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PREFACE TO THE SECOND ENGLISH EDITION

The content and treatment in this edition remain in accordance with what was said in
the preface to the first edition (see below). My chief care in revising and augmenting has
been to comply with this principle.

Despite the lapse of thirty years, the previous edition has, with very slight exceptions,
not gone out of date. Its material has been only fairly slightly supplemented and modified.
About ten new sections have been added.

In recent decades, fluid mechanics has undergone extremely rapid development, and
there has accordingly been a great increase in the literature of the subject. The
development has been mainly in applications, however, and in an increasing complexity of
the problems accessible to theoretical calculation (with or without computers). These
include, in particular, various problems of instability and its development, including non-
linear regimes. All such topics are beyond the scope of our book; in particular, stability
problems are discussed, as previously, mainly in terms of results.

There is also no treatment of non-linear waves in dispersive media, which is by now a
significant branch of mathematical physics. The purely hydrodynamic subject of this
theory consists in waves with large amplitude on the surface of a liquid. Its principal
physical applications are in plasma physics, non-lincar optics, various problems of
electrodynamics, and so on, and in that respect they belong in other volumes of the Course.

There have been important changes in our understanding of the mechanism whereby
turbulence occurs. Although a consistent theory of turbulence is still a thing of the future,
there is reason to suppose that the right path has finally been found. The basic ideas now
available and the results obtained are discussed in three sections (§§30-32) written jointly
with M. 1. Rabinovich, to whom I am deeply grateful for this valuable assistance. A new
area in continuum mechanics over the last few decades is that of liquid crystals. This
combines features of the mechanics of liquid and elastic media. Its principles are discussed
in the new edition of Theory of Elasticity.

This book has a special place among those I had occasion to write jointly with L. D.
Landau. He gave it a part of his soul. That branch of theoretical physics, new to him at the
time, caught his fancy, and in a very typical way he set about thinking through it ab initio
and deriving its basic results. This led to a number of original papers which appeared in
various journals, but several of his conclusions or ideas were not published elsewhere than
in the book, and in some instances even his priority was not established till later. In the new
edition, I have added an appropriate reference to his authorship in all such cases that are
known to me.

In the revision of this book, as in other volumes of the Course, | have had the help and
advice of many friends and colleagues. I should like to mention in particular numerous
discussions with G. 1. Barenblatt, L. P. Pitaevskii, Ya. G. Sinai, and Ya. B. Zel'dovich.
Several useful comments came from A. A. Andronov, S. 1. Anisimov, V. A. Belokon’, A. L.
Fabrikant, V. P. Krainov, A. G. Kulikovskii, M. A. Liberman, R. V. Polovin, and A. V.
Timofeev. To all of them I express my sincere gratitude.

Institute of Physical Problems E. M. LiFsuitz
August 1984



PREFACE TO THE FIRST ENGLISH EDITION

The present book deals with fluid mechanics, i.c. the theory of the motion of liquids and

gases.
The nature of the book is largely determined by the fact that it describes fluid mechanics
as a branch of theoretical physics, and it is therefore markedly different from other
textbooks on the same subject. We have tried to develop as fully as possible all matters of
physical interest, and to do so in such a way as to give the clearest possible picture of the
phenomena and their interrelation. Accordingly, we discuss neither approximate methods
of calculation in fluid mechanics, nor empirical theories devoid of physical significance. On
the other hand, accounts are given of some topics not usually found in textbooks on the
subject: the theory of heat transfer and diffusion in fluids; acoustics; the theory of
combustion; the dynamics of superfluids; and relativistic fluid dynamics.

In a field which has been so extensively studied as fluid mechanics it was inevitable that
important new results should have appeared during the several years since the last Russian
edition was published. Unfortunately, our preoccupation with other matters has
prevented us from including these results in the English edition. We have merely added
one further chapter, on the general theory of fluctuations in fluid dynamics.

We should like to express our sincere thanks to Dr Sykes and Dr Reid for their excellent

translation of the book, and to Pergamon Press for their ready agreement to our wishes in
various matters relating to its publication.

Moscow 1958 L. D. Lanpavu
E. M. LirsHITZ



EVGENII MIKHAILOVICH LIFSHITZ (1915-1985)t

Soviet physics suffered a heavy loss on 29 October 1985 with the death of the outstanding
theoretical physicist Academician Evgenii Mikhallovich Lifshitz.

Lifshitz was born on 21 February 1915 in Khar'kov. In 1933 he graduated from the
Khar'kov Polytechnic Institute. He worked at the Khar'kov Physicotechnical Institute
from 1933 to 1938 and at the Institute of Physical Problems of the USSR Academy of
Sciences in Moscow from 1939 until his death. He was elected an associate member of the
USSR Academy of Sciences in 1966 and a full member in 1979.

Lifshitz’s scientific activity began very early. He was among L. D. Landau’s first
students and at 19 he co-authored with him a paper on the theory of pair production in
collisions. This paper, which has not lost its significance to this day, outlined many
methodological features of modern relativistically invariant techniques of quantum field
theory. It includes, in particular, a consistent allowance for retardation.

Modern ferromagnetism theory is based on the “Landau-Lifshitz” equation, which
describes the dynamics of the magnetic moment in a ferromagnet. A 1935 article on this
subject is one of the best known papers on the physics of magnetic phenomena. The
derivation of the equation is accompanied by development of a theory of ferromagnetic
resonance and of the domain structure of ferromagnets.

In a 1937 paper on the Boltzmann kinetic equation for electrons in a magnetic field, E.
M. Lifshitz developed a drift approximation extensively used much later, in the 50s, in
plasma theory.

A paper published in 1939 on deuteron dissociation in collisions remains a brilliant
example of the use of quasi<classical methods in quantum mechanics.

A most important step towards the development of a theory of second-order phase
transitions, following the work by L. D. Landau, was a paper by Lifshitz dealing with the
change of the symmetry of a crystal, of its space group, in transitions of this type (1941).
Many years later the results of this paper came into extensive use, and the terms “Lifshitz
criterion” and “Lifshitz point,” coined on its basis have become indispensable com-
ponents of modern statistical physics.

A decisive role in the detection of an important physical phenomenon, second sound in
superfluid helium, was played by a 1944 paper by E. M. Lifshitz. It is shown in it that
second sound is effectively excited by a heater having an alternating temperature. This was
precisely the method used to observe second sound in experiment two years later.

A new approach to the theory of molecular-interaction forces between condensed
bodies was developed by Lifshitz in 1954-1959. It is based on the profound physical idea
that these forces are manifestations of stresses due to quantum and thermal fluctuations of
an electromagnetic field in a medium. This idea was pursued to develop a very elegant and
general theory in which the interaction forces are expressed in terms of electrodynamic
material properties such as the complex dielectric permittivity. This theory of E. M.

t ByA.F Andreev A. S. Borovik-Romanov, V. L. Ginzburg, L. P. Gor'kov, L E. Dzyaloshinskii, Ya. B.
Zel'dovich, M. 1. Kaganov, L. P. Pitacvskif, E. L. Feinberg, and I. M. Khalatnikov; published in Russian in
Uspekhi fizicheskikh nauk 148, 549550, 1986. This translation is by J. G. Adashko (first published in Sovier
Physics Uspekhi 29, 294295, 1986), and is reprinted by kind permission of the American Institute of Physics.

xi



xii E. M. Lifshitz

Lifshitz stimulated many studies and was confirmed by experiment. It gained him the M.
V. Lomonosov Prize in 1958.

E. M. Lifshitz made a fundamental contribution in one of the most important
branches of modern physics, the theory of gravitation. His research into this field started
with a classical 1946 paper on the stability of cosmological solutions of Einstein's theory
of gravitation. The perturbations were divided into distinctive classes—scalar, with
variation of density, vector, describing vortical motion, and finally tensor, describing
gravitational waves. This classification is still of decisive significance in the analysis of the
origin of the universe. From there, E. M. Lifshitz tackled the exceedingly difficult question
of the general character of the singularities of this theory. Many years of labor led in 1972
to a complete solution of this problem in papers written jointly with V. A. Belinskii and L.
M. Khalatnikov, which earned their authors the 1974 L. D. Landau Prize. The singularity
was found to have a complicated oscillatory character and could be illustratively
represented as contraction of space in two directions with simultaneous expansion in the
third. The contraction and expansion alternate in time according to a definite law. These
results elicited a tremendous response from specialists, altered radically our ideas
concerning relativistic collapse, and raised a host of physical and mathematical problems
that still await solution.

His life-long occupation was the famous Landau and Lifshitz Course of Theoretical
Physics, to which he devoted about 50 years. (The first edition of Statistical Physics was
written in 1937. A new edition of Theory of Elasticity went to press shortly before his last
iliness.) The greater part of the Course was written by Lifshitz together with his teacher
and friend L. D. Landau. After the automobile accident that made Landau unable to
work, Lifshitzcompleted the edition jointly with Landau’s students. He later continued to
revise the previously written volumes in the light of the latest advances in science. Even in
the hospital, he discussed with visiting friends the topics that should be subsequently
included in the Course.

The Course of Theoretical Physics became world famous. It was translated in its entirety
into six languages. Individual volumes were published in 10 more languages. In 1972 L. D.
Landau and E. M. Lifshitz were awarded the Lenin Prize for the volumes published by
then.

The Course of Theoretical Physics remains a monument to E. M. Lifshitz as a scientist
and a pedagogue. It has educated many generations of physicists, is being studied, and will
continue to teach students in future generations.

A versatile physicist, E. M. Lifshitz dealt also with applications. He was awarded the
USSR State Prize in 1954,

A tremendous amount of E.M. Lifshitz’s labor and energy was devoted to Soviet
scientific periodicals. From 1946 to 1949 and from 1955 to his death he was deputy editor-
in-chief of the Journal of Experimental and Theoretical Physics. His extreme devotion to
science, adherence to principles, and meticulousness greatly helped to make this journal
one of the best scientific periodicals in the world.

E. M. Lifshitz accomplished much in his life. He will remain in our memory as a
remarkable physicist and human being. His name will live forever in the history of Soviet
physics.



NOTATION

density

pressure

temperature

entropy per unit mass

internal energy per unit mass

¢+ p/p heat function (enthalpy)

¢,/c, ratio of specific heats at constant pressure and constant volume
dynamic viscosity

n/p kinematic viscosity

thermal conductivity

x/pc, thermometric conductivity

Reynolds number

velocity of sound

ratio of fluid velocity to velocity of sound (Mach number)

Vector and tensor (three-dimensional) suffixes are denoted by Latin letters i, k, [, . . . .

Summation over repeated (“dummy” ) suffixes is everywhere implied. The unit tensoris d,,:
References to other volumes in the Course of Theoretical Physics:

Fields = Vol. 2 (The Classical Theory of Fields, fourth English edition, 1975).

QM = Vol. 3 (Quantum Mechanics, third English edition, 1977).

SP 1 = Vol. 5 (Statistical Physics, Part 1, third English edition, 1980).

ECM = Vol. 8 (Electrodynamics of Continuous Media, second English edition, 1984).
SP 2 = Vol. 9 (Statistical Physics, Part 2, English edition, 1980).

PK = Vol. 10 (Physical Kinetics, English edition, 1981).

All are published by Pergamon Press.
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CHAPTER |

IDEAL FLUIDS

§1. The equation of continuity

Fluid dynamics concerns itself with the study of the motion of fluids (liquids and gases).
Since the phenomena considered in fluid dynamics are macroscopic, a fluid isregarded asa
continuous medium. This means that any small volume clement in the fluid is always
supposed so large that it still contains a very great number of molecules. Accordingly, when
we speak of infinitely small elements of volume, we shall always mean those which are
“physically” infinitely small, i.e. very small compared with the volume of the body under
consideration, but large compared with the distances between the molecules. The
expressions fluid particle and point in a fluid are to be understood in a similar sense. If, for
example, we speak of the displacement of some fluid particle, we mean not the
displacement of an individual molecule, but that of a volume element containing many
molecules, though still regarded as a point.

The mathematical description of the state of a moving fluid is effected by means of
functions which give the distribution of the fluid velocity v = v(x, y, z, t) and of any two
thermodynamic quantities pertaining to the fluid, for instance the pressure p(x, y, z, t) and
the density p(x, y, z, t). All the thermodynamic quantities are determined by the values of
any two of them, together with the equation of state; hence, if we are given five quantities,
namely the three components of the velocity v, the pressure p and the density p, the state of
the moving fluid is completely determined.

All these quantities are, in general, functions of the coordinates x, y, z and of the time t.
We emphasize that v(x, y, z, t) is the velocity of the fluid at a given point (x, y, z) in space
and at a given time ¢, i.¢. it refers to fixed points in space and not to specific particles of the
fluid; in the course of time, the latter move about in space. The same remarks apply to
p and p.

We shall now derive the fundamental equations of fluid dynamics. Let us begin with the
equation which expresses the conservation of matter. We consider some volume ¥ of
space. The mass of fluid in this volume is | pd ¥, where p is the fluid density, and the
integration is taken over the volume V. The mass of fluid flowing in unit time through an
element df of the surface bounding this volume is pv -df; the magnitude of the vector df is
equal to the area of the surface element, and its direction is along the normal. By
convention, we take df along the outward normal. Then pv-df is positive if the fluid is
flowing out of the volume, and negative if the flow is into the volume. The total mass of
fluid flowing out of the volume ¥, in unit time is therefore

§pv-df,

where the integration is taken over the whole of the closed surface surrounding the volume
in question.



2 Ideal Fluids §2
Next, the decrease per unit time in the mass of fluid in the volume ¥, can be written

c :
-ajpd'.

Equating the two expressions, we have

g—‘J-pdV- —§p v-dfl (L.1)

The surface integral can be transformed by Green's formula to a volume integral:

§p v-df = J.div (pv)dV.

dp . .
ﬂ:a +d|v(pv)]db = 0.

Since this equation must hold for any volume, the integrand must vanish, i.e.
dp/ét +div(pv) = 0. (1.2)

This is the equation of continuity. Expanding the expression div ( pv), we can also write (1.2)
as

opj/ot+pdivv+v-gradp = 0. (1.3)
The vector

i=pv (1.4)

is called the mass flux density. Its direction is that of the motion of the fluid, while its
magnitude equals the mass of fluid flowing in unit time through unit area perpendicular to
the velocity.

§2. Euler’s equation
Let us consider some volume in the fluid. The total force acting on this volume is equal to

the integral
- §p df

of the pressure, taken over the surface bounding the volume. Transforming it to a volume
integral, we have

-§pdl’= —J'gndpdv'.

Hence we see that the fluid surrounding any volume clement d } exerts on that element a
force —d V grad p. In other words, we can say that a force — grad p acts on unit volume of
the fluid.

We can now write down the equation of motion of a volume element in the fluid by
equating the force —gradp to the product of the mass per unit volume (p) and the

acceleration dv/dt:
pdv/dt = —gradp. (2.1)



§2 Euler’s equation 3

The derivative dv/dt which appears here denotes not the rate of change of the fluid
velocity at a fixed point in space, but the rate of change of the velocity of a given fluid
particle as it moves about in space. This derivative has 1o be expressed in terms of
quantities referring to points fixed in space. To do so, we notice that the change dv in the
velocity of the given fluid particle during the time dt is composed of two parts, namely the
change during dt in the velocity at a point fixed in space, and the difference between
the velocities (at the same instant) at two points dr apart, where dr is the distance moved
by the given fluid particle during the time dt. The first part is (dv/d¢)dt, where the derivative
dv/0t is taken for constant x, y, 2, i.c. at the given point in space. The second part is

dv v dv
dxa— +dya dza—z w (dr-grad)v.

Thus
dv = (dv/dt)dt + (dr - grad)y,
or, dividing both sides by dt,t
dv
at = +( grad)v. (2.2)
Substituting this in (2.1), we find
av 1
o T (v erady = ——gradp. (2.3)

This is the required equation of motion of the fluid; it was first obtained by L. Euler in 1755.
It is called Euler’s equation and is one of the fundamental equations of fluid dynamics.

If the fluid is in a gravitational field, an additional force pg where g is the acceleration
due to gravity, acts on any unit volume. This force must be added to the right-hand side of
equation (2.1), so that equation (2.3) takes the form

d
b—:-&-(v-gnd)v- _y' iz (2.4)

In deriving the equations of motion we have taken no account of processes of energy
dissipation, which may occur in a moving fluid in consequence of internal friction
(viscosity) in the fluid and heat exchange between different parts of it. The whole of the
discussion in this and subsequent sections of this chapter therefore holds good only for
motions of fluids in which thermal conductivity and viscosity are unimportant; such fluids
are said to be ideal.

mabsenoeofheatexchangebetwmdiﬂ‘mtmsofthemid (and also, of course,
between the fluid and bodies adjoining it) means that the motion is adiabatic throughout
the fluid. Thus the motion of an ideal fluid must necessarily be supposed adiabatic.

In adiabatic motion the entropy of any particle of fluid remains constant as that particle
moves about in space. Denoting by s the entropy per unit mass, we can express the
condition for adiabatic motion as

ds/dt =0, (2.5)

t mdmvwwd/dtmmdeﬁwduandthewt-em»m”mmme
moving substance.



4 Ideal Fluids §2

where the total derivative with respect to time denotes, as in (2.1), the rate of change of
entropy for a given fluid particle as it moves about. This condition can also be written

Os/0t+ v-grads = 0. (2.6)

This is the general equation describing adiabatic motion of an ideal fluid. Using (1.2), we
can write it as an “equation of continuity” for entropy:

d(ps)/dt +div (psv) = 0. (2.7)

The product psv is the entropy flux density.

The adiabatic equation usually takes a much simpler form. If, as usually happens, the
entropy is constant throughout the volume of the fluid at some initial instant, it retains
everywhere the same constant value at all times and for any subsequent motion of the fluid.
In this case we can write the adiabatic equation simply as

s = constant, (2.8)

and we shall usually do so in what follows. Such a motion is said to be isentropic.
We may use the fact that the motion is isentropic to put the equation of motion (2.3)ina
somewhat different form. To do so, we employ the familiar thermodynamic relation

dw = Tds+ Vdp,

where w is the heat function per unit mass of fluid (enthalpy), ¥ = 1/p is the specific
volume, and 7 is the temperature. Since s = constant, we have simply

dw = Vdp = dp/p,
and so (grad p)/p = grad w. Equation (2.3) can therefore be written in the form
Ov/0t + (v-grad)v = —gradw. (29)

It is useful to notice one further form of Euler’s equation, in which it involves only the
velocity. Using a formula well known in vector analysis,

{gradv? = vxcurlv + (v-grad)y,
we can write (2.9) in the form
dv/ot — vxcurly = — grad (w+407). (2.10)
If we take the curl of both sides of this equation, we obtain

aa—t(ctl v) = curl (vXcurlv), (2.11)

which involves only the velocity.

The equations of motion have to be supplemented by the boundary conditions that
must be satisfied at the surfaces bounding the fluid. For an ideal fluid, the boundary
condition is simply that the fluid cannot penetrate a solid surface. This means that the
component of the fluid velocity normal to the bounding surface must vanish if that surface
is at rest:

v, =0. (2.12)

In the general case of a moving surface, v, must be equal to the corresponding component
of the velocity of the surface.
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At a boundary between two immiscible fluids, the condition is that the pressure and the
velocity component normal to the surface of separation must be the same for the two
fluids, and each of these velocity components must be equal to the corresponding
component of the velocity of the surface.

As has been said at the beginning of §1, the state of a moving fluid is determined by five
quantities: the three components of the velocity v and, for example, the pressure p and the
density p. Accordingly, a complete system of equations of fluid dynamics should be five in
number. For an ideal fluid these are Euler’s equations, the equation of continuity, and the
adiabatic equation. ’

PROBLEM

Write down the equations for one-dimensional motion of an ideal flusd in terms of the variables a, t, where a
(called a Lagrangian variablet) is the x coordinate of a fluid particle at some instant ¢ = ¢,

SOLUTION. In these variables the coordinate x of any fluid particle at any instant is regarded as a function of ¢

and its coordinate a at the initial instant: x = x(a, t). The condition of conservation of mass during the motion of a
fluid clement (the equation of continuity) is accordingly written p dx = p, da, or

(z)

P 2a), Po.

where p,(a)is a given initial density distribution. The velocity of a fluid particle is, by definition, v = (x/t),, and
the derivative (dv/dt), gives the rate of change of the velocity of the particle duning its motion. Euler’s equation

o ()~

and the adiabatic equation is

(@s/ér), = 0.
§3. Hydrostatics
For a fluid at rest in a uniform gravitational field, Euler’s equation (2.4) takes the form
gradp = pg. (3.1)

This equation describes the mechanical equilibrium of the fluid. (If there is no external
force, the equation of equilibrium is simply grad p = 0, i.c. p = constant; the pressureis the
same at every point in the fluid.)

Equation (3.1) can be integrated immediately if the density of the fluid may be supposed
constant throughout its volume, i.¢. if there is no significant compression of the fluid under
the action of the external force. Taking the z-axis vertically upward, we have

ép/dx = ép/éy = 0, op/éz = —pg.
Hence
p = — pgz +constant.

If the fluid at rest has a free surface at height h, to which an external pressure p,,, the same at
every point, is applied, this surface must be the horizontal plane z = h. From the condition
p = p, for z = h, we find that the constant is p, + pgh, so that

P=Ppo+pglh—2z) (3:2)
.—f";i;ough such \;uiablesarcumlyalled Lagrangian, the equations of motion in these coordinates were
first obtained by Euler, at the same time as equations (2.3).
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For large masses of liquid, and for a gas, the density p cannot in general be supposed
constant; this applies especially to gases (for example, the atmosphere). Let us suppose that
the fluid is not only in mechanical equilibrium but also in thermal equilibrium. Then the
temperature is the same at every point, and equation (3.1) may be integrated as follows. We
use the familiar thermodynamic relation

d® = —sdT + Vdp,

where @ is the thermodynamic potential (Gibbs free energy) per unit mass. For constant
temperature

d® = Vdp =dp/p.

Hence we see that the expression (grad p)/p can be written in this case as grad @, so that the
equation of equilibrium (3.1) takes the form

grad® =g
For a constant vector g directed along the negative z-axis we have

= —grad(gz).

grad (@ +g2) =0,
whence we find that throughout the fluid

® + gz = constant; (3.3)

Thus

gz is the potential energy of unit mass of fluid in the gravitational field. The condition (3.3)
is known from statistical physics to be the condition for thermodynamic equilibrium of a
system in an external field.

We may mention here another simple consequence of equation (3.1). If a fluid (such as
the atmosphere) is in mechanical equilibrium in a gravitational field, the pressure in it can
be a function only of the altitude z (since, if the pressure were different at different points
with the same altitude, motion would result). It then follows from (3.1) that the density

=——— (3.4)

is also a function of z only. The pressure and density together determine the temperature,
which is therefore again a function of z only. Thus, in mechanical equilibrium in a
gravitational field, the pressure, density and temperature distributions depend only on the
altitude. If, for example, the temperature is different at different points with the same
altitude, then mechanical equilibrium is impossible.

Finally, let us derive the equation of equilibrium for a very large mass of fluid, whose
separate parts are held together by gravitational attraction—a star. Let ¢ be the
Newtonian gravitational potential of the field due to the fluid. It satisfies the differential
equation

L@ = 4nGp, (3.5)

where G is the Newtonian constant of gravitation. The gravitational acceleration is
—grad ¢, and the force on a mass p is — pgrad ¢. The condition of equilibrium is

therefore
gradp = —pgrad ¢.
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Dividing both sides by p, taking the divergence of both sides, and using equation (3.5), we
obtain

div(;l;gnd p) = —4xGp. (3.6)

It must be emphasized that the present discussion concerns only mechanical equilibrium,;
equation (3.6) does not presuppose the existence of complete thermal equilibrium.

If the body is not rotating, it will be spherical when in equilibrium, and the density and
pressure distributions will be spherically symmetrical. Equation (3.6) in spherical polar
coordinates then takes the form

—_— (——) = —4xGp. (3.7)

§4. The condition that convection be absent

A fluid can be in mechanical equilibrium (i.e. exhibit no macroscopic motion) without
being in thermal equilibrium. Equation (3.1), the condition for mechanical equilibrium,
can be satisfied even if the temperature is not constant throughout the fluid. However, the
question then arises of the stability of such an equilibrium. It is found that the equilibrium
is stable only when a certain condition is fulfilled. Otherwise, the equilibrium is unstable,
and this leads to the appearance in the fluid of currents which tend to mix the fluid in sucha
way as to equalize the temperature. This motion is called convection. Thus the condition
for a mechanical equilibrium to be stable is the condition that convection be absent. It can
be derived as follows.

Let us consider a fluid element at height z, having a specific volume V(p, s), where pand s
are the equilibrium pressure and entropy at height z. Suppose that this fluid element
undergoes an adiabatic upward displacement through a small interval ; its specific volume
then becomes V(p', s), where p’ is the pressure at height z + . For the equilibrium to be
stable, it is necessary (though not in general sufficient) that the resulting force on the
element should tend to return it to its original position. This means that the element must
be heavier than the fluid which it “displaces™ in its new position. The specific volume of the
latter is V(p',s’), where s’ is the equilibrium entropy at height z + . Thus we have the
stability condition

Vip',s)—-V(p,s)>0.

Expanding this difference in powers of s’ —s = {ds/dz, we obtain

v\ ds
(E),E? > 0. (4.1)

The formulae of thermodynamics give

v\ _T (v
és), c,\éT),;

where ¢, is the specific heat at constant pressure. Both ¢, and T are positive, so that we can

write (4.1) as
av\ ds
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The majority of substances expand on heating, i.e. (¢¥/éT), > 0. The condition that
convection be absent then becomes

ds/dz > 0, (4.3)

i.c. the entropy must increase with height.
From this we easily find the condition that must be satisfied by the temperature gradient
dT/dz. Expanding the derivative ds/dz, we have

ds _(25) 9T (%) dp 9T _(2¥)dr
dz \oT/,dz \ép);dz Td: \éT),d:z

Finally, substituting from (3.4) dp/dz = —g/V, we obtain
—dT/dz < gfT]c,, (4.4)

where f = (1/V)(8V/aT), is the thermal expansion coefficient. For a column of gas in
equilibrium which can be taken as a thermodynamically perfect gas, 7 = 1 and (44)
becomes

-dT/dz < g/c,. 4.5)

Convection occurs if these conditions are not satisfied, i.c. if the temperature decreases
upwards with a gradient whose magnitude exceeds the value given by (4.4) and (4.5).1

§5. Bernoulli's equation

The equations of fluid dynamics are much simplified in the case of steady flow. By steady
Sflow we mean one in which the velocity is constant in time at any point occupied by fluid. In
other words, v is a function of the coordinates only, so that év/ét = 0. Equation (2.10) then
reduces to

{gradov’ —vxcurlv = —gradw. (5.1)

We now introduce the concept of streamlines. These are lines such that the tangent to a
streamline at any point gives the direction of the velocity at that point; they are determined
by the following system of differential equations:

—_— = — (5.2)

In steady flow the streamlines do not vary with time, and coincide with the paths of the
fluid particles. In non-steady flow this coincidence no longer occurs: the tangents to the
streamlines give the directions of the velocities of fluid particles at various points in space
at a given instant, whereas the tangents to the paths give the directions of the velocities of
given fluid particles at various times.

We form the scalar product of equation (5.1) with the unit vector tangent to the
streamline at each point; this unit vector is denoted by 1. The projection of the gradient on
any direction is, as we know, the derivative in that direction. Hence the projection of grad w
is dw/dl. The vector vXcurl v is perpendicular to v, and its projection on the direction of 1 is
therefore zero.

t For water at 20°C, the right-hand side of (4.4) is about on¢ degree per 6.7 km; for air, the right-hand side of
(4.5) is about one degree per 100 m.
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Thus we obtain from equation (5.1)

a 2
a(}o +w)= 0.

It follows from this that $v? + w is constant along a streamline:
{0 + w = constant. (5.3)

In general the constant takes different values for different streamlines. Equation (5.3) is
called Bernoulli's equation.t

If the flow takes place in a gravitational field, the acceleration g due to gravity must be
added to the right-hand side of equation (5.1). Let us take the direction of gravity as the z-
axis, with z increasing upwards. Then the cosine of the angle between the directions of g
and 1 is equal to the derivative —dz/dl, so that the projection of g on 1 is

—gdz/dl
Accordingly, we now have

%(}v’«i—wi-gz)no.

