, one can differentiate them partially with respect 
to any of the arbitrary constants, and obtain after differentiation in 
the system of equations 

8H 
8h' = 0, 

8Hi 
8h' = 0, 

8H' 
8h' = 0, 

8Hl 8Hi-1 
8h' = 0, ... , = 0, 

8Hi+1 8Hn- 1 
= 0, ... , 8h' = 0, 

z 

8HI_I 
= 0, ... , = 0, 

'I Z 

8HI+1 
= 0, ... , 8h' = 0, 

Z Z 

(36.15) 

of which the first, for example, can be given in expanded form in the 
following way: 

8H 8Pl 8H 8P2 8H 8Pn 8H 8ql 8H 8qn --+ -- + ... + --+ -- + ... + -- = ° 
8Pl 8P2 8Pn 8ql 8qn . 

This system differs from the system (36.14) only in that in place of the 
earlier unknowns 

8ql ' 8q2 ' ... , 8qn ' 8Pl ' 8P2 ' ... , 8Pn ' 

at present the quantities 

, 8h' , ... , 8h' '8h" 8h' , ... , , 
Z Z Z Z Z 

occur. But, if in two systems of linear equations the coefficients and the 
constant terms are equal, so are also the unknowns unless the common 
determinant of the system, Le., in the present case, the expression 

'"' ± 8H 8HI ... 8Hn- l 8H' ... 
L...J 8qI 8q2 8qn 8Pl 8P2 8Pn 
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vanishes. This however is never the case, as otherwise the 2n quantitics 
H,H1, ... ,Hn- l , ... would not be mutually independent 
functions of the 2n variables ql, q2, ... , qn, PI, P2, ... , Pn, and the 
system of integrals would be insufficient to determine these variables 
as functions of h, h I, ... , hn- l , h' + t, h'l , ... Accordingly, the two 
systems of unknowns are mutually equal, i.e. one has 

öql öHi öq2 öHi Uqn öHi 

öh' l ÖPI öh' l 
ÖP2 , ... , öPn 

ÖPI öHi ÖP2 öHi öPn öHi (36.16) --- , öq2 , ... , öh' öq! öh' öqn l l 

In addition to this system of formulae which one is led to by co m-
paring the systems (36.14) and (36.15), there exists another one, wh ich 
can be obtained from these by me re interchange. Namely, the systems 
(36.14) and (36.15) again give the right systems of equations if one 
writes, for all values of the index i, in place of the quantities without 
primes H i , hi , and with negative signs the corresponding quantities with 
primes, -H:, on the other hand, in place of the quantities with 
the primes H:, thc corresponding quantities H i , hi without primes 
and with positive signs. This method of interchanging must therefore 
be applicable also to the system (36.16), and gives from them the new 
system of formulae 

Öql öH' öQ2 öH' öqn öH: ___ l l 

öhi ÖPl 
, 

öhi - ÖP2 , ... , öhi ÖPn 
, 

ÖPI öH' ÖP2 öH: Upn öH' 
(36.17) l l 

öhi öq! öhi öq2 , ... , Uh i öqn 

We can combine the two systems of formula (36.16) and (36.17) into the 
four equations 

Uqk öHi öqk öH' l 

Uh' ÖPk 
, 

öh i ÖPk 
, 

l 

ÖPk öHi ÖPk UH' __ l 

öh' öqk 
, 

öhi ()qk 
, 

l 

and express the result obtained in the following theorem: 2 

2This theorem was communicated to the Berlin Academy on 21 November, 1838, 
(See Monatsberichte a.d . .I. 1838, p.178) 
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Consider the system of integrals expressed in Hamiltonian form: 

H=h, 
H' = h' + t, 

Hl = h 1 , .•. , H n - 1 = hn - 1 , 

Hi = ... , = 

327 

On the one hand, the constants hi and are functions of the variables 
Pi, qi and time t,. On the other hand, from the same equations, one 
expresses the same variables by means of the constants and t. Then the 
partial differential coefficients, constructed by the first method, of the 
constants with respect to the variables Pi and qi, and the partial differ-
ential coefficients, constructed by the second method, of the variables Pi, 
qi with respect to the constants, are, apart from sign, pairwise equal to 
one another. 



