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This book is the third volume of the Theoretical Minimum series. The first
volume, The Theoretical Minimum: What You Need to Know to Start Doing
Physics, covered classical mechanics, which is the core of any physics
education. We will refer to it from time to time simply as Volume I. The second
book (Volume II) explains quantum mechanics and its relationship to classical
mechanics. This third volume covers special relativity and classical field
theory.

The books in this series run parallel to Leonard Susskind’s videos,
available on the Web through Stanford University (see
www.theoreticalminimum.com for a listing). While covering the same general
topics as the videos, the books contain additional details and topics that don’t
appear in the videos.



Preface

This book is one of several that closely follow my Internet course series, The
Theoretical Minimum. My coauthor, Art Friedman, was a student in these
courses. The book benefited from the fact that Art was learning the subject and
was therefore sensitive to the issues that might be confusing to the beginner.
During the course of writing, we had a lot of fun, and we’ve tried to convey
some of that spirit with a bit of humor. If you don’t get it, ignore it.

The two previous books in this series cover classical mechanics and basic
quantum mechanics. So far, we have not studied light, and that’s because light
is a relativistic phenomenon—a phenomenon that has to do with the special
theory of relativity, or SR as we’ll sometimes call it. That’s our goal for this
book: SR and classical field theory. Classical field theory means
electromagnetic theory—waves, forces on charged particles, and so on—in the
context of SR. Special relativity is where we’ll begin.

Leonard Susskind

My parents, the children of immigrants, were bilingual. They taught us kids
some Yiddish words and phrases but mainly reserved that language for
themselves, often to say things they did not want us to understand. Many of
their secret conversations were accompanied by loud peals of laughter.

Yiddish is an expressive language; it’s well suited to great literature as
well as to daily life and down-to-earth humor. It bothers me that my own
comprehension is so limited. I’d love to read all the great works in the
original, but frankly I’d be happy enough just to get the jokes.

A lot of us have similar feelings about mathematical physics. We want to
understand the great ideas and problems and engage our own creativity. We
know there’s poetry to be read and written, and we’re eager to participate in



some fashion. All we lack is that “secret” language. In this series, our goal is
to teach you the language of physics and show you some of the great ideas in
their native habitat.

If you join us, you’ll be able to wrap your head around a good portion of
twentieth-century physics. You’ll certainly be equipped to understand much of
Einstein’s early work. At a minimum, you’ll “get the jokes” and the serious
ideas that underlie them. To get you started, we’ve thrown in a few jokes of our
own, including some real groaners.

I’m delighted to acknowledge everyone who helped and supported us along the
way. It may be a cliché to say “we couldn’t have done it without you,” but it
also happens to be true.

Working with the professionals at Brockman, Inc., and Basic Books is
always a pleasure as well as a learning experience. John Brockman, Max
Brockman, and Michael Healey played a critical role in transforming our idea
into a real project. From there, TJ Kelleher, Hélène Barthélemy, Carrie
Napolitano, and Melissa Veronesi walked us through the editorial and
production process with great skill and understanding. Laura Stickney of
Penguin Books coordinated the publication of the UK edition so smoothly, we
hardly saw it happening. Copyeditor Amy J. Schneider made substantial
improvements to our initial manuscript, as did proofreaders Lor Gehret and
Ben Tedoff.

A number of Leonard’s former students generously offered to review the
manuscript. This was no small task. Their insights and suggestions were
invaluable, and the book is far better as a result. Our sincere thanks go to
Jeremy Branscome, Byron Dom, Jeff Justice, Clinton Lewis, Johan Shamril
Sosa, and Dawn Marcia Wilson.

As always, the warmth and support I’ve received from family and friends
has seen me through this project. My wife, Maggie, spent hours creating and
re-creating the two Hermann’s Hideaway drawings, getting them done on time
while dealing with the illness and passing of her mother.

This project has afforded me the luxury of pursuing two of my life passions
at the same time: graduate level physics and fourth-grade humor. In this
respect, Leonard and I are a perfect team, and collaborating with him is an
unmitigated pleasure.



Art Friedman



Introduction

Dear readers and students of The Theoretical Minimum,
Hello there, and welcome back to Lenny & Art’s Excellent Adventure. We

last left the intrepid pair recovering from a wild rollicking roller coaster ride
through the quantum world of entanglement and uncertainty. They were ready
for something sedate, something reliable and deterministic, something
classical. But the ride continues in Volume III, and it’s no less wild.
Contracting rods, time dilation, twin paradoxes, relative simultaneity, stretch
limousines that do and don’t fit into Volkswagen-size garages. Lenny and Art
are hardly finished with their madcap adventure. And at the end of the ride
Lenny tricks Art with a fake monopole.

Well, maybe that is a bit overwrought, but to the beginner the relativistic
world is a strange and wondrous fun house, full of dangerous puzzles and
slippery paradoxes. But we’ll be there to hold your hand when the going gets
tough. Some basic grounding in calculus and linear algebra should be good
enough to get you through.

Our goal as always is to explain things in a completely serious way,
without dumbing them down at all, but also without explaining more than is
necessary to go to the next step. Depending on your preference, that could be
either quantum field theory or general relativity.

It’s been a while since Art and I published Volume II on quantum
mechanics. We’ve been tremendously gratified by the thousands of e-mails
expressing appreciation for our efforts, thus far, to distill the most important
theoretical principles of physics into TTM.

The first volume on classical mechanics was mostly about the general
framework for classical physics that was set up in the nineteenth century by
Lagrange, Hamilton, Poisson, and other greats. That framework has lasted, and



provides the underpinning for all modern physics, even as it grew into quantum
mechanics.

Quantum mechanics percolated into physics starting from the year 1900,
when Max Planck discovered the limits of classical physics, until 1926 when
Paul Dirac synthesized the ideas of Planck, Einstein, Bohr, de Broglie,
Schrödinger, Heisenberg, and Born into a consistent mathematical theory. That
great synthesis (which, by the way, was based on Hamilton’s and Poisson’s
framework for classical mechanics) was the subject of TTM Volume II.

In Volume III we take a historical step back to the nineteenth century to the
origins of modern field theory. I’m not a historian, but I think I am accurate in
tracing the idea of a field to Michael Faraday. Faraday’s mathematics was
rudimentary, but his powers of visualization were extraordinary and led him to
the concepts of electromagnetic field, lines of force, and electromagnetic
induction. In his intuitive way he understood most of what Maxwell later
combined into his unified equations of electromagnetism. Faraday was lacking
one element, namely that a changing electric field leads to effects similar to
those of an electric current.

It was Maxwell who later discovered this so-called displacement current,
sometime in the early 1860s, and then went on to construct the first true field
theory: the theory of electromagnetism and electromagnetic radiation. But
Maxwell’s theory was not without its own troubling confusions.

The problem with Maxwell’s theory was that it did not seem to be
consistent with a basic principle, attributed to Galileo and clearly spelled out
by Newton: All motion is relative. No (inertial) frame of reference is more
entitled to be thought of as at rest than any other frame. However this principle
was at odds with electromagnetic theory, which predicted that light moves with
a distinct velocity c = 3 × 108 meters per second. How could it be possible for
light to have the same velocity in every frame of reference? How could it be
that light travels with the same velocity in the rest frame of the train station,
and also in the frame of the speeding train?

Maxwell and others knew about the clash, and resolved it the simplest way
they knew how: by the expedient of tossing out Galileo’s principle of relative
motion. They pictured the world as being filled with a peculiar substance—the
ether—which, like an ordinary material, would have a rest frame in which it
was not moving. That’s the only frame, according to the etherists, in which



Maxwell’s equations were correct. In any other frame, moving with respect to
the ether, the equations had to be adjusted.

This was the status until 1887 when Albert Michelson and Edward Morley
did their famous experiment, attempting to measure the small changes in the
motion of light due to the motion of Earth through the ether. No doubt most
readers know what happened; they failed to find any. People tried to explain
away Michelson and Morley’s result. The simplest idea was called ether drag,
the idea being that the ether is dragged along with Earth so that the Michelson-
Morley experiment was really at rest with respect to the ether. But no matter
how you tried to rescue it, the ether theory was ugly and ungainly.

According to his own testimony, Einstein did not know about the
Michelson-Morley experiment when in 1895 (at age sixteen), he began to think
about the clash between electromagnetism and the relativity of motion. He
simply felt intuitively that the clash somehow was not real. He based his
thinking on two postulates that together seemed irreconcilable:

1. The laws of nature are the same in all frames of reference. Thus there
can be no preferred ether-frame.

2. It is a law of nature that light moves with velocity c.

As uncomfortable as it probably seemed, the two principles together implied
that light must move with the same velocity in all frames.

It took almost ten years, but by 1905 Einstein had reconciled the principles
into what he called the special theory of relativity. It is interesting that the title
of the 1905 paper did not contain the word relativity at all; it was “On the
Electrodynamics of Moving Bodies.” Gone from physics was the ever more
complicated ether; in its place was a new theory of space and time. However,
to this day you will still find a residue of the ether theory in textbooks, where
you will find the symbol 0, the so-called dielectric constant of the vacuum, as
if the vacuum were a substance with material properties. Students new to the
subject often encounter a great deal of confusion originating from conventions
and jargon that trace back to the ether theory. If I’ve done nothing else in these
lectures, I tried to get rid of these confusions.

As in the other books in TTM I’ve kept the material to the minimum needed
to move to the next step—depending on your preference, either quantum field



theory or general relativity.

You’ve heard this before: Classical mechanics is intuitive; things move in
predictable ways. An experienced ballplayer can take a quick look at a fly ball
and from its location and its velocity know where to run in order to be there
just in time to catch the ball. Of course, a sudden unexpected gust of wind
might fool him, but that’s only because he didn’t take into account all the
variables. There is an obvious reason why classical mechanics is intuitive:
Humans, and animals before them, have been using it many times every day for
survival.

In our quantum mechanics book, we explained in great detail why learning
that subject requires us to forget our physical intuition and replace it with
something entirely different. We had to learn new mathematical abstractions
and a new way of connecting them to the physical world. But what about
special relativity? While quantum mechanics explores the world of the VERY

SMALL, special relativity takes us into the realm of the VERY FAST, and yes, it
also forces us to bend our intuition. But here’s the good news: The mathematics
of special relativity is far less abstract, and we don’t need brain surgery to
connect those abstractions to the physical world. SR does stretch our intuition,
but the stretch is far more gentle. In fact, SR is generally regarded as a branch
of classical physics.

Special relativity requires us to rethink our notions of space, time, and
especially simultaneity. Physicists did not make these revisions frivolously. As
with any conceptual leap, SR was resisted by many. You could say that some
physicists had to be dragged kicking and screaming to an acceptance of SR,
and others never accepted it at all.1 Why did most of them ultimately relent?
Aside from the many experiments that confirmed the predictions made by SR,
there was strong theoretical support. The classical theory of electromagnetism,
perfected by Maxwell and others during the nineteenth century, quietly
proclaimed that “the speed of light is the speed of light.” In other words, the
speed of light is the same in every inertial (nonaccelerating) reference frame.
While this conclusion was disturbing, it could not just be ignored—the theory
of electromagnetism is far too successful to be brushed aside. In this book,
we’ll explore SR’s deep connections to electromagnetic theory, as well as its
many interesting predictions and paradoxes.



1 Notably Albert Michelson, the first American to win a Nobel Prize in physics, and his collaborator
Edward Morley. Their precise measurements provided strong confirmation of SR.





Lecture 1

The Lorentz Transformation

We open Volume III with Art and Lenny running for their lives.

Art: Geez, Lenny, thank heavens we got out of Hilbert’s place alive! I
thought we’d never get disentangled. Can’t we find a more classical place to
hang out?

Lenny: Good idea, Art. I’ve had it with all that uncertainty. Let’s head over
to Hermann’s Hideaway and see what’s definitely happening.

Art: Where? Who is this guy Hermann?

Lenny: Minkowski? Oh, you’ll love him. I guarantee there won’t be any bras
in Minkowski’s space. No kets either.

Lenny and Art soon wind up at Hermann’s Hideaway, a tavern that caters to a
fast-paced crowd.

Art: Why did Hermann build his Hideaway way out here in the middle of—
what? A cow pasture? A rice paddy?

Lenny: We just call it a field. You can grow just about anything you like;
cows, rice, sour pickles, you name it. Hermann’s an old friend, and I rent the
land out to him at a very low price.

Art: So you’re a gentleman farmer! Who knew? By the way, how come
everyone here is so skinny? Is the food that bad?

Lenny: The food is great. They’re skinny because they’re moving so fast.



Hermann provides free jet packs to play with. Quick! Look out! Duck!
DUCK!

Art: Goose! Let’s try one out! We could both stand to get a bit thinner.



More than anything else, the special theory of relativity is a theory about
reference frames. If we say something about the physical world, does our
statement remain true in a different reference frame? Is an observation made by
a person standing still on the ground equally valid for a person flying in a jet?
Are there quantities or statements that are invariant—that do not depend at all
on the observer’s reference frame? The answers to questions of this sort turn
out to be interesting and surprising. In fact, they sparked a revolution in physics
in the early years of the twentieth century.

1.1 Reference Frames
You already know something about reference frames. I talked about them in
Volume I on classical mechanics. Cartesian coordinates, for example, are
familiar to most people. A Cartesian frame has a set of spatial coordinates x, y,
and z, and an origin. If you want to think concretely about what a coordinate
system means, think of space as being filled up with a lattice of metersticks so
that every point in space can be specified as being a certain number of meters
to the left, a certain number of meters up, a certain number of meters in or out,
from the origin. That’s a coordinate system for space. It allows us to specify
where an event happens.

In order to specify when something happens we also need a time
coordinate. A reference frame is a coordinate system for both space and time.
It consists of an x-, y-, z-, and t axis. We can extend our notion of concreteness
by imagining that there’s a clock at every point in space. We also imagine that
we have made sure that all the clocks are synchronized, meaning that they all
read t = 0 at the same instant, and that the clocks all run at the same rate. Thus
a reference frame (or RF for simplicity) is a real or imagined lattice of
metersticks together with a synchronized set of clocks at every point.

There are many ways to specify points in space and time, of course, which
means we can have different RFs. We can translate the origin x = y = z = t = 0
to some other point, so that a location in space and time is measured relative to
the new origin. We can also rotate the coordinates from one orientation to
another. Finally, we consider frames that are moving relative to some
particular frame. We can speak of your frame and my frame, and here we come



to a key point: Besides the coordinate axes and the origin, a reference frame
may be associated with an observer who can use all those clocks and
metersticks to make measurements.

Let’s assume you’re sitting still at the center of the front row in the lecture
hall. The lecture hall is filled with metersticks and clocks at rest in your frame.
Every event that takes place in the room is assigned a position and a time by
your sticks and clocks. I’m also in the lecture hall, but instead of standing still I
move around. I might march past you moving to the left or to the right, and as I
do I carry my lattice of clocks and metersticks with me. At every instant I’m at
the center of my own space coordinates, and you are at the center of yours.
Obviously my coordinates are different from yours. You specify an event by an
x, y, z, and t, and I specify the same event by a different set of coordinates in
order to account for the fact that I may be moving past you. In particular if I am
moving along the x axis relative to you, we won’t agree about our x
coordinates. I’ll always say that the end of my nose is at x = 5, meaning that it
is five inches in front of the center of my head. However, you will say my nose
is not at x = 5; you’ll say my nose is moving, and that its position changes with
time.

I might also scratch my nose at t = 2, by which I mean that the clock at the
end of my nose indicated 2 seconds into the lecture when my nose was
scratched. You might be tempted to think that your clock would also read t = 2
at the point where my nose was scratched. But that’s exactly where relativistic
physics departs from Newtonian physics. The assumption that all clocks in all
frames of reference can be synchronized seems intuitively obvious, but it
conflicts with Einstein’s assumption of relative motion and the universality of
the speed of light.

We’ll soon elaborate on how, and to what extent, clocks at different places
in different reference frames can be synchronized, but for now we’ll just
assume that at any given instant of time all of your clocks agree with each
other, and they agree with my clocks. In other words we temporarily follow
Newton and assume that the time coordinate is exactly the same for you as it is
for me, and there’s no ambiguity resulting from our relative motion.

1.2 Inertial Reference Frames



The laws of physics would be very hard to describe without coordinates to
label the events that take place. As we’ve seen, there are many sets of
coordinates and therefore many descriptions of the same events. What
relativity meant, to Galileo and Newton as well as Einstein, is that the laws
governing those events are the same in all inertial reference frames.1 An
inertial frame is one in which a particle, with no external forces acting on it,
moves in a straight line with uniform velocity. It is obvious that not all frames
are inertial. Suppose your frame is inertial so that a particle, thrown through
the room, moves with uniform velocity when measured by your sticks and
clocks. If I happen to be pacing back and forth, the particle will look to me like
it accelerates every time I turn around. But if I walk with steady motion along a
straight line, I too will see the particle with uniform velocity. What we may say
in general is that any two frames that are both inertial must move with uniform
relative motion along a straight line.

It’s a feature of Newtonian mechanics that the laws of physics, F = ma
together with Newton’s law of gravitational attraction, are the same in every
IRF. I like to describe it this way: Suppose that I am an accomplished juggler. I
have learned some rules for successful juggling, such as the following: If I
throw a ball vertically upward it will fall back to the same point where it
started. In fact, I learned my rules while standing on the platform of a railway
station waiting for the train.

When the train stops at the station I jump on and immediately start to juggle.
But as the train pulls out of the station, the old laws don’t work. For a time the
balls seem to move in odd ways, falling where I don’t expect them. However,
once the train gets going with uniform velocity, the laws start working again. If
I’m in a moving IRF and everything is sealed so that I can’t see outside, I
cannot tell that I’m moving. If I try to find out by doing some juggling, I’ll find
out that my standard laws of juggling work. I might assume that I’m at rest, but
that’s not correct; all I can really say is that I’m in an inertial reference frame.

The principle of relativity states that the laws of physics are the same in
every IRF. That principle was not invented by Einstein; it existed before him
and is usually attributed to Galileo. Newton certainly would have recognized
it. What new ingredient did Einstein add? He added one law of physics: the
law that the speed of light is the speed of light, c. In units of meters per second,
the speed of light is approximately 3 × 108. In miles per second it is about



186,000, and in light-years per year it is exactly 1. But once the units are
chosen, Einstein’s new law states that the velocity of light is the same for every
observer.

When you combine these two ideas—that the laws of physics are the same
in every IRF, and that it’s a law of physics that light moves at a fixed velocity
—you come to the conclusion that light must move with the same velocity in
every IRF. That conclusion is truly puzzling. It led some physicists to reject SR
altogether. In the next section, we’ll follow Einstein’s logic and find out the
ramifications of this new law.

1.2.1 Newtonian (Pre-SR) Frames
In this section I will explain how Newton would have described the relation
between reference frames, and the conclusions he would have made about the
motion of light rays. Newton’s basic postulate would have been that there
exists a universal time, the same in all reference frames.

Let’s begin by ignoring the y and z directions and focus entirely on the x
direction. We’ll pretend that the world is one-dimensional and that all
observers are free to move along the x axis but are frozen in the other two
directions of space. Fig. 1.1 follows the standard convention in which the x
axis points to the right, and the t axis points up. These axes describe the
metersticks and clocks in your frame—the frame at rest in the lecture hall. (I
will arbitrarily refer to your frame as the rest frame and my frame as the
moving frame.) We’ll assume that in your frame light moves with its standard
speed c. A diagram of this kind is called a spacetime diagram. You can think
of it as a map of the world, but a map that shows all possible places and all
possible times. If a light ray is sent out from the origin, moving toward the
right, it will move with a trajectory given by the equation



Figure 1.1: Newtonian Frames.

x = ct.

Similarly a light ray moving to the left would be represented by

x = −ct.

A negative velocity just means moving to the left. In the various figures that
follow I will draw them as if my frame is moving to the right (v positive). As
an exercise you can redraw them for negative v.

In Fig. 1.1, the light ray is shown as a dashed line. If the units for the axes
are meters and seconds, the light ray will appear almost horizontal; it will
move 3 × 108 meters to the right while moving vertically by only 1 second! But
the numerical value of c depends entirely on the units we choose. Therefore, it
is convenient to use some other units for the speed of light—units in which we
see more clearly that the slope of the light-ray trajectory is finite.

Now let’s add my frame, moving along the x axis relative to your frame,
with a uniform velocity v.2 The velocity could be either positive (in which
case I would be moving to your right), negative (in which case I would be
moving to your left), or zero (in which case we are at rest relative to each
other, and my trajectory would be a vertical line in the figure).

I’ll call the coordinates in my frame x′ and t′ instead of x and t. The fact that
I am moving relative to you with a constant velocity implies that my trajectory
through spacetime is a straight line. You may describe my motion by the
equation



x = vt

or

x − vt = 0,

where v is my velocity relative to you, as shown in Fig. 1.1. How do I
describe my own motion? That’s easy; I am always at the origin of my own
coordinate system. In other words, I describe myself by the equation x′ = 0.
The interesting question is, how do we translate from one frame to the other; in
other words, what’s the relationship between your coordinates and mine?
According to Newton, that relation would be

The first of these equations is Newton’s assumption of universal time, the same
for all observers. The second just shows that my coordinate x′ is displaced
from your coordinate by our relative velocity times the time, measured from
the origin. From this we see that the equations

x − vt = 0

and

x′ = 0

have the same meaning. Eqs. 1.1 and 1.2 comprise the Newtonian
transformation of coordinates between two inertial reference frames. If you
know when and where an event happens in your coordinates, you can tell me in
my coordinates when and where it happens. Can we invert the relationship?
That’s easy and I will leave it to you. The result is

Now let’s look at the light ray in Fig. 1.1. According to assumption, it



moves along the path x = ct in your frame. How do I describe its motion in my
frame? I simply substitute the values of x and t from Eqs. 1.3 and 1.4 into the
equation x = ct, to get

x′ + vt′ = ct′,

which we rewrite in the form

x′ = (c − v)t′.

Not surprisingly, this shows the light ray moving with velocity (c − v) in my
frame. That spells trouble for Einstein’s new law—the law that all light rays
move with the same speed c in every IRF. If Einstein is correct, then something
is seriously wrong. Einstein and Newton cannot both be right: The speed of
light cannot be universal if there is a universal time that all observers agree on.

Before moving on, let’s just see what would happen to a light ray moving to
the left. In your frame such a light ray would have the equation

x = −ct.

It’s easy to see that in my frame the Newtonian rules would give

x′ = −(c + v)t.

In other words, if I’m moving to your right, a light ray moving in the same
direction travels a little slower (with speed c − v), and a light ray moving in
the opposite direction travels a little faster (with speed c + v) relative to me.
That’s what Newton and Galileo would have said. That’s what everyone
would have said until the end of the nineteenth century when people started
measuring the speed of light with great precision and found out that it’s always
the same, no matter how the inertial observers move.

The only way to reconcile this conflict is to recognize that something is
wrong with Newton’s transformation law between coordinates in different
frames.3 We need to figure out how to repair Eqs. 1.1 and 1.2 so that the speed
of light is the same for both of us.

1.2.2 SR Frames



Before deriving our new transformation equations, let’s revisit one of
Newton’s key assumptions. The assumption that is most at risk, and in fact the
one that’s wrong, is that simultaneity means the same thing in every frame—that
if we begin with our clocks synchronized, and then I start to move, my clocks
will remain synchronized with your clocks. We’re about to see that the
equation

t′ = t

is not the correct relationship between moving clocks and stationary clocks.
The whole idea of simultaneity is frame-dependent.

Synchronizing Our Clocks
Here’s what I want you to imagine. We’re in a lecture hall. You, a student, are
sitting in the front row, which is filled with eager attentive students, and each
student in the front row has a clock. The clocks are all identical and
completely reliable. You inspect these clocks carefully, and make sure they all
read the same time and tick at the same rate. I have an equivalent collection of
clocks in my frame that are spread out relative to me in the same way as your
clocks. Each of your clocks has a counterpart in my setup, and vice versa. I’ve
made sure that my clocks are synchronized with each other and also with your
clocks. Then I, together with all my clocks, start moving relative to you and
your clocks. As each of my clocks passes each of yours, we check each other’s
clocks to see if they still read the same time and if not, how far out of whack
each clock is compared to its counterpart. The answer may depend on each
clock’s position along the line.

Of course, we could ask similar questions about our metersticks, such as,
“As I pass you, does my meterstick measure 1 in your coordinates?” This is
where Einstein made his great leap. He realized that we have to be much more
careful about how we define lengths, times, and simultaneity. We need to think
experimentally about how to synchronize two clocks. But the one anchor that
he held on to is the postulate that the speed of light is the same in every IRF.
For that, he had to give up Newton’s postulate of a universal time. Instead he
found that “simultaneity is relative.” We will follow his logic.

What exactly do we mean when we say that two clocks—let’s call them A



and B—are synchronized? If the two clocks are at the same location, moving
with the same velocity, it should be easy to compare them and see if they read
the same value of time. But even if A and B are standing still, say in your
frame, but are not at the same position, checking if they are synchronized
requires some thought. The problem is that light takes time to travel between A
and B.

Einstein’s strategy was to imagine a third clock, C, located midway
between A and B.4 To be specific, let’s imagine all three clocks being located
in the front row of the lecture hall. Clock A is held by the student at the left end
of the row, clock B is held by the student at the right end, and clock C is at the
center of the row. Great care has been taken to make sure that the distance from
A to C is the same as the distance from B to C.

At exactly the time when the A clock reads noon it activates a flash of light
toward C. Similarly when B reads noon it also sends a flash of light to C. Of
course, both flashes will take some time to reach C, but since the velocity of
light is the same for both flashes, and the distance they have to travel is the
same, they both take the same time to get to C. What we mean by saying A and
B are synchronized is that the two flashes will arrive at C at exactly the same
time. Of course, if they don’t arrive simultaneously, student C will conclude
that A and B were not synchronized. She may then send a message to either A or
B with instructions for how much to change their settings to get synchronized.

Suppose clocks A and B are synchronized in your frame. What happens in
my moving frame? Let’s say I’m moving to the right, and I happen to reach the
midpoint C just as these two flashes are emitted. But the light doesn’t get to C
at noon; it gets there slightly later. By that time, I’ve already moved a little to
the right of center. Since I’m right of center, the light ray coming from the left
will reach me a little later than the light ray coming from the right. Therefore, I
will conclude that your clocks are not synchronized, because the two light
flashes reach me at two different times.

Evidently what you and I call synchronous—occurring at the same time—is
not the same. Two events that take place at the same time in your frame take
place at different times in my frame. Or at least that’s what Einstein’s two
postulates force us to accept.

Units and Dimensions: A Quick Detour



Before moving ahead, we should pause briefly to explain that we’ll be using
two systems of units. Each system is well suited to its purpose, and it’s fairly
easy to switch from one system to the other.

The first system uses familiar units such as meters, seconds, and so on.
We’ll call them common or conventional units. These units are excellent for
describing the ordinary world in which most velocities are far smaller than the
speed of light. A velocity of 1 in those units means 1 meter per second, orders
of magnitude less than c.

The second system is based on the speed of light. In this system, units of
length and time are defined in a way that gives the speed of light a
dimensionless value of 1. We call them relativistic units. Relativistic units
make it easier to carry out derivations and notice the symmetries in our
equations. We’ve already seen that conventional units are impractical for
spacetime diagrams. Relativistic units work beautifully for this purpose.

In relativistic units, not only does c have a value of 1, but all velocities are
dimensionless. For this to work out, we have to choose appropriately defined
units of length and time—after all, velocity is a length divided by a time. If our
time units are seconds, we choose light-seconds as our length units. How big is
a light-second? We know that it’s 186,000 miles, but for our purposes that’s
unimportant. Here’s what matters: A light-second is a unit of length, and by
definition light travels 1 light-second per second! In effect, we’re measuring
both time and length in units of seconds. That’s how velocity—a length
divided by a time—gets to be dimensionless. When we use relativistic units, a
velocity variable such as v is a dimensionless fraction of the speed of light.
That’s consistent with c itself having a value of 1.

In a spacetime diagram such as Fig. 1.2, the x and t axes are both calibrated
in seconds.5 The trajectory of a light ray makes equal angles with the x axis
and with the t axis. Conversely, any trajectory that makes equal angles with the
two axes represents a light ray. In your stationary RF, that angle is 45 degrees.

Knowing how to switch easily between the two types of units will pay off.
The guiding principle is that mathematical expressions need to be
dimensionally consistent in whatever system of units we’re using at the time.
The most common and useful trick in going from relativistic to conventional
units is to replace v with v/c. There are other patterns as well, which typically
involve multiplying or dividing by some appropriate power of c, the speed of



light. We’ll show examples as we go, and you’ll find that these conversions are
fairly simple.

Setting Up Our Coordinates—Again!
Let’s go back to our two coordinate systems. This time, we’ll be very careful
about the exact meaning of the word synchronous in the moving RF. In the
stationary RF, two points are synchronous (or simultaneous) if they’re both on
the same horizontal level in a spacetime diagram. The two points both have the
same t coordinate, and a line connecting them is parallel to the x axis. That
much Newton would have agreed with.

But what about the moving frame? We’ll find out in a minute that in the
moving frame, the point

x = 0, t = 0

is not synchronous with the other points on the x axis, but with an entirely
different set of points. In fact, the whole surface that the moving frame calls
“synchronous” is someplace else. How can we map out this surface? We’ll use
the synchronization procedure, described in a previous subsection
(Synchronizing Our Clocks) and further illustrated in Fig. 1.2.

Drawing a spacetime diagram is usually the best way to understand a
problem in relativity. The picture is always the same; x is the horizontal axis,
and t is vertical. These coordinates represent a RF that you can think of as
stationary. In other words, they represent your frame. A line that represents the
trajectory of an observer moving through spacetime is called a world line.

With our axes in place, the next things to draw are the light rays. In Fig. 1.2,
these are represented by the lines labeled x = ct and x = −ct. The dashed line
from point a to point b in the figure is also a light ray.

Back to the Main Road
Getting back to Fig. 1.2, let’s sketch in an observer, Art, who’s sitting in a
railroad car moving to the right with constant speed v. His world line is
labeled with equations that describe his motion. Once again, Art’s frame will
be moving such that x′ = x − vt, exactly like the moving observer in Fig. 1.1.



Now let’s figure out how to draw Art’s x′ axis. We begin by adding two
more observers, Maggie and Lenny. Maggie is sitting in the rail car directly in
front of Art (to your right), and Lenny’s rail car is directly in front of Maggie’s.
Adjacent observers are separated from each other by one unit of length as
measured in your frame (the rest frame). Equations for Maggie’s and Lenny’s
world lines are shown in the figure. Because Maggie is located one unit to the
right of Art, her trajectory is just x = vt + 1. Likewise, Lenny’s trajectory is x
= vt + 2. Art, Maggie, and Lenny are in the same moving frame. They’re at rest
with respect to each other.

Our first observer, Art, has a clock, and his clock happens to read 12 noon
just as he arrives at the origin. We’ll assume the clock in the rest frame also
reads 12 noon at this event. We both agree to call 12 noon our “time zero,” and
we label our common origin with (x = 0, t = 0) in your coordinates, and (x′ =
0, t′ = 0) in Art’s coordinates. The moving observer and the stationary
observer agree, by assumption, on the meaning of t = 0. For you (the stationary
observer), t equals zero all along the horizontal axis. In fact, that’s the
definition of the horizontal axis: it’s the line where all times for the stationary
observer are zero.

Figure 1.2: SR Frames Using Relativistic
Units (c = 1). The equations associated

with Art are two different ways to
characterize his world line. The dashed

lines are the world lines of light rays. The
constants 1 and 2 in the equations for



Maggie’s and Lenny’s world lines are not
pure numbers. Their relativistic units are

seconds.

Suppose Art sends out a light signal to Maggie from the origin. At some
point—we don’t know yet what that point is—Lenny will also send out a light
signal toward Maggie. He’ll somehow arrange to do this in a way that both
signals reach Maggie at the same instant. If Art’s light signal starts at the
origin, Maggie will receive it at point a in Fig. 1.2. From what point must
Lenny send his light signal, if it is to reach at Maggie at the same time? We can
find out by working backward. The world line of any light signal that Lenny
sends to Maggie must make a 45-degree angle to the x axis. So all we need to
do is construct a line at point a that slopes 45 degrees downward toward the
right, and extend it until it crosses Lenny’s path. This is point b in the figure.
As we can easily see from the figure, point b lies above the x axis and not on
it.

What we’ve just shown is that the origin and point b are simultaneous
events in Art’s frame! In other words, the moving observer (Art) will say that t′
= 0 at point b. Why? Because in the moving frame of reference, Art and Lenny,
who are equidistant from the central observer Maggie, sent her light signals
that arrived at the same instant of time. So Maggie will say, “You guys sent me
light signals at exactly the same instant of time, because they both arrived here
at the same instant of time, and I happen to know that you’re at equal distances
from me.”

Finding the x′ Axis
We’ve established that Art’s (and Maggie’s and Lenny’s) x axis is a line that
joins the common origin (i.e., common to both frames) to point b. Our next task
is to find out exactly where point b is. Once we figure out point b’s
coordinates, we’ll know how to specify the direction of Art’s x′ axis. We’ll go
through this exercise in detail. It’s a little cumbersome, but quite easy. There
are two steps involved, the first being to find the coordinates of point a.

Point a sits at the intersection of two lines; the rightward moving light ray x
= ct, and the line x = vt + 1, which is Maggie’s world line. To find the
intersection, we just substitute one equation into the other. Because we’re using



relativistic units for which the speed of light c is equal to 1, we can write the
equation

x = ct

in an even simpler way,

Substituting Eq. 1.5 into Maggie’s world line,

x = vt + 1,

gives

t = vt + 1

or

t(1 − v) = 1.

Or, even better,

Now that we know the time coordinate of point a we can find its x coordinate.
This is easily done by noticing that all along the light ray, x = t. In other words,
we can just replace t with x in Eq. 1.6, and write

xa = 1/(1 − v).

Voilà!—we’ve found point a.
With the coordinates of point a in hand, let’s look at line ab. Once we have

an equation for line ab, we can figure out where it intersects Lenny’s world
line, x = vt + 2. It takes a few steps, but they’re fun and I don’t know of any
shortcuts.

Every line that slopes at 45 degrees, pointing downward to the right, has
the property that x + t is constant along that line. Every line sloping upward to
the right at 45 degrees has the property that x − t is constant. Let’s take the line



ab. Its equation is

x + t = some constant.

What is the constant? An easy way to find out is to take one point along the line
and plug in specific values x and t. In particular, we happen to know that at
point a,

xa + ta = 2/(1 − v).

Therefore, we know that this is true all along line ab, and the equation for that
line must be

Now we can find b’s coordinates by solving the simultaneous equations for
line ab and for Lenny’s world line. Lenny’s world line is x = vt + 2, which we
rewrite as x − vt = 2. Our simultaneous equations are

x + t = 2/(1 − v)

and

x − vt = 2.

The solution, after a bit of easy algebra, is

First, the most important point: tb is not zero. Therefore point b, which is
simultaneous with the origin in the moving frame, is not simultaneous with the
origin in the rest frame.

Next, consider the straight line connecting the origin with point b. By
definition, the slope of that line is tb/xb, and using Eqs. 1.8 we see that the
slope is v. This line is nothing but the x′ axis, and it is given, very simply, by



the equation

Keep in mind as we go along that the velocity v can be positive or negative
depending on whether I am moving to the right or to the left relative to your
frame. For negative velocity you will have to redraw diagrams or just flip
them horizontally.

Fig. 1.3 shows our spacetime diagram with the x′ and t′ axes drawn in. The
line t = vx (or what is really a three-dimensional surface in the spacetime map
when the two other coordinates y, z are accounted for) has the important
property that on it, all the clocks in the moving frame record the same value of
t′. To give it a name, it is a surface of simultaneity in the moving frame. It
plays the same role as the surface t = 0 does for the rest frame.

So far in this section, we’ve worked in relativistic units where the speed of
light is c = 1. Here is a good opportunity to practice your skills in dimensional
analysis and figure out what Eq. 1.9 would look like in conventional units of
meters and seconds. In those units, Eq. 1.9 is not dimensionally consistent; the
left side has units seconds and the right side has units meters squared per
second. To restore consistency, we have to multiply the right side by an
appropriate power of c. The correct factor is 1/c2:

Figure 1.3: SR Frames with x′ and t′
Axes Shown.



The interesting thing about Eq. 1.10 is that it describes a straight line with the
incredibly tiny slope . For example, if v were 300 meters per second
(roughly the speed of a jetliner) the slope would be v/c2 = 3 × 10−15. In other
words, the x′ axis in Fig. 1.3 would be almost exactly horizontal. The surfaces
of simultaneity in the rest and moving frames would almost exactly coincide
just as they would in Newtonian physics.

This is an example of the fact that Einstein’s description of spacetime
reduces to Newton’s if the relative velocity of the reference frames is much
less than the speed of light. This, of course, is an important “sanity” check.

Now we can return to relativistic units with c = 1. Let’s simplify our
diagram and keep only the features we’ll need going forward. The dashed line
in Fig. 1.4 represents a light ray, whose world line makes a 45-degree angle
with both the t and x axes. Art’s world line is shown as the t′ axis. His x′ axis
is also labeled. Both of Art’s axes are also labeled with appropriate equations.
Notice the symmetry of his two axes: x = vt and t = vx. These two lines are
reflections of each other about the dashed light trajectory. They’re related by
interchanging t and x. Another way to say it is that they each make the same
angle with their nearest unprimed axis—the x axis in the case of t = vx, and the
t axis in the case of x = vt.

Figure 1.4: SR Frames Simplified.

We’ve discovered two interesting things. First, if the speed of light really is
the same in every frame, and you use light rays to synchronize clocks, then the
pairs of events that are synchronous in one frame are not the same pairs that are



synchronous in the other frame. Second, we’ve found what synchronicity
actually means in the moving frame. It corresponds to surfaces that are not
horizontal, but are tilted with slope v. We have figured out the directions of the
x′ and t′ axes in Art’s moving frame. Later on, we’ll figure out how to mark off
the intervals along these axes.

Spacetime
Let’s pause for a moment to contemplate what we’ve found about space and
time. Newton, of course, knew about both space and time but regarded them as
entirely separate. To Newton, three-dimensional space was space, and time
was universal time. They were entirely separate, the difference being absolute.

But maps like Figs. 1.3 and 1.4 indicate something that Newton could not
have known, namely that in going from one inertial reference frame to another,
the space and time coordinates get mixed up with each other. For example, in
Fig. 1.3 the interval between the origin and point b represents two points at the
same time in the moving frame. But in the rest frame, point b is not only shifted
in space from the origin; it also is shifted in time.

Three years after Einstein’s mighty 1905 paper that introduced the special
theory of relativity, Minkowski completed the revolution. In an address to the
80th Assembly of German Natural Scientists and Physicians, he said,

Space by itself, and time by itself, are doomed to fade away into mere
shadows, and only a kind of union of the two will preserve an
independent reality.

That union is four-dimensional, with coordinates t, x, y, z. Depending on our
mood, we physicists sometimes call that union of space and time spacetime.
Sometimes we call it Minkowski space. Minkowski had another name for it.
He called it the world.

Minkowski called the points of spacetime events. An event is labeled by
the four coordinates t, x, y, z. By calling a point of spacetime an event,
Minkowski did not mean to imply that something actually took place at t, x, y,
z. Only that something could take place. He called the lines or curves
describing trajectories of objects world lines. For example, the line x′ = 0 in



Fig. 1.3 is Art’s world line.
This change of perspective from space and time to spacetime was radical

in 1908, but today spacetime diagrams are as familiar to physicists as the
palms of their hands.

Lorentz Transformations
An event, in other words a point of spacetime, can be labeled by the values of
its coordinates in the rest frame or by its coordinates in the moving frame. We
are talking about two different descriptions of a single event. The obvious
question is, how do we go from one description to the other? In other words,
what is the coordinate transformation relating the rest frame coordinates t, x,
y, z to the coordinates t′, x′, y′, z′ of the moving frame?

One of Einstein’s assumptions was that spacetime is everywhere the same,
in the same sense that an infinite plane is everywhere the same. The sameness
of spacetime is a symmetry that says no event is different from any other event,
and one can choose the origin anywhere without the equations of physics
changing. It has a mathematical implication for the nature of transformations
from one frame to another. For example, the Newtonian equation

is linear; it contains only first powers of the coordinates. Equation 1.11 will
not survive in its simple form, but it does get one thing right, namely that x′ = 0
whenever x = vt. In fact there is only one way to modify Eq. 1.11 and still
retain its linear property, along with the fact that x′ = 0 is the same as x = vt. It
is to multiply the right side by a function of the velocity:

At the moment the function f(v) could be any function, but Einstein had one
more trick up his sleeve: another symmetry—the symmetry between left and
right. To put it another way, nothing in physics requires movement to the right
to be represented by positive velocity and movement to the left by negative
velocity. That symmetry implies that f(v) must not depend on whether v is
positive or negative. There is a simple way to write any function that is the
same for positive and negative v. The trick is to write it as a function of the



square of the velocity v2.6 Thus, instead of Eq. 1.12, Einstein wrote

To summarize, writing f(v2) instead of f(v) emphasizes the point that there is no
preferred direction in space.

What about t′? We’ll reason the same way here as we did for x′. We know
that t′ = 0 whenever t = vx. In other words, we can just invert the roles of x
and t, and write

where g(v2) is some other possible function. Equations 1.13 and 1.14 tell us
that x′ is zero whenever x = vt, and that t′ is zero whenever t = vx. Because of
the symmetry in these two equations, the t′ axis is just a reflection of the x′ axis
about the line x = t, and vice versa.

What we know so far is that our transformation equations should take the
following form:

Our next task is to figure out what the functions f(v2) and g(v2) actually are. To
do that we’ll consider the path of a light ray in these two frames, and apply
Einstein’s principle that the speed of light is the same in both of them. If the
speed of light c equals 1 in the stationary frame, it must also equal 1 in the
moving frame. To rephrase this: If we start out with a light ray that satisfies x =
t in the stationary frame, it must also satisfy x′ = t′ in the moving frame. To put
it another way, if

x = t,

then it must follow that

x′ = t′.

Let’s go back to Eqs. 1.15. Setting x = t and requiring x′ = t′ gives the simple



requirement that

f(v2) = g(v2).

In other words the requirement that the speed of light is the same in your frame
and my frame leads to the simple condition that the two functions f(v2) and
g(v2) are the same. Thus we may simplify Eqs. 1.15

To find f(v2), Einstein used one more ingredient. In effect, he said “Wait a
minute, who’s to say which frame is moving? Who’s to say if my frame is
moving relative to you with velocity v, or your frame is moving relative to me
with velocity −v?” Whatever the relationship is between the two frames of
reference, it must be symmetrical. Following this approach, we could invert
our entire argument; instead of starting with x and t, and deriving x′ and t′, we
could do exactly the opposite. The only difference would be that for me, you’re
moving with velocity −v, but for you, I’m moving with velocity +v. Based on
Eqs. 1.16, which express x′ and t′ in terms of x and t, we can immediately
write down the inverse transformations. The equations for x and t in terms of x′
and t′ are

We should be clear that we wrote Eqs. 1.17 by reasoning about the physical
relationship between the two reference frames. They’re not just a clever way
to solve Eqs. 1.16 for the unprimed variables without doing the work. In fact,
now that we have these two sets of equations, we need to verify that they’re
compatible with each other.

Let’s start with Eqs. 1.17 and plug in the expressions for x′ and t′ from Eqs.
1.16. This may seem circular, but you’ll see that it isn’t. After making our
substitutions, we’ll require the results to be equivalent to x = x and t = t. How
could they be anything else if the equations are valid to begin with? From
there, we’ll find out the form of f(v2). The algebra is a little tedious but



straightforward. Starting with the first of Eqs. 1.17, the first few substitutions
for x unfold as follows:

x = (x′ + vt′)f(v2)

x = {(x − vt)f(v2) + v(t − vx)f(v2)}f(v2)

x = (x − vt)f2(v2) + v(t − vx)f2(v2).

Expanding the last line gives

x = xf2(v2) − v2xf2(v2) − vtf2(v2) + vtf2(v2),

which simplifies to

x = xf2(v2)(1 − v2).

Canceling x on both sides and solving for f(v2) gives

Now we have everything we need to transform coordinates in the rest frame to
coordinates in the moving frame and vice versa. Plugging into Eqs. 1.16 gives

These are, of course, the famous Lorentz transformations between the rest and
moving frames.

Art: “Wow, that’s incredibly clever, Lenny. Did you figure it all out
yourself?”

Lenny: “I wish. No, I’m simply following Einstein’s paper. I haven’t read it
for fifty years, but it left an impression.”



Art: “Okay, but how come they’re called Lorentz transformations if they
were discovered by Einstein?”

1.2.3 Historical Aside
To answer Art’s question, Einstein was not the first to discover the Lorentz
transformation. That honor belongs to the Dutch physicist Hendrik Lorentz.
Lorentz, and others even before him—notably George FitzGerald—had
speculated that Maxwell’s theory of electromagnetism required moving objects
to contract along the direction of motion, a phenomenon that we now call
Lorentz contraction. By 1900 Lorentz had written down the Lorentz
transformations motivated by this contraction of moving bodies. But the views
of Einstein’s predecessors were different and in a sense a throwback to older
ideas rather than a new starting point. Lorentz and FitzGerald imagined that the
interaction between the stationary ether and the moving atoms of all ordinary
matter would cause a pressure that would squeeze matter along the direction of
motion. To some approximation the pressure would contract all matter by the
same amount so that the effect could be represented by a coordinate
transformation.

Just before Einstein’s paper, the great French mathematician Henri Poincaré
published a paper in which he derived the Lorentz transformation from the
requirement that Maxwell’s equations take the same form in every inertial
frame. But none of these works had the clarity, simplicity, and generality of
Einstein’s reasoning.

1.2.4 Back to the Equations
If we know the coordinates of an event in the rest frame, Eqs. 1.19 and 1.20
tell us the coordinates of the same event in the moving frame. Can we go the
other way? In other words, can we predict the coordinates in the rest frame if
we know them in the moving frame? To do so we might solve the equations for
x and t in terms of x′ and t′, but there is an easier way.

All we need is to realize that there is a symmetry between the rest and
moving frames. Who, after all, is to say which frame is moving and which is at
rest? To interchange their roles, we might just interchange the primed and
unprimed coordinates in Eqs. 1.19 and 1.20. That’s almost correct but not



quite.
Consider this: If I am moving to the right relative to you, then you are

moving to the left relative to me. That means your velocity relative to me is −v.
Therefore when I write the Lorentz transformations for x, t in terms of x′, t′, I
will need to replace v with −v. The result is

Switching to Conventional Units
What if the speed of light is not chosen to be 1? The easiest way to switch from
relativistic units back to conventional units is to make sure our equations are
dimensionally consistent in those units. For example, the expression x − vt is
dimensionally consistent as it is because both x and vt have units of length—
say meters. On the other hand t − vx is not dimensionally consistent in
conventional units; t has units of seconds and vx has units of meters squared
over seconds. There is a unique way to fix the units. Instead of t − vx we
replace it with

Now both terms have units of time, but if we happen to use units with c = 1 it
reduces to the original expression t − vx.

Similarly the factor in the denominators, , is not dimensionally
consistent. To fix the units we replace v with v/c. With these replacements the
Lorentz transformations can be written in conventional units:



Notice that when v is very small compared to the speed of light, v2/c2 is even
smaller. For example, If v/c is 1/10, then v2/c2 is 1/100. If v/c = 10−5, then
v2/c2 is truly a small number, and the expression  in the denominator
is very close to 1.7 To a very good approximation we can write

x′ = x − vt.

That’s the good old Newtonian version of things. What happens to the time
equation (Eq. 1.24) when v/c is very small? Suppose v is 100 meters per
second. We know that c is very big, about 3 × 108 meters per second. So v/c2 is
a very tiny number. If the velocity of the moving frame is small, the second
term in the numerator, vx/c2, is negligible and to a high degree of
approximation the second equation of the Lorentz transformation becomes the
same as the Newtonian transformation

t′ = t.

For frames moving slowly relative to each other, the Lorentz transformation
boils down to the Newtonian formula. That’s a good thing; as long as we move
slowly compared to c, we get the old answer. But when the velocity becomes
close to the speed of light the corrections become large—huge when v
approaches c.

The Other Two Axes
Eqs. 1.23 and 1.24 are the Lorentz transformation equations in common, or
conventional, units. Of course, the full set of equations must also tell us how to
transform the other two components of space, y and z. We’ve been very
specific about what happens to the x and t coordinates when frames are in
relative motion along the x axis. What happens to the y coordinate?

We’ll answer this with a simple thought experiment. Suppose your arm is
the same length as my arm when we’re both at rest in your frame. Then I start
moving at constant velocity in the x direction. As we move past each other, we
each hold out an arm at a right angle to the direction of our relative motion.
Question: As we move past each other, would our arms still be equal in length,
or would yours be longer than mine? By the symmetry of this situation, it’s



clear that our arms are going to match, because there’s no reason for one to be
longer than the other. Therefore, the rest of the Lorentz transformation must be
y′ = y and z′ = z. In other words, interesting things happen only in the x, t plane
when the relative motion is along the x axis. The x and t coordinates get mixed
up with each other, but y and z are passive.

For easy reference, here’s the complete Lorentz transformation in
conventional units for a reference frame (the primed frame) moving with
velocity v in the positive x direction relative to the unprimed frame:

1.2.5 Nothing Moves Faster than Light
A quick look at Eqs. 1.25 and 1.26 indicates that something strange happens if
the relative velocity of two frames is larger than c. In that case 1 − v2/c2

becomes negative and  becomes imaginary. That’s obvious nonsense.
Metersticks and clocks can only define real-valued coordinates.

Einstein’s resolution of this paradox was an additional postulate: no
material system can move with a velocity greater than light. More accurately,
no material system can move faster than light relative to any other material
system. In particular no two observers can move, relative to each other, faster
than light.

Thus we never have need for the velocity v to be greater than c. Today this
principle is a cornerstone of modern physics. It’s usually expressed in the form
that no signal can travel faster than light. But since signals are composed of
material systems, even if no more substantial than a photon, it boils down to
the same thing.

1.3 General Lorentz Transformation



These four equations remind us that we have considered only the simplest kind
of Lorentz transformation: a transformation where each primed axis is parallel
to its unprimed counterpart, and where the relative motion between the two
frames is only along the shared direction of the x and x′ axes.

Uniform motion is simple, but it’s not always that simple. There’s nothing
to prevent the two sets of space axes from being oriented differently, with each
primed axis at some nonzero angle to its unprimed counterpart.8 It’s also easy
to visualize the two frames moving with respect to each other not only in the x
direction, but along the y and z directions as well. This raises a question: By
ignoring these factors, have we missed something essential about the physics of
uniform motion? Happily, the answer is no.

Suppose you have two frames in relative motion along some oblique
direction, not along any of the coordinate axes. It would be easy to make the
primed axes line up with the unprimed axes by performing a sequence of
rotations. After doing those rotations, you would again have uniform motion in
the x direction. The general Lorentz transformation—where two frames are
related to each other by an arbitrary angle in space, and are moving relative to
each other in some arbitrary direction—is equivalent to:

1. A rotation of space to align the primed axes with the unprimed axes.
2. A simple Lorentz transformation along the new x axis.
3. A second rotation of space to restore the original orientation of the

unprimed axes relative to the primed axes.

As long as you make sure that your theory is invariant with respect to the
simple Lorentz transformation along, say, the x axis, and with respect to
rotations, it will be invariant with respect to any Lorentz transformation at all.

As a matter of terminology, transformations involving a relative velocity of
one frame moving relative to another are called boosts. For example, the
Lorentz transformations like Eqs. 1.25 and 1.26 are referred to as boosts along
the x axis.

1.4 Length Contraction and Time Dilation
Special relativity, until you get used to it, is counterintuitive—perhaps not as



counterintuitive as quantum mechanics, but nevertheless full of paradoxical
phenomena. My advice is that when confronted with one of these paradoxes,
you should draw a spacetime diagram. Don’t ask your physicist friend, don’t
email me—draw a spacetime diagram.

Figure 1.5: Length Contraction.

Length Contraction
Suppose you’re holding a meterstick and I’m walking past you in the positive x
direction. You know that your stick is 1 meter long, but I’m not so sure. As I
walk past, I measure your meterstick relative to the lengths of my metersticks.
Since I’m moving, I have to be very careful; otherwise, I could be measuring
the end points of your meterstick at two different times. Remember, events that
are simultaneous in your frame are not simultaneous in mine. I want to measure
the end points of your meterstick at exactly the same time in my frame. That’s
what I mean by the length of your meterstick in my frame.