Thus Bernoulli’s equation states that along a streamline
$v? + w+ gz = constant. (5.4)

§6. The energy flux

Let us choose some volume element fixed in space, and find how the energy of the fluid
contained in this volume element varies with time. The energy of unit volume of fluid is

{ov? + pe,

where the first term is the kinetic energy and the second the internal energy, ¢ being the
internal energy per unit mass. The change in this energy is given by the partial derivative

a 2
a—‘(ipv + pe).
To calculate this quantity, we write

é ,0p ov
a‘(*pvz) *0 -a7+p' a'

or, using the equation of continuity (1.2) and the equation of motion (2.3),
é :
3,pv%) = —io? div(pv) —v-grad p—pv-(v-grad)v.

In the last term we replace v+ (v-grad)v by 4v-grad v*, and grad pby pgrad w — pT grad s
(using the thermodynamic relation dw = 7ds + (1/p)dp), obtaining

i
5,pv") = —1v'div(pv)— pv-grad (o + w) + pTv-grads.

t It was denived for an incompressible fluid (§10) by D. Bernoulh in 1738
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In order to transform the derivative é(pe)/dt, we use the thermodynamic relation

de = Tds—pdV = Tds + (p/p?)dp.

Since ¢+ p/p = ¢+ pV is simply the heat function w per unit mass, we find

d(pe) = edp + pde = wdp + pTds,
and so
d(pe)  dp ds .
=" +pTE = —wdiv(pv)—pTv-grads.

Here we have also used the general adiabatic equation (2.6).
Combining the above results, we find the change in the energy to be

%(ipv‘ + pe) = — (0 + w)div (pv) — pv-grad($o® + w),

or, finally,

d
340" +pe) = —div [pvide® +w)]. 6.1)

In order to see the meaning of this equation, let us integrate it over some volume:
% I (dpv* +pe)dV = — J'div [pvlde® +w))dV,

or, converting the volume integral on the right into a surface integral,

% J' (dpv* + pe)dV = — &v(b’ +w)-df. 6.2)

The left-hand side is the rate of change of the energy of the fluid in some given volume.

The right-hand side is therefore the amount of energy flowing out of this volume in unit
time. Hence we see that the expression

pv(iv? +w) (6.3)

may be called the energy flux density vector. Its magnitude is the amount of energy passing
in unit time through unit area perpendicular to the direction of the velocity.

The expression (6.3) shows that any unit mass of fluid carries with it during its motion an
amount of energy w +4v?. The fact that the heat function w appears here, and not the
internal energy ¢, has a simple physical significance. Putting w = £+ p/p, we can write the
flux of energy through a closed surface in the form

—§pv(§v’+c)-df—ﬁv-d£

The first term is the energy (kinetic and internal) transported through the surface in unit
time by the mass of fluid. The second term is the work done by pressure forces on the fluid
within the surface.
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§7. The momentum flux

We shall now give a similar series of arguments for the momentum of the fluid. The
momentum of unit volume is pv. Let us determine its rate of change, 2(pv)/dt. We shall use
tensor notation. We have

é oy, dp
E(”‘) =Py ta W
Using the equation of continuity (1.2) in the form
o _ _alpn)
ot ox,
and Euler’s equation (2.3) in the form
oo _ _, 9 _1%
t dx, pox,
we obtain

; 0x,
op
= ~ax - 3'.‘(0’.*0;)-
We write the first term on the right in the form
o _;s 9
ox, “‘ox,’
and finally obtain
¢ oll,
—(pv)= ——" 7.1
3 ‘(Pl’.) P (7.1)
where the tensor I1,, is defined as
MMy = pdy + pov,. (7.2)
This tensor is clearly symmetrical.

To see the meaning of the tensor I1,, we integrate equation (7.1) over some volume:
é (21 P

The integral on the right is transformed into a surface integral by Green's formula:t

2 | poav = —§n.df.. (13)

ot
The left-hand side is the rate of change of the ith component of the momentum
contained in the volume considered. The surface integral on the right is therefore the

t Therule for transforming an integral over a closed surface into one over the volume bounded by that surface
can be formulated as follows: the surface clement df must be replaced by the operator d ¥ -6/éx,, which is to be
applied to the whole of the integrand.
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amount of momentum flowing out through the bounding surface in unit time.
Consequently, I'1,df is the ith component of the momentum flowing through the surface
element df. If we write df in the form n, d, where d fis the area of the surface element, and
n is a unit vector along the outward normal, we find that Il ,n, is the flux of the ith
component of momentum through unit surface arca. We may notice that, according to
(7.2), [T ,n, = pn, + pvoyn,. This expression can be written in vector form

pn+ pv(v-n). (74)

ThusI1, is the ith component of the amount of momentum flowing in unit time through
unit area perpendicular to the x,-axis. The tensor 1, is called the momentum flux density
tensor. The energy flux is determined by a vector, energy being a scalar; the momentum
flux, however, is determined by a tensor of rank two, the momentum itself being a vector.

The vector (7.4) gives the momentum flux in the direction of n, i.c. through a surface
perpendicular to n. In particular, taking the unit vector n to be directed parallel to the fluid
velocity, we find that only the longitudinal component of momentum is transported in this
direction, and its flux density is p + pv’. In a direction perpendicular to the velocity, only
the transverse component (relative to v) of momentum is transported, its flux density being
just p.

§8. The conservation of circulation
The integral

r=§v-du

taken along some closed contour, is called the velocity circulation round that contour.

Let us consider a closed contour drawn in the fluid at some instant. We supposeittobea
“fluid contour”, i.e. composed of the fluid particles that lic on it. In the course of time these
particles move about, and the contour moves with them. Let us investigate what happens
to the velocity circulation. In other words, let us calculate the time derivative

d

ar dL
We have written here the total derivative with respect to time, since we are seeking the
change in the circulation round a “fluid contour™ as it moves about, and not round a
contour fixed in space.

To avoid confusion, we shall temporarily denote differentiation with respect to the
coordinates by the symbol 4, retaining the symbol d for differentiation with respect to time.
Next, we notice that an element dl of the length of the contour can be written as the
difference or between the position vectors r of the points at the ends of the element. Thus
we write the velocity circulation as § v-dr. In differentiating this integral with respect to
time, it must be borne in mind that not only the velocity but also the contour itself (i.e. its
shape) changes. Hence, on taking the time differentiation under the integral sign, we must
differentiate not only v but also or:

d dv dor
a‘;&'&f —§d7‘6f+§"7{.
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Since the velocity v is just the time derivative of the position vector r, we have

dor dr
Ve = v-6a; = v-dv = §(}o?)

The integral of a total differential along a closed contour, however, is zero. The second
integral therefore vanishes, leaving

d dv
a § “Or = §d7 -or.
It now remains to substitute for the acceleration dv/d1 its expression from (2.9)

dv/dt = —grad w.
Using Stokes’ formula, we then have

dv dv
%'6’=§¢Iﬂ(a)'6f=0,

since curl gradw = 0. Thus, going back to our previous notation, we findt

9 bv-di=o,

dt
§v-dl = constant. (8.1)

We have therefore reached the conclusion that, in an ideal fluid, the velocity circulation
round a closed “fluid” contour is constant in time (Kelvin's theorem (1869) or the law of
conservation of circulation).

It should be emphasized that this result has been obtained by using Euler’s equation in
the form (2.9), and therefore involves the assumption that the flow is isentropic. The
theorem does not hold for flows which are not isentropic.$

By applying Kelvin's theorem to an infinitesimal closed contour 4C and transforming
the integral according to Stokes’ theorem, we get

§v-dl = J’c-'lv-df ~ of - curl v = constant, (8.2)

where df is a fluid surface element spanning the contour 4C. The vector curl vis often called
the vorticity of the fluid flow at a given point. The constancy of the product (8.2) can be
intuitively interpreted as meaning that the vorticity moves with the fluid.

PROBLEM

Show that, in flow which is not isentropic, any moving particle carries with it a constant value of the product
(1/p) grad s -curlv (H. Ertel 1942).

t This result remains valid in a uniform gravitational field, since in that case curlg = 0.
$ Mathematically, it is necessary that there should be a one-to-one relation between p and p (which for

isentropic flow is s(p, p) = constant); then — (1,/p) grad p can be wnitten as the gradient of some function, a result
which is necded in deriving Kelvin's theorem.
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SOLUTION. When the flow is not isentropic, the right-hand side of Euler’s equation (2.3) cannot be replaced by
~gradw, and (2.11) becomes

dw/dt = curl (vx@) + (1/p°) grad pxgrad p,
where for brevity @ = curlv. We multiply scalarly by grad s; since s = s(p, p). grad s is a hincar function of grad p

and grad p, and grad s - (grad pxgrad p) = 0. The expression on the right-hand side can then be transformed as
follows:

grad s dw/dt = grad s curl (vxw)
= —div [grad sx(vxw)]
= ~div [viw- grads)] + div[w(v-grads))

= (@ grads)divy — v-grad (0 -grad s) + @-grad (v-grads)
From (2.6), v-grads = — d5/dt, and therefore

d
‘-’—‘(m-u'“s)-o»v-'d(o-ya‘sh»(.-'n‘siﬁn =0

The first two terms can be combined as d(w - grad s)/dr, where d/dr = &8¢ + v - grad; in the last term, we put from
(1.3) pdivy = —dp/dt. The result is d (..'“‘) o

de v
which gives the required conservation law.

§9. Potential flow

From the law of conservation of circulation we can derive an important result. Let us at
first suppose that the flow is steady, and consider a streamline of which we know that curl v
is zero at some point. We draw an arbitrary infinitely small closed contour to encircle the
streamline at that point. In the course of time, this contour moves with the fluid, but always
encircles the same streamline. Since the product (8.2) must remain constant, it follows that
curl v must be zero at every point on the streamline.

Thus we reach the conclusion that, if at any point on a streamline the vorticity is zero, the
same is true at all other points on that streamline. If the flow is not steady, the same result
holds, except that instead of a streamline we must consider the path described in the course
of time by some particular fluid particle; f we recall that in non-steady flow these paths do
not in general coincide with the streamlines.

At first sight it might seem possible to base on this result the following argument. Let us
consider steady flow past some body. Let the incident flow be uniform at infinity; its
velocity v is a constant, so that curl v =0 on all streamlines. Hence we conclude that curl v
is zero along the whole of every streamline, i.e. in all space.

A flow for which curlv = 0 in all space is called a potential flow or irrotational flow, as
opposed to rotational flow, in which the curl of the velocity is not everywhere zero. Thus we
should conclude that steady flow past any body, with a uniform incident flow at infinity,
must be potential flow.

Similarly, from the law of conservation of circulation, we might argue as follows. Let us
suppose that at some instant we have potential flow throughout the volume of the fluid.
Then the velocity circulation round any closed contour in the fluid is zero.f By Kelvin's

t Toavoid misunderstanding, we may mention here that this result has no meaning mn turbulent flow. We may
also remark that a non-zero vorticity may occur on a streamhine after the passage of a shock wave. We shall see
that this is because the flow is no longer isentropic (§114).

$ Here we suppose for simplicity that the fluid occupies a simply-coanected region of space. The same final
result would be obtained for a multiply-connected region, but restnictions on the choice of contours would have
to be made in the derivation.
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theorem, we could then conclude that this will hold at any future instant, i.e. we should find
that, if there is potential flow at some instant, then there is potential flow at all subsequent
instants (in particular, any flow for which the fluid is initially at rest must be a potential
flow). This is in accordance with the fact that, if curly = 0, equation (2.11) is satisfied
identically.

In fact, however, all these conclusions are of only very limited validity. The reason is that
the proof given above that curl v = 0 all along a streamline is, strictly speaking, invalid for
a line which lies in the surface of a solid body past which the flow takes place, since the
presence of this surface makes it impossible to draw a closed contour in the fluid encircling
such a streamline. The equations of motion of an ideal fluid therefore admit solutions for
which separation occurs at the surface of the body: the streamlines, having followed the
surface for some distance, become separated from it at some point and continue into the
fluid. The resulting flow pattern is characterized by the presence of a “surface of tangential
discontinuity” proceeding from the body; on this surface the fluid velocity, which is
everywhere tangential to the surface, has a discontinuity. In other words, at this surface one
layer of fluid “slides” on another. Figure 1 shows a surface of discontinuity which separates
moving fluid from a region of stationary fluid behind the body. From a mathematical point
of view, the discontinuity in the tangential velocity component corresponds to a surface on
which the curl of the velocity is non-zero.

—
X

Fic |

When such discontinuous flows are included, the solution of the equations of motion for
an ideal fluid is not unique: besides continuous flow, they admit also an infinite number of
solutions possessing surfaces of tangential discontinuity starting from any prescribed line
on the surface of the body past which the flow takes place. It should be emphasized,
however, that none of these discontinuous solutions is physically significant, since
tangential discontinuities are absolutely unstable, and therefore the flow would in fact
become turbulent (see Chapter I11).

The actual physical problem of flow past a given body has, of course, a unique solution.
The reason is that ideal fluids do not really exist; any actual fluid has a certain viscosity,
however small. This viscosity may have practically no effect on the motion of most of the
fluid, but, no matter how small it is, it will be important in a thin layer of fluid adjoining the
body. The properties of the flow in this boundary layer decide the choice of one out of the
infinity of solutions of the equations of motion for an ideal fluid. It is found that, in the
general case of flow past bodies of arbitrary form, solutions with separation must be
taken, which in turn will result in turbulence.

In spite of what we have said above, the study of the solutions of the equations of motion
for continuous steady potential flow past bodies is in some cases meaningful. Although, in
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the general case of flow past bodies of arbitrary form, the actual flow pattern bears almost
no relation to the pattern of potential flow, for bodies of certain special (“streamlined™—
§46) shapes the flow may differ very little from potential flow; more precisely, it will be
potential flow except in a thin layer of fluid at the surface of the body and in a relatively
narrow “wake” behind the body.

Another important case of potential flow occurs for small oscillations of a body
immersed in fluid. It is easy to show that, if the amplitude a of the oscillations is small
compared with the linear dimension [ of the body (a< [), the flow past the body will be
potential flow. To show this, we estimate the order of magnitude of the various terms in

Euler’s equation
Ov/Ot+ (v-grad)v = — gradw.

The velocity vchanges markedly (by an amount of the same order as the velocity u of the
oscillating body) over a distance of the order of the dimension [ of the body. Hence the
derivatives of v with respect to the coordinates are of the order of u/l. The order of
magnitude of v itself (at fairly small distances from the body) is determined by the
magnitude of u. Thus we have (v-grad)v ~ u?/L. The derivative év/ét is of the order of wu,
where @ is the frequency of the oscillations. Since @ ~ u/a, we have dv/dt = u?/a. It now
follows from the inequality a < [ that the term (v - grad)v is small compared with dv/ét and
can be neglected, so that the equation of motion of the fluid becomes dv/dt = — grad w.
Taking the curl of both sides, we obtain é(curl v)/ét = 0, whence curl v = constant. In
oscillatory motion, however, the time average of the velocity is zero, and therefore curl v
= constant implies that curl v = 0. Thus the motion of a fluid executing small oscillations
is potential flow to a first approximation.

We shall now obtain some general properties of potential flow. We first recall that the
derivation of the law of conservation of circulation, and therefore all its consequences,
were based on the assumption that the flow is isentropic. If the flow is not isentropic, the
law does not hold, and therefore, even if we have potential flow at some instant, the
vorticity will in general be non-zero at subsequent instants. Thus only isentropic flow can
in fact be potential flow.

In potential flow, the velocity circulation along any closed contour is zero:

§v-dl= fcurlv-df =0. (9.1)

It follows from this that, in particular, closed streamlines cannot exist in potential flow.t
For, since the direction of a streamline is at every point the direction of the velocity, the
circulation along such a line can never be zero.

In rotational flow the velocity circulation is not in general zero. In this case there may be
closed streamlines, but it must be emphasized that the presence of cdlosed streamlines is not
a necessary property of rotational flow.

Like any vector field having zero curl, the velocity in potential flow can be expressed as
the gradient of some scalar. This scalar is called the velocity potential, we shall denote it by
¢:

v = grad ¢. (9.2)

t This result, like (9.1), may not be valid for motion in 2 multiply-connected region of space. In potential flow
in such a region, the velocity circulation may be non-2ero if the closed contour round which it is taken cannot be
contracted to a point without crossing the boundarnies of the regon.
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Writing Euler's equation in the form (2.10)

v/t +gradv® —vx curly = — gradw
and substituting v = grad ¢, we have

md(%t +§v‘+w)-o.

whence
¢/t +4v +w = [(1), (9.3)

where f (1) is an arbitrary function of time. This equation is a first integral of the equations
of potential flow. The function f () in equation (9.3) can be put equal to zero without loss
of generality, because the potential is not uniquely defined: since the velocity is the space
derivative of ¢, we can add to ¢ any function of the time.

For steady flow we have (taking the potential ¢ to be independent of time) é¢/dt =0,
S (1) = constant, and (9.3) becomes Bernoulli’s equation:

$v? + w = constant. (9.4)

It must be emphasized here that there is an important difference between the Bernoulli's
equation for potential flow and that for other flows. In the general case, the “constant” on
the right-hand side is a constant along any given streamline, but is different for different
streamlines. In potential flow, however, it is constant throughout the fluid. This enhances
the importance of Bernoulli's equation in the study of potential flow.

§10. Incompressible fluids

In a great many cases of the flow of liquids (and also of gases), their density may be
supposed invariable, i.e. constant throughout the volume of the fiuid and throughout its
motion. In other words, there is no noticeable compression or expansion of the fluid in
such cases. We then speak of incompressible flow.

The general equations of fluid dynamics are much simplified for an incompressible fluid.
Euler’s equation, it is true, is unchanged if we put p = constant, except that p can be taken
under the gradient operator in equation (2.4)

0
3}+(v~p“)v= —pﬁ(%)+g. (10.1)
The equation of continuity, on the other hand, takes for constant p the simple form
divv=0. (10.2)

Since the density is no longer an unknown function as it was in the general case, the
fundamental system of equations in fluid dynamics for an incompressible fluid can be
taken to be equations involving the velocity only. These may be the equation of continuity
(10.2) and equation (2.11):

%(c-'l v) = curl(vxcurlv) (10.3)

Bernoulli’s equation too can be written in a simpler form for an incompressible fluid.
Equation (10.1) differs from the general Euler’s equation (2.9) in that it has grad (p/p) in
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place of grad w. Hence we can write down Bernoulli’s equation immediately by simply
replacing the heat function in (5.4) by p/p:

$0? + p/p + gz = constant. (10.4)

For an incompressible fluid, we can also write p/p in place of w in the expression (6.3) for
the energy flux, which then becomes

1,0 10.
pv(}o +p)' (10.5)

For we have, from a well-known thermodynamic relation, the expression de = Tds —pd V
for the change in internal energy; for s = constant and V¥ = 1/p = constant, de¢ = 0,
i.e. ¢ = constant. Since constant terms in the energy do not matter, we can omit ¢ in
w=¢g+p/p.

The equations are particularly simple for potential flow of an incompressible fluid.
Equation (10.3) is satisfied identically if curl v = 0. Equation (10.2), with the substitution
v = grad ¢, becomes

LA =0, (10.6)

i.e. Laplace’s equationt for the potential ¢. This equation must be supplemented by
boundary conditions at the surfaces where the fluid meets solid bodies. At fixed solid
surfaces, the fluid velocity component v, normal to the surface must be zero, whilst for
moving surfaces it must be equal to the normal component of the velocity of the surface (a
given function of time). The velocity v,, however, is equal to the normal derivative of the
potential ¢: v, = d¢/dn. Thus the general boundary conditions are that d¢/én is a given
function of coordinates and time at the boundaries.

For potential flow, the velocity is related to the pressure by equation (9.3). In an
incompressible fluid, we can replace w in this equation by p/p:

/ot + 40 +p/p = f1). (10.7)

We may notice here the following important property of potential flow of an
incompressible fluid. Suppose that some solid body is moving through the fluid. If the
result is potential flow, it depends at any instant only on the velocity of the moving body at
that instant, and not, for example, on its acceleration. For equation (10.6) does not
explicitly contain the time, which enters the solution only through the boundary
conditions, and these contain only the velocity of the moving body.

From Bernoulli’s equation, {v* + p/p = constant, we see that, in steady flow of an
incompressible fluid (not in a gravitational field), the greatest pressure occurs at points
where the velocity is zero. Such a point usually occurs on the surface of a body past which
the fluid is moving (at the point O in Fig. 2), and is called a stagnation point. If u is the
velocity of the incident current (i.e. the fluid velocity at infinity), and p, the pressure at
infinity, the pressure at the stagnation point is

Pmax = Po + 300", (10.8)

If the velocity distribution in 2 moving fluid depends on only two coordinates (x and y,
say), and the velocity is everywhere parallel to the xy-plane, the flow is said to be two-

t Thevdoatypotenmlmﬁmmtmdwdby&h who obtained an equation of the form (10.6) for it; this
form later became known as Laplace’s equation.
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dimensional or plane flow. To solve problems of two-dimensional flow of an incompressible
fluid, it is sometimes convenient to express the velocity in terms of what is called the stream
function. From the equation of continuity divy = dv, /éx + dv,/dy = 0 we see that the
velocity components can be written as the derivatives

v =Yy, b= —dp/ix (109)

of some function ¥(x, y), called the stream function. The equation of continuity is then
satisfied automatically. The equation that must be satisfied by the stream function is
obtained by substituting (10.9) in equation (10.3). We then obtain

0 oy ¢ oy 0
EAW-E;E;A*+$$A*=O. (10.10)

If we know the stream function we can immediately determine the form of the streamlines
for steady flow. For the differential equation of the streamlines (in two-dimensional flow)
is dx/v, = dy/v, or v,dx — v, dy = 0; it expresses the fact that the direction of the tangent
to a streamline is the direction of the velocity. Substituting (10.9), we have

oy oy

-Exdx-l-a-;dy:d& =0,
whence ¥ = constant. Thus the streamlines are the family of curves obtained by putting
the stream function ¥(x, y) equal to an arbitrary constant.

If we draw a curve between two points A and B in the xy-plane, the mass flux Q across
this curve is given by the difference in the values of the stream function at these two points,
regardless of the shape of the curve. For, if v, is the component of the velocity normal to the
curve at any point, we have

8 B 8
Q= p§ v, dl = p§ (—v,dx+v,dy)= pj“.
A El A
or
Q=pWs—V¥.)- (10.11)
There are powerful methods of solving problems of two-dimensional potential flow of
an incompressible fluid past bodies of various profiles, involving the application of the

™-3
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theory of functions of a complex variable.t The basis of these methods is as follows. The
potential and the stream function are related to the velocity components by}

v, = dp/dx = dY/dy, v, =0¢/dy= —0DY/ix.

These relations between the derivatives of ¢ and ¥, however, are the same, mathematically,
as the well-known Cauchy-Riemann conditions for a complex expression

w=¢+iy (10.12)

to be an analytic function of the complex argument z = x +iy. This means that the
function w(z) has at every point a well-defined derivative

dw d¢ oy )

-d—z-—a—x +la—x =, —,. (10.13)
The function w is called the complex potential, and dw/dz the complex velocity. The
modulus and argument of the latter give the magnitude v of the velocity and the angle ¢
between the direction of the velocity and that of the x-axs:

dw/dz = ve™ ™. (10.14)

At a solid surface past which the flow takes place, the velocity must be along the tangent.
That is, the profile contour of the surface must be a streamline, i.e. y = constant along it;
the constant may be taken as zero, and then the problem of flow past a given contour
reduces to the determination of an analytic function w(z) which takes real values on the
contour. The statement of the problem is more involved when the fluid has a free surface;
an example is found in Problem 9.

The integral of an analytic function round any closed contour C is well known to be
equal to 2ni times the sum of the residues of the function at its simple poles inside C; hence

§ufdz = 2zi ) A,,
k
where A, are the residues of the complex velocity. We also have

§w’ dz = §(v, —iv,) (dx + idy)

- §(vxdx +v,dy)+ f§(’.d)’ - ,dx).

The real part of this expression is just the velocity circulation I' round the contour C. The
imaginary part, multiplied by p, is the mass flux across C; if there are no sources of fluid
within the contour, this flux is zero and we then have simply

r=2xY A; (10.15)
k

all the residues A, are in this case purely imaginary.

1 A more detailed account of these methods and their numerous apphcations may be found in many books
which treat fluid dynamics from a more mathematical standpoint. Here, we shall describe only the basic idea.

1 The existence of the stream function depends, however, only on the flow’s being two-dimensional, not
necessarily a potential flow.
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Finally, let us consider the conditions under which the fluid may be regarded as
incompressible. When the pressure changes adiabatically by Ap, the density changes by
Ap = (0p/dp),Ap. According to Bernoulli's equation, however, Ap is of the order of pv® in
steady flow. We shall show in §64 that the derivative (dp/dp), is the square of the velocity ¢
of sound in the fluid, so that Ap ~ pv?/c?. The fluid may be regarded as incompressible if
Ap/p < 1. We see that a necessary condition for this is that the fluid velocity be small
compared with that of sound:

v€c. (10.16)

However, this condition is sufficient only in steady flow. In non-steady flow, a further
condition must be fulfilled. Let t and [ be a time and a length of the order of the times and
distances over which the fluid velocity undergoes significant changes. If the terms év/dt
and (1/p) grad p in Euler’s equation are comparable, we find, in order of magnitude, v/t
~ Ap/lp or Ap ~ lpv/t, and the corresponding change in p is Ap ~ lpv/tc®. Now
comparing the terms dp/dt and pdivy in the equation of continuity, we find that the
derivative dp/dt may be neglected (i.c. we may suppose p constant) if Ap/t < pv/l, or

t» l/c. (10.17)

If the conditions (10.16) and (10.17) are both fulfilled, the fluid may be regarded as
incompressible. The condition (10.17) has an obvious meaning: the time //c taken by a
sound signal to traverse the distance [ must be small compared with the time t during

which the flow changes appreciably, so that the propagation of interactions in the fluid
may be regarded as instantaneous.

PROBLEMS

PrOBLEM 1. Determine the shape of the surface of an incompressible flusd subject 1o a gravitational field,
contained in a cylindrical vessel which rotates about its (vertical) axis with a constant angular velocity Q0.

SOLUTION. Let us take the axis of the cylinder as the z-aus. Thear, = — yQl o, = x{l v, = 0. The equation of
continuity is satisfied identically, and Euler’s equation (10.1) gives

1dp 1dp 1ép
Py y Py ;83*’30.
The general integral of these equations is
plp = Q% (x* + y*)— gz + constant.
At the free surface p = constant, so that the surface is a parabolosd:
=3P +y')e
the origin being taken at the lowest point of the surface.

ProBLEM 2. A sphere, with radius R, moves with veloaty » in an incompressible ideal fluid. Determine the
potential flow of the fluid past the sphere.

SOLUTION. The fluid velocity must vanish at infinity. The solutions of Laplace’s equation L¢ =0
which vanish at infinity are well known to be 1/r and the derivatives, of vanious orders, of 1/r with respect 1o the
coordinates (the origin is taken at the centre of the sphere). On account of the complete symmetry of the sphere,
only one constant vector, the velocity u, can appear in the solution, and, on account of the incarity of both
Laplace’s equation and the boundary condition, ¢ must involve u incarly. The only scalar which can be formed
from w and the derivatives of 1/r is the scalar product w-grad(]/r) We therefore seek ¢ in the form

¢=A-grad(1/r) = — (A-m)/r’,
where n is a unit vector in the direction of r. The constant A is determined from the condition that the normal



22 Ideal Fluids §10
components of the velocities v and u must be equal at the surface at the sphere, ie. v-a = w-n for r = R. This
condition gives A = {uR’, s0 that
R’ R?
¢= - - ;.lh(o--)—!l-
The pressure distribution is given by equation (10.7)
P = po — o’ — pd@/in,

where p,, is the pressure at infinity. To calculate the derivative 8¢,/ &, we must bear in mind that the origin (which
we have taken at the centre of the sphere) moves with velocity . Hence

09/t = (0¢/Cu)-a—u-grad §.
The pressure distribution over the surface of the sphere is given by the formula
P = po +4pu’ (9cos’ 6 5)+ {pRa-du/ds,
where 0 is the angle between 8 and w

ProBLEM 3. The same as Problem 2, but for an infinite cyhnder moving perpendicular 1o its axis. t

SoLuTiON. The flow is independent of the axial coordinate, so that we have to solve Laplace’s equation in two
dimensions. The solutions which vanish at infinity are the first and hugher derivatives of log r with respect to the
coordinates, where r is the radius vector perpendicular to the axis of the cylinder. We seck a solution in the form

“A"“m""”'o
and from the boundary conditions we obtain A = — R%w, so that
2

o= ___'_.... '-gluﬂ'.)-.].

