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Abstract 
The purpose of this paper is to discuss qualitatively certain kinds of asymptotic motion in a 

two-dimensional, ideal fluid by help of methods of statistical mechanics. It is stressed that the final 
development of such a fluid cannot be adequately described by use of the ordinary equations 
of motion, but that a “coarse grain” representation should be used. In this representation, 
the development is characterized by the forming of a single, large vortex accompanied by a 
certain non-viscous dissipation. The final equilibrium is probably reached almost explosively 
after a f in i te time. Some experiments which are carried out seem to support this result. In 
the earlier stages of development we may expect to have some kind of a quasi-equilibrium 
motion. It  is attempted to find conditions under which such a motion can exist, by studies 
of a point-vortex model. 

As known, the hydrodynamic equations of 
motion cannot be solved analytically to give 
in closed form the time-development from any 
given initial state, but we must generally take 
resort here to some method of numerical 
inte ration. Besides obtaining precise numerical 
resu Y ts in special cases, we are, however, also 
interested in getting a more general, qualitative 
description of the development, comprising 
features which are characteristic of all cases, or 
at least the major part of them, irrespective of 
their initial states. 

Essential contribution to such a description 
is given by the modern theory of turbulence, 
as developed by Kolmogoroff and others, but 
the picture is s d l  far from being complete. The 
intention of this paper is to make a further 
discussion of some general features with the 
aid of methods of statistical mechanics. At- 
tempts in that direction have been given 
earlier by, for instance, BURGERS (I929), 
TOLLMIEN (1933) and ONSAGER (1949). How- 
ever, it seems to be a general impression that 
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no decisive advancement can be made along 
this line until the mathematical apparatus of 
statistical mechanics has been improved, so 
that it can effectively tackle continuous systems 
also. An undertaking of this task is now being 
made by HOPF (1951) and others, but certainly 
much remains to be done. Another way would 
be to abandon wholly the continuum concept 
and build up the theory from a molecular point 
of view, and some ideas in that direction will 
be presented in a later contribution. The 
general connection between the fields of 
kinetic theory of gases-hydrodynamics-theory 
of turbulence is pointed out already in this 
paper. 

The author here wishes to express his thanks 
to Mr. G. Dahlquist for several stimulating 
discussions during the course of the investiga- 
tion. 

I. Basic principles of statistical mechanics 
Since people working in the field of hydro- 

dynamics are not generally familiar with the 
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branch of statistical mechanics, it has been 
found advisable to start with a short discussion 
of its basic principles. 

The theory of classical statistical mechanics 
is developed for conservative, Haniiltonian 
systems, which as known are basic in the 
classical mechanics. The equations of motion 
for such a system are 

api - aw 
dt +i 

dg; - OW 
( i  = I, 2, . . . tl) 

nt 2pi 

Fig. I .  Experiment “F = a” 

where W (pl, . . . p,, ,  ql ,  . .. . qn) is the energy 
of the system, expressed in the coordinates 
ql, . . . qn and the corresponding “generalized 
momenta” pl,  . . . pn. The instantaneous state 
of a system can be represented as a point, the 
representative point, in a phase space (or en- 
semble space) of 2 M dimensions with the pi:s 
and qi :s  as rectangular coordinates. The time 
development of the system is then represented 
by a certain trajectory in this space. 

Suppose now that we have, in an actual 
case, only an incomplete knowledge of the 
initial state of the system. As a specific example, 
let us assume that we can control at the initial 
time only a certain function of the initial 
phase space coordinates, F (pl, . . . p,, ql, . . . q,,). 
If we carry out a number of similar experi- 
ments, under steady outer conditions and with 
a fixed value of F ,  say M, the initial values pi, 

and qi, are in general found to vary from 
one experiment to the next due to non-con- 
trollable disturbances of our system. However, 
carrying out a great number of experiments 
we will find a certain statistical distribution 
of initial values, and corresponding to this a 
certain distribution of points on the hyper- 
surface F ( p l ,  . . . p,, ql ,  . . . @, = M in the 
phase space. The whole statistical structure 
of the experiment “F = cc” is represented in 
the phase space by the bundle of trajectories 
starting a t  these points (Fig. I). 

Now, it is plansible to assume that the dis- 
tribution of initial points found on F = tc is 
invariantly connected with our physical system 
and so is representative also in other experi- 
ments with the system, say for instance the 
experiment “F = a and G = ,8”. This requires 
of course that the non-controllable forces ulti- 
mately responsible for the statistical spreading 
of our initial points are not statistically affected 
by the special arrangement of our experiment. 
More generally we assume that to every part 
of the phase space there is related a universal 
a priori possibility density of initial points of 
our system. To determine this density distribu- 
tion is one fundamental task in statistical 
mechanics. 