Fig. 1.5 shows a spacetime diagram of this situation. In your frame, the
meterstick is represented by a horizontal line segment  along the x axis,
which is a surface of simultaneity for you. The meterstick is at rest, and the
world lines of its end points are the vertical lines x = 0 and x = 1 in your
frame.

In my moving frame, that same meterstick at an instant of time is
represented by line segment  along the x′ axis. The x′ axis is a surface of
simultaneity for me and is tilted in the diagram. One end of the meterstick is at
our common origin O as I pass it. The other end of the stick at time t′ = 0 is



labeled P in the diagram.
To measure the location of both ends at time t′ = 0 in my frame, I need to

know the coordinate values of x′ at points O and P. But I already know that x′
is zero at point O, so all I need to do is calculate the value of x′ at point P.
We’ll do this the easy way, using relativistic units (speed of light equals 1). In
other words, we’ll use the Lorentz transformation of Eqs. 1.19 and 1.20.

First, notice that point P sits at the intersection of two lines, x = 1 and t′ =
0. Recall (based on Eq. 1.20) that t′ = 0 means that t = vx. Substituting vx for t
in Eq. 1.19 gives

Plugging x = 1 into the preceding equation gives

or

So there it is! The moving observer finds that at an instant of time—which
means along the surface of simultaneity t′ = 0—the two ends of the meterstick
are separated by distance ; in the moving frame, the meterstick is a little
shorter than it was at rest.

It may seem like a contradiction that the same meterstick has one length in
your frame and a different length in my frame. Notice, though, that the two
observers are really talking about two different things. For the rest frame,
where the meterstick itself is at rest, we’re talking about the distance from
point O to point Q, as measured by stationary metersticks. In the moving frame,
we’re talking about the distance between point O and point P, measured by
moving measuring rods. P and Q are different points in spacetime, so there’s
no contradiction in saying that  is shorter than .

Try doing the opposite calculation as an exercise: Starting with a moving
meterstick, find its length in the rest frame. Don’t forget—begin by drawing a
diagram. If you get stuck you can cheat and continue reading.

Think of a moving meterstick being observed from the rest frame. Fig. 1.6



shows this situation. If the meterstick is 1 unit long in its own rest frame, and
its leading end passes through point Q, what do we know about its world line?
Is it x = 1? No! The meterstick is 1 meter long in the moving frame, which
means the world line of its leading end is x′ = 1. The observer at rest now sees
the meterstick being the length of line segment , and the x coordinate of
point Q is not 1. It’s some value calculated by the Lorentz transformation.
When you do this calculation, you’ll find that this length is also shortened by
the factor .

The moving metersticks are short in the stationary frame, and the stationary
metersticks are short in the moving frame. There’s no contradiction. Once
again, the observers are just talking about different things. The stationary
observer is talking about lengths measured at an instant of his time. The moving
observer is talking about lengths measured at an instant of the other time.
Therefore, they have different notions of what they mean by length because they
have different notions of simultaneity.

Figure 1.6: Length Contraction Exercise.

Exercise 1.1: Show that the x coordinate of point Q in Fig. 1.6 is .

Time Dilation
Time dilation works pretty much the same way. Suppose I have a moving clock
—my clock. Assume my clock is moving along with me at uniform velocity, as
in Fig. 1.7.



Here’s the question: At the instant when my clock reads t′ = 1 in my frame,
what is the time in your frame? By the way, my standard wristwatch is an
excellent timepiece, a Rolex.9 I want to know the corresponding value of t
measured by your Timex. The horizontal surface in the diagram (the dashed
line) is the surface that you call synchronous. We need two things in order to
pin down the value of t in your frame. First, my Rolex moves on the t′ axis
which is represented by the equation x′ = 0. We also know that t′ = 1. To figure
out t, all we need is one of the Lorentz transformation equations (Eq. 1.22),

Figure 1.7: Time
Dilation.

Plugging in x′ = 0 and t′ = 1, we find

Because the denominator on the right side is smaller than 1, t itself is bigger
than 1. The time interval measured along the t axis (your Timex) is bigger than
the time interval measured by the moving observer along the t′ axis (my Rolex)
by a factor of . In short, t > t′.

To put it another way, as viewed from the rest frame, moving clocks run
slower by a factor of 

The Twin Paradox



Lenny: Hey Art! Say hello to Lorentz over here. He has a question.

Art: Lorentz has a question for us?

Lorentz: Please call me Lor’ntz. It’s the original Lorentz contraction. In all
the years I’ve been coming to Hermann’s Hideaway, I’ve never seen either
one of you guys without the other. Are you biological twins?

Art: What? Look, if we were biological were twins, either I’d be a genius—
don’t choke on your sausage, Lor’ntz, it’s not that funny. As I was saying,
either I’d be a genius or Lenny would be some wiseguy from the Bronx. Wait
a minute…10

Time dilation is the origin of the so-called twin paradox. In Fig. 1.8, Lenny
remains at rest, while Art takes a high-speed journey in the positive x
direction. At the point labeled t′ = 1 in the diagram, Art at the age of 1 turns
around and heads back home.

We’ve already calculated the amount of rest frame time that elapses
between the origin and the point labeled t in the diagram. It’s . In other
words, we find that less time elapses along the path of the moving clock than
along the path of the stationary clock. The same thing is true for the second leg
of the journey. When Art returns home, he finds that his twin Lenny is older
than himself.



Figure 1.8: Twin Paradox.

We’ve calibrated the ages of Art and Lenny by the time registered on their
watches. But the same time dilations that slowed Art’s watch from the
viewpoint of the rest frame would affect any clock, including the biological
aging clock. Thus in an extreme case, Art could return home still a boy while
Lenny would have a long gray beard.

Two aspects of the twin paradox often leave people confused. First, it
seems natural to expect the experiences of the two twins to be symmetrical. If
Lenny sees Art moving away from him, then Art also sees Lenny traveling
away, but in the opposite direction. There are no preferred directions in space,
so why should they age any differently? But in fact, their experiences are not
symmetrical at all. The traveling twin undergoes a large acceleration in order
to change directions, while the stay-at-home twin does not. This difference is
crucial. Because of the abrupt reversal, Art’s frame is not a single inertial
frame, but Lenny’s is. We invite you to develop this idea further in the
following exercise.

Exercise 1.2: In Fig. 1.8, the traveling twin not only reverses directions but
switches to a different reference frame when the reversal happens.

a) Use the Lorentz transformation to show that before the reversal happens,
the relationship between the twins is symmetrical. Each twin sees the
other as aging more slowly than himself.

b) Use spacetime diagrams to show how the traveler’s abrupt switch from
one frame to another changes his definition of simultaneity. In the
traveler’s new frame, his twin is suddenly much older than he was in the
traveler’s original frame.

Another point of confusion arises from simple geometry. Referring back to
Fig. 1.7, recall that we calculated the “time distance” from point O to the point
labeled t′ = 1 to be smaller than the distance from O to the point labeled 

 along the t axis. Based on these two values, the vertical leg of
this right triangle is longer than its hypotenuse. Many people find this puzzling



because the numerical comparison seems to contradict the visual message in
the diagram. In fact, this puzzle leads us to one of the central ideas in relativity,
the concept of an invariant. We’ll discuss this idea extensively in Section 1.5.

The Stretch Limo and the Bug
Another paradox is sometimes called the Pole in the Barn paradox. But in
Poland they prefer to call it the Paradox of the Limo and the Bug.

Art’s car is a VW Bug. It’s just under 14 feet long. His garage was built to
just fit the Bug.

Lenny has a reconditioned stretch limo. It’s 28 feet long. Art is going on
vacation and renting his house to Lenny, but before he goes the two friends
get together to make sure that Lenny’s car will fit in Art’s garage. Lenny is
skeptical, but Art has a plan. Art tells Lenny to back up and get a good
distance from the garage. Then step on the gas and accelerate like blazes. If
Lenny can get the limo up to 161,080 miles per second before getting to the
back end of the garage, it will just fit in. They try it.

Art watches from the sidewalk as Lenny backs up the limo and steps on the
gas. The speedometer jumps to 172,000 mps, plenty of speed to spare. But
then Lenny looks out at the garage. “Holy cow! The garage is coming at me
really fast, and it’s less than half its original size! I’ll never fit!”

“Sure you will, Lenny. According to my calculation, in the rest frame of the
garage you are just a bit longer than thirteen feet. Nothing to worry about.”

“Geez, Art, I hope you’re right.”

Fig. 1.9 is a spacetime diagram including Lenny’s stretch limo shown in the
dark shaded region, and the garage shown as lightly shaded. The front end of
the limo enters the garage at a and leaves (assuming that Art left the back door
of the garage open) just above c. The back end of the limo enters at b and
leaves at d. Now look at the line  It is part of a surface of simultaneity in the
rest frame of the garage, and as you can see, the entire limo is contained in the
garage at that time. That’s Art’s claim: In his frame the limo could be made to



fit the garage. But now look at Lenny’s surfaces of simultaneity. The line  is
such a surface, and as you can also see, the limo overflows the garage. As
Lenny worried, the limo does not fit.

Figure 1.9: Stretch
Limo-Garage Spacetime

Diagram.

The figure makes clear what the problem is. To say that the limo is in the
garage means that the front and back are simultaneously in the garage. There’s
that word simultaneous again. Simultaneous according to whom, Art? Or
Lenny? To say that the car is in the garage simply means different things in
different frames. There is no contradiction in saying that at some instant in
Art’s frame the limo was indeed in the garage—and that at no instant in
Lenny’s frame was the limo wholly in the garage.

Almost all paradoxes of special relativity become obvious when stated
carefully. Watch out for the possibly implicit use of the word simultaneous.
That’s usually the giveaway—simultaneous according to whom?

1.5 Minkowski’s World
One of the most powerful tools in the physicist’s toolbag is the concept of an
invariant. An invariant is a quantity that doesn’t change when looked at from
different perspectives. Here we mean some aspect of spacetime that has the
same value in every reference frame.

To get the idea, we’ll take an example from Euclidean geometry. Let’s
consider a two-dimensional plane with two sets of Cartesian coordinates, x, y
and a second set x′, y′. Assume that the origins of the two coordinate systems
are at the same point, but that the x′, y′ axes (the primed axes) are rotated



counterclockwise by a fixed angle with respect to the unprimed axes. There is
no time axis in this example, and there are no moving observers; just the
ordinary Euclidean plane of high school geometry. Fig. 1.10 gives you the
picture.

Consider an arbitrary point P in this space. The two coordinate systems do
not assign the same coordinate values to P. Obviously, the x and the y of this
point are not the same numbers as the x′ and the y′, even though both sets of
coordinates refer to the same point P in space. We would say that the
coordinates are not invariant.

Figure 1.10: Euclidean Plane.

However, there’s a property that is the same, whether you calculate it in
primed or unprimed coordinates: P’s distance from the origin. That distance
is the same in every coordinate system regardless of how it’s oriented. The
same is true for the square of the distance. To calculate this distance in the
unprimed coordinates we use the Pythagorean theorem, d2 = x2 + y2, to get the
square of the distance. If we use primed coordinates instead, the same distance
would be given by x′2 + y′2. Therefore it follows that

x2 + y2 = x′2 + y′2.

In other words, for an arbitrary point P the quantity x2 + y2 is invariant.
Invariant means that it doesn’t depend on which coordinate system you use to
work it out. You get the same answer no matter what.

One fact about right triangles in Euclidean geometry is that the hypotenuse
is generally larger than either side (unless one side is zero, in which case the
hypotenuse is equal to the other side). This tells us that the distance d is at least



as large as x or y. By the same argument it is at least as large as x′ or y’.
Circling back to relativity, our discussion of the twin paradox involved

something that looked a lot like a right triangle. Go back to Fig. 1.8 and
consider the triangle formed from the lines connecting the three black dots—
the horizontal dashed line, the first half of Lenny’s vertical world line, and the
hypotenuse formed by the first leg of Art’s journey. We can think of the dashed-
line distance between the two later dots to define a spacetime distance
between them.11 The time along Lenny’s side of the triangle can also be thought
of as a spacetime distance. Its length would be . And finally the time
ticked off during the first half of Art’s trip is the spacetime length of the
hypotenuse. But a moment’s inspection shows something unusual—the vertical
leg is longer than the hypotenuse (that’s why Lenny had time to grow a beard
while Art remained a boy). This immediately tells us that Minkowski space is
not governed by the same laws as Euclidean space.

Nevertheless we may ask: Is there an analogous invariant quantity in
Minkowski space, associated with the Lorentz transformation—a quantity that
stays the same in every inertial reference frame? We know that the square of
the distance from the origin to a fixed point P is invariant under simple
rotations of Euclidean coordinates. Could a similar quantity, possibly t2 + x2,
be invariant under Lorentz transformations? Let’s try it out. Consider an
arbitrary point P in a spacetime diagram. This point is characterized by a t
value and an x value, and in some moving reference frame it’s also
characterized by a t′ and an x′. We already know that these two sets of
coordinates are related by the Lorentz transformation. Let’s see if our guess,

is correct. Using the Lorentz transformation (Eqs. 1.19 and 1.20) to substitute
for t′ and x′, we have

which simplifies to



Does the right side equal t2 + x2? No way! You can see immediately that the tx
term in the first expression adds to the tx term in the second expression. They
do not cancel, and there’s no tx term on the left side to balance things out. They
can’t be the same.

But if you look carefully, you’ll notice that if we take the difference of the
two terms on the right side rather than their sum, the tx terms would cancel.
Let’s define a new quantity

τ2 = t2 − x2.

The result of subtracting x′2 from t′2 gives

After a bit of rearrangement it is exactly what we want.

Bingo! We’ve discovered an invariant, τ2, whose value is the same under any
Lorentz transformation along the x axis. The square root of this quantity, τ, is
called the proper time. The reason for this name will become clear shortly.

Up to now we’ve imagined the world to be a “railroad” in which all
motion is along the x axis. Lorentz transformations are all boosts along the x
axis. By now you may have forgotten about the other two directions
perpendicular to the tracks: directions described by the coordinates y and z.
Let’s bring them back now. In Section 1.2.4, I explained that the full Lorentz
transformation (with c = 1) for relative motion along the x axis—a boost along
x—has four equations:



y′ = y

z′ = z

What about boosts along other axes? As I explained in Section 1.3, these other
boosts can be represented as combinations of boosts along x and rotations that
rotate the x axis to another direction. As a consequence, a quantity will be
invariant under all Lorentz transformations if it is invariant with respect to
boosts along x and with respect to rotations of space. What about the quantity
τ2 = t2 − x2? We’ve seen that it is invariant with respect to x-boosts, but it
changes if space is rotated. This is obvious because it involves x but not y and
z. Fortunately it is easy to generalize τ to a full-fledged invariant. Consider the
generalized version of Eq. 1.30,

Let’s first argue that τ is invariant with respect to boosts along the x axis.
We’ve already seen that the term t2 − x2 is invariant. To that we add the fact
that the perpendicular coordinates y and z don’t change under a boost along x.
If neither t2 − x2 nor y2 + z2 change when transforming from one frame to
another, then obviously t2 − x2 − y2 − z2 will also be invariant. That takes care
of boosts in the x direction.

Now let’s see why it does not change if the space axes are rotated. Again
the argument comes in two parts. The first is that a rotation of spatial
coordinates mixes up x, y, and z but has no effect on time. Therefore t is
invariant with respect to rotations of space. Next consider the quantity x2 + y2

+ z2. A three-dimensional version of Pythagoras’s theorem tells us that x2 + y2

+ z2 is the square of the distance of the point x, y, z to the origin. Again this is
something that does not change under a rotation of space. Combining the
invariance of time and the invariance of the distance to the origin (under
rotations in space), we come to the conclusion that the proper time τ defined by
Eq. 1.31 is an invariant that all observers will agree on. This holds not only
for observers moving in any direction but observers whose coordinate axes are
oriented in any way.



Figure 1.11: Minkowski Light Cone.

1.5.1 Minkowski and the Light Cone
The invariance of the proper time τ is a powerful fact. I don’t know if it was
known to Einstein, but in the process of writing this section I looked through
my ancient worn and faded copy of the Dover edition containing the 1905
paper (the price on the cover was $1.50). I found no mention of Eq. 1.31 or of
the idea of spacetime distance. It was Minkowski who first understood that the
invariance of proper time, with its unintuitive minus signs, would form the
basis for an entirely new four-dimensional geometry of spacetime—
Minkowski space. I think it is fair to say that Minkowski deserves the credit
for completing in 1908 the special relativity revolution that Einstein set in
motion three years earlier. It is to Minkowski that we owe the concept of time
as the fourth dimension of a four-dimensional spacetime. It still gives me
shivers when I read these two papers.

Let’s follow Minkowski and consider the path of light rays that start at the
origin. Imagine a flash of light—a flashbulb event—being set off at the origin
and propagating outward. After a time t it will have traveled a distance ct. We
may describe the flash by the equation



The left side of Eq. 1.32 is the distance from the origin, and the right side is the
distance traveled by the light signal in time t. Equating these gives the locus of
all points reached by the flash. The equation can be visualized, albeit only with
three dimensions instead of four, as defining a cone in spacetime. Although he
didn’t quite draw the cone, he did describe it in detail. Here we draw
Minkowski’s Light Cone (Fig. 1.11). The upward-pointing branch is called the
future light cone. The downward-pointing branch is the past light cone.

Now let’s return to the railroad world of motion strictly along the x axis.

1.5.2 The Physical Meaning of Proper Time
The invariant quantity τ2 is not just a mathematical abstraction. It has a physical
—even an experimental—meaning. To understand it, consider Lenny, as usual,
moving along the x axis and Art at rest in the rest frame. They pass each other
at the origin O. We also mark a second point D along Lenny’s world line,
which represents Lenny moving along the t′ axis.12 All of this is shown in Fig.
1.12. The starting point along the world line is the common origin O. By
definition Lenny is located at x′ = 0 and he moves along the t′ axis.

Figure 1.12: Proper
Time. Please read the
footnote that explains

the two meanings of t′ in
this diagram.

The coordinates (x, t) refer to Art’s frame, and the primed coordinates (x′, t
′) refer to Lenny’s frame. The invariant τ2 is defined as t′2 − x′2 in Lenny’s



frame. By definition, Lenny always remains at x′ = 0 in his own rest frame, and
because x′ = 0 at point D, t′2 − x′2 is the same as t′2. Therefore, the equation

τ2 = t′2 − x′2

becomes

τ2 = t′2,

and

τ = t′.

But what is t′? It is the amount of time that has passed in Lenny’s frame since
he left the origin. Thus we find that the invariant τ has a physical meaning:

The invariant proper time along a world line represents the ticking of a
clock moving along that world line. In this case it represents the number of
ticks of Lenny’s Rolex as he moves from the origin to point D.

To complete our discussion of proper time, we write it in conventional
coordinates:

1.5.3 Spacetime Interval
The term proper time has a specific physical and quantitative meaning. On the
other hand, I’ve also used the term spacetime distance as a generic version of
the same idea. Going forward, we’ll start using a more precise term,
spacetime interval, (Δs)2, defined as

(Δs)2 = −Δt2 + (Δx2 + Δy2 + Δz2).

To describe the spacetime interval between an event (t, x, y, z) and the origin,
we write



s2 = − t2 + (x2 + y2 + z2).

In other words, s2 is just the negative of τ2, and is therefore an invariant.13 So
far, the distinction between τ2 and s2 has not been important, but it will soon
come into play.

1.5.4 Timelike, Spacelike, and Lightlike Separations
Among the many geometric ideas that Minkowski introduced into relativity
were the concepts of timelike, spacelike, and lightlike separations between
events. This classification may be based on the invariant

τ2 = t2 − (x2 + y2 + z2),

or on its alter ego

s2 = −t2 + (x2 + y2 + z2),

the spacetime interval that separates an event (t, x, y, z) from the origin. We’ll
use s2. The interval s2 may be negative, positive, or zero, and that’s what
determines whether an event is timelike, spacelike, or lightlike separated from
the origin.

To gain some intuition about these categories, think of a light signal
originating at Alpha Centauri at time zero. It takes about four years for that
signal to reach us on Earth. In this example, the light flash at Alpha Centauri is
at the origin, and we’re considering its future light cone (the top half of Fig.
1.11).

Timelike Separation
First, consider a point that lies inside the cone. That will be the case if the
magnitude of its time coordinate |t| is greater than the spatial distance to the
event—in other words, if

−t2 + (x2 + y2 + z2) < 0.

Such events are called timelike relative to the origin. All points on the t axis



are timelike relative to the origin (I’ll just call them timelike). The property of
being timelike is invariant: If an event is timelike in any frame, it is timelike in
all frames.

If an event on Earth happens more than four years after the flash was sent,
then it’s timelike relative to the flash. Those events will be too late to be struck
by the signal. It will have passed already.

Spacelike Separation
Spacelike events are the ones outside the cone.14 In other words, they’re the
events such that

−t2 + (x2 + y2 + z2) > 0.

For these events the space separation from the origin is larger than the time
separation. Again, the spacelike property of an event is invariant.

Spacelike events are too far away for the light signal to reach. Any event on
Earth that takes place earlier than four years after the light signal began its
journey cannot possibly be affected by the event that created the flash.

Lightlike Separation
Finally, there are the events on the light cone; those for which

−t2 + (x2 + y2 + z2) = 0.

Those are the points that a light signal, starting at the origin, would reach. A
person who is at a lightlike event relative to the origin would see the flash of
light.

1.6 Historical Perspective
1.6.1 Einstein
People often wonder whether Einstein’s declaration that “c is a law of
physics” was based on theoretical insight or prior experimental results—in
particular the Michelson-Morley experiment. Of course, we can’t be certain of



the answer. No one really knows what’s in another person’s mind. Einstein
himself claimed that he was not aware of Michelson’s and Morley’s result
when he wrote his 1905 paper. I think there’s every reason to believe him.

Einstein took Maxwell’s equations to be a law of physics. He knew that
they give rise to wavelike solutions. At age sixteen, he puzzled over what
would happen if you moved along with a light ray. The “obvious” answer is
that you’d see a static electric and magnetic field with a wavelike structure that
doesn’t move. Somehow, he knew that was wrong—that it was not a solution
to Maxwell’s equations. Maxwell’s equations say that light moves at the speed
of light. I’m inclined to believe that, consistent with Einstein’s own account, he
didn’t know of the Michelson-Morley experiment when he wrote his paper.

In modern language we would explain Einstein’s reasoning a little
differently. We would say that Maxwell’s equations have a symmetry of some
kind—some set of coordinate transformations under which the equations have
the same form in every reference frame. If you take Maxwell’s equations,
which contain x’s and t’s, and plug in the old Galilean rules,

x′ = x − vt

t′ = t,

you would find that these equations take a different form in the primed
coordinates. They don’t have the same form as in the unprimed coordinates.

However, if you plug the Lorentz transformation into Maxwell’s equations,
the transformed Maxwell equations have exactly the same form in the primed
coordinates as in the unprimed coordinates. In modern language, Einstein’s
great accomplishment was to recognize that the symmetry structure of
Maxwell’s equations is not the Galileo transformation but the Lorentz
transformation. He encapsulated all of this in a single principle. In a sense, he
didn’t need to actually know Maxwell’s equations (though he did know them,
of course). All he needed to know is that Maxwell’s equations are a law of
physics, and that the law of physics requires light to move with a certain
velocity. From there he could just work with the motion of light rays.

1.6.2 Lorentz



Lorentz did know about the Michelson-Morley experiment. He came up with
the same transformation equations but interpreted them differently. He
envisioned them as effects on moving objects caused by their motion through
the ether. Because of various kinds of ether pressures, objects would be
squeezed and therefore shortened.

Was he wrong? I suppose you could say that in some way he wasn’t wrong.
But he certainly didn’t have Einstein’s vision of a symmetry structure—the
symmetry required of space and time in order that it agree with the principle of
relativity and the motion of the speed of light. Nobody would have said that
Lorentz did what Einstein did.15 Furthermore, Lorentz didn’t think it was exact.
He regarded the transformation equations as a first approximation. An object
moving through a fluid of some kind would be shortened, and the first
approximation would be the Lorentz contraction. Lorentz fully expected that the
Michelson-Morley experiment was not exact. He thought there would be
corrections to higher powers of v/c, and that experimental techniques would
eventually become precise enough to detect differences in the velocity of light.
It was Einstein who said this is really a law of physics, a principle.

1 Sometimes we’ll use the abbreviation IRF for inertial reference frame.
2 We could also describe this as “my trajectory in your frame.”
3 This statement may sound glib. The fact is that many of the world’s most talented physicists tried to
make things work out without giving up on the equation t′ = t. They all failed.
4 This is actually a slight variation of Einstein’s approach.
5 You can think of the t axis being calibrated in light-seconds instead of seconds if you prefer, but it
amounts to the same thing.
6 Once again, this is actually a slight variation of Einstein’s approach.

7 For v/c = 10−5 one finds 
8 We’re talking about a fixed difference in orientation, not a situation where either frame is rotating with a
nonzero angular velocity.
9 If you don’t believe me, ask the guy who sold it to me on Canal Street for twenty-five bucks.
10 In what follows we will pretend that Art and Lenny were both born at the same spacetime event
(labeled O) in Fig. 1.8.
11 We’re using the term spacetime distance in a generic sense. Later on, we’ll switch to the more precise
terms proper time and spacetime interval.
12 We use the label t′ in two slightly different ways in this discussion. Its primary meaning is “Lenny’s t′



coordinate.” But we also use it to label the t′ axis.
13 Sign conventions in relativity are not as consistent as we would like; some authors define s2 to have the

same sign as τ2.
14 Once again, we’re using the shorthand term “spacelike event” to mean “event that is spacelike
separated from the origin.”
15 Including Lorentz himself, I believe.



Lecture 2

Velocities and 4-Vectors

Art: That stuff is incredibly fascinating! I feel completely transformed.

Lenny: Lorentz transformed?

Art: Yeah, positively boosted.



It’s true, when things move at relativistic velocities they become flat, at least
from the viewpoint of the rest frame. In fact, as they approach the speed of light
they shrink along the direction of motion to infinitely thin wafers, although to
themselves they look and feel fine. Can they shrink even past the vanishing
point by moving faster than light? Well, no, for the simple reason that no
physical object can move faster than light. But that raises a paradox:

Consider Art at rest in the railway station. The train containing Lenny
whizzes past him at 90 percent of the speed of light. Their relative velocity is
0.9c. In the same rail car with Lenny, Maggie is riding her bicycle along the
aisle with a velocity of 0.9c relative to Lenny. Isn’t it obvious that she is
moving faster than light relative to Art? In Newtonian physics we would add
Maggie’s velocity to Lenny’s in order to compute her velocity relative to Art.
We would find her moving past Art with velocity 1.8c, almost twice the speed
of light. Clearly there is something wrong here.

2.1 Adding Velocities
To understand what’s wrong, we will have to make a careful analysis of how
Lorentz transformations combine. Our setup now consists of three observers:
Art at rest, Lenny moving relative to Art with velocity v, and Maggie moving
relative to Lenny with velocity u. We will work in relativistic units with c = 1
and assume that v and u are both positive and less than 1. Our goal is to
determine how fast Maggie is moving with respect to Art. Fig. 2.1 shows this
setup.

There are three frames of reference and three sets of coordinates. Let (x, t)
be Art’s coordinates in the rest frame of the rail station. Let (x′, t′) be
coordinates in Lenny’s frame—the frame at rest in the train. And finally let (x″,
t″) be Maggie’s coordinates that move with her bicycle. Each pair of frames is
related by a Lorentz transformation with the appropriate velocity. For example
Lenny’s and Art’s coordinates are related by



Figure 2.1: Combining Velocities.

We also know how to invert these relations. This amounts to solving for x and t
in terms of x′ and t′. I’ll remind you that the result is

2.1.1 Maggie
Our third observer is Maggie. What we know about Maggie is that she is
moving relative to Lenny with relative velocity u. We express this by a Lorentz
transformation connecting Lenny’s and Maggie’s coordinates, this time with
velocity u:



Our goal is to find the transformation relating Art’s and Maggie’s coordinates,
and from that transformation read off their relative velocities. In other words,
we want to eliminate Lenny.1 Let’s start with Eq. 2.5,

Now, substitute for x′ and t′ on the right side, using Eqs. 2.1 and 2.2,

and combine the denominators,

Now we come to the main point: determining Maggie’s velocity in Art’s frame
relative to Art. It’s not entirely obvious that Eq. 2.7 has the form of a Lorentz
transformation (it does), but fortunately we can avoid the issue for the moment.
Observe that Maggie’s world line is given by the equation x″ = 0. For that to
be true, we only need to set the numerator of Eq. 2.7 to zero. So let’s combine
the terms in the numerator,

(1 + uv)x − (v + u)t = 0,

which results in

Now it should be obvious: Eq. 2.8 is the equation for a world line moving with
velocity (u + v)/(1 + uv). Thus, calling Maggie’s velocity in Art’s frame w, we
find

It’s now fairly easy to check that Art’s frame and Maggie’s frame really are
related by a Lorentz transformation. I will leave it as an exercise to show that



and

To summarize: If Lenny moves with velocity v relative to Art, and Maggie
moves with velocity u with respect to Lenny, then Maggie moves with velocity

with respect to Art. We will analyze this shortly, but first let’s express Eq. 2.12
in conventional units by enforcing dimensional consistency. The numerator u +
v is dimensionally correct. However, the expression 1 + uv in the denominator
is not because 1 is dimensionless and both u and v are velocities. We can
easily restore dimensions by replacing u and v with u/c and v/c. This gives the
relativistic law for the addition of velocities,

Let’s compare the result with Newtonian expectations. Newton would have
said that to find Maggie’s velocity relative to Art we should just add u to v.
That is indeed what we do in the numerator in Eq. 2.13. But relativity requires
a correction in the form of the denominator, (1 + uv/c2).

Let’s look at some numerical examples. First we’ll consider the case where
u and v are small compared to the speed of light. For simplicity, we’ll use Eq.
2.9, where velocities are dimensionless. Just remember that u and v are
velocities measured in units of the speed of light. Suppose u = 0.01, 1 percent
of the speed of light, and v is also 0.01. Plugging these values into Eq. 2.9
gives

or



The Newtonian answer would, of course, have been 0.02, but the relativistic
answer is slightly less. In general, the smaller u and v, the closer will be the
relativistic and Newtonian result.

But now let’s return to the original paradox: If Lenny’s train moves with
velocity v = 0.9 relative to Art, and Maggie’s bicycle moves with u = 0.9
relative to Lenny, should we not expect that Maggie is moving faster than light
relative to Art? Substituting appropriate values for v and u, we get

or

The denominator is slightly bigger than 1.8, and the resulting velocity is
slightly less than 1. In other words, we have not succeeded in making Maggie
go faster than the speed of light in Art’s frame.

While we’re at it, let’s satisfy our curiosity about what would happen if
both u and v equal the speed of light. We simply find that w becomes

or

Even if Lenny could somehow move at the speed of light relative to Art, and
Maggie could move at the speed of light relative to Lenny, still she would still
not move faster than light relative to Art.

2.2 Light Cones and 4-Vectors
As we saw in Section 1.5, the proper time



τ2 = t2 − (x2 + y2 + z2)

and its alter-ego, the spacetime interval relative to the origin,

s2 = − t2 + (x2 + y2 + z2),

are invariant quantities under general Lorentz transformations in four-
dimensional spacetime. In other words, these quantities are invariant under any
combination of Lorentz boosts and coordinate rotations.2 We’ll sometimes
write τ in abbreviated form as

This is probably the most central fact about relativity.

2.2.1 How Light Rays Move
Back in Lecture 1, we discussed spacetime regions and the trajectories of light
rays. Fig. 2.2 illustrates this idea in slightly greater detail. The different kinds
of separation correspond to a negative, positive, or zero value of the invariant
quantity s. We also discovered the interesting result that if two points in
spacetime have a separation of zero, this does not mean they have to be the
same point. Zero separation simply means that the two points are related by the
possibility of a light ray going from one of them to the other. That’s one
important concept of how a light ray moves—it moves in such a way that the
proper time (alternately, spacetime interval) along its trajectory is zero. The
trajectory of a light ray that starts at the origin serves as a kind of boundary
between regions of spacetime that are timelike separated from the origin and
those that are spacelike separated.



Figure 2.2: Future Light Cone. Relative to
the origin: Point a is timelike separated,
point b is spacelike separated, and point
P is lightlike separated. Only two space

dimensions are shown.

2.2.2 Introduction to 4-Vectors
We have a reason for bringing the y and z spatial dimensions back into the
picture. The mathematical language of relativity relies heavily on something
called a 4-vector, and 4-vectors incorporate all three dimensions of space.
We’ll introduce them here and develop them further in Lecture 3.

The most basic example of a vector in three dimensions is the interval
between two points in space.3 Given two points, there’s a vector that connects
them. It has a direction and a magnitude. It doesn’t matter where the vector
begins. If we move it around, it’s still the same vector. You can think of it as an
excursion beginning at the origin and ending at some point in space. Our vector
has coordinates, in this case x, y, and z, that define the location of the final
point.

New Notation



Of course, the names of our coordinates don’t necessarily have to be x, y, and
z. We’re free to rename them. For instance, we could call them Xi, with i being
1, 2, or 3. In this notation, we could write

Or we could write

instead, and we plan to use that notation extensively. Since we’ll be measuring
space and time relative to some origin, we need to add a time coordinate t. As
a result, the vector becomes a four-dimensional object, a 4-vector with one
time component and three space components. By convention, the time
component is first on the list:

where (X0, X1, X2, X3) has the same meaning as (t, x, y, z). Remember, these
superscripts are not exponents. The coordinate X3 means “the third space
coordinate, the one that’s often written as z.” It does not mean X × X × X. The
distinction between exponents and superscripts should be clear from the
context. From now on, when we write four-dimensional coordinates, the time
coordinate will come first.

Notice that we’re using two slight variants of our index notation:

• Xμ: A Greek index such as μ means that the index ranges over all four
values 0, 1, 2, and 3.

• Xi: A Roman index such as i means that the index only includes the three
spatial components 1, 2, and 3.

What about the proper time and spacetime interval from the origin? We can
write them as

τ2 = (X0)2 − (X1)2 − (X2)2 − (X3)2

and



s2 = − (X0)2 + (X1)2 + (X2)2 + (X3)2.

There’s no new content here, just notation.4 But notation is important. In this
case, it provides a way to organize our 4-vectors and keep our formulas
simple. When you see a μ index, the index runs over the four possibilities of
space and time. When you see an i index, the index only runs over space. Just
as Xi can be thought of as a basic version of a vector in space, Xμ, with four
components, represents a 4-vector in spacetime. Just as vectors transform
when you rotate coordinates, 4-vectors Lorentz-transform when you go from
one moving frame to another. Here is the Lorentz transformation in our new
notation:

We can generalize this to a rule for the transformation properties of any 4-
vector. By definition a 4-vector is any set of components Aμ that transform
according to

under a boost along the x axis. We also assume that the spatial components A1,
A2, A3 transform as a conventional 3-vector under rotations of space and that A0



is unchanged.
Just like 3-vectors, 4-vectors can be multiplied by an ordinary number by

multiplying the components by that number. We may also add 4-vectors by
adding the individual components. The result of such operations is a 4-vector.

4-Velocity
Let’s look at another 4-vector. Instead of talking about components relative to
an origin, this time we’ll consider a small interval along a spacetime
trajectory. Eventually, we’ll shrink this interval down to an infinitesimal
displacement; for now think of it as being small but finite. Fig. 2.3 shows the
picture we have in mind. The interval that separates points a and b along the
trajectory is ΔXμ. This simply means the changes in the four coordinates going
from one end of a vector to the other. It consists of Δt, Δx, Δy, and Δz.

Now we’re ready to introduce the notion of 4-velocity. Four-dimensional
velocity is a little different from the normal notion of velocity. Let’s take the
curve in Fig. 2.3 to be the trajectory of a particle. I’m interested in a notion of
velocity at a particular instant along segment . If we were working with an
ordinary velocity, we would take Δx and divide it by Δt. Then we would take
the limit as Δt approaches zero. The ordinary velocity has three components:
the x component, the y component, and the z component. There is no fourth
component.

We’ll construct the four-dimensional velocity in a similar way. Start with
the ΔXμ. But instead of dividing them by Δt, the ordinary coordinate time,
we’ll divide them by the proper time Δτ. The reason is that Δτ is invariant.
Dividing a 4-vector ΔXμ by an invariant preserves the transformation
properties of the 4-vector. In other words, ΔXμ/Δτ is a 4-vector, while ΔXμ/Δt
is not.



Figure 2.3: Spacetime Trajectory
(particle).

In order to distinguish the 4-velocity from the ordinary 3-velocity we’ll
write it as U instead of V. U has four components Uμ, defined by

We’ll have a closer look at 4-velocity in the next lecture. It plays an important
role in the theory of the motion of particles. For a relativistic theory of particle
motion, we’ll need new notions of old concepts such as velocity, position,
momentum, energy, kinetic energy, and so on. When we construct relativistic
generalizations of Newton’s concepts, we’ll do it in terms of 4-vectors.

1 Don’t panic. It’s only Lenny’s velocity we’re trying to get rid of.
2 We only showed this explicitly for τ, but the same arguments apply to s.
3 We’re just talking about vectors in space, not the abstract state vectors of quantum mechanics.



4 You may wonder why we’re using superscripts instead of subscripts. Later on (Sec. 4.4.2) we’ll
introduce subscript notation whose meaning is slightly different.



Lecture 3

Relativistic Laws of Motion

Lenny was sitting on a bar stool holding his head in his hands while his cell
phone was opened to an email message.

Art: Whatsa matter, Lenny? Too much beer milkshake?

Lenny: Here, Art, take a look at this email. I get a couple like it every day.

Email Message:1

Dear Professor Susskino [sic],

Einstein made a bad mistake and I discovered it. I wrote to your
friend Hawkins [sic] but he didn’t answer.

Let me explain Einsteins’ [sic] mistake. Force equals mass times
acceleration. So I push something with a constant force for a long
time the acceleration is constant so if I do it long enough the velocity
keeps increasing. I calculated that if I push a 220 pound (that’s my
weight. I should probably go on a diet) person with a continuous
force of 224.809 pounds in a horizontal direction, after a year he will
be moving faster than the speed of light. All I used was Newtons’
[sic] equation F = MA. So Einstein was wrong since he said that
nothing can move faster than light. I am hoping you will help me
publish this as I am certain that the phycicist’s [sic] need to know it.
I have a lot of money and I can pay you.



Art: Geez, that’s awfully stupid.

By the way, what’s wrong with it?



The answer to Art’s question is that we’re not doing Newton’s theory; we’re
doing Einstein’s theory. Physics, including the laws of motion, force, and
acceleration, all had to be rebuilt from the ground up, in accord with the
principles of special relativity.

We’re now ready to tackle that project. We will be especially interested in
particle mechanics—how particles move according to special relativity. To
accomplish this, we’ll need to corral a wide range of concepts, including many
from classical mechanics. Our plan is to discuss each idea separately before
knitting them all together at the end.

Relativity builds on the classical notions of energy, momentum, canonical
momenta, Hamiltonians, and Lagrangians; the principle of least action plays a
central role. Though we offer some brief reminders of these ideas as we go,
we assume you remember them from the first book of this series, The
Theoretical Minimum: What You Need to Know to Start Doing Physics. If not,
this would be an excellent time to review that material.

3.1 More About Intervals
We discussed timelike and spacelike intervals in Lectures 1 and 2. As we
explained, the interval or separation between two points in spacetime is
timelike when the invariant quantity

is less than zero, that is, when the time component of the interval is greater than
the space component.2 On the other hand, when the spacetime interval (Δs)2

between two events is greater than zero, the opposite is true and the interval is
called spacelike. This idea was previously illustrated in Fig. 2.2.



Figure 3.1: Spacelike Interval.

3.1.1 Spacelike Intervals
When  is greater than (Δt)2, the spatial separation between the two events
is greater than their time separation and (Δs)2 is greater than zero. You can see
this in Fig. 3.1, where the separation between events a and b is spacelike. The
line connecting those two points makes an angle smaller than 45 degrees to the
x axis.

Spacelike intervals have more space in them than time. They also have the
property that you cannot find a reference frame in which the two events are
located at the same position in space. What you can do instead is find a
reference frame in which they both happen at exactly the same time but at
different places. This amounts to finding a frame whose x′ axis passes through
both points.3 But there’s a much bigger surprise in store. In the t, x frame of
Fig. 3.1, event a happens before event b. However, if we Lorentz-transform to
the t′, x′ frame of the diagram, event b happens before event a. Their time order
is actually reversed. This brings into sharp focus what we mean by relativity of
simultaneity: There’s no invariant significance to the idea that one event
happens later or earlier than the other if they are spacelike separated.



Figure 3.2: Timelike Trajectory.

3.1.2 Timelike Intervals
Particles with nonzero mass move along timelike trajectories. To clarify what
this means, Fig. 3.2 shows an example. If we follow the path from point a to
point b, every little segment of that path is a timelike interval. Saying that a
particle follows a timelike trajectory is another way of saying its velocity can
never reach the speed of light.

When an interval is timelike, you can always find a reference frame in
which the two events happen at the same place—where they have the same
space coordinates but occur at different times. In fact, all you need to do is
choose a reference frame where the line connecting the two points is at rest—a
frame whose t′ axis coincides with the line that connects the two points.4

3.2 A Slower Look at 4-Velocity
Back in Lecture 2, we introduced some definitions and notation for the 4-
velocity. Now it’s time to develop that idea further. The components of 4-
velocity dXμ/dτ are analogous to the components dXi/dt of the usual coordinate
velocity, except that

• The 4-velocity has—big surprise—four components instead of three, and
• Instead of referring to a rate of change with respect to coordinate time,

4-velocity refers to rate of change with respect to proper time.



As a properly defined 4-vector, the components of 4-velocity transform in the
same way as the prototypical 4-vector

(t, x, y, z)

or

(X0, X1, X2, X3)

in our new notation. In other words, their components transform according to
the Lorentz transformation. By analogy to ordinary velocities, 4-velocities are
associated with small or infinitesimal segments along a path, or a world line,
in spacetime. Each little segment has its own associated 4-velocity vector.
We’ll write the ordinary three-dimensional velocity as

or

and the 4-velocity as

What is the connection between 4-velocity and ordinary velocity? Ordinary
non-relativistic velocity has, of course, only three components. This leads us to
expect that there’s something funny about the fourth (which we label the zeroth)
component. Let’s start with U0. Let’s write it in the form

Now recall that X0 is just another way of writing t, so that the first factor on the
right side is just 1. Thus we can write



or

The next step is to recall that  so that

or

where  is the usual 3-vector velocity. Now going back to Eq. 3.3 and using
Eq. 3.4, we find that

and

We see here a new meaning to the ubiquitous factor

which appears in Lorentz transformations, Lorentz contraction, and time
dilation formulas. We see that it’s the time component of the 4-velocity of a
moving observer.

What should we make of the time component of U? What would Newton
have made of it? Suppose the particle moves very slowly with respect to the
velocity of light; in other words, v << 1. Then it is clear that U0 is very close
to 1. In the Newtonian limit it is just 1 and carries no special interest. It would
have played no role in Newton’s thinking. Now let’s turn to the spatial
components of U. In particular, we can write U1 as



which can also be written as

The first factor, dx/dt, is just the ordinary x component of velocity, V1. The
second factor is again given by Eq. 3.5. Putting them together, we have

Again, let’s ask what Newton would have thought. For very small v, we know
that  is very close to 1. Therefore the space components of the
relativistic velocity are practically the same as the components of the ordinary
3-velocity.

There’s one more thing to know about the 4-velocity: Only three of the four
components Uμ are independent. They are connected by a single constraint. We
can express this in terms of an invariant. Just as the quantity

(X0)2 − (X1)2 − (X2)2 − (X3)2

is an invariant, the corresponding combination of velocity components is
invariant, namely

(U0)2 − (U1)2 − (U2)2 − (U3)2.

Is this quantity interesting? I’ll leave it as an exercise for you to show that it’s
always equal to 1,

Here’s a summary of our results about 4-velocity:

4-Velocity Summary:



These equations show you how to find the components of 4-velocity. In the
nonrelativistic limit where v is close to zero, the expression  is very
close to 1, and the two notions of velocity, Ui and Vi, are the same. However,
as the speed of an object approaches the speed of light, Ui becomes much
bigger than Vi. Everywhere along its trajectory, a particle is characterized by a
4-vector of position Xμ and a 4-vector of velocity Uμ.

Our list of ingredients is nearly complete. We have only one more item to
add before we tackle the mechanics of particles.

Exercise 3.1: From the definition of (Δτ)2, verify Eq. 3.7.

3.3 Mathematical Interlude: An Approximation Tool
A physicist’s tool kit is not complete without some good approximation
methods. The method we describe is an old warhorse that’s indispensable
despite its simplicity. The basis for the approximation is the binomial
theorem.5 I won’t quote the theorem in its general form; just a couple of
examples will do. What we will need is a good approximation to expressions
like

(1 + a)p

that’s accurate when a is much smaller than 1. In this expression, p can be any
power. Let’s consider the example p = 2. Its exact expansion is

(1 + a)2 = 1 + 2a + a2.



When a is small, the first term (in this case 1) is fairly close to the exact value.
But we want to do a little bit better. The next approximation is

(1 + a)2 ≈ 1 + 2a.

Let’s try this out for a = .1 The approximation gives (1 + .1)2 ≈ 1.2 whereas the
exact answer is 1.21. The smaller we make a, the less important is the a2 term
and the better the approximation. Let’s see what happens when p = 3. The exact
expansion is

(1 + a)3 = 1 + 3a + 3a2 + a3

and the first approximation would be

(1 + a)3 ≈ 1 + 3a.

For a = .1 the approximation would give 1.3, while the exact answer is
1.4641. Not bad but not great. But now let’s try it for a = .01. The approximate
answer is

(1.01)3 ≈ 1.03,

while the exact answer is

(1.01)3 = 1.030301,

which is much better.
Now, without any justification, I will write the general answer for the first

approximation for any value of p:

In general, if p is not an integer, the exact expression is an infinite series.
Nevertheless, Eq. 3.11 is highly accurate for small a and gets better and better
as a becomes smaller.

We’ll use Eq. 3.11 here to derive approximations for two expressions that
show up all the time in relativity theory:



and

where v represents the velocity of a moving object or reference frame. We do
this by writing Eqs. 3.12 and 3.13 in the form

In the first case the roles of a and p are played by a = −v2 and p = 1/2. In the
second case a = −v2 but p = −1/2. With those identifications our
approximations become

We’ve written these expressions in relativistic units, so that v is a
dimensionless fraction of the speed of light. In conventional units they take the
form

Let me pause for a moment to explain why we’re doing this. Why approximate
when it’s not difficult, especially with modern calculators, to calculate the
exact expression to extremely high precision? We’re not doing it to make
calculations easy (though it may have that effect). We are constructing a new
theory for describing motion at very large velocities. However, we are not free
to do anything we like; we are constrained by the success of the older theory—



Newtonian mechanics—for describing motion much slower than the speed of
light. Our real purpose in approximations like Eqs. 3.16 and 3.17 is to show
that the relativistic equations approach the Newtonian equations when v/c is
very small. For easy reference, here are the approximations we will use.

Approximations:

From now on we will dispense with the approximation symbol ≈ and use the
approximate formulas only when they are accurate enough to merit an equal
sign.

3.4 Particle Mechanics
With all these ingredients in place, we’re ready to talk about particle
mechanics. The word particle often conjures up the image of elementary
particles such as electrons. However, we’re using the word in a much broader
sense. A particle can be anything that holds itself together. Elementary particles
certainly meet this criterion, but many other things do as well: the Sun, a
doughnut, a golf ball, or my email correspondent. When we speak of the
position or velocity of a particle, what we really mean is the position or
velocity of its center of mass.

Before beginning the next section I urge you to refresh your knowledge of
the principle of least action, Lagrangian mechanics, and Hamiltonian
mechanics if you have forgotten them. Volume I of the Theoretical Minimum
series is one place to find them.



Figure 3.3: Timelike Particle Trajectory.

3.4.1 Principle of Least Action
The principle of least action and its quantum mechanical generalization may be
the most central idea in all of physics. All the laws of physics, from Newton’s
laws of motion, to electrodynamics, to the modern so-called gauge theories of
fundamental interactions, are based on the action principle. Do we know
exactly why? I think the roots of it are in quantum theory, but suffice it to say
that it is deeply connected with energy conservation and momentum
conservation. It guarantees the internal mathematical consistency of equations
of motion. I discussed action in great detail in the first book of this series. This
will be a quick and abbreviated review.

Let’s briefly review how the action principle determines the motion of a
particle in classical mechanics. The action is a quantity that depends on the
trajectory of the particle as it moves through spacetime. You can think of this
trajectory as a world line, such as that shown in Fig. 3.2, which we’ve
reproduced here as Fig. 3.3 for convenience. This diagram is a good model for
our discussion of action. However, keep in mind that when plotting the position
of a system, the x axis represents the entire spatial description of the system—x
could stand for a one-dimensional coordinate, but it could also stand for a
spatial 3-vector. (It could even represent all the spatial coordinates of a large
number of particles, but here we consider only a single particle). We just call
it space or coordinate space. As usual, the vertical axis represents coordinate
time, and the trajectory of a system is a curve.



For a particle the Lagrangian depends on the position and velocity of the
particle and, most important, it is built out of the kinetic and potential energy.
The curve in Fig. 3.3 represents the timelike world line of a single particle
with nonzero mass. We’ll study its behavior as it goes from point a to point b.6

Our development of the least action principle will closely parallel what we
did in classical mechanics. The only real difference is that we now add the
requirement of frame independence; we want our laws of physics to be the
same in every inertial reference frame. We can achieve that by casting our laws
in terms of quantities that are the same in every reference frame. In other
words, the action should be invariant, and that’s best accomplished if its
constituents are invariant.

The least action principle says that if a system starts out at point a and ends
up at point b, it will “choose” a particular kind of path among all the possible
paths. Specifically, it chooses the path that minimizes the quantity we call
action.7 Action is built up incrementally as a sum over the trajectory. Each
little segment of the trajectory has a quantity of action associated with it. We
calculate the action over the entire path from a to b by adding all these little
chunks of action together. As we shrink the segments down to infinitesimal
size, the sum becomes an integral. This idea of action being an integral over a
trajectory with fixed end points is something we take directly from
prerelativity physics. The same is true for the idea that the system somehow
chooses the path that minimizes the action integral.

3.4.2 A Quick Review of Nonrelativistic Action
Recall the formula for the action of a nonrelativistic particle from Volume I.
The action is an integral along the trajectory of a system, and the integrand is
called the Lagrangian, denoted . In symbols,

As a rule, the Lagrangian is a function of the position and velocity along the
trajectory. In the simplest case of a particle with no forces acting on it, the
Lagrangian is just the kinetic energy . In other words,



where m is the mass of the particle and v is the instantaneous velocity.8 The
action for the nonrelativistic particle is

Notice that the action is proportional to the mass: For a marble and a bowling
ball moving on the same trajectory, the action of the bowling ball is larger than
the action of the marble by the ratio of their masses.

3.4.3 Relativistic Action
The nonrelativistic description of particle motion is highly accurate for
particles moving much slower than light, but breaks down badly for relativistic
particles with larger velocities. To understand relativistic particles we need to
start over from the ground up, but one thing stays the same. The theory of
relativistic motion is based on the action principle.

How then to calculate the action of a relativistic particle for each little
segment along the trajectory? To make sure the laws of motion are the same in
every reference frame, the action should be invariant. But there’s really only
one thing that’s invariant when a particle moves from some position to a
neighboring position: the proper time separating the two. The proper time from
one point to another is a quantity that all observers will agree on. They will not
agree on the Δt’s or the  but they will agree on Δτ. So a good guess, and it’s
the right guess, is to take the action to be proportional to the sum of all the
little Δτ’s. That sum is simply the total proper time along the world line. In
mathematical language,

Action = −constant × ∑ Δτ

where the sum is from one end of a trajectory to the other—from point a to
point b in Fig. 3.3. We’ll come back to the constant factor and the minus sign



shortly.
Once the action has been constructed, we do exactly the same thing as in

classical mechanics: Holding the two end points fixed, we wiggle the
connecting path around until we find the path that produces the smallest action.
Because the action is built up from the invariant quantities Δτ, every observer
will agree about which path minimizes it.

What is the meaning of the constant factor in the action? To understand it,
let’s go back to the nonrelativistic case (Eq. 3.22) where we saw that the
action for a given path is proportional to the mass of the particle. If we wish to
reproduce standard nonrelativistic physics in the limit of small velocities, the
relativistic action will also have to be proportional to the mass of the particle.
The reason for the minus sign will become clear as we proceed. Let’s try
defining the action as

Action = −m ∑ Δτ.