The pressure at the surface of the cylinder is given by
p = po+ipw’(dcos’ - 3)+ pRa-du/de
ProBLEM 4. Determine the potential flow of an incompressible ideal fluid in an ellipsoidal vessel rotating
about a principal axis with angular velocity €2, and determune the total angular momentum of the fuid.
SoLuTiON. We take Cartesian coordinates x, y, z along the axes of the ellipsosd at a given instant, the z-axis
being the axis of rotation. The velocity of points in the vessel wall s
u = 0Qxr,
s0 that the boundary condition v, = é¢/fn = u,is
0¢/dn = Q(xn, — ym.),
or, using the equation of the ellipsoid x*/a* + y*/b* + 2%/ =,
x z 1 1
?g*ﬁg*?g"’“(v‘:)
The solution of Laplace’s equation which satisfies this boundary condition s
Osﬂg—ISxy. (1
The angular momentum of the fluid in the vessel is

M= pj(n.-n.)d'.

t The solution of the more general problems of potential flow past an cllipsoid and an elliptical cylinder may
be found in: N. E. Kochin, 1. A. Kibel' and N. V. Roze, Theoretical H ydromechanics (Teoreticheskaya
gidromekhanika), Part 1, chapter VII, Moscow 1963; H. Lamb, H ydrodymamics, 6th ed., §§103-116, Cambridge
1932
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Integrating over the volume } of the ellipsoid, we have

M QpV (@ - by

S a+bp
Formula (1) gives the absolute motion of the fluid relative to the instantancous position of the axes x, y, z which
are fixed to the rotating vessel. The motion relative 10 the vessel (i.e relative 1o a rotating system of coordinates
x, ¥, 2) is found by subtracting the velocity Q2xr from the absolute velocity, denoting the relative velocity of the
fluid by v', we have

. ¢ P P ) 200° :
i R L L

The paths of the relative motion are found by integrating the equations £ = ¢, § = ¢/, and are the ellipses
x?ja* + y* /b = constant, which are similar 10 the boundary cllipse.

ProOBLEM 5. Determine the flow near a stagnation point (Fig. 2)

SoLuTioN. A small part of the surface of the body near the stagnation point may be regarded as plane. Let us
take it as the xy-plane. Expanding ¢ for x, y, z small, we have as far as the second-order terms

¢=ax+by+cz+ AP + By +C2* + Dxy + Eyz + Fzx;

aconstant term in ¢ is immaterial. The constant coefficients are determuned so that ¢ satisfies the equation A\ ¢
= () and the boundary conditions v, = é¢/éz =0forz =0andall x, y. @ /ix =@ /dy =0forx=y=:=0
(the stagnation point). Thisgivesa=b =c = C = ~ A~ B E = F = 0. The term Dxy can always be removed
by an appropriate rotation of the x and y axes. We then have

¢ = A + By’ - (A+ B)*. (h

If the flow is axially symmetrical about the z-axis (symmetrical low past a sobd of revolution), we must have
A = B, 50 that

‘.A(I’f,’-lf’).

The velocity com tsarev, = 2Ax,v, = 24y, v, = — 44z The strecamhines are given by equations (5.2), from
which we find x?z = ¢,, y?z = ,, i.c. the streamlines are cubical hyperbolac.
If the flow is uniform in the y-direction (eg flow in the >-direction past a cylinder with its axis in the y-
direction), we must have B = 0 in (1), so that
¢=AX-)

The streamlines are the hyperbolae x: = constant.

PrOBLEM 6. Determine the potential flow near an angle formed by two intersecting planes.

SOLUTION. Let us take polar coordinates 7, 8 in the cross-sectional plane (perpendicular to the line of
intersection), with the origin at the vertex of the angle; 8 is measured from one of the arms of the angle. Let the
angle be x radians; for x < x the flow takes place within the angle, for = > x outside it. The boundary con-
dition that the normal velocity component vanish means that é¢,6 = 0 for § = 0 and @ = o The solution of
Laplace’s equation satisfying these conditions can be writtent

¢ = Ar"cosnf, n=x/z,
5o that
v, =nAr" 'cosnf, ©,= —nAr" 'sinné

Forn < 1 (flow outside an angle; Fig. 3), v, becomes infiniteas 1 /7' ~*at theonigin. For n > | (flow inside an angle;
Fig. 4), v becomes zero for r = 0.

The stream function, which gives the form of the streamlines, is ¢ = Ar"sin nf. The expressions obtained for ¢
and ¢ are the real and imaginary parts of the complex potential w = 4:"3

PrOBLEM 7. A spherical hole with radius a is suddenly formed in an incompressible fluid filing all space.
Determine the time taken for the hole to be filled with fluid (Besant 1859; Rayleigh 1917)

t We take the solution which involves the lowest positive power of r, since r 1s small.

1 1If the boundary planes are supposed infinite, Problems 5 and 6 involve degeneracy, in that the values of the
constants A and Bin the solutions are indeterminate. In actual cases of flow past finite bodies, they are determined
by the general conditions of the problem.
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SOLUTION. The flow after the formation of the hole will be spherically symmetrical, the velocity at every point
being directed to the centre of the hole. For the radial velocity 5, = ¢ < 0 we have Euler's equation in spherical
polar coordinates:

v v 1dp
z + ’z* - -;&. “)
The equation of continuity gives
rle=F1), (2)

where F (1) is an arbitrary function of time; this equation expresses the fact that, since the fluid is incompressible,
the volume flowing through any spherical surface is independent of the radius of that surface.

A\

Fic 3

Fic 4

Substituting v from (2) in (1), we have
F() ér 1ép
= T T
Integrating this equation over r from the instantanecous radius R = R(1) < a of the hole to infinity, we obtain

_ﬂ'.).,“-z-b. 3)
R I

where V' = dR(1)/dt is the rate of change of the radius of the hole, and p, is the pressure at infinity; the fluid
velocity at infinity is zero, and so is the pressure at the surface of the hole. From equation (2) for points on the
surface of the hole we find

Fiy=R*0) V@,
and, substituting this expression for F (1) in (3), we obtain the equation

o — -*R;-a—, (4)
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The variables are separable; integrating with the boundary condition + = 0 for R = a (the fluid being initially at

= D)

Hence we have for the required total time for the hole to be Hilled

"J’z’:ﬁji/u-f:r-n‘

This integral reduces to a beta function, and we have finally

3a’px I'(5/6) Jn
= [T 20915 J--.
! 2ps T(1/3) Po

PrOBLEM 8. A sphere immersed in an incompressible fluid expands according to a given law R = R(1)
Determine the fluid pressure at the surface of the sphere.

SoLuTioN. Let the required pressure be P(r). Cakulations exactly ssmular to those of Problem 7, except that
the pressure at r = R is P(r) and not zero, give instead of (3) the equation
F'(r) “.,_n. Pl)

+
R(1) p »
and accordingly instead of (4) the equation

_ -2
Po—Pl) VT _ L9
P 2 dR

Bearing in mind the fact that V = dR/dt, we can write the expression for P(r) in the form

Pit)=p,+4p [‘%‘:‘2 + (‘7:_ )x]

PROBLEM 9. Determine the form of a jet emerging from an infinitely long shit in a plane wall.

SOLUTION. Let the wall be along the x-axis in the xy-plane, and the aperture be the segment —{a < x < laof
that axis, the fluid occupying the half-plane y > 0. Far from the wall (y — <) the fluid velocity is zero, and the
pressure is p,, say.

At the free surface of the jet (BC and B'C’ in Fig. 5a) the pressure p = 0, while the velocity takes the constant
valuev, = ./(2py/p) by Bernoulli's equation. The wall lines are streambines, and continue into the frec boundary
of the jet. Let ¥ be zero on the line ABC; then, onthe line A'B'C' . ¢ = —Q/p, whereQ = pa, v, is the rate at which
the fluid emerges in the jet (a,, v, being the jet width and velocity at infinsty). The potential ¢ varies from — o to
+ oo both along ABC and along A'B'C’; let ¢ be zero at Band B Then, in the plane of the complex variable w, the
regiooofﬂow:‘minﬁnitesuipdwidthmp(!'"ﬁ).ﬂkpois’-Fg.Sb.c.dmnnedtomapondwith
those in Fig. 5a.)

We introduce a new complex variable, the logarithm of the complex veloaty:

(= —hl[’-'-:,;%;]-bl%*iﬁﬂ*ﬁ ()

here v, ™ is the complex velocity of the jet at infinity. On A'B we have 6 = 0; on AB, 6 = — = on BC and
B'C’, v = v,, while at infinity in the jet § = —{x. In the plane of the complex variable {, therefore, the region of
flow is a semi-infinite strip of width = in the right half-plane (Fig. 5c) If we can now find a conformal
transformation which carries the strip in the w-plane into the half-strip in the [-plane (with the points
corresponding as in Fig. 5), we shall have determined w as a function of dw/dz, and w can then be found by a
simple quadrature.

In order to find the desired transformation, we introduce one further auxiliary complex variable, u, such that
the region of flow in the u-plane is the upper half-plane, the points Band B’ correspondingtou = + 1, the points
Cand C' to u = 0, and the infinitely distant points 4 and 4" tou = + = (Fig 5d) The dependence of w on this
auxiliary variable is given by the conformal transformation which carries the upper half of the u-plane into the
strip in the w-plane. With the above correspondence of points, this transformation is

W= —’g‘lo'u. 2)
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In order to find the dependence of { on u, we have to find a conformal transformation of the half-strip in the {-

plane into the upper half of the u-plane. Regarding this half-strip as a triangle with one vertex at infinity, we can
find the desired transformation by means of the well-known Schwarz-Chnstoffel formula; it is

(= —isin""'u 3)

Formulae (2) and (3) give the solution of the problem, since they furnish the dependence of dw/dz on w in
parametric form.

Let us now determine the form of the jet. On BC we have w = ¢, [ = i({x + §), while u varies from 1 10 0. From
(2) and (3) we obtain

o= -Ziog(-cos), @
P

and from (1) we have
d¢/dz =v,e” ",

dz =dx+idy -'le"do = %e'n.oa.
1

whence we find, by integration with the conditions y = 0, x = {a for § = — =, the form of the jet, expressed
parametrically. In particular, the compression of the jet is @, /a = /(2 + x) = 061

§11. The drag force in potential flow past a body

Let us consider the problem of potential flow of an incompressible ideal fluid past some
solid body. This problem is, of course, completely equivalent to that of the motion of a
fluid when the same body moves through it. To obtain the latter case from the former, we
need only change to a system of coordinates in which the fluid is at rest at infinity. We shall,
in fact, say in what follows that the body is moving through the fluid.

Let us determine the nature of the fluid velocity distribution at great distances from the
moving body. The potential flow of an incompressible fluid satisfies Laplace’s equation,
A ¢ = 0. We have to consider solutions of this equation which vanish at infinity, since the
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fluid is at rest there. We take the origin somewhere inside the moving body; the coordinate
system moves with the body, but we shall consider the fluid velocity distribution at a
particular instant. As we know, Laplace’s equation has a solution 1/r, where r is the
distance from the origin. The gradient and higher space derivatives of 1/r are also
solutions. All these solutions, and any lincar combination of them, vanish at infinity. Hence
the general form of the required solution of Laplace’s equation at great distances from the
body is

a 1
¢“‘;+A"“;+ co ey

where a and A are independent of the coordinates; the omitted terms contain higher-order
derivatives of 1/r. It is easy to see that the constant @ must be zero. For the potential
¢ = —a/r gives a velocity

v= —grad(a/r) = ar/r’.

Let us calculate the corresponding mass flux through some closed surface, say a sphere
with radius R. On this surface the velocity is constant and equal to a/R?; the total flux
through it is therefore p(a/R*)4xR? = 4npa. But the flux of an incompressible fluid
through any closed surface must, of course, be zero. Hence we conclude that a = 0.

Thus ¢ contains terms of order 1/r* and higher. Since we are seeking the velocity at large
distances, the terms of higher order may be neglected, and we have

¢=A-grad(l/r) = —A-n/r?, (11.1)
and the velocity v = grad ¢ is

1 3(A-an—A
\r=(A-p’ad)p'ad;=-1 .:.- - (11.2)

r

where n is a unit vector in the direction of r. We see that at large distances the velocity
diminishes as 1/r*. The vector A depends on the actual shape and velocity of the body, and
can be determined only by solving completely the equation /. ¢ = 0Oat all distances, taking
into account the appropriate boundary conditions at the surface of the moving body.

The vector A which appears in (11.2) is related in a definite manner to the total
momentum and energy of the fluid in its motion past the body. The total kinetic energy of
the fluid (the internal energy of an incompressible fluid is constant) is E = § | pv*d ¥, where
the integration is taken over all space outside the body. We take a region of space V
bounded by a sphere with large radius R, whose centre is at the origin, and first integrate
only over ¥, later letting R tend to infinity. We have identically

Iv’dy =Iu’db'+j(v+-)-(v-l)dl',

where u is the velocity of the body. Since u is independent of the coordinates, the first
integral on the right is simply w?( V' — ¥,), where ¥, is the volume of the body. In the
second integral, we write the sum v + u as grad (¢ + u-r); using the facts that divv =0
(equation of continuity) and diva = 0, we have

J.o’dl" =ul(V=Vy)+ Idiv[(¢+--t)(v--)]dlf.
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The second integral is now transformed into an integral over the surface S of the sphere
and the surface S, of the body:

Iv’dV =ul(V=VI)+ § (¢ +u-r)(v—u)-dL
$+5

On the surface of the body, the normal components of v and u are equal by virtue of the
boundary conditions; since the vector df is along the normal to the surface, it is clear that
the integral over S, vanishes identically. On the remote surface S we substitute the
expressions (11.1), (11.2) for ¢ and v, and neglect terms which vanishas R — co. Writing the
surface element on the sphere S in the form df = nR*do, where do is an element of solid
angle, we obtain

Jv’dV =w($nR*-Vy)+ I[3(A-l)(n-l)-(n-l)’k’]do.

Finally, effecting the integrationt and multiplying by {p, we obtain the following
expression for the total energy of the fluid:

E = {p(dnA -u— Vi) (11.3)

As has been mentioned already, the exact calculation of the vector A requires a complete
solution of the equation A ¢ = 0, taking into account the particular boundary conditions
at the surface of the body. However, the general nature of the dependence of A on the
velocity u of the body can be found directly from the facts that the equation is linear in ¢,
and the boundary conditions are linear in both ¢ and u. It follows from this that A must be
a linear function of the components of u. The energy E given by formula (11.3)is therefore
a quadratic function of the components of u, and can be written in the form

E=4im,uu, (11.4)

where m, is some constant symmetrical tensor, whose components can be calculated from
those of A; it is called the induced-mass tensor.

Knowing the energy E, we can obtain an expression for the total momentum P of the
fluid. To do so, we notice that infinitesimal changes in E and P are related byl dE = u-dP;

t The integration over o is equivalent to averaging the integrand over all directions of the vector a and
multiplying by 4. To average expressions of the type (A-n) (B-n) = 4 n B, n, where A, Bare constant vectors,
we notice that

(A-8)(B-n) = A B,nn, = §5,48, = {A-B.

{ For, let the body be accelerated by some external force F. The momentum of the fiuid will thereby be
increased; let it increase by dP during a time dr. This increase is related to the force by dP = Fdt, and on scalar
multiplication by the velocity u we have u-dP = F-udy, i.c. the work done by the force F acting through the
distance udt, which in turn must be equal to the increase dE in the energy of the fluid.

Itsbouldkmadm:twnhm&m&wm&mhwyummjmd&
over the whole volume of the fluid. The reason is that this integral, with the velocity v distributed in accordance
with (11.2), diverges, in the sense that the result of the integration, though finite, depends on how the integral is
taken: on effecting the integration over a large region, whose dimensions subsequently tend 10 infinity, we obtain
a value depending on the shape of the region (sphere, cylinder, etc ). The method of cakulating the momentum
which we use here, starting from the relation u-dP = dE, lecads to a completely definite final result, given by
formula (11.6), which certainly satisfies the physical relation between the rate of change of the momentum and the
forces acting on the body.
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it follows from this that, if E is expressed in the form (11.4), the components of P must be

P, = myu,. (1L5)

Finally, a comparison of formulae (11.3), (11.4) and (11.5) shows that P is given in terms of
A by
P = dnpA - pV,yu (11.6)

It must be noticed that the total momentum of the fluid is a perfectly definite finite
quantity.

The momentum transmitted to the fluid by the body in unit time is dP/dt. With the
opposite sign it evidently gives the reaction F of the fluid, i.c. the force acting on the body:

F= ~dP/dt. (11.7)

The component of F parallel to the velocity of the body is called the drag force, and the
perpendicular component is called the lift force.

If it were possible to have potential flow past a body moving uniformly in an ideal fluid,
we should have P = constant, since u = constant, and so F = 0. That is, there would be no
drag and no lift; the pressure forces exerted on the body by the fluid would balance out (a
result known as d" Alembert’s paradox). The origin of this paradox is most clearly seen by
considering the drag. The presence of a drag force in uniform motion of a body would
mean that, to maintain the motion, work must be continually done by some external force,
this work being either dissipated in the fluid or converted into kinetic energy of the fluid,
and the result being a continual flow of energy to infinity in the fluid. There is, however, by
definition no dissipation of energy in an ideal fluid, and the velocity of the fluid set in
motion by the body diminishes so rapidly with increasing distance from the body that
there can be no flow of energy to infinity.

However, it must be emphasized that all these arguments relate only to the motion of a
body in an infinite volume of fluid. If, for example, the fluid has a free surface, a body
moving uniformly parallel to this surface will experience a drag. The appearance of this
force (called wave drag) is due to the occurrence of a system of waves propagated on the
free surface, which continually remove energy to infinity.

Suppose that a body is executing an oscillatory motion under the action of an external
force f. When the conditions discussed in §10 are fulfilled, the fluid surrounding the body
moves in a potential flow, and we can use the relations previously obtained to derive the
equations of motion of the body. The force f must be equal to the time derivative of the
total momentum of the system, and the total momentum is the sum of the momentum Mu
of the body (M being the mass of the body) and the momentum P of the fluid:

Mdu/dt +dP/dt = 1.
Using (11.5), we then obtain
M du;/dt + m,du, /dt = |,
which can also be written

d
I (Mo, +mg) = . (11.8)

This is the equation of motion of a body immersed in an ideal fluid.
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Let us now consider what is in some ways the converse problem. Suppose that the fluid
executes some oscillatory motion on account of some cause external to the body. This
motion will set the body in motion also.t We shall derive the equation of motion of the
body.

We assume that the velocity of the fluid varies only slightly over distances of the order of
the dimension of the body. Let v be what the fluid velocity at the position of the body
would be if the body were absent; that is, v is the velocity of the unperturbed flow.
According to the above assumption, v may be supposed constant throughout the volume
occupied by the body. We denote the velocity of the body by u as before.

The force which acts on the body and sets it in motion can be determined as follows. If
the body were wholly carried along with the fluid (i.e. if ¥ = u), the force acting on it would
be the same as the force which would act on the liquid in the same volume if the body were
absent. The momentum of this volume of fluid is p¥,v, and therefore the force on it is
pV, dv/dt. In reality, however, the body is not wholly carried along with the fluid; thereis a
motion of the body relative to the fluid, in consequence of which the fluid itself acquires
some additional motion. The resulting additional momentum of the fluid is m, (u, —v,),
since in (11.5) we must now replace u by the velocity u — v of the body relative to the fluid.
Thechange in this momentum with time results in the appearance of an additional reaction
force on the body of —m,, d(u, —v,)/dt. Thus the total force on the body is

dv

) d
P"oa""ua‘;(&‘%l

This force is to be equated to the time derivative of the body momentum. Thus we obtain
the following equation of motion:

d _dv, d
a; Mu)=pVog, —mag (4 —5)
Integrating both sides with respect to time, we have

(Mo, +my)u, = (my + pVody o, (11.9)

We put the constant of integration equal to zero, since the velocity u of the body in its
motion caused by the fluid must vanish when v vanishes. The relation obtained determines
the velocity of the body from that of the fluid. If the density of the body is equal to that of
the fluid (M = p¥), we have u = v, as we should expect.

PROBLEMS
PrOBLEM 1. Obtain the equation of motion for a sphere executing an oscillatory motion in an ideal fluid, and
for a sphere set in motion by an oscillating fluid.

SoLuTioN. Comparing (11.1) with the expression for ¢ for flow past a sphere obtained in §10, Problem 2, we
sec that
A={R%
where R is the radius of the sphere. The total momentum transmitted to the fiuid by the sphere is, according to
(11.6), P = §xpR>u, so that the tensor m,, is

m, = §xpR%5,.
—}-F&-;a—ml;l;.:r-emybeoomideingthemodondabodyhaﬁdwwhichasomdnnis
propagated, the wavelength being large compared with the dimension of the body.
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The drag on the moving sphere is
F = ~{xpR’du/d:,
and the equation of motion of the sphere oscillating in the fluid s

de
) ] —
{=R (h*’ﬂ}“ f

where p, is the density of the sphere. The coefficient of du/dt is the virtual mass of the sphere; it consists of the
actual mass of the sphere and the induced mass, which in this case is half the mass of the fluid displaced by the

¢
If the sphere is set in motion by the fluid, we have for its veloaity, from (11.9),
3p

p+2p0

If the density of the sphere exceeds that of the fluid (p, > p), ¥ < v, ic the sphere “lags behind™ the fluid; if p, < p,
on the other hand, the sphere “goes ahead™.

PROBLEM 2. Express the moment of the forces acting on a body moving in 2 Suid in terms of the vector A.

SOLUTION. As we know from mechanics, the moment M of the forces acting on a body is determuned from its
Lagrangian function (in this case, the encrgy E) by the relation SE = M - 58, where 40 is the vector of an
infinitesimal rotation of the body, and SE is the resulting change in E. Instead of rotating the body through an
angle 40 (and correspondingly changing the components m,, ), we may rotate the fluid through an angle — 40
relative to the body (and correspondingly change the velocity u). We have du = —58xu, so that

SE = P-du = —50-uxP.
Using the expression (11.6) for P, we then obtain the required formula:
M= —axP = dxpAxan

§12. Gravity waves

The free surface of a liquid in equilibrium in a gravitational field is a plane. If, under the
action of some external perturbation, the surface is moved from its equilibrium position at
some point, motion will occur in the liquid. This motion will be propagated over the whole
surface in the form of waves, which are called gravity waves, since they are due to the action
of the gravitational field. Gravity waves appear mainly on the surface of the liquid; they
affect the interior also, but less and less at greater and greater depths.

We shall here consider gravity waves in which the velocity of the moving fluid particles is
so small that we may neglect the term (v-grad)v in comparison with év/dt in Euler’s
equation. The physical significance of this is easily seen. During a time interval of the order
of the period 1 of the oscillations of the fluid particles in the wave, these particles travel a
distance of the order of the amplitude a of the wave. Their velocity v is therefore of the order
of a/t. It varies noticeably over time intervals of the order of r and distances of the order of
A in the direction of propagation (where 4 is the wavelength). Hence the time derivative of
the velocity is of the order of v/, and the space derivatives are of the order of v/A. Thus the
condition (v-grad)v < dv/dt is equivalent to

1fa) (a1
FARS Tt v

a<€i, (12.1)

i.c. the amplitude of the oscillations in the wave must be small compared with the
wavelength. We have seen in §9 that, if the term (v - grad)v in the equation of motion may

or



32 Ideal Fluids §12

be neglected, we have potential flow. Assuming the fluid incompressible, we can therefore
use equations (10.6) and (10.7). The term {o? in the latter equation may be neglected, since
it contains the square of the velocity; putting f(1) = 0 and including a term pgz on account
of the gravitational field, we obtain

p= —pgz—pdd/ir. (12.2)

We take the z-axis vertically upwards, as usual, and the xy-plane in the equilibrium surface
of the liquid.

Let us denote by { the z coordinate of a point on the surface; { is a function of x, yand t.
In equilibrium { = 0, so that { gives the vertical displacement of the surface in its
oscillations. Let a constant pressure p, act on the surface. Then we have at the surface, by

(12.2),
Po = —pgl — pid/ar.
The constant p, can be eliminated by redefining the potential ¢, adding to it a quantity
Pot/p independent of the coordinates. We then obtain the condition at the surface as
gl +(0¢/01), .. =0. (12.3)

Since the amplitude of the wave oscillations is small, the displacement { is small. Hence we
can suppose, to the same degree of approximation, that the vertical component of the
velocity of points on the surface is simply the time derivative of {:

v, = &(/0t.
But v, = d¢p/0z, so that

(06/02), - = 3/t = — !"_"‘) .
z={

aor?
Since the oscillations are small, we can take the value of the derivatives at z = 0 instead

of z = {. Thus we have finally the following system of equations to determine the motion in
a gravitational field:

A =0, (12.4)
¢ 13%¢\
(5 +sa)... = s

We shall here consider waves on the surface of a iquid whose area is unlimited, and we
shall also suppose that the wavelength is small in comparison with the depth of the liquid;
we can then regard the liquid as infinitely deep. We shall therefore omit the boundary
conditions at the sides and bottom.

Let us consider a gravity wave propagated along the x-axis and uniform in the y-
direction; in such a wave, all quantities are independent of y. We shall seek a solution which
is a simple periodic function of time and of the coordinate x, i.e. we put

¢ = f(z)cos (kx —ex).

Here @ is what is called the circular frequency (we shall say smply the frequency) of the
wave; k is called the wave number; A = 2xn/k is the wavelength.
Substituting in the equation A ¢ = 0, we have

dfjdz? —k*f = 0.
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The solution which decreases as we go into the interior of the liquid (i.c. as z = — ) is

¢ = A cos (kx — wt). (12.6)
We have also to satisfy the boundary condition (12.5). Substituting (12.6), we obtain
@’ = kg (12.7)

as the relation between the wave number and the frequency of a gravity wave (the
dispersion relation).

The velocity distribution in the moving liquid is found by simply taking the space
derivatives of ¢:

v, = —Aké*sin (kx—wt), v, = Aké*cos(kx—wt). (12.8)

We see that the velocity diminishes exponentially as we go into the liquid. At any given
point in space (i.e. for given x, z) the velocity vector rotates uniformly in the xz-plane, its
magnitude remaining constant.

Let us also determine the paths of fluid particles in the wave. We temporarily denote by
x, z the coordinates of a moving fluid particle (and not of a point fixed in space), and by x,,
2z, the values of x and z at the equilibrium position of the particle. Then v, = dx/dt,
v, = dz/dt, and on the right-hand side of (12.8) we may approximate by writing x,, 2, in
place of x, z, since the oscillations are small. An integration with respect to time then gives

X = Xg = —Age"%cos(kx,-an).
(12.9)
Z2—2y = —Az—,é‘osin(kx,-axl

Thus the fluid particles describe circles about the points (x,, z,) with a radius which
diminishes exponentially with increasing depth.

The velocity of pr ion U of the wave is, as we shall show in §67, U = éw/dk.
Substituting here @ = ,/(kg), we find that the velocity of propagation of gravity waves on
an unbounded surface of infinitely deep liquid is

U=14(g/k)=4/(gi/2z) (12.10)
It increases with the wavelength.

LONG GRAVITY WAVES

Having considered gravity waves whose length is small compared with the depth of the
liquid, let us now discuss the opposite limiting case of waves whose length is large
compared with the depth. These are called long waves.

Let us examine first the propagation of long waves in a channel. The channel is supposed
to be along the x-axis, and of infinite length. The cross-section of the channel may have any
shape, and may vary along its length. We denote the cross-sectional area of the liquid in the
channel by S = S(x,t). The depth and width of the channel are supposed small in
comparison with the wavelength.