So far, it has not been necessary to restrict 
ourselves only to Hamiltonian systems. Such 
systems, however, have a nice property, 
which immediately suggests a certain simple 
distribution of the a priori probabiIitv densitv. 
Introducing in the bhase lspace thk velociiy 

vector v= (h dm - d q l , .  - . .%) we find d t ” “ d t ’  dt 

=>: [gi ( -Z) + $ ($71 = 0 
i =  I 

showing that the flow of representative points 
in the phase space is an incompressible one. 
Particularly, t h s  means that a uniform distribu- 
tion of points throughout the entire phase 
space is maintained permanently. Considering 
this result, one finds it natural to assume the 
existence of a constant a priori probability 
density in the phase space for all Hamiltonian 
systems. No rigorous proof of this has been 
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given, but the hypothesis can be made very 
plausible also for other reasons, and so far it 
has never been contradicted by experiments. 
The hypothesis tells us how to construct our 
representative “ensemble of systems” in a case 
where we have only a partial knowledge of 
the state: the representative points should be 
distributed so as to all correspond to this 
partial knowledge, but otherwise they should 
be distributed uniformly in the phase space. 

By use of the theorem of the non-divergent 
flow and the hypothesis of equal a priori 
probability density in the phase space one can 
derive a fundamental theorem, the so-called 
H-theorem. This says that a certain quantity 

H = J . .  c [ P l o g P d V  
all space 

where P is the probability density of the 
representative points and dV stands for the 
volume element dpl dpz . . . dp,, dq, dqz . . . dq,,, 
will decrease in the run of time towards an 
absolute minimum value. For the derivation 
of this theorem reference is given to text- 
books (see f.i. TOLMAN: The Principles of 
Statistical Mechanics). For molecular systems, 
H is proportional to the negative of the 
entropy, and the H-theorem thus expresses the 
second law of thermodynamics. 

The H-theorem enables us to determine the 
state of statistical equilibrium of our system, 
this being one main task undertaken by the 
statistical mechanics. The minimum condition 
of H is in variational form 

6 H =  1.. . f(10g P + I) SPdV= o (2) 

and to this we should add the subsidiary con- 
dition 

S . . . S P d V = r  

all space 

all space 

Other subsidiary conditions are given by our 
partial knowledge of the system. A common 
case is that we know in the equilibrium state 
the ensemble mean value of some functions 
F,, F,, . . . dependmg on the phase space co- 
ordinates, 

J . . . J F ; P  d~ = x i ,  (i = I, 2, . . .> 
all space 
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Handling these subsidiary conditions by help of 
Lagrangian multipliers (ai), we then get for 
the final probability density the expression 

(3) p = - (I + uo + a F 1  + a&. . .) 

where the constants ai are determined by re- 
insertion of (3) into the above conhtions. 
Another frequently occurring case is that some 
integral to the equations is prescribed, restrict- 
ing the motion of the systems to a certain 
hypersurface in the phase space. Most im- 
portant is here the energy integral, W (pl,. . . 
p,, ql,. . . ?,,) = constant. 

Regardmg the non-equilibrium states, we 
have no such general method to fall back on, 
and it is only in the special branch of kinetic 
theory of rarefied gases that a complete theory 
has been worked out. It would be of some 
interest to &scuss here some principal aspects 
of tlus theory, which in fact forms the bridge 
between the statistical mechanics of discrete 
systems and the hydrodynamic theory of 
continua. 

Starting from the previous phase space 
representation, the first step in developing the 
kinetic theory is to introduce the probability 
distribution function for a single molecule, 
independent of the states of the other molecuks : 

f(pi,Pz*Ps. (119 q z ,  23) 

= f . . . fPdpd . .  . d p , d q 4 . .  . dq, 

where ql, q2, q3 and pl, p,, p3 are the cordinates 
and momenta, respectively, of the molecule 
(all molecules regarded as mass-points). For f 
we can set up a continuity equation, the so- 
called Boltzmann equation, by equating the 
net number of molecules &sappearing per 
second in a specified element dpl dp, dp, dql 
dqz dq3 to the net number of molecules 
a. leaving the q-element due to rectilinear 

motion. 
b. leaving the p-element due to the action of 

outer forces. 
c. leaving the p-element due to molecular 

collisions. 
The contributions according to a. and b. 

depend directly onf,  while the contribution 
according to c. depends on the joint prob- 
ability distribution for molecular pairs. To 
get an equation for f only, we must here 

all space 
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introduce an adhtional hypothesis, namely 
that the velocities of the colliding molecules 
are non-correlated (molecular chaos). If the gas 
is sufficiently rarefied this hypothesis seems to 
be plausible enough, however, no rigorous 
proof has been given. 

The second step is to introduce the hydro- 
dynamic variables and stresses as certain mean 
values computed in the &distribution : the 
density Q is defined as the mean mass per 
unit volume, the mass velocity v as the mean 
molecular velocity, the normal stress compo- 
nent p,, as the quadratic mean of the dif- 
ference between the x-components of mole- 
cular and mass velocity, etc. Making use of the 
laws of conservation of mass and momentum 
in the molecular collisions, we may then derive 
the hydrodynamic equations of motion. How- 
ever, these contain as unknowns also the stress- 
es. To get the ordinary Navier-Stokes equa- 
tion, containing only the hydrodynamic vari- 
ables e, Y and p (where p is defined as the 
negative mean of the three normal stress com- 
ponents p,,, pvv and pzz) ,  further simplifica- 
tions have to be made : the molecular velocity 
distribution must be assumed to deviate only 
little from the Maxwellian form, and also an 
additional statistical hypothesis must be in- 
troduced (this hypothesis enters the computa- 
tion very implicitly and cannot be described 
in simple physical terms). 