Now let’s imagine each little segment along the trajectory shrinking down to
infinitesimal size. Mathematically, this means we convert our sum to an
integral,

and Δτ has become its infinitesimal counterpart dτ. We’ve added the limits a
and b to show that the integral runs from one end of the trajectory to the other.
We already know from Eq. 3.4 that

and we can use this to replace dτ in the action integral with , resulting in

In our new notation, v2 becomes , and the action integral becomes



I’m using the symbol  to mean , where the dot means derivative
with respect to ordinary coordinate time. We might also write that 

 with  being the ordinary three-dimensional velocity vector.
We’ve converted the action integral to something almost familiar: an

integral of a function of velocity. It has the same general form as Eq. 3.20, but
now instead of the Lagrangian being the nonrelativistic kinetic energy of Eq.
3.21, it has the slightly more complicated form

or

Before getting more familiar with this Lagrangian, let’s put back the
appropriate factors of c to restore the correct dimensions for conventional
units. To make the expression  dimensionally consistent, we must divide
the velocity components by c. In addition, to make the Lagrangian have units of
energy, we need to multiply the whole thing by c2. Thus in conventional units,

or in explicit detail,

In case you didn’t notice, Eq. 3.26 marks the first appearance of the expression
mc2.

3.4.4 Nonrelativistic Limit
We would like to show that in the limit of small velocities, the behavior of
relativistic systems reduces to Newtonian physics. Since everything about that
motion is encoded in the Lagrangian, we only need to show that for small
velocities the Lagrangian reduces to Eq. 3.21. It was exactly for this and other
similar purposes that we introduced the approximations of Eqs. 3.16 and 3.17,



If we apply the first of these to Eq. 3.26, the result is

which we may rewrite as

The first term, , is good old kinetic energy from Newtonian mechanics:
exactly what we expect the nonrelativistic Lagrangian to be. Incidentally, had
we not put the overall minus sign in the action, we would not have reproduced
this term with the correct sign.

What about the additional term −mc2? Two questions come to mind. The
first is whether it makes any difference to the motion of a particle. The answer
is that the addition (or subtraction) of a constant to a Lagrangian, for any
system, makes no difference at all. We may leave it or delete it without any
consequences for the motion of the system. The second question is, what does
that term have to do with the equation E = mc2? We’ll see that shortly.

3.4.5 Relativistic Momentum
Momentum is an extremely important concept in mechanics, not least of all
because it is conserved for a closed system. Moreover, if we divide a system
into parts, the rate of change of the momentum of a part is the force on that part
due to the rest of the system.

Momentum, often denoted by , is a 3-vector that in Newtonian physics is
given by the mass times the velocity,

Relativistic physics is no different; momentum is still conserved. But the



relation between momentum and velocity is more complicated. In his 1905
paper, Einstein worked out the relation in a classic argument that was not only
brilliant but characteristically simple. He began by considering an object in the
rest frame, and then imagined the object split into two lighter objects, each of
which moved so slowly that the whole process could be understood by
Newtonian physics. Then he imagined observing that same process from
another frame in which the initial object was moving with a large relativistic
velocity. The velocity of the final objects could easily be determined by
boosting (Lorentz-transforming) the known velocities in the original frame.
Then, putting the pieces together, he was able to deduce the expression for
their momenta by assuming momentum conservation in the moving frame.

I will use a less elementary, perhaps less beautiful argument, but one that is
more modern and much more general. In classical mechanics (go back to
Volume I) the momentum of a system—say a particle—is the derivative of the
Lagrangian with respect to the velocity. In terms of components,

For reasons we have not yet explained, we often prefer to write equations of
this kind as

where Pi has a subscript instead of a superscript; we’ve written it here only for
reference. We’ll explain the meaning of upper and lower indices in Section
5.3.

To find the relativistic expression for momentum of a particle, all we have
to do is to apply Eq. 3.28 to the Lagrangian in Eq. 3.27. For example, the x
component of momentum is

Carrying out the derivative, we get



or more generally,

Let’s compare this formula with the nonrelativistic version

Pi = mVi.

The first interesting fact is that they are not so different. Go back to the
definition of relativistic velocity,

Comparing Eq. 3.9 with Eq. 3.30 we see that the relativistic momentum is just
the mass times the relativistic velocity,

We probably could have guessed Eq. 3.31 without doing all that work.
However, it’s important that we can derive it from the basic principles of
mechanics: the fundamental definition of momentum as the derivative of the
Lagrangian with respect to the velocity.

As you might expect, the relativistic and nonrelativistic definitions of
momentum come together when the velocity is much smaller than the speed of
light, in which case the expression

is very close to 1. But notice what happens as the velocity increases and gets
close to c. In that limit the expression blows up. Thus as the velocity
approaches c, the momentum of a massive object becomes infinite!



Let’s return to the email message that I began this lecture with and see if we
can answer the writer. The whole argument rested on Newton’s second law: as
written by the emailer, F = MA. It’s well known to readers of the first volume
that this can be expressed another way: namely, force is the rate of change of
momentum,

The two ways of expressing Newton’s second law are the same within the
restricted domain of Newtonian mechanics, where the momentum is given by
the usual nonrelativistic formula P = mV. However, the more general
principles of mechanics imply that Eq. 3.32 is more fundamental and applies to
relativistic problems as well as nonrelativistic ones.

What happens if, as the emailer suggested, a constant force is applied to an
object? The answer is that the momentum increases uniformly with time. But
since getting to the speed of light requires an infinite momentum, it will take
forever to get there.

3.5 Relativistic Energy
Let’s now turn to the meaning of energy in relativistic dynamics. As I’m sure
you are aware, it is another conserved quantity. As you probably also know, at
least if you have read Volume I, energy is the Hamiltonian of the system. If you
need a refresher on Hamiltonians, now is the time to take a break and go back
to Volume I.

The Hamiltonian is a conserved quantity. It’s one of the key elements of the
systematic approach to mechanics developed by Lagrange, Hamilton, and
others. The framework they established allows us to reason from basic
principles rather than just make things up as we go along. The Hamiltonian H
is defined in terms of the Lagrangian. The most general way to define it is

where the Qi and Pi are the coordinates and canonical momenta that define the
phase space of the system in question. For a moving particle, the coordinates



are simply the three components of position, X1, X2, X3, and Eq. 3.33 takes the
form

We already know from Eq. 3.31 that the momenta are

Pi = mUi,

or

We also know from Eq. 3.24 that the Lagrangian is

or

Substituting these equations for Pi and  into Eq. 3.34 results in

This equation for the Hamiltonian looks like a mess, but we can simplify it
quite a bit. First, notice that (Xi)2 is just the velocity squared. As a result, the
first term does not even need to be written as a sum; it’s just . If we
multiply and divide the second term by , it will have the same
denominator as the first term. The resulting numerator is m(1 − v2). Putting
these things together gives us

Now it’s much simpler, but we’re still not done. Notice that mv2 in the first



term cancels mv2 in the second term, and the whole thing boils down to

That’s the Hamiltonian—the energy. Do you recognize the factor  in
this equation? If not, just refer back to Eq. 3.8. It’s U0. Now we can be sure
that the zeroth component of the 4-momentum,

is the energy. This is actually a big deal, so let me shout it out loud and clear:

The three components of spatial momentum Pi together with the energy
P0 form a 4-vector.

This has the important implication that the energy and momentum get mixed up
under a Lorentz transformation. For example, an object at rest in one frame has
energy but no momentum. In another frame the same object has both energy and
momentum.

Finally, the prerelativistic notion of momentum conservation becomes the
conservation of 4-momentum: the conservation of x-momentum, y-momentum,
z-momentum, and energy.

3.5.1 Slow Particles
Before going on, we should figure out how this new concept of energy is
related to the old concept. We’ll change back to conventional units for a while
and put c back into our equations. Take Eq. 3.35. Recognizing that the
Hamiltonian is the same thing as the energy, we can write

To restore the appropriate factors of c we first note that energy has units of
mass times velocity squared (an easy way to remember this is from the
nonrelativistic expression for kinetic energy ). Therefore the right side
needs a factor of c2. In addition the velocity should be replaced with v/c,
resulting in



Eq. 3.38 is the general formula for the energy of a particle of mass m in terms
of its velocity. In that sense it is similar to the nonrelativistic formula for
kinetic energy. In fact, we should expect that when the velocity is much less
than c, it should reduce to the nonrelativistic formula. We can check that by
using the approximation in Eq. 3.19. For small v/c we get

The second term on the right side of Eq. 3.39 is the nonrelativistic kinetic
energy, but what is the first term? It is, of course, a familiar expression, maybe
the most familiar in all of physics, namely mc2. How should we understand its
presence in the expression for energy?

Even before the advent of relativity it was understood that the energy of an
object is not just kinetic energy. Kinetic energy is the energy due to the motion
of an object, but even when the object is at rest it may contain energy. That
energy was thought of as the energy needed to assemble the system. What is
special about the energy of assembly is that it does not depend on the velocity.
We may think of it as “rest energy.” Eq. 3.39, which is a consequence of
Einstein’s theory of relativity, tells us the exact value of the rest energy of any
object. It tells us that when the velocity of an object is zero, its energy is

I’m sure that this is not the first time any of you have seen this equation, but it
may be the first time you’ve seen it derived from first principles. How general
is it? The answer is very general. It does not matter whether the object is an
elementary particle, a bar of soap, a star, or a black hole. In a frame in which
the object is at rest, its energy is its mass times the square of the speed of light.

Terminology: Mass and Rest Mass
The term rest mass is an anachronism, despite its continued use in many
undergraduate textbooks. Nobody I know who does physics uses the term rest
mass anymore. The new convention is that the word mass means what the term



rest mass used to mean.9 The mass of a particle is a tag that goes with the
particle and characterizes the particle itself, not the motion of the particle. If
you look up the mass of an electron, you won’t get something that depends on
whether the electron is moving or stationary. You’ll get a number that
characterizes the electron at rest. What about the thing that used to be called
mass, the thing that does depend on particle motion? We call that energy, or
perhaps energy divided by the speed of light squared. Energy characterizes a
moving particle. Energy at rest is just called mass. We will avoid the term rest
mass altogether.

3.5.2 Massless Particles
So far we have discussed the properties of massive particles—particles that
when brought to rest have a nonzero rest energy. But not all particles have
mass. The photon is an example. Massless particles are a little strange. Eq.
3.37 tells us that energy is . But what is the velocity of a massless
particle? It’s 1! We’re in trouble! On the other hand, perhaps the trouble is not
so bad because the numerator and denominator are both zero. That doesn’t tell
us the answer, but at least it leaves some room for negotiation.

Our zero-over-zero conundrum does contain one little seed of wisdom: It’s
a bad idea to think about the energy of a massless particle in terms of its
velocity, because all massless particles move with exactly the same velocity.
Can they have different energies if they all move with the same velocity? The
answer is yes, and the reason is that zero over zero is not determined.

If trying to distinguish massless particles by their velocities is a dead-end
road, what can we do instead? We can write their energy as a function of
momentum.10 We actually do that quite often in prerelativity mechanics when
we write the kinetic energy of a particle. Another way to write

is

To find the relativistic expression for energy in terms of momentum, there’s a



simple trick: We use the fact that U0, Ux, Uy, and Uz are not completely
independent. We worked out their relationship in Section 3.2. Expanding Eq.
3.10 and setting c = 1 for the moment, we can write

(U0)2 − (Ux)2 − (Uy)2 − (Uz)2 = 1.

The components of momentum are the same as the components of 4-velocity
except for a factor of mass, and we can multiply the preceding equation by m2

to get

We recognize the first term as (P0)2. But P0 itself is just the energy, and the
remaining three terms on the left side of Eq. 3.41 are the x, y, and z components
of the 4-momentum. In other words, we can rewrite Eq. 3.41 as

We can see that Eqs. 3.10 and 3.42 are equivalent to each other. The terms in
Eq. 3.10 are components of the 4-velocity, while the terms in Eq. 3.42 are the
corresponding components of the 4-momentum. We can solve Eq. 3.42 for E to
get

Now let’s put the speed of light back into this equation and see what it looks
like in conventional units. I’ll leave it as an exercise to verify that the energy
equation becomes

Here is our result. Eq. 3.44 gives energy in terms of momentum and mass. It
describes all particles whether their masses are zero or nonzero. From this
formula we can immediately see the limit as the mass goes to zero. We had
trouble describing the energy of a photon in terms of its velocity, but we have
no trouble at all when energy is expressed in terms of momentum. What does
Eq. 3.44 say about zero-mass particles such as photons? With m = 0, the
second term of the square root becomes zero, and the square root of P2c2 is just



the magnitude of P times c. Why the magnitude of P? The left side of the
equation is E, a real number. Therefore the right side must also be a real
number. Putting this all together, we arrive at the simple equation

Energy for a massless particle is essentially the magnitude of the momentum
vector, but for dimensional consistency, we multiply by the speed of light. Eq.
3.45 holds for photons. It’s approximately true for neutrinos, which have a tiny
mass. It does not hold for particles that move significantly slower than the
speed of light.

3.5.3 An Example: Positronium Decay
Now that we know how to write down the energy of a massless particle, we
can solve a simple but interesting problem. There’s a particle called
positronium that consists of an electron and a positron in orbit around each
other. It’s electrically neutral and its mass is approximately the mass of two
electrons.11

The positron is the electron’s antiparticle, and if you let a positronium atom
sit around for a while, these two antiparticles will annihilate each other,
producing two photons. The positronium will disappear, and the two photons
will go flying off in opposite directions. In other words, a neutral positronium
particle with nonzero mass turns into pure electromagnetic energy. Can we
calculate the energy and momentum of those two photons?

This would not make any sense at all in prerelativity physics. In
prerelativity physics, the sum of the masses of particles is always unchanged.
Chemical reactions happen, some chemicals turn into others, and so forth. But
if you weigh the system—if you measure its mass—the sum of the ordinary
masses never changes. However, when positronium decays into photons, the
sum of the ordinary masses does change. The positronium particle has a finite
nonzero mass, and the two photons that replace it are massless. The correct
rule is not that the sum of masses is conserved; it’s that the energy and the
momentum are conserved. Let’s consider momentum conservation first.

Suppose the positronium particle is at rest in your frame of reference.12 Its
momentum in this frame is zero, by definition. Now, the positronium atom
decays to two photons. Our first conclusion is that the photons must go off back



to back, in opposite directions, with equal and opposite momentum. If they
don’t travel in opposite directions, it’s clear that the total momentum will not
be zero. The final momentum must be zero because the initial momentum was
zero. This means that the right-moving photon goes off with momentum P, and
the left-moving photon goes off with momentum −P.13

Now we can use the principle of energy conservation. Take your
positronium atom, put it on a scale, and measure its mass. In its rest frame it
has energy equal to mc2. Because energy is conserved, this quantity must equal
the combined energy of the two photons. Each of these photons must have the
same energy as the other because their momenta have the same magnitude.
Using Eq. 3.45, we can equate this energy to mc2 as follows:

mc2 = 2c|P|.

Solving for |P|, we find that

Each photon has a momentum whose absolute value is mc/2.
This is the mechanism by which mass turns into energy. Of course, the mass

was always energy, but in the frozen form of rest energy. When the positronium
atom decays, it results in two photons going out. The photons go on to collide
with things. They may heat up the atmosphere; they could be absorbed by
electrons, generate electrical currents, and so forth. The thing that’s conserved
is the total energy, not the individual masses of particles.

1 This is an actual email message received 1/22/2007.
2 Remember that when we talk about four-dimensional spacetime—three space coordinates and one time
coordinate—the symbol  is a stand-in for all three directions in space. In this context, 

 refers to the sum of their squares, which we would normally write as (Δx)2 + (Δy)2

+ (Δz)2

3 A frame whose x′ axis is parallel to that connecting line would serve just as well.
4 A frame whose t′ axis is parallel to the connecting line would serve just as well.
5 Look it up if it’s not familiar. Here is a good reference: https://en.wikipedia.org/wiki/Binomial
approximation.



6 The concept of a world line is just as good in nonrelativistic physics as it is in relativistic physics. But it
acquires a certain primacy in relativity because of the connection between space and time—the fact that
space and time morph into each other under a Lorentz transformation.
7 There is a technical point that I will mention in order to preempt complaints by sophisticated readers. It is
not strictly true that the action needs to be minimum. It may be minimum, maximum, or more generally
stationary. Generally this fine point will play no role in the rest of this book. We will therefore follow
tradition and refer to the principle of least (minimum) action.
8 Recall that a variable with a dot on top of it means “derivative with respect to time.” For example,  is
shorthand for dx/dt.
9 I believe this “new” convention started about forty to fifty years ago.
10 In fact, we can think about any particle in this way.
11 It’s interesting to note that the mass of a positronium particle is slightly less than the sum of the masses
of its constituent electron and positron. Why? Because it’s bound. It has some kinetic energy due to the
motion of its constituents, and that adds to its mass. But it has an even greater amount of negative
potential energy. The negative potential energy outweighs the positive kinetic energy.
12 If not, just get moving and get into the frame of reference in which it is at rest.
13 We don’t actually know what directions these back-to-back photons will take, except that they’ll be
moving in opposite directions. The line connecting the two photons is oriented randomly, according to the
rules of quantum mechanics. However, there’s nothing to stop us from orienting our x axis to coincide with
their “chosen” direction of motion.



Lecture 4

Classical Field Theory

It’s World Series time, and the bar in Hermann’s Hideaway is packed with fans
watching the game. Art arrives late and pulls up a stool next to Lenny.

Art: What’re the names of the guys in the outfield?

Lenny: Who’s in classical field; What’s in quantum field.

Art: Come on, Lenny, I just asked you. Who’s in quantum field?

Lenny: Who’s in classical field.

Art: That’s what I’m asking you. All right, lemme try again. What about
electric field?

Lenny: You want to know the name of the guy in electric field?

Art: Naturally.

Lenny: Naturally? No, Naturally’s in magnetic field.



So far, we have focused on the relativistic motion of particles. In this lecture,
we’ll introduce the theory of fields—not quantum field theory but relativistic
classical field theory. There may be some occasional points of contact with
quantum mechanics, and I’ll point them out. But for the most part we’ll stick to
classical field theory.

The field theory that you probably know most about is the theory of electric
and magnetic fields. These fields are vector quantities. They’re characterized
by a direction in space as well as a magnitude. We’ll start with something a
little easier: a scalar field. As you know, scalars are numbers that have
magnitude but no direction. The field we’ll consider here is similar to an
important scalar field in particle physics. Perhaps you can guess which one it
is as we go along.

4.1 Fields and Spacetime
Let’s start with spacetime. Spacetime always has one time coordinate and
some number of space coordinates. In principle, we could study physics with
any number of time coordinates and any number of space coordinates. But in
the physical world, even for theories in which spacetime may have ten
dimensions, eleven dimensions, twenty-six dimensions, there’s always exactly
one time dimension. Nobody knows how to make logical sense out of more
than one time dimension.

Let’s call the space coordinates Xi and, for the moment, the time coordinate
t. Keep in mind that in field theory the Xi are not degrees of freedom; they are
merely labels that label the points of space. The events of spacetime are
labeled (t, Xi). The index i runs over as many space coordinates as there are.

Not surprisingly, the degrees of freedom of field theory are fields. A field
is a measurable quantity that depends on position in space and may also vary
with time. There are plenty of examples from common, garden-variety physics.
Atmospheric temperature varies from place to place and time to time. A
possible notation for it would be T(t, Xi). Because it has only one component
—a single number—it’s a scalar field. Wind velocity is a vector field because
velocity has a direction, which may also vary over space and time.

Mathematically, we represent a field as a function of space and time. We



often label this function with the Greek letter ϕ:

ϕ (t, Xi).

It’s common in field theory to say that spacetime is (3+1)-dimensional,
meaning that there are three dimensions of space and one dimension of time.
More generally we might be interested in studying fields in spacetimes with
other numbers of space dimensions. If a spacetime has d space dimensions, we
would call it (d+1)-dimensional.

4.2 Fields and Action
As I mentioned earlier, the principle of least action is one of the most
fundamental principles of physics, governing all known laws of physics.
Without it we would have no reason to believe in energy conservation or even
the existence of solutions to the equations we write down. We will also base
our study of fields on an action principle. The action principles that govern
fields are generalizations of those for particles. Our plan is to examine in
parallel the action principles that govern fields and those that govern particles,
comparing them as we go. To simplify this comparison, we will first restate the
action principle for nonrelativistic particles in the language of fields.

4.2.1 Nonrelativistic Particles Redux
I want to briefly go back to the theory of nonrelativistic particles, not because I
am really interested in slow particles, but because the mathematics has some
similarity with the theory of fields. In fact, in a certain formal sense it is a field
theory of a simple kind—a field theory in a world whose spacetime has zero
space dimensions, and as always, one time dimension.

To see how this works, let’s consider a particle that moves along the x axis.
Ordinarily we would describe the motion of the particle by a trajectory x(t).
However, with no change in the content of the theory, we might change the
notation and call the position of the particle ϕ. Instead of x(t), the trajectory
would be described by ϕ(t).

If we were to re-wire the meaning of the symbol ϕ(t), that is, if we use it to
represent a scalar field, it would become a special case of ϕ(t, Xi)—a special



case in which there are no dimensions of space. In other words, a particle
theory in one dimension of space has the same mathematical structure as a
scalar field theory in zero dimensions of space. Physicists sometimes refer to
the theory of a single particle as a field theory in (0+1)-dimensions, the one
dimension being time.

Fig. 4.1 illustrates the motion of a nonrelativistic particle. Notice that we
use the horizontal axis for time, just to emphasize that t is the independent
parameter. On the vertical axis we plot the position of the particle at time t,
calling it ϕ(t). The curve ϕ(t) represents the history of the particle’s motion. It
tells you what the position ϕ is at each moment of time. As the diagram shows,
ϕ can be negative or positive. We characterize this trajectory using the
principle of least action.

As you recall, action is defined as the integral of some Lagrangian , from
an initial time a to a final time b:

Figure 4.1: Nonrelativistic Particle
Trajectory.

For nonrelativistic particles, the Lagrangian is simple; it’s the kinetic energy
minus the potential energy. Kinetic energy is usually expressed as , but in
our new notation we would write  or  instead of v for velocity. With this
notation, the kinetic energy becomes , or . We’ll simplify things a
little by setting the mass m equal to 1. Thus the kinetic energy is



What about potential energy? In our example, potential energy is just a function
of position—in other words it’s a function of ϕ, which we’ll call V(ϕ).
Subtracting V(ϕ) from the kinetic energy gives us the Lagrangian

and the action integral becomes

As we know from classical mechanics, the Euler-Lagrange equation tells us
how to minimize the action integral and therefore provides the equation of
motion for the particle.1 For this example, the Euler-Lagrange equation is

and our task is to apply this equation to the Lagrangian of Eq. 4.1. Let’s start by
writing down the derivative of  with respect to :

Next, the Euler-Lagrange equation instructs us to take the time derivative of
this result:

This completes the left side of the Euler-Lagrange equation. Now for the right
side. Referring once more to Eq. 4.1, we find that



Finally, setting the left side equal to the right side gives us

This equation should be familiar. It’s just Newton’s equation for the motion of
a particle. The right side is force, and the left side is acceleration. This would
be Newton’s second law F = ma had we not set the mass to 1.

The Euler-Lagrange equations provide the solution to the problem of
finding the trajectory that a particle follows between two fixed points a and b.
They’re equivalent to finding the trajectory of least action that connects the two
fixed end points.2

As you know, there’s another way to think of this. You can divide the time
axis into a lot of little pieces by drawing lots of closely spaced vertical lines
on Fig. 4.1. Instead of thinking of the action as an integral, just think of it as a
sum of terms. What do those terms depend on? They depend on the value of
ϕ(t) and its derivatives at each time. In other words, the total action is simply a
function of many values of ϕ(t). How do you minimize a function of ϕ? You
differentiate with respect to ϕ. That’s what the Euler-Lagrange equations
accomplish. Another way to say it is that they’re the solution to the problem of
moving these points around until you find the trajectory that minimizes the
action.

4.3 Principles of Field Theory
Thus far we’ve been studying a field theory in a world with no space
dimensions. Based on this example, let’s try to develop some intuition about a
theory for a world more like the one we live in—a world with one or more
space dimensions. We take it as a given that field theory, in fact the whole
world, is governed by an action principle. Stationary action is a powerful
principle that encodes and summarizes a huge number of physics laws.

4.3.1 The Action Principle
Let’s define the action principle for fields. For a particle moving in one
dimension (Fig. 4.1) we chose two fixed end points, a and b, as boundaries
along the time axis. Then we considered all possible trajectories that connect



the two boundary points and asked for the particular curve that minimizes the
action. (This is a lot like finding the shortest distance between two points.) In
this way the principle of least action tells us how to fill in the value of ϕ(t)
between the boundary points a and b.

The problem of field theory is a generalization of this idea of filling in the
boundary data. We begin with a spacetime region which we may visualize as a
four-dimensional box. To construct it we take a three-dimensional box of space
—let’s say the space inside some cube—and consider it for some interval of
time. That forms a four-dimensional box of spacetime. In Fig. 4.2 I’ve tried to
illustrate such a spacetime box but with only two space directions.

The general problem of field theory can be stated in the following way:
Given the values of ϕ everywhere on the boundary of the spacetime box,
determine the field everywhere inside the box. The rules of the game are
similar to the particle case. We will need an expression for the action—we’ll
come to that soon—but let’s assume we know the action for every
configuration of the field in the box. The principle of least action tells us to
wiggle the field until we find the particular function ϕ(t, x, y, z) that gives the
least action.

Figure 4.2: Boundary of a Spacetime
Region for Applying the Principle of

Least Action. Only two space dimensions
are shown.

For particle motion the action was constructed by adding up little bits of
action for each infinitesimal time segment. This gave an integral over the time
interval between the boundary points a and b in Fig. 4.1. The natural
generalization in field theory is to construct an action as a sum over tiny
spacetime cells—in other words, an integral over the spacetime box in Fig.



4.2.

where  is a Lagrangian that we still have not specified. But in relativity
we’ve learned to think of these four coordinates on an equal footing, with each
of them being part of spacetime. We blur the distinction between space and
time by giving them similar names—we just call them Xμ—where the index μ
runs over all four coordinates, and it’s standard practice to write the preceding
integral as

4.3.2 Stationary Action for ϕ
Because the Lagrangian  for a field is integrated over space as well as time,
it’s often called the Lagrange density.3

What variables does  depend on? Return for a moment to the
nonrelativistic particle. The Lagrangian depends on the coordinates of the
particle, and the velocities. In the notation we’ve been using, the Lagrangian
depends on ϕ and . The natural generalization, inspired by Minkowski’s
idea of spacetime, is for  to depend on ϕ and the partial derivatives of ϕ with
respect to all coordinates. In other words,  depends on

Thus we write

where the index μ ranges over the time coordinate and all three space
coordinates. In this action integral, we did not write  with explicit
dependencies on t, x, y, or z. But for some problems,  could indeed depend on
these variables, just as the Lagrangian for particle motion might depend
explicitly on time. For a closed system—a system where energy and



momentum are conserved—  does not depend explicitly on time or spatial
position.

As in ordinary classical mechanics, the equations of motion are derived by
wiggling ϕ and minimizing the action. In Volume I, I showed that the result of
this wiggling process can be achieved by applying a special set of equations
called the Euler-Lagrange equations. For the motion of a particle, the Euler-
Lagrange equations take the form

How would the Euler-Lagrange equations change for the multidimensional
spacetime case? Let’s look closely at each term on the left side. Clearly, we
need to modify Eq. 4.4 to incorporate all four directions of spacetime. The first
term, which already references the time direction, becomes a sum of terms, one
for each direction of spacetime. The correct prescription is to replace Eq. 4.4
with

The first term in the sum is just

whose similarity to the first term in Eq. 4.4 is obvious. The other three terms
involve analogous spatial derivatives that fill out the expression and give it its
spacetime character.

Eq. 4.5 is the Euler-Lagrange equation for a single scalar field. As we will
see, these equations are closely related to wave equations that describe
wavelike oscillations of ϕ.

As is true in particle mechanics, there may be more than a single degree of
freedom. In the case of field theory, that would mean more than one field. Let’s
be explicit and suppose there are two fields ϕ and χ. The action will depend on



both fields and their derivatives,

If there are two fields, then there must be an Euler-Lagrange equation for each
field:

More generally, if there are several fields, there will be an Euler-Lagrange
equation for every one of them.

Incidentally, while it’s true that we’re developing this example as a scalar
field, so far we haven’t said anything that requires ϕ to be a scalar. The only
hint of ϕ’s scalar character is the fact that we’re working in only one
component; a vector field would have additional components, and each new
component would generate an additional Euler-Lagrange equation.

4.3.3 More About Euler-Lagrange Equations
The Lagrangian in Eq. 4.1 for a nonrelativistic particle contains a kinetic
energy term proportional to

and a potential energy term

We might guess that the generalization to a field theory would look similar, but
with the kinetic energy term having space as well as time derivatives:



But there is something obviously wrong with this guess: Space and time enter
into it in exactly the same way. Even in relativity theory, time is not completely
symmetric with space, and ordinary experience tells us they are different. One
hint, coming from relativity, is the sign difference between space and time in
the expression for proper time,

Later we will see that the derivatives  form the components of a 4-vector
and that

defines a Lorentz invariant quantity. This suggests that we replace the sum of
squares (of derivatives) with the difference of squares. Later, when we bring
Lorentz invariance back into the picture, we’ll see why this makes sense. We’ll
take this modified Lagrangian,

to be the Lagrangian for our field theory. We can also view it as a prototype.
Later on, we’ll build other theories out of Lagrangians that are similar to this
one.

The function V(ϕ) is called the field potential. It is analogous to the
potential energy of a particle. More precisely, it is an energy density (energy
per unit volume) at each point of space that depends on the value of the field at
that point. The function V(ϕ) depends on the context, and in at least one
important case it is deduced from experiment. We’ll discuss that case in
Section 4.5.1. For the moment, V(ϕ) can be any function of ϕ.

Let’s take this Lagrangian and work out its equations of motion step by step.
The Euler-Lagrange equation in Eq. 4.5 tells us exactly how to proceed. We
allow the index μ in this equation to take on the values 0, 1, 2, and 3. Each of



these index values generates a separate term in the resulting differential
equation for the field. Here’s how it works:

Step 1. We start by setting the index μ equal to zero. In other words, Xμ starts
out as X0, which corresponds to the time coordinate. Calculating the
derivative of  with respect to  gives us the simple result

Eq. 4.5 now instructs us to take one more derivative:

This term, , is analogous to the acceleration of a particle.

Step 2. Next, we set index μ equal to 1, and Xμ now becomes X1, which is just
the x coordinate. Calculating the derivative of  with respect to 
gives us

and

We get similar results for the y and z coordinates when we set μ equal
to 2 and 3 respectively.

Step 3. Rewrite Eq. 4.5 using the previous two steps:



As usual, if we want to use conventional units we need to restore the
factors of c. This is easily done and the equation of motion becomes

4.3.4 Waves and Wave Equations
Of all the phenomena described by classical field theory, the most common and
easy to understand is the propagation of waves. Sound waves, light waves,
water waves, waves along vibrating guitar strings: All are described by
similar equations, which are unsurprisingly called wave equations. This
connection between field theory and wave motion is one of the most important
in physics. It’s now time to explore it.

Eq. 4.9 is a generalization of Newton’s equation of motion

(Eq. 4.3) for fields. The term  represents a kind of force acting on the
field, pushing it away from some natural unforced motion. For a particle, the
unforced motion is uniform motion with a constant velocity. For fields, the
unforced motion is propagating waves similar to sound or electromagnetic
waves. To see this, let’s do two things to simplify Eq. 4.9. First we can drop
the force term by setting V(ϕ) = 0. Second, instead of three dimensions of
space we will study the equation with only one space direction, x. Eq. 4.9 now
takes the much simpler form of a (1+1)-dimensional wave equation,

I will show you a whole family of solutions. Let’s consider any function of
the combination (x + ct). We’ll call it F(x + ct). Now consider its derivatives
with respect to x and t. It is easy to see that these derivatives satisfy

If we apply the same rule a second time we get



or

Eq. 4.11 is nothing but the wave equation of Eq. 4.10 for the function F. We
have found a large class of solutions to the wave equation. Any function of the
combination (x + ct) is such a solution.

What are the properties of a function like F(x + ct)? At time t = 0 it is just
the function F(x). As time goes on, the function changes, but in a simple way: It
moves rigidly to the left (in the negative x direction) with velocity c. Let’s take
a particular example in which F (which we now identify with ϕ) is a sine
function with wave number k:

This is a left-moving sine wave, moving with velocity c. There are also cosine
solutions as well as wave packets and pulses. As long as they move rigidly to
the left with velocity c they are solutions of the wave equation, Eq. 4.10.

What about right-moving waves? Are they also described by Eq. 4.10? The
answer is, yes they are. All you have to do to change F(x + ct) to a right-
moving wave is replace x + ct with x − ct. I will leave it to you to show that
any function of the form F(x − ct) moves rigidly to the right and that it also
satisfies Eq. 4.10.

4.4 Relativistic Fields
When we built our theory of particles, we used two principles in addition to
the stationary action principle. First, the action is always an integral. For
particles, it’s an integral along a trajectory. We’ve already dealt with this issue
for fields by redefining the action as an integral over spacetime. Second, the
action needs to be invariant; it should be built up from quantities in such a way
that it has the exact same form in every reference frame.

How did we manage that for the case of a particle? We built up the action
by slicing the trajectory into lots of little segments, calculating the action for



each segment, and then adding all these small action elements together. Then,
we took the limit of this process, where the size of each segment approaches
zero and the sum becomes an integral. The crucial point is this: When we
defined the action for one of the segments, we chose a quantity that was
invariant—the proper time along the trajectory. Because all observers agree on
the value of the proper time for each little segment, they will agree about the
number you get when you add them all together. As a result, the equations of
motion you derive using the stationary action principle have exactly the same
form in every reference frame. The laws of particle mechanics are invariant. I
already hinted on how to do this for fields in Section 4.3.3, but now we want
to get serious about Lorentz invariance in field theory.

We will need to know how to form invariant quantities from fields, and then
use them to construct action integrals that are also invariant. To do so, we’ll
need a clear concept of the transformation properties of fields.

4.4.1 Field Transformation Properties
Let’s get back to Art in the railway station and Lenny moving past him in the
train. They both look at the same event—Art calls it (t, x, y, z) and Lenny calls
it (t′, x′, y′, z′). Their special field detectors register numerical values for some
field ϕ. The simplest possible kind of field is one for which they obtain exactly
the same result. If we call the field that Art measures ϕ(t, x, y, z) and the field
that Lenny measures ϕ′(t′, x′, y′, z′), then the simplest transformation law would
be

In other words, at any particular point of spacetime Art and Lenny (and
everyone else) agree about the value of the field ϕ at that point.

A field with this property is called a scalar field. The idea of a scalar field
is illustrated in Fig. 4.3. It’s important to understand that coordinates (t′, x′)
and (t, x) both reference the same point in spacetime. Fig. 4.3 drives this point
home. The unprimed coordinates represent spacetime position in Art’s frame.
The primed axes stand for spacetime position in Lenny’s frame. The label ϕ(t,
x) is Art’s name for the field; Lenny calls the same thing ϕ′(t′, x′) since he is the
primed observer. But it’s the same field, with the same value at the same point
in spacetime. The value of a scalar field at a spacetime point is invariant.



Not all fields are scalars. Here’s an example from ordinary nonrelativistic
physics: wind velocity. Wind velocity is a vector with three components.
Observers whose axes are oriented differently will not agree on the values of
the components. Art and Lenny will certainly not agree. The air might be still
in Art’s frame, but when Lenny sticks his head out the window he detects a
large wind velocity.

Figure 4.3: Transformations. Fields φ and
φ′ both reference the same point in

spacetime. Both fields have the same

value at this point. Displacements dXμ

and (dX′)μ both reference the same
spacetime interval, but the primed
components are different from the

unprimed components. They’re related
by Lorentz transformation.

Next we come to 4-vector fields. A good example is one I’ve already
mentioned: wind velocity. Here is how we might define it in Art’s frame. At
the spacetime point (t, x, y, z), Art measures the local components of the
velocity of the air molecules dXi/dt and maps them out. The result is a 3-vector
field with components



But you might already guess that in a relativistic theory we should represent the
molecular velocities relativistically: not by Vi = dXi/dt but by Uμ = dXμ/dτ.
Mapping out the relativistic wind velocity

or

would define a 4-vector field.
Given Art’s description of the relativistic wind velocity, we can ask: What

are its components in Lenny’s frame? Since 4-velocity is a 4-vector, the
answer follows from the Lorentz transformation that we wrote down earlier in
Eq. 2.16:

I didn’t include the dependence on the coordinates in Eq. 4.13 as it would have
overly cluttered the equations, but the rule is simple: The U on the right side
are functions of (t, x, y, z) and the U′ on the left side are functions of (t′, x′, y′, z
′), but both sets of coordinates refer to the same spacetime point.

Let’s consider another complex of four quantities that we’ll call the
spacetime gradient of the scalar field ϕ. Its components are the derivatives of
ϕ. We’ll use the shorthand notation ∂μϕ, defined by

For example,



In a slightly different notation, we can write

We might expect that ϕμ is a 4-vector and transforms the same way as Uμ; we
would be mistaken, although not by a lot.

4.4.2 Mathematical Interlude: Covariant Components
I want to pause here for a couple of mathematical points about transformations
from one set of coordinates to another. Let’s suppose we have a space
described by two sets of coordinates Xμ and (X′)μ. These could be Art’s and
Lenny’s spacetime coordinates, but they needn’t be. Let’s also consider an
infinitesimal interval described by dXμ or d(X′)μ. Ordinary multivariable
calculus implies the following relation between the two sets of differentials:

Einstein wrote many equations of this form. After a while he noticed a pattern:
Whenever he had a repeated index in a single expression—the index ν on the
right side of the equation is such a repeated index—it was always summed
over. In one of his papers on general relativity, after several pages, he
apparently got tired of writing the summation sign and simply said that from
now on, whenever an expression had a repeated index he would assume that it
was summed over. That convention became known as the Einstein summation
convention. It is completely ubiquitous today, to the point where no one in



physics even bothers to mention it. I’m also tired of writing ∑ν, so from now
on we will use Einstein’s clever convention, and Eq. 4.15 becomes

If the equations relating X and x′ are linear, as they would be for Lorentz
transformations, then the partial derivatives  are constant coefficients.
Let’s take the Lorentz transformations

as an example. Here is a list of the four constant coefficients that would result
from Eq. 4.16:

If we plug these into Eq. 4.16 we get the expected result,

This, of course, is the perfectly ordinary Lorentz transformation of the



components of a 4-vector.
Let’s abstract from this exercise a general rule for the transformation of 4-

vectors. Going back to Eq. 4.16, let’s replace 4-vector components d(X′)μ and
dXν with (A′)μ and Aν. These represent the components of any 4-vector A in
frames related by a coordinate transformation. The generalization of Eq. 4.16
becomes

where ν is a summation index. Eq. 4.19 is the general rule for transforming the
components of a 4-vector. For the important special case of a Lorentz
transformation, this becomes

My real reason for doing this was not to explain how dXμ or Aμ transforms,
but to set up the calculation for transforming ∂μϕ. These objects—there are
four of them—also form the components of a 4-vector, although of a slightly
different kind than the dXμ. They obviously refer to the coordinate system X but
can be transformed to the X′ frame.

The basic transformation rule derives from calculus, and it’s a
multivariable generalization of the chain rule for derivatives. Let me remind
you of the ordinary chain rule. Let ϕ(x) be a function of the coordinate X, and
let the primed coordinates X′ also be a function of X. The derivative of ϕ with
respect to X′ is given by the chain rule,

The multivariable generalization involves a field ϕ that depends on several
independent coordinates Xμ and a second set of coordinates (X′)ν. The
generalized chain rule reads



or using the summation convention, and the shorthand notation in Eq. 4.14,

Let’s be more general and replace ∂μϕ with Aμ so that Eq. 4.21 becomes

Take a moment to compare Eqs. 4.19 and 4.22. I’ll write them again to make it
easy to compare—first Eq. 4.19 and then Eq. 4.22:

There are two differences. The first is that in Eq. 4.19 the Greek indices on A
appear as superscripts while in Eq. 4.22 they appear as subscripts. That hardly
seems important, but it is. The second difference is the coefficients: In Eq. 4.19
they are derivatives of X′ with respect to X, while in Eq. 4.22 they are
derivatives of X with respect to X′.

Evidently there are two different kinds of 4-vectors, which transform in
different ways: the kind that have superscripts and the kind with subscripts.
They are called contravariant components (superscripts) and covariant
components (subscripts), but since I always forget which is which, I just call
them upper and lower 4-vectors. Thus the 4-vector dXμ is a contravariant or
upper 4-vector, while the spacetime gradient ∂μϕ is a covariant or lower 4-
vector.

Let’s go back to Lorentz transformations. In Eq. 4.18, I wrote down the
coefficients for the transformation of upper 4-vectors. Here they are again:



We can make a similar list for the coefficients in Eq. 4.22 for lower 4-vectors.
In fact, we don’t have much work to do. We can get them by interchanging the
primed and unprimed coordinates, which for Lorentz transformations just
means interchanging the rest and moving frames. This is especially easy since
it only requires us to change the sign of the velocity (remember, if Lenny moves
with velocity v in Art’s frame, then Art moves with velocity −v in Lenny’s
frame). All we have to do is to interchange primed and unprimed coordinates
and at the same time reverse the sign of v.

Here then are the transformation rules for the components of covariant (lower)
4-vectors:



We’ve already seen examples such as Xμ, displacement from the origin. The
differential displacement between neighboring points, dXμ, is also a 4-vector.
If you multiply 4-vectors by scalars (that is, by invariants), the result is also a
4-vector. That’s because invariants are completely passive when you
transform. We’ve already seen that the proper time dτ is invariant, and
therefore the quantity dXμ/dτ, which we call 4-velocity, is also a 4-vector:

When we say “Uμ is a 4-vector,” what do we actually mean? We mean that its
behavior in other reference frames is governed by the Lorentz transformation.
Let’s recall the Lorentz transformation for the coordinates of two reference
frames whose relative velocity is v along the x axis:

If a complex of four quantities (consisting of a time component and three space
components) transforms in this way, we call it a 4-vector. As you know,
differential displacements also have this property:

Table 4.1 summarizes the transformation properties of scalars and 4-vectors.
We use the slightly abstract notation Aμ to represent an arbitrary 4-vector. A0 is



the time component, and each of the other components represents a direction in
space.

An example of a field with these properties would be a fluid that fills all of
spacetime. At every point in the fluid there would be a 4-velocity as well as an
ordinary 3-velocity. We could call this 4-velocity Uμ (t, x). If the fluid flows,
the velocity might be different in different places. The 4-velocity of such a
fluid can be thought of as a field. Because it’s a 4-velocity, it’s automatically a
4-vector and would transform in exactly the same way as our prototype 4-
vector Aμ. The values of U’s components in your frame would be different
from their values in my frame; they would be related by the equations in Table
4.1. There are lots of other examples of 4-vectors, and we won’t try to list
them here.

Table 4.1: Field Transformations. Greek index μ takes values 0, 1, 2, 3, which
correspond to t, x, y, z in ordinary (3 + 1)-dimensional spacetime. In
nonrelativistic physics, ordinary Euclidean distance is also considered a
scalar.

If you take the four components of a 4-vector, you can make a scalar out of
them. We already did this when we constructed the scalar (dτ)2 from the 4-
vector dXμ:

(dτ)2 = (dt)2 − (dx)2 − (dy)2 − (dz)2.



We can follow the same procedure with any 4-vector. If Aμ is a 4-vector, then
the quantity

(A0)2 − (Ax)2 − (Ay)2 − (Az)2

is a scalar for exactly the same reasons. Once you know that the Aμ components
transform the same way as t and x, you can see that the difference of the
squares of the time component and the space component will not change under
a Lorentz transformation. You can show this using the same algebra we used
with (dτ)2.

We’ve seen how to construct a scalar from a 4-vector. Now we’ll do the
opposite, that is, construct a 4-vector from a scalar. We do this by
differentiating the scalar with respect to each of the four components of space
and time. Together, those four derivatives form a 4-vector. If we have a scalar
ϕ, the quantities

are the components of a (covariant, or lower) 4-vector.

4.4.3 Building a Relativistic Lagrangian
We now have a set of tools for creating Lagrangians. We know how things
transform, and we know how to construct scalars from vectors and other
objects. How do we construct a Lagrangian? It’s simple. The Lagrangian itself
—the thing that we add up over all these little cells to form an action integral
—must be the same in every coordinate frame. In other words, it must be a
scalar! That’s all there is to it. You take a field ϕ and consider all the possible
scalars you can make from it. These scalars are candidate building blocks for
our Lagrangian.

Let’s look at some examples. Of course, ϕ itself is a scalar in this example,
but so is any function of ϕ. If everyone agrees on the value of ϕ, they will also
agree on the values of ϕ2, 4ϕ3, sinh(ϕ), and so on. Any function of ϕ, for
example a potential energy V(ϕ), is a scalar and therefore is a candidate for
inclusion in a Lagrangian. In fact, we’ve already seen plenty of Lagrangians
that incorporate V(ϕ).



What other ingredients could we use? Certainly we want to include
derivatives of the field. Without them, our field theory would be trivial and
uninteresting. We just need to be sure to put the derivatives together in a way
that produces a scalar. But that’s easy! First, we use the derivatives to build the
4-vector,

Next, we use the components of our 4-vector to construct a scalar. The
resulting scalar is

Here is a nontrivial expression we can put into a Lagrangian. What else could
we use? Certainly, we can multiply by a numerical constant. For that matter,
we can multiply by any function of any scalar. Multiplying two things that are
invariant produces a third invariant. For example, the expression

would be a legal Lagrangian. It’s somewhat complicated, and we won’t
develop it here, but it qualifies as a Lorentz invariant Lagrangian. We could do
something even uglier, like taking the expression inside the square brackets and
raising it to some power. Then we’d have higher powers of derivatives. That
would be ugly, but it would still be a legal Lagrangian.

What about higher-order derivatives? In principle, we could use them if we
turned them into scalars. But that would take us outside the confines of
classical mechanics. Within the scope of classical mechanics, we can use
functions of the coordinates and their first derivatives. Higher powers of first
derivatives are acceptable, but higher derivatives are not.

4.4.4 Using Our Lagrangian
Despite the restrictions of classical mechanics and the requirement of Lorentz
invariance, we still have a tremendous amount of freedom in choosing a



Lagrangian to work with. Let’s have a close look at this one:

This is essentially the same as the Lagrangian of Eq. 4.7, and now you can see

why I chose that one for our nonrelativistic example. The new factor  in the
first term just switches us back to conventional units. I also replaced the
generic potential function V(ϕ) with a more explicit function, . The factor 
 is nothing more than a convention with no physical meaning. It’s the same 

that appears in the expression  for kinetic energy. We could have taken this
to be mv2 instead; if we did, then our mass would differ from Newton’s mass
by a factor of two.

Back in Lecture 1, we explained that a general Lorentz transformation is
equivalent to a combination of space rotations, together with a simple Lorentz
transformation along the x axis. We’ve shown that Eq. 4.24 is invariant under a
simple Lorentz transformation. Is it also invariant with respect to space
rotations? The answer is yes, because the spatial part of the expression is the
sum of the squares of the components of a space vector. It behaves like the
expression x2 + y2 + z2 and is therefore rotationally invariant. Because the
Lagrangian of Eq. 4.24 is invariant not only with respect to Lorentz
transformations along the x axis but also with respect to rotations of space, it’s
invariant under a general Lorentz transformation.

Eq. 4.24 is one of the simplest field theories.4 It gives rise to a wave
equation in the same way as Eq. 4.7 does. Following the same pattern we did
for that example, it’s not hard to see that the wave equation derived from Eq.
4.24 is

It’s a particularly simple wave equation because it’s linear; the field and its
derivatives only appear to the first power. There are no terms like ϕ2 or ϕ
times a derivative of ϕ. We get an even simpler version when we set μ equal to
zero:



4.4.5 Classical Field Summary
We now have a process for developing a classical field theory. Our first
example was a scalar field, but the same process could apply to a vector or
even a tensor field. Start with the field itself. Next, figure out all the scalars
you can make, using the field itself and its derivatives. Once you have listed or
characterized all the scalars you can create, build a Lagrangian from functions
of those scalars, for example, sums of terms. Next, apply the Euler-Lagrange
equations. That amounts to writing the equations of motion, or the field
equations describing the propagation of waves, or whatever else the field
theory is supposed to describe. The next step is to study the resulting wave
equation.

Classical fields need to be continuous. A field that’s not continuous would
have infinite derivatives, and therefore infinite action. Such a field would also
have infinite energy. We’ll have more to say about energy in the next lecture.

4.5 Fields and Particles—A Taste
Before wrapping up, I want to say a few things about the relation between
particles and fields.5 If I had worked out the rules for electrodynamics instead
of a simple scalar field, I might tell you how charged particles interact with an
electromagnetic field. We haven’t done that yet. But how might a particle
interact with a scalar field ϕ? How might the presence of the scalar field affect
the motion of a particle?

Let’s think about the Lagrangian of a particle moving in the presence of a
preestablished field. Suppose someone has solved the equations of motion, and
we know that the field ϕ(t, x) is some specific function of time and space. Now
consider a particle moving in that field. The particle might be coupled to the
field, in some way analogous to a charged particle in an electromagnetic field.
How does the particle move? To answer that question, we go back to particle
mechanics in the presence of a field. We’ve already written down a Lagrangian
for a particle. It was −mdτ, because dτ is just about the only invariant quantity
available. The action integral was



To get the correct nonrelativistic answers for low velocities, we found that we
need the minus sign, and that the parameter m behaves like the nonrelativistic
mass. Using the relationship dτ2 = dt2 − dx2, we rewrote this integral as

where dx2 stands for all three directions of space. Then, we factored out the
dt2, and our action integral became

Noticing that dx/dt is a synonym for velocity, this became

We then expanded the Lagrangian  as a power series and found that it
matches the familiar classical Lagrangian at low velocities. But this new
Lagrangian is relativistic.

What can we do to this Lagrangian to allow the particle to couple to a
field? For the field to affect the particle, the field itself needs to appear
somewhere in the Lagrangian. We need to insert it in a way that is Lorentz
invariant. In other words, we have to construct a scalar from the field. As we
saw before, there are many ways to accomplish this, but one simple action we
could try is

or

This corresponds to a Lagrangian,



This is one of the simplest things you can do, but there are lots of other
possibilities. For example, in the preceding Lagrangian, you could replace ϕ(t,
x) with its square, or with any other function of ϕ(t, x). For now, we’ll just use
this simple Lagrangian, and its corresponding action integral, Eq. 4.28.

Eq. 4.29 is one possible Lagrangian for a particle moving in a
preestablished field. Now we can ask: How does the particle move in this
field? This is similar to asking how a particle moves in an electric or magnetic
field. You write down a Lagrangian for the particle in the electric or magnetic
field; you don’t worry about how the field got there. Instead, you just write
down the Lagrangian and then write out the Euler-Lagrange equations. We’ll
work out some of the details for this example. But before we do, I want to
point out an interesting feature of Eq. 4.29.

4.5.1 The Mystery Field
Suppose, for some reason, the field ϕ(t, x) tends to migrate to some specific
constant value other than zero. It just happens to “like” getting stuck at that
particular value. In that case, ϕ(t, x) would be constant or approximately
constant, despite its formal dependence on t and x. The motion of the particle
would then look exactly the same as the motion of a particle whose mass is m
+ ϕ. Let me say this again: The particle with mass m would behave as though
its mass is m + ϕ. This is the simplest example of a scalar field that gives rise
to a shift in the mass of a particle.

At the beginning of the lecture, I mentioned that there’s a field in nature that
closely resembles the one we’re looking at today, and I invited you to try
guessing which one it is. Have you figured it out? The field we’re looking at
bears a close resemblance to the Higgs field. In our example, a shift in the
value of a scalar field shifts the masses of particles. Our example is not exactly
the Higgs mechanism, but it’s closely related. If a particle starts out with a
mass of zero and is coupled to the Higgs field, this coupling can effectively
shift the particle’s mass to a nonzero value. This shifting of mass values is
roughly what people mean when they say that the Higgs field gives a particle
its mass. The Higgs field enters into the equations as if it were part of the
mass.