We shall here consider longitudinal waves, in which the hiquid moves along the channel.
In such waves the velocity component v, along the channel is large compared with the
components v,, v,.
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We denote v, by v simply, and omit small terms. The x-component of Euler's equation
can then be written in the form

o__1%
at péx’
and the z-component in the form
1dp
o=

we omit terms quadratic in the velocity, since the amplitude of the wave is again supposed
small. From the second equation we have, since the pressure at the free surface (z = {) must
bc Po,

P=pot+gp(l—2)

Substituting this expression in the first equation, we obtain
Ov/dt = —gd{/ox. (12.11)

The second equation needed to determine the two unknowns v and { can be derived
similarly to thé equation of continuity; it is essentially the equation of continuity for the
casein question. Let us consider a volume of liquid bounded by two plane cross-sections of
the channel at a distance dx apart. In unit time a volume (Sv), of liquid flows through one

plane, and a volume (Sv), , 4, through the other. Hence the volume of liquid between the
two planes changes by

(S0)x 4 ax—(Sv), = é(-é?—)dx

Since the liquid is incompressible, however, this change must be due simply to the change
in the level of the liquid. The change per unit time in the volume of liquid between the two
planes considered is (8S/dt)dx. We can therefore write

és I = ¢(Sv)
ér ox dx,
or
d8 &(Sv)
3t +—a-x—- =0. (12.12)

This is the required equation of continuity.

Let S, be the equilibrium cross-sectional area of the liquid in the channel. Then
S = §, + §’, where S’ is the change in the cross-sectional area caused by the wave. Since the
change in the liquid level is small, we can write S’ in the form b{, where b is the width of the
channel at the surface of the liquid. Equation (12.12) then becomes

& ASov) _
bE+ ax

Differentiating (12.13) with réspect to t and substituting év/ét from (12.11), we obtain
7 99 (s aC)=0L (12.14)

or*  bax\ ®ox

(12.13)
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If the channel cross-section is the same at all points, then S, = constant and

3 95,0%
" b ox?

This is called a wave equation: as we shall show in §64, it corresponds to the propagation of
waves with a velocity U which is independent of frequency and is the square root of the
coeflicient of @*{/dx?*. Thus the velocity of propagation of long gravity waves in channels is

U = /(gSe/b). (12.16)

In an entirely similar manner, we can consider long waves in a large tank, which we
suppose infinite in two directions (those of x and y). The depth of liquid in the tank is
denoted by h. The component v, of the velocity is now small. Euler’s equations take a form
similar to (12.11):

= (. (12.15)

o, & o, &
a9 =% 5t =0 s

The equation of continuity is derived in the same way as (12.12) and is

oh , a(hu,) | ohs,)
%t ax Ty O

We write the depth h as h, + {, where h, is the equilibrium depth. Then

é(hov,) 5(’%0)
E* = oy =0 (12.18)

Let us assume that the tank has a horizontal bottom (h, = constant). Differentiating
(12.18) with respect to ¢ and substituting (12.17), we obtain

3 3 &
8-l£<-gh°(8x(+ayc) =0 (1219)

This is again a (two-dimensional) wave equation; it corresponds to waves propagated with
a velocity

U = /(gh). (12.20)

PROBLEMS
PrOBLEM 1. Determine the velocity of propagation of gravity waves on an unbounded surface of iquid with
depth h

SOLUTION. At the bottom of the liquid, the normal velocity component must be 210, i.e. v, = 8¢ /02 = 0 for
z = —h. From this condition we find the ratio of the constants 4 and B in the general solution

¢ = [ A"+ Be™""] cos (kx — ax).
The result is
¢ = Acos (kx —wt)cosh kiz + k)
From the boundary condition (12.5) we find the relation between k and @ to be
@® = gktanh kh.
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The velocity of propagation of the wave is
1

ijmu cuh’h}

For kh» | we have the result (12.10), and for kh « | the result (12.20)

Uw [muu

PrOBLEM 2. Determine the relation between frequency and wavelength for gravity waves on the surface
npanlin;mobqulds.tbenmbqudbaqmwonbyahdwpbc.udlhcbwhmd
beudmrlyzunddwov The density and depth of the lower hiquid are p and h, those of the upper liquid
arc p' a Land p > p'

SOLUTION. We take the xy-planc as the equilibrium plane of separation of the two liquids. Let us seck a
solution having in the two liquids the forms
¢ = Acosh k(z + h)cos{kx — ext), }

¢’ = Beosh k(z — I )cos{kx — ex),

50 that the conditions at the upper and lower boundarnies are satisfied; see the solution to Problem 1. At the
surface of separation, the pressure must be continuous; by (12.2), this gives the condition

PR+ P = P+ P for 2=l

(n

or

(22

glp—=p )\ @t

Moreover, the velocity component v, must be the same for cach liquid at the surface of separation. This gives the
condition

éP/oz=20¢'Jéz for z=0 3)
Now v, = d¢/dz = & /0t and, substituting (2), we have

Fe &
,(,_,',"_‘-,- - e 4)

az Pk T Par
Substituting (1) in (3) and (4) gives two homogencous lincar equations for A and B, and the condition of
compatibility gives
@ = k‘(”"
pcothu-n-peo(hu
For kh» 1, ki » 1 (both liquids very deep),

while for kh < 1, kh' < 1 (long waves),

Lastly, if kh 2 1 and kh' < 1,
@ = Kgh’'(p—p'Vp.

PrOBLEM 3. Determine the relation between frequency and wavelength for gravity waves propagated
simultancously on the surface of separation and on the upper surface of two hquid layers, the lower (density p)
being infinitely deep, and the upper (density p') having depth & and a free upper surface.

SOLUTION. We take the xy-plane as the equilibrium plane of scparation of the two liquids. Let us seek a
solution having in the two hquids the forms

¢ = Ae* cos(kx —et), }
¢ = [Be™ +Ce*™)cos (kx —ex)

()
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At the surface of separation, i.e. for z = 0, we have the conditions (see Problem 2)

o o 09 Fe e
'a;-'a_io ."-”33' -"a‘f 'é;’. (2)

and at the upper surface, ic. for z = k', the condition

“. log‘.
& *;30’ - @

The first equation (2), on substitution of (1), gives A = C — B, and the remaining two conditions then give two
equations for Band C; from the condition of compatibility we obtain a quadratic equation for @®, whose roots are

p=p)1 ™)
pp +(p=ple ™’
For h' - oo these roots correspond to waves propagated independently on the surface of separation and on the
upper surface.

@® = kg o =kg

ProBLEM 4. Determine the characteristic frequencies of oscillation (see §69) of a liquid with depth h in a
rectangular tank with width a and length b.

SOLUTION. We take the x and y axes along two sides of the tank. Let us seck 2 solution in the form of a
stationary wave:

¢ = f(x, y)cosh k(z + h)cos et

We obtain for f the equation
1 &y
a—x§+3’—‘+k’f-0.
and the condition at the free surface gives, as in Problem 1, the relation
@’ = gktanh kh.

We take the solution of the equation for fin the form
f=cospxcosqy, p+q =k
At the sides of the tank we must have the conditions
v, =0¢/ox=0 for x=0&
v,=0¢/0y=0 for y=05b
Hence we find p = mn/a, ¢ = nx/b, where m, n are integers. The possible values of k¥ are therefore

m
“’"’(7*5)

§13. Internal waves in an incompressible fluid

There is a kind of gravity wave which can be propagated inside an incompressible fluid.
Such waves are due to an inhomogeneity of the fluid caused by the gravitational field. The
pressure (and therefore the entropy s) necessarily varies with height; hence any
displacement of a fluid particle in height destroys the mechanical equilibrium, and
consequently causes an oscillatory motion. For, since the motion is adiabatic, the particle
carries with it to its new position its old entropy s, which is not the same as the equilibrium
value at the new position.
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We shall suppose below that the wavelength is small in comparison with distances over
which the gravitational field causes a marked change in density t; and we shall regard the
fluid itselfl as incompressible. This means that we can neglect the change in its density
caused by the pressure change in the wave. The change in density caused by thermal
expansion cannot be neglected, since it is this that causes the phenomenon in question.

Let us write down a system of hydrodynamic equations for this motion. We shall use a
suffix 0 to distinguish the values of quantities in mechanical equilibrium, and a prime to
mark small deviations from those values. Then the equation of conservation of the entropy
s = 5, + ' can be written, to the first order of smaliness,

0s'/dt+ v-grads, =0, (13.1)

where s,, like the equilibrium values of other quantities, is a given function of the vertical
coordinate z.

Next, in Euler’s equation we again neglect the term (v - grad)v (since the oscillations are
small); taking into account also the fact that the equilibrium pressure distribution is given
by gradp, = p,g, we have to the same accuracy

Since, from what has been said above, the change in density is due only to the change in
entropy, and not to the change in pressure, we can put

’ cpo
r= (6% ) %
and we then obtain Euler's equation in the form
av 6po

We can take p, under the gradient operator, since, as stated above, we always neglect the
change in the equilibrium density over distances of the order of a wavelength. The density
may likewise be supposed constant in the equation of continuity, which then becomes
divy = 0. (13.3)
We shall seek a solution of equations (13.1)-(13.3) in the form of a plane wave:
v = constant x ¢*®*—=0)

and similarly for s’ and p’. Substitution in the equation of continuity (13.3) gives
A k = 0‘ (13.4)

_‘f .Thcdensityamipressurepadienumrehud by
gradp = (Op/dp), gradp =  grad p,

where cis the speed of sound in the fluid. The hydrostatic equation grad p = pg thus gives grad p = (p/c*)g. The
density in the gravitational ficld therefore varies considerably owver distances | = ¢?/g. For air and water,
I = 10km and 200 km respectively.
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i.¢. the fluid velocity is everywhere perpendicular to the wave vector k (a transverse wave).
Equations (13.1) and (13.2) give

1 [dpy ik

iws = v-grads,, -y = | —" | g ——p.
Fach po(aso).' P’

The condition v-k = 0 gives with the second of these equations
po
ik '-(_-): .,
4 3 ), 4

and, eliminating vand s’ from the two equations, we obtain the desired dispersion relation,

@® = wy?sin’f, (13.5)
where
a__9(%) ds
W p(as )’ i (13.6)

Here and henceforward we omit the suffix zero to the equilibrium values of thermo-
dynamic quantities; the z-axis is vertically upwards, and # is the angle between this axis and
the direction of k. If the expression on the right of (13.6) is positive, the condition for the
stability of the equilibrium distribution s(z) (the condition that convection be absent—see
§4) is fulfilled.

We see that the frequency depends only on the direction of the wave vector, and not on
its magnitude. For # = 0 we have @ = 0; this means that waves of the type considered, with
the wave vector vertical, cannot exist.

If the fluid is in both mechanical equilibrium and complete thermodynamic equilibrium,
its temperature is constant and we can write

ds_ (%) 92 —po( 2
dz ap 1d2 ap 7.
Finally, using the well-known thermodynamic relations
(2)-4(2). (2)-I(
ap)r p*\0T),; és), c,\éT),;

where c, is the specific heat per unit mass, we find

Tg Q
T ),

g
a;o = - 13.8
: ; (C'T) ( )

c,P
The dependence of the frequency on the direction of the wave vector has the result that

the wave propagation velocity U = dw/dk is not parallel to k Representing (k) in the
form

. (13.7)

In particular, for a perfect gas,

@ = @o/[1 - (k-v/k)F],
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where v is a unit vector in the vertically upward direction, and differentiating, we find

U= —(w’/wk) (n-v) [v—(a-v)a] (139)
(where n = k/k). This is perpendicular to k, and its magnitude is
U = (wy/k)cos .

Its vertical component is

Usv= —(w,/k)cosfsinb.

§14. Waves in a rotating fluid

Another kind of internal wave can be propagated in an incompressible fluid uniformly
rotating as a whole. These waves are due to the Coriolis forces which occur in rotation.

We shall consider the fluid in coordinates rotating with it. With this treatment, the
mechanical equations of motion must include additional (centrifugal and Coriolis) terms.
Correspondingly, forces (per unit mass of fluid) must be added on the right of Euler’s
equation. The centrifugal force can be written as grad § (Qxr)?, where Q is the angular
velocity vector of the fluid rotation. This term can be combined with the force
—(1/p) grad p by using an effective pressure

P=p—ipQxr). (14.1)

The Coriolis force is 2vx£, and occurs only when the fluid has a motion relative to the
rotating coordinates, v being the velocity in those coordinates. We can transfer this term to
the left-hand side of Euler’s equation, writing the equation as

v/t + (v-grad)v + 2Qxv = —(1/p)grad P. (14.2)

The equation of continuity is unchanged; for an incompressible fluid, it is simply divv = 0.
We shall again assume the wave amplitude to be small, and neglect the term quadratic in
the velocity in (14.2), which becomes

ov/ot+20xv= —(1/p)gradp’, (14.3)

where p’ is the variable part of the pressure in the wave, and p is a constant. The pressure
can be eliminated by taking the curl of both sides. The right-hand side gives zero, and on
the left-hand side, since the fluid is incompressible,

curl (Qxv) = Qdivv— (Q-grad)v
= —(Q-grad)v.
Taking the direction of Q as the z-axis, we write the resulting equation as

é cv
EM v= ma—z (144)

We seek the solution as a plane wave
v=Agkr-on (14.5)
which, since div v = 0, satisfies the transversality condition
k-A=0. (14.6)
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Substitution of (14.5) in (14.4) gives
wkXxvy = 2iQk.v. (14.7)

The dispersion relation for these waves is found by eliminating v from this vector
equation. Vector multiplication on both sides by k gives

— wk?y = 2i0k kxv
and a comparison of the two equations yields the dependence of @ on k:
o =20k /k = 2Qcos ), (14.8)

where 0 is the angle between k and Q.
With (14.4), (14.7) takes the form

nXy = jv,

where n = k/k. If we use the complex wave amplitude in the form A = a +ib with real
vectors & and b, it follows that axb = a: the vectors a and b (both lying in the plane
perpendicular to k) are at right angles and equal in magnitude. By taking their directions as
the x and y axes, and separating real and imaginary parts in (14.5), we find

v, = acos (wt—k-r), v, = —asin (ot —-k-r).

The wave is thus circularly polarized: at each point in space, the vector v rotates in the
course of time, remaining constant in magnitude.t
The wave propagation velocity is

U = dw/dk = (2Q/k)[v—n(n-v)], (14.9)

where v is a unit vector along £; as with internal gravity waves, it is perpendicular to the
wave vector. Its magnitude and its component along Q are

U = (2Q/k)sin#, U-v = (2Q/k)sin’6 = Usin 6.

These are called inertial waves. Since the Coriolis forces do no work on the moving fluid,
the energy in the waves is entirely kinetic energy.

One particular form of axially symmetrical (not plane) inertial waves can be propagated
along the axis of rotation of the fluid; see Problem 1.

There is one more comment to be made, regarding steady motions in a rotating fluid
rather than wave propagation in it.

Let [ be a characteristic length for such motion, and u a characteristic velocity. In order
of magnitude, the term (v-grad)v in (14.2) is »*/l, and 2QXv is Qu. The former can be
neglected in comparison with the latter if u/IQ < 1, and the equation of steady motion then
reduces to

2QxXv= —(1/p)grad P (14.10)
or
20, = (1/p)oP/éx, 2w, = —(1/p}P/dy,  &P[éz =0,

t This motion is relative to rotating coordinates. For fixed coordinates, it is combined with the rotation of the
whole fluid.
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where x and y are Cartesian coordinates in the plane perpendicular to the axis of rotation.
Hence we see that P, and therefore v, and v, are independent of the longitudinal
coordinate z. Next, eliminating P from the first two equations, we get

. %
— st S8
ax Ty =%

and the equation div v = 0 then shows that dv,/dz = 0. Thus steady motion (in rotating
coordinates)in a rapidly rotating fluid is a superposition of two independent motions: two-
dimensional flow in the transverse plane and axial flow independent of z (J. Proudman
1916).

PROBLEMS

PrOBLEM 1. Determine the motion in an axially symmetrical wave propagated along the axis of an
incompressible fluid rotating as a whole (W. Thomson 1880)

SOLUTION. We take cylindrical polar coordinates r, @, z, with the z-axis parallel 1o Q In an axially symmetrical
wave, all quantities are independent of the angle variable ¢. The dependence on ime and on the coordinate 2 is
given by a factor exp [i(kz — wt)]). Taking components in (14.3), we get

—iwe, - A, = ~(1/p)p jér, ()
—iwvy + 2, =0, ~ i, = —(ik/ply. 2)
These are to be combined with the equation of continuity
10 )

Expressing vy and p’ in terms of v, by means of (2) and (3) and substituting in (1), we find the equation

g+%+[g}{-e-%]5-o 4)
for the function F(r) which determines the radial dependence of o

o, = F(r)e* ",

The solution that vanishes for r = 0 is

F = constant x J, [kr/{ (40 je*) - 1}], (5)
where J, is a Bessel function of order 1.

The motion comprises regions between coaxial cylinders with radius r, such that
kr, /{4 /) -1} = x,,

where x,, x;, . . . are the successive zeros of J,(x). On these cylindnical surfaces ¢, = 0, and the fluid therefore
does not cross them.

For these waves in an infinite fluid, @ is independent of k. The possible values of the frequency are, however,
restricted by the condition @ < 20, if this is not satisfied, (4) has no solution satisfying the necessary conditions of
finiteness.

If the rotating fluid is bounded by a cylindrical wall with radius R, we have 10 use the condition v, = O at the
wall. This gives the relation

ka/{ (40P j0®) -1} = x,
between @ and k for a wave with a given » (the number of coaxial regions i it}
PrOBLEM 2. Derive an equation describing an arbitrary small perturbation of the pressure in a rotating fluid.
SoLuTioN. Equation (14.3) in components is
O gy ¥ o N m 13

O 2, - — = . S 4 1
an =T a T pdy’ . pos o
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Differentiating these with respect to x, y, and z, adding, and using div v = 0, we find
1 dv, v,
P i~
Differentiation with respect to ¢, again using equations (1), gives
14 dv,
;EA'.Q‘E'
and by a further differentiation with respect 1o ¢ we arrive at the final equation
& &y
5‘—,Ap’+0’a—‘3--0.

For periodic perturbations with frequency w, this becomes

Py Py ( «r)aj
3;,"’5"'? l-:“ &,--o.
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2

3)

For waves having the form (14.5), this of course gives the known dispersion relation (14.8), with @ < 2Q and a
negative coefficient of &*p//dz* in (3). Perturbations from a point source are propagated along generators of a

cone whose axis is along Q and whose vertical angle is 26, where sin 6 = /200

When @ > 20, the coefficient of 3°p'/dz* in (3) is positive, and this equation becomes Laplace’s equation by an
obvious change in the z scale. In this case, a point source of perturbation affects the whole volume of the fluid, to

an extent that decreases away from the source according 10 a power law.



CHAPTER 11

VISCOUS FLUIDS

§15. The equations of motion of a viscous fluid

Let us now study the effect of energy dissipation, occurring during the motion of a fluid,
on that motion itself. This process is the result of the thermodynamic irreversibility of the
motion. This irreversibility always occurs to some extent, and is due to internal friction
(viscosity) and thermal conduction.

In order to obtain the equations describing the motion of a viscous fluid, we have to
include some additional terms in the equation of motion of an ideal fluid. The equation of
continuity, as we see from its derivation, is equally valid for any fluid, whether viscous or
not. Euler’s equation, on the other hand, requires modification.

We have seen in §7 that Euler’s equation can be written in the form

é i,

% (pv,) = ~ "
wherell , is the momentum flux density tensor. The momentum flux given by formula (7.2)
represents a completely reversible transfer of momentum, due simply to the mechanical
transport of the different particles of fluid from place to place and to the pressure forces
acting in the fluid. The viscosity (internal friction) causes another, irreversible, transfer of
momentum from points where the velocity is large to those where it is small.

The equation of motion of a viscous fluid may therefore be obtained by adding to the
“ideal” momentum flux (7.2) a term — ¢, which gives the irreversible “viscous™ transfer of
momentum in the fluid. Thus we write the momentum flux density tensor in a viscous fluid
in the form

My =pdy+poo,—0y = —0y+po,n,. (15.1)
The tensor

Oy = —ﬂgird’a (15.2)

is called the stress tensor, and o', the viscous stress temsor. o, gives the part of the
momentum flux that is not due to the direct transfer of momentum with the mass of
moving fluid.t

The general form of the tensor o', can be established as follows. Processes of internal
friction occur in a fluid only when different fluid particles move with different velocities, so
that there is a relative motion between various parts of the fluid. Hence ¢’, must depend on
the space derivatives of the velocity. If the velocity gradients are small, we may suppose

t We shall see below that ¢’, contains a term proportional 1o 4, 1.¢ of the same form as the term pd, . When
the momentum flux tensor is put in such a form, therefore, we should specify what is meant by the pressure p; see
the end of §49.

42
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that the momentum transfer due to viscosity depends only on the first derivatives of the
velocity. To the same approximation, o', may be supposed a linear function of the
derivatives dv,/dx,. There can be no terms in o', independent of dv,/dx,, since o', must
vanish for v = constant. Next, we notice that o', must also vanish when the whole fluid is
in uniform rotation, since it is clear that in such a motion no internal friction occurs in the
fluid. In uniform rotation with angular velocity £, the velocity v is equal to the vector
product 2 X r. The sums

dv, v,

’ ax;
are linear combinations of the derivatives dv,/éx,, and vanish when v = Q xr. Hence o',
must contain just these symmetrical combinations of the derivatives Jv,/dx,.
The most general tensor of rank two satisfying the above conditions is

Ov; ny
0’“ g"(ax. +‘a—x. -“lla )+c6d a_x'v (15'3)
with coefficients n and { independent of the velocity. In making this statement we use the
fact that the fluid is isotropic, as a result of which its properties must be described by scalar
quantities only (in thiscase, nand {). The termsin (15.3) are arranged so that the expression
in parentheses has the property of vanishing on contraction with respect to i and k.t The
constants n and { are called coefficients of viscosity, and { often the second viscosity. As we
shall show in §§16 and 49, they are both positive:

n>0, (>0 (154)

The equations of motion of a viscous fluid can now be obtained by simply adding the
expressions do’, /dx, to the right-hand side of Euler’s equation

i . oo, \_ _¢%p
ot ‘8x, ox;
Thus we have

d,, ou\_ _op 8 [ (on on
T T A L TN ) | A (L) R

This is the most general form of the equations of motion of a viscous fluid. The quantities
and { are functions of pressure and temperature. In general, pand 7, and therefore g and (|
are not constant throughout the fluid, so that  and { cannot be taken outside the gradient
operator.

In most cases, however, the viscosity coefficients do not change noticeably in the fluid,
and they may be regarded as constant. We then have equations (15.5), in vector form, as

p[g+(v-¢nd)v]= —gradp+nlv+ ({ +4in)graddivv. (15.6)

This is called the Navier-Stokes equation. It becomes considerably simpler if the fluid
may be regarded as incompressible, so that div v = 0,and the last term on the right of (15.6)

t That is, on taking the sum of the components with i = k.
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is zero. In discussing viscous fluids, we shall almost always regard them as
incompressible, and accordingly use the equation of motion in the formt

dv 1 n
E.‘.(‘.’“)‘z -—; '“"";A' (|5-7)

The stress tensor in an incompressible fluid takes the simple form

We see that the viscosity of an incompressible fluid is determined by only one coefficient.
Since most fluids may be regarded as practically incompressible, it is this viscosity
coefficient n which is generally of importance. The ratio

v=n/p (15.9)

is called the kinematic viscosity (while n itself is called the dynamic viscosity). We give below
the values of n and v for various fluids, at a temperature of 20" C:

n (g/cm sec) vfem® /sex)
Water 0010 0010
Air 000018 0150
Alcohol 0018 0022
Glycerine 85 68
Mercury 00156 00012

It may be mentioned that the dynamic viscosity of a gas at a given temperature is
independent of the pressure. The kinematic viscosity, however, is inversely proportional to

the pressure.
The pressure can be eliminated from equation (15.7) in the same way as from Euler’s

equation. Taking the curl of both sides, we obtain, instead of equation (2.11) as for an ideal
fluid,

g—‘ (curly) = curl (v X curly) + v (curly)

Since the fluid is incompressible, the equation can be transformed by expanding the
product in the first term on the right and using the equation div v = 0:

g;(c'l-v)+(v-pﬂ)c-lv—(ctl v-grad) v

= v/\ curl v. (15.10)

t Equation (15.7) was first stated as a result of studies on models by C. L. Nawer (1827). A derivation, similar to
the modern one, for equations (15.6) (without the { term) and (15.7) was given by G. G. Stokes (1845).
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When the velocity distribution is known, the pressure distribution in the fluid can be found
by solving the Poisson-type equation

v, v, ?? N
dx, Ox, péx. ox,’

which is obtained by taking the divergence of (15.7).

We may also give the equation satisfied by the stream function ¢(x,y) in two-
dimensional flow of an incompressible viscous fluid. It is derived by substituting (10.9) in
(15.10):

Ap= —p (15.11)

— e ———

é oLy Ly
(7tA ax dy Tay ox v A =0. (15.12)

We must also write down the boundary conditions on the equations of motion of a
viscous fluid. There are always forces of molecular attraction between a viscous fluid and
the surface of a solid body, and these forces have the result that the layer of fluid
immediately adjacent to the surface is brought completely to rest, and “adheres™ to the
surface. Accordingly, the boundary conditions on the equations of motion of a viscous
fluid require that the fluid velocity should vanish at fixed solid surfaces:

'=0, (15.13)

It should be emphasized that both the normal and the tangential velocity component must
vanish, whereas for an ideal fluid the boundary conditions require only the vanishing of
U

In the general case of a moving surface, the velocity v must be equal to the velocity of the
surface.

It is easy to write down an expression for the force acting on a solid surface bounding the
fluid. The force acting on an element of the surface is just the momentum flux through this
element. The momentum flux through the surface element df is

[1,df, = (priv, —0,)df,.

Writing df; in the form df, = n,df, where n is a unit vector along the normal, and recalling
that v = 0 at a solid surface,] we find that the force P acting on unit surface area is

P,= —oun, = pn,—o'un,. (15.14)

The first term is the ordinary pressure of the fluid, while the second is the force of friction,
due to the viscosity, acting on the surface. We must emphasize that m in (15.14) is a unit

vector along the outward normal to the fluid, i.c. along the inward normal to the solid
surface.

t We may note that, in general, Euler's equations cannot be satisfied with the extra boundary condition (in
comparison with the case of an ideal fluid) that the tangential velocity be 2ero. Mathematically, this occurs
becuase the equation is first-order in the derivatives with respect to the coordinates, whereas the Navier-Stokes
equation is second-order.

{1 In determining the force acting on the surface, each surface clement must be considered in a frame of
reference in which it is at rest. The force is equal to the momentum flux only when the surface is fixed.

m-C
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If we have a surface of separation between two immiscible fluids, the conditions at the
surface are that the velocities of the fluids must be equal and the forces which they exert on
each other must be equal and opposite. The latter condition is written

Ny a0y atny 03 ,=0,

where the suffixes 1 and 2 refer to the two fluids. The normal vectors n, and n, are in
opposite directions, i.e. n, = —mn, = n, so that we can write

ROy ™= N0O3 4. (15.15)
At a free surface of the fluid the condition
oo =0 n—pn =0 (15.16)

must hold.

EQUATIONS OF MOTION IN CURVILINEAR COORDINATES

We give below, for reference, the equations of motion for a viscous incompressible fluid
in frequently used curvilinear coordinates. In cylindrical polar coordinates r, ¢, z the
components of the stress tensor are

dv, 1év, v, v
% = =P+ o=yt e 2)
16v, v, ov, 1 0v,
%es= "’*2"(;&*7)' % "(a:'*?a_q{)’
av‘ h' a r
O = _p+2"32't O.,= Q(a' +6—Z (15’17)

The three components of the Navier-Stokes equation are

a r > rép r
Oy . 1% 2 %6, _vs
5 t(verade, += rag T\ LRt a2
o, __la
=5, +(v-grady, = S 3t o (15.18)
where
of v,of of
(' w)f_ rar+ra‘+ Saz'
18 [\ 13f &
Af-;a('a)*‘?s;*a?-
The equation of continuity is
1(rv,) 1 v,  Gv.
F o +r a¢+az 0. (15.19)
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In spherical polar coordinates r, ¢, # we have for the stress tensor

du,
o, = -P+2"-a-"

1 dv, v, vycoth
%= P zq(rnn03¢+ M _-)'
1dv, v,
Coo "*2"('60'* )
(15.20)
o = 1 Ov, Qg._g._
" "rao ér r
1 vy 10v, v,cotl
"“"’(rsmaa¢+ @ r )

w1 Co v
T =M\ Gr rsinfé¢p r

while the Navier-Stokes equations are

dv, ve? + 0,2
T*‘(V grad)y, ———r- e
- 2 OvsinG) 2 dw, 2,
B 55—“[‘“" Fsind 0 rsnfde P
% bty _vy’cot0
A "+ (v-gradj, + S
1 dp 2c0s0 dv, 2%, v
";FO”[A"' Psin’0 3¢ ' P 0 r’sm’O}
_—+(v.g|-“)v‘ v"o_._”o"g:@_o
1o 2 &, 2c0s0 in, v,
_Esmo%*"[A"'* 03¢  Psin’0 3¢ rsin ,0] (15.21)
where
of veof 3 of
(v- m‘)f-”'a"‘l’ E‘l"-mo‘a—"

S\, 1 af. .\, 1 &
ar= rzar(’z )*7&:793_0( 9% )Rmzaaz =0

The equation of continuity is

14(rv,) 1 O(vesin€) 1 du,
2 or Vran 0 runboe (1522
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§16. Energy dissipation in an incompressible fluid

The presence of viscosity results in the dissipation of energy, which is finally
transformed into heat. The calculation of the energy dissipation is especially simple for an
incompressible fluid.