Examining these two steps we find that they 
are very similar in nature: in each of the steps 
the equations are simplified by introducing new 
dependent variables, defined as certain mean 
values of the old ones, and at the same time 
a statistical assumption is being made. From 
the probability distribution P in the phase 
space we went over to the single-molecule 
distribution function f and introduced the 
statistical hypothesis of non-correlated colli- 
sions, and from this we went over to the 
hydrodynamic variables and introduced again 
a certain statistical assumption. One can easily 
understand that the introduction of some 
hypothesis in each step is necessary. As an 
example, let us assume that we want to 
compute the further development according 
to the Boltzmann equation from a given initial 
field fo. Now, corresponding to this fo-field 
a great number of different distributions Po 
may be constructed. The further develo ments 
of these, controlled directly by the Hami P tonian 

equations, will in general differ, and so will 
also the corresponding developnients off: To 
get a unique development i f  f it is then 
necessary to introduce some restrictive hy- 
pothesis, bringing about a direct coupling 
between the-f- and the P fields, and, in fact, 
such a coupling is yielded by our hypothesis 
of non-correlated collisions. 

Finally, it seems natural to consider the 
forming of the hydromechanical equations 
for the mean motion in a turbulent field as the 
next step in the same sequence. Then a question 
immediately rises : which statistical hypothesis 
should be introduced now? This qucstion, 
which is certainly one of the most fundamental 
ones in the theory of turbulence, has not yet 
been answered. However, the recent work by 
Kolmogoroff and others regarding the quasi- 
equilibrium state of a turbulent field may 
eventually provide the basis for a fresh attack 
on the problem. 

2. Development towards a final equilibrium 

We consider a two-dimensional, ideal fluid 
inside a closed and energetically isolated region. 
At a certain initial time we put the fluid in 
some arbitrary motion and leave it. How does 
the motion develop in the long run of time? 

First we observe that our system is conserva- 
tive so that no energy can escape, and thus 
Some non-zero asymptotic motion should be 
found. However, it seems hard to think of a 
development towards a real equilibrium state. 
To be able to speak here of an equilibrium 
approach, we must of course have some 
irreversible feature in the motion, but our 
hydrodynamic equations cannot at all distin- 
guish between the two time directions, as is 
seen by making the transformation t + - t ,  
v --f - v. In t h s  case every proof, based only 
on the hydrodynamic equations, that the fluid 
in the long run approaches some specific 
equilibrium state can easily be changed to a 
proof that the fluid instead departs from the 
equilibrium, just by making the above trans- 
formation everywhere in the proof. 

Now, the same kind of problem has been 
met earlier in the statistical mechanics, where 
the basic equations (I) are also time-symmetric. 
In this case it was found possible to introduce 
an irreversible feature in the picture, becoming 
apparent in the famous H-theorem, by 

of a two-dimensional, ideal fluid 
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considering not the development of a single 
system but the development of a whole 
ensemble of systems starting from various 
initial states. It should be possible to go the 
same way in our case, seeihg apart from the 
mathematical difficulties of handling an en- 
semble of continuous systems. However, we 
will see that the techmque used in the deriva- 
tion of the H-theorem can in fact be utilized 
here directly for a discussion of the develop- 
ment of the single system. 

To begin with, let us consider the following 
simple but illustrative experiment, similar to 
one discussed by Gibbs in his work Principles 
of Statistical Mechanics. The fluid is initially 
divided up into a number of surface elements, 
which are coloured black and white (for 
instance in a chess-board pattern). The colour 
should follow the motion materially without 
any essential diffusion. When setting the fluid 
into motion the elements are deformed, and 
after some time they are drawn out in the 
form of long and thin bands, as shown in Fig. 2. 

We now want to investigate the conserva- 
tion of colour density during the motion. If 
the black colour is assigned the density I and 
the white colour is assigned the density 0, 
then the total colour mass of the fluid is 

SedF = F b ,  where F is the total area of the 
F 
fluid, Fb the total area of the black elements. Also 
the total square density mass is e2dF=Fb. Both 

F s 
these quantities are accordingly conservative, 
since the area F b  is preserved during the motion. 
However, regarding the total square density 
mass, the above result is true only if each 
integration element is either wholly black or 
wholly white. If we prescribe in advance the 
size of these elements, however small, we 
must always ultimately arrive at the situation, 
where the widths of the bands are found to 
be so small that the integration elements are 
each crossed by several bands of different 
colours. If, as usual, the colour density in an 
element is defined as the ratio of colour 
matter and area, then the square density in 

dF 
6F is a “superdifferential” element, and for 
the total square density mass we have now 
Tellus VII (19JS), 2 

In this sense, the quantity is not conservative, 
but decreases. With terms taken from the 
statistical mechanics, we might call the density 
e* of the fixed integration elements the “coarse 
grain density”, to be distinguished from the 
“fine grain density” Q of the super-differential 
elements 8F, which always are sup osed to be 
small as compared to the widths o P the bands. 