Supplement 

Jacobi was prevented by severe illness in the spring of 1843 from bringing 
his lectures on Dynamics to a conclusion. The plan of the same shows 
sujJiciently that, at the end of the course, he had intended to carry out 
his method of integration of non-linear partial differential equatons of the 
first order, which has been found in a complete and worked out treatise 
written in 1835 among his papers left behind, and which has been pub-
lished by me in Volume 60 of the Mathematical Journal on the basis of 
this treatise I seek to fill here the gap, in Jacobi 's sense, which remained 
at the conclusion of his lectures on Dynamics. C. Clebsch 

The integration of first order non-linear partial 
differential equations 

In lecture 32 (pp.284, 285) the integration of the partial differential equa-
tion f = h or H = h was reduced to the system of n(n2-1) simultaneous 
equations 

(8.1) 

If the function H is determined in accordance with these equations, then 
the equations 

H = h,HI = hl , ... , H n - I = hn - I 

lead to such an expression for p that 

(8.2) 

is a complete differential. However, instead of proceeding to the simul-
taneous integration of the system (8.1) with the help of the principle 
laid down in Lecture 34, one may now equaIly weIl pose the problem of 
finding the expressions which PI,P2, ... ,Pn take in consequence of the 
equation (8.2). Let us, as explained in lecture 31 (p.271), think of PI 
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as expressed as a function of the quantities q and P2, P3, ... , Pn; then P2 
determined as a function of the quantities q and P3,P4, ... ,Pn; etc. If 
PI,P2, ... ,Pi are found, one can, without going to search for PHI, ex-
presses the earlier quantities through PHI,PH2, ... ,Pn and q. These i 
equations which the function PHI has then to satisfy simultaneously, 
one can find from equation (31.7) of Lecture 31 (p.278), if one replaces 
in these the i' th row by the numbers 1,2, ... , i and put i + 1 in place 
of i. 8ince then Pi' depends only on PHI,PH2, ... ,Pn, and PHI on the 
contrary only on PH2,PH3, ... ,Pn, then the equations introduced give 
the following system: 

apHI apl apHl apl api+l apl -- - -- + ---- + ----
aql aqHl apH2 aqi+2 apH3 aqH3 

o = 
apHl apl apl apHl apl apHl + ... + ---- - ----- - ----
apn aqn apHl apHI apH2 apH2 

apl apH 1 apl apH 1 
- apH3 aqH3 - ... - apn aqn ' 

apH 1 ap2 apH 1 ap2 apH I ap2 -- - -- - ---- + ----
aq2 aqHI apH2 aqH2 apH3 aqH3 

o 
apH 1 ap2 ap2 apH I ap2 aPH 1 + ... + ---- - ----- - ----
aPn aqn api+l aqHI apH2 aqi+2 

ap2 apH 1 ap2 apH 1 
- apH3 aqH3 - ... - apn aqn ' 

o apH 1 api apH 1 api apH 1 api -- - -- + ---- + ----
aqi aqHl api+2 aqH2 apH3 aqi+3 

apH 1 api api apH 1 api api+ I + ... +--------------
apn aqn apH2 aqH2 api+I aqi+l 

api apH 1 api apH 1 api apH 1 
- apH2 aqH2 - apH3 aqH3 - ... - aPn aqn . 

(8.3) 

We can so transform this system that we do not consider PH 1 as a 
function of PH2, PH3, ... ,Pn, ql, q2, ... ,qn, but introduce an equation 

f = constant, 

which holds between PHI and these quantities. Then, for h > i + 1, 
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and for any value of h, 

3!.L °Pi+1 + of = o. 
OPi+1 oqh oqh 

If we multiply equation (8.3) by ' then they take the following 
form: 

o = 

o 

o 

(8.4) 

The simultaneous integration of this system rests on the theorems that 
were given at the end of Lecture 31 and in lecture 34. If Px is any one 
of the quantities PI, P2, ... ,Pi and 

'Px - Px = 0 

the equation by virtue of which Px is expressed m terms of 
Pi+I,Pi+2,··· ,Pn, ql, q2,···, qn, then 

O('Px - px ) 
OPi+h 

O('Px - px) 
oqh 

however, if h < i + 1, one has 

= O'Px OPx 
OPi+h OPi+h ' 
O'Px _ OPx . 
OQh OQh' 

O('Px - Px) = -l. 
oPx 

The equation (8.4) can therefore, with the help of the notation ('P, 'IjJ), 
be written thus: 

(f, 'PI - pd = 0, (f, 'P2 - P2) = 0, ... , (f, 'Pi - Pi) = O. (8.5) 
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If one now forms the expression (<Px - Px, <PA - PA)' where X, Adenote 
any two of the numbers 1,2, ... , i, then one finds 