The total kinetic energy of an incompressible fluid is

g_sipjfdv.

We take the time derivative of this energy, writing é(dpe® )/ét = puv,év,/ét and substituting
for dv;/dt the expression for it given by the Navier-Stokes equation:

oo, _ _ ou _1ép 1ida

The result is

a 9 8o’y
5, dev’) = —pv-(v vt‘)'—'in‘pﬂ.-?x‘—
av ’

ox,

Here v-0’ denotes the vector whose components are po’,. Since div v =0 for an
incompressible fluid, we can write the first term on the right as a divergence:

%(}pv’)c -di&{pv(}v’-i'g)-v-(]-da%"- (16.1)

The expression in brackets is just the energy flux denmsity in the fluid: the term
pv(3v? + p/p) is the energy flux due to the actual transfer of fluid mass, and is the same as
the energy flux in an ideal fluid (see (10.5)). The second term, v - &', is the energy flux due to
processes of internal friction. For the presence of viscosity results in a momentum flux o', ;
a transfer of momentum, however, always involves a transfer of energy, and the energy flux
is clearly equal to the scalar product of the momentum flux and the velocity.

If we integrate (16.1) over some volume V, we obtain

%I&pv’dl’ - -ﬂp-(;oz +§)---«] I Tazed (162)

The first term on the right gives the rate of change of the kinetic energy of the fluid in V
owing to the energy flux through the surface bounding V. The integral in the second term
is consequently the decrease per unit time in the kinetic energy owing to dissipation.

If the integration is extended to the whole volume of the fluid, the surface integral
vanishes (since the velocity vanishes at infinityt), and we find the energy dissipated per unit
time in the whole fluid to be

Ep=- a',—-dV -gI«.(—-+—- v,

éx, ©x,

= —p(v-’t‘)( vz+p)+d“(' o)-az

t WcthhmmdthhdnamdMaﬂMt&&nduamamﬁnny
Here, and in similar cases, we speak, for the sake of definitencss, of 2n mfinite volume of fluid, but this implies no

loss of generality. For a fluid enclosed in a finite volume, the surface integral again vanishes, because the velocity
at the surface vanishes.
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since the tensor o', is symmetrical. In incompressible fluids, the tensor o', is given by
(15.8), so that we have finally for the energy dissipation in an incompressible fluid

d, n\
E = -*"I(&-*Ei.) dv. (16.3)

The dissipation leads to a decrease in the mechanical energy, i.c. we must have E,, < 0.
The integral in (16.3), however, is always positive. We therefore conclude that the viscosity
coefficient n is always positive.

PROBLEM

Transform the integral (16.3) for potential flow into an integral over the surface bounding the region of flow.
SoLution. Putting dv, /éx, = éu,/dx, and integrating once by parts, we find

By = -2,,“‘(;';.‘-)’4& = -th.g—'.dI..

By = --:j'undv'-a

§17. Flow in a pipe

We shall now consider some simple problems of motion of an incompressible viscous
fluid.

Let the fluid be enclosed between two parallel planes moving with a constant relative
velocity u. We take one of these planes as the xz-plane, with the x-axis in the direction of u.
It is clear that all quantities depend only on y, and that the fluid velocity is everywhere in
the x-direction. We have from (15.7) for steady flow

dp/dy =0, d?v/dy* =0.
(The equation of continuity is satisfied identically.) Hence p = constant, v = ay + b. For
y = 0and y = h (h being the distance between the planes) we must have respectively v = 0

and v = u. Thus
v= yu/h. (17.1)

The fluid velocity distribution is therefore linear. The mean fluid velocity is

6-ijvdy=§u (17.2)

o
From (15.14) we find that the normal component of the force on cither plane is just p, as it
should be, while the tangential friction force on the plane y =0 s
Gy, = ndv/dy = nu/k; (17.3)

the force on the plane y = his —nu/h.
Next, let us consider steady flow between two fixed parallel planes in the presence of a
pressure gradient. We choose the coordinates as before; the x-axis is in the direction of
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motion of the fluid. The Navier-Stokes equations give, since the velocity clearly depends
only on y,

o _1dp O _,
oy néx' @y
The second equation shows that the pressure is independent of y, i.c. it is constant across
the depth of the fluid between the planes. The right-hand side of the first equation is
therefore a function of x only, while the left-hand side is a function of y only; this can be
true only if both sides are constant. Thus dp/dx = constant, i.c. the pressure is a linear
function of the coordinate x along the direction of flow. For the velocity we now obtain
1 dp
v= 2—" a;y’ +ay+b.
The constants a and b are determined from the boundary conditions, v = 0 for y = 0 and
y = h. The result is
1 dp
= ———y(y- 74
v 2 dx y(y—h) (17.4)
Thus the velocity varies parabolically across the fluid, reaching its maximum value in the
middle. The mean fluid velocity (averaged over the depth of the fluid) is

" h* dp
V= - ﬁt’ a (175)
The frictional force acting on one of the fixed planes is
axy = 'l(av/a)’),-o = -ihdp/dx‘ (17'6)

Finally, let us consider steady flow in a pipe with arbitrary cross-section (the same along
the whole length of the pipe, however). We take the axis of the pipe as the x-axis. The fluid
velocity is evidently along the x-axis at all points, and is a function of y and z only. The
equation of continuity is satisfied identically, while the y and z components of the
Navier-Stokes equation again give ép/éy = ép/dz = 0, i.c. the pressure is constant over
the cross-section of the pipe. The x-component of equation (15.7) gives

v v 1dp

oy a2 pax
Hence we again conclude that d p/dx = constant; the pressure gradient may therefore be
written — Ap/l, where Ap is the pressure difference between the ends of the pipe and [is its
length.

Thus the velocity distribution for flow in a pipe is determined by a two-dimensional
equation of the form A v = constant. This equation has to be solved with the boundary
condition v = 0 at the circumference of the cross-section of the pipe. We shall solve the
equation for a pipe with circular cross-section. Taking the origin at the centre of the circle
and using polar coordinates, we have by symmetry v = o(r). Using the expression for the
Laplacian in polar coordinates, we have

1d(dv\_ _4p
rdr\ dr nl

(17.7)
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Integration gives
Ap
V= -‘-"l-r’ +alogr+b. (17.8)

The constant a must be put equal to zero, since the velocity must remain finite at the centre
of the pipe. The constant b is determined from the requirement that v = O for r = R, where
R is the radius of the pipe. We then find

8P g2
v 4'"(R ). (17.9)

Thus the velocity distribution across the pipe is parabolic.

It is easy to determine the mass Q of fluid passing per unit time through any cross-
section of the pipe (called the discharge). A mass p - 2nrv dr passes per unit time through an
annular element 2nr dr of the cross-sectional area. Hence

~
Q = 2xrp j' rodr.
Using (17.9), we obtain
Q=—"-R* (17.10)

The mass of fluid is thus proportional to the fourth power of the radius of the pipe.t

PROBLEMS

PROBLEM 1. Determine the flow in a pipe of annular cross-section, the internal and external radii being R, R, .

SOLUTION. Determining the constants a and b in the general solution (17.8) from the conditions that » = 0
for r = R, and r = R,, we find

Ap R’ -R,? r}
e § R SRS N B
v m[ ¥ Y og(Ry/R,) PR,

The discharge is

. ._(Rz:‘kl:)’
Q'%‘:[" ~R = os (RJR,)

PrOBLEM 2. The same as Problem 1, but for a pipe of clliptical cross-section.

SOLUTION. We seck a solution of equation (17.7) in the form » = Ay* + Bz* + C. The constants A, B, C are
determined from the requirement that this expression must satisfly the boundary condition v = 0 on the
circumference of the ellipse (i.e. Ay* + B* + C = 0 must be the same as the equation y° /a* + 27 /b = |, where a
and b are the semi-axes of the ellipse). The result is

ap @ (l yo2
PEmidsr\ & B

t Thedependence of Q on Apand R given by this formula was established empirically by G. Hagen (1839) and
J. L. M. Poiseuille (1840) and theoretically justified by G. G. Stokes (1845)

Parallel viscous flow between fixed walls is often called Poiseuille flow in the Bterature; equation (17.4) relatesto
two-dimensional Poiseuille flow.
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The discharge is
-lAp_a’b’
¢ vl @b
ProBLEM ). The same as Problem 1, but for a pipe whose cross-section is an equilateral triangle with side a.
SOLUTION. The solution of equation (17.7) which vanishes on the bounding triangle is
Ap 2
'-773;'*..,".

where h, , hy, hy are the lengths of the perpendiculars from a given pownt in the tnangle o its three sides. For cach
of the expressions A h,, Ahy, Ohy (where & = 8%/82% 4 8% /y*) 1s 2er0; this is seen at once from the fact that
each of the perpendiculars h, , h;, h, may be taken as the axis of yor z,and the result of applying the Laplacian toa
coordinate is zero. We therefore have

PN (h.h,h,) = uh. "hx "“ h’+*, ".,"“‘ *.,"h| "“.}’

Butgrad h, = n,, grad h, = n,, grad h, = u,, where n, , 8,, 8, arc unit vectors along the perpendiculars b, h,,
hy.Anytwoofm,,n,,n,arcat an angle 2x/3, sothat grad h, -grad b, = », -8, = c0s (2x/3) = ~ }, and soon. We
thus obtain the relation

O (hyhhy) = —(hy +hy+hy) = —§/3a
and we see that equation (17.7) is satished. The discharge is

Llc‘&p
3200

PrOBLEM 4. A cylinder with radius R, moves parallel 1o its axis with velocity » inside a coaxial cylinder with
radius R;. Determine the motion of a fluid occupying the space between the cylinders.

SOLUTION. We take cylindrical polar coordinates, with the -axs along the as of the cylinders. The velocity is
everywhere along the z-axis and depends only on r (as does the pressure) ¢, = rir) We obtain for ¢ the equation

1d/ de
A";z('z)"‘

the term (v - grad)v = v dv/dz vanishes identically. Using the boundary conditions v = ufor r = R, and v = Ofor
r= R:. we ﬁM
log(r/R;)

r=u—-_

log(R,/R;)
The frictional force per unit length of ather cylinder is 2xpu/log( R, /R, )

PROBLEM 5. A layer of fluid with thickness h is bounded above by a free surface and below by a fixed plane
inclined at an angle a to the horizontal. Determine the flow due to grawty.

SoLuTION. We take the fixed plane as the xy-plane, with the x-aws in the direction of flow (Fig. 6) We seck a
solution depending only on z. The Navier-Stokes equations with r, = ¢(z) in a gravitational field are
dx

qzz;w»pgﬁnaso. %+pgcu:-a

Fic 6
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At the free surface (z = h) we must have o, = ndo/dz =0, ¢, = ~p = —p, (p, being the atmospheric
pressure). For z = 0 we must have v = (. The solution satislying these conditions s

P = Py +pglh-z)cosa, l'-";.xﬂh-:[
The discharge, per unit length in the y-direction, is
»
pgh’suna

Q-pfm
o
ProBLEM 6. Determine the way in which the pressure falls along a tube of circular cross-section in which a
viscous perfect gas is flowing isothermally (bearing in mind that the dynamic wiscosity n of a perfect gas is
independent of the pressure).

3

SoLuTioN. Over any short section of the pipe the gas may be supposed incompressible, provided that the
pressure gradient is not oo great, and we can therefore use formula (17.10), according to which

Tdx  =pR*

Over greater distances, however, p varies, and the pressure is not a bacar function of x. According to the
equation of state, the gas density p = mp/T, where m is the mass of a molecule, so that

dp _ QT 1

dx =zmR* p

(The discharge Q of the gas through the tube is obviously the same, whether or not the gas is incompressible.)
From this we find
. 169QT

P2 -’lz . .'L

where p,, p, are the pressures at the ends of a section of the tube with length [

§18. Flow between rotating cylinders

Let us now consider the motion of a fluid between two infinite coaxial cylinders with
radii R,, R, (R, > R,), rotating about their axis with angular velocities Q,, Q,.1 We take
cylindrical polar coordinates r, ¢, z, with the z-axis along the axis of the cylinders. It is
evident from symmetry that

b,=0,=0, v,=v(r) p=plr)

The Navier-Stokes equation in cylindrical polar coordinates gives in this case two
equations:

dp/dr = po?/r, (18.1)
d’v ldv v
— e —— = 0. 182
ar Trar P~ . (18:2)
The latter equation has solutions of the form 7*; substitution gives n = + 1, so that
v= ar+e.

r

The constants a and b are found from the boundary conditions, according to which the
fluid velocity at the inner and outer cylindrical surfaces must be equal to that of the
—‘r Flow b&wmr&aﬁngqﬁmaoﬁaaMCowueﬁavitkW(lmthlheimit
R, = R;,it becomes the flow (17.1) between moving parallel planes, referred to as two-dimensional Couette flow.

R-C*



56 Viscous Fluids §19

correspondingcylinder:v = R, Q, forr = R,,v = R,Q, forr = R,. Asaresult we find the
velocity distribution to be

QR -, R (Q,-0Q,)R,*R,* 1
TRI-R? TYVTRA-RY T
The pressure distribution is then found from (18.1) by straightforward integration.
For Q, = Q, = Qwe have simply v = Qr, i.c. the fluid rotates rigidly with the cylinders.
When the outer cylinder is absent (Q, = 0, R, = o) we have v = Q, R, ?/r.
Let us also determine the moment of the frictional forces acting on the cylinders. The

frictional force acting on unit area of the inner cylinder is along the tangent to the surface
and, from (15.14), is equal to the component o', of the stress tensor. Using formulae

(15.17), we find
é
R (]

9y — )Ry’
Rzz — R|z .

The moment of this force is found by multiplying by R, , and the total moment M, acting
on unit length of the cylinder by multiplying the result by 2zR,. We thus have

M, = — 4xn(Q, — )R, *R,*

1 Rzl _ an '

The moment of the forces acting on the outer cylinder is M, = — M,. When Q, = Oand
the gap between the cylinders is small (6 = R, — R, < R,), (18.4) becomes

MZ = !,RSU/é, (18.5)

where S > 2n R is the surface area of the cylinder per unit length, and u = Q, R is its
peripheral velocity.t

The following general remark may be made concerning the solutions of the equations of
motion of a viscous fluid which we have obtained in §§17 and 18. In all these cases the non-
linear term (v-grad)v in the equations which determine the velocity distribution is
identically zero, so that we are actually solving linear equations, a fact which very much
simplifies the problem. For this reason all the solutions also satisfy the equations of motion
for an incompressible ideal fluid, say in the form (10.2) and (10.3). This is why formulae
(17.1) and (18.3) do not contain the viscosity coefficient at all. This coefficient appears only
in formulae, such as (17.9), which relate the velocity to the pressure gradient in the fluid,
since the presence of a pressure gradient is due to the viscosity; an ideal fluid could flow in a
pipe even if there were no pressure gradient.

0= (18.3)

(18.4)

§19. The law of similarity

In studying the motion of viscous fluids we can obtain a number of important results
from simple arguments concerning the dimensions of various physical quantities. Let us

t The solution of the more complex problem of the motion of a viscous fluid in a narrow space between
cylinders whose axes are parallel but not coincident may be found in: N E. Kochin, I. A Kibel'and N. V. Roze.
Theoretical Hydromechanics ( Teoreticheskaya gidromekhanika), Part 2, p. 534, Moscow 1963; A. Sommerfeld,
M echanics of Deformable Bodies, §36, New York 1950.
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consider any particular type of motion, for instance the motion of a body of some definite
shape through a fluid. If the body is not a sphere, its direction of motion must also be
specified: e.g. the motion of an ellipsoid in the direction of its greatest or least axis.
Alternatively, we may be considering flow in a region with boundaries having a definite
form (a pipe with given cross-section, etc.).

In such a case we say that bodies of the same shape are geometrically similar, they can be
obtained from one another by changing all lincar dimensions in the same ratio. Hence, if
the shape of the body is given, it suffices to specify any one of its lincar dimensions (the
radius of a sphere or of a cylindrical pipe, one semi-axis of a spheroid with given
eccentricity, and so on) in order to determine its dimensions completely.

We shall at present consider steady flow. If, for example, we are discussing flow past a
solid body (which case we shall take below, for definiteness), the velocity of the main
stream must therefore be constant. We shall suppose the fluid incompressible.

Of the parameters which characterize the fluid itself, only the kinematic viscosity
v = n/p appears in the equations of hydrodynamics (the Navier-Stokes equations); the
unknown functions which have to be determined by solving the equations are the velocity v
and the ratio p/p of the pressure p to the constant density p. Moreover, the flow depends,
through the boundary conditions, on the shape and dimensions of the body moving
through the fluid and on its velocity. Since the shape of the body is supposed given, its
geometrical properties are determined by one lincar dimension, which we denote by [. Let
the velocity of the main stream be w. Then any flow is specified by three parameters, v, u and
[. These quantities have the following dimensions:

v=cm?/sec, I=cm, wu=cm/sec

It is easy to verify that only one dimensionless quantity can be formed from the above
three, namely ul/v. This combination is called the Reynolds number and is denoted by R:

R =pul/n=ul/v. (19.1)

Any other dimensionless parameter can be written as a function of R.

We shall now measure lengths in terms of /, and velocities in terms of , i.e. we introduce
the dimensionless quantities (r/l, v/u. Since the only dimensionless parameter is the
Reynolds number, it is evident that the velocity distribution obtained by solving the
equations of incompressible flow is given by a function having the form

v =uf(r/LR). (19.2)

It is seen from this expression that, in two different flows of the same type (for example,
flow past spheres with different radii by fluids with different viscosities), the velocities v/u
are the same functions of the ratio r/! if the Reynolds number is the same for each flow.
Flows which can be obtained from one another by simply changing the unit of
measurement of coordinates and velocities are said to be similar. Thus flows of the same
type with the same Reynolds number are similar. This is called the law of similarity (O.
Reynolds 1883).

A formula similar to (19.2) can be written for the pressure distribution in the fluid. Todo
s0, we must construct from the parameters v, [, u some quantity with the dimensions of
pressure divided by density; this quantity can be u”, for example. Then we can say that
p/pu? is a function of the dimensionless variable r/! and the dimensionless parameter R.
Thus

p=pu’f(r/LR) (19.3)
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Finally, similar considerations can also be applied to quantities which characterize the
flow but are not functions of the coordinates. Such a quantity is, for instance, the drag force
F acting on the body. We can say that the dimensionless ratio of F to some quantity formed
from v, u, I, p and having the dimensions of force must be a function of the Reynolds
number alone. Such a combination of v, u, I, p can be pu’F, for example. Then

F = pi®P f(R). (19.4)

If the force of gravity has an important effect on the flow, then the latter is determined
not by three but by four parameters, [, u, v and the acceleration g due to gravity. From these
parameters we can construct not one but two independent dimensionless quantities. These
can be, for instance, the Reynolds number and the Froude number, which is

F=u/lg. (19.5)

In formulae (19.2)-(19.4) the function f will now depend on not one but two parameters (R
and F), and two flows will be similar only if both these numbers have the same values.

Finally, we may say a little regarding non-steady flows. A non-steady flow of a given type
is characterized not only by the quantities v, w, [ but also by some time interval t
characteristic of the flow, which determines the rate of change of the flow. For instance, in
oscillations, according to a given law, of a solid body, of a given shape, immersed in a fluid,
t may be the period of oscillation. From the four quantities v, &, [, r we can again construct
two independent dimensionless quantities, which may be the Reynolds number and the

number S = ut/l, (19.6)

sometimes called the Strouhal number. Similar motion takes place in these cases only if
both these numbers have the same values.

If the oscillations of the fluid occur spontaneously (and not under the action of a given
external exciting force), then for motion of a given type S will be a definite function of R:

S=/f(R)

§20. Flow with small Reynolds numbers

The Navier-Stokes equation is considerably simplified in the case of flow with small
Reynolds numbers. For steady flow of an incompressible fluid, this equation is

(v-gradjv = —(1/p)gradp + (n/p) L v

The term (v - grad)vis of the order of magnitude of «” /I, uand | having the same meaning as
in §19. The quantity (n/p) A vis of the order of magnitude of qu/pl*. The ratio of the two is
just the Reynolds number. Hence the term (v-grad)v may be neglected if the Reynolds
number is small, and the equation of motion reduces to a linear equation

nl.v—gradp = 0. (20.1)
Together with the equation of continuity
divev=0 (20.2)
it completely determines the motion. It is useful to note also the equation
A curlv =0, (20.3)

which is obtained by taking the curl of equation (20.1).
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As an example, let us consider rectilinear and uniform motion of a sphere in a viscous
fluid (G. G. Stokes 1851). The problem of the motion of a sphere, it is clear, is exactly
equivalent to that of flow past a fixed sphere, the fluid having a given velocity u at infinity.
The velocity distribution in the first problem is obtained from that in the second problem
by simply subtracting the velocity w; the fluid is then at rest at infinity, while the sphere
moves with velocity — u. If we regard the flow as steady, we must, of course, speak of the
flow past a fixed sphere, since, when the sphere moves, the velocity of the fluid at any point
in space varies with time.

Since div(v —u) = div v = 0, v — u can be expressed as the curl of some vector A:

v—u=curl A,

with curl A equal to zero at infinity. The vector A must be axial, in order for its curl to be
polar, like the velocity. In flow past a sphere, a completely symmetrical body, there is no
preferred direction other than that of u. This parameter u must appear linearly in A,
because the equation of motion and its boundary conditions are linear. The general form
of a vector function A(r) satisfying all these requirements is A = /" (r)n Xu, wheren is a
unit vector parallel to the position vector r (the origin being taken at the centre of the
sphere), and /* (r) is a scalar function of r. The product /" (r)a can be represented as the
gradient of another function f(r). We shall thus look for the velocity in the form

v = u+curl (grad /X u) = u+ curl curl (fu) (204)

the last expression is obtained by noting that u is constant.
To determine the function f, we use equation (20.3). Since

curlv = curl curl curl( fu) = (grad div - . ) curl( fu)
= — /\ curl( fu),

(20.3) takes the form A? curl( fu) = A ?(grad fxu) = (/\*grad /)xu = 0. It follows from
this that

Nlgradf =0 (20.5)
A first integration gives
A?f = constant.

It is easy to see that the constant must be zero, since the velocity difference v —u must
vanish at infinity, and so must its derivatives. The expression /\?f contains fourth
derivatives of f, whilst the velocity is given in terms of the second derivatives of f. Thus we
have

,d

Hence

Af=2a/r+c.
The constant ¢ must be zero if the velocity v — wis to vanish at infinity. From A\ f = 2a/r we
obtain

f=ar+bjr. (20.6)

The additive constant is omitted, since it is immaterial (the velocity being given by
derivatives of f).
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Substituting in (20.4), we have after a simple calculation

ve=u—a u+ -'(--n)_ +b3i(.;:)_f -'

(20.7)

The constants a and b have to be determined from the boundary conditions: at the
surface of the sphere (r = R), v = 0, i.e.

—uf 2 b-l Il-:+-§-b- 0

u R*Fs +n(u-n) R e = 0,
Since this equation must hold for all n, the coefficients of u and n(u - n) must ecach vanish.
Hence a = R, b = }R*. Thus we have finally

f=3iRr+iR%/r, (20.8)

V= — gR!f n(e-s) _ }R’.—- -'f.’(l'l)

(20.9)

or, in spherical polar components with the axis parallel to u,
3R R° )

p= IICOSO[I —E +i;"}

(20.10)
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This gives the velocity distribution about the moving sphere. To determine the pressure,
we substitute (20.4) in (20.1):

gradp = n/\v = n/ curl curl ( fu)
= nl\ (grad div (fu)—ulLf)
But A%f=0, and so
gradp = grad[n /A div( fu)] = grad(nu-grad /. f).

Hence
p=nu-grad A f+ p, (20.11)
where p, is the fluid pressure at infinity. Substitution for f leads to the final expression
u-n
P=pPo—in3 R (20.12)

Using the above formulae, we can calculate the force F exerted on the sphere by the
moving fluid (or, what is the same thing, the drag on the sphere as it moves through the
fluid). To do so, we take spherical polar coordinates with the axis parallel to u; by
symmetry, all quantities are functions only of r and of the polar angle 6. The force F is
evidently parallel to the velocity u. The magnitude of this force can be determined from
(15.14). Taking from this formula the components, normal and tangential to the surface, of
the force on an element of the surface of the sphere, and projecting these components on
the direction of u, we find

F=§(—pcos&+o’,,oos&—a’,.sin0)dj; (20.13)

where the integration is taken over the whole surface of the sphere.
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Substituting the expressions (20.10) in the formulae
, dv, 100, vy v,
To= G Te= "(m tor ‘7)
(see (15.20)), we find that at the surface of the sphere
o, =0, 0= —(3n/2R)usin b,

while the pressure (20.12)is p = p, — (35/2R)ucos 6. Hence the integral (20.13) reduces to
F = (3nu/2R) §df. In this way we finally arrive at Stokes’ formula for the drag on a sphere
moving slowly in a fluid:t

F = 6xnRu. (20.14)

Thedragis proportional to the velocity and linear size of the body. This could have been
foreseen from dimensional arguments: the fluid density p does not appear in the
approximate equations (20.1), (20.2), and so the force F which they give must be expressed
only in terms of n, uand R; from these, only one combination with the dimensions of force
can be formed, namely the product nRu.

A similar dependence occurs for slowly moving bodies with other shapes. The direction
of the drag on a body of arbitrary shape is not the same as that of the velocity; the general
form of the dependence of F on u can be written

F, = na,u, (20.15)

where a,, is a tensor of rank two, independent of the velocity. It is important to note that
this tensor is symmetrical, a result which holds in the incar approximation with respect to
the velocity, and is a particular case of a general law valid for slow motion accompanied by
dissipative processes (see SP1, §121).

R EFINEMENT OF STOKES' FORMULA

The above solution of the problem of flow past a sphere is not valid at large distances,
even if the Reynolds number is small. To see this, let us estimate the term (v-grad)v
neglected in (20.1). At large distances, v = u; the velocity derivatives there are of the order
of uR/r?, asis seen from (20.9). Hence (v-grad)v ~ u® R/r?. The terms retained in (20.1) are
of the order of nRu/pr?, as can be seen from the same expression (20.9) for the velocity or
(20.12) for the pressure. The condition nRu/pr® » w*R/r? is satisfied only for distances
such that

r€viu (20.16)

At greater distances, the terms neglected are not negligible, and the velocity distribution so
found is incorrect.

t With a view to later applications, it may be mentioned that calculations with (20.7) and the constants aand b
undetermined give
F = 8xnau. (20.14a)

The drag can also be calculated for a siowly moving cllipsoid with any shape. The relevant formulae are given
by H. Lamb, Hydrodynamics, 6th ed., §339, Cambridge 1932. Here we shall give the imiting expressions for a
plane circular disk with radius R moving perpendicular to its planc:

F = 16nRu,
and for a similar disk moving in its plane
F = 329Ru/3.
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To find the velocity distribution at large distances from the body, we have to include the
term (v-grad)v omitted from (20.1). Since at these distances v is almost the same as u, we
can approximately replace v-grad by u-grad. We then find for the velocity at large
distances the linear equation

(u-grad)y = —(1/p) grad p + vAv (20.17)

(C. W. Oseen 1910). We shall not pause to give here the procedure for solving this equation
for flow past a sphere, but merely mention that the velocity distribution thus obtained can
be used to derive a more accurate formula for the drag on the sphere, which includes the
next term in the expansion of the drag in powers of the Reynolds number R = uR/v:

F = 6anquR (] +3uR/8v) (20.18)

In solving the problem of flow past an infinite cylinder at right angles to its axis, Oseen’s
equation has to be used from the start; the equation (20.1) has in this case no solution
satisfying the boundary conditions at the surface of the cylinder and also at infinity. The
drag per unit length of the cylinder is found to be

_ 4nnu o 4xnu )
1-C—log (uR/4v) log(370v/uR)’

where C = 0-577 . . . is Euler’s constant (H. Lamb 1911).3

Another comment should be made regarding the problem of flow past a sphere. The
replacement of v by u in the non-linear term in (20.17) is valid at large distances from the
sphere, r » R. It is therefore natural that Oseen’s equation, while correctly refining the
picture of flow at large distances, does not do the same at short distances. This is evident
from the fact that the solution of (20.17) which satisfies the necessary conditions at infinity
does not satisfy the exact condition that the velocity be zero on the surface of the sphere,
which is met only by the zero-order term in the expansion of the velocity in powers of the
Reynolds number and not even by the first-order term.