The argument is now that what we observe 
actually is not the fine-grain density but the 
coarse-grain density, the size of the integra- 
tion elements being always finite due to the 
existence of an observational limit scale. In 
the discussed experiment, we have by a direct 
visual observation a limit scale of some 
hundredths of a millimeter, and when the 
widths of the bands have become smaller than 
this, the “coarse-grain colour” has changed 
from black or white to grey. 

We might expect that our final equilibrium 
should be characterized by a minimum total 
square density mass, 6se*2dF=o, with the sub- 

sidiary conditionsIdF= constant and e*dF= 

=constant, giving a uniform (coarse grain) 
density distribution. The minimum value is 

here obviously - Fb. To our ordinary feeling 

it seems self-evident that a sufficient stirring 
would ultimately lead to a uniform density 
distribution, but this feeling may be false. 
There certainly exist processes which are 
ordinarily recognized as stirring ones but 
which do not lead to the uniform density, and 
it has not yet been proved rigorously that the 
natural motion of our fluid cannot be such a 
process. Instead, the ultimate uniformity must 
be introduced as a hypothesis. However, as far 
as the two-dimensional and ideal fluid is 
concerned, we can find support to this hy- 
pothesis. The vortex elements of such a fluid 
form a Hadtonian system, as will be seen 
later, and the phase space of this system is 
identical with the multi-dimensional con- 
figuration space. The hypothesis of equal a 
priori probability density thus says here that 
each part of the configuration space should be 

F 

F F s 
F b  

F 
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b 

Fig. 2 .  Deformation of a fluid surface. 
The picture shows the deformation of an air layer at the 500 mb level in the atmosphere after 6 h, 12 h, 24 h 
and 36 h, respectively. The deformation is computed by means of the barotropic model, assuming the layer to 
behave like a two-dimensional, ideal fluid. The initial stream-line pattern is seen at the top. The sides of the 
square elements are 300 km. For numerical estimates of the deformation in atmospheric flows see also SAUCIER 

(1953) and VUORELA (1953). 
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b 

d 

C 

e 

Fig. 3. Observed deformation of a fluid element. 

The picture shows the observed deformation of a small, coloured square element of a fluid surface. A rectangular 
vessel of dimensions 50 x 30 x 30 cm filled with water to half the depth was used for the experiment. O n  the water 
surface was put a film of butanol, which was divided into square elements by means of a metal grid. One or several 
of there elements were coloured with methyl-red and the water was set into horizontal motion. The grid was 
then quickly taken away and the fluid was left to move undisturbed. T o  keep the motion two-dimensional, the 

whole fluid mass was set into a slow basic rotation before the initial disturbance was created. 

Tellur VII (1955). 2 
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given equal statistical weight and this speaks 
much for the existence of the ultimate uni- 
formity. 

Our previous discussion was concentrated 
on a very special example, but the technique 
is about the same when considering a more 
general case. Assuming an arbitrary colour 
distribution, we just divide the fluid into 
elements dF so small that we can put initially 
the density constant within each of these 
elements. The total coarse grain and fine grain 
square densities are the same at this time, but 
at a later time the former quantity is again 
being diminished, while the latter one is 
constant. This is seen immediately by inspecting 
the expressionsJpdFdF andJ(GdF)2dF, repre- 

senting these two quantities, respectively (the 
bar here indicates a mean taken over dF). 

From this we turn to the question of the 
final velocity field. This field is completely 
determined by the vorticity field of the fluid, 
and, since the relation between velocity and 
vorticity is a linear one, the coarse grain 
velocity field is determined by the coarse grain 
vorticity field in a corresponding way. Now, 
the vorticity is in a two-dimensional, ideal fluid 
a conservative property, which follows the 
motion of the fluid just in the same way as 
the colour matter, and the previous conclusions 
hold as well if we replace the colour density 
e by the vorticity q. Accordingly, if the stirring 
is complete, we will ultimately get a state of 
constant coarse-grain vorticity. The coarse- 
grain flow is then of the type indicated in 
Fig. 4, forming a single large vortex. 

The total vorticity is conserved here, while 
a certain amount of square vorticity is lost. 
This loss is obviously roportional to the mean 
square fluctuations oPthe fine grain vorticity 
in the initial state, 

F P 

,- n 

= J [qz - (iF)*] dF= / (11 - ijF)%!F = 

F F 

Corresponding to this we also have a certain 
loss of lunetic energy, disappearing into “tur- 
bulent heat”. 
Tellur VII (1955). 2 

i 
Fig. 4. The final velocity field. 