4.5.2 Some Nuts and Bolts
We’ll wrap up this lecture with a quick peek at the Euler-Lagrange equations
for our scalar field example. We’re not going to follow them all the way
through because they become ugly after the first few steps. We’ll just give you
a taste of this process for now. For simplicity, we’ll work as if there’s only
one direction of space, with the particle moving only in the x direction. I’ll
copy our Lagrangian, Eq. 4.29, here for easy reference, replacing the variable
v with :

The first step in applying Lagrange’s equations is to calculate the partial
derivative of  with respect to . Remember that when we take a partial
derivative with respect to some variable, we temporarily regard all the other
variables as constants. In this case, we regard the expression in square
brackets as a constant because it has no explicit dependence on . On the other
hand, the expression  does depend explicitly on . Taking the partial
derivative of this expression results in

This equation should look familiar. We obtained a nearly identical result in
Lecture 3 when we did a similar calculation to find the momentum of a
relativistic particle. The only thing that’s different here is the extra term ϕ(t, x)
inside the square brackets. This supports the notion that the expression [m +
ϕ(t, x)] behaves like a position-dependent mass.

Continuing with the Euler-Lagrange equations, the next step is to
differentiate Eq. 4.30 with respect to time. We’ll just indicate this operation
symbolically by writing

That’s the left side of the Euler-Lagrange equation. Let’s look at the right side,
which is



Since we’re differentiating with respect to x, we ask whether  depends
explicitly on x. It does, because ϕ(t, x) depends on x, and ϕ happens to be the
only place where x appears. The resulting partial derivative is

and therefore the Euler-Lagrange equation becomes

That’s the equation of motion. It’s a differential equation that describes the
motion of the field. If you try to work out the time derivative on the left side,
you’ll see that it’s quite complicated. We’ll stop at this point, but you may want
to think about how to incorporate the velocity of light c into this equation, and
how the field behaves in the nonrelativistic limit of low velocities. We’ll have
some things to say about that in the next lecture.

1 There’s only one Euler-Lagrange equation in this example because the only variables are ϕ and  .
2 I often say least or minimum, but you know very well that I really mean stationary: The action could be
a maximum or a minimum.
3 This is just a matter of dimensional consistency. Unlike particle motion, the action integral for a field is
taken over dxdydz, as well as dt. For the action to have the same units for fields as it does for particles,
the Lagrangian must carry units of energy divided by volume. Hence the term density.

4 We could make it even simpler by dropping the last term, .

5 Not the quantum mechanical relation between particles and fields, just the interaction between ordinary
classical particles and classical fields.



Lecture 5

Particles and Fields

Nov 9, 2016.

The day after election day. Art is morosely staring into his beer. Lenny is
staring into his glass of milk. No one—not even Wolfgang Pauli—can think of
anything funny to say. But then mighty John Wheeler rises to his feet and raises
his hand at the bar where all can see him. Sudden silence and John speaks:

“Ladies and gentlemen, in this time of terrible uncertainty, I want to remind
you of one sure thing: SPACETIME TELLS MATTER HOW TO MOVE; MATTER TELLS

SPACETIME HOW TO CURVE”.

“Bravo!”

A cheer is heard in Hermann’s Hideaway and things brighten. Pauli raises his
glass:

“To Wheeler! I think he’s hit the nail on the head. Let me try to say it even
more generally: FIELDS TELL CHARGES HOW TO MOVE; CHARGES TELL FIELDS HOW

TO VARY.”



In quantum mechanics, fields and particles are the same thing. But our main
topic is classical field theory, where fields are fields, and particles are
particles. I won’t say “never the twain will meet” because they will meet; in
fact, they’ll meet very soon. But they’re not the same thing. The central
question of this lecture is this:

If a field affects a particle, for example by creating forces on it, must the
particle affect the field?

If A affects B, why must B necessarily affect A? We’ll see that the two-way
nature of interactions, often called “action and reaction,” is built into the
Lagrangian action principle. As a simple example, suppose we have two
coordinates, x and y, along with an action principle.1 Generally, the Lagrangian
will depend on x and y, and also on  and . One possibility is that the
Lagrangian is simply a sum of two terms: a Lagrangian for x and , plus a
separate Lagrangian for y and 

where I’ve labeled the Lagrangians on the right side with subscripts to show
that they may be different. Let’s look at the Euler-Lagrange equation (which is
the equation of motion) for x,

Because  has no dependency on x or on , the  terms drop out, and the
Euler-Lagrange equation for the x coordinate becomes

The y variable and its time derivative do not appear at all. Likewise, the
equation of motion for the y variable will not include any reference to x or .
As a result, x does not affect y, and y does not affect x. Let’s look at another
example,



where the Vx and Vy terms are potential energy functions. Once again, the x and
y coordinates of this Lagrangian are completely separated. The Lagrangian is a
sum of terms that only involve x or only involve y, and by a similar argument
the x and y coordinates will not affect each other.

But suppose we know that y does affect x. What would that tell us about the
Lagrangian? It tells us that the Lagrangian must be more complicated; that there
must be things in it that somehow affect both x and y. To write such a
Lagrangian, we need to put in some additional ingredient that involves both x
and y in a way that you can’t unravel. For example, we could just add an xy
term:

This guarantees that the equation of motion for x will involve y, and vice
versa. If x and y appear in the Lagrangian coupled together in this manner,
there’s no way for one to affect the other without the other affecting the one. It’s
as simple as that. That’s the reason A must affect B if B affects A.

In the previous lecture we looked at a simple field and asked how it affects
a particle. After a brief review of that example, we’ll ask the opposite
question: How does the particle affect the field? This is very much an analog
of electromagnetic interactions, where electric and magnetic fields affect the
motion of charged particles, and charged particles create and modify the
electromagnetic field. The mere presence of a charged particle creates a
Coulomb field. These two-way interactions are not two independent things;
they come from the same Lagrangian.

5.1 Field Affects Particle (Review)
Let’s start out with a given field,

ϕ(t, x),

that depends on t and x. For now, assume that ϕ is some known function. It may



or may not be a wave. We’re not going to ask about the dynamics of ϕ just yet;
first we’ll look at the Lagrangian for the particle. Recall from previous
lectures (Eq. 3.24, for example) that this Lagrangian is

I’ve labeled it  for clarity. Apart from the factor −m, the action 
amounts to a sum of all the proper times along each little segment of a path. In
the limit, as the segments become smaller and smaller, the sum becomes an
integral

over the coordinate time t. This is the same as −m times the integral of the
proper time dτ from one end of the trajectory to the other. This Lagrangian
doesn’t contain anything that causes the field to affect the particle. Let’s modify
it in a simple way, by adding the field value ϕ(t, x) to m.

We can now work out the Euler-Lagrange equations and find out how ϕ(t, x)
affects the motion of the particle. Rather than work out the full relativistic
equations of motion, we’ll look at the nonrelativistic limit where the particle
moves very slowly. That’s the limit in which the speed of light goes to infinity
—when c is far bigger than any other velocity in the problem. It’s helpful to
restore the constant c in our equations to see how this works. The modified
action integral is

We can check this for dimensional consistency. The Lagrangian has units of
energy, and so does −mc2. I’ve multiplied ϕ(t, x) by a constant g, which is
called a coupling constant. It measures the strength by which the field affects
the motion of the particle, and we can select its units to guarantee that g times
ϕ(t, x) has units of energy. So far, g can be anything; we don’t know its value.
Both terms inside the square root are pure numbers.



Now let’s expand the square root using the approximation formula

where  is a small number. Re-writing the square root with an exponent of ,

and equating  with , we can see that

The higher-order terms are far smaller because they involve higher powers of
the ratio  We can now use this approximate expression to replace the
square root in the action integral, resulting in

Let’s look at this integral and find the biggest terms—the terms that are most
important when the speed of light gets large. The first term, mc2, is just a
number. When you take derivatives of the Lagrangian it just “comes along for
the ride” and has no meaningful impact on the equations of motion. We’ll
ignore it. In the next term,

the speed of light cancels itself out altogether. Therefore this term is part of the
limit in which the speed of light goes to infinity, and it survives that limit. This
term is quite familiar; it’s our old friend, the nonrelativistic kinetic energy. The
term

becomes zero in the limit of large c because of the c2 in its denominator; we
ignore it. Finally, the term gϕ(t, x) contains no speeds of light. Therefore it
survives, and we keep it in the Lagrangian, which now becomes



That’s all there is when the particle moves slowly. We can now compare it
with the old fashioned nonrelativistic Lagrangian, kinetic energy minus
potential energy,

T − V.

We’ve already recognized the first term of Eq. 5.3 as kinetic energy, and now
we can identify gϕ(t, x) as the potential energy of a particle in this field. The
constant g indicates the strength of coupling between the particle and the field.
In electromagnetism, for example, the strength of coupling of the field to a
particle is just the electric charge. The bigger the electric charge, the bigger the
force on a particle in a given field. We’ll come back to this idea.

5.2 Particle Affects Field
How does the particle affect the field? The important thing to understand is that
there’s only one action, the “total” action. The total action includes action for
the field and action for the particle. I can’t emphasize this enough: What we’re
studying is a combined system that consists of a) a field and b) a particle
moving through the field.

Fig. 5.1 illustrates the physics problem we’re trying to solve. It shows a
region of spacetime, represented as a cube.2 Time points upward and the x axis
points to the right. Inside this region, there’s a particle that travels from one
spacetime point to another. The two dots are the end points of its trajectory. We
also have a field ϕ(t, x) inside the region. I wish I could think of a clever way
to draw this field without cluttering the diagram, because it’s every bit as
physical as the particle; it’s part of the system.3



Figure 5.1: Particle
moving through a region
of spacetime filled with
“red mush”—the scalar

field ϕ(t, x).

To find out how this field-particle system behaves, we need to know the
Lagrangian and minimize the action. In principle, this is simple; we just vary
the parameters of the problem until we find a set of parameters that results in
the smallest possible action. We wiggle the field around in different ways, and
we wiggle the particle trajectory between its two end points until the action
integral is as small as we can make it. That gives us the trajectory and the field
that satisfy the principle of least action.

Let’s write down the whole action, the action that includes both the field
and the particle. First, we need an action for the field,

where the symbol  means “Lagrangian for the field.” This action integral is
taken over the entire spacetime region, t, x, y, and z. The symbol d4x is
shorthand for dtdxdydz. For this example, we’ll base our field Lagrangian on
Eq. 4.7, a Lagrangian that we used in Lecture 4. We’ll use a simplified version
that only references the x direction in space and has no potential function
V(ϕ).4 The Lagrangian



leads to the action integral

This is the action for the field.5 It doesn’t involve the particle at all. Now let’s
incorporate the action for the particle, Eq. 5.2 with the speeds of light
removed. This is just

or

Although Actionparticle is the particle action, it also depends on the field. This
is important; when we wiggle the field, this action varies. In fact, it is wrong to
think of Actionparticle purely as a particle action: The term

Figure 5.2: Particle at
Rest in Imaginary Red

Mush (black ink on
paper).

is an interaction term that tells the particle how to move in the field, but it also



tells the field how to vary in the presence of the particle. From now on I will
call this term  and cease thinking of it as having to do only with the
particle.

We’ll consider the simple special case where the particle is at rest at x = 0.
It’s reasonable to assume that there’s some solution where the particle is at rest
—classical particles do rest sometimes. Fig. 5.2 shows the spacetime
trajectory of a resting particle. It’s just a vertical line.

How do we modify Eq. 5.5 to show that the particle is at rest? We just set 
, the velocity, equal to zero. The simplified action integral is

Because the particle sits at the fixed position x = 0, we can replace ϕ(t, x) with
ϕ(t, 0) and write

Let’s take a closer look at . Notice that it only depends on the value of
the field at the origin. More generally it depends on the value of the field at the
location of the particle. Nevertheless when the field is wiggled, ϕ(t, 0) will
wiggle, affecting the action. As we will see, this affects the equation of motion
for the field.

The action for a field is normally written as an integral over space and
time, but Eq. 5.6 is an integral that only runs over time. There is nothing wrong
with it, but it’s convenient to rewrite it as an integral over space and time.
We’ll use a trick that involves the idea of a source function. Let ρ(x) be a fixed
definite function of space, but for the moment not time. (I’ll give you a hint:
ρ(x) is something like a charge density.) Let’s forget the particle but replace it
with a term in the Lagrangian that I’ll continue to call ,

The corresponding term in the action for the field is



This looks quite different from the action in Eq. 5.2. To make them the same,
we use the trick that Dirac invented—the Dirac delta function δ(x). The delta
function is a function of the space coordinates that has a peculiar property. It is
zero everywhere but at x = 0. Nevertheless it has a nonzero integral,

Let’s imagine graphing the delta function. It is zero everywhere except in the
immediate vicinity of x = 0. But it is so large in that vicinity that it has a total
area equal to 1. It is a very high and narrow function, so narrow that we may
think of it as concentrated at the origin, but so high that it has a finite area.

No real function behaves that way, but the Dirac function is not an ordinary
function. It is really a mathematical rule. Whenever it appears in an integral
multiplying another function F(x), it picks out the value of F at the origin. Here
is its mathematical definition:

where F(x) is an “arbitrary” function.6 If you have some function F(x) and
integrate it as shown, the delta function picks out the value of F(x) at x = 0. It
filters out all other values. It’s the analog of the Kronecker delta, but operates
on continuous functions. You can visualize δ(x) as a function whose value is
zero everywhere, except when x gets very close to zero. When x is close to
zero, δ(x) has a very tall spike. For our current problem we need a three-
dimensional delta function that we call δ3(x, y, z). We define δ3(x, y, z) as the
product of three one-dimensional delta functions,

δ3(x, y, z) = δ(x)δ(y)δ(z).

As we do elsewhere, we often use the shorthand δ3(x), where x represents all
three directions of space. Where is δ3(x, y, z) nonzero? It’s nonzero where all
three factors on the right side are nonzero, and that only happens in one place:
the point x = 0, y = 0, z = 0. At that point of space it’s enormous.



The trick in writing the interaction term as an integral should now be fairly
obvious. We simply replace the particle with a source function ρ that we
choose to be a delta function,

The action in Eq. 5.8 then takes the form

The point is that if we integrate this over the space coordinates, the delta
function rule tells us to simply evaluate gϕ(x) at the origin, and we get
something we’ve seen before:

Now let’s combine the field action with the interaction term. We do that in the
simplest possible way, by just adding the two of them together. Combining the
action terms of Eqs. 5.4 and 5.12 results in

or replacing the source function with the delta function,

Here it is, the total action as an integral over space and time. The expression
inside the big square brackets is the Lagrangian. Like any good field
Lagrangian, it has the field action (represented here by partial derivatives)
along with a delta function term that represents the effect of the particle on the
field. This particular delta function represents the special situation where the
particle is at rest. But we could also jazz it up so that the particle moves. We
could do that by making the delta function move around with time. But that’s
not important right now. Instead, let’s work out the equations of motion, based
on the Lagrangian



5.2.1 Equations of Motion

For convenience, I’ll rewrite Eq. 4.5, the Euler-Lagrange equation, right here.

Eq. 5.15 tells us what to do with  in order to find the equations of motion.
The index μ runs through the values 0, 1, 2, and 3. The first value it takes is 0,
which is the time component. Therefore our first step is to find the derivative

Let’s unwind this calculation step by step. First, what is the partial of  with

respect to ? There’s only one term in  that involves . Straightforward
differentiation shows that the result is

Applying  to each side results in

That’s the first term in the equation of motion. It looks a lot like an
acceleration. We started with a kinetic energy term that amounts to . When we
worked out the derivative, we got something that looks like an acceleration of
ϕ.

Next, we let μ take the value 1 and calculate the first space component. The
form of these terms is exactly the same as the form of the time component



except for the minus sign. So the first two terms of the equation of motion are

Because the y and z components have the same form as the x component, we
can add them in as well,

If those were the only terms, I would set this expression equal to zero, and we
would have a good old-fashioned wave equation for ϕ. However, the
Lagrangian depends on ϕ in another way because of the interaction term. The
complete equation of motion is

and we can see that the last term is

Adding this final piece to the equation of motion gives us

Thus we see that the source function appears in the field equation for ϕ as an
addition to the wave equation. Without the source term, ϕ = 0 is a perfectly
good solution, but that’s not true when the source term is present. The source is
literally that: a source of field that prevents the trivial ϕ = 0 from being a
solution.

In the actual case where the source is a particle at rest, ρ(x) can be
replaced by the delta function,



Let’s suppose for a moment that we’re looking for static solutions to Eq. 5.16.
After all, the particle is standing still, and there may be a solution where the
field itself doesn’t change with time. It seems plausible that a standing-still
particle can create a field that also stands still—a field that does not vary with
time. We might then look for a solution in which ϕ is time-independent. That

means the  term in Eq. 5.16 would become zero. We can then change the
signs of the remaining terms to plus and write

Perhaps you recognize this as Poisson’s equation. It describes, among other
things, the electrostatic potential of a point particle. It’s often written by setting
∇2ϕ equal to a source (a charge density) on the right side.7 In our example, the
charge density is just a delta function. In other words, it’s a high, sharp spike,

Of course, our current example is not an electric or magnetic field.
Electrodynamics involves vector fields, and we’re looking at a scalar field.
But the similarities are striking.

The third term of the Lagrangian (Eq. 5.14) ties everything together. It tells
the particle to move as if there were a potential energy −gϕ(t, x). In other
words, it exerts a force on the particle. This same term, when used for the
equation of motion of the ϕ field, tells us that the ϕ field has a source.

These are not independent things. The fact that the field affects the particle
tells us that the particle affects the field. For a particle at rest in a static field,
Eq. 5.18 tells us exactly how. The parameter g determines how strongly the
particle affects the field. The same parameter also tells us how strongly the
field affects the particle. It makes a nice little story: Fields and particles affect
each other through a common term in the Lagrangian.

5.2.2 Time Dependence

What happens if we allow the particle to move and the field to change with
time? We’ll confine ourselves to a single



dimension of space. Eq. 5.18 becomes

∇2ϕ = gδ(x).

In one dimension, the left side of this equation is just the second derivative of
ϕ. Suppose I wanted to put the particle someplace else. Instead of putting it at
the origin, suppose I want to put it at x = a? All I need to do is change x in the
preceding equation to x − a, and the equation would become

∇2ϕ = gδ(x − a).

The delta function δ(x − a) has its spike where x is equal to a. Suppose further
that the particle is moving, and its position is a function of time, a(t). We can
write this as

∇2ϕ = gδ(x − a(t)).

This would tell you that the field has a source, and that the source is moving.
At any given time the source is at position a(t). In this way we can
accommodate a moving particle. But we still have one little wrinkle to deal
with. If the particle is moving, we would not expect the field to be time
independent. If the particle moves around, then the field must also depend on

time. Remember the  term that we zeroed out in the equation of motion (Eq.
5.16)? For a time-dependent field, we have to restore that term, resulting in

If the right side depends on time, there’s no way to find a solution where ϕ
itself is time-independent. The only way to make it consistent is to restore the
term that involves time.

A moving particle, for example a particle that accelerates or vibrates, will
give the field a time dependence. You probably know what it will do: It will
radiate waves. But at the moment, we’re not going to solve wave equations.
Instead, we’ll spend a little time talking about the notation of relativity.



5.3 Upstairs and Downstairs Indices
Notation is far more important than most people realize. It becomes part of our
language and shapes the way we think—for better or for worse. If you’re
skeptical about this, just try switching to Roman numerals the next time you do
your taxes.

The mathematical notation we introduce here makes our equations look
simple and pretty. It saves us from having to write things like

every single time we write an equation.8 In the previous lecture, we spent
some time on standard notation for relativistic vectors, 4-vectors, and scalars.
We’ll revisit that material briefly, then explain the new condensed notation.

The symbol Xμ stands for the four coordinates of spacetime, which we can
write as

Xμ = (t, x, y, z),

where the index μ runs over the four values 0 through 3. I’m going to start
paying attention to where I put this index. Here, I’ve put the index up on top.
That carries no meaning for now, but soon it will.

The quantity Xμ, if thought of as a displacement from the origin, is a 4-
vector. Calling it a 4-vector is a statement about the way it behaves under
Lorentz transformation; any complex of four quantities that transforms the same
way as t and x is a 4-vector.

The three space components of a 4-vector may equal zero in your reference
frame. You, in your frame, would say that this displacement is purely timelike.
But this is not an invariant statement. In my frame, the space components would
not all equal zero, and I would say that the object does move in space.
However, if all four components of a displacement 4-vector are zero in your
frame, they will also be zero in my frame and in every other frame. A statement
that all four components of a 4-vector are zero is an invariant statement.

Differences of 4-vectors are also 4-vectors. So are differential
displacements such as



dXμ.

Starting with a 4-vector, we can make a scalar, a quantity that remains the same
in every frame. For example, we can construct a proper time dτ2 from a
displacement. You have already seen how. The quantity

(dτ)2 = dt2 − dx2 − dy2 − dz2

and its counterpart

(ds)2 = −dt2 + dx2 + dy2 + dz2

are the same in every reference frame. They’re scalars and have only one
component. If a scalar is equal to zero in one frame of reference, it’s zero in
every frame. Indeed, this is the definition of a scalar; it’s a thing that’s the same
in every frame.

The pattern we followed for combining the components of dXμ to form the
spacetime interval ds2 (and the proper time dτ) is very general. We can apply it
to any 4-vector Aμ, and the result will always be a scalar. We’ll use this
pattern over and over again, and we don’t want to write the long expression

−(At)2 + (Ax)2 + (Ay)2 + (Az)2

every time we need it. Instead, we’ll create some new notation to make things
easier. A matrix called the metric figures heavily in this new notation. In
special relativity, the metric is often called η (Greek letter eta), with indices μ
and ν. It’s a simple matrix. In fact, it’s almost the same as the identity matrix. It
has three diagonal elements that are equal to 1, just like the unit matrix. But the
fourth diagonal element is −1. This element corresponds to time. Here’s what
the entire matrix looks like:

In this notation, we represent a 4-vector as a column. For example, the 4-
vector Aν is written as



Let’s take the matrix ημν and multiply it by the vector Aν, where ν runs from 0
to 3. Using the summation sign, we can write that as

This is a new kind of object, which we’ll call Aμ, with a lower index,

Let’s figure out what this new object “A-with-a-lower-index” is. It’s not the
original 4-vector Aν. If η really were the identity matrix, multiplying a vector
by it would give you the exact same vector. But it’s not the identity matrix. The
−1 in the diagonal means that when you form the product ∑νημνAν, the sign of
the first component, At, gets flipped, and everything else stays the same. We can
write immediately that Aν is

In other words, when I perform this operation, I simply change the sign of the
time component. In general relativity, the metric has a deeper geometric
meaning. But for our purposes, it’s just a convenient notation.9

5.4 Einstein Sum Convention
If necessity is the mother of invention, laziness is the father. The Einstein
summation convention is an offspring of this happy marriage. We introduced it
in Section 4.4.2, and now we explore its use a little further.

Whenever you see the same index both downstairs and upstairs in a single
term, you automatically sum over that index. Summation is implied, and you
don’t need a summation symbol. For example, the term



means

A0 A0 + A1 A1 + A2 A2 + A3 A3

because the same index μ appears both upstairs and downstairs in the same
term. On the other hand, the term

AνAμ

does not imply summation, because the upstairs and downstairs indices are not
the same. Likewise,

AνAν

does not imply summation even though the index ν is repeated, because both
indices are downstairs.

You may recall that some of the equations in Section 3.4.3 used the symbol 
 to signify the sum of squares of space components. By using upstairs and

downstairs indices along with the summation convention, we could have
written

which is more elegant and precise.
The operation of Expression 5.19 has the effect of changing the sign of the

time component. I should warn you that some authors follow the convention
(+1, −1, −1, −1) for the placement of these minus signs. I prefer the convention
(−1, 1, 1, 1), typically used by those who study general relativity.

An index that triggers the summation convention, like ν in the following
example, doesn’t have a specific value. It’s called a summation index or a
dummy index; it’s a thing you sum over. By contrast, an index that is not
summed over is called a free index. The expression



depends on μ (which is a free index), but it doesn’t depend on the summation
index ν. If we replace ν with any other Greek letter, the expression would have
exactly the same meaning. I should also mention that the terms upstairs index
and downstairs index have formal names. An upper index is called
contravariant, and a lower index is called covariant. I often use the simpler
words upper and lower, but you should learn the formal terms as well. We can
have A with an upper (contravariant) index, or A with a lower (covariant)
index, and we use the matrix η to convert one to the other. Converting one kind
of index to the other kind is called raising the index or lowering the index,
depending on which way we go.

Exercise 5.1: Show that AνAν has the same meaning as AμAμ.

Exercise 5.2: Write an expression that undoes the effect of Eq. 5.20. In
other words, how do we “go backwards”?

Let’s have another look at the Expression 5.19,

AμAμ.

This expression is summed over because it contains a repeated index, one
upper and one lower. Previously, we expanded it using the indices 0 through 3.
We can write the same expression using the labels t, x, y, and z:

Aμ Aμ = AtAt + AxAx + AyAy + AzAz.

For the three space components, the covariant and contravariant versions are
exactly the same. The first space component is just (Ax)2, and it doesn’t matter
whether you put the index upstairs or downstairs. The same is true for the y and
z components. But the time component becomes −(At)2,

Aμ Aμ = −(At)2 + (Ax)2 + (Ay)2 + (Az)2.



The time component has a minus sign because the operation of lowering or
raising that index changes its sign. The contravariant and covariant time
components have opposite signs, and At times At is −(At)2. On the other hand,
the contravariant and covariant space components have the same signs.

The quantity AμAμ is exactly what we think of as a scalar. It’s the difference
of the square of the time component and the square of the space component. If
Aμ happens to be a displacement such as Xμ, then it’s the same as the quantity
τ2, except with an overall minus sign; in other words, it’s −τ2. But whatever
sign it has, this sum is clearly a scalar.

This process is called contracting the indices, and it’s very general. As
long as Aμ is a 4-vector, the quantity AμAμ is a scalar. We can take any 4-vector
at all and make a scalar by contracting its indices. We can also write AμAμ a
little differently by referring to Eq. 5.20 and replacing Aμ with ημνAν. In other
words, we can write

On the right side, we use the metric η and sum over μ and ν. Both sides of Eq.
5.21 represent the same scalar. Now let’s look at an example involving two
different 4-vectors, A and B. Consider the expression

AμBμ.

Is this a scalar? It certainly looks like one. It has no indices because all the
indices have been summed over.

To prove that it’s a scalar, we’ll need to rely on the fact that the sums and
differences of scalars are also scalars. If we have two scalar quantities, then
by definition you and I will agree about their values even though our reference
frames are different. But if we agree about their values, we must also agree
about the value of their sum and the value of their difference. Therefore, the
sum of two scalars is a scalar, and the difference of two scalars is also a
scalar. If we keep this in mind, the proof is easy. Just start with two 4-vectors
Aμ and Bμ and write the expression

(A + B)μ(A + B)μ.



This expression must be a scalar. Why is that? Because both Aμ and Bμ are 4-
vectors, their sum (A + B)μ is also a 4-vector. If you contract any 4-vector with
itself, the result is a scalar. Now, let’s modify this expression by subtracting (A
− B)μ(A − B)μ. This becomes

This modified expression is still a scalar because it’s the difference of two
scalars. If we expand the expression, we find that the AμAμ terms cancel, and
so do the BμBμ terms. The only remaining terms are AμBμ and AμBμ, and the
result is

I’ll leave it as an exercise to prove that

AμBμ = AμBμ.

It doesn’t matter if you put the ups down and the downs up; the result is the
same. Therefore, the expression evaluates to

Because we know that the original Expression 5.22 is a scalar, the result AμBμ
must also be a scalar.

You may have noticed that the expression AμBμ looks a lot like the ordinary
dot product of two space vectors. You can think of AμBμ as the Lorentz or
Minkowski version of the dot product. The only real difference is the change of
sign for the time component, facilitated by the metric η.

5.5 Scalar Field Conventions
Next, we’ll set up some conventions for a scalar field, ϕ(x). In this discussion,
x represents all four components of spacetime, including time. Before we get
rolling, I need to state a theorem. The proof is not hard, and I’ll leave it as an
exercise.



Suppose you have a known 4-vector Aμ. To say Aμ is a 4-vector is not just a
statement that it has four components. It means that Aμ transforms in a particular
way under Lorentz transformations. Suppose also that we have another quantity
Bμ. We don’t know whether Bμ is a 4-vector. But we are told that when we
form the expression

AμBμ,

the result is a scalar. Given these conditions, it’s possible to prove that Bμ must
be a 4-vector. With this result in mind, let’s consider the change in value of
ϕ(x) between two neighboring points. If ϕ(x) is a scalar, you and I will agree
on its value at each of two neighboring points. Therefore, we’ll also agree on
the difference of its values at these two points: If ϕ(x) is a scalar, the change in
ϕ(x) between two neighboring points is also a scalar.

What if the two neighboring points are infinitesimally separated? How do
we express the difference in ϕ(x) between these neighboring points? The
answer comes from basic calculus: Differentiate ϕ(x) with respect to each of
the coordinates, and multiply that derivative by the differential of that
coordinate,

Following the summation convention, the right side is the derivative of ϕ(x)
with respect to t times dt, plus the derivative of ϕ(x) with respect to x times dx,
and so on. It’s the small change in ϕ(x) when going from one point to another.
We already know that both ϕ(x) and dϕ(x) are scalars. Clearly, dXμ itself is a
4-vector. In fact, it’s the basic prototype of a 4-vector. To summarize: We know
that the left side of Eq. 5.24 is a scalar, and that dXμ on the right side is a 4-
vector. What does that tell us about the partial derivative on the right side?
According to our theorem, it must be a 4-vector. It stands for a complex of four
quantities,

For Eq. 5.24 to make sense as a product, the quantity  must correspond to



a covariant vector, because the differential dXμ is contravariant. We have
discovered that derivatives of a scalar ϕ(x) with respect to the coordinates are
the covariant components Aμ of a 4-vector. This is worth emphasizing: The
derivatives of a scalar with respect to Xμ form a covariant vector. They’re
sometimes written with the shorthand symbol ∂μϕ, which we now define to be

The symbol ∂μϕ has a lower index to indicate that its components are
covariant. Is there a contravariant version of this symbol? You bet. The
contravariant version has nearly the same meaning except that its time
component has the opposite sign. Let’s write this out explicitly:

5.6 A New Scalar
We now have the tools we need to construct a new scalar. The new scalar is

∂μϕ∂μϕ.

If we expand this using the summation convention, we get

What does this stand for? It’s similar to a field Lagrangian that we wrote down
earlier. Eq. 4.7 contains the same expression with the signs reversed.10 In our
new notation, the Lagrangian is

This makes it easy to see that the Lagrangian for that scalar field is itself a
scalar. As we explained before, having a scalar-valued Lagrangian is critical



because an invariant Lagrangian leads to equations of motion that are invariant
in form. Much of field theory is about the construction of invariant
Lagrangians. So far, scalars and 4-vectors have been our main ingredients.
Going forward, we will need to construct scalar Lagrangians from other
objects as well: things like spinors and tensors. The notation we’ve developed
here will make that task much easier.

5.7 Transforming Covariant Components
The familiar Lorentz transformation equations, as presented, apply to
contravariant components. The equations are slightly different for covariant
components. Let’s see how this works. The familiar contravariant
transformations for t and x are

The covariant components are the same, except for the time component. In
other words, we can replace Ax with Ax, and (A′)x with (A′)x. However, the
covariant time component At is the negative of the contravariant time
component. So we must replace At with −(A)t, and (A′)t with −(A′)t. Making
these substitutions in the first equation results in

which simplifies to

Applying them to the second equation gives us



These equations are almost the same as the contravariant versions, except that
the sign of v has been reversed.

5.8 Mathematical Interlude: Using Exponentials to
Solve Wave Equations
Starting with a known Lagrangian, the Euler-Lagrange equations provide a
template for writing the equations of motion. The equations of motion are
themselves differential equations. For some purposes, knowing the form of
these equations is good enough. However, sometimes we would like to solve
them.

Finding solutions to differential equations is a huge topic. Nevertheless,
stripped down to its bare bones, the basic approach is as follows:

1. Propose (okay, guess) a function that might satisfy the differential
equation.

2. Plug the function into the differential equation. If it works, you’re done.
Otherwise, return to Step 1.

Instead of racking our brains over a solution, we’ll just provide one that
happens to work. It turns out that exponential functions of the form

are the main building blocks for wave equations. You may find it puzzling that
we choose a complex valued function as a solution, when our problems assume
that ϕ is a real valued scalar field. To make sense of this, remember that

where kx − ωt is real. Eq. 5.25 highlights the fact that a complex function is the
sum of a real function and i times another real function. Once we’ve worked
out our solution , we regard these two real functions as two solutions
and ignore the i. This is easy to see if the complex function is set to zero. In
that case, its real and imaginary parts must separately equal zero, and both
parts are solutions.11 In Eq. 5.25,



cos(kx − ωt)

is the real part, and

sin(kx − ωt)

is the imaginary part.
If we ultimately extract real functions as our solutions, why bother with

complex functions at all? The reason is that it’s easy to manipulate the
derivatives of exponential functions.

5.9 Waves
Let’s look at the wave equation and solve it. We already have the Lagrangian
for ϕ,

However, I want to extend it slightly by adding one more term. The additional
term, , is also a scalar. It’s a simple function of ϕ and does not contain
any derivatives. The parameter μ2 is a constant. Our modified field Lagrangian
is

This Lagrangian represents the field theory analog of the harmonic oscillator. If
we were discussing a harmonic oscillator and we called the coordinate of the
oscillator ϕ, the kinetic energy would be

The potential energy would be , where μ2 represents a spring constant.
The Lagrangian would be



This Lagrangian would represent the good old harmonic oscillator. It’s similar
to Eq. 5.26, our field Lagrangian. The only difference is that the field
Lagrangian has some space derivatives. Let’s work out the equations of motion
that correspond to Eq. 5.26 and then solve them. We’ll start with the time
component. The Euler-Lagrange equations tell us to calculate

for Eq. 5.26. It should be easy to see that the result is

This is the analog of the acceleration term for the harmonic oscillator. We get
additional terms by taking derivatives of the space components of Eq. 5.26.
With these additional terms, the left side of the equation of motion becomes

To find the right side, we calculate . The result of that calculation is

Gathering our results for the left and right sides of the Euler-Lagrange
equations, the equation of motion for ϕ is

Now let’s put everything on the left side, giving us



This is a nice simple equation. Do you recognize it? It’s the Klein-Gordon
equation. It preceded the Schrödinger equation and was an attempt to describe
a quantum mechanical particle. The Schrödinger equation is similar.12 Klein
and Gordon made the mistake of trying to be relativistic. Had they not tried to
be relativistic, they would have written the Schrödinger equation and become
very famous. Instead, they wrote a relativistic equation and became much less
famous. The Klein-Gordon equation’s connection to quantum mechanics is not
important for now. What we want to do is solve it.

There are many solutions, all of them built up from plane waves. When
working with oscillating systems, it’s useful to pretend that the coordinate is
complex. Then, at the end of the calculation, we look at the real parts and
ignore the i. We explained this idea in the preceding Mathematical Interlude.

The solutions that interest us are the ones that oscillate with time and have a
component of the form

e−iωt.

This function oscillates with frequency ω. But we’re interested in solutions
that also oscillate in space, which have the form eikx. In three dimensions, we
can write this as

where the three numbers kx, ky, and kz are called the wave numbers.13 The
product of these two functions,

is a function that oscillates in space and in time. We’ll look for solutions of
this form.

Incidentally, there’s a slick way to express the right side of Eq. 5.28. We
can write it as

Where does that expression come from? If you think of k as a 4-vector, with
components (−ω, kx, ky, kz), then the expression kμXμ on the right side is just



−ωt + kxx + kyy + kzz.14 This notation is elegant, but for now we’ll stick to the
original form.

Let’s see what happens if we try to plug our proposed solution (Eq. 5.28)
into the equation of motion (Eq. 5.27). We’ll be taking various derivatives of
ϕ. Eq. 5.27 tells us which derivatives to take. We start by taking the second
derivative of ϕ with respect to time. Differentiating Eq. 5.28 twice with
respect to time gives us

Differentiating twice with respect to x results in

We get similar results when we differentiate with respect to y and z. So far, the
Klein-Gordon equation has generated the terms

based on our proposed solution. But we’re not finished. Eq. 5.27 also contains
the term +μ2ϕ. This has to be added to the other terms. The result is

At this point, it’s easy to find a solution. We just set the factor inside the
parentheses equal to zero and find that

This tells us the frequency in terms of the wave numbers. Either +ω or −ω will
satisfy this equation. Also, notice that each term under the square root is itself
a square. So if a particular value of (say) kx is part of a solution, then its
negative will also be a part of a solution.

Notice the parallel between these solutions and the energy equation, Eq.
3.43, from Lecture 3, repeated here:



Eq. 5.30 represents the classical field version of an equation that describes a
quantum mechanical particle with mass μ, energy ω, and momentum k.15 We’ll
come back to it again and again.

1 Of course we could have many more than two, and they don’t need to be orthogonal Cartesian
coordinates.
2 With too few dimensions, of course.
3 In the video, Leonard shows the field by using a colored marker to fill the region with “red mush.” Our
diagrams don’t use color, so we have to settle for “imaginary red mush.” Just think of your least favorite
school cafeteria entrée.–AF
4 Or, equivalently, V(ϕ) = 0.
5 To avoid clutter, I’m using only one space coordinate.
6 F(x) is not strictly arbitrary. However, it represents a broad class of functions, and we can think of it as
arbitrary for our purposes.

7 The symbol ∇2ϕ is shorthand for . See Appendix B for a quick summary of the
meaning of  and other vector notation. You could also refer to Lecture 11 in Volume I of the Theoretical
Minimum series. Many other references are available as well.
8 Substitute your favorite expletive for the word single.
9 It might be better to express Aν as a row matrix. However, the summation convention described in the
next section minimizes the need to write out matrices in component form.
10 Eq. 4.7 also contains a potential energy term −V(ϕ), which we’re ignoring for now.
11 Confusingly, the imaginary part of a complex function is the real function that multiplies i.
12 The Schrödinger equation only has a first derivative with respect to time, and includes the value i.

13 You can think of them as three components of a wave vector, where 
14 It turns out that (−ω, kx, ky, kz) really is a 4-vector, but we haven’t proved it.
15 The equation should also include some Planck’s constants that I’ve ignored.



Interlude: Crazy Units

“Hi, Art, are you up for some talk about units?”

“Electromagnetic units? Oy vey, I’d rather eat wormholes. Do we have to?”

“Well, take your pick: units or a wormhole dinner.”

“Okay, Lenny, you win—units.”



When I first started learning about physics, something bothered me: Why are
all the numbers—the so-called constants of nature—so big or so small?
Newton’s gravitational constant is 6.7 × 10−11, Avogadro’s number is 6.02 ×
1023, the speed of light is 3 × 108, Planck’s constant is 6.6 × 10−34, and the size
of an atom is 10−10. Nothing like this ever happened when I was learning
mathematics. True, π≈3.14159 and e≈2.718. These natural mathematical
numbers were neither big nor small, and although they had their own
transcendental oddness, I could use the math I knew to work out their values. I
understand why biology might have nasty numbers—it’s a messy subject—but
physics? Why such ugliness in the fundamental laws of nature?

I.1 Units and Scale
The answer turned out to be that the numerical values of the so-called constants
of nature actually have more to do with biology than physics.1 As an example,
take the size of an atom, about 10−10 meters. But why do we measure in
meters? Where did the meter come from and why is it so much bigger than an
atom?

When asked this way, the answer starts to come into focus. A meter is
simply a unit that’s convenient for measuring ordinary human-scale lengths. It
seems that the meter arose as a unit for measuring rope or cloth and it was
simply the distance from a man’s nose (supposedly the king’s nose) to his
outstretched fingertips.

But that raises the question, why is a man’s arm so long—1010—in atomic
radii? Here the answer is obvious: It takes a lot of atoms to make an intelligent
creature that can even bother to measure rope. The smallness of an atom is
really all about biology, not physics. You with me, Art?

And what about the speed of light; why so large? Here again the answer
may have more to do with life than with physics. There are certainly places in
the universe where things—even large, massive things—move relative to each
other with speeds close to the speed of light. Only recently, two black holes
were discovered to be orbiting each other at an appreciable fraction of the
speed of light. They crashed into each other, but that’s the way it goes; moving



that fast can be dangerous. In fact, an environment full of objects whizzing
around at nearly the speed of light would be lethal for our soft bodies. So the
fact that light moves very fast on the scale of ordinary human experience is, at
least in part, biology. We can only live where things with appreciable mass
move slowly.

Avogadro’s number? Again, intelligent creatures are necessarily big on the
molecular scale, and the objects that we can easily handle, like beakers and
test tubes, are also big. The quantities of gas and fluid that fill a beaker are
large (in number of molecules) for reasons of convenience to our large soft
selves.

Are there better units more suited to the fundamental principles of physics?
Yes indeed, but let’s first recall that in standard textbooks we are told that
there are three fundamental units: length, mass, and time. If, for example, we
chose to measure length in units of the radius of a hydrogen atom, instead of the
length of a man’s arm, there would be no large or small constants in the
equations of atomic physics or chemistry.

But there is nothing universal about the radius of an atom. Nuclear
physicists might still complain about the small size of the proton or, even
worse, the size of the quark. The obvious fix would be to use the quark radius
as the standard of length. But a quantum-gravity theorist would complain:
“Look here, my equations are still ugly; the Planck length is 10−19 in your
stupid nuclear physics units. Furthermore, the Planck length is much more
fundamental than the size of a quark.”

I.2 Planck Units
As the books say, there are three units: length, mass, and time. Is there a most
natural set of units? To put it another way, are there three phenomena that are
so fundamental, so universal, that we can use them to define the most
fundamental choice of units? I think there are, and so did Planck in 1900. The
idea is to pick aspects of physics that are completely universal, meaning that
they apply with equal force to all physical systems. With some minor historical
distortion, here was Planck’s reasoning:

The first universal fact is that there is a speed limit that all matter must
respect. No object—no object—can exceed the speed of light, whether it be a



photon or a bowling ball. That gives the speed of light a universal aspect that
the speed of sound, or any other speed, does not have. So Planck said, let’s
choose the most fundamental units so that the speed of light is 1, c = 1.

Next he said that gravity provides us with something universal, Newton’s
universal law of gravitation: Every object in the universe attracts every other
object with a force equal to Newton’s constant times the product of the
masses, divided by the square of the distance between them. There are no
exceptions; nothing is immune to gravity. Again, Planck recognized something
universal about gravity that is not true of other forces. He concluded that the
most fundamental choice of units should be defined so that Newton’s
gravitational constant is set to unity: G = 1.

Finally, a third universal fact of nature—one that Planck could not fully
appreciate in 1900—is the Heisenberg Uncertainty Principle. Without too
much explanation, what it says is that all objects in nature are subject to the
same limitation on the accuracy with which they can be known: The product of
the uncertainty in position, and the uncertainty of momentum, is at least as
big as Planck’s constant divided by 2,

Again, this is a universal property that applies to every object, no matter how
big or small—humans, atoms, quarks, and everything else. Planck’s
conclusion: The most fundamental units should be such that his own constant 
is set to 1. This, as it turns out, is enough to fix the three basic units of length,
mass, and time. Today, the resulting units are called Planck units.

So then why don’t all physicists use Planck units? There is no doubt that the
fundamental laws of physics would be most simply expressed. In fact, many
theoretical physicists do work in Planck units, but they would not be at all
convenient for ordinary purposes. Imagine if we used Planck units in daily life.
The signs on freeways would read



Figure I.1: Traffic Sign
in Planck Units.

The distance to the next exit would be 1038, and the time in a single day would
be 8.6 × 1046. Perhaps more important for physics, ordinary laboratory units
would have inconveniently large and small values. So for convenience’s sake
we live with units that are tailored to our biological limitations. (By the way,
none of this explains the incredible fact that in our country we still measure in
inches, feet, yards, slugs, pints, quarts, and teaspoons.)

I.3 Electromagnetic Units
Art: Okay, Lenny, I get what you are saying. But what about electromagnetic
units? They seem to be especially annoying. What’s that thing 0 in all the
equations, the thing the textbooks call the dielectric constant of the vacuum?
2 Why does the vacuum have a dielectric constant anyway, and why is it
equal to 8.85 × 10−12? That seems really weird.

Art is right; electromagnetic units are a nuisance all of their own. And he is
right that it doesn’t make sense to think of the vacuum as a dielectric—not in
classical physics, anyway. The language is a holdover from the old ether
theory.

The real question is: Why was it necessary to introduce a new unit for
electric charge—the so-called coulomb? The history is interesting and actually
based on some physical facts, but probably not the ones you imagine. I’ll start
by telling you how I would have set things up, and why it would have failed.

What I would have done is to start by trying to accurately measure the force
between two electric charges, let’s say by rubbing two pith balls with cat’s fur
until they were charged. Presumably I would have found that the force was
governed by Coulomb’s law,

Then I would have declared that a unit charge—one for which q = 1—is an
amount of charge such that two of them, separated by 1 meter, have a force



between them of 1 newton. (The newton is a unit of force needed to accelerate
a 1-kilogram mass by 1 meter per second per second.) In that way there would
be no need for a new independent unit of charge, and Coulomb’s law would be
simple, just like I wrote earlier.

Maybe if I had been particularly clever and had a bit of foresight, I might
have put a factor of 4π in the denominator of the Coulomb law:

But that’s a detail.
Now why would I have failed, or at least not had good accuracy? The

reason is that it is difficult to work with charges; they are hard to control.
Putting a decent amount of charge on a pith ball is hard because the electrons
repel and tend to jump off the ball. So historically a different strategy was
used.



Figure I.2: Parallel Wires. No current flows because the switch is open.



Figure I.3: Parallel
Wires with Currents
Flowing in Opposite

Directions. The switch
is closed.

By contrast with charge, working with electric current in wires is easy.
Current is charge in motion, but because the negative charge of the moving
electrons in a wire is held in place by the positive charges of the nuclei, they
are easy to control. So instead of measuring the force between two static
charges, we instead measure the force between two current-carrying wires.
Figures I.2 and I.3 illustrate how such an apparatus might work. We start with a
circuit containing a battery, a switch, and two long parallel wires stretched
tight and separated by a known distance. For simplicity the distance could be a
meter, although in practice we may want it to be a good deal smaller.

Now we close the switch and let the current flow. The wires repel each
other for reasons that will be explained later in this book. What we see is that
the wires belly out in response to the force. In fact, we can use the amount of
bellying to measure the force (per unit length). This allows us to define a unit
of electric current called an ampere or amp.



One amp is the current needed to cause parallel wires separated by 1
meter, to repel with a force of 1 newton per meter of length.

Notice that in this way, we define a unit of current, not a unit of electric charge.
Current measures the amount of charge passing any point on the circuit per unit
time. For example, it is the amount of charge that passes through the battery in
1 second.

Art: But wait, Lenny. Doesn’t that also allow us to define a unit of
charge? Can’t we say that our unit of charge—call it 1 coulomb of charge—
is the amount of charge that passes through the battery in one second, given
that the current is one amp?

Lenny: Very good! That’s exactly right. Let me say it again: The coulomb
is by definition the amount of charge passing through the circuit in one
second, when the current is one amp; that is, when the force on the wires is
one newton per meter of length (assuming the wires are separated by one
meter).

The disadvantage is that the definition of a coulomb is indirect. The advantage
is that the experiment is so easy that even I did it in the lab. The problem,
however, is that the unit of charge defined this way is not the same unit that
would result from measuring the force between static charges.

How do the units compare? To answer that, we might try to collect two
buckets of charge, each a coulomb, and measure the force between them. This
would be dangerous even if it were possible; a coulomb is a really huge
amount of charge. The bucket would explode and the charge would just fly
apart. So the question becomes, why does it take such a huge amount of charge
flowing in the wires to produce a modest force of 1 newton?

Art: Why is there a force between the wires anyway? Even though the
wires have moving electrons, the net charge on the wire is zero. I don’t see
why there is any force.

Lenny: Yes, you are right that the net charge is zero. The force is not
electrostatic. It’s actually due to the magnetic field caused by the motion of
the charges. The positive nuclei are at rest and don’t cause a magnetic field,



but the moving electrons do.
Art: Okay, but you still haven’t told me why it takes such a whopping big

amount of moving charge to create a mere newton of force between the wires.
Am I missing something?

Lenny: Only one thing. The charges move very slowly.

The electrons in a typical current-carrying wire do indeed move very slowly.
They bounce around very quickly, but like a drunken sailor, they mostly get
nowhere; on the average it takes an electron about an hour to move 1 meter
along a wire. That seems slow, but compared to what? The answer is that they
move very slowly compared to the only natural physical unit of velocity, the
speed of light. In the end that’s why it takes a huge amount of charge, moving
through the wires of a circuit, to produce a significant force.

Now that we know that the standard unit of charge, the coulomb, is a
tremendously large amount of charge, let’s go back to Coulomb’s law. The
force between two coulomb-size charges is enormous. To account for this we
have to put a huge constant into the force law. Instead of

we write

where 0 is the small number 8.85 × 10−12.

Art: So ultimately the weird dielectric constant of the vacuum has
nothing to do with dielectrics. It has more to do with the slow molasses-like
motion of electrons in metallic wires. Why don’t we just get rid of 0 and set
it equal to 1?

Lenny: Good idea, Art. Let’s do that from now on. But don’t forget that we
will be working with a unit of charge that is about one three-hundred-
thousandth of a Coulomb. Forgetting about the conversion factor could lead
to a nasty explosion.



1 If you’ve read our previous book on quantum mechanics, you’ve heard this sermon before. It’s
interesting that the same issues of scale that affect our choice of units also limit our ability to directly
perceive quantum effects with our senses.
2 Also called vacuum permittivity, or permittivity of free space.



Lecture 6

The Lorentz Force Law1

Art: Lenny, who is that dignified gentleman with the beard and wire-frame
glasses?

Lenny: Ah, the Dutch uncle. That’s Hendrik. Would you like to meet him?

Art: Sure, is he a friend of yours?

Lenny: Art, they’re all friends of mine. Come on, I’ll introduce you.

Art Friedman, meet my friend Hendrik Lorentz.

Poor Art, he’s not quite prepared for this.

Art: Lorentz? Did you say Lorentz? Oh my God! Are you? Is he? Are you
really, are you really the …”

Dignified as always, HL bows deeply.

Lorentz: Hendrik Antoon Lorentz, at your service.

Later a star-struck Art quietly asks, Lenny, is that really the Lorentz? The one
who discovered Lorentz transformations?

Lenny: Sure he is, and a lot more than that. Bring me a napkin and a pen and
I’ll tell you about his force law.



Of all the fundamental forces in nature, and there are many of them, few were
known before the 1930s. Most are deeply hidden in the microscopic quantum
world and only became observable with the advent of modern elementary
particle physics. Most of the fundamental forces are what physicists call short-
range. This means that they act only on objects that are separated by very
small distances. The influence of a short-range force decreases so rapidly
when the objects are separated that, for the most part, they are not noticed in
the ordinary world. An example is the so-called nuclear force between
nucleons (protons and neutrons). It’s a powerful force whose role is to bind
these particles into nuclei. But as powerful as that force is, we don’t ordinarily
notice it. The reason is that its effects disappear exponentially when the
nucleons are separated by more than about 10−15 meters. The forces that we do
notice are the long-range forces whose effects fade slowly with distance.

Of all the forces of nature, only three were known to the ancients—electric,
magnetic, and gravitational. Thales of Miletos (600 BC) was said to have
moved feathers with amber that had been rubbed with cat fur. At about the
same time he mentioned lodestone, a naturally occurring magnetic material.
Aristotle, who was probably late on the scene, had a theory of gravity, even if
it was completely wrong. These three were the only forces that were known
until the 1930s.

What makes these easily observed forces special is that they are long-
range. Long-range forces fade slowly with distance and can be seen between
objects when they are well separated.

Gravitational force is by far the most obvious of the three, but surprisingly
it is much weaker than electromagnetic force. The reason is interesting and
worth a short digression. It goes back to Newton’s universal law of
gravitational attraction: Everything attracts everything else. Every elementary
particle in your body is attracted by every particle in the Earth. That’s a lot of
particles, all attracting one another, and the result is a significant and
noticeable gravitational attraction, but in fact the gravitational attraction
between individual particles is far too small to measure.

The electric forces between charged particles is many orders of magnitude
stronger than the gravitational force. But unlike gravity, electric force can be
either attractive (between opposite charges) or repulsive (between like



charges). Both you and the Earth are composed of an equal number of positive
charges (protons) and negative charges (electrons), and the result is that the
forces cancel. If we imagined getting rid of all the electrons in both you and the
Earth, the repulsive electric forces would easily overwhelm gravity and blast
you from the Earth’s surface. In fact, it would be enough to blast the Earth and
you into smithereens.