It might therefore seem at first sight that the solution of Oseen’s equation cannot be
used for a valid calculation of the correction term in the drag. This is not so, however, for
the following reason. The contribution to F from the motion of the fluid at short distances
(for which u < v/r) has to be expandable in powers of u. The first non-zero correction term
in the vector F arising from this contribution therefore has to be proportional to uu?, and
gives a second-order correction relative to the Reynolds number; it thus does not affect the
first-order correction in (20.18).

Further corrrections to Stokes’ formula and a valid refinement of the flow pattern at
short distances can not be obtained by a direct solution of (20.17). Although these
refinements themselves are not very important, there is considerable methodological
interest in deriving and analysing a consistent perturbation theory for solving problems of
viscous flow at small Reynolds numbers (S. Kaplun and P. A. Lagerstrom 1957; L

F (20.19)

t It is given by N. E. Kochin, . A. Kibel’ and N. V. Roze, Theoretical Hydromechanics (Teoreticheskaya
gidromekhanika), Part 2, chapter 11, §§25-26, Moscow 1963; H. Lamb, Hydrodynamics, 6th ed., §§342-3,
Cambridge 1932.

{ The impossibility of cakulating the drag in the cylinder problem by means of (20.1) is ewident from
dimensional arguments. As already mentioned, the result would have to be expressed in terms of 7, wand R, butin
this case we are concerned with the force per unit length of the cylinder, and the only quantity having the right
dimensions would be nu, which is independent of the size of the body and therefore docs not vanish as R — 0; this
is physically absurd.
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Proudman and J. R. A. Pearson 1957). We shall describe the existing situation and give all
expressions needed to illustrate it, without going through the cakulations in detail.

To show explicitly the small parameter R, the Reynolds number, we use the
dimensionless velocity and position vector v' = v/u,r’ = r/R, and in the rest of this section
denote them by v and r without the primes. The exact solution of the equation of motion
(which we take in the form (15.10) with the pressure climinated) is then

R curl (vxcurl v)+ A curl v = 0. (20.20)

We distinguish two regions of space around the sphere: the near region with r € 1/R,
and the far region with r» 1. These together cover all space, overlapping in the
intermediate range

IR>ry» L (20.21)

In a consistent perturbation theory, the initial approximation in the near region is the
Stokes approximation, i.e. the solution of the equation 2. curl v = 0 obtained from (20.20)
by neglecting the term which contains the factor R. This solution is given by formulae
(20.10); in dimensionless variables, it is

KO | 3 1
() - - M- _ g -——
v, oosa(l 2r+2r ). vy sma(l 3 " as

r<1/R, (20.22)

the superscript (1) denoting the first approximation.

The first approximation in the far region is simply the constant v'") = v corresponding
to the unperturbed uniform incoming flow (v being a unit vector in the direction of the
flow). Substitution of v = v+ v'*) in (20.20) gives for ¥'*' Oseen’s equation

Rcurl (v x curl v¥) + A curlv'® = 0. (20.23)

The solution must satisfy the condition that the velocity v**’ be zero at infinity and the
condition for joining to the solution (20.22) in the intermediate range. The latter excludes,
in particular, solutions that increase too rapidly with decreasing r.{ The appropriate
solution is

o, 4 p @ = cosO+— {1 —[1+4rR(1 +cos f)]e- ¥Rl —cos )}

3 .
ve' " +vg* = —sin 0+ sin B — ¥Rl —cosh)

r» L (20.24)

t These may be found in M. Van Dyke, Perturbation Methods in Fluid Mechanics, New York 1964, The
calculations there are given not in terms of the velocity vir) but in the more compact, less visualizable,

terminology of the stream function. For axially symmetrical flow, including flow past a sphere, the stream
function ¥(r, ) in spherical polar coordinates is defined by

These satisfy identically the continuity equation (15.22)
! Todetermine the numerical coefficients in the solution, we have also to take account of the condition that the
total amount of fluid passing through any closed surface around the sphere must be zero.
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Note that the variable for the far region is really the product p = rR, not the radial
coordinate r itself. When this variable is used, R disappears from (20.20), in accordance
with the fact that when r 2 1/R the viscous and inertia terms in the equation become
comparable in order of magnitude. The number R occurs in the solution only through the
boundary condition for joining to that in the near region. The expansion of v(r) in the far
region is therefore an expansion in powers of R for given values of p = rR, since the second
terms in (20.24), when expressed in terms of p, contain R as a factor.

To test the correctness of joining for the solutions (20.22) and (20.24), we observe that in
the intermediate range (20.21) rR € 1 and the expressions (20.24) can be expanded in
powers of this variable. As far as the first two terms (apart from the uniform flow), we have

3 3R
v, =oosv(l -2—')+l-6—(l —cosb) (1 +3cos ),

(20.25)
. 3\ 3R .
Vo= —sin@|1—~— |——sin 6(1 —cos ).
4r 8
In the same range, on the other hand, r » 1 and therefore we can omit the termsin 1/r% in

(20.22); the remaining terms are the same as the first terms in (20.25), and the second terms
there will be made use of later.

On going to the next approximation in the near region, we write v = v'" + v'¥ and
obtain from (20.20) an equation for the correction in the second approximation:

A curl v = —R curl (v'" x curl ¥v'V). (20.26)

The solution of this equation must satisfy the condition of vanishing on the surface of the
sphere and that of joining to the solution in the far region; the latter means that the leading
terms in the function v'*'(r) when r » 1 must agree with the second terms in (20.25). The
appropriate solution is

3R 3R 1\? 1 1
) o~ ",y - — _ 2
v, g v T3 (l r) (2+r+',)(l 3 cos* 6),
3R 3R 1 1 1 2
@ ", m Ny 2 e i W P
vy g o +32(l r)(4+'+',+',)sm000s0,
r<1/R (20.27)

In the intermediate region, only the terms without a factor 1/r remain in these expressions,
and they do in fact agree with the second terms in (20.25).

From the velocity distribution (20.27), we can calculate the correction to Stokes’
formula for the drag. The second terms in (20.27), because of their angular dependence, do
not contribute to the drag; the first terms give the correction 3R/8 shown in (20.18).
According to the above discussion, the exact velocity distribution near the sphere leads in
this approximation to the same result for the drag as the solution of Oseen’s equation.

The next approximation can be obtained by continuing the procedure described. It
involves logarithmic terms in the velocity distribution; in the expression (20.18) for the
drag, the brackets are replaced by

3 9 .,
-R—— R
l+8R 40R log (1/R),

the logarithm being assumed large.

t See L Proudman and J. R. A. Pearson, Journal of Fluid Mechanics 2, 237, 1957.
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PROBLEMS

Prosuem 1. Determine the motion of a fluid occupying the space between two concentric spheres with radii
R,, R, (R,>R;). rotating uniformly about different diameters with angular velocities 0, £2,; the Reynolds
numbers £, R, */v, 2, R,*/v are small compared with unity.

SOLUTION. On account of the lincarity of the equations, the motion between two rotating spheres may be
mrdednawpapouuonddntwmoh..dwhmqﬁuenum.d&c“mWclim
put £2, = 0,i.c. only the inner sphere is rotating. It is reasonable 1o suppose that the fluid velocity at every point is
along the tangent to a circle in a plane perpendicular 10 the axis of rotation with its centre on the axis. On account
of the axial symmetry, the pressure gradient in this direction is zero. Hence the equation of motion (20.1) becomes
v = 0. The angular velocity vector £, is an axial vector. Arguments ssmilar 10 those given previously show that
the velocity can be written as

v=cwl[ fir)QQ,] = grad/xQ,.

The equation of motion then gives grad /. fxQ, = 0. Since the vector grad /. fis parallel to the position vector,
and the vector product rx 2, cannot be zero for given 2, and arbitrary r, we must have grad . / = 0, so that

A f = constant.

b
j-.1+;0 "(;‘hy.x’.

Theconstants a and b are found from the conditions that v = Oforr = R, and v = uforr = R, whercu = 0, xr
is the velocity of points on the rotating sphere. The result is

v= ’Ri( Pn
PR ’

The fluid pressure isconstant (p = p, ). Smhiy.nhwfathasﬂukmo&nmﬂ&eim

one is at rest (2, = 0)
v R ’R’ ( ))
Rz "R R ’ ’,

In the general case where both spheres rotate, we have

TG G-
RA-RA\P RS R TP

If the outer sphere is absent (R, = a0, 2, = 0),i.c. we have simply a sphere with radius R rotating in an infinite
fluid, then

Integrating, we find

v= (R r’)Qxr.

Let us calculate the moment of the frictional forces acting on the sphere in thes case. If we take spherical polar
coordinates with the polar axis parallel to 2, we have v, = 1, = 0,5, = v = (R*2/r*)sin 6. The frictional force on
unit area of the sphere is

P .(j—: -;)". = —3gQsiné.
The total moment on the sphere is
M= jrc’,,kshﬂlzk’dnﬂa.
o
whence we find
M= -8xpR°Q

If the inner sphere is absent, v = Q, Xr, i.c. the fluid simply rotates rigsdly with the sphere surrounding it.

PROBLEM 2. Daaunnctbcvdoalyofaspbmaldmpofhdmm’q)mnm”myma
fluid with viscosity n (W. Rybczynski 1911).
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SOLUTION. We use a system of coordinates in which the drop is at rest. For the flusd outside the drop we again
seck a solution of equation (20.5) in the form (20.6), so that the velocity has the form (20.7). For the fluid inside the
drop, we have to find a solution which does not have a singularity at r = 0 (and the second derivatives of /, which
determine the velocity, must also remain finite) This solution s

f=LArt 4 |Br*,
and the corresponding velocity is
v= ~Au+ Bri[e(ue) - 2u)

At the surface of the spheret the following conditions must be satisfied. The normal velocity components outside
(v,) and inside (v,) the drop must be zero:
v,=v,,=0

The tangential velocity component must be continuous:

'o.. - 'c.h
as must be the component a,, of the stress tensor:

=0, 0

The condition that the stress tensor components @,, be equal need not be written down; it would determine the
required velocity u, which is more simply found in the manner shown below. From the above four conditions we
obtain four equations for the constants a, b, A, B, whose solutions are

2n+3n' n

a=R—— . bwR— =-BR*=_—" .

4n+n) 4n+n) 20 +7)

By (20.14a), we have for the drag

F =2xunR(2n +3n)/(n+7)
As n' — o (corresponding 10 a solid sphere) this formula becomes Stokes’ formula. In the limit 5' —0

(corresponding to a gas bubble) we have F = 4xunR, i the drag is two-thirds of that on a solid sphere.
Equating F to the force of gravity on the drop, $zR’(p — p')g. we find

u= K90 =PV +m)
30(2n +37)

ProsLEM 3. Two parallel plane circular disks (with radius R) e one above the other a small distance apart; the
space between them s filled with fluid. The disks approach at a constant velocity u, displacing the fluid. Determine
the resistance to their motion (O. Reynolds)

SOLUTION. We take cylindrical polar coordinates, with the onigin at the centre of the lower disk, which we

suppose fixed. The flow is axially symmetric and, since the fluid layer is thin, predominantly radial: ¢, < v, and
also dv,/dr < dv,/dz. Hence the equations of motion become

n?;'-:'—'. ‘;—:so. (1
with the boundary conditions
atz=0 o,=0,=0
atz=h 6=0, o5=-x
atr=R: P = Po.

t We may neglect the change of shape of the drop in its motion, since this change is of a higher order of
smallness. However, it must be borne in mind that, in order that the moving drop should in fact be spherical, the
forces due to surface tension at its boundary must exceed the forces due to pressure differences, which tend to
make the drop non-spherical. This means that we must have pu/R <€ 2/R, where z is the surface-tension
coefficient, or, substituting u ~ Rgp/n,

R < /(a/pg)
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where h is the distance between the disks, and p, the external pressure. From equations (1) we find

5= -lAd—':(x - h)

2ndr
Integrating equation (2) with respect to z, we obtain

»
uj‘ » d(dp
Uuw-— rpdze -0 r—~
rdr
o

whence

The total resistance to the moving disk is
F = 3xquR*/2h°.

§21. The laminar wake

In steady flow of a viscous fluid past a solid body, the flow at great distances behind the
body has certain characteristics which can be investigated independently of the particular
shape of the body.

Let us denote by U the constant velocity of the incident current; we take the direction of
U as the x-axis, with the origin somewhere inside the body. The actual fluid velocity at any
point may be written U + v; v vanishes at infinity.

It is found that, at great distances behind the body, the velocity v is noticeably different
from zero only in a relatively narrow region near the x-axis. This region, called the laminar
wake,t is reached by fluid particles which move along streamlines passing fairly close to the
body. Hence the flow in the wake is essentially rotational. The reason is that rotational flow
of a viscous fluid past a solid body is due to the surface of the body.$ This is easily seen if we
recall that, in the pattern of potential flow for an ideal fluid, only the normal velocity
component is zero on the surface of the body, not the tangential component v,. The
boundary condition of adhesion for a real fluid makes v, also zero, however. If the pattern
of potential flow were maintained, this would cause a non-zero discontinuity of v, i.e. the
occurrence of a surface vorticity. The viscosity smooths out the discontinuity, and the
rotational state penetrates into the fluid, from which it passes by convection into the wake
region.

On the other hand, the viscosity has almost no effect at any point on streamlines that do
not pass near the body, and the vorticity, which is zero in the incident current, remains
practically zero on these streamlines, as it would in an ideal fluid. Thus the flow at great
distances from the body may be regarded as potential flow everywhere except in the wake.

We shall now derive formulae relating the properties of the flow in the wake to the forces
acting on the body. The total momentum transported by the fluid through any closed
surface surrounding the body is equal to the integral of the momentum flux density tensor
over that surface, §11,d/,. The components of the tensor I, are

g = pds +p(U; + 0 )(U, + 1)

t In contradistinction to the turbulent wake; see §37.
t The fact that the relation curl v = 0 does not remain vahd along 2 streambine which passes over a solid
surface has alrcady been noted (§9)
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We write the pressure in the form p = p, + p’, where p, is the pressure at infinity. The
integration of the constant term pyd,, + pU, U, gives zero, since the vector integral § df over
a closed surface is zero. The integral § pr,dJ, also vanishes: since the total mass of fluid in
the volume considered is constant, the total mass flux through the surface surrounding the
volume must be zero. Finally, the velocity v far from the body is small compared with U.
Hence, if the surface in question is sufficiently far from the body, we can neglect the term
pu, in 11, as compared with pU,v,. Thus the total momentum flux is

§ (P'du + pUw )dA.

Let us now take the fluid volume concerned to be the volume between two infinite planes
x = constant, one of them far in front of the body and the other far behind it. The integral
over the infinitely distant “lateral” surface vanishes (since p° = v = 0 at infinity), and it is
therefore sufficient to integrate only over the two planes. The momentum flux thus
obtained is evidently the difference between the total momentum flux entering through the
forward plane and that leaving through the backward plane. This difference, however, is
just the quantity of momentum transmitted to the body by the fluid per unit time, i.e. the
force F exerted on the body.

Thus the components of the force F are

F,=( - )(p'+va.)dydz,

x-x, xwx,

. o~
F,= ( - )va,dydz,

xw-x, xwx,
.~ rr

F,= ( - )va,dydz,
x‘-.x, xd-'x,

where the integration is taken over the infinite planes x = x, (far behind the body) and
x = x, (far in front of it). Let us first consider the expression for F_.
Outside the wake we have potential flow, and therefore Bernoulli’s equation

p+4p(U + v)* = constant = p, +pU?
holds, or, neglecting the term 4pv? in comparison with pU-v,
p' = —PUU,.

We see that in this approximation the integrand in F, vanishes everywhere outside the
wake. In other words, the integral over the plane x = x, (which lies in front of the body and
does not intersect the wake) is zero, and the integral over the plane x = x, need be taken
only over the area covered by the cross-section of the wake. Inside the wake, however, the

pressure change p’ is of the order of pv?, i.e. small compared with pUv, . Thus we reach the
result that the drag on the body is

F.=—pU J]v,dydz, (21.1)

where the integration is taken over the cross-sectional area of the wake far behind the
body. The velocity v, in the wake is, of course, negative: the fluid moves more slowly than it
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would if the body were absent. Attention is called to the fact that the integral in (21.1) gives
the amount by which the discharge through the wake falls short of its value in the absence
of the body.

Let us now consider the force (whose components are F, F,) which tends to move the
body transversely. This force is called the lift. Outside the wake, where we have potential
flow, we can write v, = d¢/dy, v, = d¢/dz; the integral over the plane x = x,, which does
not meet the wake, is zero:

[ fgosea [Faens

since ¢ = 0 at infihity. We therefore find for the hift

F,=—-pU J]v,dydz, F,= -pU ﬂ’v,dydz. (21.2)

The integration in these formulae is again taken only over the cross-sectional area of the
wake. If the body has an axis of symmetry (not necessarily complete axial symmetry), and
the flow is parallel to this axis, then the flow past the body has an axis of symmetry also. In
this case the lift is, of course, zero. _

Let us return to the flow in the wake. An estimate of the magnitudes of various terms in
the Navier-Stokes equation shows that the term v 2 v can in general be neglected at
distances r from the body such that rU/v » 1 (cf. the derivation of the opposite condition
(20.16)); these are the distances at which the flow outside the wake may be regarded as
potential flow. It is not possible to neglect that term inside the wake even at these distances,
however, since the transverse derivatives é*v/éy?, é*v/éz* are large compared with %v/dx?.

Let Y be of the order of magnitude of the width of the wake, i.¢. the distances from the x-
axis at which the velocity v falls off markedly. The order of magnitude of the terms in the
Navier-Stokes equation is then

(v-grad)y ~ U dv/éx ~ Uv/x, vAv~ vélv/cy® ~ w/Y>.
If these two magnitudes are comparable, we find

Y= /(vx/U). (21.3)

This quantity is in fact small compared with x, by the assumed condition Ux/v » 1. Thus
the width of the laminar wake increases as the square root of the distance from the body.
In order to determine how the velocity decreases with increasing x in the wake, we return
to formula (21.1). The region of integration has an area of the order of Y2. Hence the
integral can be estimated as F, ~ pUvY?, and by using the relation (21.3) we obtain

v~ F /pvx. (214)

Having thus elucidated the qualitative features of laminar flow far from the body, we
will now derive some quantitative formulae describing the flow pattern inside and outside
the wake.

FLOW INSIDE THE WAKE
In the Navier-Stokes equation for steady flow,

(v-grad)v = —grad (p/p)+vLiv, (2L5)

we use far from the body Oseen’s approximation, replacing the term (v-grad)v by
(U - grad)v; cf. (20.17). Furthermore, inside the wake the derivative with respect to the
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longitudinal coordinate x in Av can be neglected in comparnison with the transverse
derivatives. We thus start from the equation

av &y v
We seek the solution of this in the form v = v, 4 v,, where v, is the solution of
dv, v, v,
Ua—x = V(-a-y2-+ FX’ . (21.7)

The quantity v, anising from the term — grad (p/p) in the initial equation (21.6) may be
sought as the gradient of a scalar ®.t Since, far from the body, the derivatives with respect
to x are small in comparison with those with respect to y and z, in the approximation
considered we may neglect the term é®/éx, i.e. take v, = v,,. We thus have for v, the

equation
v ,(a_"’_q.?_z"') 218
x - \ay tar ) (21.8)
This is formally the same as the two-dimensional equation of heat conduction, with x/U
in place of the time, and the viscosity v in place of the thermometric conductivity. The
solution which decreases with increasing y and z (for fixed x)and gives an infinitely narrow
wake as x — 0 (in this approximation the dimensions of the body are regarded as small) is
(cf. §51)

F,
v, = ~dmpvx exp{ — U(y* + 2%)/dvx]. (21.9)
The constant coefficient in this formula is expressed in terms of the drag by means of
formula (21.1), in which the integration may be extended over the whole yz-plane because
of the rapid convergence. If the Cartesian coordinates are replaced by spherical polar
coordinates r, 8, ¢ with the polar axis along the x-axis, then the region of the wake,
\/ (¥* + 2%) € x, corresponds to 8 < 1. In these coordinates, formula (21.9) becomes

F,
= " ampwr exp { — Urf*/4v). (21.10)
The term in 6®/dx (with ® given by formula (21.12) below), which we have omitted, would
give a term in v, which contains an additional small factor 6.
The form of v, , and v, ., must be the same as (21.9) but with different coefficients. We take
the direction of the lift as the y-axis (so that F, = 0). According to (21.2) we have, since
® = 0 at infinity,

J]v,dydz = ||(vy, + ®/Cy)dyd:z
v

~p

= ||vy,dydz = —F /pU,

J]v,,dydz = 0.

1 The velocity potential will be denoted in the rest of this section by @, so as to distinguish it from the
azimuthal angle ¢ in spherical polar coordinates.
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It is therefore clear that v, difffers from (21.9) in that F, is replaced by F, and v,, = 0.
Thus we find

v, = -——’;" exp | — U(y? + 2%)/dvx) + d®/dy, v, = 0®/0z. (21.11)

To determine the function ®, we proceed as follows. We write the equation of
continuity, neglecting the longitudinal derivative:

. dv, oo, ? & dv,,
leV-Fyﬂl--a; -(5?‘+$3).+—5y— = ().

Differentiating this equation with respect to x and using equation (21.7) for v, ., we obtain
.a_z. + il Q P i a_v".
dy*  62%) éx dy\ éx
é* 6‘ ao, dvy,
ay* az’

o®/dx = — (v/U)év, /éy.

Finally, substituting the expression for v, (the first term in (21.11)) and integrating with
respect to x, we have

Hence

F
-— dvx] - .
(i} " InpU y’+z’ lexp[= UG +2%)dvx] - 1}; (21.12)
the constant of integration is chosen so that ® remains finite when y = z = 0. In spherical
polar coordinates (with the azimuthal angle ¢ measured from the xy-plane)

= —— ' —— {exp[— Ur8*/4v] —1}. (21.13)

Itis seen from (21.11)-(21.13) that v, and v, unlike v, ,contain terms which decrease only as
1/6* when we move away from the axis of the wake, as well as those which decrease
exponentially with increasing @ (for a given r).

If there is no lift, the flow in the wake is axially symmetrical, and ® = 0.1

FLOW OUTSIDE THE WAKE

Outside the wake, potential flow may be assumed. Since we are interested only in the
terms in the potential ® which decrease least rapidly at large distances, we seek a solution
of Laplace’s equation

1d 1 8 R 1 &0
M"r’za_r('zar) rzs!maae(‘“'a ) Pent0ag 0

3 Th;snslme.mpnﬂmhr for the wake behind a sphere. In this connection it may be noted that the formulae
obtained, like (21.16) below, are in agrecment with the velocity distnbution (20.24) for flow at very low Reynolds
numbers. In this case, the whole of the flow pattern described is moved to very large distances r » /R, where lis
the size of the body.
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as a sum of two terms:

®= ‘-r'+5‘—’:-’4ﬂ0;. (21.14)

of which the first is spherically symmetrical and belongs to the force F,, while the second is
symmetrical about the xy-plane and belongs to the force F .
We obtain for the function f(#) the equation

d/. df\ f
aa(snoa—g)—a—o'so.

The solution of this equation finite as 6§ » x is
f=bcotib. (21.15)

The coefficient b must be determined from the condition for joining the solution to that
inside the wake. The reason is that (21.13) relates to the angle range # < 1,and (21.14) to
0 » /(v/Ur). These ranges overlap when ,/(v/Ur) € 8 < 1, and (21.13) then becomes

and the second termin (21.14)1s (2b/rf) cos ¢. Comparison of these expressions shows that
we must take b = F /dnpU.

To determine the coefficient a in (21.14), we notice that the total mass flux through a
sphere S with large radius r equals zero, as for any closed surface. The rate of inflow
through the part S, of § intercepted by the wake is

-ﬂo,dydz = F/pU.
S,

Hence the same quantity must flow out through the rest of the surface of the sphere, i.e. we
must have

§ v-df = F_/pU.
5-5
Since S, is small compared with S, we can put

§v* df = Iﬂd@'df- —4za = F_JpU, (21.16)
s s

whence a = — F_[dnpU.
The complete expression for the velocity potential is thus

1
0—4—‘;&7(—"_,"';.,“5‘“%0’- (21.17)
which gives the flow everywhere outside the wake far from the body. The potential
diminishes with increasing distance as 1/r; the velocity accordingly decreases as 1/77%. If
there is no lift, the flow outside the wake is axially symmetrical
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§22. The viscosity of suspensions

A fluid in which numerous fine solid particles are suspended (forming a suspension) may
be regarded as a homogeneous medium if we are concerned with phenomena whose
characteristic lengths are large compared with the dimensions of the particles. Such a
medium has an effective viscosity n which is different from the viscosity n, of the original
fluid. The value of n can be calculated for the case where the concentration of the
suspended particles is small (i.e. their total volume is small in comparison with that of the
fluid). The calculations are relatively simple for the case of spherical particles (A. Einstein
1906).

It is necessary to consider first the effect of a single solid globule, immersed in a fluid, on
flow having a constant velocity gradient. Let the unperturbed flow be described by a linear
velocity distribution '

000 . auxp (22.1)
where a;, is a constant symmetrical tensor. The fluid pressure is constant:
Po = constant,

and in future we shall take p, to be zero, i.e. measure only the deviation from this constant
value. If the fluid is incompressible (div v, = 0), the sum of the diagonal elements, or trace,
of the tensor «, must be zero:

a, =0. (22.2)

Now let a small sphere with radius R be placed at the origin. We denote the altered fluid
velocity by v = v, + v;; v, must vanish at infinity, but near the sphere v, is not small
compared with v,. Itis clear from the symmetry of the flow that the sphere remains at rest,
so that the boundary condition is v =0 for r = R.

The required solution of the equations of motion (20.1) to (20.3) may be obtained at
once from the solution (20.4), with the function f given by (20.6), if we notice that the space
derivatives of this solution are themselves solutions. In the present case we desire a
solution depending on the components of the tensor x, as parameters (and not on the
vector u as in §20). Such a solution is

vy = curl curl [(a-grad)f],  p = mea, L fléxdx,,

where (x - grad)f denotes a vector whose components are x,6f/éx,. Expanding these
expressions and determining the constants a and b in the function f = ar + b/r so as to
satisly the boundary conditions at the surface of the sphere, we obtain the following
formulae for the velocity and pressure:

5/R® R? R®
vy = 5(7-7)’“"""""_%""’ (22.3)
RS
p= -Snoja.n.-n.. (22.4)

where n is a unit vector in the direction of the position vector.