Now, let us stop and try to make the 
situation clear for us again. In terms of the 
ordinary fine-grain quantities we cannot 
describe any final equilibrium state, firstly 
because of the reversibility which is inherent in 
the equations of motion, and secondly because 
of the fact that the velocity field will approach 
in the run of time a discontinuous state. How- 
ever, in terms of the coarse-grain quantities an 
equilibrium is likely to exist, and this equili- 
brium is here found from the condition of 
“complete mixing”, which is the same as the 
condition that the mean square vortici7 (or 
the mean square of any other indivi ually 
conserved quantity) is at the absolute minimum. 
Two subsidiary conditions hold, namely that 
the total area and the total vorticity of the fluid 
is conserved, but these are also the only con- 
servation theorems in the coarse-grain repre- 
sentation. There is one exception, namely when 
the boundary is exactly circular so that the 
pressure reactions from the boundary can give 
no moment around the centre. The angular 
momentum of the flund is then also con- 
served with respect to the centre, and since 
the vorticity of the fluid enters linearly in the 
angular momentum, this is also conserved in 
the coarse-grain representation. However, it is 
to be supposed that the slightest deformation 
of the boundary will completely change the 
character of the motion and make it break 
down again into a complete mixing. We could 
compare here with the case when a mass-point 
is moving in a circular region, bounded by a 
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perfectly reflecting wall. If the boundary is 
perfectly circular, the angular momentum (with 
respect to the centre) is conserved and the mass- 
point is restricted to move all the time in a 
certain zone of the region. However, the 
slightest deformation of the wall somewhere 
changes the picture completely. The mass- 
point is now free to move into any other 
state compatible with the actual energy value, 
and in fact it is possible to show that it will 
in the run of time take on almost all of those 
statesl. In special, we will after a sufficiently 
long time certainly observe a change of sign 
in the angular momentum! 

We  also want to say something about the 
time necessary to establish the equilibrium. 
This time is of course directly dependent on 
the rate at which the bands are stretched out, 
and thus we are going to investigate in more 
detail the mechanism of this stretching. To 
begin with, it may be good to have a quali- 
tative description of the stretching of a typical 
band as observed in the experiments (Fig. 3). 

Starting from a square element with a 
side small compared to the scale of the initial 
motion, we observe first a uniform shearing 
deformation of the element together with a 
translation and rotation. Later on the variations 
of the deformation field over the element 
become important and the element is deformed 
more irregularly. After some time a long band 
is formed, following mainly the streamlines of 
the fluid, and this is steadily stretched out in 
the run of time. When the band lies at right 
angle to the streamlines, folds are found to 
develop at the points of maximum velocity, 
also folds appear when the velocity gradient is 
nearly opposite to the velocity direction. One 
gets the general impression that the stretching 
is the natural, stable type of development, 
while all kinds of shrinlungs are unstable, the 
band immediately bendmg aside to form a 
fold which can maintain the stretching tend- 
ency. Finally, there have formed a great 
number of simple and multiple folds and the 
development then proceeds very quickly to a 
chaotic state where no detailed features of the 
band can be observed. 

In the theoretical discussion, it is natural to 

1 The precise statenlent that can be made here is 
difficult to express in non-mathematical terms. and the 
interested rcadcrs are referred to text-books on ergodic 
theory. 

_ ~ _ _ _  

make the assumption that the rate of stretching 
of a typical band is proportional to the length 
I of the band itself, the constant of propor- 
tionality depending on the features of the 
velocity field at the actual time, 

dl 
&" E(41 

According to the experimental evidence, tl 
should be a positive quantity. 

If we have a stationary turbulence field, tl 
should be regarded as a constant and we 
should find an exponential stretching, 

1 - I ,  e x  (1 ~ 1.) 

This case is considered earlier by BATCHELOR 
(1952). However, in the case we are discussing, 
namely the development of the turbulent field 
from an initial large-scale motion, tl will not 

\ I 
\ / R  
\ I  

\ f  
\ f  
v 

Fig. 5 .  Stretching of a line rlemcnt. 

be constant but increases all the time, and it 
seems as if no stationary motion of Batchelor's 
type exists at all. It seems difficult to make here 
any precise statement, but we will at least 
make likely that cc increases so rapidly that the 
bands are stretched out to infinite length and 
the whole turbulent break-down is completed 
within a j n i t e  time. 

Consider a small line element of length 61 
and with a radius of curvature R. During a 
time dt the length of this element is changed to 

61 + d(61) = 61 + 3 61dt + 2 6ld t  
2s R 

where vs and vn are the tangential and normal 
velocity components, respectively (Fig. 5 ) .  

d JV* 

dt 

Thus, 
- (61) = (w + 2) 61 

and integrating over a band from one end- 
point Po to the other PI, we find for the rate 
of change of its total length l 

Trllus V1I (1955). 2 
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Considering now the experimental results 
(Fig. 3) we see clearly that the curvature 
term is large only at certain folds of the band. 
On  the other hand, just at the folds the large 
curvature term must be approximately balanced 
by a tangential shrinking, 

Pt' 

P.' 

etc. 
(see Fig. 6). 