Thus <Px -Px = 0 as weIl as <PA -PA = 0 belong to the system of equations 
which determine p. According to the theorem given at the end of Lecture 
31, the above expression rnust then vanish. Now it was given in Lecture 
34 that if (<p, 'l/J) = 0, then from a solution F of the equation 

(J, <p) = 0, 

further solutions 

F' = (F, 'l/J), F" = (F', 1/)) etc. 

can be derived. If we apply this to any two equations 

(J, <Px - Px) = 0, (J, <PA - PA) = 0 

of the system (S.5), thcll it follows that from any function F which 
satisfies the equation 

(F, <Px - Px) = 0, 

aseries of other solutions of the same equation can be constructed, 
namely 

Finally, then, follows the theorem: 
If F is a simultaneou8 solution of the equations 

then also 
F' = (F, <Ph - Ph), F" = (F', <Ph - Ph), . .. , 

are simultaneous solutions of the same equations. 
Let us then assume that a common solution F of the first h - 1 equa-

tion (S.5) has been found and that a solution is sought which satisfies 
also the h th of these equations. Then the quest ion arises whether there 
exists a function <I> which satisfies the last equation, wh ich is a func-
tion of F, of the derived solutions F', F", ... , F(j.t-l) and of the quant i-
ties qh, Qh+ 1, , ... , qi, which obviously satisfies the first h - 1 equations 
(S.5) (or (S.4)). The number J.l is restricted by the fact, that the F(j.t) 



Lectures in Dynamics 332 

can be expressed by the previous functions F', F", ... , F(J.l-1) and by 
qh, Qh+1, . .. , qi; and that 

F (/l) - II(F F' F(/l-l) .) - , , ... , ,qh,qh+1,···,qz· 

Now the total number of all simulaneous solutions that h - 1 mutually 
independent linear partial differential equations in 2n - i variables q1, 
Q2, ... ,qn, Pi+l, Pi+2"",Pn can, in general, have is 2n - i - (h -1); 
therefore the number of arguments of the function II can at most be 
equal to this number. Hence 

J.l + i - (h - 1) ::; 2n - i - (h - 1), 

or 
J.l ::; 2(n - i). 

If we now look upon a solution <I> of the equation 

(S.6) 

as a function of the arguments of II alone, then we obtain 

Since in the hth equation of the system (S.4) or (S.5), differentiations 
are done only with respect to Qh and not Qh+1, Qh+2, ... , Qi, therefore the 
coefficients 

vanish, and one finds besides that 
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If one furt her takes into account the method of constructing the func-
tion F, then one sees that equation (S.6) or (S.7) transforms into the 
following: 

A look at this equation teaches us that it is actually possible to determine 
a function <I> in the given way, since the coefficients of this equation 
contain only the variables on which <I> was considered to be dependent. 

In order to find a solution of equation (S.8), one needs only to look 
for an integral of the system 

oF oF' OF(/-L-l) 
0% = F', oqh = F", ... , oqh = II, 

or, what is the same, a first integral of the differential equations of the 
pth order 

d/-LF 
= II, 

where in II the quantities F', F", . .. ,F(/-L-l) are to be replaced by ddF, 
qh 

d2 F d/L-IF p, . . . , ---;--u=-r-d /L - • 
qh qh 

One can state these results in the following theorem. 
If one knows a simultaneous solution of the first h -1 equations of the 

system (8.4) or (8.5), then finding a solution which satisfies also the hth 
equation requires only the knowledge of a first integral of a differential 
equation whose order does not exceed 2(n - 1). 

To find a simultaneous solution of the system (S.5), one has only to 
carry out successively the procedure just gone through i times one after 
the other. One looks for a solution F of the first equation (S.5), or an 
integral of the system of 2(n - i) differential equations 

dPi+l °Pl dPi+2 °Pl dpn °Pl 
dql oqi+l 

, 
dql oqi+2 ' ... , dql oqn 

, 

dqi+l °Pl dqi+2 °Pl dqn °Pl --- , - OPi+2" .. , dql -
dql OPi+l dql oPn 

One develops therefrom the other solutions of the same equation: 

F' = (F, 'f!2 - P2), F" = (F', 'f!2 - P2),"" 
F(/-L) = II(F, F', ... , F(/-L-l) , q2, q3,"" qd. 
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Every first integral of the equation 

d/-LF (dF d/-L-IF ) 
d /-L = II F, -d ' ... , -1 ,q2, q3, ... , qi 

q2 q2 

which contains an arbitrary constant then leads to a solution which 
satisfies the first two of the equations (S.5). Let <P be this solution. One 
then constructs 

<p' = (<p, 'P3 - P3), <p" = (<p', 'P3 - p3), ... , <p(v) = II(<P, <P', ... , 
<p(v-l), q3, q4, . .. ,qi). 

