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PREFACE TO THE SECOND EDITION

TN revising this book for a second edition, I have endeavoured to give

,
references to, and in some cases accounts of, the numerous original

researches in Dynamics which have been published by various investigators

since the first edition appeared. I have moreover added some historical

matter, and rewritten many sections. It is not necessary to specify these

in detail, but perhaps I may mention that the new explanation of the

transformation-theory of Dynamics in § 125 sprang from a desire to do

justice to the earliest great work of Hamilton's genius : that the changes in

§ 69 (the motion of a body about a fixed point under no forces) arose from

my opinion that the Jacobian functions are preferable to the Weierstrassian

in the numerical computations :

' and that I should have liked to give

a fuller proof of Sundman's theorem (§ 181), but thought it better to give

only such an account as might impel the reader to consult Mr Sundman's

own accessible and readable memoir.

I wish again to record my obligations to the staff of the Cambridge

University Press.

E. T. WHITTAKER.

Edinbdegh,

August, 1916.
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CHAPTER I

KINEMATICAL PRELIMINARIES

/ 1. The displacements of rigid bodies.

*** The name Analytical Dynamics is given to that branch of knowledge

in which the motions of material bodies, considered as due to the mutual

interactions of the bodies, are discussed by the aid of mathematical analysis.

It is natural to begin this discussion by considering the various possible

types of motion in themselves, leaving out of account for a time the causes

to which the initiation of motion may be ascribed; this preliminary enquiry

constitutes the science of Kinematics. The object of the present chapter is

to establish a number of kinematical theorems which will be required in the

rest of the work.

Kinematics is in itself an extensive subject, for a complete account of which the student

is referred to treatises dealing exclusively with it, e.g. that of Koenigs (Paris, 1897). In

what follows we shall confine our attention to theorems which are of utility in the appli-

cations of Kinematics to Dynamics.

We shall say that a material body is rigid when the mutual distance of

every pair of specified points in it is invariable, so that the body does not

expand or contract or change its shape in any way, although it may change

its position with reference to surrounding objects.

If a rigid body is moved from one position to another, the change of

position is called a displacement of the body. Certain special kinds of

displacement have received specific names; thus, if the position in space

of every point of the body which lies on some straight line L is unchanged,

the displacement is called a rotation about the line L ; if the position in

space of some point P of the body is unchanged, the displacement is called

a rotation about the point P; and if the lines joining the initial and final

positions of each of the points of the body are a set of parallel straight lines

of length I, so that the orientation of the body in space is unaltered, the

displacement is called a translation parallel to the direction of the lines,

through a distance I.

w. d. 1
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2. Euler's theorem on rotations about a point*.

Consider a rigid body, one of whose points is made immoveable by some

attachment ; suppose that the body is free to turn about this point in any

manner, and let any two possible configurations of the body be taken : for

convenience we shall call these the configuration P and the configuration Q.

We shall now shew that it is possible to bring the body from the configuration

P to the configuration Q by simply rotating it about some definite line

through the fixed point, i.e. that a rotation about a point is always equivalent

to a rotation about a line through the point.

To establish this result (which was first given by Euler), denote the fixed

point by 0; let OA, OB be the positions, in the configuration P, of two lines

through the fixed point which are fixed in the body and move with it ; let

OA', OB' be the positions of the same lines in the configuration Q. Draw

the plane which is perpendicular to the plane AOA' and bisects the angle

AOA' ; and draw also the plane which is perpendicular to the plane BOB'

and bisects the angle BOB'. Let OG be the line of intersection of these two

planes, supposing them to be not coincident; if they are coincident, we

denote by OG the line of intersection of the planes OAB and OA'B'.

Then clearly in either case the line OG is related to the lines OA', OB'

in exactly the same way as it is related to the lines OA and OB ; that is to

say, the angles AOG and BOG are respectively equal to the angles A'OG and

B'OG. It follows that if the system OABC is rotated about in such a way

that the lines OA and OB come into the positions OA' and OB' respectively,

then OG will retain its position unchanged. The line OG is therefore

unaffected by the displacement in question, and so the displacement can

be represented by a rotation through some angle round OG; which proves

the theorem.

When a body is continuously moving round one of its points, which is

fixed in space, the displacement from its position at time t to its position at

time t + At, can, by Euler's theorem, be obtained by rotating the body about

some definite line through the fixed point. The limiting position of this

line, when the interval At is indefinitely diminished, is called the instantaneous

aoris of rotation of the body at the time t.

When a body is continuously moving round one of ifs points, which is fixed, the locus

of the instantaneous axis in the body is a cone, whose vertex is at the fixed point : the

locus of the instantaneous axis in space is also a cone whose vertex is at the fixed point.

Shew that the actual motion of the body can be obtained by making the former of these

cones (supposed to be rigidly connected with the body) roll on the latter cone (supposed to

be fixed in space). (Pbinsot.)

A similar proof shews that if any two positions of a plane figure in the

-~-. same plane are given, the displacement from one position to the other can be

* Novi Comment. Petrop. xx. (1776), p. 189, § 26.
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regarded as a rotation about some point in the plane. This point is called

the centre of rotation.

When the body is regarded as continuously moving, the small displace-

ment from one position to the position which succeeds it after an infinitesimal

interval of time can therefore be accomplished by a rotation round a point

;

this point is called the instantaneous centre of rotation.

Example 1. A lamina moves in any manner in its plane. Prove that the locus at any
instant of points which are at inflexions of their paths is a circle, which touches the loci

in the lamina and in space of the centre of instantaneous rotation. (Coll. Exam.)

Example 2. A rigid body in two dimensions is subjected successively to two finite

displacements in its plane. If D2 be the line joining the centres of displacement, and if

.Di be the line which is brought into the position Z)2 by half the first displacement (i.e.

by rotation through half the angle), and if Ds be the position to which D2 is brought by

half the second displacement, shew that the centre of the total displacement of the rigid

body is the intersection of Dt and D3 . (Coll. Exam.)

3. The theorem of Rodrigues and Hamilton*.

Any two successive rotations about a fixed point can be compounded into

a single rotation by means of a theorem, which may be stated as follows

:

Successive rotations about three concurrent lines fixed in space, through twice

the angles of the planes formed by them, restore a body to its original position.

For let the lines be denoted by OP, OQ, OR. Draw Op, Oq, Or per-

pendicular to the planes QOR, ROP, POQ respectively. Then if a body is

rotated through two right angles about Oq, and afterwards through two right

angles about Or, the position of OP is on the whole unaffected, while Oq is

moved to the position occupied by its image in the line Or; the effect is

therefore the same as that of a rotation round OP through twice the angle

between the planes PR and PQ, which we may call the angle RPQ. It

follows that successive rotations round OP, OQ, OR through twice the angles

RPQ, PQR, QRP, respectively, are equivalent to successive rotations through

two right angles about the lines Oq, Or, Or, Op, Op, Oq; but the latter

rotations will clearly on the whole produce no displacement; which establishes

the theorem.

4. The composition of equal and opposite rotations about parallel axes.

A case of special interest is that in which a body is subjected in turn to

two rotations of equal amount in opposite senses about two parallel axes.

In neither displacement is any point of the body displaced in a direction

parallel to the axes, and this is therefore true of the total displacement.

Moreover, if any line be taken in the body in a plane perpendicular to the

* 0. Rodrigues, Journ. de Math. v. (1840), p. 380; Hamilton, Lectures on Quaternions, § 344
;

the proof here given is due to Burnside, Acta Math. xxv. (1902).

1—2
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axes, this line in the first displacement will be turned through an angle

equal to the angle of rotation, and in the second displacement will be turned

back through the same angle; so its final position will be parallel to its

original position; which evidently can be the case for every line without

exception,- only when the total displacement is equivalent to a simple

translation. It follows that two successive equal and opposite rotations about

parallel axes are equivalent to a translation in a direction perpendicular to

the axes; or, in other words, a rotation about any axis is equivalent to

a rotation through the same angle about any axis parallel to it, together with

a simple translation in a direction perpendicular to the axis.

The converse of this, namely the theorem that a rotation of a rigid

body about any axis, preceded or followed by a translation in a direction

perpendicular to the axis, are together equivalent to a rotation of the body

about a parallel axis, is also true, being essentially the same as the result

stated in § 2, that any displacement in a plane can be regarded as a rotation

round some point in the .plane. By considering the angle between the

initial and final positions of any line which is perpendicular to the axis and

moves with the body, we see that the angles of rotation round the two axes

are equal.

5. Ghasles' theorem on the most general displacement of a rigid body*.

We shall now consider displacements of a more general character. It is

evident that a free rigid body can be moved from any one selected con-

figuration P in space to any other Q by first moving some selected point of

the body from its position in the configuration P to its position in the

configuration Q, each of the other points of the body being moved by a simple

translation parallel to this (so that the body is oriented in the same way after

the operation as before), and secondly rotating the body about this point into

the configuration Q. By Euler's theorem, this latter operation can be

performed by simply rotating the body about a line through the point ; so

we see that the most general displacement of a rigid body can be obtained by

first translating the body, and then rotating it about a line.

We shall now shew that the line about which the rotation takes place can

be so chosen, that the motion of translation is parallel to this line. For let A
be the initial position of any point of the body, and B the position to which
this point is brought by the motion of translation. Let AK be the line

through A parallel to the line round which the rotation takes place, and let

K be the foot of the perpendicular from B on AK. Then the motion of

translation can evidently be accomplished in two stages, the first of which
is a translation parallel to the line about which the rotation takes place,

* Mozzi, Discorso matematico sopra ilrotamento momentaneo del corpi, Naples, 1763; Cauchy
Exercices de Math. n. (Paris, 1827), p. 87; Oeuvres, (2) vn. p. 94; Chasles, Bulletin ' Univ. del
Sciences (Ferussac), xiv. (1830), p. 321 ; Comptes Rendu* de VAcad. xvi. (1843), p. 1420.
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bringing the point A to the position K, and the second of which is

a translation perpendicular to the line about which the rotation takes place,

bringing the point K to the position B. But by § 4, the second translation,

together with the rotation which follows it, are together equivalent to

a simple rotation about a new axis parallel to the first one. If therefore any

point on this axis be taken as base-point, the whole displacement can be

accomplished by a translation of the body parallel to a certain line through

this point, together with a rotation about this line; this establishes the

theorem.

This combination of a translation and a rotation round a line parallel to

the direction of translation is called a screw, the ratio of the distance of

translation to the angle of rotation is called the pitch of the screw. It is

clear that in a screw displacement, the order in which the translation and

rotation take place is indifferent.

6. Halphen's theorem on the composition of two general displacements.

Halphen has shewn* how to determine geometrically the res\iltant of any two screw-

displacements as a screw-displacement.

Let A
x
and A 2 denote the axes of the two screws, and A i2 their common perpendicular.

Let Bx be the line which is brought to the position A 12 by half the first displacement

(i.e. half the translation, and rotation through half the angle), and let B2 be the line to

whose position A X2 is brought by half the second displacement; let C denote the common
perpendicular to the lines Bx and B2 . Halphen's result is that the axis of the resultant

screw-displacement is C, and the displacement is twice that which brings the line Bx to the

position B2 .

For let Dx and D2
be lines such that half the given displacements will bring A 12 to the

position Dx and D2 to the position A 12 respectively, and let C be the common perpendicular

to Dx and D2
.

The figure thus obtained, and that which is obtained from it by rotating it through two

right angles about A x2 , evidently coincide ; whence we have the relations

:

Intercept made on Bx by A x and C= Intercept made on D
x
by A x and C",

Intercept made on B2 by A 2 and C= Intercept made on D2 by A 2 and C",

Intercept made on C by By and B2
= Intercept made on C" by Dx and Z>2 ,

Angle between the planes A XBX , BXG=Angle between the planes A XDX , DX C',

Angle between the planes A 2B2 , B2C= Angle between the planes A 2D2 , D2 C,

Angle between Bx and B2 = Angle between Dx and D2 .

It follows that the screw about A x brings C to the position of C produced, the inter-

section of Bx and G being brought to the position of the intersection of Dx and C ; and

then the screw about A 2 brings 0" to the position of C produced, the intersection of

J)2 and C being brought to the intersection of B2 and C ; so C is the axis of the resultant

screw, and the amount of the translation is twice the intercept made on by B
x
and B2 .

Also the line Bx , which by the first screw is brought to the position D
x , is by the second

brought to a position making the same angle with B
2
that B2 makes with Bx ; and therefore

* Nouvelles Annales de Math. (3) i. p. 298 (1882). The proof given here is due to Burnside,

Mess, of Math. xix. p. 104 (1889).
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the rotation of the resultant screw is twice the angle between 2?2 and Bx . This establishes

Halphen's theorem.

Example. Shew that any infinitesimal displacement of a rigid body can be obtained

by the composition of two infinitesimal rotations round lines, and that one of these lines

can be arbitrarily chosen.

7. Analytic representation of a displacement.

We shall now see how any displacement of a rigid body can be represented

analytically.

Let rectangular axes Oxyz be taken, fixed in space : these will be supposed

to form a right-handed system, i.e. if the axes are so placed that Oz is directed

vertically upwards and Oy is directed to the northern horizon, then Ox will

be directed to the east. Let the displacement considered be equivalent to a

rotation through an angle m about a line whose direction-angles are («, /3, 7),

and which passes through a point A whose coordinates are (a, b, c), together

with a translation through a distance d parallel to this line. The angle to

must be taken with its appropriate sign, the sign being positive when the line

(a, /3, 7) being directed vertically upwards, the rotation from the southern

horizon to the northern is round by the east. Let the point P whose

coordinates are (x, y, z) be brought by the displacement to the position of the

point Q (X, Y, Z) ; and let the point P be brought by the translation alone

to the position of the point R (£, 97, £) ; then we have evidently

f = x + d cos a, i) = y + dcosfi, £ = z + d cos 7.

Let K be the foot of the perpendicular from R (or Q) on the axis of

rotation, and let L be the foot of the perpendicular from Q on KR. Then
we have

X — £= projection of the broken line RLQ on the axis Ox,

it being understood that projections have their appropriate signs, so that the

projection of a line AB on the axis of x is (xB — xA), not (xA — xB).

Now the projection of KR on the axis Ox is

£ - a - (projection of AK on the axis Ox)

or £ - a - cos a {(£• - a) cos a + (77 - b) cos /3 + (£- c) cos 7},

and as RL = - (1 - cos &>) KR, it follows that the projection of RL on the
axis Ox is

- (1 - cos <u) [£- a - cos a {(£- a) cos a + (77 - b) cos /3 + (
? - c) cos 7}].

Moreover, the line LQ is normal to the plane RKA, and its direction-cosines
are therefore proportional to the quantities

(f- c) cos /3 - (v - b) cos 7, (£- a) cos 7 - (f- c) cos a,

(r) — b) cos a — (£— a) cos /3,
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and since the sum of the squares of these three quantities, divided by the

expression {(f-a)"+ (,,-&)» + (£_<,)»}, represents the quantity sin*RAK, it

follows that the sum of the three squares is equal to KB2
, and the three

quantities themselves are the projections on the axes of a length + KB
measured along the line LQ. Since LQ = + KRsmw, the projection of LQ
on the axis Ox is therefore

+ sin » {(f - c) cos /3-(r)-b) cos 7}.

On considering a special case, e.g. supposing that the axis of rotation is the

axis Oz, we see that the upper sign is correct ; and thus we have

X - % = - (1 - cos o>) {(£ - a) — cps2 a (f - a)

— cos a cos ft (r) — b) — cos a cos 7 (f— c)}

+ sin (a {cos ft (f— c) — cos 7 (?? — &)).

Substituting for £, 77, £ their values in terms of x, y, z, we have

X = x + d cos a — (1 — cos to) {(x — a) sin2 a

— cos a cos ft (y — b) — cos a cos 7 (^ — c)}

+ sin co {cos fi(z — c) — cos y(y — b)}.

Similarly we have

Y = y + d cos /3 - (1 - cos to) {(y - 6) sin2 /3

— cos /S cos 7(0 — c) — cos /3 cos a (# — a)}

+ sin &) {cos <y(x—a) — cos a(z — c)}

and Z= 2r + d cos 7 — (1 — cos o>) {(z — c) sin2 7

— cos 7 cos a (x — a) — cos 7 cos {3(y— b)}

+ sin a) {cos a(y—b) — cos /3(x — a)}.

These equations give the new coordinates X, Y, Z in terms of the

coordinates x, y, z of the original position of the point and the quantities

which define the displacement.

8. The composition of small rotations.

We shall now apply the last result to the case in which the rotation is

infinitesimal, the axis of rotation passing through the origin and there being

no motion of translation. We shall write Syjr for &>, where Sty is a small

quantity whose square can be neglected. The equations of the last article

now become
\X = x + (z cos /3 — y cos 7) Sty,

Y= y + (x cos y — z cos a) Sty,

Z = z + (y cos a — x cos ft) Sty.

But these are the equations which we should obtain if we successively (in

any order) subjected the body to infinitesimal rotations cos a . Sty about Ox,

cos ft . Sty about Oy, and cos 7 . Sty about Oz. It follows that any small rota-

tion Sty about a line OK is equivalent to successive small rotations Sty . cos KOx



8 Kinematical Preliminaries [CH. I

\

about Ox, S^ . cos K$y about Oy, and 8^ . cos KOz about Oz, where Ox, Oy, Oz

are any three mutually perpendicular lines which intersect OK in one of its

points, 0.

9. Euler's parametric specification of rotations round a point*.

The analytic expressions for the translational part of a displacement are,

as we have seen, extremely simple; but the expressions for the rotational

part are not so simple, and these will now be further considered. Suppose

then that a rigid body is rotated through an angle &> about a line through

the origin, whose direction-angles are a, /3, 7. By § 7, the coordinates

(X, Y, Z) of the new position of a point whose original coordinates were

(x, y, z) are given by the equations

(X = x-2 sin2 \a> (x sin2 a - y cos a cos /3 — z cos a cos 7)

+ 2 sin \a cos \ai (z cos /3 — y cos 7),

T= y - 2 sin2 |a> (y sin3 /S — z cos /3 cos 7 - x cos /3 cos a)

+ 2 sin £(o cos £&> (x cos 7 — z cos a),

Z = z — 2 sin2 \a> (z sin2 7 — x cos 7 cos a — y cos 7 cos /3)

l
+ 2 sin £» cos £ q> (y cos a — a; cos /S).

Now introduce parameters £, 77, f, ^> defined by the equations

f = cosasin|&), »7 = cos/3sin£a>, f=cos7sin-|t», ^ = cos£a>;

these parameters evidently satisfy the identical relation

and the above equations can be written in the form

x=(?- v*-?+xi)x+2(Zv-i;x)y+ 2 (K+vx)z,

z = 2(K-vx)* + 2(rf+!;x)y + (-¥-vi+?+x2)z-

If therefore the coordinate axes are denoted by OXYZ, and if moveable

axes which originally coincide with these are brought into the position Oxyz

by the given rotation, the direction-cosines of the two sets of axes with

reference to each other are given by the following scheme

:

X Y Z

X
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It is readily seen that the parameters (£", rf', f", x"), corresponding to the resultant of

two successive displacements (£', j, £', x ') and (£, 77, £, x), are given by the equations

-?"=-^,

+w'+fr+x'7'.

x"= xx'-lf-w'-Cf-
These formulae (which were discovered independently at different times by Gauss,
Eodrigues, Hamilton, and,Cayley) really constitute the theorem for the multiplication of
quaternions. For x, £ % £ may be regarded as the components of a quaternion*

X+Oi+yj+ tk, where i, j, k satisfy the equations

i2=/2=£2=_l
j

ij=—ji= k, jk=-kj= i, ki=-ik=j;

and the above formulae are then all comprehended in the single equation

x"+ ?'i+v"J+ ("k=(x+&+W + &)(x+£'i+l'J+ Ck)-

The reader who is acquainted with quaternions will observe that the effect of the

rotation on any vector p is to convert it into the vector qpq' 1
, where q denotes the

quaternion x + i^+'V + Ck; the quaternion itself is not the rotational operator.

10. The Eulerian angles.

The most practically useful of the various methods of parametrically

representing the displacement of a rigid body due to a rotation round a fixed

point is likewise due to Eulerf: it has the disadvantage of being unsym-

metrical, but is otherwise very simple and convenient.

Let be the fixed point round which the rotation takes place, and let

OXYZ be a right-handed system of rectangular axes fixed in space. Let

Oxyz be rectangular axes fixed relatively to the body and moving with it,

and such that before the displacement the two sets of axes OXYZ and Oxyz

are coincident in position. Let OK be perpendicular to the plane 0OZ,

drawn so that if OZ is directed to the vertical and the projection of Oz

perpendicular to OZ is directed to the south, then OK is directed to the east.

Denote the angles zOZ, YOK, yOK by 6, 4>, i|r, respectively: these are

known as the three Eulerian angles defining the position of the axes Oxyz

with reference to the axes OXYZ.

In order to find the direction-cosines of Ox, Oy, Oz, with respect to OX,

we observe that these are equal to the projections on Ox, Oy, Oz, respectively,

of a unit length measured along OX. Now this unit length has projections

cos </> along OL and — sin </> along OK, where OL is the intersection of the

planes XOFand Z0z\ but a length cos
<f>

along OL has projections cos <p sin 6

along Oz and cos qb cos 6 along OM, where OM is the intersection of the

planes xOy and ZOz; and a length cos 4> cos along OM has projections

cos </> cos 6 cos i|r along Ox and — cos tfr cos 6 sin i|r along Oy ; also, a length

— sin<£ along OK has projections — sin$sini|r along Ox and — sin $ cos ^
* This quaternion will have its tensor equal to unity.

f Novi Comment. Petrop. xx. (1776), p. 189.
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along Oy. Hence finally the projections on Ox, Oy, Oz respectively of the

unit length measured on OX are

cos
<f>

cos 6 cos yjr — sin (j> sin yjr along Ox

cos
<f>

cos 8 sin i|r — sin <£ cos i|r along Oy,

cos
<f>

sin along Oz.

Proceeding in this way, we obtain for the direction-cosines of the two sets of

axes OX YZ and Oxyz with respect to each other the following scheme

:

X 7 Z

cos <j> cos 6 cos \\r — sin <j> sin \jr



10-12] Kinematical Preliminaries 11

Hence, since in the spherical triangle RZX the sides are a, 7, \ir, and the

angle at Z is \ir — v or \ (it — yfr + <£), we have

cos a = sin 7 sin £ (yjr —
<f>).

Substituting for sin 7 from the equation already found, this gives

cos a sin \a> = sin \Q sin \ (yfr — <f>),

or | = sin \0 sin \ (yfr — <j>).

Similarly from the spherical triangle RZY we have

cos /3 = sin 7 cos \ (i|r — qb),

and again eliminating sin 7, we have

cos /3 sin \<& = sin 1 cos £ (1^ — 0),

or i) = sin £# cos \ (i|r — 0).

Moreover, since we have shewn that in the spherical triangle RZz the

sides are 7, 7, 6, and the angles are £ (w — i|r — <£), ^ (7r — ty
—

<f>),
a, we have

the relations

cos i&) = cos ^6 cos £ (yjr + 0),

and sin ^a> cos 7 = cos \Q sin |(i|r + $),

or % = cos £0 cos \(ty + <f>),

£ = cos £0 sin -|(i|r + $).

2%e /owr parameters g, t], f, % are thus expressed in terms of the Eulerian

angles 6,
<f>,

t|t by the relations

£ = sin|0sin£Mr-<£),

17 = sin \Q cos £ (^r — <£),

£ = cos£6>sin|("i|r + <£),

'x = cos£0cos!(^ + (£).

12. 2%e connexion of rotations with homographies ; the Gayley-Klein parameters.

Consider now a sphere, on the surface of which any figures (which we shall call S) are

drawn. Let these figures be stereographically projected on a plane (e.g. by taking the

highest point of the sphere as vertex of projection and the tangent-plane at the lowest

point of the sphere as the plane) : we shall call the projected figures P. Now let the

sphere be rotated through a definite angle about some axis through its centre, so that the

figures on its surface are shifted to new positions : let the figures in their new positions be

called S' ; and let the stereographic projections of the figures S' (with the same vertex and

plane of projection as before) be called P'. Then corresponding to the rotation of the

sphere, which changes S to S', we have a transformation in the plane, which changes the

figures P into the figures P' We shall now examine this transformation more closely.

If one of the figures P is a circle in the plane, we know that the corresponding figure S
must be a circle traced on the sphere, since by stereographic projection a circle is changed

into a circle: therefore S' must also be a circle; and hence P' must also be a circle.

Thus we see that the transformations of the plane, which correspond to rotations of the

sphere, must be such as to change any circle in the plane into another circle in the plane.
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It may be shewn* that any transformation of this kind may be represented analytically

in the following way

:

Let z=x+y J^T, where x and y are the rectangular coordinates of any point in the

plane ; so that to this point there corresponds a definite value of the complex variable z.

Similarly let z'=x'+y' J^l, where x" and y
1

refer to the point into which the point (x, y)

is changed by the transformation. Then any one-to-one transformation of the plane, which

changes all circles into circles t, may be defined by an equation of the type

,_az+ b

*~cJ+d'

where a, b, c, d are (real or complex) constants; or else by a transformation of this latter

hind combined with a reflexion in one of the axes of coordinates.

A transformation represented by an equation of the type

,_az+ b

cz+d
is called a homographic transformation, or homography. It appears therefore that homo-

graphies in a plane correspond to rotations of a solid body about a fixed point, in such a

way that if two homographies correspond respectively to two rotations, the homography

compounded of these corresponds to the rotation compounded of the two rotations J.

We shall now see how the connexion between rotations and homographies may be

represented analytically.

Let us replace the parameters f, i/, £, x by new parameters a, ft y, 8, defined by the

equations

/3-y =£+y > a-g _a + 8

2 '
V~

2i '
f_

2i '
X 2 '

e-
h-

so that they are connected with the Eulerian angles 6,
<f>,

yjr by the equations

= cos - . e
6 5«+*) . . 6 |(*-*)

y—ism-r.e i
,

j3= i'sin-. e 2
6 ;(*-*) 6 u-8= coSq. e 2

-M

These " Cayley-Klein " parameters clearly satisfy the relation

a8-/3y= l;

and replacing the quantities £, q, f, % in the scheme of directiou-cosines given in § 9 by

their values in terms of a, 0, y, 8, we have for the values of the direction-cosines in terms

of a, /3, y, 8 the following scheme

:



12, 13] Kinematical Preliminaries 13

It may readily be shewn that the parameters (a", /3", y", 8") corresponding .to the

resultant of two successive displacements (a, /3', y, 8') and (a, /3, y, 8) are given by the

equations

a"= a'a+ y/3, /3"= a/3'+/38',

y"= ya'+ Sy', 8" = y/3' + 88'.

These equations shew that the transformation

/s + 8"

is the result of performing in succession the two substitutions

*-£±f and ^=^±§,
yz+8 yz+ 8

and the connexion between rotations and homographic transformations is thus evident

analytically.

One advantage of the Cayley-Klein parameters, as compared with the parameters

(£, ti, C, x); is that they retain some of the simplicity of the quaternion calculus, while

using the *J
- 1 of ordinary algebra instead of the i, j, k of Hamilton's quaternions.

Example 1. Let {8, <j>, ^) denote the Eulerian angles. Suppose that a point in space

which is carried about with the axes Oxyz has the vectorial angles (6V t)
(referred to the

fixed axes OXYZ) before the motion, and {8i, $/) after the motion. Denoting e**1 tan ^ 6^

by fa, and e** 1 ' tan \8{ by fi', shew that

^^ ^'e'^cos^g-sin^

^'e"**sin^+cos^(9'

Example 2. If from the equations

Xi= aX!+ Px2 ,

X2 = yx1 + dx2 ,

the quantities X, 2
, X2

2
, XiX2 are formed, and if these quantities are regarded as umbral

symbols and the quantities X-?, X2
2
, X1

X2 , Xi
2

, x2
2

, xxx2 are replaced by — T+iX,
Y+iX, Z, — y + ix, y+ ix, z, respectively, shew that the equations obtained are

Y+iX=a2 (-y+ ix) + 2afiz+p2 (y+ix),

Y+iX= y
2 (-y+ix) + 2y8z+ 82 (y+ix),

Z =ay(-y+ ix) + (a&+ Py)z+ph{y+ix),

and that these are the three equations connecting the coordinates (X, Y, Z) of a point

referred to the axes OXYZ with its coordinates (x, y, z) referred to the axes Oxyz.

Example 3. If
—y+ ix : y+ix : z—W : 1 :£(X+X'),

and - Y+iX : Y+iX : Z=\1X1
'

: 1 : £ (Xj+XA

shew that
. aX + , . , aX'+ /3

Xl=yX+8
and X

*=y¥+B-

13. Vectors.

We now proceed to consider the essential features involved in the

displacement by simple translation of a rigid body.

The operation of translation in itself, considered apart from the body

translated, evidently possesses the following properties:
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1° It can be specified completely by any one of the equal and parallel

lines of space which have a given length (viz. the distance of the translation)

and given direction (viz. the direction of the translation) ; since such a line

furnishes all the data which describe the operation.

2°. If AB be one of these lines, and AGBE...KB be a broken line

joining its extremities, then the operation represented by AB is equivalent

to the sum of the operations represented by AG, CD, BE, ... KB.

These properties 1° and 2° are possessed by a large number of operations

and quantities other than the operation of translation; an operation or

quantity which possesses them is called a vector quantity.

By 2°, a vector AB is equivalent to the sum of three vectors AK, KL, LB,

respectively parallel to three given rectangular axes, and forming a broken

line joining the points A and B. These three vectors are called the com-

ponents of the vector AB along the given axes. If I be the length and (a, /3, y)

the direction-angles of AB, the lengths of the component vectors are clearly

(icosa, icosyS, Zcos^), being in fact the projections of AB on the axes.

A single vector which is equivalent to any number of given vectors is

called their resultant.

If a vector is conceived as varying in dependence on a parameter (e.g. the

time), the difference between the vectors corresponding to any two values of

the parameter is also a vector, and hence the rate of change of the vector

with respect to the parameter is also a vector, whose components are the

rates of change of the corresponding components. This is called the flux

of the vector with respect to the parameter.

14. Velocity and acceleration ; their vectorial character.

Consider now a body which is being continuously translated (though not

necessarily always in the same direction) without any change of orientation.

Its total translation to any time t is a vector quantity, and hence the rate at

which this changes with the time, i.e. its time-flux, is also a vector quantity,

which is called the velocity of the body ; if x, y, z are the coordinates referred

to fixed axes of any point fixed in the body and moving with it, then the com-

ponents of the velocity referred to these axes are the rates of change of x, y, z,

i.e. are x, y, z (where dots denote differentiations with respect to the time t).

Similarly the rate of change of the velocity is again a vector, whose

components are x, y, z (two dots indicating second derivatives with respect

to the time) ; this vector is called the acceleration of the body.

It is clear that if P and Q are two moving points, the vector which

represents the translation (or velocity, or acceleration) of Q is the sum of the

vector which represents the translation (or velocity, or acceleration, as the

case may be) of P and the vector which represents the translation (or velocity,

or acceleration) of Q relative to P, i.e. of Q referred to axes whose origin

moves with P, and whose directions are invariable.
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15. Angular velocity : its vectorial character.

Consider next a body which is rotating continuously about a line. Let 6

denote the angle turned through at any time t : then 6 represents the speed

of turning at the time t. If from any point on the line round which the

rotation takes place a segment whose length represents 8 is measured along

the line, this segment will evidently furnish a complete specification of the

nature of the rotation at the instant t, or (as it is generally expressed) of

the angular velocity of the body. The direction in which the segment is

measured from the base-point is to be connected with the sense of rotation

by the usual convention, namely that when the segment is directed vertically

upwards the rotation from the southern horizon to the northern is round by

the east.

An angular velocity is therefore represented by a line of definite length

and direction. Now by § 8, if a body one of whose points is fixed

experiences a small rotation S^r round any line OK, this displacement is

equivalent to successive small rotations 8i|r cos a round Ox, Stjr cos /3 round

Oy, and Syfr cos 7 round Oz, where Ox, Oy, Oz are any three mutually

perpendicular lines passing through and (a, /3, 7) are the direction-angles

of OK with reference to Oxyz. From this it is clear that we can regard an

angular velocity represented by a length yjr measured on OK as equivalent

to angular velocities represented by lengths 1^ cos a, if- cos /3, if- cos 7,

measured along Ox, Oy, Oz, respectively.

But this is essentially the fundamental property of vectors, and can be

expressed by the statement that angular velocities can be resolved and

compounded according to the vectorial law.

It must be observed however that an angular velocity does not fulfil all

the conditions which enter into the definition of a vector, for an angular

velocity about one line is not equivalent to an angular velocity of the same

magnitude about a parallel line. Angular velocity must therefore be regarded

as a vector which is localised along a definite line.

Example. A right circular cone of semi-vertical angle /3 rolls without sliding on a plane.

To find its instantaneous axis of rotation, and to determine its angular velocity about this

axis in terms of the angular velocity of the line of contact in the plane.

Since all points of the generator which is in contact with the plane are instantaneously

at rest (for there is no sliding), this generator is the instantaneous axis of rotation of

the cone. Let a> denote the angular velocity of the cone about this generator, and let 6

denote the angular velocity of the line of contact in the plane. Then the motion of the

axis of the cone can be represented by an angular velocity 6 round the normal to the

plane, and the whole motion of the cone is compounded of this together with a rotation

round the axis of the cone. It follows that the component of angular velocity of the cone

about a line through the vertex of the cone perpendicular to the axis is 6 cos /3 ; but

this must equal the resolved part of to in this direction, which is a sin /3. We have

therefore

w= 6 cot /3,

which is the required relation between a and 6.
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16. Determination of the components of angular velocity of a system, in

terms of the Eulerian angles, and of the symmetrical parameters.

The position at any time of a rigid body which is continuously moving

about a fixed point is most conveniently described by taking two sets

of rectangular axes, of which one set OXYZ are fixed in space, while the

other set Oxyz are fixed relatively to the body, and move with it; the

position of the body being then specified by the three Eulerian angles 0,
<f>,

ifr,

which define the position of the axes Oxyz relatively to the axes OXYZ.
We shall now determine the components, along the moving axes, of the

angular velocity of the body at any instant.

Let OK denote the line of intersection of the planes XOY and xOy; the

angular velocity of the system is evidently compounded of angular velocities

6 about OK, <j> about OZ, and ty about Oz, Of these, the first can be

replaced according to the vectorial law by angular velocities 6 sin ty about Ox
and 6 cos i^ about Oy ; and the second can be resolved into — (j> sin 6 cos \^

about Ox, sin sin yfr about Oy, and <}> cos 6 about Oz. So finally if

o>i, a>2 , o>3 denote the components of angular velocity of the body about the

axes Ox, Oy, Oz, respectively, we have

i&>!

= sin
-ty
—

(j> sin cos yfr,

<o2=6 cos yjr f- <j> sin 8 sin i|r,

°>s= ty + <j> cos 9-

From these expressions we can at once deduce the values of m 1 , &>2 , <us

in terms of the symmetrical parameters -

^, n, £, %, of § 9 ; for we have

Similarly we have

*4(

dt\

yfr + (f>\ d /ty
— <M

~^~)~dt\ 2~~
)

T ? + v* ? + x*'
and we have cos = — f

2 — rf + f
2 + y2

.

Substituting these values in the equation a>3 = ty + $ cos 0, we have

^ = 2(^-^ + ^-5-%).

The values of w^ and a>2 can be at once obtained from this by the
principle of symmetry

; and thus we have the components of angular velocity
given by the equations

L3 = 2(vl-^v + xt-^x)-
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17. Time-flux of a vector whose components relative to moving axes are

given.

Suppose now that a vector quantity is specified by its components £, i), £"

at any instant t with reference to the instantaneous position of a right-handed

system of axes Oxyz which are themselves in motion : and let it be required

to find the vector which represents the rate of change of the given vector.

Let <»!, a>2 , ft>3 denote the components of the angular velocity of the

system Oxyz, resolved along the instantaneous position of the axes Ox, Oy, Oz
themselves.

The time-flux of the given vector is the (vector) sum of the time-fluxes

of the components f, ?/, f, taken separately. But if we consider the vector
f;

,

it is increased in length to %+ %dt in the infinitesimal interval of time dt,

and at the same time is turned by the motion of the axes, so that (owing to

the angular velocity round Oy) it is displaced through an angle co^dt from its

position in the original plane zOx, in the direction away from Oz, and also

(owing to the angular velocity round Oz) it is displaced through an angle

m3dt from its position in the original plane xOy, towards Oy. The coordinates

of its extremity at the end of the interval of time dt, referred to the positions

of the axes at the commencement of the interval dt, are therefore (neglecting

infinitesimals of order higher than the first)

Z + %dt, a>3 i;dt, — <02%dt,

and so the components of the vector which represents the time-flux of £ are

Similarly the components of the vectors which represent the time-fluxes

of the vectors rj and £" are respectively

- o>3 77, ij, cCi-n,

and a>£, — Wif, ?•

Adding these, we have finally the components of the time-flux of the given

vector in the form
% - r)0)3 + £ft>2 ,

• V - £®i + l«s.

This result can be immediately applied to find the velocity and

acceleration of a point whose coordinates (x, y, z) at time t are given with

reference to axes moving with an angular velocity whose components along

the axes themselves at time t are (&>!, &)a , &>s ).

For substituting in the above formulae, we see that the components of

the velocity are

x — yma + zc02 ,
y—za>i + xa>3 , z — xce^ + yw^.

w. d. 2
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Now applying the same formulae to the case in which the vector .whose

time-flux is sought is the velocity, we have the components of the accelera-

tion of the point in the form

-jr (x — yas + zco2) — <o3 (y — zw^ + xco3) + <o2 (z — xco2 + ym^),

j

^-r-(y — zco 1 + xw3)
— <»! (i - xm2 + yto^) + ws (x — yco3 + za>2),

t- (z — xa>2 + ym^) — m2 (x — ya> 3 + za>2) + «i (y - zm^ + xto„).

In the case in which the motion takes place in a plane, which we may

take as the plane Oxy, there will be only two coordinates (x, y), and only one

component of angular velocity, namely 6, where is the angle made by the

moving axes with their positions at some fixed epoch; the components of

velocity are therefore (putting z, a>lt o>2 each equal to zero in the above

expressions)

x — yd and y + x8,

and the components of acceleration are

x - 2yd - yd - xfa and y + 2x0 + x'(i - y6\

Example. Prove that in the general case of motion of a rigid body there is at each

instant one definite point at a finite distance which regarded as invariably connected with

the body has no acceleration at the instant, provided the axis of the body's screwing

motion be not instantaneously stationary in direction. (Coll. Exam.)

18. Special resolutions of the velocity and acceleration.

The results obtained in the last article enable us to obtain formulae,

which are frequently of use, relating to the components of the velocity and

acceleration of a moving point in various special directions.

(i) Velocity and acceleration in polar coordinates.

Let the position of a point be defined by its polar coordinates r, 0, <j>,

connected with the coordinates (X, Y, Z) of the point referred to fixed

rectangular axes OXYZ by the equations

X = r sin 8 cos
<f>,

Y = r sin sin
<f>,

Z = r cos 6
;

and let it be required to determine the components of velocity and
acceleration of the point in the direction of the radius vector r, in the
direction which is perpendicular to r and lies in the plane containing r and
OZ (this plane is generally called the meridian plane), and in the direction

perpendicular to the meridian plane; these three directions are frequently
described as -the directions ofr increasing, 8 increasing, and

<f>
increasing,
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respectively; Take a line through the origin 0, parallel to the direction of

increasing, as a moving axis Ox ; and take a line through 0, parallel to the

direction of
<f>

increasing, as axis Oy, and a line parallel to the direction of r

increasing as axis Oz. The three Eulerian angles which determine the

position of the moving axes Oxyz with reference to the fixed axes OXYZ are

(0, <j), 0); so (§ 16) the components of angular velocity of the system Oxyz,

resolved along the axes Ox, Oy, Oz themselves, are

g>! = —
<j) sin 0, a>2 = 0, a>s =

(f>
cos 0.

The coordinates of the moving point, referred to the moving axes, are

(0, 0, r) ; and so by § 17 the components of velocity of the point resolved

parallel to the moving axes are

r0, r$ sin 0, r,

and the components of acceleration in the directions of increasing,

<f>
increasing, and r increasing (again using the formulae of § 17) are

-j- (rd) — rcjy* sin cos + r0, or rd + 2r0 — rep? sin cos 0,

j- (rcj> sin. 0) + r<i> sin + r0<}) cos 0, or ——-„ -j (r2 sin2

0<f>),

, and r - r0* - rft sin2 0.

If the motion of the point is in a plane, we can take the initial line in this

plane as axis Oz, and the quantities denoted by r and in these formulae

become ordinary polar coordinates in the plane; since <j> is now zero, the

components of velocity and acceleration in the directions of r increasing and

increasing are

(r, r0),

and (r-rfr, rd+2r0).

(ii) Velocity and acceleration in cylindrical coordinates.

Consider now a point whose position is defined by its cylindrical

coordinates z, p, cj>, connected with the coordinates (X, Y, Z) of the point

referred to fixed rectangular axes OXYZ by the equations

X = pcos<j), F=jo sin </>, Z=z\

and let it be required to find the components of the velocity and acceleration

of the point in the direction parallel to the axis of z, in the direction of the

line drawn from the axis of z to the point, perpendicular to the axis of z, and

in the direction perpendicular to these two lines. These three directions are

generally called the direction of z increasing, the direction of p increasing,

and the direction of <£ increasing ; and the coordinate <£ is called the azimuth

of the point.

In this case we take moving axes Ox, Oy, Oz passing through the origin

and parallel respectively to the directions of p increasing, </> increasing, and z

2—2
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increasing. The components of angular velocity of the system Oxyz, resolved

along the axes Oxyz themselves, are clearly

6), = 0, <B2 = 0, cos = <^,

and the coordinates of the moving point, referred to the moving axes, are

(p, 0, z). It follows by § 17 that the components of velocity of the point in

these directions are

(p, p<j>, i),

and the components of acceleration are

(p- P <j>\ p4>+2pcj>, z).

(iii) Velocity and acceleration in arc-coordinates.

Another application of the formulae of § 17 is to the determination of the

components of velocity and acceleration of a point which is moving in any

way in space, resolved along the tangent, principal normal, and binormal to

its path.

Consider first the case of a particle moving in a plane : and take lines

through a fixed point 0, parallel respectively to the tangent and inward

normal to the path, as moving axes Ox and Oy. These axes are rotating

round with angular velocity <£, where <j> is the angle made by the tangent

to the path with some fixed line in the plane. If v denotes the velocity of

the point, s the arc of the path described at time t, and p the radius of

curvature of the path at the point, we have

_ ds _ ds
V ~df p ~d$'

and the angular velocity of the axes can therefore be written in the form v/p.

Since the components of the velocity parallel to the moving axes are

(v, 0), it follows from § 17 that the components of the acceleration parallel to

the same axes are I v, v .-) . Since

. _dv _dsdv _ dv

dt dt ds~ ds'

it follows that the acceleration of the moving point in the direction of the

tangent to its path is v y-
, and the acceleration in the direction of the inward

normal is —

.

P

Now the velocity of a moving point is determined by the knowledge of

two consecutive positions of the moving point, and the acceleration is therefore

determined by the knowledge of three consecutive positions ; so even if the

path of the point is not plane, it can for the purpose of determining its

acceleration at any instant be regarded as moving in the osculating plane of
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( dv v2 n\

its path, since this plane contains three consecutive positions of the point.

Hence the components of acceleration of the point, in the directions of the

tangent, principal normal, and binomial to its path, are

dv y2

P

(iv) Acceleration along the radius and tangent.

The acceleration of a point which is in motion in a plane may be expressed

in the following form* ; let r be the radius vector to the point from a fixed

origin in the plane, p the perpendicular from the origin on the tangent to the

path, s the arc of the path described at time t, p the radius of curvature of

the path at the point, and v or s the velocity of the point at time t ; and let

h denote the product pv. Then the acceleration of the point can be resolved

into components — along the radius vector to the origin and — -=- along the

tangent to the path.

For the acceleration can be resolved into components vdv/ds along the

tangent and v*/p along the normal ; now a vector F directed outwards along

the radius vector can be resolved into vectors — Fp/r along the inward normal

and Fdr/ds along the tangent, so a vector v*/p along the inward normal can be

rv2
. rv2 dr

resolved into — inwards along the radius vector and — -7- along the tangent.

The acceleration is therefore equivalent to components

dv , rv*dr , ,, ,

v -y- H -j- along the tangent,

and — inwards along the radius vector.

pp
h'r

The latter component is -r- , and the former can be written* PP
1 dv2 v*dp Id <y»2

) h dh

2ds^pds' 2p* ds ' p*ds'

which establishes Siacci's result.

Example 1. Determine the meridian, normal, and transverse components of the accelera-

tion of a point moving on the surface of the anchor-ring

#=(c+ asin0)cos<£, y= {e+asm6) sin<£, z=acos0.

Let P be the point {6, <f>),
and let be the centre of the anchor-ring and the centre

of the meridian cross-section oh which P lies. The polar coordinates of G relative to

are (c, <j>), and the polar coordinates of P relative to C are (a, 6, <fj ; so the components

of acceleration of C relative to are

clf> transverse

and - o<^
2 outwards from the axis, i.e. - c<j>

2 sin 8 along the normal,

and — «^2 cos 8 along the meridian.

* Due to Siacoi, Atti della B. Ace, di Torino, xiv. p. 75Q.
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The components of acceleration ofP relative to C are

'a&- a$2 sin 6 cos 6 along the meridian,

-^-s t- (sin2 6 . d>) transverse,
sin 6 at

v
— a02 -as<£2 sin2 normal.

Thus finally the components of acceleration ofP in space are

a'4 _ (c+a sin 6) <j>
2 cos 6 along the meridian

,

- aA* - aqi2 sin2 6 - c<j>
2 sin 6 normal,

and cd> + -?—n -r (sin2 6 . 4>) transverse.
^ Bin 6 dt x

JSxample 2. If the tangential and normal components of the acceleration of a point

moving in a plane are constant, shew thai the point describes a logarithmic spiral.

In this case

v -;-=a, where a is a constant,
as

so vi=as.

v*
Also —= c, where c is a constant,

P

so s= Cp, where G is a constant,

or s—C-tt, where d> is tl

Integrating this equation, we have

ds
s—G-jt, where d> is the angle made by the tangent with a fixed line.

d(p

s= Aes*,

where A and B are constants : and this is the intrinsic equation of the logarithmic spiral.

Example 3. To find the acceleration of a point which describes a logarithmic spiral with

constant angular velocity about the pole.

/i?r

By Siacci's theorem, the components of acceleration are —j- along the radius vector

and -s -j- along the tangent; but if <b is the constant angular velocity, we have h=a>r2
:

pi as

so the components of acceleration are

mV5
, SlaPr3 dr

—5— and —5- -j-

.

p3
p p' ds

r r dr
Since - , -

, and -=- are constant in the spiral, we see that each of these components of

acceleration varies directly as the radius vector.

Miscellaneous Examples.

1. If the instantaneous axis of rotation of a body moveable about a fixed point is fixed

in the body, shew that it is also fixed in space, i.e. the motion is a rotation round a fixed

axis.

2. A point is referred to rectangular axes Ox, Oy revolving about the origin with

angular velocity w; if there be an acceleration to x=a, y = 0, of amount n2a2 x (distance),

shew that the path relative to the axes can be constructed by taking (i) a point
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*-n2a/(n2 -l), (ii) a uniform circular motion with angular velocity (»-l)a> about this,

and (iii) a uniform circular motion with angular velocity (n+ l)a>, but in the opposite

sense, about this last. (Ooll. Exam.)

3. The velocity of a point moving in a plane is the resultant of a velocity v along the

radius vector to a fixed point and a velocity v' parallel to a fixed line. Prove that the

corresponding accelerations are

dv wf „ , dv' vvf
ir H cos 6, and -^- H ,
dt r

'

dt r '

6 being the angle that-the radius vector makes with the fixed direction. (Ooll. Exam.)

4. A point moves in a plane, and is referred to Cartesian axes making angles a, with

a fixed line in the plane, where a, /3 are given functions of the time. Shew that the com-
ponent velocities of the point are

*- xd cot (/3 - o) - yfl cosec (/3 - a), y +y/3 cot (/3 - a) + xa cosec (0 - a),

and obtain expressions for the component accelerations. (Ooll. Exam.)

5. A point is moving in a plane : 8 is the logarithm of the ratio of its distances from
two fixed points in the plane, and (j> is the angle between them : also 2k is the distance

between the fixed points. Shew that the velocity of the point is

k Je2+ <j>
2 ,„ ,, „—

, „ ,
. (Coll. Exam.)

cosh 6 - cos
(f)

6. If in two different descriptions of a curve by a moving point, the product of the

velocities at corresponding places in the two descriptions is constant, shew that the

accelerations at corresponding places in the two descriptions are as the squares of the

velocities, and that their directions make equal angles with the normal to the curve, in

opposite senses. (J. von Vieth.)

7. A point is moving in a parabola of latus rectum 4a, and when its distance from the

focus is r, the velocity is v; shew that its acceleration is compounded of accelerations R
and N, along the radius vector and normal respectively, where

R=v^ , HT=—.4- (**>•) (Coll. Exam.)
dr' zridr^ '

^ '

8. Shew that if the axes of x and y rotate with angular velocities a>i, <a2 respectively,

and i/r is the angle between them, the component accelerations of the point (x, y) parallel

to the axes are

x — x<o^ — (xi>i+ Sixai) cot i^ — (ya>2+ 2yo>2) cosec \jr,

and y—ya>2
2 + (xa>1+ 2xa)1) cosec yjf+ (ym2+ 2ya2) cot yjr. (Coll. Exam.)

9. The velocity of a point is made up of components u, v in directions making angles

6,
(f>

with a fixed line. Prove that the components /, /' in these directions of the accelera-

tion of the point will be given by

/= u — u0 cot x~ v^> oosec %,

f=v + uQ coaec x+ v<j) cot ^,

X being the inclination of the two directions.

Being given that the lines joining a moving point to two fixed points are r, s in length

and 6,
<fr

in inclination to the line joining the two fixed points,, determine the acceleratioa

of the point in terms of to, a>', the rates of increase of 8, <j>. (Coll. Exam.)



24 Kinematical Preliminaries [ch.

10. If A, B, G be three fixed points, and the component velocities of a moving point P

along the directions PA, PB, PC be u, v, and w; shew that the accelerations in the same

directions are

/ 1 cos APB\ ,
/ 1 cos APC\

u + uv {pB--pA-) +UW\PC- ŝA—) t

and two similar expressions. (Coll. Exam.)

11. The movement of a plane lamina is given by the angular velocity a, and the com-

ponent velocities u, v of the origin resolved along axes Ox, Oy traced on the lamina.

Find the component velocities of any point (x, y) of the lamina. Shew that the equations

J*tan-i(^>

V±<a
dt \v+xa>J

represent circular loci on the lamina ; one being the locus of those points which are passing

cusps on their curve loci in space and the other being the locus of the centres of curvature

of the envelopes in space of all straight lines of the lamina. (Coll. Exam.)

12. Shew that when a point describes a space-curve, its acceleration can be resolved

into two components, of which one acts along the radius vector from the projection of a

fixed point on the osculating plane, and the other along the tangent ; and that these are

respectively

P3 p'

and
TdT T*q_dq

ana
p* ds

+
p* ds'

where p is the radius of curvature, q the distance of the fixed point from its projection on

the osculating plane, r and p are the distances of this projection from the moving point

and the tangent, T is an arbitrary function (equal to the product ofp and the velocity) and

s is the arc (Siacci.)

13. A circle, a straight line, and a point lie in one plane, and the position of the point

is determined by the lengths t of its tangent to the circle and p of its perpendicular to

the line. Prove that, if the velocity of the point is made up of components u, v in the

directions of these lengths and if their mutual inclination be 8, the component accelerations

will be

u — uv cos 8jt, v+uv/t. (Coll. Exam.)

14. A particle moves in a circular arc. If r, r
1
are the distances of the particle at P

from the extremities A, B of a fixed chord, shew that the accelerations along AP, BP are

respectively

dv vv' , dv' , vv'j .

where v, v' are the velocities in the directions of r, r', and a is the angle APB.

A point describes a semicircle under accelerations directed to the extremities of a
diameter, which are at any point inversely as the radii vectores r, r' to the extremities of

the diameter. Shew that the accelerations are

4a* F 2 4a4 V2

where a is the radius of the circle and V the velocity of the point parallel to the diameter.

(Coll. Exam.)
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15. The motion of a rigid body in two dimensions is defined by the velocity (u, v) of

one of its points G and its angular velocity o>. Determine the coordinates relative to G of

the point /of zero velocity, and shew that the direction of motion of any other point P is

perpendicular to PI.

Find the coordinates of the point J of zero acceleration, and express the acceleration of

P in terms of its coordinates relative to J. (Coll. Exam.)

16. A point on a plane is moving with constant velocity V relative to it, the plane at

the same time turning round a fixed axis perpendicular to it with angular velocity a>. Shew

that the path of the point is given by the equation

re ,-* g V ,o— = Jri-ai+— cos-1 - ;

at at T

r and 6 being referred to fixed axes, and a being the shortest distance of the point from the

axis of rotation. (Coll. Exam.) >

17. The acceleration of a moving point Q is represented at any instant by aa, where a

is a fixed point and a describes uniformly a circle whose centre is <u. Prove that the

velocity of Q at any instant is represented by Op, where is a fixed point and p describes

a circle uniformly; and determine the path described by Q.

(Camb. Math. Tripos, Part I, 1902.)

18. A point moves along the curve of intersection of the ellipsoid -^ +p + -j- = 1 and

the hyperboloid of one sheet -j—- + p^TT+ ~TZ\=l '
and its velocitv at the Point where

the curve meets the hyperboloid of two sheets -j——1- „_ + „_ =1 is

AV- F)(62_^)(C
2-

F)J
»

where h is constant. Prove that the resolved part of the acceleration of the point along

the normal to the ellipsoid is

Mafrfr-X) _, (CoU. Exam.)
(o»- f.)(6»-»0C<*

,
-/*><s/V

19. A rigid body is rolling without sliding on a plane, and at any instant its angular

velocity has components au <m2 along the tangent to the lines of curvature at the point

of contact, and o>3 along the normal : shew that the point of the body which is at the point

of contact has component accelerations

— RtfO-iaz, — Riajps, Ria^+Rzioi2
,

where Ru i22 are the principal radii of curvature of the surface of the body at the point

of contact. (Coll. Exam.)



CHAPTER II

THE EQUATIONS OF MOTION

19. The ideas of rest and motion.

In the previous chapter we have frequently used the terras " fixed " and

" moving " as applied to systems. So long as we are occupied with purely

kinematical considerations, it is unnecessary to enter into the ultimate

significance of these words; all that is meant is, that we consider the

displacement of the " moving " systems, so far as it affects their configuration

with respect to the systems which are called "fixed," leaving on one side the

question of what is meant by absolute "fixity."

When however we come to consider the motion of bodies as due to specific

causes, this question can no longer be disregarded.

In popular language the word " fixed " is generally used of terrestrial

objects to denote invariable position relative to the surface of the earth at

the place considered. But the earth is rotating on its axis, and at the same

time revolving round the Sun, while the Sun in turn, accompanied by all

the planets, is moving with a large velocity along some not very accurately

known direction in space. It seems hopeless therefore to attempt to find

anything which can be really considered to be "at rest."

In the nineteenth century it was supposed that the aether of. space (the

vehicle of light and of electric and magnetic actions) was (apart from small

vibratory motions) stagnant, and so was capable of providing a basis for

absolute fixity. But this doctrine has been subverted by the modern Principle

of Relativity*, which asserts that even in the domain .of electromagnetic

phenomena it is impossible to distinguish absolute rest from a state of uniform

translatory motion common to all the members of a system.

Accordingly in dynamics, although when we speak of the motion of bodies

we always imply that there is some set of axes, or frame of reference as it may
be called, with reference to which the motion is regarded as taking place, and

to which we apply the conventional word " fixed," yet it must not be supposed

that absolute fixity has thereby been discovered. When we are considering

* Cf. Whittaker's History of the Theories of Aether and Electricity, oh. xn. (London, 1910)

;

or Conway's Relativity (London, 1915).
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the motion of terrestrial bodies at some place on the earth's surface, we shall

take the frame of reference to be fixed with reference to the earth, and it is

then found that the laws which will presently be given are sufficient to

explain the phenomena with a sufficient degree of accuracy ; in other words,

the earth's motion does not exercise a sufficient disturbing influence to make
it necessary to allow for its effects in the majority of cases of the motion of

terrestrial bodies.

It is also necessary to consider the meaning to be attached to the word
" time," which in the previous chapter stood merely for any parameter
varying continuously with the configuration of the systems considered. The
Principle of Relativity reveals the great difficulties that attend any attempt
to elucidate the idea of time : in particular, it is by no means easy to define

simultaneity, i.e. to explain what is meant by saying that two events at

different points of space happen " at the same time." However, a system of
' time-measurement which is intelligible from the point of view of ordinary

instrumental work, and which is sufficient for our present purpose, is the

following
: we suppose that the angle through which the earth has rotated on

its axis (measured with reference to the fixed stars, whose small motions we
can for this purpose neglect), in the interval between two events, measures

the time elapsed between the events in question. This angular measure can

be converted into the ordinary measure in terms of mean solar hours, minutes,

and seconds at the rate of 360 degrees to 24 x 365£/366i hours.

20. The laws which determine motion*-

Considering now the motion of terrestrial objects, and taking the earth as

the frame of reference, it is natural to begin by investigating the motion of a

very small material body, or particle as we shall call it, when moving in vacuo

and entirely unconnected with surrounding objects. The paths described by

such a particle under various circumstances of projection may be observed,

and the methods of the preceding chapter enable us, from the knowledge

thus acquired, to calculate the acceleration of the particle at any point of any

particular observed path. It is found that for all the paths the acceleration

is of constant amount, and is always directed vertically downwards. This

acceleration is known as gravity, and is generally denoted by the letter g ; its

amount is, in"Great Britain, about 981 centimetres per second per second.

The knowledge of this experimental fact is theoretically sufficient to

enable us to calculate the path of any free terrestrial particle in vacuo, when

the circumstances of its projection are known: the actual calculation will not

be given here, as it belongs more properly to a later chapter.

The case of motion which is next in simplicity is that of two particles

which are connected together by an extremely light inextensible thread, and

* The laws of motion are due to Newton : Principia, p. 12 (ed. 1687).
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are free to move in vacuo at the earth's surface. So long as the thread is

slack, each particle moves with the acceleration gravity, just as if the other

were not present. But when the thread is taut, the two particles influence

each other's motion. We can now as before observe the path of one of the

particles, and hence calculate the acceleration by which at any instant its

motion is being modified. We thereby arrive at the experimental fact, that

this acceleration can be represented at any instant by the resultant of two

vectors, of which one represents the acceleration g and the other is directed

along the instantaneous position of the thread.

The influence of one particle on the motion of the other consists there-

fore in superposing on the acceleration due to gravity another acceleration,

which acts along the line joining the particles and which is compounded

with gravity according to the vectorial law of composition of accelerations.

Denoting the particles by A and B, we can at any instant calculate, from the

observed paths, the magnitudes of the accelerations/, and/2 thus exerted by

B on A and by A on B respectively ; and this calculation immediately yields

the result that the ratio of f\ to f does not vary throughout the motion. On
investigating the motions which result from various modes of projection, at

various temperatures etc., we are led to the conclusion that this ratio is an

invariable physical constant of the pair of bodies A and B*.

On consideration of the motion of more complex systems it is found

that the experimental laws just stated can be generalised so as to form

a complete basis for all dynamics, whether terrestrial or cosmic. This

generalised statement is as follows : If any set of mutually connected particles

are in motion, the acceleration with which any one particle moves is the

resultant of the acceleration with which it would move if perfectly free, and
accelerations directed along the lines joining it to the other particles which
constrain its motion. Moreover, to the several particles A, B, C, ..., numbers

mA> inB , mc , ... can be assigned, such that the acceleration along AB due to the

influence of B on A is to the acceleration along BA due to the influence of
A on B in the ratio mB :mA . The ratios of these numbers mA , mB ,

... are

invariable physical constants of the particles.

The evidence for the truth of this statement is to be found in the universal

agreement of the calculations based on it, such as those given later in this

book, with the results of observation.

It will be noticed that only the ratios of the numbers mA,mB , mc , ... are
determined by the law ; it is convenient to take some definite particle A as

a standard, calling it the unit of mass, and then to call the numbers mBjmA ,

mclmA> ••• the masses of the other particles mB , mc , ....

* The ratio is in fact equal to the ratio of the weight of B to the weight of A ; the ratio of
the weights of two terrestrial bodies, as observed at the same place on the earth's surface, is a
perfectly definite quantity, and does not vary with the place of observation.
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The mass of the compound particle formed by uniting two or more particles

is found to be equal to the sum of the masses of the separate particles.

Owing to this additive property of mass, we can speak of the mass of a finite

body of any size or shape ; and it will be convenient to take as our unit of'

mass the mass of the Y^nr*b Part of a certain piece of platinum known as the

standard kilogramme; this unit will be called a gramme, and the number
representing the ratio of the mass of any other body to this unit mass is

called the mass of the body in grammes.

21. Force.

We have seen that in every case of the interaction of two particles A and

B, the mutual influence consists of an accelerationfA on A and an acceleration

fs on B, these accelerations being vectors directed along AB and BA respec-

tively, and being inversely proportional to the masses mA and m^. It follows

that the vector quantity mAfA is equal to the vector quantity mEfB , but has

the reverse direction. The vector mAfA is called the force exerted by the

particle B on the particle A ; and similarly the vector m^fs is called the force

exerted by the particle A on the particle B.

With this terminology, the law of the mutual action of a connected

system of particles can be stated in the form : the forces exerted on each other

by every pair of connected particles are equal and opposite. This is often

called the Law of Action and Reaction.

If the various forces which act on a particle A as a result of its connexion

with other particles are compounded according to the vectorial law, the

resultant force gives the total influence exerted by them on the particle A ;

this force divided by mA is the acceleration induced in A by the other

particles ; and the resultant of this acceleration and the acceleration which the

particle A would have if entirely free (due to such causes as gravitation) is

the actual acceleration with which the particle A moves.

In general, if an acceleration represented by a vector / is induced in

a particle of mass m by any agency, the vector mfis called the force* due to

this cause acting on the particle ; and the resultant of all the forces due to

various agencies is called the total force acting on the particle. It follows

that if (X Y, Z) are the components parallel to fixed rectangular axes of the

total force acting on the particle at any instant, and (x, y, '£) are the com-

ponents of the acceleration with which its path is being described at that

instant, then we have the equations

m'x = X, my = 7, mi = Z.

Two other terms which are frequently used may conveniently be defined

at this point.

* Force is the vis matrix of Newton's Principia, i. def. 8.
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The product of the number which represents the magnitude of the com-

ponent of a given force perpendicular to a given line L and the number

which represents the perpendicular distance of the line of action of the force

from the line L is called the moment of the force about the line L.

If the three components {X, Y, Z) of the force acting on a single free

particle are given functions of the coordinates (x, y, z) of the particle, they

are said to define infield offorce.

22. Work.

Consider now any system of particles, whose motion is either quite free or

restricted by given connexions between the particles, or constraints due to

other particles which are not regarded as forming part of the system. Let m
be the mass of any one of the particles, whose coordinates referred to fixed

rectangular axes in any selected configuration of the system are (x, y, z) ; and

let (X, Y, Z) be the components, parallel to the axes, of the total force

acting on the particle in this configuration.

Let (x + Sx,y + Sy, z + Sz) be the coordinates of any point very near to

the point (x, y, z), such that the displacement of the particle m from one

point to the other does not violate any of the constraints (for instance, if m is

constrained to move on a given surface, the two points must both be situated

on the surface). Then the quantity

XBx+YSy + ZSz

is called the work* done on the particle m by the forces acting on it in the

infinitesimal displacement from the position (x, y, z) to the position

(x + Sx,y + Sy, z + hz).

This expression can evidently be interpreted physically as being the

product of the distance through which the particle is displaced and the com-

ponent of the force (X, Y, Z) along the direction of this displacement.

Since forces obey the vectorial law of composition, the sum of the com-

ponents in a given direction of any number of forces acting together on a

particle is equal to the component in this direction of their resultant : and

hence the work done by a force which acts on a particle in a given displace-

ment is equal to the sum of the quantities of work done in the same displacement

by any set offorces into which this force can be resolved.

Suppose now that in the course of a motion of the system, the particle m
is gradually displaced from any position (which we can call its initial position)

to some other position at a finite distance from the first (which we can call

its final position). The work done on the particle by the forces which act on

* Newton defined the Actio Agentis as the product of the velocity into the component of force

along the direction of motion ; it is evidently the time-flux of the work done. Cf. Principia, u

p. 25 (ed. 1687).
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it during this finite displacement is defined to be the sum of the quantities

of work done in the successive infinitesimal displacements by which we can

regard the finite displacement as achieved. The work done in a finite dis-

placement is therefore represented by the integral

"A's+'g+'S*
where the integration is taken between the initial and final positions along

the arc s described in space by the particle during displacement.

These definitions can now be extended to the whole set of particles which

form the system considered; the system being initially in any given con-

figuration, we consider any mode of displacing the various particles of the

system which is not inconsistent with the connexions and constraints; the

sum of the quantities of work performed on all the particles of -the system in

the displacement is called the total work done on the system in the displace-

ment by the forces which act on it.

23. Forces which do no work.

There are certain classes of forces which frequently occur in dynamical

systems, and which are characterised by the feature that during the motion

they do no work on the system.

Among these may be mentioned

1°. The reactions of fixed smooth surfaces: the term smooth implies

that the reaction is normal to the surface, and therefore in each infinitesimal

displacement the point of application of the reaction is displaced in a direction

perpendicular to the reaction, so that no work is done.

2°. The reactions of fixed perfectly rough surfaces : the term perfectly

rough implies that the motion of any body in contact with the surface is one

of pure rolling without sliding, and therefore the point of application of the

reaction is (to the first order of small quantities) not displaced in each

infinitesimal displacement, so that no work is done:

3°. The mutual reaction of two particles which are rigidly connected

together: for if (xlt yu Zi) and (*2 ,' yz , z2) are the coordinates of the particles,

and (X, Y, Z) are the components of the force exerted by the first particle on

the second, so that (- X, - Y, - Z) are the components of the force exerted

by the second particle on the first, the total work done by these forces in

an arbitrary displacement is

X (Bx2 - Bx,) + Y (By2 r- By,) + Z (Bz2 - Bz[).

But since the distance between the particles is invariable, we have

B {(x2 - a? + (y2- yxf + (* - z1 f} = 0,

or '•'

(«i
- «,) {Bx2 - BxJ + (y, - y,) (fy2- By,) + (z2 - z,) (Sz2 - Bz,) = 0,
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and since the force acts in the direction of the line joining the particles, we

have
X: Y:Z=(sci -x1):(y2 -y1):(z2 -z1).

Combining the last two equations, we have

X (Sx2 - &,) + F(Sy2- 8yx) + Z (Sz, - &»,) = 0,

and therefore no work is done in the aggregate by the mutual forces between

the particles.

4°. A rigid body is regarded from the dynamical point of view as an

aggregate of particles, so connected together that their mutual distances are

invariable. It follows from 3° that the reactions between the particles which

are called into play in order that this condition may be satisfied (or molecular

forces as they are called, to distinguish them from external forces such as

gravity) do, in the aggregate, no work in any displacement of the body.

5°. The reactions at a fixed pivot about which a body of the system can

turn, or at a fixed hinge, or at a joint between two bodies of the system, are

similarly seen to belong to the category of forces which do no work.

In estimating the total work done by the forces acting on a dynamical

system in any displacement of the system, we can therefore neglect all forces

of the above-mentioned types.

24. The coordinates of a dynamical system.

Any material system is regarded from the dynamical point of view as

constituted of a number of particles, subject to interconnexions and con-

straints of various kinds; a rigid body being regarded as a collection of

particles, which are kept at invariable distances from each other by means

of suitable internal reactions.

When the constitution of such a system (i.e. the shape, size, and mass of

the various parts of which it is composed, and the constraints which act on

them) is given, its configuration at any time can be specified in terms of a

certain number of quantities which vary when the configuration is altered,

and which will be called the coordinates of the system ; thus, the position of a

single free particle in space is completely, defined by its three rectangular

coordinates (x, y, z) with reference to some fixed set of axes ; the position of

a single particle which is constrained to move in a fixed narrow tube, which has

the form of a twisted curve in space, is completely specified" by one coordinate,

namely the distance s measured along the arc of the tube to the particle from

some fixed point in the tube which is taken as origin ; the position of a rigid

body, one of whose points is fixed, is completely determined by three co-

ordinates, namely the three Eulerian angles 6,
<f>, ty of § 10 ; the position of

two particles which are connected by a taut inextensible string can be defined

by five coordinates, namely the three rectangular coordinates of one of the
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particles and two of the direction-cosines of the string (since when these five

quantities are known, the position of the second particle is uniquely deter-

mined) ; and so on.

Example. State the number of independent coordinates required to specify the

configuration at any instant of a rigid body which is constrained to move in contact with

a given fixed smooth surface.

We shall generally denote by n the number of coordinates required to

specify the configuration of a system, and shall suppose the systems con-

sidered to be such that n is finite. The coordinates will generally be denoted

by q lt q2,... qn - If the system contains moving constraints (e.g. if it consists

of a particle which is constrained to be in contact with a surface which in

turn is made to rotate with constant angular velocity round a fixed axis),

it may be necessary to specify the time t in addition to the coordinates

2i> <?2> ••• qn, in order to define completely a configuration of the system.

The quantities q\, q2 , ... qn are frequently called the velocities corresponding

to the coordinates qly q2 , ...qn .

A heavy flexible string, free to move in space, is an example of a dynamical system

which is excluded by the limitation that n is to be finite ; for the configuration of the

string cannot be expressed in terms of a finite number of parameters.

25. Holonomic and non-holonomic systems.

It is now necessary to call attention to a distinction between two kinds

of dynamical systems, which is of great importance in the analytical discussion

of their motion : this distinction may be illustrated by a simple example.

If we consider the motion of a sphere of given radius, which is constrained

to move in contact with a given fixed plane, which we can take as the plane

of xy, the configuration . of the sphere at any instant is completely specified

by five coordinates, namely the two rectangular coordinates (x, y) of the

centre of the sphere and the three Eulerian angles 0, $, \(r of § 10, which

specify the orientation of the sphere about its centre. The sphere can take

up any position whatever, so long as it is in contact with the plane ; the five

coordinates (x, y, 0, $, ifr) can therefore have any arbitrary values.

If now the plane is smooth, the displacement from any position, defined

by the coordinates (x, y, 0, (j>, yjr), to any adjacent position, defined by the

coordinates (x + Bx, y + By, + 80, <f>
+ B(f>, yjr + Sty), where Bx, By, B0, Bc/>, B-^r

are arbitrary independent infinitesimal quantities, is a possible displacement,

i.e. the sphere can perform it without violating the constraints of the system.

But if the plane is perfectly rough, this is no longer the case when Bx, By, B0,

B(f>, Byjr are arbitrary; for now the condition that the displacement of the

point of contact is zero (to the first order of small quantities) must be

satisfied, and this implies that the quantities Bx, By, B0, Bcj}, Syfr are no

longer independent, but are mutually connected (in fact, they must be such

w. d. 3
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as to satisfy two non-integrable linear equations) ; so that in the case of the

sphere on the perfectly rough plane, a displacement represented by arbitrary

infinitesimal changes in the coordinates is not necessarily a possible dis-

placement.

A dynamical system for which a displacement represented by arbitrary

infinitesimal changes in the coordinates is in general a possible displacement

(as in the case of the sphere on the smooth plane) is said to be holonomic
;

when this condition is not satisfied (as in the case of the sphere on the rough

plane) the system is said to be non-holonomic.

If (Sq lt Sq2 , ... Bqn) are arbitrary infinitesimal increments of the coordinates

in a dynamical system, these will define a possible displacement if the system

is holonomic, while for non-holonomic systems a certain number, say m, of

equations must be satisfied between them in order that they may correspond

to a possible displacement. The number (n — m) is called the number of

degrees of freedom of the system. Holonomic systems are therefore charac-

terised by the fact that the number of degrees of freedom is equal to the

number of independent coordinates required to specify the configuration

of the system.

26. Lagrange's form of the equations of motion of a holonomic system*-

We shall now consider the motion of a holonomic system with n degrees

of freedom. Let (qlt q2 , ... qn) be the coordinates which specify the con-

figuration of the system at the time t.

Let mi typify the mass of one of the particles of the system, and let

(%it yt , zi) be its coordinates, referred to some fixed set of rectangular axes.

These coordinates of individual particles are (from our knowledge of the

constitution of the system) known functions of the coordinates qx , q2 , ... qn of

the system, and possibly of t also ; let this dependence be expressed by the

equations • >

'®i-fi(qi,q,,.-.,qn,t),

yi = <t>i(qi, ?«, • ••,?«, t),

M^tyiiqi, q*,...,qn , t).

Let (Xi, Yt , Zt) be the components of the total force (external and
molecular) acting on the particle m{ ; then the equations of motion of this

particle are

niiZi = Zt .
rni'Xi = Xi,



25, 26] The Equations of Motion 35

respectively, add them, and sum for all the particles of the system. We
thus have

where the symbol 2 denotes summation over all the particles of the system

;

this can be either an integration (if the particles are united into rigid bodies)
or a summation over a discrete aggregate of particles.

But we have

teI = ^(dfi .

+ dfi dfi 3/A_3/«

dqr dqr

dtV'dqJ
Xl
dt\dqJ

dtP 3gJ ^ l^g, qi +
dq2dqr & + - +

dqndqr
?" + fttyj

_ d_ ! . 3isA _ . d±i

~dtV'i

dq~J
Xi

dq~r

and therefore we have

Now the quantity

iSmiC^ + y^ + ii
3

)

represents the sum of the masses of the particles of the system, each

multiplied by half the square of its velocity; this is called the Kinetic

Energy of the system*. From our knowledge of the constitution of the

system, the kinetic energy can be calculated^ as a function of

qx , q2,... qn , qu qz ,... qn , t;

we shall denote it by
T(qu q\,... qn , qu q 2 , ... qn , t),

and shall suppose that T is a known function of its arguments. Since

i. - % n J.
df* n 4- 4.

9^ n J. ^Xi-^ qi W^''

+ - +
dq-J

n

+

dt>

* The mass of u particle multiplied by the square of its velocity was called the vis viva by

Leibnitz (Acta erud., 1695).

t The methods of performing this calculation for rigid bodies are given in Ghapter V.

3—2
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and yt and zt are likewise linear functions of qlt qs , ... qn ,
we see that T is a

quadratic function of qu q2 ,
... qn ; if the functions /, <j>, yfr do not involve the

time explicitly (as is generally the case if there are no moving constraints

in the system), the quantities x, y, z are homogeneous linear functions of

<?n <js. qn, and then T is a homogeneous quadratic function of qlt q 2 , ... qn .

From the definition it follows that the kinetic energy of a system is essentially

positive; T is therefore a positive definite quadratic form in qu j2 , ... j„, and so satisfies

the conditions that its discriminant and the principal minors of every order of its

discriminant are positive.

We have thus derived from the equations of motion the equation

dt\dqrJ aqr » \ oqr oqr aqr J

and the expression on the left-hand side of this equation does not involve the

individual particles of the system, except in so far as they contribute to the

kinetic energy T. We have now to see if the right-hand side of the equation

can also be brought to a form in which the individuality of the separate

particles is lost.

For this purpose, consider that displacement of the system in which the

coordinate qr is changed to qr + Bqr , while the coordinates

q x , q%, ... qr—\, qr+i> ••• qn

and the time (so far as this is required for the specification of the system) are

unaltered. Since the system is holonomic, this can be effected without

violating the constraints. In this displacement, the coordinates of the

particle m* are changed to

and therefore the total work done in the displacement by all the forces which

act on the particles of the system is

* (xM + Y& + *&)*!,.
i \ dqr dqr dqr J *

Now of the forces which act on the system, there are several kinds which

do no work. Among these are, as was seen in § 23,

1°. The molecular forces which act between the particles of the rigid

bodies contained in the system

:

2°. The pressures of connecting-rods of invariable length, the reactions

at fixed pivots, and the tensions of taut inextensible strings

:

3°. The reactions of any fixed smooth surfaces or curves with which

bodies of the system are constrained to remain in contact ; or of perfectly

rough surfaces, so far as these can enter into holonomic systems

:



26] The Equations of Motion 37

4°. The reactions of any smooth surfaces or curves with which bodies

of the system are constrained to remain in contact, when these surfaces or

curves are forced to move in some prescribed manner ; for the displacement

considered above is made on the supposition that t, so far as it is required for

the specification of the system, is not varied, i.e. that such surfaces or curves

are not moved during the displacement; so that this case reduces to the

preceding.

The forces acting on the system, other than these which do no work, are

called the external forces. It follows that the quantity

i \ dqr dqr dqr J
*

is the work done by the external forces in the displacement which corresponds

to a change of qr to qr + Bqr , the other coordinates being unaltered. This is

a quantity which (from our knowledge of the constitution of the system, and

of the forces at work) is a known function of qlt q2 ,
... qn , t ; we shall denote

it by

Qr(qu q*, ••• qn , t)8qr .

We have therefore

dAdqJ dq,r^r
\dqj dqr

This equation is true for all values of r from 1 ton inclusive; we thus

have n ordinary differential equations of the second order, in which qu q2 , . . . qn

are the dependent variables and t is the independent variable ; as the number

of differential equations is equal to the number of dependent variables, the

equations are theoretically sufficient to determine the motion when the

initial circumstances are given. We have now arrived at a result which may
be thus stated

:

Let T denote the kinetic energy of a dynamical system, and let

Qifyi + Qsfys + ... + Qn 8qn

denote the work done by the external forces in an arbitrary displacement

(Sq1 , 8qlt ... Sqn), so that T, Qlt Q2 , ... Qn are, from our knowledge of the

constitution of the system, known functions of qlt q2 , ... qn , qlt q2 , ... qn , t

;

then the equations which' determine the motion of the system may be written

d (dT\ dT
,

dt{dq-J'dq-r
Qr ' <r-l. 2. ...»).

These are known as Lagrange's equations of motion. It will be observed

that the unknown reactions (e.g. of the constraints) do not enter into these

equations. The determination of these reactions forms a separate branch of

mechanics, which is known as Kineto-statics*': so we can say that in Lagrange's

equations the kineto-statical relations of the problem are altogether eliminated.

* Cf. Heun, Deutsche Math. Ver. ix. (Heft 2) (1900), p. 1.
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27. Conservative forces : the Kinetic Potential.

Certain fields of force have the property that the work done by_the forces

of the field in a displacement of a dynamical system from one configuration

"to another depends only on the initial and final configurations of the system,

being the same whatever be the sequence of infinitesimal displacements by

which the finite displacement is effected.

Gravity is a conspicuous example of a field of force of this character ; the work done

by gravity in the motion of a particle of mass m from one position at a height h to

another position at a height k above the earth's surface is mg{h-k), and this does not

depend in any way on the path by which the particle is moved from one position to the

other.

Fields of force of this type are said to be conservative.

Let the configuration of any dynamical system be specified by n

coordinates qu q2 , ... qn . Choose some configuration of the system, say

that for which

qr =ar ,
(r=l, 2, ...«),

as a standard configuration ; then if the external forces acting on the system

are conservative, the work done by these forces in a displacement of the

system from the configuration (qlt <?2 , ... qn) to the standard configuration is a

definite function of qlt qt , ... qn , not depending on the mode of displacement.

Let this function be denoted by V(qu qit ... qn); it is called the Potential

Energy* of the system in the configuration (g^ q2 , ... qn). In this case the

work done by the external forces in an arbitrary displacement

(Sqlt 8g2 , ...Bqn)

is evidently equal to the infinitesimal decrease in the function V, corresponding

to the displacement, i.e. is equal to the quantity

~dq: ki ~w>~-~Wn 8qn ''

Lagrange's equations of motion therefore take the form

dt\dqr ) dqr dqr
' K

' '

.. n).

If we introduce a new function L of the variables' qlt q2 ,
... qn , qlt ... qn , t,

defined by the equation

L = T-V,

then Lagrange's equations can be written

s(i)-i-<»-
<-i, 2,...»).

* The Potential-function was introduced by Lagrange in 1773 {Oeuvres, vi. p. 335). The
name Potential is due to Green (1828).
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The function L is called the Kinetic Potential, or Lagrangian function ;

this single function completely specifies, so far as dynamical investigations

are concerned, a holonomic system for which the forces are conservative.

28. The explicit form of Lagrange's equations.

We shall now shew how the second derivatives of the coordinates with

respect to the time can be found explicitly from Lagrange's equations.

Let the configuration of the dynamical system considered be specified by

coordinates qlt q2 , ... qn ; we shall suppose that the configuration can be

completely specified in terms of these coordinates alone, without t, so that

the kinetic energy of the system is a homogeneous quadratic function of

q\, q\,...qn . As was seen in § 26, this is always the case when the

constraints are independent of the time, but not in general when the

constraints have forced motions (as for instance in the case of a particle

constrained to move on a wire which is made to rbtate in a given way).

Suppose then that the kinetic energy is

n n

f=i S ?,aMqkqi,
k=ll=l

where aki
= a^, and where the coefficients aM are known functions of

qu qs> ... qn .

The Lagrangian equations of motion for the system are

d_ /dT\ _<W = Q
dt \dqj dqr

or

or

i.
dt

»
2* a^qs

:= 1 k=ll=lOqr

S arsqs + S 2
8=1 1= 1 m=l

I m
r

qiqm = Of i

(r = l,2,...n),

(r=l, 2, ...»),

(r=l, 2,...n),

where the symbol

expression

I m
r

, which is called a Christoffel's symbol*, denotes the

1 /da;r damr

2 \dqm dqi

da,

dqr/'

These equations, being linear in the accelerations, can be solved for the

quantities qs . In fact, let D denote the determinant

cin ra12 a-i3 • • axn

a%i a%t o^2s

* It was introduced by Christoffel, Journal far Math. lxx. (1869), and is of importance in the

theory of quadratic differential forms.
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and let A rg be the minor of ars in this determinant. Multiply the n equations

of the above system by A lv , A 2„, ... Anv , respectively, and add them: re-

membering that the quantity 2 Anarg is zero when s is different from v, and
r=l

has the value D when s is equal to v, we have

Dqv + 2 2 2 A rv
\ qtqm = 2 A„Qr ,

1=1 ro = l r=l L r J r=l

g-„ = - Tr 2 2 2 An \ \qiqm -\- 7:2. Anqr .

^I=lm=lM L r J ^r=l

This equation is true for all values of v from 1 to n inclusive; and

these n equations, in which q\, q\, ... qn are given explicitly as functions of

qu q2 , ... qn , qu q2 , ... qn , can be regarded as replacing Lagrange's equations

of motion.

29. Motion of a system which is constrained to rotate uniformly round an

aaris.

In many dynamical systems, some part of the system is compelled by an

external agency to revolve with constant angular velocity a> round a given

fixed axis ; the motion of a bead on a wire which is made to rotate in this

way is a simple example. There is, as we have seen, no objection to the

direct application of Lagrange's equations to such cases, provided the system

is holonomic; but it is often more convenient to use a theorem which we

shall now obtain, and which reduces the consideration of systems of this kind

to that of systems in which no forced rotation about the given axis takes

place.

Suppose that, independently of the prescribed motion round the axis, the

system has n degrees of freedom, so that if the given axis is taken as axis of

z, and any plane through this axis and turning with the prescribed angular

velocity is taken as the plane from which the azimuth <j> is measured, the

cylindrical coordinates of any particle m of the system can be expressed in

terms of n coordinates qu g2 , . .
. , qn , these expressions not involving the time t.

Then if the kinetic energy of the system in the actual motion be T, and if the

work done by the external forces in an arbitrary infinitesimal displacement

be QiBq!+ Q2Sq2 + ... + QnBqn , where Qlt Q2 , ..., Qn will be supposed to

depend only on the coordinates qlt qit ..., qn> and if the kinetic energy of

the system when the forced angular velocity is replaced by zero be denoted

by Tj, we have
T = £2m {i2 + r2 + r* (0 + <o)%

2
,

1 = ^2m{i2 + r2 + r2
^

2
}.

Now the quantity \1mr' will be a function of q1} q%, ..., qn , which is

determined by our knowledge of the constitution of the system : denote it by

W. The quantity 2mr^0 will also be a known function of qu q2 , ..., qn ,
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qu ..., qn , being linear in qlt qz , ..., qn ; it will be zero if, when <a is zero, the

motion of every particle has no component in the direction of <j> increasing

;

while if n is equal to unity, so that there is only one coordinate q, it will be

the perfect differential with respect to t of a function of q : these are the two

cases of most frequent occurrence, and we shall include them both by as-

dY
suming that %mf'<f> is of the form -5-

, where Y is a given function of the

coordinates qlt qz , ..., qn .

We have therefore

dV
T^Tr + w—^ + rfW,

and, the Lagrangian equations

d (dT\ dT .
,

can be written in the form

dfiT^dt dY\ dT, d fdY\
2
dW n . . . .

dt[wJ
+ dtr^J-Wr~ W

dt[dq-J~
a
d^

= Qr
'

<
rs=1

.
2 ' "'»>

These equations shew that, subject to the assumption already mentioned,

the motion is the same as if the prescribed angular velocity were zero, and

the potential energy were to contain an additional term — J-SmrW. In this

way, by modifying the potential energy, we are enabled to pass from a

system which is constrained to rotate about the given axis to a system for

which this rotation does not take place. The term centrifugal forces is

sometimes used of the imaginary forces introduced in this way to represent

the effect of the enforced rotation.

30. The Lagrangian equations for quasi-coordinates.

In the form of Lagrange's equations given in § 26, the variables are n

coordinates qlt q2 , ..., qn , and the time t; the knowledge of these quantities,

together with a knowledge of the constitution of the system, is sufficient to

determine the position of any particle in any configuration of the system,

which may be expressed by saying that qlt q2 , , qn are true coordinates of

the system. We shall now find the form which is taken by the equations

when the variables used are no longer restricted to be true coordinates of

the system*.

Consider a system defined by n true coordinates qlt q2 , ..., qn , the

kinetic energy being T and the work done by the external forces in a

* Particular cases of the theorem of this article were known to Lagrange and Euler: the

general form of the equations is due to Boltzmann (Wien. SitzungsbericMe, 1902) and Hamel

(Zeitschrift fur Math. u. Phys. 1904).
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displacement (Bqlt Sq2 , ..., Sqn) being Qi&fr + QzSq2 + ... + Qn $qn> so that the

Lagrangian equations of motion of the system are

d fdT\ dTd (dT\ dT n . . _ v m
Let ft>i, «d2 , ..., t»„ be n independent linear combinations of the velocities

<7i> ?2, , ?n> denned by the relations

gv = air?] + a&q* + ...+ anrqn (r=l,2 n). . .(2),

where an , a21 , ..., a„„ are given functions of.
(ft, (ft,

..., <?«; and let d7r1( d7r2 ,

..., d7r„ be n linear combinations of the differentials dqlt dq2 ,
..., dqn , defined

by the relations

dirr = airdqt + a^dq2 + . . . + anrdqn (r = 1, 2, . .
. , «),

where the coefficients a are the same as in the previous set of equations.

These last equations would be immediately integrable if the relations

ts~ = i~ were satisfied for all values of «, r, and m. and in that case variables
aqm dqK

7rr would exist which would be true coordinates; we shall not however

suppose the equations to be necessarily integrable, so that dir^, d-rr2 , ..., dirn

will not necessarily be the differentials of coordinates nr^, ir2 , ..., irn \ we shall

call the quantities dirx , dir2 , ..., d-rrn differentials of quasi-coordinates.

Suppose that the relations (2), when solved for ql , q„, ..., qn ,
give the

equations

^ = /3»1»1 + /3K2 tu2 +... +&„«„ (r = l, 2, ...,n)...(B).

Multiplying the Lagrangian equations (1) by lr , @2r , ..., /3nr , respectively,

and adding, we obtain the equation

Now ~ZQK 8qK is the work done by the external forces on the system in an
K

arbitrary displacement, so t0KrQK hirr is the work done in a displacement
K

in which all the quantities Sir are zero except 877-,.. If therefore the work
done by the external forces on the system in an arbitrary infinitesimal dis-

placement (Sttj, Stt.,, ..., Stt„) is ILStt, + n2 87r2 + ... + Un hirn , we have

?M^(^)"^} =n'"

By means of equations (3) we can eliminate q\, q2 , ..., qn from the

function T, so that T becomes a function of a>1 , u>2 , ..., mn , qlt q2 , ..., qn (we

suppose for simplicity that t is not contained explicitly in T) ; let this form

of T be denoted by T.

Then we have — = t— aKS ,

oqK « da>8
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and therefore

K [s dt\da)J ,, dcos dt dqj)
r '

But 2/3KraKg is zero or unity according as r is different from, or equal

to, s : so we have

dt fej +
? ?0" ~dT fos

~ ?*•» djK
= n"-

We also have

dqK .
dqK s da>s dqK dqK sm d(o s dqK

^m '

at \6cor/ K s m da>s
^ \dqm dqK J K

' dqr

Now 2 fiKrr , or 5 =— -^
, would represent =— if 7rr were a true

oqK K dqK dirr
r

dirr

coordinate ; we shall denote it by the symbol =— whether -wr is a true
07Tr

coordinate or not. Also 'the expression

fdaKS da„
2 SQ O ft**"*

9a™A
m Vog'm oqK J

depends only on the connexion between the true coordinates and the dif-

ferentials of the quasi-coordinates, and is independent of the nature or

motion of the dynamical system considered : we shall denote this expression

by 7rsi- We have therefore

d (dT\ - v dT dT •

jU- +2i7,rtj 5-= n '- = 1, 2, ...,n).
at \d(or/ s 1 da> s OTrrdt

These n equations are the equations of motion expressed in terms of the

quasi-coordinates ; when the quasi-coordinates are true coordinates, the

quantities yni are all zero, since the conditions —^ = —^ are satisfied, and
dqm oqK

the equations reduce to the ordinary Lagrangian equations

d fdT\ dT

dtWJ-o^r 11' (r- 1,2, ...,«).

Example. A rigid body is free to turn about one of its points 0, which is fixed, so

that the coordinates of the body can be taken to be the three Eulerian angles 6,
<f>,

i^,

which (§ 10) specify the position of axes Oxyz, fixed in the body and moving with it, with

reference to axes OXYZ fixed in space. Let an arbitrary displacement (80, 8(f>, 8^) of the

body be equivalent to the resultant of small rotations 8ir lt 8irz , 8n3 round Ox, Oy, Oz,

respectively, so that diri, dn2 , dn3 can betaken as the differentials of quasi-coordinates :

let o>i, <o2> "3 t>e the components about the axes Oxyz of the angular velocity of the body
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at any instant, so that dir t , dn-2 , dir3 are the differentials of quasi-ooordinates corre-

sponding respectively to the velocities toj, <d2 , <b3 . Shew that the equations of motion of

the body are

(d/df\ 32\ dT dT
-=- 5— )

— 0)3 a r <»2 5 5— = uli
<K \0oV <?<»2 00)3 On-i

1
3<o3

3
3<°i •'"a

2 '

; (y~'

rf< \3 £"2/

\3o>3/
2
8(01

x
3<B2 "^S

.=; I.

where T is the kinetic energy of the body, expressed in terms of au o>2 , «>3 , 6, <p, i/r;

nX) n2 , n3 are the moments about the axes Ox, Oy,Oz, respectively, of the external forces

* ^ u a a<>T . A f
92*30 92*30 dTd^r

acting on the body : and =— stands for =-r ~ h kj 5 r or -5— •
' 6nr 00 Ott,. 00 dnr ety dirr

92*
It will appear later that T depends only on au o> 2 , <o3 , so the terms ~— are zero.

31- Forces derivable from a potential-function which involves the

velocities.

In certain cases the conception of a potential-energy function can be

extended to dynamical systems in which the acting forces depend not only

on the position but on the velocities and accelerations of the bodies.

For consider a dynamical system whose configuration is specified by

coordinates qu q2 , ..., qn , and suppose that the work done by the external

forces in an arbitrary displacement (S^, Bq2 , ..., Sq^) is

Qi&qi + Q2% + . . . + Qn hqn -

Then if Qr can be expressed in the form

dV d fdV*~=+»Q <-• »)
dqr dt \dq,

where Fis a given function of q\, qs , ..., qn , qu ..., qn , the Lagrangian equa-

tions of motion are

dfdT\_dT__dV d (dV\

dt\dqj dqr dqr dt\dqj C_ 1, 2, ..., n),

and if a kinetic potential L be defined by the equation

L = T-V,

the equations take the customary form

d (dL\ dL . , , a

dt(wJ-dq-r
= (-=1.2,...,.).

The function V can be regarded as a generalised potential energy
function. An example of such a system is furnished by the motion of a
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particle subject to Weber's electrodynamic law of attraction* to a fixed
point, the force per unit mass acting on the particle being

A (l - *" - 2r r\

r2 { c
2 )

'

where r is the distance of the particle from the centre of force : in this case
the function V is defined by the equation

V= -(1+ -
r \ c

Example. If the forces ft, ft, ..., ft of a dynamical system which is specified by
coordinates qx , q2 , ...,qn are derivable from a generalised potential-function V, so that

n 3 V d /dV\

shew that ft, ft, ..., ft must be linear functions of q\, q2 , ..., q\, satisfying the «(2»-l)
relations

9ft = aft

3ft + 3ft = d /3ft 8ft\

3ft oji of;; \3jj. 3^/

'

3ft_3ft = , ^ /3ft_3ft\
a?* a?» <& \a?* a?J

'

On the general conditions for the existence of a kinetic potential of forces, reference

may be made to

Helmholtz, Journal fiir Math., Vol. c. (1886).

Mayer, Leipzig. Berichte, Vol. xlviii. (1896).

Hirsch, Math. Annalen, Vol. l. (1898).

32. Initial motions.

The differential equations of motion of a dynamical system cannot in

general be solved in a finite form in terms of known functions. It is how-

ever always possible (except in the vicinity of certain singularities which

need not be considered here) to solve a set of differential equations by power-

series, i.e. to obtain for the dependent variables q1: q 2 , ..., qn expressions of

the type

q1
= ai + b1 t + c1 t

2 + d1 t
s + ...,

q2
= a2 + b2 t + c2 t* + d2 t

3 + ...,

qn = &«,+ hn t+cn tf + dn i?+ ...

;

the coefficients a, b, ... can in fact be obtained by substituting these series in

the differential equations, and equating to zero the coefficients of the various

* W. Weber, Annalen d. Phys. lxxiii. (1848), p. 193. Cf. Whittaker's History of the Theories

of Aether and Electricity, pp. 226—231.
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powers of t ; the expansions will converge in general for values of t within

some definite circle of convergence in the t-plane.

It is plain that these series will give any information which may be

required about the initial character of the motion (t being measured from the

commencement of the motion), since a^ is the initial value of qx , b^ is the

initial value of qlt and so on. This method of discussing the initial motion

of a system is illustrated by the following example.

Example. Consider the motion of a particle of unit mass, which is free to move in a

plane and initially at rest, and which is acted on by a field of force whose components

parallel to fixed rectangular axes at any point (#, y) are (X, Y) ; and let it be required to

determine the initial radius of curvature of the path.

Let (#+ £, y+ i) be the coordinates of any point adjacent to the initial point (a; y),

so that £, t) may be regarded as small quantities ; then the equations of motion are

i=X{x+^y+ v )

-x im,M**£ti+,**££ + ,

If therefore we assume for | and 17 the expansions

$= afi+bt3+ ctl +...,

ri=dt*+ et3 +ft*+...,

(it is not necessary to include terms of lower order than t
1
, since the quantities £, 17, £, i)

are initially zero), and substitute in these differential equations, we find, on comparing
the coefficients of various powers of t, the relations

a^X{x,y), 6=0, c=^{x d

-fx + Y^),

The path of the particle near the point (x, y) is therefore given by the series

where u denotes the quantity $t2
.

Now if the coordinates | and 17 of any curve are expressed in terms of a parameter «,
the radius of curvature at the point u is known to be

ffl+(£N
du% du dv? du

so the radius of curvature corresponding to the zero value of u, for the curve given by the
above expressions, is

Wi)H* ****>'
and this is the required radius of curvature of the path of the particle at the initial point.
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33. Similarity in dynamical systems*.

If any system of connected particles and rigid bodies is given, it is

possible to construct another system exactly similar to it, but on a different

scale. If now the masses and forces in the two systems, which we can call

the pattern and model respectively, bear certain ratios to each other, the

workings of the two systems will be similar, though possibly at speeds which

are not the same but bear a constant ratio to each other.

To find the relation between the various ratios involved, let the linear

dimensions of the model and pattern be in the ratio x : 1, let the masses of

corresponding particles be in the ratio y : 1, let the rates of working be in the

ratio z : 1, so that the times elapsed between corresponding phases are in the

ratio 1 : z, and let the forces be in the ratio w : 1. Then for each particle we
have an equation of motion of the form

moo = X;

so if m is altered in the ratio y : 1, x is altered in the ratio xz2
: 1, and X is

altered in the ratio w : 1, we must have

w = xyz2
,

and this is the required relation between the numbers x, y, z, w.

Example. If the forces acting are those due to gravity, we have w—y, and conse-

quently xyi= 1, so that the rates of working are inversely as the square roots of the linear

dimensions.

If the forces acting are the mutual gravitations of the particles,' every particle

attracting every other particle with a force proportional to the product of the masses and

the inverse square of the distance, we have w= i/
a
jafl, so that the rates of working are in

the ratio yi : x§.

34. Motion with reversed forces.

A special case of similarity is that in which the ratio w has the value — 1.

We have seen that the motion of any dynamical system which is subjected

to constraints independent of the time, and to forces which depend only on

the positions of the particles, is expressed by the Lagrangian equations

!(£)-£-*. <-••• «»•
KdqrJ dqr

where the kinetic energy T is a homogeneous quadratic function of the

velocities q\, q\, ..., qn > involving the coordinates qlt q% , ..., qn , in any way,

and Q is a function of qu qit ..., qn only.

Introduce a new independent variable defined by the equation

t = it, where i = V — 1,

and let accents denote differentiations with regard to t. Then since

* Newton, Principia, Book n. Seot. 7, Prop. 32.
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_ (?±\ and — are homogeneous of degree - 2 in dt, the above equations
dt\dqrJ dqr

S

where © is the same function of <?/, g2
', ..., ?»', <?i, ••-, qn that T is of

<ji, ?2 , •••, ?n, ?i, ?s, •••» <?n-

But if t (instead of <) be now interpreted as denoting the time, these last

equations are the equations of motion of the same system when subjected to

the same forces reversed in direction. Moreover, if ctu «2 , ..., an , ft, ft, • ••>

ft are the initial values of g„ qt , ..., qn , q,_, qa , ..., qn , respectively, in any

particular case of the motion of the original system, then alt «2 , ..., otn ,
— ift,

— ift, ..., — ift, will be the corresponding quantities in the transformed

problem. We thus have the theorem that in any dynamical system subjected

to constraints independent of the time and to forces which depend only on the

position of the particles, the integrals of the equations of motion are still real

if t be replaced by V'— It and the initial velocities ft, ft, ..., ft by — v — 1ft,

— V— 1ft, ..., — V— 1ft respectively; and the expressions thus obtained repre-

sent the motion which the same system would have if, with the same initial

conditions, it were acted on by the same forces reversed in direction.

35. Impulsive motion.

In certain cases (e.g. in the collision of rigid bodies) the velocities of the

particles in a dynamical system are changed so rapidly that the time occupied

in the process may, for analytical purposes, be altogether neglected.

The laws which govern the impulsive motion of a system bear a close

analogy to those which apply in the case of motion under finite forces : they

can be formulated in the following way*.

The number which represents the mass of a particle, multiplied by the

vector which represents its velocity at any instant, is a vector quantity

(localised in a line through the particle) which is called the momentum of

the particle at that instantf; the three components parallel to rectangular

axes Oxyz of the momentum of a particle of mass m at the point (<c, y, z) are

therefore (mx, my, mi). If any number of particles form a dynamical system,

the sum of the components in any given direction of the momenta of the

particles is called the component in that direction of the momentum of the

system. The impulsive changes of velocity in the various particles of a

connected system can be regarded as the result of sudden communications

of momentum to the particles.

The effect of an agency which causes impulsive motion in the system

* They were involved in the discovery of the laws of impact in 1668 by Wallis and Wren,

Phil. Trans. No. 43, pp. 864, 867.

+ Momentum is the quantity motus of Newton's Principia, Book i. Def. 2. The idea can be

traced back to Descartes.
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will be measured by the momentum which it would communicate to a single

free particle. If therefore (v ,.v , w ) are the components of velocity of a

particle of mass m, referred to . fixed axes in space, before the impulsive

communication of momentum to the particle, and if (u, v, w) are the com-

ponents of velocity of the particle after the impulse, then the vector quantity

(localised in a line through the particle) whose components are

m (u — u ), m(v — v ), m(w — wa)

represents the impulse acting on the particle.

For the discussion of the impulsive motion of a connected system of

particles, it is clearly necessary to have some experimental law analogous to

the law of Action and Reaction of finite forces ; such a law is contained in

the statement that the total impulse acting on a particle of a connected

system is equal to the resultant of the external impulse on the particle (i.e. the

impulse communicated by agenoies external to the system, measured by the

momentum which the particle would acquire if free) together with impulses

directed along the lines which join this particle to the other particles which

constrain its motion; and the mutually induced impulses between two connected

particles are equal in magnitude and opposite in sign.

If we regard the components of an impulse as the time-integrals of the

components of an ordinary finite force which is very large but acts only for

a very short time, the law just stated agrees with the law of Action and

Reaction for finite forces.

Change of kinetic energy due to impulses.

The change in kinetic energy of a dynamical system whose particles are acted on by a

given set of impulses may be determined in the following way.

Let an impulse /, directed along a line whose direction-cosines referred to fixed axes of

reference are (X, fi, v), be communicated to a particle of mass m, changing its velocity

from v , in a direction whose direction-cosines are (Z , Ma , N ), to v, in a direction whose

direction-cosines are (£, M, N). The equations of impulsive motion are

m(vL— v £ )=l\, m(vM-v M )= Iti, m(vJY-vaiyo)= Iv.

Multiplying these equations respectively by

i(vL+v L ), i(vM+v M ), and £ {vN+ v 2V
),

and adding, we have

%mv*-imv i= %Iv(L\ + MiJi,+ ]yv)+%Iv (Z \+M ii, + ]yi)V ).

The change in kinetic energy of the particle is therefore equal to the product of the

impulse and the mean of the components, before and after the impulse, of the velocity of

the particle in the direction of the impulse.

Now consider any dynamical system of connected particles and rigid bodies, to which

given impulses are communicated ; applying this result to each particle of the system, and

summing, we see that the change in the kinetic energy of the system is equal to the sum of the

impulses applied to it, each multiplied by the mean of the components, before and after the

communication of the impulse, of the velocity of its point of application in the direction of the

impulse. In this result we can clearly neglect the impulsive forces between the molecules

of any rigid body of the system.

w. d. 4
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36. The Lagrangian equations of impulsive motion.

The equations of impulsive motion of a dynamical system can be

expressed in a form* analogous to the Lagrangian equations of motion' for

finite forces, in the following way.

Let (X{ , Yit Zi) be the components of the total impulse (external and

molecular) applied to a particle m» of the system, situated at the point

(#,:, yt , Zi). The equations of impulsive motion of the particle are

m{ (xi - x^) = Xi, mt (y; - y^) = Yi> m^ (£i - ii0) = Z{ ,

where (&&, y^, z^) and (xc, yt , Zi) denote the components of velocity of the

particle before and after the application of the impulse.

If <?i. Qi, • •> In denote the n independent coordinates in terms of which

the configuration of the system can be expressed, we have therefore

i \ dqr dqr dqrJ

where the summation is extended over all the particles of the system.

Now in forming the summation on the right-hand side of this equation,

it is seen as in § 26 that the molecular impulses between particles of the

system can be omitted : the quantity

t(z, ^1 + Y-^ + Z-^i)
' dqr

%

dqr
l

dqr '

can therefore readily be found when the external impulses are known: we
shall denote it by the symbol Qr . We have consequently

2mt {(* - *)| + (ft -M| + <* - *) |} = Qr.

But as in § 26 we have

dxi dxi . dx{ 3 ,

oqr dqr dqr dqr ™ l '

and similarly

• ^f* - 9
(X. • 2\

Xio
dqr ~dqro

{iiBu)'

where q„ and qr denote the velocities of the coordinate qr before and after

the impulse respectively. Thus if

T=$,Zmi (J;i
!! + yf + z*)

i

* bue to Lagrange, M6c. Anal. (2° 6d.), n. p. 183.
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denotes the kinetic energy of the system after the impulse, the above

equation can be written in the form

dqr \dqj
Wr '

(dT\ 7\T
^-r\ denotes the quantity corresponding to ^— , but relating to the

instant before the impulse.

Similar equations can be found for the rest of the coordinates qx , g»2 , , ?»;

and thus we obtain the set of n equations

dT (dT\

wrwr Q- (r-1.2.....»X

which are known as the Lagrangian equations of impulsive motion.

These are algebraical equations for the determination of q\, q2 , ..., qn in

terms of q10 , q^, ..., qm ; they are not differential equations like the Lagrangian

equations of motion for finite forces, since the second derivates of the

coordinates with respect to the time do not enter.

Miscellaneous Examples.

1. Two rigid bodies moving in space are constrained only by a taut inextensible string

joining a given point of one body to a given point of the other, and one of the bodies is

constrained to roll without sliding on a given fixed surface. How many degrees of freedom

has the system, and how many independent coordinates are required to specify its con-

figuration ?

2. A point is referred to curvilinear coordinates a, b, c, and the square of its

velocity is

ZT^Aat+Btf+Cct+ZFbc+ZGcd+ZHdb.

Shew that p, q, r, the component accelerations in the directions of the tangents to the

coordinate lines, are given by three equations of the type

d fdT\ dT ..HO m „ _, ,

dt {u)-Ta=^A+7B q+7C r- (C0U
-
Exam°

3. A particle which is free to move in space is initially at rest at the origin, and is in

a field of force whose components (X, T, Z) at any point (*, y, z) are given by the expansions

X= a+bx+ quadratic and higher terms in x,y,z\

7= cx+ quadratic and higher terms in x,y,z;

Z= dxfi+ cubic and higher terms in x% y, z.