If the curvature term could be neglected 
except just  at the folds, we should then have 

dl -& - vo + 2 v 1  + 2 v 2 .  . . 

where vl, v z ,  etc. are the velocity magnitudes 
at the respective folds. Thus, if V is the charac- 
teristic velocity of the fluid, and v is the actual 
number of (simple) folds, the order of magni- 

tude of - is 
dl . 
dt 

dl 2 - 2 v v  

Of course, the foregoing estimate is not very 
satisfactory if the velocity field varies relatively 
little between the neighbouring folds. Ac- 
cordingly, folds formed by the small-scale 
motion of the fluid should not be counted 
until they have been diffused so far away 
from each other that they can move independ- 
ently. 

Further support to the assumed mechanism 
is obtained from a numerical study of the 
experimental results. Except for a shorter initial 
period, it is found that about 70-80 % of the 
stretchmg is here due to the pure motion of 
the folds as described above. 

Now, -, the number of folds formed per 

second, should obviously be directly pro- 

dv 
dt 
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portional to the total length of the band. Of 
course, the effective length of the band 
available for folding is reduced by the existence 
of earlier folds, but this reduction is precisely 
balanced by the increased chances for multiple 
folds. The factor of proportionality should in 
its turn be inversely proportional to the 
characteristic length-scale ;Z of the motion and 
to a time-constant T, giving the characteristic 
time required for the developing of a fold, 
when the conditions for such a development 
are at hand. T will be something of the order 

of -, and thus 
il 
V 

dv 1V 
dt A 2  
--- 

Fig. 6.  Stretching of a band. 

Here I/ could be identified with the root- 
mean square velocity of the fluid, which is 
conserved during the motion, but il must be 
sup osed to decrease at the same rate as the 

length of the band, 
wi l th of the band, that is inversely as the 

20 il - Ro * - 1 
dv 

We then find - proportional to 13, 
dt 

dv 
dt 
- - c2 1/13 

where 

Now. 
dv dv dl I 13 _ -  dl -z:z-iC2-, or 

V 
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Fig. 7. Construction of the snow-flake curve. 

do C 2 1 3  
a1 

and integrating we have 

V N C / 2  
2 

The number of folds thus should be propor- 
tional to 12. 

W e  get 
dl  
- - CVP 
at 

so that 
a ( t )  = cv 9 I 

and integrating 

I---- 10 

I -C,(t-to) 

Accordingly, we arrive at the interesting result 
that the bands are drawn out to infinite length 
within afinite time, which is of the order of 

magnitude of 2, where A, is the characteristic 

length-scale of the initial motion and V is the 

A 
V 

characteristic velocity. One might perhaps find 
the above result unreasonable, since the velocity 
of the fluid must always remain finite. How- 
ever, it is certainly possible to deform a finite 
line-element into a curve of infinite length 
during a finite time and with finite velocities 
of all points on the curve. To take a simple 
example, we consider the steps of displace- 
ments shown in Fig. 7, leading to the so-called 
snowflake-curve. 

If the initial length of the line is a, and we 
maximate all velocities to a value v ,  then the 
first step can be made during a time nt, < 

I a  1 a  < ~ ~ , the second during a time A t ,  < - ~~ etc., 
1 V  1 2 V  

a n j  the total time to perform any number of 

steps can be made smaller than 2 $ = 

k =  1 

~a 

2 v ’  
- - _  ~ while on the other hand the length of 

the curve after n steps is a, = 

goes to infinity with 11. However, in this 
example as well as in our fluid case, some space 
derivatives of the velocity must necessarily 
go to infinity, making the final velocity field 
wholly discontinuous. 

Of course, the final explosive stretching of 
the fluid elements can never be observed in 
reality due to viscous effects, but the above 
result may be of interest for instance in con- 
nection with numerical forecasting, where one 
tries to predict the development by use of some 
idealized hydrodynamic model (in fact, in- 
dications of a break-down of the motion has 
been observed in several numerical forecasts 
with a barotropic model, but it has not yet 
been made clear whether this is caused by 
computational errors or not). 

It will be stressed here again that our con- 
siderations only concern with the general 
(turbulent) development. Of course, we can 
select special cases where the results do not 
hold, as for instance the cases of stationary 
motion. The possibility of drawing any general 
conclusions regarding the development is 
wholly due to the fact that we exclude certain 
special and relatively improbable situations. 

To make a first crude test of the above 
theory, the mean stretching of the elements 
in the described experiment has been measured 

Tellur VII (1955), 2 
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(three cases) and plotted inversely against time 
(Fig. 8). One should not rely too much 
upon the numerical results, since the three- 
dimensional and viscous effects disturb the 
motion in the experiment considerably. How- 
ever, it is interesting to see how well the points 
in each case fit a straight line as predicted by 
(s), at least during the first “inertial period”, 
when the inertia forces still dominate over the 
viscous forces. 