In any case, gravity is not the subject of these lectures, and the only other
long-range forces are electromagnetic. Electric and magnetic forces are
closely related to each other; in a sense they are a single thing, and the unifying
link is relativity. As we will see, an electric force in one frame of reference
becomes a magnetic force in another frame, and vice versa. To put it another
way, electric and magnetic forces transform into each other under Lorentz
transformation. The rest of these lectures are about electromagnetic forces and
how they are unified into a single phenomenon through relativity. Going back to
Pauli’s (fictitious) paraphrase of John Wheeler’s (real) slogan,

Fields tell charges how to move; charges tell fields how to vary.

We’ll begin with the first half—fields tell charges how to move. Or to put it
more prosaically, fields determine the forces on charged particles.

An example that may be familiar to you—if not, it soon will be—is the
electric field . Unlike the scalar field that we discussed in the last lecture, the
electric field is a vector field—a 3-vector, to be precise. It has three
components and points in some direction in space. It controls the electric force
on a charged particle according to the equation

In this equation the symbol e represents the electric charge of the particle. It
can be positive, in which case the force is in the same direction as the electric
field; it can be negative, in which case the force and the field are in opposite
directions; or, as in the case of a neutral atom, the force can be zero.

Magnetic forces were first discovered by their action on magnets or bits of
lodestone, but they also act on electrically charged particles if the particles are
in motion. The formula involves a magnetic field  (also a 3-vector), the
electric charge e, and the velocity of the particle  We’ll derive it later from an



action principle, but jumping ahead, the force on a charged particle due to a
magnetic field is

The symbol × represents the ordinary cross-product of vector algebra, which I
assume you have seen before.2 One interesting property of magnetic forces is
that they vanish for a particle at rest and increase as the particle velocity
increases. If there happens to be both an electric and a magnetic field, the full
force is the sum

Eq. 6.1 was discovered by Lorentz and is called the Lorentz force law.
We’ve already discussed scalar fields and the way they interact with

particles. We showed how the same Lagrangian (and the same action) that tells
the field how to influence the particle also tells the particle how to influence
the field. Going forward, we’ll do the same thing for charged particles and the
electromagnetic field. But before we do, I want to briefly review our
notational scheme and extend it to include a new kind of object: tensors.
Tensors are a generalization of vectors and scalars and include them as special
cases. As we will see, the electric and magnetic fields are not separate entities
but combine together to form a relativistic tensor.

6.1 Extending Our Notation
Our basic building blocks are 4-vectors with upper and lower indices. In the
context of special relativity, there’s little difference between the two types of
indices. The only difference occurs in the time component (the component with
index zero) of a 4-vector. For a given 4-vector, the time component with an
upper index has the opposite sign of the time component with lower index. In
symbols,

A0 = −A0.

It may seem like overkill to define a notation whose sole purpose is to keep
track of sign changes for time components. However, this simple relationship



is a special case of a much broader geometric relationship based on the metric
tensor. When we study general relativity, the relationship between upper and
lower indices will become far more interesting. For now, upper and lower
indices simply provide a convenient, elegant, and compact way to write
equations.

6.1.1 4-Vector Summary
Here is a quick summary of concepts from Lecture 5 for easy reference.

4-vectors have three space components and one time component. A Greek
index such as μ refers to any or all of these components and may take the
values (0, ). The first of these (the component labeled zero) is the time
component. Components 1, 2, and 3 correspond to the x, y, and z directions of
space. For example, A0 represents the time component of the 4-vector A. A2

represents the space component in the y direction. When we focus only on the
three space components of a 4-vector, we label them with Latin indices such as
m or p. Latin indices may take the values (), but not zero. Symbolically, we can
write

So far, I’ve labeled my 4-vectors with upstairs, or contravariant indices. By
convention, a contravariant index is the sort of thing you would attach to the
coordinates themselves, such as Xμ, or to a coordinate displacement such as
dXμ. Things that transform in the same way as coordinates or displacements
carry upstairs indices.

The covariant counterpart to Aμ is written with a downstairs index, Aμ. It
describes the same 4-vector using a different notation. To switch from
contravariant notation to covariant notation, we use the 4 × 4 metric

The formula



converts an upstairs index to a downstairs index. The repeated index ν on the
right side is a summation index, and therefore Eq. 6.2 is shorthand for

The covariant and contravariant components of any 4-vector A are exactly the
same, except for the time components. The upstairs and downstairs time
components have opposite signs. Eq. 6.2 is equivalent to the two equations

Eq. 6.2 gives this same result because of the −1 in the upper-left position of
ημν.

6.1.2 Forming Scalars
For any two 4-vectors A and B, we can form a product AνBν using the upstairs
components of one and the downstairs components of the other.3 The result is a
scalar, which means it has the same value in every reference frame. In
symbols,

AνBν = scalar.

The repeated index ν indicates a summation over four values. The long form of
this expression is

6.1.3 Derivatives
Coordinates and their displacements are the prototypes for contravariant
(upstairs) components. In the same way, derivatives are the prototype for
covariant (downstairs) components. The symbol ∂μ stands for



In Lecture 5, we explained why these four derivatives are the covariant
components of a 4-vector. We can also write them in contravariant form. To
summarize:
Covariant Components:

Contravariant Components:

As usual, the only difference between them is the sign of the time component.
The symbol ∂μ doesn’t mean much all by itself; it has to act on some object.

When it does, it adds a new index μ to that object. For example, if ∂μ operates
on a scalar, it creates a new object with covariant index μ. Taking a scalar
field ϕ as a concrete example, we could write

The right side is a collection of derivatives that forms the covariant vector

The symbol ∂μ also provides a new way to construct a scalar from a vector.
Suppose we have a 4-vector Bμ(t, x) that depends on time and position. In
other words B is a 4-vector field. If B is differentiable, it makes sense to
consider the quantity

∂μBμ(t, x).

Under the summation convention, this expression tells us to differentiate Bμ

with respect to each of the four components of spacetime and add up the
results:



The result is a scalar.
The summing process we’ve illustrated here is very general; it’s called

index contraction. Index contraction means identifying an upper index with an
identical lower index within a single term, and then summing.

6.1.4 General Lorentz Transformation
Back in Lecture 1, we introduced the general Lorentz transformation. Here, we
return to that idea and add some details.

Lorentz transformations make just as much sense along the y axis or the z
axis as they do along the x axis. There’s certainly nothing special about the x
direction or any other direction. In Lecture 1, we explained that there’s another
class of transformations—rotations of space—that are also considered
members of the family of Lorentz transformations. Rotations of space do not
affect time components in any way.

Once you accept this broader definition of Lorentz invariance, you can say
that a Lorentz transformation along the y axis is simply a rotation of the Lorentz
transformation along the x axis. You can combine rotations together with the
“normal” Lorentz transformations to make a Lorentz transformation in any
direction or a rotation about any axis. This is the general set of transformations
under which physics is invariant. The proof of this result is not important to us
right now. What is important is that physics is invariant not only under simple
Lorentz transformations but also under a broader category of transformations
that includes rotations of space.

How can we fold Lorentz transformations into our index-based notation
scheme? Let’s consider the transformation of a contravariant vector

Aμ.

By definition, this vector transforms in the same way as the contravariant
displacement vector Xμ. For example, the transformation equation for the time
component A0 is

This is the familiar Lorentz transformation along the x axis except that I’ve



called the time component A0 and I’ve called the x component A1. We can
always write these transformations in the form of a matrix acting on the
components of a vector. For example, I can write

(A′)μ

to represent the components of the 4-vector Aμ in my frame of reference. To
express these components as functions of the components in your frame, we’ll
define a matrix  with upper index μ and lower index ν,

 is a matrix because it has two indices; it’s a 4 × 4 matrix that multiplies the
4-vector Aν.4

Let’s make sure that Eq. 6.3 is properly formed. The left side has a free
index μ, which can take any of the values (0, ). The right side has two indices,
μ and ν. The summation index ν is not an explicit variable in the equation. The
only free index on the right side is μ. In other words, each side of the equation
has a free contravariant index μ. Therefore, the equation is properly formed; it
has the same number of free indices on the left side as it does on the right side,
and their contravariant characters match.

Eq. 6.4 gives an example of how we would use Lμ
ν in practice. We have

filled in matrix elements that correspond to a Lorentz transformation along the
x axis.5

What does the equation say? Following the rules of matrix multiplication, Eq.
6.4 is equivalent to four simple equations. The first equation specifies the
value of t′, which is the first element of the vector on the left side. We set t′
equal to the dot product of the first row of the matrix with the column vector on
the right side. In other words, the equation for t′ becomes



or simply

Carrying out the same process for the second row of Lμ
ν gives the equation for

x′

The third and fourth rows produce the equations

It’s easy to recognize these equations as the standard Lorentz transformation
along the x axis. If we wanted to transform along the y axis instead, we would
just shuffle these matrix elements around. I’ll leave it to you to figure out how
to do that.

Now let’s consider a different operation: a rotation in the y, z plane, where
the variables t and x play no part at all. A rotation can also be represented as a
matrix, but the elements would be different from our first example. To begin
with, the upper-left quadrant would look like a 2 × 2 unit matrix. That assures
that t and x are not affected by the transformation. What about the lower-right
quadrant? You probably know the answer. To rotate the coordinates by angle θ,
the matrix elements would be the sines and cosines shown in Eq. 6.5.

Following the rules of matrix multiplication, Eq. 6.5 is equivalent to the four



equations

In a similar way, we can write matrices representing rotations in the x, y or x, z
planes by shuffling these matrix elements to different locations within the
matrix.

Once we define a set of transformation matrices for simple linear motion
and spatial rotations, we can multiply these matrices together to make more
complicated transformations. In this way, we can represent a complicated
transformation using a single matrix. The simple transformation matrices
shown here, along with their y and z counterparts, are the basic building
blocks.

6.1.5 Covariant Transformations
So far, we’ve explained how to transform a 4-vector with a contravariant
(upper) index. How do we transform a 4-vector with a covariant (lower)
index?

Suppose you have a 4-vector with covariant components. You know what
these components look like in your frame, and you want to find out what they
look like in my frame. We need to define a new matrix Mμ

ν such that

This new matrix needs to have a lower index μ, because the resulting 4-vector
on the left side has a lower index μ.

Remember that M represents the same Lorentz transformation as our
contravariant transformation matrix L; the two matrices represent the same
physical transformation between coordinate frames. Therefore M and L must
be connected. Their connection is given by a simple matrix formula:

M = ηLη.

I’ll let you prove this on your own. We’re not going to use M very much, but



it’s nice to know how L and M are connected for a given Lorentz
transformation.

It turns out that η is its own inverse, just like the unit matrix is its own
inverse. In symbols,

η−1 = η.

The reason is that each diagonal entry is its own inverse; the inverse of 1 is 1,
and the inverse of −1 is −1.

Exercise 6.1: Given the transformation equation (Eq. 6.3) for the
contravariant components of a 4-vector Aν, where Lμ

ν is a Lorentz
transformation matrix, show that the Lorentz transformation for A’s covariant
components is

(A′)μ = Mμ
ν Aν,

where

M = ηLη.

6.2 Tensors
A tensor is a mathematical object that generalizes the notions of a scalar and a
vector; in fact, scalars and vectors are examples of tensors. We will use
tensors extensively.

6.2.1 Rank 2 Tensors
A simple way to approach tensors is think of them as “a thing with some
number of indices.” The number of indices a tensor has—the rank of the tensor
—is an important characteristic. For example, a scalar is a tensor of rank zero
(it has zero indices), and a 4-vector is a tensor of rank one. A tensor of rank
two is a thing with two indices.



Let’s look at a simple example. Consider two 4-vectors, A and B. As we’ve
seen before, we can form a product from them by contraction, AμBμ, where the
result is a scalar. But now let’s consider a more general kind of product, a
product whose result has two indices, μ and ν. We’ll start with the
contravariant version. We just multiply Aμ and Bν for each μ and ν:

AμBν.

How many components does this object have? Each index can take four
different values, so AμBν can take 4 × 4 or sixteen different values. We can list
them: A0B0, A0B1, A0B2, A0B3, A1B0, and so forth. The symbol AμBν stands for a
complex of sixteen different numbers. It’s just the set of numbers you get by
multiplying the μ component of A with the ν component of B. This object is a
tensor of rank two. I’ll use the generic label T for tensor:

Tμν = AμBν.

Not all tensors are constructed from two vectors in this way, but two vectors
can always define a tensor. How does Tμν transform? If we know how A
transforms and we know how B transforms (which is the same way) we can
immediately figure out the transformed components of AμBν, which we call

(T′)μν = (A′)μ(B′)ν.

But, of course, we do know how A and B transform; Eq. 6.3 tells us how.
Substituting Eq. 6.3 into the right side for both A′ and B′ gives the result

This requires some explanation. In Eq. 6.3, the repeated index was called ν.
However, in the preceding equation, we replaced ν with σ for the A factor, and
with τ for the B factor. Remember, these are summation indices and it doesn’t
matter what we call them as long as we’re consistent. To avoid confusion, we
want to keep the summation indices distinct from other indices and distinct
from each other.

Each of the four symbols on the right side stands for a number. Therefore,
we’re allowed to reorder them. Let’s group the matrix elements together:



Notice that we can now identify AσBτ on the right side with the untransformed
tensor element Tστ and rewrite the equation as

Eq. 6.9 gives us a new transformation rule about a new kind of object with two
indices. Tμν transforms with the action of the Lorentz matrix on each one of the
indices.

6.2.2 Tensors of Higher Rank
We can invent more complicated kinds of tensors—tensors with three indices,
for example, such as

Tμνλ.

How would this transform? You could think of it as the product of three 4-
vectors with indices μ, ν, and λ. The transformation formula is straightforward:

There’s a transformation matrix for each index, and we can generalize this
pattern to any number of indices.

At the beginning of the section, I said that a tensor is a thing that has a bunch
of indices. That’s true, but it’s not the whole story; not every object with a
bunch of indices is considered a tensor. To qualify as a tensor the indexed
object has to transform like the examples we’ve shown. The transformation
formula may be modified for different numbers of indices, or to accommodate
covariant indices, but it must follow this general pattern.

Although tensors are defined by these transformation properties, not every
tensor is constructed by taking a product of two 4-vectors. For example,
suppose we have two other 4-vectors, C and D. We could take the product
AμBν and add it to the product CμDν,

AμBν + CμDν.



Adding tensors produces other tensors, and the preceding expression is indeed
a tensor. But it cannot in general be written as a product of two 4-vectors. Its
tensor character is determined by its transformation properties, not by the fact
that it may or may not be constructed from a pair of 4-vectors.

6.2.3 Invariance of Tensor Equations
Tensor notation is elegant and compact. But the real power behind it is that
tensor equations are frame invariant. If two tensors are equal in one frame,
they’re equal in every frame. That’s easy to prove, but keep in mind that for
two tensors to be equal, all of their corresponding components must be equal.
If every component of a tensor is equal to the corresponding component of
some other tensor, then of course they’re the same tensor.

Another way to say it is that if all the components of a tensor are zero in
one reference frame, then they’re zero in every frame. If a single component is
zero in one frame, it may well be nonzero in a different frame. But if all the
components are zero, they must be zero in every frame.

6.2.4 Raising and Lowering Indices
I’ve explained how to transform a tensor with all of its indices upstairs
(contravariant components). I could write down the rules for transforming
tensors with mixed upstairs and downstairs indices. Instead I’ll just tell you
that once you know how a tensor transforms, you can immediately deduce how
its other variants transform. By other variants I mean different versions of the
same tensor—the same geometric quantity—but with some of its upstairs
indices pushed downstairs and vice versa. For example, consider the tensor

Tμ
ν = AμBν.

This is a tensor with one index upstairs and one index downstairs. How does it
transform? Never mind! You don’t need to worry about it because you already
know how to transform Tμσ (with both indices upstairs), and you also know
how to raise and lower indices using the matrix η. Recall that

Tμ
ν = Tμσησν.



You can lower a tensor index in exactly the same way as you lower a 4-vector
index. Just multiply by η as above, using the summation convention. The
resulting object is Tμ

ν.
But there’s an even easier way to think about it. Given a tensor with all of

its indices upstairs, how do you pull some of them downstairs? It’s simple. If
the index that you’re lowering is a time index, you multiply by −1. If it’s a
space index, you don’t multiply at all. That’s what η does. For example, the
tensor component T00 is exactly the same as T00 because I’ve lowered two time
indices,

T00 = T00.

Lowering two time indices means multiplying the component by −1 twice. It’s
like the relationship between

A0B0

and

A0B0.

There are two minus signs in going from A0 to A0, and from B0 to B0. Each
lowered index introduces a minus sign, and the first product is equal to the
second. But how does

A0B1

compare with

B1 and B1 are the same, because index 1 refers to a space component. But A0

and A0 have opposite signs because index 0 is a time component. The same
relationship holds between tensor components T01 and T01:

T01 = −T01,



because only one time component was lowered. Whenever you lower or raise
a time component, you change signs. That’s all there is to it.

6.2.5 Symmetric and Antisymmetric Tensors
In general, the tensor component

Tμν

is not the same as

Tνμ,

where the indices μ and ν have been reversed. Changing the order of the
indices makes a difference. To illustrate this, consider the product of two 4-
vectors A and B. It should be clear that

For example, if we choose specific components such as 0 and 1, we can see
that

Clearly, these are not always the same: A and B are two different 4-vectors and
there’s no built-in reason for any of the components A0, A1, B0, or B1 to match
up with each other.

While tensors are not generally invariant when changing the order of
indices, there are special situations where they are. Tensors that have this
special property are called symmetric tensors. In symbols, a symmetric tensor
has the property

Tμν = Tνμ.

Let me construct one for you. If A and B are 4-vectors, then

AμBν + AνBμ



is a symmetric tensor. If you interchange the indices μ and ν, the value of this
expression remains the same. Go ahead and try it. When you rewrite the first
term, it becomes the same as the original second term; when you rewrite the
second term, it becomes the same as the original first term. The sum of the
rewritten terms is the same as the sum of the original terms. If you start with
any tensor of rank two, you can construct a symmetric tensor just as we did
here.

Symmetric tensors have a special place in general relativity. They’re less
important in special relativity, but they do come up. For special relativity, the
antisymmetric tensor is more important. Antisymmetric tensors have the
property

Fμν = −Fνμ.

In other words, when you reverse the indices, each component has the same
absolute value but changes its sign. To construct an antisymmetric tensor from
two 4-vectors, we can write

AμBν − AνBμ.

This is almost the same as our trick for constructing a symmetric tensor, except
we have a minus sign between the two terms instead of a plus sign. The result
is a tensor whose components change sign when you interchange μ and ν. Go
ahead and try it.

Antisymmetric tensors have fewer independent components than symmetric
tensors. The reason is that their diagonal components must be zero.6 If Fμν is
antisymmetric, each diagonal component must equal its own negative. The only
way that can happen is for the diagonal components to equal zero. For
example,

F00 = −F00 = 0.

The two indices are equal (which is what it means to be a diagonal
component), and zero is the only number that equals its own negative. If you
think of a rank two tensor as a matrix (a two-dimensional array), then a matrix
representing an antisymmetric tensor has zeros all along the diagonal.



6.2.6 An Antisymmetric Tensor
I mentioned earlier that the electric and magnetic fields combine to form a
tensor. In fact, they form an antisymmetric tensor. We will eventually derive the
tensor nature of the fields  and , but for now just accept the identification as
an illustration.

The names of the elements of the antisymmetric tensor are suggestive, but
for now they’re just names. The diagonal elements are all zero. We’ll call it
Fμν. It will be convenient to write out the downstairs (covariant) components,
Fμν:

This tensor plays a key role in electromagnetism, where  stands for electric
field, and  stands for magnetic field. We’ll see that the electric and magnetic
fields combine to form an antisymmetric tensor. The fields  and  are not
independent of each other. In the same way that x can get mixed up with t under
a Lorentz transformation,  can get mixed up with . What you see as a pure
electric field, I might see as having some magnetic component. We haven’t
shown this yet, but we will soon. This is what I meant earlier when I said that
electric and magnetic forces transform into one another.

6.3 Electromagnetic Fields
Let’s do some physics! We could begin by studying Maxwell’s equations, the
equations of motion that govern electromagnetic fields. We’ll do that in Lecture
8. For now, we’ll study the motion of a charged particle in an electromagnetic
field. The equation that governs this motion is called the Lorentz force law.
Later we’ll derive this law from an action principle, combined with
relativistic ideas. The nonrelativistic (low-velocity) version of the Lorentz
force law is



where e is the particle’s charge and the symbols , , , and  are ordinary 3-
vectors.7 The left side is mass times acceleration; the right side must therefore
be force. There are two contributions to the force, electric and magnetic. Both
terms are proportional to the electric charge e.

In the first term the electric charge of a particle e multiplies the electric
field . The other term is the magnetic force, in which the charge multiplies the
cross product of the particle’s velocity  with the surrounding magnetic field .
If you don’t know what a cross product is, please take the time to learn. The
Appendix contains a brief definition as does the first book in this series,
Classical Mechanics (Lecture 11). There are many other references as well.

We’ll do much of our work with ordinary 3-vectors.8 Then we’ll extend our
results to 4-vectors; we will derive the full-blown relativistic version of the
Lorentz force law. We’re going to find out that the two terms on the right side
of Eq. 6.12 are really part of the same term when written in a Lorentz invariant
form.

6.3.1 The Action Integral and the Vector Potential
Back in Lecture 4, I showed you how to construct a Lorentz invariant action
(Eq. 4.28) for a particle moving in a scalar field. Let’s quickly review the
procedure. We began with the action for a free particle in Eq. 4.27,

and added a term representing the effect of the field on the particle,

This makes a fine theory of a particle interacting with a scalar field, but it’s not
the theory of a particle in an electromagnetic field. What options do we have
for replacing this interaction with something that might yield the Lorentz force
law? That is the goal for the rest of this lecture: to derive the Lorentz force
law, Eq. 6.12, from an invariant action principle.

How can we modify this Lagrangian to describe the effects of an



electromagnetic field? Here there is a bit of a surprise. One might think that the
correct procedure is to construct a Lagrangian that involves the particle’s
coordinate and velocity components, and that depends on the  and  fields in
a manner similar to the action for a particle in the presence of a scalar field.
Then, if all goes well, the Euler-Lagrange equation for the motion would
involve a force given by the Lorentz force law. Surprisingly, this turns out to be
impossible. To make progress we have to introduce another field called the
vector potential. In some sense, the electric and magnetic fields are derived
quantities constructed from the more basic vector potential, which itself is a 4-
vector called Aμ (t, x). Why a 4-vector? All I can do at this point is ask you to
wait a little; you will see that the end justifies the means.

How can we use Aμ (t, x) to construct an action for a particle in an
electromagnetic field? The field Aμ (t, x) is a 4-vector with a lower index. It
seems natural to take a small segment of the trajectory, the 4-vector dXμ, and
combine it with Aμ (t, x) to make an infinitesimal scalar quantity associated
with that segment. For each trajectory segment, we form the quantity

d Xμ Aμ (t, x)

Then we add them up; that is, we integrate from one end to the other, from point
a to point b:

Because the integrand is a scalar, every observer agrees about its value on
each little segment. If we add quantities that we agree about, we’ll continue to
agree about them, and we’ll get the same answer for the action. To conform to
standard conventions, I’ll multiply this action by a constant, e:

I’m sure you’ve already guessed that e is the electric charge. This is the other
term in the action for a particle moving in an electromagnetic field. Let’s
collect both parts of the action integral:



6.3.2 The Lagrangian
Both terms in Eq. 6.13 were derived from Lorentz invariant constructions: the
first term is proportional to the proper time along the trajectory and the second
is constructed from the invariant dXμ Aμ. Whatever follows from this action
must be Lorentz invariant even if it may not be obvious.

The first term is an old friend and corresponds to the free-particle
Lagrangian

The second term is new and hopefully will give rise to the Lorentz force law,
although at the moment it looks quite unrelated. In its current form, the term

is not expressed in terms of a Lagrangian, because the integral is not taken over
coordinate time dt. That is easily remedied; we just multiply and divide by dt
to rewrite it as

In this form, the new term is now the integral of a Lagrangian. Calling the
integrand Lint, where int stands for interaction, the Lagrangian becomes

Now let’s notice that the quantities

come in two different flavors. The first is



Recalling that X0 and t are the same thing, we can write

The other flavor corresponds to the index μ taking one of the values (1, 2, 3),
that is, one of the three space directions. In that case we recognize

(with Latin index p) to be a component of the ordinary velocity,

If we combine the two types of terms, the interaction Lagrangian becomes

where the repeated Latin index p means that we sum from p=1 to p = 3.
Because the quantities  are the components of velocity vp, the expression 

 is nothing but the dot product of the velocity with the spatial part of
the vector potential. Therefore we could write Eq. 6.16 in a form that may be
more familiar,

Summarizing all these results, the action integral for a charged particle now
looks like this:

Once again, in more familiar notation, it’s



Now that the entire action is expressed as an integral over coordinate time dt,
we can easily identify the Lagrangian as

Exactly as we did for scalar fields, I’m going to imagine that Ap is a known
function of t and x, and that we’re just exploring the motion of the particle in
that known field. What can we do with Eq. 6.18? Write the Euler-Lagrange
equations, of course!

6.3.3 Euler-Lagrange Equations
Here are the Euler-Lagrange equations for particle motion once again, for easy
reference:

Remember that this is shorthand for three equations, one equation for each
value of p.9 Our goal is to write the Euler-Lagrange equations based on Eq.
6.18 and show that they look like the Lorentz force law. This amounts to
substituting  from Eq. 6.18 into Eq. 6.19. The calculation is a bit longer than
for the scalar field case. I’ll hold your hand and take you through the steps.
Let’s start by evaluating

also known as the canonical momentum. There must be a contribution from the
first term in Eq. 6.18, because that term contains . In fact, we already
evaluated this derivative back in Lecture 3. Eq. 3.30 shows the result (with
different variable names and in conventional units). In relativistic units, the
right side of Eq. 3.30 is equivalent to

That’s the derivative of the first term of  (Eq. 6.18) with respect to the pth
component of velocity. The second term of  does not contain  explicitly, so



its partial derivative with respect to  is zero. However, the third term does
contain , and its partial derivative is

eAp (t, x)

Putting these terms together gives us the canonical momentum,

We sneaked a small change of notation into Eq. 6.20 by writing  instead of 
. This makes no difference because space components such as p can be moved
upstairs or downstairs at will without changing their value. The downstairs
index is consistent with the left side of the equation and will be convenient for
what follows. Eq. 6.19 now instructs us to take the time derivative, which is

That’s the full left side of the Euler-Lagrange equation. What about the right
side? The right side is

In what way does  depend on Xp? The second term, eA0(t, x), clearly depends
on Xp. Its derivative is

There’s only one more term to account for: . This term is mixed in
that it depends on both velocity and position. But we already accounted for the
velocity dependence on the left side of the Euler-Lagrange equation. Now, for
the right side, we take the partial derivative with respect to Xp, which is

Now we can write the full right side of the Euler-Lagrange equation,



Setting this equal to the left side gives us the result

Does this look familiar? The first term on the left side resembles mass times
acceleration, except for the square root in the denominator. For low velocities,
the square root is very close to 1, and the term literally becomes mass times

acceleration. We’ll have more to say about the second term, , later on.
You may not recognize the first term on the right side of Eq. 6.21 but it’s

actually familiar to many of you. However, to see that we have to use different
notation. Historically, the time component of the vector potential A0(t, x) was
called −ϕ (t, x) and ϕ was called the electrostatic potential. So we can write

and the corresponding term in Eq. 6.21 is just minus the electric charge times
the gradient of the electrostatic potential. In elementary accounts of
electromagnetism, the electric field is minus the gradient of ϕ.

Let’s review the structure of Eq. 6.21. The left side has a free (nonsummed)
covariant index p. The right side also has a free covariant index p, as well as a
summation index n. This is the Euler-Lagrange equation for each component of
position, X1, X2, and X3. It doesn’t yet look like something we might recognize,
but it soon will.

Our next move is to evaluate the time derivatives on the left side. The first
term is easy; we’ll simply move the m outside the derivative, which gives

How do we differentiate the second term, e Ap(t, x), with respect to time? This
is a little tricky. Of course, Ap(t, x) may depend explicitly on time. But even if
it doesn’t, we can’t assume that it’s constant, because the position of the
particle is not constant; it changes with time because the particle moves. Even



if Ap(t, x) does not depend explicitly on time, its value changes over time as it
tracks the motion of the particle. As a result, the derivative generates two
terms. The first term is the explicit derivative of Ap with respect to t,

where the constant e just comes along for the ride. The second term accounts
for the fact that Ap(t, x) also depends implicitly on time. This term is the
change in Ap(t, x) when Xn changes, times . Putting these terms together
results in

Collecting all three terms of the time derivative, the left side of Eq. 6.21 now
looks like this:

and we can rewrite the equation as

To avoid clutter, I’ve decided to write Ap instead of Ap(t, x). Just remember
that every component of A depends on all four spacetime coordinates. The
equation is well formed because each side has a summation index n and a
covariant free index p.10

This is a lot to assimilate. Let’s take a breath and look at what we have so
far. The first term in Eq. 6.22 is the relativistic generalization of “mass times
acceleration.” We’ll leave this term on the left side. After moving all the other
terms to the right side, here’s what we get:



If the left side is the relativistic generalization of mass times acceleration, the
right side can only be the relativistic force on the particle.

There are two kinds of terms on the right side: terms that are proportional
to velocity (because they contain  as a factor), and terms that are not.
Grouping similar terms together on the right side results in

Art: Ouch, my head hurts. I don’t recognize any of this. I thought you said we
were going to get the Lorentz force law. You know,

All I see in common with Eq. 6.24 is the electric charge e.

Lenny: Hang on, Art, we’re getting there.

Look at the left side of Eq. 6.24. Suppose the velocity is small so that we can
ignore the square root in the denominator. Then the left side is just mass times
acceleration, which Newton would call the force. So we have our .

On the right side we have two terms, one of which contains a velocity ,
which I could call vn. The other term doesn’t depend on the velocity.

Art: I think I see the light, Lenny! Is the term without the velocity ?

Lenny: Now you’re cooking, Art. Go for it; what’s the term with the velocity?

Art: Holy cow! It must be… Yes! It must be 

Art’s right. Consider the term that doesn’t depend on velocity, namely

If we define the electric field component Ep to be



we get the first term of the Lorentz law, .
The velocity-dependent term is a bit harder unless you are a master of cross

products, in which case you can see that it’s  in component form. In case
you’re not a master of cross products, we’ll work it out next.11

Let’s first consider the z component of ,

We want to compare this with the z component of

which we get by identifying the index p with the direction z. The index n is a
summation index, which means we need to substitute the values (1, 2, 3), or
equivalently (x, y, z), and then add up the results. There’s no shortcut; just plug
in these values and you’ll get

Exercise 6.2: Expression 6.28 was derived by identifying the index p with
the z component of space, and then summing over n for the values (1, 2, 3).
Why doesn’t Expression 6.28 contain a vz term?

Now all we have to do is to match Expression 6.28 with the right side of Eq.
6.26. We can do this by making the identifications

and



The minus sign in the second equation is due to the minus sign in the second
term of Eq. 6.26. We can do exactly the same thing for the other components,
and we find that

There is a shorthand notation for these equations that you should be familiar
with.12 Eqs. 6.29 are summarized by saying that  is the curl of ,

How should one think about Eqs. 6.25 and 6.30? One way is to say that the
fundamental quantity defining an electromagnetic field is the vector potential,
and that Eqs. 6.25 and 6.30 define derived objects that we recognize as
electric and magnetic fields. But one might respond that the quantities that are
most physical, the ones directly measured in the laboratory, are E and B, and
the vector potential is just a trick for describing them. Either way is fine: it’s a
Monday-Wednesday-Friday versus Tuesday-Thursday-Saturday kind of thing.
But whatever your philosophy about the primacy of A versus (E, B) happens to
be, the experimental fact is that charged particles move according to the
Lorentz force law. In fact, we can write Eq. 6.24 in the fully relativistically
invariant form,

6.3.4 Lorentz Invariant Equations
Eq. 6.31 is the Lorentz invariant form of the equation of motion for a charged
particle; the left side is a relativistic form of mass times acceleration, and the
right side is the Lorentz force law. We know this equation is Lorentz invariant
because of the way we defined the Lagrangian. However, it is not manifestly



invariant; it is not obviously invariant based on the structure of the equation.
When a physicist says that an equation is manifestly invariant under Lorentz
transformations, she means that it is written in a four-dimensional form with
upstairs and downstairs indices matching up in the right way. In other words, it
is written as a tensor equation with both sides transforming the same way.
That’s our goal for the rest of this lecture.

Let’s go all the way back to the previous form of the Euler-Lagrange
equations (Eq. 6.24), which I’ll rewrite here for convenience.

Back in Lectures 2 and 3 (see Eqs. 2.16 and 3.9), we found that the quantities

are the space components of the velocity 4-vector. In other words,

Because p is a Latin index, we can also write

Therefore (ignoring the factor m for now), the left side of Eq. 6.24 can be
written as

These are not components of a 4-vector. However, they can be put into 4-
vector form if we multiply them by dt/dτ,

These are the space components of a 4-vector—the relativistic acceleration.



The full 4-vector

has four components. Let’s therefore multiply both sides of Eq. 6.24 by dt/dτ.
We’ll replace t with X0, and we’ll write dX0/dτ instead of dt/dτ. The result is

Recalling our conventions for index ranges, we could try to rewrite the right
side of this equation as a single term by replacing the Latin indices with Greek
indices that range from 0 through 4:

However, this would create a problem. Each side of the equation would have a
downstairs free index, which is fine. But the left side would have a Latin free
index p, while the right side would have a Greek free index μ. Indices can be
renamed, of course, but we can’t match up a Latin free index on one side with a
Greek free index on the other because they have different ranges. To write this
equation properly, we need to replace Xp with Xμ on the left side. The properly
formed equation is

If we set the index μ to be the space index p, then Eq. 6.33 just reproduces Eq.
6.24. In fact, Eq. 6.33 is the manifestly invariant equation of motion for a
charged particle. It’s manifestly invariant because all the objects in the
equations are 4-vectors and all the repeated indices are properly contracted.

There is one important subtlety: We started with Eq. 6.24, which represents
only three equations for the space components, labeled by the index p. When
we allow the index μ to range over all four directions of Minkowski space, Eq.
6.33 gives one extra equation for the time component.

But is this new equation (the zeroth equation) correct? By making sure at
the beginning that the action was a scalar, we guaranteed that our equations of



motion would be Lorentz invariant. If the equations are Lorentz invariant, and
the three space components of a certain 4-vector are equal to the three space
components of some other 4-vector, then we know automatically that their
zeroth components (the time components) must also match. Because we’ve
built a Lorentz invariant theory where the three space equations are correct, the
time equation must also be correct.

This logic pervades everything in modern physics: Make sure your
Lagrangian respects the symmetries of the problem. If the symmetry of the
problem is Lorentz symmetry, make sure your Lagrangian is Lorentz invariant.
This guarantees that the equations of motion will also be Lorentz invariant.

6.3.5 Equations with 4-Velocity
Let’s massage Eq. 6.33 into a slightly different form that will come in handy
later on. Recall that the 4-vector Uμ, defined as

is called the 4-velocity. Making this substitution in Eq. 6.33 (with a lowered μ
index on the left side) results in

The derivative

that appears on the left side is called the 4-acceleration. The spatial part of this
equation in terms of U is

6.3.6 Relationship of Aμ to  and 

Let’s summarize the relation between the vector potential Aμ and the familiar
electric and magnetic fields  and .



Historically,  and  were discovered through experiments on charges and
electric currents (electric currents are just charges in motion). Those
discoveries culminated in Lorentz’s synthesis of the Lorentz force law. But try
as you may, when formulated in terms of  and  there is no way to express the
dynamics of charged particles as an action principle. For that, the vector
potential is essential. Writing the Euler-Lagrange equations and comparing
them with the Lorentz force law provided the following equations relating the 

 and  fields to Aμ:

These equations have a certain symmetry that begs us to put them into tensor
form. We’ll do that in the next lecture.

6.3.7 The Meaning of Uμ

At the end of this lecture a student raised his hand and remarked that we had
done a good deal of heavy mathematical lifting to get to Eq. 6.34. But could we
come back to earth and discuss the meaning of the relativistic 4-velocity Uμ? In
particular, what about zeroth equation—the equation for the time component of
the relativistic acceleration?

Sure, let’s do it. First the space components, shown in Eq. 6.35. The left
side is just a relativistic generalization of mass times acceleration—the ma of



Newton’s F = ma. If the particle is moving slowly, then it’s exactly that. But
the equation also works if the particle is moving fast. The right side is the
relativistic version of the Lorentz force; the first term is the electric force, and
the second term is the magnetic force that acts on a moving charge. The zeroth
equation is the one that needs explanation. Let’s write it as

Notice that we omitted the first term on the right side (where μ = 0) because

Let’s start with the left side of Eq. 6.37. It’s something a little unfamiliar: the
time component of the relativistic acceleration. To interpret it we recall (Eqs.
3.36 and 3.37) that the relativistic kinetic energy is just

Using conventional units to make the speed of light explicit, this becomes

Just to keep the bookkeeping straight, mU0 is minus the kinetic energy because
lowering the time index changes the sign. Therefore, apart from the minus sign,
the left side of Eq. 6.37 is the time rate of change of the kinetic energy. The rate
of change of kinetic energy is the work done on the particle per unit time by
whatever force is acting on it.

Next, we consider the right side of Eq. 6.37; it has the form

Using the fact that  is the electric force on the particle, we can express the
right side of the equation as



From elementary mechanics the dot product of the force and the velocity is
exactly the work (per unit time) done by force on a moving particle. So we see
that the fourth equation is just the energy balance equation, expressing the fact
that the change of kinetic energy is the work done on a system.

What happened to the magnetic force? How come we did not have to
include it in calculating the work? One answer that you probably learned in
high school is this:

Magnetic forces do no work.
But there is a simple explanation: The magnetic force is always perpendicular
to the velocity, so it does not contribute to 

6.4 Interlude on the Field Tensor
The first question a modern physicist might ask about a new quantity is, how
does it transform? In particular, how does it transform under Lorentz
transformations? The usual answer is that the new quantity—whatever it refers
to—is a tensor with so many upstairs indices and so many downstairs indices.
The electric and magnetic fields are no exception.

Art: Lenny, I have a big problem. The electric field has three space
components and no time component. How the devil can it be any kind of
four-dimensional tensor? Same problem with the magnetic field.

Lenny: You’re forgetting, Art: 3 + 3 = 6.

Art: You mean there’s some kind of tensor that has six components? I don’t
get it; a 4-vector has four components, a tensor with two indices has 4 × 4 =
16 components. What’s the trick?

The answer to Art’s question is that while it’s true that tensors with two
indices have sixteen components, antisymmetric tensors only have six
independent components. Let’s just review the idea of an antisymmetric tensor.

Suppose we have two 4-vectors C and B. There are two ways we can put
them together to make a two-indexed tensor: CμBν and BμCν. By adding and
subtracting these two, we can build a symmetric and an antisymmetric tensor,



Sμν = CμBν + BμCν

and

Aμν = CμBν − BμCν.

In particular, let’s count the number of independent components of an
antisymmetric tensor. First of all, the diagonal elements all vanish. That means
of the sixteen components, only twelve survive.

But there are additional constraints; the off-diagonal elements come in
equal and opposite pairs. For example, A02 = − A20. Only half of the twelve are
independent, so that leaves six. Yes Art, there are tensors that have only six
independent components.

Now look at Eq. 6.36. All of the right sides have the form

or, equivalently,

Fμν is obviously a tensor and what is more, it is antisymmetric. It has six
independent components and they are precisely the components of  and 
Comparing with Eq. 6.36, we can list the positive components:

You can use the antisymmetry to fill in the other components. Now you can see
where Eq. 6.11 comes from. I’ll write it again here along with all its upstairs-
downstairs versions.



You can think of the rows of these matrices being labeled by index μ, with its
values (0, 1, 2, 3) running along the left edge from top to bottom. Likewise, the
columns are labeled by index ν with the same (unwritten) values running
across the top.

Look at the top row of Fμν. We can think of these elements as F0ν, because
μ = 0 for each of them, while ν takes on its full range of values. These are
electric field components. We think of them as “mixed” time and space
components because one of their indices is a time index while the other is a
space index. The same is true for the leftmost column, and for the same
reasons.

Now look at the 3 × 3 submatrix that excludes the topmost row and leftmost
column. This submatrix is populated with magnetic field components.

What did we accomplish by organizing the electric and magnetic fields into
a single tensor? A lot. We now know how to answer the following question:
Suppose Lenny, in his frame on the moving train, sees a certain electric and
magnetic field. What electric and magnetic field does Art see in the frame of
the rail station? A charge at rest in the train would have a familiar electric
field (Coulomb field) in Lenny’s frame. From Art’s point of view that same
charge is moving, and to compute the field that Art sees is now just a matter of
Lorentz-transforming the field tensor. We’ll explore this idea further in Section
8.1.1.

1 Since these dialogues take place in an alternate universe, Art gets to meet Lorentz for the first time—
again!



2 There’s a brief review in Appendix B.
3 It’s okay if A and B happen to be the same vector.
4 This equation exposes a slight conflict of notational conventions. Our convention for the use of Greek
indices states that they range in value from 0 to 3. However, standard matrix notation assumes that index
values run from 1 to 4. We will favor the 4-vector convention (0 to 3). This does no harm as long as we
stick to the ordering (t, x, y, z).

5 We could have labeled the components of the column vector (A0; A1; A3; A3) instead of (t; x; y; z), and
ditto for the vector with primed components. These are just different labels that represent the same
quantities.

6 Diagonal components are components whose two indices are equal to each other. For example, A00, A11,

A22, and A33 are diagonal components.
7 Eq. 6.12 is often written with the speed of light shown explicitly. You’ll sometimes see it written using 

 instead of  by itself. Here we’ll use units for which the speed of light is 1.
8 But we’ll introduce a 4-vector potential Aμ early in the game.
9 When an upstairs index appears in the denominator of a derivative, it adds a downstairs index to the
result of that derivative. Any time we have a Latin index in an expression, we can move that index
upstairs or downstairs as we please. That’s because Latin indices represent space components.
10 It would be okay if each side of the equation had a different summation index.
11 The summary of 3-vector operators in Appendix B should be helpful for navigating the rest of this
section.
12 It’s described in Appendix B.



Lecture 7

Fundamental Principles and Gauge
Invariance

Art: Why are physicists so hung up on fundamental principles like least
action, locality, Lorentz invariance, and—what’s the other one?

Lenny: Gauge invariance. The principles help us evaluate new theories. A
theory that violates them is probably flawed. But sometimes we’re forced to
rethink what we mean by fundamental.

Art: Okay, the speeding railroad car: It’s Lorentz invariant. It’s racing down
the track, so it has all the action it needs (but no more). It stops at every
station, so it’s local.

Lenny: Ugh.

Art: And it’s gauge invariant; otherwise it falls off the tracks!

Lenny: I think you just fell off the tracks. Let’s slow things down a little.



Suppose a theoretical physicist wants to construct a theory to explain some
newly discovered phenomenon. The new theory is expected to follow certain
rules or fundamental principles. There are four principles that seem to govern
all physical laws. Briefly, they are:

• The action principle
• Locality
• Lorentz invariance
• Gauge invariance

These principles pervade all of physics. Every known theory, whether it’s
general relativity, quantum electrodynamics, the standard model of particle
physics, or Yang-Mills theory, conforms to them. The first three principles
should be familiar, but gauge invariance is new; we haven’t seen it before. The
main goal of this lecture is to introduce this new idea. We’ll start with a
summary of all four fundamental principles.

7.1 Summary of Principles

Action Principle
The first rule is that physical phenomena are described by an action principle.
We don’t know of any exceptions to this pattern. The concept of energy
conservation, to cite just one example, is derived entirely through the action
principle. The same is true for momentum conservation and for the relation
between conservation laws and symmetries in general. If you just write
equations of motion, they may make perfectly good sense. But if they’re not
derived from an action principle, we would give up the guarantee of energy
and momentum conservation. Energy conservation, in particular, is a
consequence of the action principle, together with the assumption that things
are invariant under shifting the time by a fixed amount—a transformation that
we call a time translation.

So that’s our first principle: Look for an action such that the resulting
equations of motion describe the phenomena that are discovered in the



laboratory. We have seen two kinds of action. The action for particle motion is

where  represents the Lagrangian. The action for field theories is

For field theories,  represents the Lagrangian density. We’ve seen how the
Euler-Lagrange equations govern both of these cases.

Locality
Locality means that things happening at one place only directly affect
conditions nearby in space and time. If you poke a system at some point in time
and space, the only direct effect is on things in its immediate vicinity. For
example, if you strike a violin string at its end point, only its nearest neighbor
would feel the effect immediately. Of course, the neighbor’s motion would
affect its neighbor, and so forth down the chain. In time, the effect would be
felt along the entire length of the string. But the short-time effect is local.

How do we guarantee that a theory respects locality? Once again, it
happens through the action. For example, suppose we’re talking about a
particle. In that case, the action is an integral over time (dt) along the particle
trajectory. To guarantee locality, the integrand—the Lagrangian —must
depend only on the coordinates of the system. For a particle, that means the
position components of the particle, and their first time derivatives.
Neighboring time points come into play through the time derivatives. After all,
derivatives are things that capture relationships between near neighbors.
However, higher derivatives are ruled out because they’re “less local” than
first derivatives.1

Field theories describe a field contained in a volume of space and time
(Figs. 4.2 and 5.1). The action is an integral not only over time, but also over
space (d4x). In this case, locality says that the Lagrangian depends on the field
Φ and on its partial derivatives with respect to Xμ. We can call these
derivatives Φμ. This is enough to guarantee that things only affect their nearby
neighbors directly.



You could imagine a world in which poking something in one place has an
instantaneous effect in some other place. In that case the Lagrangian would not
depend only on nearest neighbors through derivatives but on more complicated
things that allow “action at a distance.” Locality forbids this.

A quick word about quantum mechanics: Quantum mechanics is outside the
scope of this book. Nevertheless, many readers may wonder how—or whether
—the locality principle applies to quantum mechanics. Let’s be as clear as
possible: It does.

Quantum mechanical entanglement is often referred to misleadingly as
nonlocality. But entanglement is not the same as nonlocality. In our previous
book, Quantum Mechanics, we explain this in great detail. Entanglement does
not mean you can send signals instantaneously from one place to another.
Locality is fundamental.

Lorentz Invariance
A theory must be Lorentz invariant. In other words, the equations of motion
should be the same in every reference frame. We’ve already seen how this
works. If we make sure the Lagrangian is a scalar, we guarantee that the theory
is Lorentz invariant. In symbols,

 = Scalar

Lorentz invariance includes the idea of invariance under rotations of space. 2

Gauge Invariance
The last rule is somewhat mysterious and takes some time to fully understand.
Briefly, gauge invariance has to do with changes that you can make to the
vector potential without affecting the physics. We’ll spend the rest of this
lecture introducing it.

7.2 Gauge Invariance
An invariance, also called a symmetry, is a change in a system that doesn’t
affect the action or the equations of motion. Let’s look at some familiar
examples.



7.2.1 Symmetry Examples
The equation F = m  is perhaps the best-known equation of motion. It has
exactly the same form if you translate the origin of coordinates from one point
to another. The same is true for rotations of the coordinates. This law is
invariant under translations and rotations.

As another example, consider our basic field theory from Lecture 4. The
Lagrangian for this theory (Eq. 4.7) was

which we also expressed as

For now, we’ll consider a simplified version, with V(Φ) set to zero and all the
space coordinates folded into the single variable x:

The equation of motion (Eq. 4.10) we derived from this Lagrangian was
(slightly simplified here)

I’ve ignored the factor  in the first term because it’s not important for this
example. This equation has a number of invariances, including Lorentz
invariance. To discover a new invariance, we try to find things about the
equation that we can change without changing its content or meaning. Suppose
we add a constant to the underlying field:

In other words, suppose we take a field Φ that is already a solution to the
equation of motion and just add a constant. Does the result still satisfy the
equation of motion? Of course it does, because the derivatives of a constant



are zero. If we know that Φ satisfies the equation of motion, then (Φ + c) also
satisfies it:

You can also see this in the Lagrangian,

−∂μΦ∂μΦ

where once again I’ve ignored the factor 1/2 for simplicity. What happens to
this Lagrangian (and consequently to the action) if we add a constant to Φ?
Nothing! The derivative of a constant is zero. If we have a particular action
and a field configuration that minimizes the action, adding a constant to the
field makes no difference; it will still minimize the action. In other words,
adding a constant to such a field is a symmetry, or an invariance. It’s a
somewhat different kind of invariance than we’ve seen before, but it’s an
invariance all the same.

Now let’s recall the slightly more complicated version of this theory, where
the term V(Φ) is not zero. Back in Lecture 4, we considered the case

whose derivative with respect to Φ is

With these changes, the Lagrangian becomes

and the equation of motion becomes

What happens to Eq. 7.3 if we add a constant to Φ? If Φ is a solution, is (Φ +



c) still a solution? It is not. There’s no change in the first two terms. But adding
a constant to Φ clearly changes the third term. What about the Lagrangian, Eq.
7.2? Adding a constant to Φ has no impact on the terms inside the square
brackets. But it does affect the rightmost term; Φ2 is not the same as (Φ + c)2.
With the extra term

in the Lagrangian, adding a constant to Φ is not an invariance.

7.2.2 A New Kind of Invariance
Let’s return to the action integral

which we introduced in Lecture 6. Suppose we modify Aμ by adding the four-
dimensional gradient of a scalar S. In symbols,

The preceding sum makes sense because both terms are covariant in the index
μ. But does this replacement change the equations of motion? Does it change
the orbits that the particle will follow? Does it make any change whatever in
the dynamics of the particle? The replacement changes the action in a
straightforward way;



Figure 7.1: Spacetime Trajectory. The
solid line is the stationary-action path.
The dashed line is the varied path with

the same fixed end points.

becomes

What does the new integral—the rightmost integral in Eq. 7.5—represent? In
Fig. 7.1, the particle trajectory is broken into little segments, as usual.
Consider the change in S along one of these little segments. Straightforward
calculus tells us that

is the change in S in going from one end of the segment to the other. If we add
(or integrate) these changes for all the segments, it gives us the change in S in
going from the initial point of the trajectory to the final point. In other words,
it’s equal to S evaluated at the end point b minus S at the starting point a. In



symbols,

S itself is an arbitrary scalar function that I just threw in. Does adding this
new term to the vector potential change the dynamics of the particle?3

We’ve changed the action in a way that only depends on the end points of
the trajectory. But the action principle tells us to search for the minimum action
by wiggling the trajectory subject to the constraint that the end points remain
fixed. Because the end points remain fixed, the S(b) − S(a) term is the same for
every trajectory, including the trajectory with stationary action. Therefore, if
you find a trajectory with stationary action, it will remain stationary when you
make this change to the vector potential. Adding the four-dimensional gradient
of a scalar has no effect on the motion of the particle because it only affects the
action at the end points. In fact, adding any derivative to the action typically
doesn’t change anything. We don’t even care what S is; our reasoning applies
to any scalar function S.

This is the concept of gauge invariance. The vector potential can be
changed, in a certain way, without any effect on the behavior of the charged
particle. Adding  to a vector potential is called a gauge transformation.
The word gauge is a historical artifact that has little to do with the concept.

7.2.3 Equations of Motion
Gauge invariance makes a bold claim:

Dream up any scalar function you like, add its gradient to the vector
potential, and the equations of motion stay exactly the same.

Can we be sure about that? To find out, just go back to the equations of motion:
the Lorentz force law of Eq. 6.33,

We can rewrite this as



where

and the 4-velocity Uν is

The equations of motion do not directly involve the vector potential. They
involve the field tensor Fμν, whose elements are the electric and magnetic field
components. Any change to the vector potential that does not affect Fμν will not
affect the motion of the particle. Our task is to verify that the field tensor Fμν is
gauge invariant. Let’s see what happens when we add the gradient of a scalar
to the vector potentials of Eq. 7.6:

This looks complicated, but it simplifies quite easily. The derivative of a sum
is the sum of the derivatives, so we can write

or

But we know that the order in which partial derivatives are taken doesn’t
matter. In other words,



Therefore the two second-order derivatives in Eq. 7.8 are equal and cancel
each other out. 4 The result is

which is exactly the same as Eq. 7.6. This closes the circle. Adding the
gradient of a scalar to the 4-vector potential has no impact on the action or on
the equations of motion.

7.2.4 Perspective
If our goal was to write equations of motion for particles and electromagnetic
fields, why did we bother adding a vector potential, especially if we can
change it without affecting the electric and magnetic fields?