Find the radii of curvature and torsion of the orbit at the origin.

4—2



CHAPTER III

PRINCIPLES AVAILABLE FOR THE INTEGRATION

37. Problems which are soluble by quadratures.

The determination of the motion of a holonomic dynamical system with

a finite number of degrees of freedom has in the preceding chapter been

shewn to depend on the solution of a set of ordinary differential equations.

If n denotes the number of degrees of freedom, and (ql} q2 , ..., qn) are the

coordinates specifying the configuration of the system at the time t, then

the set of equations consists of n differential equations, each of the second

order, with qlt q2 , ...,qn as dependent variables and t as independent variable.

This set of equations is said to be of order In, the order being denned to

be the sum of the orders of the highest derivates of the dependent vari-

ables occurring in the equations. It is a well-known result of the theory

of ordinary differential equations that the number of arbitrary constants of

integration in the solution of a set of differential equations is equal to

the order of the system ; whence it follows that there are 2n constants of

integration in the general solution of a holonomic dynamical problem with

n degrees of freedom.

Now any given set of differential equations of order k can be reduced

to the form

-^ = Xr {x1 , x2 , ..., xk , t), (r=l, 2, ..., k),

where Xu X2 , ..., Xk are known functions of their arguments, by taking as

new variables {xlt x2 , •••, #*) the original dependent variables together with

their derivates up to (but not including) the highest derivates occurring in

the original set of equations. Thus e.g. the set of equations

-fip=
Qi (?i» Qa, ?i, &), -^ = Q* (?„ 2a , q„ qa),

(where Q1 and Q2 are any functions of the arguments indicated) which is of

order 4, can be reduced to the set

dxy dx2 dx3 n dx. -. , .

~di
= Xz

' ~dt
=Xi

' ~dt
=

*'
' a,1> ***' Xz

'

X
*''

~dt
~ "2 ^' X2

'
X" X*''
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by taking

Xi = qi, *a=9,

2, ®s = qu ocA = q2 .

The form

-^ = Xr (x1 , x2 , ...,xk ,
t) (V=l, 2, ..., k)

may therefore be regarded as the typical form for a set of differential

equations of order k.

If a function /(»!, x2 , ...,xk ,
t) is such that -£ is zero when (xu x2 , ..., xk)

are any functions of t whatever which satisfy these differential equations, the

equation

/(«!, x2 , ..., xk , t) = Constant

is called an integral of the system. The condition that a given function /
may furnish an integralof the system is easily found; for the equation

df/dt = gives

and this relation must be identically satisfied in order that the equation

/(*!, xit ..., xh , t) = Constant

may be an integral of the system of differential equations.

Sometimes the function /itself (as distinct from the equation/= constant) is called an

integral of the system.

The complete solution of the set of differential equations of order k is

furnished by k integrals

fr {xu x2 , ..., xk , t)=ar ,
(r=l, 2, ..., k),

where Oj, a2 , ..., ak axe arbitrary constants, provided these integrals are

distinct, i.e. no one of them is algebraically deducible from the others. For

let the values of xx , x2 , ..., xk , obtained from these equations as functions of

t, a1} a2 , ..., ak , be
xr = (f>r(a1 , a2 , ..., ak , t), (r = l, 2, ..., k);

then if (x^, x2 , ..., xk) are any particular set of functions of t which satisfy

the differential equations, it follows from what has been said above that

by giving to the arbitrary constants ar suitable constant values we can make
the equations

fr (xu Xt, ..., xk , t) = ar (r = l, 2, ..., k)

true for this particular set of functions (xlt x2 , ..., xk); and therefore this set

X)f functions {xlt x2 , ..., xk) will be included among the functions defined by

the equations xr = (pT . The solution of a dynamical problem with n degrees

of freedom may therefore be regarded as equivalent to the determination of

2n integrals of a set of differential equations of order 2n.
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Thus the differential equation

which is of the second order, possesses the two integrals

r q*+?=*u

I tan -1 ? — t=Oi,
[ i

where aj and a
2
are arbitrary constants. On solving these equations for q and q, we have

Jj
= a1

4sin(<+ a2),

\q=c$ cos(i+ a2)>

and these equations constitute the solution of the differential equation.

The ~ more elementary division of dynamics, with which this and the

immediately succeeding chapters are concerned, is occupied with the dis-

cussion of those dynamical problems which can be solved completely in

terms of the known elementary functions or the indefinite integrals of such

functions. These are generally referred to as problems soluble by quadratures.

The problems of dynamics are not in general soluble by quadratures ; and in

those cases in which a solution by quadratures can be effected, there must

always be some special reason for it,—in fact the kinetic potential of the

problem must have some special character. The object of the present

chapter is to discuss those peculiarities of the kinetic potential which are

most frequently found in problems soluble by quadratures, and which in fact

are the ultimate explanation of the solubility.

38. Systems with ignorable coordinates.

We -have seen (§ 27) that the motion of a conservative holonomic

dynamical system with n degrees of freedom, for which the coordinates are

qr, qv ..., qn and the kinetic potential is L, is determined by the differential

equations

dt{dqr) dqr
'

{r-l,2,...,n).

The quantity ^- is generally called the momentum corresponding to the

coordinate qr .

It may happen that some of the coordinates, say qlt q2 , ..., qk> are not

explicitly contained in L, although the corresponding velocities qlt q2 , ..., qk

are so contained. Coordinates of this kind are said to be ignorable or cyclic ;

it will appear in the following chapters that the presence of ignorable

coordinates is the most frequently-occurring reason for the solubility of

particular problems by quadratures.

The Lagrangian equations of motion which correspond to the k ignorable

coordinates are

d fdL

. dt \dq,
,;)=<>, (r-l, 2, ...,*),
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and on integration, these can be written

! = &, (r-l, 2, ...,*),

where ft, #,,...,&, are constants of integration. These last equations are

evidently A integrals of the system.

We shall now shew how these k integrals can be utilised to reduce the
order of the set of Lagrangian differential equations of motion*.

Let R denote the function i— 2 ir^r- By means of the k equations

j|-A., (r=l, 2. ...,*),

we can express the A quantities qu q2 , ..., qk , which are the velocities cor-

responding to the ignorable coordinates, in terms of

?*+i» 1k+2> •-, qn, jfc+i, ?i+2, ••, jn, ft, ft, • • • , ft ;

we shall suppose that in this way the function R is expressed in terms of the

latter set of quantities.

Now let Sf denote the increment produced in any function/ of the quan-

tities qk+1 , qk+2 , ..., qn , qlt qit ..., qn (or of the quantities qk+1 , qk+2 , ..., qn ,

Qk+i , %, Pi, ft, •••» ft) by arbitrary infinitesimal changes Sqk+1 , hqk+^, ...,

&<ln, Sgi, •••, &?» in its arguments. Then we have

by the definition of R. But

OX/ = A ~— Offr. + 2 5-r- Off, + 2 ^r- OOr ,

and

9Z\ * dL.

»fe*s)-ii (* +i*'«-
9i osince ^—=ar .

dqr

We have therefore

m dL n dL k

SR= 2 »— 8gv+ 2 v-^&fr- 2 qr $Pr,
r=k+ivqr r=k+loqr r=l

and since the infinitesimal quantities occurring on the right-hand side of this

equation are arbitrary and independent, the equation is equivalent to the

* The transformation which follows is really a case of the Hamiltonian transformation, which

is discussed in Chapter X; it was however first separately given by Eouth in 1876, and somewhat

later by Helmholtz.
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system of equations

(r = k+l,k + 2,...,n),

(r = k+l,k+2, ...,n),

(r=l,2,...,k).

Substituting these results in the Lagrangian equations of motion, we

have
ct /dR\ dR

dL

dqr

'
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on that of another set of Lagrangian differential equations with a smaller

number of coordinates, the kinetic potential of this new system is not

necessarily divisible into two groups of terms corresponding to a kinetic and
a potential energy. We shall sometimes use the word natural to denote those

1 s systems of Lagrangian equations for which the kinetic potential contains

only terms of degrees 2 and in the velocities, and non-natural to denote

those systems for which this condition is not satisfied.

As an example of the ignoration of coordinates, consider a dynamical system with two
degrees of freedom, for which the kinetic energy is

and the potential energy is

V=c + dqf,

where a, b, c, d are given constants.

It is evident that qx
is an ignorable coordinate, since it does not appear explicitly in T

or V.

The kinetic potential of the system is

and the integral corresponding to the ignorable coordinate is

gi = 8

where 8 is a constant, whose value is determined by the initial circumstances of the motion.

The kinetic potential of the new dynamical system obtained by ignoring the coordinate

qiis
ar

and the problem is now reduced to the solution of the single equation

d (d_R\_dR =0
dt\dqj dq2

~
'

or q\+(2d+ b/3
2
)q:i

=0.

As this is a linear differential equation with constant coefficients, its solution can be

immediately written down : it is

q2=A sin {(2d+ b^)i t+ e},

where A and e are constants of integration, to be determined by the initial circumstances

of the motion. This equation gives the required expression of the coordinate q2 in terms

of the time : the value of qt in terms of t can then be deduced from the equation

q^pjia + bqtfdt,

which gives

ax
= (8a+ \SbA*) t ^

. sin 2 {(2d+ 602)4 1+ c},

and so completes the solution of the system.
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39. Special cases of ignoration; integrals of momentum and angular

momentum.

We shall now consider specially the two commonest types of ignorable

coordinates in dynamical problems.

(i) Systems possessing an integral of momentum.

Let the coordinates of a conservative holonomic dynamical system with

n degrees of freedom be g„ q2 , ...,?„; and let T be the kinetic energy of the

system, and V the potential energy, so that the equations of motion of the

system are

d (dT\ dT _ dV
dt\dq~J~dq'r

~
dqr

'
(r-i,z,...,n).

Suppose that one of the coordinates, say qu is ignorable, and moreover is

such that an alteration of the value of q^ by a quantity I, the remaining

coordinates q2 , qs , ..., qn being unaltered, corresponds to a simple translation

of the whole system through a distance I parallel to a certain fixed direction

in space ; we shall take this to be the direction of the #-axis in a system of

fixed rectangular axes of coordinates.

Since g, is an ignorable coordinate, we have the integral

ptt- = Constant,
dq1

and we shall now discuss the physical meaning of this equation.

We have

g£
= lg|Xm,(* + # + <&

where the summation is extended over all the particles of the system,

j\ <5
!3

= 'Zmixi , since in this case —? = 1, -^ = 0, =-* = 0.
3?i 8g

,

i dq1

Now Smiiij represents (§ 35) the component parallel to the #-axis of

the momentum of the system of particles mu and consequently this is the

physical meaning of the quantity ^ in the present case.

•p>rp

The integral — = Constant
dq,

can therefore be interpreted thus : When a dynamical system can be

translated as if rigid in a given direction without violating the constraints,

and the potential energy is thereby unaltered (the way in which the kinetic

energy depends on the velocities is obviously unaltered by this translation, so
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the corresponding coordinate is ignorable), then the component parallel to this

direction of the momentum of the system is constant.

This result is called the law of conservation of momentum*, and systems

to which it applies are said to possess an integral of momentum.

(ii) Systems possessing an integral of angular momentum.

Again taking a system with coordinates qlt q2 , ..., qn and kinetic and

potential energies T and V respectively, let us now suppose that the

coordinate q1 is ignorable, and moreover is such that an alteration of q^ by

a quantity o, the other coordinates remaining unchanged, corresponds to

a simple rotation of the whole system through an angle a round a given

fixed line in space : we shall take this line as the axis of z in a system

of fixed rectangular axes of coordinates.

Since q^ is an ignorable coordinate, we have the integral

_- = Constant (1),

and we have to determine the physical interpretation of this equation.

We have as before

dT _. f.daiidyi,. dzt \

where the summation is extended over all the particles of the system. But

if we write

Xi = n cos fa, yt
= n sin fa,

dfa = dqu

= '^X - ~ nsin fa = - yit

ri cos fa = Xi,

r*rp

^ = 2mi(-xiyi + yixi) (2).

Now if r denote the distance of any particle of mass m from a given

straight line at any instant, and if a> denote the angular velocity of the

particle about the line, the product mr*a> is called the angular momentum

of the particle about the line.

Let be any point, and let P, P' be two consecutive positions of the

moving particle, the interval of time between them being dt. Then the

* This has been evolved gradually from the observation of Newton, Principia, Book i. introd.

to Sect, xi., that if any number of bodies are acted on only by their mutual attractions, their

common centre of gravity will either be at rest, or move uniformly in a straight line.

we have
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angular momentum about any line OK through is clearly the limiting

value of the ratio

^ x Twice the area of the projection of the triangle OPP' on

a plane perpendicular to OK,

so if (I, m, n) are the direction-cosines of OK and if (X, /i, v) are the direction-

cosines of the normal to the triangle OPP', we see that the angular

momentum about OK is equal to the product of (l\ + mfi + nv) into the

angular momentum about the normal to the plane OPP'. It is evident from

this that if the angular momenta of a particle about any three rectangular

axes Oxyz at any time are hlt h^, hs respectively, then the angular momentum

about any line through whose direction-cosines referred to these axes are

(I, m, n) is Ihi + mh2 + nhs ; we may express this by saying that angular

momenta about axes through a point are compounded according to the vectorial

law.

The angular momentum of a dynamical system about a given axis is

defined to be the sum of the angular momenta of the separate particles of

the system about the given axis ; in particular, the angular momentum of

a system of particles typified by a particle of mass m, whose coordinates are

(wi, yit Zi), about the axis of z is "Zm^ffy, where
i

Xi = n cos fa , yi = n sin <\>it

and the summation is extended over all the particles of the system; this

expression for the angular momentum of a system can be written in the form

Xm{ (ijiXi - anyt),
i

and on comparing this with equation (2) we have the result that the angular
rsrp

momentum of the system considered, about the axis of z, is *-?

.

The equation (1) implies therefore that the angular momentum of the

system about the axis of z is constant: and we have the following result:

When a dynamical system can be rotated as if rigid round a given axis with-

out violating the constraints, and the potential energy is thereby unaltered, the

angular momentum of the system about this axis is constant.

This result is known as the theorem of conservation of angular

momentum *.

Example. A system of n free particles is in motion under the influence of their

mutual forces of attraction, these forces being derived from a kinetic potential V, which

contains the coordinates and components of velocity of the particles, so that the equations

of motion of the particles are

.. dV d /dV\
,

* Kepler's law, that the radius from the sun to a planet sweeps out equal areas in equal times,

was extended by Newton to all cases of motion under a central force : from this the general

theorem of conservation of angular momentum has gradually developed.



39, 40] Principles available for the integration 61

shew that these equations possess the integrals

2 ( mrxr+^r-
J
= Constant,

2
(
mryr+ ~-r \ = Constant,

2 \mr zr + -^r ) = Constant,

f dV dV)
2 hnr {yTkr - zryr) + yr 5y- -zr ^-j = Constant,

f 3 V 3 P")
2 -jmr (zrxr— xr zr) + zT ~-.— xr 57- 1 = Constant,

I 3 V 3 V)
2 lmr (xryr -yrxr)+xr^-yr ^-\ = Constant,

which may be regarded as generalisations of the integrals of momentum and angular

momentum. (Levy.)

40. The general theorem of angular momentum,.

The integral of angular momentum is a special case of a more general

result, which may be obtained in the following way.

Consider a dynamical system formed of any number of free or connected

and interacting particles : if they are subjected to any constraints other than

the mutual reactions of the particles, we shall suppose the forces due to these

constraints to be counted among the external forces.

Take any line fixed in space, and choose one of the coordinates which

specify the configuration of the system (say g^) to be such that a change in

qi, unaccompanied by any change in the other coordinates, implies a simple

rotation of the system as if rigid round the given line, through an angle equal

to the change in q z . We suppose the constraints to be such that this is a

possible displacement of the system.

The Lagrangian equation for the coordinate qx is

d (dT\ dT

dt KdqJ dq,
Ql '

and this reduces to

since the value of q1 (as distinguished from g\) cannot have any effect on

the kinetic energy, and therefore -^- must be zero. Now -=-r- is the angular

momentum of the system about the given line ; and Qj Sqx is the work done

on the system by the external forces in a small displacement Sqlt i.e. a small

rotation of the system about the given line through an angle Sg^, from which

it is easily seen that Q,. is the moment of the external forces about the given

line. We have therefore the result that the rate of change of the angular
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momentum of a dynamical system about any fixed line is equal to the moment

of the external forces about this line. The law of conservation of angular

momentum obviously follows from this when the moment of the external

forces is zero.

Similarly we can shew that the rate of change of the momentum of a

dynamical system parallel to any fixed direction is equal to the component,

parallel to this live, of the total external forces acting on the system.

For impulsive motion it is easy to establish the following analogous

results

:

The impulsive increment of the component of momentum of a system in any

fixed direction is equal to the component in this direction of the total external

impulses applied to the system.

The impulsive increment of the angular momentum of a system round any

axis is equal to the moment round that axis of the external impulses applied to

the system.

41. The Energy equation.

We shall now introduce an integral which plays a great part in dynamical

investigations, and indeed in all physical questions.

In a conservative dynamical system let qlt q2 , ..., qn be the coordinates

and let L be the kinetic potential : we shall suppose that the constraints

are independent of the time, so that £ is a given function of the variables

2u ?s. •••> <Znt ji, <?2 qn only, not involving t explicitly. We shall not, at

first, restrict L by any further conditions, so that the discussion will apply

to the non-natural systems obtained after ignoration of coordinates, as well as

to natural systems.

We have

~T+ (aw ' ^ tne Lagrangian equations

dL
dt
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We have seen that in natural systems, in which the constraints do not

involve the time, the kinetic potential L can be written in the form T — V,

where T (the kinetic energy of the system) is homogeneous and of degree 2

in the velocities, while V is a function of the coordinates only. In this case,

therefore, the integral of energy becomes :

h=zt qr —- — L
r=\ oqr

r=i oqr

= 2T— T + V, since T is homogeneous of degree 2 in qx , q% , ..., qn ,

= T + V.

It follows that in conservative natural systems, the sum of the kinetic and

potential energies is constant. This constant value h is called the total energy

of the system.

This latter result can also be obtained directly from the elementary

equations of motion. For from the equations of motion of a single particle,

namely
mixi

= Xi , miyi — Yi, mizi
= Zi ,

we have
2mj (xi'xi + ijiyi + z^i) = 2 (Xi&i + Ytyi + ZJi),
i i

where the summation is extended over all the particles of the system, or

d . 2 1 im (i;2 + yi + zf) = t (Xdis\+ Ydy + Zdz),
i i

so that the increment of the kinetic energy of the system, in any infinitesimal

part of its path, is equal to the work done by the forces acting on the system

in this part of the path, and therefore is equal to the decrease in the potential

energy of the system. The sum of the kinetic and potential energies of the

system is therefore constant.

The equation of energy

d. \m (x2+f + z2)=Xdx+ Ydy+Zdz

(where for simplicity we suppose the system to consist of a single particle) is true not

only when (x, y, z) denote coordinates referred to any fixed axes, but also when they

denote coordinates referred to axes which are moving with any motion of translation

in a fixed direction with constant velocity.

For let (|, ij, f ) denote the coordinates of the particle referred to axes fixed in space

and parallel to the moving axes Oxyz, so that

%=£-at, y= r)-bt, z= £-ct,

where a, b, o are the constant components of velocity of the origin of the moving axes.

Then the result already proved is that

d.im(i*+ni+p)=Xd£+ Ydr,+Zd(,

or d.^mUx+ay+iy+ by+ iz +cW^Xidx+adQ + Vidy+bd^ + Zidz+ cdt),

or d.\m(&+f+&)+d.m(ax+ by+ cz)=Xd3c+Ydy+Zdz+ (aX+bY+cZ)dt.
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Now we have
d . m (ax+by+cz)=m (ax+ by+ cz) dt

=m(a£+ bi]+c£) dt

= (aX+bY+cZ)dt,
and therefore

d. Jot (x2+f+zi
)=Xdx+ Tdy+Zdz,

which establishes the theorem.

It may be noted that from this result the three equations of motion of the particle

can be derived, by taking #=£— atf etc., and subtracting the equation of energy in the

coordinates (x, y, z) from the equation of energy in the coordinates (£, jj, f).

42. Reduction of a dynamical problem to a problem with fewer degrees of

freedom, by means of the energy-equation.

When a conservative dynamical system has only one degree of freedom,

the integral of energy is alone sufficient to give the solution by quadratures.

For if q be the coordinate, the integral of energy

q -kt -L = h
Bq

is a relation between q and q ; if therefore q be found explicitly in terms of q
from this equation, so that it takes the form

we can integrate again and obtain the equation

f da
t = ~^ + constant,

'/(?)

which constitutes the solution of the problem.

When the system has more than one degree of freedom, the integral of

energy is not in itself sufficient for the solution ; but we shall now shew that

it can be used for the same purpose as the integrals corresponding to ignor-

able coordinates were used, namely to reduce the system to another dynamical

system with a smaller number of degrees of freedom*.

In the function L, replace the quantities q\, qs , ..., qn by faqj, q^qi, ...,

q-^qn, respectively, where qr
' denotes -j^: and denote the resulting function

aq-i

by fi(<ji, qL qs, -, qn, qx , q2 , -, <?«)• Then differentiating the equation

L(qlt q\, ..., qn , qu q2 , ..., qn) = a(qu qs', qs', ..., qn', qu q2> ..., qn)t

, dL dD, »
qr anwe have — =— -2^:

(1),

dL i an

wr^w (r=2
- 3 w

>
••• <2 >>

dL da

Wr
=
Wr

(r = h2,S,...,n) (3).

* Whittaker, Mess, of Math. xxx. (1900).
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Equations (1) and (2) give

an_a£
+
!£aL

3& 3?1 r=2 ?i 3?r

Now in the integral of energy

r=i <tyr

replace gr by ^g/ for all values of r from 2 to m inclusive, and then from this

equation obtain q^ as a function of the quantities (q2', qs
', ..., qn', ?n Qi , , <?«)

;

and by using this expression for q\, express the function

| dL qr

r=i 9?r q\

in terms of (q2', qj, ..., qn',
<fr, q2 , ..., qn). Let the function thus obtained

be denoted by L' ; then from (4) we see that L' is the same as -r-r , but

differently expressed.

Differentiating the equation of energy, which by (4) may be written in

the form

and regarding it as a relation which implicitly determines
<ft

as a function of

the variables (<?/, g8
'» •••» ?»'» ?i> ?«> •••> ?»)» we have

^dtf'dqr' dqr ' ^dqjqr'
W '

. <m 3_£x Mi _ 3
an

r6
x

91
dq? dqr

~
dqr

9l
dqjqr ^ >

But differentiating the equation

r, 3fi

regarded as an identity in the variables (<?,', g,', ...,g»', ft, ?2> •. 9»)» we have

9£' 32Q 32n dq
t m

dqr'~dq1dqr
' +

dq1*dqr
' { ''

BU = 32fl eMl Bj
(g)

3gy difrdgv 3?i
2
3?r

Comparing equations (5) and (7), we have

5—;; = -a~

"

(*"<= 2, 3, .... w),

and comparing equations (6) and (8), we have

dL' i an
/ i o \

3gr ?i 3gv

W. D. 5
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Combining these with equations (2) and (3), we have

dU__dL
nd

az' = i at

dqr' ~ dqr ' dqr <ji dqr
'

Substituting from these equations in the Lagrangian equations of motion,

we obtain the system

»©-<"* (" 2- 3 ">'

or finally

*(*)-£'-* (
'= 2

'
3

"»;

Now tfAese may 6e regarded as the equations of motion of a new dynamical

system in which L' is the kinetic potential, (q2 , qs , ..., qn) are the coordinates,

and
(ft

plays the part of the time as the independent variable. The new system

will, like the systems obtained by ignoration of coordinates, be in general

non-natural, i.e. L' will not consist solely of terms of degrees 2 and in the

velocities (ga
', qi, ..., qn'); but on account of its possession of the Lagrangian

form, most of the theorems relating to dynamical systems will be applicable

to it. The integral of energy thus enables us to reduce a given dynamical

system with n degrees offreedom to another dynamical system with only (n — 1)

degrees offreedom.

The new dynamical system will not in general possess an integral of

energy, since the independent variable q1 occurs explicitly in the new kinetic

potential L'. But if q x is an igndrable coordinate in the original system,

then g^ will not occur explicitly in any stage of the above process, and there-

fore will not occur explicitly in L'. From this it follows that the new system

will also possess an integral of energy, namely

2 qr
' «—, — L' = constant,

r= 2 oqr

and this can in its turn be used to reduce further the number of degrees of

freedom of the system.

The preceding theorems shew that any conservative dynamical system with

n degrees of freedom and (n — 1) ignorable coordinates can be completely

integrated by quadratures ; we can proceed either (a) by first performing the

process of ignoration of the coordinates, so arriving at a system with only one

degree of freedom, which possesses an integral of energy and can therefore be

solved in the manner indicated at the beginning of the present article ; or

(/3) we can first use the integral of energy to lower the number of degrees of

freedom by unity, then use the integral of energy of the new system to lower

the number of degrees of freedom again by unity, and so on, obtaining finally

a system with one degree of freedom which again can be solved in the manner

indicated.
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Example. The kinetic potential of a dynamical system is

^=£/(?2)?i
2
+i?2

2 -iK?2).

Shew that the relation between the variables qx and q2 is given by the differential

equation

dqtXbqj) dqf '

where q2 =-r^, and where L' is defined by the equation

X'={2A-2f(?2)}*{/(?2) +?2'2}i.

Shew that the non-natural dynamical system represented by the last differential

equation possesses an integral of energy, and hence solve the system by quadratures.

43. Separation of the variables ; dynamical systems of Liouville's type,

A class of dynamical equations which are obviously soluble by quadratures

is constituted by the equations of those systems for which the kinetic energy

is of the form
T= i «, (ft) ft

2 + \v2 (ft) qi + . . . + \vn (qn) ft
2
,

and the potential energy is of the form

V = w1 (ft) + w2 (ga) + ...+wn (ft),

where vlt v2 , ..., vn , w„ w2 , ..., wn are arbitrary functions of their respective

arguments ; so that the kinetic potential breaks up into a sum of parts, each

of which involves only one of the variables.

For in this case the Lagrangian equations of motion are

^K (?r) • qr) ~ i Vr' (ft) ft
8 = - Wr

'

(ft), (r = 1, 2, . .
. , ft),

or vr (ft) ft + \ vr'

(ft) ft
2 = - wr

'

(ft), (r= 1, 2, . .
.
, n).

These equations can be immediately integrated, and give

\vr (ft) . ft
3 + wr (ft)

= cr ,
(r = 1, 2, . .

.
, w),

where c1( c2 , ..., cm are constants of integration; these equations can be

further integrated, since the variables ft and t are separable, and we thus

obtain

'-/k^syv*. (r-i.1... »>,

where ?i, 72 , ..., y» are new constants of integration. These last equations

constitute the solution of the problem.

An important extension of this class of dynamical systems was made by

Liouville*, who shewed that all dynamical problems for which the kinetic

and potential energies can respectively be put in the forms

T = h{ui (?i) + ui (?j) + •••+«» (ft)}- {vi (ft) ft
2 + vt (ft) ft

2 + . . . + vn (ft) ft
2
},

y _ W1 (ft) + W2 (ft.)
+...+W„ (ft)

«i (?i) + 1-h (qi) + •••+«» (ft)

can be solved by quadratures.

* Journal de Math. xiv. (1849), p. 257.

5—2
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For by taking

j</vr (qr)dqr = qr', (r=l, 2, ...,*),

where j/, q2', ..., qn
' are new variables, we can replace all the functions

«i (?i). »« (?s)> ••,"n(?n) by unity; we shall suppose this done, so that the

kinetic and potential energies take the form

V= - \w1 (q,) + w2 (qa) + . . . + wn (qn)},
11

where u stands for the expression

«i (fr) + "a (gO +•••+«» (qn)-

The Lagrangian equation for the coordinate qx is

d fdT\ _ dT = _ dV
\dqj dqxdt \9gi / dqx dqx

'

S<-*>-*|(*' + ^ + - +W— S^-

Multiplying this equation throughout by 2uqlt we have

But from the integral of energy of the system, we have

i» (?i
2 + &2 + ... + ?»

2
) = A- 7,

where A is a constant. The equation for the coordinate qy can therefore

be written in the form

= 2<fcg|{(A-FM

= 2g, g- {At»i (gO - to, (?,)}

= 2
dt t*™1^ ~ Wl^'

Integrating, we have

%u%* = Aw, (?,) - w, (gO + 71(

where 71 is a constant of integration. We obtain similar equations for each

of the coordinates (qlt qit ..., qn); the corresponding constants (71, ya> ..., yn)
must satisfy the relation

7i + 7s+ •• +7» = °»

in virtue of the integral of energy of the system.
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These equations give

[huj. (qj - wx (q,) + yj"* dqx
= {hu2 (q3)

- w2 (q2) + ya
}~* dq2 = ...

= {hun (qn) - wn (qn) + y„}
~? dqn ,

and this set of equations, which can be immediately integrated since the

variables are separated, furnishes the solution of the system.

For further investigations on this subject cf. Hadamard, Bull, des Sc. Math. xxxv. (1911),

p. 106, and Burgatti, Rom. Ace. L. Rend. (5) xx. (1911), p. 108.

Miscellaneous Examples.

1. If the components (X, Y) of the force acting on a particle of unit mass at the

point (x, y) in a plane do not involve the time t, shew that by elimination of t from the

differential equations the solution of the problem is made to depend on the differential

equation of the third order

I da? J

2. A system of free particles is in motion, and their potential energy, which depends

only on their coordinates, is unaltered when the system in any configuration is translated

as if rigid through any distance in any direction. What integrals of the motion can

at once be written down ?

3. In a dynamical system with two degrees of freedom the kinetic energy is

and the potential energy is

V=c + dq2 ,

where a, b, c, d are constants. Shew that the value of q2 in terms of the time is given by

an equation of the form

{q2 -k){q2 + Zkf=h{t-t f

where h, k, and t are constants.

4. The kinetic potential of a dynamical system is

where a, 6, c are given constants : shew that q2 is given in terms of t by the equation

#=?(<+ «),

where e is an arbitrary constant and
(jf>

denotes a Weierstrassian elliptic function.

5. Prove that in a system with ignorable coordinates the kinetic energy is the sum

of a quadratic function T' of the velocities of the non-ignored coordinates and a quadratic

function K of the cyclic momenta.

In the case where there are three coordinates x, y, <£ and one coordinate <j> is ignored

investigate the equations of motion of the type

d fdT'\ ST dK dV ,.(d_fd^\_d_/d^\\_
dt \~dx~)

~ dx
+

dx
+

dx
+ICy

\dx [dyj dy \dx)\~ '
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where V is the potential energy, k is the cyclic momentum, and the differential coefficients

of 4> with respect to .fc. and y are calculated from the Jinear equation by which k is

expressed in terms of x, y, <j>. (Camb. Math. Tripos, 1904.)

6. The kinetic potential of a dynamical system with two degrees of freedom is

By using the integral of energy, shew that the solution depends on the solution of the

problem for which the kinetic potential is

*-(S+ » +')*'

and by using the integral of energy of this latter system, shew that the relation between

q1 and q2 is of the form
cq2=p(qi +e)-l(2cl*-l),

where e and e are constants of integration, and g> denotes the Weierstrassian elliptic

function.

7. The kinetic energy of a dynamical system is

T=*(2i2 +922
)(?x

2+?22
),

and the potential energy is

?l
2+ ?2

2
'

Shew (by use of Liouville's theorem, or otherwise) that the relation between qt

and q2 is

a2
qi

2+ 62q£+ 2abqt q2 cos y

=

sin2
y,

where a, b, y are constants of integration.

8. The kinetic energy of a particle whose rectangular coordinates are (x, y) is J (jb
2+y2

),

and its potential energy is

-
i
+ ~ + - + ^+C{x2

+f),x1 y2 r r K "

where (A, A', B, B', C) are constants and where (r, r') are the distances of the particle

from the points whose coordinates are (c, 0) and ( — c, 0), where e is a constant. Shew
'

that when the quantities J (r+r
1

) and £(r— r
1
) are taken as new variables, the system is

of Liouville's type, and hence obtain its solution.

9. The observation that " a cat always falls on its feet " suggested the problem

:

A system, whose state at any instant is completely specified by the position and velocity •

of each element, is initially without velocity in free space in vacuo. Can it at a subsequent

instant resume its initial configuration but with a different orientation in space ?

Shew that if the system is not conservative, or if the forces are derived from a potential

which is not one-valued, the reply is affirmative : but if the system is conservative with a

one-valued potential, the reply is negative.

(Cf. Painlev^, Coniptes Rendus, cxxxix. (1904), p. 1170.)



CHAPTER IV

THE SOLUBLE PROBLEMS OF PARTICLE DYNAMICS

44. The particle with one degree offreedom: the-pendulum.

As examples of the methods described in the foregoing chapters, we shall

now discuss those cases of the motion of a single particle which can be solved

by quadratures.

We shall consider first the motion of a particle of mass m, which is free

to move in the interior of a given fixed smooth tube of small bore, under

the action of forces which depend only on the position of the particle in the

tube. The tube can in the most general case be supposed to have the form

of a twisted curve in space.

Let s be the distance of the particle at time t from some fixed point of

the tube, measured along the arc of the curve formed by the tube: and let

f($) be the component of the external forces acting on the particle, in the

direction of the tangent to the tube.

The kinetic energy of the particle is

^ms\

and its potential energy is evidently

-(
S

f(s)ds,

where s is a constant. The equation of energy is therefore

Jms2 = f(s)ds + c,

J s

where c is a constant.

Integrating this equation, we have

where I is another constant of integration. This equation represents the

solution of the problem, since it is an integral relation between s and t,

involving two constants of integration.
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The two constants c and I can be physically interpreted in terms of the

initial circumstances of the particle's motion ; thus if the particle starts at

time t = t„ from the point s = s , with velocity u, then on substituting these

values in the equation of energy, we have

and on substituting the same values in the final equation connecting s and t,

we have l = t .

The most famous problem of this type is that of the simple pendulum;

in this case the tube is supposed to be in the form of a circle of radius a

whose plane is vertical, and the only external force acting on the particle is

gravity*. Using 6 to denote the angle made with the downward vertical by

the radius vector from the centre of the circle to the particle, we have

s = a0 and f(s) = — mg sin 6
;

so the equation of energy is

a() 2 = 2g cos 6 + constant = — 4g sin2 \Q + constant.

Suppose that when the particle is at the lowest point of the circle, the

a?6 2

quantity -=— has the value h. Then this last equation can be written

a2 2 = 2gh - 4>ga sin"4 9.

Taking sm\6 = y, this becomes

i^1 -*) (*-")

Now in the pendulum-problem there are two distinct types of motion,

namely the " oscillatory," in which the particle swings to and fro about the

lowest point of the circle, and the " circulating," in which the velocity of the

particle is large enough to carry it over the highest point of the circle, so

that it moves round and round the circle, always in the same sense. We
shall consider these cases separately.

(i) In the oscillatory type of motion, since the particle comes to rest

before attaining the highest point of the circle, y must be zero for some value

of y less than unity, and therefore h/2a must be less than unity. Writing.

h = 2ak2
,

where A; is a new positive constant less than unity, the equation becomes

* In actual pendulums, the tube is replaced by a rigid bar connecting the particle to the
centre of the circle, which serves the same purpose of constraining the particle to describe
the circle.

The isochronism of small oscillations of the pendulum was discovered by Galileo in 1632,
and the formula for the period was given by Huygens in 1673. Oscillations of finite amplitude
were first studied by Euler in 1736.



44] The Soluble Problems of Particle Dynamics 73

the solution of this is*

y = ksn$M\t-t ), k

where t„ is an arbitrary constant.

This equation represents the solution of the pendulum-problem in the

oscillatory case : the two arbitrary constants of the solution are t and h, and

these must be determined from the initial conditions. From the known

properties of the elliptic function sn, we see that the motion is periodic, its

period (i.e. the interval of time between two consecutive occasions on which

the pendulum is in the same configuration with the same velocity) being

4(-
J

K, where

K = C(l - «
2)"* (1 - *"*•)"* dt.

Jo

(ii) Next, suppose that the motion is of the circulating type ; in this

case h is greater than 2a, so if we write 2a = hk*, the quantity k will be less

than unity.

The differential equation now becomes

the solution of which is —yi ]

t-t
h

and in this t and k are the two constants which must be determined in

accordance with the initial conditions.

(iii) Lastly, let h be equal to 2a, so that the particle just reaches the

vertex of the circle. The equation now becomes

y
a = ?(l-2/2

)
2
>

y = tanhjy
/
|(*-« )

or

the solution of which is

It was remarked by Appellt that an insight into the meaning of the imaginary period

of the elliptic functions which occur in the solution of the pendulum-problem is afforded

by the theorem of § 34. For we have seen that if the particle is set free with no initial

velocity at a point of the circle which is at a vertical height h above the lowest point,

the motion is given by

y=*sn-u/| (*-*„),*], where A2=^;

* Cf. Whittaker and Watson, Modern Analysis, § 22-H.

t Gomptes Eendus, lxxxyii. (1878).
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and therefore by § 34, if, with the same initial conditions, gravity were supposed to act

upwards, the motion would be given by

y= isn|i /
y/|(r-r ), *|.

But the period of this motion is the same as if the initial position were at a height

(2a - h), gravity acting downwards : and the solution of this is

y=U sn
{J\ (r - r„), #} ,

where **=l - P.

The latter motion has a real period 4 ( -
J
JT ; and therefore the function

an|»^/|(r-n)),*|

must have a period 4(-Y 2T', so the function sn(a, A) must have a period UK'. The

double periodicity of the elliptic function sn is thus inferred from dynamical considerations.

Example. A particle of unit mass moves on an epicycloid, traced by a point on the

circumference of a circle of radius b which rolls on a fixed circle of radius a. The particle

is acted on by a repulsive force fir directed from the centre of the fixed circle, where r is

the distance from this centre. Shew that the motion is periodic, its period being

H(g+2

J~
g

T -

[This result is most easily obtained when the equation of the epicycloid is taken in

the form

(fi+ 2by-r*=-. ^ 5lv
,

' (a + 2bf— a2

s being the arc measured from the vertex of the epicycloid.]

45. Motion in a moving tube.

We shall now discuss some cases of the motion of a particle which is free

to move in a given smooth tube, when the tube is itself constrained to move

in a given manner.

(i) Tube rotating uniformly.

Suppose first that the tube is constrained to rotate with uniform velocity

to about a fixed axis in space. We shall suppose that the particle is of unit

mass, as this involves no real loss of generality.

We shall moreover suppose that the field of external force acting on the

particle is derivable from a potential-energy function which is symmetrical

with respect to the fixed axis, and so can be expressed in terms of the

cylindrical coordinates z and r, where z is measured parallel to the fixed

axis and r is the perpendicular distance from the fixed axis ; for a particle

in the tube, this potential energy can therefore be expressed in terms of

the arc s : we shall denote it by V(s), and the equation of the tube will be

written in the form

r = g(s).
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By § 29, the motion of the particle is the same as if the prescribed angular

velocity &> were zero, and the potential energy were to contain an additional

term — ^rW. Hence we can at once write down the equation of energy in

the form

^-^{g(s)Y + V(s) = c,

where c is a constant.

Integrating again, we have

t =
\

S

[2c + »2
{g (s)Y - 2 V(s)]-$ds + constant,

and this relation between t and s represents the solution of the problem.

Example 1. If the rotating tube is plane, and the partible can describe it with

constant velocity when the fixed axis is vertical and in the plane of the tube, and the

field of force is that due to gravity, shew that the tube must be in the form of a parabola

with its axis vertical and vertex downwards.

Example 2. A particle moves under gravity in a circular tube of radius a which

rotates uniformly about a fixed vertical axis inclined at an angle a to its plane ; 'if 6 be

the angular distance of the particle from the lowest point of the circle, shew that

. aa>2 cos a f /ocosa,, .1

where the function g> is formed with the roots

am2 cos a oso>
2 cos a aafl cos a

and t is a constant.

(ii) Tube moving with constant acceleration parallel to a fixed direction.

Consider now the motion of a particle in a straight tube, inclined at an

angle a to the horizontal, which is constrained to move in its own vertical

plane with constant horizontal acceleration/!

Taking the axis of x horizontal and that of y vertically upwards, with the

origin at the initial position of the particle, we have for the kinetic energy

T=i(cb* + f),

where % = y cot a + \f&,

so T=\(y cot a +fty+iy*

= \f cosec2 a + y cot a .ft + %/V,

and the potential energy is

V=gy.

The equation of motion

dt [dy ) dy
'



76 The Soluble Problems of Particle Dynamics [ch. iv

gives therefore
j
j- (y cosec2a +ft cot a) = — g,

or y = {— 9~/cot a) sin2
a.

Integrating, we have, supposing the particle to be initially at rest,

y=\t2 {— g sin a —/cos a) sin a,

and therefore x = \V (— g cos a +/sin a) sin a.

These equations constitute the solution of the problem : it will be observed

that in this system the kinetic energy involves the time explicitly, so no

integral of energy exists.

46. Motion of two interacting free particles.

We shall next consider the motion of two particles, of masses ml and ms

respectively, which are free to move in space under the influence of mutual

forces of attraction or repulsion, acting in the line joining the particles and

dependent on their distance from each other.

The system has six degrees of freedom, since the three rectangular coordi-

nates of either particle can have any values whatever. We shall take, as the

six coordinates defining the position of the system, the coordinates (X, Y, Z)

of the centre of gravity of the particles, referred to any fixed axes, and the

coordinates (x, y, z) of the particle m2 referred to moving axes whose origin is

at the particle m, and which are parallel to the fixed axes.

The coordinates of n^, referred to the fixed axes, are

/y m^x y rn^y ^ m%z \

\ mi + niv' m1 + mi

' m x + mj

'

and those of m2 , referred to the fixed axes, are

(
X+-^-, Y+^-, Z+^^\.

\ w^ + m2 rt\ + m2 mx + m?/

The kinetic energy of the system is therefore

\ ml + vrul
trriim1 + rn^J * \ raj + m2

TOiWla
or r= J(ffli + m!)(i!+ Y* + Z>) + %

The potential energy of the system depends only on the position of the

particles relative to each other, so can be expressed in terms of (x, y, z) ; let

it be V{x, y, z).
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The Lagrangian equations of motion of the system are

X = 0, F=0, Z = 0,

rrhm?. ., dV miiBj .. dV m-jn^ .. dV
yw^ + m2 dx ' m,+ m2
" dy ' m, + m2 3«

'

The first three of these equations shew that the centre of gravity moves in

a straight line with uniform velocity, and the other three equations shew that

the motion of m2 relative to m x is the same as if mx were fixed and m2 were

attracted to mx with the force derived from the potential energy — 2
V*.m1

Example. If two free particles move in space under any law of mutual attraction,

shew that the tangents to their paths meet an arbitrary fixed plane in two points, the

line joining which passes through a fixed point. (Mehmke.)

47. Central forces in general : Hamilton's theorem.

The last article shews that the problem of two interacting free particles

is reducible to the problem of the motion of a single free particle acted on by

a force directed towards or from a fixed centre. This is known as the problem

of central forces. There is clearly no loss of generality if we suppose the

mass of the particle to be unity.

If the particle be projected in any way, it will always remain in the plane

which passes through the centre of force and the initial direction of projec-

tion : for at no time does any force act to remove it from this plane. We can

therefore define the position of the particle by polar coordinates (r, 8) in this

plane, the centre of force being the origin. Let P denote the acceleration

directed to the centre of force. We shall not suppose for the present that P
is necessarily a function of r alone.

The kinetic energy of the particle is

and the work done by the force in an arbitrary infinitesimal displacement

(Br, BO) is

- PBr.

The Lagrangian equations of motion of the particle are therefore

(f - r6* = - P,

The latter equation gives on integration

r*0 = h, where A is a constant

;

this is the integral corresponding to the ignorable coordinate 0, and can be

physically interpreted as the integral of angular momentum of the particle

about the centre of force.

* Newton, Principia, Book i. Sect. 11.
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To find the differential equation of the path described (which is generally
v

called the orbit or trajectory), we eliminate dt from the first equation by using

the relation

d h d

dt~7*Te'
we thus obtain the equation

r-
2 dd \r2 dd) r»

or, writing u for 1/r,

dei
+ u ~w

This is the differential equation of the orbit*, in polar coordinates ; its

integration will introduce two new arbitrary constants in addition to the

constant h, and a fourth arbitrary constant will occur in the determination of

t by the equation

t = r i^dd + constant.

The differential equation of the orbit in (r, p) coordinates, (where p
denotes the perpendicular from the centre of force on the tangent to the

orbit), is often of use : it may be obtained directly from Siacci's theorem

(§ 18), which (since h is now constant) gives at once

h°r

p & dp
or " — ~tj~>p* dr

which is the differential equation of the orbit.

Since h= vp, where v is the velocity in the orbit, we have from this equation

T

which may be written in the form

where q is the chord of curvature of the orbit through the centre of force.

We frequently require to know the law of force which must act towards a

given point in order that a given curve may be described ; this is given at once

by the equation

• *-»*(»+£)•
if the equation of the curve is given in polar coordinates ; while if the equa-

tion is given in (r, p) coordinates, the force is given by the equation

p _tedp
p" dr

'

* This is substantially given in Newton's Principia, Book i. §§ 2 and 3, and in Clairaut's

TMorie de la Lune (1765) ; and in the 'above form in WhewelFs Dynamics (1823).
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If the equation of the curve is given in rectangular coordinates, we pro-

ceed as follows

:

Take the centre of force as origin, and let f{x, y) = be the equation of

the given curve. The equation of angular momentum is

xy—yx = h.

Differentiating the equation of the curve, we have

fx x+fy -y = 0, where fx stands for J-

.

ox

From these two equations we obtain

i=
~ hfy

y =
hf*

rfx + yfv' nfx + yfy'

Differentiating again, we have

x = x-+y-= -My— d
(

hfv \ ¥<* o
( kfv \

dx y dy xfx+ yfy 'dx\xfx + yfy) xfx + yfy 'dy\xfx + yfy)

Performing the differentiations, this gives

v _ "> x \~Jy Jxx + ZJxJyfxy ~ fxfyy)

Ktfx + yfy)

X
But the required force is P, where x = — P - ; and therefore we have

r

p _ 'lr \JyJxx zfxfyjxy+fx Jyy) ,

(*f. + sfvY

this equation gives the required central force.

The most important case of this result is that in which the curve

f(x, y) = is a conic,

2f(x, y) = axi + 2hxy + by1 + 2gx +2fy + c = 0.

In this case we find at once that the expression

Jxxjy — Ifxyjxjy +Jyyjx

has, for points on the conic, the constant value

- (abc + 2fgh - af* - bg*- ch%
while the quantity

xi +
yfy

has the value

-(gx+jy + c),

and so is a constant multiple of the perpendicular from the point (x, y) on the

polar of the origin with respect to the conic. We thus obtain, for the force

under which a given conic can be described, an elegant expression due to

Hamilton*, namely that the force acting on the particle in the position (x, y)

* Proc. Roy. Irish Acad. 1846.
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varies directly as the radius from the centre of force to the point (so, y), ami

inversely as the cube of the perpendicularfrom (x, y) on the polar of the centre

of force.

The two following theorems, the proof of which is left to the student, may together be

regarded as the converse of Hamilton's theorem.

(i) If a particle moves under the action of a force directed to a fixed point, varying

directly as the distance from the fixed point and inversely as the cube of the distance

from a given straight line, the orbit is always a conic.

(ii) If a particle moves under the action of a force directed to the origin, of

magnitude

/* (tf
2
+y'rf (o»2+ 2/itey+yy2

)
~ ',

where (x, y) are rectangular coordinates and p, u, (3, y are constants, the orbits are conies

which touch the lines

axi + 2^xy + yy
2 =0.

Darboux (Comptes Rendus, lxxxiv. p. 936) has shewn that these two laws of force are

the only laws for which the orbits are always conies, if the force depends only on the

position of the particle. Suchar (Nouv. Ann* vi. p. 532) has found other laws of force,

which involve the components of velocity of the particle.

Example 1. If a conic be described under the force ^-j given by Hamilton's theorem,

Q 3

shew that the periodic time is —= p^, where pa is the perpendicular from the centre of

the conic on the polar of the centre of force. (Glaisher.)

Example 2. Shew that if the force be

fir

(Ax*+2ffxy+By2+ I)3 '

a particle will describe a conic having its asymptotes parallel to the lines

Ax2 + 2ffxy + Byi=0,
if properly projected. (Glaisher.)

48. The integrable cases of central forces ; problems soluble in terms of

circular and elliptic functions.

The most important case of motion under central forces is that in which

the magnitude of the force depends only on the distance r. Denoting the

force by f(r), the differential equation of the orbit is

^ .„_/(»)
d8*

+
hH*1

-

Integrating, we have

(£)"—l/v«*-*
where c is a constant : integrating this equation again, we have

l)~idr

r*'
e=

\

r

{
c-U^r)dr-$



47, 48] The Soluble Problems of Particle Dynamics 81

and this is the equation of the orbit in polar coordinates. When r has been

found from this equation in terms of 6, the time is given by the integral

1 [0
t = T I

r*dd + constant.

The problem of motion under central forces is therefore always soluble by

quadratures when the force is a function of the distance only.

Example. Shew that the differential equations of motion of a point P are always

integrable by a simple quadrature when the central force F is of the form

F= »(«>
r*(at + b)'

where <j> is a function of 6 only, while a and b are arbitrary constants. • (Armellini.)

We shall now discuss the cases in which the quadrature can be effected

in terms of known functions, the central force being supposed to vary as some

positive or negative integral power,—say the nth,—of the distance.

Let us first find those problems for which the integration can be effected

in terms of circular functions. The above integral for the determination of

can be written in the form

0=
j(
a + bv? + cu-71- 1)-^ du,

where a, b, c are constants ; except when n= — 1, when a logarithm replaces

the term in w
-* -1

. If the problem is to be soluble in terms of circular func-

tions, the polynomial under the radical in the integrand must be at most of the

second degree ; this gives

-n- 1 = 0, 1, or 2,

and consequently
n = — 1, — 2. or —3.

The case n = — 1 is however excluded by what has already been said, and

the case n = 1 is to be added, since in this case the irrationality becomes

quadratic when u2
is taken as a new variable.

Next, let us find the cases in which the integration can be effected by the

aid of elliptic functions*. For this it is necessary that the irrationality to be

integrated should be of the third or fourth degree f, in the variable with

respect to which the integration is taken. But this condition is fulfilled if

n = 0, — 4, or — 5, when u is taken as the independent variable

;

n = 3, 5, or - 7, when w2
is taken as the independent variable.

It follows that the problem of motion under a central force which varies as

the nth power of the distance is soluble by circular or elliptic functions in the

cases

n = 5, 3, 1,0,-2, -3,-4,-5,-7.

* These cases were first investigated by Legendre,. Theorie des Fonctions Elliptiques (1825)

and afterwards by J. F. Stader, Crelle's Journal, xlvi. (1853), p. 262.

t Whittaker and Watson, Modern Analysis, § 22-7.

W. D. 6
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Example. Shew that the problem is soluble by elliptic functions when n has the

following fractional values

:

»=-$. -f. ~h ~h -$•

The general case of fractional values of n is discussed by Nobile, Giornale di Mat. xlvi.

(1908), p. 313.

The cases in which motion under a central force varying as a power of

the distance is soluble by means of circular functions are of special interest.

They correspond, as shewn above, to the values 1, - 2, — 3 of n ; the case

n — — 2 will be considered in the next article : the cases n — 1 and n = — 3

can be treated in the following way.

(i) «=<1.

In this case the attractive force is

/(r) = /zr,

so the equation of the orbit becomes

so

= —
-J- 1 lev — Ti~^) dv, where v? = v,

"--nff-sH-*)"}"
4*

c

'"I
or 2(6 - y) = arccos— , , where 7 is a constant of integration,

i

U h*)

^ = | +
(

C

i-g)
t
cos(2^-27>

This is the equation of an ellipse (when /i > 0) or hyperbola (when jx < 0)

referred to its centre. The orbits are there/ore conies whose centre is at

the centre of force*.

(ii) n=-3.

In this case the attractive force is

/(<•>=£,

so the equation of the orbit becomes

* Newton found that if a body move in an ellipse under the action of a force directed to the

centre of the ellipse, the force is directly proportional to the distance : Principia, Book 1. § 2.

Prop. x.
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Integrating, we have

Vu = A cos (k6 + e), where k2 = 1 - ~-
, when ^ < h1

,

u = A cosh (k0 + e), where #> = ^ - 1, when ft > h?,

M = A0 + e, when n = h?,

where in each case A and e are constants of integration.

These curves are sometimes known as Cotes' spirals; the last is the

reciprocal spiral *

In connexion with forces varying as the inverse cube of the distance, it may be observed

that if

r=f{6)

be an orbit described under a central force P (r) to the origin, then the orbit

r=f{k8),

where k is any constant, can be described under a central force P(r)+-^, where c is

a constant : the intervals of time between corresponding points, i.e. points for which the

radius vector has the same value, in the two orbits being the same.

For, if accented letters refer to the second orbit, we have

A'2 .d2u

If therefore we choose the new constant of momentum K so that

h!= hk

(this equation implies that the intervals of time between corresponding points in the two

i ... dt dt\
orbits are the same, since it can be written -^ = -y ) , we nave

#(l-g)

which establishes the result. This is sometimes known as Newton's theorem of revolving

orbits.

The types of central motion corresponding to

n = 5, 3, 0, - 4, - 5, - 7

lead, as has been shewn, to elliptic integrals : on inverting the integrals, we

obtain the solution' in terms of elliptic functions. As an example we shall

take the case of n = — 5.

* Newton, Princvpia, Book I. § 2, Prop. ix. ; E. Cotes, Harmonia Memurarum, pp. 81, 98.

6—2
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Let fM" be the force towards the centre of attraction ; we shall suppose

the particle initially projected with a velocity less than that which would be

acquired by a fall from rest at an infinite distance to the point of projection,

so that the total energy

is negative : call this quantity - 47. Then the equation of energy

r* + y&fr - JL + y =

together with the equation

r28 = h

Introducing in place of r a new variable p defined by the equation

\* 1-©
the differential equation becomes

©"-^^("-S-i-g
The roots of the quadratic

9 3 9 2A«

are real when 7 is positive ; their sum is \, and the smaller^of them is less

than — \. Hence if the greater and less of the roots be denoted by e1 and es

respectively, and if e2 denotes — £, we have the relations

e-i + e2 + es = 0,

so p = <p (0 - e),

where e is a constant of integration, and the function g) is formed with the

roots eu e2 , e3 . Thus we have

W h{p(6-e) + tf'

Now r is real and positive, and, as we see from the equation of energy,
'"

cannot be greater than . /h~- So f{6 — e) + £ is real and positive and

has a finite lower limit; but when e1 >ei >e3 , the function ${6 — e) is real
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and has a finite lower limit for all real values of 6 only when e is real;

so e is purely real, and by measuring 6 from a suitable initial line we can
take e to be zero. We have therefore

/>\* 1

W h{f(0) + l}i'

and this is the equation of the orbit in polar coordinates*.

The time can now be determined from the equation

or 4 = 4-
f

d°

2A3 Jg>(0)-e2

-

Performing the integration, we have

where £(0) is the Weierstrassian zeta-functionf. This equation determines t.

Example 1. Shew that the equation of the orbit of a particle which moves under the

influence of a central attractive force fi/r
6 can be written in the form

r— aan [K-

or else in the form

-= k&n(K— , k)

provided hi >4fn,E>0, where h is the angular momentum round the origin and Eis the

excess of the total energy over the potential energy at infinity.

(Cambridge Math. Tripos, Part I, 1894.)

Example 2. A particle is attracted to the origin with constant acceleration fi ; shew

that the radius vector, vectorial angle, and time, are given in terms of a real auxiliary

angle u by equations of the type

r=
|ff>

{iu+ toj) - p (<»2+ a),

(§j *

=

iC (<»i + *«) + «iP (»a + a) - i( ((»!),

e
fl>_

g
- 2i«^faB+a) p- (<»i

+

iv + <a2+ a) o- (<B t - (»2 - a)
^ (Schoute.)

<r (ai+ iu— a>2 — a) <r (e»i+ o>2 + a)

'

Among the points of special interest on an orbit are the points at which

the radius vector, after having increased for some time, begins to decrease

:

or after having decreased for some time, begins to increase. A point

belonging to the former of these classes is called an apocentre, while points

of the latter class are called pericentres ; both classes are included under the

* The orbits are discussed and classified by W. D. MacMillan, Amer. Journ. Math. xxx.

(1908), p. 282.

+ Of. Whittaker and Watson, Modern Analysis, § 20-4.
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general term apse. At an apse, if the apse is not a singularity of the orbit

(e.g. a cusp), we have

*: = o
d$ '

which implies that the tangent to the orbit is perpendicular to the radius

vector.

The words aphelion and perihelion are generally used instead of apocentre

and pericentre when the centre of force is supposed to be the Sun.

Example. A particle moves under an attraction

£+»

to a fixed centre; shew that the angle subtended at the centre of force by two consecutive

apses is

where h is the constant of angular momentum.

49. Motion under the Newtonian law*.

The remaining case in which motion under a central force varying as an

integral power of the distance can be solved in terms of circular functions is

that in which the force varies as the inverse square of the distance. This

case is of great importance in Celestial Mechanics, since the mutual attractions

of the heavenly bodies vary as the inverse squares of their distances apart, in

accordance with the Newtonian law of universal gravitation.

(i) The orbits.

Consider then the motion of a particle which is acted on by a force

directed to a fixed point (which we can take as the origin of coordinates), of

magnitude /xm2
, where u is the reciprocal of the distance from the fixed point.

Let the particle be projected from the point whose polar coordinates are

(c, a) with velocity v„ in a direction making an angle 7 with c ; so that the

angular momentum is

h = cv sin 7.

The differential equation of the orbit is

d*u P a
-77S + U = t— = •

d6s hV vfc* sin2 7

'

this is a linear differential equation with constant coefficients, and its

integral is

u f1
{1 +ecos(0 — tu)\,

v V sin2 7

* Newton, Principia, Book 1. § 3, Props, xi., xii., xm.
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where e and & are constants of integration. This is the equation, in polar

coordinates, of a conic whose focus is at the origin, whose eccentricity is e,

and whose semi-latus rectum I is given by the equation

, _ iV
2
c2 sin2

y
1 1^>

the constant us determines the position of the apse-line, and is called the

perihelion-constant.

The circumstance that the focus of the conic is at the centre of force is in accord with

Hamilton's theorem ; for if the centre of force is at the focus of the conic the perpen-

dicular on the polar of the centre of force is the perpendicular on the directrix, which is

proportional to r, as by Hamilton's theorem the force must be proportional to 1/r2.

To determine the constants e and vs in terms of the initial data c, a, 7, v ,

we observe that initially

n 1 du 1e=a
'

M =
c- ^ =

-c
C°t7;

substituting these values in the equation of the orbit and the equation

obtained by differentiating it with respect to 6, we have

w 2c sin2 y = fj. + /j.e cos (a — &),

v "c sin 7 cos 7 = fie sin (a - m).

Solving these equations for e and is, we obtain

yV sin2 7 2v 2c sin2 7
e2 = 1 +

M
! M

— u,

cot (a — or) = —;—

=

1- tan 7.
cd sin 7 cos 7

The semi-major axis, when the conic is an ellipse, is generally called the

mean distance of the particle ; denoting it by a, we have

I

a = I372 '

/2

and substituting the values of I and e2 already found, we have

a)'

this equation determines a in terms of the initial data.

The time occupied in describing the whole circumference of the ellipse,

which is generally called the periodic time, is

T x area of ellipse,
h
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since h represents twice the rate at which the area is swept out by the radius

vector ; the periodic time is therefore —r— , where b is the semi-minor axis.

But we have

h = v c sin 7 = V'

fd = b \ / ->

,

v a

so the periodic time is 2ir «/ — . It is usual to denote the quantity /**a
_
*

by n ; the periodic time can then be written

n is called the mean motion, being the mean value of 9 for a complete period.

It has been shewn by Bertrand and Koenigs that of all laws of force which give a zero

force at an infinite distance, the Newtonian law is the only one for which all the orbits are

algebraic curves, and also the only one for which all the orbits are closed curves.

Example. Shew that if a centre of force repels a particle with a force varying as the

inverse square of the distance, the orbit is a branch of a hyperbola, described about its

outer focus.

(ii) The velocity.

Consider now the case in which the orbit is an ellipse ; the equation

•••=«(H
establishes a connexion between the mean distance a and the velocity v and

radius vector c at the initial point of the path, i Since any point of the orbit

can be taken as. initial point, we can write this equation

(
2 *\

where v is the velocity of the particle at the point whose radius vector is r.

Similarly if the orbit is a hyperbola, whose semi-major axis is a, we find

'-<•(?;).

and if the orbit is a parabola, the relation becomes

. 2u

r

It is clear from this that the orbit is an ellipse, parabola, or hyperbola,

2u . .

according as v<? = — , i.e. according as the initial velocity of the particle is

less than, equal to, or greater than, the velocity which the particle would

acquire in falling from a position of rest at an infinite distance from the

centre of force to the initial position.
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It can further be shewn that the velocity at any point can be resolved into

a component j perpendicular to the radius vector and a component ^- perpen-

dicular to the aotds of the conic ; each of these components being constant.

For if /S be the centre of force, P the position of the moving particle,

G the intersection of the normal at P to the conic with the major axis, GL
the perpendicular on SP from G, and SY the perpendicular on the tangent at

P from S, it is known that the sides of the triangle SPG are respectively

perpendicular to the velocity and to the components of the velocity in the

two specified directions; and therefore we have

Component perpendicular to the radius vector = ' „ = „^ p „ = -pj

_h _/jl=
l~h'

SC
and Component perpendicular to the axis = -^p x Component perpendicular

to the radius vector

efj,= ¥'
which establishes the result stated.

Example 1. Shew that in elliptic motion under Newton's law, the projections, on the

external bisector of two radii, of the velocities corresponding to these radii, are equal.

Shew also that the sum of the projections on the inner bisector is equal to the projection

of a line constant in magnitude and direction. (Cailler.)

Example 2. Shew that in elliptic motion under Newton's law, the quantity I Tdt,

where T denotes the kinetic energy, integrated over a complete period, depends only on

the mean distance and not on the eccentricity. (Grinwis.)

Example 3. At a certain point in an elliptic orbit described under a force fj.jr
2
, the

constant /* is suddenly changed by a small amount. If the eccentricities of the former and

new orbits are equal, shew that the point is an extremity of the minor axis.

(iii) The anomalies in elliptic motion. '

If a particle is describing an ellipse under a centre of force in the focus S,

the vectorial angle ASP of the point P at which the particle is situated on

the ellipse, measured from the apse A which is nearer to the focus, is called

the true anomaly of the particle and will be denoted by 6; the eccentric

angle corresponding to the point P is called the eccentric anomaly of the

particle, and will be denoted by u : and the quantity nt, where n is the

mean motion and t is the time of describing the arc AP, is called the mean

anomaly of the particle. We shall now find the connexion between the three

anomalies.
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The relation between 6 and u is found thus

:

We have
I , n- = 1 + e cos 8,
r

and r = a — ex, where a; is the rectangular coordinate of P referred

to the centre of the ellipse as origin,

or r = a(l — ecosu).

Hence (1 — e cos u) (1 + e cos 6) = 1 — e2
,

an equation which can also be written in the forms

u /l-e\*
tan

2 = lr+ij
tan

2-2'

(1 - e2)* sin 6
and sm u = —

,

;,— .

1 + e cos a

The relation between u and nt can be obtained in the following way

:

We have

2 2 6
t = r x Area ASP =—T . - x Area A8Q, where Q is the point on the auxiliary

A' nab a
circle corresponding to the point P on the ellipse

2= —- (Area AGO — Area SCO}, where is the centre of the
na" ' '

ellipse

2 fa
2 a2e . )

: _j_ M __ sinw
j

so nt = m — e sin w.

This is known as Kepler's equation.

A nomogram for the solution of this equation is described by H. Chretien, Assoc. Frang.

Congrfa, Reims (1907), p. 83. The solution by analytical expansion has been discussed by

many writers, an important recent memoir being that by Levi-Civita, Atti della R. Ace.

dei Lincei, Rendiconti, (5) xiii. (1904), p. 260.

Lastly, the relation between 6 and nt can be found as follows

:

We have nt = u — e sin u.

Replacing u by its value in terms of 6, this becomes

f(l-e2)*sin0| e(l-e2)*sin0
nt = arcsin

1 + e cos 6
)

1 -t- e cos 6

which is the required relation ; this equation gives the time in terms of the

vectorial angle of the moving particle.

A solution of the problem of calculating the True Anomaly from the Mean Anomaly,

based on a geometrical deduction, was found among the unpublished papers of Newton.
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Example 1. Shew that

°° 1u=nt+ 2 2 - Jr {re) sin rnt,
r=l r

where the symbols J denote Bessel coefficients*.

For we have

\du_ 1

n dt 1—e cos u

_1 /"*» d(w<) » cos m* f 2"- cos rai. d(n<) , „ . , ,,

"~oZ 1—n + 2 -^ — i by Fouriers theorem t
iir J o 1 - e cos a P=1 tt Jo 1 - e cos a ' ' •

1 f
27r
j , ^ cos rnt f 2" , , ,, ,=

o~ I
flto + 2

I cosWa - e sin a)} ria

CO

= 1 + 2 2 Jr (re)aoarnt%.
r=l

Integrating, we have the required result.

Example 2. Shew that

8=nt+ 2esmnt+ % e*sin 2?ii+....

Example 3. In hyperbolic motion under the Newtonian law, shew that

-4 t* i
Ke+ l)bcosb8-(e-l)isml6) ,, ,.i sintf

/t 4a**=log-^ i- 2 ^ '- l_L+«(e2-l 4
j,

l(e+ l)4co8i« + (e-l)4 8in|fll
l + ecos0

and in parabolic motion, shew that

where p is the distance from the focus to the vertex.

Example 4. In elliptic motion under Newton's law, shew that the sum of the four

times (counted from perihelion) to the intersections of a circle with the ellipse is the same

for all concentric circles, and remains constant when the centre of the circle moves parallel

to the major axis. (Oekinghaus.)

(iv) Lambert's theorem.

Lambert in 1.7-61 shewed that in elliptic motion under the Newtonian

law, the time occupied in describing any arc depends only on the major axis,

the sum of the distances from the centre of force to the initial and final

points, and the length of the chord joining these points : so that if these

three elements are given, the time is determinate, whatever be the form

of the ellipse §.

* The name of Bessel is commonly connected with this expansion : but it is really due to

Lagrange, Oeuvres, in. p. 130.

t Cf. Whittaker and Watson, Modern Analysis, Chapter ix.

J Ibid. Chapter xvn.

§ Lambert's original demonstration was geometrical and synthetic : the theorem was proved

analytically and generalised by Lagrange in 1778 (Oeuvres de Lagrange, iv. p. 559).
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Let u and u' be the eccentric anomalies of the points ; then we have

n x the required time = u' — e sin v! — (u—e sin u)

, , s „ . u' — u u' + u
= (u —u)—ze sin —=— cos —-— .

Now if c be the length of the chord, and r and r be the radii vectores,

we have

r + r' „ ~ u + u' u' — u
= 1 — e cos u + 1 - e cos u = 2 — 2e cos —^r— cos —~— ,

and c2= a2 (cos w' - cos w)2 + &2 (sin w' - sin w)2

= 4a2 sin8—^— (1 - e
2 cos2—^—

J
,

i'Vc _ . u'-uf u + u\i
so -= 2 sin—s— 1 — e2 cos2

-

a 2 \

Hence we have

r + r'+c _ _ fu'-w
- = 2 — 2 cos

tt

/ u + u'\)
+ arccos I e cos—=—

J
>

,

r A. r'— c { u —u f u+u
and = 2 - 2 cos -j „ 1- arccos ( e cos

a (

and therefore*

. l/r + r' + c^ m'-m / m +
2arcsin^(

J
= —~

1- arccos I e cos—

^

. . . 1 /r + / — c\* it'— u I u + u'\
and 2 arcsin = I 1

= = 1- arccos I e cos—=—
J

.

Thus if quantities a and B are denned by the equations

. a 1 /r + r + c\% . B 1 (r + r' - c\4 '

Sm
2
=

2 I
—

)
'

Sln
2
= 2 (

^
)

'

the last equations give

a < j a + # u + u'
a — a = u —u, and cos—^—= e cos—=—

.

Thus finally we have

n x the required time = a - 8 — 2 cos—^— sin—g

—

= (a - sin a) — (/8 — sin /3).

This is Lamberts theorem.

Example 1. Examine the limiting case when the minor axis of the ellipse vanishes, so

that the orbit is rectilinear.

* It will be noticed that owing to the presence of the radicals, Lambert's theorem is not free

from ambiguity of sign. The reader will be able to determine without difficulty the interpretation

of sign corresponding to any given position of the initial and final points.
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Example 2. To obtain the form of Lambert's theorem applicable to parabolic motion.

If we suppose the mean distance a to become large, the angles a and /3 become very

small, so Lambert's theorem can be written in the approximate form

a3 -03

Required time =

6re

=—r {(r+ r' + c)% - (r + r'-c)^},

and this is the required form*.

Example 3. Establish Lambert's theorem for parabolic motion directly from the formulae

of parabolic motion.

50. The mutual transformation of fields of central force and fields of

parallel force.

If in the general problem of central forces we suppose the centre of force

to be at a very great distance from the part of the field considered, the lines

of action of the force in different positions of the particle will be almost

parallel to each other; and on passing to the limiting case in which the

centre of force is regarded as being at an infinite distance, we arrive at the

problem of the motion of a particle under the influence of a force which is

always parallel to a given fixed direction.

For the discussion of this problem, take rectangular axes Ox, Oy in the

plane of the motion, Ox being parallel to the direction of the force ; and let

X (x) be the magnitude of the force, which will be supposed to be independent

of the coordinate y. The equations of motion are

x = X(x), y = 0,

and the motion is therefore represented by the equations

t = ay + b=
J

{2/X (x) dx + c}~* dx + I,

where a, b, c, I are the constants of integration ; the values of these are

determined by the circumstances of projection, i.e. by the initial values of

«, y, <*>> y-

While the problem of motion in a parallel field of force is a limiting case

of the problem of motion under central forces, it is not difficult to reduce the

latter more general problem to the former more special one.

For if a particle is in motion under a force of magnitude P directed to

* This result was given by Euler in his Determinatio Orbitae Cometae Anni 1742 (1743), before

Lambert published the general theorem.
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a fixed centre (which we may take as origin of coordinates), the equations

of motion are

x = -P-, y = -P y-.
r " r

The angular momentum of the particle round the origin (which is con-

stant) is xy — yx: let this be denoted by h. Introduce new coordinates X, Y,

defined by the homographic transformation

X = -, F=-,
y y

and let T be a new variable defined by the equation

r dt

Then we have
dX d (x\ dt _ t* yx\ _ ,

'dT~\y~f) y ~ h
'dT dt \y

dT~dt[y)
dt _ y

y/'dT y* y V'

d*X n d*Y ... „ f

These equations shew that a particle whose coordinates are (X, Y) would,

if T were interpreted as the time, move as if acted on by a force parallel to

Py»
the axis of Y and of magnitude — —— . As the solution of this transformed

problem will yield the solution of the original problem, it follows that the

general problem of motion under central forces is reducible to the problem of

motion in a parallel field of force.

Example 1. Shew that the path of a free particle moving under the influence of gravity

alone is a parabola with its axis vertical and vertex upwards.

Example 2. Shew that the magnitude of the force parallel to the axis of so under which

the curve f(x, y)-=0 can be described is a constant multiple of

(VY*! W ay 9/9/ ay/a/yi
\dxj \ dx? \ty) dxdy dx dy 9y2 \dxj )

'

Example 3. If a parallel field of force is such that the path described by a free particle

is a conic whatever be the initial conditions, shew that the force varies as the inverse cube

of the distance from some line perpendicular to the direction of. the force.

51. Bonnet's theorem.

We now proceed to discuss the motion of a particle which is simultaneously

attracted by more than one centre of force. An indefinite number of particular

cases of motion of this kind can be obtained by means of a theorem due to

Bonnet*, which may be stated thus

:

* Liouville's Journal, ix. (1844), p. 113 and Note iv. of t. n. of the last edition of Lagrange's

Mec. Anal. (Oeuvres de Lagrange, xn. p. 353).
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If a given orbit can be described in each of n given fields of force, taken

separately, the velocities at any point P of the orbit being vlt v2 , ..., vn ,

respectively, then the same orbit can be described in the field of force which

is obtained by superposing all these fields, the velocity at the point P being

(vi> + vi
2 + ... +vn*)l.

For suppose that in the field of force which is obtained by superposing

the original fields, an additional normal force R is required in order to make
the particle move on the curve in question; and let it be projected from

a point A so that the square of its velocity at A is equal to the sum of the

squares of its velocities at A in the original fields of force. Then on adding

the equations of energy corresponding to the original motions, and comparing

with the equation of energy' for the motion in question, we see that the

kinetic energy of the motion in question is the sum of the kinetic energies

of the original motions, i.e. that the velocity at any point P is

(flj'jtV + ...+vn*)k

Hence, resolving along the normal to the orbit, we have

vl

2 + v2
1 + ... -

m ^Fi + Fz+.-.+Fn + R,
P

where m is the mass of the particle, p the radius of curvature of the orbit,

and Fx , Fit ..., Fn are the normal components of the original fields of force

at P.

But =-Pl, =Jft, •> = *n,
P P P

and therefore R is zero ; the given orbit is therefore a free path in the field

of force which is obtained by superposing the original fields.

Example. Shew that an ellipse can be described ifforces

r3+ 8a3
, r'3 + 8a3

respectively act in the directions of the foci.

This result follows at once from Bonnet's theorem when it is observed that the given

forces are equivalent to forces ^ and -^ acting in the directions of the foci, together with

a forCe JL x distance acting in the direction of the centre of the ellipse.

4a3

52. Determination of the most general field offorce under which a given

curve or family of curves can be described.

Let (». y) = °

be the equation of a curve ; on varying the constant c, this equation will

represent a family of curves. We shall now find an expression for the

most general field of force (the force being supposed to depend only on the
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position of the particle on which it acts) for which this family of curves is

a family of orbits of a particle.

Let v denote the velocity of the particle, and (X, Y) the components of

force per unit mass parallel to the coordinate axes. The tangential and

1 dv* u2

normal components of acceleration being „- tt- and - respectively, we have

Z = --^(V+*v,)"*-^*»(**, + *»')"*.

ii2 i 1 dm2
x.

Y = - V-$y (£.' + <£/)
- * +

2 JsA* (*.' +M ~ *•

Substituting for - its value, namely

4>y
%
<j>xx — %<f>x <J>y$xy + §x <Pyy

we have

y_ . „, W4>** ~ 2<t>Ay<f>zy + <f>xAvv 1 ^ . /. a , A, i\~\

Writing v"~ = — u
(<f>x

2 + <£/),

and replacing j- by
(<f>x* + <£/)

~ ^ f^a"'
~"
^»a") >

this ec
l
uation becomes

X=U{^>X ^yy-4>y (jj^y) + J 0„ Jg (</>/ + &,*)* .

Now w is arbitrary, since it depends on the velocity with which the given

orbits are described ; and as X and Y are to be functions of the position of

the particle, we can take u to be an arbitrary function of x and y ; we have

therefore

X = U (<px<l>W ~ Qv^bv) + i^!/ AxUy - <f>yUx),

and similarly

Y = U Ay<pxx — <l>x4>xy) + %<px AyUx ~ f^x^y),

where u is an arbitrary function of so and y. These expressions for the field

of force under which the curves of the given family are orbits were first given

by Dainelli*.

Example 1. Shew that a particle can describe a given curve under any arbitrary forces

Pi, Pi, ... directed to given fixed points, provided these forces satisfy the relations

1 d (PkPksP\2
k Pk

where rk is the radius and pk the perpendicular on the tangent, from the kth of the given fixed'

points, and where p is the radius of curvature of the given curve.
t

For the tangential and normal components of force on the particle are

T=-sPk

d^ and N=-2Pk
?-k-,

k ds k rk

* Giornale di Mat. xvni. (1880), p. 271.
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so from the equation

* ft
2 d* \ rk J

Example 2. A particle can describe a given curve under the single action of any one

of the forces fa, fa, ..., acting in given (variable) directions. Shew that the condition to

be satisfied in order that the same curve may be described under the joint action of forces

.Pi, F3 , ..., acting in the directions of fa , fa, ..., respectively, is

where ck is the chord of curvature of the curve in the direction of fa. (Curtis.)

Example 3. A point moves in a field of force in two dimensions of which the work
function is 7; shew that an equipotential curve is a possible path, provided 7 satisfy the

equation

n *,it\\&V f%Vy .3*7 3737 3*7/37\*) f/37\* /37\ 2
)
2 ,„„-,,

53. The problem of two centres of gravitation.

The equations of motion of a particle moving in a plane under arbitrary

forces cannot be integrated by quadratures in the general case. The most

famous of the known soluble problems of this class, other than problems of

central motion, is the problem of two centres of gravitation, i.e. the problem

of determining the motion of a free particle in a plane, attracted by two fixed

Newtonian centres of force in the plane ; its integrability was discovered by

Euler*.

Let 2c denote the distance between the two centres of force; and take

the point midway between them as origin, and the line joining them as axis

of x, so that their coordinates can be taken to be (c, 0) and (— c, 0). The

potential energy of the particle (whose mass is taken to be unity) is therefore

r= - /* {0 - cf + f} -*-/{(« + Cf + y*\
~ *

where /j, and ft are constants depending on the strength of the centres of

attraction.

Now any ellipse or hyperbola with the two centres of force as foci is a

possible orbit when either centre of force acts alone, and therefore by Bonnet's

theorem it is a possible orbit when both centres of force are acting. It

is therefore natural, in denning the position of the particle, to replace the

rectangular coordinates (x, y) by elliptic coordinates (£, rf), denned by the

equations

x = c cosh £ cos tj, y= c sinh £ sin rj.

* Euler, Mem. de Berlin, 1760, p. 228; Nov. Comm. Petrop. *. (1764), p. 207; xi. (1765),

p. 152 : Lagrange, Mem. de Turin, iv. (1766-9), pp. 118, 215, or Oeuvres, n. p. 67.

w. d. 7
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The equations £ = Constant and 77 = Constant then represent respectively

ellipses and hyperbolas whose foci are at the centres of force; and these are

a particular family of orbits.

The potential energy, when expressed in terms of £ and 77, becomes

V= £ A*'

c (cosh f — cos 77) c (cosh f + cos 77)
'

and the kinetic energy T is given by the equations

= |(cosh2 £-cos2

77)(f + t)
2
).

This problem is evidently of Liouville's type (§ 43), and can therefore

be integrated by the method applicable to this class of questions. The

Lagrangian equation for the coordinate f is

c2 -j
t
{(cosh2

f - cos2
77) f } - c2 cosh f sinh £ (f + if) = - |» ,

or

c2 ^- {(cosh2 £ - cos2
T7)

2
1
2
}
- 2c2 cosh £ sinh f (cosh2 £ - cos2

77) | (f + if)

= - 2 (cosh2

f - cos2
*?) f |y •

or, using the equation of energy T + V= h,

c2 jt ((cosh2
f -cos

2
77

)

2

1
2
}

= - 2 (cosh 2

f - cos2
77) %~ + 2 (h - V) f ~ (cosh2

f - cos2
v)

= 2£4 t(A
_ F

) (cosh2 ? - cos2 V)}

= 2|
gg j

A (cosh 2

f - cos2
77) + ^ (cosh £ + cos 77) + — (cosh £ - cos »;)[

= 2^ JAcosh2
f + ^±^ cosh f) .

Integrating, we have

j (cosh2
£ - cos2

t?)
2? = h cosh2 £ + ^+^ cosh f - 7j

where 7 is a constant of integration.

Subtracting this from the equation of energy, which can be written

|- (cosh
2
f - cos2

77)
2
(|

2+ if)

= A (cosh2

f - cos2
77) + ^ (cosh £ + cos 77) + £• (cosh f - cos 77),
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we have

2
(cosh2

f - cos2
rjfr)

2 =-h cos2
rj - " ^ cos ?7 + 7.

Eliminating dt between these equations, we have

(d& (dvY

Acosh2f+-—— cosh £-7 -hcos*r) -^—^cosri+y
c c

Introducing an auxiliary variable u, we have therefore

U = [\h COsh2
f + t±JL cosh f — ryl

'
dlj,

1 rf -n )
~*

,
- h cos2

t; — cos 77 + 7 ^ d^.

These are elliptic integrals, and we can therefore express £ and n as elliptic

functions of the parameter u, say

£ = % (M )> *7 = 4> («)•

These equations determine the orbit of the particle, the elliptic coordinates

(£, 7)) being expressed in terms of the parameter u*.

54. Motion on a surface f.

We shall next proceed to consider the motion of a particle which is free

to move on a smooth surface, and is acted on by any forces.

Let (X, Y, Z) be the components, parallel to fixed rectangular axes, of

the external force on the particle, not including the pressure of the surface

:

let (%, y, z) be the coordinates and v the velocity of the particle, s the arc and

p the radius of curvature of its path, % the angle between the principal

normal to the path and the normal to the surface, and (X, fi, v) the direction-

cosines of the line which lies in the tangent-plane to the surface and is

perpendicular to the path at time t ; the mass of the particle is taken as unity.

The acceleration of the particle consists of components vdv/ds along the

tangent to the path and iP/p along the principal normal ; the latter component

can be resolved into (wa/p)sin^ along the line whose direction-cosines are

(\, fi, v) and (v*/p) cos % along the normal to the surface. We have therefore

the equations of motion

dv _ ydas ydy „dz ...

ds ds ds ds
'

'

^
(v*jp) sin x = X\ + Yfi + Zv (B),

* Some generalisations of the problem of two fixed centres will be found in a paper by

Hiltebeitel, Amer. Journ. Math. xxxm. (1911), p. 337.

t The earliest investigation of motion on a, surface was Galileo's study of the motion of a

heavy particle on an inclined plane (Discourses, Third Dialogue, 1638). The motion of a heavy

particle moviDg in a horizontal circle on a sphere was examined by Huygens (Horolog. oscill.,

'WW)-

7—2
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and these, together with the equation of the surface, are sufficient to determine

the motion ; for the equation of the surface may be regarded as giving z in

terms of x and y, and by using this value for z we can express all the

quantities occurring in equations (A) and (B) in terms of x, y, x, y, x, y:

equations (A) and (B) thus become a system of differential equations of the

fourth order for the determination of x and y in terms of t.

If the forces are conservative, the expression

- Xdx - Ydy - Zdz

will be the differential of a potential-energy function V(x, y, z); equation (A)

can therefore be integrated, and gives on integration the equation of energy

%v* + V{x, y, z) = c,

where c is a constant. Substituting the value of v2 given by this equation

in (B), we have

P

This is (on eliminating z by means of the equation to the surface) a

differential equation of the second order between x and y, and is in fact the

differential equation of the orbits on the surface.

The differential equations of motion on a surface are not integrable by

quadratures in the general case : there are however two cases in which the

problem can be formulated in such a way as to utilise results obtained in

other connexions.

(i) Motion under no forces.

When no external forces act on the particle, equation (B) gives % — 0, so

the orbit is a geodesic on the surface* ; the integral of energy shews that this

geodesic is described with constant velocity.

Example. A particle moves under no forces on the fixed smooth ruled surface whose line

of striction is the axis of z, the direction-cosines of the generator at the point z being

z . z
sin a cos — , sin a sin — , cos a,m m

respectively. To determine the motion.

Let v denote the distance of the point on the surface whose coordinates are (x, y, i)

from the line of striction, measured along the generator, and let (0, 0, f) be the coordinates

of the point in which this generator meets the line of striction. Then we have

#=j>sinacos — , «=3>sin asin — , 2=f+»cosa.

* This theorem is due to Euler, Mechaniea (1736), n. cap. 4.
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The kinetic energy of the particle is

= i (»*+ {* —
2
sin2 a + f

2 + 2fiicosa) .

We can take v and f as the two coordinates which define the position of the particle ;
it is

evident that the coordinate £ is ignorable, and the corresponding integral is

dT— =£, where h is a constant,

or (

—

^sm2 a+ lj I+ v cob a=k.

The integral of energy is

T=h, where h is a constant.

Eliminating f between these two integrals, we have

v2 (v2+m2
)= 2A»2 + (2h - k2

) m? cosec2 a.

If v is initially sufficiently large compared with f, the quantity (2h — k2
) is positive ;

we

shall suppose this to be the case, and shall write

(2h— k2
) m2 cosec2 a=2AX2

,
where X is a new constant

;

the equation thus becomes
v2 (v2+m2

)= 2h(v2 + \2
).

The integration of this equation can be effected by introducing a real auxiliary variable u,

defined by the equation

u=
j

{(m2+ v2
) (X2+ v2

)}
~ * dv.

Writing v=\mx ~ *, this becomes

u= I {4x(x+\2
)
(x+m2)}~^dx,

J X

and this is equivalent to the equation

where the roots elt e2 , e3 of the function g> («) are real and are defined by the equations

ei -e2
= X2

, e1 — ei=m2
, e1+ «2+e3= 0.

The connexion between the variables v and u is therefore expressed by the equation

i)=X»{$»(w)-«i}
_ *

Substituting this value of v in the equation which connects v and t, we have

(ah) l t- pi-^/fW-^W+Constant

=
I
{ ~H+ & (

u + »i)} ^M+ Constant*

= _ e3M _ f (
M+ <»i)+ Constant.

* Of. Whittaker and Watson, Modern Analysis, § 20-33.
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This equation expresses the time t in terms of the auxiliary variable u, and thus in

conjunction with the equation

gives the connexion between v and t.

(ii) Motion on a developable surface, \<z.°ne k.Votcon- be ar^oldca i nb o.

'planc
If the surface on which the particle moves is developable, we can utilise

the known theorems that the arc s and the quantity — are unaltered by

developing the surface on a plane: these results, applied to the equations of

motion given above, shew that if in the motion of a particle on a developable

surface under any forces the surface is developed on a plane, the particle will

describe the plane curve thus derived from its orbit with the same velocity as

before, provided the force acting in the plane-motion, is the same in amount

and direction relative to the curve as the component of force in the tangent-

plane to the surface in the surface-motion.

Example 1. A smooth particle is projected along the surface of a right circular cone

whose axis is vertical and vertex upwards, with the velocity due to the depth below the vertex.

Prove that the path traced out on the cone, when developed into a plane, will be of theform

r§ sin f 0= a*. (Coll. Exam.)

For on developing the cone, the problem becomes the same as that of motion in a plane

under a constant repulsive force from the origin, and with the velocity compatible with

rest at the origin. We therefore have the integrals

rW= h. '

These equations give

where C is a constant,

where h is a constant.
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55. Motion on a surface of revolution ; cases soluble in terms of circular
and elliptic functions*.

The most important case of surface-motion which is soluble by quadra-
tures is the motion of a particle on a smooth surface of revolution, under
forces derivable from a potential-energy function which is symmetrical with
respect to the axis of revolution of the surface.

Let the position of a point in space be defined by cylindrical coordinates
(z, r, $), where z is a coordinate measured parallel to the axis of the surface,

r is the perpendicular distance of the point from this axis, and # is the
azimuthal angle made by r with a fixed plane through the axis. The
equation of the surface will be a relation between z and r, say

and the potential energy will be a function of z and r (it cannot involve <j>,

since it is symmetrical with respect to the axis), which for points on the
surface can, on replacing r by its value f(z), be expressed as a function of z

only, say V(z); the mass of the particle can be taken as unity.

The kinetic energy is, by § 18,

T=$(i» + r» + r»£»)

= M[{/'(<>}
2+i^2 +{/(*)N2

}.

The coordinate cf> is evidently ignorable; the corresponding integral is

^ dT
r ,—r = «, where A; is a constant,

{/(*)M-fc;

this equation can be interpreted as the integral of angular momentum about

the axis of the surface.

The equation of energy is

T + V — h, where h is a constant,

and substituting for
<f)

in this equation from the preceding, we have

[{/' «}' + 1]

*

2 + *2

I/O)}"
2 + SV (z) = 2h

integrating this equation, we have

«=/[{/' (*)}• + !]^[2A - 2F(*)-¥ {f(z)}-*]-$dz + Constant.

The relation between t and z is thus given by a quadrature ; the values

of r and are then obtained from the equation of the surface and the

equation

{/(*)}* = *,

respectively.

* The motion of a particle on a surface of revolution was investigated by Newton, Principia,

Book i. Section 10.



104 The Soluble Problems of Particle Dynamics [ch. iv

We shall now discuss the motion on those surfaces for which this quad-

rature can be effected by means of known functions, when the axis of the

surface is vertical (z being measured positively upwards) and gravity is the

only external force, so that

V(z) = gz.

(i) The circular cylinder.

When the surface is the circular cylinder r = a, the above integral

becomes

- t = j(2h-2gz--^ dz,

and if the origin of coordinates is so chosen that 2ha? = &2
, we have

t=\(-2gz)-i dz,

or z = - \g (t — toy, where t is a constant.

The equation

then gives

k
<£ -

<f}
= — (t — 1 ),

where
(f>

is a constant.
a2

(ii) The sphere.

The case in which the surface is the sphere

r = (Z
s - zrf

is called the problem of the spherical pendulum*, and can be realised by

supposing a heavy particle attached to a fixed point by a light rigid wire

capable of moving freely about the point.

In this case the quadrature for t becomes

or

'-JV^.
+i}>-^-f^F

t = l ({(2h - 2gz) {P - z*) - ¥}^dz.

The integral on the right-hand side of this equation is an elliptic

integral, which we shall now reduce to Weierstrass' canonical form. Denote

by zu z2 , zs the roots of the cubic

2(h-gz)(l*-z')-k* = 0;
since the expression

2(h-gz)(l*-z*)-k*

* Lagrange, Mecanique Analytique. The complete solution in terms of (Jaoobian) elliptic

functions was obtained by A. Tissot, Liouville's Journal, (1) xvn. (1852), p. 88: Jacobi's own

solution of the problem of a rotating rigid body in terms of elliptic functions had been published

previously, in 1839. The analysis connected with the spherical pendulum is essentially that for

Lame's equation of order 2.
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is negative for the values I and - 1 of z, and positive for very large positive

values of z and also for the values of z which occur in the problem considered
(which must necessarily lie between - 1 and + I, since the particle is on the
sphere) we see that one of the roots (say z

x) is greater than I and the other
two (say z2 and zs , where z2 >z3) are between I and - 1. The values of z in
the actual motion will lie between z2 and zs , since for them the cubic must
be positive.

" n*e z — 5— H t, where £ is a new variable,% 9

and *' !=

^ +7 a" (r-1,2,3)

so that e1; e2 , e3 are new constants, which satisfy the relation

>-:,+ :.,-
J!

n1 + z2 + z3
~
-J

=0,
222

and also satisfy the inequalities ej > e2 > e3 .

The relation between t and 2 now becomes

*=/{*(?- *)(£-*)((:-*)}"*<*£

or f=g,(* + 6),

where e is a constant of integration and the function p is formed with the

roots e^ e2 , e3 .

Now when elt e2 , es are real and in descending order of magnitude,

jjf>(w) and $>'(u) are both real when u is real, in which case g>(w) is greater

than eu and also when u is of the form &>3 + a real quantity, where to3 is

the half-period corresponding to the root e3 ; in this latter case, p(u) lies

between e2 and e3 . Since in the actual motion z lies between z2 and z3 , it

follows that £ lies between e2 and e3 , and therefore the constant e must con-

sist of an imaginary part a>3 and a real part depending on the instant from

which time is measured: by a suitable choice of the origin of time, we can

take this real part of e to be zero, and we then have

This equation gives the connexion between z and t. We have now to

determine the azimuth <j>. For this we have the equation

so <p — (p = k

where
<f)

is a constant of integration.

,; .1 .:_.
i

-z.
V (jt + Wt)V
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To effect the integration, we take X and /a to be the (imaginary) values of

t + G>3 corresponding to the values I and — I of z respectively ; so that X and p

are new constants denned by the equations

h 2P , . , , h 21* . ,

l -*j =lm "'"% =
7 p(/i);

these equations give

The integral now becomes

, _ , _ kg* r dt

* <P°
_

4M{f>(t + «.)-f>(*)HP(* + "»)-*> 00}

_ kg C[ dt dt

1/1,

o>8)-p(*) P(< + «»s)-pO*)

p' (X) eft p' (aQ cfo

K'+^-fW p (* + »»)- p (/*))

But* we have

[ p'(X)dt , <r(t + ws -\) nr/^xt

and therefore

a (t + o)3 + p) <t (t + ft>3
— X)

this equation expresses the angle
<f>

as a function of £, and so completes the

solution of the problem.

We see that when t increases by 2w1 , fa increases by

- 2t», !?(/*) - ?(X)} - 2m,i (X -/*).

Example. When the bob of the spherical pendulum is executing periodic oscillations

between two parallels on the sphere, shew that one of the points reached on the higher

parallel, and the point on the lower parallel at which the bob arrives after a half-period,

have a difference of azimuth which always lies between one and two right angles.

(Puiseux and Halphen.)

The problem of the spherical pendulum has been discussed from the standpoint of

periodic solutions by F. R. Moulton, Palermo Rend. xxxn. (1911), p. 338.

(iii) The paraboloid.

Consider next the problem of motion on the paraboloid, whose equation is

r = 2a.£ zi.

In this case the quadrature for t becomes .

¥a)
'

* Cf. Whittaker and Watson, Modern Analysis, § 20-53, Ex. 2.

t= l(a+ *)* (2hz - 2gz* -~ \ <h.
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To obtain the solution of the problem in terms of elliptic functions, we
introduce an auxiliary quantity v, denned by the equation

f* i / Tfi \
_
i

v=J (a + z)-2(2hz-2gz*-^\ dz.

If a and ft (where a ^ ft) denote the roots of the quadratic

2hz - 2gz* --^- = 0,

9>

j
*j*(4 (* + «)(*- P) (z ~ «)} " * dz.

we can write this integral in the form

_ i

2

Define a new variable f by the equation

z= -(a + ct)%+ g -,

and let e^ e2 , e3 be the values of f corresponding to the values of — a, ft, a

respectively of z ; then the integrals become

{'JiLHO}*,
=/f

{
4 (f - o (?- *) (f - „)}-**

and it is easily proved that the quantities e^ e2 , e3 satisfy the relations

^i + e2 + e3 = 0, ej > e2 > e3 .

The auxiliary quantity v can now be replaced by an auxiliary quantity u,

denned by the equation

f
2 )*

W (« + «)/

and then the inversion of the integral gives

C= fp
(ti + e),

where e is a constant of integration and the function
(jf>

is formed with the

roots ex , e2 , e3 , which are given by the equations

_ 2a + a + ft _ - a + a - 2ft _ - a - 2a + ft

6l ~ 3(a+a) '
e*~ 3(a + «) '

&z ~ 3(a + a) "

As in the actual motion z evidently lies between a and ft, it follows that

g> (u + e) lies between es and e2 , and therefore (as we wish u to be real) the

imaginary part of the constant e must be the half-period to3 ; the real part can

be taken to be zero, since it depends merely on the lower limit of the integral

for u.

We have therefore

s h — aq . n h
z = - (a + a) fi> (u + g>s) H ^—— , since a + ft = - .

"9 9
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The equation to determine t is

t= l(a + z) dv

i

and this equation gives t in terms of the auxiliary variable u.

Lastly, we have to determine the azimuth j> : for this we have

, _ kdt _ kdt

r2
—

4iaz

k \ 2 }
-

%, (u + a>3) - et ,

4a(5r(a + a)i ' - a + a + /3
p{u + cos) 3(a + a)

and therefore

>}(0-ft)-. + | 3(a + g)

-
6l

c£w

^(w + a)3)
—

a(a + c— i/ — —>

3 (a + a)

where <p is a constant of integration, and I is an auxiliary constant defined by

the equation

... -a + a + ft , ... &

3(a + o) '
r

(_ 2^)*(a + a)i'

The equation can now be written

a, _ a _ ^w * f Jp'W <^"

° ~ a {8g (a + a)}*
~

* J V (u + »») - If
(0

'

the integral of which is found (a3 in the problem of the spherical pendulum)

to be

r———r+ar©!* / 7x

e 2i(<f-^o) = e
[- a{89{a + a)} J cr(u+a>

s -l)

a (u + a>s + /)
'

this equation expresses
<f>

in terms of the auxiliary variable u, and so completes

the solution.

(iv) The cone.

Consider next the cone, whose equation is

r = z tan a,

where « is the semi-vertical angle.
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Since this is a developable surface, we can apply the theorem of § 54, and

we see that the orbit of a particle on the cone under gravity becomes, when
the cone is developed on a plane, the same as the orbit of a particle of unit

mass in the plane under a force of constant magnitude g cos a acting towards

a fixed centre of force (namely the point on the plane which corresponds to

the vertex of the cone). This (§ 48) is one of the known cases in which the

problem of central motion can be solved in terms of elliptic functions, and

this solution furnishes at once the solution of the problem of motion on the

cone.

Example 1. Shew that the motion of a particle under gravity on a surface of revolution

whose axis is vertical can also be solved in terms of elliptic functions when the surface is

given by any one of the following equations >

9ar2 = 2(2-3a)2
,

2r4+3a2r2 -22a3=0,

(r>_ az- £ a2
)
2= ah. (Kobb and Stackel.)

Example 2. Shew that the same problem can be solved in terms of elliptic functions

when the surface is

(x2+yi
)
3+2a6=8ah(x2+y2

). (Salkowski.)

Example 3. Shew that if an algebraic surface of revolution is such that the equations

of its geodesies can be expressed in terms of elliptic functions of a parameter, the surface

must be such that r2 and z can be expressed as rational functions of a parameter, i.e. the

equation of the surface regarded as an equation between r2 and z is the equation of

a unicursal curve ; where 2, r, <j> are the cylindrical coordinates of a point on the

surface. (Kobb.)

Example 4. Shew that in the following cases of the motion of a particle on a surface

of revolution, the trajectories are all closed curves

:

1°. When the surface is a sphere, and the force is directed along the tangent to the

meridian and proportional to cosec2
8, where 8 is the angular distance from the particle to

the pole. (The trajectories are in this case sphero-conics having one focus in the pole.)

2°. When the surface is a sphere, and the force is directed along the tangent to the

meridian and proportional to tan 8 sec2 8. (The trajectories in this case are sphero-conics

having the pole as centre*.)

56. Joukovsky's theorem.

We shall now shew how to determine the potential-energy function under

which a given family of curves on a surface can be described as the orbits of

a particle constrained to move on the surface.

The three rectangular coordinates of a point on the surface can be expressed

in terms of two parameters, say u and v, so that an element of arc ds on the

surface is given in terms of the increments of u and v to which it corresponds

by an equation of the form

ds2 = Edu? + 2Fdudv + Gdv*,

where E, F, G are known functions of u and v.

* Darboux has examined the possibility of other cases, in Bull, de la Soc. Math, de France, v.

(1877).
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Let the family of curves which are to be the orbits under the required system

of forces be defined by an equation

q (u, v) = Constant,

and let

p (u, v) = Constant

denote the family of curves which is orthogonal to these.

Then instead of u and v we can take p and q as the two parameters

which define the position of a point on the surface ; let the line-element

in this system of parameters be expressed by the equation

rfs
2 = E'dq* + G'dp\

the term in dqdp being absent, because the curves p = Constant and

q = Constant cut at right angles : E' and 0' being known functions of

p and q.

The kinetic energy of a particle which moves on the surface is

T=HE'q*+G'p«);

the Lagrangian equations of motion are therefore

(d ,_,,.. . fdE' ., BG' ,\ BV

d ,„,.. , fdE' „ dG' \ dV
di^^-n-w q + w pr~^ :

where V denotes the unknown potential-energy function, which it is required

to determine.

These equations are to be satisfied by the value q = ; they then become

Idff .,_dV
2 dq P ~ dq

'

" a- v *
' dp

Eliminating jd
2
, we have

37
dG'

j

+ dp~
dq

Integrating this equation, we have

G'
9

^p, +V=f(q), where / is an arbitrary function,
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|(™') =
f/(<z),

and therefore

where # denotes an arbitrary function.

Now ^7 is Aj (p), the differential parameter* of the first order of the

function p ; and thus we have a theorem enunciated by Joukovsky in 1890,
that if q = Constant is the equation of a family of curves on a surface, and
p = Constant denotes the family of curves orthogonal to these, then the curves

q = Constant can be freely described by a particle under the influence offorces
derivedfrom the potential-energy function

where f and g are arbitrary functions, and Aj denotes the first differential

parameter.

The above equations give

tP dql dq G'
V+ &

and hence the equation of energy in the motion is

WP2 + V=f(q).

Miscellaneous Examples.

1. A particle moves under gravity on the smooth cycloid whose equation is

s= 4asin0,

where s denotes the arc and $ the angle made by the tangent to the curve with the

horizontal : shew that the motion is periodic, the period being 4w * / -

.

2. A particle moves in a smooth circular tube under the influence of a force directed

to a fixed point and proportional to the distance from the point. Shew that the motion is

of the same character as in the pendulum-problem.

* If the line-element on a surface is given by the equation

d«2=B dv?+ 2Fdu dv + G dv2
,

the first differential parameter of a function
<f>

(u, v) is given by the formula

The differential parameter is a deformation-covariant of the surface, i.e. when a change of

variables is made from (u, v) to («', v'), the differential parameter transforms into the expression

formed in the same way with the new variables (u', v') and the corresponding new coefficients

(£', F', G').
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3. A particle moves in a straight line under the action of two centres of repulsive

force of equal strength /*, each varying as the inverse square of the distance. Shew that,

if the centres of force are at a distance 2c apart and the particle starts from rest at

a distance he, where k<\, from the middle point of the line joining them, it will perform

oscillations of period
IT

2 Vc3 (l-/5;2)//*
f*

(1 -¥ sin2 0)* d6.

(Camb. Math. Tripos, Part I, 1899.)

4. A particle under the action of gravity travels in a smooth curved tube, starting

from rest at a given point of the tube. If the particle describes every arc OP in

the same time that would be taken to slide down the corresponding chord OP, shew that

the tube has the form of a lemniscate.

5. A particle is projected downwards along the concave side of the curve y
3+ cu;2=0

with a velocity § (Sag)' from the origin, the axis of x being horizontal ; shew that the

vertical componeut of the velocity is constant. (Nicomedi.)

6. A particle moves in a smooth tube in the form of the curve r2=2a2 cos2#, under

the action of two attractive forces, varying inversely as the cube of the distance, towards

the two points on the initial line which are at a distance a from the pole. Prove that if

the absolute force is p, and the velocity at the node 2/i*/a, the time of describing one loop

of the curve is 7ra2/2/A (Camb. Math. Tripos, Part I, 1898.)

7. A particle describes a space-curve under the influence of a force whose direction

always intersects a given straight line. Shew that its velocity is inversely proportional

to the distance of the particle from the line and to the cosine of the angle which the

plane through the particle and the line makes with the normal plane to the orbit.

(Dainelli.)

8. A heavy particle is constrained to move on a straight line, which is made to

rotate with constant angular velocity a round a fixed vertical axis at given distance from

it. Shew that the motion is given by the equation

r=Aeat cos a+Se~ at
cos a,

where r is the distance of the particle from a fixed point on the line, a is the angle made

by the line with the horizontal, and A, B are constants. (H. am Ende.)

9. A heavy particle is constrained to move on a straight line, which is made to

rotate with given variable angular velocity round a fixed horizontal axis. Shew that the

equation of motion is

r= + g sin a sin 6 -rd1 sin2 a + ad sin a,

where a is the angle between the line and the axis of rotation, 8 the angle made with

the vertical by the shortest distance a between the lines, and r the distance of the

particle from the intersection of this shortest distance with the moving line.

(Vollhering.)

10. A particle slides in a smooth straight tube which is made to rotate with uniform

angular velocity <o about a vertical axis : shew that, if the particle starts from relative

rest from the point where the shortest distance between the axis and the tube meets the

tube, the distance through which the particle moves along the tube in time t is

2o
-t|- cot a cosec a sinh2

(feat sin a),

where a is the inclination of the tube to the vertical.

(Camb. Math. Tripos, Part I, 1899.)
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11. A particle is constrained to move under no external forces in a plane circular tube

which is constrained to rotate uniformly about any point in its plane. Shew that the

motion of the particle in the tube is similar to that in the pendulum-problem.

12. A small bead is strung upon a smooth circular wire of radius a, which is con-

strained to rotate with uniform angular velocity a> about a point on itself. The bead is

initially at the extremity of the diameter through the centre of rotation, and is projected

with velocity 2o>& relative to the wire : shew that the position of the bead at time t

is given by the equation

sin$= sn&cBi/a (modulus a/b)

or

sin
(f>
= (b/a) sn at, (modulus bja)

according as a< or > b,
(f>

being the angle which the radius vector to the bead makes

with the diameter of the circle through the centre of rotation.

(Camb. Math. Tripos, Part I, 1900.)

13. Shew that the force perpendicular to the asymptote under which the curve

can be described is proportional to

<vi/(x2+y2)- 3
.

14. A particle is acted on by a force whose components (X, Y) parallel to fixed axes

are conjugate functions of the coordinates (x, y). Shew that the problem of its motion is

always soluble by quadratures.

15. If {O) be a closed orbit described by a particle under the action of a central force,

S the centre of force, the centre of gravity of the curve (C), G the centre of gravity of

the curve (C) on the supposition that the density at each point varies inversely as

the velocity, shew that the points S, 0, G are collinear and that 2SG= ZS0,

(Laisant.)

16. Shew that the motion of a particle which is constrained to move in a plane,

under a constant force directed to a point out of the plane, can be expressed by means

of elliptic functions.

17. Shew that the curves

cuc+by+c=xf[£)
>

where a, b, c are arbitrary constants and/ is a given function, can be described under the

same law of central force to the origin.

18. Shew that when a circle is described under a central attraction directed to

a point in its circumference, the law of force is the inverse fifth power of the distance.