We will end this chapter by saying also a 
few words about the case of a three-dimensio- 
nal ideal fluid. The development is here much 
the same as in the two-dimensional case, but 
in one respect there is a fundamental differ- 
ence: the vorticity vectors must no longer be 
parallel but can turn freely. It has sometimes 
been argued that since the vorticity vectors 
are expected to arrive ultimately at a uniform 
directional distribution, we should find a com- 
plete non-viscous dissipation of the motion. 
However, this needs not to be true, because 
the magnitude of the vorticity vector and also 
the anomalies of this will all the time increase 
due to the stretching of the vortex tubes and 
the correspondin shrinking of their cross 

the run of time becomes uniform, the anomalies 
may well increase at such a rate that a non- 
vanishing (coarse grain) velocity field is main- 
tained. Obviously the question cannot be settled 
before some quantitative analysis has been 
performed. 

sections. Even if t f e directional distribution in 

3. Quasi-equilibrium motion 
The precise development of motion in the 

foregoing experiment will of course depend 
on the special velocity field that is set up 
Tellus VII (1955). 2 

initially. However, we expect that the details 
of the initial field should be important only 
for the motion during a shorter initial period, 
and that the motion later on should develop 
into an asymptotic state, the form of which is 
essentially determined by such over-all quan- 
tities as the total energy, the characteristic 
scale of the motion, etc. Furthermore, it is 
likely that this asymptotic state could be 
characterized as a gradually changing quasi- 
equilibrium. To get a picture of the state, we 
can imagine the fluid as made up of a number 
of characteristic, separate fluid elements. The 
neighbouring elements interact with each other 
and try to arrive at some mutual equilibrium. 
On the other hand, they can preserve their 
individuality only for a shorter time, and are 
soon broken down into some new elements. 
However, the time necessary to establish their 
equilibrium is probably often short as compared 
to the life-time of the elements and to the time 
necessary for an essential over-all change of 
state, and then some kind of a quasi-equilibrium 
motion is obviously set up. 

One can here make a comparison with the 
kinetic theory of gases. There the develop- 
ment of an initially given molecular distribu- 
tion has been discussed, and it has been demon- 
strated that the distribution quickly settles 
down to a quasi-Maxwellian state, the further 
changes of which depend only on certain 
over-all micro-quantities (the hydrodynamic 
and thermodynamic variables). The time 
necessary .to establish the Maxwellian equi- 
librium is here not more than some billionths 
of a second (at normal temperature and pres- 
sure), whch is much less than the time 
characterizing an ordinary over-all change of 
state in the gas. 

Concerning the existence of a quasi-equilib- 
rium state in fluid developments, there have 
been many investigations in the statistical 
theory of turbulence on the basis of the 
Kolmogoroff Similarity Hy othesis (see f. i., 

vestigations and from experiments one finds 
that the quasi-equilibrium concept has a very 
general applicability. In the statistical theory 
of turbulence the reasoning centers around the 
Fourier spectrum and the correlation functions 
of the ener y and veloci fields, and several 

repeated here. On the other hand it should be 

BATCHELOR 1953), and bot l from these in- 

precise resu f ts are obtainex which will not be 
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valuable to supplement this essentially statistical 
line of investigation with a more physical one, 
discussing by help of the methods of statistical 
mechanics some simplified mechanical models 
of the fluid. As a start, we shall here take up to 
discussion the simple point-vortex model, 
discussed earlier by Onsager, and try to find 
out under which conditions this model permits 
a quasi-equilibrium state to exist. 

We consider a number (a) of vortices of 
strengths pl, . . .pn, moving in an x-y-plane. 
These vortices generate a flow characterized by 
a stream-function 

It 

y* = Z: p i  G (x, y,  Xi, y i )  
1 - 1  

where G is Green's function appropriate to the 
problem. For an unlimited fluid, which is the 
only case considered here, we have 

The point-vortices should follow the motion 
of the fluid materially, thus their velocities are 

d X k  a?/)* 
l lk  = - =-  (I)y) 

dt X = X k  
Y = Yn 

Y = Yk 

We have 

and similarly for . These last ex- 

Y = Yk 

pressions, however, include a (constant) sin- 
gular contribution representing the infinite 
self-potential of the vortex-point, and this must 
be subtracted (rigorously this can be justified 
by starting from some small vortex-plates and 
letting their areas tend to zero in the final 
result). Introducing the energy function 

n 

W(x,,  ~ 1 ,  . - . xn, y n )  =, X P i p j G  ( x i ,  y i ,  xj,  yj)  
1,1=1 

i i j  

we find then that the system (6) can be written 
in the form 

dXk aw 

d y k  JW 

P k Z  = - jFk 

,Uk-  = - 
dt Jxk  

Finally, introducing the variables 
- 

p k  = kpk x k  

q k  = ( p k y k  

- 

this becomes 
dpk aw 

d q k  __ JPv 

- - -__ - 
dt a q k  

_ -  - 

dt 3 p k  

The system is thus Hamiltonian and con- 
servative, since W does not depend explicitly 
on time. In fact eW equals the kinetic energy 
T of the associated fluid, apart from the 
singular contribution. Accordingly, we have 
here a case where the methods of statistical 
mechanics, as described in the first chapter, 
should apply. There are, however, some special 
questions to be considered. To begin with, we 
cannot have a statistically uniform distribution 
of vortex-points throughout the whole plane, 
since this would give us infinite velocities. On  
the other hand, if we consider a local cloud of 
vortex-points, we will expect that in the run of 
time the cloud spreads out and at least part of 
the points escape to infinity. The escape could 
of course be avoided by introducing a solid 
boundary around the cloud, but we prefer here 
to put a restriction on the characteristic scale ?, 
of the system, prescribing its ensemble mean 
value. The characteristic scale could for instance 
be the mean distance between two vortex- 
points picked out at random. 