The answer is that there’s no way to write an action principle for the
motion of a particle that does not involve the vector potential. Yet the value of
the vector potential at a given point is not physically meaningful and it cannot
be measured; if you change it by adding the gradient of a scalar, the physics
doesn’t change.

Some invariances have obvious physical meaning. It’s not hard to imagine
two reference frames in the same problem and translating between them: two
physical reference frames, yours and mine. Gauge invariance is different. It’s
not about transformations of coordinates. It’s a redundancy of the description.
Gauge invariance means there are many descriptions, all of which are
equivalent to each other. What’s new is that it involves a function of position.
For example, when we rotate coordinates, we don’t rotate differently at
different locations. That sort of rotation would not define an invariance in
ordinary physics. We would rotate once and only once, by some specific angle,
in a way that does not involve a function of position. On the other hand, a
gauge transformation involves a whole function—an arbitrary function of
position. Gauge invariance is a feature of every known fundamental theory of
physics. Electrodynamics, the standard model, Yang-Mills theory, gravity, all
have their gauge invariances.

You may have formed the impression that gauge invariance is an interesting
mathematical property with no practical significance. That would be a mistake.
Gauge invariance allows us to write different but equivalent mathematical



descriptions of a physical problem. Sometimes we can simplify a problem by
adding something to the vector potential. For example, we can choose an S that
sets any one of the components of Aμ equal to zero. Typically, we would
choose a specific function S in order to illustrate or clarify one aspect of a
theory. That may come at the expense of obscuring a different property of the
theory. By looking at the theory from the point of view of all possible choices
of S, we can see all of its properties.

1 They’re also ruled out by a large body of theoretical and experimental results.
2 General relativity (not covered in this book) requires invariance under arbitrary coordinate
transformations. Lorentz transformations are a special case. Even so, the invariance principle is similar;
instead of requiring  to be a scalar, general relativity requires it to be a scalar density.
3 Hint: The answer is No!
4 This property of second partial derivatives is true for the functions that interest us. There do exist
functions that do not have this property.



Lecture 8

Maxwell’s Equations

Maxwell has a private table at Hermann’s Hideaway. He’s sitting there alone,
having a rather intense conversation with himself.

Art: Looks like our friend Maxwell is having an identity crisis.

Lenny: Not exactly a crisis. He’s using two different identities on purpose, to
build his beautiful theory of electromagnetism.

Art: How far can he get with them? Identities are nice, but…

Lenny: About halfway. That’s where the real action begins.



As most readers know, the Theoretical Minimum books are based on my series
of lectures of the same name at Stanford University. It’s in the nature of lecture
series that they are not always perfectly orderly. My own lectures often begin
with a review of the previous lecture or with a fill-in of some material that I
didn’t get to. Such was the case with Lecture 8 on Maxwell’s equations. The
actual lecture began not with Maxwell’s equations but with the transformation
properties of the electric and magnetic fields—a subject that I only hinted at, at
the end of Lecture 7.

Recently I had occasion to look at Einstein’s first paper on relativity. 1 I
strongly encourage you to study this paper on your own. The first paragraph in
particular is just marvelous. It explains his logic and motivation extremely
clearly. I’d like to discuss it for a moment because it’s deeply connected with
the transformation properties of the electromagnetic field tensor.

8.1 Einstein’s Example
Einstein’s example involves a magnet and an electric conductor such as a wire.
An electric current is nothing but a collection of moving charged particles. We
can reduce Einstein’s setup to the problem of a charged particle, contained in a
wire, in the field of a magnet. The essential thing is that the wire is moving in
the rest frame of the magnet.

Fig. 8.1 shows the basic setup in the “laboratory” frame where the magnet
is at rest. The wire is oriented along the y axis and is moving along the x axis.
An electron in the wire is dragged along with the wire. There’s also a
stationary magnet (not shown) that creates a uniform magnetic field with only
one component, Bz, that points out of the page. There are no other electric or
magnetic fields.



Figure 8.1: Einstein Example—Moving Charge
Viewpoint. Laboratory and magnet are at rest.
Charge e moves to the right at speed v. The

constant magnetic field has only one component,
Bz. There is no electric field.

What happens to the electron? It feels a Lorentz force equal to the charge e
times the cross product of its velocity v with the magnetic field Bz. That means
the force will be perpendicular to both v and Bz. Following the right-hand rule,
and remembering that the electron carries a negative charge, the Lorentz force
will be directed upward. The result is that a current will flow in the wire. The
electrons are pushed upward by the Lorentz force, but because of Benjamin
Franklin’s unfortunate convention (the charge of an electron is negative) the
current flows downward.



Figure 8.2: Einstein Example—Moving Magnet
Viewpoint. Charge e is at rest. Magnet and
laboratory move to the left at speed v. The

constant electric field has only one component,
Ey. The force on the electron is opposite to the

direction of Ey because the electron has a
negative charge.

That’s how the laboratory observer describes the situation; the effective
current is produced by the motion of the charge in a magnetic field. The small
diagram at the lower right of the figure illustrates the Lorentz force

that acts on the electron.
Now let’s look at the same physical situation in the frame of the electron. In

this “primed” frame, the electron is at rest, and the magnet moves to the left



with velocity v as shown in Fig. 8.2. Since the electron is at rest, the force on it
must be due to an electric field. That’s puzzling because the original problem
involved only a magnetic field. The only possible conclusion is that a moving
magnet must create an electric field. Boiled down to its essentials, that was
Einstein’s argument: The field of a moving magnet must include an electric
component.

What happens when you move a magnet past a wire? A moving magnetic
field creates what Einstein and his contemporaries called an electromotive
force (EMF), which effectively means an electric field. Taking a magnet whose
field points out of the page and moving it to the left creates a downward-
oriented electric field, Ey. It exerts an upward force eEy on a stationary
electron. 2 In other words, the electric field Ey in the primed frame has the
same effect as the Lorentz force in the unprimed frame. By this simple thought
experiment Einstein derived the fact that magnetic fields must transform into
electric fields under a Lorentz transformation. How does this prediction
compare with the transformation properties of  and  when they are viewed
as components of an antisymmetric tensor Fμν?

8.1.1 Transforming the Field Tensor
The tensor Fμν has components

We want to figure out how the components transform when we move from one
frame of reference to another. Given the preceding field tensor in one frame of
reference, what does it look like to an observer moving in the positive
direction along the x axis? What are the new components of the field tensor in
the moving frame?

To work that out, we have to remember the rules for transforming tensors
with two indices. Let’s go back to a simpler tensor: 4-vectors, and in
particular the 4-vector Xμ. 4-vectors are tensors with only one index. We know
that 4-vectors transform by Lorentz transformation:



y′ = y

z′ = z

As we saw in Lecture 6 (Eq. 6.3, for example), we can organize these
equations into a matrix expression using the Einstein summation convention.
We introduced the matrix Lμ

ν that captures the details of a simple Lorentz
transformation along the x axis. Using this notation, we wrote the
transformation as

(X′)μ = Lμ
νXν,

where ν is a summation index. This is just shorthand for the preceding set of
four Lorentz transformation equations. In Eq. 6.4, we saw what this equation
looks like in matrix form. Here’s a slightly revised version of that equation,
with (t, x, y, z) replaced by (X0, X1, X2, X3):

How do we transform a tensor with two indices? For this example, I’ll use the
upper-index version of the field tensor,

I’ve chosen the upper-index version (Eq. 6.42) for convenience, because we
already have rules to transform things with upper indices; the form of the



Lorentz transformation we’ve been using all along is set up to operate on things
with upper indices. How do you transform a thing with two upper indices? It’s
almost the same as transforming a single-index thing. Where the single-index
transformation rule is

with summation index σ, the two-index transformation rule is

with two summation indices σ and τ. In other words, we just perform the
single-index transformation twice. Each index of the original object Fστ

becomes a summation index in the transformation equation. Each index (σ and
τ) transforms in exactly the same way that it would if it were the only index
being transformed.

If you had an object with more indices—you could have any number of
indices—the rule would be the same: You transform every index in the same
way. That’s the rule for transforming tensors. Let’s try it out with Fμν and see if
we can discover whether there is an electric field along the y axis. In other
words, let’s try to compute the y component of electric field (E′)y in the primed
reference frame.

(E′)y = (F′)0y

What do we know about the original unprimed field tensor Fμν as it applies to
Einstein’s example? We know that it represents a pure magnetic field along the
unprimed z axis. Therefore, Fστ has only one nonzero component, Fxy, which
corresponds to Bz.3 Following the pattern of Eq. 8.2, we can write

Notice that the indices match up in the same way as the indices in Eq. 8.2, even
though we’re only looking at one single component on the left side. The
summations on the right collapse to a single term. By referring to the matrix in
Eq. 8.1, we can identify the specific elements of L to substitute into the
transformation equation 8.3. Specifically, we can see that



and

Applying these substitutions in Eq. 8.3 results in

or

But Fxy is the same as Bz in the original reference frame, and we can now write

Thus, as Einstein claimed, a pure magnetic field when viewed from a moving
frame will have an electric field component.

Exercise 8.1: Consider an electric charge at rest, with no additional
electric or magnetic fields present. In terms of the rest frame components,
(Ex, Ey, Ez), what is the x component of the electric field for an observer
moving in the negative x direction with velocity v? What are the y and z
components? What are the corresponding components of the magnetic field?

Exercise 8.2: Art is sitting in the station as the train passes by. In terms of
Lenny’s field components, what is the x component of E observed by Art?
What are the y and z components? What are the components of the magnetic
field seen by Art?

8.1.2 Summary of Einstein’s Example



We started out by setting up a laboratory frame with an electric field of zero, a
magnetic field pointing only in the positive z direction, and an electron moving
with velocity v in the positive x direction. We then asked for the electric and
magnetic field values in the frame of the electron. We discovered two things:

1. There’s no magnetic force on the electron in the new frame because the
electron is at rest.

2. There is, however, a y component of electric field in the new reference
frame that exerts a force on the electron.

The force on the (moving) electron that is due to a magnetic field in the
laboratory frame is due to an electric field in the moving frame (the electron’s
rest frame). That’s the essence of Einstein’s example. Now, on to Maxwell’s
equations.

Exercise 8.3: For Einstein’s example, work out all components of the
electric and magnetic fields in the electron’s rest frame.

8.2 Introduction to Maxwell’s Equations
Recall Pauli’s (fictional) quote:

Fields tell charges how to move; charges tell fields how to vary.

In Lecture 6 we spent a good deal of time on the first half of the quote,
describing the way fields tell charges how to move. Now it’s the charges’ turn
to tell fields how to vary. If fields control particles through the Lorentz force
law, charges control fields through Maxwell’s equations.

My philosophy of teaching electrodynamics is somewhat unorthodox, so let
me explain it. Most courses take a historical perspective, beginning with a set
of laws that were discovered in the late eighteenth and early nineteenth
centuries. You’ve probably heard of them—Coulomb’s law, Ampère’s law,
and Faraday’s law. These laws are sometimes taught without calculus, a grave
mistake in my opinion; physics is always harder without the mathematics.



Then, through a somewhat torturous procedure, these laws are manipulated into
Maxwell’s equations. My own way of teaching, even to undergraduates, is to
take the plunge—from the start—and begin with Maxwell’s equations. We take
each of the equations, analyze its meaning, and in that way derive Coulomb’s,
Ampèere’s and Faraday’s laws. It’s the “cold shower” way of doing it, but
within a week or two the students understand what would take months doing it
the historical way.

How many Maxwell’s equations are there altogether? Actually there are
eight, although vector notation boils them down to four: two 3-vector equations
(with three components apiece) and two scalar equations.

Four of the equations are identities that follow from definitions of the
electric and magnetic fields in terms of the vector potential. Specifically, they
follow directly from the definitions

together with some vector identities. There’s no need to invoke an action
principle. In that sense, this subset of Maxwell’s equations comes “for free.”

8.2.1 Vector Identities
An identity is a mathematical fact that follows from a definition. Many are
trivial, but the interesting ones are often not obvious. Over the years, people
have stockpiled a large number of identities involving vector operators. For
now, we need only two. You can find a summary of basic vector operators in
Appendix B.

Two Identities
Now for our two identities. The first one says that the divergence of a curl is
always zero. In symbols,

for any vector field . You can prove this by a technique known as “brute



force.” Just expand the entire left side in component form, using the definitions
of divergence and curl (Appendix B). You’ll find that many of the terms cancel.
For example, one term might involve the derivative of something with respect
to x and then with respect to y, while another term involves the same
derivatives in the opposite order, and with a minus sign. Terms of that kind
cancel out to zero.

The second identity states that the curl of any gradient is zero. In symbols,

where S is a scalar and S is a vector. Remember, these two identities are not
statements about some special field like the vector potential. They’re true for
any fields S and , as long as they’re differentiable. These two identities are
enough to prove half of Maxwell’s equations.

8.2.2 Magnetic Field
We saw in Eq. 6.30 that the magnetic field  is the curl of the vector potential 

,

Therefore, the divergence of a magnetic field is the divergence of a curl,

Our first vector identity tells us that the right side must be zero. In other words,

This is one of Maxwell’s equations. It says that there cannot be magnetic
charges. If we saw a configuration with magnetic field vectors diverging from
a single point—a magnetic monopole—then this equation would be wrong.

8.2.3 Electric Field
We can derive another Maxwell equation—a vector equation involving the
electric field—from vector identities. Let’s go back to the definition of the
electric field,



Notice that the second term is just the nth component of the gradient of A0.
From a three-dimensional point of view (just space), the time component of ,
that is, A0, can be thought of as a scalar.4 The vector whose components are
derivatives of A0 can be thought of as the gradient of A0. So the electric field
has two terms; one is the time derivative of the space component of , and the
other is the gradient of the time component. We can rewrite Eq. 8.6 as a vector
equation,

Now let’s consider the curl of ,

The second term on the right side is the curl of a gradient, and our second
vector identity tells us that it must be zero. We can rewrite the first term as

Why is that? Because we’re allowed to interchange derivatives. When we take
a derivative to make a curl, we can interchange the space derivative with the
time derivative, and pull the time derivative on the outside. So the curl of the
time derivative of  is the time derivative of the curl of . As a result, Eq. 8.8
simplifies to

But we already know (Eq. 6.30) that the curl of  is the magnetic field . So
we can write a second Maxwell equation,



or

This vector equation represents three equations, one for each component of
space. Eqs. 8.5 and 8.10 are the so-called homogeneous Maxwell equations.

Although the homogeneous Maxwell equations were derived as identities,
they nevertheless have important content. Equation 8.5,

expresses the important fact that there are no magnetic charges in nature, if
indeed it is a fact. In elementary terms it states that, unlike electric fields, the
lines of magnetic flux never end. Does that mean that magnetic monopoles—
magnetic analogs of electrically charged particles—are impossible? I won’t
answer that here but at the end of the book we’ll examine the issue in some
detail.

What about Eq. 8.10? Does it have consequences? Certainly it does.
Equation 8.10 is one mathematical formulation of Faraday’s law that governs
the workings of all electromechanical devices such as motors and generators.
At the end of this lecture we’ll come back to Faraday’s law among others.

8.2.4 Two More Maxwell Equations
There are two more Maxwell equations 5 that are not mathematical identities,
which means that they cannot be derived just from the definitions of  and . It
will be our eventual goal to derive them from an action principle, but
originally they were discovered as empirical laws that summarized the results
of experiments on charges, electric currents, and magnets. The two additional
equations are similar to Eqs. 8.5 and 8.10, with the electric and magnetic
fields switching roles. The first is a single equation,

This is similar to Eq. 8.5 except that the right side is not zero. The quantity ρ is
the density of electric charge, that is, the charge per unit volume at each point
of space. The equation represents the fact that electric charges are surrounded



by electric fields that they carry with them wherever they go. It is closely
connected to Coulomb’s law, as we will see.

The second equation—really three equations—is similar to Eq. 8.10:

Table 8.1: Maxwell Equations and Their Derivations from the Vector Potential.

Again, aside from the interchange of electric and magnetic fields and a change
of sign, the most important difference between Eq. 8.10 and Eq. 8.13 is that the
right side of Eq. 8.13 is not zero. The quantity  is the current density, which
represents the flow of charge—for example, the flow of electrons through a
wire.

The content of Eq. 8.13 is that flowing currents of charge are also
surrounded by fields. This equation is also related to a law, Ampèere’s law,
that determines the magnetic field produced by a current in a wire.

Table 8.1 shows all four Maxwell equations. We derived the first two by
applying vector identities to the vector potential. The second two equations
also come from the vector potential, but they contain dynamical information
and we need an action principle to derive them. We’ll do that in the next
lecture.

The second group of equations looks a lot like the first group, but with the
roles of  and  (almost) interchanged. I say almost because there are some
small but important differences in their structure. To begin with, the signs are a
little different. Also, the equations in the second group are inhomogeneous;
they involve quantities on the right side called charge density ρ and current



density  that do not appear in the first group. We’ll have more to say about ρ
and  in the next section. Charge density ρ is the amount of charge per unit
volume, just as you would expect; in three dimensions, it’s a scalar. Current
density is a 3-vector. We’ll see in a moment that in 4-vector language things
are a little more complicated. We’ll discover that ρ together with the three
components of  are the components of a 4-vector.6

8.2.5 Charge Density and Current Density
What are charge density and current density? I’ve tried to illustrate them in
Figs. 8.3 and 8.4, but there’s a problem: I don’t know how to draw four
dimensions of spacetime on a two-dimensional page. Keep that in mind as you
interpret these figures. They require some abstract thinking.

Charge density is exactly what it sounds like. You look at a small region of
three-dimensional space and divide the total amount of charge in that region by
the region’s volume. Charge density is the limiting value of this quotient as the
volume becomes very small.

Let’s describe this idea from the perspective of four-dimensional
spacetime. Fig. 8.3 tries to depict all four directions of spacetime. As usual,
the vertical axis represents time, and the x axis points to the right. The spatial
axis pointing out of the page is labeled y, z and represents both the y and z
directions. This is the “abstract thinking” part of the diagram; it’s far from
perfect, but you get the idea. Let’s consider a little cell in space, shown in the
figure as a horizontal square. There are two important things to notice about it.
First, its orientation is perpendicular to the time axis. Second, it’s not really a
square at all. The “edges” parallel to the y, z axis are really areas, and the
square is really a three-dimensional volume element, in other words, a cube.



Figure 8.3: Charge and Current Density
in Spacetime. The y, z axis represents

two directions in space. Curved arrows
are world lines of charged particles. The

horizontal window illustrates charge
density. The vertical window illustrates

the x component of current density.



Figure 8.4: Current Density in Space.
The time axis is not shown. The curved

arrows are not world lines, but show
trajectories in space only.

The curved arrows represent world lines of charged particles. We can
imagine that space and time are filled with these world lines, flowing like a
fluid. Consider the world lines that pass through our little cube. Remember that
our cube, being perpendicular to the time axis, represents a single instant of
time. This means that the particles that “pass through” the cube are simply the
particles that are in the cube at that instant of time. We count up all their
charges to get the total charge passing through that little volume of space. 7 The
charge density ρ is the limiting value of the total charge in the volume element
divided by its volume,

What about current density? One way to think about current density is to
turn our little square onto its edge. The vertically oriented “square” is shown
to the right in Fig. 8.3. This diagram calls for even more abstract thinking. The
square still represents a three-dimensional cube in spacetime. But this cube is



not purely spatial; because one edge is parallel to the t axis, one of its three
dimensions is time. The edge parallel to the y, z axis confirms that the other
two dimensions are spatial. This square is perpendicular to the x axis. As
before, the edges parallel to the y, z axis really stand for two-dimensional
squares in the y, z plane. Let’s re-draw this little square in Fig. 8.4 as a pure
space diagram with only the x, y, and z axes. In this new diagram the square
really is a square because there’s no time axis. It’s just a little window
perpendicular to the x axis. How much charge passes through that window per
unit time? The window is an area, so we’re really asking how much charge
flows through the window per unit area per unit time.8 That’s what we mean by
current density. Because our window is perpendicular to the x axis, it defines
current density in the x direction, and we have similar components for the y
and z directions. Current density  is a 3-vector,

The quantities ΔAx, ΔAy, and ΔAz represent elements of area that are
perpendicular to the x, y, and z axes respectively. In other words (see Fig. 8.6),
the ΔA’s that appear in Eqs. 8.14 are

ΔAx = ΔyΔz

ΔAy = ΔzΔx

ΔAz = ΔzΔ,y

and therefore we can write Eqs. 8.14 in the form



You can think of ρ itself as a flow of charge in the time direction, the x
component of  as a flow in the x direction, and so forth. You can think of a
spatial volume as a kind of window perpendicular to the t axis. We’ll soon
discover that the quantities (ρ, jx, jy, jz) are actually the contravariant
components of a 4-vector. They enter into the other two Maxwell equations, the
equations that we’ll derive from an action principle in the next lecture.

8.2.6 Conservation of Charge
What does charge conservation actually mean? One of the things it means is
that the total amount of charge never changes; if the total amount of charge is Q,
then,

But that’s not all. Suppose Q could suddenly disappear from our laboratory on
Earth and instantly reappear on the moon (Fig. 8.5). A physicist on Earth
would conclude that Q is not conserved. Conservation of charge means
something stronger than “the total amount of Q does not change.” It really
means that whenever Q decreases (or increases) within the walls of the
laboratory, it increases (or decreases) by the same amount right outside the
walls. Even better, a change in Q is accompanied by a flux of Q passing
through the walls. When we say conservation, what we really mean is local
conservation. This important idea applies to other conserved quantities as
well, not just charge.

To capture the idea of local conservation mathematically, we need to define
symbols for flux, or flow across a boundary. The terms flux, flow, and current
of a quantity are synonymous and refer to the amount flowing through a small



element of area per unit area per unit time. Changes in the amount of Q in a
region of space must be accounted for by a flux of Q through the boundaries of
the region.

Fig. 8.6 shows a three-dimensional volume element that contains a charge
Q. The walls of the box are little windows. Any change in the amount of charge
inside the box must be accompanied by current through its boundaries. For
convenience, let’s assume the volume of the box has a value of 1 in some units
where a small volume is just a unit volume. Similarly, we can take the edges of
the box, (Δx, Δy, Δz), to have unit length.

Figure 8.5: Local Conservation of
Charge. The process in this picture

cannot happen. Charge can’t disappear in
one place and instantly reappear in some

far-removed place.

What is the time derivative of the charge inside the box? Because the box
has unit volume, the charge inside the box is the same as the charge density ρ.
Therefore, the time derivative of the charge is just , the time derivative of ρ.
Local charge conservation says that  must equal the amount of charge flowing
into the box through its boundaries. For example, suppose the charge Q
increases. That means there must be some net inflow of charge.

The net inflow of charge must be the sum of the charges coming in through
each of the six windows (the six faces of the cube). Let’s consider the charge
coming in through the right-facing window, labeled −jx+ in the diagram. The x+
subscript means the x component of current that enters the right-facing or +
window of the box. This notation seems fussy, but in a moment you’ll see why
we need it. The charge coming through that window is proportional to jx, the x
component of the current density.



Figure 8.6: Local Charge Conservation. For
convenience, we assume Δx = Δy = Δz = 1 in
some small units. The volume element is ΔV =

ΔxΔyΔz = 1.

The current density jx is defined in a way that corresponds to the flow from
lower values of x to greater values of x. That’s why the charge coming into the
right-facing window per unit time is actually the negative of jx, and the left-
pointing arrow is labeled −jx+. Likewise, we use the subscript x−” for the
leftmost or minus face. Similar conventions apply to the y and z directions. To
avoid clutter, we did not draw arrows for −jz+ and jz−.

Let’s look closely at both of the currents (jx− and −jx+) flowing in the x
direction in Fig. 8.6. How much charge flows into the box from the right? Eq.
8.15 makes clear that the amount of charge entering the box from the right
during time Δt is



ΔQright = −(jx−)ΔyΔzΔt

Similarly, the amount entering from the left is

ΔQleft = (jx+)ΔyΔzΔt

These two charges are not in general equal. That’s because the two currents
are not equal; they occur at two locations that are slightly displaced along the x
axis. The sum of these two charges is the total increase of charge in the box
due to currents in the positive or negative x direction. In symbols,

ΔQtotal = −(jx−)ΔyΔzΔt + (jx+)ΔyΔzΔt

or

ΔQtotal = −(jx− −jx−)ΔyΔzΔt (8.17)

The term in parentheses is the change in current over a small interval Δx and is
closely related to the derivative of jx with respect to x. In fact, it’s

Substituting that back into Eq. 8.17 results in

We easily recognize ΔxΔyΔz as the volume of the box. Dividing both sides by
the volume gives

The left side of Eq. 8.19 is a change in charge per unit volume. In other words,
it’s a change in the charge density ρ, and we can write



Dividing by Δt, and taking the limit as small quantities approach zero,

Now Eq. 8.21 is not really correct; it only accounted for the charge coming
into or out of the box through the two walls or perpendicular to the x axis. To
put it another way, the subscript “total” in this equation is misleading because
it only accounts for current densities in that one direction. To get the whole
picture, we would run the same analysis for the y and z directions and then add
up the contributions from current densities in all three directions. The result is

The right side is the divergence of , and in vector notation Eq. 8.22 becomes

or

This equation is a local neighborhood-by-neighborhood expression of the
conservation of charge. It says that the charge within any small region will only
change due to the flow of charge through the walls of the region. Eq. 8.23 is so
important that it has a name: it’s called the continuity equation. I don’t like
this name because the word continuity gives the impression that the charge
distribution needs to be continuous, and it does not. I prefer to call it local
conservation. It describes a strong form of conservation that does not allow a
charge to disappear at one place and reappear at another place unless there’s a
flow of charge (a current) in between.

We could add this new equation to Maxwell’s equations, but in fact we
don’t need to. Eq. 8.23 is actually a consequence of Maxwell’s equations. The
proof is not difficult; it’s a fun exercise that I’ll leave to you.

Exercise 8.4: Use the second group of Maxwell’s equations from Table 8.1



along with the two vector identities from Section 8.2.1 to derive the
continuity equation.

8.2.7 Maxwell’s Equations: Tensor Form
By now, we’ve seen all four of Maxwell’s equations in 3-vector form (Table
8.1). We have not yet derived the second group of these equations from an
action principle, but we’ll do that in Lecture 10. Before we do, I’d like to
show you how to write the first group of equations (along with the continuity
equation) in tensor notation with upstairs and downstairs indices. This will
make clear that the equations are invariant under Lorentz transformations. In
this section, we’ll switch back to 4-vector notation that follows the rules of
indexology. For example, I’ll start writing (Jx, Jy, Jz) or (J1, J2, J3) for the
space components of current density.

Let’s start with Eq. 8.23, the continuity equation. We can rewrite it as

Now let’s define ρ to be the time component of J:

ρ = J0.

In other words, take (Jx, Jy, Jz) and put them together with ρ to form a complex
of four numbers. We’ll call this new object Jμ:

Jμ = (ρ, Jx, Jy, Jz).

Using this notation, we can rewrite the continuity equation as

Notice that taking the derivative with respect to Xμ does two things: First, it
adds a covariant index. Second, because the new covariant index is the same
as the contravariant index in Jμ, it triggers the summation convention. Written
in this way, the continuity equation has the appearance of a 4-dimensional



scalar equation. It’s not hard to prove that the components of Jμ really do
transform as the components of a 4-vector. Let’s do that now.

To begin with, it’s a well-verified experimental fact that electric charge is
Lorentz invariant. If we measure a charge to be Q in one frame, it will be Q in
every frame. Now let’s revisit the small charge ρ inside our little unit-volume
box. Suppose this box and its enclosed charge are moving to the right with
velocity v in the laboratory frame. 9 What are the four components of current
density in the rest frame of the box? Clearly, they must be

(J′)μ = (ρ, 0, 0, 0),

because the charge is standing still in this frame. What are the components Jμ

in the laboratory frame? We claim they’re

or equivalently,

To see this, remember that charge density is determined by two factors: the
amount of charge and the size of the region that contains the charge. We already
know that the amount of charge is the same in both frames. What about the
volume of the enclosing region, namely the box? In the laboratory frame, the
moving box undergoes the standard Lorentz contraction, . Because the
box contracts only in the x direction, its volume is reduced by the same factor.
But density and volume are inversely related, so a decrease in volume causes a
reciprocal increase in density. That explains why the components on the right
side of Eq. 8.25 are correct. Finally, notice that these components are actually
the components of 4-velocity, which is a 4-vector. In other words, Jμ is the
product of an invariant scalar quantity ρ with a 4-vector. Therefore Jμ itself
must also be a 4-vector.

8.2.8 The Bianchi Identity
Let’s take stock of what we know:  and  form an antisymmetric tensor Fμv



with two indices. The current density 3-vector  together with ρ form a 4-
vector, that is, a tensor with one index. We also have the first group of
Maxwell equations from Table 8.1,

These equations are a consequence of the definitions of  and  in terms of the
vector potential. Each of them has a the form of partial derivatives acting on
components of Fμv, with a result of zero. In other words, they have the form

∂F = 0.

I’m using the symbol ∂ loosely, to mean “some combination of partial
derivatives.” Eqs. 8.26 and 8.27 represent four equations altogether: one
corresponding to Eq. 8.26 because it equates two scalars, and three
corresponding to Eq. 8.27 because it equates two 3-vectors. How can we
write these equations in Lorentz invariant form? The easiest approach is to just
write down the answer and then explain why it works. Here it is:

∂σFντ + ∂νFτσ + ∂τFσν = 0. (8.28)

Eq. 8.28 is called the Bianchi identity. 10 The indices σ, ν, and τ can take on
any of the four values (0, 1, 2, 3) or (t, x, y, z). No matter which of these values
we assign to σ, ν, and τ, Eq. 8.28 gives a result of zero.

Let’s convince ourselves that the Bianchi identity is equivalent to the two
homogeneous Maxwell equations. First, consider the case where all three
indices σ, ν, and τ represent space components. In particular, suppose we
choose them to be

σ = y

ν = x

τ = z



With a little algebra (recall that Fμν is antisymmetric), substituting these index
values into Eq. 8.28 gives

∂xFyz + ∂yFzx + ∂zFxy = 0.

But the pure space components of F, such as Fyx, correspond to the components
of the magnetic field. Recall (Eq. 6.41) that

Fyz = Bx

Fzx = By

Fxy = Bz.

Substituting those values, we can write

∂xBx + ∂yBy + ∂zBZ = 0.

The left side is just the divergence of , so this equation is equivalent to Eq.
8.26. It turns out that if we choose a different way of assigning x, y, and z to the
Greek indices, we get the same result. Go ahead and try it.

What happens if one of the indices is a time component? Let’s try the
assignment

σ = y

ν = x

τ = t

resulting in

∂yFxt + ∂xFty + ∂tFyx = 0.

Two of the three terms have mixed space and time components—one leg in
time and one leg in space. That means they’re components of the electric field.
Recall (Eq. 6.41) that



Fxt = Ex

Fty = −Ey

Fyx = −Bz.

The substitution results in

∂yEx − ∂xEy − ∂tBz = 0.

If we flip the sign (multiply by −1), this becomes

∂xEy − ∂yEx + ∂tBz = 0.

This is just the z component of Eq. 8.27, which says that the curl of  plus the
time derivative of  is zero. If we tried other combinations with one time
component and two space components, we would discover the x and y
components of Eq. 8.27.

How many ways are there to assign values to the indices σ, ν, and τ? There
are three indices, and each index can be assigned one of the four values t, x, y,
and z. That means there are 4 × 4 × 4 = 64 different ways to do it. How can it
be that the sixty-four equations of the Bianchi identity are equivalent to the four
homogeneous Maxwell equations? It’s simple; the Bianchi identity includes
many equations that are redundant. For example, any index assignment where
two indices are equal will result in the trivial equation 0 = 0. Also, many of
the index assignments are redundant; they will yield the same equation. Every
one of the nontrivial equations is equivalent either to Eq. 8.26 or to one of the
components of Eq. 8.27.

There’s another way to check the Bianchi identity. Remember that Fμν is
defined to be

Fμν = ∂μAν − ∂νAμ

or equivalently,



By making the appropriate substitutions into Eq. 8.28, we can write it as

If you expand these derivatives, you’ll discover that they cancel term by term,
and the result is zero. Eq. 8.28 is completely Lorentz invariant. You can check
that by looking at how it transforms.

1 On the Electrodynamics of Moving Bodies, A. Einstein, June 30, 1905.
2 Again, the force on an electron is opposite to the electric field direction because an electron carries a
negative charge.

3 The antisymmetric component Fyx = −Fxy is also nonzero, but this adds no new information.
4 It’s not a scalar from the point of view of four-dimensional vector spaces.
5 There are four more if you write them in component form.
6 In four-dimensional spacetime, therefore, ρ is not a scalar. It transforms as the time component of a 4-
vector.
7 Passing through has a particular meaning in this context. The volume element exists at one instant of
time. The particles were in the past, and then they’re in the future. But at the instant represented by our
volume element, they are in the volume element.
8 That’s the precise analog of turning the charge density rectangle on its edge in Fig. 8.3.
9 As usual, the moving frame has primed coordinates, and laboratory frame is unprimed.
10 It’s actually a special case of the Bianchi identity.



Lecture 9

Physical Consequences of Maxwell’s
Equations1

Art: Lenny, is that Faraday sitting over there by the window?

Lenny: Yes, I think so. You can tell because his table is not cluttered with
fancy equations. Faraday’s results—and there are plenty of them—come
straight from the laboratory.

Art: Well, I like equations, even when they’re hard. But I also wonder if we
need them as much as we think. Just look what Faraday accomplishes
without their help!

Just then, Faraday notices Maxwell across the room. They exchange a friendly
wave.

 



9.1 Mathematical Interlude
The fundamental theorem of calculus relates derivatives and integrals. Let me
remind you of what it says. Suppose we have a function F(x) and its derivative
dF/dx. The fundamental theorem can be stated simply:

Notice the form of Eq. 9.1: On the left side we have an integral in which the
integrand is a derivative of F(x). The integral is taken over an interval from a
to b. The right side involves the values of F at the boundaries of the interval.
Eq. 9.1 is the simplest case of a far more general type of relation, two famous
examples being Gauss’s theorem and Stokes’s theorem. These theorems are
important in electromagnetic theory, and so I will state and explain them here. I
will not prove them, but you can easily find proofs in many places, including
the Internet.

9.1.1 Gauss’s Theorem
Instead of a one-dimensional interval a < x < b, let’s consider a region of
three-dimensional space. The interior of a sphere or a cube would be
examples. But the region does not have to be regularly shaped. Any blob of
space will do. Let’s call the region B for blob.

The blob has a boundary or surface that we will call S for surface. At each
point on the surface we can construct a unit vector  pointing outward from the
blob. All of this is shown in Figure 9.1. By comparison to the one-dimensional
analogy (Eq. 9.1), the blob would replace the interval between a and b, and the
boundary surface S would replace the two points a and b.



Figure 9.1: Illustration of Gauss’s Theorem.  is an outwardpointing unit normal
vector.

Instead of a simple function F and its derivative dF/dx, we will consider a
vector field  and its divergence . In analogy with Eq. 9.1, Gauss’s
theorem asserts a relation between the integral of  over the three-
dimensional blob of space B, and the values of the vector field on the two-
dimensional boundary of the blob, S. I will write it and then explain it:

Let’s examine this formula. On the left side we have a volume integral over the
interior of the blob. The integrand is the scalar function defined by the
divergence of .

On the right sides is also an integral, taken over the outer surface of the
blob S. We can think of it as a sum over all the little surface elements that make
up S. Each little surface element has an outward-pointing unit vector , and the
integrand of the surface integral is the dot product of  with  Another way to
say this is that the integrand is the normal (perpendicular to S) component of .

An important special case is a vector field  that is spherically symmetric.
This means two things: First, it means that the field everywhere points along
the radial direction. In addition, spherical symmetry means that the magnitude
of  depends only on the distance from the origin and not the angular location.
If we define a unit vector  that points outward from the origin at each point of
space, then a spherically symmetric field has the form

where V(r) is some function of distance from the origin. Consider a sphere of
radius r, centered at the origin:

x2 + y2 + z2 = r2

The term sphere refers to this two-dimensional shell. The volume contained
within the shell is called a ball. Now let’s apply Gauss’s theorem by
integrating  over the ball. The left side of Eq. 9.2 becomes the volume
integral



where B now means the ball. The right side is an integral over the boundary of
the ball—in other words, over the sphere. Because the field is spherically
symmetric, V(r) is constant on the spherical boundary, and the calculation is
easy. The integral

becomes

or

But the integral of dS over the surface of a sphere is just the area of that sphere,
4πr2. The net result is that Gauss’s theorem takes the form

for a spherically symmetrical field .

9.1.2 Stokes’s Theorem
Stokes’s theorem also relates an integral over a region to an integral over its
boundary. This time the region is not a three-dimensional volume but a two-
dimensional surface S bounded by a curve C. Imagine a closed curve in space
formed by a thin wire. The two-dimensional surface is like a soap film
attached to the wire. Fig. 9.2 depicts such a bounded surface as a shaded
region bounded by a curve.

It is also important to give the surface a sense of orientation by equipping it
with a unit normal vector, . At every point on the surface we imagine a vector 
 that distinguishes one side of the surface from the other.



The left side of Stokes’s theorem is an integral over the shaded surface.
This integral involves the curl of ; more precisely, the integrand is the
component of  in the direction . We write the integral as

Let’s examine this integral. We imagine dividing the surface S into infinitesimal
surface elements dS. At every point, we construct the curl of  and take its dot
product with the unit normal vector  at that point. We multiply the result by the
area element dS and add them all up, thus defining the surface integral 

. That’s the left side of Stokes’s theorem.

Figure 9.2: Stokes’s
Theorem and the Right-

Hand Rule. The gray
surface is not

necessarily flat. It can
balloon out to the left or
right like a soap bubble
or a rubber membrane.

The right side involves an integral over the curved boundary line of S. We
need to define a sense of orientation along the curve, and that’s where the so-
called right-hand rule comes in. This mathematical rule does not depend on
human physiology. Nevertheless, the easiest way to explain it is with your right
hand. Point your thumb along the vector . Your fingers will wrap around the
bounding curve C in a particular direction. That direction defines an
orientation for the curve C. That’s called the right-hand rule.

We may think of the curve as a collection of infinitesimal vectors , each



pointing along the curve in the direction specified by the right-hand rule.
Stokes’s theorem then relates the line integral

around the curve C to the surface integral

In other words, Stokes’s theorem tells us that

9.1.3 Theorem Without a Name
Later we will need a theorem that to my knowledge has no name. There are
lots of theorems that have no name—here’s a famous one:

1 + 1 = 2. (9.5)

There are surely many more theorems without names than with names, and
what follows is one such. First, we need a notation. Let F(x, y, z) be a scalar
function of space. The gradient of F is a field  with three components

Now consider the divergence of . Call it , or more simply, ∇2F. Here
it is expressed in concrete form,

The symbol ∇2 is called the Laplacian after the French mathematician Pierre-
Simon Laplace. The Laplacian stands for the sum of second derivatives with
respect to x, y, and z.

The new theorem involves a vector field . It uses a vector version of the



Laplacian, described in Appendix B. Begin by constructing the curl, ,
which is also a vector field. As such, we can also take its curl,

What kind of quantity is this double curl? Taking the curl of any vector field
gives another vector field, and so  is also a vector field. I will now
state the un-named theorem:2

Let me say it in words: The curl of the curl of  equals the gradient of the
divergence of  minus the Laplacian of . Again, I’ll repeat it with some
parentheses:

The curl of (the curl of ) equals the gradient of (the divergence of ) minus
the Laplacian of .

How can we prove Eq. 9.7? In the most boring way possible: write out all the
terms explicitly and compare both sides. I’ll leave it as an exercise for you to
work out.

Later on in the lecture, we will use the un-named theorem. Fortunately, we
will only need the special case where the divergence of  is zero. In that case
Eq. 9.7 takes the simpler form,

9.2 Laws of Electrodynamics
Art: Ouch, ouch! Gauss, Stokes, divergence, curl—Lenny, Lenny, my head is
exploding!

Lenny: Oh, that’s great, Art. It’ll give us a good example of Gauss’s theorem.
Let’s describe the gray matter by a density ρ and a current . As your head
explodes, the conservation of gray matter will be described by a continuity
equation, right? Art? Art? Are you okay?



9.2.1 The Conservation of Electric Charge
At the heart of electrodynamics is the law of local conservation of electric
charge. In Lecture 8, I explained that this means the density and current of
charge satisfy the continuity equation (Eq. 8.23),

The continuity equation is a local equation that holds at every point of space
and time; it says much more than “the total charge never changes.” It implies
that if the charge changes—let’s say in the room where I’m giving this lecture
—that it can only do so by passing through the walls of the room. Let’s expand
on this point.

Take the continuity equation and integrate it over a blob-like region of
space, B, bounded by a surface S. The left side becomes

where Q is the amount of charge in the region B. In other words the left side is
the rate of change of the amount of charge in B. The right side is

Here is where we get to use Gauss’s theorem. It says

Now recall that  is the rate at which charge is crossing the surface per unit
time per unit area. When it’s integrated, it gives the total amount of charge
crossing the boundary surface per unit time. The integrated form of the
continuity equation becomes

and it says that the change in the charge inside B is accounted for by the flow of
charge through the surface S. If the charge inside B is decreasing, that charge



must be flowing through the boundary of B.

9.2.2 From Maxwell’s Equations to the Laws of
Electrodynamics
Maxwell’s equations were not derived by Maxwell from principles of
relativity, least action, and gauge invariance. They were derived from the
results of experiment. Maxwell was fortunate; he didn’t have to do the
experiments himself. Many people, the Founding Fathers, had contributed—
Franklin, Coulomb, ∅rsted, Ampèere, Faraday, and others. Basic principles
had been codified by Maxwell’s time, especially by Faraday. Most courses in
electricity and magnetism take the historical path from the Founding Fathers to
Maxwell. But as in many cases, the historical route is the least clear, logically.
What I will do in this lecture is go backward, from Maxwell to Coulomb,
Faraday, Ampèere, and ∅rsted, and then finish off with Maxwell’s crowning
achievement.

At the time of Maxwell several constants appeared in the theory of
electromagnetism—more constants than were strictly necessary. Two of them
were called ε0 and μ0. For the most part, only the product ε0 μ0 ever appears in
equations. In fact, that product is nothing but the constant 1/c2, the same c that
appears in Einstein’s equation E = mc2. Of course, when the founders did their
work, these constants were not known to have anything to do with the speed of
light. They were just constants deduced from experiments on charges, currents,
and forces. So let’s forget that c is the speed of light and just take it to be a
constant in Maxwell’s distillation of the laws laid down by earlier physicists.
Here are the equations from Table 8.1, modified to include the appropriate
factors of c.3



9.2.3 Coulomb’s Law
Coulomb’s law is the electromagnetic analog of Newton’s gravitational force
law. It states that between any two particles there is a force proportional to the
product of their electric charges and inversely proportional to the square of the
distance between them. Coulomb’s law is the usual starting point for a course
on electrodynamics, but here we are, many pages into Volume III, and we’ve
hardly mentioned it. That’s because we are going to derive it, not postulate it.

Let’s imagine a point charge Q at the origin, x = y = z = 0. The charge
density is concentrated at a point and we can describe it as a three-dimensional
delta function,

We used the delta function in Lecture 5 to represent a point charge. As in
Lecture 5, the symbol δ3(x) is shorthand for δ(x)δ(y)δ(z). Because of the delta
function’s special properties, if we integrate ρ over space we get the total
charge Q.

Now let’s look at the third Maxwell equation from Eqs. 9.10,

What happens to the left side if we integrate this equation over a sphere of
radius r? From the symmetry of the situation we expect the field of the point
charge to be spherically symmetric, and therefore we can use Eq. 9.3. Plugging
in , the left side of Eq. 9.3 becomes

But the third Maxwell equation, , tells us we can rewrite this as

which is, of course, the charge Q. The right side of Eq. 9.3 is

4πr2E(r),



where E(r) is the electric field at distance r from the charge. Thus Eq. 9.3
becomes

Q = 4πr2E(r)

Or, to put it another way, the radial electric field produced by a point charge Q
at the origin is given by

Now consider a second charge q at a distance r from Q. From the Lorentz
force law (Eq. 6.1), the charge q experiences a force q  due to the field of Q.
The magnitude of the force on q is

This is, of course, the Coulomb law of forces between two charges. We have
derived it, not assumed it.

9.2.4 Faraday’s Law
Let’s consider the work done on a charged particle when moving it from point
a to point b in an electric field. The work done in moving a particle an
infinitesimal distance  is

where F is the force on the particle. To move the particle from a to b, the force
F does work

If the force is due to an electric field, then the work is



In general, the work depends not only on the end points but also on the path
along which the particle is transported. The work done can be nonzero even if
the path is a closed loop in space that starts and ends at point a. We can
describe this situation by a line integral around a closed loop in space,

Can we actually do work on a particle by moving it around a closed path—for
example, by moving it through a closed loop of conducting wire? Under certain
circumstances we can. The integral  is called the electromotive force
(EMF) for a circuit made from a wire loop.

Let’s explore this EMF by using Stokes’s theorem (Eq. 9.4). Applied to the
electric field, it says

This allows us to write the EMF for a closed loop of wire in the form

where the integral is over any surface that has the closed curve C as a
boundary.

Now comes the point where Maxwell’s equations have something to say.
Recall the second Maxwell equation from Eqs. 9.10:

If the magnetic field does not vary with time, then the curl of the electric field
is zero, and from Eq. 9.17 the EMF for a closed path is also zero. In situations
where the fields do not vary with time, no work is done when carrying a
charge around a closed path. This is often the framework for elementary
discussions.

But magnetic fields sometimes do vary with time; for example, just wave a
magnet around in space. Applying the second Maxwell equation to Eq. 9.17,



or

Thus, the EMF is the negative of the time rate of change of a certain quantity 
. This quantity, the integral of the magnetic field over the surface

bounded by the closed wire, is called the magnetic flux through the circuit and
is denoted Φ. Our equation for the EMF can be succinctly written as

The EMF represents a force that pushes a charged particle around the closed
loop of wire. If the wire is an electric conductor, it will cause a current to flow
in the wire.

Figure 9.3: Faraday’s
Law.

The remarkable fact that an EMF in a circuit can be generated by varying
the flux through the circuit was discovered by Michael Faraday and is called
Faraday’s law. In Fig. 9.3, a closed loop of wire is shown next to a bar
magnet. By moving the magnet closer to and farther from the loop, the flux
through the loop can be varied and an EMF generated in the loop. The electric
field producing the EMF drives a current through the wire. Pull the magnet
away from the wire loop and a current flows one way. Push the magnet closer
to the loop and the current flows the other way. That’s how Faraday
discovered the effect.



9.2.5 Ampèere’s Law
How about the other Maxwell equations? Can we recognize any other basic
electromagnetic laws by integrating them? Let’s try the fourth Maxwell
equation from Eqs. 9.10,

For now, we’ll assume nothing varies with time; the current  is steady and all
the fields are static. In that case, the equation takes the simpler form

One thing we see from this equation is that the magnetic field will be very
small unless a huge current flows through the wire. In ordinary laboratory units
the factor 1/c2 is a very small number. That fact played an important role in the
interlude on crazy units that followed Lecture 5.

Let’s consider a current flowing in a very long, thin wire—so long that we
may think of it as infinite. We can orient our axes so that the wire lies on the x
axis and the current flows to the right. Since the current is confined to the thin
wire, we may express it as a delta function in the y and z directions:

Now imagine a circle of radius r surrounding the wire, as shown in Fig. 9.4.
This time the circle is an imaginary mathematical circle, not a physical wire.
We are going to use Stokes’s theorem again, in a way that should be clear from
the figure. What we’ll do is integrate Eq. 9.19 over the disclike shaded region
in Fig. 9.4. The left side gives the integral of , which by Stokes’s theorem
is the line integral of B over the circle. The right side just gives 1/c2 times the
numerical value of the current through the wire, j.



Figure 9.4: Ampère’s
Law.

Thus,

It follows that a current through a wire produces a magnetic field that
circulates around the wire. By that I mean that the field points along the angular
direction, not along the x axis or in the direction away from the wire.

Because  is parallel to  at every point along the loop, the integral of the
magnetic field is just the magnitude of the field at distance r times the
circumference of the circle, giving

Solving for B(r), we find that the magnetic field produced by a current-
carrying wire at a distance r from the wire has the value

On the face of it, one might think the factor 1/c2 would be so overwhelmingly
small that no magnetic field would ever be detectable from an ordinary current.
Indeed, in the usual metric system,

What works to compensate for this tiny number is the huge number of electrons
that move through the wire when an EMF is created.

Equation 9.22 is called ∅rsted’s law after the Danish physicist Hans



Christian ∅rsted. ∅rsted noted that an electric current in a wire would cause the
magnetized needle of a compass to align along a direction perpendicular to the
wire and along the angular direction around the wire. Within a short time the
French physicist André-Marie Ampèere generalized ∅rsted’s law to more
general flows of current. The ∅rsted-Ampèere laws together with Faraday’s
law were the basis for Maxwell’s investigations that led to his equations.

9.2.6 Maxwell’s Law
By Maxwell’s law I mean the fact (discovered by James Clerk Maxwell in
1862) that light is composed of electromagnetic waves—wavelike undulations
of electric and magnetic fields. The discovery was a mathematical one, not
based on a laboratory experiment. It consisted of showing that Maxwell’s
equations have wavelike solutions that propagate with a certain speed, which
Maxwell calculated. By that time, the speed of light had been known for almost
two hundred years, and Maxwell observed that the speed of his
electromagnetic waves agreed. What I will do in the rest of this lecture is
show that Maxwell’s equations imply that electric and magnetic fields satisfy
the wave equation.

We are going to consider Maxwell’s equations in regions of space where
there are no sources—in other words, no currents or charge densities:

Our goal is to show that the electric and magnetic fields satisfy the same kind
of wave equation that we studied in Lecture 4. Let’s grab the simplified wave
equation (Eq. 4.26) and transpose all the space derivatives to the right side:



The Laplacian provides a convenient shorthand for the entire right side; we can
rewrite the wave equation as

As I explained in Lecture 4, this equation describes waves that move with the
velocity c.

Now let’s put ourselves in the shoes of Maxwell. Maxwell had his
equations (Eqs. 9.23), but those equations were not at all similar to Eq. 9.24.
In fact, he had no obvious reason to connect the constant c with any velocity,
let alone the velocity of light. I suspect the question he asked was this:

I have some coupled equations for  and . Is there some way to
simplify things by eliminating one of them (either  or ) to obtain
equations just for the other?

Of course I wasn’t there, but it’s easy to imagine Maxwell asking this question.
Let’s see if we can help him. Take the last equation from Eqs. 9.23 and
differentiate both sides with respect to time. We get

Now let’s use the second Maxwell equation to replace  with , which

indeed gives an equation for the electric field,

This is beginning to look more like a wave equation, but we are not quite there.
The last step is to use the unnamed theorem (Eq. 9.7). Fortunately, all we need
is the simplified form, Eq. 9.8. The reason is that the second Maxwell
equation, , is exactly the condition that allows the simplification. The
result is just what we want:



Each component of the electric field satisfies the wave equation.

Lenny: I wasn’t there Art, but I can well imagine Maxwell’s excitement. I can
hear him saying to himself:

What are these waves? From the form of the equation, the wave velocity is
that funny constant c that appears all over my equations. If I’m not
mistaken, in metric units it is about 3 × 108. YES! 3 × 108 meters per second!
The speed of light!

And thus it came to pass that James Clerk Maxwell discovered the
electromagnetic nature of light.

1 Somehow, this important lecture never made it to the video site for the course. It represents the main
point of contact between Lenny’s approach to the subject and the traditional approach. As a result of this
insertion, Lecture 10 in the book corresponds to Lecture 9 in the video series, and Lecture 11 in the book
corresponds to Lecture 10 in the video series.
2 One of our reviewers suggested calling it the “double-cross” theorem.

3 In the SI units adopted by many textbooks, you’ll see ρ/ 0 and  instead of and ρ and .



Lecture 10

Maxwell From Lagrange

Art: I’m worried about Maxwell. He’s been talking to himself for a long
time.

Lenny: Don’t worry, Art, it looks like he’s close to a solution.
[Lenny gestures toward the front door] Besides, help has just arrived.

Two gentlemen walk into the Hideaway. One of them is elderly and nearly
blind but has no trouble finding his way. They take seats on either side of
Maxwell. Maxwell recognizes them immediately.

Maxwell: Euler! Lagrange! I was hoping you’d show up! Your timing is
perfect!

 



In this lecture, we’ll do two things. The first is to follow up on Lecture 9 and
work out the details of electromagnetic plane waves. Then, in the second part
of the lecture, we’ll introduce the action principle for the electromagnetic field
and derive the two Maxwell equations that are not identities. To help keep
track of where we’ve been and where we’re going, I’ve summarized the full
set of Maxwell equations in Table 10.1.