19. A particle describes the pedal of a circle, taken with respect to any point in

its plane, under the influence of a centre of force at this point. Shew that the law

of force is of the form

A + l
jA ~ j.6 >

where A and B are constants.

Shew that the law of force is also of this form when the inverse of an ellipse with

respect to a focus is described under a centre of force in the focus. (Curtis.)

w. D. 8
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20. Prove that, if when projected from r=R, 6= with a velocity Fin a direction

making an angle a with the radius vector the path of a particle be/(r, 6, R, V, sina) = 0,

the path with the same initial conditions but under the action of an additional central

force h; is
r3

f(r,n6,R, F(ji2 sin2 <i-rC082 a)*, nsina(w2 sin2 a+cos2 a)~*)= 0,

where

n*=f~ mm 2 • (Coll. Exam.)J 72
ft

2 sin'! a

21. A particle of unit mass describes an orbit under an attractive force P to the

origin and a transverse force T perpendicular to the radius vector. Prove that the

differential equation of the orbit is given by

dH __P_ T_du dW_ T _ 3

d6^ %~Wv? h?v? d.8' dB~ -

If the attractive force is always zero, and the particle moves in an equiangular spiral

of angle a. prove that

7r
=/iJ

.2seo2 a-3 and ^= (^ sin a cos a)* r
860' a

.

(Camb. Math. Tripos, Part I, 1901.)

22. A particle, acted on by a central force towards a point varying as the distance,

is projected from a point P so as to pass through a point Q such that OP is equal to 0Q ;

shew that the least possible velocity of projection is OP(/j. sin POQ)*, where p . OP is the

force per unit mass at P. (Camb. Math. Tripos, Part I, 1901.)

23. Find a plane curve such that the curve and its pedal, with regard to some point

in the plane, can be simultaneously described by particles under central forces to that

point, in such a manner that the moving particles are always at corresponding points

of the curve and the pedal ; and find the law of force for the pedal curve.

(Camb. Math. Tripos, Part I, 1897.)

24. If f{x, y) be a homogeneous function of one dimension, then the necessary

and sufficient condition that the curve f(x,y)= l be capable of description under accele-

ration tending to the origin and varying with the distance alone, is that / be subject

to a condition of the form

dx*
+

dy*
+ y >

Hence shew that the only curves of this class are necessarily included in the equation

r(A+Bsm8+Ccos6) = \.

Proceed to the discussion of the case wherein f(x, y) is homogeneous and of n,

dimensions. (Coll. Exam.)

25. An ellipse of centre C'is described under the influence of a centre of force

at a point on the major axis of the ellipse ; shew that

nt=u—e sin u,

where 2tt/» is the periodic time, e is the ratio of CO to the semi-major axis, and « is the

eccentric angle of the point reached by the particle in time t from the vertex.

26. Two free particles p and M move in a plane under the influence of a central force

to a fixed point 0. Shew that the ratio of the velocity of the particle p at an arbitrary

point m of its path, to the velocity which is possessed at m by the central projection ofM
on the orbit of /*, is equal to the constant ratio of the areas described in unit time by the

radii Op, OM, multiplied by the square of a certain function / of the coordinates of m,

which expresses the ratio of OM, Om. (Dainelli.)
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27. A particle is moving freely in a parabola under an attraction to the focus. Shew
that, if at every instant a point be taken on the tangent through the particle, at distance

4a cos J 6/(8+ sin 8) from the particle, this point will describe a central orbit about

the focus, and the rate of description of areas will be the same as in the parabola ; where
4a is the latus rectum, and 6 the vertical angle of the particle measured from the apse

line. (Camb. Math. Tripos, Part I, 1896.)

28. When a periodic comet is at its greatest distance from the sun, its velocity

receives a small increment bv. Shew that the comet's least distance from the sun

will be increased by the quantity

4bv.{aS(l-e)liL(l+e)fi. (Coll. Exam.)

29. If POP' is a focal chord of an elliptic path described round the sun, shew that

the time from P' to P through perihelion is equal to the time. of falling towards the

sun from a distance 2a to a distance a (1+ cos a), where a= 2ir — (u' -u), and u'-u is the

difference of the eccentric anomalies of the points P, P'. (Cayley.)

30. A particle moves in a plane under attractive forces fi/rV2
,
jt/rV3 along the

radii r, r' drawn to two fixed points at distance 2d apart. Shew that, if it is projected

with the velocity due to a fall from rest at infinity, a possible path is a circle with regard

to which the two fixed centres are inverse points, and that, if the radius of this circle is a,

the periodic time is

47raV"*(a2 + d 2)*. (Coll. Exam.)

31. A heavy particle is projected horizontally with a velocity v inside a smooth

sphere at an angular distance a from the vertical diameter drawn downwards : shew that

it will never fall below or never rise above its initial level according as

v2 > or < ag sin a tan a. (Coll. Exam.)

32. A particle is projected horizontally with velocity V along the interior of a smooth

sphere of radius a from a point whose angular distance from the lowest point is a. Shew

that the highest point of the spherical surface attained is at an angular distance /3 from

the lowest point, where /3 is the smaller of the values of i^, x given respectively by

the equations

,

r
, ,„ ' . . A

.

(Coll. Exam.)
(oosx+ ooaa)V2 -2ag am'x= 0J

33. If the motion of a spherical pendulum of length a be wholly between the levels

fa, feet, below the point of support, shew that at a time t after passing a point of greatest

depth, the depth of the bob is

£a {4 -sn2 tj(13g/l4a)} (mod. V(7/65))

and that a horizontal coordinate referred to the point of support as origin is determined

by the equation

S-(g*la){-y+ lmUJ(l3gll4a)},

which is a case of Lamp's equation. (Coll. Exam.)

34. Shew that if a conical pendulum is executing small oscillations, the horizontal

projection of the bob describes an ellipse whose axes turn in the sense of the motion

with the angular velocity

where d is the angle of greatest deviation from the vertical, 6t that of least deviation,

I the length of the pendulum, and' g gravity. (Resal.)

8—2
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35. A particle is constrained to move on the surface of a sphere, and is attracted to a

fixed point M on the surface of the sphere with a force that varies as r~ 2 (d2 - r»)~* where

d is the diameter of the sphere and r is the rectilinear distance from the particle to M.

If the position of the particle on the sphere be defined by its colatitude 6 and longitude
<f>,

with Mas pole, shew that the equations of motion furnish the differential equation

sin4
\d<t>J sm2 '

where a and b are constants ; and integrate this equation, shewing that the orbit is

a sphero-conic.

36. A particle of mass m moves on the inner surface of a cone of revolution whose

semi-vertical angle is u, under the action of a repulsive force mp/r3 from the axis ; the

angular momentum of the particle about the axis being m J/j. tan a, shew that the path

is an arc of a hyperbola whose eccentricity is sec a.

(Camb. Math. Tripos, Part I, 1897.)

37. Shew that the necessary central force to the vertex of a circular cone in order

that the path on the cone may be a plane section is

±-i. (Coll. Exam.)

38. A particle of unit mass moves on the inner surface of a paraboloid of revolution,

latus rectum 4a, under the action of a repulsive force jxr from the axis, where r is the

distance from the axis ; shew that, if the particle is projected along the surface in a

direction perpendicular to the axis with velocity "Zap*, it will describe a parabola.

(Coll. Exam.)

39. A smooth surface of revolution is formed by rotating the catenary s=ctan$
about its axis of symmetry, and a particle is projected along its surface from a point

distant b from that axis with velocity A(a2+ 62)*/62 . The direction of projection is such

that the component velocity perpendicular to the axis is hjb and the particle moves in

contact with the surface, under the influence of a force of attraction A2 (?
-2+ 2a2)/r6 in the

direction of the perpendicular r to the axis. Shew that, if gravity be neglected, the

projection of the path on a plane at right angles to the axis will have a polar equation

T
c sinh. -=a8. (Coll. Exam.)

40. A particle moves on a smooth helicoid, z—acf), under the action of a force jir

per unit mass directed at each point along the generator inwards, r being the distance

from the axis of z. The particle is projected along the surface perpendicularly to the

generator at a point where the tangent plane makes an angle a with the plane of xy, its

velocity of projection being fi'a. Shew that the equation of the projection of its path on

the plane of xy is

a2\r2= sec2 a cosh2
(<p cos a) — 1

.

(Camb. Math. Tripos, Part I, 1896.)

41. Shew that the problem of the motion of a particle under no forces on a ruled

surface, whose generators cut the line of striction at a constant angle, and for which the

ratio of the length of the common perpendicular to two adjacent generators to the angle

between these generators is constant, can be solved by quadratures. (Astor.)

42. A particle (x, y, z) whose potential energy is (ax2+ by2+ cz2) is constrained to

move on the sphere x2 +y2+z2=l. Determine the motion.

(C. Neumann, Journal fiir Math. lvi. (1869), p. 46.)



CHAPTER V

THE DYNAMICAL SPECIFICATION OF BODIES

57. Definitions.

Before proceeding to discuss those problems in the dynamics of rigid

bodies which can be solved by quadratures, it is convenient to introduce and

calculate a number of constants which can be assigned to a rigid body, and
which depend on its constitution : it will .be found that these constants

determine the dynamical behaviour of the body.

Let any rigid body be considered ; and let the particles of which (from

the dynamical point of view) it is constituted be typified by a particle of

mass m situated at a point whose coordinates referred to fixed rectangular

axes are (x, y, z).

The quantity 2m (y
2 + z%

where the symbol 2 denotes a summation extended over all the particles of

the system, is called the moment of inertia of the body about the axis Ox*.

Similarly the moment of inertia about any other line is denned to be the sum
of the masses of the particles of the body, each multiplied by the square of

its perpendicular distance from the line. These summations are evidently in

the case of ordinary rigid bodies equivalent to integrations ; thus 2m (y
1 + z2

)

is equivalent to III (y* + z*) pdxdydz, where p is the density, or mass per

unit volume, of the body at the point (x, y, z).

The quantity Imxy

is called the product of inertia of the body about the axes Ox, Oy; and

similarly the quantities %myz and "Ernzx are the products of inertia about

the other pairs of axes.

For the nroments and products of inertia with reference to the coordinate

axes, the notation

A = %m(yi + z*), B=2m(z* + x2
), G= 2m (x* + f),

F= "Zmyz, G = 1,mzx, H = 'S.mxy

will be generally used.

Two bodies whose moments of inertia about every line in space are equal

to each other are said to be equimomental. It will be seen later that this

involves also the equality of the products of inertia of the bodies with respect

to any pair of orthogonal lines.

* Moments of inertia were first introduced by Huygens in his researches on the pendulum

(Horolog. oscill., 1673). The name is due to Euler.
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If M denotes the mass of a body and if k is a quantity such that Mk* is

equal to the moment of inertia of the body about a given line, the quantity

k is called the radius of gyration of the body about the line.

In the case of a plane body, the moment of inertia about a line perpen-

dicular to its plane is often spoken of as the moment of inertia about the

point in which this line meets the plane.

58. The moments of inertia of some simple bodies*

(i) The rectangle.

Let it be required to find the moment of inertia of a uniform rectangular

plate, whose sides are of lengths 2a and 26 respectively, about a line through

its centre parallel to the sides of length 2a. Taking this line as axis Ox,

and a line through parallel to the other sides as axis Oy, the required

moment of inertia is

Imy*, or I I ay^dxdy,
J -bJ —a

where a is the mass per unit area of the plate, or the surface-density as it is

frequently called ; evaluating the integral, we have for the required moment

of inertia

f<ra6
3
, or Mass of rectangle x $b\

The moment of inertia of a uniform rod, about a line through its middle

point perpendicular to the rod, can be deduced from this result by regarding

the rod as the limiting form of a rectangle in which the length of one pair

of sides is indefinitely small. It follows that the moment of inertia in

question is

of rod x £6
2
,

where 26 is the length of the rod.

(ii) The rectangular block.

Consider next a uniform rectangular block whose edges are of lengths 2a,

26, 2c; let it be required to find the moment of inertia about an axis Ox

passing through the centre and parallel to the edges of length 2a. This

moment of inertia is

ra rb fc
Sm(2/2 + ^), or p(y* + z*)dzdydx,

J -aJ -b.' —c

where p is the density. Evaluating the integral, we have for the moment of

inertia

^~ (6
2 + c2), or Mass of block x £ (6

a + c2).

* For practical purposes the moments of inertia of a body are determined experimentally
;

'

convenient apparatus is described by W. H. Derriman, Phil. Mag. v. (1903), p. 648, and by

W. E. Cassie, Phys. Soc. Proc. xxi. (1909), p. 497.
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(iii) The ellipse and the circle.

Let it now be required to find the moment of inertia of a uniform elliptic

plate whose equation is

a? ^ 62
*

about the axis of x. It is

ra r a

I I a-y2dydx, where a is the surface-density.
•/

-°-^(o»-»»)i
a '

Evaluating the integral, we have for the required moment of inertia

i7r<z&
3
<7, or Mass of ellipse x £62

.

The moment of inertia of a circle of radius b about a diameter is therefore

Mass of circle x \b2
.

(iv) The ellipsoid and the sphere.

The moment of inertia of a uniform solid ellipsoid of density p, whose

equation is

x2 f z* ,

about the axis of x is similarly

1 1 \p (y* + z2
) dxdydz, integrated throughout the ellipsoid.

To evaluate this integral, write

x = a%, y =K z = c%,

where £, rj, t, are new variables : the integral becomes

pab'c llJy*d%dT)di;+ pabc3 jjkzd^drid^

where the integration is now taken throughout a sphere whose equation is

P + 77
2 + £

2 =l.
Since the integrals

fff^d%dv dZ, jJjtfdZdrjdZ, and jjf?d%dv di;

are evidently equal, the required moment of inertia can be written in the

form

pabc (b2 + c2

)Jfh
2d£dv d£,

or -rrpabc (A» + c2) j
*

|
2
(1 - £«).#,

or ^irpabc^ + c
2
),

or Mass of ellipsoid x A (6
2 + c2

).
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The moment of inertia of a uniform sphere of radius a about a diameter

is therefore

Mass of sphere x fa2
.

(y) The triangle.

Let it now be required to find the moment of inertia of a uniform

triangular plate of surface-density a, with respect to any line in its plane

;

the position of the line can be specified by the lengths a, /3, 7 of the per-

pendiculars drawn to it from the vertices of the triangle.

Taking (x, y, z) to be the areal coordinates of a point of the plate, the

perpendicular distance from this point to the given line is (ax + f3y + yz), and

the required moment of inertia is therefore

a jj(ax + Py + yzfdS,

where dS denotes an element of area of the plate.

Now if Y denotes the length of the perpendicular from the point (x, y, z)

on the side c of the triangle, and if X denotes the length intercepted on the

side c between the vertex A and the foot of this perpendicular, we have

Y= zb sin A

and X sin A — Fcos A = perpendicular from (x, y, z) on the side b

= yc sin A.

We have therefore

dydz = A^4l dXdY = T-i-j- dXdY = i- dS," o(X, Y) be sin A 2A

where A denotes the area of the triangle. Hence the integral I ly'dS, where

the integration is extended over the area of the triangle, can be written in

the form 2A I ly^dydz, where the integration is extended over all positive

values of y and z whose sum is less than unity : this is equal to

2&j
1

f(l-y)dy,

or £A. By symmetry, the integrals 1 1 a?dS and 1 1 z'dS have the same value,

and a similar calculation shews that the integrals

jfysdS, fjzxdS, (fxydS

each have the value ^ A.
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Substituting these values in the integral a I l(ax + 0y + yz)2 dS, the

moment of inertia of the triangle about the given line becomes

£o-A (a2 + /3
2 + 7

2 + £7 + 7a + a/3),

i x Mass of triangle x {(*+*)' + (* + «)' + (^J] .

But this expression evidently represents the moment of inertia about the

given line of three particles situated respectively at the middle points of the

sides of the triangle, the mass of each particle being one-third the mass of

the triangle; the triangle is therefore equimomental to this set of three

particles.

Example. Shew that a uniform solid tetrahedron of mass M is equimomental to a set

of five particles, four of which are each of mass -£$M and are situated at the vertices

of the tetrahedron, while the fifth particle is at the centre of gravity of the tetrahedron

and is of mass %M.

59. Derivation of the moment of inertia about any axis when the moment

of inertia about a parallel axis through the centre of gravity is known.

The moments of inertia found in the preceding article were for the most

part taken with respect to lines specially related to the bodies concerned:

these results can however be applied to determine the moments of inertia of

the same bodies with respect to other lines, by means of a theorem which will

now be given.

Let f(x, y, z, x, y, z, x, y, z) be any polynomial (not necessarily homo-

geneous) of the second degree in the coordinates and the components of

velocity and acceleration of a particle of mass m. Let (x, y, z) denote the

coordinates of the centre of gravity of a body which is formed of such particles,

and write

x = x + cc1 , y = y + yi, z=z + z^

If now we substitute these values for x, y, z, respectively, in the function /,

we obtain the following classes of terms

:

(1) Terms which do not involve xlt ylt z1 : these terms together evidently

§ive ,, ., , , _ ,,

fix, y, z, x, y, z, x, y, z).

(2) Terms which do not involve x,y,z: these terms give

/0»i, Vi, *i, %» $u *i, *i. y\> *i)-

(3) Terms which are linear in xx , yu zlt xu ylt zu x1 , y\, z1 ; when the

expression %mf(x, y, z, x, y, z, x, y, z) is formed, the summation being taken

over all the particles of the body, these terms will vanish in consequence of

the relations

XmoOi = 0, 2myi = 0, Smsj = 0.
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We have therefore the equation

%mf{x, y, z, x, y, z, x, y, z) = tmf{xly yu zly xu yx , zx , Si„ yu z
x)

+f(x, y, z, x, y, z, x, y, z) . 1m,

and consequently the value of the expression 2m/, taken with respect to

any system of coordinate axes, is equal to its value taken with respect to a

parallel set of axes through the centre of gravity of the body, together with

the mass of the body multiplied by the value of the function / at the centre

of gravity, taken with respect to the original system of axes.

From this it immediately follows that the moments and 'products of inertia

of a body with respect to any axes are equal to the corresponding moments and

products of inertia, with respect to a set of parallel axes through the centre of

gravity of the body, together with the corresponding moments and products

of inertia, with respect to the original axes, of a particle of mass equal to that

of the body and placed at the centre of gravity.

As an example of this result, let it be required to determine the moment of inertia

of a straight uniform rod of mass M and length I about a line through one extremity

perpendicular to the rod. It follows from the last article that the moment of inertia

about a parallel line through the centre of the rod is \M\^\ ; and hence, applying the

above result, we see that the required moment of inertia is

or ^Ml\

60. Connexion between moments of inertia with respect to different sets of

axes through the same origin.

The result of the last article enables us to find the moments of inertia of

a given body with respect to any set of axes, when the moments of inertia

are already known with respect to a set of axes parallel to these. We shall

now shew how the moments of inertia of a body with respect to any set of

rectangular axes can be found when the moments of inertia are known with

respect to another set of rectangular axes having the same origin.

Let A, B, G, F, G, H be the moments and products of inertia with respect

to a set of axes Oxyz, and let Ox'y'z' be another set of rectangular axes

having the same origin ; the direction-cosines of either set of axes with

respect to the other will be supposed to be given by the scheme

h
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If the moments and products of inertia with respect to the axes Ox'y'z'

are denoted by A', B', C, F', 0', H', we have

A' = 2m (y* + z'% where the summation is extended over all the particles of

the body,

= 2m {(l2x + m2y + w„s)s + (l3x + in3y + n3zj)

= 2m {#
2
(Z2

2 + I*) + f (m2
2 + mf) + z* (n2

2 + nf) + 2yz (m2w2 + m3n3 )

+ ±zx (n2l2 + n3l3) + 2xy (l2m2 + l3m3)}

= 2m {of (mi> + n?) + y
2 (nf + If) + z2

(If + m?) - 2m1n1yz - 2r4Yzx - 2l^m^xy\

= 2m {If (y* + z*) + m,! (z* + x>) + nf (*
2 + y

2
) - 2m1n1yz - 2n^zx - U^m^xy]

= Alf+Bmf + Gnf-2Fm1n1 -2Gn1l1 -2Hl1m1 ,

and similarly

B' = ^1Z2
2 + Bmf + Gnl - 2Fm2n2

- 2Gn2l2
- 2Hl2m2 ,

C = Alf + Bmf + Gnf - 2Fmsns
- 2Gn 3l3

- 2Hl3ms .

We have also

F' = tmy'z'

= 2m (l^x + m2y + n2z) (l3x + m3y + n^)

= l2l3 . 2m#a + m2m3 . Imy2 + n2ns . 2m^2 + (m2n3 + msn2) . 2,myz

+ (n2l3 + n3l2) . Xnizx + (l2m3 + l3m2) . "Zmxy

= %kl3 (B + G-A) + $m2ms (C+A -B) + £?i2n3 (,4 + B-G)
+ (m2n3 + m3w2) F + (n.2l3 + n3l2) G + (l2m3 + l3m2) H,

or

— F'= AIJLS +Bm2m3 + Gn 2n 3
— ^(m^ + m3n2) — G (l3n2 + l2n3)

- H(l2m3 + lsm2),

and similarly

— G' = Alb + Bm3m x + Gn^ — ^(m^ + m^) — G {ljn3 + l3nf) — H(l3m1 + Zim3),

— H'= AIJ,^ + Bm-{m2 + Gnji2
— F(m1n2 + m2n^) — G (72% + hn2)

— H (lxm2 + l2m^).

The quantities A', B', G', F', G', H' are thus determined; these results,

combined with those of the last article, are sufficient to determine the

moments and products of inertia of a given body with respect to any set of

rectangular axes when the moments and products of inertia with respect to

any other set of rectangular axes are known.

Example. If the origin of coordinates is at the centre of gravity of the body, prove

that the moments and products of inertia with respect to three mutually orthogonal

and intersecting lines whose coordinates are

(lu mu ni, Xi, m, »i), (h, m 2 , n2 , X2 ,
/i2 > "2)1 fe m3, n3, X3 , f»3, v3)

are A'+MiX^+ fi^+vi2
)
etc. and F' -M (A2X3 +/*2 A'3 + v2i'3) eta

'

where A', B', C, F', O', H' have the same values as above and M is the mass of the

body. (Coll. Exam.)
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61. The principal axes of inertia ; Cauchy's momental ellipsoid.

If now we consider the quadric surface whose equation is

Ax* + By3 + Cz* - 2Fyz - 2Gzx - 2Hxy = 1,

where A, B, C, F, 0, H are the moments and products of inertia of a given

body with respect to the axes of reference Oxyz, it follows from the equation

A' = Al? + Bm? + Cn? - 2Fm1 n1
- 2GnJ, - 2Hlxmx ,

that the reciprocal of the square of any radius vector of the quadric is equal

to the moment of inertia of the body about this radius. The quadric is

therefore the same whatever be the axes of reference provided the origin

is unchanged, and consequently its equation referred to any other rectangular

axes Ox'y'z having the same origin is

A't* + By + C'z* - 2F'y'z' - 2G'z'x' - 2H'x'y' = 1

;

where A', B', C, F', G', H' are the moments and products of inertia with

respect to these axes.

This quadric is called the momental ellipsoid of the body at the point ;

its principal axes are called the principal axes of inertia of the body at ;

the equation of the quadric referred to these axes contains no product-terms,

and therefore the products of inertia with respect to them are zero: and

the moments of inertia with respect to these axes are called the principal

moments of inertia of the body at the point *

The momental ellipsoid is also called the ellipsoid of inertia ; its polar reciprocal with

regard to its centre is another ellipsoid, which is sometimes called the ellipsoid of gyration.

Example. The height of a solid homogeneous right circular cone is half the radius

of its base. Shew that its momental ellipsoid at the vertex is a sphere.

62. Calculation of the angular momentum of a moving rigid body.

We shall now shew how the angular momentum of a moving rigid body

about any line, at any instant of its motion, can be determined.

Let M be the mass of the body, (x, y, z) the coordinates of its centre of

gravity G, and (u, v, w) the components of velocity of the point G, at the

instant t, resolved along any (fixed or moving) rectangular axes Oxyz whose
origin is fixed; and let (a>„ g>2 , o>3) be the components of the angular

velocity of the body about G, resolved along axes Gxx y-,zu parallel to the axes

Oxyz and passing through G. Let m denote a typical particle of the body,

and let (x, y, z) be its coordinates and (u, v, w) its components of velocity at

the instant t ; and write

x = x + xu y = y + yu z = z + zlt

M = M+Mi, V=V+Vlt W = W + W1 ,

* The existence of principal axes was discovered by Euler, M£m. de Berl., 1750, 1758, and by
J. A. Segner, Specimen Th. Turbinum, 1755. The momental ellipsoid was introduced by Cauchy
in 1827, Exerc. de math. i. p. 93.
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so in virtue of the properties of the centre of gravity we have

'%mx1
= 0, Xmy1

= 0, Imz-, = ;

moreover since (§ 17) we have

Mj - zlm2 — 2/jtBs, v1 = x1 a>3 — zl m l , w1
= t/jW, — x1 o}2 ,

it follows that

Srowj = 0, Sm^j = 0, %mwx
= 0.

If A3 denotes the angular momentum of the body about the axis Oz, we
have therefore '

h3
= %m (xv — yu)

= 2m {(x + x,) (v + v,) -(y + y,) (u + u,)}

= %m (xv — yu) + 2m (x^ - y^)
= M(xv- yu) + 2m (x?a,3

- x1z1 o> 1
- y^w2 + y^a>3)

= M (xv — yu) — 0(0^ — Fw2 + Ca>3 ,

where A, B, G, F, G, H are the moments and products of inertia of the body
with respect to the axes Gx^y^.

Similarly the angular momenta about the axes Ox and Oy respectively

are

Aj = M (yw — zv) + Aa)! — Ha>2
- Ga>3 ,

Ki =M (zu — xw) — Hooj + Ba>2
— Fa>s .

The angular momentum about any other line through the origin can be

found (§ 39) by resolving these angular momenta along the line in question.

Corollary. If the body is constrained to turn round one of its points,

which is fixed in space, it is unnecessary to introduce the centre of gravity.

For let («*!, g>2 , (»3) be the components of the angular velocity of the body

about the fixed point with respect to any rectangular axes (fixed or moving)

which have the fixed point as origin, and let A, B, G, F, G, H denote the

moments and products of inertia with respect to these axes. The com-

ponents of velocity (u, v, w) with respect to these axes of a particle m whose

coordinates are (%, y, z) are (§ 17)
*

u = zwc, — ya>3 , v = xa>3
— zwx , w = yw1

— xw2 ,

and the angular momentum about the axis of z, which is 2m (xv — yu), can

therefore be written in the form

2m (x*c03
— xzmx

— yzw2 + y
2^)

or — (?<»! — Fa>2 + Gw3 .

Similarly the angular momenta of the body about the axes of x and y
respectively are

Aw 1
— Hu>2

— G(os

and — Hwi + Bm 2
- Fw3 .
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63. Calculation of the kinetic energy of a moving rigid body.

The kinetic energy of a rigid body which is in motion can be calculated

in the same way as the angular momenta. If the general theorem obtained

in § 59 is applied to the case in which the polynomial /(#, y, z, x, y, z, x, y, z)

has the form (a? + y
i + z"), we immediately obtain the result that the kinetic

energy of a moving rigid body of mass M is equal to the kinetic energy of a

particle of mass M which moves with the centre of gravity of the body, together

with the kinetic energy of the motion of the body relative to its centre of

gravity.

To determine the kinetic energy of the motion of the body relative to its

centre of gravity G, take any rectangular axes (whose directions may be fixed

or moving) having their origin at G; let (a>1( a>2 , a>3) be the components of

the angular velocity of the body about G, relative to these axes, and let

(x, y, z) denote the coordinates of a typical particle m of the body referred

to these axes. The components of velocity of the particle parallel to these

axes, in the motion relative to G, are (§ 17)

za>2 — yw3 , xa>3
— Z(o1 , ya>i — X(o2 ,

and therefore the kinetic energy of the motion relative to the centre of

gravity is

\ %m \{zto2 — ya>3f + (xeo 3
- zco^f + ( yaY

— asm,,)*},

or £ (Acof + Ba>2
2 + CW - 2F<o2wa

- 2Ga>3 a>1 - 2if«1 a>2),

where A, B, G, F, G, H are the moments and products of inertia relative to

the axes.

This expression may (by use of §60) be interpreted as half the square

of the resultant angular velocity of the body in the motion relative to the

centre of gravity, multiplied by the moment of inertia of the body about

the instantaneous axis of rotation in this motion.

Corollary. If one of the points of the body is fixed in space, it is not

necessary to introduce the centre of gravity. For let (a>lt o>2 , ma) denote the

components of angular velocity of the body about the fixed point resolved

along any rectangular axes (fixed or moving) Oxyz which have the point

as origin, and let (x, y, z) be the coordinates of a typical particle m of the

body referred to these axes. The components of velocity of the particle

are (§ 17)
zw2

— ya>3 , xa>3
— za>i, ya>

x
— xa>2 ,

and so as before we see that the kinetic energy of the motion is

\ (Aw? + Bu>} + Ca>3
2 - 2Fco2m3

- 2£ws t»1 - 2H<o1 a>2),

where A, B, C, F, G, H denote the moments and products of inertia of the

body with respect to the axes Oxyz.
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From this it follows that if one of the coordinate axes—say the axis of x

—is the instantaneous axis of rotation of the body, the kinetic energy is

J-dtBj2
; and hence, since the directions of the axes can be arbitrarily chosen,

the kinetic energy of any body moving about one of its points, which is fixed,

is $Im2
, where / is the moment of inertia of the body about the instantaneous

axis of rotation, and m is the angular velocity of the body about this axis.

Example. A lamina can turn freely about a horizontal axis in its own plane, and the

axis turns about a fixed vertical line, which it intersects. If
<f>

be the azimuth of the.

horizontal axis, and if? the inclination of the plane of the lamina to the vertical, shew that

the kinetic energy is

IA ( <j>
2 + <£

2 sin2
ifr) + 1Bfi+ H^i> cos ^,

where A, B, .ffare the moments and product of inertia of the lamina about the horizontal

axis and a perpendicular to it at the point of intersection with the vertical. (Coll. Exam.)

64. Independence of the motion of the centre of gravity and the motion

relative to it.

The result of the last article shews that the kinetic energy of a moving

body can be regarded as consisting of two parts, of which one depends on the

motion of the centre of gravity and the other is the kinetic energy of the motion

relative to the centre of gravity. We shall now shew that these, two parts of

the motion of the body can be treated quite independently of each other*-

Let a rigid body of mass M be in motion under the influence of any

forces. As coordinates defining its position we can take the three rectangular

coordinates (x, y, z) of its centre of gravity G, relative to axes fixed in space,

and the three Eulerian angles (6, <£, yjr) which specify the position, relative

to axes fixed in direction, of any three orthogonal lines, intersecting in G,

which are fixed in the body and move with it. The kinetic energy is therefore

r= \m (a? + f + i2
) +/(&, <£, +, e, 4, ^),

where f(6, j>, ty, 6, <£, $•) denotes the kinetic energy of the motion relative

to G.
*

Let Xlx + Yly + Zlz+'%l6 + <bl$ + 'V^r

denote the work done on the body by the external forces in an arbitrary dis-

placement (&», Sy, Sz, SO,
8<f>,

St|t) of the body. The Lagrangian equations of

motion are

Mx = X, My=Y, Mz = Z,

dt \deJ d0

dt \d^J df

* Euler, Scientia navalis, i. (1749), § 128.
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The first three of these equations shew that the motion of the centre of

gravity of the body is the same as that of a particle of mass equal to the whole

mass of the body, under the influence offorces equivalent to the total external

forces acting on the body, applied to the particle parallel to their actual

directions ; since the work done on such a particle in an arbitrary displace-

ment would evidently be X Bx + YBy + ZBz.

The second three equations shew that the motion of the body about its

centre of gravity is the same as if the centre of gravity were fixed and the body

subjected to the action of the same forces ; for in the motion relative to the

centre of gravity, the kinetic energy of the body is f(0, <j>, yjr, 8,
<f>,

$•), and

the work done by the forces in an arbitrary displacement is

©50 + <J>S0 + WBf.

These results are evidently true also for impulsive motion.

Corollary. If a plane rigid body (e.g. a disc of any shape) is in motion in

its plane, and if (x, y) are the coordinates of its centre of gravity, M its mass,

6 the angle made by a line fixed in the body with a line fixed in the plane,

Mk2 the moment of inertia of the body about its centre of gravity, and if

(A
r

, Y) are the total components parallel to the axes of the external forces

acting on the body, and L the moment of the external forces about the centre

of gravity, then the kinetic energy is

\M (a;
2 + f + k*d%

and the work done by the external forces in a displacement (Bx, By, $6) is

XBx + Y8y+LB0,

and therefore the equations of motion of the body are

Mx=X, My = Y, Mk*6 = L.

Example. Obtain one of the equations of motion of a rigid body in two dimensions in

the form
M{Pf+m)=L,

where M is the mass of the body, / is the acceleration of its centre of gravity, p is the

perpendicular from the origin upon this vector, Mk1 is the moment of inertia about the

origin, 6 is the angle made by a line fixed in the body with a line fixed in its plane, and L
is the moment about the origin of the external forces. (Coll. Exam.)
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Miscellaneous Examples.

1. A homogeneous right circular cone is of mass M; its semi-vertical angle is /3, and
the length of a slant side js I. Shew that its moment of inertia about its axis is

^jM2 sin2 ft

and that its moment of inertia about a line through its vertex perpendicular to its axis is

§M2 (l-f sin2
0),

and its moment of inertia about a generator is

§M2 sin2 /3(cos2 i3+ £).

2. Shew that the moment of inertia of the area enclosed by the two loops of the

lemniscate

r2= a2 cos 2d
about the axis of the curve is

(3ff-8)a2
,~— x mass of area.

48

3. Any number of particles are in one plane; if the masses are »?,, ra2 , ..., their

distances apart d12 , ..., the relative descriptions of area hxi , ..., and the relative velocities

ru , ..., prove that

{Im-yrn^di^)
j
'2m, (2OT1m2A12)/2m, (2m1 wi2 "i2

i!)/22OT

are respectively the moment of inertia about the centre of inertia, the angular momentum
about the centre of inertia, and the kinetic energy relative to the centre of inertia.

(Coll. Exam.)

4. Prove that the moment of inertia of a hollow cubical box about an axis through

the centre of gravity of the box and perpendicular to one of the faces is

where M is the mass of the box and 2a the length of an edge. The sides of the box are

supposed to be thin. (Coll. Exam.)

5. Shew that the moment of inertia of an anchor-ring about its axis is

2wpWc(c2 + $a?),

where a is the radius of the generating circle, c is the distance of its centre from the axis

of the anchor-ring, and p is the density.

6. Shew how to find at what point, if any, a given straight line is a principal axis of a

body, and if there is such a point find the other two principal axes through it.

A uniform square lamina is bounded by the axes of x and y and the lines x=2c, y= 2c,

and a corner is cut off it by the line x/a+y/b= 2. Shew that the two principal axes at

the centre of the square which are in its own plane are inclined to the axis of x at angles

given by

„„ ab — 2e (a+6)+3c2
in ,. _ .

tan 26= -=
,, \h o\ • (

ColL Exam-)

\a—b) (a+ b — 2c)

7. Shew that the envelope of lines in the plane of an area about which that area has a

constant moment of inertia is a set of confocal ellipses and hyperbolas. Hence find the

direction of the principal axes at any point. (Coll. Exam.)
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8. Find the principal moments of inertia at the vertex of a parabolic lamina, latus

rectum 4a, bounded by a line perpendicular to the axis at a distance h from the vertex.

Prove that, if 15A>28<z, two principal axes at the point on the parabola whose abscissa

is _ a + (a2 _ 4a^/5 + 3A2/7)4 are the tangent and normal. (Coll. Exam.)

9. Find how the principal axes of inertia are arranged in a plane body. Write down

the conditions that particles m4 at (xu y{), where t=l, 2, ..., may be equimomental to a

given plate. Shew that the six quantities mu m2 , X\, x2 , yu Vi can be eliminated from

these conditions.

If three equal particles are equimomental to a given plate, the area of the triangle

formed by them is 3^/3/2 times the product of the principal radii of gyration at the

centre of gravity. (Coll. Exam.)

10. A uniform lamina bounded by the ellipse bV+ a?y2=a2bi has an elliptic hole

(semi-axes c, d) in it whose major axis lies in the line x=y, the centre being at a

distance r from the origin
;
prove that if one of the principal axes at the point (x, y)

makes an angle 6 with the axis of x, then

8abxy - cd [4 (x J% - r) (y j2-r)- (c2 - cP)}

~
ab [4 (.r> - y

2
) + a1 - ¥] - cd [2 (x J% - rf - 2 (y JH - r)!]

'

(Coll. Exam.)

11. If a system of bodies or particles is moved or deformed in any way, shew that

the sum of the products of the mass of each particle into the square of its displacement

is equal to the product of the mass of the system into the square of the projection in any

given direction of the displacement of the centre of gravity, together with the sum of the

products of the masses of the particles into the squares of the distances through which

they must be moved in order to bring them to their final positions after communicating

to them a displacement equal to the projection in the given direction of the displacement

of the centre of gravity. (Fouret.)

12. The principal moments of inertia of a body at its centre of gravity are (A, B, V)
;

if a small mass, whose moments of inertia referred to these axes are (A\ B', C"), be added

to the body, shew that the moments of inertia of the compound body about its new

principal axes at its new centre of gravity are

A+A.', B+ B', C+C,
accurately to the first order of small quantities. (Hoppe.)

13. Shew that the principal axes of a given material system at any point are the

normals to the three quadrics which pass through the point and belong to a certain

confocal system.

If (I, m, n, X, fi, v) be the six coordinates of a principal axis and the associated

Cartesian system be the principal axes at the centre of gravity, then shew that

Al\+ Bmji + Cnv= 0,

and therefore all principal axes of a given system belong to a quadratic complex.

(Coll. Exam.)

14. A smoothly jointed framework is in the form of a parallelogram formed by

attaching the ends of a pair of rods of mass m and length 2a to those of a pair of rods of

mass m and length 26. Masses M are attached to each of the four corners. Express the

angular momentum of the system about the origin of coordinates, in terms of the

coordinates (x, y) of the centre of gravity and the angles 8 and <j> between the two pairs of

sides and the axis of x. (Coll. Exam.)



CHAPTEE VI

THE SOLUBLE PROBLEMS OF RIGID DYNAMICS

65. The motion of systems with one degree of freedom : motion rownd

a fixed axis, etc.

We now proceed to apply the principles which have been developed in

the foregoing chapters in order to determine the motion of holonomic systems

of rigid bodies in those cases which admit of solution by quadratures.

It is natural to consider first those systems which have only one degree of

freedom. We have seen (§ 42) that such a system is immediately soluble by

quadratures when it possesses an integral of energy: and this principle is

sufficient for the integration in most cases. Sometimes, however (e.g. when
we are dealing with systems in which one of the surfaces or curves of con-

straint is forced to move in a given manner), the problem as originally formu-

lated does not possess an integral of energy, but can be reduced (e.g. by the

theorem of § 29) to another problem for which the integral of energy holds

;

when this reduction has been performed, the problem can be integrated as

before.

The following examples will illustrate the application of these principles.

(i) Motion of a rigid body round a fixed axis.

Consider the motion of a single rigid body which is free to turn about an axis, fixed in

the body and in space.' Let i" be the moment of inertia' of the body about the axis, so that

its kinetic energy is %I8\ where 8 is the angle made by a moveable plane, passing through

the axis and fixed in the body, with a plane passing through the axis and fixed in space.

Let e be the moment round the axis of all the external forces acting on the body, so that

Q86 is the work done by these forces in the infinitesimal displacement which changes 8 to

6+ 88. The Lagrangian equation of motion

dt\ dg) de-

then gives 16=Q,

which is a differential equation of the second order for the determination of 8.

9—2
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If the forces are conservative, and V(8) denotes the potential energy, this equation

becomes

fa- -^Ie- de
'

which on integration gives the equation of energy

£ IS 2+ V (6)= c, where c is a constant.

Integrating again, we have

t = /* [{2 (c- V)} "%d8+ constant,

and this relation between 6 and t determines the motion, the two constants of integration

being determined by the initial conditions.

The most important case is that in which gravity is the only external force, and the

axis is horizontal. In this case let O be the centre of gravity of the body, G the foot of

the perpendicular drawn from G to the axis, and let CO= h. The potential energy is

— Mgh cos 8, where M is the mass of the body and 8 is the angle made by CO with the

downward vertical : and the equation of motion is

S+*J2*sin«=o.

This is the same as the equation of motion of a simple pendulum of length IjMh, and

the motion can therefore be expressed in terms of elliptic functions as in § 44, the solution

being of the form

sin -=£sn
j
(-jP) (t-t ), k\

in the oscillatory case, and of the form

si4=sn
fi(¥) (*-«»*}

in the circulating case. The quantity IjMh is called the length of the equivalent simple

pendulum.

If be a point on the line CO such that OC=IjMh, the points and C are called

respectively the centre of oscillation and the centre of suspension. A curious result in this

connexion is that the centre of oscillation and the centre of suspension are convertible,

i.e. if is the centre of oscillation when C is the centre of suspension, then C will be

the centre of oscillation when is the centre of suspension. To prove this result, we

have by § 59

Moment of inertia of the body about 0=Moment of inertia about O +M. GO 1

=I-M.CG*+ M.GO\
and therefore we have

Moment of inertia of body about I- Mh?+M {IjMh - hf
Distance of centre of gravity from 6

~~
1/Mh - h

=Mh+M(I/Mh-h)

= I\h.

If therefore the body were suspended from 0, the equation of motion would still be

8+^ ain8=0,

which establishes the result. It is evident that the period of oscillation would be the

same about either of the points Cand 0.
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(ii) Motion of a rod on which an insect is crawling.

We shall next study the motion of a straight uniform rod, of mass m and length 2a,
whose extremities can slide on the circumference of a smooth fixed horizontal circle of
radius c

;
an insect of mass equal to that of the, rod is supposed to crawl along the rod at

a constant rate v relative to the rod.

Let 8 be the angle made by the rod at time t with some fixed direction, and let x be
the distance traversed by the insect from the middle point of the rod. The kinetic

o2—3-
J
6\ and the kinetic energy of the insect is due to

a component of velocity {x - (c2 - a2)* 8} along the rod and a component of velocity x8
perpendicular to the rod, so the total kinetic energy of the system is

T=\m [c2 - ^- \ 6* + \m {x - (c2 - a2)* 0}
2+imx282

;

there is no potential energy.

Since x=vt, (t being measured from the epoch when x is zero), we have

T= \m(c2- 2a2
/3) 82 +\m {v - (c2 - a2)* 6f+ \mv2f82

.

The coordinate 8, which is now the only coordinate, isignorable, and we have therefore

dT
—r= constant,
de

or m (c2 - -|- j 8 -m (c2 - a2)* {v- (c2 - a2)* 6} +mvH2e= constant,

or 6 (2e*-%a2 + vH2
) = constant.

Integrating this equation, we have

6 - 8 = h arctan {vt (2c2 - fa2 ) "\
where 8 and k are constants. This formula determines the position of the rod at any time.

(iii) Motion of a cone on a perfectly rough inclined plane.

Consider now the motion of a homogeneous solid right circular cone, of mass M and
semi-vertical angle /3, which moves on a perfectly rough plane (i.e. a plane on which only

rolling without sliding can take place) inclined at an angle a to the horizon. Let I be the

length of a slant side of the cone, and let 8 be the angle between the generator which is

in contact with the plane at time t and the line of greatest slope downwards in the plane.

Then if x De the angle made by the axis of the cone with the upward vertical, x is one

side of a spherical triangle whose vertices represent respectively the normal to the plane,

the upward vertical, and the axis of the cone ; the other two sides are a and Qw — /3), the

angle included by these sides being (n - 8). We have therefore

cos x= cos a sm /S — sm « cos /3 cos 8 ;

but the vertical height of the centre of gravity of the cone above its vertex is \l cos /3 cos x<

and the potential energy of the cone is Mg x this height ; if therefore we denote by V the

potential energy of the cone, we have (disregarding a constant term)

Y= - fMgl sin a cos2
/3 cos 8.
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We have next to calculate the kinetic energy of the cone ; for this the moments of

inertia of the cone about its axis and about a line through the vertex perpendicular to the

axis are required : these are easily found (by direct integration, regarding the cone as

composed of discs perpendicular to its axis) to be fsMP sin2
/3 and §i/7

2 (cos2 /3+ Jsin2
j3)

respectively, and so the moment of inertia about a generator is, by the theorem of § 60

(since the direction-cosines of the generator can be taken to be sin j3, 0, cos /3 with respect

to rectangular axes at the vertex, of which the axis of z is the axis of the cone),

§MP (cos2 + i sin2 0) sin2 P+^Ml2 sin2 cos2 0,

or ajft2 sin2 /3(cos2 /3 + i).

Now all points of that generator which is in contact with the plane are instantaneously

at rest, since the motion is one of pure rolling, and therefore this generator is the

instantaneous axis of rotation of the cone. If a> denotes the angular velocity of the

cone about this generator, the kinetic energy of the cone is therefore (§ 63, Corollary)

fM2 sin2 /3(cos2 /3 + i)(B
2

.

But (§ 15) we have
<o= 0cot0,

and substituting this value for o>, we have finally for the kinetic energy T of the cone

the value

T= IMl
2 cos2 (cos2 + £) 8K

The Lagrangian equation of motion

dt\ffl) dd~ d6

becomes therefore in this case

\Ml2 cos2 /3 (cos2 +\) 8+%Mgl sin a cos2 sin 6= 0,

T
J(coss

0-ri)

This is the same as the equation of motion of a simple pendulum of length

I cosec a (cos2 + J)

;

the integration can therefore be effected in terms of elliptic functions, as in § 44.

(iv) Motion of a rod on a rotating frame.

Consider next the motion of a heavy uniform rod, whose ends are constrained to move

in horizontal and vertical grooves respectively, when the framework containing the grooves

is made to rotate with constant angular velocity to about the line of the vertical groove.

Let 2a be the length of the rod, M its mass, and 8 its inclination to the vertical.

By § 29, the effect of the rotation may be allowed for by adding to the potential energy

a term

- \a>2p I x1 sin2 6dm,

where p is the density of the rod and x denotes distance measured from the end of the rod

which is in the vertical groove ; integrating, this term can be written

-fifa>2a2 sin2 0.

The term in the potential energy due to gravity is

— Mga cos 6,

and the total potential energy V is therefore given by the equation

V= - Mga cos 6 - \ M«?o? sin2 6.
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The horizontal and vertical components of velocity of the centre of gravity of the rod

are a sin 8 . 8 and a cos 8 . 8, so the part of the kinetic energy due to the motion of the

centre of gravity is \Ma?82
; and since the moment of inertia of the rod about its centre

is I Ma?, the part of the kinetic energy due to the rotation of the rod about its centre

is %MaW; we have therefore for the total kinetic energy T the equation

T=\Ma?e\
The integral of energy is therefore

|Ma28 2 - Mga cos 8 - \ Mafia? sin 2 8= constant,

or, writing cos 8=x,

*-<!-**){.-(.—
?!„)),

where e denotes a constant : this constant must evidently be positive, since A? and (1 -a;2
)

are positive. We shall suppose for denniteness that c is not very large and that 3g/4aa?

is less than unity, so that x oscillates between the values 'igjiaafi ± eja.

To integrate this equation, we write*

x=l+—
?+ 8a 12 64aV^12

where | is a new dependent variable. Substituting this value for x in the differential

equation, we have

l
2=4(|-ei)(?-e2)(|-«3),

where the values

l= «i. £= e2 ,
£=e3

correspond respectively to the values

3# € Sg
,

€

4aa>2 a> Aaa2
a>

it is easily seen that ei+e2+ e3 is zero and that e1>e2>e3 .

We have therefore £=@ {t + y), where the function @ is formed with the roots eu et , e3 ,

and where y denotes a constant. Since e
1
>e2>e3 , and $> (t+y) lies between en and e3 for

real values of * (since x lies between 3#/4tta>2 - f/w and 3g/4aa>2 + c/«>), the imaginary part of

the constant y must be the half-period a3 ; the real part of y can then be taken as zero,

since it depends only on the choice of the origin of time. We have therefore

£= $>(t+m3),

and hence

this equation determines 5 in terms of J.

(v) Motion of a disc, one of whose points is forced to move in a given manner.

Consider next the motion of a disc of mass M. resting on a perfectly smooth horizontal

plane, when one of the points A of the disc is constrained to describe a circle of radius c

in the horizontal plane, with uniform angular velocity a.

* Cf. Whittaker and Watson, A Course of Modern Analysis, § 20-6.
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Let O be the centre of gravity of the disc, and let AO be of length a. The acceleration

of the point A is of magnitude ca2
, and is directed along the inward normal to the circle

:

if therefore we impress an acceleration cm2
, directed along the outward normal to the

circle, on all the particles of the body and suppose that A is at rest, we shall dbtain the

motion relative to A. The resultant force acting on the body in this motion relative to A
is therefore Mem2

, acting at G in a direction parallel to the outward normal to the circle.

Let 6 and <j> be the angles made with a fixed direction in the plane by the line AO and

the outward normal to the circle respectively ; then the work done by this force in a small

displacement 88 is

Mca2a sin (0 - 8) 88,

and the kinetic energy of the body is \Mk262
, where Mk2 is the moment of inertia of the

body about the point A . The Lagrangian equation of motion is therefore

Mk28=Maca2 sin (0 - 8).

But since = <», we have = 0; so if yjr be written for (0-0), we have

v
,
acta2 . .

This is the same as the equation of motion of a simple pendulum of length k2gjacu>2
;

the integration can therefore be performed by means of elliptic functions as in i; 44.

(vi) Motion of a disc rolling on a constrained disc and linked to it.

Consider the motion of two equal circular discs, of radius a and mass M, with edges

perfectly rough, which are kept in contact in a vertical plane by means of a link (in the

form of a uniform bar of mass m) which joins their centres : the centre of one disc is fixed,

and this disc A is constrained to rotate with uniform angular acceleration a ; it is required

to determine the motion of the other disc B and the link.

Let be the angle which the link makes with the downward vertical at time t, and
let 6 be the angle turned through at time t by the disc A. The angular velocity of disc A
is 8, and the velocities of the points of the discs which are instantaneously in contact are

therefore each afl. Since the velocity of the centre of the disc B is 2a0, it follows that the

angular velocity of the disc B about its centre is 20-0. Since the moment of inertia of

each disc about its centre is \Ma2
, the kinetic energy of the system is

CI2 n2 An?
T=iM.^f 2 +iM.^^-8)2+ iM.(2a)2^+im.^^2

;

and 6= at + e, where e is a constant.

The potential energy of the system is

V= - (2M+m) ag cos
<f>,

and the Lagrangian equation of motion is

d fd_T\ _ d_T_ _dV

or jt

{{6M+ % m) a2
4> - Ma2

8}= - (2M+ m) ag sin 0.

Since 8= a, this equation gives

(6M+ J to) a2
4> - Ma2a + (2M+ m) ag sin = 0.

Integrating, we have

(3M+ fm) a2
<j>

2 - 3fa2
a<t> - (2M+ m) ag cos 0= c,
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where c is a constant depending on the initial conditions : and as the variables t and $ are

separable, this equation can again be integrated by a quadrature: this final integral

determines the motion.

Example. If the system is initially at rest with the bar vertically downwards, shew
that the bar will reach the horizontal position if

66. The motion of systems with two degrees of freedom.

In the dynamics of rigid bodies, as in the dynamics of a particle, the

possibility of solving by quadratures a problem with two degrees of freedom

generally depends on the presence of an ignorable coordinate. The integral

corresponding to the ignorable coordinate can often be interpreted physically

as an integral of momentum or angular momentum. The formation and

solution of the differential equations is effected by application of the

principles developed in the preceding chapters : this will be shewn by the

following illustrative examples.

(i) Rod passing through ring.

Consider, as a first example, the motion of a uniform straight rod which passes, through

a small fixed ring on a horizontal plane, being able to slide through the ring or turn in any

way about it in the plane.

Let the distance from the ring to the middle point of the rod at time t be r, and let the

rod make an angle 8 with a fixed line in the plane ; let %l be the length of the rod, and M
its mass.

The moment of inertia of the rod about its middle point is \Ml2
, and the kinetic energy

is therefore

T=iM(r*+rW+ ilW);
there is no potential energy.

The coordinate 8 is ignorable, and the corresponding integral is

dT . .—r= constant,

or (r2+ J I
2
) 8= constant.

The integral of energy is

P + r282+ $l28 2= constant.

Dividing the second of these integrals by the square of the first, we have

/dry

-! + -r,
—t-^= b, where c is a constant,

(r2 + \l2
)

2 ^r>+ $l-

or

Writing cr2=s, this becomes

8 -I- constant = j {(r2 + $l2
) (cr2+ $cl2 -

1 )}
" * dr.

becomes

+ constant= [{4s {s+\el2
) (s + $el2 - 1)}~* ds.
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If therefore
fc>

denotes the Weierstrassian elliptic function with the roots

<.
1
=H-i+f<A «*=*(2-4«P), «3=i(-i-J^2

)>

which satisfy the relation e,>e8>e3 if jq is sufficiently great initially, we have

s = <$ {& — 6 ) — ex , where 6 is a constant of integration
;

since s is positive, we have g)(6-fl )>e
1

for real values of 0, and consequently the

constant 6 is real.

The solution of the problem is therefore contained in the equation

(ii) One cylinder rolling on another under gravity.

Let it now be required to determine the motion of a perfectly rough heavy solid

homogeneous cylinder of mass m and radius r, which rolls inside a hollow cylinder of mass

M and radius R, which in turn is free to turn about its axis (supposed horizontal).

Let
<f>

denote the angle which the plane through the axes of the cylinders at time t

makes with the downward vertical, and let 8 be the angle through which the cylinder of

mass M has turned since some fixed epoch. The angular velocities of the cylinders about

their axes are easily seen to be 6 and {(R - r) <j> - R8}/r respectively ; and the moments of

inertia of the cylinders about their axes are MR2 and I tnr2 respectively ; so the kinetic

energy T of the system is given by the equation

T=\MKW-y\mrL (^y^<P~ tf+1™ (^ " r) 2
<j>

2
,

while the potential energy is given by the equation

V= — mg (R — r) cos 0.

The coordinate 6 is clearly ignorable ; the integral corresponding to it is

dT
. ,—r= constant,

d6

or MR29- :kmR{(R-r)4>-RQ} = k, where k is a constant.

The integral of energy is

T+ V=h, where h is a constant,

or lMR?82+\m {{R -r)<j>- Rfy+im (R - rf ft - mg (R - r) cos (j)= h.

Eliminating 3 between the two integrals, we obtain the equation

m(3M+m) ..,.
, D \ j. i &ww^-){R-rfft- mg {R-r)^^=h-w^-^.

This is the same as the equation of energy of a simple pendulum of length

3M+m
2M+m {K r)

'

the solution can be effected by means of elliptic functions as in § 44.

(iii) Rod moving in a free circularframe.

We shall next consider the motion of a rod, whose ends can slide freely on a smooth

vertical circular ring, the ring being free to turn about its vertical diameter, which is fixed.
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Let m be the mass of the rod and 2a its length ; let M be the mass of the ring and r

its radius ; let 8 be the inclination of the rod to the horizontal, and <j> the azimuth of the

ring referred to some fixed vertical plane, at any time t.

The moment of inertia of the rod about an axis through the centre of the ring

perpendicular to its plane is wi(r2 -§a2
), and the moment of inertia of the rod about the

vertical diameter of the ring is jfc {(»•*-

a

a
) sin2 8+ ^a2 cos2 8}. The kinetic energy of the

system is therefore

T= \m. (r2 - fa2
) 82+}Mr2

4>
2+\m$2 {f sin2 8 - a2 sin2 8+ la2 cos2 8).

The potential energy is

V— — mg (r2 — a2)i cos 8.

The coordinate
<f>

is evidently ignorable ; the corresponding integral is

dT
—r= constant,

or iMr2
<f>
+ ro# (r2 sin2 8 - a2 sin2 6+ \a2 cos2

8)= h,

where k is a constant. Substituting the value of found from this equation in the

integral of energy

T+ V=h,
we have

i Jr2

lm(r2 -%a2)62=h+ mq(r2-a2)lcos8-l T^-r; ,,.,,„ o „ 10 5-^.s K 3 ' yK ' * %Mr2-+m (r2 sm2 8-

a

2 sm2 8+^a2 cob2 8)

In this equation the variables 8 and t are separable ; a further integration will

therefore give 8 in terms of t, and so furnish the solution of the problem.

(iv) Hoop and ring.

We shall next discuss the motion of a system consisting of a uniform smooth circular

hoop of radius a, which lies in a smooth horizontal plane, and is so constrained that it can

only move by rolling on a fixed straight line in that plane, while a small ring whose mass

is 1/X that of the hoop slides on it. The hoop is initially at rest, and the ring is projected

from the point furthest from the fixed line with velocity v.

Let
<f>

denote the angle turned through by the hoop after a time t from the commence-

ment of the motion, and suppose that the diameter of the hoop which passes through the

ring has then turned through an angle \jr. Taking the ring to be of unit mass, so that the

mass of the hoop is X, the moment of inertia of the hoop about its centre is Xa2
, and this

centre moves with velocity a<j>, while the velocity of the ring is compounded of components

aj> and afy, whose directions are inclined to each other at an angle t//-. The kinetic energy

of the system is therefore

T=\\a2
4>

2+ l\a2
i>

2 + l (a2<j>2 + a2
j,

2+ 2a2
4><j, cos f)

=\ (2X + 1) a2
(j>

2+ Ja2^2+ a20^ cos ^,

and the potential energy is zero.

The coordinate (j> is evidently ignorable, and the corresponding integral is

dT . .—r= constant,

or (2X + l)a2
ii>+ a2^cos ^= the initial value of this expression
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Integrating this equation, we have

vt
(2X + l)d> + sini/r =the initial value of this expression

= 0,

This equation determines <£ in terms of \jr.

The equation of energy is

r=its initial value= £i>2
,

and substituting for
<f>

its value (v/a-coaf. ^)/(2X+ l) in this equation, we have

a2 (2X + sin2 ^)^2= 2Xi>2
,

so t=~n= f*(2X+ sin2 ^)W^.
v v2X J o

Writing sin^= .^, this becomes

t ~ P(2X + .z
2)4(l-tf2)-4<te.

v V2X J o

In order to evaluate this integral, we introduce an auxiliary variable it, defined by the

equation

Write a? = 2X/f, where £ is a new variable ; the last integral becomes

»=
/J{4£(|

+ l)(|-2X)}-itf£,

which is equivalent to

{=P(«)-i(i-»),

where the function p («) is formed with the roots

e,=Hl + 4X), e
2=J(l-2X), %--|(l+X);

these roots are real and satisfy the inequality ei>e^>e3 , so P(«) is real and greater than

«x for real values of v.

Now we have oft =-4= (2X+#2)£ (1 - a;
2
)
- 1 rf»,

W2X
•JSKvdt f„

s 2X
or =-^2\ +

(»)-%J
Integrating, we have

.'2\ vt
,H l + 4X} uH{u)H ^l,

T »v '
T
*|>(«)_j(i-ax)'

where £ (?t) denotes the Weierstrassian Zeta-function.

Thus finally the coordinate \jr and the time t are expressed in terms of an auxiliary

variable u by the equations
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67. Initial motions.

We have already explained in § 32 the general principles used in finding

the initial character of the motion of a system which starts from rest at

a given time. The following examples will serve to illustrate the procedure

for systems of rigid bodies.

(i) A particle hangs by a string of length b from a point in the circumference of a disc

of twice its mass and of radius a. The disc can turn about its axis, which is horizontal, and

the diameter through the point of attachment of the string is initially horizontal. To find the

initial path of the particle.

Let 8 denote the angle through which the disc has turned, and the inclination of the

string to the vertical, at time t from the beginning of the motion : let m be the mass of the

particle. The horizontal and (downward) vertical coordinates of the particle with respect

to the centre of the disc are

acos(? + isin0 and asin# + 5cos0,

so the square of the particle's velocity is

aW + 62 2 - 2ab sin (0+ 0) 8<j>,

and the kinetic energy of the system is

T=maW+ \mbty - mab sin {6+ 0) 8<j>,

while the potential energy is

V— - mg (a sin 6 + b cos 0).

The Lagrangian equations of motion are

Id /dT\ _dT= _dV
dt \dd) d8 d8

'

dt\d<f,) 30
~ 30'

I2a*8 - ab cos (8 + 0)
2 - ga cos 8 - a b sin {8 + 0) = 0,

or "\

l 62 - ab cos (04-0) 62 +gb sin0- ab sin (5+ 0) 8 =0.

Initially the quantities 8, 0, 6, are all zero : these equations therefore give initially

8=g/2a and = 0, so the expansion of 6 begins with a term gt2/4a and that of with a

term higher than the square of t. Assuming

8=^+ Att+Bt*+ ...,
4a

(b= Ct3 +Dti+ Etl'+FtP+ ...,

substituting in the above differential equations, and equating powers of t, we can evaluate

the coefficients A, B, C, ... ; we thus find

4a

9 32a6 l^Oaft2
"*"""

Now if x and y are the coordinates of the particle referred to horizontal and (downward)

vertical axes through its initial position, we have

x= a (1 - cos 6) - b sin = \ ad* - 60= ij
'

, ,
approximately,

at2

and #= asin0 + &(cos0-l)=a0='^r-, approximately.
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Eliminating t between these equations, we have

yi=ZOabx,

and this is the required approximate equation of the path of the particle in the

neighbourhood of its initial position.

(ii) A ring of mass m can slide freely on a uniform rod of mass M and length 2a, which

can turn about one end. Initially the rod is horizontal, with the ring at a distance r from

the fixed end. To find the initial curvature of the path of the ring in space.

Let (r, 8) denote the polar coordinates of the ring at time t, referred to the fixed end of

the rod and a horizontal initial line, 8 being measured downwards from the initial line.

For the kinetic and potential energies we have

3 '

F= — mrg sin 8 — Mag sin 8.

The Lagrangian equations of motion are

\dt\dr) dr~ W

\dt\de) 30~ W
r — rd 2 —gsm8= 0,

[§Ma?8+mr28+2mrr8— Mga cos 8 — mgr cos 6=0.

Since f, 8, and 8 are initially zero, we can assume expansions of the form

r=r +a2 t
i+a3 t

3+ai t
i +...,

8=b
2
fl+ b3 fi+...;

substituting these expansions in the differential equations, and equating coefficients of

powers of t, we find

o
2
= 0, 03=0, ai=^b2 (g+ 4b2r ),

, _ 3g(Ma+ mr )

2~2(41fa2+ 3»Wo2)'

The coordinates of the particle, referred to horizontal and vertical axes at its initial

position, are

x— rcoa 6 — r and y= ram8,
or approximately x= (ai — ^r b2')t^, y=ra b2 t

2
.

The curvature of the path is given by the equation

1 2x _ 2a4 1

P~ 'y2 ~b2'W r
'

and on substituting the above values of 62 arjd at , we have

\ _ Ma (4a - 3r )

p 9r 2 (J/a +mr )'

This is the required initial curvature of the path of the ring.

Example. Two uniform rods AB, BC, of masses m^ and m
2 , and lengths a and b

respectively, are freely hinged at B, and can turn round the point A, which is fixed.

Initially, AB is horizontal and BC vertical. Shew that, if be released, the equation of

the initial path of the point of trisection of BC nearer to C can be put in the form

y
3= 60 (1 +2m2/m1)

abx.

(Camb. Math. Tripos, Part I, 1896.)
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68. The motion of systems with three degrees of freedom.

The possibility of solving by quadratures the motion of a system of rigid

bodies which has three degrees of freedom depends generally (as in the case

of systems with two degrees of freedom) either on the occurrence of ignorable

coordinates, giving rise to integrals of momentum and angular momentum, or

on a disjunction of the kinetic potential into parts which depend on the

coordinates separately. The following examples illustrate the procedure.

(i) Motion of a rod in a given field of force.

Consider the motion of a uniform rod, of mass to and length 2a, which is free to move

on a smooth table, when each element of the rod is attracted to a fixed line of the table

with a force proportional to its mass and its distance from the line.

Let (x, y) be the coordinates of the middle point of the rod, and its inclination to the

fixed line. The kinetic energy is

T=^m(x1+f + iaW),
and the potential energy is

r= —-
J (y + r sin 0)

2 dr, where fi is a constant,
4a J -a

F= /1ra(iy2+Ja2 sin2 5).

The Lagrangian equations of motion are therefore

[

*'=0,

[(20) +? sin 20=0.

The first two equations give

[x— ct-\-d,

jy=/ sin (,*4 *! + <),

where c, d, /, e are constants of integration ; the centre of the rod therefore describes

a sine curve in the plane. The equation for is of the pendulum type, and can be

integrated as in § 44.

(ii) Motion of a rod and cylinder on a plane.

We shall next discuss the motion of a system consisting of a smooth solid homogeneous

circular cylinder, of mass M and radius c, which is moveable on a smooth horizontal plane,

and a heavy straight rail of mass m and length 2a, placed with its length in contact with

the cylinder, in a vertical plane perpendicular to the axis of the cylinder and passing

through the centre of gravity of the cylinder, and with one extremity on the plane.

Let 6 be the inclination of the rail to the vertical, and x the distance traversed on the

plane by the line of contact of the cylinder and plane, at any time t. The coordinates of

the centre of the rod referred to horizontal and vertical axes, the origin being the initial

point of contact of the cylinder and plane, are easily seen to be

x— ccot ( - - - Wasintf and acosO.
\4 2)

Let <j) be the angle through which the cylinder has turned at time t. The kinetic

energy of the system is

T=\maW+\m U- |ccosec2

(|
-

|)
. 6+ a costf. o\ +ima* sin2 5 . # + £ifcril + £Jf<*0*
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The potential energy is given by the equation

V=mga cos 6.

The coordinates x and (j> are evidently ignorable ; the corresponding integrals are

=-r = constant
ox

(which may be interpreted as the integral of momentum of the system parallel to the axis

of x) and

—= constant
d<f>

(which may be interpreted as the integral of angular momentum of the cylinder about its

axis). These integrals can be written

i — iccosec2
(j -3) . 8 + a cos 8 . 8\ + Mx= constant,

[ \ Mc'i$= constant.

Substituting for x and <j> the values obtained from these equations in the integral of

energy

T+ F= constant,

we have the equation

=d-2ga cos 6,82
\ J[a2+ a2 sin2 0H —

y, I a cos 8 - £ c cosec2 (7 — „ )[

where d is a constant. This equation is again integrable, since the variables t and 8 are

separable ; in its integrated form it gives the expression of 8 in terms of t : the two

integrals found above then give x and
<f>

in terms of t.

69. Motion of a body about a fixed point under no forces.

One of the most important problems in the dynamics of systems with

three degrees of freedom is that of determining the motion of a rigid body,

one of whose points is fixed, when no external forces are supposed to act*.

This problem is realised (§ 64) in the motion of a rigid body relative to its

centre of gravity, under the action of any forces whose resultant passes

through the centre of gravity.

In this system the angular momentum of the body about every line which

passes through the fixed point and is fixed in space is constant (§ 40), and

consequently the line through the fixed point for which this angular momen-

tum has its greatest value is fixed in space. Let this line, which is called the

invariable line, be taken as axis OZ, and let OX and OF be two other axes

through the fixed point which are perpendicular to OZ and to each other.

The angular momenta about the axes OX and OY are zero, for if this were

not the case the resultant of the angular momenta about OX, OY, OZ would

give a line about which the angular momentum would be greater than the

* Euler, Memoires de Berlin, Annee 1758. Elliptic functions were applied to the problem

first by Eueb, Specimen inaugurate.. . (Utrecht, 1834) : and the solution was completed by Jacobi,

Journal fUr Math, xxxix. (1849), p. 293.
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angular momentum about OZ, which is contrary to hypothesis. It follows

(§ 39) that the angular momentum about any line through making an

angle 8 with OZ is d cos 8, where d denotes the angular momentum about OZ.

The position of the body at any time t is sufficiently specified by the

knowledge of the positions at that time of its three principal axes of inertia

at the fixed point : let these lines be taken as moving axes Oxyz ; let (8, $, i/r)

denote the three Eulerian angles which specify the position of the axes Oxyz

with reference to the axes OXYZ, let {A, B, G) be the principal moments of

inertia of the body at 0, supposed arranged in descending order of magnitude,

and let (a>1 , <b2 , a>3) be the three components of angular velocity of the system

about the axes Ox, Oy, Oz respectively, so that (§§ 10, 62)

Aco1
= — d sin 8 cos i/r,

Bw 2
— d sin 8 sin i/r,

Ceo,= d cos 6,

or (§ 16)

8 sin $• — $ sin 8 cos ^ — — -j sin 8 cos
-ty,

) a d
9 cos yfr + <j> sin 8 sin yfr = -= sin 8 sin i|r,

l|r + 4> cos 8 = ~ COS0.

These are really three integrals of the differential equations of motion of

the system (only one arbitrary constant however occurs, namely d, our special

set of axes being such as to make the other two constants of integration

zero); we can therefore take these instead of the usual Lagrangian differ-

ential equations of motion in order to determine 8,
<f>,

i|r.

Solving for 8, <f>,
yjr, we have

9 = , „ sin 8 cos Y sin yjr,AB

<j> = -j cos2^ + d sin2^
d

tjr = ( ~ — -r COS2
-v/r - ~ sin2 i|r ) COS 8.

The integral of energy (which is a consequence of these three equations)

may be written down at once by use of § 63 ; it is

J.ft)1
2 + JB<B2

2 + C(»3
2 = c,

where c is a constant : replacing <olt a>2 , (o3 by their values in terms of 8 and tfr,

this equation can be written in either of the forms

10W. D.
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A-B . .„ . . Bc-d? . B-C
BG

-r ,6*6co*1r—E3r + cos2
e,

A-B .,>,.,. _c-da _-C

Since „ > .B > C, the quantity (c_ - d2
) or 5 (_ -B) <o2

2 + (7(4 - G) »„> is

positive, and (cC — c?) is negative : the quantity (Be — d1
) may be either

positive or negative: for definiteness we shall suppose it to be positive.

The first of the three differential equations may, by use of the last

equations, be written

d
, „ a \

Bc-d* B-C
t
J*f_e-d» A-0 ^

This equation shews that cos 6 is a Jacobian elliptic function* of a linear

function of t ; and the two preceding equations shew that sin 8 cos i/r and

sin#sini/r are the other two Jacobian functions.

We therefore write

sin 8 cos | = Pcmi, sin 8 sin i/r = Q sn w, cos # = i? dn «,

where P, Q, B, are constants and it is a linear function of t, say \t + e ; the

quantities P, Q, R, \, and the modulus k of the elliptic functions, are then to

be chosen so as to make the above equations coincide with the equations

/ £2 cn2 w = -&'2 + dn2 M,

kt an'u = l-dn2 w,

— dn u = — k* sn u en u.
\ du

The comparison gives

A(d*-cC) B{d>-cC) ^_ C(cA-d»)
d2 („-<7)' v ~_(_-0)' "" ~d2 (_-C) '

(_-g)(_-cO) M(ci-#)
(_-CX_c-#)'

A " 45(7

The equation for k1 shews that k is real, and the equation

1 Iri _ (A-C)(Bc-d*)
(B-C)(Ac-d*)

shews that (1 - fc
2
) is positive, i.e. that k<l. The quantities P, Q, B, \ are

also evidently real.

Now a real quantity a may be defined by the mutually consistent

equations

sn la — i
,[0(Ac-d?))i . fd2 („-C))i

,
. i_(_-C)]*

* The theory of elliptic functions required in this and the succeeding problems will be found

in Whittaker and Watson's Modern Analyeii, Chs. xx.—xxn.
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where the theta-functions are defined by the expansions

^oo (y)=l+ 2q cos 2vv + 2q* cos ^irv + 2q
9 cos 6ttv + ...,

%i (v) = 1 - 2q cos 2-irv + 2q* cos 4-ttv - 2q° cos 6wv + ...,

S-io (") = 2q* cos tti/ 4- 2qi cos 37™ + 2^
5
cos 5-irv + ...,

Sn (v) = 2qi sin 7ri/ - 2g? sin 3tti/ + 2g^
5
~ sin 5ttv + ...,

and q = e , we have

1 + 2q cosh 2y+2^ cosh 47 +... _ ,, , | f
^-O)^

l-2g-cosh27 +2^cosh47 -...
-(

- ^ (^.(£-(7)} '

where 7 stands for 7ra/2K : from this equation 7 (and consequently a) may
readily be determined by successive approximation.

The Eulerian angles 6 and yfr at time t are now given by the equations

/ . . cn(X«+e)
sm cos l|r =—-

—

:
—'-

,

sin 6 sin >^r =

cnia

dni'asn(\£+ e)

or (omitting the e)

- sn la dn (\£ + e)
cos =

:
—

\

'-

,

1 en ta

sm cos ^ -^ (ia/2Z)^ (U/2K)
,

»n (ia/2g)fr„(M/2g)
iS-,, («*/2JT) %m(\tl2K)

•

The modulus A; of the elliptic functions is known; we can therefore

determine the parameter <? of the theta-functions by the equation

_lf_ £* 21&6

?-
16
+

32
+
T024

+ '"'

or by the more rapidly convergent series

q = % tan2
/3 + TV tan10

/3 +^ tan18
/3 + . ..,

where cos /? = (A;')*. K may then be calculated from the series

(2K/ir)i = *,
0O = l + 2q + 2q* + 2q»+...,

and thus the period 4<K/X of the inclinations of the axes Oxyz to the line

OZ is determined.

10—2
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If now we write (7ra/2K)= 'y and (7r\/2Z) = fi, we have

(1 - 2q cosh 27 + 2i?
4cosh47 — . . .) (cos fit + q

2 cos 3^+ . . .)
sul0cos ^ =

(cosh7 + 2
2cosh37+...)(l-2g'cos2^ + 2^cosV*+...)'

_ (1 + 2g cosh 27 + 2q* cosh 47+ ...)(sin pt — q
1 sin 3fit+ ...)

sin sin yjr -^cosh ^ + ?s cosh 37 + _ _) (! _ 2gCos 2/rf + 2g4 cos4^+ ...)'

_ (sinh 7 — </' sinh 37 + ..)(! + 2g cos 2/rf + 2g4 cos 4s/it+ ...
)

cos _
(cosh 7 + g

2 cosh 37 + ...)'(! - 2g cos 2/x« + 2g4 cos 4/tt< + ...)'

The quantities q, jjl, 7 may be regarded as the constants which specify the

motion.

Example. Suppose that the body is a homogeneous ellipsoid of unit density, whose

three semi-axes are

o=l, 6= 2, c= 3.

The three principal moments of inertia are

4 =^ Jra6c(52+ c2)=20-87r, B=16rr, C=8rr.

Suppose that the initial velocities of rotation round the principal axes are

<*>i
= i> o>2=i, <"3=1.

The constant of energy is

c=-4o>i8+ -B«>a
a+CW= 13-37T,

and the constant of angular momentum is given by the equation

so d= 12-4527r, Ac-d 2 = 12V60n\ Bc-di =bl-1Qn\ d2 - cC= 48-64»r2
.

The modulus of the elliptic functions is given by the equation

a (A-BH<P-eC)_

whence we have

"-iB^CHAe--lPr
'U0

'

#2=1 -£2=0-760,

= l+2g'+ 2g*+ 259 +... = 1-0342,

£=1-68018,

JT=-- log, a-= 2-176.-
IT

x'-
(J-^--^-o-aeH

so X= 0-6045

and /i=~=0-5651.

The period of the angles 6 and ^ is — or — , which has the value 11-118.

We have also
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In order to express 6 and i//- as trigonometric series in terms of t, we must determine y.

For this we have

^-^-1-2308

U(B-G)j
V

'

and therefore if g
4 be neglected we have

1 + V.q cosh 2y_ 1-1094

1-22 cosn 2y
~ 0-9337

'

giving cosh 2y= 2 -503,

and hence 2y= 1-568

and y= 0-784.

The quantity a is then given by the equation

a=~y=0-8385.
IT

A limiting case of the general problem is that in which A = B, so that h reduces to

zero and the elliptic functions become circular functions. In this case the solution may
be written

air. \t Mil /< ,1 _ ,72V! i
,

sin \t
sin 8 sin ^ir=—-.

—
T cosh a

cos #=tanha

"> where \^<*={A {d2_ cC)\

, ld 2 (A-G)\i

so the motion is a steady precession about the invariable line 0Z, the body rotating also

about its own axis of symmetry Oz.

Another limiting case is that in which d 2= cB, so that k2 = \ and the elliptic functions

degenerate into hyperbolic functions ; this is illustrated by the following examples.

Example 1. A rigid body is moving about a fixed point under no forces: shew that i]

(in the notation used above) d2=Bc, and ifa>2 is zero when t is zero, a-i and <o3 being initially

positive, then the direetion-cosines of the B-axis at time t, referred to the initial directions of

the principal axes, are

a tanh x - y sin p sech %, cos p sech x, y tanh^+ a sin /* sech x,

where

dt dt f(A -B)(B-C)\l {
A(B-C)\h

f
C(A-B)}i

t*
=
B' X~B\ ACT ) '

a~\B(A-C)\ '
y-\B{A-C)i '

(Camb. Math. Tripos, Part I, 1899.)

To obtain this result, we observe that when Bc=d2
, the differential equation for the

coordinate 6 becomes

d, a% ,/B-0\i (Ac-d 2 .. A-C\i

the integral of which is

cos 8= y sech %,
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where y and x are the quantities above defined. The equation

A-B .
Ac-d* A-C

sin 6 sin yjr= tanh x,

cos2

=4cos2 ^+|sin^

then gives

and the equation v— .

gives sin(0-^)= -ysin^.

These equations shew that the direction-cosines of the 2J-axis referred to the axes

0X7Z, which (§ 10) are

- cos <£ cos sin \Jr- sin <£ cost//-, -sin <£cos0sin\|/-+ cos$cos\//-, sin sin \^,

can be written
— sin ft sech x, cos ji sech x, tanh x-

But if eo10 , o>20, "so denote the initial directions of the principal axes, since

AW+CW=d2=Bc=B(Aml
*+ Co*2

),

so that Aal=ad and Ca3 =yd, we see that the direction-cosines of aw ,
a>2o, o>.to> referred to

OXTZ, are given by the scheme

X Y Z

<"io

u>w

<>>30

and hence the direction-cosines of the 5-axis, referred to <o10 , aw , o>30 ,
are

-ysin/isechx + atanh x, cos p sech x, asin ji sech x+ y tanh ^.

Example 2. When d 2= cB, shew that the axis 6ty describes, on a sphere with the fixed

point as centre, a rhumb line with respect to the meridians passing through the. invariable

line. (Coll. Exam.)

Returning now to the general ease, we have to express the third Eulerian

angle cf> in terms of the time. We have

y
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Near the former of these points, writing Xt = ia + iK' + e, and retaining

only the lowest powers of e, we have

dn2 ia/k1 sn 2 ia
sin2

i|r =
l-lsn2 ia/sn2 (m + e)}'

dn2 ia

A2 sn2 ia + e k* . 2 sn ia en ia dn ia — k* sn2 ia
'

so the residue at this pole of sin2
i|r, considered as a function of \t, is

dnta 1 i(B-C)(Ac-#)AB)t
2A;

2 sn ia en ia '

°T
2id (A-£)\ C J

"

Therefore the residue of d I= — -j ) sin
2$ at this point (considered as a

function of \t) is

1 \(B-C)(Ac- d*)\i X
_

2tl ,i£C |
°
r
2V

and the residue when \t/2K is regarded as the variable is consequently —i\/4sK.

As we now know the zeros, poles and residues of this function, we can write

down its expression as a sum of logarithmic derivates of theta-functions : in

fact, since Sr01 (v) has a simple zero at v = \<o = iK'/2K, we have

, d is.

and therefore

2i0

,/Ai
11

V. ^

Ai — ia\ , /X£ + ia\
, ( ia\

2K J
01

V 2K 1
01

V2/T

_ /Xt - ia\ f
Xt + ia \ _ ( ia\M 2K )

*01

V 2K ) *n \2K))

= constant

(
\t - ia\ (2id \ S01'{ial2K)\*01

[ 2K ) \~Z + K *oi(ial2K)j
*

<. (\t + ia\M 2K )

Now S 01 ( j/^01 ( 9y )
is purely periodic with respect to the real

period 2K/X of t, so the exponential on the right-hand side gives the mean

motion of <j>, i.e. the precessional motion of the system round the invariable

line. We have
9-0! (v) = 1 — 2q cos 2ttv + 2§

4 cos 4nrv — ...,

Sr01' (i>) = 47T5 sin 2-rrv - 8-n-g4 sin 4tti/ + . . .,

so the coefficient of t in $, i.e. the constant part of cf>, or the precession,

which is

d _X_ V(to/2JT)

may be written

d g sinh 2y — 2ff
4 sinh 4y + . .

.

A ft" l-2q cosh 27 + 2q* cosh 47 - ...

'

in which form it may be calculated readily.
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Example 1. In the case previously discussed, of an ellipsoid whose semi-axes are a= 1,

6 = 2, c= 3, we have
2y= 1-568, sinh2y=2-294, cosh 2y= 2-503,

(£=12-4527r, 4 = 20-8jt, /i=0-5651, £=00171,

so the mean motion of
<f>,

which when q
1 is neglected may be written

d q sinh 2y

A + '
i
'l-2ycosh2y'

is 0-5986 + 0-0970,

or 0-6956.

Example 2. A uniform circular disc has its centre O fixed, and moves under the

action of no external forces. The disc is given initial angular velocities Q about a diameter

coinciding with 0| in space, and n about its axis coinciding with Of in space. Shew that

at any subsequent time

v= 2arcsin j sin {(Q
2 + 4to2)*.*W}

,

L(Q2+ 4n2)* J

a= arccot
I

- tan {(Q
2+ 4n2)i

. i t)
|

,

L(a2 +4?i2)i J

where x ig the angle between Of and the axis of the disc Oz and a is the angle between the

planes f0£ and (Oz. (Coll. Exam.)

For let 0Z denote as usual the invariable line, and consider the spherical triangle Zfa
whose vertices are the intersections of the lines 0Z, Of, Oz respectively with a sphere of

centre 0. In this spherical triangle we have Zz=6, (Zz= cji. Moreover we have for the

disc 0=25=2^4, so

d?=A*Q*+ CW=A* (Q2+4»2
)

and ^ = (Q2+4»2)i

The equations of motion for 8 and <j> therefore become

6=0, 0=rf/4= (fi2 + 4«2
)4,

so d= Z£=&TCCoa =-, rf>= (Q2+ 4»2)4«.

(Q2+4»2)*

In the spherical triangle Z£z, we have therefore

Z£=Zz=a,rccoa -—
-, f£i=(a2+ 4m2)H Z(z = m, fz= v,

(n2 + 4»2)*

and hence sin £= sin Zt sin i (Zz = : sin {(Q2 + 4n2
)* . A t\

2 ' (a2+4»2)4

and cot <o= cos Z{ tan I (Zz= j tan {(G2+ 4ra2)i . It},

(Q2+4a2)4

which are the required equations.

70. Poinsot's Mnematical representation of the motion; the polhode and

herpolhode.

An elegant method of representing kineraatically the motion of a body

about a fixed point under no forces is the following, which is due to Poinsot*.

* Poinsot, Thioi-ie nouvelle de la rotation des corps, Paris, 1834.
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The equation of the momental ellipsoid of the body at the fixed point,

referred to the moving axes Oxyz, is

Ax^ + By2 +Cz2 =li.
"

Consider the tangent-plane to the ellipsoid which is perpendicular to the
invariable line. If p denotes the perpendicular on this tangent-plane from
the origin, we have (since the direction-cosines of p are Awjd, Bm^/d, Cco3/d)

Aco^+ Bco^ + G^
F

A*cof + B*to2
* + C 2

<o3
*

= -r
2

, which is constant.

Since the perpendicular on the plane is constant in magnitude and
direction, the plane is fixed in space: so the momental ellipsoid always
touches a fixed plane.

Moreover, if (x', y', z) are the coordinates of the point of contact of the

ellipsoid and the plane, we have on identifying the equations

Axx' + Byy' + Gzz' = 1 and A^x + Bcozy+ Om3z =pd

the values x ' =^ = ^, „'=">=»*, z
> = <?±-<^

pd \/c
J pd \/c pd s/c

and hence the radius vector to the point (x', y', z') is the instantaneous axis

of rotation of the body. It follows that the body moves as if it were rigidly

connected to its momental ellipsoid, and the latter body were to roll about the

fixed point on a fixed plane -perpendicular to the invariable Vine, without

sliding ; the angular velocity being proportional to the radius to the point of

contact, so that the component of angular velocity about the invariable line is

constant.

Example 1. If a body which is moveable about a fixed point is initially at rest and
then is acted on continually by a couple of constant magnitude and orientation, shew that

Poinsot's construction still holds good, but that the component angular velocity about the

invariable line is no longer constant but varies directly as the time. (Coll. Exam.)

For in any interval of time dt the addition of angular momentum to the body is Ndt

about the fixed axis OZ of the couple ; so that the resultant angular momentum of the

system at time t is Nt about OZ. Now the components of angular momentum about the

principal axes of inertia Oxyz are Amy, Ba
2 , Ca>3 , where A, B, are the principal moments

of inertia and (a>1( a>2 , a>3 ) are the components of angular velocity: hence we have

A a>i= -Nt sin 8 cos \jr, Ba>
2
= Nt sin 8 sin i^, Ca>3=Nt cos 8,

where 8, (f>, ^ are the Eulerian angles which fix the position of the axes Oxyz with

reference to fixed axes OXYZ. But these equations differ from those which occur in the

motion of a body under no forces only in the substitution of tdt for dt ; so the motion

will be the same as in the problem of motion under no forces, except that the velocities are

multiplied by t ; whence the result follows.

Example % In the motion of a body, one of whose points is fixed, under no forces,

let a hyperboloid be rigidly connected with the body, so as to have the principal axes of
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inertia of the body at the point as axes, and to have the squares of its axes respectively

proportional to cP- Ac, <P—Bc, cP — Cc, where A, B, Care the moments of inertia of the

body at the fixed point, c is twice its kinetic energy, and d is the resultant angular

momentum. Shew that the motion of this hyperboloid can be represented by causing it

to roll without sliding on a circular cylinder, whose axis passes through the fixed point and

is parallel to the axis of resultant angular momentum. (Siacci.)

The curve which in Poinsot's construction is traced on the momental

ellipsoid by the point of contact with the fixed plane is called the polhode.

Its equations, referred to the principal moments of inertia, are clearly the

equation of the ellipsoid together with the equation p = constant, i.e. they

are

Ax* + Bf+Cz*=l,

AW + By+CW^cP/c.

Example I. Shew that when A =B, the polhode is a circle.

Example 2. Taking A^B^C, shew that there are two kinds of polhodes, one kind

. consisting of curves which surround the axis Oz of the momental ellipsoid, and correspond

to cB>d"> cC, while the other kind consists of curves which surround the axis Ox, and

correspond to cA >d2> cB ; and that the limiting case between these two kinds of polhodes

is a singular polhode which corresponds to cB-d?= 0, and consists of two ellipses which

pass through the extremities of the mean axis.

The curve which is traced on the fixed plane by the point of contact with

the moving ellipsoid is called the herpplhode.

To find the equation of the herpolhode, let p, ^ be the polar coordinates

of the point of contact, when the foot of the perpendicular from the fixed

point on the fixed plane is taken as pole. If {x, y', z') denote the coordinates

of the same point referred to the moving axes Oxyz, we have

a/
2 + y'2 + z'* — square of radius from point of suspension to point of contact

c
= P

2 +
;

Substituting for x, y , z
1

their values as given by the equations

x = Wj/Vc = — d sin cos yjr/A*Jc,

y' = wjtjc = d sin 6 sin yjr/By/c,

z' = a>3/\/c = d cos 6jC\Jc,

we have

pi = ~ i + Wc s[n*ecos* * + b% sixi
* e sin2^ + ^rc

cos^-

Replacing and yfr by their values in terms of t, this becomes

(pA-tP)j#-cC)
{ (B-C)(A-B)d>

p ~ cd*A*B*C*
\aw-~ -

p Jtj^Vs

(cA - d*) (d1 - cG) p(t)-fp(l+a>)

cd 2AG ' p(t)-e3
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where o> denotes the half-period corresponding to the root e^ this equation
expresses the radius vector of the herpolhode in terms of the time.

We have next to find the vectorial angle % in terms of t. For this we
observe that ^cp^x/d is six times the volume of the tetrahedron whose
vertices are the fixed point, the foot of the perpendicular from the fixed

point on the fixed plane, and two consecutive positions of the point of contact,

divided by the interval of time elapsed between these positions, and that this

quantity can also be expressed in the form

ex Id?,
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problem is essentially that of determining the motion of a solid of revolution

under the influence of gravity, when a point on its axis is fixed in space *.

Let (A, A, C) denote the moments of inertia of the top about rectangular

axes Oxyz, fixed relative to the top and moving with it, the origin being the

apex and the axis Oz being the axis of symmetry of the top ; let (6, <j>, ty) be

the Eulerian angles defining the position of these axes with reference to fixed

rectangular axes OXYZ, of which OZ is directed vertically upwards.

The kinetic energy is (§ 63)

T=\(A a>1* + A<oi+C<o3%
where tou <o2 , o>3 denote the components relative to the moving axes of the

angular velocity of the top, so that (§ 16) we have

m1
= 6 sin yfr — <p sin 6 cos yjr,

G>2 = cos yfr + <j) sin sin yjr,

3
= T^-t-<j>cos0;

the kinetic energy is therefore

T = \A6°- + \Afi sin2 + £C (ijr + <j> cos 0)
2
,

and the potential energy is V= Mgh cos 0, where Mis the mass of the top

and -h is the distance of its centre of gravity from the apex.

The kinetic potential is therefore

L = T- V= \A& + £4<£2 sin2 6 + hC(t+4> cos dy-Mghcos 6.

The coordinates <£ and yjr are evidently ignorable; the corresponding

integrals are

^7 = constant, and 5-7- = constant,
0(p Oy

or A<i>s,iu?6 + C (yjr + ^ cos 0)cos = a,

C (yjr +
<f>
cos 0) =6,

where a and b are constants : these may be interpreted as integrals of angular

momentum about the axes OZ and Oz, and so are obvious cb priori from

general dynamical principles.

The modified kinetic potential (§ 38) is

R = L — a<f> — byjr

LAte (
a - b cos eT & *r l

The term -62/2G can be neglected, as it is merely a constant; the

equation of motion is

d /dR\ _ dR _
dt\d0J dd~ '

* Lagrange, Mec. Anal. (Oeuvres, xn. p. 251).



71] The Soluble Problems of Rigid Dynamics 157

so the variation of 6 is the same as in a dynamical system with one degree

of freedom for which the kinetic energy is \A& and the potential energy is

(a — b cos Of , , .v

a , „J + Mgh cos 6,
2A sin2 *

The connexion between 6 and t is therefore given by the integral of

energy of this reduced system, namely

1 a no (a — b cos 0)" , . , „&A6 2 = - v
•

, a - -%* cos + c,

where c is a constant.

Writing cos = x, this equation becomes

AW =-(a- bxf - 2AMgh (x - x3
) + 2Ac (1 - x2

).

The right-hand side of this equation is a cubic polynomial in x\ now
when x — —l, the cubic is negative; for some real values of 6, i.e. for some

values of x between — 1 and 1, the cubic must be positive, since the left-hand

side of the equation is positive; when m = 1, the cubic is again negative; and

when x = + oo , the cubic is positive. The cubic has therefore two real roots

which lie between — 1 and 1, and the remaining root is also real and is

greater than unity. Let these roots be denoted by

cos a, cos /3, cosh 7,

where cos /3 > cos a, so that a > fi.

The differential equation now becomes

(Mgh/2A )* dt = {4 (x - cos a) (x - cos /3) (x - cosh 7)}
~
* dx.

If we write

a a 24 24c + b2

x =MgI Z+^COSa + COS ^ + COsh^ =
Wh Z+

QAMgh'

we have therefore t + constant = {4 (z — e x) (z -

e

2) (z — es)}~*dz,

where the constants e1; e2 , e3 are given by the equations

2Ac + b2

.-^- cosh 7 12A
,~>

Mgh _ 2Ac + ¥
\

e*=2A C0S/3 --124^'

Mgh 2Ac + b2

so that e1( e2 , es are all real and satisfy the relations

ex + es + e3 = 0, ex > e2 > e3 .
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The connexion between z and t is therefore

* - & (* + 6).

where e is a constant of integration, and the function
(j?

is formed with the

roots elt e2 , e3 ; and hence we have

2A u ,
.

,
2Ac + b*

x = Wh Ht + 6)+ MMgh-
Now in order that x may be real for real values of t, it is evident that x must

lie between cos a and cos /3, i.e. @ (t + e) must lie between e2 and es for real

values of t : and therefore the imaginary part of the constant e must be the

half-period a>3 corresponding to the root es . The real part of e depends on

the epoch from which the time is measured, and so can be taken to be zero

by suitably choosing this epoch. We have therefore finally

, 2A ..
,

. 2Ac + b*
COS V = -TT-T fP(t + °>3) + n A ** t >Mgh^ K s/ QAMgh'

and this is the equation which expresses the Eulerian angle 6 in terms of

the time*.

Example 1. If the circumstances of projection of the top are such that initially

5=60°, 6=0, <j>= 2(Mffhl3Aft, ^= {ZA-C){Mgh^AC^,
shew that the value of 6 at any time t is given by the equation

sec0= l+sechU^'Y
so that the axis of the top continually approaches the vertical.

For in this case we readily find for the constants a, b, c the values

a= b=(3MghA)b, c= i

so the differential equation to determine x is

(§)

2

=^-*>2 (--D.
whence the result follows.

Example 2. A solid of revolution can turn freely about a fixed point in its axis of

symmetry, and is acted on by forces derived from a potential-energy function /u cot2 8, where

6 is the angle between this axis and a fixed line ; shew that the equations of motion can be

integrated in terms of elementary functions.

For proceeding as in the problem of the top on the perfectly rough plane, we find for

the integral of energy of the reduced problem the equation

1^1- ("-6 cos 0)2 ops'*
- 24 sin2 ^sin2

+

Writing cos 6= x, this becomes

AW= - (a-bxY-ZA^ + ZAc (1 -x*).

The quadratic on the right-hand side is negative when x=l and x= — 1, but is positive

for some values of x between - 1 and + 1, since the left-hand side is positive for some real

It may be remarked that the present problem reduces to that of the spherical pendulum

(§ 55) when the quantities M, C, A, h, a, b, u, cos 6, <f>,
I, k are replaced respectively by

1, 0, P, I, k, 0, h, zjl,
<t>, \, h .
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values of 6 -. the quadratic has therefore two real roots between - 1 and + 1. Calling

these cos a and cos /3, the equation is of the form

A2£2= (cos a - a) {x — cos 0),
the solution of which is

oo= cos a sin2 (//2X) + cos /3 cos2 (*/2X).

72. Determination of the remaining Eulerian angles, and of the Cayley-

Klein parameters ; the spherical top.

When the Eulerian angle has been obtained in terms of the time, as in

the last article, it remains to determine the other Eulerian angles
<f>

and \jr.

For this purpose we use the two integrals corresponding to the ignorable

coordinates : these, when solved for
<f>

and i^, give

, _ a — b cos

b (a — b cos 6) cos

t =
A sin2 6

'

If we regard the motion as specified by the constants of the body

(M, A, C, h) and the constants of integration (a, b, c), it is evident from

these equations and the equation for 6 that C does not occur except in

the constant term of the expression for yjr ; and therefore an auxiliary top

whose moments of inertia are (A, A, A) can be projected in such a way that

its axis of symmetry always occupies the same position as the axis of symmetry

of the top considered, the only difference in the motion of the two tops being

that the auxiliary top has throughout the motion a constant extra spin

b{G-A)jAG about its axis of symmetry. A top such as this auxiliary top,

whose moments of inertia are all equal, is called a spherical top. It follows

therefore that the motion of any top can be simply expressed in terms of the

motion of a spherical top, and that there is no real loss of generality in

supposing any top under consideration to be spherical.

If then we take G= A, the equations to determine $ and i/r become

_ a - b cos _ a + b a-b
$~ As^0 ~2J.(cos0 + l) 24 (cos 0-1)'

]
. b - a cos a + b a-b

l^
=

4sin2 6> ~2A(cob0+1) 2A(cob0-1)'

Substituting for cos its value from the equation

„ 2A , 2Ac + b*

cos6 =
Mih

&{t + C°3) +^V
and writing

Mgh 2Ac + b*

PW~ 2A 12A* '

Mgh 2Ac + ¥
p(*'~ -2A 12A* '
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so that I and k are known imaginary constants (being in fact the values of

t + cos corresponding to the values and ir of 6), the differential equations

become

/ • _ Mgh{a + b) 1 Mgh (a - b) __1V- ~±A? ' > (< + «,)-!> (A) *^ 2 'p(t + »*)-9(l)'

. _ Mgh(a+b) 1 Mgh (a -b) 1

Now the connexion between the function $> and its derivate g)' can be at

once written down by substituting for x from the equation

2A /t ,
. 2Ac + b*X=

Mih
f{t + 03s)+ QAMgh

in the equation

A* ( -=.\ = - (a- bxf - 2AMgh (x - Xs
) + 2Ac (1 -O

;

if the argument of the p-function is k, it follows from the definition of k that

the corresponding value of x is — 1 ; and so the last equation gives

or f'{k) = iMgh(a + b)l
!

2.A\

Similarly we have

<p'(l) = iMgh{a-b)l2A\

and therefore the equations for
<f>
and yjr can be written in the form

Ux- v'W P'V)
9(t + wt)-p(k) p(*+ »,)-f>(J)'

24= tm + £$_.
£>(* + «,)-£>(&) p(* + oO-|»(l)"

Now the function

IP' <*) •

p(* + o>3) -f>(*)

is an elliptic function, whose poles in any period-parallelogram are congruent

with t + a>3 = k and £ + <»3 = — &', the corresponding residues being 1 and — 1

;

and the function is zero when t + a>z = 0. Hence we have

and therefore

J j» (* + »,)

-

»(A)d* , o- (t + a>3 - k) _„,..,
7T\ = log /.. —re + 2f(A) < + constant.
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The integrals of the equations for
<f>

and yjr can therefore be written in

the form

e2i(0-0o) = e
2{f(fc)-f(J)}« <r(t+a>3 -k)o-(t + co3 + I)

' a (t + a>3 + ft) <r (t + a>3 - I)
'

e
2i(^-^

) = e
2{f(J;) + f(J)}t

Q" (t + <o3 - k) a (t +.a)3 - I)

'

a- {t + a s + k) a- (t + as + I)'

where $ and
-tya

are constants of integration.