Returning now to the problem of determining the effective viscosity of a suspension, we
calculate the mean value (over the volume) of the momentum flux density tensor IT,,
which, in the linear approximation with respect to the velocity, is the same as the stress
tensor —o,,:

Ga = (1/V) |oadV.
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Theintegration here may be taken over the volume ¥ of a sphere with large radius, which is
then extended to infinity.
First of all, we have the identity

dv, dv, v, o,
O 'lo(ax. ax‘) po, + - J'{C.. "0(5;. +ax.)+p6,.}d|f. (22.5)

The integrand on the right is zero except within the solid spheres; since the concentration
of the suspension is supposed small, the integral may be calculated for a single sphere as if
the others were absent, and then multiplied by the concentration n of the suspension (the
number of spheres per unit volume). The direct calculation of this integral would require
an investigation of internal stresses in the spheres. We can circumvent this difficulty,
however, by transforming the volume integral into a surface integral over an infinitely
distant sphere, which lies entirely in the fluid. To do so, we note that the equation of motion
da,,/0x, = 0 leads to the identity

Ou = 0(0,X,)/0x,;
hence the transformation of the volume integral into a surface integral gives

Oy = 'lo(—' "'a)“"" %“uxtdﬁ- nolv,df, + v, df) §.

We have omitted the term in p, since the mean pressure is necessarily zero; p is a scalar,
which must be given by a linear combination of the components z,,, and the only such
scalar is a; = 0.

In calculating the integral over a sphere with very large radius, only the terms of order
1/r? need be retained in the expression (22.3) for the velocity. A ssimple calculation gives the
value of the integral as

nno - 20x R (S, mn, —anm ),

where the bar denotes an average with respect to directions of the unit vector n. Effecting
the averaging,t we finally have

3= (gv. + g_v ) + S, ~$ xR0 (22.6)

The first term in (22.6), on substitution of v, from (22.1), gives 2n,%,; the first-order
small component is identically zero after averaging with respect to the directions of m, as it
should be, since the effect resides entirely in the integral separated in (22.5). Hence the
required relative correction to the effective viscosity 5 of the suspension is determined by
the ratio-of the second and first terms in (22.6). We thus obtain

n=no(l+39). ¢=4aRn/3, (22.7)

t Tberequuedmnnbuofproduasdwdme-mms)—arnlmvhdlm
be formed only from the unit tensor §,. We then easily find

; — iaav
Ry = Py (5o b+ By + 8.8,
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where ¢ is the small ratio of the total volume of the spheres to the total volume of the
suspension.

The corresponding calculations and results become very lengthy even for a suspension

of spheroidal particles.t As an illustration, we give the numerical values of the correction
factor A in the formula

n=nell + A9), ¢ = 4mab’n/3,
for various values of a/b, where a and b = ¢ are the semi-axes of the spheroids:

ab 01 02 05 10 2 5 10
A 804 471 285 2-5 291 581 136

The correction increases on either side of the value a/b = 1 which corresponds to spherical
particles.

§23. Exact solutions of the equations of motion for a viscous fluid

If the non-linear terms in the equations of motion of a viscous fluid do not vanish
identically, the solving of these equations offers great difficulties, and exact solutions can
be obtained only in a very small number of cases. Such solutions are of considerable
methodological interest, if not always of physical interest (because in practice turbulence
occurs when the Reynolds number is sufficiently large).

We give below examples of exact solutions of the equations of motion for a viscous fluid.

ENTRAINMENT OF FLUID BY A ROTATING DISK
An infinite plane disk immersed in a viscous fluid rotates uniformly about its axis.
Determine the motion of the fluid caused by this motion of the disk (T. von Kérman 1921).
We take cylindrical polar coordinates, with the plane of the disk as the plane z = 0. Let
the disk rotate about the z-axis with angular velocity . We consider the unbounded
volume of fluid on the side z > 0. The boundary conditions are

v, =0, vy = Qr, v.,=0 for z=0,
v, =0, ©v,=0 for z=o0.

The axial velocity v, does not vanish as z — oo, but tends to a constant negative value
determined by the equations of motion. The reason is that, since the fluid moves radially
away from the axis of rotation, especially near the disk, there must be a constant vertical
flow from infinity in order to satisfy the equation of continuity. We seek a solution of the
equations of motion in the form

v, =rQF(z,5 v, =rG(z,); v, = \/(‘Q)H(z,); }
p= —p¥QP(z,), where z, = /(v

In this velocity distribution, the radial and azimuthal velocities are proportional to the
distance from the axis of rotation, while v, is constant on each horizontal plane.

(23.1)

t Inthe flow of a suspension of non-spherical particles, the presence of velocity gradients has an orienting effect
on them. The simultaneous action of orienting hydrodynamic forces and disorienting rotary Brownian motion
gIVes rise Lo an anisotropic distribution of the particles as regards thewr onentation in space. This, however, need
not be considered when calculating the correction to the viscosity - the anisotropy of the orientation distribution
15 itself dependent on the velocity gradients (linearly in the first approximation), and including it would give
stress tensor terms non-linear in the gradients.
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Substituting in the Navier-Stokes equation and in the equation of continuity, we obtain
the following equations for the functions F, G, H and P:

FP’-G*+FH=F", 2FG+GH=G",
HH = P +H", 2F+H =0

the prime denotes differentiation with respect to z,. The boundary conditions are

F=0, G=1, H=0 for z,=0
F=0‘ G=0 for Z, = 0.

We have therefore reduced the solution of the problem to the integration of a system of
ordinary differential equations in one variable; this can be achieved numerically. Figure 7
shows the functions F, G and — H thus obtained. The imiting value of H as z, - w0 is
—(-886; in other words, the fluid velocity at infinity is v.(0) = — 0886 \/ (vQ2).

The frictional force acting on unit area of the disk perpendicularly to the radius is o,
= 1(0v,/0z), - o- Neglecting edge effects, we may write the moment of the frictional forces
acting on a disk with large but finite radius R as

(23.2)

(23.3)

&
M= ZIZV’a”dr = aR*p /()G (0).
0

The factor 2 in front of the integral appears because the disk has two sides exposed to the
fluid. A numerical calculation of the function G leads to the formula

= —1'94 R*p ./ (). (234)

FLOW IN DIVERGING AND CONVERGING CHANNELS

Determine the steady flow between two plane walls meeting at an angle x (Fig. 8 shows a
cross-section of the two planes); the fluid flows out from the line of intersection of the
" planes (G. Hamel 1917).

We take cylindrical polar coordinates r, z, ¢, with the z-axis along the line of intersection
of the planes (the point O in Fig. 8), and the angle ¢ measured as shown in Fig. 8. The flow is
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uniform in the z-direction, and we naturally assume it to be entirely radial, i.e.

g=v,=0, ©uv =0vir,¢)

The equations (15.18) give

2
vg- -;l’-%p+v(g':+'}5:;‘;+::-%). (23.5)
_;';;:.+§;g_;=o, (23.6)
d(rv)/ér = 0.
It is seen from the last of these that rv is a function of ¢ only. Introducing the function
u(P) = rv/6v, (23.7)
we obtain from (23.6)
1dp _ 120" du
pip r' dé’
whence
P

12v?
=1 u(@) + flr).
P

Substituting this expression in (23.5), we have

2
c—‘:a';-+4u+6uz =6—:1r’]'(r),

from which we see that, since the left-hand side depends only on ¢ and the right-hand side
only on r, each must be a constant, which we denote by 2C,. Thus f'(r) = 12v*C,/r?,
whence f(r) = —6v*C,/r? + constant, and we have for the pressure

%=67v2(2u-C,)+oonsunt. (23.8)

For u(¢) we have the equation
W +4du+6u’ =2C,,
which, on multiplication by ' and one integration, gives
$u?+ 2w +2u° -2C,u—-2C, =0.
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Hence we have

du
=t 7 i scurcy T @3

which gives the required dependence of the velocity on ¢; the function u(¢) can be
expressed in terms of elliptic functions. The three constants C,, C,, C, are determined
from the boundary conditions at the walls

u(iia)-o (23.10)

and from the condition that the same mass Q of fluid passes in unit time through any cross-
section r = constant:

22 a2

Q=p J' vrdg = 6vp J' ude. (23.11)

-aj2 -aj2

Q may be either positive or negative. If Q > 0, the line of intersection of the planes is a
source, i.c. the fluid emerges from the vertex of the angle: this is called flow in a diverging
channel. If Q < 0, the line of intersection is a sink, and we have flow in a converging channel.
The ratio |Q|/vp is dimensionless and plays the part of the Reynolds number in the
problem considered.

Let us first discuss converging flow (Q < 0). To investigate the solution (23.9)-(23.11) we
make the assumptions, which will be justified later, that the flow is symmetrical about the
plane ¢ = 0 (i.e. u(¢) = u(— ¢)), and that the function u(¢) is everywhere negative (i.¢. the
velocity is everywhere towards the vertex) and decreases monotonically fromu = Qat ¢ =
+iatou = —uy, <0at ¢ = 0,50 that u, is the maximum value of |u|. Then foru = —u,
we must have du/d¢ = 0, whence it follows that u = - u, is a zero of the cubic expression
under the radical in the integrand of (23.9). We can therefore write

- =+ Cu+C, = (u+uy) | — v — (1 —w)u+gq},
where g is another constant. Thus

du
26 = e — 23.12
$=2% | Jiwsug) - —(1—ugusgq] 12
-y
the constants u, and g being determined from the conditions
0 A
“j e
Jlutu) [ — (I —w)u+gq}]
‘:’ ) (23.13)
IR = . ude
e+ u) { = = (1 —uu+gq}]
/

— &
(R = |Q|/vp); the constant ¢ must be positive, since otherwise these integrals would be
complex. The two equations just given may be shown to have solutions u, and g forany R
and « < =. In other words, convergent symmetrical flow (Fig. 9)is possible for any aperture
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angle « < n and any Reynolds number. Let us consider in more detail the flow for very
large R. This corresponds to large u,. Writing (23.12) (for ¢ > 0) as

0
du
-0 | o

we see that the integrand is small throughout the range of integration if |u| is not close to
uo. This means that |u| can differ appreciably from u, only for ¢ close to + 1z, i.c.in the
immediate neighbourhood of the walls.t In other words, we have u = constant = — u, for
almost all angles ¢, and in addition u, = R/62, as we see from equations (23.13). The
velocity v itself is | Q |/par, giving a non-viscous potential flow with velocity independent of
angle and inversely proportional to r. Thus, for large Reynolds numbers, the flow in a
converging channel differs very little from potential flow of an ideal fluid. The effect of the
viscosity appears only in a very narrow layer near the walls, where the velocity falls rapidly
to zero from the value corresponding to the potential flow (Fig. 10).

Fic 10

Now let Q > 0, so that we have divergent flow. At first we again suppose that the flow is
symmetrical about the plane ¢ = 0, and that u(¢) (Where now u > 0) varies monotonically
from zero at ¢ = +1a to u, > 0 at ¢ = 0. Instead of (23.13) we now have

t The question may be asked how the integral can cease to be small. even if ¥ = — u, The answer is that, for &,
very large, one of the roots of —u® — (] —ugju+g = 0 is close 10 — u,. 50 that the radicand has two almost
coincident zeros. the whole integral therefore being “almost divergent™ af u = — .
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du !

V(o = w) {1 + (1 + wo)u+g))°

’ . (23.14)
udu

¢R= a' Vo = u) {u? + (1 + u)u+q)) )

If we regard u, as given, then a increases monotonically as ¢ decreases, and takes its greatest
value for ¢ = O:

T = IV[u(uo—u)(umHn

It is easy to see that for given ¢, on the other hand, x is a monotonically decreasing function
of uy. Hence it follows that u, is a monotonically decreasing function of g for given z, so
that its greatest value is for ¢ = 0 and is given by the above equation. The maximum
R = R, corresponds to the maximum wu,. Using the substitutions k* = u,/(1 + 2u,),
u = uy cos’ x, we can write the dependence of R, on z in the parametric form

=/2 A
dx
= - x —
a=2/(1 2k)j TU=k sin? )
. =2 : (2315)
1-k2

_ g 1K 12_ 12 anl
Ropax = 6al—2k2+W—2k1)J’ \/(l k* sin® x)dx.
o

)

Thus symmetrical flow, everywhere divergent (Fig. 11a), is possible for a given aperture
angle only for Reynolds numbets not exceeding a definite value. As a -+ x (k—0),
Ron—0asa—0 (k—1/ 2), R tends to infinity as 18-8/x

SESES:

Fic. 11

'llllt"

For R > R, the assumption of symmetrical flow, everywhere divergent, is unjustified,
since the conditions (23.14) cannot be satisfied. In the range of angles — a2 < ¢ < ixthe
function u(¢) must now have maxima or minima. The values of u(¢) corresponding
to these extrema must again be zeros of the polynomial under the radical sign. It is
therefore clear that the trinomial u® + (1 + uy)u + g (with u, > 0, ¢ > 0) must have two
real negative roots in the range mentioned, so that the radicand can be written
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(up —u) (u+uy') (u+uy”), where uy >0, ' >0, w,” > 0; we suppose u," < u,". The
function u(¢) can evidently vary in the range 4, > u 2 —u,', ¥ = u, corresponding to a
positive maximum of u(¢),and u = — i, to a negative minimum. Without pausing to make
a detailed investigation of the solutions obtained in this way, we may mention that for
R >R, a solution appears in which the velocity has one maximum and one minimum, the
flow being asymmetric about the plane ¢ = 0 (Fig. 11b). When R increases further, a
symmetrical solution with one maximum and two minima appears (Fig. 11c), and soon. In
all these solutions, therefore, there are regions of both outward and inward flow (though
of course the total discharge Q is positive). As R — oo the number of alternating minima
and maxima increases without limit, so that there is no definite limiting solution. We may
emphasize that in divergent flow as R — o the solution does not, therefore, tend to the
solution of Euler's equations as it does for convergent flow. Finally, it may be mentioned
that, as R increases, the steady divergent flow of the kind described becomes unstable soon
after R exceeds R ., and in practice a non-steady or turbulent flow occurs (Chapter 111).

SUBMERGED JET

Determine the flow in a jet emerging from the end of a narrow tube into an infinite space
filled with the fluid—the submerged jet (L. Landau 1943).

We take spherical polar coordinates r, 8, ¢, with the polar axis in the direction of the jet
at its point of emergence, and with this point as origin. The flow is symmetrical about the
polar axis, so that v, = 0and v, v, are functions of r and 6 only. The same total momentum
flux (the “momentum of the jet”) must pass through any closed surface surrounding the
origin (in particular, through an infinitely distant surface). For this to be so, the velocity
must be inversely proportional to r, so that

v, = F(O)/r, v,=[f(O)r, (23.16)
where F and f are some functions of @ only. The equation of continuity is

1d(*y,) 1 @& .
-r-z'—a-r——+;-t bbi(v.smﬂ) = 0.
Hence we find that

F(0) = —df/df — fcot 6. (23.17)

The components I1,,, I1,, of the momentum flux density tensor in the jet vanish
identically by symmetry. We assume that the components I1,, and I1, also vanish; this
assumption is justified when we obtain a solution satisfying all the necessary conditions.
Using the expressions (15.20) for the components of the tensor ¢, , and formulae (23.16),
(23.17), we easily see that the relation

1é

sin? 011, = - — [sin® 6(1 , -1 ,,))]
240 oo

holds between the components of the momentum flux density tensor in the jet. Hence it

follows that I1,, = 0. Thus only the component I1,, is non-zero, and it varies as 1/r%. It is

easy to see that the equations of motion &Il /éx, = 0 are automatically satisfied.
Next, we write

Mo —Tgy)/p = (f*+2vfcot 0 —2vf)/r" =0,
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or
d(1//)/d0 4 (1/f)cot 8+ 1/2v = 0.
The solution of this equation is
f= —=2vsin /(A ~cos 8), (23.18)
and then we have from (23.17)

Al =1

The pressure distribution is found from the equation
Me/p=p/p+f(f+2vcot 6)/r* =0,
which gives
4pvi(Acos—1)
P—Po = -—VI(A-cosﬂ)’ s

with p, the pressure at infinity. The constant A can be found in terms of the momentum of
the jet, i.e. the total momentum flux in it. This flux is equal to the integral over the surface of
a sphere

(23.20)

P =§ﬂ,,oosl)df= ZxJ‘r’n,,oos 0 sin 646.
0

The value of I1,, is given by

1 42 ( (A2-1)p A
e

and a calculation of the integral gives

- A+1
P = 16nvipA — = —_
nvip {l+3(42—l) iAlogA_l}. (23.21)
Formulae (23.16)-(23.21) give the solution of the problem. When A varies from 1 to oo, the
jet momentum P takes all values between oo and 0.

The streamlines are determined by the equation dr/z, = rd#/u,, integration of which
gives

rsin’ 6

T—C;)S 9 = constant. (23.22)

Figure 12 shows the characteristic form of the streamlines. The flow is a jet which comes
from the origin and sucks in the surrounding fluid. If we arbitrarily regard as the boundary
of the jet the surface where the streamlines have the least distance (r sin 6) from the axis, it
is a cone with angle 26,, where cos 6, = 1/A.

In the limiting case of a weak jet (small P, corresponding to large A), we have from
(23.21)

P = 16nvip/A.
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In this case, the velocity is
P sin® P cos®

Vg = —————— v

8nvp r P dxvp r
In the opposite limit of a strong jet (large P, corresponding to A — 1)f, we have
A=1+46,% 0, =64=nv’p/3P.
For large angles (¢ = 1), the velocity distribution is given by
v = —(2v/r)cotd, v, = —2v/r; (23.29)
for small angles (0 = 6,),

(23.23)

4w 8vl,?
T T G0
The solution here obtained is exact for a jet regarded as emerging from a point source. If
the finite dimensions of the tube mouth are taken into account, the solution becomes the
first term of an expansion in powers of the ratio of these dimensions to the distance r from
the mouth of the tube. This is why, if we calculate from the above solution the total mass
flux through a closed surface surrounding the origin, the result is zero. A non-zero total

mass flux is obtained when further terms in the above-mentioned expansion are
considered.}

v.=

(23.25)

§24. Oscillatory motion in a viscous fluid

When a solid body immersed in a viscous fluid oscillates, the flow thereby set up has a
number of characteristic properties. In order to study these, it is convenient to begin with a
simple but typical example (G. G. Stokes 1851). Let us suppose that an incompressible fluid
is bounded by an infinite plane surface which executes a simple harmonic oscillation in its
own plane, with frequency w. We require the resulting motion of the fluid. We take the

t However, the flow in a sufficiently strong jet is actually turbulent (§36) The Reynolds number for the jet
considered is represented by the dimensionless parameter /(P pv" )

$ Sec Yu. B. Rumer, Prikladnaya matematika i mekhanika 16, 255, 1952

The submerged laminar jet with a non-zero angular momentum has been discussed by L. G. Loitsyanskai (ibid.
17, 3, 1953).

The hydrodynamic equations for any steady axially symmetrical flow of an incompressible viscous fluid with
the velocity decreasing as 1 /r can be reduced to a single second-order ordinary ncar differential equation; sec N.
A. Slezkin, Uchenye zapiski Moskovskogo gosudarstvennogo universitera, No. 2, 1934; Prikladnaya matematika i
mekhanika 18, 764, 1954
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solid surface as the yz-plane, and the fluid region as x > (; the y-axis is taken in the
direction of the oscillation. The velocity u of the oscillating surface is a function of time, of
the form A cos(wt + a). It is convenient to write this as the real part of a complex quantity:

u = re(uge "),

where the constant u, = Ae ' is in general complex, but can always be made real by a
proper choice of the origin of time.

So long as the calculations involve only linear operations on the velocity u, we may omit
the sign re and proceed as if u were complex, taking the real part of the final result. Thus we

write
U, =u=uyge " (24.1)

The fluid velocity must satisfly the boundary condition v =ufor x =0, ie. v, = v, = 0,
v, = W

It is evident from symmetry that all quantities will depend only on the coordinate x and
the time ¢. From the equation of continuity div v = 0 we therefore have dv,/dx = 0,
whence v, = constant = zero, from the boundary condition. Since all quantities are
independent of the coordinates y and z, and since v, is zero, it follows that (v-grad)v =0
identically. The equation of motion (15.7) becomes

ov/dt= —(1/p)gradp+v/iv. (24.2)

This is a linear equation. Its x-component is dp/éx = 0, i.e. p = constant.
It is further evident from symmetry that the velocity v is everywhere in the y-direction.
For v, = v we have by (24.2)

dv/dt = vd*v/éx>, (24.3)

that is, a (one-dimensional) heat conduction equation. We shall look for a solution of this
equation which is periodic in x and ¢, of the form

U= up e,
so that v = u for x = 0. Substituting in (24.3), we find
io=vk?,  k=(1+i/s, &= /(2v/0) (24.4)
so that the velocity is
- uoe""e“""""; (24.5)

the choice of the sign of , /i in (24.4) is determined by the need for the velocity to decrease
into the fluid.

Thus transverse waves can occur in a viscous fluid, with the velocity v, = v perpendicular
to the direction of propagation. They are, however, rapidly damped as we move away from
the solid surface whose motion generates the waves. The amplitude damping is
exponential, the depth of penetration being 6.1+ This depth decreases with increasing
frequency of the wave, but increases with the kinematic viscosity of the fluid.

The frictional force on the solid surface is evidently in the y-direction. The force per unit
area is

Oy = N(00,/0X), =0 = /(Jeomp) (i — )u (24.6)

te’Ow:raM&.mmwmmitwmwafmtdqmmwhmbya&cto:
of ¢** =~ 540.
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Supposing u, real and taking the real part of (24.6), we have

Ouy = =/ (@np)uy cos (@t +§x).

The velocity of the oscillating surface, however, is u = w, cos wt. There is therefore a phase
difference between the velocity and the frictional force. t

It is easy to calculate also the (time) average of the energy dissipation in the above
problem. This may be done by means of the general formula (16.3); in this particular case,
however, it is simpler to calculate the required dissipation directly as the work done by the
frictional forces. The energy dissipated per unit time per unit area of the oscillating plane is
equal to the mean value of the product of the force o,, and the velocity u, = u:

—0,,u = {uy’ /(demp). (24.7)

It is proportional to the square root of the frequency of the oscillations, and to the square
root of the viscosity.

An explicit solution can also be given of the problem of a fluid set in motion by a plane
surface moving in its plane according to any law u = u(r). We shall not pause to give the
corresponding calculations here, since the required solution of equation (24.3) is formally
identical with that of an analogous problem in the theory of thermal conduction, which we
shall discuss in §52 (the solution is formula (52.15)). In particular, the frictional force on
unit area of the surface is given by

np du(r) dr
Oy = — \/ I 3¢ 7“_” (24.8)

cf. (52.14).

Let us now consider the general case of an oscillating body with any shape. In the case of
an oscillating plane considered above, the term (v - grad)v in the equation of motion of the
fluid was identically zero. This does not happen, of course, for a surface with arbitrary
shape. We shall assume, however, that this term is small in comparison with the other
terms, so that it may be neglected. The conditions necessary for this procedure to be valid
will be examined below.

We shall therefore begin, as before, from the linear equation (24.2). We take the curl of
both sides; the term curl grad p vanishes identically, giving

dlcurlv)/ét = v curly, (24.9)

i.e. curl v satisfies a heat conduction equation. We have seen above, however, that such an
equation gives an exponential decrease of the quantity which satisfies it. We can therefore
say that the vorticity decreases towards the interior of the fluid. In other words, the motion
of the fluid caused by the oscillations of the body is rotational in a certain layer round the

t For oscillations of a half-planc (parallel to its edge) there is an additional fnctional force due to edge effects.
The problem of the motion of a viscous fluid caused by oscillations of a half-plane, and also the more general
problem of the oscillations of a wedge with any angle, can be solved by a class of solutions of the equation
Af+k*f=0, used in the theory of diffraction by a wedge. We give here, for reference, only one result: the
increase in the frictional force on a half-plane, arising from the edge cffect, can be regarded as the result of
increasing the area of the half-planc by moving the edge a distance 44, with 4 as in (24.4) (L. D. Landau 1947).
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body, while at larger distances it rapidly changes to potential flow. The depth of
penetration of the rotational flow is of the order of 4.

Two important limiting cases are possible here: the quantity  may be either large or
small compared with the dimension of the oscillating body. Let | be the order of magnitude
of this dimension. We first consider the case 4 » [; this implies that Pw < v. Besides this
condition, we shall also suppose that the Reynolds number is small. If a is the amplitude of
the oscillations, the velocity of the body is of the order of aw. The Reynolds number for the
flow in question is therefore wal/v. We thus suppose that

Po<€v, wallv<l. (24.10)

This is the case of low frequencies of oscillation, which in turn means that the velocity
varies only slowly with time, and therefore that we can neglect the derivative dv/ét in the
general equation of motion dv/dt+ (v-grad)v = —(1/p)gradp +vAv. The term
(v-grad)v, on the other hand, can be neglected because the Reynolds number is small.

The absence of the term dv/dt from the equation of motion means that the flow is
steady. Thus, for 6 » [, the flow can be regarded as steady at any given instant. This means
that the flow at any given instant is what it would be if the body were moving uniformly
with its instantaneous velocity. If, for example, we are considering the oscillations of a
sphere immersed in the fluid, with a frequency satisfying the inequalities (24.10) (I being
now the radius of the sphere), then we can say that the drag on the sphere will be that given
by Stokes' formula (20.14) for uniform motion of the sphere at small Reynolds numbers.

Let us now consider the opposite case, where / » 4. In order that the term (v-grad)v
should again be negligible, it is necessary that the amplitude of the oscillations should be
small in comparison with the dimensions of the body:

Popv, a<l; (24.11)

in this case, it should be noticed, the Reynolds number need not be small. The above
inequality is obtained by estimating the magnitude of (v-grad)v. The operator (v-grad)
denotes differentiation in the direction of the velocity. Near the surface of the body,
however, the velocity is nearly tangential. In the tangential direction the velocity changes
appreciably only over distances of the order of the dimension of the body. Hence

v-grad)v ~ ¥/l ~ d*&? /|,

since the velocity itself is of the order of aw. The derivative év/ét, however, is of the order
of vw ~ aw?. Comparing these, we see that

(v-grad)v € dv/ét

if a € I. The terms dv/dt and v/ v are then easily seen to be of the same order.

We may now discuss the nature of the flow round an oscillating body when the
conditions (24.11) hold. In a thin layer near the surface of the body the flow is rotational,
but in the rest of the fluid we have potential flow.t Hence the flow everywhere except in the
layer adjoining the body is given by the equations

curly =0, divy=0. (24.12)

t Faosalhmdaphmwfwenaodyuhbuabvnelmmlymhm
distance 4. This is because the oscillating plane does not displace the fluid, and therefore the fluid remote from it
remains at rest. For oscillations of bodies with other shapes the fluid is displaced, and therefore executes a motion
where the velocity decreases appreciably only over distances of the order of the dimension of the body.
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Hence it follows that Av =0, and the Navier-Stokes equation reduces to Euler’s
equation. The flow is therefore ideal everywhere except in the surface layer. Since this layer
is thin, in solving equations (24.12) to determine the flow of the rest of the fluid we should
take as boundary condtions those which must be satisfied at the surface of the body, i.e.
that the fluid velocity be equal to that of the body. The solutions of the equations of motion
for an ideal fluid cannot satisfly these conditions, however. We can require only the
fulfilment of the corresponding condition for the fluid velocity component normal to the
surface.

Although equations (24.12) are inapplicable in the surface layer of fluid, the velocity
distribution obtained by solving them satisfies the necessary boundary condition for the
normal velocity component, and the actual variation of this component near the surface
therefore has no significant properties. The tangential component would be found, by
solving the equations (24.12), to have some value different from the corresponding velocity
component of the body, whereas these velocity components should be equal also. Hence
the tangential velocity component must change rapidly in the surface layer. The nature of
this variation is easily determined. Let us consider any portion of the surface of the body,
with dimension large compared with 4, but small compared with the dimension of the
body. Such a portion may be regarded as approximately plane, and therefore we can use
the results obtained above for a plane surface. Let the x-axis be directed along the normal
to the portion considered, and the y-axis parallel to the tangential velocity component of
the surface there. We denote by v, the tangential component of the fluid velocity relative to
the body; v, must vanish on the surface. Lastly, let soe ™" be the value of v, found by
solving equations (24.12). From the results obtained at the beginning of this section, we can
say that in the surface layer the quantiy v, will fall off towards the surface according to the
lawt

v, = vge [l —e--IxJia/] (24.13)
Finally, the total amount of energy dissipated in unit time will be given by the integral
Eyo = -%J(&mp)§¢volzdf (24.19)

taken over the surface of the oscillating body.

In the Problems at the end of this section we calculate the drag on various bodies
oscillating in a viscous fluid. Here we shall make the following general remark regarding
these forces. Writing the velocity of the body in the complex form u = u,e” “”, we obtaina
drag F proportional to the velocity u, and also complex: F = fu, where = §, +if,isa
complex constant. This expression can be written as the sum of two terms with real
coefficients:

F= (B, +ify)u=p,u—pri/e, (24.15)

one proportional to the velocity u and the other to the acceleration u.