Table 10.1: Maxwell equations in 3-vector and 4-vector form. The top group is
derived from identities; the bottom group is derived from the action principle.

10.1 Electromagnetic Waves
In Lectures 4 and 5 we discussed waves and wave equations, and in Lecture
we saw how Maxwell derived the wave equation for the components of the
electric and magnetic fields.

Let’s begin with the Maxwell equations (Eqs. 9.23) in the absence of
sources. I’ll write them here for convenience:



Now let’s consider a wave moving along the z axis with wavelength

where k is the so-called wave number. We can choose any wavelength we like.
A generic plane wave has the functional form

Field Value = C sin (kz − ω t),

where C is any constant. When applied to the electric field, the components
have the form

where ,  and  are numerical constants. We can think of them as the
components of a fixed vector that defines the polarization direction of the
wave.

We’ve assumed that the wave propagates along the z axis. Obviously this is
not very general; the wave could propagate in any direction. But we are
always free to realign our axes so that the motion of the wave is along z.

Another freedom we have is to add a cosine dependence; but this simply
shifts the wave along the z axis. By shifting the origin we can get rid of the
cosine.

Now let’s use the equation . Because z is the only space coordinate
that the electric field components depend on, this equation takes an especially
simple form,

If we combine this with Eq. 10.3, we find that

In other words, the component of the electric field along the direction of



propagation must be zero. Waves with this property are called transverse
waves.

Lastly, we can always align the x and y axes so that the polarization vector 
 lies along the x axis. Thus the electric field has the form,

Next, let’s consider the magnetic field. We might try allowing the magnetic
field to propagate in a different direction from the electric field, but that would
violate the Maxwell equations that involve both the electric and magnetic
fields. The magnetic field must also propagate along the z axis and have the
form

By the same argument we used for the electric field, the equation 
implies that the z component of the magnetic field is zero. Therefore the
magnetic field must also lie in the x, y plane, but not necessarily in the same
direction as the electric field. In fact, it must be perpendicular to the electric
field and therefore must lie along the y axis. To see this property we use the
Maxwell equation

In component form, this becomes



Now, keeping in mind that Ez and Ey are zero, and that the fields only vary with
respect to z, we see that only the y component of the magnetic field can vary
with time. Given that we are discussing oscillating waves, it follows that only
the y component of  can be nonzero.

One more fact follows from Eqs. 10.9. If we plug in the forms 
 and , we will find that  is constrained to be

There is still one more Maxwell equation we haven’t used, namely

If we take the x component of this last Maxwell equation and use what we have
already learned, we find that it reduces to

Plugging in the forms of Ex and By, out comes a simple relation between the
frequency ω and the wave number k:

ω = ck.

The wave form sin (kz − ω t) becomes

This is exactly the form of a wave propagating along the z axis with velocity c.
Let’s summarize the properties of electromagnetic plane waves:



• They propagate along a single axis at the speed of light.
• Electromagnetic waves are transverse, meaning that the fields lie in the

plane perpendicular to the propagation axis.
• The electric and magnetic fields are perpendicular to one another.
• The ratio of the electric and magnetic fields is

In relativistic units (where c = 1), the magnitudes of the electric and
magnetic fields are equal.

I’ll remind you of one property of light waves that you’re probably familiar
with, especially if you buy a better quality of sunglasses. Light is polarized. In
fact, all electromagnetic waves are polarized. The direction of polarization is
the direction of the electric field, so in our example we would say that the
wave is polarized along the x axis. The properties of plane electromagnetic
waves can be visualized in a single picture, shown in Fig. 10.1.

10.2 Lagrangian Formulation of Electrodynamics
I’ve made this point so many times that I risk being repetitive. Once again: The
fundamental ideas of energy conservation, momentum conservation, and the
relationship between conservation laws and symmetry laws follow only if you
start with the principle of least action. You can write all the differential
equations you like, and they may be mathematically consistent. All the same,
there will be no energy conservation—there will be no energy to be
conserved—unless those equations are derived from a Lagrangian and an
action principle. Since we’re inclined to deeply believe in energy
conservation, we should look for a Lagrangian formulation of Maxwell’s
equations.

Let’s go through the fundamental principles and make our best guess about
the Lagrangian. Remember that the two equations



Figure 10.1: Snapshot of an Electromagnetic Plane Wave Propagating to the Right
and Out of the Page (positive z direction). The  and  fields are perpendicular to

each other, and to the direction of propagation. The  field is shaded.

are mathematical identities that follow from the definitions of  and  (in
terms of the vector potential). There is no more need to derive them from an
action principle than there is need to derive 1 + 1 = 2.

Our goal now is to derive the second set. In 3-vector notation, these
equations are

We’ve identified the charge density ρ as the time component of the current 4-
vector Jν,

ρ = J0.



Likewise, the three components of  correspond to the three space components
of Jv,

or

All these relationships are captured in covariant form by the single equation

The time component of this equation is equivalent to Eq. 10.12, and the three
space components conspire to give us Eq. 10.13. How do we derive these
equations from a Lagrangian? Before we can even try, we must guess what the
correct Lagrangian is. The fundamental principles will help narrow the search.

We’ve already discussed the need for an action principle. We have also
seen that the mathematics of the action principle plays out slightly differently
for fields than it does for particles. Here we focus on fields because the
Maxwell equations are field equations. Let’s see what the other principles can
teach us.

10.2.1 Locality
Whatever happens at a particular time and position can only be related to
things that happen at neighboring times and positions. How do we guarantee
that? We make sure the Lagrangian density inside the action integral depends
only on the fields themselves and on their first derivatives with respect to the
coordinates Xμ.

In general, the Lagrangian density depends on each field in the theory; there
could be several of them, but I’ll just use the single variable ϕ to represent all
the fields that exist.1 The Lagrangian also depends on the derivatives of ϕ with
respect to space and time. We’re already accustomed to the notation ∂μϕ. We’ll
be using that, along with an even more condensed notation, ϕ,μ, which means
the same thing:



This notation is standard. In the symbol ϕ,μ the comma means derivative, and μ
means with respect to Xμ. The locality requirement says that the Lagrangian
density depends only on ϕ, and ϕ,μ. In other words, the action integral must
have the form

The symbol ϕ,μ doesn’t mean one particular derivative. It’s a generic symbol
that refers to derivatives with respect to all components, time and space. By
requiring the action integral to take this form, we guarantee that the resulting
equations of motion will be differential equations that relate things locally.

10.2.2 Lorentz Invariance
Lorentz invariance is a simple requirement: The Lagrangian density needs to
be a scalar. It must have the same value in every reference frame. We could
just leave it at that and move on to the next principle. Instead, I’d like to
provide some context by quickly reviewing our previous results for scalar
fields. The Maxwell equations are based on vector fields, not on scalar fields,
and it’s good to see how they compare.

For a scalar field ϕ, the Lagrangian may contain ϕ itself or any function of
ϕ. Let’s call this function U(ϕ). The Lagrangian can also contain derivatives.2
On the other hand, there are some things it cannot contain. For example, it can’t
contain ∂x ϕ all by itself. That would be nonsense because ∂xϕ is not a scalar.
It’s the x component of a vector. While we can’t just throw in arbitrary
components of a vector, we’re allowed to carefully package them up to form a
scalar. The quantity

∂μϕ∂μ ϕ = ϕ,μ ϕ,μ

is a perfectly good scalar and could certainly appear in a Lagrangian. Because
μ is a summation index, we can expand this as

∂μ ϕ∂μ ϕ = −(∂tϕ)2 + (∂x ϕ)2 + (∂y ϕ)2 + (∂z ϕ)2,



or in “comma” notation,

ϕ,μ ϕ,μ = −(∂t ϕ)2 + (∂x ϕ)2 + (∂y ϕ)2 + (∂z ϕ)2.

In Lecture 4, we used terms like the preceding ones to write a simple
Lagrangian (Eq. 4.7). In our newer notation, we can write that Lagrangian as

or

Based on this Lagrangian, we used the Euler-Lagrange equations to derive the
equations of motion. I’ve written only one field in this example, but there could
be several. In general, we might add up the Lagrangians for several fields. We
might even combine them in more complicated ways.

For each independent field—in our example there’s only one—we begin by
taking the partial derivative of the Lagrangian with respect to ϕ,μ, which is

Then we differentiate that term with respect to Xμ to get

That’s the left side of the Euler-Lagrange equation. The right side is just the
derivative of  with respect to ϕ. The complete equation is

This is the Euler-Lagrange equation for fields. It’s the direct counterpart to the
Lagrange equations for particle motion. As you recall, the equation for particle
motion is



To derive the equation of motion, we evaluate the Lagrangian (Eq. 10.15) using
the Euler-Lagrange equation (Eq. 10.16). We did this in Section 4.3.3 and
found that the equation of motion is

which is a simple wave equation.
Starting with the vector potential, we will follow exactly the same process

to arrive at Maxwell’s equations. It’s more complicated because there are
more indices to keep track of. In the end, I think you’ll agree that it’s a
beautiful piece of work. Before we take that plunge, we have one more
principle to review: gauge invariance. This is always a requirement in
electrodynamics.

10.2.3 Gauge Invariance
To make sure the Lagrangian is gauge invariant, we construct it from quantities
that are themselves gauge invariant. The obvious choices are the components
of Fμν, the electric and magnetic fields. These fields don’t change when you
add the derivative of a scalar to Aμ. In other words, they don’t change if you
make the replacement

Therefore, any Lagrangian we construct from the components of F will be
gauge invariant.

As we saw in the case of a scalar field, there are also some quantities we
cannot use. For example, we can’t include Aμ Aμ. This may seem
counterintuitive. After all, Aμ Aμ is a perfectly good Lorentz invariant scalar.3
However, it’s not gauge invariant. If you add the gradient of a scalar to A, then
Aμ Aμ would indeed change, so it’s no good. It can’t be part of the Lagrangian.

10.2.4 The Lagrangian in the Absence of Sources



We’ll build up our Lagrangian in two stages. First, we’ll consider the case
where there’s an electromagnetic field but no charges or currents. In other
words, the case where the current 4-vector is zero:

Jμ = 0.

Later on, we’ll modify the Lagrangian to cover nonzero current vectors as
well.

We can use the components Fμν in any way we like without worrying about
gauge invariance. However, Lorentz invariance requires more care; we must
somehow combine them to form a scalar by contracting the indices.

Consider some general tensor Tμν with two indices. It’s simple to construct
a scalar by raising one index, then contracting. In other words, we could form
the expression

with μ as a summation index. That’s the general technique for making scalars
out of tensors. What happens if we try that with Fμν? It’s not hard to see that the
result is

because all the diagonal components (components with equal indices) are zero.
In other words,

F00 = 0

F11 = 0

F22 = 0

F33 = 0.

The expression  tells us to add these four terms together, and of course the
result is zero. This is not a good choice for the Lagrangian. In fact, it appears
that any term linear in Fμν would not be a good choice. If linear terms are no



good, we can try something that’s nonlinear. The simplest nonlinear term
would be the quadratic term

FμνFμν.

This expression is nontrivial. It is certainly not identically equal to zero. Let’s
figure out what it means. First, consider the mixed space-and-time components

F0nF0n.

These are the components where μ is zero and therefore represents time. Latin
index n represents the space components of ν. What does the whole expression
represent? It’s nearly identical to the square of the electric field. As we’ve
seen before, the mixed components of Fμν are the electric field components.
The reason F0nF0n is not exactly the square of the electric field is that raising
one time component produces a change of sign. Because each term contains
one upper time index and one lower time index, the result is minus the square
of ,

F0nF0n = −E2.

A moment’s thought shows that this term appears twice in the summation
because we can interchange the roles of μ and ν. In other words, we must also
consider terms of the form

Fn0Fn0 = −E2.

These terms also add up to −E2 because Fμν is antisymmetric. In this second
form, the first index represents the space components, while the second index
represents time. The overall result of all this squaring and adding is −2E2. In
other words,

You might think that the antisymmetry of Fμ ν would cause these two sets of
terms to cancel. However, they don’t because each component is squared.



Now we need to account for the space-space components of Fμν. These are
the terms where neither index is zero. For example, one such term is

F12F12.

Raising and lowering the space indices does nothing; there’s no change of sign.
In terms of electric and magnetic fields, F12 is the same as B3, aka Bz, the z
component of magnetic field. Therefore, F12F12 is the same as (Bz)2. When we
consider its antisymmetric counterpart F21F21, we find that the term (Bz)2

enters the sum twice.
We have now accounted for all the terms in the sum FμνFμν except the

diagonals, where the two indices are equal to each other. But we already know
that those components are zero, and so we’re done. Combining the space-space
terms with the space-time terms results in

FμνFμν = −2E2 + 2B2,

or

By convention, this equation is written in a slightly different form. When I say
by convention, I mean it would affect nothing if we ignored the convention; the
equations of motion would be the same. One convention is that the E2 term is
positive and the B2 term is negative. The second convention incorporates a
factor of one quarter. As a result, the Lagrangian is usually written

or

The factor of  has no physical content. Its only purpose is to maintain

consistency with long-standing habits.



10.3 Deriving Maxwell’s Equations
Eq. 10.18 is Lorentz invariant, local, and gauge invariant. It’s not only the
simplest Lagrangian we can write down, it’s also the correct one for
electrodynamics. In this section, we’ll see how it gives rise to the Maxwell
equations. The derivation is a little tricky but not as hard as you might think.
We’ll proceed in small simple steps. To start with, we’ll ignore the Jμ terms
and work things out for empty space. Then we’ll bring Jμ back into the picture.

Once again, here are the Euler-Lagrange equations for fields:

For each field, we write a separate equation of this kind. What are these
fields? They are the vector potential components

A0, A1, A2, A3

or

At, Ax, Ay, Az.

These are four distinct and independent fields. What about their derivatives?
To help things along, we’ll extend our comma notation to include 4-vectors.4 In
this notation, the symbol Aμ,ν, or “A sub μ comma ν,” stands for the derivative
of Aμ with respect to Xν. In other words, we define Aμ,ν as

The comma in the subscript of the left side is essential. It tells you to take the
appropriate derivative. Without it the symbol Aμν would not be a derivative at
all. It would just be a component of some two-index tensor. What does the
field tensor look like in this notation? As we know, the field tensor is defined
as



It’s easy to translate this into comma notation. It’s just

Why put so much effort into condensing the notation for partial derivatives? I
think you’ll see the value of this technique in the next few paragraphs. Of
course it saves a lot of writing, but it does much more; it makes the symmetries
in our equations pop right out of the page. Even more importantly, it exposes
the simplicity of working through the Euler-Lagrange equations.

We’ll take the four components of Aμ to be separate independent fields.
There’s a field equation for each one of them. To translate the Lagrangian (Eq.
10.17) into condensed notation, we simply substitute for Fμν from Eq. 10.20:

That’s the Lagrangian. If you like, you can write it out in detail in terms of
derivatives. The components Aμ and Aν are the things that correspond to ϕ in
Eq. 10.19. There’s an Euler-Lagrange equation for each component of A. To
begin with, we’ll choose a single component, Ax, to work on. The first thing to
do is compute the partial derivative of  with respect to Ax,μ, that is,

Let’s break this calculation into small steps.
We need to calculate the derivative of  with respect to specific derivatives

of specific components of A. To see what that means, consider a case, the
derivative of  with respect to Ax, y. Eq. 10.21 tells us that  is a summation
over the four values of μ and ν. We could write out all sixteen terms of this
expansion and then look for terms that contain Ax, y. If we did that, we would
find that Ax, y appears in only two terms that have the form

(Ax, y − Ay, x)(Ax, y − Ay, x).

We temporarily ignored the factor of . Because both x and y are space
indices, lowering any of the indices makes no difference, and we can rewrite
this term more simply as



(Ax, y − Ay, x)(Ax, y − Ay, x).

Simplifying further and restoring the numerical factor, this becomes

Why did I write  instead of ? Because there are two terms of this form in the
expansion; one that occurs when μ = x and ν = y, and another when μ = y and ν
= x.

At this point, there should be no mystery about how to differentiate  with
respect to Ax, y. Because none of the other terms contain Ax, y, they all go to
zero when we differentiate and we can ignore them. In other words, we can
now write

This derivative is straightforward as long as we remember that Ax, y and Ay, x
are two different objects. We’re only interested in the dependence on Ax, y, and
therefore we regard Ay, x as a constant for this partial derivative. The result is

and we can now recognize the right side as an element of the field tensor,
namely −Fyx. The result of all this work is

or, using the antisymmetry of F,

The far right side of this equation, Fxy, comes for free because upper indices
are equivalent to lower indices for space components.



It took a long time to reach this point, but the result is quite simple. If you
go through the same exercise for every other component, you’ll discover that
each of them follows the same pattern. The general formula is

The next step, according to Eq. 10.19, is to differentiate Eq. 10.22 with respect
to Xν. When we do this to both sides of Eq. 10.22, we get

or

But wait a minute! The right side of Eq. 10.23 is nothing but the left side of the
last Maxwell equation from Table 10.1.

Could it really be that easy? Let’s withhold judgment for a moment, until
we work out the right side of the Euler-Lagrange equation. That means taking
the derivative of  with respect to the fields themselves. In other words, taking
the derivative of  with respect to the undifferentiated components of A, such
as Ax. But the undifferentiated components of A do not even appear in , and
therefore the result is zero. That’s all there is to it. The right side of the Euler-
Lagrange equation is zero, and the equation of motion for empty space (no
charges or currents) matches the Maxwell equation perfectly:

10.4 Lagrangian with Nonzero Current Density
How can we modify the Lagrangian to include Jμ, the current density?5 We
need to add something to  that includes all the components of Jμ. The current
density Jμ has four components: The time component is ρ, and the space
components are the three components of . The mth space component is the



charge per unit area per unit time that passes through a little window oriented
along the m axis. In symbols, we can write

Jμ = ρ, jm.

If we consider a little boxlike cell in space, the charge inside the cell is ρ
times the volume of the cell. In other words, it’s ρ times dx dy dz. The rate of
change of charge inside the cell is just the time derivative of that quantity. The
principle of local charge conservation says that the only way this charge can
change is for charges to pass through the walls of the cell. That principle gave
us the continuity equation,

which we worked out in Lecture 8. The symbol  (the divergence of ) is
defined as

The first term on the right side (partial of jx with respect to x) represents the
difference between the rates at which charge flows through the two x-oriented
windows of the cell. The other two terms correspond to the rates of flow
through the y and z-oriented windows. The sum of these three terms is the
overall rate at which charge flows through all the boundaries of the box. In
relativistic notation, the continuity equation (Eq. 10.24) becomes

But how does this help us derive Maxwell’s equations? Here’s how: Given
the continuity equation, we can construct a gauge invariant scalar that involves
both Jμ and Aμ. The new scalar is Jμ Aμ, which may be the simplest possible
way to combine these two quantities. It doesn’t look gauge invariant, but we’ll
see that it is. We consider each of these quantities to be a function of position.
We’ll use the single variable x to stand for all three space components.

Now let’s think about the impact this new scalar would have if we add it to
the Lagrangian. The action would contain the additional term



The minus sign is a convention, ultimately due to Benjamin Franklin.
Jμ(x)Aμ(x) is a scalar because it’s the contraction of a 4-vector with another 4-
vector. It involves both the current density and the vector potential. How can
we tell if it’s gauge invariant? Simple: Just do a gauge transformation and see
what happens to the action. Doing a gauge transformation means adding the
gradient of some scalar to Aμ. The gauge-transformed action integral is

What we really care about here is the change in action due to the extra term.
That change is

This doesn’t look much like zero. If it’s not zero, then the action is not gauge
invariant. But it is zero. Let’s see why.

It helps to remember that d4x is shorthand for dt dx dy dz. Let’s expand the
summation over μ. I’ll stop writing the left side at this point because we don’t
need it. The expanded integral is

We’re going to make one key assumption: that if you go far enough away, there
is no current. All currents in the problem are contained within a big laboratory
so that every component of J goes to zero at large distances. If we come across
a situation where there is a nonzero current at infinity, we have to treat it as a
special case. But for any ordinary experiment, we can imagine that the
laboratory is isolated and sealed, and that no currents exist outside it.

Let’s look at one particular term in the expanded integral, the term

which we’ll now write as



If you’ve read the previous books in this series, you already know where this
is going. We’re about to use an important technique called integration by parts.
Because we’re considering only the x component for now, we can treat this
term as an integral over x and ignore the dy dz dt portion of d4x. To integrate
by parts, we switch the derivative to the other factor and change the overall
sign.6 In other words, we can rewrite the integral as

What happens if we do the same thing with the next term in Eq. 10.26? The
next term is

Because this term has the same mathematical form as the J1 term, we get a
similar result. In fact, all four terms in Eq. 10.26 follow this pattern, and we
can capture that idea nicely using the summation convention. We can
reformulate Eq. 10.26 as

or

Does the sum ∂μ Jμ in this integral look familiar? It should. It’s just the left side
of the continuity equation (Eq. 10.25). If the continuity equation is correct then
this term, and in fact the entire integral, must be zero. If the current satisfies the
continuity equation—and only if it satisfies the continuity equation—then
adding the peculiar-looking term



to the Lagrangian is gauge invariant.
How does this new term affect the equations of motion? Let’s quickly

review our derivation for empty space. We started with the Euler-Lagrange
equation,

We then filled in the details of this equation for each component of the field A.
For the left side the result was

The right side, of course, was zero. This result is based on the original
Lagrangian for empty space, Eq. 10.17.

The new term (Eq. 10.27) involves A itself but does not involve any
derivatives of A. Therefore, it has no impact on the left side of the Euler-
Lagrange equation. What about the right side? When we differentiate Eq. 10.27
with respect to Aμ, we just get Jμ. The equation of motion becomes

These are the Maxwell equations we’ve been looking for. They are, of course,
the four equations that constitute the second set of Maxwell equations,

To summarize: We’ve found that Maxwell’s equations do follow from an action
or Lagrangian formulation. What is more, the Lagrangian is gauge invariant, but
only if the current 4-vector satisfies the continuity equation. What would
happen if the current failed to satisfy continuity? The answer is that the
equations would simply not be consistent. We can see the inconsistency from
Eq. 10.28 by differentiating both sides,



The right side is just the expression that appears in the continuity equation. The
left side is automatically zero because Fμν is antisymmetric. If the continuity
equation is not satisfied, the equations are contradictory.

1 For electromagnetism, the fields turn out to be components of the vector potential, but let’s not get ahead
of ourselves.
2 It’s not going too far to say that it must contain them. Without derivatives, the Lagrangian would be
uninteresting.
3 Remember that the μ’s in this expression do not signify derivatives. They just represent the components
of A. To indicate differentiation, we would use a comma.
4 Until now we’ve used the comma notation only for derivatives of a scalar.
5 Eq. 10.17 is the Lagrangian in terms of Fμν. Eq. 10.21 is the same Lagrangian in terms of the vector
potential.
6 In general, integration by parts involves an additional term called the boundary term. The assumption
that J goes to zero at great distances allows us to ignore the boundary term.



Lecture 11

Fields and Classical Mechanics

“I’m annoyed, Lenny. You always go on and on about how our equations
have to come from an action principle. Okay, you convinced me that action
is an elegant idea, but as someone said, ‘Elegance is for tailors.’ Frankly, I
don’t see why we need it.”

“Don’t be grumpy, Art. There really is a reason. I bet that if I let you
make up your own equations, energy won’t be conserved. A world without
energy conservation would be pretty weird. The sun could suddenly go out,
or cars could spontaneously start moving for no reason.”

“Okay, I get it: Lagrangians lead to conservation laws. I remember that
from classical mechanics. Noether’s theorem, right? But we’ve hardly
mentioned energy and momentum conservation. Do electromagnetic fields
really have momentum?”

“Yup. And Emmy can prove it.”
 



11.1 Field Energy and Momentum
Electromagnetic fields clearly have energy. Stand in the sun for a few minutes;
the warmth that you feel is the energy of sunlight being absorbed by your skin.
It excites molecular motion and becomes heat. Energy is a conserved quantity,
and it’s carried by electromagnetic waves.

Electromagnetic fields also carry momentum, although it’s not as easy to
detect. When sunlight is absorbed by your skin, some momentum is transferred
and it exerts a force or pressure on you. Fortunately the force is feeble, and
standing in the sunlight won’t exert much of a push. But it’s there. Future space
travel may utilize the pressure of sunlight (or even starlight) on a large sail in
order to accelerate a spaceship (Fig. 11.1). Whether or not this is practical, the
effect is real. Light carries momentum, which, when it’s absorbed, exerts a
force.1

Energy and momentum are the key concepts that connect field theory to
classical mechanics. We’ll start by having a closer look at what we actually
mean by the words energy and momentum.

In this lecture I am going to assume you are familiar with the concepts of
classical mechanics as they were presented in Volume I of the Theoretical
Minimum.

11.2 Three Kinds of Momentum
We have encountered three different concepts of momentum. These are not
three ways of thinking about the same thing, but three ways to think about three
different things—things that in general have different numerical values. The
first and simplest concept is mechanical momentum.

Figure 11.1: Solar Sail. Light waves carry



momentum. They exert pressure on
material objects and cause them to

accelerate.

11.2.1 Mechanical Momentum
In non-relativistic physics mechanical momentum, called , is just mass times
velocity. More precisely, it is the total mass of a system times the velocity of
the center of mass. It’s a vector quantity with three space components, px, py,
and pz. For a single particle, the components are

For a collection of particles labeled i the components of mechanical
momentum are

and similarly for the y and z components. Relativistic particles also have
mechanical momentum given by

11.2.2 Canonical Momentum
Canonical momentum is an abstract quantity that can apply to any kind of
degree of freedom. For any coordinate that appears in the Lagrangian,2 there is
a canonical momentum. Suppose the Lagrangian depends on a set of abstract
coordinates qi. These coordinates could be the spatial coordinates of a
particle, or the angle of a rotating wheel. They could even be the fields
representing the degrees of freedom of a field theory. Each coordinate has a
conjugate canonical momentum that is often denoted by the symbol i. i is
defined as the derivative of the Lagrangian with respect to :



If the coordinate qi happens to be called x, and the Lagrangian happens to be

where V(x) is a potential energy function, then the canonical momentum is the
same as the mechanical momentum.

Even if the coordinate in question represents the position of a particle, the
canonical momentum may not be the mechanical momentum. In fact we’ve
already seen an example in Lecture 6. Sections 6.3.2 and 6.3.3 describe the
motion of a charged particle in an electromagnetic field. The Lagrangian (from
Eq. 6.18) is

and you can see that velocity appears in more than one term. The canonical
momentum (from Eq. 6.20) is

We can call this quantity p. The first term on the right side is the same as the
(relativistic) mechanical momentum. But the second term has nothing to do
with mechanical momentum. It involves the vector potential and it’s something
new. When we develop classical mechanics in Hamiltonian form, we always
use canonical momentum.

In many cases the coordinates describing a system have nothing to do with
the positions of particles. A field theory is described by a set of fields at each
point of space. For example, one simple field theory has Lagrangian density

The canonical momentum conjugate to Φ(x) in this theory is



This “field momentum” is only distantly related to the usual concept of
mechanical momentum.

11.2.3 Noether Momentum3

Noether momentum is related to symmetries. Let us suppose that a system is
described by a set of coordinates or degrees of freedom qi. Now suppose we
change the configuration of the system by shifting the coordinates a tiny bit. We
might write this in the form

The small shifts Δi may depend on the coordinates. A good general way to
write this is

where ε is an infinitesimal constant and the fi(q) are functions of the
coordinates.

The simplest example is a translation of a system in space. A system of
particles (labeled n) may be uniformly displaced along the x axis by amount ε.
We express this by the equations

δXn = ε

δYn = 0.

δZn = 0.

Each particle is shifted along the x axis by amount ε, while remaining at the
same values of y and z. If the potential energy of the system only depends on
the distances between particles, then the value of the Lagrangian does not
change when the system is displaced in this way. In that case we say that there
is translation symmetry.

Another example would be a rotation around the origin in two dimensions.
A particle with coordinates X, Y would be shifted to X + δX, Y + δY, where



You can check that this corresponds to a rotation of the particle around the
origin by angle ε. If the Lagrangian does not change, then we say that the system
has rotation invariance.

A transformation of coordinates that does not change the value of the
Lagrangian is called a symmetry operation. 4 According to Noether’s theorem,
if the Lagrangian doesn’t change under a symmetry operation, then there is a
conserved quantity that I’ll call Q. 5 This quantity is the third concept of
momentum. It may or may not be equal to mechanical or canonical momentum.
Let’s remind ourselves what it is.

We can express a coordinate shift with the equation

where δqi represents an infinitesimal change to the coordinate qi, and the
function fi(q) depends on all of the q’s, not just qi. If Eq. 11.8 is a symmetry,
then Noether’s theorem tells us that the quantity

is conserved. Q is a sum over all the coordinates; there’s contribution from
each of the canonical momenta .

Let’s consider a simple example where q happens to be the x position of a
single particle. When you translate coordinates, x changes by a small amount
that is independent of x. In that case δq (or δx) is just a constant; it’s the amount
by which you shift. The corresponding f is trivially just 1. The conserved
quantity Q contains one term, which we can write as

Since f(q) = 1, we see that Q is just the canonical momentum of the system. For
the case of a simple nonrelativistic particle it is just the ordinary momentum.

11.3 Energy



Momentum and energy are close relatives; indeed they are the space and time
components of a 4-vector. It should not be surprising that the law of momentum
conservation in relativity theory means the conservation of all four
components.

Let’s recall the concept of energy in classical mechanics. The energy
concept becomes important when the Lagrangian is invariant under a
translation of the time coordinate t. Shifting the time coordinate plays the same
role for energy as shifting the space coordinate does for momentum. Shifting
the time coordinate means that “t” becomes “t plus a constant.” Invariance of
the Lagrangian under a time translation means that the answer to a question
about an experiment doesn’t depend on when the experiment starts.

Given a Lagrangian L(qi, ) that’s a function of qi and , there’s a quantity
called the Hamiltonian, defined as

The Hamiltonian is the energy, and for an isolated system it’s conserved. Let’s
return to our simple example where q is the x position of a single particle, and
the Lagrangian is

What is the Hamiltonian for this system? The canonical momentum is the
derivative of the Lagrangian with respect to the velocity. In this example, the
velocity  appears only in the first term and the canonical momentum pi is

Multiplying pi by  (which becomes  in this example) the result is m 2. Next,
we subtract the Lagrangian, resulting in

or



We recognize this as the sum of kinetic energy and potential energy. Is it
always that easy?

The simple Lagrangian of Eq. 11.12 has one term that depends on 2, and
another term that does not contain  at all. Whenever a Lagrangian is nicely
separated in this way, it’s easy to identify the kinetic energy with the 2 terms,
and the potential energy with the other terms. When the Lagrangian takes this
simple form—squares of velocities minus things that don’t depend on
velocities—you can read off the Hamiltonian quickly without doing any extra
work; just flip the signs of the terms that don’t contain velocities.

If Lagrange’s equations apply to everything on the right side of Eq. 11.11,
then the Hamiltonian is conserved; it does not change with time. 6 Whether or
not the Lagrangian has such a simple form, the total energy of a system is
defined to be its Hamiltonian.

11.4 Field Theory
Field theory is a special case of ordinary classical mechanics. Their close
connection is slightly obscured when we try to write everything in relativistic
fashion. It’s best to start out by giving up on the idea of making all equations
explicitly invariant under Lorentz transformation. Instead, we’ll choose a
specific reference frame with a specific time coordinate and work within that
frame. Later on, we’ll address the issue of switching from one frame to
another.

In classical mechanics, we have a time axis and a collection of coordinates
called qi(t). We also have a principle of stationary action, with action defined
as the time integral of a Lagrangian,

The Lagrangian itself depends on all the coordinates and their time derivatives.
That’s all of it: a time axis, a set of time-dependent coordinates, an action
integral, and the principle of stationary action.

11.4.1 Lagrangian for Fields
In field theory we also have a time axis, and coordinates or degrees of freedom



that depend on time. But what are those coordinates?
For a single field, we can view the field variable Φ as a set of coordinates.

That seems odd, but remember that the field variable Φ depends not only on
time but also on position. It’s the nature of this dependency on position that
sets it apart from the qi variables that characterize a particle in classical
mechanics.

Let’s imagine, hypothetically, that the Φ dependence on position is discrete
rather than continuous. Fig. 11.2 illustrates this idea schematically. Each
vertical line represents a single degree of freedom, such as Φ1, Φ2, and so
forth. We refer to them collectively as Φi. This naming convention mimics the
coordinate labels (such as qi) of classical mechanics. We do this to emphasize
two ideas:

1. Each Φi is a separate and independent degree of freedom.
2. The index i is just a label that identifies a particular degree of freedom.

In practice, the field variable Φ is not labeled by a discrete index i but by a
continuous variable x, and we use the notation Φ(t, x). However, we’ll
continue to think of x as a label for an independent degree of freedom, and not
as a system coordinate. The field variable Φ(t, x) represents an independent
degree of freedom for each value of x.

We can see this even more concretely with a physical model. Fig. 11.3
shows a linear array of masses connected by springs. The masses can only
move in the horizontal direction, and the motion of each mass is a separate
degree of freedom, qi, labeled with discrete indices i. As we pack more and
more tiny masses and springs into the same space, this system starts to
resemble a continuous mass distribution. In the limit, we would label the
degrees of freedom by the continuous variable x rather than a discrete set of
indices i. This scheme works for classical fields because they’re continuous.



Figure 11.2: Elements of Field Theory. If
we pretend that Φ is discrete, we can

think of Φi in the same way we think of
qi in classical mechanics. The subscripts
i are labels for independent degrees of

freedom.

What about derivatives? Just as we expect, field Lagrangians depend on the
time derivatives  of the field variables. But they also depend on derivatives
of Φ with respect to space. In other words, they depend on quantities such as

Figure 11.3: Field Analogy. Think of a set of discrete degrees of freedom such as
these masses connected by springs. We label each degree of freedom with a



subscript Φi. Now suppose the masses become smaller and more densely spaced. In
the limit there is an infinite number of small masses spaced infinitesimally closely. In
this limit they become continuous (just like a field) rather than discrete, and it makes

more sense to label the degrees of freedom Φ(x)rather than Φi.

This is different from classical particle mechanics, where the only derivatives
in the Lagrangian are time derivatives such as . A Lagrangian for field theory
typically depends on things like

and

But what is the derivative of Φ with respect to x? It’s defined as

for some small value of ε. In this sense, the space derivatives are functions of
the Φ’s themselves; most importantly, the space derivatives do not involve .
The dependence of the Lagrangian on space derivatives reflects its dependence
on the Φ’s themselves. In this case, it depends on two nearby Φ’S at the same
time.

11.4.2 Action for Fields
Let’s think about what we mean by action. An action in classical mechanics is
always an integral over time,

But for fields, the Lagrangian itself is an integral over space. We’ve already
seen this in previous examples. If we separate the time portion of the integral
from the space portion, we can write the action as



I’m using the symbol L for the Lagrangian, and the symbol  for the Lagrangian
density. The integral of  over space is the same as L. The point of this
notation is to avoid mixing up the time derivatives with the space derivatives.

11.4.3 Hamiltonian for Fields
The energy of a field is part of the universal conserved energy that is
associated with time translation. To understand field energy, we need to
construct the Hamiltonian. To do that, we need to identify the generalized
coordinates (the q’s), their corresponding velocities and canonical momenta
(the ’s and the p’s), and the Lagrangian. We’ve already seen that the
coordinates are Φ(t, x). The corresponding velocities are just (t, x). These
are not velocities in space, but quantities that tell us how fast the field changes
at a particular point in space. The canonical momentum conjugate to Φ is the
derivative of the Lagrangian with respect to . We can write this as

where Φ(x) is the canonical momentum conjugate to Φ. Both sides of the
equation are functions of position. If there are many fields in a problem—such
as Φ1, Φ2, Φ 3—there will be a different (x) associated with each of them.
With these preliminaries in place, we’re able to write the Hamiltonian. The
Hamiltonian defined by Eq. 11.11,

is a sum over i. But what does i represent in this problem? It labels a degree of
freedom. Because fields are continuous, their degrees of freedom are instead
labeled by a real variable x, and the sum over i becomes an integral over x. If
we replace pi with Φ(x), and  with (x), we have the correspondence



To turn this integral into a Hamiltonian, we have to subtract the total
Lagrangian L. But we know from Eq. 11.13 that the Lagrangian is

This is also an integral over space. Therefore, we can put both terms of the
Hamiltonian inside the same integral, and the Hamiltonian becomes

This equation is interesting; it expresses the energy as an integral over space.
Therefore, the integrand itself is an energy density. This is a characteristic
feature of all field theories; conserved quantities like energy, and also
momentum, are integrals of densities over space.

Let’s go back to the Lagrangian of Eq. 4.7, which we’ve used on a number
of occasions. Here, we view it as a Lagrangian density. We’ll consider a
simplified version, with only a single dimension of space,

The first term is the kinetic energy. 7 What is Φ? It’s the derivative of  with
respect to , which is just . That is,

and the Hamiltonian, (the energy), is

Replacing Φ with , this becomes



Plugging in the expression for  gives

or

In Eq. 11.14 (the Lagrangian density), we have a kinetic energy term containing
the time derivative 2. The second two terms, containing V(Φ) and the space
derivative of Φ, play the role of potential energy—the part of the energy that
does not contain time derivatives. 8 The Hamiltonian in this example consists
of kinetic energy plus potential energy and represents the total energy of the
system. By contrast, the Lagrangian is kinetic energy minus potential energy.

Let’s set the V(Φ) term aside for a moment and consider the terms involving
time and space derivatives. Both of these terms are positive (or zero) because
they’re squares. The Lagrangian has both positive and negative terms, and is
not necessarily positive. But energy has only non-negative terms. Of course
these terms can be zero. But the only way that can happen is for Φ to be
constant; if Φ is constant then its derivatives must be zero. It should be no
surprise that energy does not typically become negative.

What about V(Φ)? This term can be positive or negative. But if it’s
bounded from below, then we can easily arrange for it to be positive by adding
a constant. Adding a constant to V(Φ) doesn’t change anything about the
equations of motion. However, if V(Φ) is not bounded from below, the theory
is not stable and everything goes to hell in a handwagon; you don’t want any
part of such a theory. So we can assume that V(Φ), and consequently the total
energy, is zero or positive.

11.4.4 Consequences of Finite Energy
If x is just a label and Φ(t, x) is an independent degree of freedom for each
value of x, what prevents Φ from varying wildly from one point to another? Is
there any requirement for Φ(t, x) to vary smoothly? Suppose hypothetically that
the opposite is true: namely, that the value of Φ may jump sharply between



neighboring points in Fig. 11.2. In that case, the gradient (or space derivative)
would get huge as the separation between points gets smaller. 9

This means the energy density would become infinite as the separation
decreased. If we’re interested in configurations where the energy doesn’t blow
up to infinity, these derivatives must be finite. Finite derivatives tell Φ(t, x) to
be smooth; they put the brakes on how wildly Φ can vary from point to point.

11.4.5 Electromagnetic Fields via Gauge Invariance
How can we apply these ideas about energy and momentum to the
electromagnetic field? We could certainly use the Lagrangian formulation that
we saw earlier. The fields are the four components of the vector potential Aμ.
The field tensor Fμν is written in terms of the space and time derivatives of
these components. We then square the components of Fμν and add them up to
get the Lagrangian. Instead of having just one field, we would have four. 10

But there is a helpful simplification based on gauge invariance. This
simplification not only makes our work easier but illustrates some important
ideas about gauge invariance. Remember that the vector potential is not unique;
if we’re clever, we can change it in ways that do not affect the physics. This is
similar to the freedom to choose a coordinate system, and we can use that
freedom to simplify our equations. In this case, our use of gauge invariance
will allow us to work with only three components of the vector potential rather
than worrying about all four.

Let’s recall what a gauge transformation is; it’s a transformation that adds
the gradient of an arbitrary scalar S to the vector potential Aμ. It amounts to the
replacement

We can use this freedom to pick S in a way that simplifies Aμ. In this case we’ll
choose S in a way that makes the time component A0 become zero. All we care
about is the time derivative of S, because A0 is the time component of Aμ. In
other words, we’d like to choose an S such that



or

Is that possible? The answer is yes. Remember that  is a derivative with
respect to time at a fixed position in space. If you go to that fixed position in
space, you can always choose S so that its time derivative is some
prespecified function, −A0. If we do this, then the new vector potential,

will have zero for its time component. This is called fixing the gauge.
Different choices of gauges have names—the Lorentz gauge, the radiation
gauge, the Coulomb gauge. The gauge with A0 = 0 goes under the elegant name
“the A0 = 0 gauge.” We could have made other choices; none of them would
affect the physics, but the A0 = 0 gauge is especially convenient for our
purposes. Based on our choice of gauge, we write

A0 = 0.

This completely eliminates the time component from the vector potential. All
we have left are the space components,

Am(x).

With this gauge in place, what are the electric and magnetic fields? In terms of
the vector potential, the electric field is defined (see Eq. 8.7) as

But with A0 set equal to zero, the second term disappears and we can write a
simpler equation,



The electric field is just the time derivative of the vector potential. What about
the magnetic field? It only depends on the space components of the vector
potential, and these are not affected by our choice of gauge. Thus it’s still true
that

This simplifies things because we can now ignore the time component of Aμ
altogether. The degrees of freedom in the A0 = 0 gauge are just the space
components of the vector potential.

Let’s consider the form of the Lagrangian in the A0 = 0 gauge. In terms of the
field tensor, recall (Eq. 10.17) that the Lagrangian is

But (as we saw in Eq. 10.18) that happens to equal 1/2 times the square of the
electric field minus the square of the magnetic field,

The first term in Eq. 11.19 is

But from Eq. 11.16 we know that this is the same as

With this substitution, Eq. 11.19 is starting to resemble Eq. 11.14, which was

Notice that  is not just a single term, but three terms; it contains the

squares of the time derivatives of Ax, Ay, and Az. It is a sum of terms of exactly
the same type as the  term of Eq. 11.19—one term for each component of the



vector potential. The expanded form is

The second term of Eq. 11.19 is the square of the curl of A. The full Lagrangian
density is

or

The resemblance to Eq. 11.14 is even stronger now: squares of time
derivatives minus squares of space derivatives.

What is the canonical momentum conjugate to a particular component of the
vector potential? By definition, it’s

which is just

In terms of individual components,

But it’s also true that the time derivative of A is minus the electric field. So we



found something interesting. The canonical momenta happen to be minus the
components of the electric field. In other words,

Thus the physical meaning of canonical momentum conjugate to the vector
potential is (minus) the electric field.

What’s the Hamiltonian?
Now that we know the Lagrangian, we can write down the Hamiltonian. We
could go through the formal construction of the Hamiltonian, but in this case we
don’t need to. That’s because our Lagrangian has the form of a kinetic energy
term that depends on squares of time derivatives, minus a potential energy term
that has no time derivatives at all. When the Lagrangian has this form—kinetic
energy minus potential energy—we know what the answer is: The Hamiltonian
is kinetic energy plus potential energy. Thus the electromagnetic field energy is

Once again, the Lagrangian is not necessarily positive. In particular, if there’s a
magnetic field with no electric field, the Lagrangian is negative. But the energy,
1/2(E2 + B2), is positive. What does this say about an electromagnetic plane
wave moving along an axis? The example we saw in Lecture 10 had an E
component in one direction and a B component in the perpendicular direction.
The B field has the same magnitude as the E field and is in phase with it, but
polarized in the perpendicular direction. This tells us that the electric and
magnetic field energies are the same. An electromagnetic wave moving down
the z axis has both electric and magnetic energy, and both contributions happen
to be the same.



Momentum Density
How much momentum does an electromagnetic wave carry? Let’s go back to
Noether’s concept of momentum from Section 11.2.3. The first step in using
Noether’s theorem is to identify a symmetry. The symmetry associated with
momentum conservation is translation symmetry along a spatial direction. For
example, we may translate a system along the x axis by a small distance ε (see
Fig. 11.4). Each field Φ (x) gets replaced by Φ(x − ε). Accordingly, the change
in Φ (x) is

which (if ε is infinitesimal) becomes

Figure 11.4: Noether
Shift. Take a field

conguration Φ(x) and
shift it to the right

(toward higher x) by an
infinitesimal amount ε.
The change in Φ at a

specific point is −εdΦ.

In the case of electromagnetism the fields are the space components of the
vector potential. The shifts of these fields under a translation become



Next we recall from Eq. 11.9 that the conserved quantity associated with this
symmetry has the form

In this case the canonical momenta are minus the electric fields

and the fi are just the expressions multiplying ε in Eqs. 11.23,

Thus the x component of the momentum carried by the electromagnetic field is
given by

We could, of course, do the same thing for the y and z directions in order to get
all three components of momentum. The result is

Evidently, like the energy, the momentum of an electromagnetic field is an
integral over space. 11 We might therefore identify the integrand of Eq. 11.24 as
the density of momentum,



There is an interesting contrast between this momentum density and the energy
density in Eq. 11.22. The energy density is expressed directly in terms of the
electric and magnetic fields, but the momentum density still involves the vector
potential. This is disturbing; the electric and magnetic fields are gauge
invariant, but the vector potential is not. One might think that quantities like
energy and momentum densities should be similar and only depend on E and B.
In fact there is a simple fix that turns the momentum density into a gauge
invariant quantity. The quantity

is part of the expression for the magnetic field. In fact, we can turn it into a
magnetic field component by adding the term

If we could sneak in this change, we’d be able to rewrite the integral as

Can we get away with it? How would Pn change if we insert this additional
term? To find out, let’s look at the term we want to add,

Let’s integrate this by parts. As we’ve seen before, whenever we take the
integral whose integrand is a derivative times something else, we can shift the
derivative to the other term at the cost of a minus sign: 12

But due to the summation index m, the term  is just the divergence of the
electric field. We know from Maxwell’s equations for empty space that  is
zero. That means the additional integral changes nothing, and therefore that Pn
can be written in terms of the electric and magnetic fields,



A little algebra will show that the integrand is actually the vector . That
means  is the momentum density. Dropping the subscripts and reverting to
standard vector notation, Eq. 11.25 now becomes

 is a vector, and its direction tells you the direction of the momentum. The
momentum density  is called the Poynting vector, often denoted by .

The Poynting vector tells us something about how the wave propagates.
Let’s go back to Fig. 10.1 and look at the first two half-cycles of the
propagating wave. In the first half-cycle,  points upward, and  points out of
the page. Following the right-hand rule, we can see that  points to the
right, along the z axis. That’s the direction in which momentum (and the wave
itself) propagates. What about the next half-cycle? Since the direction of both
field vectors has been reversed, the Poynting vector still “poynts” to the right.
We’ll have more to say about this vector as we go.

Notice how important it is that  and  are perpendicular to each other; the
momentum (the Poynting vector) is a consequence. This all traces back to
Emmy Noether’s wonderful theorem about the connection between conserved
momentum and spatial translation invariance. It’s all coming home in one big
piece—classical mechanics, field theory, and electromagnetism. It all comes
back to the principle of least action.

11.5 Energy and Momentum in Four Dimensions
We know that energy and momentum are conserved quantities. In four-
dimensional spacetime, we can express this idea as a principle of local
conservation. The ideas we present here are inspired by our previous work
with charge and current densities and will draw on those results.

11.5.1 Locally Conserved Quantities
Back in Section 8.2.6, we explored the concept of local conservation of



charge; if the charge within a region increases or decreases, it must do so by
moving across the boundary of the region. Charge conservation is local in any
sensible relativistic theory and gives rise to the concepts of charge density and
current density, ρ and . Together, these two quantities make a 4-vector,

Charge density is the time component, and current density (or flux) is the space
component.

The same concept applies to other conserved quantities. If we think more
generally, beyond charges, we can imagine for each conservation law four
quantities representing the density and flux of any conserved quantity. In
particular, we can apply this idea to the conserved quantity called energy.

In Lecture 3, we learned that the energy of a particle is the time component
of a 4-vector. The space components of that 4-vector are its relativistic
momenta. Symbolically, we can write

In field theory, these quantities become densities, and energy density can be
viewed as the time component of a four-dimensional current. We’ve already
derived an expression for energy density; Eq. 11.22 gives the energy density of
an electromagnetic field. Let’s give this quantity the temporary name T0:

What we want to do is find a current of energy analogous to the electric current
Jm. Like Jm, the energy current has three components. Let’s call them Tm. If we
define Tm correctly, they should satisfy the continuity equation

Our strategy for finding the current of energy Tm is simple: Differentiate T0

with respect to time, and see if the result is the divergence of something.
Taking the time derivative of Eq. 11.26 results in



or

where  and  are derivatives with respect to time. At first glance, the right
side of Eq. 11.27 doesn’t look like a divergence of anything, because it
involves time derivatives rather than space derivatives. The trick is to use the
Maxwell equations

to replace  and . Plugging these into Eq. 11.27 gives something a little more
promising:

In this form, the right side contains space derivatives and therefore has some
chance of being a divergence. In fact, using the vector identity

we find that Eq. 11.29 becomes

Lo and behold, if we define the current of energy as

we can write the continuity equation for energy as

In relativistic notation, this becomes



The vector  representing the flow of energy should be familiar; it’s the
Poynting vector, named after John Henry Poynting, who discovered it in 1884,
probably by the same argument. We already met this vector in Section 11.4.5
under the heading “Momentum Density.” The Poynting vector has two
meanings: We can think of it as either an energy flow or a momentum density.

To summarize: Energy conservation is local. Just like charge, a change of
energy within some region of space is always accompanied by a flow of
energy through the boundaries of the region. Energy cannot suddenly disappear
from our laboratory and reappear on the moon.

11.5.2 Energy, Momentum, and Lorentz Symmetry
Energy and momentum are not Lorentz invariant. That should be easy to see.
Imagine an object of mass m at rest in your own rest frame. The object has
energy given by the well-known formula

E = mc2

or in relativistic units,

E = m

Because the object is at rest, it has no momentum.13 But now look at the same
object from another frame of reference where it is moving along the x axis. Its
energy is increased, and now it does have momentum.

If field energy and momentum are not invariant, how do they change under a
Lorentz transformation? The answer is that they form a 4-vector, just as they do
for particles. Let’s call the components of the 4-vector Pμ. The time component
is the energy, and the three space components are ordinary momenta along the
x, y, and z axes. All four components are conserved:

This suggests that each component has a density and that the total value of each
component is an integral of the density. In the case of energy we denoted the



density by the symbol T0. But now we’re going to change the notation by
adding a second index and calling the energy density T00.

I’m sure you’ve already guessed that the double index means we’re
building a new tensor. Each index has a specific meaning. The first index tells
us which of the four quantities the element refers to.14 The energy is the time
component of the 4-momentum, and therefore the first index is 0 for time. To be
explicit: A value of 0 for the first index indicates that we’re talking about
energy. A value of 1 indicates the x component of momentum. Values of 2 and 3
indicate the y and z components of momentum respectively.

The second index tells us whether we’re talking about a density or a flow.
A value of 0 indicates a density. A value of 1 indicates a flow in the x
direction. Values of 2 and 3 indicate flows in the y and z directions
respectively.

For example, T00 is the density of energy; we get the total energy by
integrating T00 over space:

Now let’s consider the x component of momentum. In this case the first index is
x (or the number 1), indicating that the conserved quantity is the x component
of momentum. The second index again differentiates between density and flow
or current. Thus, for example,

or more generally,

What about the flow of momentum? Each component has its own flux. For
example, we can consider the flux of x-momentum flowing in the y direction.15

This would be denoted Txy. Similarly Tzx is the flux of z-momentum flowing in
the x direction.

The trick in understanding Tμν is to blot out the second index for a moment.
The first index tells us which quantity we are talking about, namely P0, Px, Py,



or Pz. Then, once we know which quantity, we blot out the first index and look
at the second. That tells us if we are talking about a density or a component of
the current.

We can now write down the continuity equation for the component of
momentum Pm as

or

There are three such equations, one for each component of momentum (that is,
one for each value of m). But if we add to these three the fourth equation
representing the conservation of energy (by replacing m with μ) we can write
all four equations in a unified relativistic form,

This all takes some getting used to, so it might be a good time to stop and
review the arguments. When you’re ready to continue, we’ll work out the
expressions for momenta and their fluxes in terms of the fields E and B.

11.5.3 The Energy-Momentum Tensor
There are lots of ways to figure out what Tμν is in terms of the electric and
magnetic fields. Some are more intuitive than others. We’re going to use a type
of argument that may seem somewhat less intuitive and more formal, but it’s
common in modern theoretical physics and is also very powerful. What I have
in mind is a symmetry or invariance argument. An invariance argument begins
with listing the various symmetries of a system and then asking how the
quantity of interest transforms under those symmetries.