These equations lead to simple expressions for the Cayley-Klein parameters

a, fi, y, 8 (§ 12), which define the position of the moving axes Oxyz with

reference to the fixed axes OXYZ: for by definition we have

a = cos £ 6 .
«**(*+*>, & = i sin } 6 . «1 <(*-*>,

But we have

2 cos5 \d=l + cos0

2A ,± . 2Ac + b2

2A
{$>(t + <os)-p(k)}Mgh

2A o- (£ + <o3 + ft) <t (t + (»3 - k)

~~~Mgh' a*(k)a*(t + eo3)

, _ (
- A\$ {<r(t + o»3 + k) cr (t + w3

- k)}%
*

• \Mgh) '
«r (ft) o- (*+»,)

Similarly we find

* 1%/J cr(0«r (* + «,)

and on combining these with the expressions for e
2i* and e

2i^ already found,

we have

( = (ZA^ «* <(* ) + *)) <r(t + <o3 -k) ,m
\MghJ ' <r(ft) ' <r (* + »,)

'

cos

'-G$
i elHto-to) a (t + (os +l)

a (I) <r(t+ to3)

-A\i e^^o-^o) a (t + «>3 -l)

\Mqh)Mgh) ' a (I) cr(t + co 3 )

~ 1%A/ ' o-(ft) <r(t + o>3)

time,

w. D

These equations express the parameters a, /?, 7, 8 as functions of the

11
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Example ]. A gyrostat of mass M moves about a fixed point in its axis of symmetry:

the moments of inertia about the axis of figure and a perpendicular to it through the fixed

point are C and A respectively, and the centre of gravity is at a distance h from the fixed

point. The gyrostat is held so that its axis makes an angle arccos 1/V3 imth the downward

vertical, and is given an angular velocity *]AMgh >J3/C about its axis. If the axis be now

left free to move about the fixed point, shew that it mil describe the cone

sin2 8 sin 2$= ( - cos 8 - l/s/3)* ( - cos 8+ JZ) *>

or sin2 cos 20=^^(^3/2+ cos (9)*,

where <j> is the azimuthal angle and 8 the inclination of the axis to the upward vertical.

(Camb. Math. Tripos, Part 1, 1894.)
For in this problem we have initially

cos 0= -1/^3, <t>=0, 6=0, (£=0, += jAMghJ3/C,

and these initial values give

a= - jMAghli/Z, 6=4/3 jMAgh, c= - Mgh/J3.

Substituting in the general differential equation for 8, namely

i At* (a — bco&6)2
,, ,

we have
A82 sin2 6= -Mgh (cos 8+ l/v/3) (^3+ 2 cos 8) ( - cos 6 + */3),

while the equation

: _a — bcos8
' A sin2 8

i IlighJZ cos + 1/^/3
sivea 0~V—r~ • sin2 a •

Dividing this equation by the square root of the preceding equation, we have

= 3* f(-cos 6- 1/^3)* (v/3+ 2 cos 8)"^ ( -cos 8+ y/3)

~

* cosec 8d8,

= 3* f(x-l/^/3)i(s/3-2x)-i(x+ lJ3)-i(l-xi)- 1 dx, where x= -cos8.

Now if we write

»= (* - 1/^3) * (*+ V3) * (J3/2 - #)
~

1,

we have by differentiation

J=f(l-*2)(tf-W3)4(*+ v'3r % (v/3/2-*)-*'

„^ n ,
3 J

„ 3*(1-^2
)
2

and lH—

w

2 = ——

i

i_
8 8(^3/2 -a;)

-

We have therefore

4J2J l +3*w2/8'

or 20=arctan(3i2
-

*tt),

or tan 20=3*2-* (-cos 8- 1/V3)* (-cos + ^/3)* (^3/2+ cos 0)
-

*,

which is equivalent to the result given above.
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Example 2. Shew that the logarithms of the Cayley-Klein parameters, considered as

functions of cos 8, are elliptic integrals of the third kind.

Example 3. Obtain the expressions found above for the Cayley-Klein parameters as

fractions of the time * by shewing that they satisfy differential equations typified by

where Y denotes a doubly-periodic function of t, these equations being of the Hermite-Lam^
type which is soluble by doubly-periodic functions of the second kind.

A simple type of motion of the top is that in which the axis of symmetry
maintains a constant inclination to the vertical; in this case, which is

generally known as the steady motion of the top, and 6 are permanently
zero; since we have

i a ao (a — b cos 0)a „, , .

_ d ((a — b cos 0f „ , , .

it follows that

Performing the differentiation, and substituting for (a — b cos 0) its value

Afy&vtfO, we have
= - b(j> + Aft cos + Mgh.

This equation gives the relation between the constants ft 0, and b (which

depends on the rate of spinning of the top on its axis) in steady motion.

73. Motion of a top on a perfectly smooth plane.

We shall now consider the motion of a top which is spinning with its apex

in contact with a smooth horizontal plane* The reaction of the plane is now
vertical, so the horizontal component of the velocity of the centre of gravity,

G, of the top is constant ; we can therefore without loss of generality, suppose

that this component is zero, so that the point 6? moves vertically in a fixed

line, which we shall take as axis of Z; two horizontal lines fixed in space and

perpendicular to each other will be taken as axes of X and Y.

Let Gxyz be the principal axes of inertia of the top at G, and (A, A, G)

the moments of inertia about them, Gz being the axis of symmetry : and let

(0, (j>, ijr) be the Eulerian angles defining their position with reference to the

axes of X, Y, Z.

The height of G above the plane is h cos 0, where h denotes the distance

of G from the apex of the top ; the part of the kinetic energy due to the

motion of G is therefore \Mh* sin2
.

2
, where M is the mass of the top ; and

so, as in § 71, the total kinetic energy is

T = iMh? sin2 6 .
1 + \A¥ + \A ft sin2 + | G (f + <j> cos 0)\

and the potential energy is

V= Mgh cos 0.

* Poisson, trajle de Micanique (1811), n. p. 198.

11—2
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Proceeding now exactly as in § 71, we have two integrals corresponding

to the ignorable coordinates
<f>
an<J ^ namely

fA(f> sin2 6 + C (yfr + <£ cos 6) cos 8 = a,

1 C (ijr+<i> cos 0) = b,

where a and b are constants; and on performing the process of ignoration of

coordinates we obtain for the modified kinetic potential the expression

UA + Mh? sin2
6) tf

2 - (ft ~ h C°sy - Mgh cos 6,ZA sin v

so the variation of 6 is the same as in the system with one degree of freedom

for which the kinetic energy is

£ (A + Mh* sin2 6) 6%

and the potential energy is

(a — b cos 8)" , , , .
> -, ./ + Mgh cos 6.
2A sin2 *

The connexion between 9 and t is given by the integral of energy of this

latter system, namely

UA+ Mh? sin' 6) fo = -
(o

a
" b

°°l f

)a

- JfyA cos g + c,
^ v 7 2J. sm2

where c is a constant. Writing cos = x, this becomes

A(A+ Mh? - MhV) xi =-(a- bxf - 2AMgh (x - a?) + 2Ac (1 - a;
2
).

The variables x and t are separated in this equation, so the solution can

be expressed as a quadrature ; but the evaluation of the integral involved

will require in general hyperelliptic functions, or automorphic functions of

genus two.

74. Kowalevski's top.

The problem of the motion under gravity of a body one of whose points is

fixed is not in general soluble by quadratures : and the cases considered in

§ 69 (in which the fixed point is the centre of gravity of the body, so that

gravity does not influence the motion), and in § 71 (in which the fixed point

and the centre of gravity lie on an axis of symmetry of the body), were for

long the only ones known to be integrable. In 1888 however Mme. S.

Kowalevski* shewed that the problem is also soluble 'when two of the

principal moments of inertia at the fixed point are equal and double the

third, so that A = B = 2(7, and when further the centre of gravity is situated

in the plane of the equal moments of inertia.

Let the line through the fixed point and the centre of gravity be taken

as the axis Ox, and let the centre of gravity be at a distance a from the fixed

* Acta Math. xn. (1888), p. 177.
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point ; let (0, <j>, yjr) be the Eulerian angles which define the position of the

principal axes of inertia Oxyz with reference to fixed rectangular axes OXYZ,
of which the axis OZ is vertical; let (a>u a>2 , w3) be the components along the

axes Oxyz of the angular velocity of the body, and let M be its mass. The

kinetic and potential energies are given by the equations

= G{02 + 2 sin2 +$($• + 4>coa 0)%

V = — Mga sin cos ty.

The coordinate $ is evidently ignorable, giving an integral

dT—j = constant,
d(p

or 2</> sin2 + (i^+ <j> cos 0) cos = k,

where A; is a constant : and the integral of energy is

T + V= constant,

or 02 + 02 sin2 + \ Of + <j> cos 0f jy sin cos yfr = h.

Mme. Kowalevski shewed that another algebraic integral exists, which can

be found in the following way.

The kinetic potential is

L=C02 + Cfi sin2 +\C(jr + <j> cos 0)* + Mga sin cos f,

and the equations of motion are

dt \d0) d0 '

d/dL\dL_ =0
dt \^J dty

dt \d<t>)

the first of these is

20 = (<£ cos -
•f) <j> sin +-^ cos cos yjr

,

and on eliminating -f between the second and third, we obtain

2 1-
(<j> sin 0) = - (cj> cos - aJt)

0" +—^ cos sin i/r.

etc

Adding the first of these equations multiplied by i to the second, we have

2 -£ (0 sin0 + t"0)-t (0 cos - ^)((f> sin0 + ifl)+» . -jy cos far**,
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an equation which can be written in the form

~ fo sin + i6Y +^ sin tor*SVVBU.UT»,T
fj

= i (ij> cos 0—fy) {(<j> sin0+ i8f + -^ sin 0e-i*\

,

ldU -ix a i\

where U= (<j> sin + ify + -^ sin 0e~^.

Similarly, if

V=
(<f>
smO-idy +^ sin 0tf*,

we have ~v~li
= —

* ($ cos ^ — ^")-

It follows that

ldU l_dV = a
U dt

+ V dt '

or UV= constant.

We have therefore the equation

\(<f>
sin + id)1 + ^sin 06^*1 \(<j> sin - id)* + -^ sin <v4 = constant,

or

(fr+ 4?tan*0y + (^pYsin2 e + ^sin^fe^^sin^ +^+e^^sin^-^}
= constant,

and $i» is the required third algebraic integral of the system.

The first integrals which have been found constitute a system of three

differential equations, each of the first order, for the determination of 8, <j>, ^»,

and they can be regarded as replacing the original differential equations of

motion. The variable <£ does not occur explicitly in them and we can there-

fore use one of the three equations in order to eliminate (j> from the other two:

we shall then have a system of two differential equations, each of the first

order, to determine and yfr. It has been shewn by Mme. Kowalevski that

these equations can be solved by means of hyperelliptic functions : for this

solution reference maybe made to the memoir already referred to*.

* C£ also Kotter, Acta Math. xvn. (1893), p. 209 ; Stekloff, Gorjatscheff, and Tchapligine,

Trav. Soc. Imp. Nat. Moscou, x. (1899) and xii. (1904); G. Dumas, Nouv. Ann. (4) iv. (1904),

p. 355; Husson, Toulouse Ann. (2) vm. (1906), p. 73 ; Husson, Acta Math. xxxi. (1907), p. 71;

N. KowalevBki, Math. Ann. lxv. (1908), p. 528; P. Stackel, Math. Ann. lxv. (1908), p. 538;

O. Olsson, Arkiv for Mat. iv. Nr. 7 (1908) ; E. Marcolongo, Bom. Ace. Rend. (5) xvn. (1908),

p. 698; F. de Brun, Arkiv for Mat. vi. Nr. 9 (1910); P. Burgatti, Palermo Rend. xxix. (1910),

p. 396 ; O. Lazzarino, Rend. d. Soc. reale di Napoli, (3
a
) xvn. (1911), p. 68.



74, 75] The Soluble Problems of Rigid Dynamics 167

Example. Let ylt y2 , y3 denote the direction-cosines of Ox, Oy, Oz referred to OZ, and
let variables x, y, t be defined by the equations

,a^=(V- O»2
2+^){(6,3 o,1

4-to)2
- (08w}

<B2
'

<B2Wr=|L3 <»1 -|-—^?J + ffl3
!
(Bg

Slefe.

Shew by use of Kowalevski's integral (without using the integrals of energy or angular

momentum) that the equations of motion can be written in the form

<Px__dV d?y__dV
dr*~ dx' dr*~ dy'

where V is a function of x and y only, so that the problem is transformed into that of the

motion of a particle in a plane conservative field of force. (Kolosoff.)

R. Liouville* has stated that the only other general case in which the motion under

gravity of a rigid body with one point fixed has a third algebraic integral is that in which

1°. The momental ellipsoid of the point of suspension is an ellipsoid of revolution.

2°. The centre of gravity of the body is in the equatorial plane of the momental

ellipsoid.

3°. If (A, A, C) are the principal moments of inertia at the point of suspension, the

ratio 2C/A is an integer : this integer can be arbitrarily chosen.

On this, cf. the memoirs cited in the footnote on the preceding page.

Example. A heavy body rotates about a fixed point 0, the principal -moments of

inertia at which satisfy the relation A =B= iC: and the centre of gravity of the body lies in

the equatorial plane of the momental ellipsoid, at a distance h from 0. Shew that if the

constant of angular momentum about the vertical through vanishes, there exists an integral

°>3 (<«>i
2+ <°2

2
) -\-gh<"i c°s 6= constant,

where wj, <b2 , <b3 are the components of angular velocity about the principal axes Oxyz,

Ox being the line from to the centre of gravity ; and hence that the problem can be

solved by quadratures, leading to hyperelliptic integrals. (Tchapligine.)

75. Impulsive motion.

As has been observed in § 36, the solution of problems in impulsive

motion does not depend on the integration of differential equations, and can

generally be effected by simple algebraic methods. The following examples

illustrate various types of impulsive systems.

Example 1. Two uniform rods AB, BO, each of length 2a, are smoothly jointed at B

and rest on a horizontal table with their directions at right angles. An impulse is applied to

the middle point of AB, and the rods start moving as a rigid body: determine the direction

of the impulse that this may be the case, and prove that the velocities of A, C will be in the

ratio v/13 : 1.
(Coll. Exam.)

We can without loss of generality suppose the mass of each rod to be unity. Let (x, y)

be the compouent velocities of B referred to fixed axes Ox, Oy parallel to the undisturbed

* Acta Math. xx. (1897), p. 239.
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position BA, BC of the rods, and let 8, <j> be the angular velocities of BA and BC. The

components of velocity of the middle point of AB are (x, y+a8), and the components of

velocity of the middle point of BC are (x-a<j>, y), so the kinetic energy of the system is

given by the equation

Let the components parallel to the axes of the impulse be I, J. The components of

the displacement of the point of application of the impulse in a small displacement of the

system are (hx, 8y+a88) ; and hence the equations of § 36 become

dT , dT T dT T dT
Tx-

1
' Ty^ Ye

=Ja
' dj

= °'

7= 2x - a<£,

J=2y+ a6,

Ja=ay+$a2
8,

0= — ax+$a2
<j>,

while the condition that the system moves as if rigid is 8=j>. These equations give

\x=y=lcd= \a^,=\I=\J.

Hence I=J, which shews that the direction of the impulse makes an angle of 45° with BA
;

and as the components of velocity of A are (x, y+2a8), and the components of velocity of

C are (x — 2a<j>, y), we have for the velocities of A and of C the values s/65y and ijby

respectively, so the velocity of A is >Jl3 x the velocity of C: which is the required result.

Example 2. A framework in the form of a parallelogram is made by smoothlyjointing

the ends of two pairs of uniform bars of lengths 2a, 26, masses m, m', and radii of gyration

k, M. The parallelogram, is moving without any rotation of its sides, and with velocity V, in

the direction of one of its diagonals; it impinges on a smoothfixed wall with which the sides

make angles 8, <j> and the direction of the velocity V a right angle, the vertex which impinges

being brought to rest by the impact. Shew that the impulse on the wall is

2V{(m+m')- 1+ (mki +m'a?)- 1 a?coti!i d + (mb2+m'k'2)- 1 b*cosi
<l)}-h

(Coll. Exam.)

Let x and y be the coordinates of the centre of the parallelogram, x being measured at

right angles to the wall and towards it. The kinetic energy is

T= (m +m') (x2+y2
) + (mk2+m'a2

) 8 2 + (mb*+ m'K2
) <j>K

The ^-coordinate of the point of contact is x+a sin 6+ b sin <£, so the displacement of the

point of contact parallel to the axis of x corresponding to an arbitrary displacement

(8x, 8y, 88, 80) is 8x+ a cos 8 88+ b cos cb8cj). The equations of motion, denoting the

impulse by /, are therefore

(dT m
dx \dxj '

dT (dT\—
r — —;

- 1 = — la cos 8,
dd \deJo

dT (dT\

v oq> \o<p/o

'2(m+m')(*-7)=-7,

2 (mk2+ m'a2
) 8 =-Ia cos 8,

. 2 (mb2 +m'k'2
) </> = - lb cos 0.
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Moreover since the final velocity of the point of contact is zero, we have

x+aoos8 .6+ boo%(\> . <j>= 0.

Eliminating x, 6, <£ from these equations, we have

-_.f 1
(

a2 cos2
fl

p

62 cos2 <j> \

~
12 (m+ m!)

+
2 (mF+ m'a2

)

+
2 (m&2+mTs

) J
'

which is the result stated.

The next example relates to a case of sudden fixture ; if one point (or line)

of a freely-moving rigid body is suddenly seized and compelled to move in a

given manner, there will be an impulsive change in the motion of the body,

which can be determined from the condition that the angular momentum of

the body about any line through the point seized (or about the line seized)

is unchanged by the seizure ; this follows from the fact that the impulse of

seizure has no moment about the point (or line).

Exam/pie 3. A uniform circular disc is spinning with an angular velocity Q about a

diameter when a point P on its rim is suddenly fixed. Prove that the subsequent velocity of

the centre is equal to \ of the velocity of the point P immediately before the impact.

(Coll. Exam.)

Let m he the mass of the disc, and let a be the angle between the radius to P and the

diameter about which the disc was originally spinning. The original velocity of P is

Qc sin a, where c is the radius of the disc. The original angular momentum about P is

about an axis through P parallel to the original axis of rotation, and of magnitude \m<?Q.
;

and this is unchanged by the fixing of P, so when P has been fixed, the angular momentum
about the tangent at P is \mtfO. sin a. But the moment of inertia of the disc about its

tangent at P is %mc2
, and so the angular velocity about the tangent at P is £o sin a. The

velocity of the centre of the disc is therefore ^Qcsina, which is \ of the original velocity

of P.

Example 4. A lamina in the form of a parallelogram whose mass is m has a smooth

pivot at each of the middle points of two parallel sides. It is struck at an angular point

by a particle of mass to which adheres to it after the blow. Shew that the impulsive

reaction at one of the pivots is zero. (Coll. Exam.)

Miscellaneous Examples.

1. Prove that for a disc free to turn about a horizontal axis perpendicular to its plane

the locus on the disc of the centres of suspension for which the simple equivalent

pendulum has a given length L consists of two circles ; and that, if A and B are two

points, one on each circle, and I! is the length of the simple equivalent pendulum when

the centre of suspension is the middle point of AB, the radius of gyration k of the disc

about its centre of inertia is given by the equation

FZ'2= (£Z2 -c2
)
(Z's-i^+ c2),

where 2c is the length of AB. (Coll. Exam.)

2. A heavy rigid body can turn about a fixed horizontal axis. If one point in the

body is given through which the horizontal axis has to pass, discuss the problem of

choosing the direction of the axis in the body in such a way that the simple equivalent

pendulum shall have a given length ; shewing that the axes which satisfy this condition are

the generators of a quartic cone. (
CoU

-
Exam.)
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3. A sphere of radius 6 rolls without slipping down the cycloid

x=a(6+&in8), y=a(l—cosd).

It starts from real; with its centre on the horizontal line y=2a. Prove that the velocity V
of its centre when at the lowest point is given by

V2=
Jfg {2a- b). (Coll. Exam.)

4 A uniform smooth cube of edge 2a and mass M rests symmetrically on two shelves

each of breadth b and mass m and attached to walls at a distance 2c apart. Shew that, if

one of the shelves gives way and begins to turn about the edge where it is attached to the

wall, the initial angular acceleration of the cube will be

Mg(c-a)2 (c — b) + $mgb(c— a)(c-b+ a)

'M(c-a)2 {k2+ (c-b)2
} +I(a-b + a) 2

'

where Mi2 and / are respectively the moments of inertia of the cube about its centre and

of the shelf about its edge. (Camb. Math. Tripos, Part I, 1899.)

5. A homogeneous rod of mass M and length 2a moves on a horizontal plane, one end

being constrained to slide without friction in a fixed straight line. The rod is initially

perpendicular to the line, and is struck at the free end by a blow I parallel to the line.

Shew that after time t the perpendicular distance y of the middle point of the rod from

the line is given by the equation

fl
(1 -j**)4(l-^)

-
* dx=ZItj2Ma. (Coll. Exam.)

' via

6. Four equal uniform rods, of length 2a, are smoothly jointed so as to form a

rhombus ABCD. The joint A is fixed, whilst G is free to move on a smooth vertical rod

through A. Initially C coincides with A and the whole system is rotating about the

vertical with angular velocity a. Prove that, if in the subsequent motion 2a is the least

angle between the upper rods,

am2 cos a= Zg sin2
a.

(Camb. Math. Tripos, Part I, 1900.)

7. A disc of mass M rests on a smooth horizontal table, and a smooth circular groove

of radius a is cut in it, passing through the centre of gravity of the disc. A particle of

mass \M is started in the groove from the centre of gravity of the disc. Investigate the

motion. Prove that if a<f> is the arc traversed by the particle and 6 the angle turned

round by the disc, then

tan 40 *—j tan ^t+Jf^.
(
u.

6)
(a2 + k2)i h

Mkl being the moment of inertia of the disc about a vertical line through its centre

of gravity. (Coll. Exam.)

8. A rigid body is moving freely under the action of gravity and rotating with angular

velocity w about an axis through its centre of gravity perpendicular to the plane df its

motion. Shew that the axis of instantaneous rotation describes a parabolic cylinder of

latus rectum (Jia+JZg/a)2
, whose vertex is at a distance J2gaja> above that of the path

of the centre of gravity of the body; where 4a is the latus rectum of the parabola

described by the centre of gravity. (Coll. Exam.)

9. A particle of mass m is placed in a smooth uniform tube which can rotate in a

vertical plane about its middle point. The system starts from rest when the tube is

horizontal. If 6 is the angle the tube makes with the vertical when its angular velocity is

a maximum and equal to w, prove that

4 (mr*+Mk2
) a>

4 - Smgra2 cos 6+mg2 sin2 6= 0,
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where Mk2 is the moment of inertia of the tube about its centre and r the distance of the

particle from the centre of the tube. (Coll. Exam.)

10. Four uniform rods, smoothly jointed at their ends, form a parallelogram which
can move smoothly on a horizontal surface, one of the angular points being fixed.

Initially the configuration is rectangular and the framework is set in motion in such a

manner that the angular velocity of one pair of opposite sides is Q, that of the other pair

being zero. Shew that when the angle between the rods is a maximum or minimum, the

angular velocity of the system is SI. (Coll. Exam.)

11. Two homogeneous rough spheres of equal radii a and of masses m, m' rest on a

smooth horizontal plane with m' at the highest point of m. If the system is disturbed,

shew that the inclination of their common normal 6 to the vertical is given by the

equation
afc (7m+ 5m' sin2 0) = 5g (m+m') (l-cos0). (Coll. Exam.)

12. A uniform rod AB is of length 2a and is attached at one end to a light inexten-

sible string of length c. The other end of this string is fixed at to a point in a smooth

horizontal plane on which the rod moves. Initially OAB is a straight line and the rod is

projected without rotation with velocity V in the direction perpendicular to its length.

Prove that the cosine of the greatest subsequent angle between the rod and string is

l-a/6c. (Coll. Exam.)

13. To a fixed point are smoothly jointed two uniform rods of length 2a, and upon

them slides, by means of a smooth ring at each end, a third rod similar in all respects.

Initially the three rods are in a horizontal line with the ends of the third rod at the

middle points of the- other two and, on the application of an impulse, the rods begin to

rotate with angular velocity 12 in a horizontal plane. Shew that the third rod will slide

right off the other two unless

Q?>2g/aJS. (Coll. Exam.)

14. A hollow thin cylinder of radius a and mass M is maintained at rest in a

horizontal position on a rough plane whose inclination is a, and contains an insect of mass

m at rest on the line of contact with the plane. The cylinder is released as the insect

starts off with velocity V: if this relative velocity be maintained and the cylinder roll up

hill shew that it will come to instantaneous rest when the radius through the insect

makes an angle 8 with the vertical given by

V2 {1-cos (0-a)}+ag (cos a -cos 6)=(1+Mlm) ag (6 -a) sin a.

(Coll. Exam.)

15. A uniform smooth plane tube can turn smoothly about a fixed axis of rotation

lying in its plane and intersecting it : the moment of inertia of the tube about the axis

is 1. Initially the tube is rotating with angular velocity JJ about the axis, and a particle

of mass m is projected with velocity V within the tube from the point of intersection of

the tube with the axis. The system then moves under no external forces. Prove that,

when the particle is at a distance r from the axis, the square of its velocity relative to the

tube is

F2 + -r^—9 O2
- (Coll. Exam.

)

16. A uniform straight rod of mass M is laid across two smooth horizontal pegs so

that each of its ends projects beyond the corresponding peg. A second uniform rod of

mass m and length 21 is fastened to the first at some point between the pegs by a
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universal joint. This rod is initially held horizontal and in contact with the first rod : and

then let go, so as to oscillate in the vertical plane through the first rod. Prove that if 6

be the angle which the second rod makes with the vertical at any instant, and $ the

distance through which the first rod has moved from rest,

(M+m)x+ ml sin 6= ml,

and ($~m~TM
C°s3

6

)
l^= %9 cos 6 - (-

ColL ExanL
)

17. A plane body is free to rotate in its plane about a fixed point, and a second plane

body is free to slide along a smooth straight groove in the first body, its motion being in

the same plane ; shew that the relation between the relative advance x along the groove

and the angle of rotation 8 (no external forces being supposed to act on the system)

is of the form

fdxV
\d$)

where P and Q are respectively linear and quadratic functions of a?. (Coll. Exam.)

18. A pendulum is formed of a straight rod and a hollow circular bob, and fitting

inside the bob is a smooth vertical lamina in the shape of a segment of a circle, the

distances of the centre (0) of the bob from the point of suspension (0) and from the

centre of gravity (O) of the lamina being I and c respectively. Prove that if M, m are the

masses of the pendulum and lamina, k and if their respective radii of gyration about

and O, 6 and <£ the angles which OC and CO make with the vertical, then twice the

work done by gravity on the system during its motion from rest is equal to

(Mtf+ mP) 6*+m (r^+o2
) <fp+ 2mcl cos {8- <j>) ty. (Coll. Exam.)

19. A particle of mass m is attached to the end of a fine string which passes round

the circumference of a wheel of mass M, the other end of the string being attached to a

point in that circumference, a length I of the string being straight initially, and the wheel

(radius a and radius of gyration k) being free to move about a fixed vertical axis through

its centre; the particle, which lies on a smooth horizontal plane, is projected at right

angles to the string, so that the string begins to wrap round the wheel
; prove that, if the

string eventually unwinds from the wheel, the shortest length of the straight portion is

(P- a2 - MlP/mfi. (Coll. Exam.)

20. A carriage is placed on an inclined plane making an angle a with the horizon and

rolls straight down without any slipping between the wheels and the plane. The floor of

the carriage is parallel to the plane and a perfectly rough ball is placed freely on it. Shew

that the acceleration of the carriage down the plane is

UM+iM' +Um .

UM+4M'+21m9Sma'

where M is the mass of the carriage excluding the wheels, m the sum of the masses of the

wheels, which are uniform discs, and M' that of the ball. The friction between the wheels

and the axes is neglected. (Coll. Exam.)

21. A uniform rod of mass m
1
and length 2a is capable of rotating freely about its

fixed upper extremity and is initially inclined at an angle of jr/6 to the vertical. A second

rod, of mass m 2 and length 2a, is smoothly attached to the lower end of the first and rests

initially at an angle of 2^/3 with it and in a horizontal position. Shew that if the centre

of the lower rod commence to move in a direction making an angle ir/6 with the vertical,

then 3m1= 14m2 . (Coll. Exam.)
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22. A uniform circular disc is symmetrically suspended by two elastic strings of

natural length c inclined at an angle a to the vertical, and attached to the highest point of

the disc. If one of the strings is cut, prove that the initial curvature of the path of the

centre of the disc is

(c sin 4a - 6 sin 2a)/6 (6 — c),

where 6 is the equilibrium length of each string. (Coll. Exam.)

23. Two rods AC, CB of equal length 2a are freely jointed at C, the rod AC being

freely moveable about a fixed point A, and the end B of the rod CB is attached to A by

an iuextensible string of length 4a/^3. The system being in equilibrium, the string is cut

;

shew that the radius of curvature of the initial path of B at B is

4 /413

181 V X" a-

(Camb. Math. Tripos, Part I, 1897.)

24. A rod of length 2a is supported in a horizontal position by two light strings which

pass over two smooth pegs in a, horizontal line at a distance 2a apart and have at their

other extremities weights each equal to one half that of the rod. One of the strings is cut

;

prove that the initial curvature of the path of that end of the rod to which the cut string

was attached is 27/25a. (ColL Exam.)

25. A heavy plank, straight and very rough, is free to turn in a vertical plane about

a horizontal axis from which the distance of its centre of gravity is c. A rough heavy

sphere is placed on this plank at a distance 6 from the axis, on the side remote from the

centre of gravity ; the plank being held horizontal. The system is now left free to move.

Prove that the initial radius of curvature of the path of the centre of the sphere is

2165/(5 — 115), where 6= (mb — Mc)l(mb+ Ma), m and M are the masses of the sphere and

the plank, and Mob is the moment of inertia of the plank about the axis.

(Coll. Exam.)

26. A light stiff rod of length 2c carries two equal particles of mass m at distances k

from the centre on each side of it ; to each end of the rod is tied an end of an inextensible

string of length 2a on which is a ring of mass m'. Initially the string and rod are in one

straight line on a smooth horizontal table with the string taut and the ring at the loop
;

the ring is then projected at right angles to the rod, shew that the relative motion will be

oscillatory if

c2/£
2> 1 + 2m/m'. (Coll. Exam.)

27. Three equal uniform rods, each of length o, are firmly joined to form an equilateral

triangle ABC of weight W; a uniform bar of length 26 and weight W is freely jointed to

the triangle at C. This system rests in equilibrium in contact with the surface of a fixed

smooth sphere of radius a, AB being horizontal and in contact with the sphere, and the

bar being in the vertical plane through the centre of the triangle ; the bar, and the centre of

the triangle, are on opposite sides of the vertical line through C. Prove that the inclination

of the plane of the triangle to the horizon is the angle whose tangent is

[abfi + 2c\2
] 4- [«p (a2+ J c2 )+XV - 2a6c]

,

where A2= a2
-,-ic

2 -|6c, /i
2= 12a2-c2

,
and n=WjW-

(Camb. Math. Tripos, Part I, 1896.)

28. A body, under the action of no forces, moves so that the resolved part of its angular

velocity about one of the principal axes at the centre of gravity is constant
;
shew that the

angular velocity of the body must be constant, and find its resolved parts about the other

two principal axes when the moments of inertia about these axes are equal.

(Coll Exam.)
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29. Shew that a herpolhode cannot have a point of inflexion. (Hess.)

(A simple proof of this result is given by Lecornu, Bull, de la Soe. Math, de France,

xxxiv. (1906), p. 40.)

30. In the motion under no forces of a body one of whose points is fixed, shew that the

motion of every quadric homocyclic with the momental ellipsoid relative to the fixed point,

and rigidly connected with the body, is the same as if it were made to roll without sliding

on a fixed quadric of revolution, which has its centre at the fixed point, and whose axis is

the invariable line. (Gebbia.)

31. In the motion of a body under no forces round a fixed point, shew that the three

diameters of the momental ellipsoid at the fixed point and the diameter of the ellipsoid

reciprocal to the momental ellipsoid, determined respectively by the intersection of the

invariable plane with the three principal planes and with the plane perpendicular to the

instantaneous axis, describe areas proportional to the times, so that the accelerations of

their extremities are directed to the centre. (Siaoci.)

32. "When a body moveable about a fixed point is acted on by forces whose moment
round the instantaneous axis is always zero, shew that the velocity of rotation is

proportional to that radius vector of the momental ellipsoid which is in the direction

of this axis.

Shew that this theorem is still true if the body is moveable about a fixed point and

also constrained to slide on a fixed surface. (Flye St Marie.)

33. A plane lamina is initially moving with equal angular velocities O about the

principal axes of greatest and least moment of inertia at its centre of mass, and has

no angular velocity about the third principal axis ; express the angular velocities about

these axes as elliptic functions of the time, supposing no forces to act on the lamina.

If 8 be the angle between the plane of the lamina and any fixed plane, shew that

S«"{--®
,}W{"-©,

}-»
(Camb. Math. Tripos, Part I, 1896.)

34. A rigid body is kinetically symmetrical about an axis which passes through a fixed

point above its centre of gravity and is set in motion in any manner ; shew that in the

subsequent motion, except in one case, the centre of gravity can never be vertically over

the fixed point ; and find the greatest height it attains. (Coll. Exam.)

35. In the motion of the top on the rough plane, shew that there exists an auxiliary

set of axes 0|ijf whose motion with respect to the fixed axes OXYZ and also with respect

to the moving axes Oxyz is a Poinsot motion ; the invariable planes being the horizontal

plaue in the former case, and the plane perpendicular to the axis of the body in the second

case. (Jacobi.)

3*6. A uniform .solid of revolution moves about a point, so that its motion may be

represented by the uniform rolling of a cone of semi-vertical angle a fixed in the body upon

an equal cone fixed in space, the axis of the former being the axis of revolution. Shew that

the couple necessary to maintain the motion is of magnitude

£J22 tan a {0+ (C- A) cos 2a},

where Q is the resultant angular velocity and A and O the principal moments of inertia at

the point, and that the couple lies in the plane of the axes of the cones. (Coll. Exam.)
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37. A vertical plane is made to rotate with uniform angular velocity about a vertical

axis in itself, and a perfectly rough cone of revolution has its vertex fixed at a point of

that axis. Shew that, if the line of contact make an angle 6 with the vertical, and /3 and y

be the extreme values of 6, and a be the semi-vertical angle of the cone,

, 2
/cW\ 2_ _ , sin2 a (cos 6 - cos )3) (cos y - cos 6)

\dt) ~ ° COSa COS0+ COSy

where h is the distance of the centre of gravity of the cone from its vertex, and k its radius

of gyration about a generator. (Camb. Math. Tripos, Part I, 1896.)

38. A body can rotate freely about a fixed vertical axis for which its moment of

inertia is I : the body carries a second body in the form of a disc which can rotate about

a horizontal axis, fixed in the first body and intersecting the vertical axis. In the position

of equilibrium the moments and product of inertia of the disc with regard to the vertical

and horizontal axes respectively are A, B, F. Prove that if the system start from rest

with the plane of the disc inclined at an angle a to the vertical, the first body will oscillate

through an angle

r arctan i j} . (Coll. Exam.)
2F |'S* sin a)

r arctan 1 j4

.

{B(A + I)}% l(4+i)*J

39. A gyrostat consists of a heavy symmetrical flywheel freely mounted in a heavy

spherical ease and is suspended from a fixed point by a string of length I fixed to a point

in the case. The centres of gravity of the flywheel and case are coincident. Shew that,

if the whole revolve in steady motion round the vertical with angular velocity 12, the string

and the axis of the gyrostat inclined at angles a, /3 to the vertical, then

Q2
(I sin a+ a sin £+ b cos $)=g tan a,

and la sin - AG2 sin (3 cos /3= Mg sec a {a sin (/3 - a) + b cos (/3 - a)},

where M is the mass of the gyrostat, a and b the coordinates of the point of attachment

of the string with reference to axes coinciding with, and at right angles to, the axis of the

flywheel / the angular momentum of the flywheel about its axis and A the moment of

inertia about a line perpendicular to its axis. (Camb. Math. Tripos, Part I, 1900.)

40. A system consisting of any number of equal uniform rods loosely jointed and

initially in the same straight line is struck at any point by a blow perpendicular to the rods.

Shew that if u, v, <w be the initial velocities of the middle points of any three consecutive

rods, «+4«+w=0. (Coll. Exam.)

41. Any number of unifornf rods of masses A, B, 0, ..., Z are smoothly jointed to

each other in succession and laid in a straight line on a smooth table. If the end Z be

free and the end A moved with velocity V in a direction perpendicular to the line of the

rods, then the initial velocities of the joints (AB), (BO), .... and the end Z are a, 6, ..., z,

where

0=A{V+ 2a) + B(2a+ b), 0=B (a+ 2b) + C(2b + c), ..., 0=Y(x+ 2y) + Z(1y+ z),

and y+2z=0. (Coll. Exam.)

42. Six equal uniform rods form a regular hexagon loosely jointed at the angular

points : a blow is given at right angles to one of them at its middle point, shew that the

opposite rod begins to move with ^ of- the velocity of the rod struck.

(Camb. Math. Tripos, 1882.)
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43. A body at rest, with one point fixed, is struck : shew that the initial axis of

rotation of the body is the diametral line, with respect to the momental ellipsoid at 0, of

the plane of the impulsive couple acting on the body.

44. The positive octant of the ellipsoid x3/a2+y2/b2+zi/c2= l has the origin fixed.

Shew that if an impulsive couple in the plane

x y _n la V\ 2

b a 2 \b a) c

act upon the octant, it will begin to revolve about the axis of z. (Coll. Exam.)

45. An ellipsoid is rotating about its centre with angular velocity (o>i, <o2 , a3) referred

to its principal axes ; the centre is free and a point (x, y, z) on the surface is suddenly

brought to rest. Find the impulsive reaction at that point. (Coll. Exam.)

46. Two equal rods AB, BG inclined at an angle a are smoothly jointed at B ; A is

made to move parallel to the external bisector of the angle ABC: prove that the initial

angular velocities of AB, BG are in the ratio

2+ 3 sin2 5 : 2- 15 sin ^. (Coll. Exam.)

47. A uniform cone is rotating with angular velocity o> about a generator when suddenly

this generator is loosed and the diameter of the base which intersects the generator is fixed.

Prove that the new angular velocity is

(l+A2/8^)<asina,

where h is the altitude, a the semi-vertical angle, and k the radius of gyration about a

diameter of the base. (Coll. Exam.)

48. A rough disc can turn about an axis perpendicular to its plane, and a rough

circular cone rests on the disc with its vertex just at the axis. If the disc be made

to turn with angular velocity Q, shew that the cone takes an amount of kinetic energy

equal to

iQ2/{cos2 a/A +sin2 n/<7}. (Coll. Exam.)

49. One end of an inelastic string is attached to a fixed point and the other to a point

in the surface of a body of mass M, The body is allowed to fall freely under gravity

without rotation. Shew that just after the string becomes tight the loss of kinetic energy

due to the impact is

»"/(M*S+&
where V is the resolved velocity of the body in the direction of the string just before

impact, the string only touching the body at the point of attachment, (I, in, n, A, n, v) are

the coordinates of the string at the instant it becomes tight, and A, B, G are the principal

moments of inertia of the body with respect to its principal axes at its centre of inertia.

(Coll. Exam.)



CHAPTEK VII

THEORY OF VIBRATIONS

76. Vibrations about equilibrium.

In Dynamics we frequently have to deal with systems for which there

exists an equilibrium-configuration, i.e. a configuration in which the system

can remain permanently at rest : thus in the case of the spherical pendulum,

the configurations in which the bob is vertically over or vertically under the

point of support are of this character. If (qlt q2 , ..., qn) are the coordinates

of a system and L its kinetic potential, and if (a]; a2 , ..., an) are the values of

the coordinates in an equilibrium-configuration, the equations of motion

ad)-!-" '<'-!.» •>

must be satisfied by the set of values

q\ = 0, q2 =0, ..., qn = 0, ^ = 0, q2 = 0, ..., qn = 0, q1
= a1 , q2 = a.2 , ..., qn = an .

The values of the coordinates in the various possible equilibrium-con-

figurations of a system are therefore obtained by solving for qu qt , . .
. , qn the

equations

| = (,-]. 2, ...,«),

in which qlt q2 , ..., qn are to be replaced by zero.

In many cases, if the system is initially placed near an equilibrium-con-

figuration, its particles having very small initial velocities, the divergence

from the equilibrium-configuration will never become very marked, the

particles always remaining in the vicinity of their original positions and

never acquiring large velocities. We shall now study motions of this type*;

they are called vibrations about an equilibrium-configuration^,

* More strictly speaking, we study in this chapter the limiting form to which this type of

motion approximates when the initial divergence from a state of rest in the equilibrium-configu-

ration tends to zero ; the study of the motions which differ by a finite, though not large, amount

from a state of rest in the equilibrium-configuration is given later in Chapter XVI: the discussion

of the present chapter may be regarded as a first approximation to that of Chapter XVI.

+ The theory of vibrations has developed from Galileo's study of the small oscillations of a

pendulum. In the first half of the eighteenth century the vibrations of a stretched cord were

investigated by Brook Taylor, D'Alembert, Euler, and Daniel Bernoulli, the last-named of whom

in 1753 enunciated the principle of the resolution of all compound types of vibration into inde-

pendent simple modes. The general theory of the vibrations of a dynamical system with a finite

number of degrees of freedom was given by Lagrange in 1762-5 (Oeuvres, ±. p. 520).
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In the present work we are of course concerned only with the vibrations of systems

which have a finite number of degrees of freedom ; the study of the vibrations of systems

which have an infinite number of degrees of freedom, which is here excluded, will be found

in treatises on the Analytical Theory of Sound.

We shall suppose that the system is defined by its kinetic energy T and

its potential energy V, and that the position of the system is specified by the

coordinates (qlt q2 , ...,qn) independently of the time, so that T does not

involve t explicitly: we shall also suppose that no coordinates have been

ignored ; the kinetic energy T is therefore a homogeneous quadratic function

of q,, q2 , > q.n, with coefficients involving qlt q2 , ..., qn in any way. There

is evidently no loss of generality in assuming that the equilibrium-con-

figuration corresponds to zero values of the coordinates qlt q2 , ..., qn ; so that

qit q2 , ...,qn , ?i, q2 , •••,?« are very small throughout the motion considered.

The coefficients of the squares and products of qlt q2 , ..., qn in T are

functions of qlt q2 , ...,qn : as however all the coordinates and velocities are

small, we can in approximating to the motion retain only the terms of lowest

order in T, and so can replace all these coefficients by the constant values

which they assume when qlt q2 , ..., gw are replaced by zero. The kinetic

energy is therefore for our purposes a homogeneous quadratic function of

q\, q2 , ...,qn with constant coefficients.

Moreover, if we expand the function V by Taylor's theorem in ascending

powers of qlt q2 , ..., qn the term independent of qlt q2 , ..., qn can be omitted,

since it exercises no influence on the equations of motion ; and there are no

dV
terms linear m qx , qit ..., qn , since if such terms existed the quantities —
would not be zero in the equilibrium position, as they must be. The terms

of lowest order in V are therefore the terms quadratic in qx , q2 , ...^qn-

Neglecting the higher terms of the expansion in comparison with these,

we have therefore V expressed as a homogeneous quadratic form in the

variables qlt q2 , ..., qn with constant coefficients.

Thus the problem of vibratory motions about a configuration of equilibrium

depends on the solution of Lagrangian equations of motion in which the kinetic

and potential energies are homogeneous quadratic forms in the velocities and

coordinates respectively, with constant coefficients.

77. Normal coordinates.

In order to solve the equations of motion of a vibrating system, we write

the expressions for the kinetic and potential energies in the form

T = ^(all q1
2 + ai2 q2

1 + ... +ann qn
2 + 2auq1 q2 + 2aa q1 qa + ... +2an_,,„gre_15„),

V — i (Kq* + b2iq2
i +... + bnnqn

2 + Ib^q^-^- ^b^q^ +....'+ 2bn^ nqnr.1qn);
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of these T is (§ 26) a positive definite form ; and the determinant formed
of the quantities ars is not zero (since if this condition is not satisfied,

T will depend on less than n independent velocities). The equations of

motion are

d
(
dT

\
W

i i o ^

if a change of variables is made, such that the new variables (o//, q2 qn
')

are linear functions of (qlt q2 , ...,qn), the new equations of motion will be

dt\dqr
')~ dqr

' (r-l,l, ...,n),

and these equations are clearly linear combinations of the original equations.

Suppose then* that the original equations of motion are multiplied

respectively by undetermined constants m1} m2 , . .., mn , and added together.

The resulting equation will be of the form

dt
+ XQ = 0,

where Q = kq1 + h2qi + ... + hnqn ,

provided the constants mx , m2 , ..., mn , hlt h2 , ..., hn , X satisfy the equations

bumi + bKm2 + ... + bmmn = X (anm1 + a12mz + ...+ ammn) = Xhi,

b21m 1 +bn vi 2 + ... + b2nmn = X (a2lm 1 + awm2 + . . . + ammn) = Xh2 ,

bnlm1 + bmm2 + ... + bnnmn = X(anlm1 + an2m2+ ... + annmn) = Xhn .

These equations can coexist only if X is a root of the determinantal equation

auX — bii, a12X — 61a, . .
.

, amX — Oj

0^21 A* 021 » ^22 ^ ^22 » • • j G&2n "* 02'.

Ct>ni "* ™" 0« Q>nnX On

Moreover, if Xj is any root of this equation, we can determine from the

preceding equations a possible set of ratios for m1; m2 , ...,mn,hi,h2,...,hn ;

these ratios may, in certain cases, be partly indeterminate, but in all cases at

least one function Q can be obtained in this way, satisfying the equation

Now let a linear change of variables be effected so that the quantity Q
so determined is one of the new variables : there will be no ambiguity in

* This method of proof is due to Jordan, Comptes Rendus, lxxiv. (1872) p. 1395.

12—2
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denoting the new variables by qlt g2 , ..., qn \ we shall take q1 to be identical

with Q, so that the above equations are satisfied by the values h^ = 1, L = 0,

...,/t„ = 0. Since the form T is a positive definite form, the coefficients

Ob, Os,, ..., ann of the squares of q2 , qs> .... qn will not be zero: so instead

of q*, qs , •••> <ln we can again take new variables respectively equal to

CE-12 Otis &m
?2 + ^9i» g> +— 9i. — »2» +— ?i-

1*22 "33 "»»

By this change of variables the terms in q^, q^, ..., q~iqn are removed from

T: so we can assume that a21 , a3„ ..., aB1 are zero.

Now introducing the conditions ^ = 1, h2 = 0, hs = hn = 0, a21 = 0,

..., am = in the equations which determine i)\, m2 , ..., m„, hy, h^, ..., A„, \,

we obtain the values

m1
= l/a11 , wi2=0, m3 = 0, ..., m„ = 0,

fca ,
= X]an , 621

= 0, 631 = 6m = 0.

It follows that the equation

dt \dqj dqx

has the form -^ + Xi<?i = 0,

while the equations _^_) =__
(r = 2, 3, .... n)

^ r d tdT'\ dV'

i o o \havetheform _(__) =__ (r-2, 3, .... »),

where T^T-^qf, V'= V-faOnqf,

so that 2" and F' do not involve ^ and
(fr.

This last system of equations may be regarded as the system of equations

corresponding to a vibrational problem with (n — 1) degrees of freedom.

Treating them in the same manner, we can isolate another coordinate g2

such that if

T" =T'- io» j,«, V" - V

-

iA,o»8."

(where A, and a^ are certain constants), then T" and V" do not involve q2 or

q2 , and the coordinates qs , qit ..., qn are determined by the equations of

a vibrational problem with (n — 2) degrees of freedom, in which the kinetic

and potential energies are respectively T" and V".

Proceeding in this way, we shall finally have the variables chosen so that

the kinetic and potential energies of the original system can be written in

terms of the new variables in the form

T = i (<*„ gV + <*&& +... + ann qn
2
),

V = i (fiu ?i
2 + 0mqf + ..-+ 0nnq»%

where au , a^, ...,am , y3„, $&> ••-, Pnn are constants.
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If finally we take as variables the quantities Va^, Va^, ..., *Jamiqn ,

instead of qlt q2 , ..., qn , the kinetic and potential energies take the form

T = %{q?+qi+... + qn%

where fik stands for /3^/a^.

In this reduction it is immaterial whether the determinantal equation has
its roots all distinct or has groups of repeated roots. The final result can be
expressed by the statement that if the kinetic and potential energies of a
vibrating system are given in the form

T=% (an?!2 + aw q? + . . . + a,m qn
2 + 20^ jB + . . . + 2an^hnqrlr_1 qn),

y= ^(Kqis + b^+...+ bnnqn' + 2bli q,qt +...+ 2bn_linq^qn),

it is always possible to find a linear transformation of the coordinates such

that the kinetic and potential energies, when expressed in terms of the new
coordinates, have the form

T = %{& +& + ... + &),

Y = \ Oi?i
2 +W? + . . . + fj,nqn%

where the quantities filt f^, ••, fin are constants. These new coordinates are

called the normal coordinates or principal coordinates of the vibrating system.

Now it is a well-known algebraical theorem that the roots of the determi-

nantal equation

au\ —On, a12X —

o

l2) ..., am\ — bln =

a^K — 1?21 , a^\ o22 , ••., a%n\ o^

*"niX om ann\ onn

are the values of X for which the expression

(cfnX - bu) qi
1 + (a22X - &22) q} + . . . + (annX - bnn) q^ + 2 (a^X - b12) qx qz + . .

.

+ £ (flSm_i,)jX — Oji—!,») qn—i.qn

can be made to depend on less than n independent variables (which will be

linear functions of qu q2 , ..., qn ). Since this is a property which persists

through any linear change of variables, we see that the determinantal equation

is invariantive, i.e. if q(, q2', ., qn
' are any n independent linear functions of

qlt qn, ..., qn , and if T and F when expressed in terms of j/, q3
', ..., qn

' take

the form

T=\« q? + a22
'&*+...+W j/ q,' +...),

V=i (6„V2 + b*%* + . . . + 26uy ?.' + ...),
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then the roots of the new determinantal equation ||ars'X —

6

r/|| = are the

same as the roots of the original determinantal equation \\ar,\ — brs \\
= 0.

But when the kinetic and potential energies have been brought by the

introduction of normal coordinates to the form

V = i 0*i ?i
2 + inq? + + pnqn),

the determinantal equation is

X-fr 0...

X-/^ 0...

X-fj.3 ...

= 0,

0...\-fln

so its roots are f^, /j^, ..., /in . It follows that the constants /*!, /i^, . .
. ,

/nn , which

occur as the coefficients of the squares of the normal coordinates in the potential

energy, are the n roots (distinct or repeated) of the determinantal equation

||
ars\ — brs ||

= 0, where au , an , . .
. , bn , b12 , . . . are the coefficients in the original

expressionsfor the kinetic and potential energies.

It will be seen that the problem of reducing the kinetic and potential energies to their

expressions in terms of normal coordinates is essentially the problem of simultaneously

reducing each of two given homogeneous quadratic expressions in n variables to a sum of

squares of n new variables : the fact that T is a function of the velocities while V is a

function of the coordinates does not affect the question, since the formulae of transforma-

tion for the velocities qu q2 , ..., qn are the same as the formulae of transformation for the

coordinates qlt q2 , ..., qn .

It might be supposed from the foregoing that it is always possible to transform

simultaneously each of two given homogeneous quadratic expressions in n variables to a

sum of squares of n new variables; but this is not the case ; for example, it is not possible

to transform the two quadratic expressions

a%2+ bxi/+ a,z2 and cxP+dxy+cz2

to the forms

PW+ C
2 and o^-h/V+ yC

2
,

where £, r), £ are linear functions of x, y, z.

The conditions which must be satisfied in order that two given quadratic expressions

ail#l
2+ a22#22+ ... + 2fl!i2#i sc2 +...,

v &ll#l
2+&22#22+—+2&12#1#2 +...,

may be simultaneously reducible to the form

anll2+ a22?2
2+ ". +am£n

2
,

/3nSi
2+/W+-+/3,m£n

2
,
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are, m fact, that the elementary divisors {Elementartheiler) of the determinant
||
ar,\-brg \\

shall be linear*. If however one of the two given forms is a definite form (as we saw was
the case with the kinetic energy in the dynamical problem), the elementary divisors are
always linear, and the simultaneous reduction to sums of squares is therefore possible

;

this explains the circumstance that the reduction can always be; effected in the dynamical
problem of vibrations.

The universal possibility of the reduction to normal coordinates for dynamical systems
was established by Weierstrass in 1858+

; previous writers (following Lagrange) had
supposed that in cases where the determinantal equation had repeated roots a set of
normal coordinates would not exist, and that terms involving the time otherwise than in

trigonometric and exponential functions would occur in the final solution of the equations
of motion.

78. Sylvester's theorem on the reality of the roots of the determinantal
equation.

We have seen in the preceding article that by introducing new variables

which are linear functions of the original variables, it is always possible to

reduce the kinetic and potential energies of a vibrating system to the form

T=\(tf + qi+. ..+&),

y=k Oitfi
2 +W + • • • + Xiln)-

The question arises as to whether this transformation is real, i.e. whether
the coefficients mu m2 , ..., mn , hu h2 , ...,hH which occur in the trans-

formation are real or complex. Since these coefficients are given by linear

equations whose coefficients, with the possible exception ofthe roots \u X^, . . . ,\n
of the determinantal equation, are certainly real, the question reduces to an
investigation of the reality or otherwise of the roots of the equation

an\-bu a12X-b12 alnX —bln

aa A. o2i aw\ — O22 azn\ — b2n

= 0;

ani a, oni an%X bn2 ann\ — bm

it being known that the quantities ars and brs are all real, and that

(hi qi +a^qi+ ... + ann qn
2 + 2a12^ q\ + . . . + 2a„_,, n q\n_^ qn

is a positive definite form.

Let A denotej the determinant ||arsX — 6r,||, and let A x denote the

determinant obtained from it by striking out the first row and first column

;

let A2 denote the determinant obtained from A by striking out the first two

* Cf. Muth's treatise on Elementartheiler (Leipzig, 1899) ; or Bdcher's Introduction to Higher

Algebra (New York, 1907).

+ Cf. Weierstrass' Collected Works, Vol. 1. p. 233.

J The following proof is due to Nanson, Mess, of Math. xxvi. (1896), p. 59.
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rows and first two columns, and so on. Then in any symmetrical deter-

minant, say

D= a„ a]2 am ,
where an = asr ,

a,, ««,

d'D

da~

. . , t . 8D SD /9DV n 32

it is known that 5— r ( 5— = X* ^

—

and hence if ~— vanishes the quantities D and =—=— must have opposite

signs ; thus we have the result that in the series of quantities

A, A1; A 2 , ..., A„ (where A„ = l),

if any one member of the series vanishes for a given value of X, the two

adjacent members must have opposite signs for that value of X.

Let Ar denote the determinant formed from Ar by replacing X by unity

and each of the quantities brs by zero, so that A,, is the coefficient of the

highest power of X in Ar . Since

an q1
i + a^q2

2 + ...+ann qn
!! + 2auq1 q2 + ... + 2an-hnqn-1 qn

is a positive definite form, Ar is positive for all values of r from to w.

Thus the coefficients of the highest powers of X in the functions A, A1; ... , AK

are all of the same sign ; and therefore as X increases from — oo to + oo

,

these functions lose n changes of sign.

Now since An is not zero and Ar_1; Ar+1 have opposite signs when Ar

vanishes, it follows that the functions A, A 1; A2 , ..., A„ cannot lose or gain a

change of sign except when X passes through a root of A. But as X passes

from — oo to -f oo , the functions lose n changes of sign ; and hence the

n roots of the determinant A are all real. The transformation to normal

coordinates is therefore always a real transformation*.

Moreover, since a change of sign is lost in the pair A, Ax , every time that X

passes through a root of A, it is evident that Aj must change sign when X

increases from one root of A to the consecutive root, and hence that the

n roots of A are separated by the (n — 1) roots of A^ similarly the roots of

each of the functions Ar are separated by the roots of the function Ar+I .

Now A„ has no roots : and if A,j_! has the same sign at X = as at X = — oo
,

the root of the function A„_j will not be negative. If moreover A„_2 has

the same sign at X = as at X = — oo , neither of the roots of A„_2 will be

negative: for if this condition is satisfied, A„_2 must have either two

negative roots or no negative roots, and there cannot be two negative

roots since there is no negative root of A„_! to separate them. Similarly in

* Sylvester, Phil. Mag. (4) iv. (1852), p. 138: Coll. Papers, i. p. 378.
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general the condition that none of the functions in the series A, At , A 2 , ... , A„
shall have a negative root is that each of the functions must have the

same sign at X = as at X = — oo . Hence the condition to be satisfied

in order that all the roots of A may be positive is that each quantity A,.

shall have at X = the same sign as (- l)n
~r

, i.e. that each of the

determinants

6,i

Om

... K

... b* ba

.. bn

shall be positive. But these are the well-known conditions that the quadratic

form

Kqi1 + Kq2
a + . . . + bnnqn

z + 2b]Sq1 q2 +...+ 2bn_1 , nqn_1 qn

shall be a positive definite form. Hence finally the condition that the deter-

minantal equation ||arsX — brs \\
= shall have all its roots positive is that

the quadratic form

Kqi2 + b^qi +... + bnnqn" + Zb^q* + ... + 2bn_hnqn_1 qn

shall be a positive definite form, i.e. that the potential energy in the vibratory

motion shall be essentially positive.

79. Solution of the differential equations ; the periods; stability.

In order to express the configuration of any vibrating system in terms of

the time, we first determine the normal coordinates of the system, and

express the kinetic and potential energies in terms of them, so that these

take the form
T= :

k(ql
* + &+...+qn%

V= | (X^!
2 + X2g2

2 + . . . + \nqn%
where (q r , q2 , ...,qn) are the normal coordinates, and (X^Xs, ...,X„) are the

roots of the determinantal equation
||
ars\ — b„

||
= ; these quantities

(Xj, Xj, ..., Xm) have been shewn in the last article to be all real.

The Lagrangian equation of motion for any coordinate qr , namely

dt \dqr) dqr dqr
'

is therefore

qr + Kqr = 0.

The solution of this equation is

qr = A r coa(
hJ\r t + Br) , if Xr is positive,

- qr = A r t + Br , if X,. is zero,

&. = A re^

~

Kt + Bre'^

~

K
\ if Xr is negative,

where in each case A r and Br denote constants of integration.
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It appears from these equations that if all the normal coordinates except

one, say qr , are initially zero, and if the constant \- corresponding to the

non-zero coordinate is positive, then the coordinates (qlt qe , ...,qr_x ,qr+l , ...,qn)

will be permanently zero, and the system will perform vibrations in which

the coordinate qr is alone affected. Moreover the configuration of the

system will repeat itself after an interval of time 27t/V\,.. This is usually

expressed by saying that each of the normal coordinates corresponds to an

independent mode of vibration of the system, provided the corresponding

constant \r is positive; and the period of this vibration is 2tt/V\,..

Moreover, if the system be referred to any other set of coordinates which

are not normal coordinates, these coordinates are linear functions of the

normal coordinates ; and the normal coordinates perform their vibrations

quite independently of each other; thus every conceivable vibration of the

system may be regarded as the superposition of n independent normal

vibrations. This is generally known as Daniel Bernoulli's principle of the

superposition of vibrations* -

If the quantities (Xlt X2 , ...,~kn) are n°t &U positive, it appears from the

above solution that those normal coordinates qr which correspond to the

non-positive roots X,. will not oscillate about a zero value when the system is

slightly disturbed from a state of rest in its equilibrium position, but will

increase so as to invalidate the assumption made at the outset of the work,

namely that the higher powers of the coordinates can be neglected. In

this case therefore, there will not be a vibration at all, and the equilibrium

configuration is said to be unstable. If however the initial disturbance is

such that these normal coordinates which correspond to non-positive roots

X, are not affected, the system will perform vibrations in which the rest

of the normal coordinates oscillate about zero values.

The normal modes of vibration, which correspond to those normal

coordinates for which the corresponding root \. is positive, are said to

be stable. If the constants \r are all positive, the equilibrium-configuration

as a whole is said to be stable. The condition for stability of the equi-

librium-configuration is therefore, by the theorem of the last article, that

.

the potential energy of the vibrating system shall be a positive definite form.

This result might have been expected from a consideration of the integral of energy

;

for this integral is

T+ V=h,

where T and V are the quadratic forms which represent the kinetic and potential energies,

and where A is a constant. This constant h will be small if the initial divergence from the

equilibrium state is small. But T is a positive definite form ; and if V is also a positive

definite form, we must have T and V each less than h, so T and V will remain small

throughout the motion : the motion will therefore never differ greatly from the equilibrium-

configuration, i.e. it will be stable.

* Hutoire de PAccuMmie de Berlin, annee 1753, p. 147.
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80. Examples of vibrations about equilibrium.

We shall now discuss a number of illustrative cases of vibration about

equilibrium.

(i) To find the vibration-period of a cylinder of any cross-section which can roll on the

outside of a perfectly rough fixed cylinder.

Let s be the arc described on the fixed cylinder by the point of contact, s being

measured from the equilibrium position; let p and p' be the radii of curvature of the

cross-sections of the fixed and moving cylinders respectively at the points which are in

contact in the equilibrium position
; p and p being supposed positive when the cylinders

are convex to each other : let M be the mass of the moving cylinder, Mk? its moment of

inertia about its centre of gravity, and c the distance of the centre of gravity from the

initial position of the point of contact in the moving cylinder.

If a denotes the initial angle between the common normal to the cylinders and the

vertical, then a + s/p is the angle between the common normal at time t and the vertical,

a + sjp + s/p' is the angle made with the vertical by the line joining the centre of curvature

of the moving cylinder with the original point of contact in the moving cylinder, and

s/p-i-s/p' is the angle made with the vertical by the line joining the last-named point to

the centre of gravity of the moving cylinder. The angular velocity of the moving cylinder

is therefore

so its kinetic energy is

(W>
T=$M(k*+ c2)(^ + K) sK

The potential energy is

V=Mg x height of the centre of gravity of the moving cylinder above some fixed position

=Mg -[(p+ p') cos (a + -p' cos (^a + "- + ~j + c cos
(^
+
^)}

•

Neglecting s3 this gives

V=iMg{^ CoSa-c^))s,

The Lagrangian equation of motion,

d {3T\_W= _dV
dt\dsj ds~ ds'

gives M(k* + c*) f- + -}\s+Mg J£t£ cos a-c
(fjjffl

*= °>

and the vibrations are therefore given by the equation

* s=A cos(\£+e),

where A and e are constants of integration to be determined by the initial conditions, and

X is given by the equation

\2=. -1
"

, COS a — c\ .

(P+ P J

The vibration-period is 27r/X.

(ii) To find the periods of the normal modes of vibration about an equilibrium-configura-

tion of a particle moving on a fixed smooth surface under gravity.

The tangent-plane to the surface at the point occupied by the particle in the

equilibrium-configuration is evidently horizontal : take as axes of x and y the tangents to
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the lines of curvature of the surface at this point, and as axis of z a line drawn vertically

upwards : so that the equation to the surface is approximately

x2 y'

2Pl 2p2
'

where p x
and p 2 denote the principal radii of curvature, measured positively upwards.

The kinetic energy and potential energy are approximately

T=\m(xi+yi
)

(where m is the mass),

and V= mgz

(& ,
v2 \

It is evident from these expressions that x and y are the normal coordinates: the

equations of motion are

x + — x=0 and y+—y=0,
Pi P2

and the periods of the normal modes of vibration are therefore

»<$) -"&)
(iii) To find the normal modes of vibration of a rigid body, one of whose points is fixed,

and which is vibrating about a position of stable equilibrium under the action of any system

of conservative forces.

Take as fixed axes of reference OXYZ the equilibrium positions of the principal axes of

inertia of the body at the fixed point ; the moving axes will be taken as usual to be these

principal axes of inertia. We shall suppose the position of the body at any instant

defined by the, symmetrical parameters (£, r/, f, x) of § 9 ; we shall regard f, q, f as the

independent coordinates of the system, x being defined in terms of them by the equation

|
2+^2+ f

2+ x
2= l.

The components of angular velocity of the body about the moving axes are (§ 16)

"U=2(-rf+x>7-ri!f-w),

On account of the smallness of the vibration, we regard §, r\, £ as small quantities of

the first order
; x therefore differs from unity by a small quantity of the second order, and

so we have, correctly to the first order of small quantities,

(i)
1= 2J, <02 = 2l7, <B3= 2f>

and the kinetic energy of the body, which is given by the equation

2T=A(o1
2 + Ba>i> + C<os%

where A, B, C are the principal moments of inertia at the point of suspension, can be

written

T=2(A^ + Brji+ Ct 2
).

The potential energy is some function of the position of the body, and therefore of the

parameters (g, r/, f) ; let it be denoted by V (£, r), f).
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Since zero values of (£, ?j, f) correspond to the equilibrium position, there will be

no terms linear in (£, rj, f) when V is expanded in ascending powers of (£, 17, f) : the lowest

terms are therefore of the second order ; neglecting terms of higher order, we can therefore

write

where a, b, c, /, g, h are constants.

The problem of determining the normal coordinates is therefore the same as that

of reducing the two quadratic expressions

to the form

\a1x2+ b^+c^,

where (x, y, z) are linear functions of (£, i;, £).

Now the equation, referred to the fixed axes, of the momental ellipsoid in its equi-

librium position is

AXi+BY*+CZi= l;

consider in connexion with this the quadric whose equation is

aX*+ 6Z2 + cZ* + 2/YZ+2gZX+2AI7= 1,

which we shall call the " ellipsoid of equal potential energy " ; and determine the common
set of conjugate diameters of these quadrics. Let (X ', Y', Z') be the coordinates, referred

to these conjugate diameters, of a point whose coordinates referred to the fixed axes

are (X, Y, Z), and let the equations connecting (X', Y', Z') and (X, Y, Z) be

iX^X' +»!,}" + n1Z\

hr^X'+ mzY' + nzZ',

\z=kX'+mi Y'+niZ'.

By this transformation the equations of the quadrics are reduced to the form

(A
1
X'*+B1 Y'

3+C
1
Z'i=l,

\a
1
X'2+b

1
Y' !i+ c

1
Z^ =1,

and therefore the transformation which gives the normal coordinates in the dynamical

problem is
'^= l

x
x+miy + nl

z,

t)= l2x+ rn2y + ni z,

£=l3x+m3y+ n3 z.

It follows that in a normal mode of vibration, say that in which x alone varies, the

quantities (|, j), f) will be permanently in the ratio

£ ' 1 ' C—h h ' h-

But from the definitions of § 9 it is evident that £, »/, f are, to the first order of small

quantities, proportional to the direction-cosines of the line about which the rotation

of the rigid body takes place, and consequently the normal mode of vibration of the

rigid body consists of a small oscillation about a line whose equation is

X '. I . Zi= l\ '. &2 • '3?

i.e. about the line

F'= 0, Z'= Q,

which is one of the. common conjugate diameters of the two quadrics.
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Hence finally we have the result that the normal vibrations of the body are small

oscillations about the common conjugate diameters of the momenta! ellipsoid and the ellipsoid

of equal potential energy.

(iv) To find the normal coordinates and the periods of normal iftbration in the system

of three degrees of freedom for which

T=\{x*+f+k2
),

y= i {p
2
(*

2 +f)

+

2a2 (* +y) +?M,

where u is small in comparison with p and q ; and to shew that if such a system be let

go from rest with y and z initially zero, the vibration in x will have temporarily ceased

after a time np (q
2 -^>2)/a2, and that there will then be a vibration of the same amplitude in

y as the original one was in x. (Coll. Exam.)

The form of the kinetic and potential energies suggests the transformation

«+y=2£, x-y=%),
which gives

\ 7=p2
£
2+Fy +2az|+ £2V.

The variable ij is therefore a normal coordinate : to reduce the remaining terms in the

kinetic and potential energies to sums of squares, we write

=£--

and then we have

2a
qi-p 4h £=</>+

?
2 -jo2!> '

>-*+ {' +5^51} *+»{'

+

(

-

??y t'.

^v+ {'--'^w
}}M^ (JwW\ i--

The variables rj, <\>, f are therefore the normal coordinates.

Suppose that initially we have

x=k, y=0, z=0,

x=0, y—0, z=0,

and suppose that k is so small that its product with other small quantities can be

neglected. Then to this degree of approximation we have initially

The vibrations of the normal coordinates 77 and <p are therefore given by the equations

i)=\k cos pt,

(\>= \k cos

p»
q2 (2g

2 -4jP2
)
^'

1 +
2a2

The last equation can be written

^cos[^{l-^
}̂
}],

aH
<j>= \k cospt 00s

p(q*-p>)
+ %lc am pt sin

a2
t

p{q
2 -p2)'
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The motion can therefore be approximately represented initially by

7]=\koospt, $= ££ cos pt,
or

x= £cosp«, y= 0.

After an interval of time Trip (q
2 — p8)/aa, the motion is approximately represented by

r\=\k cos pt, tf>= — \k cos pt,
or

x=0, y= —kcospt;

which establishes the result stated.

81. Effect of a new constraint on the periods of a vibrating system.

We shall now consider the effect produced on the periods of normal

vibration of a dynamical system about, a configuration of stable equilibrium

when the number of degrees of freedom of the system is diminished by the

introduction of an additional constraint.

Suppose that the original system is specified in terms of its normal

coordinates (qu q2 , ..., qn), so that the kinetic and potential energies have

the form

T=\(q*+q*+...+qn%
V=\

(W + V?2
2 + • • • +w)

;

and let the additional constraint be expressed by the equation

f(qi, ?a. •••. qn) = o.

Since qlt q2 , ..., qn are small, we can expand the function / in ascending

powers of qlt q2 , , qn > and retain only the first terms of the expansion : we

can thus express the constraint by the equation

Aft + A 2q2 + ... + Anqn = 0,

where A x , ...,An are constants. As the equilibrium-configuration is supposed

to be compatible with the constraint, there will be no constant term. By

means of this equation we can eliminate qn : we thus have

T = iW + & + • • + q\-i + JQ (Mi++ -^»-i ?n-i)
3

j
-

V = 4 jW + • • • + *Vi <zVi + 2^ (Mi + + A n-i ?»-i)
2

•

The Lagrangian equations of motion of the constrained system are there-

fore the (n — 1) equations

q\ + \r% + A r k- , (Aft + ...+ An^ &,_,) + -~(A lq1 + ... + An_x $,_,) j
=

(r=l, 2, ...,ra-l),

or qr + \r
i

qr +-fiA r = Q (r = 1, 2, ..., n- 1)
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where
1 X 2

IX = -j-5 {A& + . . . + An-tfn^) + -7-5(^ + . . . + ^»-! qn-d

A n An

so the equations of motion of the constrained system can be written in the

form of the n equations

qr + \?qr + /iA r = (r=l, 2, ...,»),

where /* is undetermined.

Now consider a normal mode of vibration of the modified system, defined

by equations

g^ = a! cos \t, q2 — <h cos \t, ..., qn = an cos \t, jj,= v cos \t.

Substituting in the equations of motion, we have

ar (kr
2 -X2

) + vA r = (r=l, % ..., n).

Substituting the values of a1; a2 , ..., a« given by these equations in the

equation

A& + A 2Ct2 + ... + Arfln = 0,

we have
A 2 j 1 ,42

_.4> .. + _j±l_ + ... + _4»__ = 0.
X^ - X2 X2

2 - X2 X„2 - X2

This equation in X2 has in — 1) roots, which from the form of the equa-

tion are evidently interspaced between the quantities Xj2
, A 2

2
, ..., X,i

2
: the

quantities 2tt/X corresponding to these roots are the periods of the normal

modes of vibration of the constrained system, and it therefore follows that

the (n — 1) periods of normal vibration of the constrained system are spaced

between the n periods of the original system.

82. The stationary character of normal vibrations.

We shall next consider the effect of adding constraints to a dynamical

system to such an extent that only one degree of freedom is left to the

system. Let (qlt q2 , ..., qn) be the normal coordinates of the original

system ; the constraints may, as in the last article, be represented by linear

equations between these coordinates, and can therefore be expressed in the

form

?i = thq, q* = t*2q, • , 9» = H-nq,

where plt /u^, ..., /*n are constants and q is a new variable which may he

taken as defining the configuration of the constrained system at time t.

Let the kinetic and potential energies of the original system be

2
1

=£(?i2 + 32
2 +... + ?»

2
),

V= k(W + X.V + • • • + X„V),
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so 27r/\1) 2tt/X2 , ..., 2-TrjXn are its periods of normal vibration: the kinetic

and potential energies of the constrained system are then

V= } (V/V + V/tf + • • + \nW) ?
The period of a vibration of the constrained system is therefore 2ir/X,

where X. is given by the equation

^2 _ *iW + V/**" + • • + Xfyn

Vh* + fr* + + Pn

If the constraints are varied, this expression has a stationary value when
(n — ] ) of the quantities fa, fa, . .

. , fj,n are zero : this stationary value is one

of the quantities \?, A2
2

, ..., X»2
: and thus we have the theorem that when

constraints are put on the system so as to reduce its number of degrees of

freedom to unity, the period of the constrained system has a stationary value

for those constraints which make the vibration to be a normal vibration of the

unconstrained system.

83. Vibrations about steady motion.

A type of motion which presents many analogies with the equilibrium-

configuration is that known as the steady motion of systems which possess

ignorable coordinates : this is defined to be a motion in which the non-

ignorable coordinates of the system have constant values, while the velocities

corresponding to the ignorable coordinates have also constant values.

One example of a steady motion is that of the top, discussed in § 72; as another

example we may take the case of a particle which is free to move in a plane and is

attracted by a fixed centre of force, the potential energy depending only on the distance

from the centre of force; for such a particle, a circular orbit described with constant

velocity is always a possible orbit, and this is a form of steady motion, since the radius

vector is constant and the angular velocity 6 corresponding to the ignorable coordinate 6

is also constant.

In many cases, if a system is initially in a state of motion differing only

slightly from a given form of steady motion, the divergence from this form of

motion will never subsequently become very marked ; we shall now consider

motions of this kind, which are called vibrations about steady motion.

The steady motion is said to be stable* if the vibratory motion tends to

a certain limiting form, namely the steady motion, when the initial disturb-

ance from steady motion tends to zero.

Let (pu p2 , . , Pk) be the ignorable and (q1} q2 ,...,qn)be the non-ignorable

coordinates of the system. Corresponding to the ignorable coordinates, there

will be h integrals

* This definition is due to Klein and Sommerfeld.

W. D. 13
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where /8,, &, ..., /S* are constants. We shall suppose that these constants

have the same value in the vibratory motion as in the undisturbed steady

motion of which it is regarded as the disturbed form ; this of course only

amounts to coordinating each vibratory motion to some particular steady

motion.

We suppose the system conservative, with constraints independent of the

time ; let its kinetic energy be

n n n k k k

r=jn aij<iiqj+ X 2 bijqipj + h 2 2 Cypipj,
i=l/=l i=lj=l i=lj=l

where the coefficients a^-, by, c# are functions of qlt q2 , ..., qn .

The integrals corresponding to the ignorable coordinates are

Idjpi + 2 bijqi = fy (j = 1, 2, . . ., k).

i i

Let Gij be the minor of c^ in the determinant formed of the coefficients

Cy, divided by this determinant; then solving the last equations for the

quantities pr , we have

pr = 2 C„ (£, - 2 bu qi).

8 I

Substituting for plt pit ..., pk in the above expression for T, and utilising

the properties of minors of determinants, we have

T = i 2 (aij
- 2 Gls ba bjs) qiqj + $ 2

a

h /8,/8..

i, j lt a I, S

Now perform the process of ignoration of coordinates. Let R be the

modified kinetic potential, so

R = T- V- 2 pr/3r
r = l

= \ 2 (ay - 2 Gubu bjS) q^ + 2 Crt>$r bu,qi - \ 2 Cfe /3j/38 - V.
i, j 1,

8

l,r,s l,s

We can without loss of generality suppose that the values of f,, q2 , ..., ?n

in the steady motion are all zero. If then the coefficients in R are expanded

in ascending powers of qlt qt , ..., qn by Taylor's theorem, and all terms in the

expression of R thus obtained which are above the second degree in the

variables qlt q2 , ..., qn , qlt qit ..., qn are neglected in comparison with the

terms of the second degree, we obtain for R an expression consisting of terms

linear and quadratic in q\, q\, ..., qn , qlt qit ..., qn . Now the terms which

are linear in qlt q2 , ..., qn and independent of qlt q?, ..., qn disappear auto-

matically from the equations of motion

d fdR\ _SR = Q Cr = 12 n)
dt \dqj dqr

and these terms can therefore be omitted. Moreover, since the equations are

satisfied by permanent zero values of qx , q2 , ..., qn , it is evident that no terms
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linear in qu q2 , ..., qn and independent of qly q2 , ..., qn can be present in R.

It follows that the problem of vibrations about steady motion depends on the

solution of Lagrangian equations of motion in which the kinetic potential is a

homogeneous quadratic function of the velocities and coordinates, with constant

coefficients.

The difference between vibrations about equilibrium and vibrations about

steady motion consists in the possible presence in the latter case of terms of

the type qr qs (i.e. products of a coordinate and a velocity) in the kinetic

potential. These are called gyroscopic terms. The vibrations about steady

motion of a system are in fact the same thing as the vibrations about

equilibrium of the reduced or non-natural (§ 38) system to which the problem

is brought by ignoration of coordinates.

The equations of motion for the vibrating system are therefore

d /dR\ dR
s

dt{djJ-Wr
= (r-l,2,....»>,

where R can be written in the form

R = \tars qr qs + %?t prsqrqs + Zyrsqrqs (r, s = 1,2, ... , n),

r,s r,s i' t s

and where «rs = a„, /3r8 - /3sr ,

but where <yr> is not in general equal to ysr . The equations of motion in the

expanded form are

«11?1 - AWl + «M?2 + (721 - 7l2) ?2 - &2?a + «i»<?3 + (731 - 7is) ?3 ~ As^S + . . . = 0,

«2i?i + (712 - 7si) ?i - fln?i + "22^2 -A* + a^q\ + (732 - 723) q* - &>?s + • • • = 0,

etc.

These are linear equations with constant coefficients, which are of the same

general character as the corresponding equations in the case of vibrations about

equilibrium ; they differ only in the presence of the gyroscopic terms, which

involve the coefficients (jsr — yrs)- The presence of these terms makes it

impossible' to transform the system to normal coordinates*; but as we shall

next see, the main characteristic of vibrations about equilibrium is retained,

namely that any vibration can be regarded as a superposition of n purely

periodic vibrations, which we shall call (as before) the normal modes of

vibration of the system.

84. The integration of the equations.

We shall now shew how the nature of the vibrations can be determined,

by integration of the equations of motion,

* That is to say, impossible to transform the system to normal coordinates by a point-trans-

formation : it is possible to effect the transformation to normal coordinates by a contact-trans-

formation, and this is actually done in Chapter XVI.

13—2
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It will be convenient first to transform them into a system of equations

each of the first order. Let R denote the modified kinetic potential of the

system, so that in the vibratory problem R is a homogeneous quadratic

function of qlt q2 , ..., qn , <?i> ?2> •••. 2»- Write

•to
=?n+r (r=l, 2, ...,»),

so that qn+1 , qn+i , ..., qm are linear functions of qlt q\, ..., qn and vice versa-,

the equations of motion can be written

3J2 / i o \
1n+r=~- (r=l, 2, ...,»).

Now if 8 denote an increment of a function of the variables qlt qit ..., qn>

qn+1 , ..., gw. due to small changes in these variables, we have

n

= 2 ((fa+rSgv + qWK&jr)

= 8 2 qn+r qr + S (?«+,- 8gv -grSgVt-r)-

Let the quantity 2 qn+r qr — R,

when expressed as a function of qlt q2 , ...,q2n ,
be denoted by H, so that H is

a known homogeneous quadratic function of the variables q\.,q2 , ...,qm ; the

last equation can be written
n

BH= 2 (qr 8qn+r - qn+r8qr),
r=l

and therefore* the equations of motion, which consisted originally of n equations

each of the second order, can be replaced by a system of 2w equations, each of

the first order, namely

dH . dH /no* \

?r=a-— , qn+r = -~— (r = l,2,...,n),
oqn+r oqr

the independent variables being qlt q2 , ..., q2n .

We shall now shew that the function H, which has replaced R as the

determining function of the equations, represents the sum of the kinetic and

potential energies of the dynamical system considered.

For R contains terms of degrees 2, 1, and in the velocities, and

a . dR

r=i oqr

* This transformation is really a case of the Hamiltonian transformation given later in

Chapter X.
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is equivalent to twice the terms of degree two together with the terms of

degree one, by Euler's theorem ; it follows that H, being defined as

V •

dR
T?

r=i oqr

will be equal to the terms of degree two in the velocities in R, together with

the terms of zero degree in R with their signs changed : on comparing the

expressions for T and R given on page 194, it follows that

H=T+V,
so H is the total energy of the dynamical system, expressed in terms of the

variables qlt q2 , ...,qm .

In the case of vibrations about an equilibrium-configuration, we have

seen that the condition for stability is that the potential as well as the

kinetic energy shall be a positive definite form ; we shall now make a similar

assumption for the case of vibrations about steady motion, namely that the

total energy H is a positive definite form in the variables qx , q2 , ..., qm ; on

this assumption we shall shew that the steady motion is stable, and in fact

that the equations of motion

dqr = d]E_ d ±̂1 = _dJE /r== i 2,..,, n)
dt dqn+r

'

dt dqr

can be integrated in the following way*.

Consider the set of linear equations in the variables qt , q2 , ..., q2nt

en
dff(gi,gi.— .&») _.

Sqn+r+ ^ - ~Vr

dH{qu q2,...,qw) _— sqr -t- „ — yn+r
vqn+r

(r=l,2, ...,«);

if we denote the determinant of the system by/(s), and the minor of the

element in the \th row and fith. column by

/(«)* (X. /*=1, 2, ...,2»),

the expression of qu q2 , ...,qm in terms of ylt y2 , ..., ym is given by the

equations
-In f(~\q^Zl^y, 0*=1,2,...,2«X

and the degree of f(s) in s is In, while the degree of/(s)x„is not greater

than (2n - 1).

In order to solve the equations of motion, consider expressions for

?i, q*, •••> <h.n of tQe form

4. = \ ^4 e*
(S
~W ds (m = 1, 2, . .

. ,
2n),

.' c /W
* The method of integration which follows is due to Weierstrass,- Berlin. Monatsberichte, 1879.
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where the integration is taken round a large circle G which encloses all the

roots of the equation f(s) = 0. These values of qu q2 , ..., qm will satisfy

the equations of motion, provided the equations

f
„«-,. f +

ag(p.,ft.-.jU
],

a
- (r=l,2 n)

are satisfied. If therefore pi, jo2 , ..., pm are polynomials in s so chosen that

the expressions in brackets under the integral sign vanish when s is equal to

one of the roots of the equation f(s) = 0, these equations will be satisfied,

since the integrands will then have no singularities within the contour G*.

It follows that £>!,£>;>, ...,pai must be a set of solutions of the equations

dH( Pl,p2 , ...,pm) _
)

dHjfh.p, Pm) _
OjVt-r

(r = l, 2, ...,«),

when s is a root of the equation f(s) = ; this condition is satisfied by the

expressions

P* 00 = Oi/(s)in + ^/(sV + • • • + a,mf(s)mill (p = 1, 2, . . ., 2ra),

where a^, a2 , ..., am are arbitrary constants.

The equations of motion are therefore satisfied by the values

9M = coefficient of 1/s in the Laurent expansion+ in positive and nega-

tive powers of s of the expression

gBit—to)

{<h/ (s)i„ + <hf(s)2li + ...+ amf(s)m
, h } -j^-y (fi = 1, 2, . .

.
, In).

Now on inspection of the determinant f(s) we see that minors of the

types

/0W, n and /(«)„, n+p (fi = 1, 2, . .
. , n)

are of degree (2m - 1) in s, and the other minors are of degree (2n - 2) in s;

so the coefficient of 1/s in the Laurent expansion of/(s)^//(s) is zero unless

\=n + fi or /j. = n + \; in the former case it is — 1, and in the latter case it

is 1. Hence on taking t = t , we see that the quantities

an 0,2; •••) (hn

are respectively the values of

at the time t .

' Whittaker and Watson, A Course of Modern Analysis, § 5-2.

t Ibid. § 5-6.
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If therefore we write

<j> (t)\^ = coefficient of 1/s in the Laurent expansion of ^ *
e 8 ''

-
'" 1

,

and if qu q2 , ...,qm are the values of qly q2 , ..., qm respectively corresponding

to any definite value t of t, we have

n

g> = S {qn+«<l>(t\,M.-q<l <l>(t)n+«, li} = 1, 2, ..., 2n.).

o= l

In order to evaluate the quantities
<f>

(t)^, it is necessary to discuss the

nature of the roots of the determinantal equation f(s) = ; let ki'. + I, where

k and I are real and i denotes V- 1> he any root of this equation; then

the 2?i equations

(K + Qg^ +^fo'^-'^ -ol
V (a= 1,2, ...,»)

can be satisfied by values of ^i, g-2 , ..., q^ which are not all zero. Let a

system of such values be

£i + *'%. %2 + iVi, > Hm + ivm>

where ^lt £2 , ..., (»,, Vi>V?< >Vm are real quantities. Then if we write

dH(qu q„...,qm) _„
o~ — " V9i> b(3> •••' qm)n>

we have, on separating the last equations into their real and imaginary parts,

H(&, &> •••. &»)»+»- J£» + &»?« =0j /a=1> 2, ...,n).

H(VuV2, , Vm)n+* ~ M°. - *£» = ° J

But since H is homogeneous and of degree two in its arguments, we have

2fi-(?i, &, •-, &»)- 2 £*#(£,, f„ .... ?»)*,
A=l

and using the first two of the preceding equations this gives

n

.(A)
a= l

Similarly 2H (r)u 7)2 , ..., rim) = k 2 (£„ i7»+a - i?a £»+«)•
a=l

Moreover on multiplying the first of the preceding equations by i}a and the

second by Vn+*, adding, and summing for values of a from 1 to n, we have

2 1)\H.(£X , !j2 , ..., %m)\= I 2 (^aVn+a — Vo-Zn+c),
A=l «=1

and similarly
2» n

2 %\H(VuV2, •, Vm)K = ~l 2 (gaVn+a -VaZn+a.)-
A=l a=l
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Since the left-hand sides of these equations are equal, we must have

n

I 2 (^aVn+a - VaZn+a) = 0.
a=l

But from equations (A) we see that, as H is a positive definite form, neither

n

k nor 2 (gaVn+a — V*Zn+*) can be zero; we must therefore have I zero; and
a=l

so the equation f(s) = has each of its roots of the form ik, where k is a, real

quantity different from zero.

We shall next shew that in the case in which the equation f(s) = has

a ^'-tuple root s', each of the functions /(s)m* is divisible by (s — s'Y~\

For let c1; c2 , ..., cm be a set of definite real quantities; define quanti-

ties qu q2 , ..., qm by the equations

sqn+a + H(qu q2 , ...,qm\ =ca ]

„, N r (a=1 >
2

>
> n

) (JB
).- sq« + n (#! , q2 , ..., qm)n+a = c„+a J

so that we have

q
»~3iJ(/)*

C* (A* =1.2 2n>

Let s^' be any root of the equation /(s) = 0, and let m be the smallest

.positive integer for which all the functions

(s - s,i)"
/(•)*

are finite for the value s^' of s. When s is taken sufficiently near s^', we can

expand q^ in a series of the form

(&. + M) (« ~ sii)
_m + (?/ + V*') (» - s^")-"^1 + . .

.

,

where g^, AM , <?„', h^', ... denote real constants; and we can suppose the

quantities clt c2 , ..., c2» so chosen that the quantities g„. and h^ are not zero.

Substituting this value of q„. in equations (B), and equating the coefficients

of (s — sS)~m, we have

H(gi, #2 > • • • ) 5f2«)a — «l^»+a = \

H(gi,g2 , ,gm)n+a + s1 ha =

H(hu h2 , ..., hm)a + s1gn+a =

H(hu h2 , ..., fh^n+a — 3^ =

and on equating the coefficients of (s — s1i)
_m+1

, we have

fO when m > 1

H(gi,gi, .,9m\-s1
h'n+. +£«+. =

{^ when m = 1

(0 when m > 1
E(g1 ,g2 ,...,gin )n+a + s1K-9a =

}Cji a when m = 1 1 ^ = ^ 2 ' '"'^ ^ ''

H(hi, hi, . . ., hm\ + Sifn+z + hn+% =

H (V. K, ..., hm%+a — S^J — ha =

l(a = l,2,...,«) (C),
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Now by Euler's theorem on homogeneous functions we have

%H(gi, 92, • -, 9m) = 2 gJUgi, 92, •,92n)\,

orby(C),
«

2-9" (#i> #2; • • , ffm) = «i 2 (e^ra+a - Kgn+a),

and similarly

ZH(h1,hi,...,hm) = s1 2 {g^K+^-Kgn+a),
a= l

TO

from which it is evident that 2 (gahn+sl — hagn+a) is not zero.
o.= l

Moreover, the first two of equations (C) give

2n n
2 hK'H(g1,g2,...,gm)K + s1 2 (ha h'n+ll -hjhn+ai) = (E),
\=1 a=l

and the last two of equations (C) give

2n n

2 g^Hih^hz, ...,hm )K -sx 2 (#«#'»+• - #«'#»+«) = ° (F >-

A=l a=l

But from the first two of equations (D), when m > 1, we have

2 hkR{gx ,gi, ..., g^)k -sx 2 (Kh'n+a -ha'hn+a)- 2 (g*hn+a -

h

agn+ll) = Q
\=1 a=l a=l

(G),

and from the last two of equations (D) we have

In n n

2 gkE{hx ,K, ,hm')K +s1 2 (ga
g'n+a - g*'g^)+ 2 (gah1t+ai -hagn+a ) =

k=l a=l a=l
(H).

Also since H is homogeneous of the second degree in its arguments, we

have the identities

1m 2re

2 KH (gu gt ,..., gm)k
= 2 gkH (W, K, , hm\ (K)

\=1 A.=l

In 2»

and 2 g/SiK h„ ..., hm)K
= 2 hKH (#/, g2 , ..., g^)k (L).

A=l • A.= l

From equations (E), (H), (K) we have

2 (ga hn+a
— Kgn+a) = «i 2 (haKn+a - K'hn+a) — sx 2 (g*g'n+«- g*'gn+*),

a= l «=i a=1

and from equations (F), (G), (L) we have

n n 3
2 (g*hn+a - hagn+a) = - «i 2 (&a /«'„+«- *«'&„+«) + s, 2 {g*g'n+*-g*'gn+*)-
a=l »=1 a=1

Comparing these equations, we have

2 (gahn+a - hagn+a ) = 0,

a= l
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which is contrary to what has already been proved. The assumption that

m > 1, which was used in obtaining equation (G), must therefore be false

;

m must therefore be unity, and consequently when f(s) is divisible by (s — Sji)*,

each of the functions /(s)^ is divisible by (s — si i)
k~1

.

Now let s, , s2 , . . ., sr be the moduli of the distinct roots ofthe equation/(s) =0,

so that the functions f(s)\n/f(s) are infinite only for s= + Sji, + s2 i, ..., ±sri;

then denoting the coefficient of (s — spi)
_1

in the Laurent expansion of

/(*)W/(S) m powers of (s — s„i) by

(\, ^)p + i(\, /i)p
',

where (\, /a)p and (\, /x)/ are real, and observing that the only poles of the

function /(s)*M//(s) are the points s = + s,,i, and that these are simple poles,

we have

/teW = £ f(\, /A, + i (\, /iV (X,/t)p -t.(\,/*);
,

j

/(*) »=xl *-«,»'
'

s + sfi j'

and therefore <£> (t)^ is the coefficient of 1/s in the Laurent expansion of

p=i (
s — sp i s + s

fi
i

in powers of s.

But the coefficient of 1/s in the Laurent expansion of e" "-'•>/(« —

s

p
i) is

ew»-w», and the coefficient of 1/s in the Laurent expansion of e*
<'-*•'

/(® + *p 1
')

is g-*p«-*oM; we have therefore

r

$ (<)am = 2 2 {(\, /*)„ cos s„ (t - t„) - (X, /*)„' sin sp (* - *„)),

P=i

and so finally

n r

?m = 2 S 2 [qn+a.
{(a, fi)9 cos sp (t-t„)- (a, (j.),' sin s„ (t-t )}

a=l p=l

- j. {(n + a, M)p cos sp (t -

1

) - (n +. a, /*)„' sin s„ {t -

1

)}] (/j.= 1,2, ..., 2»).

This formula constitutes the general solution of the differential equations of

motion, Hence finally we see that when the total energy of a system vibrating

about a state of steady motion is a positive definite form, the vibratory motion

can be expressed in terms of circular functions of t, and the steady motion is

stable; the periods of the normal vibrations are lir/Si, 27r/s2 , ..., where ±isu
±is2 , ... are the roots of the determinantal equation f(s) = 0, whose order in s1

is equal to the number of non-ignorable coordinates of the system.

The above investigation is valid whether the determinantal equation has

repeated roots or not.

Between the coefficients (X, ji)p ,
(X, fi)p', there exist the relations

(X, fi)„= - fa, X)p ,
(X, /i)P

'= (/i, X)p',

and so in particular (X, X)p=0.
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These relations follow from equations which fin virtue of their definitions) are true for

/(*)> /(*)v>
namely

/(*)**=/(-*w
Example. If the number of degrees of freedom of the system, after ignoration of the

ignorable coordinates, is even, shew that when the ignorable velocities are large (e.g. if

the ignorable coordinates are the angles through which certain fly-wheels have rotated,

this would imply that the fly-wheels are rotating very rapidly), half the periods of

vibration are very long and the other half are very short, the one set being proportional

to the ignorable velocities and the other set being inversely proportional to these

velocities.

It was pointed out by Poincare* that the discussion of stability by the

method of small oscillations does not take account of some, features which are

likely to be present in actual problems. Thusf, consider a particle moveable

on the inner surface of a spherical bowl which rotates with constant angular

velocity about its vertical diameter. If the bowl be perfectly smooth, the

equilibrium of the particle in the lowest position is certainly stable, the

rotation of the bowl having no effect on it. But if there be the slightest

friction between the particle and the bowl, and if the angular velocity of the

bowl exceeds a certain value, the particle will work its way outwards in

a spiral path towards the position in which it rotates with the bowl like the

bob of a conical pendulum.

85. Examples of vibrations about steady motion.

A number of illustrative cases of vibration about a state of steady motion

will now be considered.

(i) A particle is describing the circle r= a, z—b, in the cylindrical field of force in

which the potential energy is V=<f>(r, z), where r'
i= xi+y% it being given that dVjdz is

zero when r=a, z= b. To find the conditions for stability of the motion.

If we write x=r cos 6, y =r sin 8,

we have for the kinetic and potential energies of the particle, whose mass will be denoted

by mi,

T=£m(/2+?-2 2 + 22),

V=4,(r,z).

The integral corresponding to the ignorable coordinate 6 is mr26= h, where h is a

constant. The modified kinetic potential after ignoration of 6 is therefore

R^T-V-kB

= \mr* +\mzl - <j> (r, z) -^

.

* Acta Math. vn. (1885), p. 259.

t This illustration is due to Lamb, Proc. Boy. Soc. lxxx. (1908), p. 168.
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For the steady motion we must have

3r ' dz
U '

the latter condition is satisfied by hypothesis, and the former gives k2=ma3d<p/da. We
have therefore

R=imf* + imi? - <f>
(r, z) -^ ^

.

"Writing r=a + p, z=b + £,

and neglecting terms above the second degree in p and f, we have

R=imp^+ $mC*-ipi
((paa + -<pa)-p£<P<*-U 2

<l>tb-

As no terms linear in p or £ occur, this is essentially the same as a problem of vibrations

about equilibrium, and the condition for stability is (§ 79) that

P
2
(<*>«.+ ^<*>.) + M<Pat+ £

2
<l>bb

shall be a positive definite form, i.e. that

(<Paa+-<t>a) <l>bb~<p
2
al> and (pbh

shall both be positive. These are the required conditions for stability of the steady

motion.

Corollary. If a particle of unit mass is describing a circular orbit of radius a in a

plane about a centre of force at the centre of the circle, the potential energy being <j> (r)

where r is the distance from the centre, the modified kinetic potential is

iP*-hp
2
(<Paa+ -<t>*),

where r=a + p, so the condition for stability is

3
<t>a*+-<Pa>0,

and the period of a vibration about the circular motion is

^ \<l>aa+-<Pa[

(ii) To find the period of the vibrations about steady circular motion of a particle

moving under gravity on a surface of revolution whose axis is vertical.

Let z=f(r) be the equation of the surface, where (z, r, 6) are cylindrical coordinates

with the axis of the surface as axis of z. If the particle is projected along the horizontal

tangent to the surface at any point with a suitable velocity, it will describe a horizontal

circle on the surface with constant velocity. Let a be the radius of the circle ; we shall

take the mass of the particle to be unity, as this involves no loss of generality.

The kinetic potential is

L=$(ri+ ri6i+i2)-gz

= if*{l+f*(r)}+ ir*fc-gf(r).

The integral corresponding to the ignorable coordinate 8 is r2B= k, and the modified

kinetic potential of the system after ignoration of 6 is therefore

R=¥* {i +/'2 W} -gf(r)-»l*».
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The problem is thus reduced to that of finding the vibrations about equilibrium of the
system with one degree of freedom for which R is the kinetic potential. The condition for
equilibrium is

@r=a
=

>
or *2=^3/»,

and this gives

R=W {1 +/'2 (r)} -gf{r) -gcfif (a)/2r».

Writing r=a + p, where p is small, and expanding in powers of p, we have

R= YP* {1 +/'2 (a)} -i9P2 {/" (a) +?/' (a)j

.

The equation of motion

dt\dp) dp~

is therefore p{l+/ fl,

(«)}+fl'p{/"(a)+ |/'(a)J
= 0,

and the condition for stability is

/"(«) + \f'{«)>0,

the period of a vibration being

2tt
f

l+/' 2 (a) "

'

^r l/" («)+«/ («)/«.

Example. If the surface is a paraboloid of revolution whose axis is vertical and
vertex downwards, shew that the vibration-period is

/Z2+ a2\*

where I is the semi-latus rectum of the paraboloid.

(iii) To determine the vibrations about steady motion of u, top on a perfectly rough
plane.

Let A denote the mom ent of inertia of the top about a line through its apex perpen-

dicular to its axis of symmetry, and let 8 denote the angle made by the axis with the

vertical, M the mass of the top, and h the distance of its centre of gravity from its apex

:

then we have seen (§ 71) that after ignoring the Eulerian angles <p and i|f, the angle 6 is

determined by solving the dynamical system defined by the kinetic potential

n i j Ao (a — bcosS)2
,, , .

i 2A sin! 6 "

where a and b are constants depending on the initial circumstances of the motion.

Let a, n be the values of 8 and </> respectively in the steady motion, so (§ 72)

we have
A n2 cos a+ Mgh=bn,

An sin2 a= a—b cos a.

To discuss the vibratory motion of the top about this form of steady motion, we write

8= a+.v where x is a small quantity, and expand R in ascending powers of x, neglecting

powers of x above the second and eliminating a and b by use of the last two equations

;

we thus obtain for R the value

R=JAx2 — &Ax2 {n2 sin2 a+ (n cos a — Mgh/A nf}.
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The equation of motion for x is therefore

x+ {ri2 sin2 a+ (n cos a - Mgh/An)2
} x=0.

As the coefficient of x is positive, the state of steady motion is stable ; and the period

of a vibration is

2tt {rfi - <2,Mgh cos ajA +M*g2h2/A in i}~b.

(iv) The sleeping top.

If we consider that form of steady motion of the top in which a is zero, so that

the axis of the top is permanently directed vertically upwards, the top rotating about this

axis with a given angular velocity, the method of the preceding example must be modified,

since now the form of steady motion in which a is a small constant is to be regarded as a

vibration about the type of motion in which a is zero : so that we may now expect to have

two independent periods of normal vibration, the analogues of which in the previous

example are the period of the steady motion and the period of vibration about it.

As in § 71, the kinetic and potential energies of the top are

T^Aft+lAtfsm* 8+iC(j,+ 4>coa 6f,

V=Mgh cos 6.

The integral corresponding to the ignorable coordinate yjr is

b=C(<j,+ <j> cos 6),

and hence after ignoration of yjr we obtain for the kinetic potential of the system the value

R^AP+^Aft sin2 6 + b<j) cos 6 - Mgh cos 6.

In the two last terms we can replace cos 6 by (cos 8 — 1), since the terms — b$> and Mgh
thus added disappear from the equations of motion.

As
<f>

is not a small quantity throughout the motion, we take as coordinates in place of

6 and <j> the quantities £ and r), where

£= sin#oos$, t]= sindain<j).

From these equations, neglecting terms above the second degree in £, 17, |, rj, we have

fl
2+ 2 sin2 = i

2
+7;2,

sin2 = £}-,£,

l-cos0=|(£2+ ,
2
),

and so we have

The equations of motion are

dt\di) d£ ' dtVoj) 3,-°'

(Al+bf,-Mgh£=0,
or i

lArj-bg-Mghri= 0.

If 27r/X is the period of a normal vibration, on substituting £=JelKt
, -q =KeM in these

differential equations and eliminating J and K we obtain the equation

\*A-Mgh ib\ =0,

-ib\ -\2A-Mgh
or (V2A+Mghf-bi\i=0.

The two roots of this quadratic in X2 give the values of X corresponding to the two

normal vibrations : we have therefore to determine the nature of these roots.
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The solution of the quadratic is

X2=
2l2

{W-ZAMghtbiW-lAMghfi},

so ±X=^{6±(62 -44%A)i}.

The values of X are therefore real or not according as 62 is greater or less than iAMgh.
In the former case the steady spinning motion round the vertical is stable : in the latter

case, unstable.

It must not be supposed, however, that in the unstable case the axis of the top

necessarily departs very far from the vertical : all that is meant by the term "unstable"

is that when b2<4AMgh the disturbed motion does not, as the disturbance is indefinitely

diminished, tend to a limiting form coincident with the undisturbed motion.

As a matter of fact, if b% -4AMgh, though negative, is very small, it is possible for the

axis of the top in its "unstable" motion to remain permanently close to the vertical : but

in this case the maximum divergence from the vertical cannot be made indefinitely small

(for a given value of b) by making the initial disturbance indefinitely small*.

86. Vibrations of systems involving moving constraints.

If a dynamical system involves a constraint which varies with the time

(e.g. if one of the particles of the system is moveable on a smooth wire or

surface which is made to rotate uniformly about a given axis), the kinetic

potential of the system is no longer necessarily composed of terms of degrees

2 and in the velocities ; terms which are linear in the velocities may also

occur. The equations which determine the vibrations of such a system will

therefore in general include gyroscopic terms, even when the vibration is

about relative equilibrium : the solution can be effected by the methods above

developed for the problem of vibrations about steady motion. The following

example will illustrate this.

Example. To find the periods of the normal vibrations of a heavy particle about its

position of equilibrium at the lowest point of a surface which is rotating with constant

angular velocity at about a vertical axis through the point.

Let (x, y, z) be the coordinates of the particle, referred to axes which revolve with the

surface, the axes of x and y being the tangents to the lines of curvature at the lowest

poiut, and the axis of z being vertical. Let the equation of the surface be

2= -—h ^—+terms of higher order.

2pi 2p2

The kinetic and potential energies of the particle are

T= tyn {(x - yco)*+ (y+xaf+z\
V=mgz.

The kinetic potential of the vibration-problem is therefore

L=im{x*+y*+ 2<» (xy-yx)+ <o* (x*+f)}-mg (£-^ + J^)

.

* A discussion of the stability of the sleeping top is given by Klein, Bull. Amer. Math. Soc. in.

(1897), pp. 129—132, 292.



208 Theory of Vibrations [ch.

The equations of motion are

d fdL\ dL_ ±fi_L\_ d_L_
n

di\te)~te ' dt\dy) 8y '

or ic-Zay+x ( — -<o2

J=0,

y+ Zaic+y ($-- )=0.
P2 * /

If the period of a normal vibration is 2tt/X, we have (substituting x=AeM
,
y=Beiu in

the differential equations, and eliminating A and B)

I -X2 -<o2
+^/pi -2<oiX =0,

I
2a>iX -X2 -o)2

+5'/p2

or (X2 +a.2 -5r/Pl ) (X2 +a>2 -^/p2)-4X2
<o

2=0.

The roots of this quadratic in X2 determine the periods of the normal vibrations.

Miscellaneous Examples.

1. A particle moves on a curve which rotates uniformly about a fixed axis, the

potential energy V(s) of the particle depending only on its position as defined by the

arc s. Shew that the period of a vibration about a position of relative rest on the

curve is

„ f dVd
,

f-rdr/ds\]
"*

2w
\-dids los

{-dVld7)\ '

where r is the distance of the particle from the axis.

2. Determine the vibrations of a solid horizontal circular cylinder rolling inside a

hollow horizontal circular cylinder whose axis is fixed, shewing that the length of the

simple equivalent pendulum is (b-a) (3M+m)l(2M+m) ; where b is the radius and Mthe

mass, of the outer cylinder, and a is the radius and m the mass, of the inner cylinder.

(Coll. Exam.)

3. A thin hemispherical bowl of mass M and radius a is on a perfectly rough

horizontal plane, and a particle of mass m is in contact with the inner surTaee of the bowl,

supposed smooth. Shew that when the system performs small oscillations, the motion of

the particle and the centre of gravity of the bowl being in one plane, the periods of the

normal vibrations are 27r/'v'x7 and 2n-/^X 2 , where Xi and X2 are the roots of the equation

ma\g-(g-a\) {\g-%a\) M=Q. (Coll. Exam.)

4. A string of length 4a is loaded at equal intervals with three weights m, M and m
respectively, and is suspended from two points A and B symmetrically. Shew that if M
perform small vertical vibrations, the length of the simple equivalent pendulum is

a cos a cos ff sin (a - ff) cos (a - /3)