Moreover, some restriction should be put on 
the energy of the system. In most experi- 
ments, we study systems having energies in a 
fairly narrow range, and an ensemble lacking 
any restriction in ths  respect cannot at all be 
representative. In fact, such an ensemble 
generally puts an overwhelming weight to the 
very large energies. Thus we shall prescribe 
here at least the ensemble mean energy. 

Tellur VII (1955). 2 
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Introducing then the three subsidiary con- 
ditions 

plp2...~c, f ...I P ~ V = I  

plp2 . . . p,! f . . . I  P d V  = I 

p 1 p 2 .  . . pf2 f . . . I  WPdV = W 

all space 

(7) 
all space 

all space 

where dV stands for a configuration element 
dx, dxl, . . . dx, dyl ,dy2 . . . dy,, the minimiza- 
tion of the quantity H (cf. (2)) will lead to 
the following expression for the equilibrium 
distribution of probability density 

and derive the convergence criterion 

pip j  < 4 n 0  (i, j = I, 2 ,  . . . f i )  (9) 

Regarding the sign of 0, which is of course 
of great importance, some information could 
be obtained from a qualitative discussion of the 
“structure function” 

the integration being taken over that part of 
the phase space where the energy W is less 
than a certain value E. The probability to find 
the system at an energy E, varied over a small 
range dE, is proportional to 

i > j  

C, a and 0 are constants to be determined from 
the subsidiary conditions (7). C and a are of 
course both positive, while 0 may be either 
positive or negative. 

We recall here the significance of P : 
P , l . p 2 .  . .p, dx, dyl . . . dx, dy, is the prob- 
ability to find a configuration state where the 
first vortex-point p1 lies inside a surface element 
dx,dyl at the point x,., y,, and the second 
vortex-point ,uZ lies inside a surface element 
dx,dy2 at the point x2, yz, etc. 

Now, to get any equlibrium at all we must 
require that all the previous integrals converge. 
At infinity the integrals certainly tend toward 
zero rapidly enough to secure convergence, 
but some trouble may arise at the point rij = 0. 
The most critical contribution is of the type 

a t r . . = o  11 

Introducing here xi, y i  as a new fixed origin, 
we may consider instead 

,’ . = 
J J  

0 
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Fig. 9. Appearance of the structure function. 

and the maximum probability occurs when 

The energy value at which this maximum is 
attained is expected to lie in the neighbourhood 
of W, and __ d2 4 (w) :$ (E) may then be 

dE2 
I considered as a first approxmation to - The 0‘ 

general form of 4 and d 2 4 .  - .- d 4  is indicated 
dE2 dE 

in Fig. 9. 
Combining now this with the convergence 

criterion we can draw the following general 
conclusions : 
I. For a given set of vortices, an equilibrium 

exists if the energy of the system is suffi- 
ciently high or sufficiently low. 
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2. For a given energy value, an equilibrium 
exists if the vortices are sufficiently weak. 

3. In the non-equilibrium case, the vortices 
will combine into new vortices, whch are 
intensified if the energy is high but weak- 
ened if the energy is low. 

In the general case it seems difficult to give 
some quantitative results, since we cannot 
evaluate the +-integral and determine the 
exact form of 0 as depending on E and 
the p i x  On the other hand, it seems possible 
to get precise results of interest in some special 
cases. The discussion of these cases, which 
involve a lot of mathematical transformations 
will not be taken up here, however. 

Finally we would like to make a remark 
concerning the physical significance of the 
model discussed. It is clear that our point- 
vortex model can represent a given fluid state 
to any degree of accuracy if the number of 
point-vortices is increased sufficiently. How- 

ever, our intention is not to represent here 
the final equilibrium state of the continuous 
fluid (in fact, it is not possible to make a 
transition over the continuous state in our 
result (8) by making the number of point- 
vortices infinite!), but to represent the momen- 
tary equilibrium attained by some charac- 
teristic, finite lumps of fluid. It seems most 
natural to think of each point-vortex as 
representing a real, physically separated vortex 
of the fluid. As an example, in describing the 
large-scale atmospheric state by our model we 
should represent each cyclone and anticyclone 
by one point-vortex of appropriate strength. 
It cannot be denied that the interpretation is 
somewhat vague and subjective, but it seems 
hard to make here any precise statement. On  
the other hand, considering later on more 
refined models where the scales of the motion 
also enter, for instance a model built up of 
vortex-plates, one should be able to set up 
more precise connections between the model 
and the fluid. 
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