The most important symmetries of electrodynamics are gauge invariance
and Lorentz invariance. Let’s begin with gauge invariance: How do the
components of Tμν transform under a gauge transformation? The answer is
simple; they don’t. The densities and fluxes of energy and momentum are



physical quantities that must not depend on the choice of gauge. This means that
they should depend only on the gauge-invariant observable fields  and  and
not have additional dependence on the potential Aμ.

Lorentz invariance is more interesting. What kind of object is Tμν, and how
do the components change in going from one frame of reference to another? It
is clearly not a scalar because it has components labeled μ and ν. It cannot be a
4-vector because it has two indices and sixteen components. The answer is
obvious. Tμν is a tensor—a rank two tensor, meaning that it has two indices.

Now we can give Tμν its proper name: the energy-momentum? tensor.16

Because it is such an important object, not just in electrodynamics but in all
field theories, I’ll repeat it: Tμν is the energy-momentum tensor. Its
components are the densities and currents of energy and momentum.

We can build Tμν by combining the components of the field tensor Fμν. In
general, there are many tensors we could build in this way, but we already
know exactly what T00 is. It’s the energy density,

This tells us that Tμν is quadratic in the components of the field tensor; in other
words, it is formed from products of two components of Fμν.

The question then is, how many different ways are there to form a tensor
from the product of two copies of Fμν? Fortunately there are not too many. In
fact, there are only two. Any tensor built quadratically out of Fμν must be a sum
of two terms of the form

where a and b are numerical constants that we’ll figure out in a moment.
Let’s pause to look at Eq. 11.40. The first thing to notice is that we’ve made

use of the Einstein summation convention. In the first term the index σ is
summed over, and in the second term σ and τ are summed over.

The second thing to notice is the appearance of the metric tensor ημν. The
metric tensor is diagonal and has components η00 = −1, η11 = η22 = η33 = +1.
The only question is how to determine the numerical constants a and b.

Here the trick is to realize that we already know one of the components: T00

is the energy density. All we need to do is use Eq. 11.40 to determine T00 and



then plug it into Eq. 11.39. Here is what we get:

Comparing the two sides, we find that a = 1 and b = −1/4. With these values of
a and b, Eq. 11.40 becomes

From this equation we can compute all the various components of the energy-
momentum tensor.

Aside from T00, which is given by Eq. 11.39, the most interesting
components are T0n and Tn0, where n is a space index. T0n are the components
of the flux (or current) of energy, and if we work them out we find that they are
(as expected) the components of the Poynting vector.

Now let’s look at Tn0. Here we can use an interesting property of Eq.
11.40. A little bit of inspection should convince you that Tμν is symmetric. In
other words,

Tμν = Tνμ.

Thus Tn0 is the same as T0n; both are just the Poynting vector. But Tn0 does not
have the same meaning as hT0n. T01 is the flux of energy in the x direction, but
T10 is an entirely different thing; namely, it is the density of the x component of
momentum. It’s helpful to visualize Tμν as follows:

where (Sx, Sy, Sz) are components of the Poynting vector. In this form, it’s easy
to see how the mixed space-time components (the top row and leftmost
column) differ from the space-space components (the 3 × 3 submatrix in the
lower right). As we noted earlier, σmn are the components of a tensor called
the electromagnetic stress tensor, which we have not discussed in detail.



Exercise 11.1: Show that T0n is the Poynting vector.

Exercise 11.2: Calculate T11 and T12 in terms of the field components (Ex,
Ey, Ez) and (Bx, By, Bz).

Suppose we restored the factors of the speed of light c that we previously
set to 1. The easiest way to do that is by dimensional analysis. We would find
that the energy flux and momentum density differ by a factor of c2. The
dimensionally correct identification is that the momentum density is , with
no factor of c. Evidently we have made a discovery, and it’s one that has been
confirmed by experiment:

For an electromagnetic wave, the density of momentum is equal to the flux of
energy divided by the speed of light squared. Both are proportional to the
Poynting vector.

Now we can see why on the one hand sunlight warms us when it’s absorbed,
but on the other hand it exerts such a feeble force. The reason is that the energy
density is c2 times the momentum density, and c2 is a very big number. As an
exercise, you can calculate the force on a solar sail a million square meters in
area, at Earth distance from the Sun. The result is tiny, about 8 newtons or
roughly 2 pounds. On the other hand, if the same sail absorbed (rather than
reflected) the sunlight that fell on it, the power absorbed would be about a
million kilowatts.

The density and current of electric charge play a central role in
electrodynamics. They appear in Maxwell’s equations as the sources of the
electromagnetic fields. One may wonder if the energy-momentum tensor plays
any similar role. In electrodynamics the answer is no; Tμν does not directly
appear in the equations for  and . It’s only in the theory of gravity that energy
and momentum take their rightful role as sources, but not sources of
electromagnetic fields. The energy-momentum tensor appears in the general
theory of relativity as the source of the gravitational field. But that’s another
subject.



11.6 Bye for Now
Classical field theory is one of the great accomplishments of nineteenth- and
twentieth-century physics. It ties together the broad fields of electromagnetism
and classical mechanics, using the action principle and special relativity as the
glue. It provides a framework for studying any field—gravity, for example—
from a classical perspective. It’s a crucial prerequisite for the study of
quantum field theory and for general relativity (the topic of our next book). We
hope we’ve made the subject understandable and even fun. We’re thrilled that
you made it all the way to the end.

Some wiseguy once said,

Outside of a dog, a book is a man’s best friend. Inside of a dog it’s too
dark to read.

If you happen to review our book from either the outside or the inside of a
dog—or the boundary of a dog, for that matter—please include some reference
to Groucho, however subtle, in your review. We will deem that to be sufficient
proof that you actually read the book.

As our friend Hermann might have said, “Time is up!” See you in general
relativity.

Farmer Lenny, out standing in his ϕield.
A pair o’ ducks dances to Art’s Φiddle.

1 See https://en.m.wikipedia.org/wiki/IKAROS for a description of IKAROS, an experimental spacecraft



based on this concept.
2 For now I’ll use the symbol L instead of  for the Lagrangian.
3 I use the term Noether Momentum because I’m not aware of a standard term for this quantity.
4 In this context, we’re talking about an active transformation, which means we move the whole
laboratory, including all the fields and all the charges, to a different location in space. This is different from
a passive transformation that just relabels the coordinates.
5 I explain Noether’s theorem in the first volume of this series, Classical Mechanics. For more about
Noether’s contributions, see https://en.m.wikipedia.org/wiki/Emmy_Noether.
6 For a full explanation, see Volume I of the Theoretical Minimum series.
7 If we went back to thinking about relativity, we would recognize the first two terms on the right side as

scalars, and combine them into a single term such as  ∂μΦ∂μΦ. That’s a beautiful relativistic expression,
but we don’t want to use this form just now. Instead, we’ll keep track of time derivatives and space
derivatives separately.
8 Sometimes V(Φ) is called the field potential energy, but it’s more accurate to think of the combination of
both terms as the potential energy. Potential energy should include any terms that don’t contain time
derivatives.
9 Remember what the derivative is. It’s the change in Φ between two nearby points, divided by the small
separation. For a given change in Φ, the smaller the separation, the bigger the derivative.
10 We’ll work mainly in relativistic units (c = 1). On occasion, we’ll briefly restore the speeds of light
when a sense of relative scale is important.

11 Because these integrals reference one space component at a time, we’ve written dx instead of d3x. A
more precise notation for the integrand of Eq. 11.24 might be . We’ve decided on the simpler

form, where dx is understood to reference the appropriate space component.
12 We assume that the fields go to zero beyond a certain distance, and therefore there are no boundary
terms.
13 In these two equations E stands for energy, not electric field.
14 The roles of the first and second indices here may be reversed in relation to their roles described in the
video. Because the tensor is symmetric, this makes no real difference.
15 The term flux may be confusing to some. Perhaps it’s more clear if we call it the change of (the x
component of momentum) in the y direction. Change in momentum should be a familiar idea; in fact, it
represents force. But since we’re talking about momentum density, it’s better to think of these space-

space components of Tμν as stresses. The negatives of these space-space components form a 3 × 3
tensor in their own right, known as the stress tensor.
16 Some authors call it the stress-energy tensor.
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Appendix A

Magnetic Monopoles: Lenny Fools Art

“Hey, Art, let me show you something. Here, take a look at this.”

“Holy moly, Lenny, I think you found a magnetic monopole. But hold on!
Didn’t you tell me that monopoles are impossible? Come on, come clean;
you’ve got something up your sleeve and I think I know what it is. A
solenoid, right? Ha ha, good trick.”

“Nope, Art, not a trick. It’s a monopole all right, and no strings attached.”

Figure A.1: Electric Monopole. It’s just a
positive charge.

What would a magnetic monopole be, if there were such things? First, what



does the term monopole mean? A monopole is simply an isolated charge. The
term electric monopole, if it were commonly used, would simply mean an
electrically charged particle, along with its electric Coulomb field. The
convention (see Fig. A.1) is that the electric field points outward for a positive
charge like the proton, and inward for a negative charge like the electron. We
say that the charge is the source of the electric field.

A magnetic monopole would be exactly the same as an electric monopole,
except that it would be surrounded by a magnetic field. Magnetic monopoles
would also come in two kinds, those for which the field points outward, and
those for which it points inward.

A sailor of old, who might have had a magnetic monopole, would have
classified it as either a north or a south magnetic monopole, depending on
whether it was attracted to the Earth’s north or south pole. From a
mathematical point of view it’s better to call the two types of magnetic
monopoles positive and negative, depending on whether the magnetic field
points out or in. If such objects exist in nature, we would call them sources of
the magnetic field.

Electric and magnetic fields are mathematically similar, but there is one
crucial difference. Electric fields do have sources: electric charges. But
according to the standard theory of electromagnetism, magnetic fields do not.
The reason is captured mathematically in the two Maxwell equations

and

The first equation says that electric charge is the source of electric field. If we
solve it for a point source we get the good old Coulomb field for an electric
monopole.

The second equation tells us that the magnetic field has no sources, and for
that reason there is no such thing as a magnetic monopole. Nevertheless,
despite this compelling argument, magnetic monopoles not only are possible,
but they are an almost universal feature of modern theories of elementary
particles. How can this be?

One possible answer is to just change the second equation by putting a



magnetic source on the right side. Calling the density of magnetic charge σ, we
might replace Eq. A.2 with

Solving this equation for a point magnetic source would result in a a magnetic
Coulomb field that’s the exact analog of the electric Coulomb field,

The constant μ would be the magnetic charge of the magnetic monopole. By
analogy with electrostatic forces, two magnetic monopoles would be expected
to experience magnetic Coulomb forces between them; the only difference
would be that the product of the electric charges would be replaced with the
product of the magnetic charges.

But it’s not so simple. We really don’t have the option of tinkering with ∇ ·
B = 0. The underlying framework for electromagnetism is not the Maxwell
equations, but rather the action principle, the principle of gauge invariance,
and the vector potential. The magnetic field is a derived concept defined by the
equation

At this point it might be a good idea to go back to Lecture 8 and review the
arguments that led us to Eq. A.5. What does this equation have to do with
magnetic monopoles? The answer is a mathematical identity, one that we have
used several times: The divergence of a curl is always zero.

In other words, any vector field such as  that’s defined as the curl of another
field—the vector potential  in this case—automatically has zero divergence.
Thus  appears to be an unavoidable consequence of the very definition
of .

Nonetheless, most theoretical physicists are firmly persuaded that
monopoles can, and probably do, exist. The argument goes back to Paul Dirac,
who in 1931 explained how one could “fake” a monopole. In fact, the fake
would be so convincing that it would be impossible to distinguish from the real
thing.



Start with an ordinary bar magnet (Fig. A.2) or even better, a electromagnet
or solenoid. A solenoid (Fig. A.3) is a cylinder wrapped by wire with current
going through it. The current creates a magnetic field, which is like the field of
the bar magnet. The solenoid has the advantage that we can vary the strength of
the magnet by varying the current through the wire.

Figure A.2: A Bar
Magnet with North and

South Poles.

Every magnet, including the solenoid, has a north and south pole that we
can call positive and negative. Magnetic field comes out of the positive pole
and returns through the negative pole. If you ignore the magnet in between, it
looks very much like a pair of magnetic monopoles, one positive and one
negative. But of course you can’t ignore the solenoid. The magnetic field
doesn’t end at the poles; it passes through the solenoid so that the the lines of
flux don’t terminate; they form continuous loops. The divergence of the
magnetic field is zero even though it looks like there is a pair of sources.

Now let’s stretch out the bar magnet or solenoid, making it very long and
thin. At the same time let’s remove the south (negative) pole to such a far
distance that it might as well be infinitely far.

The remaining north pole looks like an isolated positive magnetic charge
(Fig. A.4). If one had several such simulated monopoles they would interact
much like actual monopoles, exerting magnetic Coulomb forces on each other.
But of course the long solenoid is unavoidably attached to the fake monopole,
and the magnetic flux passes through it.



Figure A.3: A Solenoid
or Electromagnet. The

magnetic field is
generated by a current
through the wire wound
around the cylindrical

core.

We could go further and imagine the solenoid to be flexible (call it a Dirac
string), as illustrated in Fig. A.5. As long as the flux goes through the string and
comes out at the other pole, Maxwell equation  would be satisfied.

Finally, we could make the flexible string so thin that it’s invisible (Fig.
A.6). You might think that the solenoid would be easily detectable, so that the
monopole could be easily unmasked as a fake. But suppose that it were so thin
that any charged particle moving in its vicinity would have a negligible chance
of hitting it and experiencing the magnetic field inside the string. If it were thin
enough, the string would pass between the atoms of any material, leaving it
unaffected.

It’s not practical to make solenoids that are so thin that they pass through all
matter, but it’s the thought experiment that’s important. It shows that magnetic
monopoles, or at least convincing simulations of them, must be mathematically
possible. Moreover, by varying the current in the solenoid, it is possible to
make the monopoles at the ends of the solenoid have any magnetic charge.



Figure A.4: Elongated Solenoid.

If physics were classical—not quantum mechanical—this argument would
be correct: monopoles of any magnetic charge would be possible. But Dirac
realized that quantum mechanics introduces a subtle new element. Quantum
mechanically, an infinitely thin solenoid would not generally be undetectable.
It would affect the motion of charged particles in a subtle way, even if they
never get close to the string. In order to explain why this is so, we do need to
use a bit of quantum mechanics, but I’ll keep it simple.

Let’s imagine our thin solenoid is extremely long, stretching across all
space, and that we are somewhere near the string but far away from either end.
We want to determine the effect on an atom whose nucleus lies near the
solenoid and whose electrons orbit around the solenoid. Classically, there
would be no effect because the electrons don’t pass through the magnetic field.

Instead of a real atom, which is a bit complicated, we can use a simplified
model—a circular ring of radius r that an electron slides along (Fig. A.7). If
the solenoid passes through the center of the ring, the electron will orbit around
the solenoid (if the electron has any angular momentum). To begin with,
suppose that there is no current in the solenoid so that magnetic field threading
the string is zero.1 Suppose the velocity of the electron on the ring is v. Its
momentum p and angular momentum L are

Figure A.5: Dirac String: A Thin and
Flexible Solenoid.

Figure A.6: Limiting
Case of a Dirac String.



The string could be so
thin as to be

unobservable.

and

Figure A.7: Ring Surrounding a Thin
Stringlike Solenoid. A charged electron

slides along the ring. By varying the
current in the solenoid we can vary the

magnetic field threading the string.

Finally, the energy  of the electron is

which we may express as a function of the angular momentum L,

Now for the introduction of quantum mechanics. All we need is one basic fact,
discovered by Niels Bohr in 1913. It was Bohr who first realized that angular
momentum comes in discrete quanta. This is true for an atom, and just as true
for an electron moving on a circular ring. Bohr’s quantization condition was
that the orbital angular momentum of the electron must be an integer multiple of
Planck’s constant ħ. Calling L the orbital angular momentum, Bohr wrote



where n can be any integer, positive, negative, or zero, but nothing in between.
It follows that the energy levels of the electron moving on the ring are discrete
and have the values

Thus far, we have assumed that there is no magnetic field threading the string,
but our real interest is the effect on the electron of the string with magnetic flux
ϕ running through it. So let’s ramp up the current and create a magnetic flux
through the string. The magnetic flux starts at zero; over a time interval Δt it
grows to its final value ϕ.

One might think that turning on the magnetic field has no effect on the
electron since the electron is not where the magnetic field is located. But that’s
wrong. The reason is Faraday’s law: A changing magnetic field creates an
electric field. It’s really just the Maxwell equation

This equation says that the increasing magnetic flux induces an electric field
that surrounds the string and exerts a force on the electron. The force exerts a
torque and accelerates the electron’s angular motion, thereby changing its
angular momentum (Fig. A.8).

If the flux through the string is ϕ(t), then Eq. 9.18 tells us that the EMF is

Because EMF represents the energy needed to push a unit charge once around
the entire loop, the electric field at the ring has the opposite sign and is "spread
out” along the length of the ring. In other words,



Figure A.8: Another
view of the solenoid,

ring, and charge.

and the torque (force times r) is

Exercise A.1: Derive Eq. A.13, based on Eq. 9.18. Hint: The derivation
follows the same logic as the derivation of Eq. 9.22 in Section 9.2.5.

A torque will change angular momentum in the same way that a force changes
momentum. In fact, the change in angular momentum due to a torque T applied
for a time Δt is

or, using Eq. A.14,

The final step in calculating how much the angular momentum changes, is to
realize that the product  is just the final flux ϕ2. Thus at the end of the



process of ramping up the flux, the electron’s angular momentum has changed
by the amount

By this time, the flux through the solenoid is no longer changing and therefore
there is no longer an electric field. But two things have changed: First, there is
now a magnetic flux ϕ through the solenoid. Second, the angular momentum of

the electron has shifted by . In other words, the new value of L is

which is not necessarily an integer multiple of ħ. This in turn shifts the
possible set of energy levels of the electron, whether the electron lives on a
ring or in an atom. A change in the possible energies of an atom would be easy
to observe in the spectral lines emitted by the atom. But this happens only for
electrons that orbit the string. As a consequence, one could locate such a string
by moving an atom around and measuring its energy levels. This would put the
kibosh on Lenny’s trick to fool Art with his fake monopole.

But there is an exception. Going back to Eq. A.18, suppose that the shift of
angular momentum just happened to be equal to an integer multiple n′ of
Planck’s constant. In other words, suppose

In that case the possible values of the angular momentum (and the energy
levels) would be no different than they were when the flux was zero, namely
some integer multiple of Planck’s constant. Art would not be able to tell that
the string was present by its effect on atoms or anything else. This only
happens for certain quantized values of the flux,

Now let’s return to one end of the string, say the positive end. The magnetic
flux threading the string will spread out and mimic the field of a monopole just



as in Fig. A.6. The charge of the monopole μ is just the amount of flux that
spills out of the end of the string; in other words it is ϕ. If it is quantized as in
Eq. A.20, then the string will be invisible, even quantum mechanically.

Putting it all together, Lenny can indeed fool Art with his “fake” magnetic
monopole, but only if the charge of the monopole is related to the electron
charge q by

The point, of course, is not just that someone can be fooled by a fake
monopole; for all intents and purposes, real monopoles can exist, but only if
their charges satisfy Eq. A.21. The argument may seem contrived, but modern
quantum field theory has convinced physicists that it’s correct.

But this does leave the question of why no magnetic monopole has ever
been seen. Why are they not as abundant as electrons? The answer provided by
quantum field theory is that monopoles are very heavy, much too massive to be
produced in particle collisions, even those taking place in the most powerful
particle accelerators. If current estimates are correct, no accelerator we are
ever likely to build would create collisions with enough energy to produce a
magnetic monopole. So do they have any effect on observable physics?

Dirac noticed something else: The effect of a single monopole in the
universe, or even just the possibility of a monopole, has a profound
implication. Suppose that there existed an electrically charged particle in
nature whose charge was not an integer multiple of the electron charge. Let’s
call the electric charge of the new particle Q. A monopole that satisfies Eq.
A.21, with q being the electron charge, might not satisfy the equation if q were
replaced by Q. In that case, Art could expose Lenny’s fraudulent monopole
with an experiment using the new particle. For this reason, Dirac argued that
the existence of even a single magnetic monopole in the universe, or even the
possibility of such a monopole, requires that all particles have electric charges
that are integer multiples of a single basic unit of charge, the electron charge. If
a particle with charge  times the electron charge, or any other irrational
multiple, were to be discovered, it would mean that monopoles could not exist.

Is it true that every charge in nature is an integer multiple of the electron
charge? As far as we know, it is. There are electrically neutral particles like
the neutron and neutrino, for which the integer is zero; protons and positrons



whose charges are −1 times the electron charge; and many others. So far, every
particle ever discovered—including composites like nuclei, atomic ions,
exotics like the Higgs boson, and all others—has a charge that’s an integer
multiple of the electron charge.3

1 This is where the variable field of the solenoid is helpful.
2 Technically, it’s the change in flux over time period Δt, but by assumption the flux starts out at zero.
Therefore these two quantities are the same.
3 You may think that quarks provide a counterexample to this argument, but they don’t. It’s true that

quarks carry charges of  or  of the electron charge. However, they always occur in combinations
that yield an integer multiple of the electron charge.



Appendix B

Review of 3-Vector Operators

This appendix summarizes the common vector operators: gradient, divergence,
curl, and the Laplacian. We assume you have seen them before. We’ll restrict
the discussion to Cartesian coordinates in three dimensions. Because all of
these operators use the  symbol, we’ll describe that first.

B.1 The  Operator
In Cartesian coordinates, the symbol  (pronounced “del") is defined as

where , , and  are unit vectors in the x, y, and z directions respectively. In

mathematical expressions, we manipulate the operator components (such as )
algebraically as though they were numeric quantities.

B.2 Gradient
The gradient of a scalar quantity S, written  S, is defined as

In our “condensed” notation, its components are



where the derivative symbols are shorthand for

The gradient is a vector that points in the direction of maximum change for the
scalar. Its magnitude is the rate of change in that direction.

B.3 Divergence
The divergence of , written as  · , is a scalar quantity given by

or

The divergence of a field at a specific location indicates the tendency of that
field to spread out from that point. A positive divergence means the field
spreads out from this location. A negative divergence means the opposite—the
field tends to converge toward that location.

B.4 Curl
The curl indicates the tendency of a vector field to rotate or circulate. If the
curl is zero at some location, the field at that location is irrotational. The curl



of , written  × , is itself a vector field. It is defined to be

Its x, y, and z components are

or

For convenience, we’ll rewrite the preceding equations using numerical
indices:

The curl operator has the same algebraic form as the vector cross product,
which we summarize here for easy reference. The components of  are



Using index notation, this becomes

B.5 Laplacian
The Laplacian is the divergence of the gradient. It operates on a twice-
differentiable scalar function S, and results in a scalar. In symbols, it’s defined
as

Referring back to Eq. B.1, this becomes

If we apply ∇2 to a scalar function S, we get

The value of ∇2S at a particular point tells you how the value of S at that point
compares to the average value of S at nearby surrounding points. If ∇2S > 0 at
point p, then the value of S at point p is less than the average value of S at
nearby surrounding points.

We usually write the ∇2 operator without an arrow on top because it
operates on a scalar and produces another scalar. There is also a vector
version of the Laplacian operator, written with an arrow, whose components
are



Index

acceleration, 169; 4-acceleration, 246; harmonic oscillators and, 188; light
and, 355 (fig.); mass times, 248; of particles, 172–173; relativistic, 248–
249

action: in classical mechanics, 366; defining, 118–119, 366; field, 117, 167,
366; nonrelativistic, 95–96; of particle motion, 123–124; of particles, 163;
principle of least, 93–95, 118; relativistic, 96–99; stationary, 122

action integral, 159, 164–165; gauge-transformed, 348; Lorentz force law and,
230–231

action principle, 256–257; electromagnetism and, 398; of field theory, 122–
124; Maxwell’s equations and, 285 (table)

active transformations, 359n
Alpha Centauri, 58
ampere, 201
Ampère, André-Marie, 279
Ampère’s law, 279, 318–321, 320 (fig.)
angular momentum, 403, 405–406
antisymmetric tensors, 225–227, 228, 250–251, 276n
antisymmetry, 340
approximation formula, 159
arbitrary scalar function, 264
atmospheric temperature, 117
atoms, 406; size of, 194–196
Avogadro’s number, 194–195

bar magnet, 399 (fig.)
Bianchi identity: checking, 302; Maxwell’s equations and, 299–302; special

cases of, 300n
binomial theorem, 89



Bohr, Niels, 403
boson, Higgs, 409
boundary points, 122; of spacetime regions, 122, 123 (fig.)
boundary terms, 349n, 380n

calculus, xv, 139, 182; fundamental theorem of, 304
canonical momentum, 235; conjugate, 356; defining, 356–357; vector potential

and, 374–375
Cartesian frame, 3
charge density, 286; defining, 286; Maxwell’s equations and, 286–291;

rectangle, 289n; in spacetime, 287 (fig.)
charges, 231; electrical, 298; fields and, 208–209; See also conservation of

charge
classical field theory, 115, 148–149, 392
classical mechanics, xix, 101–102; actions in, 366
classical physics, xix
clocks, 17–19; moving, 41–42
column vector, 216n
comma notation, 334
complex functions, 186n
components: contravariant, 140, 183–184, 213; covariant, 136–145, 184–185;

diagonal, 227n, 339; electric fields, 339; of 4-vectors, 127–128, 144; of 4-
velocity, 84–85; of 4-velocity in terms of an invariant, 87–88; of Laplacian,
415; magnetic fields, 379; of momentum, 110; space, 244, 346; space-and-
time, 339; space-space, 340, 386n; time, 237, 346; undifferentiated, 346;
vector potential, 342; of velocity, 85

condensed notation, 412
conjugate canonical momentum, 356
conservation of charge: current density in, 294; electric, 311–312; local, 292

(fig.), 293 (fig.); Maxwell’s equation and, 291–296; neighborhood-by-
neighborhood expression of, 296

conservation of energy, 387
conserved quantities, 382
constants, 21; coupling, 159; of nature, 194; Newton’s gravitational, 194;

Planck’s, 194, 403, 407
continuity equation, 296; for energy, 384; 4-vectors and, 351; gauge invariance



and, 347; rewriting, 297; satisfying, 382
contravariant components, 140, 183; negatives, 184; notation of, 213
contravariant indices, 178, 211
convention, 341
conventional units, Lorentz transformation of, 32–34
coordinate space, 94
coordinate systems: distance in, 49; light rays and, 17; synchronization of, 16–

17
coordinates: rotation of, 53; in spacetime, 25; transformation of, 26
cosine, 131
coulomb, 199; defining, 201–202
Coulomb field: electric, 397; magnetic, 397
Coulomb gauge, 372
Coulomb’s law, 199, 203, 279, 284, 314–315
coupling constant, 159
covariant components, 136–145; Lorentz transformation and, 137–138;

notation of, 223; transforming, 184–185
covariant 4-vectors, 142
covariant indices, 178, 213, 297–298
covariant transformations, of 4-vector, 219
covariant vectors, 182
curl, 282–283; divergence of, 280–281, 398; double, 310; 3-vector operators,

413–414
current density: in conservation of charge, 294; defining, 289; in

electrodynamics, 391; Lagrangian with, 346–351; Maxwell’s equations and,
286–291; nonzero, 346–351; in rest frame, 298; in space, 288 (fig.); in
spacetime, 287 (fig.)

degrees of freedom, 367; field theory and, 116, 365 (fig.); representation of,
363

derivatives, 338n, 370; calculation of, 343–344; finite, 370–371; Lagrangian
formulation and, 335n, 364–365; notation, 213–214; partial, 299, 343, 345

diagonal components, 227n, 339
differentials, 137, 143
differentiation, 168–169, 338n
dimensionless fractions, 90



dimensions, 14–16
Dirac, Paul, xvi, 398, 401, 408
Dirac delta function, 165, 172
Dirac string, 400, 402 (fig.)
distance: in coordinate systems, 49; invariants and, 53; spacetime, 50n
divergence: of curl, 280–281; 3-vector operators, 412–413
dot product, 181
double curl, 310
double-cross theorem, 310n
downstairs indices, 173–176; Einstein summation convention and, 177
dummy index, 177–178

Einstein, Albert, xvi, xviii, 5, 31; first paper on relativity of, 270–278;
historical context of, 60–61; Maxwell’s equations and, 60; Minkowski and,
54–55; on relativistic momentum, 101; on spacetime, 23; on synchronization,
13

Einstein summation convention, 137, 176–181, 389; downstairs indices and,
177; scalar field and, 180; upstairs indices and, 177

electric Coulomb field, 397
electric current, 200–201
electric fields: components, 339; under Lorentz transformation, 273–274;

magnetic fields and, 273–274, 277, 404; Maxwell’s equations and, 282–
284, 328–329; wave equations and, 323

electric forces, 207–208
electric monopole, 396, 396 (fig.)
electrical charge, Lorentz invariance of, 298
electrodynamics: current density in, 391; gauge invariance and, 388;

Lagrangian formulation of, 331–333; laws of, 311–324; Lorentz invariance
and, 388; Maxwell’s equations and, 312–313

electromagnetic fields, 228–229, 317; gauge invariance and, 371–375; Lorentz
force law and, 247–248; momentum of, 378–389; vector potential of, 242

electromagnetic plane wave, 332 (fig.)
electromagnetic stress tensor, 390
electromagnetic units, 198–203
electromagnetic waves, 327–331
electromagnetism, xvi, xviii, 31, 313, 334n; action principle and, 398; vector



potential, 377–378
electromotive force (EMF), 273
electrons: primed frames of, 273; velocity of, 271–272
electrostatic potential, 237
EMF. See electromotive force
energy, 354; continuity equation for, 384; defining, 108, 383–384; density, 368;

equation, 191; field, 354–355; field potential, 369n; finite, 370–371; in four
dimensions, 381–391; kinetic, 107, 119, 369, 376; Lorentz symmetry and,
384–387; in Lorentz transformation, 106; of massless particles, 109, 111;
momentum and, 360–362; of objects, 107; of photons, 112; potential, 369;
relativistic, 104–106; rest, 108

energy-momentum tensor, 387–391
ether drag, xvii–xviii
Euclidean geometry, 48; right triangles in, 49–50
Euclidean plane, 49 (fig.)
Euler-Lagrange equation, 120, 156, 230, 243, 336; in field theory, 127–129;

for fields, 342; left side of, 237; Lorentz force law and, 230, 234–243; for
motion equations, 185; for multidimensional spacetime, 125–126; particle
motion and, 159; right side of, 237, 346; for scalar field, 126, 152–154; See
also Lagrangian

events, 26; simultaneous, 19; spacelike, 59n
exact expansion, 89
exponentials, for wave equations, 185–186

fake monopoles, 407–408
Faraday, Michael, xvi, 312, 318
Faraday’s law, 279, 284, 315–318, 318 (fig.), 404
field: action, 117, 167, 366; analogy, 365 (fig.); charges and, 208–209; energy,

momentum and, 354–355; equations, 333; Euler-Lagrange equation for, 342;
Hamiltonian for, 367–370; Higgs, 152; Lagrangian for, 363–366; momentum,
357; mystery, 151–152; particles and, 149–151, 158–168; relativistic, 132;
spacetime and, 116–117; vector, 117, 305; See also specific fields

field potential, 128; energy, 369n
field tensor, 250–253, 345; Lagrangian and, 373; Lorentz transformation of,

253, 274–277
field theory, xvi, 362; action principle of, 122–124; classical, 115, 148–149,



392; degrees of freedom and, 116, 365 (fig.); elements of, 364 (fig.); Euler-
Lagrange equation in, 127–129; Lagrangian in, 128, 147–149; locality and,
258; quantum, 392, 408; representation of, 117

field transformations, 144 (table); properties, 133–136, 134 (fig.)
finite derivatives, 370–371
finite energy, 370–371
FitzGerald, George, 31
fixed differences, 36n
fixing gauges, 372
flow, 291
flux, 291, 386n, 404
forces: electric, 207–208; gravitational, 207; long-range, 207; magnetic, 207,

209; short-range, 207
4-acceleration, 246
4-momentum, 110, 385
4-vectors, 220–221; components of, 127–128, 144; continuity equation and,

351; covariant, 142; covariant transformations of, 219; defining, 74;
differences of, 174; fields, 134; introduction to, 72; light rays and, 70–71;
Lorentz transformation of, 74, 138–139, 141, 274–275; Maxwell’s equations
in form of, 326 (table); notation, 72–75, 211–212; relativistic energy and,
106; representation of, 175; scalar fields from, 144–146; scalars and, 282n;
space components of, 244; transformation properties of, 74

4-velocity: components expressed as invariants, 87–88; components of, 84–85;
constructing, 75–76; defining, 75, 84–85; equations with, 246; Lorentz force
law and, 246; Lorentz transformation of, 85; Newton and, 86–87; slower
look at, 84–85; summary of, 88; three-dimensional velocity compared with,
85

four-dimensional spacetime, 81n
fourth dimension, time as, 55
frame independence, 94
frames. See specific types
Franklin, Benjamin, 272–273, 348
free index, 178
fundamental principles, 255
fundamental theorem of calculus, 304
future light cone, 55, 71 (fig.)



Galileo, xvii, 5, 61
gauge invariance, 255; continuity equation and, 347; defining, 259, 264;

electrodynamics and, 388; electromagnetic fields via, 371–375; Lagrangian
formulation and, 337–338, 350; motion and, 265–266; perspective on, 267–
268; symmetry and, 259–262; vector potential and, 371

gauge-transformed action integral, 348
Gauss’s theorem, 304–307, 312; illustration of, 305 (fig.)
general Lorentz transformation, 36
general relativity, 392
generalized chain rule, 139
geometric relationships, 210
gravitational attraction, 6
gravitational forces, 207
Greek indices, 244–245

Hamiltonian, 361–362; for fields, 367–370; formal construction of, 376
Hamiltonian mechanics, 92
Hamiltonians, defining, 104
harmonic oscillators: acceleration term for, 188; Lagrangian of, 187
Heisenberg Uncertainty Principle, 197
Higgs boson, 409
Higgs field, 152
higher-order derivatives, 146
hydrogen, 195
hypotenuse, 45, 49–50

identity matrices, 176
indices: contracting, 179, 214; contravariant, 211; covariant, 213, 297–298;

downstairs, 173–177; dummy, 177–178; free, 178; Greek, 244–245; Latin,
244–245; notation, 73, 414; raising and lowering, 224–225; summation,
177–178, 239n, 241, 380; upstairs, 173–177

inertial frames, in twin paradox, 45
inertial reference frames (IRF), 5–7
infinite momentum, 104
integrand, 258



interaction terms, 167
intervals: lightlike, 58, 60, 71 (fig.); spacelike, 82–83; spacetime, 50n, 57–58,

73; timelike, 84
invariance, 262–265; Lorentz, 128, 132, 259, 260; spacetime trajectory and,

263; of tensor equations, 223; See also gauge invariance
invariants, 48; defining, 49, 56; distance and, 53; 4-velocity components

expressed as, 87–88; manifestly, 245; in Minkowski space, 50–51; time and,
53, 55; velocity components as, 87–88

IRF. See inertial reference frames
kinetic energy, 107, 369; expression of, 119; Lagrangian as, 376

Klein-Gordon equation, 188–190
Kronecker delta, 166

labels, 363
Lagrangian, 98–99, 104, 156, 261; in absence of sources, 338–341; density,

257, 334, 357, 366, 374; derivatives and, 335n, 364–365; field tensor and,
373; in field theory, 128, 147–149; for fields, 363–366; gauge invariance
and, 337–338, 350; of harmonic oscillators, 187; and kinetic energy, 376;
locality and, 334–335; Lorentz force law and, 232–234; Lorentz invariance
and, 146, 335–337; of nonrelativistic particles, 119; with nonzero current
density, 346–351; notation of, 343; particles, 149–150; physical models,
363–364; relativistic, 145–147; time integral of, 362

Lagrangian formulation of electrodynamics, 331–333
Lagrangian mechanics, 92
Laplace, Pierre-Simon, 310
Laplacian, 322; components of, 415; 3-vector operators, 415
Latin indices, 244–245
length, speed of light and, 15
length contraction, 37–40, 41 (fig.)
light: acceleration and, 355 (fig.); composition of, 321; polarization of, 331;

properties of, 331
light, speed of, 6–7, 35–36; length and, 15; momentum of, 104; of relativistic

units, 22; time and, 15
light cones, 70–71
light rays: coordinates and, 17; 4-vectors and, 70–71; light cones and, 70–71;



movement of, 70–71; slope of, 9; velocity of, 10–11
lightlike separation, 58, 60
Limo and Bug paradox, 46; simultaneity in, 47–48; spacetime diagram of, 47

(fig.)
linear algebra, xv
locality: defining, 257–258; field theory and, 258; Lagrangian formulation and,

334–335; Maxwell’s equations and, 334; quantum mechanics and, 258
locally conserved quantities, 381–384
lodestone, 209
long-range forces, 207
Lorentz, Hendrik, 31; historical context of, 61–62
Lorentz boosting, 101
Lorentz contraction, 31, 298–299; formula, 86
Lorentz force law, 205–206, 210; action integral and, 230–231;

electromagnetic fields and, 247–248; Euler-Lagrange equation and, 230,
234–243; 4-velocity and, 246; illustration of, 273; nonrelativistic version
of, 229; relativistic version, 229; with 3-vectors, 229; vector potential and,
230–231, 247–248

Lorentz gauge, 372
Lorentz invariance, 128, 132, 260, 299–300, 338; defining, 259; of electrical

charge, 298; electrodynamics and, 388; Lagrangian formulation and, 146,
335–337; of Maxwell’s equations, 302

Lorentz invariant equations, 243–246
Lorentz symmetry: energy and, 384–387; momentum and, 384–387
Lorentz transformation, 101; combination of, 64; of conventional units, 32–34;

covariant components and, 137–138; energy in, 106; of field tensor, 253,
274–277; of 4-vectors, 74, 138–139, 141, 274–275; of 4-velocity, 85;
general, 36–37, 214–218; magnetic fields under, 273–274; Maxwell’s
equations and, 61; Minkowski space and, 50–51; momentum in, 106;
notation and, 215; for relative motion, 52; spacelike intervals and, 83; along
x axis, 215–217; along y axis, 217

Lorentz transformations, 26–29; discovery of, 31; equations, 32–36; between
rest and moving frames, 30–31

magnetic Coulomb field, 397
magnetic fields, 373; components, 379; electric fields and, 273–274, 277, 404;



under Lorentz transformation, 273–274; Maxwell’s equations and, 281–282,
328–329

magnetic forces, 207, 249; discovery of, 209
magnetic monopole, 396, 407
magnets, moving, 270, 272 (fig.)
magnitude, 111
manifestly invariant, 245
mass: defining, 108; rest, 108; times acceleration, 248
massless particles: energy of, 109, 111; velocity of, 109
matrix multiplication, 218
Maxwell, James Clerk, xvi–xvii, 31, 312–313, 324
Maxwell’s equations, 228–229, 269, 351, 383, 397; action principle and, 285

(table); Bianchi identity and, 299–302; charge density and, 286–291;
consequence of, 296; conservation of charge and, 291–296; current density
and, 286–291; derivation of, 341–346, 347; derivations from vector
potential, 285 (table); Einstein and, 60; electric fields and, 282–284, 328–
329; electrodynamics and, 312–313; 4-vector form, 326 (table);
homogeneous, 283; inhomogeneous, 286; introduction to, 279–280; as law
of physics, 60–61; locality and, 334; Lorentz invariance of, 302; Lorentz
transformation and, 61; magnetic field and, 281–282, 328–329; non-identity,
284–286; number of, 280; second, 317, 323; symmetry of, 61; tensor form,
297–299; 3-vector form, 326 (table); vector identities and, 280–281; vector
potential and, 337

Maxwell’s law, 321–324
mechanical momentum, 355–356
metersticks: lengths of, 40; in moving frames, 39; in rest frame, 40; in

stationary frame, 40
metric, 175
Michelson, Albert, xvii, xix
Michelson-Morley experiment, 60
Minkowski, Hermann, 25, 48–53; Einstein and, 54–55
Minkowski light cone, 54, 54 (fig.); future, 55, 71 (fig.); past, 55
Minkowski space, 26, 245; invariants in, 50–51; Lorentz transformation and,

50–51
Minkowski spacetime, 124
momentum: angular, 403, 405–406; canonical, 235, 356–357, 374–375;



components of, 110; conservation of, 101; density, 376–381; of
electromagnetic fields, 378–389; energy and, 360–362; field, 357; field
energy and, 354–355; flow of, 386; in four dimensions, 381–391; 4-
momentum, 110, 385; function, 109; infinite, 104; Lorentz symmetry and,
384–387; in Lorentz transformation, 106; mechanical, 355–356; Noether,
358–360; of photons, 112; relativistic, 100–104; of speed of light, 104;
types of, 354–360

monopole: defining, 396; electric, 396, 396 (fig.); fake, 407–408; magnetic,
396, 407

Morley, Edward, xvii, xix
motion: equation of, 156, 168–171, 185, 265–266, 350–351; Euler-Lagrange

equations for, 185; gauge invariance and, 265–266; Newton’s equation of,
130; unforced, 130

moving frame, 7, 16, 28; Lorentz transformation between rest frame and, 30–31
moving frames, metersticks in, 39
multidimensional spacetime, Euler-Lagrange equations for, 125–126
multivariable generalizations, 139
mystery fields, 151–152

neutrino, 408–409
neutron, 408–409
new scalar, 183–184
Newton, Isaac, xvii, 5; 4-velocity and, 86–87; on spacetime, 23
Newtonian approximations, 89–92
Newtonian expectations, of velocity, 68–69
Newtonian frames, 7–11, 8 (fig.); coordinates in, 9
Newtonian mechanics, 6, 103–104
Newtonian physics, velocity in, 64
Newton’s equation of motion, 130
Newton’s gravitational constant, 194
Newton’s second law, 103–104, 121
Newton’s transformation law, 11
Newton’s universal law of gravitation, 196–197, 207–208
Noether, Emmy, 381
Noether momentum, 358–360
Noether shift, 377 (fig.)



Noether’s theorem, 359n
nonrelativistic action, 95–96
nonrelativistic limits, 99–100
nonrelativistic momentum, 102
nonrelativistic particles: Lagrangian of, 119; redux, 118–121; trajectory, 119

(fig.)
nonzero current density, Lagrangian with, 346–351
notation: comma, 343; condensed, 412; of contravariant components, 223;

conventions, 216n; of covariant components, 223; derivatives, 213–214;
extending, 210; of 4-vectors, 72–75, 211–212; importance of, 173; index,
73, 414; of Lagrangian, 343; Lorentz transformation and, 215; scalars, 212;
3-vector, 332–333

objects, energy of, 107
observer: in relative motion, 17–19; and reference frames, 4; stationary, 40;

third, of velocity, 66–70
origin: proper time from, 73; spacetime interval from, 73
Ørsted, Hans Christian, 321
Ørsted’s law, 321

paradoxes: Limo and Bug, 46–48, 47 (fig.); twin, 43–46, 44 (fig.)
parallel wires, 200 (fig.)
partial derivatives, 299, 343, 345
particle mechanics: defining, 92; position in, 92; velocity in, 92
particle motion, 123–124
particles, 156–157; acceleration of, 172–173; action of, 163; Euler-Lagrange

equation and motion of, 159; fields and, 149–151, 158–168; Lagrangian,
149–150; massless, 109, 111; nonrelativistic, 118–121, 119 (fig.); position
of, 238; in scalar field, 162 (fig.); slow, 106–108; timelike particle
trajectory, 93 (fig.)

past light cone, 55
ϕ, 117–118; as scalar field, 126; stationary action for, 124–127; value of, 121
photons, 111; energy of, 112; momentum of, 112
physics, laws of, 6–7; constants of nature, 194; Maxwell’s equations as, 60–61
Planck, Max, xvi
Planck units, 196–198; traffic sign in, 198 (fig.)



Poincaré, Henri, 31
Poisson’s equation, 170–171
polarization, 328; of light, 331
position, in particle mechanics, 92
position-dependent mass, 153
positron, 112
positronium decay, 111–113
potential energy, 369
Poynting, John Henry, 384
Poynting vector, 380, 390, 391; defining, 384
primed frames, of electrons, 273
principle of least action, 93–95, 118
principle of relativity, 6–7
proper time, 50n, 127; defining, 52; from origin, 73; physical meaning of, 55–

57
Pythagorean theorem, 49; three-dimensional, 53

quantum field theory, 392, 408
quantum mechanics, xvi, xix; locality and, 258

radiation gauge, 372
railroads, 52
rank 2 tensors, 220–222
real functions, 186
redundancy of description, 267
reference frames (RF), 3; inertial, 5–7; observer and, 4; physical relationship

between, 29; symmetry of, 29; See also Newtonian frames; SR frames
relative motion: Lorentz transformation for, 52; along x axis, 52
relativistic acceleration, 248–249
relativistic action, 96–99
relativistic energy, 104–106; 4-vector and, 106
relativistic fields, 132
relativistic Lagrangian, building, 145–147
relativistic law: for addition of velocity, 68; of motion, 79–80
relativistic momentum, 100–104; Einstein on, 101
relativistic units: speed of light of, 22; SR frames using, 18 (fig.)



relativistic velocity, 102–103
relativity, xviii, 368n; Einstein’s first paper on, 270–278; general, 392;

principle of, 6–7; sign conventions in, 58n; special theory of, xix–xx, xviii
rest energy, 108
rest frame, 7; current density in, 298; Lorentz transformation between moving

frame and, 30–31; metersticks in, 40
rest mass, 108
RF. See reference frames
right triangles: in Euclidean geometry, 49–50; twin paradox and, 50
Right-Hand Rule, Stoke’s theorem and, 308 (fig.)
ring, 405 (fig.)

scalar fields, 117, 209; conventions, 181–183; defining, 133; derivatives of,
182; Einstein summation convention and, 180; Euler-Lagrange equation for,
126, 152–154; from 4-vectors, 144–146; particles in, 162 (fig.); ϕ as, 126

scalars, 116, 231, 368n; forming, 212; 4-vectors and, 282n; notation, 212
scale, units and, 194–196
Schrödinger equation, 188–189, 189n
short-range forces, 207
sign conventions, in relativity, 58n
simultaneity, 13; in Limo and Bug paradox, 47–48; surface of, 22
simultaneous events, 19
sine, 131
single-index transformation rule, 276
slow particles, 106–108
solar sail, 355 (fig.)
solenoid, 398, 405 (fig.); elongated, 401 (fig.); flexible, 400; stringlike, 403

(fig.)
source function, 164
space: current density in, 288 (fig.); dimensions of, 116, 118; time and, 25
space components, 346; of 4-vectors, 244
space-and-time components, 339
spacelike event, 59n
spacelike intervals, 82; Lorentz transformation and, 83
spacelike separation, 58–59
space-space components, 340, 386n



spacetime: charge density in, 287 (fig.); coordinates in, 25; current density in,
287 (fig.); Einstein on, 23; fields and, 116–117; four-dimensional, 81n;
Minkowski, 124; multidimensional, 125; Newton on, 23; sameness of, 26;
separation, 70–71

spacetime diagram, 7, 15, 22; of Limo and Bug paradox, 47 (fig.)
spacetime distance, 50n; defining, 57–58; describing, 57–58
spacetime interval, 50n, 57–58; from origin, 73
spacetime trajectory, 76 (fig.); invariance and, 263
special theory of relativity, xix–xx, xviii
sphere, 306
SR frames: synchronization in, 12–14; using relativistic units, 18 (fig.)
standard vector notation, 380
stationary action, 122; for ϕ, 124–127
stationary frame, 28; metersticks in, 40
Stokes’s theorem, 307–309, 319–320; Right-Hand Rule and, 308 (fig.)
submatrix, 3 x 3, 253
subscript, 73n
summation convention, 350
summation index, 177–178, 239n, 241, 380
superscript, 73n
surface, 304; of simultaneity, 22
symmetric tensors, 225–227, 250–251
symmetry: gauge invariance and, 259–262; left and right, 27; of Maxwell’s

equations, 61; operations, 359; of reference frames, 29; spherical, 305; of
vector field, 305

synchronization: of coordinate systems, 16–17; Einstein on, 13; in SR frames,
12–14

tensor equations, invariance of, 223
tensor form of Maxwell’s equations, 297–299
tensors, 210; antisymmetric, 225–227, 228, 250–251, 228, 276n;

electromagnetic stress, 390; energy-momentum, 387–391; field, 250–253,
274–277, 345, 373; of higher rank, 222–223; rank 2, 220–222; symmetric,
225–227, 250–251; two-indexed, 250–251, 275, 342; untransformed, 222

Thales of Miletos, 207
theorem without a name, 309–310



3 x 3 submatrix, 253
3-vector operators, 411–415; curl, 413–414; divergence, 412–413; gradient,

412–413; Laplacian, 415
3-vectors: Lorentz force law with, 229; Maxwell’s equations in form of, 326

(table); notation, 332–333
three-dimensional velocity, 4-velocity compared with, 85
time, 5; dimensions of, 116; as fourth dimension, 55; invariants and, 53, 55;

proper, 50n, 55–57, 127; space and, 25; speed of light and, 15
time components, 346; of vector potential, 237
time dependence, 171–173
time derivative, 238
time dilation, 41–43, 43 (fig.); formula, 86
time distance, 45
time integral, of Lagrangian, 362
time translations, 257
timelike intervals, 84
timelike particle trajectory, 93 (fig.)
timelike separation, 58–59
timelike trajectory, 83 (fig.)
torque, 405
traffic signs, 198 (fig.)
transformation equations, 28
translation symmetry, 358
transverse waves, 328
triangles, right, 49–50
TTM, xvi
twin paradox, 43–46, 44 (fig.); inertial frames in, 45; right triangles and, 50
2 x 2 unit matrix, 217–218
two-indexed tensors, 250–251, 275, 342

undifferentiated components, 346
unforced motion, 130
uniform motion, 36
units, 14–16; conventional, 32–34; electromagnetic, 198–203; Planck, 196–

198, 198 (fig.); scale and, 194–196
universal time, 13



unprimed frames, 35
unprimed z axis, 276
upstairs indices, 173–176; Einstein summation convention and, 177

vector algebra, 209
vector field: symmetry of, 305; velocity as, 117
vector identities: Maxwell’s equations and, 280–281; two, 280–281
vector potential: canonical momentum and, 374–375; components, 342; of

electromagnetic fields, 242; electromagnetism, 377–378; gauge invariance
and, 371; Lorentz force law and, 230–231, 247–248; Maxwell’s equations
and, 337; Maxwell’s equations and derivations from, 285 (table); time
component of, 237

vectors. See 4-vector; 3-vectors
velocity: adding, 64–70; combining, 65 (fig.); components as invariant, 87–88;

components of, 85; of electrons, 271–272; integral of function of, 98; of light
rays, 10–11; of massless particles, 109; negative, 8, 27; Newtonian
expectations of, 68–69; in Newtonian physics, 64; in particle mechanics, 92;
positive, 9; relativistic, 102; relativistic law for addition of, 68; third
observer of, 66–70; three-dimensional, 85; as vector field, 117; See also 4-
velocity

velocity-dependent terms, 241

wave equations, 130–131, 169; electric fields and, 323; exponentials for, 185–
186

wave number, 327
waves, 130–131, 187–190; electromagnetic, 327–331; electromagnetic plane,

332 (fig.); numbers, 191; transverse, 328
world line, 17, 26, 94n

x axis: Lorentz transformation along, 215–217; relative motion along, 52
x1 axis, 19–25; SR frames with, 23 (fig.)

y axis, Lorentz transformation along, 217
y1 axis, SR frames with, 23 (fig.)
Yang-Mills theory, 256, 267



z axis, unprimed, 276
zero-over-zero conundrum, 109
zeroth equation, 245–246, 248
z-momentum, 386


	Cover
	Title Page
	Copyright
	Dedication
	Preface
	Introduction
	Lecture 1: The Lorentz Transformation
	Lecture 2: Velocities and 4-Vectors
	Lecture 3: Relativistic Laws of Motion
	Lecture 4: Classical Field Theory
	Lecture 5: Particles and Fields
	Interlude: Crazy Units
	Lecture 6: The Lorentz Force Law
	Lecture 7: Fundamental Principles and Gauge Invariance
	Lecture 8: Maxwell’s Equations
	Lecture 9: Physical Consequences of Maxwell’s Equations
	Lecture 10: Maxwell From Lagrange
	Lecture 11: Fields and Classical Mechanics
	About the Author
	Also by the Authors
	Appendix A: Magnetic Monopoles: Lenny Fools Art
	Appendix B: Review of 3-Vector Operators
	Index