sin a cos2 a+ sin ^J cos2 13 '

where a and /3 are the inclinations of the parts of the string to the vertical.

(Coll. Exam.)

5. A uniform bar whose length is 2a is suspended by a short string whose length is I ;

prove that the time of vibration is greater than if the bar were swinging about one

extremity in the ratio l+9£/32a : 1 nearly. (Coll. Exam.)
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6. An elliptic cylinder with plane ends at right angles to its axis rests upon two fixed
smooth perpendicular planes which are each inclined at 45° to the horizon. Shew that
there are two stable configurations and one unstable, and that in the former case the
length of the equivalent pendulum is

ab (a2+62
)/2^2 (a - bf (a+ b),

a and b being the lengths of the semi-axes. (Coll. Exam.)

7. A rough circular cylinder of radius a and mass m is loaded so that its centre of
gravity is at a distance h from the axis, and is placed on a board of equal mass which
can move on a smooth horiz&ntal plane. If the system is disturbed slightly when in a
position of stable equilibrium, shew that the length of the simple equivalent pendulum is

k2lh+^(a-hflh, where mk2 is the moment of inertia of the cylinder about a horizontal
axis through its centre of gravity. (Coll. Exam.)

8. One end of a uniform rod of length b and mass m is freely jointed to a point in a
smooth vertical wall ; the other end is freely jointed to a point in the surface of a uniform
sphere of mass M and radius a which rests against the wall. Shew that the period of the
vibrations about the position of equilibrium is 2njp, where

P
2
fsin sin2 (« ~ 0)+ 1 cos a sin (a - /3) + § sin /3 cos2 /3}= -=-2— (a sin a cos2 a+ b sin cos2 S),

ab cos a '

a and /3 being given by the equations

a sin a+ b sin /3 - a=0,

{%m+ M) ton p-M tan a= 0. (Coll. Exam.

)

9. A thin circular cylinder of mass M and radius b rests on a perfectly rough
horizontal plane, and inside it is placed a perfectly rough sphere of mass m and radius a.

If the system be disturbed in a plane perpendicular to the generators of the cylinder, find

the equations of finite motion, and deduce two first integrals of them ; and if the motion
be small, shew that the length of the simple equivalent pendulum is

UM(b-a)l(lOM+7m).
(Camb. Math. Tripos, Part I, 1899.)

10. A sphere of radius c is placed "upon a horizontal perfectly rough wire in the

form of an ellipse of axes 2a, 26. Prove that the time of a vibration under gravity about
the position of stable equilibrium is that of a simple pendulum of length I given by
b'dl= {a2-b2)(d 2 + k2

), where £2=2c2
/5 and d 2=c2 -b2

. (Coll. Exam.)

11. A rhombus of four equal uniform rods of length a freely jointed together is laid

on a smooth horizontal plane with one angle equal to 2a. The opposite corners are

connected by similar elastic strings of natural lengths 2a cos a, 2a sin a. Prove that if

one string be slightly extended and the rhombus left free, the periods during which

the strings are extended in the subsequent motion are in the ratio '

(cos a)$ : (sin a)%. (Coll. Exam.)

12. A particle of mass m is attached by n equal elastic strings of natural length a to

the fixed angular points of a regular polygon of n sides, the radius of whose circumscribing

circle is c. Shew that if the particle be slightly displaced from its equilibrium position in

the plane of the polygon, it will execute harmonic vibrations in a straight line, the length

of the simple equivalent pendulum being 2m.gac]n\(2c — a), and that for vibrations

perpendicular to the plane of the polygon, the corresponding length will be mgacjnK (c - a),

X being the modulus of each string. (Camb. Math. Tripos, Part I, 1900.)

w. d. 14
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13. The energy-equation of a particle is

/ (x) x2=
2<f>

(x) + constant,

and a is a value of x for which
<f>'

(x) is zero. If $(2p) (x) is the first derivative of
<f>

(x)

which does not vanish for x=a, shew that the period of a vibration about the position a is

4 r(l/8p) f V(2p)f(a)w)i

A^rCl/Sp+JH 4^W(a) J
'

where h is the value of (x-a) corresponding to the extreme displacement. (Elliott.)

] 4. A cone has its centre of gravity at a distance c from its axis, there being in other

respects the usual kinetic symmetry at the vertex. If the cone oscillates on a horizontal

plane and the plane be perfectly rough, shew that the length of the simple equivalent

pendulum is

(cos a/Mc) (A sin2 a+ C cos2 a),

whereas if this plane be perfectly smooth, the length is

(cos ajMc) (sin2 a/A + cos2 a/O). (Coll. Exam.)

15. A number of equal uniform rods each of length %a are freely jointed at a common

extremity and arranged at equal angular intervals like the ribs of an umbrella. This cone

of rods is put over a smooth fixed sphere of radius 6, each rod being in contact with the

sphere, and rests in equilibrium. Shew that, if the system be slightly disturbed so that

the hinge performs vertical vibrations about the position of equilibrium, their period is

la 1+3 sin2 n\3
'r

\33'l + 2sin2 a
/
'

where sec3 a sin a= a/6. (Camb. Math. Tripos, Part I, 1896.)

16. A heavy rectangular board is symmetrically suspended in a horizontal position

by four light elastic strings attached to the corners of the board and to a fixed point

vertically above its centre. Shew that the period of the vertical vibrations is

4c2A\~

'

l+3sin2 a\* . \- > sin <

-(!+»"
where c is the equilibrium distance of the board below the fixed point, a is the length of

a semi-diagonal, k=(a2+c2
) *, and X is the modulus. (Coll. Exam.)

17. A heavy lamina hangs in equilibrium in a horizontal position suspended by three

vertical inextensible strings of unequal lengths. Shew that the normal vibrations are

(1) a rotation about either of two vertical lines in a plane through the centroid, and

(2) a horizontal swing parallel to this plane. (Coll. Exam.)

18. A uniform rod of length 2a is freely hinged at one end, at the other end a string

of length 6 is attached which is fastened at its further end to a point on the surface of a

homogeneous sphere of radius c. If the masses of the rod and sphere are equal, find the

motion of the system when slightly disturbed from the vertical, and shew that the

equation to determine the periods is

2abcii3 -g^ (66c+ 19ea+ 5a6)+#V (35a+ 156 + 21c) - g*= 0.

(Coll. Exam.)

19. A uniform wire, in the shape of an ellipse of semi-axes a, 6, rests upon a rough

horizontal plane with its minor axis vertical and a particle of equal mass is suspended by

a fine string of length I attached to the highest point. If vibrations in a vertical plane

be performed, prove that their periods will be those of pendulums whose lengths are the

value of x given by the equation

{x (36 - 2a2
/6) + 562+ &} (x-l) + ibH

=

0,

where k is the radius of gyration about the centre of gravity. (Coll. Exam.)



vn] Theory of Vibrations 211

20. A fine inextensible string has its ends tied to two fixed pegs in a horizontal

line whose distance apart is three-quarters of the length of the string. The string

also passes through two small smooth rings which are fixed to the ends of a uniform

straight rod whose length is half that of the string. The rod hangs in equilibrium

in a horizontal position and receives a small disturbance in the vertical plane of the

string. Shew that initially its normal coordinates in terms of the time are Lcos(pt+a)

and Mcosh (qt+{f), where p2 and — q
2 are the roots of the equation

#* - ^ 9- x2 - \
9-

9
= 0. (Coll. Exam.)

21. A heavy uniform rod of length 2a, suspended from a fixed point by a string

of length 6, is slightly disturbed from its vertical position. Shew that the periods of the

normal vibrations are 2n/pi and 2n-/p2 , where p^ and^>2
2 are the roots of the equation

abpi -(4a+3b)ffp2+Zg
2= 0.

22. A circular disc, mass M, is attached by a string from its centre C to a fixed

point 0. A particle of mass m is fixed to the disc at a point P on the rim. Find the

equations of motion on a vertical plane in terms of the angles 6 and
<f>
which OG and CP

make with the vertical, and prove that if the system vibrates about the position of

equilibrium the periods in these coordinates are given by the equation

(M+ m) (p
2a - g) {(M+ 2m) cp2- 2mg}= 2m2cap4

,

where a is the length of the string 00 and c the radius of the disc. (Coll. Exam.)

23. A hemispherical bowl of radius 26 rests on a smooth table with the plane of its

rim horizontal ; within it and in equilibrium lies a perfectly rough sphere of radius 6, and

mass one-quarter of that of the bowl. A slight displacement in a vertical plane con-

taining the centres of the sphere and the- bowl is given : prove that the periods of the

consequent vibrations are 2ir/pi and 27r/p2 ,
where pi

2 and p2
2 are the roots of the

equation
1566V - 260bxg+ 75g2= 0. (Coll. Exam.

)

24. A uniform circular disc of mass in, and radius a is held in equilibrium on a

smooth horizontal plane by three equal elastic strings of modulus A, natural length l and

stretched length I. The strings are attached to the disc at the extremities of three radii

equally inclined to one another and their other ends are attached to points of the plane

lying on the radii produced. Shew that the periods of vibration of the disc are

27rk/(2Z-Jo)}4 and 2n fca/4(a+ Z) (l-l )\ *,

where
/
i=2ra« /3X. (Camb. Math. Tripos, Part I, 1898.)

25. A particle is describing a circle under the influence of a force to the centre

varying as the rath power of the distance. Shew that this state of motion is unstable if n

be less than - 3.
r

Shew that if the force vary as e a jr2, the motion is stable or unstable according as

the radius of the circle is less or greater than a. (Coll. Exam.)

26. A particle moves in free space under the action of a centre of force which varies

as the inverse square of the distance and a field of constant force: shew that a circle

described uniformly is a possible state of steady motion, but this will be stable only

provided the circle as viewed from the centre of force appears to lie on a right circular

cone whose semi-vertical angle is greater than arccosj. (Coll. Exam.)

14—2
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27. A particle describes a circle uniformly under the influence of two centres of force

which attract iuversely as the square of the distance. Prove that the motion is stable if

3cos0cos#<l, where 6 and cf> are the angles which a radius of the circle subtends

at the centres of force. (Camb. Math. Tripos, Part I, 1889.)

28. A heavy particle is projected horizontally on the interior of a smooth cone with

its axis vertical and apex downwards; the initial distance from the apex is c and the

semi-vertical angle of the cone is a. Find the condition that a horizontal circle should be

described; and shew that the time of a vibration about this steady motion is that

of a simple pendulum of length ^csec a. (Coll. Exam.)

29. A circular disc has a thin rod pushed through its centre perpendicular to its

plane, the length of the rod being equal to the radius of the disc
;
prove that the system

cannot spin with the rod vertical unless the velocity of a point on the circumference

of the disc is greater than the velocity acquired by a body after falling from rest

vertically through ten times the radius of the disc. (Coll. Exam.)

30. Prove that for a symmetrical top spinning upright with sufficient angular

velocity for stability, the two types of motion, differing slightly from the steady motion

in the upright position, which are determined by simple harmonic functions of the time,

are the limits of steady motions with the axis slightly inclined to the vertical, and that

the period of the vibrations is the limiting value of that which corresponds to steady

motion in an inclined position when the inclination is indefinitely diminished.

(Coll. Exam.)

31. One end of a uniform rod of length 2a whose radius of gyration about one

end is k is compelled to describe a horizontal circle of radius c with uniform angular

velocity <b. Prove that when the motion is steady the rod lies in the vertical plane

through the centre of the circle and makes an angle a with the vertical given by

a>
2 (k2+ ao cosec a)= ag sec a.

Shew that the periods of the normal vibrations are 2n[Kly 2tt/X2 , where \lt X2 are the

roots of

(k2\2 sin a — a>
2ac) (k2A2 sin a— aflao— a2k2 sin3 a)= AoPk*X2 sin2a cos2 a.

(Camb. Math. Tripos, Part I, 1889.)

32. Investigate the motion of a conical pendulum when disturbed from its state of

steady motion by a small vertical harmonic oscillation of the point of support. Can the

steady motion be rendered unstable by such a disturbance? (Coll. Exam.)
»

33. The middle point of one side of a uniform rectangle is fixed and the line joining

it to the middle point of the opposite side is constrained to describe a circular cone

of semi -angle a with uniform angular velocity. The rectangle being otherwise free,

find the positions of steady motion and prove that the time of a vibration about the

position of stable steady motion is equal to the period of revolution divided by sin a.

(Coll. Exam.)

34. A solid of revolution, symmetrical about a plane through its centre of gravity

perpendicular to its axis, is suspended from' a fixed point by a string of length b which is

attached to one end of the axis of the solid, this axis being of length 2a. The mass

of the solid is M, and its principal moments of inertia at its centre of gravity are

{A, A, C). If the solid is slightly disturbed from the state of steady motion in which the

string and axis are vertical, and the body is spinning on its axis with angular velocity n,

shew that the periods of the normal vibrations are 2ir\px and 2rr/^2) where p^ and pf are

the roots of the equation

MaPgp2={g- bp2
)
{Mag+ Cnp — Ap2

).
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35. A symmetrical top spins with its 'axis vertical, the tip of the peg resting in

a fixed socket. A second top, also spinning, is placed on the summit of the first, the tip

of the peg resting in a small socket. Shew that the arrangement is stable provided the

equation

(Mega?+ Cax+

A

) {(MV + Mh) gx"-+C a'x+(A' + Mh?)} = J/2A2c2)

has all its roots real ; Q, Q' being the spins of the upper and lower tops respectively,

M, M' their masses, C, C their moments of inertia about the axis of figure, A, A' about

perpendiculars through the pegs, c, d the distances of the centroids from the pegs, and h

the distance between the pegs. (Camb. Math. Tripos, Part I, 1898.)

36. A homogeneous body spins on a smooth horizontal plane in stable steady motion,

with angular velocity a about the vertical through the point of contact and the centre of

gravity. The body is symmetrical about each of two perpendicular planes through the

vertical. The principal radii of curvature at the vertex on which it rests are pi , p2 ; the

moments of inertia about the principal axes through the centre of gravity (parallel to the

lines of curvature) are respectively A and B, and that about the vertical is C. The

height of the centre of gravity about the vertex is a=a1 + p1=a2+p2 ; and Ao> 2 is the

weight of the body.

Shew that the following conditions must be satisfied

:

(i) (\a1+ A-C)(Ka2+B-G)>0,

(ii) X(aiA + a2B)<AB+(A-C)(B-C),

(iii) The value of \ must not lie between the two values

(A +B-C) [JB {atA + a2 (A-0)}
i±jA {a2B+a1 (B- C)2}*]2/^ - a

2Bf,

if the two radicals in the expression are both real.

(Camb. Math. Tripos, Part I, 1897.)



CHAPTER VIII

NON-HOLONOMIC SYSTEMS. DISSIPATIVE SYSTEMS

87. Lagrange's equations with undetermined multipliers.

We now proceed to the consideration of non-holonomic dynamical systems.

In these systems, as was seen in § 25, the number of independent coordinates

(g>,, q2 qn) required in order to specify the configuration of the system at

any time is greater than the number of degrees of freedom of the system,,

owing to the fact that the system is subject to constraints which will be

supposed to do no work, and which are expressed by a number of non-

integrable* kinematical relations of the form

A ihdq1 +

A

2k dq2 + ... + A nkdqn +

T

kdt=0 (k = l,2, ..., m),

where An , A lit ..., Anm , Tlt T2 , ..., Tm are given functions of qu

g
,

2, •••, qn , t.

The most familiar example of such a system is that of a body which is constrained to

roll without sliding on a given fixed surface : the condition that no sliding takes place is

expressed by two relations of the type given above. A still simpler example is that of a

vertical wheel with a sharp edge which rolls on a horizontal sheet of paper, as in the

integraph of Abdank-Abakanowicz and the integrator of Pascal : the wheel moves only in

its own instantaneous plane, the friction at the sharp edge preventing it from slipping

sideways. If (x, y) are the rectangular coordinates of its point of contact with the

paper, and
<f>

the azimuth of its plane, we have in this case the non-holonomic equation

of condition

dy — tan $ . dx

=

0.

The number of kinematical relations being m, the system will have

(n — m) degrees of freedom ; it is not possible to apply Lagrange's equations

directly to such a system, but an extension of the Lagrangian equations will

now be given which will enable us to discuss the motion of non-holonomic

systems in a way analogous to that previously developed for holonomic

systems.

Consider then a non-holonomic system, whose configuration at any

instant is completely specified by n coordinates qlt q2 , ..., qn ; let the

kinetic energy be T, and let the kinematical conditions due to the non-

holonomic constraints be expressed by the relations

A lkdqt + A ikdq2 + . . . + A nkdqn + Thdt = (k = l,2,...,m).

* If these relations were integrable, it would be possible to express some of the coordinates

(?i> ?2> •In) m terms of the others, and the n coordinates would therefore not be independent:

which is contrary to our assumption.
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Now it is open to us either simply to regard the system as subject to

these kinematical conditions, or in place of these to regard the system as

acted on by certain additional external forces, namely the forces which have

to be exerted by the constraints in order to compel the system to fulfil the

kinematical conditions; we shall for the present take the latter point of

view. Let

Qi'% + Qs'8q2 + + Qn'Sqn

be the work done on the system by these additional forces in an arbitrary

displacement (Sqlt Sq2 , , &qn) (which is now not restricted to satisfy the

kinematical conditions), and let

Qifyi + Q£q2 + + QnBqn

be the work done on the system by the original external forces in this dis-

placement. Since the substitution of additional forces for the kinematical

relations has made the system holonomic, we can apply the Lagrangian

equations; we have therefore

a(I)-sf-«' + «'' c- 1
'
2 •>

dt \dqrJ dqr

as the equations of motion of the system.

The forces Q-[, Q2 , . .
. ,

Q„' are unknown : but they are such that, in any

displacement consistent with the instantaneous constraints, they do no work.

It follows that the quantity

Qi'dqi+Q2'dq2 + ...+ Qn'dqn

is zero for all values of the ratios dqx :dq2 : ...:dqn which satisfy the

equations
A

llc
dq1 + A 2kdq2 +... + A nk dqn,= 0;

hence- we must have

Qr = J^i-An + X2.fl.r2 + ... + XmArm (r = 1, 2, ..., n),

where the quantities \1} Xs, ..., Xm are independent of r. We thus have

altogether the (n + m) equations

4(1?) -^ = Qr + \A rl + \2A r2 + ... +\mAm (r = l, 2, ...,n),

dt \dqrl dqr

Alkq\ + A 2kq2 + ... +A nkqn + Tk = (k=l, 2, ...,m),

and these are sufficient to determine the (n + m) unknown quantities

2i, &, •••> ?», \, X 2 , ..., Xm . The problem is thus reduced to the solution

of this set of equations *-

* The extension of Lagrange's equations to non-holonoraic systems is due to Ferrers, Quart.

Journ. Math. xn. (1871), p. 1 : C. Neumann, Leipzig Berichte, xl. (1888), p. 22: and Vierkandt,

Monatshefte filr Math. u. Phys. m. (1892), p. 31.
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88. Equations of motion referred to axes moving in any manner.

The method given in the preceding article depends essentially on the

reduction of the non-holonomic system to a holonomic system by introducing

the forces due to the non-holonomic constraints. In practice, this is often

most conveniently done by forming separately the equations of motion of

each of the bodies of the system. It is moreover frequently advantageous

to use axes of reference which are not fixed either in space or in the body,

and we shall now find the equations of motion of a rigid body referred to

axes which have their origin at the centre of gravity of the body, and are

turning about it in any manner*.

Let G be the centre of gravity, of the body, and let Gxyz be the moving

axes. Let (u, v, w) be the components of velocity of the centre of gravity

resolved parallel to these axes, and let (0U 8.^, 63) be the components of

angular velocity of the system of axes Gxyz resolved along the axes them-

selves; further let (a>lt o>2 , <o3) be the components of angular velocity of the

body, resolved along the same axes. Then (§ 64) the motion of G is the same

as that of a particle of mass M, equal to that of the body, acted on by forces

equal to the external forces which act on the body (including all forces of

constraint, except the molecular reactions between the constituent particles

of the body) ; let (X, Y, Z) be the components parallel to the axes Gxyz of

these external forces.

The component of velocity of G parallel to Gx is u, and consequently

(§ 17) the component of its acceleration in this direction is n — vd3 + wd^ ; we

have therefore the equation

M (u-v03 + wdi) = X,
which can be written

dfdT\ dT dT

where T denotes the kinetic energy of the body, expressed in terms of

(u, v, w, a>1( to2 ) »s); and similar equations can be obtained for the motion

of G parallel to the axes Gy and Gz.

Consider next the motion of the body relative to G, which (§ 64) is

independent of the motion of G ; from §§62, 63, we see that the angular

momentum of the body about the axis Gx is dTjd<olt so that the rate of

increase of angular momentum about an axis fixed in space and in-

stantaneously coinciding with Gx is

dt \do)J
a dw2

2
dco3

'

* In the applications of this method, the axes are usually chosen subject to the condition

that the moments and products of inertia of the body with respect to them do not vary ; but this

condition is not essential.
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If L, M, N denote the moments of the external forces about the axes

Oxyz, we have therefore (§ 40)

<L(dJ\-fl dJL,a dT - T
dt\daj 3

d<D2

+ e
*dws

- Ĵ

and two similar equations.

Hence finally the motion of the body is determined by the six equations

dT
dt [dcoj

s

dt{fo)~ 6l fa +0a
fa
= Y'

dtW 2
du

+0l dv~ ' dt [decJ ~ °2 d^
+ 0l

do

#2 5— = L,

dt \.3o)2/ da>s dw-y

= N.

It will be observed that these are really Lagrangian equations of motion

in terms of quasi-coordinates, and could have been derived by use of the

theorem of § 30.

Example. If the origin of the moving axes is not fixed in the body, let (%, u2 , u%)

be the components of velocity of the origin of coordinates, resolved parallel to the

instantaneous position of the axes; let (fi\, 62 , 83) be the components of angular velocity-

of the system of axes, resolved along themselves; let (i>1} v2 , v3) be the components of

velocity of that point of the body which is instantaneously situated at the origin of

coordinates; and let (&>!, o>2 , a>3) be the components of angular velocity of the body, also

referred to the moving axes. Shew that the equations of motion can be written in

the form

d(dT\_
dtXdvJ

dT . dT
6^+

*dv3
X,

{

d (dT\ dT dT_

d (dT\ dT dT . dT
,

. dT T

dt{d 1̂
)- U3

dT2
+u'Ws

- e3
d

ŝs

+e
'd^-

L
'

dt^

d (dT\

d(dT\
J'

«2

dT
dv3

dT dT

dT
dvi

„ dT n dT ,,6
1 ~r+ 63?r=M,oa>3 oo)i

dT dT
\dt\da3J

""'
i
dv1

' " dv2

where {X, T, Z, L, M, N) are the components and moments of the external forces with

reference to the moving axes.

89. Application to special non-holonomic problems.

We shall now consider some examples illustrative of the theory of non-

holonomic systems.

Example 1. Sphere rolling on a fixed sphere.

Let it be required to determine the motion of a perfectly rough sphere of radius a and

mass m which rolls on a fixed sphere of radius b, the only external force being gravity.
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Let (6, 8, <f>)
be the polar coordinates of the point of contact, referred to the centre of

the fixed sphere, the polar axis being vertical. We take moving axes 6ABC, where is

the centre of the moving sphere, OC is the prolongation of the line joining the centres of

the spheres, OA is horizontal and perpendicular to OC, and OB is perpendicular to OA
and OC, in the direction of 8 increasing.

With these axes we have, in the notation of the last article,

6i=-P, 2=-(j>sin0, 83=$co&8,

u= — (a+ b)(j>smd, v— (a+ b)8, w-—0,

T=$m |«*+ v*+ w*+~ (a),
2 + o>2

* + a>3
2
)|

,

and if F, F' denote the components of the force at the point of contact parallel to OA
and OB respectively, we have

X=F, Y=mg sin 6+F',

L=F'a, M=-Fa, N=0.

The equations of motion of the last article become therefore

m(u-v83)=F = -^am(a>2 — 8i(o3+ d3 ai),

m (v+u83)
- mg sin 8=F'= %am (a>i — 83 a>2 + #2 o>3),

u3 — 82 c»i+ 81 0)2= 0.

Moreover, the components parallel to the axes OA, OB of the velocity of the point of

contact are u — ao>2 and v+aa>i, and consequently the kinematical equations which express

the condition of no sliding at the point of contact are

u — aa2=0, v+ aal
= Q.

Eliminating F, F', o>i, o>2 , we have1u — v83 — $a81 0)3=0,

*

+

u83— fa82 0)3
- fg sin 8= 0,

0.3= 0.

The last equation gives m3= n, where n is a constant ; while substituting for u, v, 81,82,

in the first two equations their values in terms of 8, 6, <£, we have

(" (a+ b) -r;(<£ sin 8)+ (a + b)8<j> cos 8 -$an8= 0,

[(a+ b)8-(a + b)focos8smd+%an<i>8m8-$gam8=0.
The former of these equations can be integrated at once after multiplying throughout

by sin 8, and gives

(a+ 6)$sin2 #+f are cos 8=k,

where k is a constant. Moreover, multiplying the second equation throughout by 8 and

the first equation by ij> sin 8, and adding, we obtain an equation which can be at once

integrated, giving

fl
2+ cj>

2 sin2 0+y^cos0=A,

where A is a constant ; this is really the equation of energy of the system.

Eliminating $ between these two integral equations, we have

(a+ b)1 smi 8j2=-(k-$ancos8)i -y-g(a+ b)&m2 8coa8+ k(a+ bfsiai 8;

and on writing cos8=x, this equation becomes

(a+&)2 i£=A(a+&)! (l-ar!)-(£-?a«ff)s --^r («+ &)*(! -a8
).
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The cubic polynomial in x on the right-hand side of this equation is positive when
*= + so

j negative when x= 1, positive for some real values of 8, i.e. for some values of x
between -1 and 1, and negative when x=-l; it has therefore one root greater than
unity, and two roots between 1 and - 1 ; we shall denote these roots by

cosh y, cos /3, cos a,

where cos /3> cos a; and we then have

\T a+ b ) (' + c
)
= M(^

- cosl) y) (
x ~ cos

Z
3
) (.<*> ~ cos <•)} "" *^

where e is a constant of integration.

Writing

14a+ 6 14ce+6 7A(a+ &)
2+ *a2

?i
2

the equation becomes

<+f=J {4{*-e,) (*-«») (*-«i,)}-4A,

or *= J? (* + *),

where the function g> is formed with the roots

/ 5<7
f

. 7A(a + &)
2+ 4a2«2

]
ei=

14(^6) |
COsh y 20g(a+ b) \

'

„ $9 f 7A(a+&)2 + 4a2 ra
2
|

r3-14(a+ 6)t
COSa

30^(a+ 6) J'

these quantities ei, e2 , H are all real, and satisfy the relations

e1+ e2+ e3=0, «i>e2 >e3 .

Now x is real for real values of t and (since x is real) lies between cos a and cos /3

;

so 2 is real and lies between e2 and e3 ; hence the imaginary part of the constant e in the

argument of the gJ-function is the half-period corresponding to the root e3 , which we shall

denote by a> ; the real part of e may be taken to be zero by suitably choosing the origin

of time : and therefore we have finally

, 14.a+ b nlfl s ,
7h(a+ b)2 + $a2n2

C0S *= 1T ^~ ?(«+) + 30g(a+ b)

This equation gives the variable 8 in terms of the time : the other coordinate <£ of the

centre of the moving sphere is then obtained by integrating the equation

• _h — famcos#
*_ (a+ b) sin"' 8

'

this integration can be effected by a procedure similar to that used (§ 72) to obtain the

Eulerian angles which define the position of a top spinning on a perfectly rough plane.

Example 2. A rough sphere rolls in contact with the outside of a fixed rough sphere,

under gravity ; if 22 , z3 be the greatest and least heights of its centre, during the motion,

and z be the height at a time t from an instant when z was equal to z2 ,
prove that

(»s - *) [P (0 - «J= (*2 ~ z3) («i - ei)>

where elt e2 , e3 (= -ex
— e2) are real quantities in descending order of magnitude.

(Coll. Exam.)
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Example 3. Sphere rolling on a moving sphere.

Consider now the motion of a rough sphere of radius a and mass m which rolls under

gravity on another sphere, of radius b and mass M, the latter sphere being free to turn

about its centre 0, which is fixed.

Let (6, <t>)
be the polar coordinates of the point of contact referred to axes fixed in space

with the fixed centre as origin, the axis from which 6 is measured being vertical.

To obtain the equations of motion of the sphere m, we take (as in the last example)

moving axes GABC of which OC is the prolongation of the line Off joining the centres of

the spheres, and GA is horizontal. Let (fii, 62 , 63) denote the components of angular

velocity of the coordinate-system resolved along its own axes, and let (»i, o>2 , o>3) denote the

components of angular velocity of the sphere m along the same axes. Then, as in the last

example, we have

$i=-0, 02=— <j>sin#, 3= $cos0,

u= - (a+ 6)0 sin 6, v= (a+ b)6, w=0,

T=\w, {««+ v*+ w*+~ (V+ a,2
2+ o,3

2

)} ,

and if F, F' be the components of the force acting on the sphere m at the point of contact

parallel to GA and GB respectively, we have

X=F, Y=mgsm6+F\

L=F'a, M=-Fa, N=0,

so the equations of motion become

!m(u-v83)
=F = -%am(a>i

-8
1 a)3 + d3a1) (1),

m (v+ ii6s)-ing sin 6=F'= ^am(a>i- 63(02+ 62(03) (2),

a>3— 62 0)1+ $1 <»2= (3).

To determine the motion of the sphere M, we take moving axes parallel to the axes

GABC, but with their origin at 0; let (O,, Q2 , Q3) denote the components of angular

velocity of the sphere resolved along these axes. Then for the sphere M we have

r=iJf.fJ2
(ai

2+Q22 +fl32
),

and its equations of motion are

(-%bM(Q2-81 a3+ 63a1
)=F. (4),

J

£&if(Q I -03Q2+02a3)= JF" (
5

)>

[ Os-flsQi+ ftOa =0 (6)-

The conditions of no sliding at the point of contact are

u — ao)2= 6Q2 j v+a&i= -6Q1 (7).

In order to solve this set of equations we multiply equations (3) and (6) by a and b'

respectively, and add ; thus, using (7), we have

ao>3+ 6Q3

+

udi + v62
= 0,

or ai>3+ &Q3= 0.

Integrating, we have

aa3 + bQ3=an, where n is a constant.
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Moreover, from equations (4) and (7) we have

- fM(u - aa>2- 60iQ3 - 83v - 83aa^= F.

Eliminating i^and 0)2+ 630)! between this and equations (1), we have

7M±5m—2^— (u - 63 v)= an6u

or ^(0 8infl)+ <J0cos(9-.irs^^

—

r/=0 (A).

Similarly from equations (5) and (7), we have

§-¥(-« — aa>i—uds + a03a>2+ b82Q3)= F'.

Eliminating F' and <»i
— 83 <o2 between this and equations (2), we have

5m+ 7M,. b(M+m) . .

a va a „ 5 (M+m) a sin 6 an %M . . ,_.
or 6 -

<ft

a sin 6 cos 6 - . .
v

, _
'*

rr= -j.- ^.Asmd (B).~
(5m+TM)(a+b) a+ b bm+lM ^ y

'

Now the equations (A) and (B), from which 8 and <j> are to be determined in terms of t,

are of essentially the same character as the equations found for the determination of 8

and
<f>

in the previous example : the former equations being in fact derivable from the

present ones by making M very large compared with m. The integration therefore

proceeds exactly as in the former case.

Example 4. A uniform sphere rolls on a perfectly rough horizontal plane, under

forces whose resultant passes through its centre. Shew that the motion of its centre

is the same as that of a particle acted on by the same forces reduced in the ratio 5 : 7.

Example 5. Form the equations of motion of a perfectly rough sphere rolling under

gravity inside a fixed right circular cylinder, the axis of which is inclined to the vertical at

an angle a; and shew that, if the sphere be such that k2=\di
, a being its radius and k

the radius of gyration about any diameter, and if it be placed at rest with the axial plane

through its centre making an angle with the vertical axial plane, the velocity of

the centre parallel to the axis, when this angle is 6, is

/Zab2 cos2 a\^
\ I -&—. ) {sin \8 arccosh (cos \ 8 sec \$) + cos \8 arccos (sin \8 cosec |/3)},

where b+ a is the radius of the cylinder. (Camb. Math. Tripos, Part I, 1895.)

For other examples cf. "Woronetz, Math. Ann. lxx. (1911), p. 410.

90. Vibrations of non-holonomic systems.

We shall next consider the small vibratory motions of a non-holonomic

system : it will appear that so far as vibrations about equilibrium are con-

cerned, the difference between holonomic and non-holonomic systems is

unimportant.

For consider the vibrations about equilibrium of a non-holonomic system

with n independent coordinates and (n-m) degrees of freedom, in which

the constraints are independent of the time. Let T be the kinetic and V the

potential energy, so that for the vibrational problem T will be supposed to be

a homogeneous quadratic function of (q^ q.„ . .
. , qn), and V to be a homogeneous
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quadratic function of (qlt g 2 , ...,qn), the coefficients in both cases being

constants. There are m equations of the type

4i*?i + A 2h q\ + ...+ Ankqn = (k = 1, 2, . .
.

, m),

which express the non-holonomic constraints; and the equations of motion

are (§ 87)

d fdT\ dV , , , . % . .
t „

5H9<rJ
= ~

9<r
+ (

r=i
>
2

. — .«)•

From these equations it is evident that Xl , \, ..., A™ are in general small

quantities of the order of the coordinates ; and therefore for the vibrational

problem only the constant parts of Au , A 12 , ..., Anm need be considered. The

vibrational motion is therefore the same as if the coefficients Au , Am , ..., Anm
were constants independent of the coordinates ; but in this case the equations

A lkq1 + A 2kq2 +... + Ankqn = (& = 1, 2, ...,m)

can be integrated ; in fact, they give

A Ulq1 + A ikq!,+ ... + A,lkqn = (A; = 1, 2, ..., m),

the constants of integration being zero since the values

?i=0, ?2 = 0, ..., 2„ =

represent a possible position of the system.

It follows that the vibratory motion of the given non-holonomic system is

the same as that of the holonomic system for which the equations of con-

straint are expressible in the integrated form

A ikqi + A 2kq2 + ...+Ankqn = (k = 1, 2, ...,m);

we can therefore determine the vibrations by using these equations to elimi-

nate m of the coordinates (qlt q^, ...,qn) from T and V; we shall then have

a holonomic system with (n — m) degrees of freedom, the kinetic and potential

energies being expressed in terms of (n — m) coordinates and the corre-

sponding velocities : the vibrations of this system can be determined by the

usual method described in the preceding chapter.

As an example, we shall consider the following problem*.

A heavy homogeneous hemisphere is resting in equilibrium on a perfectly rough horizontal

plane with its sp/wrical surface downwards. A second heavy homogeneous hemisphere is

resting in the same way on a perfectly rough plane face of the first, the point of contact

being in the centre of the face. The equilibrium being slightly disturbed, it is required

to find the vibrations of the system.

Take as axes of reference

(1) A rectangular set of axes Z^xyz fixed in the upper hemisphere, the origin being

its centre of gravity Z<>.

* Due to Madame Kerkhoven-Wythoff, Nieuw Archiefvoor Wishunde, Deel iv. (1899).
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(2) A rectangular set of axes Z^tf, fixed in the lower hemisphere, the origin being
its centre of gravity Z\

.

(3) A rectangular set of axes Rlmn fixed in space, the origin R being the equi-

librium position of the point of contact of the lower hemisphere and the plane.

We further define these axes by supposing that in the equilibrium position the axes

zz z,
zi& an(i &n are vertical and therefore coincident, while the axes Z% x, Z^, Rl

are parallel, the axes Z2y, Zx r), and Rm being therefore also parallel.

Suppose that at time t the coordinates of a point referred to these different sets

of axes are' connected by the equations

£ = a+a1 x + a
2
y+a3 z,

£ =y+ Yix+Y^+YA
I =a + a1 g+ a2ti+aa (;,

m=b +6X | + 62 i; + &3 f,

, m=c + c
1 | + c27)+c3 f,

The 24 coefficients in these transformation-formulae completely specify the position of

the system at any instant. As however the system has only six degrees of freedom, there

must be 18 equations connecting these coefficients or their differentials. Of these, 12 are

the ordinary conditions of the types

V + "2
2+ a3

2= l> a1 /31+ a2 /32+ a3 /33= 0,

Oii +a£+ as
*= 'l, a1 61 + a2 62+ a3 63=0,

which express the orthogonal character of the axes ; the remaining 6 are the conditions of

contact and rolling, which we shall now find.

Let Ri, R2 be the radii of the lower and upper hemispheres respectively, and lu l2

the distances of the centres of gravity from their plane faces, so h= lRu ^=f#2- The

coordinates of the point of contact of the upper hemisphere with the lower are

#2=-iJ2 yi, y2=-.S2y2 , z2= Z2 -iJ2y3 ;

the conditions that this point shall be at rest relative to the lower hemisphere are

a+ dj x2 + d2y2+ «3 z2= °>

/J+ /31^2+ /32y2 +/33 22= 0,

y + ji x2 + y2y2+ -y322= 0.

The last of these equations gives 7+ ^73=0, which is the differentiated form of the

equation

h-y-fih= -&?.>

an equation which expresses the condition of contact of the two hemispheres: while

the first two of the equations give

d — d1 .ft2 'y
1
— d2 -ff2y2 + a3 (^2

_ -^273)= 0,

/3-ft^2yi-^2.S272+(33 (Z2 -i?273,/= 0,

and these express the condition of rolling of the upper on the lower hemisphere. These

equations give as a first approximation

a= d3 (
JR2

-J2), (3=4(«s-y,



224 Non-holonomic Systems. Dissipative Systems [ch. vm

and therefore on integration

a=a3 (R2 -l2), P= Ps(-Rt-h)-

Similarly the condition of contact of the lower hemisphere and the horizontal plane is

c+«3 Z1 =i?i,

aud the conditions of rolling are

a=as (R1 -l1 ), 6= 63 (ii1 -Z1 ).

We have thus now obtained the 18 equations connecting the 24 coefficients : taking

«2> ft> 7i) a2i &3i ci as tne 6 independent coordinates of the system, and solving for

the other 18 coefficients in terms of these, we find with the necessary approximation

(»
= yi (h - £2), {" =Ci{h-R{),

"i = 1 - H«22 + yi
2
), 1 ax

= 1 - \ {ai+ cj),

03= -yi- Us= -fli-

ps =ft(fl2 -Z2), r6=63 (A-^i).

U= l -H«22+ /33
2
). I h=\-\ («2

2+ 63
2
)-

ry=-R2 +?I -^{i-i(yi2+ft!!

)}, rc=Rl -l1 {i-i(c1
-'+b3%

Jya= -&j, 1 C2=-*3,

U=i -i (yi
2 +/33

2
). I c3= 1 -i («i*+ &»*).

The potential energy of the system is

y=Mxgc+

M

2g (c+cia +c2/3+ c
3 y),

or, retaining only small quantities of the second order,

%=&a2 (A RiM,-^R2M2)
- %M2R2 b3 3+ 1%l3;?M2R2 +c1*(&R1M1

-&R2M2)

- § -¥2 J?2 C! yt + tVJ/2 ^2yi
2

-

If now we express the coordinates I, m, n of any particle of the upper or lower

hemisphere in terms of its coordinates relative to the axes Z2xyz and Zi%r]£ respectively,

and form the sum ISmjF+m'+n2
) for each hemisphere, neglecting terms above the second

order of small quantities, and remembering that the principal moments of inertia of

a hemisphere of mass M and radius R at its centre of gravity are %MR 2
, -gfoMR 2

,

$fcMR?, we find for the kinetic energy of the system the value T, where

27*= \d? {MxR^+M2Ri)+ ^a2a 2M2R2
^ +la^M2Ri

+ b3^liR^M1+M2 (^R^+^R1
R2+R^l +2b^M2R2 {^R2+iR1 ) +i0^M2R^

+ cl
1 {l^R1W1+M2 (l^R^+fR1

R2+R^} + 2c1 y1M2R2 ^R1+^R2)+i^M2Ri'.

The equations of motion evidently separate into three distinct sets, consisting of

(i) Equations for the coordinates a2 and a2 : these coordinates give rise to no terms

in V, and do not correspond to vibrations in the stricter sense : in fact, the equilibrium

is not disturbed if either of the hemispheres is turned through any angle" about its axis of

revolution. We can therefore neglect these equations.

(ii) Equations involving the coordinates b3 and £3 .

(iii) Equations for the coordinates c
x
and y1 ; these are exactly the same as the

equations for 63 and /33 , so we need consider only the latter.
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The equations for 63 and /33 are, in extenso,

+g (§ R1M1-^R2M2) h-lgMAfa=0,

The corresponding determinantal equation for X, where 2tt/v/X is a period, is

MiJiaJ^i+ -»2(/J, )!+ -iiJ
1
if

ii+^iJ2*)}X- fl
r(|5

1^i-|^-^) ^^(f-ffi +^^X +i?^^ =0-

This is a quadratic equation in X : it is easily found that its roots are positive if

9B1M1 >40R2M2 ,

and this is the condition for stability of the equilibrium.

The vibrations of non-holonomic systems about a state of steady motion

are most conveniently discussed by use of the equations of motion given

in § 88. The method will be illustrated by the following example.

Example. A solid of revolution has an equatorial plane of symmetry, and is rolling

with angular velocity n round its axis in steady motion on a perfectly rough horizontal

plane, the equatorial plane of the solid being vertical. This motion being slightly disturbed,

tofmd the period of a vibration.

Let G be the centre of gravity of the solid, and let (C, A) be its moments of inertia

about the axis and about a line through G perpendicular to the axis. Take as moving

axes of reference Gxyz, where Gz is the axis of the solid, Gy is perpendicular to the plane

through Gz and the point of contact (so Gy is horizontal), and Gx is normal to the plane

Gyz. Let F, F', R be the components of the force acting on the solid at the point

of contact, F being in the plane Gxz, F' being parallel to Gy, and R being normal to the

plane. Let (8X , 2 , ^3) and (a>i, w2 , as} denote as usual the components of angular

velocity of the axes and of the body respectively, and let (u, v, w) be the components of

the velocity of G, parallel to the moving axes. Further, let p be the radius of curvature

of the meridian of the solid at the equator, u, the radius of its equatorial circle, 8 the

angle made by Gz with the vertical, and cp the angle between Gy and its undisturbed

direction. Then we have

1
= o>1= -$sin0, 82 =<o2= 8, 63=4>coad,

and the kinetic energy is

T= £M (m2+

«

2+

w

2
)

+

\ A (on
8+ <*i)

+

i Co,3
2

.

The equations of § 18 therefore give, if P is the point of contact, PiTthe perpendicular

from this point on the axis, and GN the perpendicular from G on the horizontal plane,

/M{u-v83+w82)
=Fcots6-(R-Mg)8ind,

M{v-%c61 Jrue3) =F\

M(w-u6o+v6i) = (R-Mg)cosd+Fsm8,

Ai>1 -Aa>2 83 +Ca>3 82=-F'. GK,

4<aa -£7o)s«i + 4»j«3= -F- GN-R.NP,

\Ci>3 =F'.PK.

In these equations, GK and NP are measured positively parallel to the positive direction

of the axis of z and the horizontal projection of this direction respectively.

w n lo
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Tbe conditions of no sliding at P are

iKcostf + wsintf— ON. <a 2 =0,

\v +PK.m3-GK. a>1 =0,

and the condition of contact of the body and plane is

w cos 6 - u sin 6= -r- ( - OK cos 6+PKsin 6).

These equations determine the motion in the general case, when the disturbance from

steady motion is not supposed to be small. When this latter assumption is made,

we have

=|+X> <03=«+ ^, v=-an+rj,

where x, "» 1 are small ; and F, F\ u, w, o)!, a2 , 6i, 62 , 83 are small, while R is nearly

equal to Mg. Moreover we have NP={p - a) x- The equations therefore become

lM{u + an6
3)
=-& + Mg,

Mil =F',

M(w-an8l )
= F,

A&i + CnOi =0,

~\Au2-Cndi =-Fa —Mg(p — a)x,

Cw =F'a,

w - aa>2 — 0>

j + arn =0,

where ai= 6l
=— </>, <»2= $2= x, ^3= 0.

Eliminating F, F', R, and replacing 6lt 62 , 63 ,
au a2 by their values, the equations

become

, A<j> — Cnx =0,

Ax+(C+Ma2)n<j>+Mg(p-a) x+Maw=0,
\C£i =Mafj,

\w =ax,

\r] =—a-us.

From the third and fifth of these equations we see that m and rj are zero, and therefore

07 and rj are constants. The other three equations give, on eliminating w,

f A^-Cnx= 0,

\(Ma?+A)x + (C+Ma?)n<j> +Mg(p-a)x=0,

and therefore the equation for the determination of x is

A (A + Ma?) x + {MgA (p-a) + Cn?(C+Ma2
)} x.= ;

this equation shews that the period of a vibration is

A(A+Mcfi)U{ AMgA.(p-a) + Cn2 (C+M,

91. Dissipative systems ; frictional forces.

We now proceed to the consideration of systems for which the principle of

conservation of dynamical energy is not valid, the energy of the system being
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continually changed into some other form (e.g. heat) which is not recognised

in dynamics. We shall first consider frictional systems.

If two rigid bodies which are not perfectly smooth are in contact, the

reaction between them at the point of contact may be resolved into a com-

ponent along the common normal to their surfaces at the point, which is

called the normal pressure, and a component in the common tangent-plane,

which is called the frictional force. The frictional force is determined by

the following law*, which has been established experimentally: The bodies

will not slide on each other, provided the frictional force required for the

prevention of sliding does not exceed p, times the normal pressure, where fi

is a constant called the " limiting coefficient of friction," which depends only

on the material of which the surfaces in contact are composed. If on the

other hand the frictional force required to prevent sliding is greater than p,

times the normal pressure, there will be sliding at the point of contact, and

the frictional force called into play will be p. times the normal pressure.

Painleve' has pointed out that the four hypotheses—(1) that the above laws of friction

hold, (2) that there exist rigid bodies, (3) that the normal pressure between bodies cannot

be negative, (4) that all accelerations and tensions are finite—taken together lead in some

cases to contradictions of the fundamental laws of dynamics. For a discussion on this

subject, cf. Comptes Rendus, cxl. (1905), pp. 635, 702, 847 : ibid. cxli. (1905), pp. 310, 401,

546; Zeitschrift fur M. u. P. lviii. (1909), p. 186.

The following examples illustrate the motion of systems involving

frictional forces.

Example 1. Motion of a particle on a rough,fixed plane curve.

Consider the motion of a particle which is constrained to move on a rough fixed tube

of small bore, in the form of a plane curve, under forces which depend solely on its

position in the tube. Let f(s) and g(s) denote the components of force per unit mass

acting on the particle in direction of the tangent and normal to the tube, where s is the

distance of the particle from some fixed point of the tube, measured along the arc in the

direction in which the particle is moving ; and let R be the normal reaction per unit mass,

and
fj.
the coefficient of friction.

Since the components of acceleration of the particle along the tangent and normal are

vdv/ds and v^/p, where v is the velocity of the particle and p the radius of curvature of the

tube, we have

v^-m-idl, -
p
=g(s) + R.

Eliminating R, we have

Integrating, we have

*? + 2jV=2/(.) + 2W (.).

v^ce-^ +Ze-^fe^ifW +wWds,

where (p= jds/p, and c is a constant depending on the initial circumstances of the motion.

* The discovery that the friction is proportional to the normal pressure was made by

G. Amontons, Paris Ne~m., annee 1699, p. 206.

15—2
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The right-hand side of this equation is a known function of *, say — F(s). Then

we have

(3)'-™
so the relation between s and t is

t-to=j'{F(i)}-ids.

This equation represents the solution of the problem.

Example 2. A circular hoop of mass M stands on rough ground, and a particle of

mass m is attached to the end of the horizontal diameter. To find whether the hoop will roll

or slide.

Let us investigate the rolling motion, assumed possible, and so determine whether the

friction required to produce this motion is, or is not, greater than the maximum friction

actually available, i.e. /* times the corresponding normal pressure. Let 8 be the angle

turned through by the hoop from the commencement of the motion, and let x and y be

the coordinates of the centre of gravity of the system, referred to horizontal and vertical

(downward) axes through its own initial position, so that

. ma .. „ ma . .

x= a8- 1rri— (1-COS0), «= ,-jr-— sinfl,M+m * M+m
where a is the radius of the hoop.

The kinetic and potential energies are

( T=Ma? ft + mati* (1 - sin 6),

\ V= — mga sin 8.

The Lagrangian equation of motion is therefore

t- [2a?8 {M+m (1 - sin 8)}]+matft cos 8=mga cos 6.

For the initial motion, this equation gives

2a8 (M+m)*=mg,
so initially we have

* ad-
m9 -j

m
aO

mig

But if F be the frictional force and R the normal pressure, we have

F={M+m)sc, R=(M+m)(-i/+g),
so initially we have

F _ x m(M~+m)
H -y+g 2M2+4Mm+mim

The hoop will therefore roll or slide according as the coefficient of friction is greater or

less than

m (M+m)
2Mi+4Mm+mi

'

Example 3. A particle moves under gravity on a rough cycloid whose plane is

vertical and whose base is horizontal : if (j> be the inclination of the tangent at any point

to the horizontal, so that the equation of the cycloid can be written

s=4asin$,

and if tan e be the coefficient of friction, shew that the motion is given by the equation

where c is a constant.
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92. Resisting forces depending on the velocity.

A different type of dissipative system is illustrated by the motion of

a projectile in the air, as the resistance of the air depends on the velocity of

the projectile. No general rule can be formulated for the solution of prob-

lems involving forces of this kind: a case of practical interest, however,

namely the motion of a projectile under the influence of gravity and of a

resistance varying as some power of the projectile's velocity, can be integrated

in the following manner.

For low velocities (below 100 ft. /sec.) the resistance of the air to a projectile is nearly

proportional to the square of the velocity. For high velocities (say 2000 ft./sec.) the

resistance is approximately a linear function of the velocity.

At time t let v be the velocity of the* projectile, kvn the resistance per

unit mass, the inclination of the path to the horizontal, and p the radius of

curvature of the path. The components of acceleration of the projectile

along the tangent and normal to its path are vdv/ds and v2

/p ; and hence the

equations of motion are

(vdv/ds = — g sin 6 — kvn,

\ v2

Jp = g cos 6.

Dividing the first equation by the second, we obtain

1 dv tan 6 k

v™^ dd v^~
=
gcosd'

d /1\ 1 d , , a . nk a
or -T7> \—^ I + -= -tf, (w log sec o) = sec a.

dd \vnJ vn dd K s ' g

Integrating, we have

(l/vn) see" + Constant = - (nk/g) fsecn+1 Odd.

This equation gives v in terms of 6. To obtain t, the equation vl = pg cos 6

gives

gt = — I v sec 0d6,

and as v is a known function of 8, this equation gives t as a function of 6.

The rectangular coordinates {x, y) of the particle can now be found from the

equations

*= Iwcos Odt, y=lvsm6dt.

The solution of the problem is thus reduced to quadratures.

Resisting forces proportional respectively to v, i>\ and av + bv2 were considered by

Newton, 'Principia, Book II. §§ 1, 2, 3. The case of a resistance proportional to any power

of the velocity was then examined by John Bernoulli* in 1711.

* Opera, i. p. 502.
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D'Alenibert * shewed that if gu denotes the ratio of the resistance to the mass of the

projectile, the integration can be effected in the four cases

u= a + bvn
,

u= a+ blogv,

u= avn+ R + bv~n
,

u= a(\ogv)n+ Rlogv+ b,

where a, b, n are arbitrary constants and R is another constant depending on them.

Siacci + obtained many more integrable cases, of which the following may be mentioned

:

l0g
j
vdu=ic

jl +at-lY
~ iC

l + bt+l)°
+C

'

where a, b, c, C are arbitrary constants : this equation defines v in terms of u, the

number of terms involved being finite when c is rational.

Poisson pointed out in 1806J that' the theory of singular solutions of differential

equations has applications in Dynamics, notably in the case of a particle under a resisting

force. If a particle is moving in a straight line under a resisting force varying as the

square root of the velocity, the equation of motion is

dvjdt = — av^.

The initial velocity being c2 , the motion is represented by the general integral

v= {c-\a(f

so long as t<%cja, after which it is represented by the singular solution v=0.

Example 1. A heavy particle falls vertically from rest at the origin in a medium

whose resistance varies directly as the velocity. Shew that the distance traversed

in time / is

/* /* v-

where fix is the resistance per unit mass.

Example 2. A heavy particle falls vertically from rest at the origin in a medium

whose resistance varies as the square of the velocity : shew that the distance traversed in

time t is

— log cosh (vgu t),

where pv2 denotes the resistance per unit mass.

93. Rayleigh's dissipation-function.

When a system is subject to external resisting forces which are directly

proportional to the velocities of their points of application, it is possible to

express the equations of motion of the system in general coordinates in terms

of the kinetic and potential energies and of a single new function.

For let the energy lost to the system by the action of the resisting force

which is applied to a particle m of the system, whose coordinates are (cc, y, z),

in an arbitrary displacement (8%, By, Sz) be

kxxhoc + kyyhy + kzzhz,

* TraiU de Viquilibre et du mouvement desfluides, Paris, 1744.

t Comptes Bendus, cxxxii. (1901), p. 1175.

X Journal de I'ficole Polyt. vi. (Cahier 13), p. 60.
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where kx , ky , kz are functions of x, y, z only. The equations of motion of the

typical particle m will therefore be

(m'x = — kxx + X,

my = ~ kyy + Y,

m'z = — kzz + Z,

where X, T, Z are the components of the total force (external and molecular)

on the particle, except the force of resistance.

Now let a function F be denned by the equations

F=^{kxa?+ky tf + hz>),

where the summation is extended over all the particles of the system; so

that F, which is called the dissipation-function, represents half the rate at

which energy is being lost to the system by the action of the resisting forces

;

and let (qlt q2 , ..., qn) be coordinates specifying the configuration of the

system.

Multiplying the equations of motion of the particle m by dx/dqr , dy/dqr>

dz/dqr , respectively, and summing for all the particle? of the system, we have

~ /..dx ..dy ..dz\ ^ ( r . dm , , . By , . dz\

V oqr dqr ogrJ

As in § 26, we have

/..dx ..dy_ „d*\ = d_/dT\_dT

\ dqr dqr dqr) dt \dqr l dqr
'

where T is the kinetic energy ; and

sfzf^ + rfy+sfiW,
V oqr oqr oqrJ

where Q1 hq1 + Qi ^q2 + • + Qn^qn denotes the work done by the external

forces (excluding the resistances) in an arbitrary infinitesimal displacement

;

while we have

„ /, . dx , . dy , . dz\ v /, . dx
,

, . dy , . dz

dqr'

It follows that the equations of motion of the system in terms of the co-

ordinates ((ft, q2 , ..., qn) can be written in the form

dt \dqr ' dqr dqr
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Example. If the resisting forces depend on the relative (as opposed to the absolute)

velocity of their points of application, so that the forces acting on two particles (xu y,, «;)

and (tf2l #2, H) nave tne components

-bx (*i-*t), -£»(&-&)> -*»(*i-«s)

and

-kx (xi-£i), -*»(&-&), -*,(«a-*i)

respectively, shew that the equations in general coordinates can be formed with the

expression

&2 {kx (*, - tf2)
2 + A„ (y, -y2)

2+ ** (*i - z2)
2
}

as a dissipation-function.

94. Vibrations of dissipative systems.

If a dynamical system is specified by its kinetic energy function, potential

energy function, and dissipation function, methods similar to those of

Chapter VII can be applied in order to determine the nature of the small

vibrations of the system about an equilibrium-configuration.

For simplicity we shall consider a system with two degrees of freedom.

As in § 76, we find that for the vibrational problem the kinetic energy and

dissipation function can be taken as homogeneous quadratic functions of the

velocities, and the potential energy as a homogeneous quadratic function of

the coordinates, the coefficients in these functions being constants. Taking

as coordinates those variables which would be normal coordinates if there

were no dissipation function, we can write these three functions in the form

F=1s (aq1*+2hq1qi + bqS),

where \ and X2 will be supposed positive, so that the equilibrium would be

stable if there were no dissipative forces.

The equations of motion are

dfdT\_dT dF W=Q
dt \dqr) dqr dqr dqr ^

'
''

or q\ + aq1 + hq1 + \q 1
= 0,

q\ + hqx + bq2 + X^ = 0.

If we attempt to find a particular solution of these equations in the form

q1 = Ae**, q2 = Be*,

on substituting these values in the differential equations we have

A <y + ap + \j) + Bhp = 0,

Ahp + B{pi +bp + \i)
= 0,

from which it follows that p must be a root of the equation

(p
2 +ap + \) (f +bp + \2)- h'f = 0.
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We shall suppose the dissipative forces to be comparatively small, so that

squares of the quantities a, h, b can be neglected ; on this supposition, the

roots of the last equation are readily found to be

p1 =i*J\1
— | a, p2 = i\/\i

— ^b.

Corresponding to the root pt we have, from the second of the equations

connecting A and B,

£ _ ih VxT
-£L A-i — X2

A particular solution of the differential equations is therefore given by

f?i
= (X - X2) e ~ * at (cos Vx, t + i sin */\t),

[qi = h yfx1e'^
at

(i cos \Z\t - sin Vx^),

and a second particular solution is obtained by changing i to — i in these

expressions. It follows that two independent real particular solutions of the

differential equations are

j
qi = (\j - \s) e ' i at

cos \fx\t fq
1
= (\ - X2) e

" *at sin Vm,

\g'a
=-AV\^e~i a'sinv

/

;M l§-a = A Vx7e~*at cos Vxj«,

and therefore the most general real solution involving ePit is

(qx
= (Xj - X2) Ae ~ %at sin (VxT* + e),

U2 = h «J\\Ae ~ i at sin (d\t + h + «) .

where A and e are real arbitrary constants. This represents one of the normal

modes of vibration of the system. Adding to this the corresponding solution

in eftt , we have finally the general solution of the vibrational problem, namely

gr, = (\ _ A2) 4e ~

*

at
sin (Vxx « + e) +Wx25<T

*" sin (Vx2 i + - + 7)

,

qz = h s/\Ae

~

* aJ sin (\Z\t + J + e) + (X2 -

X

2) Be ~

$

bt
sin (Vx^i + 7),

where A, B, <;, 7 are four constants which must be determined from the

initial circumstances of the motion.

Now we suppose the dissipative forces such that energy is being con-

tinually lost to the system, so that F is a positive definite form, and therefore

a and b are positive. The last equations therefore shew that the vibration

gradually dies away, on account of the presence of the factors e~^ at and e~^ ht
:

the periods of the normal vibrations are (neglecting squares of a, h, b) the

same as if the dissipative forces were absent ; and in a normal vibration, the

amplitude of oscillation of one of the coordinates is small compared with the

amplitude of oscillation of the other coordinate, while the phases of the

vibration in the two coordinates at any instant differ by a quarter-period.
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A similar analysis leads to corresponding results for systems with more

than two degrees of freedom ; supposing that the dissipative forces are small

and that the dissipation function and potential energy are positive definite

forms, we find that the periods of the normal vibrations are (neglecting

squares of the coefficients in the dissipation function) unaltered by the

presence of the dissipative forces, but that the vibration gradually dies away

:

and if (qlt qit ..., qn) are the normal coordinates of the system when the

dissipative forces are absent, there is a normal vibration of the system when

the dissipative forces are present, in which the amplitude of the vibrations in

q2 , q3 , ..., qn is small compared with the amplitude of the vibration in qu
and the phase of the vibrations in q2 , q3 , ..., qn differs by a quarter-period

from the phase of the vibration in q^.

Example. Discuss the vibrations of a system which is acted on by periodic external

forces which have the same period as one of the normal modes of free vibration of the

system ; shewing the importance of dissipative forces (even where small) in this case.

95. Impact.

Another mode in which energy may be lost* to a dynamical system is by

the collision of bodies which belong to the system ; a collision generally

results in a decrease of dynamical energy.

The analytical discussion of collisions is based on the following experi-

mental law-f. When two bodies collide, the values of the relative velocity of the

surfaces in contact {estimated normally to the surfaces) at instants immediately

before and immediately after the impact bear a definite ratio to each other

:

this ratio depends only on the material of which the bodies are composed.

This ratio will in general be denoted by — e. When e is zero, the bodies

are said to be inelastic.

The general problem of impact reduces therefore to a problem in impulsive

motion in which the-unknown impulsive force at the point of contact of the

bodies is to be determined by the condition that the change in relative

normal velocity of the bodies satisfies the above law.

96. Loss of kinetic energy in impact.

We shall now find the loss of kinetic energy when two perfectly smooth

bodies impinge on each other.

Let m typify the mass of a particle of either body, and let (u , v , w ) and

(u, v, w) denote its components of velocity before and after the impact, and

I.e. lost to the system considered as a dynamical system : the energy is not annihilated, but

appears in some other manifestation, e.g. heat.

t The laws of impact were discovered in 1668 by John Wallis (Phil. Trans. No. 43, p. 864)

and Christopher Wren {ibid. p. 867).
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let ( U, V, W) be the components of the total impulsive force (external and

molecular) on this particle. The equations of impulsive motion (§ 35) give

m(u- u ) =U, m(v- v ) =V, m(w- w ) = W.

Multiplying these equations by (u + eu ), (v + ev ), (w + ew ) respectively,

adding, and summing for all the particles of both bodies, we have

1m {(u - m ) (u + eu ) + (v- v ) (v + ev„) + (w-w )(w + ew )}

= t{U(u + eu ) + V(v + ev ) + W (w + ew )}.

Now so far as molecular impulses are concerned, we have

1{Uu+Vv+ Ww)=0, and 2 ( Uu + Vv + Ww ) = 0,

since the impulsive forces which correspond to each other in virtue of the law

of Action and Reaction will give contributions to these sums which mutually

destroy each other.

Also, since the part of (u + eu ) due to the normal component of velocity

has the same value for each of the particles in contact at the point where

the impact takes place (in virtue of the law of impact) it follows that

the impulsive force between the bodies does not contribute to the sum

2U (u + eu ), and similarly does not contribute to the sums 27(»+ ev )

and 2,W (w + ew ).

We have therefore

2
{
U (u + eu ) + V(v + ev ) + W (w + ew )} = 0,

and consequently

2m {(u - w„) (u + eu„) + (v— v ) (v + ev ) + (w- w ) (w + ewa)} = 0,

or

lm (v? + v* + w2
) - 2m (w 2 + *>o

2 + w*)

1-e.
l+e

2m {(u - u„y + (v -v Y + (w- w f

This equation can be expressed by the statement that the kinetic energy

lost in the impact is (1 - e)/(l + e) times the kinetic energy of that motion

which would have to be compounded with the motion at the instant before the

impact in order to produce the motion at the instant after the impact.

97. Examples of impact.

The impulsive change of motion consequent on the collision of two free

rigid bodies in space can be most simply determined by the following

considerations.

The motion of each body before or after impact is specified by six

quantities (e.g. the three components of velocity of its centre of gravity and

the three components of angular velocity of the body about axes through its

centre of gravity). The total number of equations required to determine the
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impulsive change of motion is therefore twelve. Of these, six are immediately

furnished by the condition that the angular momentum of each body about

any axis through the point of contact is unchanged (since the impulsive forces

act at this point) ; another equation is obtained from the condition that the

momentum of the system in the direction normal to the surfaces in contact

is unchanged (since the normal impulsive forces on the two bodies at the

point of contact are equal and opposite), and another by the experimental

law of impact. If the bodies are perfectly smooth, the remaining four

equations can be derived from the condition that the linear momentum of

each body in any direction tangential to the surfaces in contact is unchanged

(since there is no tangential impulse if the bodies are smooth) : if on the

other hand the bodies are perfectly or imperfectly rough, the condition that

the linear momentum of the system in any direction tangential to the

surfaces in contact is unchanged gives two equations; if the bodies are

perfectly rough, the condition that the relative velocity of the bodies in

any tangential direction after the impact is zero gives the other two : while

if the bodies are imperfectly rough, the coefficient of friction between the

surfaces in contact being /*., the remaining two equations are given by the

conditions that

(a) the relative velocity in any tangential direction is zero after the

impact, provided the tangential component of the impulse required for this

does not exceed fi times the normal component of the impulse;

(/3) if the last condition is not satisfied, there is a tangential impulse

equal to fi times the normal impulse between the bodies.

In all cases, therefore, the required twelve equations can be found.

If the motion takes place in a plane, or if one of the bodies is fixed, this

procedure is still valid after making some obvious modifications.

The following examples illustrate these principles

:

Example 1. An inelastic sphere of mass m falls with velocity V on a perfectly rough

inelastic inclined plane of mass M and angle a, which rests on a smooth horizontal plane.

Shew that the vertical velocity of the centre of the sphere immediately after the impact is

5(M+m) Vsm2 a ,~ ., „ ,

_.; Z—-z !-tt- • (Coll. Exam.)
7M+2m+ 5msin?a K

Let U be the velocity of the plane after impact, u the velocity of the sphere parallel to

and relative to the plane, a> the angular velocity of the sphere, and a its radius.

The equation of horizontal momentum, gives

mucosa- U)—MV.

The kinematical condition at the point of contact is au>=u.

The condition that the angular momentum of the sphere about the point of contact

shall be the same before and after impact is

m Va sin a=%mai
a> + ma (u— £7 cos a).
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These three equations give, on eliminating a, and V,

which is the result stated.
™ + »» + &mmn*a>

Example 2. 4 *pAere o/ raafe* a »-0i!a*% w% aw^ar wZoctty a about an axis
inclined at an angle a to the vertical and moving, in the vertical plane containing that axis,
with velocity Vina direction making an angle a with the horizon, strikes a perfectly rough
horizontal plane. If the plane be tangentially inelastic, find the angle which the vertical
plane containing the new direction of motion makes with the old.

Take rectangular axes Oxyz, where is the point of contact, Oz is vertical, and yOz is
the initial plane of motion; and let ffll and <«2 be the components of angular velocity
about Ox and Oy respectively after the impact, and M the mass of the sphere.

Equating the initial and final angular momenta about Ox, we have

Ma Fcos a= I Ma^a-i

.

Equating the initial and final angular momenta about Oy, we have

fMa2Q sin a= £Ma2
a>2 .

The tangent of the inclination of the new plane of motion to the plane yOz is (on
account of the perfect roughness of the plane) a2jau and this is therefore equal to

fMa2 il sin a

Ma V cos a

or fa(Q/F)tana.

Example 3. A perfectly rough circular disc of mass M and radius c impinges upon
a rod of mass m and length 2a capable of turning freely about a pivot at its centre. If
the point of impact is distant b from the centre of the rod, and the direction of motion of the
centre of the disc makes angles a, ff with the rod before and after collision, shew that

2(3ifi2+»ia2)tan/3= 3(ema1! -3J/'&2)tana. (Coll. Exam.)

Let V denote the initial velocity of the disc, and let v denote its final velocity and a
its final angular velocity.

Since there is no sliding at the point of contact, we have

«cos/3+ cQ= 0.

Denoting by a> the final angular velocity of the rod, and by I the normal impulse
between the rod and disc, the equation of the motion of the rod is

lb= fyma2a.

The equation of impulsive motion of the disc in the direction normal to the rod is

M(vain[l+ Vaina)= I,

and the law of impact gives the relation

vsm/3 + ba>=eV sin a.

Equating the initial and final angular momenta of the disc about the point of contact,

we have
Fcos a= v cos /3 - £ cG.

Eliminating v, a, I, o> from these equations, we have

2 tan (3Mb2+ma2
)= 3 tan a (mea2 - 3Mb2

),

which is the result stated.
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Example 4. A circular hoop, in motion without rotation in its own plane, impinges on a

rough fixed straight-edged obstacle in the plane. The velocity of the centre of the hoop

before impact is V, in a direction, making an angle a with the edge, and the coefficient

offriction is p. To find the impulsive change of motion.

Let u and v denote the components of velocity of the centre of the hoop after the

impact, parallel and perpendicular to the edge, and let <•> be the angular velocity, M the

mass and a the radius of the hoop.

Equating the angular momenta about the point of contact before and after the impact,

we have

— Ma?a + Mau=MVa cos a.

The law of impact gives the equation

v = eVssina.

Since the plane is rough, u + aa> is zero after the impact, provided the frictional

impulse required for this does not exceed p. times the normal impulse: but if this

condition is not satisfied, the frictional impulse is /* times the normal impulse.

Let F be the frictional and R the normal impulse : then we have

M(u-Vcosa)=-F, M(v+Vama)= R, Ma?a=-aF.

We have therefore R=M(l + e) Vsina,

and if u+ aa is zero, we shall have

F=%MVcos a.

The quantity u + aa will therefore be zero after the impact, provided

/i> cot a/2 (l+«);

and if y. does not satisfy this inequality, we shall have

F=itM(l+e) Vsina.

Thus finally, if ^>cota/2(l+e), the motion is determined by the equations

u=Vcosa+aa>, v=eVsina, u + aa>=0,

while if p < cot a/2 (1 + e), the motion is determined by the equations

u=Vcosa+ aa>, v= eVsina, aa>= — ju(l+e) Fsina.

Miscellaneous Examples.

1. A perfectly rough sphere of radius a is made to rotate about a vertical diameter,

which is fixed, with a constant angular velocity n. A uniform sphere of radius b is

placed on it at a point distant aa from the highest point: investigate the motion

and determine in any position the angular velocity of the sphere. Shew that the sphere

will leave the rotating sphere when the point of contact is at an angular distance 6 from

the vertex, where

.10 4 aWsitfa
cos0=— cosa+ TT?i

-

—

-tt—

.

17 119 (a+b)g

(Camb. Math. Tripos, Part I, 1889.)

2. A rough sphere of radius a rolls under gravity on the surface of a cone of revolution

which is compelled to turn about its vertical axis with uniform angular velocity n,

its vertex being uppermost; if a be the semi-vertical angle of the cone, rsina be the

distance of the centre of the sphere from the axis of the cone, ^ be the angle turned
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through, relatively to the cone, by the vertical plane containing the centre of the sphere,

and o)3 be the rate of rotation of the sphere about the common normal, prove that

„.„ 2 + 5sin2 a/4 „\
2 ,„

7r2+ Ij + nr+ BJ -lOgrcosa = C,

. , cosafA \
,
(2 + 5sin2 a)5

a(a>3 -rasma)=—— \-+nr) + ±—— i—
1 \r ) 14 cos a

(7<j,-6n)r2 =*A,

where ^, B, Care determinate constants. (Camb. Math. Tripos, Part I, 1897.)

3. A homogeneous solid of'revolution of mass M with a plane circular base of

radius c rolls without slipping with its edge in contact with a rough horizontal plane.

Shew that 6, &>, O are determined by the equations

Mac~ (Q cos2 6) - M<?a cos2 6 = (C+Mc2
) cos 6^

,

{A (C+Mc2
) -MWc2

} ~ (a cos2
6) + C (C+ Me2

) <o cos 6- Mac Ca cos2 6 = 0,

(A +Mc2)d2+Aa2 cos2 6 -2Maca,a cob 6+(G+Mc2)o>
2+2Mg{asm6+ ccos6)= Conat9.nt,

where 8 is the inclination of the axis of the body to the horizon, £2 the angular velocity of

the vertical plane containing its axis, w the angular velocity of the body about its axis,

A the moment of inertia of the body about a diameter of its base, C the moment of

inertia of the body about its axis and a the distance of the centre of gravity from the

base. (Camb. Math. Tripos, Part I, 1898.)

4. A wheel with 4m spokes arranged symmetrically rolls with its axis horizontal on a

perfectly rough horizontal plane. If the wheel and spokes be made of a fine heavy wire,

prove that the condition for stability is

_ 3 2n+ n
F2>

4 4^T3^'
where a is the radius of the wheel and V its velocity. (Coll. Exam.)

5. A body rolls under gravity on a fixed horizontal plane. If this plane be taken as

plane of yz, shew that

2m {{y-y^l b- {?-zA)y} = Constant,

where (x, y, z) are the coordinates of a particle m and (rA , yA ,
zA ) of the point of contact,

and the summation is extended over all the particles of the body. (Neumann.)

6. One portion of a horizontal plane is perfectly smooth and the other portion is

perfectly rough. A uniform heavy ellipsoid of semi-axes (a, b, c) has its 6-axis vertical and

moves with velocity v in the direction of its a-axis along the smooth portion of the plane

towards the rough. Shew that, if

v*<2g^(a-b),

the ellipsoid will return to the smooth portion, k being the radius of gyration about

the c-axis and that the motion will then consist of an oscillation about a steady state of

motion.

In the special case a= 26, shew that after the return of the ellipsoid to the smooth

portion, the 6-axis can never make an angle with the vertical which is greater than

arctan V?

•

(Co11
-
Exam->
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7. A shell in the form of a prolate spheroid whose centre of gravity is at its centre

contains a symmetrical gyrostat, which rotates with angular velocity a> about its axis and

whose centre and axis coincide with those of the spheroid. Shew that in the steady

motion of the spheroid on a perfectly rough horizontal plane, when its centre describes

a circle of radius c with angular velocity Q, the inclination a of the axis to the vertical

is given by

{Mbc (a cot a+b)-Ab cosa + C(asina+ c)} Q2+ C'baQ - Mgb (a-6cota)=0,

where M is the ma&s of the shell and gyrostat, A the moment of inertia of the shell and

gyrostat together about a line through their centre perpendicular to their axis, C, C
those of the shell and gyrostat respectively about the axis, a the distance measured

parallel to the axis of the point of contact of the shell and plane from the centre and

6 its distance from the axis. (Camb. Math. Tripos, Part I, 1899.)

8. A uniform perfectly rough sphere of radius a starting from rest rolls down under

gravity between two non-intersecting straight rods at right angles to each other whose

.shortest distance apart is 2c and which are equally inclined at an angle a to the vertical.

If p , p
' are the original distances of the points of contact from the points where the

shortest distance intersects the rods and p, p' their distances at a subsequent time when

the velocity is V, shew that

y, lec,
W-a*(P*+ p'*)} pp'

16c4 -(p2 -p'2
)

1! pp"
and that

F2f^2"-^
(Camb. Math. Tripos, Part I, 1889.)

9. A particle moves under gravity on a rough helix whose axis is vertical. If a be the

radius and y the angle of the helix, shew that the velocity v and arc described s can be

expressed in terms of a parameter 6 by the equations

(1 + B*)d0

"/.a '

' '"
J 8 fa cosy+ 8 (p. cosy+ 2 sin y)}'

*=-S^(6 -I).
2 cos y \ 6)

10. A particle is projected horizontally with velocity u so as to slide on a rough inclined

plane. Investigate the motion.

Prove that if

2>2p.cota>l,

the particle approaches asymptotically a line of greatest slope at distance

it? 2p cos a

g '
4/i2 cos2 a - sin2 a

'

where p. is the coefficient of friction, and a is the inclination of the plane.

(Coll. Exam.)

11. A rough cycloidal tube has its axis vertical and vertex uppermost. If a be the

radius of the generating circle and a particle be projected from the vertex with velocity

\lAag sin a, shew that it will reach the cusp with velocity equal to

[<kag cos2 a {1 - 2 sin ae'^-^ tttna
}]*

where a is the angle of friction. • (Coll. Exam.)



vin] Non-holonomic Systems. Dissipative Systems 241

12. A heavy rod of length 2a is moving in a vertical plane so that one end is in contact

with a rough vertical wall and the other end moves along the ground supposed to be equally

rough ; and the coefficient of friction for each of the rough surfaces is tan e . Shew that the

inclination of the rod to the vertical at any time is given by

(k2+ a2 cos 2e) -aW sin 1e= ag sin (6 - 2c), (Coll. Exam.)

13. A thin spherical shell rests upon a horizontal plane and contains a particle of finite

mass which is initially at its lowest point. The coefficient of friction between the particle

and the shell is given, that between the shell and the plane being practically infinite.

Motion in two dimensions is set up by applying to the shell an impulse which gives it an

angular velocity Q. Obtain an equation for the angle through which the shell has rolled

when the particle begins to slip. (Coll. Exam.)

14. A circular disc of radius a is placed in a vertical plane touching a uniform rough

((x) board which can turn freely about a horizontal axis in the upper surface of the board

through its centre of gravity, the point of contact of the disc being at a distance b from

this axis. A string, parallel to the surface of the board, is attached to the point of the

disc furthest from the board and to an arm perpendic.ular to the board at the axis, and

rigidly connected to the board. The centre of gravity of the board and arm lies in the

axis. The system starts from rest in that position in which the centre of the disc lies in

the horizontal plane through the axis. Shew that slipping will take place between the disc

and the board, when the board makes an angle 6 with the vertical given by

tanS_
fyA +l^+iab '

where A is the moment of inertia of the board about the axis divided by the mass of the

disc. (Coll. Exam.)

15. A hoop is projected with velocity V down a plane of inclination a, the coefficient

of friction being /i ( > tan a). It has initially such a backward spin Q that after a time ^ it

starts moving uphill and continues to do so for a time t
2 , after which it once more

descends. Shew that, if the motion take place in a vertical plane at right angles to the

given inclined plane, then

{k+ h) gsina=aQ- V. (Coll. Exam.)

16. A ring of radius a is fixed on a smooth horizontal table; a second ring is placed

on the table inside the first and in contact with it, and is projected with velocity V, but

without rotation, in a direction parallel to the tangent at the point of contact. Find the

time that elapses before slipping ceases between the rings if the coefficient of friction

between them is fi, and prove that the point of contact will in this time describe an arc

of length (a log 2)//*.

Discuss the motion that will ensue if at the moment slipping ceases the fixed ring be

released and left free to move, and prove that during the time that the inner ring rolls

half round the outer one the centre of the latter will be displaced a distance

_^-(a-6)(w>+4)*

where m, M are the masses of the inner and outer rings and b is the radius of the inner

ring. (Camb. Math. Tripos, Part I, 1900.)

17. In the vertical motion of a heavy particle descending in a medium whose resistance

varies as the square of the velocity, shew that the quantity

-ka. kB
e +e ',

where kv2 is the resistance, and a and /3 are the distances described in two successive equal

intervals r of time, depends only on t and is independent of the initial velocity.

(Coll. Exam.)

W. D. 16
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18. Prove that a heavy particle, let fall from rest in a medium in which the resistance

varies as the square of the velocity, will acquire a velocity Uta.nh(gt/U), and describe

a space U2 log cosh (gtjU)lg in a time t, where U denotes the terminal velocity in the

medium.

Shew also that, for the complete trajectory of a projectile in such a medium, the angle 8

between the asymptotes is given by

U2
I F 2=arcsinh cot 8+ oot8 cosec 6,

where Fis the velocity when the projectile moves horizontally. (Coll. Exam.)

19. Shew that the horizontal and vertical coordinates (x, y) of a particle moving under

gravity in a medium of which the resistance is R satisfy the equation

&y
,

igR _^ Q
difi «* cos3 <j> '

v being the velocity and
<f>

the inclination of the tangent to the horizontal.

(Coll. Exam.)

20. A particle is moving, under gravity, in a medium in which the resistance

varies as the velocity. Shew that the equation of the trajectory referred to the vertical

asymptote and a line parallel to the direction of motion when the velocity was infinite, can

be written in the form

y=&log(#/a). (Coll. Exam.)

21. Prove that in the motion of a projectile through a resisting medium which causes

a retardation kv3, where k is very small and the particle is projected horizontally with

velocity V, the approximate equation of the path is (neglecting W)

gx? kgx?( g*x*\
!/~2V*'f' 3F V 10FV'

the axis of x being in the direction of projection and the axis of y vertically downwards.

(Coll. Exam.)

22. A particle moves in a straight line under no forces in a medium whose resistance

is (v1— v3 logs)/a, where v is the velocity and a the distance from a given point in the line.

Shew that the connexion between a and t is given by an equation of the form

t= a-\r\ca2+a log s,

where a and c are constants.

23. A particle is moving in a resisting medium under a central attraction ; shew that,

if R be the retardation due to the resistance of the medium, and v the velocity, the rate of

description of areas by the radius vector to the fixed centre of force varies as

e-^ at
.

(Coll. Exam.)

24. Prove that in a resisting medium, a particle can describe a parabola under the

action of a force to the focus which varies as the distance, provided the resistance at

a point, where the velocity is v, be k{v(v-v )}* ; where i> is the velocity at the vertex.

Determine k. (Coll. Exam.)

25. A particle moves in a resisting medium under a force P tending to a fixed centre.

If R be the resistance, shew that

r being the radius vector and p the perpendicular on the tangent.
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If u= ljr, P=fiu2
, and R=kv2

, and we neglect k2 and higher powers, shew that the
differential equation to the path is

d2p_ 3
(dp\* =W u2

du2 \du) h2

(i_piuif_'
h being a certain constant. CColl. Exam.)

26. A particle is moving under a central force <j> (»•) repelling it from the origin, in
a resisting medium which imposes a retarding force equal to h times the velocity. Prove
that the orbit is given by the equations

where h is a constant quantity. (Coll. Exam.)

27. A particle is moving in a circle under a force of attraction to an interior point

varying as the distance
; the resistance of the medium is equal to its density multiplied by

the square of the velocity. Shew that the density at any point is proportional to the

tangent of the angle between the lines joining it to the centre of force and the centre of

the circle. (Coll. Exam.)

28. A rod of length a is rotating about one extremity, which is fixed, under the

action of no forces except the resistance of the atmosphere. Supposing the retarding

effect of the resistance on a small element of length dx to be Adx. (velocity)2
, shew that

the angular velocity at the time t is given by

1 1 _ Aai

m Q~4Mk2 '

where Mk2 is the moment of inertia about the fixed extremity, and Q is a constant.

(CoU. Exam.)

29. A smooth oval disc of mass M, turning on a smooth horizontal table with

angular velocity a but without any translational velocity, strikes a smooth horizontal rod

of mass m at its middle point. Prove that the angular velocity is diminished in

the ratio

(M+m)k2 -mex2
: (M+m)k2 +m,x2

,

where e is the coefficient of elasticity, x the distance of the centre of gravity from the

normal at the point of impact and k the radius of gyration about a vertical axis through

.the centre of gravity. (Coll. Exam.)

30. Two rods, each of length a and mass m, are jointed together at their upper ends

and the system falls symmetrically, with its plane vertical, on to a smooth inelastic

plane. Just before impact the joint has a velocity V and each rod has an angular

velocity Q, tending to increase its inclination a to the horizon. Shew that the impulse

between each rod and the plane is

m (k2+ e2 sin2 a)(V+aQ cos a)/{k2+c2+a(a-2c) cos2 a},

where c is the distance of the centre of gravity of each rod from the joint and mk2 is the

moment of inertia of each rod about its centre of gravity. (Coll. Exam.)

31. Three equal uniform rods AB, BG, CD, each of length 2a, and hinged at B and C,

are in one straight line and moving with a given velocity in a horizontal plane at

right angles to their lengths. The ends A and B meet simultaneously two fixed inelastic

obstacles, reducing A and D to rest. Determine when they will form an equilateral

triangle, and shew that J of the original momentum is destroyed by the impacts.

(Coll. Exam.)

16—2
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32. A smooth uniform cube is free to turn about a horizontal axis passing through

the centres of two opposite faces and is at rest with two faces horizontal ; an equal and

similar cube is dropped with velocity u and without rotation so as to strike the former

along a line parallel to the fixed axis and at a distance c from the vertical plane containing

it, prove that the angular velocity imparted to the lower cube is

(l + e)cu

c2 +*2 + a2 (l-sin2a)

'

where a is the inclination to the horizon of the lower face of the falling cube, 2a is the

length of an edge, k the radius of gyration and e the coefficient of restitution.

Find also the motion of the upper cube immediately after the impact.

(Coll. Exam.)

33. A perfectly elastic circular disc of mass M and radius c impinges without rotation

upon a rod of mass m and length 2a which is free to turn about a pivot at its centre, the

point of impact being at a distance b from the pivot. Prove that if the component of the

velocity of the centre of the disc normal to the rod be halved by the impact, Mbi =ma?, the

friction being sufficient to prevent sliding. (Coll. Exam.)

34. A perfectly rough sphere of radius a is projected horizontally with a velocity V
from a point at a height h above a horizontal plane. The sphere has also initially

an angular velocity Q about its horizontal diameter perpendicular to the plane of its

motion. Shew that before it ceases to bound on the plane it passes over a horizontal

distance

where e is the coefficient of elasticity, and the distance is reckoned from the first point of

contact.

Compare the final with the initial kinetic energy. (Coll. Exam.)

35. A homogeneous elastic sphere (coefficient of elasticity e) is projected against

a perfectly rough vertical wall so that its centre moves in a vertical plane at right angles

to the wall. If the initial components of the velocity of its centre are u and v, and

its initial angular velocity (Q) is about an axis perpendicular to the vertical plane, find

the subsequent motion after impinging on the wall, and shew that if its centre returns

to its original position the coordinates of the point of impact referred to this point are

2eu (7e+ 5)«+ 2aQ
~g' 7 + 10e+ 7e2

+a
'

, 2e {(7e+ 5)v + 2aQ}{v (7+5e)-2aefl}
an 7' (7 + 10e+ 7e2)

2 '

where a is the radius of the sphere. (Coll. Exam.)



CHAPTER IX

THE PRINCIPLES OF LEAST ACTION AND LEAST CURVATURE

98. The trajectories of a dynamical system.

The chief object of investigation in Dynamics is the gradual change in

time of the coordinates (q1 , q2 , ..., qn) which specify the configuration of a

dynamical system. When the system has three (or less than three) degrees

of freedom, there is often a gain in clearness when we avail ourselves of a

geometrical representation of the problem : if a point be taken whose rect-

angular coordinates referred to fixed axes are the coordinates (qx , q2 , q3) of

the given dynamical system, the path of this point in space can be regarded

as illustrating the successive states of the system. In the same way when

n > 3 we can still regard the motion of the system as represented by the path

of a point whose coordinates are (ql , qit ..., qn) in space of n dimensions;

this path is called the trajectory of the system, and its introduction makes

it natural to use geometrical terms such as "intersection," "adjacent," etc.,

when speaking of the relations of different states or types of motion in the

system.

99. Hamilton's principle, for conservative holonomic systems.

Consider any conservative holonomic dynamical system whose configuration

at any instant is specified by n independent coordinates (q1} q2 , ..., qn), and

let L be the kinetic potential which characterises its motion. Let a given

arc AB in space of n dimensions represent part of a trajectory of the system,

and let CD be part of an adjacent arc which is not necessarily a trajectory

:

it would however of course be possible to make CD a trajectory by sub-

jecting the system to additional constraints. Let t be the time at which

the representative point (qlt q3 , ..., qn) occupies any position P on AB: we

shall suppose each point on CD correlated to some value of the time, so

that there will be a point Q on CD (or on the arc of which CD is a portion)

which corresponds to the same value J as P does. As the arc CD is

described, the correlated value of * will be supposed to vary continuously

in the same sense. A moving point which describes the arc CD will there-

fore pass through positions corresponding to a continuous sequence of values

of qlt q-i, • , qn > t, and consequently to each point on CD there will correspond

a set of values of qu q2 , ..., qn -
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We shall denote by 8 the variation by which we pass from a point of AB
to that point of CD which is correlated to the same value of the time, and

shall denote by t , tlt t + At , ^ + A^ the values of t which correspond to the

terminal points A, B, G, D respectively, and by LR the value of the function

L at any point R of either arc.

If now we form the difference of the values of the integral

J'
jL(qlt qit ..., qn , qlt q2 , ..., qn,t)dt,

taken along the arcs AB and CD respectively, we have

\ Ldt-\ Ldt = LB A«! - LA At +
f

' SLdt
CD AB . -Ur-

/"<
*t fdL „ . S£

by Lagrange's equations,

But if (Aqr)B denote the increment of qr in passing from B to D, we have

(Aqr)s = (S?r)B + (qr)B ^ti,

and similarly if (Aqr)A denote the increment of <?r in passing from A to G,

we have
(Ag,)a = (S^ + (^A* ,

and consequently

J Ldt- I Ldt = \ I |^ A?r + fz - I §^ A*]*.
JOT J^S Lr= l Offr \ r=l03r / J 4

Suppose now that C coincides with A, and D coincides with B, and that

the times correlated to G and D are t and ^ respectively, so that Aqi,

Aq2 , ..., Aqn , At, are zero at A and B: then the last equation becomes

I Ldt-\ Ldt = 0,

which shews that the integral ILdt has a stationary value for any part of an

actual trajectory AB, as compared with neighbouring paths CD which have

the same terminal points as the actual trajectory and for which the time has

the same terminal values. This result is called Hamilton's principle*.

* Hamilton, Phil. Trans, 1834, p. 307 ; ibid. 1835, p. 95.
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If the kinetic potential L does not contain the time explicitly, we can

evidently replace the condition that the time is to have the same terminal

values hy the condition that the total time of description is to be the same

for AB as for CD, since 2 qr ^-.— L, which represents the total energy of
r=l u^lr

the system, is in this case constant.

Helmholtz, J. filr Math. c. p. 151, remarked that the conditions for a stationary

value of

(where the q's and d's are regarded as independent variables) are

so that we again obtain Lagrange's equations.

100. The principle of Least Action for conservative holonomic systems.

Suppose now that the dynamical system considered is such that the

kinetic potential does not involve the time explicitly, so that the integral

of energy

2 qr k-.
— L = h

exists. Taking as before AB to be part of a trajectory and CD to be part of

any adjacent arc, to the successive points of which values of the time are so

correlated as to satisfy an equation of the form

2 qr^-L = h + M,
r=i oqr

where Ah is a small constant, we have

=
[ (h + Ah)dt-[ hdt+ [ Ldt-j Ldt
J CD •> AB J OB J AB

= (h + Ah)(t1 + At1 -t -At
l)
)-h{t1 -t ) + t j-r-Aqr -hAt

|_r=l oqr

dL

n ?L
2 |= Aqr + tAh
r=l0C[r JA

If therefore we suppose that C coincides with A and D coincides with B,

and that Ah is zero, we shall have

. dL\

L0L*S)*-U**D*
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which shews that the integral 1(2 qr ^-r
J
dt has a stationary value for any

part of an actual trajectory, as compared with neighbouring paths between the

same termini for which the time is correlated to the coordinates in such a way

as to satisfy the same equation of energy. This is called the principle of

Least Action, the integral

being called the Action.

In natural problems, for which L is the difference of a kinetic energy T,

homogeneous of the second degree in the velocities, and a potential energy

V, independent of the velocities, we have (§ 41)

r=i oqr

and the stationary integral can therefore in this case be written ITdt.

The Principle of Least Action originated in Maupertuis' attempt (Meni. de VAcad., 1744,

p. 417) to obtain for the corpuscular theory of light a theorem analogous to Fermat's

" Principle of Least Time." Maupertuis' principle was established by Euler (Addit. II.

p. 309 of his Methodus inveniendi lineas curvas, 1744) for the case of a single particle under

a central force, and by Lagrange {Miscell. Taurin. n. (1760-1), Oeuvres, i. p. 365) for much

more general problems.

Example 1. Shew that the principle of Least Action can be extended to systems for

which the integral of energy does not exist, in the following form. Let the expression
n g£
2 qr ~-r - L be denoted by h ; then the integral
r=l v<jr

/"/ »
. dZ

,
dh\ j.

has a stationary value for any part of an actual trajectory, as compared with other paths

between the same terminal points for which h has the same terminal values.

Example 2. If a dynamical system which possesses an integral of energy is reduced to

a system of lower order as in § 42, shew that the principle of Least Action for the

original system is identical with Hamilton's principle for the reduced system.

101. Extension of Hamilton's principle to non-conservative dynamical

systems.

We shall now extend Hamilton's principle to holonomic dynamical

systems in which the forces are no longer supposed to be conservative.

n
Let T denote the kinetic energy of such a system, and let 2 Qr &qr

denote the work done on the system by the external forces in an arbitrary

displacement (Sjj, Sq2 , ..., Sg„); the equations of motion of the system are

therefore

d (dT\ dT .
/ i o x
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Let a denote a part of a trajectory of the system, and let /3 be an adjacent

arc having the same terminals, the times correlated to the path /3 at the

terminals being the same as the values t and t± of the time at the terminals

in the trajectory a; then if 8 denotes the variation by which we pass from a

position on « to the contemporaneous position on /3, we have

(
ST + 2 QrSqr) dt = 2 (°fr hqr + |±- Bqr + QrSqr) dt

t, \ r=i / J t„ r=i \oqr dqr /

[*< « far., d /3r\ , i 7J

" 3T T>
2 r-r 8gv

0.

This result

f'(ST+ 2 ^.ty,.) <ft =
Jt\ r=l /

is (like the theorem of § 99, which is really a particular case of it) known as

Hamilton's principle.

102. Extension of Hamilton's principle and the principle of Least Action

to non-holonomic systems*.

We shall now shew that Hamilton's principle, when suitably formulated,

is true even for dynamical systems which are not holonomic.

Consider a non-holonomic conservative system, in which the variations

of the n coordinates (qu q2 , ..., qn) are connected by m non-integrable

kinematical equations

A lhdq1 + A 2kdq2 + ... + Ankdqn + Thdt = (1=1, 2, ..., m)

where An , A i2 , ..., Anm , Tlt ..., Tm , are given functions of qu q2 , ...,qn : so

that if L denotes the kinetic potential, the motion is determined (§ 87) by

the n equations

_
(— ) -5- = \1An + ~K2An +... +\mArm (r = l, 2, ...,n),

at \oqrJ oqr

together with the above kinematical equations; the unknown quantities

being

<Ji, <h> ••> 1n> ^-li \> ••• > ^-m-

Let AB be part of a trajectory of the system, and let CD be a path

derived from AB by displacements consistent with the instantaneous kine-

* Cf. Holder, Gott. Nach. 1896, p. 122, and Voss, Gott. Nach. 1900, p. 322.
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matical equations, i.e. the above kinematical equations with the terms Tk dt

omitted ; this path CD will not in general be itself a path whose continuous

description would satisfy the kinematical conditions, so CD is really a kine-

matically impossible path.

It may naturally be asked why we do not take CD to be a kinematically possible path

:

the answer to which is, that in that case the displacements from AB to CD would not be

displacements consistent with the kinematical equations : for in non-holonomic systems,

if two adjacent possible configurations are given, the displacement from one to the other

is not in general a possible displacement ; there are infinitely more possible adjacent

positions than there are possible displacements from the given position.

Proceeding as in the proof of Hamilton's principle given in § 99, 8 denoting

as usual a displacement from a point of AB to the contemporaneous point on

CD, we have

f Ldt-f Ldt = LB A*, - LAAt +{
h
i (|5 Sqr +~ Sqr) dt

J CD JAB Jt»r=\\vqr oqr */

= L£M, - LAM +|1 j— Sqr + jt
(jjA Sqr -(\1A rl +...+ \mAm) hq\ dt.

Since the displacements obey the relations

AfcSffi + A 2k Sqi +... + Ank8qn = 0,

it follows that the terms of the type \sA rs Sqr in the integral annul each

other, so we have

L L* -L Ldt=L^- L^ +ilL^4t<M)M*
From this point the proof proceeds as in § 99. We thus obtain the result

that Hamilton's principle applies to every dynamical system, whether holonomic

or not. In every case the varied path considered is to be derived from the

actual orbit by displacements which do not violate the kinematical equations

representing the constraints; but it is only for holonomic systems that the

varied motion is a possible motion ; so that if we compare the actual motion

with adjacent motions which obey the kinematical equations of constraint,

Hamilton's principle is true only for holonomic systems.

The same remarks obviously apply to the principle of Least Action, and

to Hamilton's principle as applied to non-conservative systems.

103. Are the stationary integrals actual minima? Kinetic foci.

So far we have only shewn that the integrals which occur in Hamilton's

principle and the principle of Least Action are stationary for the trajectories

as compared with adjacent paths. The question now arises, whether they

are actually maxima or minima.
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We shall select for consideration the principle of Least Action, and for

convenience of exposition shall suppose the number of degrees of freedom

in the dynamical system to be two, the motion being defined by a kinetic

energy

T= \an (qlt q2) qj> + a12 (q-,, q2) q^ + \a^ (qlt q2) q?,

and a potential energy

The discussion can be extended without difficulty to Hamilton's principle,

and to systems with any number of degrees of freedom. The principle of

Least Action, as applied to the above system, is (§ 100) that the integral

j (Oii2i
2 + 2a12g1 g2 + a^2

) dt

has a stationary value for an actual trajectory as compared with other paths

between the same termini for which dt is connected with the differentials of

the coordinates by the same equation of energy

T+V=h.

This latter equation gives

«u?i
! + 20mjig2 + a^qi = 2 (h - t|t),

or dt = {2 (h — t/t)}
-
* (au dq^ + 2a12dq 1dq2 + a^dqiy,

so the stationary integral can be taken to be

I =j(h-^ (an + la^qi + a^qff dqu

where qi stands for dq^dq^ ; this integral is to be taken between terminals,

at each of which the values of qx
and q2 are given.

Writing this equation

we shall discuss the discrimination of its maxima and minima (which was

first effected by Jacobi) by a method suggested by Culverwell*

Consider any number of paths adjacent to the actual trajectory. These

paths will be supposed to have the same terminals, and to be continuous,

but their directions may have abrupt changes at any finite number of

points. For such a path let (qu ft + fy,) be a point corresponding to a

point {qlt q2) on the actual trajectory; we shall frequently write «<£ for Bq2 ,

where a is a small constant the order of which determines the order of

magnitude of the quantities we are dealing with, and
<f>

is zero at the terminal

points.

* Proc. Lond. Math. Soc. xxm. (1892), p. 241.
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Let the expansion of the function

/(ft, ?2 +«4>, 92
' + a0')

in ascending powers of a be

/fe, ?., ft') + «W + t/if) + ia^tfi.^ + 2U01 <f><j>'+ Uu <j>'») + ...

;

let 8/ denote the terms involving a in the first degree in

l/(?i. & + a0> ft' + a<£')^ft>

and let S2/ denote the terms in a2
.

When the range of integration is small, and its terminals are fixed, the

value of <j> at any point is large compared with the value of
<f>.

For since $
is zero at the terminals, we have

<f>= <f>dqu
J p

where P and R denote the terminals. If therefore /S be the numerically

greatest value of <£' between P and R, it follows that
<f>

can never exceed

(ftiisi
— 9i(P))/3, and consequently by taking the range sufficiently small the

ratio of
<f>

to
<f>'

can be diminished indefinitely.

Thus if the range is very small, the most important term in 82/ is

\ I Uu <f>"

idq1 ; and as the sign of this is always the same as that of Vn (the sign

of dqi is taken to be positive), we see that for small ranges, 7 is a maximum
or minimum according as Un is negative or positive. Now

#n = p-4i
= (A - irfi On + 2a12g2

' + a22g2
'2)""^ (ouHb - ai2

2
),

and this is positive, since the kinetic energy is a positive definite form and

therefore ^a^ — a^1
is positive. We thus have the result that for small

ranges the Action is a minimum for the actual trajectory.

Now consider any point A on an actual trajectory, and let another actual

trajectory be drawn through A making a very small angle with the first. If

this intersects the first trajectory again, say at a point B, then the limiting

position of the point B when the angle between the trajectories diminishes

indefinitely is called the kinetic focus of A on the first trajectory, or the

point conjugate to A.

We shall now shew that for finite ranges the Action is a minimum,

provided the final point is not beyond the kinetic focus of the initial point.

For let P and Q be the terminals ; we have seen that if Q is veiy near

to P, the quantity S2/ is always positive and of order a2 compared with the

value of / for the limits P and Q. It is therefore evident that as we remove
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Q further from P, the quantity B2I cannot become capable of a negative

value until after Q has passed through the point for which S2/ can vanish

for a suitably chosen value of a<f>.

Suppose then that PBQ is an arc of an actual trajectory, Q being the first

point for which it is possible to draw a varied curve PHQ for which h2I is zero

;

we shall shew that the varied curve PHQ must itself be a trajectory. For if

it is not a trajectory between two of its own points A and C (supposed near

each other), let a trajectory ADC be drawn between these points. Then the

integral taken along ADC is less than that taken along AHC, so the integral

taken along PADGQ is less than that along PHQ, which by hypothesis is

equal to that along PBQ. Hence S2/ along PADGQ is negative, and there-

fore Q cannot be the first point for which, as we proceed from P, the variation

ceases to be positive ; which is contrary to what has been proved. It follows

that PAHGQ is a trajectory, and Q is the kinetic focus of P. Hence the

Action is a true minimum, provided that in passing along the trajectory the

final point is reached before the kinetic focus of the initial point.

Lastly we shall consider the case in which the kinetic focus of the initial

point is reached before we arrive at the final point. Suppose, with the notation

just used, that the initial and final points are P and R; and let two points E
and F be taken, the former on the curve PHQ and the latter on the arc QR ;

these points being taken so close together that the trajectory EGF joining

them gives a true minimum. Since the integral taken along EGF is less

than that along EQF, it follows that the integral taken along PEGFR is less

than that along PEQR ; but the latter is equal to that along PBQR, since

both integrals are equal from P to Q ; and therefore the integral along PBQR
is not a minimum ; but it is not a maximum, since the integral taken along

any small part of it is a minimum. Hence when the kinetic focus of the initial

point is reached before we arrive at the final point, the Action is neither a

maximum nor a minimum.

A simple example illustrative of the results obtained in this article is furnished hy the

motion of a particle under no forces on a smooth sphere. The trajectories are great-

circles on the sphere, and the Action taken along any path (whether a trajectory or not)

is proportional to the length of the path. The kinetic focus of any point A is the

diametrically opposite point A' on the sphere, since any two great-circles through A

intersect again at A'. The theorems of this article amount therefore in this case to the

statement that an arc of a great-circle joining any two points A and B on the sphere is

the shortest distance from A to B when (and only when) the point A' diametrically

opposite to A does not lie on the arc, i.e. when the arc in question is less than half

a great-circle.

104. Representation of the motion of dynamical systems by means of

geodesies.

The principle of Least Action leads to an interesting transformation of

the motion of natural dynamical systems with two degrees of freedom.
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Let the kinetic energy of such a system be

iKfe. q*)
q* + Zamiqu q2)qiq2 + a^(qlt qa)qa*\,

and let its potential energy be ifrfa, q2)- By § 100, the orbits corresponding

to that family of solutions for which the total energy is h are given by the

condition that

J
(aiWi

2 + 2ai2?i92 + a^qf) dt

is stationary for any part of an actual orbit, as compared with any other arc

between the same terminals for which dt is connected with the differentials

of the coordinates by the relation

I («ii?i
s + 2a12gi#, + a^qi) + yjr (qu q2)

= h.

The integral

(h —^ (a^dq-? + 2a12dq1dqi + a^dq?)*/<

is therefore stationary. But this integral expresses the principle of Least

Action for the motion of a particle under no forces on any surface whose

linear element is given by the equation

ds2 = (h-yjr) (ondg-j' + 2a12dq1dq2 + a^dq^),

and is therefore the defining condition of the geodesies on this surface.

Consequently the equations of the orbits in the given dynamical system are the