Every first integral of the differential equation 

which contains an arbitrary constant then gives a function which satisfies 
the first three of the equation (S.5), etc. 

Finding a simultaneous solution of the system (S.5), or (S.4) requires 
the knowledge of first integrals of i differential equations of which the 
first is of order 2(n - i), while the others can be of lower order. 

The entire development of the integration procedure requires also 
the determination of PI from the given partial differential equation. If 
one has solved this, then one looks first for an integral of the system of 
2(n - 1) differential equations 

dP2 apl dP3 ßPl dPn apl 
-
dql aq2 

, 
dql Öq3 , ... , dql aqn 

dq2 apl dq3 apl dqn ÖPl -- , - ap3'···' dql dql ÖP2 dql öPn 

From the integral already found, one determines P2 as a function of q 
and the following p's, and while one intro duces these functions in the 
expression for PI, one represents PI in the same way. 

Secondly one looks for an integral of the system of 2( n- 2) differential 
equations 

dP3 ÖPl dP4 ÖPl dpn ÖPl 
dql öq3 

, 
dql Öq4'···' dql öqn 

dq3 ÖPl dq4 ÖPl dqn ÖPl , - - ÖP4'···' dql , 
dql ÖP3 dql apn 
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where the differential coefficients of PI are to be taken in the new sense 
just stipulated. Let an integral of this system be F =constant. Let us 
construct 

8F 8P28P 8P28F 8P28F - + -- + -- + ... + ---
8q2 8q3 8P3 8q4 8P4 8qn 8Pn 

P' 

8P2 8F 8P3 8P 8P3 8F 
- 8P3 8q3 - 8q4 8q4 - ... - 8Pn 8qn ' 
8F' 8P28F' 8P28F' 8P28F' - + -- + --+ ... + ---
8q2 8q3 8P3 8q4 8P4 8qn 8Pn 

F" 

8p28F' 8P38F' 8p28F' ------- ... --- etc 
8P3 8q3 8q4 8q4 8Pn 8qn ' . 

till we are led to a function F(j.t)(J.-l ::; 2(n - 2)), which itself can be 
represented as a function of q2, F, F', . .. ,p(j.t-I). If this is 

we look for a first integral 

( dF d2F d(j.t-l)F) 
<I> P, dq2' , ... , ' q2 = constant 

of the differential equation of order J.-l : 

and we form the equation 

<I> (F, F', F", ... ,p(j.t-I), q2) = constant. 

This equation serves to determine P3. If one has expressed this through 
P4,P5, ... ,Pn and q, and thereby represented PI and P2 also as functions 
of these quantities, one then seeks thirdly an integral of the system of 
ordinary differential equations 

dP4 8PI dP5 8PI dpn 8PI -
dql 8q4 

, 
dql 8q5'···' dql 8qn 

dq4 8PI dq5 8PI dqn 8PI 
dql 8P4 

, 
dql - 8p5'···' dql 8Pn 
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If this integral is W = constant, one constructs furt her 

8P2 8w 8P2 8w 8P2 8w --+--+ ... +---
8q4 8P4 8q5 8P5 8qn 8Pn 

8P2 8w 8P2 8w 8P2 8w 
- 8P4 8q4 - 8P5 8q5 - ... - 8Pn 8qn ' 
8P2 8w' 8P2 8w' 8P2 8w' + --+--+ ... +---
8q4 8P4 8q5 8P5 8qn 8Pn 

8P2 8w' 8P2 8w' 8P2 8w' 
- 8P4 8q4 - 8P5 8q5 - ... - 8Pn 8qn ' 

etc. till one is led to a function 

,T.(V) _ rr ('T. ,T.' ,T.(v-I) ) 
'I' - '1', 'I' , ••• , 'I' , q2, q3 , 

(v :S 2 (n - 3)), and seeks a first integral 

( dw d2 W dv- I W ) 
X W, -d '-d 2'···' = constant 

q2 q2 dq2 

of the differential equation of the 11th order: 

dVw (dW d2w dv - I W ) 
-d v = rr W, -d '-d 2 ' ... , d v-I ,q2, q3 . q2 q2 q2 q2 