same as the equations of the geodesies on this surface.

Example 1. Shew that the parabolic orbits of a free heavy projectile correspond

to the geodesies on a certain surface of revolution.

Example 2. Shew that the orbits described under a central attractive force <p' (r) in a

plane correspond to geodesies on a surface of revolution, the equation of whose meridian-

curve is z=f{p), where

f'(p)= {(pdr/rdp)*-l}i

and where r and p are connected by the relation p
2=r2

{ — <j> (r)+h]

.

105. The least-curvature principle of Gauss and Hertz.

We shall now discuss a principle which, like Hamilton's principle, can be

used to define the orbits of a dynamical system, but which does not involve

the sign of integration.

In any dynamical system (whether holonomic or non-holonomic) let

(xr , yr , zr) be the coordinates of a typical particle mr at time t, and

(Xr , Yr , Zr) the components of the external force which acts on the particle.

Consider the function

Xr2mr
-

-;H*-S'^-£)}.
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where the summation is extended over all the particles of the system, and

where (xr , yr , zr) refer to any kinematically possible path for which the

coordinates and velocities at the instant considered are the same as in some

actual trajectory. This function substantially represents what was called by

Gauss the constraint and by Hertz (who however considered primarily the

case in which the external forces are zero) the curvature* of the kinematically

possible path considered. In what follows Hertz's terminology will be used.

We shall shew that of all paths consistent with the constraints (which

are supposed to do no work), the actual trajectory is that which has the

least curvature^.

In the simple case of a single particle moving on a smooth surface under no external

forces, this result clearly reduces to the statement that the curvature in space (in the

ordinary sense of the term) of the orbit is the least which is consistent with the condition

that the particle is to remain on the surface. '

To establish this result, let the equations which express the constraints

(using xr to typify any one of the three coordinates of any particle) be

1xkrdxr = (& = 1, 2, . .. , m),

where the coefficients xkr are given functions of the coordinates. Differ-

entiating these relations, we have

1xkrxr + 1'St -^XrX, = (4 = 1, 2, ...,m).
r r s U'X's

Let xr be a typical component of acceleration in the path considered

(which is supposed to be kinematically possible, but is not necessarily the

actual trajectory), and let xr0 be the corresponding component of acceleration

in the actual trajectory. Subtracting the preceding equation, considered as

relating to the actual trajectory, from the same equation, considered as

relating to the kinematically possible path, we have (since the velocities are

the same in the two paths)

Zxkr (xr - xr0) =0 (k = 1, 2, . .. , m).
r

This equation shews that a small displacement of the system, in which

the displacement 8xr of the coordinate xr is proportional to (xr — xn ), is con-

sistent with the equations of constraint, i.e. is a possible displacement.

The components of the forces exercised by the constraints are typified > by

* Strictly speaking, the square root of this function, and not the function itself, was called

the curvature by Hertz.

t Gauss, Grelle's Journal, iv. (1829), p. 232; Werke, v. p. 23. Gauss measured the constraint

by "the sum of the masses of the particles, each multiplied by the square of its deviation from

unconstrained motion." The above analytical expression for it was first given by H. Schemer,

-ZeiUehriftfiir Math. in. (1858), p. 197. Hertz's theory is given in his Mmhanik.
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(nirXro — Xr): and in any possible displacement the forces of constraint do no

work. We have therefore

2 (mrXro — Xr) (*r — #ro) = 0)

r

an equation which may be written in the form

2mr (xr ) = tmA'Xn ) + 2mr (x\ - xnJ,
r \ mrJ r \ mrJ r

or (reverting to the use of y's and z's)

= S,mr \[xn - gf + (y» - -j
2

+ (*„ - £) |

+ trrir {(xr - xroy + (i/r— yr0)
2 + (zr - '£„>)*}.

r

Since the terms in the last summation on the right-hand side are all

positive, it follows that

H(*-SM*-3
,+

(*-f)]

which establishes the result stated.

106. Expression of the curvature of a path in terms of generalised

coordinates.

Lipschitz has shewn* that the curvature of a kinematically possible path

in a holonomic dynamical system with n degrees of freedom can be expressed

in terms of the derivates of the n independent coordinates which define the

position of the system.

Let (qlt qit ..., gy») be the coordinates; let (qu q2 , ..., qn) be the accelera-

tions of these coordinates in any kinematically possible path, and let

(</io» 920 > •••> ?no) be the accelerations in the actual trajectory which corre-

sponds to the same values of (qlt q2 , ..., qn , qu q\, , qn)' Using xr to typify

any one of the three rectangular coordinates of any particle mr , and Xr to typify

the corresponding component of force, the Gauss-Hertz curvature of the path

is 2mr (xr — Xrjmry ; and it has been shewn in the last article that this can
r

be written in the form

2mr (av — Xr\m^f + 2mr (xr — xr0)
2
.

r r

* Journal fur Math, lxxxii. p. 323. Cf. also Wassmuth, Wien. Sitz. civ. (1895) ; and for

further work connected with the principle of Least Curvature see Leitinger, Wien. Sitz. cxvi.

(1908), p. 1321 and Schenkl, Wien. Sitz. cxxn. (1913), p. 721.
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The first of these summations is the same for all the paths considered, since

it depends only on the actual trajectory : we can therefore omit it without

causing the whole expression to lose its minimum-property, and we can call

the remaining summation "%m,r (xr — a;r0)
2 the curvature of the path.

r

Let the kinetic energy be

T=$%2aklqk ql ,

k I

where the quantities ak% are given functions of (q1 , q2 , ..., qn); let D denote

the determinant formed of the quantities ak\, and let A ki
denote the minor of

aki in this determinant.

From the equation

2mriy
! = 2 ~%auqhqi

r k I

. « OXy OXf
we have au = zmr =— 7r-

.

r dqk dqi

Now xT = 2, =— qk + ZZ, x—5- qkqi ,

* dqk k 1 dqk dqi
*"*'

and consequently, since the coordinates and velocities are the same for all the

paths considered, we have

.. -o OXr ... .. v
*r - SCro = 2 K~ {qk - 9W-

* vqk

But if we write

a d fdT\ dT „ dxr v- n -i o \
°* =jJr _ 3 S 5—Xr (*=1, 2, ..., n),

dt \dqk dqk r dqk

since this expression is zero for the actual trajectory, we have

Si = the difference of the values of j- l^r-) for the path considered and

the actual trajectory,

or 8k = 2akiCqi-qio) (& = 1, % •-, n),

1

whence we have q\ — 'q
ko = 7; 2AuSi (& = 1, 2, .. ., n)

;

*-> 1

and consequently

Xr - Xr0 = y: 2 2 s-1 AMSi.V k 1 oqk

The curvature, 2mr (xr— ivraY, is therefore
r

l2 2222mr^^-Mw^^,
L) r h l i j oqk oqi

or =-222 XaidAkiAySiSj.
JJ hi i j

W. D. 17
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But by a well-known property of determinants, we have

2 *ZauAkiAij = DAij,
i k

and therefore finally the curvature can be expressed in terms of the coordinates

(qu q%, ..., qn) and their derivates in theform

j, 2 2 AySjSi.v i i

107. Appell's equations.

The Gauss-Hertz law of Least Curvature is the basis of a form in which

Appell has proposed* to write the general differential equations of dynamics.

This form, as will be seen, is equally applicable to holonomic and non-

holonomic systems.

Consider any dynamical system ; let

A lk dq1 + A 2kdqli
+ ... + Ankdqn+Thdt=Q (k=l, 2, ..., m)

be the non-integrable equations connecting the variations of the generalised

coordinates qu q2 , ..., qn ; in holonomic systems these equations will of course

be non-existent.

Let S denote the function ^"2,mk (cck
" + ytf + z£), where mk typifies the mass

k

of a particle of the system, whose rectangular coordinates at time t are

(xk , yk , Zk)- By means of the equations which define the position of the

particles at any time in terms of the coordinates (qlf q2 , ..., qn), it is possible

to express 8 in terms of (q^ qit ..., qn) and the first and second derivates of

these variables with respect to the time. Moreover, by use of the equations

of constraint we can express m of the velocities (qu g2 , ..., qn) in terms of the

others : let the coordinates corresponding to these latter be denoted by (pi,£»2 ,

..., pn-m)- By differentiating these relations we can express qlt 'q\, ..., qn

in terms of the quantities p\,pt, ..., pn-m, pu pi, -, pn-m, gi, <?2, •••, qn > an(i

hence S can be expressed in terms of this last set of variables.

Now any small displacement which is consistent with the constraints

can be defined by the changes (Bpu Sp„, ..., &Pn-m) in the quantities

n—m
(Pi, Pi, ••,Pn-m)'i let 2 Pr Bpr denote the work done by the external forces

in such a displacement. As in § 26, we have

•5™ ( fa*
.

•• ty*... ^z*\ p
^rk

\
Xk

dp-r
+ yk

Wr
+ ZkWy Pr -

* Journal far Math. oxxi. (1900), p. 310.
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Let the equation which expresses the change in xk in terms of the changes
in (PuPn, -, Pn-m) be

n-m
Bxk = S 7Tr 8pr ,

,.=1

where (-n-lt 7r2 , ..., iTn-m) are kndwn functions of the coordinates: the

equations of this type are of course non-integrable. From this we have
dook/dpr =7rr , and so the equation which expresses xk in terms of

{pT.,Pl, ...,pn-m)

will be of the form
n-m

Xk = 2 TTrpr + «,
r= l

where a denotes some function of the coordinates. Differentiating this

equation, we have

whence p* = 7r^.
0pr Opr

It follows that

D v ( ^xk ,
.. fyk ,

.. 3**'

,., /.. 3^4 .. 3^ .. 94 n

-f^^^ +^i + ^^J
= dS/dpr ,

and therefore £/ie equations of a dynamical system, whether holonomic or not,

can be expressed in the form

^rr = Pr 0" = 1, 2, .... n-m),
opr

where 8 denotes the function ^'tmk (xk
i + yk"+

z

k"), and (px , p2 , ...,pn-m ) are

coordinates equal in number to the degrees offreedom of the system*.

It is evident that the result is valid even if the quantities pu ..., pn-m
are not true coordinates, but are quasi-coordinates.

Example. Obtain from Appell's equations the equations

IAaii
— (B — C) C02a3= lj,

Biii-{C-A)a3 a l
= M,

Ci>3 -(A-B)a1 o)2=N,

for the motion of a rigid body one of whose points is fixed; where (<bx , <b2 , <o3) are

the components of angular velocity of the body resolved along its own principal axes

of inertia at the fixed point, (A, B, C) are the principal moments of inertia, and (Z, M, N)

are the moments of the external forces about the principal axes.

* On the connexion of these equations with the Principle of Least Action, of. H. Brell, Wien.

Sitz. cxxn. (1913), p. 933.

17—2
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108. Bertrand's theorem.

A theorem in impulsive motion, which belongs to the same group of

results as the least-curvature principle of Gauss and Hertz, is due to

Bertrand* and may be stated thus : If a given set of impulses is applied to

different points of a system (whether holonomic or non-holonomic) in motion,

the kinetic energy of the resulting motion is greater than the kinetic energy

of the motion which the system would acquire under the action of the same

impulses and constraints and of any additional constraints due to the reactions

of perfectly smooth or perfectly rough fixed surfaces, or rigid connexions

between particles of the system.

For let m be the mass of a typical particle of the system, and let (u, v, w),

(u, v', w'), (wj, Vj, w/j) denote the components of velocity of this particle before

the application of the impulses, after the application of the impulses, and in

the comparison motion, respectively.

Let (X, Y, Z) denote the components of the external impulse acting on

the particle : (X', Y', Z') the components of the impulse due to the con-

straints of the system: and (X' + Xlt Y' + Yu Z' + ZJ the components of

the impulse due to the constraints in the comparison motion.

The equations of impulsive motion are

m{u'-u) =X + X', m(v'-v)=Y+Y', m(w'-w) = Z+ Z',

m(u1 -u)=X + X' +X1 , m(v1 -v)=Y+Y'+Y1 , m(Wl -w) = Z + Z' +Z1 .

Subtracting, we have

m(u1
— u') =X1 , m(v1

— v')=Y1 ,
m(w1

— w') = Z1 .

Multiply these last equations by w1; vlt wlt respectively, add, and sum for

all the particles of the system ; we thus have

1m {(wj -«')«! + (?>i

-

v) Vi + (w1
— w) wj = 2 (X1u1 + FjU! + Zxwj.

Now from the nature of the constraints, it follows that finite forces

acting on all the particles of the system and proportional to the impulsive

forces (Xlt Yy , ZJ, would on the whole do no work in a displacement whose

components are proportional to the quantities (u^, vlt Wj): and therefore we

have

2 (XlUl + Y1v1+Z1w1 ) = 0,

or 1m {(«i - u') u± + (vt — v') ^ + (w^ — w') wj = ;

this equation can be written in the form

2m (w'2+ if* + vP) - 1m («,* + vi> + w,2
) = 1m {(«' - utf + («' - vj2 + (w' - w,)2],

* Bertrand's notes to Lagrange's Mec. Anal. ; and Liouville's Journal (1), vn. (1842), p. 166.
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which shews that

\tm (u'2 + v'
2 + w'2

) > £2m (u? +V + mV),

and so establishes Bertrand's theorem.

The theorem may readily be extended to the case when the forces are not

impulsive but continuous : in this case the increase of kinetic energy per

unit of time is diminished by the introduction of fresh constraints that do

not affect the potential energy.

The following result, due to Lord Kelvin and generally known as Thomson's theorem,*,

can easily be established by a proof of the same character as the above : If any number of

points of a dynamical system are suddenly set in motion with prescribed velocities, the

kinetic energy of the resulting motion is less than that of any other hinematically possible

motion which the system can take with the prescribed velocities, the excess being the energy of

the motion which must be compounded with either to produce the other.

Lord Kayleigh has remarked + that the theorems of Thomson and Bertrand may both

be comprehended in the statement that the introduction of fresh constraints increases the

inertia, or moment of inertia, of a system.

Example. A framework of (n - 1) equal rhombuses, each with one diagonal in the

same continuous straight line, and two open ends, each of which is half of a rhombus, is

formed by 2m equal rods which are freely jointed in pairs at the corners of all the

rhombuses. Impulses P perpendicular to and towards the line of the diagonals are

applied to the two free extremities of one open end ; shew that the initial velocity,

parallel to the diagonal, of the extremities of the other open end is

HP sin a cos a

m cos2 a+ n2 sin2 a

'

where m is the mass of each rod, and 2a is the angle between each pair of rods at

the points of crossing. (Camb. Math. Tripos, Part I, 1896.)

Miscellaneous Examples.

1. If the problem of determining the motion of a particle on a surface whose linear

element is given by the equation

ds*=Edu2+ %Fdu dv+ Gdv\

under the action of forces such that the potential energy is V(u, v), can be solved, shew

that the problem of determining the motion of a particle on a surface whose linear

element is given by

ds2= V(u, v)(Edu2+ 2Fdudv+ Odv2
),

under forces derivable from a potential energy 1/ V(u, v), can also be solved.

(Darboux.)

2. If in two dynamical systems in which the kinetic energies are respectively

2aikqiqk and lbilc q\iqk , and the potential energies are respectively £7 and 7, the trajectories

* Thomson and Tait's Natural Philosophy, § 317.

t Theory of Sound, Vol. i. p. 100.
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are the same curves, though described with different velocities, so that the relations

between the coordinates {qu q2 , , qn) are the same in the two problems, shew that

p. aU+&
yU+V

where a, /S, y, 8 are constants, and that

2badqidqk= (yU+8) nSaikdqidqll
. (Painleve\)

3. If all the trajectories of a particle in a plane, described under forces such that the

potential energy of the particle is V(sc, y), with a value h of the constant of energy, are

subjected to a transformation

where (j> and i/c are conjugate functions of (x, y), shew that the new curves so obtained are

the trajectories of a particle acted on by forces derivable from the potential energy

[F
{
^(z,r),^(x,r)}-A]{(||)

2

+ (U)
2

},

with a zero value of the constant of energy. (Goursat.)

4. If T and V denote respectively the kinetic and potential energies of a dynamical

system, shew that

2^ +2m(^+y2+22
)

differs from

2-
mI [ir

+d
Sf +

{
m^y + (™

+d
S)}

by a quantity which does not involve the accelerations ; and hence that

is a maximum when the accelerations have the values corresponding to the actual motion,

as compared with all motions which are consistent with the constraints and satisfy

the same integral of energy, and which have the same values of the coordinates and

velocities at the instant considered. (FOrster.)



CHAPTER X

HAMILTONIAN SYSTEMS AND THEIR INTEGRAL-INVARIANTS

109. Hamilton's form of the equations of motion.

We shall now obtain for the differential equations of motion of a con-

servative holonomic dynamical system a form which constitutes the basis

of most of the advanced theory of Dynamics.

Let (qlt q2 , ..., qn) be the coordinates and L(q1 , q2 , ..., qn , qlt q2 , ..., qn , t)

the kinetic potential of the system, so that the equations of motion in the

Lagrangian form are

d idL\ dLd
(
dL\ dL

dt \dqrJ dq.

Write
ddr

=Pr (r = 1, 2, . .., n),

O T

so that pr = 7T- (r = 1, 2, . . ., n).
oqr

'

From the former of these sets of equations we can regard either of the

sets of quantities (q\, q2 , ..., qn) or (pu p2 , . . ., pn) as functions of the other set.

If 8 denote the increment in any function of the variables

(q1 ,qv,...,qn,Pi,P2,-»,Pn) or (qu q2 , ..., qn , q\, q\, ..., qn)

due to small changes in the arguments, we have

(dL . dL

n
= 2 (pr 8qr +pr 8qr)

r=l

or 8

= 8 t prqr + 2 (pr$qr - qrSpr),
r=l r=l

n \ n
2 prqr -L\ = 2 {qr8pr-pr8qr)<-

r=l ) r=l
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n

Thus if the quantity 2 prqr — L, when expressed in terms of

(qu qit ..., qn,Pi,Pi, ,Pn, t),

be denoted by H, we have
n

BH = 2 (qrSpr - prBqr) (1),
r= l

or
dq. dH dpr = _^E (r = 1 2 n) (2)°r
dt dpr ' dt dqr

K l>*'-> n
) •••W

The motion of the dynamical system may be regarded as defined by these

equations, which are said to be in the Hamiltonian or canonical form; the

dependent variables are (qlt qi: ;.., qn , p1 , pa , ..., pn), and the system consists

of 2n equations, each of the first order ; whereas the Lagrangian system

consists of n equations, each of the second order.

The Hamiltonian form was introduced by Hamilton in 1834*. In part he had been

anticipated by the great French mathematicians : for Poisson in 1809 1 had taken the step

of introducing a function
n
2 prqr-T
r=\

and expressing it in terms of
(<ft, y2 , ..., gn , p1} ..., pn), and had actually derived half of

Hamilton's equations: while Lagrange in 1810 J had obtained a particular set of equations

(for the variation of elements) in the Hamiltonian form, the disturbing function taking the

place of the function H. Moreover the theory of non-linear partial differential equations

of the first order had led to systems of ordinary differential equations possessing this form

:

for, as was shewn by Pfaff § in 1814-15 and by Oauchy|| in 1819 (completing the earlier

work of Lagrange and Monge), the equations of the characteristics of a partial differential

equation

f(xu as , ...,xn,pu p2 , ...,pn)=0,

where p.-gj,

dos
x _ dxi _ _ dxn dp

x dpn

df/dpt ~ df/dp2-- df/dpn
~

-df/dxj, - df/dxn
'

Hamilton's investigation was extended to the cases when the kinetic potential contains

the time, etc. by OstrogradskylT in 1848-50 and by Donkin** in 1854.

The equation (1) above is often called the Hamiltonian form of the

equation of virtual work. It may be written in the more symmetrical form

n n
S ( 2 prdqr — Hdt) = d(% pr 8qr - HSf),

r=l r=\

* Brit. Ass. Rep. 1834, p. 513; Phil. Trans. 1835, p. 95.

t Journal de Vltcole polyt. vni. (Cahier xv), (1809), p. 266.

% U€m. de Vlnst. 1809, p. 343.

§ Berlin Abhand. 1814-15, p. 76.

|| Bull. soc. philomath. 1819, p. 10.

IT Melanges de I'Acad. de St.-PSt. Oct. 1848 ; MSm. del'Acad, de St.-P4t. vi. (1850), p. 385.

** Phil. Trans. 1854, "p. 71.
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which directly suggests the importance of the differential form

n

2 prdqr - Hdt

in connexion with the differential equations of dynamics : cf. § 137 below.

When the kinetic potential L does not involve t explicitly, the Hamiltonian
function H will evidently likewise not involve t explicitly, and the system
will possess (§ 41) an integral of energy, namely

r=i oqr

where A is a constant. This equation can be written

H (qu q2 , ...,qn,pi,p2, ...,pn) = h,

and this is the integral of energy, which is possessed by the dynamical system

when the function H does not involve the time explicitly. For natural problems,

it follows at once from § 41 that H is the sum of the kinetic and potential

energies of the system.

Example. Shew that the equations of motion of the simple pendulum are

dq = dH dp= _dH
dt~ dp' dt~ dq'

where H=$p
2 - gl

-
1 cos g,

and where q denotes the angle made by the pendulum with the vertical at time t, I is

the length of the pendulum, and the mass of the bob is taken as unity;

110. Equations arisingfrom the Calculus of Variations.

From the preceding chapter it appears that the whole science of Dynamics

can be based on the stationary character of certain integrals, namely those

which occur in Hamilton's principle and the principle of Least Action

:

similarly the differential equations of most physical problems can be regarded

as arising in problems of the Calculus of Variations.

Thus, the problem of finding the state of thermal equilibrium in an isotropic

conducting body, when the points of its surface are kept at given temperatures, can be

formulated as follows : to find, among all functions V having given values at the surface,

that one which makes the value of the integral

integrated throughout the surface, a minimum.

We shall now shew that all the differential equations which arise from

problems in the Calculus of Variations, with one independent variable, can be

expressed in the Hamiltonian form*

-

* Cf. Ostrogradsky, MSm. de VAcad. de St.-Pet. vi. (1&0), p. 385.
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Suppose, for clearness, that there are two dependent variables ; the proof

is equally applicable to any number of variables.

(m) (»)

Let L (t, y, y, y, ..., y, z, z, '£, ..., z) be a function of the independent

variable t, the dependent variables y, z, and their derivates up to orders m, n,

respectively.

The conditions that the integral

/£(*. y>y> ,y>z,z, ...,z)dt

may be stationary, can, by the ordinary procedure of the Calculus of Varia-

tions, be written in the form

tdL\

dy dt[Sy)
+ - +( 1}

dtm {$)'

dz dt \dzj dfl \£j

Now write

f dL d (BL\ . . Nm ,
d1*-1 (dL\

dt™-1 %
. . „ , ,...)+ ... +(-1)™-
dy dt\dy)

dtm~^dy

dL d fdL\ .
n

. _ dm~% (dL

Pn
dL

dy

d^ (dLdL d (dL\
, , ,. , d*-'^ =

Tz-dt[dz) + + (
" 1}

d̂V*-1W
Pm+2 —

dL
+ (- i)M

- dn~* (dL

dt"'2 x dz
)

PlttrHl

and write

dL
(n)»

dz

(m-l) (ti-1)

9i = y, q^=y, , qm = y, gwi = 2, qm+i = z, ..., qm+n = z.

Then if

O. = --L+p
1q2 + p2q3 + ... +pm-1 qm +pmy+pm+1 qmM +

+ Pm+nr-iqm+n + .Pm+n #>
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(where H is supposed expressed as a function of (t, qx , .A, qm+n , Pi, , Pm+n),

the quantities y and z being eliminated by use of the equations pm= dL/dy,
w

Pr>H-n = ^LJdz), and if 8 denote an increment due to small changes in the

arguments qu q2 , ..., qm+n , Pl , pit ..., pm+nt we have

o-a=- 2 —, bqr+1 - -^ 8y - 2 -
ra

og-m+r+1 - -^82
'=» dy dy r=° dz dz

™-l On) Ol-l (m)

+ 2 pr 8qr+1 +pm8y + 2 ?r+iSpr + y8pm
r=l

_
r= l

m+n-1 („> m+w-1 <„>

+ 2 pr 8gv+, +£>m+„5.S + 2 gr+1 Spr + ^SjDm+„.
r=m+l r =m+l

Using the relations

&£ . 3i . dL . dL
dy~

=Pl ' dy~
=p* +p>' ty^Pz+P*' ' -w=P»« etc->

this becomes SH = — 2 ^rSgr + 2 $r8pr .

r=l r=l

Thus, ifH is expressed in terms of the variables

(Pi Pi> Pn> •••>Pm+n> 9i> #2, •> ^m-Hi))

, dqr dH dpr dH , , _ .

wehave 1=^' 1="^: (»-i.
». -»+»>

and tfAe differential equations of the problem are thus expressed in the Hamil-

tonianform.

The systems of differential equations which arise in the problems of the

Calculus of Variations are often called isoperimetrical systems.

111. Integral-invariants.

The nature of Hamiltonian systems of differential equations is funda-

mentally connected with the properties of certain expressions to which

Poincare'* has given the name integral-invariants.

Consider any system of ordinary differential equations

ax-y « ax% y ax>n -^

~di
= Al

' ~di~~
2

' ' ~dt~
JLn '

where Xlt X2 , ..., Xn are given functions of xlt xi; ..., xn , t. We may regard

these equations as defining the motion of a point whose coordinates are

{xlt x2 , ..., xn) in space of n dimensions.

* Acta Math. xm. (1890).
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If now we consider a group of such points, which occupy a p-dimensional

region f at the beginning of the motion, they will at any subsequent time t

occupy another p-dimensional region £. A £>-tuple integral taken over f is

called an integral-invariant, if it has the same value at all times i; the

number p is called the order of the integral-invariant.

Thus, in the motion of an incompressible fluid, the integral which repre-

sents the volume of the fluid, when the integration is extended over all the

elements of fluid which were contained initially in any given region, is an

integral-invariant; since the total volume occupied by these elements does

not vary with the time.

Example 1. Consider the dynamical problem of determining the motion of a particle

in a plane under no forces : let (x, y) be the coordinates of the particle, and («, v) its

components of velocity. The equations of motion may be written

x=u, y=v, m=0, v=0.
The quantity

/= \{8x-tbu), .

where the integration is taken, in the four-dimensional space in which (x, y, u, v)

are coordinates, along the curvilinear arc which is the locus at time t of points which were

initially on some given curvilinear arc in the space, is an integral-invariant. For the

solution of the dynamical problem is given by the equations

u=a, v = b, x=at + c, y= bt+ d,

where a, b, c, d are constants : and
<
therefore we have

1= UtSa+8c-t8a)

=fsc,

and this is independent of t.

Example 2. In the plane motion of a particle whose coordinates are (x, y) and whose

velocity-components are («, v), under the influence of a centre of force at the origin whose

attraction is directly proportional to the distance, shew that

I(u8x— xbu)

is an integral-invariant.

112. The variational equations.

The integral-invariants of a given system of differential equations furnish

integrals of another system of differential equations which can be derived

from these.

For let the given system of equations be

-^ = Xr (x1 , x2 , ...,xn , t) (r=l, 2, ..., n).

Let (#1, #2 , ..., xn) and (xx + Sa^, «2 + &£a , ..., xn + Sccn) be the values of

the dependent variables at time t in two neighbouring solutions of this set of

equations ; where (8^, Sx2 , .

.

., hxn) are infinitesimal quantities. Then we have

jt (xr +Bxr) = Xr (x1 + Sx1 , x2 + hx2 , ...,'xn + Sxn ,t) (r=l, 2, ..., n),
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and consequently,

These last n equations, together with the original re equations, may be
regarded as a set of 2» equations in which (xu as*, ..., #„, &c1( Bx2 , ..., Bxn)
are the dependent variables.

Now if

\^Fr {xu x2 , ..., xn)Bxr
J r

denotes an integral-invariant of the original system, the quantity

^ ^XFr (xu X2 , ...,Xn)BxJr

must, since the path of integration is quite arbitrary, be zero in virtue of

precisely this extended system of differential equations ; and therefore

~ZFr (xlt x2 , ..., xn) Bx, = constant
r

must be an integral of these equations : so that to an integral-invariant of

order one of the original system of equations there corresponds an integral of

the extended system of equations, and vice versa.

If a particular solution (xlt x2 , ..., xn) of the original equations is known,

we can substitute the corresponding values (xlt x2 , ..., xn) in the extended

differential equations, and so obtain n linear differential equations to deter-

mine (&»!, Bx2 , ..., Bxn), i.e. to determine the solutions of the original equations

which are adjacent to the known particular solution. These n equations are

called the variational equations.

113. Integral-invariants of order one.

Let us now find the conditions to be satisfied in order that

(M.Bx, +M2 Bx2 + . . . + Mn Bxn),

where (Mlt M2 , ..., Mn) are functions of (xlt x2 , ..., xn , t), may be an integral-

invariant of order one of the system of differential equations

dxr/dt =Xr (xlt x2 , ..., xn , t) {r = 1, 2, . .
.

, n).

We must have

^ (M.Bx, +M2Bx2 + ... + Mn Sxn) = 0,

where the derivates of (Bxu Bx2 , ..., Bxn) are to be determined by the
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extended system of differential equations introduced in the last article ; and

therefore

(dMr . ^ » 3Mr y s ,
„ JJ 3Xr . \

r=l V 9* *= i 3** *=i °xk J

Since (&»!, &e„ ..., 8xn ) are independent, the coefficient of each quantity

Sxr in this equation must be zero : and consequently the conditions for

integral-invo.riancy are

dMr
» dMr „ ,

» ,, dXk A . . _ .-^+ 2 3-'Ij+ S Jfi a-=0 (r=l, 2, ..., n).
at t=i oxk t=1 (MV

Corollary 1. If an integral of the differential equations, say

J1

(a;1( #2, ...,*», £) = constant,

is known, we can at once determine an integral-invariant.

For we have

3£\3av/ k=idxh \dxj " 4=1 3** 3#r 9av\3£ a=i3#* /

\dt)
d_ (dF}
dxr

= 0,

and therefore the expression

]\ r=1 dxr
r
J

is an integral-invariant.

Corollary 2. The converse of Corollary 1 is also true, namely that if

£ =— Bxr
J
is an integral-invariant of the differential equations, where U is

a given function of the variables, then an integral of the system can be found.

For we have

= if^')+ | Xh
-*L( d-U)

+ i
3 £7" ax,

dt \dxr ) k=l dxk \dxrJ k= i dock dxr

~~
dxr \ dt k=i dxk 7 '

and consequently the expression

d_U
+ l^_ x

dt ic =i dxk
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which is a given function of («„ xt , . .. ,

x

n , t), is independent ot (sclt x2 , ...,

x

n) ;

let its value be </> (t) : this is a known quantity.

Then we have d U/dt = cj> (t),

or u ~U (t) dt = constant

;

and this is an integral of the system.

114. Relative integral-invariants.

Hitherto we have only considered those integral-invariants which have
the invariantive property when the domain of the initial values, over which
the integration is taken, is quite arbitrary ; these are sometimes called

absolute integral-invariants. We shall now consider integrals which have the

invariantive property only when the domain over which the integration is

taken is a closed manifold (using the language of w-dimensional geometry)

;

these are called relative integral-invariants.

The theory of relative integral-invariants can be reduced to that of absolute

integral-invariants in the following way.

Let ((M, Sx, + M,, Sx, '+ . . . +Mn Sxn)

be a relative integral-invariant of the equations

dxrjdt =Xr (r= 1, 2, . . . , n),

where (if1; i/2 , ..., Mn , Xlt X2 , ..., Xn) are functions of (xlt xit ..., xn , i);

so that this expression is invariable with respect to t when the integration is

taken, in the space in which (xlt xit ..., xn) are coordinates, round the closed

curve which is the locus at time t of points which were initially situated on

some definite closed curve in the space.

By Stokes' theorem, this integral is equivalent to the integral

J/5(£-?£)«*•

where the integration is now taken over a diaphragm bounded by the curve
;

this diaphragm can be taken to be the locus at time t of points which were

originally situated on a definite diaphragm bounded by the initial position of

the closed curve : and since the diaphragm is not a closed surface, this integral

is an absolute integral-invariant of order two of the equations.

Similarly, by a generalisation of Stokes' theorem, any relative integral

invariant of order p is equivalent to an absolute integral-invariant of

order (p + 1).
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115. A relative integral-invariant which is possessed by all Hamiltonian

systems.

Consider now the case in which the system of differential equations is a

Hamiltonian system, so that it can be written

dqr _ dH dpr _ dH , _ „ .

~dt~dp~r
' ~dt~~dqr

(r-l, £,..., n),

where H is a given function of (qlt qit ..., qn , plt p2 , ...
, pn , t).

For this system let

D. = jldt

denote Hamilton's integral, so that L is the kinetic potential ; let

(«i, «2. ••, «», A, ft*, -, @n)

be the initial values of the variables

(?i. 2z» ••. qn,Pi,p2, ,pn)

respectively, and let 8 denote the variation from a point of one orbit to the

contemporaneous point of an adjacent orbit. By § 99, we have

n n
SO = 2 pr$qr — S /3r S«r .

r=l r=l

Let C denote any closed curve in the space of 2p dimensions in which

(?i» I2, , qn, Pi, Pa, , Pn) are coordinates, and let C denote the closed

curve which is the locus at time t of the points which are initially on G .

Integrating the last equation round the set of trajectories which pass from

G to C, we have

(•re r n
2 prSqr = 2 @Mr,

Cr=l J C r=l

and this equation shews that the quantity \ 2 pr Sqr is a relative integral-

invariant of any Hamiltonian system of differential equations.

116. On systems which possess the relative integral-invariant 2pSq.

We shall next study the converse problem suggested by the result of

the last article, namely that of determining all the systems of differential

equations which possess the relative integral-invariant I 2 prlqr , where

(?u ?2, •••, qn) are half the dependent variables, and {pl ,p2 , •> pn) are the

other half.
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Consider then a system of ordinary differential equations of order 2m in

which the variables can be separated into two sets, (g]7 q2 , ..., qn) and

(Pi,Pz, -,pn), such that

j(Pi$qi + ^2^2 + . . . + Pn&qn)

is a relative integral-invariant of the equations, and consequently by Stokes'

theorem

//'

J
k^Pifyi + Sp2Sq2 + ... + 8pn8qn)

is an absolute integral-invariant.

Let the system of differential equations be

dqr_
Q dpr_ p . , ,

where (Q1; Q2 , ..., Qn< Plt P2 , ..., Pn) are given functions of

-(?i. q3 , > qn ,Pi,P2, --^Pn, t).

As the domain of integration of the absolute integral-invariant is of two

dimensions, we can suppose that each point in it is specified by two quantities

X and
fj,,

which do not vary with the time but are characteristic of the

trajectory on which the point in question lies. The absolute integral-

invariant can therefore be written in the form

and as X and fi do not vary with the time, we must have

d | djqt.pt) =
dt i=1 3 (X, fi)

i=i \ 3 (X, fj.) 3 (X, p) j

or 1 1 {— 8 (?*' P*) + ^9} d (P*> P{) + ^Ei d (&> ?*) +^ d (?" P*)
} = o

•=i i=i j^i 9(X, /m) dph d(X,fi) dqie 9(X, /*) dqk 3 (X, /t)J

Owing to the complete arbitrariness of the domain of integration and

the choice of X and u, the coefficients of -^ ^ - ^r ^ , and ^ ^ in this
dX dfi ' oK ofi o\ o/M

equation must vanish separately. We thus obtain

3&
+
3P* =

dqk dpi

dPi dPk „ ,i ,,

a -3— = 0V (i, &=1, 2, ..., n).

3&_3Q* = ()

dp*'" 9?i

W. D. 18
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These equations shew that a function H(q1: q2 , ..., qn , plt p2 , ...,pn , t)

exists such that

Qr = dH/dpr , Pr = - dH/dqr (r = 1, 2, . . .
, n)

;

and thus we have the result that if a system of equations

f-Or. ^-Pr (r-1. 2, ...,.)

possesses the relative integral-invariant

JCpiSg, +#,$& + ... +p„Sg„),

tfAen £Ae equations have the Hamiltonian form

dqr _ dH dpr _ dH
/ _ i o \

~dt~dfr ' ~dl~~dq~r
\T-i,)t n);

this is the converse of the theorem of the last article.

Corollary. If

J(pMi+P^q2+ + Pn%qn)

is a relative integral-invariant of a system of equations

dqrjdt = Qr , dpr/dt = Pr (r <= 1 , 2, . .
.
, k),

where k is greater than n, it follows in the same way that the equations for

(Su 9t, •> qn ,J>i,P2: ••,Pn) form a Hamiltonian system

dqL_W dpr_ dH
dt~dpr

' dt~ dqr
Kr-i,z,...,n )t

where if is a function of (qlt q2 , ..., qn , p]; p2 , ...,pn ,t) only, not involving

(<7n+i> ?»i+2> •••> <lk, Pn+i, -,Pk)-

117. 2%e expression of integral-invariants in terms of integrals.

If the solution of a system of differential equations

~^ = Xr (xlt x2 , ..., xn , t) (r = 1, 2, . .. , »)

is known, the absolute and relative integral-invariants of the system may easily

be constructed.

Thus, let

yi(®i, #2, ••-, *». t) = clt ye (xu x2 , ..., xn , t) = c2 , ..., yn {x1 , x,, ..., xn , t) = cn ,

where c^ c2 c„ are constants, be n integrals of the system ; the absolute

integral-invariants of order one are evidently given by the formula

JOAT.fyx + N28y2 + ... + Nn Sy„),
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where (Nlt JVa , ..., N"n) are any functions of (ylt ys , ...,yn) which do not

involve t : and the relative integral-invariants of order one are given by the

formula

fiN, By, +N,Sy2 +...+NnSyn + SF),

where F is any function of (xlt x2 , ..., xn , t), since the term IBF vanishes when

the domain of integration is closed.

It follows from this that any system of differential equations possesses an

infinite number of absolute and relative integral-invariants of the first order.

118. The theorem of Lie and Koenigs.

The preceding results enable us to establish a theorem due to Lie* and

Koenigs^ on the reduction of any system of ordinary differential equations to

the Hamiltonian form.

Let
7fiT

= Xr <r= 1,2, ...,*)

be the given system of equations, and let

(£1 &*?! + £2&£2 + . . . + fjfc&K*)/<

be any relative or absolute integral-invariant of order one of this system,

where &, £2 , ..., £4 are given functions of the variables : we have seen in the

last article that an infinite number of such integral-invariants exist.

Now let the differential form

f-j&Bt + |2S«2 + . . . + &&&*

be reduced to the canonical form

p1
Bq1 + p2 Bq2 + ... +pn $qn -8Q,,

where (Pi, Pi, ••>£>»> ft. ft. ••. ft. &)

are independent functions of (xly *„, ..., xk), in number not greater than k,

and where D, may be zero J. Let («, , m8 , . . . , u^m) be a set of other functions

of (»!, #2 , .... «i), such that (X, w2 , ..., m*-^, qx , ft, ..., qn,Pi,Pi, • ••,!>») are

a set of A independent functions of {xx , x2 , ..., xk); and suppose that the

* Archiv for Math, og Natur. n. (1877), p. 10.

+ Comptes Sendut, cxxi. (1895), p. 875.

J The proof of the possibility of this reduction (whioh however requires in general the

solution of a number of ordinary differential equations) will be found in any treatise on Pfaff's

problem.

18—2
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system of differential equations, when expressed in terms of these k functions

as independent variables, becomes

dqr/dt = Qr , dpr/dt= Pr (r=l, 2, ..., n),

dus/dt = U8 (s = l, 2, ..., k-2n),

where (&, Q2 , ..., Qn , Plt P2 , •-, Pn , Ui, U3 , ..., Uk_m) are functions of the

new variables.

The expression

I(pi8?i + Ps&q* + +Pn &qn)/«

is an integral-invariant (relative or absolute) of this system, since integral-

invariancy is a property unaffected by such transformations as have been

performed : and consequently it follows (§ 116) that the first 2n equations

have the form
dqr_dH_ dpr aff ,

dt~dpr
' dt~ dqr

K
' " ••* ;'

where H is a function of (q1 , q2 , ..., qn , px , p2 , ..., pn , t) only. The given

system of differential equations is thus reduced to a Hamiltonian system of

order 2n, together with the (k — 2n) additional equations

^ = U8 . (8=1,2, ...,k-2n).

119. The Last Multiplier.

Before proceeding to discuss integral-invariants of higher order than

those hitherto considered, we shall introduce the conception, introduced

by Jacobi* in 1844, of the Last Multiplier of a system of equations.

T
dx-i _ dx2 _ _ dxn _ dx

where (X,,X2 , ..., Xn , X ) are given functions of the variables (x1 ,x2 ,...,xn ,x),

be a given system of equations : and suppose that (n—1) integrals of this

system are known, say

/r(«i, x2 , ...,xn ,x) = ar (r=l,2,...,n-l).

From these equations let {xlt x2 , ..., x^-^) be expressed as functions of xn

and x : then there remains only the solution of the equation of the first

order

dxn _ dx

Xn X
,

to be effected ; in which accents are used to denote that (xu x2 , ...,Xn^) have

been replaced in Xn and X by the values thus obtained.

* Crelle's Journal, xxvn. p. 199, xxix. pp. 213, 333.
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We shall shew that the integral of this equation is

r M'
-tj (X'dxn — Xn'dx) = constant,

where M denotes any solution of the partial differential equation

k {MX^k (tt) + ... +^(^)+a
i(MX)=o

>

and A denotes the Jacobian

9(/1,/2,.-,/.-1)

o (a?1; X.z , ... , Xn—i)

The function M is called the Last Multiplier of the system of differential

equations.

For the proof of this theorem, we shall require the following lemma

:

If a system of differential equations

da:r/dt = Xr (r=l, 2, ..., ri)

is transformed by change of variables into another system

dyr/dt=Yr (r=l»2, ...,n),

.. 5 dXr 1 » d{DYr)
then Z -5— = -^ 2, —

,

r=l 0%r JJ r= i &yr

where D denotes the Jacobian

(Xi, X2 , ... , Xn)
d(yi,y3 , — ,yn)'

To prove this, we have

r=l 9«V ,.=1 3«r \4=1 * dyJ

r=i ,=1 dav 3y« Vi=i * 3yJ

r=i »=i t=i 3av V * dysdyk dy8 dyj
'

% fill OX
In this expression the coefficient of dYkjdys is 2 —^ «-^, which is zero

r=i oxr oyk

or unity according as s is different from, or equal to, k. Also dys/dxr = A rsjD,

where A rs denotes the minor of dxr/dys in the determinant D : so the coefficient

of Yk in the above expression, which is

* £ fyg 8aay

r=i ,=i 5«, dy„dyk
'
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may be written

15^ &®r
or

1 I
dQi> #2 «V-i, far/dyk, Xr+i a«)

-D r=l S =l
rS
dyS tyk' D r=l 3(2/1,^2, ••,yn)

1 3D
or 7. ^—

.

We have therefore

• 3Xr = |3_Z* + x F.I —

= 1_ I
3(2)Ft)

-D ft=l 92/* '

which establishes the lemma.

Now in the original problem write

d^ _ dx2 _ _ dxn _ dx _ ,

v ~v~ " v = ~V ==
>

and consider the change of variables from

(#1, #2, •>«, #ft, ^7 "0 \&l, (X2, taa, Ctfj—], #?W , X)'. v

by the lemma, we have

3*! 3#2 '" 3#» dx \dxn \ A' ) dx\A'

so the quantity M, which is a solution of the equation

M dt 3#! 3«2
"" dxn dx '

satisfies the equation

J_dM .
r) ,X„\

.
3 ,'.V\

AM dt ^ dxn \ A' ) ^ dx\A' )
V

'

which shews that the expression

M'
_-^7 {X'dxn - Xn

' dx)

is the perfect differential of some function of xn and x ; this establishes the

theorem of the Last Multiplier.

Boltzmann and Larmor's hydrodynamical representation of the Last Multiplier.

The theorem of the Last Multiplier may also be made apparent by physical con-

siderations. For simplicity we shall take the number of variables to be three, so that the

differential equations may be written

dx _dy _dz
u ~ v w J
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where (w, v, w) are given functions of (x, y, z) ; and the last multiplier M satisfies

the equation

This equation shews that in the hydrodynamical problem of the steady motion of

a fluid in which (u, v, w) are the velocity-components at the point (x, y, z), the equation of

continuity is satisfied when M is taken as the density of the fluid at the point (x, y, a).

Now let (j> (x, y, z)= C
be an integral of the differential equations; .then the flow will take place between the

surfaces represented by this equation ; thus we can consider separately the flow in the

two-dimensional sheet between consecutive surfaces Cand G+SG. The flow through the

gap between any two given points P and Q on C must be the same whatever be the

arc joining P and Q across which it is estimated : and since the flow across arcs PR and RQ
together is the same as that across PQ, we see that the flow across an arc joining P and Q
must be expressible in the form f(Q) -f(P). So if ds denotes an element of this arc, and

t the (variable) thickness of the sheet, so that T={(3^>/3^)2 + (34>/3y)
2+ (30/3z)2

}
"^

. BG, and

if £ denotes the velocity-component perpendicular to ds, we have

/:
M£rds=f(Q)-f(P),

so that M£rds is the perfect differential of a function of position. But it is easily seen

that this expression can be written in the form MbC(vdx-u dy)j(b^>jdz) ; and consequently

M(vdn-udy)

is a perfect- differential ; this is the theorem of the last multiplier for the case con-

sidered.

We readily find for £ds the value

(*,*+ *,
,+ *.')" i

- dx dy dz

<t>x <j>v </>3

so the theorem really states that M((f>x
2 + (t>y

2 + <t>J
i)' 1

equation

,

2
)

-1
is an integrating factor of the

dx dy dz = 0.

4>x <t>v <P*

This, as was remarked by Appell (Comptes Rendus, clv. (1912), p. 878), is a symmetrical

form of the theorem of the Last Multiplier.

120. Derivation of an integral from two multipliers.

Suppose now that two distinct solutions M and N of the partial differential

equation of the last multiplier have been obtained, so that

and

p + ~-o.
occn dx
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Subtracting these equations, we have

but this is the condition that the equation

log (M/N) = constant

shall be an integral of the system

dx{_ dx2 _ _ dxn _ dx

and we have therefore the theorem that the quotient of two last multipliers of

a system of differential equations is an integral of the system.

The reader who is acquainted with the theory of infinitesimal transformations will be

able to prove without difficulty that if the equation

admits the infinitesimal transformations

then the reciprocal of the determinant

-<M A-2 JLn Jl

111 Il2 Il» ll

Snl Sn2 stmi Cn
is a last multiplier.

121. Application of the last multiplier to Hamiltonian systems : use of a

single known integral.

If the system of differential equations considered is a Hamiltonian system,

we have evidently %dXrjdxr = 0, and consequently M = 1 is a solution of the
r

partial differential equation which determines the last multiplier ; so the last

multiplier of a Hamiltonian system of equations is unity.

From this result we can deduce a theorem which enables us to integrate

completely any conservative holonomic dynamical system with two degrees of

freedom when one integral is known in addition to the integral of energy.

Let the system be
dq

i
_dqz _ cfot dp2 _ ,

dH d_H _dH~ _d_H '

tyi dp2 dq^ dq2

and in addition to the integral of energy H (qu q2 ,pi, Pi) = h, let an integral

V(qi, qz, Pi, p^ = c be known. From the theorem of the last multiplier it

follows that

hKh) ff ** - |[ **}
- constant
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is another integral ; where, in the integrand, pt and p2 are supposed to be
replaced by their values in terms of q1 and q2 obtained from the known
integrals H and V.

But if we suppose that the result of solving the equations H = h and

V= c for p1 and p2 is represented by the equations

>P2=fA<li> (l2,h,c),

then we have identically

and therefore

do'

(dHdf,
+
dHdf2 =

dp1 dc dp2 dc '

dpt dc dp„ do '

dHjdp, df -dH/dfr
d(V,H), dc~d(V,H)'

d(Pi,P2) d(Pi,P*)

so the theorem of the last multiplier can be expressed by the statement that

is an integral.

This result leads directly to the theorem already mentioned, which may
be thus stated* : If in the dynamical system defined by the equations

dqr _ dH
dt dpr

'

dpr

~dt

dH
dqr

(r-1,2),

the integral of energy is H (qlt q2 , px , p2)=h, and if V(q1 , q2 , plt p2) = c

denotes any other integral not involving the time, then the expression

p1dq1 +p2dq2 , where p1 and pz have the values found from these integrals,

is the exact differential of a function 6 (g1; q2 , h, 6); and the remaining

integrals of the system are

w- = constant, and ^ =t + constant.
dc dh

This amounts to saying that if any singly-infinite family of orbits is

selected (e.g. the orbits which issue from a point qx
= alt q2 = a2) which have

* This theorem is really an application of the well-known method for the solution of a,

partial differential equation of the first order, the equations of the dynamical system being

the equations of the characteristics of the partial differential equation. As a dynamical

theorem, it was published for a simple case (motion of a single particle) by Jacobi in 1836

(Comptes Bendus, in, p. 59), and for the general case given here by Poisson in 1837 (J. de M.

II. p. 317) and Liouville in 1840 (/. de M. v. p. 351).
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the same energy, so that to any point (ft, ft) there correspond definite values

of pi and p2 (namely the values of px and p2 corresponding to the orbit which

passes through the point ft, q2 and belongs to the family), then the value of

the integral I ftdft +p2dq2 taken along any arc joining two definite points

(fto, fto) and (fti, fti) is independent of the arc chosen.

To complete the proof, we have on differentiating the equations H = h

and V = c,

ldH
+
dHd£

+
dHdf2==Q

3ft 3ft 3ft 3ft 3ft

- 3ft 3ft 3ft 3p2Jft

d(V,H) d(V,H)
3/2 3 (ft, ft) andsimiiarlv

3/i
.
3 (ft, ft)

8gl
-
3(F,g) '

andsimilarly
9?2 -97^)-

3 (ft. ft) 3 (ft, ft)

But since V= c is an integral, we have

3F. 9F. dV . dV . A

3(F,g)
+
8(F,ff) =

3 (ft, ft) 3 (ft, ft)

and therefore -*-2 - -^? = 0.

3ft 3ft

This equation shews that /jdft +f2dq2 is the perfect differential of some
function 6 (qlt q2 , h, c) : and the result derived above from the theory of the

last multiplier shews that dd/dc = constant is an integral.

Moreover, we have

, dq, _ dq2

dH/dPl dH/dp2

'

and therefore

Wj 3F,

^_3ft^li>M
d(V,H)
3 (ft, ft)

But obtaining d/Jdh and df2/dh in the same way as dfjdc and df2/dc were

found, we have

3/. W/dp> , 3/. dV/dPl
dh d(v,H) ana

dh~ d(V,Hy
3 (ft, ft) 3 (ft, ft)
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' Consequently dt =^ dq, + ^ dq2 ,

d8
or t = =r + constant,

Oil

which completes the proof of the theorem.

Example. In the problem of two centres of gravitation (§ 53), if (r, /) denote the

radii vectores to the centres of force, and (6, ff) the angles formed by r, ** with the

line joining the centres of force, obtain the integral

fV# - 2e (/* cos + fi cos 6')= constant,

and hence complete the solution by the above theorem.

122. Integral-invariants whose order is equal to the order of the

system.

The theory of the last multiplier of a system of differential equations is

connected with that of the integral-invariants whose order is equal to the

order of the system.

Let W = Zr (r= 1,2, ...,*),

where (Xx , X2 , ..., Xk) are given functions of (xlt x2 , ..., xk , t), be a system

of ordinary differential equations ; and let us find the condition which must

be satisfied in order that

///•
M§#! Sx2 . . . Sxk

may be an integral-invariant, where M is a function of the variables.

Let (d, c2 , •> Cfc) be any set of constants of integration of these equations,

so that, by solving the equations, (xx , x2 , ..., xk) can be expressed in terms

of (d, c2 , ..., ck , t). Then we have

Iff.
..jut**... «»-///•/« 1%;

*•
;;;;g «*«*-»»

and therefore the condition of integral-invariancy is

d
[ M d(xlt x2 , ..., xk)\ ^

dt\ 3(c1; c2 , ..., ck)

dM d(xlt x2 , ..., xk) „ £ 9 (a?!, a'2 , ..., xr_x , Xr , xr+1 , ..., xk) _ Q
eft 3(Ci, c2 , ..., ck) r=\ d(clt c2 , ..., ck)

dM d(x1 , x2 , ..., xk) y, JL dXrdfa, a^, ..., xk) _ Q
cfe 9(c1; c2 , ..., ck) r= i dxr d (Cj, c2 , ..., c*)

which shews that M must be a last multiplier of the system of equations.

or

or
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This result gives immediately the theorem that for a dynamical system

whose motion is determined by the equations

dqr_dH dpr__dH_
dt~dpr

' dt~ dqr
V- 1'* nh

where H is any function of {qlt qit ..., qn , pi, p2 , •••, pn , t), the expression

Sg, Bq2 . . . Sqn&pi Sp2 ... 8pn•/'

is an integral-invariant ; since in this case unity is a last multiplier. This

theorem is of importance in the applications of dynamics to thermodynamics.

Example. , For a system with two degrees of freedom, let the energy-integral when

solved for p^ take the form

H '

(fri ?2, Pi, Pi, A) +i>i= 0.

Shew that, for trajectories which correspond to the same value of the constant of

energy, the quantity

7\TTf

is independent of t and also of the choice of coordinates : and hence shew that the

trajectories of the problem can be represented as the stream-lines in the steady motion

of a fluid whose density is dH'/dh.

123. Reduction of differential equations to the Lagrangian form.

Another question to which the theory of the last multiplier can be

applied is the following: To find under what conditions a given system of

ordinary differential equations of the second order
,

'4k=fk(qi,q2 , -, qn, qi,q2 , , qn) (k=l, 2, ...,n)

is equivalent to a Lagrangian system

d (dL\ dL

lAWJ-^r .

Cr- 1,2. ....«),

where £ is a function of (&, q2 , ..., q„, qlt q2 , ..., qn , t).

If these two systems are equivalent, the equations

4=1 \dqrdqh * dqrdqk *") dqrdt dqr
K '

must evidently reduce to identities when the quantities qk are replaced by
the expressions fk ; and therefore the required condition is that a function L
shall exist satisfying the simultaneous partial differential equations

i ( VL &L .\j_VL dL . . , _
,

k=i\oqroqk
J dqrdqh * J dqrdt dqr

v '

where (qlt q2 , ..., qn , qlt q it ...,qn ,
t) are regarded as the independent variables.
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When n = 1, the question can be solved in terms of the last multiplier.

For the equation satisfied by L is then

Bf f
+
dqdq q dqdt dq '

from which we have

dq\dq*S) dq[dqdq q + dqdt dq

dsL . d3L
;? + :dtfdq* dtfdt'

and therefore if we write dzL/dq2 = M, the function M satisfies the equation

but this is the equation defining the last multiplier M of the system of

equations

dt =
dq = dq

2 /(?> ?.
'

and therefore when n = \, the determination of the function L reduces to the

determination of the last multiplier of the system.

124. Case in which the kinetic energy is quadratic in the velocities.

When n > 1, the most important case is that in which each of the' functions fr
consists of a part Fr which is homogeneous and of the second degree in (qx , q2 , ..., qn) and

a part GT which does not involve (gu q2 , ..., qn), and it is required to determine whether

the equations

qr=Fr+Gr (r=l, 2, ..., n)

are equivalent to a system
d (dT\ dT n . .

,

where T is homogeneous and of the second degree in (qh q2 , ...
, qn) and also involves the

variables (qu q2 , ..,,&), and (Qu Q2 , ••-, ft.) are functions of (qlt q2 , ..., qn) only.

The value of T-is clearly not dependent on (Qu G2 , ..., Gn\ and therefore we can

consider the problem in which (<?,, G2 , ..., Gn) are zero, i.e. the problem of finding

a function T such that the equations

qr=Fr (r= l,2, -,»)
are equivalent to the system

d (dT\ dT n . . . .

7-1 ^-1 --5—= (r=l, 2, .... »)•
dt \cqrJ dqr

(.».»/
The condition for this is the existence of a function T satisfying the partial differential

equations^ n d2T n d*T 321

fc=l 3?r3?t fc=l 32>-3?fc 3?:

71.

Since i^ is homogeneous, we have 2 qadFk/dqa=2Fk , and therefore
8=1

» o2r „ ,
n n

. dFk d2T . , .

j.=1 S^Sjifc "
3=i fc=i ojs djr%

s=i 9?r \ *=i oq, OqJ s=1
2

^=i3?8 9?r 8?j
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But since dF/dqr is homogeneous, we have

dFt 2 , d*F,

and therefore

3gr S=l
?
'3?r3?8

'

k=idqr dqk *
s=i

8

8?r V fc=i 3?s 3?it/ «=i 3gr 3g*'

The equations to be satisfied by T may consequently be written

,=!*• oyr \- fc=1 3y, 9jfc/
z
fc=i3?r 3?* «=i oqr dqs

*' 32r

or 2 ?8 5^-(i 2 s-r-s^ + s- - J 2 jtt-^ +5-1 = (r=l, 2, ..., n),

»=i * 3?r V fc=i 3g« 9g* 9?«/ V
2

fc=i 3?r 3?* 3?r/ '
y '

and evidently these may be replaced by the equations

, « dFk dT dT „ , , „is 5-r-* 5^ + 5-=0 (r=l, 2, ...,»).

Thus, writingfT for (.Fr -t-Gv), we have the theorem that if the system of equations

qr =fr («•=!, 2, ...,n),

where fr consists of a part which is homogeneous of degree two in the velocities and a

part which does not involve the velocities, is reducible to the form

d fdT\ dT .
, , a

then T must be an integral of the system

i h=iOqr oqk---dqr
v y

Miscellaneous Examples.

1. In the problem of two centres of gravitation, the distance between the centres of

force is 2c, and the semi-major axes of the two conies which pass through the moving

particle and have their foci at the centre of force are (qu q2). Writing

- _ gl
2 -g22

^gl _ gl
2 -g22 <^2

shew that the equations of motion are

dqr_dH dpj.__dH
dt~dpr

' dt~ dqr
V-*-,*h

where ff=i ?'
2 ~ c2 »,2+l-f!zi?i « 2 Hi £i_

gl — g2 gl~g2 gl~g2 gl+ g2

and hi and ^ are constants.

2. Shew that

where the summation is extended over the £m (rc - 1) combinations of the indices % and j,

is an integral-invariant of any Hamiltonian system in which (qlt q^, ..., qn , pu p$, ..., pn)

are the variables. . (Poincare\)
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3. In the problem defined by the equations

dt~dpr
' dt~ dqr

<r-j.»z;,

where E= qxpY -q2p2
- aq^+ bq£,

shew that — ±?= constant

is an integral ; and hence by the theorem of § 121 obtain the two remaining integrals

f?i<?2 = constant,

(log q1
= t+ constant.

4. If M is a last multiplier of a system of differential equations

dx1 dx2 _ dxn dx

Xi X
2

Xn X
of which the equation

f(xlt x2 , ..., xn , #)= Constant

is a known integral, and if an accent annexed to a function of x1 , x2 , ..., xn , x is used to

indicate that xn has been replaced in the function by its values found from this integral,

shew that M'/(df/dxn)' is a last multiplier of the reduced system

dx, dx* dxn _ 1 dx , T . . .

ft = iH=-- = w-j=-yr- (Jacobi.)

5. If 6i = Constant, #2
= Constant, ..., 8n = Constant are a set of integrals of the

equations
dx doc

x
dx%



CHAPTER XI

THE TRANSFORMATION-THEORY OF DYNAMICS

125. Hamilton's Characteristic Function and Contact-Transformations.

We have seen* that the integratiou of a dynamical system which is

soluble by quadratures can generally be effected by transforming it into

another dynamical system with fewer degrees of freedom. We shall in

the present chapter investigate the general theory which underlies this

procedure, and, indeed, underlies the solution of all dynamical systems.

The origin of the method is to be found in a celebrated memoir on

optics, which was presented to the Royal Irish Academy by Hamilton in

1824f : the principles there introduced were afterwards transferred by their

discoverer to the field of dynamics.

In order to follow Hamilton's thought, we must refer to the connexion

between dynamics and optics—a connexion which is perhaps less obvious in

our day than in his, when the corpuscular theory of light was still widely

held. If a ray of light traverses an optically heterogeneous but isotropic

medium, the refractive index at any point (x, y, z) being fi, the path of

a ray may be determined by Fermat's Principle!, namely that the integral

jfi(x,y,z)ds

has a stationary value when the integration is taken along the actual ray

joining two given terminal points, as compared with neighbouring paths

joining them. If on the other hand we consider the motion of a free particle

of unit mass in a conservative field of force where its potential energy is

6 (x, y, z), and its constant of energy is h, the path of the particle may be

determined by the Principle of Least Action (§ 100), which in this case asserts

that the integral

j{h - $ (x, y, z)}ids

has a stationary value for the actual trajectory as compared with neighbouring

paths joining the same terminal points. Comparing these two statements, we

* Cf. Chapter III, §§ 38-42.

t Trans. R. Irish Acad. xv. (1828), p. 69; xvi. (1830), pp. 4, 93; xvn. (1837), p. 1.

X Cf. my History of the Theories of Aether and Electricity, pp. 9-10, 102-3.'
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see that the trajectories of the particle in the dynamical problem are the

same as the paths of the rays in the optical problem, provided a suitable

correspondence

/* = (/>-<£)*

is set up between the potential-energy function in the one case and the
refractive index in the other.

In the corpuscular theory of light, this was regarded as furnishing the
explanation of the optical phenomena, the ray of light being conceived as

a procession of rapidly
:moving corpuscles. But the statement in itself is

true whatever hypothesis regarding light be adopted: and therefore it

supplies a means of connecting dynamics with the undulatory hypothesis.

This idea is the starting-point of Hamilton's theory.

When the undulatory hypothesis is adopted, we have the choice of two
different methods of discussing the propagation of light mathematically:

the first is to consider rays, the second is to consider wave-fronts. The
latter method, -which was introduced by Huygens in 1690, may be thus

explained.

Consider a wave-front, or locus of disturbance in an optical medium, as

it exists at a definite instant t, having the form of a surface a. Each element

of this wave-front may be regarded as the source of a secondary wave,

propagated outwards from it ; so that at a subsequent instant t', the

disturbance originating in any point (x, y, z) of the original wave-front will

extend over a surface. To obtain the equation of this surface, we observe

that the time taken by light to travel through the medium from an arbitrary

point (x, y, z) to another arbitrary point (x'
t
y', z') depends only on the six

quantities (x, y, z, x', y', z') : let it be denoted by V(x, y, z, x'
,
y', z"). This

function V(x, y, z, x, y, z
1

) was called by Hamilton the characteristic function

for the medium in quest'ion. A disturbance which originates at a point

(x, y, z) of the original wave-front at the instant t will therefore at the

instant t' extend over the surface whose equation in the coordinates

(V, y, z') is

V(x,y,z, »', y', ^) = «' -t (1).

Now according to the principle of wave-propagation laid down by

Huygens, the wave-front which represents the whole disturbance at the

instant t' is the envelope of the secondary waves which arise from the

various elements of the original wave-front. Call this new wave-front 2

;

and denote the direction-cosines of the normal to the wave-front a at

(x, y, z) by (I, m, n), and the direction-cosines of the normal to the wave-

front 2 at the corresponding point* (x', y', z) by (I', m', n): these are the

* The point (x't y', z') is said to correspond to (x, y, z) if the secondary wave propagated

from (x, y, z) touches the envelope 2 at [x', y', s').

w. d. 19
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direction-cosines of the rays at (x', y', z') and (x, y, z) respectively, since in

an isotropic medium the ray is normal to the wave-front*. Then since

2 is the envelope of the surfaces V corresponding to points on a, the

equation

dV, dV, dV , n x/

must be satisfied by all those values of the ratios dx : dy : dz which

correspond to directions in the tangent-plane to a, i.e. which satisfy the

relation

Idx + mdy + ndz = 0.

Hence we have

ldV= l SV= ldV
I dx m dy n dz ^ ''

Moreover, since (I', m', n) are the direction-cosines of the normal to the

surface V at the point (x, y', z
1

), we have

V dx' rn'dy' n' dz'
^

Now a ray of light which passes through the point (x, y, z) in the direction

(I, m, n) at time t passes through the point (x', y', z') in the direction {V, m', n')

at time t' : and equations (1), (2), (3), together with the equation

r 2 + m'2 + w'2 =l (4),

are six equations, from which we can determine the six quantities (*', y', z
1

,

V, m, n') in terms of (x, y, z, I, m, n). Thus by these equations the behaviour

of rays of light in the medium is completely specified in terms of the single

function V(x, y, z, x', y', z'). It will be observed that they are not differential

equations, but that they give directly, in the integrated form, the changes in

any system of rays after a finite interval of propagation through the medium.

It is evident therefore that all problems in optics depend on the deter-

mination of Hamilton's characteristic function V(x, y, z, x', y, z') for the

optical medium or system of media through which the rays pass.

From the point of view of Pure Mathematics, we regard the change from

the set of variables (x, y, z, I, m, n) to the set of variables (»', y', z
1

, I', rri, n'),

or (to express it geometrically) from the surfaces a to the surfaces 2, as

a transformation. The function V is thus to be regarded as determining a

transformation of space which changes any surface cr into a new surface 2.

It is evident that if two surfaces a and cr' touch at a point, the corresponding

transformed surfaces 2 and 2' also touch at the corresponding point : on this

account the transformation has been called by S. Lie a contact-transformation.

Thus any function V(x, y, z, x', y', z
1

) defines a contact-transformation, which

* For simplicity we are supposing that the medium, though optically heterogeneous, is

isotropic. Hamilton considered also the more general case of a crystalline medium.
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transforms any wave-front a into the wave-front 2 which is derived from
a by propagation through the medium in the interval of time t'-t.

,

A simple example of a contact-transformation is the well-known geometrical trans-

formation known as reciprocation. In order to find the reciprocal of any given surface o>
with respect to a given surface, we correlate to every point (x, y, z) on o- a plane, namely
the polar plane of (x, y, z) with respect to the quadric. When the point (x, y, z) takes all

possible positions- on the surface er, the plane envelopes a surface 2, which is the reciprocal

of <r. The transformation from n- to 2 is evidently a contact-transformation. In this

case Hamilton's function V is linear with respect to {x, y, z) and also with respect to

(•< y\ O-

Proceeding now with Hamilton's problem, equations (2) and (3) may be

written

^ = *l, ^ = *m,
Tz

= Kn,

dV BV , 3F . ,^ = Xl, w =Xm, w =\n,

where k and A. are quantities not as yet determined. They can however be

readily found. For the equations may be written

dV = n{ldx + mdy + ndz) + X (I'dx' + m'dy' + n'dz') (5).

Now by proceeding a small distance ds' along the ray at (x'
t y', z'), we

increase V by the time which light takes to travel along ds'. But if the

units are so chosen that' the .velocity of light in free aether is unity, then

the velocity of light in the medium at (as, y', z) is 1///, where y! denotes

the refractive index at this point. Thus the time taken by light to describe

ds' is fi'ds', or pi (I'
2 + pi'2 + n'2) ds', or pi (I'dx' + m'dy' + n'dz'). Comparing

this with equation (5), we see that X = p'. Similarly K = — p, where p
denotes the refractive index at (x, y, z). Thus Hamilton's general formula

becomes

dV= pi (I'dx' + m'dy' + n'dz') — p(ldx + mdy +ndz).

If we write

pi = £, pm = v, pn = f, pi I' = £', pirn' = i?', p'n' = ?',

this takes the form

dV^g'dx' + ri'dy' + Z'dz'-Zdx-ndy-Zdz (6).

The quantities (f, n, £); (f, »?'> f') were called by Hamilton the components

of normal slowness of propagation of the wave at (x, y, z) and (x', y
', z')

respectively.

Consider now the particular case in which the interval of time (t' — t)

between the two positions a and 2 of the same wave-front is very small

:

19—2
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denote it by At. In this case the contact-transformation is said to be

infinitesimal. Write

x' = x + aAt, y' = y + fiAt, z' = z+yAt,\

£'=£ + uAt, v
'=

v +vAt, f=£+wA«,i (7).

7= WAt J

Then equation (6) becomes

dW . At = (£ + uAt) (dx + da . At) + (n + vAt) (dy + d/3 . At)

+ (£ + wAt) {dz + dy . At) — fjdx -ndy- £dz

= uAtdx + vAtdy + wAtdz + fAtda + nAtd/3 + %Atdy,

or dW = udx + vdy + wdz + %da + ndfi + ^7,

or d (£a + r)/3 + £7 — W) = adij+ fidn + yd^— udx — vdy — wdz.

Thus if we denote the function £a + ?i/3 + £7 — W by -H", and suppose H
expressed as a function of x, y, z, if, 77, £ we have

dH=ad!;+ j3dn + yd£—udx—vdy — wdz (8).

Now evidently, from (7), in the limit u becomes -£ , a becomes -j , etc.

Thus we have

dH= t d^ +% d^% d
^-ft

dx-t dy-ft
dz

'

so the rates of increase of the six variables (x, y, z, £, 97, £) are given by the

equations

dy_ dH dz_ dH
dt~ dy

' dt~ 3? _ .

dy = _dH ^__^(
dt dy

'

dt dz
,

and this is a Hamiltonian system of equations, such as occurs in dynamics.

Our investigation shews that it may be regarded as representing an in-

finitesimal contact-transformation, that is to say, the motion of a wave-front

from one position to a position indefinitely near it. The integrals of this

Hamiltonian system are the equations (1), (2), (3), (4) above : they represent

a finite contact-transformation, that is to say, the motion of a wave-front

from one position to the position which it acquires after a finite interval of

time. Thus we see how by using the ideas of the undulatory theory of light,

Hamilton was able to obtain an integrated form for the differential equations

of dynamics, depending on a single unknown function.

126. Contact-transformations in space of any number of dimensions..

The rest of the present chapter will be concerned with the application of

Hamilton's ideas, described in the preceding article, to the general case of a

dynamical system with any number of degrees of freedom, and the connexion

dx
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of the results with certain theorems due to Lagrange, Poisson, Pfaff, and
Jacobi.

We shall first define a contact-transformation in n-dimensional space)

using for this purpose a generalisation of equation (6) of the last article.

Let (qx , q2 , ..., qn , pu p2l ...,pn) be a set of 2ra variables, and let

(Oi, ft, .... Q», P1,P2 ,...,Pn)

be In other variables which are defined in terms of them by In equations.

If the equations connecting the two sets of variables are such that the

differential form

PidQi + P^dQ2 + ... + PndQn -

p

1dq1 -

p

2dq2
- ... - pndqn

is, when expressed in terms of (qly q2 , ..., qn,p x , p2 , ..., pn) and their differ-

entials, the perfect differential of a function of (qlt q2 , ..., qn , px , p2 , ...,pn),

then the change from the set of variables (qu q2 , ..., qn ,Pi, p2 , ,Pn) to the

other set (Qlt Q2 , ..., Qn , Plt P2 , ..., Pn) is called a contact-transformation.

It may be observed that this is different in form from the definition which is most
convenient when contact-transformations are studied with a view to their applications in

geometry and in the theory of partial differential equations : the latter definition may be

stated thus : a contact-transformation is a transformation from a set of (2n+ l) variables

(.qi,qa,...,qn,Pi,P2,--,P»,z) to another set (Qu Q2 , ..., Qn , Pu P2 , ...., Pn , Z), for

which the equation

.
dZ-PldQl

- P2
dQ2

- ... - PndQn= p (dz~p ldq1 -p2dqi
- ..._-pndqn)

is satisfied, where p denotes some function of (qlt q2 , ..., qn , p\, p%, ..., pn , z).

If the n variables (Qu Q2 , ..., Qn) are functions of (qu q2 , ..., qn) only,

the contact-transformation from the variables (qlt q2 , ..., qn , plt ..., pn) to the

variables (Qx , Q2 , ..., Qn , Pi, -, Pn) is called an extended point-transformation,

the equations which connect {qlt q2 qn) with (Qlt Q2 , ..., Qn) being in this

case said to define a point-transformation.

From the definition it is clear that the result of performing two contact-

transformations in succession is to obtain a change of variables which is itself

a contact-transformation. • It is also evident that if the transformation from

(q1 ,q2,...,qn,Pi,.---,Pn) to (Q 1 ,Qt,....,Qn,Pi,---,Pn) is a contact-trans-

formation, then the transformation from (Qly Q2 , ..., Qn , P„ P2 , ..., Pn) to

(ji. ?9» •••> qn,Pi>P2, >Pn) is also a contact-transformation; this is generally

expressed by saying that the inverse of a contact-transformation is a contact-

transformation. This, together with the foregoing, shews that contact-trans-

formations possess the group-property.

Example 1. Shew that the transformation defined by the equations

| Q=(2qft e* cos p,

{P={2qfie- k amp,

is a contact-transformation.
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In this case we have •

PdQ—p dq= (2qft sinp {(2q)
~ * cos pdq - (2<?)* sinp dp} -p dq

= d(q sin p oosp — qp),

which is a perfect differential.

Example 2. Shew that the transformation

(§=log(-sinpJ,

*P= qcotp,

is a contact-transformation.

Example 3. Shew that the transformation

(Q=log(l+qi coap),

[P= 2 (1 +q$ cosp) q* sin p,

is a contact-transformation.

We shall now obtain the explicit analytical expression of a contact-

transformation.

Let the transformation from variables (qx , qit . .
. , qn , px , ..., pn) to variables

(Qj> Qn, • ••> Qn, Pi, •••, Pn) be a contact-transformation, so that

n

S (PrdQr -prdqr) = dW,
r=l

where dW is a complete differential.

From the equations which define (Qlt Q2 , ..., Qn , PJ , ..., Pn) in terms of

(?i. ffa. • • >qn,Pi, ,pn) it maybe possible to eliminate(Plt P2 , ... , Pn,Pi, -,Pn)

completely, so as to obtain one or more relations between the variables

(Vi> Vaj ••! Hn, qi> •••> 9V)5

let the number of such relations be k, and let them be denoted by

D.r (qu qi, .., qn , Qi, •, Qn) = (r= 1, 2, ..., £)...(A).

The meaning of these relations may be illustrated by reverting to the geometrical

theory of contact-transformations in ordinary three-dimensional space, when there are

three cases to consider :

(a) There may be only a single relation between the new and old,coordinates, say

a{x,y,z,x',y',4)= 0.

When (x, y, z) are given, this equation, regarded as the locus of a point (a/, y', z"),

represents a surface ; so that each point (x, y, z) is transformed into a sv/rface, which we

may call an fl-surface : and any arbitrary surface <r is transformed into a surface S which

is the envelope of the fi-surfaces corresponding to the individual points of o\ This is the

general case, and is the only one we considered in § 125.

(j8) There may be two relations of this kind, say

Qx (x, y, z, x', y',z')= 0, Q2 (x, y, *,x',y',z')= 0.

If (x, y, z) are given, these two equations in (.#', y, z
1

) represent a curve : so each point

(x, y, z) is transformed into a cwrve, which we may call a if-curve : and any arbitrary
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surface o- is transformed into a surface 2 which is the envelope of the Z-curves corre-
sponding to the individual points of a-.

(y) There may be three relations of this kind, say

%(*,&*, a', y',*'}=0, Ot(x, y, », J, tf, j)=ot a3 {x,y,z,3/,y',J)= 0,

in which case each point (x, y, z) is transformed into a point (tf, y', z'), and any arbitrary
surface o- is transformed into a surface 2 which is the locus of the points corresponding to
the individual points of o-.

Since the variations (dqu dq2 , ..., dqn , dQlt ..., dQn) in the equation

n

2 (PrdQr -pr dq,.) = dW
r=l

are conditioned only by the relations

£* +£* + ... +g«. + |£* + ... +g*-.
(r-1, 2, ...,*),

we must have

p _dw an, an*

dw an
x an*

Pr_ a^
-
^a^~-~ Xft

a^:y

^ (r» 1,2, ...,») (B),

where (\1( A^, ...,X*) are undetermined multipliers and where W is a function

of (<?i, <72, •••, qn , Qi, Q2 , •••, Q»). The equations (A) and (B) are (2n + k)

equations to determine the (2n + k) quantities

Wij •••> Qn, P\, ••> Pn, \, ••, A*)

in terms of (qlt ..., qn , plt ..., pn). These equations may therefore be regarded

as explicitly formulating the contact-transformation, in terms of the functions

(W, Hlt X22 , ..., n*) which characterise the transformation. •

Conversely, if
(W, D,lt f22 , . .

.
, Q,k) are any (k + 1) functions of the variables

(<?i, ?2, ••-, qn , Qi, ..., Qn), where k^n, and if

(Ql, Qa> •••, Qn, Pi, •••> Pn, A1; •> A*)

are denned in terms of (qlt q2 , ..., qn , pu ..., pn) by the equations*

'sir{qi,qs, , qn , Qi, Qi, • ••, Qn) = o (r=i, % ...,k),

., aTf , an, , afi
ft x

3F . anx
an*

^"-^"^""-^a^ (- = 1,2,...,,),

* These equations were first given in Jacobi's Vorlesungen iiber Dynamik (1866), p. 470, where

their utility in the transformation of partial differential equations of the first order (to which

dynamical problems can be reduced) was indicated. Their place in the theory of contact-trans-

formations was pointed out by Lie.
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then the transformation from. (qu qit ..., qn ,P\, r--,pn) to (Qlt Qit ..., Qn ,

Pj , . .
.

, Pn) is a contact-transformation ; for the expression

n

2 (PrdQr-prdqr)
r=\

becomes, in virtue of these equations, d W, and so is a perfect differential.

Example. If Q= (2q)% k~^ cos p, P=(2q)^$ sin p,

shew that P=^, P=- Jq
-

)

where W=$Q (2qh-WQ^ - q arccos {$ §/(2g)*},

so that the transformation from (q, p) to (Q, P) is a contact-transformation.

127. The bilinear covariant of a general differentialform.

Now let (xx , «b, ..., #„)be any set of w variables, and consider a differential

form

X^i + X2dx2 + . . . +Xndxn ,

where (Xl7 Xa , . .
.

, X„) denote any functions of {xlt x2 , ..., xn) ; a form of this

kind is called a Pfaff's expression* in the variables (a^, #2 > ..., xn). Let this

expression be denoted by 6d , and write

6s = Xi&Ei +X2 Bx2 + . . +Xn Sxn ,

where 8 is the symbol of an independent set of increments. Then we have

S0d — dds =& (X^Xi + X^dx2 + . .. +Xndxn) — d (X^Xi + X2 Sx2 + ...+ Xn Sxn)

= SXidXi + ... + hXndxn + XiSdX} + ... +XnSdxn

— dX1Sx1
— ... — dXn Sxn — X-^dhx^ — ... —XndBxn .

Using the relations Bdxr = dBxr , which exist since the variations d and 8

are independent, and replacing dXr , hXr by

-5—- dx1 + ... +~ dxn ,
-—- hxx + . . . + =—

^

Sxn respectively,
ox1 dxn dxi dxn

r "

n n
we have 80d — d0s = 2 2 aydxtSasj,

where a^ denotes the quantity dXt/dXj — dXjjdx^

Let (ylt y2 , ..., yn) be a new set of variables derived from (xlt x2 , ..., xn)

by some transformation ; let the differential form when expressed in terms of

these variables be

Fiffyi + Y*dy2 + ... + Yndyn ,

* Pfaff's celebrated memoir on these expressions was presented to the Berlin Academy in 1815:

Abhandl. Akad. der Wise. 1814-15, p. 76.
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and let the quantity dYijdyj - dYj/dyt be denoted by by. Then since the

expression 80d — d6$ has obviously the same value whatever be the variables

in terms of which it is expressed, we have

n n n n
2 2 ciijdxihxj=22 bydyityj.
i=l 3 = 1 i=l ,7 = 1

The expression ZuydxiSxj is, on account of this equation, called the

bilinear covariant of the form 2 Xrdxr .

r=l

128. The conditions for a contact-transformation expressed by means of
the bilinear covariant.

l^t (Qi, Qi Qn, Pi, -, Pn) be variables connected with (qlt q2 , ...,

n

9mj.Pi, •,pn) by a contact-transformation, so that 2 PrdQr differs from
>-=i

n

2 prdqr by an exact differential.
r=l

It is clear from the last article that the bilinear covariant of a differential

form is not affected by the addition of an exact differential to the form, since

it depends only on the quantities dX{/dxj — dXj/dxi, which are all zero when
the form is an exact differential : and we have shewn that the bilinear

covariant of a form is transformed by any transformation into the bilinear

covariant of the transformed form. It follows that the bilinear covariants of

n n
the forms 2 PrdQr and 2 prdqr are equal, i.e. that

r=\ r=l

n n
2 (SPrdQr — dPr8Qr)= 2 (Sprdqr — dqrSpr) ;

r=l r=l

so that if the transformation from

(Ml, ?2. , qn,Pl, »-,Pn) tO (Qi, Q*, •-, Qn,Pi, , Pn)

is a contact-transformation, the expression

n

2 (Bprdqr — dqr Spr)
r=\

is invariant under the transformation.

Example. For the transformation denned by the equations

Q=(2qfik~bcosp, P=(2g)i$ sin p,

we have

dP= (2q)
~^$ sin pdq + (2y)* $ cospdp,

8Q= (2q) ~^k~^ooap8q- (2y)i k ~ * sin^Sp,

8P

=

(2q)
~ * $ sin p 8q+ (2qfi $ cosp 8p,

dQ= (2q)
~ i k ~ i cos pdp — (2q)i k ~ * sin pdp.
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By multiplication we have

dPSQ- 8PdQ= -sin2p (dqSp- 8qdp)+cos*p {dpbq-bpdq)

=dp&q-&pdq,

and consequently the transformation is a contact-transformation.

129. The conditions for a contact-transformation in terms of Lagrange's

bracket-expressions.

We shall now give another form to the conditions that a transformation

from variables (qu qs, ...,qn , Pi Pn) to variables (Qu Q2 , ..., Qn , Pu ...,Pn)

may be a contact-transformation.

If (qlt qit ...,qn,pi, ,pn) are any functions of two variables (u, v) (and

possibly of any number of other variables), the expression

n

2|
fdqr dpr dpr dqr\

=1 \du dv du dv J

is called a Lagrange's bracket-expression*, and is usually denoted by the

symbol [u, v\.

If now (gls q2 , ..., qn , pu ..., pn) are any functions of 2n variables

(Qi. Qa, •••, Qn, Pi, -, Pn), then in the expression

n

2 (dpr Sqr — Sprdqr)
r=l

we can replace dpr by

||^1 +||^ + ... +^^ +^cZP1+ ... +^^ (

and similarly for the other quantities ; we thus obtain, on collecting terms,

n

2 (dpr$qr — Bprdqr) = 2 [uk , u{\ (duiBuk — 8uiduk),
r=l

'

k, I

where the summation on the right-hand side is taken over all pairs of

variables (uk , u{) in the set (Qlt Q2 , ..., Qn , P1; ..., P„).

But if the transformation from the variables (qu q2 , ..., qn ,Pi, ••> Pn)

to the variables (Qi, Q2 , , Qn , Pi, -, Pn) is a contact-transformation, we

have

2 (dprSqr - Sprdqr) = 2 (dPrSQr - SPrdQr),

and this holds for all types of variation 8 and d of the quantities ; comparing

with the above equation, we have therefore

[Pit Pk] = 0, [&, <M = (i,k=l,2,...,n),

[Qi,Pk]=0 (ik=l,2, ...,n;i%k),

[Qi, Pi] = l (i = l,2,...,n).

Lagrange, Mini, de I'Institut de France, annee 1808 : reprinted Oeuvres, vi. p. 713.
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These may be regarded, as partial differential equations which must be

satisfied by (qu q2 , ..., qn , pu ...,pn), considered as functions of

in order that the transformation from one set of variables to the other may be

a contact-transformation. These equations represent in an explicit form the

conditions implied in the invariance of the expression

n

2 (dpr Sqr — Bprdqr).

130. Poisson's bracket-expressions.

We shall next introduce another class of bracket-expressions which are

intimately connected with those of Lagrange.

If u and v are any tw& functions of a set of variables (q1 , q2 , ..., qn ,

Pi< -,Pn), the expression

y /du dv 3m. dv\

r=i\dqr dpr tyr dqr )

is called the Poisson's bracket-expression* of the functions u and v, and is

denoted by the symbol (u, v).

Suppose now that (wj, u2 , ..., um) are 2ra independent functions of the

variables (qu q2 , . .
. ,

q

n , plt ....

p

n ), so that conversely (qlt q2 , ...,qn , Pi, , Pn)

are functions of (w1; w2 , ..., um). There will evidently be some connexion

between the Poisson-brackets (ur , us) and the Lagrange-brackets [ur , us]

:

this connexion we shall now investigate.

We have

5,
, r t %$ % (dut dur. dut dur\(dqjdPj dpj dqj

2 (ut , Ur ) [ut , Ws l = 2 2, 2, 5— ~ 5— a
-

J I o a
—

o o
<=i t=n=ij=i\oqidpi dp{ dqt/ \dutdu, dut dus .

Now multiply out the right-hand side, remembering that

2» dut dq
} , «» dut dp,is-^ and 2^—5^

t=i oqi dut t= i dpi dut

are each zero if i £ j and unity if i =j ; and that

Sppi and S^jfc
t=i oqi dut t=\ opt out

are each zero ; the equation becomes

£ (ut , ur) K, us] = 2
x (^^ +^ 9

-j

.

and consequently
in

2 (m«, Wr) [ttt, Us] = when rjs,

while 2 (m«, ur) [u t ,ur] = l.

t=\

* Poisson, Journal de I'Ecolepolyteeh. vm. (Cahier 15), (1809), p. 266.
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But these are the conditions which must be satisfied in order that the

two determinants

[ita, Mj] [Ms, ^...[Mj, m2„J

and («!, «i) («2, Mi) ••• ("ara. Ml)

(«i, «a)(«2> «a) ... («». «s)

(Mi , Mim) (.Man > ^2»)

may be reciprocal, i.e. that any element in the one should be equal to the

minor of the corresponding element in the other, divided by this latter

determinant ; the product of the two determinants being unity ; and thus the

connexion between the Lagrange-brackets and the Poisson-brackets is expressed

by the fact that the determinants formedfrom them are reciprocal.

Example!. If /, cj>, ty are any three functions of (qu q2 , ...,q„pu ..., pn), shew that

((/, <*>), *) + <(*, <M, />+((*> f), 4>)= o.

Example 2. If F, * are functions of (fu f2 , ..., fk), which in turn are functions

of (?i, ?2, •-, qn, Pi, ..., Pn), shew that

where the summation is taken over all combinations fr , /„.

131. The conditions for a contact-transformation expressed by means of
Poisson's bracket-expressions.

Now let (Qi, Qz, ..., Qn , Pi, -, Pn) denote 2ra functions of 2re variables

(<?i> ?ai ••. 1n,Pi, ,Pn)) we shall shew that the conditions which must be

satisfied in order that the transformation from one set of variables to the other

may be a contact-transformation may be written in the form

f(P„Pi) = 0, (Qt,Q,) = (i,j=l,2,...,n),

(Qi,P3) = (i,j=l,2,...,n; i$j),

(Qi,Pi) = l (i = l,2,...,n).

For we have seen in § 129 that the conditions for a contact-transformation

are expressed by the equations

([PfoP/l-O, [Qi,Q}] = (i,j=l,2,...,n),

[Qt,P}]
= (»,j= 1,2, ...,n; itj),

[Qi,Pi]=l (-1,2 n).

Hence the relations

i (ut , ur)[ut , wg]=0 (rS«)
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of the last article become

( Qt, Qi) = (P{ , P,) = (i, j = 1, 2, . .
.
, n),

,..,,. , .
(Ps,Qt) = o (ii-1,2 Hji'sj),

while the relations

2 (m( , ur)[ut> ur] = l
t=i

give (ft, P<) = 1 (»=1, 2, ...,n);

the theorem is thus established.

Example 1. If (ft, ft, ... , ft, Pn ..., P„) are connected with (y1( ?a , ... , qn , pu ..., pn)
by a contact-transformation, shew that

| /3g_ 3^ _ 30 |<ty
\ » /30 <ty _ 80 3JA

r=A3«r3Pr 3i>r3§J~r=lWr9pr 3?r 3?J
'

so that the Poisson-brackets of any two functions $ and ^ with respect to the two sets of

variables are equal.

Example 2. If (ft, ft, ..., ft) are given functions of (q1} q2 , ..., qn , pu ...,pn), and
satisfy the partial differential equations

(Qr, ft)=0 (r,«=l, 2, ...,»).

shew that n other functions (P1( P2 > ••> PJ can be found such that the transformation

from (jj, j2 , ..., g-„, pu ..., pn) to (ft, ft, ..., ft, P1; ..., P„) is a contact-trans-

formation. (Lie.)

132. The sub-groups of Mathieu transformations and extended point-

transformations.

If within a group of transformations there exists a set of transformations

such that the result of performing in succession two transformations of the

set is always equivalent to a transformation which also belongs to the set, this

set of transformations is said to form a sub-group of the group.

A sub-group of the general group of contact-transformations is evidently

constituted by those transformations for which the equation

n n

2 PrdQr = 2 prdqr
r=l r=l

is satisfied. These transformations have been studied by Mathieu*.

They are essentially the same as the transformations called " homogeneous contact-

transformations in (jj, q2 , ..., qn , Pi, •-,Pn)" by Lie.

In this case, we see from § 126 that (Qu Q2 , ..., Qn , Plt ..., Pn) are to be

obtained by eliminating (A,, \2 , ..., Xj) from the (2n + k) equations

fir(?i, ?« qn , Qi, •••> Qn)= (r = l,-2, ..., k),

Pr=Xi_ + X2
_ + ... + X,m- (r = 1,2, ...,«),

. an, . an2 3ot

^—^-^---^ (r " 1,2 n>

* Journal de Math. xix. (1874), p. 265.
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From the form of these equations it is evident that if (pu p2 , ...,pn) are

each multiplied by any quantity fi, the effect is to multiply (Plt Pa , ..., Pn)

each by fi; and therefore (Plt P2 , ..., Pn) must be homogeneous of the first

degree (though not necessarily integral) in (p!,p2 , ...,pn).

A sub-group within the group of Mathieu transformations is constituted

by those transformations for which (P,, P2 , ... , Pn) are not only homogeneous

of the first degree in {p1 , p2 , --^Pn) but also integral, i.e. linear, in them; so

that we have equations of the form

Pr = 1 pkfrk (qu q2 , ...,qn) (r = 1, 2, , .
.

, n).
k=l

Substituting in the equation

n n
2 PrdQr— 2 prdqr = 0,
r=l r=l

and equating to zero the coefficient ofpk , we have

n
2 frk(qi, &, ,qn)dQr = dqk (k=l,2,...,n),

so (qx , q2 , ..., qn) are functions of (Qlt Q2 , ..., Qn) only, and

frk = dqk/dQr (r, k = 1, % ..
.

, n).

It follows that transformations of this kind are obtained by assigning

n arbitrary relations connecting the variables {q^, q2 , ..., qn) with the variables

(Qn Q2, , Qn), and then determining (Plf P2 , ...,Pn)from the equations

P,.= l pk^ (r=l,2,...,n).
k=l VVr

These transformations are extended point-transformations (§ 126).

n n
Example. If 2 PrdQr= 2 prdqr ,

r=\ r—l

"30 » dP
shew that 2 5o45-^=0, Spi3-l=Pr .

133. Infinitesimal contact-transformations.

We shall now consider transformations in which the new variables

(Qi. Q2, •••> Qn, Pi Pn) differ from the original variables
((ft, q2 , ... qn ,

P\, -,Pn) by quantities which are infinitesimal. Let these differences be

denoted by (Aqu Aq2 , ..., Aqn , Aplt ..., Apn), where

Aqr =<j>r (q1,q2,...,qn,p1 ,...,pn)At\ ,r==12 n)
Apr = fr (q1 ,q2 ,...,qn,p1,...,pn)Atj ' '""' ''

and At is an arbitrary infinitesimal constant; so that

Qr = qr + Aqr =qr + (
j)r
At\ /-_ 12 n)

Pr = pr +Apr
= pr+frAt]

V-L,4,...,n),
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and the transformation is specified by the functions

(</>!, #2, -., 4>n , ^i, ^a, ..., fn ).

Now suppose that the transformation is a contact-transformation. Then
we have

2 (PrdQr -prdqr) = dW,

where W is some function of (qu qt , ..., qn , Pl) ..., pn)- r-

n

2 {(pr + yjrr At) (dqr + d<br . At) -prdqr) =dW,

n
or At % {frdqr +pr d<}>r)=dW.

r—l

It is evident that the function W must contain At as a factor : writing

W= UAt, where *7is some function of (qu q2 , ..., qn , pu ...,pn ), the equation

becomes
n

2 (y]rrdqr +pr d<f>r) = dU.

Hence we have

2 (^}rrdqr - (j>rdpr) = d[U- 2 pr <j>r)
r=l \ r=l 1

= -dK(q1 , q^, ..... qn ,pu ...,pa) say,

and therefore
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134. The resulting new view of dynamics.

The theorem established in the last article enables us to extend to all

conservative holonomic dynamical systems, whatever be the number of degrees

of freedom, the conception which was formulated at the end of § 125 for

certain simple systems. For the motion is expressed (§ 109) by equations of

the type

dqr dH dpr dH . ^ „ .

dt dpr dt dqr
v '

and from the last article it follows that we can interpret these equations as

implying that the transformation from the values of the variables at time t

to their values at time t + dt is an infinitesimal contact-transformation. The

whole course of a dynamical system can thus be regarded as the gradual self-

unfolding of a contact-transformation. This result is really a generalisation

of the statement that the paths of the rays in a pencil of light can be specified

by the gradual propagation of a wave-front. Taken in conjunction with

the group-property of contact-transformations, it is the foundation of the

transformation-theory of dynamical systems.

From this it is evident that if (qlt q2 , ..., qn , plt ...,pn) are the variables

in a dynamical system, and (alt a2 , ..., an , ft, ..., /3„) are their respective

values at some selected epoch t = t , the equations which express (q1 , q2l . .. , qn ,

Pi, ••» Pn) in terms of (o^, a2 , ... , an , ft, ..., ft, t) (and which constitute the

solution of the differential equations of motion) express a contact-transforma-

tion from (<*!, o2 , ..., «„, A. ••, Pn) to (7,, g 2 , ..., qn , plt ...,pn); in this t is

regarded merely as a parameter occurring in the equations which define the

transformation.

135. Helmholtz's reciprocal theorem.

Since the values of the variables (qlt q$, ..., qn , Pi, •-, Pn) of a dynamical

system at time t are derivable by a contact-transformation from their values

(<*!, «2 , ..., «„, ft, ..., /3„) at time to, we have (§128)

S (*pt8qt
- SpiAqi) = t (Aft 8a, - Sft- Aa,),

where the symbols A and 8 refer to increments arrived at by passages from

a given orbit to two different adjacent orbits respectively.

Now suppose that 8 refers to the increments obtained in passing to that

orbit which is defined by the values

(«1, °2, •••, «», ft, ft, •••, ft-i, ft + 8ft, ft+l, ••, ft)

at time t ; and let A refer to the increment obtained in passing to that orbit

which is defined by the values

(qlt q2 , ...,qn,pu , p,-u p> + Aps,p8+1 , ...,/>„)
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at time t^; then the above equation becomes

Ap„%=-S/9,.Aa,.,

so the increment in qs due to an increment in ftr (when «l7 «2 , ..., an ,

/3i, ..., /3r-i> fir+\, • •> /3» are not varied) is equal to the increment (with sign

reversed) in ar corresponding to an increment in ps (when qi,qs,...,qn >Pi> •••>

ps-i, Ps+i< •••> Pn are not varied) equal to the previous increment in /8r .

This result can for many systems be physically interpreted, as was

observed by Helmholfcz*; for a small impulse applied to a system can be

conveniently measured by the resulting change in one of the momenta

(p1 , ...
, pn), and the change in ar due to a change in ps can be realised in the

reversed motion, i.e. the motion which starts from some given position with

each of the velocities corresponding to that position changed in sign, so that

the subsequent history of the system is the same as its previous history, but

performed in reverse order. We can therefore state the theorem broadly

thus : the change produced in any interval by a small initial impulse of any

type in the coordinate of any other (or of the same) type, in the direct motion,

is equal to the change produced in the same interval of the reversed motion in

the coordinate of the first type by an equal small initial impulse of the

second typef.

Example. In elliptic motion under a centre of force in the centre, if a small velocity

&v in the direction of the normal be communicated to the particle as it is passing through

either extremity of the major axis, shew that the tangential deviation produced after

a quarter-period is /i~*8v, where p is the constant of force. Shew also that a tangential

velocity 8v, communicated at the extremity of the minor axis, produces after a quarter-

period an equal normal deviation p~* 8v. (Lamb.)

136. Jacobi's theorem on the transformation of a given dynamical system

into another dynamical system*

It appears from § 116 that if a Hamiltonian system of differential

equations
dqr dH dpr _ dH /__, a „\

-dt-djr ' -dt-~dqr
V-L, *,...,*)

is transformed by change of variables, the system of differential equations so

obtained will still have the Hamiltonian form

dQr _dK dPr_JK
-df-Wr' dt ~ dQr

^ i'^ — n>'

provided the new variables (Q1 , Q„ ...» Q», Pi, ••-, Pn) are such that

is an integral-invariant (relative or absolute) of the original system.

* Journal fur Math. a. (1886).

t Cf. Lamb, Proc. Lond. Math. Soc. xix. (1898), p. 144.

20
W. D.
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A transformation of this kind is, in general, special to the problem

considered, i.e. it transforms the given Hamiltonian system into another

Hamiltonian system, but it will not necessarily transform any other arbitrarily

chosen Hamiltonian system into a Hamiltonian system. Among these

transformations however are included transformations which have the pro-

perty of conserving the Hamiltonian form of any dynamical system to which

they may be applied : these may be obtained in the following way.

We have seen (§115) that

I 2 pr&qr
J r=l'r=l

is a relative integral-invariant ofany Hamiltonian system. Let {Qlt Qa , .

.

., Qn ,

Plt ..., Pn) be a set of 2n variables obtained from (q1} q2 , ..., qn , plt ...,pn)

by a contact-transformation, so that

I PrdQr - 2 pr dqr = dW,

where dW denotes an exact differential. The equations which define the

transformation may involve the time, so that (Qlt Q2 , ..., Qn , Pi, ..., Pn) are

functions of (qlt q2 , ..., qn ,Pi, ,pn,t)\ but in the variation denoted by d

in this equation the time is not supposed to be varied : if t is supposed to

vary, the equation becomes

2 PrdQr - 2 prdqr = dW+ Udt,

where U denotes some function of the variables.

Now the variation denoted by S in the integral-invariant is a variation

from a point of one orbit to the contemporaneous point of an adjacent orbit

;

if therefore we regard the variables as functions of {alt a^, ..., am , t), where

(oj, Oa, ..., am) are the constants of integration which occur in the solution of

the equations of motion, the variation 8 is one in which (alt a2 , ..., o») are

varied but t is not varied : we have consequently, as a special case of the last

equation,

I Pr SQr - 2 pr Sqr =BW,
r=l r=l

r n
and therefore I 2 Pr&Qr

J r=l

is a relative integral-invariant ; so the transformed system of differential

equations, in which (Qlt Q2 , ..., Qn , Px , ..., Pn) are taken as dependent

variables, will have the Hamiltonian form and can be written

dQr _dK dPr _ dK
dt ~Wr

' dt
~ dQr

V- l>* n >'

where K is some function of (Q1} Q2 , ..., Qn , Pu ..., Pn , t).
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Hence a contact-transformation of the variables (qlt q2 , ...,qn,plt ...,pn)

of any dynamical system conserves the Hamiltonian form of the equations of
the system*. In the case of an ordinary "change of variables" in the dynamical

system, in which (Q1; Q2 , ..., Qn) are functions of (qlt qt , .... qn) only, the

contact-transformation is merely an extended point-transformation.

Example. Shew that the contact-transformation defined by the equations

q = (2§)* k - i cos P, p= 2Q)i$ sin P,

changes the system
a\= dH dp_ dS
dt~ dp' dt dq'

where #=£(p2+ £Y),

into the system
dQ = d_K dP__d_K
dt~dP' dt~ -3§'

where * K=kQ.

137. Representation of a dynamical problem by a differential form.

The reason for the importance of contact-transformations in connexion

with dynamical problems is more clearly seen by the introduction of a certain

differential form which is invariantively related to the problem.

Let any differential form with (2n + 1\ independent variables (xlt x2 , ...,

Xxdxx + X2dx2 + . . . +Xm+1dxm+1 ;

we have seen (§ 127) that its bilinear covariant

2»+l 2«+l

& £* aij ax$ 0*0

,

i=l j=l

where o# denotes the quantity (dXi/dxj — dXj/dxi), is invariantively related to

the form. If we equate to zero the coefficients of Sx1 , 8x2 , ..., hxm+1 , we
obtain the system of (2« + l) equations

2»+l 2»+l 2TO+1

2 aildxi
= 0, 2 ai2dxi = 0, ..., 2 ai<m+xdxi

= 0.
i=l i=l i=l

Since the determinant of the quantities ay is skew-symmetric and of odd

order, it is zero, and these equations are therefore mutually compatible.

They are known as the first Pfaff's system of equations corresponding to the
2»+l

differential form 2 Xrdxr , and from the mode of their formation are in-
r=l

variantively connected with it ; that is to say, if any change of variables is

made, the new variables {yx , y2 , ..., ym+1) being given functions of (x1 , x2 , ...,

x2n+i)y and if the differential form be changed by this transformation to

2»+l .

2 Yrdyr ,

* This important theorem was first given by Jacobi, Comptes Bendus, v. (1837), p. 61.

20—2
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2n+l 2»+l 2»+l

and if 2 bildyi
= 0, 2 bi2dyi = 0, ..., 2 bii2n+1 dyi =

i=l i=l i=l

be the first Pfaff's system derived from the differential form

2»+l

2 Trdyr ,

*=*
.

then this system is equivalent to the system

2n+l 2»+l 2»+l

2 aa da;i = 0, 2 ai2 dj»j = 0, ..., 2 aiim+1da;i =0.
»=1 i=l i = \

Consider now the special differential form

p1dq1 +p2dq2 + . . . +pndqn — Hdt

in the {In+ 1) variables (qlt q^, ..., qn , px , ...,pn ,
t), where H is any function

°f (<Zi» qi, •> qn> Pa >Pn>t). Forming the corresponding quantities a^, we

find that the first Pfaff's system of differential equations of this differential

form is

TiJT
— dpr — -~-dt = (r=l, 2, ..., n),

oqr

T)TT
dqr --^-dt = (r=l,2, ...,n),

dH- d~dt=0.
at

Of these the last equation is a consequence of the others : and therefore the

system of equations can be written

dqr_dH dpr__dH
dt~dpr

' dt~ dqr
Kr-i, *,..., n),

but these are the equations of motion of a dynamical system in which the

Hamiltonian function is H. It follows that the dynamical system whose

Hamiltonian function is H is invariantively connected with the differential

form
pxdqx + p2dq2 + ... +pndqn - Hdt,

inasmuch as the equations of motion of the dynamical system, in terms of any

variables {xlt x2 , ..., *2re , t) whatever, are the first Pfaff's system of the

differential form

Xxdxx + X2dx2 + ... + Xmdxm + Tdr

which is derived from theform

Pidq^pzdqz + ... +pndqn - Hdt

by the transformation from the variables (qlt q2 qn, Pi, •,Pn, t) to the

variables (x^, x2 , ..., xm , t).
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138. The Hamiltomian function of the transformed equations.

The result of the last article furnishes another proof of the theorem that

the equations of dynamics

dqr_d_H df>r__dH . „ ,

dt dpr ' .dt ~ dqr
^-^ ••' )

' conserve the Hamiltonian form under all contact-transformations of {qlt g2 , . .
.

,

qn>Pi> >Pn), and moreover it enables us to find the Hamiltonian function

K of the system thus obtained,

dQr_dR_ dPr dK
dt ~dPr

' dt
*

dQr
{*-*>*• ...,»;•

For let the contact-transformation be defined by the equations

(D.r = <y=l, 2, ...,k),

p bw _^ an, 3n2 an*

where (flj, na , ..., n*, Tf ) are any functions of the variables (qu q2 , ..., qn ,

Qi, Qz> > Qn, t).

From these equations we have identically

and hence (the symbol d denoting a variation in which all the variables,

including t, are changed)

r= i
* r=i of s=i or

The perfect differential dW on the right-hand side can be neglected,

since it does not affect the first Pfaff's system of the differential form : and

hence the contact-transformation transforms the system of equations

t
' W-dp-/ dt~ dqr

ir-l,2,...,n)

(r=l, 2, ..., n),

to the system



310 The Transformation-Theory of Dynamics [oh. xi

139. Transformations in which the independent variable is changed.

The result of § 137 also enables us to determine those transformations of

the whole set of (2ra+ 1) variables (qlt q2 , ..., qn , Pi, -, Pn, t) to new variables

(Qi: Q2 , , Qn, -Pi, •••> Pn, T) by which any Hamiltonian system

dqr _ dH dpr _ dH
/ _ i o \

~dt~dp~r
- ~dJ-~dq~r c- 1^ n)

is transformed into a system of the Hamiltonian form

dQl _d_K dPr __dK
dT~dPr

' dT~ dQr
Kr-i,*,...,n>.

For this is the same thing as finding the transformations which change the

differential form

Pidq! +p2dq2 + ... +pndqn + hdt,

where the variables (qu q2 , ..., qn , plt ..., p„,t, h) are connected by the

equation

H(qu q2 , -.qn, Pi, ,Pn,t) + h =
l

into the differential form

PjdQj + P2dQ2 + ... + PndQn + kdT + a perfect differential,

where the variables (Qu Q2 , ..., Qn , Pi, Pa, • •, Pn , T, k) are connected by

the relation

K(Ql, Q2 , -, Qn, Pi, .-., Pn, T) + k = 0.

But any contact-transformations of the (In + 2) variables (<£, q2 , ..., qn , t,

pu ...,pn,h) to new variables (Qu Q2 , ..., Qn , T, Plt P2 , ..., Pn ,&)will satisfy

this condition ; when the transformation has been assigned, the function K is

obtained by substituting in the equation

H(qu q2 , ..., qn ,Pi, ...,pn , t) + h =

the values of (qu q2 , ..., qn , t,pu ...,pn ,h) as functions of (Qlt ..., Qn , T,

Pi, ..., Pn , k), and then solving this equation for k, so that it takes the form

K{Q» Q», .», Qn,Pi, ..., Pn, T) + k = 0;

the required transformations are thereby completely determined.

140. New formulation of the integration-problem.

We have seen (§ 137) that if any change of variables is made in the

dynamical system

dqr dH dpr dH , ., _ .

dt dpr
'

dt dqr
( i, *,..., n),

the new differential equations will be the first Pfaff's system of the form

which is derived from

Pidqi +p2dq2 + ... +pndqn — Hdt

by the transformation.
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Supposing that a transformation is found, defined by a set of equations

?r=*r(Q1 ,e,,...,QB,P1> ...
J
P„,*)l . _, , ,

^ = ^(ft, Q„ ..., QB> P, .... P», *)!
l

' '

""
''

which is such that the above differential form, when expressed in terms of

the new variables, becomes

PidQi + P2dQ2 +...+ PndQn - AT,

where dT is the perfect differential of some function of the variables

(Qi> Q?» > Qn, Pi, •, Pn , t); the corresponding first Pfaff's system of

equations is

c%), = 0, dPr = (r=l, 2, .... n),

and the integrals of these equations are

Qr = Constant, Pr = Constant (r = 1, 2, . .
.

, n)

;

so the equations

qr=<f>r(Qi,Q2,...,Qn,Pu-..,Pn,t)\ . _

constitute the solution of the dynamical system, when the quantities (Qlt Q2 , ...,

Qn , Pi Pn) are regarded as 2re arbitrary constants of integration.

The integration-problem is thus reduced to the determination of a trans-

formation for which the last term of the differential form becomes a perfect

differential.

Miscellaneous Examples.

1. Shew that the transformation defined by the equations

§i=?i
2+xv, ft=?j"+xw

P^arctan (£) _ arctan
(g-) , P2

= A arctan (g) ,

is a contact-transformation, and that it reduces the dynamical system whose Hamiltonian

function is %(pi
i+Pi1+\~ i

qi
i +'^~ a

<lf) to the dynamical system whose Hamiltonian

function is Q2 .

2. If (*!, #j, ..., ffa,) denote any functions of (qu q2 , ..., qn , pu -,Pn), and if

Pidq1 + p2dq2+ ... +pndqn=X1dx1+X2dx2+ ... +X2ndx2n ;

if moreover a^ denotes dXmldxn-dXJdxm , D denotes the determinant formed of the

quantities «„,, A ik denotes the minor of aik in D, divided by D, and u and v denote

arbitrary functions of the variables, shew that

» /du dy_ _ du dv_\ * »
A

dv_ 3u__
(Clebsch.)

r=1 \dqr dpr dpr dqj i=i k=i * 3#4 3tf&"
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3. Shew that for any Hamiltonian system the integral -invariants

j ([...[8qt 8q2 ... Sqn 8Pl ... Spn

and ]jf...j&QilQ* .« *QJPi - 8P„,

extended over corresponding domains, are equal if (qi, q2 , ..., qn i Pi, •, pn) and

(fti ft> •••> ft» A> •••> ^») are connected by a contact-transformation.

4. Prove that the contact-transformation defined by the equations

- j,=X, - * (2ft)
4 cos Pj + Xa

_
4
(2ft)

4 cos P2)

L2= - Xt
- 1 (2ft)* cos Pj +X2

~ * (2ft)* cos P2 ,

V,= J(2X,ft)
4 sin P

1 + £ (2X2ft)* sin P2 ,

U- -i(2X!ft)4 sin P
x+ J (2X2ft)i sin P2)

changes the system

(r=l,2),



CHAPTEE XII

PROPERTIES OP THE INTEGRALS OP DYNAMICAL SYSTEMS

141. Reduction of the order of a Hamiltonian system by use of the integral

of energy.

We have shewn in § 42 how the Lagrangian equations of motion of a

conservative holonomic system can be reduced in order by use of the integral

of energy of the system. We shall require the corresponding theorem for

the equations of motion in their Hamiltonian form ; this may be obtained as

follows.

Consider a dynamical system with n degrees of freedom for which the

Hamiltonian function H does not involve the time explicitly, so that

H+h = 0,

where h is a constant, is the integral of energy of the system.

Let this equation be solved for the variable plt so that it can be written

K{p2,ps , ...,pn , ?i, ••, in, h)+p1 = 0.

The differential form associated with the system is

p^dqj + p2dq2 + ... +pndqn + hdt,

where the variables (qlt q2 , ..., qn , Pi, Pi, ••> Pn, K t) are connected by the

last equation : the differential form can therefore be written

p2dq2 +padqs +...+p„dqn + hdt-E(p2 , p3 , ..., pn , qt , ..., qn,h)dq 1 ,

where we can regard (qlt q2 , ...,qn ,Pi, •••, Pn, ft, t) as the (2n+ 1) variables.

But the differential equations corresponding to this form are (§ 137)

dqr_dK dpr_ BK , 23 v

dqx opr dql oqr

<tt = dK dh =0
dqx

~~
dh ' dqx

The last pair of equations can be separated from the rest of the system,

since the first (2/i — 2) equations do not involve t, and h is a constant.
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The original differential equations can therefore be replaced by the reduced

system

dqr = dK dpr = _dK
(r -2 8 ... n),

dqx dpr ' dq^ dqr

which has only (n — 1) degrees of freedom.

This result is equivalent to that obtained in § 42, as can be shewn by

direct transformation.

Example. Consider the system

dqr_dS dpr__dff , , _.

dt ~dpr
' dt ~ dqr

v
'

; '

where

u being a constant ; these are easily seen to be the equations of motion of a particle

which is attracted to a fixed point with a force varying as the inverse cube of the distance

:

q2 and qt are respectively the radius vector and vectorial angle of the particle referred to

the centre of force.

Writing H— - h, and applying the theorem given above, the equations reduce to the

system
dq%_dK dp2 dK
dqi

~
3p2

" dqx dq
2

'

where

K= -(p-qfrt-Shqrf.

Since K does not involve qlt the equation K= Constant is an integral of this last

system, and we can therefore perform the same process again : writing K= - k, we have

P2=\r^?— 2A
)
=--isay>

and the system reduces to the single equation

! _ dL _ k At -

t

~ dk ~ q<? \ qdq2

the integral of which (supposing /*<F) is

where t is an arbitrary constant. This is the equation, in polar coordinates, of the orbit

described by the particle.

142. Hamilton's partial differential equation.

If follows from § 138 that if a contact-transformation defined by the

equations

p dW dW /TONPr=
-dQr- Pr = Wr

(r-1. 2, ...,»),

where W denotes a given function of (qlt q2 , ..., qn , Qlt Q2 , ..., Qn , t), is

performed on the variables of a dynamical system defined by the equations

dqr _ dH dpr _ _ dH . _ _ .

It'tyr' W~~a^ (r-y,t,...,n),
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the resulting system is

dQr_dK dP1 _ M-
* 3P/ <&

~ 3Qr
(

' '

"•' H)
'

where .fir= #+31173$.

If the function K is zero, the system will be said to be transformed into

the equilibrium-problem. Now the function K will be zero, provided W is a

function such that

jt W(?i,fr, -.,?», Qi, ...,Qn,t)+H(qi,q2 , ...,qn,p1 , ...,pn,t) = 0,

i.e. provided If, considered as a function of the variables (qu q2 , ..., qn , t),

satisfies the partial differential equation

dW
,

/ BW dW dW \ nX+B(lu*,....q„
Wi

. ^.....^,*)-0.

This is called Hamilton's partial differential equation associated with the

given dynamical system. It was published by Hamilton in 1834*, being the

extension to dynamics of the partial differential equation which he had

discovered ten years previously in connexion with optics.

Suppose that a " complete integral " of this equation, i.e. a solution con-

taining n arbitrary constants in addition to the additive constant, is known.

Let (a,, a2 , ..., an) be these arbitrary constants, so that the solution can be

written W (q1 , q2 , ..., qn , alt a2 , ..., an , t) ; and perform on the original

dynamical system the contact-transformation from the variables (qlt q2 , ,qn >

Pi> > Pn) to variables (au a2 , ..., a^, ftlt fi2 , ..., /3„), defined by the equations

dW . dW . . .
,

&-W*' A= ~i*
(r = l, 2, ...,«).

Since W satisfies Hamilton's equation, the Hamiltonian function of the

new system is zero, and consequently the equations of the system are

t=°' f=° C = l, * ....»>•

so that (a,, a2 , ..., am , ySj, ..., /3n) are constant throughout the motion. It

follows that if W denotes a complete integral of Hamilton's partial differential

equation, containing n arbitrary constants {a1 , a2 , ..., a„), then the equations'

a dW dW
, i o n*— 3*' P*~^. (r-l, 2, ...,»)

constitute the solution of the dynamical problem, since they express the variables

(?u?2, ••,<ln,Pi, •>Pn) in terms of t and 2n arbitrary constants («1; a2 , ..., a« ;

* Phil. Trans. 1834, p. 247; ibid. 1835, p. 95.



316 Properties of the Integrals of [ch. xn

&> • • • , Ai)* IQ this way the solution of any dynamical system with n degrees

of freedom is made to depend on the solution of a single partial differential

equation of the first order in (n 4-1) independent. variables.

It should however be observed that the converse of this theorem—namely the theorem

that the solution of a partial differential equation such as Hamilton's depends on the

solution of a set of ordinary differential equations (the differential equations of the

characteristics), which in this case are of the Hamiltonian form, had been discovered by

Pfaff and Oauchy (completing the earlier work of Lagrange and Monge) before Hamilton

and Jacobi approached the subject from the dynamical side.

On the use that can be made of an incomplete integral of Hamilton's partial differential

equation (i.e. one containing less than n arbitrary constants besides the additive constant),

cf. Lehmann-Filhes, Astr. Nach. clxv. (1904), col. 209.

It may be noted that Hamilton's partial differential equation is not applicable as it

stands to non-holonomic systems : for an extension to such systems, cf. Quanjel, Palermo

Rendiconti, xxn. (1906), p. 263.

The integration of Hamilton's equation by separation of variables is discussed by

F. A. Dall' Acqua, Math. Ann. lxvi. (1908), p. 398.

Example. Consider the system

dq = dff dp= _ZH
dt dp ' dt ~dq

'

where

X=iP2 ~ E
q

,

and
fj.

is a constant. The Hamilton's equation corresponding to this system is

-S+iGR'-S'
a complete integral of this equation may be found in the following way. Assume

where /and <j> are functions of their respective arguments : then we have

o=/'(0+iW>'(?)}2
-/</2.

This equation can be satisfied by writing

/'(0=W?)-i«>'(?)}
2
=F/«.

where a is a constant ; which gives

/ (0

=

fitIa, # (?)= (S/io)* arcsin
(?/a)*+ {2W (a - q)/a}\

W= litJa + (2/ia)* arcsin (y/a)* + {2pq (a - q)jc$.

The solution of the original problem is therefore given by the equations /3= — dWjZa,

p= dW/dq, where a and /3 are the two constants of integration.

143. Hamilton's integral as a solution of Hamilton's partial differential

equation.

There are an infinite number of complete integrals of Hamilton's partial

differential equation ; and each one of them furnishes a contact-transformation

* This theorem is due to Jacobi, Crelle't J. xxvu. (1837), p. 97 and LiouvilU'e J. in. (1837),

pp. 60, 161.
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from the variables {qx , q2 , ..., qn , plt ..., pn) of the dynamical system to

variables (au a„, ...,«„, fjx , .... , fin), (the transformation involving t), such

that the equations of motion of the system when expressed in terms of

(o^, a2 , ..., an , £i, ..., ftn) become the equations of the equilibrium-problem,

i.e. the quantities (a
1 , a2 , ..., an , /3,, ... , /3„) are constants.

Among this infinite number of transformations there is one of special

interest; namely that in which the quantities (o^, a2 , ..., an , /3a , ..., /3n) are

the initial values of (g^, q2 , ..., qn , plt ..., pn) respectively, i.e. their values at

a time t , which is taken as an epoch from which the motion is estimated. In

this case we can find in an explicit form the corresponding complete integral

of Hamilton's partial differential equation.

For consider Hamilton's integral (§ 99)

•t

Ldt,
'U

where L denotes the kinetic potential of the system. Suppose that 8 denotes

a variation due to small changes (S^, 8a2 , ..., Sa„, Sfii, ..., 8/3„) in the initial

conditions.

Then (§ 99) we have

rt »
8 Ldt = 2 (p,.8qr - /3rSar).
Jta r=l

It follows that if the quantity I Ldt, when the integration is performed,
Jt

be expressed in terms of (qlt q2 , . .
. , qn , «i , • , «n , t), (we suppose this possible,

i.e. we assume that it is not possible to eliminate (ft, /32 , ..., /3„, pu ..., pn)
from the relations connecting (a1} ...,«„, fiu ..., fin , qx , ..-, qn ,Pi, •••,pn), so

as to obtain relations between (§-„ .... qn , alt ..., an)) and if the function thus

obtained (which Hamilton called the Principal Function) be denoted by

W(qlt q2 , ..., qn , «i, •••, «». *)> ttlen we sha11 have

dW dW /ION
dqr oar

and therefore* the transformation from

(?i, ?«>••> 2n,J0i Pn) to (oi, «2 , ..., a™, A, ...,^»)

is a contact-transformation, and the integral of the kinetic potential is the

determining function of the transformation.

* Hamilton, Phil. Trans. 1834, p. 307 ; ibid. 1835, p. 95. In his earliest dynamical investiga-

tions, Hamilton used a "characteristic function" strictly analogous to the characteristic function

which he had employed with such success in optics : this function being the Action integral,

expressed in terms of the final and initial coordinates. He found however that this function,

when employed in dynamics, involved the constant of energy, and so substituted for it the

"principal function" described above.
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Also we have

dW_dJV "dWdqr
dt dt r= \ dqr dt

'

or L = -3- + Z pr qr ,

at r= i

and therefore the integral of the kinetic potential satisfies the equation

which is Hamilton's partial differential equation.

JSzample. Let (oj, a2 , ..., un , ft, ..., ft) be the initial values (at time ta) of

(?:i ?2> •••> ?n> Pij •••> Pm) respectively, in the dynamical system represented by the

equations
dqr _dH dpr dH . _. .

d*
-
a^' W~~dq~r

(r-i, a, ...,«).

Suppose that from the relations connecting (aj, a2 , ..., ^n, ft, ..., ft) with

(2i. ?2, ••, ?n, Pi, •••. P») it is possible to eliminate (ft, ft, ..., $n,pu ...,pn) entirely, so

that a number (say m) of distinct relations exist between (qu q2 , ..., qm aj, ..., an) ; let

these be solved for (ax , a2 , ..., cl^), so as to take the form

Fr= fr{qi, •,?». "mtl, ••, a»i t) - ar-0 («"=1, 2, ..., TO),

and let V denote Hamilton's integral

J t

for the system, expressed in terms of (qu q2 , ..., qn , am+1 , ..., Ujl). Establish the

equations

3?r fc=l 3?r

A
dV ? > "'*
0ar 4=1 oar

where (Xi, X2 , ..., Xm) are arbitrary ; and shew that the function

m
W=V+ S \kfk

k=l

is an integral of the partial differential equation

dW

Ldt

tf
+* ( dW dW \ n

(
qi ,<l„...,qn,

Wi
,...,^,t)= 0.

144. The connection of integrals vrith infinitesimal transformations

admitted by the system.

t . dqr = dlf dpr dH
dt dpr

' dt~ dqr
(r-l,2,...,n)



143, 144] Dynamical Systems 319

be the equations of any dynamical system, and let

<M9i, &, ,qn,Pi, -,'Pn, t) = Constant

denote any integral of the system
; we shall shew that Ithe knowledge of this

integral enables us to find a particular solution of the variational equations

(§ 112).

For the variational equation for Bqr is

but we have

S2#"
30 +

B 2^ 30 _ &]]_ 30 _ 3aff 30
dqjpr 3pi "" 3g-»9pr 9pn 9pi3pr 9?i "" 9p»9pr 3^

=A /_ J #* M _ | ^2* M^) _ I ^ 32

| dH 3*0

9pr V *=i d< 3pfc *=i * 3?*/ k=i dqk dpkdpr k=1 dpk dqkdpr

= JL(_d4 ty\ d (?±\_!L(ty\
dpr \ dt

+
dt)

+
dt {dpj dt [dpj

~ dt [dpj

'

and hence the variational equations for (Bqu Bqz , ..., Sqn) are satisfied by the

values

S2, = e
a
-, ^ = -e

a
- (r= 1,2, ...,„),

where e is a small constant. Similarly the variational equations for

(Spi, Bp2 , ..., Bpn)

can be shewn to be satisfied by these values ; and hence the equations

Bqr = e^, %- = -eg (r=l, 2, ...,*),

where e is a small constant and is an integral of the original equations,

constitute a solution of the variational equations.

This result can evidently be stated in the form : The infinitesimal contact-

transformation of the variables (qlt q2 , ..., qn , plt ...,pn), which is defined by

the equations •

&Zr = «|£, ^ = -4^ (r=I,%...,n),

transforms any orbit into an adjacent orbit, and therefore transforms the

whole family of orbits into itself. Adopting the language of the group-

theory, we say that the dynamical system admits this infinitesimal contact-

transformation. We have therefore .the theorem that integrals of a dynamical
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system, and contact-transformations which change the system into itself, are

substantially the same thing; any integral

4>(qi, q* qn , Pi, ••,Pn, t) = Constant

corresponds to an infinitesimal transformation whose symbol (§ 133) is the

Poisson-bracket (<f>,f).

It will be observed that the ignoration of coordinates arises from the particular

ease of this theorem in which the integral is pr
= Constant, where qr is the ignorable

coordinate ; the corresponding transformation is that which changes qr without changing

any of the other variables.'

145. Poisson's theorem.

The last result leads to a theorem discovered by Poisson* in 1809, by

means of which it is possible to construct from two known integrals of a

dynamical system a third expression which is constant along any trajectory of

the system, and which therefore (when it proves to be independent of the

integrals already known) furnishes a new integral of the system.

Let <f>(qi,q*,-»,qn,Pi,»-, Pn, t) = Constant

and i/r (qlt qit ..., qn , p1 , ...,pn ,
t) = Constant

denote the two integrals which are supposed known. Consider the in-

finitesimal contact-transformation whose symbol is the Poisson-bracket

(/, yjr) ; since ifr is an integral, this (§ 144) transforms every orbit into an

adjacent orbit.

The increment of the function <j> under this transformation is e (<£, yfr),

where e is a small constant; but since <£ is an integral, j> has constant values

along the original orbit and along the adjacent orbit: the value of ((/>, y]r)

must therefore be constant throughout the motion. We thus have Poisson's

theorem, that if <j> and yfr are two integrals of the system, the Poisson-bracket

(<f>, yfr) is constant throughout the motion.

If ($, yfr), which is a function of the variables (q1} qz , ..., qn , p,, ..., pn> t),

does not reduce to merely zero or a constant, and if moreover it is not

expressible in terms of <j>, y}r and such other integrals as are already known,

then the equation

(</>, yfr) = Constant

constitutes a new integral of the systemf.

The following example will shew how Poisson's theorem can be applied to obtain new
integrals of a dynamical system when two integrals are already known.

* Journal de V&cole polyt. vin. (1809), p. 26G.

+ A discussion of this theorem is given by Bertrand in Note VII to the third edition of

Lagrange's Mec. Anal. (1853) : cf. Oeuvres de Lagrange, t. xi. p. 484.

On the extension of Poisson's theorem to non-holonomic systems, cf . Dautheville, Bull, de la

Soc. math, de France, xxxvu. (1909), p. 120.
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Consider the motion of a particle of unit mass, whose rectangular coordinates are
(?i, ft. fc) a^ whose components of velocity are (pu p2 , p3 ), which is free to movem space under the influence of a centre of force at the origin. The integrals of angular
momentum about two of the axes are

Pz ?2- q%Pi= Constant,

and
Pi q3

- qip3= Constant.

Let these be taken as the two known integrals
<f>
and f ; the Poisson-bracket (<j>, +),

which is

r=l Wr tyr 3?rW '

becomes in this case

and in fact, the equation

Pzqi — qzPi= Constant

is another integral of the motion, being the integral of angular momentum about the
third axis.

146. The constancy of Lagrange's bracket-expressions.

The theorem of Poisson has, as might be expected, an analogue in the

theory of Lagrange's bracket-expressions.

Let ur = ar (r= 1, 2, ..., In)

denote In integrals of a dynamical system with n degrees of freedom, con-

stituting the complete solution of the problem: the quantities ur being given

functions of the variables (q1; q2 , ..., qn , plt ...,pn ,
t), and the quantities ar

being arbitrary constants. By means of these equations we can express

(qlt q2 , ..., qn , p1 , ...,pn) as functions of (ctj, a2 , ..., am , t), and form the

Lagrange's bracket-expressions [ar , aK], where ar and as are any two of the

quantities (alt an, ..., am).

Since the transformation from the variables (qlt q2 , ..., qn ,

p

1; ...,pn) at

time t to their values at time t+ dt is a contact-transformation, we have (§128)

d n

jt 2 (Aqr 8pr -8qrkpr) = 0,

where the symbols A and S refer to independent displacements from one

trajectory to an adjacent trajectory. If now we take the symbol A to refer

to a variation in which a t only is varied, the rest of the quantities

{cti, ct2 , ... , am)

remaining unchanged, and take 8 to refer to a variation in which «j only is

varied, the last equation becomes

d 2 /3gy dgr _ (frfr dpA _ ft

dt r=i\dai dai dajdaj

w. d. 21
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or jt
[at, aj] = 0,

which shews that the Lagrange-bracket [a.i, a,] has a constant value during the

motion along any trajectory; this theorem was given by Lagrange in 1808.

Lagrange's result, unlike Poisson's, does not enable us to find any new

integrals ; for we have to know all the integrals before we can form the

Lagrange's bracket-expressions.

147. Involution-systems.

Let (w,, m2 , ..., ur) denote r functions of In independent variables

(qu g2 , ..., qn , pu ...,pn);

if it is possible to express all the Poisson-brackets (mj, «&) as functions of

(Mj.Wa, ...,ur), the functions (u^u,, . ..,«,.) are said to form & function-group*.

Any function of (uit u2 , ..., ur ) belongs to this group.

If the quantities {uit uh) are all zero, the functions (uj, w2 , ..., «,.) are said

to be in involution, or to form an involution-system.

Now suppose that (ult u2 ur) are functions in involution: and let

v — and w = be any two equations which are consequences of the

equations

Ui = 0, m2
= 0, . .

.
, ur = ;

we shall shew that v and w satisfy the relation (v, w) = 0.

For since («, , w2 , . .
.

, ur) are in involution, each of the equations

m, = 0, m2
= 0, . .

.
, ur =

admits each of the r infinitesimal transformations whose symbols are

(%,/), («*,/), ...,(u,.,f);

and consequently the equation v = 0, being a consequence of these equations,

must also admit these transformations ; that is to say, we have

(«*, v)=Q (k = l, 2, ...,>),

and therefore each of the equations

«!=(), m2
= 0, .... ur =

admits the infinitesimal transformation whose symbol is (v,f). Since the

equation w = is a consequence of these equations, it follows that the

equation w = must also admit this transformation, and therefore we have

(v, w) = 0,

which establishes the result.

* Lie, Math. Ann. vra. (1875). p. 215.
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Hence we see that if'(ul} u2 , ..., ur) are in involution, and the equations

v,=0, v2 = 0, . .
.

, vr =

are consequences of the equations

w, = 0, u2= 0, . .
.

, ur = 0,

then the functions (vlt v2 , ..., vr) are in involution.

148. Solution of a dynamical problem when half the integrals are known.

The result which was established for systems with two degrees of freedom

in § 121 can now be extended to systems with any number of degrees of

freedom. The theorem may be thus stated*: If n distinct integrals

<M?i. 22, •, qn,Pi, -,Pn, t)=ar (r=l, 2, ..., n),

where (alt a2 , ..., an) are arbitrary constants, are known for the dynamical

system

dqr_dff dp1__dH , ,

dt~dpr
' dt~ dqr

K i, *,..., nh

where H is any given function of (q1: q2 , ..., qn , Pi, •-, pn , t), and if the

functions (<j>lt <f>2 , ..., <pn) are in involution, then on solving these integrals for

(Pi> Pz, ,Pn) so as to obtain them in the form

Pr=fr(qi, ?2. •••, ?n> «i> «2, ••-, ^n, t) = 1, 2, ..., n)

and substituting (fufa , ...,/«) respectively for {plt p2 , . .
. ,

p

n) in the expression

Pidqx +p2dq2 + ... +pndqn — Hdt,

the latter expression becomes a perfect differential : denoting it by

dV(qlt q2 , ..., qn , Ui, «2> •••, an, f),

the remaining integrals of the system are

d
J-=br (r = l, 2, ...,«),
oar

where (61( b2 , ..., bn) are arbitrary constants.

For since the functions fa-a*, <f>2
-a2 , ...,</>„-«» are in involution, it

follows by the last article that the functions ^ -/„ p2 -f«, , pn -fn are

in involution, and therefore

(Pr-fr, p.-j.) = (r,s=l, 2, ..., n),

or !--|^= (r,s = l,2,...,n).
oqr dqs

* This theorem is essentially the application to Hamilton's partial differential equation of the

well-known method for finding a Complete Integral of a non-linear partial differential equation

of the first order. As a dynamical theorem it is due to Liouville, Journal de Math. xx. (1855),

p. 137.

21—2
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Also
dR _ dpr _ dfr

dqr dt dt

and consequently

dt s=1 dq8 dt

Jfl + | *Jj dJL
dt ,_i dqr dps

'

<*fr= _dj[_ | dHdfi
dt dqr «=i dps dqr

_m1

~ dqr
'

where Hx stands for the function H when expressed in terms of the arguments

(?!, 9
,

2, ••> qn , «i, •> an ,
t).

The equations

<tfs _ <tfr §/r _ _ ?^i

shew that /2 dq± +f2dq7,
+ ... +fndqn — Hidt

is the perfect differential of some function V (qly qit ...,g„, <x1; ...,an ,t);

which establishes the first part of the theorem.

If now the symbol d denote the total differential of the function V with

respect to all its arguments, we have therefore

dV
dV=f1dq1 +fidqi + ... +fndqn -

H

xdt + 2 ^— dar .

In this equation replace the quantities ar by their values (/>r : we thus

obtain an identity in (qlt qz , ...,qn , pl , j»2 , . .
. , pn , t), namely

dVdV— 2 5— dj>r =p1dq1 + p2dq2 + ... +pndqn - Bdt,

where on the left-hand side of the equation we suppose that in dV and

dV
5— the quantities (oj, az , ..., an) are replaced by their values (</>1; </>2 , ..., <£«).

This equation shews that the differential form

Pidq1 +p2dq2 + ... + pndqn — Hdt,

when expressed in terms of the variables {qlt q2 , ..., qn , <j>u $2> ••> $»> 0>

takes the form
* dV- 2 ~d<j>r + dV,

r=\ Odr

and hence the differential equations of the original dynamical problem are

equivalent to the first Pfaff's system of this differential form, namely

d(dV/da,.) = 0, d<f>r = (r=l, 2, ...,«).
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The expressions dV/dar are therefore constant throughout the motion, i.e.

the equations

dV/da,. = br (r=l, 2, ...,n),

where (&,, ba , ..., bn) are new arbitrary constants, are integrals of the system

;

this completes the proof of the theorem.

Example. In the motion of a body under no forces with one point fixed, let {6, <£, ty)
denote the three Eulerian angles which specify the position of the body relative to any
fixed axes OXYZ at the fixed point, (A, B, C) the principal moments of inertia of the
body at the fixed point, a the constant of energy, a

x the angular momentum about
the fixed axis OZ, and a2 the angular momentum about the normal to the invariable
plane: and let (01; 0,, ^) denote dT/dd, dT/d<f>, dT/dj, respectively. Obtain the
equations

6 = arctan {(a*? - a
t

2 - ^1
z)*/a1}

- arctan {(a2
2- i^

2 - 0i
s
)*/fi},

Hence shew that

8 d6x+ \jr d\jri+ (Ji d(j)

is the perfect differential of a function 7, and that the remaining integrals of the

system are

37 97 37
3« ~'' d^T u ^"

2

=
2 '

where b, b\, b2 are arbitrary constants. (Siacci.)

149. Levi-Civita's theorem.

Levi-Civita* has established a connexion between the integrals of a

dynamical system and certain families of particular solutions of the equations

of motion.

Consider first a system in which some of the coordinates are ignorable.

Let (qu q2 , ..., qm) be the ignorable and (qm+1 , ..., qn) the non-ignorable

coordinates ; and let L denote the kinetic potential.

The integrals corresponding to the ignorable coordinates are

dL/dqr = Constant (r = 1, 2, . .
. , m),

and corresponding to these integrals there eacists a class of particular solutions

of the system, namely those steady motions (§ 83) in which (qlt q2 , ..., qm)

have constant values which can be chosen arbitrarily, while (qm+1 , qm+*, ..., qn)

have constant values which are determined by the equations

dL/dqr =0 (r = m + l, m + 2, ..., n);

there are oo^of these particular solutions, since the m constant values of

* Bend, dell' Ace. dei Lincei, x. (1901), p. 3. Cf. Burgatti, ibid. xi. (1902), p. 309.
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(qlt qit ..., qm) and the m initial values of (qu qit ..., qm) can be arbitrarily

assigned. The theorem of Levi-Civita, to the consideration of which we

shall now proceed, may be regarded as an extension of this result.

Tpt ^T_?# ^Er *JL fr .i 2 „\Let
dt'dpr' at dqr

(
i.-,-...«;

be the equations of motion of a dynamical system, the function H being

supposed not to involve the time explicitly.

Let Friq^q,, ...,qn,p1 ,...,pn) = (r = 1, 2, ..., to) „".(A)

be a system of m relations, which when solved for (pu p2 , ...,pm) take

the form

Pr=fr(qi, q<i, ,qn ,Pm+i, --^Pn) (»* = 1, 2, ..., m)...(A1 ),

and which are invariant relations with respect to the Hamiltonian system,

i.e. which are such that if we differentiate the relations (Aj with respect

to t, we obtain relations which are satisfied identically in virtue of the

Hamiltonian equations and of the equations (Aj) themselves. These

invariant relations include, as a particular case, integrals of the system :

in this case, they will involve arbitrary constants.

Since the relations (Aj) are invariant relations, we have

dqr dt j^m+iopjdqj j=idqjdp}

jF W]= |
(WdW_dVdW\

1 ' ' j=m+i \dpj dqj dqj dpj)

'

S

af
+^^ +JJ||= C-i. «-...«) ...a);

this equation becomes an identity when for each of the quantities

(P\,Pa, •,Pm) we substitute the corresponding function fr .

Moreover, we shall suppose that the relations (A) or (Aj) are in involution

among themselves. This condition is expressed by the equations

|-|+{/- /s} = ° ir'
S = 1

-
2 W) - (2) -

Let K denote the function obtained from H on replacing {pu p% Pni)

by their values (fltf2 /m), so that

dPr dpr s=1 dp8 dpr I

9gv 3^ «=i 3p« 3?r I

and a~ =5 S 5— f-- (r= 1, 2, ..., m) ...(4).
ogv 9$- s=i dp„ dqr

and writing

this becomes
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From (3) we have

Z dH
{H,

f,.\
= {K,fr}+t°£ \fr, /.} (r = 1, 2, . .

.
, m),

and combining this with (4) we have

dH dK ™dH
ogv

J ogr
l J

' g=idps

Substituting in (1) this value of dH/dqr + \H,fr ), and using (2), we obtain

the equations

Mi
dq,

+ {fr,fs]

dK
dqr

+ {K,fr}
= (r=l, 2, ,..,m)...(5).

We shall now shew that the system of equations

Pr=fr(Pm+i,Pm+2, ,Pn, ffi, •••, ?«) 0" = 1, % > ™)

= (r =m+ 1, w + 2, ..., w) ...(B)^ =
.9Pr

is invariant with respect to the Hamiltonian equations, i.e. that

d (dK\ , d (dE\ . Q .

afej
and

dAWJ ^ = ^ + l,m + 2,...,n)

are zero in virtue of equations (A), (B), (1), (2), (3), (4), (5).

We have from the Hamiltonian equations

dt \dpj ~
\ ' dpr) s =i dpr dqs dps

d /d_K\ = \H dK\ a &k_m

'

dt\dqr J \ ' dqr ) s=idqrdqs dpt .

and (5) gives on differentiation, using (B),

:

\ {r- m + 1, ..., n) ...(6),

B*K [dK r[ (

now taking account of (B), we have from (3)

aff= _ | dHft}
dpr s=idps dpr

dH= _ | dHty
dqr s=idps dqr

(s=l, 2, ..., m; r = m+ 1, m+2, ..., ft) ...C7);

(r = m+l, m + 2, ..., n)

and hence equations (6) become

cfe \dpj s= i 3jog

d£\9gv *=i9p«

+ 1 5^~ ' /»
Sprig's (SPr

)

+ '

(?- = m+l, m+2, ...,«),

_9^9g
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or by (7),

iO-0' £(£)- <'" +>-- »>•

which proves that the system of equations (A) and (B) is invariant with

respect to the Hamiltonian equations.

Now from the equations (A) and (B), let the variables

(Pi.Pz, ••,pn,qm+i, , qn)

be determined in terms of (qlt q2 , ..., qm): from the invariant character of

(A) and (B) it follows that on substituting these values in the Hamiltonian

equations, we shall obtain m independent equations, namely those which

express (dqjdt, dq2/dt, ..., dqm/dt) in terms of (qu q2 , ,qm), the others being

identically satisfied: and the general solution of this system, which will

contain m arbitrary constants, will give oo m particular solutions of the

Hamiltonian equations. The solution of this system can, by making use

of the integral of energy, be reduced to that of a system of order (m — 1)

:

and thus we obtain Levi-Civita's theorem, which can be thus stated : To any

set of m invariant relations of a Hamiltonian system, which are in involution,

there corresponds a family of <x>
m particular solutions of the Hamiltonian

system, whose determination depends on the integration of a system of order

(m-1).

If the invariant relations (A) are integrals of the system, they will contain

another set of m arbitrary constants : and hence to a set of m integrals of a

Hamiltonian system, which are in involution, there corresponds in general

a family of oo m particular solutions of the system, which are obtained by

integrating a system of order (m — 1).

Example. For the dynamical system defined by the Hamiltonian function

h= i\ v\ - zip*- a?i
2 +m\

shew that the Levi-Civita particular solutions corresponding to the integral

(p2 - bq2)/qi = Constant

are given by the equations

where e is an arbitrary constant.

150. Systems which possess integrals linear in the momenta.

We shall now proceed to the consideration of systems which possess

integrals of certain special kinds.

Suppose that a dynamical system, expressed by the equations

dqr dH dpr dH
-dt^Wr' Tt

=
-dq-r

(r = l,2,..., W),
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has an integral which is linear and homogeneous in (plt p2 , ..., pn), say

fiPi +f*Pi + • • • +fn pn = Constant,

where (/1;/2) ...,/„) are given functions of (qu q2 , . .
. , qn).

Consider the system of equations

dqi = dq2 = ^dqn

/i /s fn

which is of order (n - 1) ; suppose that the 0-1) integrals which constitute
its solution are

Qr(qu q2 , ..., gv) = Constant (r=l, 2, ..., w-1);

and let Qn be a function defined by the equation

where in the integrand the variables (g2 , y„ ..., qn) are supposed replaced
by their values in terms of (qlt Qu Q2 , ..., Qn_,) before the integration

is carried out.

Then if the variables change in such a way that (Qlt Q2 , ..., Q^) remain
constant and Qn varies, it follows from the above equation that

dqJ _dq2 _ _^»_,n
j. j. ... — . — a<^n ,

Jl J2 J 11

so that if (Q1 , Q2 , ..,, Qn) are regarded as a set of new variables in terms of

which (q1 , q2 , ..., qn) can be expressed, we shall have

3g*/3Q»=/* (k=l,2,...,n).

Suppose then that we consider the contact-transformation which is the

extension of the point-transformation from the variables (q1: q2 , ..., qn) to the

variables (Qlt Q2 , ..., Qn), so that the new variables (P,, P2 , .,., Pn) are

defined (§ 132) by the equations

Pr = I pA (r-l,2,.„,n).

By this transformation the differential equations of the dynamical system

are changed into a new set of Hamiltonian equations

dQ
L
_dK dPI __dK

dt ~dPr
'

dt ~ BQr
K

'
*'-' ll>>

and the known integral becomes

Pn = Constant.

Since dPn/dt = 0, we have dK/dQ„ = 0, so the function K does not involve

Qn explicitly : and thus we obtain the result that when a dynamical system
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possesses an integral which is linear and homogeneous in (plt p2 , , Pn), there

exists a point-transformation from the variables (qlt q2 , ..., qn) to new variables

(Qi> Q2, , Qn), which is such that the transformed Hamiltonian function

does not involve Qn . The system as transformed possesses therefore an

ignorable coordinate, and we have the theorem that the only dynamical

systems which possess integrals linear in the momenta are those which possess

ignorable coordinates, or ivhich can be transformed by an extended point-

transformation into systems which possess ignorable coordinates.

The converse of this theorem is evidently true.

This result might have been foreseen from the theorem (§ 144) that if

<M?1. ?2i , °n,Pu —,P», = ConBtant

is an integral of the system, then the differential equations of motion admit the

infinitesimal transformation whose symbol is (0,/). For when cj> is linear and homogeneous

in (pj, p2 , ..., pn), this transformation is (§ 132) an extended point-transformation : if

this point-transformation is transformed by change of variables so as to have the symbol

3//3§B , it is clear that the Hamiltonian function of the equations after transformation

cannot involve Qn explicitly.

Considering now in particular systems whose kinetic potential consists

of a kinetic energy T(qu q2 , ..., qn , qlt ..., qn) which is quadratic in the

velocities {qlt q2 , , qn) aQd a potential energy V(q1 , q2 , ..., qn) which is

independent of the velocities, we see that in order that an integral linear in

the velocities may exist the system must possess an ignorable coordinate,

or must be transformable by a point-transformation into a system which

possesses an ignorable coordinate. But in either case the functions T and V
evidently admit the same infinitesimal transformation, namely the trans-

formation which, when the coordinates are so chosen that one of them is the

ignorable coordinate, consists in increasing the ignorable coordinate by a

small quantity and leaving the other coordinates and the velocities unaltered

;

and conversely, if T and V admit the same infinitesimal transformation, then

there exists an integral linear in the velocities. This result is known as

Levy's theorem, having been published by Levy* in 1878.

Example 1. Shew that if the differential equations of motion of a particle admit an

integral linear in the components of momentum, the line of action of the force must

belong to a linear complex.

(Cerruti, Collect, math, in mem. D. Chelini : cf. P. Grossi, Palermo Rend. xxiv. (1907),

p. 25.)

Example 2. If the equations

d /; r
,

; r

dt (djr)-djr
- Qr (r=l,2,...,n),

Comptes JRendus, lxxxvi.
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n n
where T=% 2 2 aaq{qk , and where (Q1} Qit ..., Qn , an , an , ..., aj are given functions

i=lh=l

°f (?ii ?2i ••) <?»»)) possess an integral of the form

C1 qi+ C2 j2+ . . . + C„ j„+ C= Constant,

where (C^, C
2 , ..., C„, (7) are functions of {qu q2 , ..., qn), shew that it is possible to

displace an invariable system in one direction from any one of its positions in the space Sn
defined by the form

n n
dsi = 2 2 aikdqidqk .

i=l fc=l

Shew that for this a necessary and sufficient condition is that the ds2 can be trans-

formed in such a way that one of the variables becomes absent from the coefficients.

(Cerruti and Levy.)

151. Determination of the forces acting on a system for which an

integral is known.

Before proceeding to discuss systems which possess integrals quadratic

in the velocities, we shall obtain a result due to Bertrand*, namely that

in the motion of a dynamical system of given constitution, for which however

the acting forces are unknown (it being supposed that the forces depend

solely on the coordinates of their points of application, and not on the

velocities of these points), we can discover the unknown forces provided one

integral is known. Moreover, this integral cannot be chosen at random, but

must satisfy certain conditions.

Let (qlt q2 , ..., qn) be the n independent coordinates of the system, T the

kinetic energy, and (Q1; Q2 Q„) the unknown forces, which are supposed

to depend only on (qu q2 , ..., qn); so the equations of motion are

d (dT\ dT n . . _
N

dt{wJ-dqr Qr (r=1 ' 2'-' n) -

Let $(g1; q\, ..., qn , q-i, , qn , 0= Constant

be an integral of the system ; on differentiating it, we have

l
d±qr+ i

dA
qr +

d-± = 0.

Substituting in this equation for (qu q2 , ..., qn) their values as given by

the equations of motion, we have a relation involving (Qlt Q2 , ..., Qn) linearly.

This relation, as it contains only the quantities (qu q2 qn , 9i, ••> ?«. t), to

all of which we can assign arbitrary independent values, must be an identity:

we can therefore differentiate it with respect to (qu q2 , ..., qn), and so form

n new equations which, likewise containing (Qj, Q2 , ••. Qn) linearly, will

suffice in general to determine these unknown quantities. The integral will

* Journal de Math, (i) xvn. (1852), p. 121.



332 Properties of the Integrals of [oh. xii

relate to an actual system only when these values of (Qlt Q2 , ..., Qn) satisfy

the equation

i
dA S + v dA, +

dA = .

the cases in which the equations for the determination of (Qlt Q2 , ..., Qn) are

not independent, so that (Q,, Q2 , -, Qn) are indeterminate, are those in

which the integral is common to several distinct dynamical problems.

JSxample. If an integral of the equations of motion of a point in a plane is common

to two different problems, shew that it is of the form

F(<f>', x, y, t)= Constant,

where (x, y) are rectangular coordinates and 0' is the derivate with respect to t of

a function <j> (x, y) which, equated to a constant, represents the equations of a set

of straight lines. (Bertrand.)

152. Application to the case of a particle whose equations of motion

possess an integral quadratic in the velocities.

As an application of Bertrand's method, let it be required to find the

nature of the potential energy function V in order that the equations of

motion of a particle which is free to move in a plane under the action of

conservative forces,

.._ dV dV
x ~ dx' y ~ dy'

may possess an integral (other than the integral of energy) of the form

Pi? + Qxy + Ry* + Sy+Tx + K= Constant,

where P, Q, R, S, T, K are functions of x and y.

Differentiating the last equation, and substituting for x and y from the

equations of motion,
%
we have

^te +
yty

+x
nty

+
te)

+ y x
[ty

+
te)-

2Px
dx-

n f.dr.dV\ nv .dv ds „ bt ,, ../as dT\

dx dy " dy dx ^
'"

Equating to zero the terms of the third degree in x and y, we have

^ =0 a-^=o ^+^ = ^ +^ =
dx dy ' dy dx ' dy dx '

from which it is readily deduced that the terms of the second degree in the

integral must have the form

(ay2 + by + c)x* + (ax2 + b'x + c') f + (- 2axy — b'y — bx + cj xy,

where (a, b, c, b', c', Cj) are constants.
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Equating to zero the terms of the second degree in x and y in equation

(A), we have

dy ' dx dx dy '

from these equations we deduce

S = mx+p, T= — my+q,

where (m, p, q) are constants.

Equating to zero the terms independent of x and y in (A), we have

ay dx

dV
, X

9F
/ X Aor — (ma; + p) — — (my — q) = 0.

03/
^ tix

*'

This equation shews that if (m, 2?, <?) are different from zero, the force is

directed to a fixed centre of force, whose coordinates are — p/m and qjrn ; we
shall exclude this simple particular case, and hence it follows that the con-

stants (m, p, q) must each be zero, so that the integral contains no terms of

the first degree in x, y.

Equating to zero the terms linear in x and y in (A), we have

ox dy ox

dy ox oy

Differentiating the former of these equations with respect to y, and the

latter with respect to x, and equating the two values of *r-~r~ thus obtained,

we have

d*V dVdP d>V dQdV_ VV_ dRdV dQdV VV
r

dxfry
+

fa dy
+
^df

+
dy dy dxdy^ dx dy

+
dx dx

+ H
dx*'

and replacing P, Q, R by their values as found above, we have

F
~ U) (~ 2axy ~ b

'

y ~ hx + Cl) + 2
^9y

(ay2 ~ aa? + by ~ Vx + c ~ c)
dtf

dV dV
+ -^ (6ay + 36) + 1- (- 6ax - 36') = 0.

Darboux* has shewn that this partial differential equation for the function

V can be integrated in the following way.

* Archives Ngerlandaises, (ii) vi. p. 371 (1901).
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Excluding the particular case in which the constant a is zero, we can

always by change of axes reduce the given integral to the simpler form

\ (xy — yxf + ex2 + c'y
2 + K = Constant,

which amounts to supposing that

a=\, 6 = 0, 6' = 0, c, = 0;

if moreover we replace c — c' by \c2
, the partial differential equation for V

becomes

(d2V d2 V\ .
, , 2

. S2F _ dV _ dV .

* \dx2 dy*J ' oxdy 3 dx dy

To integrate this equation, we form the differential equation of the

characteristics

xy (dy2 - doc2
) + (x2 -y2 - c2) dxdy = 0.

If in this equation we take x2 and y
2 as new variables, it becomes a

Clairaut's equation: we thus find that its integral is

(m + 1) (mx2 — y
2
) — mc' = 0,

where m denotes the arbitrary constant. By a simple change of notation, we

can write this integral in the form

-+ y— =1
a2 a?-c2

where the arbitrary constant is now «. This form puts in evidence the

interesting fact that the characteristic curves of the partial differential

equation are two families of confocal conies.

Taking then as new variables a and ft the parameters of the confocal

ellipses and hyperbolas, so that

x = "£ y = hxa2 -c2)(c2 -/32)}l,

c
t

c

it is known from the general theory that the partial differential equation will

take the form
d2 V

,
.dV n dV .

da dp oa. dp

where A and B are functions of a and /3; in fact, on performing the change of

variables we find

d2V dV dV

which can be immediately integrated, giving

(a2 - p2)V = /(«)-<£ (/3),

where/and </> are arbitrary functions of their arguments. It follows that the

only cases of the motion of a particle in a plane, under the action of conservative
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forces, which possess an integral quadratic in the velocities other than the

integral of energy, are those for which the potential energy has the form

F=/(«)-*Q8)
tf-£» '

where a and /3 are the parameters of confocal ellipses and hyperbolas.

Since by differentiation we have

the kinetic energy is

and an inspection of the forms of T and V shews that £/*ese problems are of
Liouville's class (§ 43), and are therefore integrable by quadratures.

153. General dynamical systems possessing integrals quadratic in the velocities.

The complete determination of the explicit form of the most general dynamical system

whose equations of motion possess an integral quadratic in the velocities (in addition

to the integral of energy) has not yet been effected. It is obvious from § 43 that all

dynamical systems which are of Liouville's type, or which are reducible to this type by a

point-transformation, possess such integrals : and several more extended types have been

determined*.

Example 1. Let <pkl (qk) (k, 1=1, 2, ..., n)

be n2 functions depending solely on the arguments indicated, and let

*= 2 M*« (1= 1, 2, ..., n)
k=l

denote the determinant formed by these functions. Shew that if the kinetic energy of a

dynamical system is reducible to the form

n a>

and the potential energy is zero, there exists not only the integral of energy,

n $
2 — 2t

2= ai,
4=1 */M

but also («-l) other integrals, homogeneous and of the second degree in the velocities,

namely

where (m, a2 , ..., a„) are arbitrary constants: and that the problem is soluble by

quadratures. (Staokel.)

Example 2. Let the equations of motion of a dynamical system with two degrees of

freedom be

dt \dqrJ dqr

where T=$(aqi2 + 2kq1 qt + bqi),

* Cf. G. di Pirro, Annali di Mat. xxiv. (1896), p. 315.
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and (a, h, b) are any functions of the coordinates (qlt q%) : and let this system possess an

integral
«'
jx

2+ 2A'qxj2+Vj2
2= Constant,

quadratic in the velocities and distinct from the equation of energy, where (a', h', V) are

functions of the coordinates. If A and A' denote. (ab — /i?) and (a'b'-h'2) respectively,

and if

T'-i (|)V?i'2 +2A'?1
'

?2'+&V).

where qr
' stands for dqr\dti, shew that the equations

d /97"\ 37"Aft!"]
dt' \dqr'J dq,

= («=!, 2)

define the same relations between the coordinates (yx , j2) as the original equations

of motion, and that one set of equations can be transformed to the other by the trans-

formation

Miscellaneous Examples.

1. A dynamical system is defined by its kinetic energy

\*11 *21 *nl/

(where * denotes the determinant

#11 012 <t>w

<t>21 #22 4>2n

0»1 0J12 <K

in which the elements of the £th line are functions of qk only, and *H denotes the minor of

<fikl),
and by its potential energy

*'

where *=*iiV'i + *aiV'*+ ...+*m ^»,

and' the quantity i/cj denotes a function of jj. only. Shew that a complete integral of the

Hamilton-Jacobi equation

d_W

dt

is W=- ait+ 2 Mai<fri + a2<fc2+"- + a,l0m+2iM*£%,
i=l/

where (aj, 02, ..., >*m) are arbitrary constants. (Goursat.)

2. If ^ (}!, q2 , ..., ?„, pi, ..., pn , () = Constant

is an integral of a dynamical system which possesses an integral of energy, shew that

-^=Constant, ^=Constant, etc., are also integrals.
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3. A system of equations

-0i
= Ar{.9u ?2, ...,?n, Pi, —,Pn,t)

dpr
-^-= -Sr(?1 ,g2 , ••,?«, Pi, -,Pn,t)

(r=l, 2, ..., n)

is such that if <£ and ^ are any two integrals whatever, the Poisson-bracket (<£, i//) is also
an integral. Shew that the equations must have the Hamiltonian form

dqr dH dpr dH /,«,^r
=
3^' -dT=-tyr

(r=l,2,...,n).

(Korkine.)

4- If aj= Constant, a2 = Constant, ..., ak = Constant,

ft= Constant, ft= Constant, ..., ft= Constant,

are any 2k integrals of a Hamiltonian system of differential equations, the variables being

ill, ?2, ••-, qn,Pu ..., Pn), shew that

5- ^4. 3al 3a2 <W 3ft 9ft n . i^ 2 + g-— 5— ... g— 5—'- ... ~^=Constant
a, U °<th°q*2 Qq^dp^ op\k

is also an integral. (Laurent.)

5. Let the expression

ITT TT TT \_ » H?ll -^21 ••! A«)
(Hi, M2 , ..., tin)- 2 - -^,

where jHi,
5"

2 , ..., #„ are functions of the wi> variables #><(,?'= 1, 2, ..., n; i—l, 2, ..., v)

be called a Poisson-bracket of the nth order. If Glt 2 , ..., ftv are hv functions of

S'lD Vu, •-•> y»i. ; #in #12, •••, #*v ; «i, «2j •• , «*>! where (h+k=ri), and if

*<*> (•-^-.ffl)
denotes all the Poisson-brackets formed from every n functions G, shew that

ft«*>-0 (-l.V..,(t))

represents the necessary and sufficient conditions that the functions

y»t=Fst (xn , xn , ..., xkv ; alt a2 , ..., ahv) (»=1, 2, ... , h ; t=l, 2, ..., v)

arising from the equations

04= (i=\,2,...,hv)

shall satisfy the simultaneous partial differential equations of the first order

Pi(f,F)= 0, (t= ],3,...,(^))

where Pi{yh
, F) denotes the expression which is obtained when we replace A of the

functions F in P{ (Fn
) by as many y's. (Albeggiani.)

6. A particle of unit mass whose coordinates referred to fixed rectangular axes are

(#, y) is free to move in a plane under forces derivable from a potential-energy function

f(x, y), the total energy being h. Shew that if the orthogonal trajectories of the curves

h^T&J) (eS + w)
log {h -f{*>^= Constant

w. d. 22
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are orbits, the differential equations of motion of the particle possess an integral linear and

homogeneous in the velocities (x, y).

7. The equations of motion of a free system of m particles are

-£=*. (s=l, 2, ...,3m).

If an integral exists of the form

3771

2 /„#„ — Ct= Constant,
s=l

where fu /2 , ...,/3m are functions of x1} #2 > ..., x3m , and C is a constant, shew that this

integral can be written

3771 3m
2 kaxa+ 2 a,.a (.»,*,. — xrxa)

— Ct= Constant,
8=1 r,s=l

where the quantities ks and arB are constants. (Pennacchietti.)

8. Two particles move on a surface under the action of different forces depending

only on their respective positions : if their differential equations of motion have in

common an integral independent of the time, shew that the surface is applicable on

a surface of revolution. (Bertrand.)



CHAPTER XIII

THE REDUCTION OF THE PROBLEM OF THREE BODIES

154. Introduction.

The most celebrated of all dynamical problems is known as the Problem

of Three Bodies, and may be enunciated as follows

:

Three particles attract each other according to the Newtonian law, so that

between each pair of particles there is an attractive force which is proportional

to the product of the masses of the particles and the inverse square of their

distance apart: they are free to move in space, and are initially supposed to be

moving in any given manner ; to determine their subsequent motion.

The practical, importance of this problem arises from its applications to

Celestial Mechanics: the bodies which constitute the solar system attract

each other according to the Newtonian law, and (as they have approximately

the form of spheres, whose dimensions are very small compared with the

distances which separate them) it is usual to consider the problem of deter-

mining their motion in an ideal form, in which the bodies are replaced by

particles of masses equal to the masses of the respective bodies and occupying

the positions of their centres of gravity*.

The problem of three bodies cannot be solved in finite terms by means

of any of the functions at present known to analysis. This difficulty has

stimulated research to such an extent, that since the year 1750 over 800

memoirs, many of them bearing the names of the greatest mathematicians,

have been published on the subjectf . In the present chapter, we shall discuss

the known integrals of the system and their application to the reduction of

the problem to a dynamical problem with a lesser number of degrees of

freedom,

* The motions of the bodies relative to their centres of gravity (in the consideration of which

their sizes and shapes of course cannot be neglected) are discussed separately, e.g. in the Theory

of Precession and Nutation. In some cases however (e.g. in the Theory of the Satellites of the

Major Planets) the oblateness of one of the bodies exercises so great an effect, that the problem

cannot be divided in this way.

t For the history of the Problem of Three Bodies, cf. A. Gautier, Essai historique sur le

probUme des troii corps (Paris, 1817): B. Grant, History of Physical Astronomy from the earliest

ages to the middle of the nineteenth century (London, 1852) : E. T. Whittaker, Report on the

progress of the solution of the Problem of Three Bodies (Brit. Ass. Eep. 1899, p. 121) :
and

E. 0. Lovett,, Quart. Journ. Math. xlii. (1911), p. 252, who discusses the memoirs of the period

1898-1908.

22—2
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155. The differential equations of the 'problem.

Let P, Q, R denote the three particles, (m^, m^, m^) their masses, and

0"zi, r31 , rii) their mutual distances. Take any fixed rectangular axes Oxyz,

and let (q1 , q2 , q3), (qt , qs , q6), (q7 , qa , qs), be the coordinates of P, Q, R, respec-

tively. The kinetic energy of the system is

T= \mx (& + qi + qs
2
) + Jm, (tf +& + qe

l
) + Jm, (qf + q<? + ?9

2
)

;

the force of attraction between m x and m2 is kimxm2rxf^ , where k1
is the

constant of attraction : we shall suppose the units so chosen that k2
is unity,

so that this attraction becomes mim2r12

-2
, and the corresponding term in

the potential energy is — mxm.jrX2
~1

. The potential energy of the system

is therefore

„_ m 2m3 m3mx mxm2

^23 7*31 ?*12

= - m2ms {(qt
- q7

)* + (q, - q8f + (qe - qs)-}
~ *

-m3m x {(q7
- qx)

2 + (q8 - q2f + (qg
- q3)

2
}

~
*

- m.m, {(qx
- qj + (qt- qtf+ (qs

- qtf}
~ *.

The equations of motion of the system are

' mkqr = -dV/dqr (r = 1, 2, ...,9),

where k denotes the integer part of ^ (r + 2). This system consists of

9 differential equations, each of the 2nd order, and the system is therefore

of order 18.

Writing mk qr = pr (r = 1, 2, .... 9),

9 n 2

and H=X-f^+V,

the equations take the Hamiltonian form

dqr _ dH dpr _ dH
(r=l,2,...,9),

dt dpr ' dt dqr

and these are a set of 18 differential equations, each of the 1st order, for the

determination of the variables (qx ,qz , •,qg,px ,p2> ...,ps).

It was shewn by Lagrange * that this system can be reduced to a system

which is only of the 6th order. That a reduction of this kind must be possible

may be seen from the following considerations.

In the first place, since no forces act except the mutual attractions of the

* Recueil des pieces qui ont reimports Us prix de I'Acad. de Paris, ix. (1772). Lagrange of

course did not reduce the system to the Hamiltonian form. Cf. Bohlin, Kongl. Sv. Vet.-Handl.

xlii. (1907), No. 9, for an improved Lagrangian reduction.
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particles, the centre of gravity of the system moves in a straight line with
uniform velocity. This fact is expressed by the 6 integrals

[p3+p<s+p<, = a6 ,

m1?x + m2qt + msq7
-

(Pl + Pi +p7 ) t = a2 ,

- m^2 + m2q5 + m3qa
- (p2 +Ps+Ps) t= at>

m1 qs + m2q6 + msqs
- (ps +pe +p9) t = ae ,

where a,, a2 , ..., ae are constants. It may be expected that the use of these
integrals will enable us to depress the equations of motion from the 18th to
the 12th order.

In the second place, the angular momentum of the three bodies round
each of- the coordinate axes is constant throughout the motion. This fact

is analytically expressed by the equations

(qiPi - q*Pi + gtpi - q5pt + q7ps
- qsp7

= a,,

|

M>o - qsPz + qspe - q6p, + qsp9
- q9ps

= a*,

{q^Pi - qiPs + qep4 - q^ + q»p7 - q7ps
= ag ,

where c^, aa , a9 are constants. By use of these three integrals we may
expect to be able to depress further the equations of motion from the
12th to the 9th order. But when one of the coordinates which define the

position of the system is taken to be the azimuth
<f>

of one of the bodies

with respect to some fixed axis (say the axis of z), and the other coordinates

define the position of the system relative to the plane having this azimuth,

the coordinate $ is an ignorable coordinate, and consequently the corre-

sponding integral (which is one of the integrals of angular momentum
above-mentioned) can be used to depress the order of the system by two

units ; the equations of motion can therefore, as a matter of fact, be reduced

in this way to the 8th order. This fact (though contained implicity in

Lagrange's memoir already cited) was first explicitly noticed by Jacobi* in

1843, and is generally referred to as the elimination of the nodes.

Lastly, it is possible again to depress the order of the equations by
two units as in § 42, by using the integral of energy and eliminating the

time. So finally the equations of motion may be reduced to a system of the

6th order.

* Journ.fur Math. xxvi. p. 115. From the point of view of the theory of Partial Differential

Equations, we may express the matter by saying that the integrals of angular momentum give

rise to an involution-system, consisting of two functions which are in involution with each other

and with H: and hence the Hamilton-Jacobi partial differential equation with 6 independent

variables can be reduced to a partial differential equation with 6 - 2 or 4 independent variables

:

this will be the Hamilton-Jacobi partial differential equation for the reduced system.
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156. Jacobis equation.

Jacobi*, in considering the motion of any number of free particles in space, which

attract each other according to the Newtonian law, has introduced the function

where m^ and to,- are the masses of two typical particles of the system, rtl- is the distance

between them at time t, M is the total mass of the particles, and the summation is extended

over all pairs of particles in the system. This function, which has been used in researches

concerning the stability of the system, will be called Jacohis function and denoted by the

symbol *.

We shall suppose the centre of gravity of the system to be at rest ; let {xt , yt , zt) be the

coordinates of the particle ?ri ( referred to fixed rectangular axes with the centre of gravity

as origin. The kinetic energy of the system is

i

and consequently we have

i i

But (2»ij) x SntiXi* - (2«ij Xi)
2= 2 TOjTOj (ir* - %)2

,

i i i i,j

where the summation on the right-hand side is extended over every pair of particles in the

system : and we have ^mtxi=0, in virtue of the properties of the centre of gravity.
i

Thus we have T=^Vmimj {{xl -Xjf+ (jji-$]
¥+{it -z,f)

where vti
denotes the velocity of the particle m^ relative to rrij.

In the same way we can shew that

\-2,mi (x?+y»+z?)= *.
i

If now V denotes the potential energy of the system, the arbitrary constant in V being

determined by the condition that V is to be zero when the particles are at infinitely great

distances from each other, we have

F=-2 TO* TO,

The equations of motion of the particle mi are

dV .. dV .. dV
"•«*<-

-Si'
m*=-^' "*" 5£-

Multiply these equations by xt , y{ , zi: respectively, add them, and sum for all the

particles of the system : since V is homogeneous of degree - 1 in the variables, we thus

obtain

i

or J2 |2Wi(^+y<
2
+«i

2)-2f*=y,

g-W+F.
This is called JacobSt equation.

* Vorlesungen liber Dyn., p. 22.
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157. Reduction to the 12th order, by ilse of the integrals of motion of the
centre of gravity.

We shall now proceed to carry out the reductions which have been
described*. It will appear that it is possible to retain the Hamiltonian form
of the equations throughout all the transformations.

Taking the equations of motion of the Problem of Three Bodies in the
form obtained in § 155,

dqr _dH dpr dH
, i a

dt~tyr
'

-dt
=
-dg-

(r-1,2,.,.,9),

we have first to reduce this system from the 18th to the 12th order, by use
of the integrals of motion of the centre of gravity. For this purpose we
perforin on the variables the contact-transformation denned by the equations

dW , dW
,

qr =
Wr'

Pr=W (-=1*2,. ..,9),

where W = p1 q1
'+p2qz

' + pa q3
' +p4qt

' + p,q,'+p6qe
' + (Pl + Pi +p7) q7

'

+ Os + Pi + Ps) qi + (ps + p« +ps) qs
'.

Interpreting these equations, it is easily seen that (q,', q2', qf) are the
coordinates of m1 relative to m3 , (ql, q5', qe

') are the coordinates of m2 relative
to ms , (q7', qe

', qs
') are the coordinates of m^, (p/, p2

', ps
') are the components

of momentum of m,, (p/, ps
', p6

') are the components of momentum of m2 , and
(pS> Pe, Ps) are the components of momentum of the system.

The differential equations now become (§ 138)

dq£_dj^ dp/_ dH
dt dpr

" dt~~dqr
' (r-1,2,.,.,9),

where, on substitution of the new variables for the old, we have

Hm(i +i) <** + **+*"> + (i +i) <** +^'2 +^'2

)

+ — {Pi'P*' + P*P* + PsP« + hPr'* + i Ps" + \pi* - Pr' (p/ +pS)
//fcg

- P* Qh>'+ps') -p,' (p/ +Pe')}

- m2m% {ql* + qfi + ?6
'2

}
~ * - m,™, {q^ + q* + ?s

'2
}

~

*

- m,m2 {(?/ - qty + (y/ - q5J + (qt
' - q^} ~ *

* The contact-transformation used in § 157 is due to Poincare, C.R. cxxin. (1896) ; that used

in § 158 is due to the author, and was originally published in the first edition of this work (1904).

It appears worthy of note from the fact that it is an extended point-transformation, which shews

that the reduction could be performed on the equations in their Lagrangian (as opposed to their

Hamiltonian) form, by pure point-transformations. The second transformation in the alternative

reduction (§ 160) is not an extended point-transformation. Another reduction of the Problem of

Three Bodies can be constructed from the standpoint of Lie's Theory of Involution-systems and
Distinguished Functions: cf. Lie, Math. Ann. vm. p. 282. Cf. also Woronetz, Bull. Univ. Kief,

1907, and Levi-Civita, Atti del R. 1st. Veneto, lxxiv. (1915), p. 907.
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Since q7
', qa

', q9
' are altogether absent from H, they are ignorable

coordinates: the corresponding integrals are

p7 = Constant, pa
' = Constant, p„' = Constant.

We can without loss of generality suppose these constants of integration

to be zero, as this only means that the centre of gravity of the system is

taken to be at rest : the reduced kinetic potential obtained by ignoration of

coordinates will therefore be derived from the unreduced kinetic potential

by replacing p/, ps
', p9

' by zero, and the new Hamiltonian function will be

derived from H in the same way. The system of the 12th order, to which the

equations of motion of the problem of three bodies have now been reduced, may
therefore be written (suppressing the accents to the letters)

dqr dH dpr__dH
dt dp/ dt~ dqr

\r-i,i,...,x>),

where

+ — (PiPi+PzPt+PsPs)
1/1,2

-

m

2ms {qf + qf + g-6
2

}
~^-msml {q* + q* + qs*}

~
i

-m1m2 {{q, - ?4)
2 + (q2

- qsf + (qs
-

qtf]
~*

This system possesses an integral of energy,

H= Constant,

and three integrals of angular momentum, namely

(qtPa - q%Pi .+ qspe - q&i = A x

1 2sPi - qip» + q«P4 - qtpe = A 2

wip* - q*Pi + q*Ps - q&i = a 3

where Au A 2> As are constants.

158. Reduction to the 8th order, by use of the integrals of angular

momentum and elimination of the nodes.

The system of the 12th order obtained in the last article must now be

reduced to the 8th order, by using the three integrals of angular momentum
and by eliminating the nodes. This may be done in the following way.

Apply to the variables the contact-transformation denned by the

equations

qr=
dp~r'

Pr =dq7
0-=lA...,6),

where

W=p! (q/ cos qi - q2 cos q,' sin qs') + p2 (q^ sin q,' + q2 cos q„' cos qj) +p3q2 sin qs

'

+P* (q» cos qs - ql cos ^'sin q5
') +p5 (q3'sin qs

' + ql cos (fr'cos q5
') +ptqt

' sin qe
'.

It is readily seen that the new variables can be interpreted physically as

follows

:
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In addition to the fixed axes Oxyz, take a new set of moving axes Ox'y'z
1

;

Ox is to be the intersection or node of the plane Oxy with the plane of the
three bodies, Oy' is to be a line perpendicular to this in the plane of the
three bodies, and Oz' is to be normal to the plane of the three bodies. Then
(ffi', qi) are the coordinates of m, relative to axes drawn through m 3 parallel

to Ox', Oy'
; (qs', q4') are the coordinates of m2 relative to the same axes

; q6

'

is the angle between Ox' and Ox; qe
' is the angle between Oz' and Oz; p(

and pi are the components of momentum of n^ relative to the axes Ox, Oy'

;

ps
' and pt are the components of momentum of m2 relative to the same axes

;

ps
' and pe

' are the angular momenta of the system relative to the axes Oz
and Ox' respectively.

The equations of motion in terms of the new variables are (§ 138)

dql dH dpi dH
dt dpr" dt dqr

' K 1, A •,»;,

where, on substitution in H of the new variables for the old, we have

2^ +
2^) [^

/2+K2+
(g2V^ giV)j(p1'g/-Kg/+P3

/

g;-Kgs')g;cot g6
'

+p6
'q

i
' cosec qe

' + psq3
'}'

*-(.

\2m2 2mJ

1
+ —

P**+P*'+ (o
>

n ,_ n ,nfv {(pi'q*'-lh'qi+P*'q*-P<qt')q»'cotqt

'

\qn g3 gl g4 )

+Psq* cosec ge' +^6'gi'}
2

,^/+^;-
(g2v-g/g; )-

K^i'gs' - Pt'qi + Piql ~ P*q») g/ cot q,' + p^ql cosec q6
'+pe

'q
s
'}

{(PiV - PWi + Bs'g/ - p/gs') g2
' COt g,' +^5'^' COSec q s

'+ pe'gi'j

- fn,m, (g/
2 + ?4

'
2
)
- * - fflsffl, (g* + q^) ~* - m,™, {(j/ - g/)

2 + (?I
' - qtJ}

~ *.

Now g5
' does not occur in i7, and is therefore an ignorable coordinate ; the

corresponding integral is

p5
' = k, where & is a constant.

The equation dqs'/dt = dH/dk can be integrated by a simple quadrature

when the rest of the equations of motion have been integrated ; the equations

for qs
' and p5

' will therefore fall out of the system, which thus reduces to the

system of the 10th order

dqr
' _ dH dp; _ dH _

'Tt~dp~r" W~~dq7 («•- 1,4 <*,,.&),

where ps
' is to be replaced by the constant k wherever it occurs in H.

We have now made use of one of the three integrals of angular momentum
(namely ps

' = k) and the elimination of the nodes : when the other two
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integrals of angular momentum are expressed in terms of the new variables,

they become

| {Pi'qi'—ptqi +Piq%~P*qi) sin ft' cosec q e

' - k sin qB
' cot qe

' +ps

'

cos q6
' = A lt

\- (ps'ft' -piq>' +piqs-Psqi) cos qb
' cosec qs

' + k cos qs
' cot q6

' + pe
' sin

<fr'
= A a .

The values of the constants A^ and J.2 depend on the position of the fixed

axes Oxyz ; we shall choose the axis Oz to be the line of resultant angular

momentum of the system, so that (cf. § 69) the constants A x and A 2 are zero

:

the special ajy-plane thus introduced is called the invariable plane of the

system. The two last equations then give

k cos qs
' = jJ2'ft'

- plq* +pi
'q

3
' -plq*,

Vi = o.

These equations determine q, and ps
' in terms of the other variables, and

so can be regarded as replacing the equations

dql = dH dp,' = dH
dt dp," dt dqi'

in the system. The system thus becomes

dql BE dpi BH fr-i2S«
dt dPr

" dt dqr
' ir-L,z,a,*),

where

\2m1 2mJ Pi' + P^+j-t
7V

(ft' ft'
- ft'ft')

2

{(Pi'qt -plql + Pt'q* - p/ft') cot qe
' + k cosec q<;¥

+(-+-
\2m2 2» p3

'
2+K 2 +

1
+ — ',.'.' 9a ft

(72 7s' - 7/74')
2

{(Pi'q*—Pi'qi +Ps'qi ~P*qs) cot q„' + k cosec qs'Y

PlPi+Pipl-j-T-,
(7s 7s - ?i 74 )

s

)0»iV - jVft' + #>'?*' -JP/ffs') cot g/ + A cosec g6
'}

2

- jn2m3 (g,* + ft'
2
)
~* - %«! (ft" + ft'

2
)
~* -m^

{(ft'
-

ft')
2 + (ft'

-
ft')

2

}

-
*

,

and where, after the derivates of H have been formed, q6
'
is to be replaced by

its value found from the equation

k cos
ft'
= pj'g,' - p{qi + pt

'q
s
' - pt

'q
t
'.

Now let H' be the function obtained when this value of qt
'
is substituted

in H ; then if s denotes any one of the variables q{, qi, ql, qt ', p{, pj, ps\ p^
we have

(W = dH dHdjl
ds ds dqa' ds
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But since p,' = 0, we have dH/dqs
' = p„' = 0, and therefore

ds~ ds
'

in other words, we can make the 'substitution for qe
' in H before forming the

derivates of H; and thus (suppressing the accents) the equations of motion of
the Problem of Three Bodies are reduced to the system of the 8th order

dt dpr
'

dt Bqr

{r-1,1,6,*),

where

+ <™ - **r {(£

+

±) * + (^ + ij <n - ^}

.

-m2ms (qs
' + qi

")-i-m
3m1 (qi> + q2

")-i-m
1m2 {(q1-q3y + (qi -q4

y}-i.

Many of the quantities occurring in H have simple physical interpretations

:

thus (q2q — q^qt) is twice the area of the triangle formed by the bodies: and

2m1m2ms

Urn,
+ ZmJ q * +

\2m~2
+
2m~)

qi ~ ms
q' q

\m, + m2 + ms

is the moment of inertia of the three bodies about the line in which the

plane of the bodies meets the invariable plane through their centre of

gravity.

It is also to be noted that this value of H differs from the value of H when k is zero by
terms which do not involve the variables plt p%, p3 , pt : these terms in k can therefore be

regarded as part of the potential energy, and we can say that the system differs from the

corresponding system for which k is zero only by certain modifications in the potential

energy. It may easily be shewn that when k is zero the motion takes place in a plane.

159. Reduction to the 6th order.

The equations of motion can now be reduced further from the 8th to the

6th order, by making use of the integral of energy

H= Constant,

and eliminating the time. The theorem of § 141 shews that in performing

this reduction the Hamiltonian form of the differential equations can be

conserved. As the actual reduction is not required subsequently, it will not

be given here in detail.

The Hamiltonian system of the 6th order thus obtained is, in the present

state of our knowledge, the ultimate reduced form, of the equations of motion of

the general Problem of Three Bodies,
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160. Alternative reduction of the problemfrom the 18<A to the Qth order.

We shall now give another reduction* of the general problem of three

bodies to a Hamiltonian system of the 6th order.

Let the original Hamiltonian system* of equations of motion (§ 155)

be transformed by the contact-transformation

qr =-—,, Pr=-5~ (r= 1, 2, ...,9),
dpr

r
dqr

where

w= Pi (9* ~ ?i) + Pa (?» - ?») + P» (?« - q3)

+p;U- miqi
t
m* q4)+p>'(*-

miK miq°

)V mi + m2 /
r

V mi + fflj /

Ps
l
?9

mi + m* )
+ Pr <-

mi9'

1 + m2?4 +"^
+ #,' (m^a + m2qn + m3 qa) +p9

' (m^ + m2 <fr
+ TOs?,).

The integrals of motion of the centre of gravity, when expressed in terms

of the new variables, can be written

qr = q» = q* =p7
' = pa

' = p> = o,

and consequently the transformed system is only of -the 12th order: sup-

pressing the accents in the new variables, it is

where

dq
L
_dH dpr__dH

dt~dPr '

dt
-

dqr
^-i,*,..,,o>,

and

H=2- (p* +pf +&)

+

g-> (p* + &' +pf)

-

mim* (s* + fr'

+

q>)
*

-m^ms iqi
i+q6

' + qe
' + -—^-(q1qi +q2 qB +q3qe)

\m1 + mj v» * * 'j

_ w^wia , _ m3 (wij + m2)

wij + m2

'

wij + m2 + m 3

'

The new variables may be interpreted physically in the following way

:

Let G be the centre of gravity of m
l
and m2 . Then (qlt q2 , qs ) are the

* Due to Eadau, Annates de VEc. Norm. Sup. v. (1868), p. 311.
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projections of m^ on the fixed axes, and
(ft, ft, ft) are the projections

of Om s on the axes. Further

^=Pr (r-1,2.3), and v'^jr=Pr (r = 4, 5, 6).

The new Hamiltonian system clearly represents the equations of motion

of two particles, one of mass ft at a point whose coordinates are (ft, ft, qs),

and the other of mass ft at a point whose coordinates are (ft, ft, q6); these

particles being supposed to move freely in space under the action of forces

derivable from a potential energy represented by the terms in H which

are independent of the jo's. We have therefore replaced the Problem of

Three Bodies by the problem of two bodies moving under this system of

forces. This reduction, though substantially contained in Jacobi's* paper of

1843, was first explicitly stated by Bertrandf in 1852.

We shall suppose the axes so chosen that the plane of xy is the invariable

plane for the motion of the particles ft and ft, i.e. so that the angular

momentum of these particles about any line in the plane Oxy is zero.

Let the Hamiltonian system of the 12th order be transformed by the

contact-transformation which is defined by the equations

dW , dW
1r =

3fr
>

^=9ft?
(r = l,2,...,6),

where

W = (p„ sin ft' +p1 cos &') ft'
cos ft' + ft' sin.ft' {(p2 cos ft' -px sin ft')

2 +p3
*}i

+ (p, sin ft' + Pi cos ft') ft'
cos ft' + ft'

sin ft' {(ps cos ft'
-p4 sin ft')

2 + p*}% .

The new variables are easily seen to have the following physical inter-

pretations: ft'
is the length of the radius vector from the origin to the

particle ft, ft'
is the radius from the origin to ft, ft'

is the angle between ft'

and the intersection (or node) of the invariable plane with the plane through

two consecutive positions of
ft'

(which we shall call the plane of instantaneous

motion of ft), ft'
is the angle between ft'

and the node of the invariable plane

on the plane of instantaneous motion of ft, ft' is the angle between Ox

and the former of these nodes, ft'
is the angle between Ox and the latter of

these nodes, p/ is ftqi,pi is ftqi,pi is the angular momentum of ft round

the origin, pi is the angular momentum of ft round the origin, pi is the

angular momentum of ft round the normal at the origin to the invariable

plane, and ps
'
is the angular momentum of ft round the same line.

The equations of motion in their new form are (§ 138)

dqr
' dH dpr' _ dH , , „

fi

.

-dt^dp-;' W-~dq7
{r-l,l,..., H

* Journal fiir Math. xxvi. p. 115. + Journal de math. xvn. p. 393.
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where H is supposed expressed in terms of the new variables. Let this

system be transformed by the contact-transformation

' „ dW , dW
Pr=W" qr=

Wr
(r-1.2,..„6).

where

w

=

qi' (pi - pi) + qi' (pi + pi) + qi'pi + qi'pi+ qi'pi + qi'pi-

The equations of motion now become

dg/'_3tf dpf__dH
dt ~dpr

"'
dt

~
dqr

" V-i,a,...,o).

But H does not involve qi' , as may be seen either by expressing H
in terms of the new variables, or by observing that qi' depends on the

arbitrarily chosen position of the axis Ox, while none of the other coordinates

depend on this quantity. We have therefore

pi' = - dH/dqi' = 0, so ps
" = k,

where k is a constant ; this is really one of the three integrals of angular

momentum. Substituting k for pe
" in H, the equation

q6
" = dH/dk

can be integrated by a quadrature when the rest of the equations have been

solved : so the equations for pe
" and qe

" can be separated from the system,

which reduces to the 10th order system

dqS_dH dp/^_dH
dt dp;" dt dqr

" K 1.4.....0J.

We have still to use the two remaining integrals of angular momentum
;

these, when expressed in terms of the new variables, are readily found to be

represented by

qs
"=90°, kp6

" = p3
"*-

Pi
"*;

no arbitrary constants of integration enter, owing to the fact that the plane of

xy is the invariable plane.

The system may therefore be replaced by these two equations and the

equations

dt dpr
"'

dt
~

dqr
" V - L, A, 4, *),

where, in this last set, q" can be replaced by 90° before the derivates of H
have been formed, and p6

" is to be replaced by (ps^—pi'^/k after the

derivates of H have been formed. Let H' denote the function derived from

,

H by making this substitution for p5
", and let s denote any one of the

variables q", qi', qi', qt
", Pi", pi' ,

p

s
", pi' ',

then we have

dJT = dH SHdpl^dH . „ dpi' _ dH
ds ds dp6

" ds ds ^ 3s 3s
'
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and it is therefore allowable to substitute for p„" in H before the derivates of

H have been formed. The equations of motion are thus reduced to a system
of the 8th order, which (suppressing the accents) -may be written in the form

where, effecting in H the transformations which have been indicated, we have

-«,«,W-^^2
(cosgs cos g4

-^!z^sing3sin?4) + ,-5*1^1"*

f
2m1 q1q2 / &2-p3

2-»
4
2

. \ m, 2
)
~£

- m2 ?rc3 ^2
2 + f-^t cos j,ooa^ / ' siQQ3smo4 + 7

i
-^r<7i

i7 •

(

a mi + mA a
* 2p3p4

a3 i4
7 (mi+m2)

2 ^
]

The equations of motion may further be reduced to a system of the

6th order by the method of § 141, using the integral of energy

H = Constant

and eliminating the time. As the reduction is not required subsequently, it

will not be given in detail here.

161. The problem of three bodies in a plane.

The motion of the three particles may be supposed to take place in a

plane, instead of in three;dimensional space; this will obviously happen if the

directions of the initial velocities of the bodies are in the plane of the bodies.

This case is known as the problem of three bodies in a plane : we shall

now proceed to reduce the equations of motion to a Hamiltonian system of

the lowest possible order.

Let (qu q2) be the coordinates of m,, (q3 , g4) the coordinates of m 2 , and

(?«, qe) the coordinates of wi8 , referred to any fixed axes Ox, Oy in the plane

of the motion; and let pr = mieqr , where k denotes the greatest integer in

\ (r + 1). The equations of motion are (as in § 155)

dqr _dH dpr__dH
dt~dpr

' dt~ dqr
K i.A-.o;,

where

H =
i" {p

* + pi) +^Pt,+P*,)+
Î

(*•+ #)-'»»'»»{<?.- ?>)'+(?4-g.)'}
~*

- m s rrh {(?,- ?i)
2 + fe-3a)

2

]

~* - ™i^ {(?i - ?s)
2 + (?.

-

qtf}~ *.

These equations will now be reduced from the 12th to the 8th order, by

using the four integrals of motion of the centre of gravity. Perform on the

variables the contact-transformation defined by the equations

dW , dW , , «, as
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where

W =p1qi +paqi +p3qi + p*qi + (Pi +p3 +Ps) qi + 0>2 +Pi +pi) qi-

It is easily seen that (qi, qi) are the coordinates of m, relative to axes

through ms parallel to the fixed axes, (qi, qi) are the coordinates of ms

relative to the same axes, (qi, qi) are the coordinates of ms relative to the

original axes, (pi, pi) are the components of momentum of m,, (pi, pi) are

the components of momentum of mit and {pi, pi) are the components of

momentum of the system.

As yi § 157, the equations for qi, qi, pi, pi disappear from the system

;

and (suppressing the accents in the new variables) the equations of motion

reduce to the system of the 8th order,

dqr_dH dpr__dH
dt'dpr' dt~ dqr

(r-y,*,6,%),

where

- -ihhtth (qi + q?)
~ * - m>«i (?i

2 + qi)
~ * + m,m, {(qx - qif + (qa- qi?}

~ k

Next, we shall shew that this system possesses an ignorable coordinate,

which will make possible a further reduction through two units.

Perform on the system the contact-transformation defined by the equa-

tions

dW , dW
qr
=

dp~r'
Pr ^dq7 (-=1>2,3,4),

where

W=p1 q1

' cos qi+p2qi sinqi+p3 (qi cos qi - qisin qi) + pt (qiam qi + q3'cos qi).

The physical interpretation of this transformation is as follows : qi is the

distancem^
; q2

' and qi are the projections of mzma on, and perpendicular to,

«hwis ; qi is the angle between rn^rn^ and the axis of x; pi is the component

of momentum of m1 along m^m^ ; pi and pi are the components of momentum
of m2

parallel and perpendicular to m,m, ; and pi is the angular momentum
of the system.

The differential equations, when expressed in terms of the new variables,

become
dqi _ dH dpi _ dH

where

H

dt dpi' dt
~

dqi
(r -1,2,3,

= {k +i)k +htoV -*'*' -p:y
)
+ (i +i) <*'+**>

- \pipi -—, (piqi -piqi - pi) \ - «•»», (qi
2 + qi*)'*

rh {. q\ )

- m^qi-1 - m1 7ni {(qi - qif + g3

'2
} "i

+
rru
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Since ql is not contained in H, it is an ignorable coordinate ; the corre-

sponding integral is pi = k, where k is a constant ; this can be interpreted as

the integral of angular momentum of the system. The equation qt
' = dH/dpl

can be integrated by a quadrature when the rest of the equations have been

integrated ; and thus the equations for pt
' and ql disappear from the system.

Suppressing the accents on the new variables, the equations can therefore

be written

dt dpr
'

dt dqr
(r-L,£,d),

where

H = (i + i) {*

+

h <** ~M°

~ ky
}

+ (i +
sk) (P22 +p° ]

+— jPi^a-^ (Ps?2 - jJaft - &)
j
- m2ms (q* + q*)~%

- msm^r1 - »ii»«2 {(?i - ft)
3 + SV

1

}
~

•

This is a system of the 6th order ; it can be reduced to the 4th order by
the process of § 141, making use of the integral of energy and eliminating

the time.

162. The restricted problem, of three bodies.

Another special case of the problem of three bodies, which has occupied a

prominent place in recent researches, is the restricted problem of three bodies

;

this may be enunciated as follows :

Two bodies 8 and J revolve round their centre of gravity, 0, in circular

orbits, under the influence of their mutual attraction. A third body P,

without mass (i.e. such that it is attracted by S and J, but does not influence

their motion), moves in the same plane as 8 and J; the restricted problem

of three bodies is to determine the motion of the body P, which is generally

called the planetoid.

Let mj and m2 be the masses of S and J, and write

w, m,

"SP JP'

Take any fixed rectangular axes OX, OY, through 0, in the plane of the

motion; let (X, Y) be the coordinates, and (U, V) the components of velocity,

of P. The equations of motion are

#X dF <PY dF

dt' dX' 'dP dY'
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Since F is a function not only of X and Y but also of t, the equation

H = Constant is not an integral of the system.

Perform on the variables the contact-transformation which is defined by

the equations

Y-^E V- dW - dW - dW

where W = IT (x cos nt — y sin nt) + V (x sin nt + y cos nt),

and n is the angular velocity of 8J. The equations become

dx = dK dy_dK du _ _dK dv__d_E
dt du ' dt dv ' dt~ dx ' dt~ dy

'

where (§138) K =H-~
= %(v?+vi

) + n(uy— vx)-F;

it is at once seen that x and y are the coordinates of the planetoid referred

to the moving line OJ as axis of x, and a line perpendicular to this through

as axis of y. F is now a function of x and y only, so K does not involve i

explicitly, and
K = Constant

is an integral of the system ; it is called the Jacobian integral* of the restricted

problem of three bodies.

Another form of the equations of motion is obtained by applying to the

last system the contact-transformation

dW _d_W _dW _dW
X ~du- y ~dv' Pl ~dqr P*~dq~2

'

where W = q1 (u cos q^ + v sin q2).

The new variables may be defined directly by the equations

q, = OP, q2 = POJ, Pl = jt

(OP), p2 = 0P*j
t
(P0X),

and the equations of motion become

dqr_dH dfr__dH _
dt dPr ' dt~ dqr

{r ~ '
h

where H = \ (p? +^ ) - np2
- F.

\ 1\ i

Another formf is obtained by applying to these equations the contact-

transformation

P'=Wr' ^^^ (r=1
' 2) '

where W=p2 q2 + f
q '

j_&_ + ? U^,
* Jacobi, Comptes Rendus, m. (1836), p. 59.

+ Adopted by Poincare in his Nouvelles mithodee de la Mgc. CHeste.
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where u denotes a current variable of integration. These equations may be
written

pi

* = arc cos <

1-^ pjf_ 2qi_q£
Pi* Pi* Pi

P2 = Pt,

q%—1?. — arc cos

El.

ft
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163. Extension to the problem, of n bodies.

Many of the transformations which have been used in the present chapter

in the reduction of the problem of three bodies can be extended so as to

apply to the general problem of n bodies which attract each other according

to the Newtonian law. In their original form, the equations of motion of

the n bodies constitute a system of the 6nth order ; this can be reduced to

the (6n — 12)th order, by using the six integrals of motion of the centre of

gravity, the three integrals of angular momentum, the integral of energy, the

elimination of the time, and the elimination of the nodes.

The reduction has been performed by T. L. Bennett, Mess, of Math. (2) xxxiv. (1904),

p. 113.

Miscellaneous Examples.

1. If in the problem of three bodies the units are so chosen that the energy integral is

?-23 rsl rn r

'

where r12 is the distance between the bodies whose velocities are Vi and v2 , and if r is a

positive constant, shew that the greatest possible value of the angular momentum of the

system about its centre of gravity is § v 2r.

(Camb. Math. Tripos, Part I, 1893.)

2. In the problem of three bodies, let * be Jacobi's function, let Q be the angle

between any fixed line in the invariable plane and the node of the plane of the three bodies

on the invariable plane, let i be the inclination of the plane of the three bodies to the in-

variable plane, and let i; be the area of the triangle formed by the three bodies. Shew that

do. _k
~di~i'

1 di^ ( M _Y\\
ni dt \«z1m2 WJ3'/

2 *2
J

'sin i dt

where k is the angular momentum of the system round the normal to the invariable

plane. (De Gasparis.)

3. Let the problem of three bodies be replaced by the problem of two bodies p and p'

as in § 160 : let qt and q2 be the distances of fi and ft! from the origin : let q3 and qt be

the angles made by qt and q2 respectively with the intersection of the plane through the

bodies and the invariable plane : let py and p2 denote p

q

t and fi!q2 respectively ; and let p3

and pi be the components of angular momentum of fi and // respectively, in the plane

through the bodies and the origin. Shew that the equations of motion may be written

<krJE dp* JS
dt dpr

' dt dqr
(r-l,li,.i,4},

where H= Constant is the integral of energy. (Bour.)





CHAPTEE XIV

THE THEOREMS OF BRUNS AND POINCARE

164. Bruns' theorem.

(i) Statement of the theorem.

We have seen (§ 155) that the problem of three bodies possesses 10 known

integrals : namely the six integrals of motion of the centre of gravity, the

three integrals of angular momentum, and the integral of energy ; these are

generally called the classical integrals of the problem. Each of them is an

algebraic integral, i.e. is of the form

/(?,,&, ••,q»,Pi,Pi, ••Pa, = Constant,

where / is an algebraic function of the coordinates (g1; qt , ..., q„,

p

lt ...,p9)

and of t.

Efforts have frequently been made to obtain other algebraic integrals of

the problem of three bodies independent of these (i.e. not formed by combina-

tions of them), but without success; and in 1887. Bruns* shewed that no

such new algebraic integrals exist ; in other words, the classical integrals are

the only independent algebraic integrals of the problem of three bodies.

It may be remarked t that the non-existence of algebraic integrals does not necessarily,

imply great complexity in a system. One of the simplest of differential equations, namely

the linear differential equation with constant coefficients

X - (ft+p2)
X+ fli JU2x= 0,

has no algebraic integral except when /ii//i2
is a rational number, in which case the first

integral

(*-ft*r=0onrtant
(x-^xf1

can be transformed into an algebraic integral.

(ii) Expression of an integral in terms of the essential coordinates of the

problem.

We shall now proceed to a proof of Bruns' result, considering first those

integrals which do not involve t explicitly.

* Berichte der Egl. Sikhs. Ges. der Wits. 1887, pp. 1, 55 ; Acta Math. xi. p. 25. Cf. also

Forsyth, Theory of Differential Equations, Vol. m. (1900), Ch. xvu.

t Cf. K. Bohlin, Astron. Iakttagelser och Vnders. a Stockholm* Observ. ix. (1908), Nr 1.



164] The Theorems of Brum and PoincarS 359

The equations of motion of the problem may (§ 160) be written in the
form

dqr _dH dpr dH
W-dfr' d*=^ (r=\,%. ..,&)...(!),

where

H=T-U,

U = m1m2 (g,
2 + g2

2 + qjyl



360 The Theorems of Brims and Poincare [ch. xiv

and therefore the equations

|£ = (r=l, 2 6)

must be satisfied identically; that is, / does not involve (qu q2 , ..., qa), and

so is a mere constant.

(iv) Only one irrationality can occur in the integral.

As the mutual distances of the bodies are irrational functions of

(qu qz , ..... qe), the function U will be an irrational function of these

variables. Denoting by s the sum of the three mutual distances, it is easily

seen that the mutual distances can be expres_sed as rational functions of the

seven quantities (qlt q2 , ..., q6 , s) ; in other words, the irrationalities involved

in the mutual distances are all capable of being expressed by means of the

irrationality of s ; we may therefore suppose that U is expressed as a rational

function of (q1 , qiy ..., qe , s).

Now the function f is algebraic, but not necessarily rational, in the

variables (ql} ..., qt ,pi, ,pe)> let the equation (2) be rationalised, and let

the resulting equation be arranged in powers of a, so that it becomes

am+am-'f(?1 , qt , qs,plt ..., p6) + am^^(qu ..., qs,pu ...,p6) + ...

+ </>m(<7i, ••, qe.Pi Pe) = ...(3),

where </>j, <j)2 , ..., §m are rational functions of (qlt ..., qB,plt ..., pa ). If this

equation is reducible in the variables (qt, ..., q6 , py , ...,p6 , s), i.e. if it can be

decomposed into other equations, each of the form

al+ al-1f1 (ql ,...,qa ,pl ,...,p6 ,s) + ... + fi(q1 ,...,q6 ,p1,...,ps ,s) = 0...(4>),

where ^j, ^2 . • • •

»

ty are rational functions of (qlt . .
. , qei pu . .

. , pe , s), then one

of these last equations will give the value of a which corresponds to equation

(2), and we shall consider this equation instead of (3). As the type of

equation represented" by (4) includes the type represented by (3) as a

particular case, we shall suppose a to be given by an equation of the form (4),

irreducible in (qu ..., q6 , pu ...,p6 ,
s).

Differentiating with respect to t, and using equations (1), we have

al->W1,H) + a^(f„H) + ... + Wl
,H) = (5),

where (yjrr , H) denotes as usual the Poisson-bracket of ^,. and H.

We shall first suppose that the expressions (i^r , H), which are rational

functions of (qlt ..., qe , plt ..., pe , s), are not all zero. Then equations (4)

and (5) have one or more common roots a, and consequently equation (4) is

reducible in (qlt q^, ..., qe , pu ..., pe , s); but this equation is irreducible, and

therefore this hypothesis is inadmissible, and the quantities (i|rr , H) are all

zero. This implies that all the coefficients (^r
1(

i|r
2 , ..., yjr{) in equation (4)

are integrals of the equations (1) : and hence the integral f can be com-

pounded algebraically from other integrals, which are rational functions of

(qu ...,qs , Pu .-.,^6, s).
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(v) Expression of the integral as a quotient of two real polynomials.

We need therefore henceforth only consider integrals of the type

f(qi, ?2 , •••, q6 ,Pi, ,Ps, s) = a (6),

where /is a rational function of the arguments indicated. The form of/can
be further restricted by the following observation. If in the equations of

motion we replace qr , pr , t by q.rk
2
, prk~x

, and tk3 , respectively, where k is any

constant, the equations are unaltered. If therefore these substitutions are

made in equation (6), this equation must still be an integral of the system,

whatever k may be.

Now / is a rational function of its arguments : it can therefore be ex-

pressed as the quotient of two functions, each of which is a polynomial in

(ql , q2 , ..., qs , Pi, --.pe, «)• When in these polynomials we replace qr , pr , s

by qrk
2
, prk"1

, sk*, respectively, the function / will (on multiplying its

numerator and denominator by an appropriate power of k) take the form

A kr + A 1
kP-1 + ...+Ap

1 Bokt + Btki-i-t- ... + B
q

'

where (A , Au ..., Bq)
are polynomials in (qlt ..., q6 , pu ...,pe , s). Since

df/dt is zero, we have

fdA , .. .
dA r.

Now k is arbitrary, so the coefficients of successive powers of k in this

equation must be zero; and therefore

(a R dA
" A

dB"°--bo ~dT~
A

° dt
'

vdA dA, dB, dB,
0=Bi

-dT
+Bo ^r~ Al^t~ *~dt'

dAp _ . dBq
J
«~rfT

-
p dt

ft R aAP A
UlJq

These (q +p + 1) equations are equivalent to the system

A dt ~A X
dt '" Ap dt B dt

"" Bq
dt

'

from which it is evident that each of the quantities

A, A, Ap 5, Bg

A t
' A t '""A,' A Q

' 'A,
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is an integral: and thus we have the result that any integral such asf can be

compounded from other integrals, which are of theform

GAq1 ,...,qe,p1 ,...,p6 ,s) = Constant)
Gi(?i, ...,q„Pi, ...,pe ,S)

where each of the functions Glt G2 is a polynomial in its arguments, and is

merely multiplied by a power of & when the variables qr , pr , s are replaced

respectively by qrk
2

, prk~l
, S&

2
. We need therefore only consider integrals of

this form.

It may further be observed that the functions G^ and G2 may, without loss

of generality, be taken to be free from imaginaries. For if P and iQ denote

the real and imaginary parts of an integral

P + iQ = Constant,

we have -j- + i -^ = 0, identically.

Since the differential equations are free from imaginaries, it follows that

dP/dt and dQ/dt are free from imaginaries : and so dP/dt and dQ/dt must be

zero separately. Hence P and Q are themselves integrals, and every complex

integral can be compounded from real integrals. We shall therefore hence-

forth assume that G^G^ is free from imaginaries.

(vi) Derivation of integrals from the numerator and denominator of the

quotient.

It may be the case that the function Gx is resoluble into a product of

irresoluble polynomials in (plt p2 , •,p*), the coefficients in these polynomials

being rational functions of (qlt q2 , . .
. , q«, s). Let yfr be such a polynomial, and

suppose that it is repeated A. times in G^. and let ^ denote the remaining

factors of Glt so that

When (?! is irreducible, we shall of course have G-i. = yjr, and % = 1.

d(G,\
The equation

Jf (^)
,

Xd-dr Idy 1 dG2 n
Slves *!Tt

+ xdt-G^ = Q
>

dt
r \\G2 dt XX dtj

Now dyfr/dt is polynomial in (plt ...,p„), and yfr is also polynomial in

(plt ...,pa), of order less by unity than the order of dyfr/dt. Also, 1^ has no

factor in common with G2 or %. Hence we see that

1 dG2 1 dX
\G2 dt \% dt
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must be a polynomial in (plt ...,pe), of order unity: denote this polynomial

by co : then we have

It may be shewn in the same way that each of the other irreducible factors

of (?i satisfies an equation of this kind. Denote the various factors of (?i by

f, ifr", ...,so that

0, = ^'^"" ,

and let the equations they satisfy be

Jl^1_ '
1 W- "

f dt
~ a

'

-yjr" dt
~ a '''

then we have

1 dG1 u d<r' v dxfr" . ,.

where w is a polynomial in (p l , . .
. , pe), of order unity, and rational in

(qu ...,q6 ,s). Thus Gx satisfies the equation

dQ, r

and therefore (since GJGz is an integral), G2 also satisfies the equation

dG2 „

-dt
=aG*-

As Gi and G2 satisfy the same differential equation, we shall in future use

<f>
to denote either of them : so <$> is a real polynomial in (p^ ...,pe , (fr, ...,q6 ,s),

which satisfies the equation
<f>
= coip.

Now is merely multiplied by a power of k when qr , pr , s are replaced

respectively by qr t?, prk~\ sk* : since

m ~
'.(j> dt~ r =i cj> \dqr ft dpr dqr )

'

we see that o> is multiplied by k~s when this substitution is made. It follows

that co cannot contain a term independent of (plt ...,p6), since such a term

would be multiplied by an even power of k; a> is therefore of the form

ft) = COtf! + CO^Ps + ... + COsPe,

where each of the quantities wr is homogeneous of degree - 1 in the quantities

(?!> ,qs,s).

Further, let one of the terms in be of order m in (p, jj«) and of order

n in (g„ ..., q6 , s), while another term is of order m in (p„ ...,p6)
and of

order n' in (ft, ...,?«.*): since these terms are multiPlied by the same

power of k when the above substitution is made, we have

-m+2n = —m' + 2n,

so m - m' is an even number. Hence </> can be arranged in the form

<f>
=

</>o + <j)2 + <j>i + • • • y
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where fa denotes the terms of highest order in (pu ..., p6), fa denotes terms

of order less by two units in (^ p6) than these, and so on: and each of

the quantities fa is a polynomial in (plt ...,pe , qu ...,<?«, s), homogeneous in

(Pi , , Ps) and also in (qlt . .

.

, qe , s).

We shall now shew that when fa does not involve s, <j> can be made into an

integral by multiplying it by an appropriate rational function of(q1 , ..., qe).

For suppose that fa does not involve s: the equation

d(j>

dt
=a(f)

or
~dt

+
~dt

+ =(&>iPi + a>2p2 + ... + (OeP^ifa + fa + .-.)

gives, on equating the terms of highest degree in (p1; ...,p6),

| h^ =
^tDlPl+m .. + UtPt)fa m

r=l fJ-r Oqr

Now fa may contain pe as a factor : in order to take account of this case,

write fa = ps
h
fa', where fa does not contain ps as a factor, and where as a

special case we may have k = 0, fa'
= fa. Substituting pe

k
fa' for fa in the

differential equation, it becomes

|£rjW
( + _ + ^

r=l pr Oqr

Let fa" denote those terms in fa' which do not involve pe ; equating the

terms which do not involve ps on the two sides of this equation, we have

I Pz d

*f = (a> 1p1 + ...+co6pli)fa".
r=lA<T oqr

It may be that fa" is a mere function of qu q2 , ..., q6 , say equal to K; in

this case we have

h
d

ir^R (-1,2,. ..,5)

^r = -

B r̂

(r=l,2,...,5),

7) 7\

and therefore — (fir tor) = =— (fis a>s) (r, s = 1, 2, . .
.
, 5).

0qg 0qr

Supposing next that fa' does involve some of the quantities (pu ...,p6),

it may involve p5 as a factor: to take account of this case, we write

fa' =Pts
K
fa'"> where fa'" does not involve p5 as a factor. The equation now

becomes

r=l Hv °Hr
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Let (jb
lv denote the terms in <p

'" which do not involve p5 : equating the

terms which do not involve pB on the two sides of this equation, we have

Proceeding in this way, we ultimately arrive at the alternatives, that

either

or else a function ty exists, which is polynomial in q1: ..., qe,Pi,p^, homo-

geneous in qlt ..., q6 and also in plt p2 , and is free from any factors which are

mere powers ofp 1 and p2 , and which satisfies the differential equation

P1 dJr + pJ dJr =

Now let -if = apt + hp} + cp1

^~1
ps +••",

equating coefficients of pj
+1 and p2

l+1 on the two sides of the last equation,

we have
1 da 1 36

^a dq-i fx2 b oq2

The quantities a, b, c, ... are polynomials in (qlt q3 , ..., qg): they may have

a common polynomial factor Q, so that

a=a'Q, b = b'Q, etc.

Let ir' = a'pi + b'pi + c'pl
l
~1

p2 +...,

so that ir = Qty'-

Then

1_ (P± W,P? Ml) = 1 (Si <tt+p? ?i:\_- (-
d^-+ Pl —x

f Ui 3?! /*a 3gJ ^ Vi 9ft /*2 3g2 / Q Vi 3?i /^ 9ft

1 3Q\ ,/ 1 9Q\„

= «!>! + «/p2 , say,

J_3a' ,_ 1 36
/

/*!<*' 3^i

'

^2
6' S^'where <»i — —r> o7" >

w
2
-

/Xj 3^ m2 3<72

The left-hand side of this equation is a polynomial in (qu qt , ..., qs ,

pu p2); but if a' contains gu then »,' contains a', or some factor of it, as

a denominator. Hence f' must contain a', or some factor of it, as a factor.

But this is inconsistent with the supposition that a', V, ... have no common

factor. Hence a' cannot involve q1 ; and therefore »,' is zero. Similarly

<b2
' is zero.
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rpv 1 3Q 1 3Q
Thus a)! = yt- 5— , »a = ?=;— x2 -

,

?3 /}

and therefore ^— (\hv>\) = 5— 0*sO>2),
Oft oft

which is the same as the alternative previously noted : so this equation is

true in any case.

Similarly we can shew in general that

and hence we may write

1 dR

where R is some rational function of (ft, ft, ..., ft).

Thus we have

• pr 1 dR

r=\ H* R oqr

=
« ^dRdqr

r=l -B 3ft d£
'

1 <ty 1 <£R
°r

<f>
dt~R dt'

and therefore ^ = Constant.

Thus ^> can be transformed into a constant, by multiplying it by an

appropriate rational function of ft, ft, ..., q6 , namely 1/R; which is the

required result.

If therefore the terms <£ in Gx and 6?2 do not involve s, we can transform

(?! and 6r2 into integrals, by multiplying them by appropriate rational functions

of (ft, ft, .-., ft) ; and hence, if it can be shewn that the terms $ in G^ and G2

do not involve s, we shall have the result that any algebraic integral of

the problem of three bodies can be compounded from integrals which are

polynomial in (pi,pit ,pe) and rational in qlt q2 , ..., qe , s.

(vii) Proof that cf> does not involve the irrationality s.

The case in which $ involves s is not included in the above investigation.

We shall however now proceed to shew that no real function $„, which satisfies

an equation

J, pr dd> , . ,

S » ^T
= W^1 + ••• + "'Pi) 0o,

r=\ H>r Oft

can involve s ; and hence that the functions $„ occurring in our problem do

not involve s, so that the above result is quite general.
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For suppose that a function <£ exists, which involves s and satisfies the
above differential equation. When the 8 values of s are substituted suc-
cessively in <£ , <f>„

will take a number of distinct values ; let these values be
denoted by </>„', <£„", ... ; they satisfy equations of the form

r=x fir oqr
^U

r=1 fir dqr
r° '

where co', to", . . . are the values of o> when the values of s corresponding to

$o', <£o", . . . respectively are substituted in it.

Let * = </>„'</»„"
O
'"....

Then we have

J_ | pr 33> _ | .jy / 1 3fr/
|

1
3<fr

"
|

<1> r= i Mr 3^ r= i /ir V(/>
' dqr </>

" dqr

= to + O) + ...

= n,

where fl is a linear function of (p,,^2) ...,#6), the coefficients being rational

functions of (qlt q2 , ..., q6).

Now 4>, from the manner of its formation, is a rational function of

(ji. ?«! •••> <l<s)>
n°t involving s: and it is clearly a polynomial in(^1( p2 , ...,p6 ).

So we can apply to <E> the results already obtained, which shew that (on

multiplying <I> by some rational function of q1} q2 , ..., q 6) O. is zero, and

therefore that <3> satisfies the equation

r= 1 Mr oqr

This is a partial differential equation for <3>: there are 6 independent

variables, and 5 independent solutions can at once be found, namely the

quantities (&& - &&) , . .
. ,
(%& -^6

) . It follows that * is a function
\ Mi A*a / V Mi Me/

only of the quantities

(Q*Pi_9iP*\ (Mi- MA „ „
\ fr fU. J \ fli fl6 )

Now the factors of <t> differ from each other only in that different roots s

are used in their formation : so when such a relation exists between

(qlt qit ..., q6) that two of these roots s become equal to each other, then

two factors of <& will become equal to each other ; hence if <I> = be regarded

as an equation in plt at least two roots will become equal to each other.

When this relation

/(3i. ?«, ••,g6)=o

exists between (^ , q2 , . .
. , qe), we shall therefore have d$>ldp\ = ; and similarly

dQ/dpz, ..., 9<fr/3p6 will each be zero.
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Since 4> is homogeneous in (p^pz, ..., p6 ), the equation

3* 3<E> 3*
Pi 5— +Pi -5— + • +Pe 5— =^ 3^ ^ 3p2

^ dpe

is equivalent to <J> = : so 4> = does not constitute an equation independent

of the equations dQ/dpi = 0, ..., d^?/dp6
= 0.

If small variations are given to the variables which satisfy the equation

4> = 0, their increments are connected by the equation

but if (qu qit ... ,
(ft, pu ... , p6) satisfy the equations d<&/dpr = 0, this equation

becomes

2 jr- 8?,= 0,
r = l C^r

and this relation between the increments Bqr must therefore be equivalent to

the relation

r=l fyr

Hence the equations

dfidSL= df/ds> = ^ a//3g6

3*/a^ 3<i>/3?2
'" 3<&/3&

are consequences of the equations 3<&/3pr = ; and so, since 2 — ~— is zero,
r=l Mr C^r

we have (for sets of values of qlt q2 , ..., qe , Pi, •-, pe which satisfy these

equations)

2^J/ = 0.
,.=1 /j.,. oqr

6 v df
The equations /= and 2 — j~= are therefore algebraically derivable

r=l Mr <??»•

from the equations 34>/3pr = 0. Now the actual values of (qlt ...,qe) are

of no importance in this algebraical elimination; so we can replace qr by

(qr +pr t/fir) in all the equations: and thus we see that the equations

fU+Zt,...,q. + tit)=0,
\ Mi Ms /

\r=l Mr OgV' V /*! Ms /

are algebraical consequences of the equations

3 . ji

^* (?„..., g., jh ft)--g^*(g.,...,2.,jp,,...,ft) = o

(r = l,2,...,6).
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Hence the result of eliminating t between the equations

369

\

\ Mi Me /

d_ fU + Plt,...,q
6 + ^t) = 0,

must be an algebraic combination of the equations

*(?i, -,?e,J»i. •..ft)--g-*(gi, .,q6,p1 , ...,p.) =

(r=l,2, .... 6).

Now one such algebraic combination of these equations is

*(?!> ...,g6 ,f>i, ...,_p6) = 0;

for it can be derived by multiplying the equations hy(p1 ,...,pe)ia turn, and
adding them. We shall shew that it is the eliminant which has just been

mentioned.

For let the eliminant in question be denoted by 'f ; then the equation

must be a combination of the equations

r= \ dqr \ /J-r I .

and | l^g^+i | £ _2£_(8gi + isp, + £«8*) = 0.

,.=i //.,- 3gr r=l s=l Mr ogvdg, \ /i, Ms /

Since the latter equation involves Bt, we see that it cannot enter into the

combination : and so we have

B^/dg, ^ d^/dg, _ = dV/dqe W = t_<W
(r= i2..6)

9/,%i 9//99a '

'

' 9//9?6 ' 9pr M»- 3?r

The identity of these equations with those which have already been found

for <J> shews that the equations <t> = and '*'= are equivalent. Hence <t>=

is the eliminant of the equations

'(*+£« * + £')-°

Now the equations f{qlt <?2 , •••> ?e) = 0, which are the conditions that the

equation for s may have equal roots, can easily be written down : and this

result enables us then to find all possible polynomials *, and hence, by

factorisation of 4>, to find all possible polynomials $ .

w. d. 24
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The eight roots s are the eight values of the expression ±rl ±r1 ±r3 ,

where ru r2 , r3 denote the mutual distances: so we may have two roots «

equal as a result of any one of the equations

?-, = 0, r2
= 0, r3 = 0, r2 =±r3 , r3 =±ru r1 =±r.2 , rx ± r2 ± r3

= 0.

The equation rx
= gives

tf + qf+qf^O;
and the eliminant of

so the value of 4> arising in this connexion is

<t> = (Ml _MiY + (Ml _ M»Y + (Ml _ Ml)'

.

\ fH Mi / \ Ms Ma I I Mi Ms,/

this expression is not resoluble into real factors, and therefore no real poly-

nomials
<f>

can arise from this source.

A similar result can be deduced in connexion with the equations r2=
and r3

= 0.

Consider next the equation

r2 =±r3 ;

it can be written in the form

= q? +# + qi
2m,!

m 1 + mi

(?i q*+ m* + q»qe) +
^ +

'

J
(ft

2 + ft
s + ft

2

)

or 2 (ft ft + ftft + q3qe) -^—^ (ft
2 + J,

1 + ft
2
) = 0.

Replacing qr by (ft. + pr t/fir), and forming the discriminant with respect

to t of the equation thus obtained, we find

* = {2 (ftft + ftft+^6)+^^(ft2 + ft
2
+ft

2

)}

X 2
/'Pi£4 + M>s + PsM +

wh-tb, /£l + £L + £lV
\M1M4 Z^aMe Ms Ms/ W»i+ "»»» \ A*i* M2

2
Ms

2
/)

_ jftj>4 + Mh + <ML6 + ML2 + Mi +Mi +
m>- m2 (Mi + Mi + Mi)]

1

{ fr
"*

Mi Mb Ma Ms Ms m2 + m2 \ Mi M2 Ms / j

This expansion cannot be factorised into polynomials <£„, linear in

(}h, P2> •,Pe)] so no functions ^> can arise from this source.
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Similarly it may be shewn that no polynomials fa can arise in connexion
with the equations r3

= ±r1 ,r1
= ±ri .

Lastly, the rationalised form of the equations

»"i ± rt ± rs =
is (r3

2 - r£ + n2
)
2 - 4r3

2r1

2 = 0.

When r, is zero, this case reduces to that which was last discussed : and
since the polynomial <& is not resoluble in this special case, it cannot be
resoluble in the general case.

Thus finally, no real polynomials fa, involving s, can exist.

Summarising the results obtained hitherto, we have shewn that any
algebraic integral of the differential equations, which does not involve t, is

an algebraic function of integrals <£, each of which can be written in the

form

fa + fa + fa + • •

.

where fa is a homogeneous polynomial in the variables p, say of degree k,

and a homogeneous algebraic function of the variables q, say of degree I :

fa is a homogeneous polynomial in the variables p, of degree (k — 2), and

a homogeneous algebraic function of the variables q, of degree (I — 1) ; fa is

a homogeneous polynomial in the variables p, of degree (k — 4), and a

homogeneous algebraic function of the variables q, of degree (1—2); and

so on.

(viii) Proof that fa is a function only of the momenta and the integrals

of angular momentum.

We shall now proceed to shew that an integral
<f>,

characterised by these

properties, is an algebraic function of the classical integrals.

The equation

£-0, or i(fr|*4™4.)-<>,
(it r=l\flrOqr oqr dprl

gives on replacing by fa + fa + fa + • , and equating terms of equal degree,

r-\Oqr f-r

0= 1 9^2 Pr
|

dfadU

r=1 dqr fir dp? dqr '

<

0=1 dfo Pr . dfa-2 dll

r=1 dqr flr 9gr 3?r
'

= 1 ai*^.
r=\ dpr -dqr

'

24—2



'/'B

372 The Theorems of Brims and Poincare" [ch. xiv

The first of these equations is a linear partial differential equation for
(f>

which can at once be solved, and gives

#o =/o (P2 , Ps, ••,Pe,Pi,P2, -, Pe),

where pr
= 2s&_M? (r= 2, 3, ..., 6).

Ml Mr

Let the expression of </>2 in terms of the variables qlt P2 , ..., Pe , plt . :.,p
(

be
<f)2=/2 (qlt P2 , P3 , ..., P6) pi, ...

,

p

e),

wehave jj£ = JJ& + £ |&& , where q,. =^ +^M1

,

0<7l 09i r = 2 9gV 9?! Pi MrPi

dq1 r=2 9?r MrPi
'

or P\ dJ? = l£r ?)h = _2 d
i!!

d_If

Mi 9?i r=i Pr dqr r=1 dpr dqr
'

Integrating we have

/. = *(P„ Ps, -.., Pa, Pi, ... )Pe)- f£ I ^^i,
.' Pi r=l OPr C?r

so there can be no logarithmic terms in \Xdq1> where

6 Ji p, JT

X=^1 dpr dqr
"
exPressed in terms of ?i' P2, ..., Pe.Pi,

\9pi s=2dPsiM/dq1 r=2\dpr dPr fij dq r

r=i 9pr 9gv r=2 9Pr \fj.! dqt fir dqj
'

If V denotes the expression of U in terms of the variables

qlt P2 , ..., P6 , plt ...,p„,

.p..

we have

a_^ =Pi 9F ajr_ar « dv Pr
dqr Mj 9Pr <

r>1
>

and
dqr dqr^W^

The terms in X which may give rise to logarithmic terms in I Xdq^ are

now seen to be

| ^ fp
r
F
+ prll | 9Fp_s + Ml 9Fj

r= 2 9Pr (/ir^1 MrPi«=2 9PsM» MrMiSPrj'

so the terms which may be logarithmic in IZig! are

r=2MrPiOi
J
r J

2
r=2«=2^PrMrM«Pi9PJ a *

.4 3/o Pi 9 f
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Now V is a sum of three terms, each of the form (A + Bg1 + Cq^yK
Taking each of these terms separately, we have for the transcendental part
of the last expression

Z -*— - -. arcsm ^
r

r=2 dPr flrPl V - C (B* - 44 G)h

6 6

-2 2 3/» Pr^s 1 dB . 200,+

B

—- —

=

- QWOITI zarcsm
r^s=2dPr w*Pi2C*J-CdPs (B'-4>AC)i

3/„ Pl 1 dB 2Cqx +Barcsm
r=2 dPr llrfh^GV^C dPr (& - 44 Gf-

"

Thus for each of the fractions (A + Bqx + Cq?)~%, we must have

r=2dPr /J>rPi r=2 *=2 3-Pr Mj-^sPi 3-Ps r=2 SPr f*rfh dPr

Now for the first of these fractions, namely (g^
2 + q.j> + g3

2

)

-
^, we have

pr 3h * /w2 /^ rtW^v
so the first of the three equations will be

\ fj,2
2

px
2

flfpi'J r=2 3Pr /V^l r=2 3-?r H'rPi WiV Ms>iV

_ / 3/o. M>i ,
_§/o /fiM - ft

*, 9Pr /* V3P2 ^2
+
3P3 /V

r
/

"*
'

or (since /^ = yii2 = aO ^1 = (A),
r=4 iJ± r

and on solving this equation we see that /„ is a function of

Pi,P* ps,P2,Ps,(P^-ps qi), and (Piqe-peqJ.

Since the three expressions (A + Bqx + Gq^) are linear functions of the

three quantities (q? + q£ + q3"), (q^ + q^i + qaqn), (&
2 + ft

2 + q£), we. can for

our present purpose replace them by these three quantities : so the second

expression (A + Bqx + Cqf) may be taken to be {q^ + q2q 5 + q3q6), or

a (£i* + W±a\ + (& + &S}) (^ + mqi) + (^ +&&) (^ +mq^
\ Pi H-'Pi / \ Pi Pi J \ Pi f*'Pi J \ Pi pJ\ Pi p'pi

so for this expression we have

Pi Pi PPi Pi PPi

" p'pj jp?
+
n'py
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and the corresponding equation is

+
8¥.(T-») +a%C^-^)=°-(B>-

The third expression (A + Bqx + Cq?) may be taken to be q4
a + q^ + q£ ;

the corresponding equation proves to be the same as equation (A), and may

consequently be neglected. We have therefore only to consider equations

(A) and (B) : simplifying (B) by means of (A), they may be written

(PzP* - pip.) j^l + fops - pip,) gp I* (ft §?- + p* ap5

+ p* apj
= °

'

these equations are obviously algebraically independent; and the Jacobian

conditions of existence are satisfied identically for them, since the coefficients

of the derivates ^1 do not involve the quantities P. These two equations

therefore form a complete system, with 5 independent variables P2 , P„ P4 ,

P5 , P6 : so there must be 5 — 2 = 3 independent solutions, and any other

solution will be a function of these three solutions and of plt pit ...,p6 .

It is easily verified that three independent solutions are

lP2p3 -Psp2 + P5pe -Pep6 ,

\Pspx + P6pi -Pipe ,

(
~ P2P1 + PiPs - PsPt,

or PiL/fi, PiMjfi, p1 N//i,

L = q2ps
- q3p2 + qsps - qep5 ,

where - M = q3 p, - qxp3 + qtpt
- qtps ,

N = q,p2
- q2p, + qtp6

- q6pu

and the three equations

L = Constant, M = Constant, N = Constant

are the three integrals of angular momentum of the system. We have

therefore the result that (/>„ is a function of L, M, N, p\, p2 , ...,pa only.

(ix) Proof that <£ is a function of T, L, M, N.

Since $ , when expressed in terms of qlt q2 , ..., qt,pu ...,pe , is a poly-

nomial in pu p2 , ..., p6 , it is clear that $„ is a polynomial in its arguments
L, M, N,pu ...,ps . We shall write

k, = Q{L, !£,&,&, ..., Pe),
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s | dG dfr^ 6 dGdU,
r=i 3ft dt ,.=1 dpr dq,.'

so we have ^?- | 8# dft | 3© 3#"

and the equation for/2 is

/.-X(^.....P.,P,,.. ! .J»1)-^ 1 ^frdfc,
Pj r=i 3ft-

J

where Fr stands for 3[f/3gr , supposed expressed in terms of 2lI P2 , ..., P„
ft , • , ft. We have therefore

ft 3ft i dq,
dqi +

,!a Jap; fe ~^ a^J^

ft 3ft r=2 V3ft Mrft 3ft/ aP- I

?1

— f^l 3^ V TOitHj

ft 3ft A(A + Bq1+ Cq^
( „ . dB u dB -dA .„ dA\

... wag HPrd9} K ™(-Uwr*Bwr

+Bwr

+ *°*wJ
r^\dpr VrPtdpJ A (& - 4AC) (A + Bq1+ Cqrf

'

where the symbol 2 indicates summation over the three values of the
A

expression (A + Bq1 + Gq^).

Now the term %(P2 , ..., Pe ,pu ...,p6) cannot give rise to terms involving

(A + Bq, + Cq?) in the denominator : so the quantities multiplying each of

the expressions {A + Bq, + Cq-?)% must themselves have the same character

as <js2 , i.e. they must be polynomial in (p,, ..., pt) when expressed in terms of

(<?i> <?2> •••. qe, Pi, •••.ft)- We see therefore that the expression

fhM +2 1
(dQ wr dG\

A
dpr

*gli* dPr

+ i"w; + Lqi
ap:

ft 3ft r= 2\3ft- /*rft 3ft/ B*-4<AC

must be a polynomial in (plt ..., p6), when expressed in terms of (plt ...,p6 ,

qlt ..., qe). Taking first A + Bq1 + Cq-? = qi" + qj + g3