From the function 

X ( 'T' ,T.' ,T.II ,T.(v-l) ) 
'1', 'I' ,'I' , ... , 'I' , q2, q3 

one now forms the further functions 

X' = 8X + 
8q3 

X" = 8X' + 
8q3 

8P3 8X 8P3 8X 8P3 8X --+--+ ... +---
8q4 8P4 8q5 8P5 8qn 8Pn 

8P3 8X 8P3 8X 8P3 8X 
- 8P4 8q4 - 8P5 8q5 - ... - 8Pn 8qn ' 

8P3 8X' 8P3 8 X' 8P3 8 X' --+--+ ... +---
8q4 8P4 8q5 8P5 8qn 8Pn 

8P3 8X' 8P3 8X' 8P3 8X' 
- 8P4 8q4 - 8P5 8q5 - ... - 8P5 8qn' 

etc. till one is led to the function X(p) : 

X (p) - rr (X X' X(P-l)) - " ... , ,q3 , 
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where p 2(n - 3). One seeks then a first integral 

( dX dP-IX) o X, d' ... , p-I' q3 
q3 dq3 

constant 

of the differential equation of order p : 

The equation 

o (X, X', ... , X(p-I), q3) = constant 

then serves to express P4 through P5, P6, ... , Pn and then q, and then 
also PI, P2, P3through these quantities. 

If one proceeds in this way, one is finally led to determine PI, 
P2, ... ,Pn-I as functions of Pn and the q's. One then seeks to express 
the last quantity Pn through the q alone. This requires that one first 
determines an integral :=: of the system 

8PI dqn 8PI --
8qn ' dql 8Pn . 

One then forms 

83 8P2 83 8P2 83 -+-----
8q2 8qn 8Pn 8Pn 8qn ' 
83 8P2 83' 8P2 83' -+-----
8q2 8qn 8Pn 8Pn 8qn ' 

of which the latter, if not the farmer, can be expressed in terms of 3 and 
3,3' respectively and the quantities q2, q3, ... , qn-I. Then one integrates 
either, if 

the equation 
d3 IT(- ) -d = .=., q2, q3,' .. ,qn-I , 
q2 

or, if 
-11 IT(- -, ) .=. = .=.,.=. , q2, q3, ... ,qn-I , 
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the equation 

d2= (d= ) dq"i = II 3, q2, q3,· .. ,qn-l . 

Further , if one replaces the differential coefficient of 3 by 3', one 0 btains 
in the first case a function Y = Y(3, q2, q3," . ,qn-l), in the second case 
a function Y = Y(3, 3', q2, q3,"" qn-l). The following functions will 
then be derived from the function Y 

Y' 

Y" 

etc. If one continues this way, one arrives at a function Z from which 
one derives the functions 

Z' öZ ÖPn-l öZ ÖPn-l öZ --+---------
öqn-l öqn öPn öPn öqn' 
öZ' ÖPn-l öZ' ÖPn-l öZ' --+--------. 

Öqn-l öqn öPn öPn öqn 
Z" 

If Z' is already a function II of Z and qn-l, one integrates the equation 

dZ 
-d - = II(Z, qn-I) 

qn-l 

and its integral leads to the last equation by virtue of which Pn itself is 
expressed through q. If, however, 

Z" = II(Z, Z', qn-l), 

one seeks a first integral of the differential equation of the second order 

If this integral is 

d2Z (dZ ) -2- = II Z, -d--,qn-l . 
dqn-l qn-l 

8 (z, ddZ ,qn-l) 
qn-l 

constant, 
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then 
8(Z, Z', qn-d = constant 

is the equation for determining Pn. 

339 

Through these operations the search for a complete solution of the 
given partial differential equation is carried so far that it only remains 
to carry out the integration 

If one reduces aB the systems occurring each to a differential equation 
of higher order, then one has in aB to seek an integral each for 

1 differential equation of order 2(n - 1), 
2 differential equations of order 2(n - 2), 

i differential equations of order 2(n - i), 

n-1 differential equations of order 2. 

But it is only in the most unfavourable cases that aB differential equa-
tions actuaBy reach the orders given here. In general in any class only 
one equation will reach this order. The orders of the others will be, more 
or less, lower. 
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