2

, this expression

becomes

fMdG_
|

(dG ixlPr dO\

ft 3ft r-2 V3ft' M»'ft3ft/

~pr \fi (P2
2+P3Q+ gl (P2ft+P8ft)} +Pr {fi (P2ft+P3ft) + ft (ft

8

+ft
2

+ft
2

) }

2 {^P2
2 +p*P3

* + (p2Ps
- ftP2)

2

}

or (omitting a faetor /*)

1 ?H _ 1 (d&_I^PrdG\

ft 3ft r= 2 V3ft /irp, 3ft/

-
ft' {ft (ga

2 + gs") -ftgi?2 ~ft?igs} + (ffrft
~

ftgi) ( ftgi + ft ga + ftft)

2ft l(?2ft - ft*)
2 + (q>pi - ft ?i)

a + (ft* -ft*)
2

}
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1 dG
or — ^~

p, dp,

2 {(gapi - g-iB,)
2 + (gs^i - ?ip3)

2 + (q3ps - gy>8)
8

}

The last fraction must therefore represent a polynomial in jplf _paj ..., p
so the denominator must be a factor of the numerator.

Now G is a polynomial in L, M,N,so{= ^£? 5— and U °rr a
—

^ J
\9p2 M2P1 <W \3^8 MsPi opi y

are polynomials in L, M, N and involve q„ q2 , qs only by means of L, M, N;

so either they contain no terms in qlt q2 , qs—in which case the denominator

cannot be a factor of the numerator—or else they contain some terms free

from q„ q2 , qs—in which case also the denominator cannot be a factor of the

numerator. The condition can therefore only be satisfied by supposing that

d^_MhdG =Q dG fl,ps dG =
dp* i^pi dp, ' dps fi3p, dp,

As might be expected from considerations of symmetry, the conditions

arising from the other sets of values of A, B, G give

dG_fhPrdG = Q 5
dpr PrPi 9pi '

'

The function G therefore satisfies these five equations, which are evidently

a complete system of five independent equations with six independent

variables, and consequently possess only one independent solution; this

solution is easily found to be

2 f-, or T.
8=1 APs

The function G therefore involves (p,, . ..,p6) only by means of the expression T

:

and since G is polynomial in (p„ ..., pe), it must also be polynomial in T.

Since
<f>

is homogeneous in (qlt qz , ..., qe), and also in (plt p2 , ,pe), and

the expressions (L, M, N) are each linear in (q„ ..., qe), while T does not

involve (q„ ..., q„) and is of degree 2 in (p, pe), it is clear that if T is

involved in <p at all, it must be as a factor : so we can write

where h is a homogeneous polynomial in its arguments.

(x) Deduction of Bruns' theorem, for integrals which do not involve t.

The equation which determines the functionf is

f = x (P2,...,P6 , Pl ,.,.,p6)-^
d£u.
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But we have

(h dG fr dOdT

and therefore

Js = X(Ps> ••> Pe,Pi p6)-mh(L, M, N) T^1 U,

Thus

<l>
=

<f>0 + <j>2 + $4 + • •

= h(L,M,N)(T^- mT^U) + x (P1> ...,Pe>Pl j,,) + fc + *» + ....

The integral
<f>

can therefore be compounded from two other integrals,
namely

:

1° the integral h(L, M, N)(T- U)m, which is itself compounded from
the classical integrals,

and 2° the integral tj>', where

<f>'
= </>

' + <j)2
' + c}>4

' + . .

.

and <£
'=

% (P2) ...,P6 , Pl , ...,p6),

<k' = *« -
m{m

2

~ l)
h (L, M, N) T™~* U*,

V =^ + ™(m-l)(m-2) h {L> Mf N) Tm-3 Us>

But <£' is an integral of the same character as $, except that its highest

term, <£„', is of order two degrees less in (p1 , ...,

p

6) than the highest term,

<f>0>
of

<f>.
Now we have shewn that <p can be compoundecf from the classical

integrals together with the integral </>'. Similarly
<f>'

can be compounded

from the classical integrals together with an integral 0" which has the same
character as <£, but is of order less by four units than $ in the variables p.

Proceeding in this way, we see that <}> can be compounded of the classical

integrals together with an integral <f>
in}

, whose order in (plt ...,p6) is either

unity or zero. If <£
w is of order unity in {plt ..., p6). then in the equation

<$>™ = $o
m=*h(L,M,N)Tk

we must evidently have k = 0; in this case, therefore, <j>
in) is compounded of

the classical integrals. If
(f>

{n)
is of order zero in (plt ..., p6), it is a function

of (jj , . .
. , qe) only : but we have already shewn that such integrals do not exist

:

and so in any case $ can be compounded algebraically from the classical

integrals. Hence we have Bruns' theorem, that every algebraic integral of

the differential equations of the problem of three bodies, which does not involve

the time, can be compounded by purely algebraic processes from the classical

integrals.
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(xi) Extension of Brims' result to integrals which involve the time.

We now proceed to consider those algebraic integrals of the problem of

three bodies which involve the time explicitly.

For this purpose we shall take the equations of motion as a system (§ 155)

of the 18th order : we have therefore to investigate integrals of the form

/(?!. <?a, ••- q»,Pi p9 ,t) = a,

where f is an algebraic function of its arguments, and a. is a constant.

The function / is not necessarily rational in its arguments. Let the last

equation be rationalised, so far as the variable t is concerned, so that it may be

arranged in the form

am + am-1

fa(q1 q*,Pi, —,pt , t) + am-1

<f>2 (q„ ...,qs,plt ...,pa ,t) + ...

+ 4>m (qu • ••> q»,p\, ,Pe, t) = o,

where the functions
<f>

are rational functions of t and algebraic functions of

their other arguments (qu ...,q»,p1 , ..., p9 ). This equation may be supposed

irreducible in t, i.e. such that it cannot be factorised into other equations which

are of lower degree in a and are rational in t : for if it is reducible, we can

suppose it replaced by that one of its irreducible factors which corresponds to

the original equationf= a.

Differentiating with respect to t, we have

am-i#} + am-2 #? + ... + ^» = o.
dt dt '

' dt

Now the quantities d(f>r/dt, when expressed in terms of (qlt q2 , ..., qe ,

Pi, ••>2>9> t), are rational functions of t : so that the previous equation would

be reducible in t if this equation did not vanish identically. It follows that

this equation does vanish identically : that is,

^-
r = (r=l,2,...,m).

The expressions
<f>r are therefore themselves integrals: and hence the

integral f can be compounded from other integrals <j>, which are rational

functions of t and algebraic functions of {qlt ..., qs ,Pi, •,pe).

Let such an integral <j> be resolved into factors linear in t : so that it may
be written

P(t- ft)-, (t - 0,)- . . . (t - fay*
(t -f^it-f,)«-... (t-f{

y>i
'

where {P,fa,fa,...,<\>k,^u ...,^i) are algebraic functions of (qlt ....(fr,^, ...,p9).

Since this expression is an integral, we have

1 dP m 1 f rf<ft,\ mk / d<f>k\ "if-, <tyV\

Pdt^t-faK dt)
+ " t~fa\ dt) t-TfrA dt J

•"

t-yfrA dt]
"
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n
~dJ • ~dT '

• •
•

' ~dti ~dt •
•

' ~dj
are rePlaced by their values

(
p

>
E).

(<£i, H), ..., (y}rh H), this equation must become an identity: but this can
happen only if

£=»• i-$- '-f=o, !_$-* ....!_£_*

i.e. if each of the expressions

is an integral. Hence any algebraic integral of the problem of three bodies
which involves t can be compounded (I) of algebraic integrals which do not involve

t and (2) of integrals of the form

t — <f>= Constant,

where <j> is an algebraic function of(qlt q2 , ..., qg,pu ...,ps).

Now it is known that

Pl+Pi+P?
is an integral : hence any algebraic integral of the problem, which involves t,

can be compounded of

(1) algebraic integrals which do not involve t ;

(2) integrals of the form

mlgl + m2g4 + m3g7 = Co
Pl+Pi+P?

where is an algebraic function of (qlt ...,qs,p1 , ...,ps); and

(3) the classical integral

?ftigi + m2q4 + m3q7

But the integrals in classes (1) and (2) are algebraic integrals which do

not involve the time; and hence, by the result already obtained, they are

combinations of the classical integrals.

Thus finally every algebraic integral of the differential equations of the

problem of three bodies, whether it involves the time or not, can be compownded

from the classical integrals.

Brans' theorem has been extended by Painleve*, who has shewn that every integral of

the problem of n bodies which involves the velocities algebraically (whether the coordinates

are involved algebraically or not) is a combination of the classical integrals.

* Bull. Astr. xv. (1898), p. 81.
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165. Poincare"s theorem.

We shall next establish another theorem on the non-existence of a certain

type of integrals in the problem of three bodies, which is in many respects

analogous to that of Bruns, and was discovered in 1889 by Poincar^*.

(i) The equations of motion of the restricted problem of three bodies.

In the restricted problem of three bodies, the equations of motion of the

planetoid can (§ 162) be written in the form

dqr _ dH dpr __dH
dt dpr ' dt dqr

where H=H + fj.H1 + i£H2 + ...

1

(*=!, 2),

ff„=-
2Pr npi>

and Hu H2 , ... are periodic in qlt qit with period 2tt.

The Hessian

9pi
s

3pi9p«

yg» 32//q

3pi9ps dpi

is evidently zero : as this circumstance would prove inconvenient in the proof

of Poincare^s theorem, we shall modify the form of the equations so as to obtain

a system for which the corresponding Hessian is not zero.

Write E2 = K, and let H= h be the integral of energy ; then we have

dqr =±dK dpr = ±dK
dt 2hdpr

' dt 2hdqr

{r-l,i),

and therefore, taking a new function H equal to K/2h, we can write the

differential equations of the restricted problem of three bodies in the form

dt dPr
' dt dqr

\r-L**h

where for sufficiently small values of fi, H can be expanded as a power-series

in the parameter p,

and 2Wr'-4? +
55

+ "w
the Hessian ofH is not now zero, and (iZi , H,<

period 2tt.

) are periodic in qlt qt , with

* Acta Math. xm. (1890), p. 259; Nouv. Mgth. de la Mfc. Gel. I. (1892), p. 233.
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(ii) Statement of Poincare's theorem.

Let <J> denote a function of (qu q2 , pu Pi) p) which is one-valued and
regular for all real values of qx and q,, for values of p which do not exceed
a certain limit, and for values of p, and p2 which form a domain D, which
may be as small as we please ; and suppose that * is periodic with respect to

q, and q2 ,
having the period 2tt. Under these conditions the function <J> can

be expanded as a power-series in fi, say

where <£„,<!>!, <&
2 , ... are one-valued analytic functions of (ft, q^pupj, periodic

in qx and q2 . Poincare's theorem is that no integral of the restricted problem
of three bodies exists (except the Jacobian integral of energy and integrals

equivalent to it), which is of the form '

<£> = Constant,

where <t> is a function of this character. The proof which follows is applicable
to any dynamical system whose equations of motion are of the same type as
those of the restricted problem of three bodies.

The necessary and sufficient condition that <J> = Constant may be an
integral is expressed by the vanishing of the Poisson-bracket (H, *) ; so that

(H
t , &,) + p {(Hu <t> ) + (H ,^ +S KH», *o) + (Hu *,) + (H , <D2)} + . .

. = 0,

and therefore (H , <£„) = 0,

(5,,*,) + (5,, <&,)-<>.

(iii) Proof that <&<> *s n(*t a function ofH .

We shall first shew that <I> cannot be a function of ff . For suppose a

relation of the form <I> = yjr (II ) to exist. From the equation ff =H (plt p2)

we have on solving for p± an equation of the form px
= 6 (H

, p2), and will

be a one-valued function of its arguments unless dH /dp1 is zero in the

domain D. Replacing p1 by its value 8 in the function <& (q1} q2,pi,p2), we
have an equation of the form

*o (ft, ft, Pi, Pi) = 'f (ft, ft, H*> Pi) ;

and as <£> is a one-valued function of its arguments i|r will be a one-valued

function of (qu q2 , H ,p2); but by hypothesis, the function t|t depends only

on H . It follows that f is a one-valued function of H , so long as the

variables pup2 remain in the domain D, and provided dH^dp-,, is not zero in D
;

or more generally provided one of the derivates dHa/dpi and dH /dp2 is not

zero in D, a condition which is evidently satisfied in general. Since ty is

a one-valued function, the equation yfr (H) = Constant will be a one-valued

integral of the differential equations, and therefore & — >]r (H) = Constant

will also be a one-valued integral, and will be expansible as a power-series
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in fjb : it will moreover be divisible by fi, since <P — yfr (ZT ) is zero. If then

we write

* - f (H) = p®,
the equation 4>' = Constant will be a one-valued analytic integral : writing

the functioD <£„' will not in general be a function of Ha : if however it is a

function of H„, we perform the same operation again, thus arriving at a third

one-valued analytic integral, whose part independent of fi will not in general

be a function of H„\ and so on. It is evident that in this way we shall

ultimately obtain an integral which does not reduce to a function of H when

fj.
is zero, unless <I> is a function of H, in which case the two integralsH and <E>

are not distinct.

If, therefore, there exists an integral <J> which is one-valued and analytic

and distinct from H, but which is such that <J> is a function of H , we can

always derive from it another integral, of the same character but such that

it does not reduce to a function of H when fi vanishes. We can therefore

always suppose that <3> is not a function ofH .

(iv) Proof that O cannot involve the variables qlt q2 .

If the function <£>„ involves the variables qlt q2 , then since it is periodic in

these variables we can write

*»= 2 A 6«K?i+%h)= 2 A&
where ml and rn 2 are positive or negative integers, i denotes J —1, the

quantities Am m are functions of^, p2 , and £ represents the exponential

co-factor of Am „. Since ff does not involve qu q2 , we have

dpx dq% dp2 oq2

But we have d<& /dqr = X imrA m f, so the equation (H„, <J> ) =

becomes

2 A-vu,mA'
dH dlf \

and therefore (as this equation is an identity)

Hence we must have either

Am
l
,m2

= or mldH /dp1 +m2dH /dp
t
= 0;

but the latter alternative is possible only when m^ and m2 are both zero, or

when the Hessian of H is zero, which is not the case. It follows that all

the coefficients Am m are zero, except A
0i „ ; and consequently <J> does not

involve the variables q^ and qt .
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(v) Proof that the existence of a one-valued integral is inconsistent with
the result of (iii) in the general case.

Consider now the equation

(#,,*«) + (#.. <&,) = <>,

2^-1^ =
r =i dpr oqr r=l dpr dqr

As the functions Hx and <&! are periodic with respect to qu q2 , they can
be expanded in series of the form

mu m%
' m^m^ l -

where m, and m2 are positive or negative integers, and the coefficients B m
and G

mii7nt
depend only on pu p2 . We have therefore

g7-= l 2 %%m^. g^=* 2 Cm,?,

so the equation 2 —- -^r—- — 2 ——H—i =
r=x dpr oqr r=1 dpr dqr

becomes 2 B,
mi,nh

mvm2

or (since this equation is an identity)

This equation is valid for all values of pu pt : and therefore for values of

pl and p2 which satisfy the equation

m1
-= h m2 ^— = 0,

we must have either

5m
1 , m2

= ' or m1 d^o/dp1 + m,d^ /dp2 = 0.

We shall say that a coefficient i?™
TO

becomes secular when p,, jj2 have

values such that tnx dH^dpi + m2 dH /dp2 = 0.

As H is a given function, the coefficients B^^ are given. In the general

case of dynamical systems expressed by differential equations of the kind we

are considering, no one of these coefficients will vanish when it becomes

secular, and we shall take this case first: so that the equation

m, S^o/Spi + irk 3*o/5p2 =

is a consequence of the equation mj dH^/dpi + m2 327„/3/>2 = 0.

Now let ku k2 be two integers : suppose that we give to px and p2 values

such that the equation

hdpi Jc^dpz
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is satisfied. We can find an infinite number of pairs of integers m 1: m, such

that wij&i + rajc* is zero : and for each of these systems of integers the

expression m, dH^dp^ + w^dH /dp2 is zero, and consequently

rtii d^/dp! + m2 d<f> /dp3

is zero. Comparing these two equations, we have

dHp/dpi = dH /dp2

d&o/dp! dQt/dp,'

so the Jacobian d(H ,
^> )/d (plt p2) is zero for all values of pu p2 for which

dH^dpi and dH /dp2 are commensurable with each other. Thus in any domain,

however small, there are an infinite number of systems of values of plt p2 for

which this Jacobian is zero : as the Jacobian is a continuous function, it must

therefore vanish identically, and consequently <E> must be a function of H„.

But this is contrary to what was proved in (iii), and therefore the funda-

mental assumption as to the existence of the integral <E> must be erroneous

;

that is, the Hamiltonian equations possess no one-valued analytic integral

other than H = h, provided no one of the coefficients B m vanishes when it

becomes secular.

(vi) Removal of the restrictions on the coefficients B m .

We have now to consider the case in which at least one of the coefficients

Bm m vanishes when it becomes secular. We shall say that two pairs of

indices (m, , m2) and (m/, m2 ) belong to the same class when they satisfy the

relation m^jnii = w^/m/, and that in this case the coefficients Bm m and

Bm i „,- belong to the same class.

We shall first shew that the result obtained in (v) as to the non-existence

of one-valued integrals is true provided that in each of the classes there is at

least one coefficient B which does not vanish on becoming secular. For

suppose that the coefficient B m is zero, but the coefficient Bm , m , is not

zero. If pi, Pi have values such that m^ dHQfdp1 + m2dH /dp2 is zero, we have

m/ dHajdpi + m2
' dH /dp2 = 0, and consequently

„ / 3<I>„
,

a* \ n „ l 3*o
, 93>o\ „

^^fa+^fa)- '

B^\m
>-dp-

+ m
*lp-J

= °'

and although the relation mx 9<&„/9pi + m2 3O /9p2
= cannot be inferred from

the former of these equations, it can be inferred from the latter : the proof is

in other respects the same as in (v).

Now a class is completely defined by the ratio of the indices mlt m2 ; let

X be any commensurable number, and let C be the class of indices for which

m^\m2 = \. We shall say for brevity that this class C belongs to a given

domain, or is in this domain, if a set of values of p\, p2 can be found in this

domain such that

A,--r—- + x— = u.
opi dp2
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We shall shew that the theorem is still true if in every domain 8,. however
small, which is contained in D, there are an infinite number of classes for
which not all the coefficients of the class vanish when they become secular.

For take any set of values of p1>Pi , such that for these values we have

dpi dpz

Suppose that X is commensurable, and that for the class which corresponds
to this value of X, all the coefficients of the class do not vanish when they
become secular

:
the preceding reasoning then applies to this set of values,

and so for these values of Pl and p3 the Jacobian d (H , <t>„)/3 (p„ Pi) is zero.

But, by hypothesis, there exists in every domain S, however small, which is

contained in D, an infinite number of such sets of values of Pl , j>2 . The
Jacobian consequently vanishes at all points of D, and therefore <t> is a func-

tion of H
; so, as before, there exists no one-valued integral distinct from H

(vii) Deduction of Poincare"s theorem.

In the four preceding sections, we have considered equations of the type

dqr_dH dPl__dH _
dt dpr

' dt
~

dqr ^ ~ L
'

l)
'

in which H can be expanded in the form

H=H + pH1 +^H2 +...,

where the Hessian of H with respect to Pl and P2 is not zero, H does not

involve q± and q2 , and Hu H2 , ... are periodic functions of qlt q2 : and we have

shewn that no integral of these equations exists which is distinct from the

equation of energy and is one-valued and regular for all real values of qx and

q2 , for values of /j, which do not exceed a certain limit, and for values of Pl and

p2 which form a domain D; provided that in every domain, however small,

contained in D, there are an infinite number of ratios mj/m, for which not all

the corresponding coefficients Bm mi vanish when they become secular.

This result can be applied at once to the restricted problem of three

bodies : for we have seen in (i) that the equations of motion in this problem

are of the character specified, and on determining the function Hx by actual

expansion we find that the last condition is satisfied. Poincare's theorem is

thus established.

Poineare's theorem establishes the non-existence of integrals uniform, with respect to

the Keplerian variables, which implies uniformity in the neighbourhood of all the tral-

jectories which have the same osculating ellipse. This however does not exclude the

existence of integrals which are uniform in domains of a diiferent character. Cf. Levi-

Civita, Acta Math. xxx. (1905), p. 305.

The theorem has been extended by Poincare' to the general problem of three bodies

:

cf. Nouv. Metk. de la Mec. Gel. I. p. 253 ; it has also been extended by Painleve\ C.R. cxxx.

<1900)j p. 1699.

W. D. 25



CHAPTER XV

THE GENERAL THEORY OF ORBITS

166. Introduction.

We shall now pass to the study of the general form and disposition of the

orbits of dynamical systems. For simplicity we shall in the present chapter

chiefly consider the motion of a particle which is free to move in a plane

under the action of conservative forces, but many of the results obtained can

be readily extended to more general dynamical systems.

It has already been observed (§ 104) that the determination of the motion

of a particle with two degrees of freedom under the action of conservative

forces is reducible to the problem of finding the geodesies on a surface with

a given line-element; an account of the properties of geodesies might

therefore be regarded as falling within the scope of the discussion. Many of

these properties are however of no importance for our present purpose : and

as the theory of geodesies is fully treated in many works on Differential

Geometry, we shall only consider those theorems which are of general

dynamical interest.

The principal results which have been obtained hitherto relate to periodic

orbits (§§ 167-171), to the stability of a given orbit (especially of a periodic

orbit) with respect to small displacements from it (§§ 172-176), and to the

stability of a given group of orbits with respect to the time, i.e. the question

as to how far the orbits preserve their general character after the lapse of a

very great time (§§ 177-179).

167. Periodic solutions.

Great interest has attached in recent years to the investigation of those

particular modes of motion of dynamical systems in which the same con-

figuration of the system is repeated at regular intervals of time, so that the

motion is purely periodic. Such modes of motion are called periodic solutions.

The term periodic solution is also used in cases where a relative rather than

an absolute configuration is periodically repeated: thus in the problem of

three bodies, a solution is said to be periodic if the mutual distances of the



166-168] The General Theory of Orbits 387

bodies are periodic functions of the time, although the bodies may not

necessarily have the same orientation at the end of a period as at its

beginning.

Considering specially the motion of a particle in a plane or on a fixed

smooth surface under the action of conservative forces, it is evident that a

family of periodic orbits will exist in the neighbourhood of each position of

stable equilibrium of the particle, namely the orbits corresponding to the

normal vibrations of the particle about this equilibrium position. If the

position of equilibrium is unstable, it may happen that the periods of both

the modes of normal vibration are imaginary, in which case no periodic orbits

exist in the vicinity, or that the period of one of the modes of normal

vibration is real, in which case these real normal vibrations give a family of

periodic orbits : these orbits will evidently however be unstable, whereas the

orbits in the neighbourhood of the position of stable equilibrium are stable.

168. Poincard's normal variablesfor a known periodic orbit.

The equations which define a periodic orbit are most conveniently ex-

pressed in a form due to Poincare
-

*.

Let the motion of the dynamical system considered be defined by the

equations

dqr^dH dpr__dH
(r = 1, 2),

dt dpr ' dt dqr

where the function H does not involve the time t explicitly ; and let

?i = <M0> ft=<M0> ft
= 1M0> Pi = fiit)

be the equations which define a known periodic orbit of this system. There

is clearly no loss of generality if we suppose the coordinates (qu qt , pi, ft) to

be such that after the lapse of a period the variables qu qa,px resume their

initial values, while p2 increases by 2tt.

From these equations t can be eliminated : let the result of the elimination

be written in the form

qi = 8iiP*)> q2=02 (p2), ft = 3 (ft)>

so that the functions lt S , S have the period 2tt.

Perform on the system the contact-transformation defined by the equations

BW p JdW
dpr '

T
dQr

where

w= Q,p2 + Q&+M (ft) - QA (ft) + 1 ( *. (ft) - 03 (pO^f-
}

}
*•

* Nouvelles MHhodes de la M4c. C61. n. p. 369.

25—2

qr=^, Pr =~ (r=l>2),
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The equations of this transformation can be written

Qi = ?i - ft (ft),

{

ft - ft
- ft (ft) + (ft

- ft (ft)}^-} - {ft - ft (ft)}^^

,

P1= ft-ft(ft),
P? = ft.

The equations of motion of the dynamical system, in terms of the new

variables, are

dQr dH dPr _ 9/7 . _ 1
. _.

~dt
=
dPr

'

~dT~^dQr
~

and from the above equations of transformation it is evident that the periodic

solution is now defined by the equations

Q1
= 0, Q2 =0, P1

= 0, P2 = f,(t).

This form of the equations of the orbit will be called Poincare's normal form.

169. A criterion for the discovery of periodic orbits.

We shall now shew that the existence and position of periodic orbits can

be determined by a theorem* analogous to those theorems which furnish the

position of the roots of an algebraic equation by considerations depending on

the sign of expressions connected with the equation. We shall for simplicity

suppose the dynamical problem considered to be that of the motion of a

particle of unit mass in a plane under the action of conservative forces: the

result can be extended to more general systems without difficulty]".

Let (%, y) be the coordinates of the particle at time t, referred to any fixed

rectangular axes in the plane, and let V (x, y) be its potential energy function,

so that the equation of energy is

$(x° + f)+V(x,y) = h,

where h is the constant of energy.

The differential equations of motion of the particle form a system of the

fourth order, and their general solution consequently involves four arbitrary

constants. One of these constants is, however, merely the constant additive

to t, which determines the epoch in the orbit, so there are only oo 8 really

distinct orbits. This triple infinity of orbits can be arranged in sets, each

containing a double infinity of orbits, by associating together those orbits for

which the constant of energy has the same value h : such a set of oo z orbits

* Whittaker, Monthly Notices R.A.S. lxii. (1902), p. 186. Cf. A. Signorini, Rend. d. Lincei,

xxi. (1912), p. 36; Rend. d. Palermo, xxxni. (1912), p. 187; L. Tonelli, Rend. d. Lincei, xxi.

(1912), pp. 251, 332.

f For the extension to the restricted problem of three bodies, cf. Monthly Notices R.A.S.

lxii. (1902), p. 346..
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may be defined analytically by the principle of least action (§ 100), namely

that the orbit between two given points (x„, y ) and (x1} y^) is such as to make

the value of the expression

{h-V{x,y)${{dwf + {dyf}%

stationary as compared with other curves joining the given terminal points

(«(,, 2A>) and (a;,, yj*.

Consider any simple closed curve G in the plane of xy ; and let another

simple closed curve C be drawn, enclosing G and differing only slightly from

it. We may regard G' as defined by an equation of the form

%P = <£ (y)>

where Bp is the normal distance between the curves G and G' (measured out-

wards from C, and consequently always positive) and 7 is the inclination of

this normal distance to the axis of x. Then if I be the value of the integral

(h-V(x,y)}i{(dxy + (dyy}i
r

when the integration is taken round the curve C, and if I + 81 denote the

value of the same integral when the integration is taken round the curve C
(so that the symbol 8 denotes an increment obtained in passing from G to C),

we have

87 =
J
{(dxf + (dyyfiS [h - V (x, yrf +

f
[h - V(x, y)}i 8 {(dxf + {dyf}k

But we have

8{h-V(x
)

y)}i = -i{h-V(x,y)}-i(^Bx + ^By)

= -\{h-V(x, y)}"* (-^ cos 7 + -^ sin 7) Bp,

and S {{dxf + (dyy}i = 8p.dy =^ {{dxf + (dy)»}*

r

where p is the radius of curvature of the curve G at the point {x, y).

Thus we have

SI=\{{dxy + (dyy}* (/i -F^, 2
/))-U^

P^^-icos 7 |^-|sin7^| Bp.

This equation shews that if the quantity

-h-V(x,y) . dV , . dV

* Following Painleye, Liowille's Journal, x. (1894), .it is customary to call a family of orbits

which have the same constant of energy a natural family.
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is negative at all points of G, then SI is negative, and so the integral I has

its value diminished when any curve surrounding G and adjacent to G is

taken instead of C as the path of integration.

Now suppose that another simple closed curve B can be drawn enclosing

G, and such that at all points of B the quantity

h-V , ( dV . dV\

is positive. Then, in the same way, it can be shewn that the integral / is

diminished when any simple closed curve B', enclosed by B and adjacent to

B, is taken instead of B as the path of integration.

When, therefore, we consider the aggregate of all simple closed curves

situated in the ring-shaped space bounded by G and B—which is assumed to

contain no singularity of the function V(x, y)—it is clear that the curve

which furnishes the least value of I cannot be G or B, and cannot coincide

with C or B for any part of its length. There exist, therefore, among the

simple closed curves of this aggregate, one or more curves K for which the

value of / is less than for all other curves of the aggregate. Since K does

not coincide with G or B along any part of its length, it follows that the

curves adjacent to K are all members of the aggregate in question, and hence

that the curve K furnishes a stationary value of I as compared with all the

curves adjacent to it. The curve K is therefore an orbit in the dynamical

system. We have thus arrived at the theorem: If one closed curve be

enclosed by another closed curve, and if the quantity

h-V(x,y)
,

dV , . dV—T" iC0S7^" ism7¥
be negative at all points of the inner curve and positive at all points of the outer

curve, then in the ring-shaped space between the two curves there exists a periodic

orbit of the dynamical system, for which the constant of energy is h. As the

quantity

h-V(x, y) . dV . . dV
p-^IZx-^ldy-

can be calculated immediately for every point on the curves G and B, de-

pending as it does only on the potential-energy function and the curves

themselves, this result furnishes a means of detecting the presence of periodic

orbits.

170. Lagrange's three particles.

We shall now consider specially certain periodic solutions of the problem

of three bodies.

A useful summary of theorems relating to families of periodic orbits in the restricted

problem of three bodies is given by F. R. Moulton, Proc. Inter. Cong, of Math. Cambridge,

1912, II. p. 182.
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The relation of periodic orbits to orbits of ejection and collision, in which two of

the bodies occupy in the same position at the same time, is studied by Moulton,
Proc. L. M. S. (2), xi. (1912), p. 367.

A category of non-plane periodic orbits in the problem of three bodies is discussed by

Pavanini^ Annali di Mat. (3), xm. (1906), p. 179.

Let the equations of motion of the problem be taken in the reduced form

obtained in § 160, and let us first enquire whether these equations admit of a

particular solution in which the mutual distances of the bodies are invariable

throughout the motion.

The mutual distances are

[ „ 2m2q1 qi f W-Pt-p* \ m2
2 „)*

Qi, \q£ COSO3COSO4 ^ — sin

o

3 sin qt + ,
Va q?\ ,

, f , ,
2m1 o1o2 / If-pi-pt \ , < J*

and
] q? + if^ [cosqs cos q4 ^f

±- sin qs sin q4 + - q? \ ;

[* m1 + m2 \ * *
2p3p4

* J (my + m2f .*
J

it follows that, in the particular solution considered, the quantities

§! , q2 , and cos g3 cos q4 ^ — sin qs sin y4

must be constant, and hence the functions U, d U/dq^ 3 U/dq2 must be constant,

where U= llm1m2r12

~l
.

The equations

„ . dH p1 n . dH_p2

* 3pi ^ 3p2 /u,

shew that p± and ^2 must be permanently zero : while the equations

= Pl ="9^"M? 9^' P2 ~ dq2 -,,'q^
+

dq2

shew that ^3 and p4 must be constant.

Moreover, the equations

dH n . dH
0=^ =

-&v
0=pi= H

shew that the expressions

^(coBfrooB* ^f- sinking.)

and
jp

(cob q3 cos ?4 ^ r sin ?3 sin ?4
j

are zero, so we have
«3

2 + p4
a -&2

tan qs cot g4
= cot q3 tan g4

= g— ,

and therefore p? +p/-k*=± 2psp4 ,

or k^ = (p3 ±piy>
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an equation which shews that the instantaneous planes of motion of the

bodies //. and /i coincide with the plane through these bodies and the origin

:

in other words, the motion of //, and // takes place in a plane : and therefore

the motion ofm1,m2 , m3 takes place in a plane.

It follows that, the centre of gravity of the system being supposed at

rest, the particles m^ m^, m3 (which we shall denote by P, Q, R) must move

in circular orbits round 0. We have now to see if such a motion is possible.

One condition which must obviously be satisfied is that the resultant

attraction of any two of the particles on the third must act in the line joining

the third particle to the centre of gravity. This condition is satisfied if the

three particles are in the same straight line. If they are not in a straight

line, it gives

-p^ sinPRO = jyfr
2
sin QRO, and two similar equations.

But since is the centre of gravity of the particles, we have

my sin PRO _ sin QPR _ QR
m2 sin QRO ~ sinPQR ~ PR

'

and this combined with the preceding equation gives PR = QR : similarly

we find PR = PQ.

Hence either the bodies must be collinear, or else the triangle formed by

them must be equilateral.

Considering first the collinear case, let the distances of the bodies from

their centre of gravity (measured positively in the same direction) be au a2 ,

a3 respectively: we shall suppose that a, <a2 <a3> which does not lessen

the generality of the discussion. Since the force acting on P must be that

corresponding to circular motion round 0, we have

rfoy = -m2 {a2
- a])

-2 - ms (as
- a^,

where n is the angular velocity of the line PQR ; and similarly

nht, = -m3 (a3
- a2

)~2+m1 (a2
- aj-2

, n2as
= m, (a, - a,)-* +m2 (as

- a2
)~\

From these equations we readily find

m^2
{(1 + kf - 1} + m2 (1 + ky (£» - 1) + m3 [ks - (1 + k)s

}
= 0,

where k denotes the ratio (<z3 — c^)/^ — <h)-

This is a quintic equation in k, with real coefficients. Since the left-hand

side of the equation is negative when k is zero, and positive when k = + oo
,

there is at least one positive real root ; such a root determines uniquely real

values for the ratios a1 :a2 :as ; and if n is given, the distances e^, a2 , as can

be completely determined. It follows that there are an infinite number of
solutions of the problem of three bodies, in which the bodies remain always in a
straight line at constant distances from each other ; the straight line rotates
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uniformly, and when its angular velocity has been {arbitrarily) assigned, the

mutual distances of the bodies are determinate.

Considering next the equilateral case, let a be the length of one side of

the triangle formed by the bodies, and let n be its angular velocity. Since

the force acting on m3 is that which corresponds to a circular orbit round 0,

we have

^ cosPRO +^ cos QRO = «2
. OR,

a2 a2

a condition which reduces to

m1 + m2 + m3
= n'a3

.

The conditions relating to the motion of Q and of R reduce to the same

equation: and hence a motion of the kind indicated is possible, provided n

and a are connected by this relation. Hence there are an infinite number of

solutions of the problem of three bodies, in which the triangle formed by the

bodies remains equilateral and of constant size, and rotates uniformly in the

plane of the motion: the angular velocity of its rotation can be arbitrarily

assigned, and the size of the triangle is then determinate.

The two particular types of motion which have now been found will be

called Lagrange's collinear particles and Lagrange's equidistant particles

respectively*.

For more than a century after Lagrange's discovery, its interest was sup-

posed to be purely theoretical. But in 1906 a new minor planet, 588 Achilles,

was found to have a mean distance equal to that of Jupiter :
and it was soon

realised that the Sun, Jupiter, and Achilles constitute, approximately at any

rate, an example of the Lagrangian equilateral-triangular configuration.

Shortly afterwards came the discovery of three other Asteroids, 617 Patroclus,

624 Hector, and 659 Nestor, which are in the same casef. Of this " Trojan

group," Patroclus is in longitude Jupiter - 60°, and the other three in longi-

tude Jupiter + 60°.

Example. Shew that particular solutions of the problem of three bodies exist, in which

the bodies are always collinear or always equidistant, although the mutual distances are

not constant but are periodic functions of the time.

These are evidently periodic solutions of the problem, and include Lagrange's particles

as a limiting case.

* They were discovered by Lagrange in 1772 : Oeuvres de Lagrange, vi. p. 229. For

references to extensions of these results to the problem of n bodies, cf. my article m the

Mncyklopadie d. math. Wis*, vi. 2, 12, p. 529; to the papers there mentioned may be added

E. Lovett, Annali di Mat. (3), xi. (1904), p. 1 ; W. R. Longley, Bull. Amer. Math. Soc. xm.

(1907), p. 324, and F. E. Moulton, Annals of Math. xn. (1910), p. 1.

+ Cf. F. J. Linders, Arlciv for Mat. iv. (1908), No. 20.
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171. Stability of Lagrange's particles : periodic orbits in the vicinity.

It has been observed (§ 167) that in the neighbourhood of any configuration of stable

equilibrium or steady motion there exists in general a family of periodic solutions, namely

the normal vibrations about the position of equilibrium or steady motion. We shall now
apply this idea to the case of the Lagrange's-particle solution of the restricted problem of

three bodies, and thereby obtain certain families of periodic orbits of the planetoid.

Let S and J be the bodies of finite mass, m
1
and m

2
their masses, their centre of

gravity, n the angular velocity of SJ, x and y the coordinates of the planetoid P when
is taken as origin and OJ as axis of x. The equations of motion of the planetoid

are (§ 162)

dx_dK dy_dK du__dE dv_ _d_K

di~du' ~dl~ to' ~di~ dx' dt~ dy'

where E= | (w2+ v2) + n(uy-vx)-m 1/SP-m2 l
JP.

Let (a, b) denote the values of (x, y) in the position of relative equilibrium con-

sidered, so that for the collinear case we have 6= 0, and for the equidistant case we have

a=J(m1
— m2)ll(mi+m2), b=\ JSI, where I denotes the distance SJ, so that (§ 46)

m 1 +m2
= n2

l3.

The values of u, v in the position of relative equilibrium are easily seen to be - nb and

na respectively.

Write x=a+£, y=b+ rj, u=—nb + 6, v= na + cb,

where f, r/, 8, <f>
are supposed to be small quantities : neglecting a constant term, we have

K=$(6*+<t>2)+n(r,8-£<l>)-n>(a£+bri)

On expanding and retaining only terms of the second order in the small quantities,

we obtain an expression for K with which the equations for the vibrations about relative

equilibrium can be formed : we shall for definiteness consider vibrations about the equi-

distant configuration : in this case the expression for K becomes

The equations of motion are

; dK
.
dK h dK • dK

Solving these equations in the manner described in Chapter VII, we find that the period

of a normal vibration is 2ir/\, where X is a root of the equation

\i-nW+ (H-k')n*= 0, where k=-^ .

m^~m
\

The two values of X2 given by this equation will be positive provided they are real, since

( \k ~ *2) is positive : and they will be real provided 4 (fj-
- W) < 1, or (m^+m

2)
2> 27 m^m2 ;

a relation which is satisfied provided one of the masses S, J is sufficiently large compared
with the other. When this condition is satisfied, there exist two families of periodic orbits

of the planetoid in the vicinity of its equidistant configuration of relative equilibrium : the

periods are, to a first approximation, 27J-/X! and 2b-/X2 , where Xj2 and X2
2 are the roots of the

equation in X2
,

X4 -.tt2X2+ (fJ-/5:V
4 =0.
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A similar discussion leads to the result that the collinearLagrangis-particle configurations

are unstable; but the equation for the periods of normal modes of vibration has always one

real root, and consequently in the neighbourhood of a position of relative equilibrium of the

planetoid on the line SJ there exists a family of unstable periodic orbits*.

Example. Shew that, for one of the modes of normal vibration of the planetoid in the

vicinity of the equidistant configuration, the constant of relative energy is greater than in

the configuration of relative equilibrium, while for the other mode the constant is less than

in the configuration of relative equilibrium. (Charlier.)

172. The differential equation of the normal displacement from an orbit.

We shall now proceed to consider the stability of orbits in general.

Suppose that some particular solution of the motion of a particle of unit

mass in a plane, under the action of forces derived from a given potential

energy function V, is known; and consider a solution which is immediately

adjacent to this known solution, and for which the constant of energy has

the same value.

Let P and Q be the positions of the particle in the known and adjacent

orbits respectively at time t. Draw QN perpendicular to the known orbit,

and let PN = £, NQ = u; let be a fixed origin on the known orbit : let

arc OP = <r, arc ON = s, so s — cr = f ; and let p be the radius of curvature of

the orbit at P. We shall regard the position of any point on the adjacent

orbit as specified by the quantities (u, s).

The kinetic energy of the particle when describing the adjacent orbit is

and its Lagrangian equations of motion are therefore

a \ .-. dV
pi p du

'

2 / u\ . . /. u\ us 2 dp 3V
,

[
1 +

p1
S + -

p {
1 +

p)
US -y1 + -

p)'p^s as

these equations possess a known integral, namely the integral of energy

i£2 + £ n + -
j s 2 + V = h, where h is a constant.

The first Lagrangian equation and the integral become

u - V Zdp ~ ~ tUJ, +

?

\duda)P
+ UW )*)'

(l+^^ +^+^ +f®),*"^^
* For further work on the subject of orbits in the neighbourhood of the LagrangeVparticle

solutions, of. the memoirs referred to on page 530 of my article in the Encyklopadie, and also

Lovett, Astr'.Nach. olix. (1902), p. 281 ; Stromgren, Astr. Nach. clxvih. (1905), p. 105; Moulton,

Math. Ann. Lxxni. (1912), p. 441.
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Since

pP V du lp
and

l&>+VP = h,

the two preceding equations become

.. u&2 2(<r£-£r) /&V\

p
2

p \du?Jp

a-p — ta-\ = 0.

P

Eliminating (6-j — £er), we obtain the equation

+— \u =

or (taking s instead of t as the independent variable, and writing v for &)

d?u 1 dv du

ds* v ds ds+m^=°-
and this is the differential eq uation of the adjacent orbit.

From this equation we can at once deduce consequences relating to

the stability of the known orbit. For by Sturm's theorem*, if we have any

differential equation of the form

w^I{t)u = Q,

where for a certain range of values of t the quantity I (t) lies between two

positive real quantities a2 and 62
, then any solution u which is zero for

a value t within the range will be zero again for some value t within the

range, where (t —

1

) lies between -rr/a and "jrjb, provided the range is

sufficiently large to comprehend this interval. It follows that if the quantity

(d*V/dv?)p + 3v2
/p* is positive at all points of the known orbit, this orbit will

be stable^, i.e. any adjacent orbit which intersects it once will not diverge

greatly from it, but will intersect it again infinitely often. This expression

can therefore be called the coefficient of stability for the orbit.

* Cf. Darboux, Th. gen. des Surfaces, Vol. in.

t In the discussion of stability in §§ 172-176, all powers of the displacement above the first are

neglected in forming the differential equations of the adjacent orbits. The effect of the neglected

terms on the stability has been studied by Levi-Civita, Annali di Mat. v. (1901), p. 221, who has

found that the neglected terms give rise to instability in certain cases which appear to be stable

when only first-order terms are considered : this happens when oT/2iri is a commensurable

number, where a is the characteristic exponent (§ 175) and T is the period of the solution. Cf.

also A. B. Cigala, Annali di Mat. xi. (1904), p. 67.
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173. Korteweg's theorem.

Suppose now that the known orbit, with respect to which the normal

displacement u is measured, is a periodic orbit whose perimeter is S : then if

u =
<f>

(s) is the equation of an adjacent orbit, it is evident that u=<p(s + nS),

where n is any integer, is also the equation of an adjacent orbit: the orbits

represented by these two equations are in fact congruent, but the corresponding

tracing points are separated by one or more periods.

In any orbit adjacent to the known orbit let un , un+1 , w„+2 (where n is an

integer) denote respectively the normal displacements in the wth, (n+ l)th,

and (n + 2)th period, at the same place in the orbit, so that we can write

un =<j>(s + (n—l)S), un+1 = <f>(s + nS), urH.i = <p(s + (n + l)S),

where u =
<f>

(s) is a solution of the equation

d?u ldvdu fl /92 F\ 3)

ds*
+

v ds ds
+

\v*\dv?]<>
+

p'
i

)

U
'

Since un , un+1 , w„+2 are three solutions of this linear differential equation,

they must satisfy a relation of the form

where k and k^ are independent of s.

We shall first shew that these constants k and kx are independent of the

choice of the adjacent orbit and of the number n, so that they will be the same

for any other set

u'm =f(s+(m-l)S), u'm+1 = y}r(s + mS), tt'm+% = .f(s + (m + l)8).

For um'
is a linear function of the two solutions un and un+1 ,

say

um = CiUn + c2wm+i,

and therefore on adding periods to the argument s, we have

u'm+l ~ °iun+i + C2 Un+2, u'm+2 = xUn+i + C2Un+s .

But from the equations

'«B+a = kun+1 + k1un ,
w»i+3 = ^ m»h-2 + *iM»+i >

we have C!Un+i + c2m„+s = k (Cjitn+i + c2M„+a) + h (Ci«» + c2un+1 ),

and therefore w'm+2 = ku m+1 + «iw m >

which shews that the constants occurring in the linear relation between

u' 2 , w'm+1 , u'm are the same as those occurring in the linear relation

between un+i , un+1 ,
un .

Next, we shall find the value of the constant &,. From the equations

d*un ldvdun \l(d>V\ 3V =Q

ds' v ds- ds
t

1»
2 \8mVo P

3

)
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we have un+1 -^ - u. -^- + - £ [un+lW - un -^- j = 0,

and hence, on integrating,

diu dun+1 c ,

w™-t-i
—,— — un—r^ = -

. where c is a constant.
ds ds v

Changing s to s + S, we have

and therefore

dun dun+1 c?«„+1 cZm
;

Un —j W^j j- Mn+i
-

= (ten+1 + fcjUn) -r; Un+i I A , + »! ,
J

so that &i has the value — 1. We thus have the theorem* that if u„, un+1 , Un+i

denote the normal displacements in an orbit adjacent to a known periodic orbit

in three consecutive revolutions, the ratio k = (wn+2 + u^)jun+1 has a constant

value, which is the same for all adjacent orbits.

174. The index of stability.

The constant ratio k = (w«+2+ un)/un+1 , where un , un+1 , un+i are the normal

displacements from .a periodic orbit in three consecutive revolutions, is called

the index of stability of the periodic orbit, for reasons which will now appear.

The nature of the integral of the difference-equation

un+2 — kun+1 + un =

depends, as is well known, on the reality or non-reality of the roots of the

quadratic equation

\2 - k\ + 1 = 0,

i.e. it depends on whether
|
k

\
> 2 or

|
k

\
< 2.

Supposing first that k is positive and greater than 2, write k = 2 cosh a

;

then the roots of the quadratic are e
a and e~a , and we know that two inde-

pendent solutions of the difference-equation are of the form

as a.8

u = e s <j>(s) and u = e s
yfr(s),

where </> (s) and yfr (s) are functions of s which have the period S : choosing

these functions so as to make the solutions u satisfy the equation

dM Idvdu \1_(&V\ 31

ds
+

v dsds
+
\vAdu*) ll

+
p*\

u ~

* Kortewe^, Wiener Sitzungsber. xcni. (1886).
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(which gives linear differential equations of the second order for the functions

</> and i|r), we have two independent particular solutions of the latter equation

:

the general solution is a linear combination of these particular solutions, and
consequently the general equation of the orbits adjacent to the known orbit,

when k> 2, is of the form

u =Kl e
w

<f>(s) + K,e~^^(s),

whereKx and K2 are arbitrary constants, and <j>(s) and \}r(s) have the period S.

Similarly if k < - 2, writing k = - 2 cosh a, the general equation of the
orbits adjacent to the known orbit is of the same form

as as

u =Kie
s

<f>(s) + K2e~
J ^(s),

where Kx andK2 are arbitrary constants, and where </> and yjr are functions of s

which satisfy the equations

<fr(s+S)=-<j>(s), it(s + S) = -f(s).

Next suppose that
|
k

\

< 2, so that - 2 < k < 2 : let k = 2 cos «. In the

same way we now find that the general equation of orbits adjacent to the

known orbit is

u = Kcob(^+a\<j> («) +K sin (^ + AW (s),

where K and A are arbitrary constants and where (j> and yfr are functions of s

with the period S.

From these results important consequences relative to the stability of

the known periodic orbit can be deduced. For if
|
k

|
> 2, it follows from the

character of the expressions obtained for u that the divergence from the

periodic orbit (or if
<f>
and yjr have real zeros, the oscillation about it) becomes

continually greater as s increases ; while if
|
k

\

< 2, the normal displacement

is represented by circular functions of real arguments, and consequently will

remain within fixed limits. We thus obtain the theorem that a periodic orbit

is stable or not, according as the associated index of stability is less or greater

(in absolute value) than two.

The results 6f the present article agree with, and may be deduced from, the theorem

that the general solution of a differential equation of the type

.)w=-p- + ( a„+ a, cos -^-+ os2 cos -^- +

.

is of the form u= aeCB
(p (s)

+

be
~ ce

i/r (s),

where a, b are arbitrary constants, c is a definite constant, and cf> and \jr are periodic with

period S. Cf. Whittaker and Watson, Modern Analysis, Chapter xix.
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Example. Discuss the transitional case in which the index of stability has one of the

values + 2 : shewing that the equation of the adjacent orbits is of one of the forms

u= Kx {0 (*) + sty (»)}+K2 ty (s),

u=A-

! (j> (s) +K2 ty (*),

where
<f>
and ty either have the period S or satisfy the equations

and that the known orbit may be either stable or unstable. (Korteweg.)

175. Characteristic exponents.

The stability of types of motion of more general dynamical systems may
- be discussed by the aid of certain constants to which Poincare" has given the

name characteristic exponents*.

Consider any set of differential equations

^ = *< (i = I, 2, ...,«),

where (Z1( X2 , ..., Xn) are functions of (xlt x2 , ..., xn) and possibly also of t,

having a period T in t ; and suppose that a periodic solution of these equations

is known, defined by the equations

Xi=<t>i(t) (* = 1, 2, ..., n),

where fa (t+T) = fa (t) (i= 1, 2, . . . , n).

In order to investigate solutions adjacent to this, we write

Xi=j>i (<)+& (*'=1, 2, ...,n),

where (&, f2 , . .
. , £„) are supposed to be small, and are given by the variational

equations (§ 112)

£-i fc
£j(

(,=1 - 2 ">'

As these are linear differential equations, with coefficients periodic in the

independent variable t, it is known from the general theory of linear differential

equations that each of the variables & will be of the form

where the quantities Sik denote periodic functions of t with the period T, and

the n quantities ak are constants, which are called the characteristic exponents

of the periodic solution.

If all the characteristic exponents are purely imaginary, the functions

(&» ?2, • •-, In) can evidently be expressed as sums and products of purely

* Acta Math. xm. (1890), p. 1 ; Nouv. Mith. de la Mfc. Gil i. (1892). On the general problem

of stability the reader should consult the extensive memoir of A. Liapounoff, originally published

in 1892 by the Math. Soc. of Kharkow, and translated into French by E. Davaux, Annulet de

Toulouse (2), ix. (1907), p. 203.
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periodic terms; while this is evidently not the case if the characteristic

exponents are not all purely imaginary. Hence the condition for stability

of the periodic orbit is that all the characteristic exponents must be purely

imaginary.

We shall now find the equation which determines the characteristic

exponents of a given solution.

In one of the orbits adjacent to the given periodic orbit, let (ft, ft, . .
. , ft)

denote the initial values of (£, £,, ..., f„) and let fa + fa be the value of &
after the lapse of a period. As the quantities (fa, fa, ... , fa) are one-valued

functions of (ft , ft , ... , ft), which are zero when (ft , ft , . . . , ft) are all zero, we
have by Taylor's theorem (neglecting squares and products of ft, ft, ...,ft)

^-W^m^- + w/- (i=l, 2, ...,n).

If a* is one of the characteristic exponents, one of the adjacent orbits will

be defined by equations of the form

so that
. ft + ^=ea* T

ft4 (0) = e
a*T

ft (i= 1,2, ...,n),

and consequently a set of values of ft , ft, . .
. , ft exists for which the equations

aft
A +

aft
/32 + - +

l9ft
+ 1_e

j
A + - +

aft^-°
(i=l, 2, ...,n)

are satisfied : the quantity «j, must therefore be a root of the equation in a.

dfa

9ft

dfa

3ft

dfa

aft
'

+ i- „*T

dfa

9ft

9^2

9ft

= 0.

dfa, dfa

9ft 9ft i

The characteristic exponents are therefore the roots of this determinantal

equation.

176. Properties of the characteristic exponents.

When t is not contained explicitly in the functions (Xu Za , ..., Xn), it is

evident that if

«f=fc(0 (»"=1, 2, ...,«)

is a solution of the equations, then

«(=$t(t + «) (»-l,2, ...,n)

W. D. 2*>
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is also a solution, where e is an arbitrary constant. The equations

f, = ^fc(t+e) (»-l, 2, ...,«)

therefore define a particular solution of the variational equations; but as

d<f>i(t + e)/de is evidently a periodic function of t, it follows that the coeffi-

cient e
a*' reduces in this case to unity: and hence when t is not contained

explicitly in the original differential equations, one of the characteristic

exponents of every periodic solution is zero.

Suppose next that the system possesses an integral of the form

Ffa, x2 , ..., xn) = Constant

where F is a one-valued function of fa, x2 , ..., xn) and does not involve t.

In the notation of the last article, we have

F\<f>i (0) + /3t + +t}~F [<f>i (0) + ft},

where for brevity F fa) is written in place of F fa , x2 , . .
.
, xn). Differentiating

this equation with respect to ft, we have

dxt d@i dx2 dpi oxn dpi

where in dF/dxlt dF/dx2 , etc., the quantities fa,x2 , ..., xn) are to be replaced

by <£j (0), 2 (0), ..., 0„(O). From these equations it follows that either the

Jacobian d («fru fa, ..., ^"„)/3(|8i, &, ..., fin) is zero, or else the quantities

dF/dxu dF/dx2 , ..., dF/dxn are all zero when t = 0. If the latter alternative:

is correct, we see that (since the origin of time is arbitrary) the equations

3^/3*! = 0, dF/dx* =0, ..., dF/da:n =

must be satisfied at all points of the periodic solution : this is evidently

a very exceptional case, and the former alternative must be in general the

true one : but when the Jacobian is zero, the determinantal equation for the

characteristic exponents is evidently satisfied by the value e°-
T =l, i.e. by

a = : so that one of the characteristic exponents is zero. Thus if the

differential equations possess a one-valued integral, one of the characteristic

exponents is zero.

A comparison of §§ 173, 174 with the theory of characteristic exponents

shews that in the motion of a particle in a plane under the action of

conservative forces, the characteristic exponents of any periodic orbit are

(0, 0, a, — a), where the characteristic exponent a is connected with the index

of stability k and the period T by the equation

k = 2 cosh a.T

;

the orbit is stable or unstable according as a is purely imaginary or not.
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Example 1. If the differential equations • do not involve the time explicitly, and

possess p one-valued integrals Fu ..., Fp which do not involve t, shew that either (p+l)

characteristic exponents are zero, or that all the determinants contained in the matrix

dF-^i {i=l,2,...,p;Jc=l,2,...,n),

are zero at all points of the periodic solution considered. (Poincare.)

Example 2. If the differential equations form a Hamiltonian system, shew that the

characteristic exponents of any periodic solution can be arranged in pairs, the exponents

of each pair being equal in magnitude but opposite in sign. (Poincare.)

177. Attractive and repellent regions of a field of force.

The general character of the motion of a conservative holonomic system

is illustrated by a theorem which was given by Hadamard* in 1897. For

simplicity, we shall suppose that the system consists of a particle of unit

mass, which is free to move on a given smooth surface under forces derivable

from a potential energy function V; a similar result will readily be seen to

hold for more complex systems.

.

Let (u, v) be two parameters which specify the position of the particle on

the surface, and let the line-element on the surface be given by the equation

ds1 = Edv? + 2Fdudv + Gdv2

where (E, F, G) are given functions of u and v. The kinetic energy of the

particle is

T = %(Etf + 2Fuv + Gv%

and the Lagrangian equations of motion are

d_ (dT\_dT = d_V d(dT\_dT = _dV
dt\du) du du' dt\dv) dv dv

'

which can be written

dV „dY .J„dF . n dE , „dE(EG-F^-G^ +F^ + u'lF^-hG^-lF^

iEG-F^Ffu -Efv^E^Ffu
-E^

We have, by differentiation,

T, dV . dV.

V ~duTdvdua dudv dv*

* Journ. de Math. (5), in. p. 331..

26—2
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Substituting for u and v their values from the preceding equations,

we have

where

The quantities occurring in this equation can be expressed in terms of

deformation-covariants*. The principal deformation-covariants connected

with the surface whose line-element is given by the equation

ds* = Edu2 + 2Fdudv + Gdv*

are the differential parameters

+sI<"-"
, (-^ +

*jE)}]-

where $ and i/r are arbitrary functions of the variables u and v.

With this notation, the preceding equation becomes

F=-A 1 (F) + <D(m,«),

Utilising the equation of energy

Eu* -f 2JF«t» + Gv* = 2 (A - V),

and observing that the expression

3> (u, v) <D (9 V/dv, - 3 F/3u)

Eit? + 2Fuv + Gv* E(d V/dvf - 2^(5 V/dv) (3 7/9it) + G(d V/ouf

* The definition of a deformation-covariant is given in the footnote on page 111.
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contains the quantity (udV/du + vdV/dv) as a factor, we can write

V = - A, ( V) +
2 (h~^

}

Iv
- + (\u + Ad) P

where X and /* contain in their denominators only the quantity

and where 7
F denotes the expression

3> (3 P/Bo, - dV/du)l(EG - i^2)

;

we readily find that Ir can be expressed in the form

JF=A1 (F)A2 (F)-iA{F,A1 (F)}.

Consider, on the orbit of the particle, a point at which P has a minimum
value; at such a point Pis zero and P is positive: as Aj (P) is essentially

positive (since the line-element of the surface is a positive definite form), it

follows that I7 ^ 0, the inequality becoming an equality only when A! ( P) is

zero, i.e. at an equilibrium-position of the particle.

As the particle describes any trajectory, the function P will either have

an infinite number of successive maxima and minima (this is the general case)

or (in exceptional cases) the function will, after passing some point of the

orbit, vary continually in the same sense. Suppose first that the former of

these alternatives is the true one : then if we divide the given surface into

two regions, in which Iv is positive and negative respectively, it follows from

what has been proved above that the former of these regions contains all the

points of the orbit at which P has a minimum value, i.e. it contains in general

an infinite number of distinct parts of the orbit, each of finite length ; whereas

in the other region, for which Iv is negative, the particle cannot remain per-

manently. These two parts of the surface are on this account called the

attractive and repellent regions. Each of these regions exists in general, for

it is easily found that any isolated point of the surface at which P is a mini-

mum (i.e. any point where stable equilibrium is possible) is in an attractive

region, and any point at which Pis a maximum is in a repellent region.

It is interesting to compare this result with that which corresponds to it in the motion

of a particle with one degree of freedom, e.g. a particle which is free to move on a curve

under the action of a force which depends only on the position of the particle. In this case

the particle either ultimately travels an indefinite distance in one direction or oscillates

about a position of stable equilibrium. The attractive region, in motion with two degrees

of freedom, corresponds to the position of stable equilibrium in motion with one degree of

freedom.

Consider next the alternative supposition, namely that after some definite

instant the variation of P is always in the same sense. We shall suppose that

the surface has no infinite sheets and is regular at all points, and that P is

an everywhere regular function of position on the surface ; so that, since the
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variation of V is always in the same sense, V must tend toward some definite

finite limit, V and V tending to the limit zero. Considering the equation

F= - A, ( V) + 2 (h - V) IrlA, ( V) + (Xii + /n6) V,

we see that if A t ( V) is not very small, \ and fi are finite and the last term

on the right-hand side of the equation is infinitesimal; and consequently

either there exist values of t as large as we please for which Iv is positive (in

which case the part of the orbit described in the attractive region is of length

greater than any assignable quantity) or else Aj(F) tends to zero. But

Aj ( V) can be zero only when dV/du and dV/dv are zero ; if therefore (as is in

general the case) the surface possesses only a finite number of equilibrium

positions, the particle will tend to one of these positions, with a velocity

which tends to zero. A position of equilibrium thus approached asymptotically

must be a position of unstable equilibrium : for the asymptotic motion re-

versed is a motion in whioh the particle, being initially near the equilibrium

position with a small velocity, does not remain in the neighbourhood of the

equilibrium position ; and this is inconsistent with the definition of stability.

Thus finally we obtain Hadamard's theorem, which may be stated as

follows : If a particle is free to move on a surface which is everywhere regular

and has no infinite sheets, the potential energy function being regular at all

points of the surface and having only a finite number of maxima and minima

on it, either the part of the orbit described in the attractive region is of length

greater than any assignable quantity, or else the orbit tends asymptotically to

one of the positions of unstable equilibrium.

Example. If all values of t from — oo to + <x> are considered, shew that the particle must

for part of its course be in the attractive region.

178. Application of the energy integral to the problem of stability.

A simple criterion for determining the character of a given form of motion

of a dynamical system is often furnished by the equation of energy of the

system. Considering the case of a single particle of unit mass which moves

in a plane under the influence of forces derived from a potential energy

function V(x, y), the equation of energy can be written

i(x* + y») = h-V{x,y).

Now the branches of the curve V(x, y)=h separate the plane into regions

for which {V(x,y) — h} is respectively positive and negative; but as (i;
2 + y*)

is essentially positive, an orbit for which the total energy is h can only exist in

the regions for which V{x,y)<h. If then the particle is at any time in the

interior of a closed branch of the curve V(x, y) = h, it must always remain

within this region. The word stability is often applied to characterise types

of motion in which the moving particle is confined to certain limited regions,

and in this sense we may say that the motion of the particle in question is

stable.
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The above method has been used by Hill*, Bohlinf, and Darwin}, chiefly

in connexion with the restricted problem of three bodies.

179. Application of integral-invariants to investigations of stability.

The term stability was applied in a different sense by Poisson to a system which, in

the lapse of time, returns infinitely often to positions indefinitely near to its original

position, the intervening oscillations being of any magnitude. It has been shewn by
Po'incare that the theory of integral-invariants may be applied to the discussion of Poisson
stability.

Considering a system of differential equations

^r=Zr (*i, x,, ..., xn) (r=l, 2, ..., n),

for which
///••• [

8xi Sx*"- 8x»

is an integral-invariant, we regard these equations as defining the trajectory in n dimen-
sions of a point P whose coordinates are (xu x2 , ..., xn). If the trajectories have no
branches receding to an infinite distance from the origin, it may be shewn § that if any small

region R is taken in the space, there exist trajectories which traverse R infinitely often :

and, in fact, the probability that a trajectory issuing from a point of R does not traverse

this region infinitely often is zero, however small R may be. Poincare has given several

extensions of this method, and has shewn that under certain conditions it is applicable in

the restricted problem of three bodies.

Miscellaneous Examples.

1. Shew that the motion of a particle in an ellipse under the influence of two fixed

Newtonian centres offeree is stable. (Novikoff.)

2. A particle of unit mass is free to move in a plane under the action of several

centres of force which attract it according to the Newtonian law of the inverse square of

the distance : denoting the resulting potential energy of the particle by V(x, y), shew that

the integral

L //[(S + 1?)
log {h - v^ *»] ****

where the integration is taken over the interior of any periodic orbit for which the constant

of energy has the value h (the centres of force being excluded from the field of integration

by small circles of arbitrary infinitesimal radius), is equal to the number of centres of force

enclosed by the orbit, diminished by two. {Monthly Notices R.A.S. lxii. p. 186.)

3. Let a family of orbits in a plane be defined by a differential equation

where (x, y) are the current rectangular coordinates of a point on an orbit of the family

;

and let 8n denote the normal distance from the point (x, y) to some definite adjacent orbit

of the family. Shew that Sn satisfies the equation

ctt*
+I8n= °>

* Amer. J. Math. i. (1878), p. 75. + Acta Math. x. (1887), p. 109.

% A'cta Math. xxi. (1897), p. 99.

§ Poincare, Acta Math. xm. (1890), p. 67 ; Nouv. Meth. in. Ch. xxvn.
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and t is a variable defined by the equation

dt \dx)
(Sheepshanks Astron. Exam.)

4. A particle moves under the influence of a repulsive force from a fixed centre : shew

that the path is always of a hyperbolic character, and never surrounds the centre of force

;

that the asymptotes do not pass through the centre in the cases when the work, which has

to be done against the force in order to bring the particle to its position from an infinite

distance, has a finite value ; but that when this work is infinitely great, the asymptotes

pass through the centre, and the duration of the whole motion may be finite.

(Schouten.)

5. Shew that in the motion of a particle on a fixed smooth surface under the influence

of gravity, the curve of separation between the attractive and repellent regions of the

surface is formed by the apparent horizontal contour of the surface, together with the locus

of points at which an asymptotic direction is horizontal.

6. A particle moves freely in space under the influence of two Newtonian centres of

attraction ; shew that when its constant of energy is negative, it describes a- spiral curve

round the line joining the centres, remaining within a tubular region bounded by two

ellipsoids of rotation and two hyperboloids of rotation, whose foci are the centres of force :

and that when the constant of energy is zero or positive, the particle describes a spiral-

path within a region which is bounded by an ellipsoid and two infinite sheets of hyper-

boloids of the same confocal.system. (Bonacini.)

7. The necessary and sufficient condition in order that a two-parameter family of

curves defined by a differential equation

may be a system of orbits with the same constant of energy is that

(*+ *W \ dec

shall be a linear homogeneous perfect differential. The potential energy is then a

constant multiple of

e
<§?-ftfy«*_ (P.Frank.)

8. In the motion of a particle in a plane under forces which depend only on its position,

a one-parameter family of trajectories is obtained by starting particles at a given point in a

given direction with all possible velocities. Shew that the locus of the foci of the osculating

parabolas is a circle passing through the point. If the initial direction is now varied, shew

that the locus of the centres of the oo l circles obtained is a conic having the given point

as focus : and if the forces are conservative, this degenerates into a straight line counted

twice.

9. In order that a system of oo 5 space-curves, of which oo ' pass through every point

in every direction, may be identifiable with the system of trajectories of a particle in an

arbitrary positional field of force, it is necessary (but not sufficient) that the system

should have the following properties:

(a) The osculating planes of the oo 2 curves passing through a given point form

a pencil : that is, all the planes pass through a fixed direction.
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O) The osculating spheres of the oo ' curves passing through a given point in a given

direction form a pencil : their centres thus lie on a straight line.

10. Shew that the co 2 curves of a natural family which meet any surface orthogonally

are orthogonal to oo 1 surfaces, that is, form a normal congruence. (The surfaces in

question are the surfaces of equal Action.) (Hamilton.)

11. Shew that the property referred to in Ex. 10 belongs exclusively to natural

families.

12. In order that a family of oo 4 curves in space may constitute a natural family of

orbits, two properties are necessary and sufficient, viz. :

(a) If the osculating circles of those curves of the family which pass through a given

point p are constructed at that point, they have a second point P in common, and thus

form a bundle. Consequently, three of the circles in such a bundle have four-point contact

with the corresponding curves.

(/3) These three hyperosculating circles will be mutually orthogonal.

13. The only point-transformations which convert every natural family into a natural

family are those belonging to the conformal group.

[Examples 8, 9, 11, 12, 13 above are taken from memoirs by E. Kasner in the Trans-

actions of the Amer. Math. Soc, 1906-1909. For further work in this direction the reader

is referred to Professor Kasner's Princeton Colloquium lectures on Differential Geometric

Aspects of Dynamics,]

14. Two sets of oo ' curves in a plane, which form an orthogonal system, are orbits in

a certain conservative field of force. If U denote the Action at any point (x, y) of a

particle considered as moving on one of the first set of orbits, and V denote the Action at

\x, y) when the particle is considered as moving on one of the second set of orbits, shew

that U and V are conjugate functions of x and y : and that the families of curves

U— constant, V= constant, are identical with the orbits.

(P. G. Tait and K. Ogura.)



CHAPTER XVI

INTEGRATION BY TRIGONOMETRIC SERIES

180. The need for series which converge for all values of the time;

Poincares series.

We have already observed (§ 32) that the differential equations of motion

of a dynamical system can be solved in terms of series of ascending powers

of the time measured from some fixed epoch ; these series converge in

general for values of t within some definite circle of convergence in the

tf-plane, and consequently will not furnish the values of the coordinates

except for a limited interval of time. By means of the process of analytic

continuation* it would be possible to derive from these series successive sets

of other power-series, which would converge for values of the time outside this

interval ; but the process of continuation is too cumbrous to be of much use

in practice, and the series thus derived give no insight into the general

character of the motion, or indication of the remote future of the system.

The efforts of investigators have therefore been directed to the problem of

expressing the coordinates of a dynamical system by means of expansions

which converge for all values of the time. One method of achieving this

resultf is to apply a transformation to the £-plane. Assuming that the

motion of the system is always regular (i.e. that there are no collisions or

other discontinuities, and that the coordinates are always finite), there will be

no singularities of the system at points on the real axis in the £-plane, and

the divergence of the power-series in t — t„ after a certain interval of time

must therefore be due to the existence of singularities of the solution in the

finite part of the i-plane but not on the real axis. Suppose that the singu-

larity which is nearest to the real axis is at a distance h from the real axis

;

and let t be a new variable defined by the equation

, ,
2A. 1+t

t - 1 = — log
^

.

7T ° 1 — T

A band which extends to a distance h on either side of the real axis in the

£-plane evidently corresponds to the interior of the circle |t|=1 in the

* Cf. Whittaker and Watson, Modern Analysis, § 5-5.

t Due to Poincare, Acta Math. iv. (1884), p. 211.
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r-plane; the coordinates of the dynamical system are therefore regular
functions of t at all points in the interior of this circle, and consequently
they can be expressed as power-series in the variable t, convergent within
this circle. These series will therefore converge for all real values of r

between - 1 and 1, i.e. for all real values of t between -x and + oo . Thus
these series are valid fur all values of the time.

181. The regularisation of the Problem of Three Bodies.

In the last article we made the reservation that there are to be no collisions

or other discontinuities for real values of t. The importance of collisions in

the mathematical theory of the Problem of Three Bodies was first indicated
by Painleve"*, who shewed that the motion of the bodies is regular (i.e. their

coordinates are holomorphic functions of t) for all time, provided the initial

conditions are not such that after a finite interval of time two of the bodies

collide. The relations which must subsist between the initial values of the
variables in order that a collision may ultimately happen between two of

the three bodies have been discussed by Levi-Civitaf for the restricted problem
of three bodies (when there is one such relation) and by Bisconcini{ for the

general problem, when there are two relations : these relations are analytic,

but they are expressed by somewhat complicated infinite series, and are not

directly applicable except when the interval of time between the initial instant

and the collision is sufficiently short.

A considerable advance was made when K. F. Sundman§ shewed that the

singularity of the differential equations which corresponds to a collision of two

of the bodies is not of an essential character, and that it may in fact be

removed altogether by. making a suitable change of the independent variable

:

that is to say, it is possible to choose the variables which specify the motion,

and the independent variable, in such a way that the differential equations of

motion are regular even when two of the three bodies occupy coincident

positions
1

1. It is thus possible to obtain a real prolongation of the motion

after the collision!: the coordinates can be specified for all values of the time t

from — oo to + oo , whether collisions take place or not : and a positive lower

bound I can be assigned to the two greater of the mutual distances. There

* Lecons sur la theorie anal, des eq. diff., Paris, 1897, p. 583.

t Annali di Mat. (3) ix. (1903), p. 1; Comptes Bendus, cxxxvi. (1903), pp. 82, 221.

t Acta Math. xxx. (1905), p. 49. Cf. also H. Block, Medd. fran Lunds Obs., Series n., No. 6

(1909); Arkivf. Mat. Astr. och Fys. v. (1909), No. 9.

§ Acta Math, xxxvi. (1912), p. 105. The essential features of the work were originally

published in Acta Societatis Scient. Fennicae in 1906 and 1909.

||
Levi-Civita regularised the differential equations of the restricted problem of three bodies

by an elementary transformation in Acta Math. xxx. (1906), p. 306; and in a later paper, Rend,

d. Lincei, xxiv. (1915), p. 61, he extended this to the problem of three bodies in a plane.

If The variables can be expanded in ascending powers of (t»-0*i where ti represents the

instant of collision : the orbits have cusps at the point of impact.
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is only one case of exception, namely when all three bodies collide simul-

taneously : but this can happen only in a very special type of motion, in which

all the constants of angular momentum are zero together *

T Disregarding this case of triple collision, Sundman introduced a new

independent variable w defined by the equation

dt= (l - e'l) (l - e~
r

i) (l - e~l') dw\,

where r , rlt r2 denote the three mutual distances, and I is the lower bound

already mentioned. The coordinates of the bodies, and the time, are then

holomorphic functions of w within a band of finite breadth 212 in the w-plane,

bounded by two lines parallel to the real axis and on either side of it. There

exists a continuous one-to-one correspondence between the real values of t and

the real values of w, so that when t varies from — x to + oo , w likewise

varies from — oo to + x .

Lastly, Sundman applied Poincar^'s transformation

211. 1 + Tw =— log =
,

IT
S 1-T

in order to transform the band in the w-plane into a circle of radius unity in

the plane of a new variable t. The coordinates of the three bodies, and the

time, are now holomorphic functions of t everywhere within the unit circle in

the T-plane : and therefore they can be expanded as convergent series ofpowers

of t for all real values of the time, whether there are collisions or not : the

case of triple collision alone being excepted.

182. Ti'igonometric series.

The series discussed in the preceding articles are all open to the objection

that they give no evident indication of the nature of the motion of the

system after the lapse of a great interval of time : they also throw no light on

the number and character of the distinct types of motion which are possible

in the problem : and the actual execution of the processes described is attended

with great difficulties. Under these circumstances we are led to investigate

expansions of an altogether different type.

If in the solution of the problem of the simple pendulum (§ 44) we consider

the oscillatory type of motion, and replace the elliptic function by its ex-

pansion as a trigonometric series %, we have

sinA0-^ I
<?*'*-" .(2s-l)^(t-t )sin tO- K ±

il _ ^_r
am M ,

* This last fact had been known to Weierstrass : cf. Acta Math. xxxv. p. 55. The motion is

then in one plane.

t A simpler equation available in the restricted problem of three bodies was given by
G. Armellini, Comptes Rendus, clviii. (1914), p. 253.

X Cf. Whittaker and Watson, Modern Analysis, § 22*6.
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where 6 denotes the inclination of the pendulum to the vertical at time t;

K and t may be regarded as the two arbitrary constants of the solution, and

fi is a definite constant, while q denotes e~nK'lK
, where K' is the complete

elliptic integral complementary to K. This expansion, each term of which

is a trigonometric function of t, is valid for all time. Moreover, when the

constant q is not large, the first few terms of the series give a close approxi-

mation to the motion for all values of t. The circulatory type of motion

of the pendulum may be similarly expressed by a trigonometric series of the

same general character.

Turning now to Celestial Mechanics, we find that series of trigonometric

terms have long been recognised as the most convenient method of expressing

the coordinates of the members of the solar system ; these series are of the

type

2a„,, «,,...,„„ cos (», 6X + n2d2+...+nk k),

where the summation is taken over positive and negative integer values of

«i, «2, ..., nk , and 6r is of the form \r t + er ; the quantities a, X, and e being

constants. Delaunay* shewed in 1860 that the coordinates of the moon can

be expressed in this way; Newcomb -

!

- in 1874 obtained a similar result for

the coordinates of the planets, and several later writers J have designed

processes for the solution of the general Problem of Three Bodies in this

form ; these processes are also applicable to other dynamical systems whose

equations of motion are of a certain type resembling those of the Problem

of Three Bodies. In the following articles we shall give a method § which

is applicable to all dynamical systems and leads to solutions in the form of

trigonometric series : the method consists essentially, as will be seen, in the

repeated application of contact-transformations, which ultimately reduce the

problem to the equilibrium-problem.

183. Removal of terms of the first degreefrom the energy function.

Consider then a dynamical system, whose equations of motion are

dt dpr dt Bqr
v *

where the energy function H does not involve the time t explicitly.

The algebraic solution of the In simultaneous equations

dpr oqr

will furnish in general one or more sets of values (ait a2 , ••, an , bu b2 , ..., bn)

for the variables (qlt q2 , ...,qn ,

p

lt ...,pn)\ and each of these sets of values

* Tlieorie du mouvement de la lune. Paris, 1860. t Smithsonian Contributions, 1874.

J e.g.. LiDdstedt, Tiaserand, and Poincare\

§ Whittaker, Proc. Lond. Math. Soc. xxxiv. (1902), p. 206.
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will correspond to a form of equilibrium or (if the above equations are those

of a reduced system) steady motion of the system.

Let any one of these sets of values (a,, a2 , . .
.
, an , bu bt , ..., bn ) be selected

;

we shall shew how to find expansions which represent the solution of the

problem when the motion is of a type terminated by this form of equilibrium

or steady motion. Thus if the system considered were the simple pendulum,

and the form of equilibrium chosen were that in which the pendulum hangs

vertically downwards at rest, our aim would be to find series which would

represent the solution of the pendulum problem when the motion is of the

oscillatory type.

Take then new variables {q±, q,', ..., qn', p(, pj, ...,

p

n'), defined by the

equations

qr = ar + qr', pr = br +pr
'

(r = 1, 2, . .
.

, n)
;

the equations of motion become

dql = dH d#l = _dH
dt dpr

"
dt ~ dqr

' (r-1,2, ...,n),

and for sufficiently small values of the new variables the function H can be

expanded as a multiple power series in the form

H=H + H1 + H2 + HS +...,

where Hk denotes terms homogeneous of the &th degree in the variables

(?i'» &'. • .
?»'. pi, , Pn)-

Since H„ does not contain any of the variables, it may be omitted : and the

fact that the differential equations are satisfied when (g/, qt
', ..., qn', p/, . .

.

,

pn ')

are permanently zero requires thatH1 should vanish identically. The expansion

of H therefore begins with the terms Hz , which (suppressing the accents of

the new variables) may be written in the form

H2 = £2 (arrqr
2 + 2arsqrqs) + ^,breqrPs + ?2 (CrrPr

1 + ^cr8prpt),

Wnere ^rs = ^sr> Cra = Csr,

but bn is not necessarily equal to bsr . If the terms H3 , Ht ,
... were neglected

in comparison with Hit the equations would become those of a vibrational

problem (Chapter VII).

184. Determination of the normal coordinates by a contact-transformation.

We shall now apply a contact-transformation to the system in order to

express N2 in a simpler form *,—in fact, to obtain variables which correspond

to normal coordinates for small vibrations of the system.

* In obtaining the transformation of this article a method is used which was suggested to the

author by Dr Bromwich, and which furnishes the transformation more directly than the method
originally devised. t
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Consider the set of 2w equations

.

(r-= 1,2, ...,»)

or - si/,. = an «, + anx2 +... + a^x^, + bnyx + ...+ brnyn]

syr Jr^H2 {x1 ,x2 , ...,xn , yu ,..,yn) =

-**r + g-^2(*i, *2, •••, a?n, 2/l, •••, 2/70 =

anx2 + ... + amxn + 6^3/! + . . . + brnyA
7 , r (r= l,2,...,n).

sxr = blrxx + b2rx2 + . . . + bnrxn + cnyx + ...+ crnyn )

On solving these equations, we obtain for s the determinantal equation

which in § 84 was denoted by f(s) = : we shall suppose that H2 is a positive

definite form, and (as in § 84) we shall denote the roots of the equation

by ±«S], ±is2 , ..., ±isn ; the quantities su s2 , ..., sn are all real, and for

simplicity we shall suppose no two of them to be equal.

To each root there will correspond a set of values for the ratios of the

quantities (xlt x2 , ..,, xn , ylt ..., yn); let the set which correspond to the root

isr be denoted by (^1, ra;2 , •••> r^m r2/i, •••> rVn)> and let the set which corre-

spond to the root — isr be denoted by {.^Xi, -r%2 , ..., -rXn , -r3/i> ••, -ryn), so

that we have

1— %Sr ryp = 0'p\ r£\ + O-pz r^i + . • • + Ctpn fXn + Op\ ry-y + . . . + Opn ryn ,

isr rxp =blprx1 +bzprx2 + ... + bnp rXn + cplry1 + ... + cpn ryn .

Multiply these equations by kxp and kyp respectively, add them, and sum with

respect to p ; we thus obtain the equation

n
isr 2 (rXp kyp - kXp ryp) =H (r, k),

P =i

where

H (r, k) = au^ fc^ + ai2 O, kx2 +^ rx2) + ... + &„ (^ kyx + kxl

r

y^ + ...

+ cllryikyi+ • ••>

so that H(r, k) is symmetrically related to r and k.

Interchanging r and k, we have

n
isk 2 (iFp ryP - r»p hyP) = H (r, k),

27= 1

n \

and therefore (sr + sk) t {ycp ryv ~ r®p hVp) = 0.

p =i

So, unless sr + sk is zero, we have

n

2 (rS0p kyp - k®p ryP ) = 0,

p= l

and consequently H (r, k) is zero: if sr + sk is zero, we have kxp = ^rP

kyp .= -ryp , and. therefore

isr i (rxp ^yp - -rxp rVp) = H(r,-r).
p=i >
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If now we define new variables (5/, q2
', ..., qn',

ft', ..., *pn') by the equations

qr = ,av-9i' + s^r^' + • • • + n°t>rqn + -Aft' + • • • + _„«,-J0„H

ft = iVrqi + <&rqs + • • + n^n' + -#rft' + • • • + -nVr ft.'

J

and if 8 and A denote any two independent modes of variation, it is evident
n n

that the coefficient of Bqr'Apk' in 2 (Sq
tApi- Aqt Spi) is 2 (r®i -1&1 — -1&1 ryi),

1=1 1 = 1

n

which is zero when r is not equal to k. Thus 2 (SqiApi — Aqi&pi) contains no
1=1

terms except such as (Bqr'Apr
' — Aqr'Spr'), and the coefficient of this term is

n

2 (r*i -ryi — -r>ci rVi)- Now hitherto the actual values of rXt , ry% have not been
i=i

fixed, as only their ratios are determined from their equations of definition

;

we may therefore choose their values so that

n

t(^i^yi-^xi ryi) = l 0"=1, 2, ...,n),
1=1

and then we shall have

2 (Sg,ApI -AgI8p,)= 2 (Bqr'Apr' - Aqr'Spr'),
1=1 r=l

so that (§ 128) the transformation from the variables (qi,qi,...,qn> Pi> ••> Pn)

to the variables (g/, qi, ..., qn', pj, ..., pn') is a contact-transformation.

Moreover, if in H2 we substitute for (qu q2 , ..., qni pu ...,pn) in terms of

(?i', qi, , qn'.Pi, ,Pn), we obtain

fl,= 2 H(r,-r)qr
'p

r
'

r=l

11

or H2 = i 2 srqr'pr
'.

r=l

Now apply to the variables (5/, g2
', ..., g„', jo/, ..., p„') the contact-

transformation defined by the equations

q' =
dp7" Pr= dq?

{r=1
' 2 n)

'

where F = 2 (p/V + i— - i^?/*),
r = l \ $r /

which gives H% = \ 2 (ft"
3 + «,'?/'').

r=l

As all the transformations concerned have been linear, we see that

Hs , Ht , ... will be homogeneous polynomials of degrees 3, 4, ... in the new
variables : and thus, omitting the accents, we have the result that the

equations of motion of the dynamical system have been brought to the form

dqr _dH dpr dH
, , „

Ht'dp-/ St dq~r
(r=l,2

J ..., B);
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where H=H, + H, + Hi +...,

m which Hr is a homogeneous polynomial of degree r in the variables, and in
particular

h

r=l

It is clear that if we neglect Hs , H,, ... in comparison with H2 , arid
integrate the equations, the solution obtained will be identical with that
found in § 84.

185. Transformation to the trigonometric form of H.

The system will now be further transformed by applying to it a contact-

transformation from the variables
(9l , q2 ,..., qn ,. Pl , ...,pn)to new variables

(<?i', ?a', • • , qn, Pi', • • , Pn), defined by the equations

, dW dW
Pr=W qr=

¥r
(r = l,2,...,n),

qr
' arcsin —^— + 2± \2srqr

' - pf\where W =' 2

so that

pr = (2srqr
')i sin pr

',

qr = (2qr')l sr
~^ cos p,.', (r = 1, 2,

.
,. , n).

The differential equations become

dql_dH dp;__dH
dt dpr

"
dt dqr

' V -l, £,..., n),

where ^ = 5,^'+ s2qt
' + ... + sn qn

' + Hs + H4 + .... i

and now J2V denotes an aggregate of terms which are homogeneous of

degree \r in the quantities qr', and homogeneous of degree r in the

quantities cos^/, sinp/.

Since a product of powers of cospr
', sinpr

' can be expressed as a sum of

sines and cosines of angles of the form {nxp^ + n2 p.2
' + ... + nnpn'), where

nu n2 , ..., nn have integer or zero values, it follows that Hr can be expressed

as the sum of a finite number of terms, each of the form

Sill

?/"q^ • qn
'mn

no ("i Pi + n2 p2'+...+ nnpn'),
COS

where nil + m2 + ... +mn = ^r, \n,.\^2mr ,

and therefore
|

n^
|
+

|
n2 1

+ . . . +
|

nn | ^ r.

The function H is thus expressed in the form

sin

where for each term we have

\n1 \
+ \n2 \

+ ... +\nn \^2(m.i+ m2 + ... + mn),

w. d. 27
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and clearly the series is absolutely convergent for all values of p/, p2 , ..., pn',

provided g/, q2 , ..., qn
' do not exceed certain limits of magnitude. From the

absolute convergence it follows that the order of the terms can be rearranged

in any arbitrary way : we shall suppose them so ordered that all the terms

involving the same argument n^'

+

... + nnpn' are collected together, so

that H takes the form

B = aM „ + Sa^, ,,,,.„,«, cos (»ipi'+ ... + nnpn')

+ 26n, ,n, «„ sin (n,p,' + . . . + nnpn'),

where the coefficients a and b are functions of q{, q2 , ...,qn
' and the expansion

of ffln„n, n„ or 6n„n, nn in P°wers 0I"

?/> ?a'

»

•••> ?n' contains no terms of order

lower than ^ {
| n^

| + 1 n2 1
+ . . . + 1 nn

|

} ; and where the summations extend

over all positive and negative integer and zero values of n„ n2 , ..., nn , except

the combination

«i = *H = • • • = «n = 0-

Moreover, the expansion of a0>0 (which will be called the non-periodic part

of H, the rest of the expansion being called the periodic part) begins with

the terms

Siqi +s2q2
' + ...+snqn';

and, when g,', qi, ...,qn
' are small, these are the most important terms in H,

since they contribute terms independent of qj, q2', ..., qn
' to the differential

equations.

For convenience we shall often speak of ql, q2\ ...,qn
' as "small," in order

to have a definite idea of the relative importance of the terms which occur.

It will be understood that £,', qi, ..., qn
' are not, however, infinitesimal, and

in fact are not restricted at all in magnitude except so far as is required to

ensure the convergence of the various series which are used.

To avoid unnecessary complexity, we shall ignore the,terms

26b,, «, ». sin (n,^' + ... + «„i>„')

in H. as they are to be treated in the same way as the terms

2a»„„
a n„ cos (n^+ ... + nnpn'),

and their presence complicates, but does not in any important respect modify,

the later developments.

The form to which the problem has now been brought may therefore be

stated as follows (suppressing the accents in the variables) : The equations of

motion are

dt opr dt dqr

where H= aMi ... ;0 + 2anii„2i ...,„B cos (w^ + n2p2 + ... + nnpn),

and the coefficients a are functions of qlt q2 , , qn only ; moreover, the periodic

part ofH is small compared with the non-periodic part a„
iOj ... i0

; a term which

has for argument (nlp1 + nip2 + ... +nnpn ) has its coefficient anii1H „n at least
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of order % { \
»i,

|
+ |

n,
|
+ . . . +

j

nn
|

} in the small quantities qlt q2 , ...,qn ; and
the expansion of a ,o,...,o begins with the terms (s^ + s2q2 + ... + snqn).

It follows from this that when the variables qu q2 , ..., qn are small they

vary very slowly, while the variables plt p2 ,...,pn vary almost proportionally

to the time.

186. Other types of motion which lead to equations of the same form.

The equations which have now been obtained have been shewn to be

applicable when the motion is of a type not far removed from a steady motion

or an equilibrium-configuration, e.g. the oscillatory motion of the simple

pendulum, or those types of motion of the Problem of Three Bodies which

have been studied in § 171. But these equations may be shewn to be

applicable also to motion which is not of this character, and in particular to

motion such as that of the planets round the sun, or the moon round the

earth *.

For let the equations of motion of the Problem of Three Bodies be taken

in the form obtained in § 160 ; and let the contact-transformation which is

defined by the equations

be applied to this system, where

, ,
fii( n*m*mj

,

2/^mg
ft'

1)*,W = qiq3 + qs qt +
j

|-L-+_— -
_J %

[** ( (i'*mi>ms
2 2/i'mjWi,) <jO*,

The new variables can be interpreted in the following way. Suppose that at

the instant t all the forces acting on the particle /a cease, except a force of

magnitude mxm2\q? directed to the origin ; and let a be the semi-major axis

and e the eccentricity of the ellipse described after this instant : then

qi = {m^m^a (1 - e2)}$, qi = {m1 rn2ii.a}^.

Further, if the lower limits of the integrals are suitably chosen, p/+ q3 is

the true anomaly of m in its ellipse, and - pi is the mean anomaly. The

variables qi, qi, pi, pi stand in a corresponding relation to the particle fi'.

The equations of motion now take the "form

dqr' dH dpi _ dH /„_-, 9 , ,vW =
dp7' -df

— d£
(r-1,2,3.4),

when the particles m 2 and m„ are supposed to be of small mass compared with

mu and are describing orbits of a planetary character about m^ it is readily

found that H can be expanded in terms of the new variables in the form

S= ao,6,o,o + Sa,ll>% ,% , Bl
cos (nxpi + n2pi + n3pi + ntpi),

* Delaunay, Thgorie de la Lune ; Tisserand, Annates de VObs. de Paris, Mimoires, xvm. (1885).

27—2
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where the .coefficients, a are functions of (qi, q2', qs
', q/) only, the Summation

extends over positive and, negative integer and zero values of nlt n2 , v3 , n„

and the coefficient a0|0|0|0 is much the most important part of the series. As

this expansion of H is of the same character as that obtained in § 185, it

follows that the method of solution given in the following articles is applicable

either to motion of the planetary type or to motion of the type studied m| 171.

187. Removal of a periodic termfrom H.

We shall now apply to the system another contact-transformation, the

effect of which will be the removal of one of the periodic terms from H\ this

will further accentuate the feature already noted, namely that the non-periodic

part ofH is much more important than the periodic part*.

Let one of the periodic terms in H be selected, say

an„ ni n„ cos (?i,^, + n2p2 + ... +nnpn).

Write H = a0>0) ... )0 + a,hirhi ,.,i% cos {n1pl + n 2p2 + ...+ nnpn) + R,

so that R denotes the rest of the periodic terms of H; when we wish to put

in evidence the arguments of which a„iiBa BfI
is a function, we shall write it

anu n2 , ,..,«„ Wi> ?2> • • ) In)-

Apply to the system the contact-transformation defined by the equations

, dW dW . .. . .

where W = qfa + q2
'p

2 +... + qn'pn +f(q1 ',q2',..., qn', 6)

and 8 = n^pt + n2p2 + . . . + nnpn ;

we shall suppose that / is a function, as yet undetermined, of the arguments

indicated. The problem is now expressed by the equations

where

dq£_dH dpl = _^JL /r _i o n)
dt dpr

" dt dqr
' \r-i,A,...,n),

H = a
,

oUi +n^, ...,qn
' + nn ^\

+ <V

%

«„ \Qi +^^,----,qn' + nn ^g) cos 6 + R,

and 6 and R are supposed to be expressed in terms of the new variables by
means of the equations of transformation

Pr=Pr +
dq7'

1r=qr' + nr£ (r = 1, 2, ...,n).

* Readers familiar with Celestial Mechanics will notice the analogy of this.method with that

of Delaunay's lunar theory: the analysis is different from Delaunay's, but the idea is essentially

the same.
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The function/ is, as yet, undetermined and; at our disposal. It will be
chosen so as to satisfy the condition that shall identically disappear from
the expression

a»,o »(y + rci^/.,.,v + %^)

+«*„ %; ...,»„ f ?i'. + «i^ , •
, qn

' + nn^J
cos 0,

so that'this quantity is a function of qx
', q^, ...,qn

' alone, say

Then the equation

«0,0, .-,« f2l' + «1^ » ^ • • > ?»' + «n
g^J

+ ««„», »„ (qi +n1 ^,...,qn + nn ^J
cos 6 = a'

0l0

determines df/dd in terms of g,', g2
', ..., g»', a Oi0 , and cos ft

Suppose that the solution of this equation for df/dd is expressed in the

form of a series of cosines' of multiples of 6 (which can be done, for instance,

by successive approximation), so that

Ja = c + S Cic cos k0,
oV Jfc=i

where c , clt cj, ... are known functions of g/, g2
', ..., gm', a'0>0 .

Now <x' „ o is as ye* undetermined, and is at our disposal. Impose the

condition that c is to be zero; this determines a-'0>0,....,o as a function of

<//> q-z', •••> qn ', and, on substituting its value in the series for df/dd, we have

00

df/d0 = S Cj cos &#,
-

*«i

where now c1; c2 , c3 , ... are known functions of q\', qa
'

t ..., qn
'. Integrating

this equation with respect to. $, and for our purpose taking the constant of

integration to be zero, we have

/= I ^sinM
k=l le

The equations defining the transformation now become

,(r=l, 2,. ..,«).

S 1 3ct . ia

q,. = q,' +nr £ ck cos k0
k~-\ '

Multiply the first set of these equations by nu na , ..., «» respectively, and

add them: writing

«i Pi + %JP»' + • • + "»K = ^'>

we "- '-*+2,i(*^ +-s + - +
'-w)-'"^
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Reversing this series, we have

e=ff+ £ dk sinkO',
fc=i

where dly dit ... are known functions of g,', ga
', ..., gn

'. Substituting this

value of 9 in the equations of transformation, they become

Pr=Pr'+ 2 rBkSinkO'
k = l

(r=l,2,...,«),

qr = g,-' + «r 2
(ft.

cos &#'

where all the coefficients reic, g* are known functions of ql, q2
', ..., qn

'.

Now, before the transformation, the function R consisted of an aggregate

of terms of the type

R = %amiim> % cos (m1 p1 + ...+ mnpn) ;

when the values which have been found for fa, q2 , ..., qn , px , ...,pn) are

substituted in this expression, and the series is reduced by replacing powers

and products of trigonometric functions of p(, pj, ...,

p

n
' by cosines of sums

of multiples of pi, pi pn', it is clear that R will consist of an aggregate

of terms of the type

R = Sa'mi ,„, ^ cos (m,p; + m2p2
' + . . . + mnpn'),

where the coefficients a are known functions of fa', qt
', ..., qn').

We thus have the result (omitting the accents of the new variables) that

after the transformation has been effected, the system is still expressed by a set

of equations of the form

dfr ffl dpr dH
dt dpr

' dt~ dqr
(r-i,z,...,n)

where H = a'
0i<>

+ Sa',„Iim!! mn cos (mlp1 + mip2 + ... + mnpn),

and where the coefficients a' are known functions of qlt q2 , ..., qn .

Let us now review the whole effect of the transformation. The differential

equations of motion have the same general form as before ; but from the

equation

ao,o,...,o + «»,,»,,...,»(„ cos (n^ + m2#j + ... + nnpn) = a'0>0 „

we see that one term has been transferred from the periodic part of H to its

non-periodic part : the periodic part of H is less important, in comparison

with the non-periodic part, than it was before the transformation was made.

188. Removal of further periodic terms from H.

Having now completed the absorption of this periodic term into the non-

periodic part of H, we proceed to absorb one of the periodic terms of the new

expansion of H into the non-periodic part, by a repetition of the same

process. In this way we can continually enrich the non-periodic part of
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H at the expense of the periodic part, and ultimately, after a number of

applications of the transformation, the periodic part of H will become so

insignificant that it may be neglected. Let (alt a2 , ..., an , ft, ft, ..., ft) be
the variables at which we arrive as a result of the final transformation : then
the equations of motion are

den,. dH d/3r dH . . aW =
3ft'

*---§£ (r=l,2,...,«)
>

where H, consisting only of its non-periodic part, is a function of

(«i, b2) ..., an) only. We have therefore

d«r „ „ [dHr
, = 0, ft.= -J]£efe (r = 1,2, ...,»),

which shews that the quantities a are constants, and the quantities /3 are of

the form

dH
ft. = /M+ er , where /*,. = -^— (r= 1, 2, ..., n);

the quantities e,. are arbitrary constants, and the part of fir independent of

(oi, <*2 , ..., a„) is -sr .

189. Reversion to the original coordinates.

Having now solved the equations of motion in their final form, it remains

only to express the original coordinates of the dynamical system in terms of

the ultimate coordinates (alt a2 , ..., o„, ft, ..., ft). Remembering that the

result of performing any number of contact-transformations in succession is

a contact-transformation, it is easily seen that the variables (qx , q2 , ., qn ,

Pi, •-,Pn) used at the end of §185 can be expressed in terms of (a,,.a2 , ...,««,

ft , • • • , ft) by equations of the form

/3r
= Pr + Z- m"™£- m" sm(mip1 + m,p2 + ... + mnpn)\ ^ = ^ ^ ^

qr
= <xr +2mrkmi>m!i m„cos (m1p1+ m2p2+ ... + mnpn)\

or

qr =fr (a1
,ai , ..., a„) + 2raw , ,«,, % cos (m1ft +m2ft + . .+mn n))

pr = /3r + 2rbmi , m, mn sin(m1ft + m2ft+ ... +m»W
(r-1,2, ...,w),

where the coefficients a and b are functions of («!, a2 , ..., a»).

From this it follows that the variables (qlt q*, ..., qn , Pu ••,Pn) of § 183,

in terms of which the configuration of the dynamical system was originally

expressed, are obtained in the form of trigonometric series, proceeding m
sines and cosines of sums of multiples of the n angles ft, ft, ••• , ft- These

angles are linear functions of the time, of the form /ir t + er ;
the quantities
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er are n of the 2n arbitrary constants of the solution, while the quantities

fir are of the form

ft,,.
= -sr + 2 C*,

, tl kn a,*> a2*' . . . an*«,

the coefficients c being independent of the constants of integration. The

coefficients in the trigonometric series are functions of the arbitrary constants

(a,, «„, ..., «„) only.

The expansions thus obtained represent afamily ofsolutions of the dynamical

system, the limiting member of the family being the position of equilibrium or

steady motion which was our starting-point.

Evidently also, by applying the integration-process of §§ 187—189 to the

equations of motion found in § 186, we obtain a solution of the Problem of

Three Bodies, when the motion is of the planetary type, in terms of trigono-

metric series of the kind above specified.

For the further development of the theory of the present chapter, in connexion with

the Problem of Three Bodies, reference may be made to treatises on Celestial Mechanics :

in particular, the second volume of Poincar^'s Nouvelles Methodes de la Me'canique Celeste

contains an account of several methods of deriving expansions, with a discussion of the

convergence of the series obtained. The most recent discussion of the subject will be found

in a paper by the present writer On the, Adelphic Integral of the Differential Equations of

Dynamics (Proc. Roy. Soc. Edin., Nov. 1916).

Miscellaneous Examples.

1. Let (j> denote any function of the variables qlt q2 , ..., qn , Pi, ...,jo» of a dynamical

system which possesses an integral of energy

H (?i, ?2, , ?n, Pi, -.., P*)= Constant

;

let «!, a2 , ..., an , bu ..., bn be the values of qu q2 , ..., qn,Pi> •,Pn respectively at the

instant t= t ; and let {/, g) denote the value of the Poisson-bracket (/, g) when the quan-

tities qi, q2 , ..., qn , Pi, ,Pn occurring in it are replaced respectively by ait a2 , ..., an ,

bu ..., bn .

Shew that

4>(°u i-i, •••> In, Pi, -.?»)= <#>(«i, a%, —, an, K —, bn)+ (t-t ){<j), H)

+
(^ {{^H},H}+....

2. Shew that the dynamical system whose equations of motion are ,

dg dff
,
d£^ d_H

dt
=

Up'' ' dt "~ dq'

„ ,
. MP IV

where H= \p
2 +^ -—

,

possesses a family of solutions represented by the expansion (retaining only terms of order

less than a*)

,,3a, /2a\4 „ 3a oa

where = - (k+~
J

t + e,

and a and e are arbitrary constants.
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„ differential, 111
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„ theorem, 320
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Relative velocity, 14
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Relativity, principle of, 26

Repellent regions of field of force, 403
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Resultant of vectors, 14
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„ motion, 305

Revolving orbits, 83
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Rodrigues and Hamilton's theorem, 3
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„ instantaneous axis of, 2
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Rough, 31

Screw displacement, 5

Similarity in dynamical systems, 47

Sleeping top, 206

Smooth, 31

Spherical pendulum, 104

„ top, 159

Spirals, Cotes', 83

Stability of equilibrium, 186

„ of orbits, 396, 407

„ of steady motion, 193

„ coefficient of, 396

„ index of, 398

„ secular, 203

Steady motion, 163, 193

Sub-group, 301

Sudden fixture, 169

Superposition of vibrations, 186

Surface-density, 118

Suspension, centre of, 132

Sylvester's theorem, 183

Symbol, Christoffel's, 39

„ of an infinitesimal transformation,

303

System, adjoint, 287

Systems, dissipative, 226

„ frictional, 227

„ involution-, 322

„ isoperimetrical, 267

„ Pfaff's, 307

Thomson's theorem, 261

Three Bodies, Problem of, 339

„ ,, „ „ in a plane, 351

„ „ „ „ restricted, 353

Time, 27

„ periodic, 87

Top, 155

„ Kowalevski's, 164
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„ spherical, 159

Trajectory, 78, 245

Transformation, contact-, 290, 293

„ Mathieu's, 301

„ Poincare's, 410

„ point-, 293

Translation, 1
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Trojan group of asteroids, 393 Velocity, corresponding to a coordinate, 33

True anomaly, 89 Vibrations about equilibrium, 177

Two centres of gravitation, 97
. „ „ steady motion, 193

Type, Liouville's, 67 „ normal, 186, 195

„ of dissipative systems, 232

Unstable, 186, 193, 203, 396 „ of non-holonomic systems, 221

Virtual work, 264 .j

Variational equations, 268 Vis Motrix, 29

Vector, localised, 15 Vis Viva, 35

Vectors, 13

Velocity, 14, 33 Wave-fronts, 289

„ angular, 15 Weber's law of attraction, 45

„ relative, 14 Work, 30
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