The (time) average of the energy dissipation is given by the mean product of the drag
and the velocity, where of course we must first take the real parts of the expressions given
above, i.e. u = $(uge ' + uy*e'), F = (uy fe ™ *" + u,* p*&*). Noticing that the mean
values of et2@! are zero, we have

Eyio = Fu = }(B+B%)uol® = 1B, 1n > (24.16)

t The velocity distribution (24.13) is written in a frame where the solid body is at rest (v, = 0 when x = 0).
Hence v, must be taken as the solution of the problem of potential flow past a2 body at rest.
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Thus we see that the energy dissipation arises only from the real part of f; the
corresponding part of the drag (24.15), proportional to the velocity, may be called the
dissipative part. The other part of the drag, proportional to the acceleration and
determined by the imaginary part of §, does not involve the dissipation of energy and may
be called the inertial part.

Similar considerations hold for the moment of the forces on a body executing rotary
oscillations in a viscous fluid.

PROBLEMS

PrOBLEM 1. Determine the frictional force on cach of two paraliel sobkd planes, between which is a layer of
viscous fluid, when one of the planes oscillates in its own plane.
SOLUTION. We seck a solution of equation (24.3) in the form+t
v = (Asin kx + B cos kx)e ™,

and determine A and B from theconditions v = u = uge ““for x = Oand v = Ofor x = h, where his the distance
between the planes. The result is

The frictional force per unit area on the moving plane is
P,, = n(év/éx), .o = —nkucot kk,
while that on the fixed plane is
Py, = —nidv/éx), ., = pku cosec kh,
the real parts of all quantities being understood.

PrOBLEM 2. Determine the frictional force on an oscillating planc covered by a layer of fluid with thickness h,
the upper surface being frec.

SoLuTION. The boundary condition at the solid plane is v =  for x = 0, and that at the frec surface is
a,, = ndv/dx = 0 for x = h. We find the velocity
cos kk

The frictional force is
P, = '(a'/ax):.Q -.h_&
ProBLEM 3. A planc disk with large radius R executes rotary osallations with small amplitude about its axis,

the angle of rotation being 6 = 6, cos e, where 6, < 1. Determine the moment of the frictional forces acting on
the disk.

SoLuTiON. For oscillations with small amplitude the term (v - grad)v in the equation of motion is always small
compared with dv/dt, whatever the frequency . If R » 4, the disk may be regarded as infinite in determining the
velocity distribution. We take cylindrical polar coordinates, with the z-aws along the aws of rotation, and seck a
solution such that v, = v, = 0, v, = v = rfd(z, 1). For the angular velocity 04z, 1) of the fluid we obtain the
equation

iN/ér = vi*Q/é .
The solution of this equation which is —wf, sinwtforz=0and 2zrofor z =0 s

Q= —wlye " sinfert —2/8)

t In all the Problems to this section k and é are defined as in (244)
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The moment of the frictional forces on both sides of the disk s
I
M=2 j r2mrn(0/02), .o dr = wlyx./(epn) R* coslext — | x)

ProsLEM 4. Determine the flow between two paraliel planes when there is a pressure gradient which varies
harmonically with time.

SoLuTioN. We take the xz-plane half-way between the two planes, with the x-aus parallel to the pressure
gradient, which we write in the form

~(1/p)p/dx = ae™ ™.
The velocity is everywhere in the x-direction, and is determined by the equation
dv/dt = ae” ™ +vé’v/ey’.
The solution of this equation which satisfies the conditions v = O for y = + {h s

The mean value of the velocity over a cross-section is
6-:(""(1—&&&}&)
For h/é € 1 this becomes
Pz ae /12y,
in agreement with (17.5), while for h/d » | we have
¢z lia/w)e ™,
in accordance with the fact that in this case the velocity must be almost constant over the cross-section, varying
only in a thin surface layer.
ProsLEM 5. Determine the drag on a sphere with radius R which executes translatory oscillations in a fluid.
SoLuTion. We write the velocity of the sphere in the form u = w,¢™ . As in §20, we seck the fluid veloaity in
theformv = ¢~ ' curl curl fu,, where f is a function of r only (the onigin is taken at the instantaneous position of
the centre of the sphere). Substituting in (24.9) and effecting transformations simalar to those in §20, we obtain the
s L+ /v f=0
(instead of the equation A %f = 0in §20). Hence we have
A f = constant x ¥ /r,
the solution being chosen which decreases exponentially with r. Integrating, we have
df/dr = [ae™ (r—1/ik)+b)/r*; ()

the function fitself is not needed, since only the derivatives /" and /™~ appear in the veloaity. The constants a and b
are determined from the condition that v = u for r = R, and are found to be

3R 3 3
= - - kR - - 3 -—— - —
a s b iR (l 2R k’k’) 2)
It may be pointed out that, at high frequencies (R »4). @ <0 and b — — {R”, the values for potential flow
obtained in §10, Problem 2; this is in accordance with what was saud m §24.
. Thedrag is calculated from formula (20.13), in which the integration is over the surface of the sphere. The result
is

é 95 /dt
For @ = 0 this becomes Stokes’ formula, while for large frequences we have

F= 6qu(l +5)- + B:R’\/(qu/o)(l 22 )d—'. 3)

du
F = §=xpR’ at 3R,/ 2nperiu
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The first term in this expression corresponds to the inertial force in potential flow past a sphere (see §11, Problem
1), while the second gives the limit of the dissipative force. This second term could also have been found by
calculating the energy dissipation according to (24.14); sec Problem 6.

ProsLEM 6. Find the expression, in the imit of high frequencies (4 € R ), for the dissipative drag on an infinite
cylinder with radius R oscillating at right angles to its axis.
SOLUTION, The velocity distribution round a cylinder at rest in a transverse flow is
ve(R/F)[20(u-n)~u)-u
see §10, Problem 3, From this, we find as the tangential velocity at the surface of the cylinder
U= —2usin @,

where rand ¢ are polar coordinates in the transverse plane, with ¢ measured from the direction of u. From (24.14)
we find the energy dissipated per unit length of the cylinder:

Eyin = x4’ R/ (2npe).
Comparison with (24.15) and (24.16) gives the result
F g = 22uR./(2npe).
ProBLEM 7. Determine the drag on a sphere moving in an arbitrary manner, the velocity being given by a
function u(r).
SOLUTION. We represent u(r) as a Fourier integral:
u(t) = % I e “do, u = j w(r)e™"dr.

Since the equations are linear, the total drag may be written as the integral of the drag forces for velocities which
are the separate Fourier components u_e “*; these forces are gaiven by (3) of Problem §, and are

6y 2im 3,/Q2v
Sy et SO VW,
xpR u e { B3t g U 0\/-}-

Noticing that (du/dr), = — iwu,, we can rewrite this as

6v
IpR’C--{F

m.+§(iL+y;@(iL17::}-

On integration over w/2x, the first and second terms give respectively w(r) and é(r). To integrate the third term, we
notice first of all that for negative @ this term must be written in the complex conjugate form, (1 + i)/@ being
replaced by (1 —i)/./|@l; this is because formula (3) of Problem $ was derived for a velocity u = u, e with
@ > 0,and for a velocity u, & we should obtain the complex conjugate. Instead of an integral over @ from — «©
to + oo, we can therefore take twice the real part of the integral from 0 to oc. We write

tefoen [ e oo ] 7 )

- - it ~ ) - -0
’5"{"‘“} J. Ii‘?“‘m — dﬁt'b(l'bﬂj J.-‘—tw —Mt}

- e
= 7(:—:) ’

-
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Thus we have finally for the drag

1du Ju
3
FS - {w &7 \/ I «-n} N

ProsLeEM 8. Determine the drag on a sphere which at time ¢ = 0 begins 1o move with a uniform acceleration,
U= al,

SoLunon, Putﬁn;.infwmuh(‘)ofhobln? u=0fort<Oandumatfort>0we havefort >0

PROBLEM 9. The same as Problem 8, but for a sphere brought instantancously into uniform motion.

SOLUTION. We have u = 0 for t <0 and u = u, for ¢ > 0. The denivative du/dt is zero except at the instant
t = 0, when it is infinite, but the time integral of du/dr is finite, and equals w,. As a result, we have for all ¢ > 0

F= W'R'b[l + m:';,}* ixpR’wd(nh

where 8(t) is the delta function. For ¢ — oo this expression tends asymptotically to the value given by Stokes’
formula. The impulsive drag on the sphere at ¢ = 0 is obtained by integrating the last term and is §xp Ry,

ProsLeM 10. Determine the moment of the forces on a sphere executing rotary osallations about a diameter
in a viscous fluid.

SoLuTion. For the same reasons as in §20, Problem 1, the pressure-gradient term can be omitted from the
equation of motion, so that we have dv/dt = v 2\ v. We seek a solution in the form v = curl fQ, ¢, where 2
= Q,e” " is the angular velocity of rotation of the sphere. We then obtain for f, instead of the equation
4 f = constant,

X f+ k*f = constant.

Omitting an unimportant constant term in the solution of this equation, we find f = ae™ /r, taking the solution
which vanishes at infinity. The constant ais determined from the boundary condition that v = Qr at the surface
of the sphere. The result is
R’ (R) 1 = ikr
P — it = -_— D
S icary " =@\ T) TR

where Ris the radius of the sphere. A calculation like that in §20, Problem 1, gives the following expression for the
moment of the forces exerted on the sphere by the fluid:

M = % jpag 3+ ORI+ 6(RIOF + AR /& — RIS (1 + RIS)
3 1+2R/6+2AR/6F

For @ — 0 (i.e. & — o), we obtain M = — 8xpR*(), corresponding to uniform rotation of the sphere (see §20,
Problem 1). In the opposite imiting case R/é » 1, we find

2
M= %/ xR/ (npe) i — Q.

This expression can also be obtained directly: for 4 € R cach clement of the surface of the sphere may be regarded
as plane, and the frictional force acting on it is found by substituting » = QR sin # in formula (24.6).

ProsLEM 11. Determine the moment of the forces on a hollow sphere filled with wiscous fluid and executing
rotary oscillations about a diameter.

SoLuTION. We seck the velocity in the same form as in Problem 10. For f we take the solution (a/r) sin kr,
which is finite everywhere within the sphere, including the centre. Determuning @ from the boundary condition,

we have
v = @xr (R)’ bgosb-s-b
) kR cos kR —sin kR~
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A calculation of the moment of the frictional forces gives the expression

k*R? sin kR + 3kR cos kR ~ Jutk
- 30 e
M=3mR'0 kR cos kR — sin kR :

The limiting value for R/3 » | is of course the same as in the preceding problem. If R/ € | we have

- ﬁtml’ﬂ(l - i’;—.-)

The first term corresponds to the inertial forces occurring in the ngad rotation of the whole fluid.

§25. Damping of gravity waves

Arguments similar to those given above can be advanced concerning the velocity
distribution near the free surface of a fluid. Let us consider oscillatory motion occurring
near the surface (for example, gravity waves). We suppose that the conditions (24.11) hold,
the dimension | being now replaced by the wavelength i:

Popv, a<i; (25.1)

a is the amplitude of the wave, and @ its frequency. Then we can say that the flow is
rotational only in a thin surface layer, while throughout the rest of the fluid we have
potential flow, just as we should for an ideal fluid.

The motion of a viscous fluid must satisfy the boundary conditions (15.16) at the free
surface; these require that certain combinations of the space derivatives of the velocity
should vanish. The flow obtained by solving the equations of ideal-fluid dynamics does not
satisfy these conditions, however. As in the discussion of v, in the previous section, we may
conclude that the corresponding velocity derivatives decrease rapidly in a thin surface
layer. It is important to notice that this does not imply a large velocity gradient as it does
near a solid surface.

Let us calculate the energy dissipation in a gravity wave. Here we must consider the
dissipation, not of the kinetic energy alone, but of the mechanical energy E__, , which
includes both the kinetic energy and the potential energy in the gravitational field. It is
clear, however, that the presence or absence of a gravitational field cannot affect the energy
dissipation due to processes of internal friction in the fluid. Hence E__, is given by the

same formula (16.3): 3 ;
b= i (55452 ) 0¥

In calculating this integral for a gravity wave, it is to be noticed that, since the volume of the
surface region of rotational flow is small, while the velocity gradient there is not large, the
existence of this region may be ignored, unlike what was possible for oscillations of a solid
surface. In other words, the integration is to be taken over the whole volume of fluid,
which, as we have seen, moves as if it were an ideal fluid.

The flow in a gravity wave for an ideal fluid, however, has already been determined in
§12. Since we have potential flow,

0v;/0x, = 0§ /0x,0x; = On,/éx;,
s0 that

2
e R
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The potential ¢ has the form
¢ = ¢, cos(kx — wt + a)e*’.

Weare interested, of course, not in the instantaneous value of the energy dissipation, but in
its mean value with respect to time. Noticing that the mean values of the squared sine and
cosine are the same, we find

Epes = —Snk* j $dv. (25.2)

The energy E, ., itself may be calculated for a gravity wave by using a theorem of
mechanics that, in any system executing small oscillations (with small amplitude, that is),
the mean kinetic and potential energies are equal. We can therefore write E__, simply as
twice the kinetic energy:

Eppech = pF‘dV = pJ’@/aide,
whence
Epe = 2pk3 J idv. (25.3)

The damping of the waves is conveniently characterized by the damping coefficient y,
defined as

7= 1B |/ 2E pcs.- (25.4)

In the course of time, the energy of the wave decreases according to the law E_
= constant x e~ *”; since the energy is proportional to the square of the amplitude, the
latter decreases with time as e "',

Using (25.2), (25.3), we find

7 = 2vk3. (25.5)
Substituting here (12.7), we obtain the damping coefficient for gravity waves in the form
7 = va‘/gz. (25-6)

PROBLEMS

PROBLEM 1. Determine the damping coefficient for long gravity waves propagated in a channel with constant
cross-section; the frequency is supposed so large that ./ (v/ ) is small compared with the depth of the fluid in the
channel and the width of the channel.

SoLuTioN. The principal dissipation of energy occurs in the surface layer of Suid, where the velocity changes
from zero at the boundary to the value v = vy e “* which it has in the wave. The mean energy dissipation per unit
length of the channel is by (24.14) 1|, |,/ (npes/8), where lis the perimeter of the part of the channel cross-section

occupied by the fluid. The mean energy of the fluid (again per unit length)is Spe” = }Splu,l‘.vhaesmheaoss-
Mmﬂuaothﬂﬁhmmmwmby-l\/ﬂ./u ). For a channel with
rectangular section, therefore,

2h+a
7=aﬁ\/(ml

where a is the width and h the depth of the fluid.

ProsLEM 2. Determine the flow in a gravity wave on a very wviscous fluid (v 2 @4”)
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SOLUTION. The calculation of the damping coefficient as shown above is valid only when this coefficient is
small (y < w),s0 that the motion may be regarded as that of an ideal fluid 10 a first approximation. For arbitrary
viscosity we seek a solution of the equations of motion
%.'(ﬁo.*g’_")-!i'_
at éx? ) péx
o, ‘z’w"_"e) 1ép
at ox? ot
do, dv,

='a"°

which depends on ¢ and x as ¢™*** **, and diminishes in the interior of the fuid (z > 0). We find

v, = e T4 + Be™), v,-c"'"‘(-ul'-:-l(").

plp=e """ wAdl /k—gz:, where m= (k% —iw/v)
The boundary conditions at the fluid surface are

ée, v,
0, = =p+2ndv,/dz =0, ‘“-'(—e;+é—x)-o for z=(

In the second condition we can immediately put z = 0 instead of z = [. The first condition, however, should be
differentiated with respect to ¢, after which we replace ¢é{/ér by g, and then put z = 0. The condition that the
resulting two homogeneous equations for A and B be compatible pives

iw\* ¢ )

(2 *,) sima(-5) )
This equation gives w as a function of the wave number k;  is complex, its real part giving the frequency of the
oscillations and its imaginary part the damping coefficient. The solutions of equation (1) that have a physical
meaning are those whose imaginary are negative (corresponding 1o damping of the wave); only two roots of
(1) meet this requirement. If vk* < J(gk)(theconﬂioalzs.lnlhlkd*“oeﬁdwisml.nd(l) ives
approximately w = + /(gk)— i.2vk? a result which we already know. In the opposite imiting case vk* » /(gk),
equation (1) has two purely imaginary roots, corresponding to damped apeniodic flow. Onerootisw = —ig/2vk,
while the other is much larger (of order vk*), and therefore of no interest, since the corresponding motion is
strongly damped.



CHAPTER 111

TURBULENCE

§26. Stability of steady flow

For any problem of viscous flow under given steady conditions there must in principle
exist an exact steady solution of the equations of fluid dynamics. These solutions formally
exist for all Reynolds numbers. Yet not every solution of the equations of motion, even if it
is exact, can actually occur in Nature. Those which do must not only obey the equations of
fluid dynamics, but also be stable. Any small perturbations which arise must decrease in the
course of time. If, on the contrary, the small perturbations which inevitably occur in the
flow tend to increase with time, the flow is unstable and cannot actually exist.t

The mathematical investigation of the stability of a given flow with respect to infinitely
small perturbations will proceed as follows. On the steady solution concerned (whose
velocity distribution is v, (r), say), we superpose a non-steady small perturbation v, (r, 1),
which must be such that the resulting velocity v = v, + v, satisfies the equations of motion.
The equation for v, is obtained by substituting in the equations

gﬂvmﬁv- _22‘!’+,A,, divy =0 (26.1)

the velocity and pressure
'='0+'h P=P0+Plo (26'2)
where the known functions v, and p, satisfy the unperturbed equations

(vo-grad)v, = — g“ L +vliv,, divy, = 0. (26.3)

P
Omitting terms above the first order in v,, we obtain

d
—g; + (vo - grad)v, + (v, -grad)y,

= -=2—"LivAv,, divy, =0. (26.4)

The boundary condition is that v, vanish on fixed solid surfaces.

Thus v, satisfies a system of homogeneous linear differential equations, with coefficients
that are functions of the coordinates only, and not of the time. The general solution of such
equations can be represented as a sum of particular solutions in which v, depends on time

1 In the previous edition, instability with respect to infinitesimal perturbations was called absolute instability.
This adjective will not now be used in the present context, but will serve (in accordance with more customary
terminology) as a contrast to convected (§28).

95
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as ¢ ', The frequencies @ of the perturbations are not arbitrary, but are determined by
solving the equations (26.4) with the appropriate boundary conditions. The frequencies are
in general complex. If there are @ whose imaginary parts are positive, ¢~ will increase
indefinitely with time. In other words, such perturbations, once having arisen, will increase,
i.e. the flow is unstable with respect to such perturbations. For the flow to be stable it is
necessary that the imaginary part of any possible frequency @ be negative. The
perturbations that arise will then decrease exponentially with time.

Such a mathematical investigation of stability is extremely complicated, however. The
theoretical problem of the stability of steady flow past bodies with finite dimensions has
not yet been solved. It is certain that steady flow is stable for sufficiently small Reynolds
numbers. The experimental data seem to indicate that, when R increases, it eventually
reaches a value R, (the critical Reynolds number) beyond which the flow is unstable with
respect to infinitesimal disturbances. For sufficiently large Reynolds numbers (R > R,),
steady flow past solid bodies is therefore impossible. The critical Reynolds number is not,
of course, a universal constant, but takes a different value for each type of flow. These
values appear to be of the order of 10 to 100; for example, in flow across a cylinder
undamped non-steady flow has been observed for R = ud/v > 30, 4 being the diameter of
the cylinder.

Let us now consider the nature of the non-steady flow which is established as a result of
the instability of steady flow at large Reynolds numbers (L. D. Landau 1944). We begin by
examining the properties of this flow at Reynolds numbers only slightly greater than R,.
For R < R, the imaginary parts of the complex frequencies @ = @, + iy, for all possible
small perturbations are negative (y, <0). For R = R, there is one frequency whose
imaginary part is zero. For R > R, the imaginary part of this frequency is positive, but,
when R is close to R, 7, is small in comparison with the real part @,.t The function v,
corresponding to this frequency is of the form

vy = A(Of(x, ¥, 2), (26.5)
where f is some complex function of the coordinates, and the complex amplitude A(r) is
A(t) = constant x ¢"*'e ", (26.6)

This expression for A(t)is actually valid, however, only during a short interval of time after
the disruption of the steady flow; the factor e™ increases rapidly with time, whereas the
method of determining v, given above, which leads to expressions like (26.5) and (26.6),
applies only when | v, | is small. In reality, of course, the modulus | A | of the amplitude of
the non-steady flow does not increase without limit, but tends to a finite value. For R close
to R, (wealways mean, of course, R > R, ), this finite value is small, and can be determined
as follows.

Let us find the time derivative of the squared amplitude | A4 |*. For very small values of t,
when (26.6) is still valid, we have d | 4 |*/dt = 2y, | A |*. This expression is really just the
first term in an expansion in series of powers of A and A*. As the modulus | A | increases
(still remaining small), subsequent terms in this expansion must be taken into account. The

t The set (or spectrum) of all possible perturbation frequencies for a given type of flow includes both separate
isolated values (the discrete spectrum) and the whole of vanous frequency ranges (the continuous spectrum). It
seems that for flow past finite bodies the frequencies with y, > 0 can occur only in the discrete spectrum. The
reason is that the perturbations corresponding to the frequencies in the continuous spectrum are in general not
zero at infinity, but the unperturbed flow there is certainly a stable homogencous plane-parallel flow.

$ As usual, we understand the real part of (26.6).
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next terms are those of the third order in A. However, we are not interested in the exact
value of the derivative d | A |?/dt, but in its time average, taken over times large compared
with the period 2n/w, of the factor e-*; we recall that, since @, » 7,, this period is small
compared with the time 1/y, required for the amplitude modulus | A| to change
appreciably. The third-order terms, however, must contain the periodic factor, and
therefore vanish on averaging.t The fourth-order terms include one which is proportional
to A*A*? = | A|* and which does not vanish on averaging. Thus we have as far as fourth-
order terms

d|AP/dt =2y, |AP—a]Al*, (26.7)

where a (the Landau constant) may be either positive or negative.

We are interested in the case where an infinitesimal perturbation (superimposed on the
original flow) first becomes unstable for R > R_,. This corresponds to x > 0. We have not
put bars above | A |* and | A |* in (26.7), since the averaging is only over time intervals short
compared with 1/y,. For the same reason, in solving the equation we proceed as if the bar
were omitted above the derivative also. The solution of equation (26.7) is

1/|A]? = a/2y, +constant x e~ 2",
Hence it is clear that | A |* tends asymptotically to a finite imit:
| AP pax ™ 271 /2 (26.8)

The quantity y, is some function of the Reynolds number. Near R, it can be expanded as
a series of powers of R —R,. But 7,(R) = 0, by the definition of the critical Reynolds
number. Hence we have to the first order

y; = constant x (R —R_,). (26.9)

Substituting this in (26.8), we see that the modulus | A | of the amplitude is proportional to
the square root of R —=R_:

| A lpae < / (R=R,). (26.10)

Let us now briefly discuss the case where « < 0in (26.7). The two terms in that expansion
are then insufficient to determine the imiting amplitude of the perturbation, and we have
to include a negative term of higher order; let this be — f| A |* with § > 0, which gives

2
| AP g ';'i (:;, 2';'7.). (26.11)

with y, as in (26.9). The dependence is shown in Fig. 13b; Fig. 13a corresponds to a« > 0,
(26.10). When R > R, there can be no steady flow; when R = R, the perturbation
discontinuously reaches a non-zero amplitude, though this is still assumed so small that
the expansion in powers of | 4 |? is valid.} In the range R’ < R < R_, the unperturbed
flow is metastable, being stable with respect to infinitesimal perturbations but unstable
with respect to those with finite amplitude (the continuous curve; the broken curve shows
the unstable branch).

t Smctly spnkm;. the third-order terms give, on averaging, not zero, but fourth-order terms, which we
suppose included among the fourth-order terms in the expansion.

1 Such systems are said to have hard seif-exaitation, in contrast to those with soft self-exaitation, which are
unstable with respect to infinitesimal perturbations.
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Let us now return to the non-steady flow which occurs when R > R_, as a result of the
instability with respect to small perturbations. For R close to R, the latter flow can be
represented by superposing on the steady flow v, (r)a periodic flow v, (r, 1), with a small but
finite amplitude which increases with R as in (26.10). The velocity distribution in this flow is
of the form

v, = f(r)e @i+ (26.12)

where f is a complex function of the coordinates, and §, is some initial phase. For large
R —R,,, the separation of the velocity into v, and v, is no longer meaningful. We then have
simply some periodic flow with frequency w,. If, instead of the time, we use as an
independent variable the phase ¢, = w,t + f§,, then we can say that the function v(r, ¢, )isa
periodic function of ¢,, with period 2x. This function, however, is no longer a simple
trigonometrical function. Its expansion in Fourier series

v=) A,(r)e""%? (26.13)
P

(where the summation is over all integers p, positive and negative) includes not only terms
with the fundamental frequency w,, but also terms whose frequencies are integral
multiples of w,.

Equation (26.7) determines only the modulus of the time factor A(t), and not its phase
¢,, which remains essentially indeterminate, and depends on the particular initial
conditions which happen to occur at the instant when the flow begins. The initial phase f§,
can have any value, depending on these conditions. Thus the periodic flow under
consideration is not uniquely determined by the given steady external conditions in which
the flow takes place. One quantity—the initial phase of the velocity—remains arbitrary.
We may say that the flow has one degree of freedom, whereas steady flow, which is entirely
determined by the external conditions, has no degrees of freedom.

PROBLEM

Derive the equation for the energy balance between the unperturbed flow and a superimposed perturbation,
without assuming that the latter is weak.

SOLUTION. Substituting (26.2) in (26.1), but not omitting the term of the second order in v,, we have
0%, [0t + (vo - grad)v, + (v, -grad)v, + (v, -grad)v, = —gradp, + (1/R)Av,; (1)
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dlqunmmuemu\d to be brought to dimensionless form, as described in §19. Taking the scalar product of
this equation with v, and using the equations divy, = 0, divy, = 0, we obtain

a%. 'hlibll a { l a'Il}
Ot“v' ) UL ox. R x, ox, *Dx. $0, % (0 +0) = pyoy, + .'n.a
The last term on the right gives zero on integration over the whole region of the flow, since v, = v, = 0 on the
boundary surfaces of the region or at infinity. This gives as the required relation

E, = T-D/R, 2
E,= j’”n’du T= -~ J‘".'“O_o&“. D= I(““) dv. 3)
ox, ax,

The functional T represents the energy exchange between the unperturbed flow and the perturbation, and may
have either sign. The functional D is the dissipative energy loss, and D > 0 always. Note that the term in (1) non-
linear in v, does not contribute to the relation (2)

The relation (2) provides a lower limit of R, (O. Reynolds 1894; W. M'F. Orr 1907y the derivative dE, /dt must
be negative, i.c. the perturbation decreases with time, if R < R, where

Rg = min(D/T), 4
the minimum of the functional being taken with respect to functions v, (r) which satisfly the boundary conditions
and the equation div v, = 0. The existence of a finite minimum arises mathematically from the fact that 7and D
are both second-order homogeneous functionals. This proves the existence of a lower kmit of R for metastability,

below which the unperturbed flow is stable with respect 10 any perturbations. The “energy estimate”™ given by (4)
is, however, much too low in the majority of cases.

§27. Stability of rotary flow

To investigate the stability of steady flow between two rotating cylinders (§18) in the
limit of very large Reynolds numbers, we can use a simple method like that used in §4 to
derive the condition for mechanical stability of a fluid at rest in a gravitational field
(Rayleigh 1916). The principle of the method is to consider any small element of the fluid
and to suppose that this element is displaced from the path which it follows in the flow
concerned. As a result of this displacement, forces appear which act on the displaced
element. If the original flow is stable, these forces must tend to return the element to its
original position.

Each fluid element in the unperturbed flow moves in a arcle r = constant about the axis
of the cylinders. Let u(r) = mr*¢ be the angular momentum of an element with mass m, ¢
being the angular velocity. The centrifugal force acting on it is u?/mr>; this force is
balanced by the radial pressure gradient in the rotating fluid. Let us now suppose that a
fluid element at a distance r, from the axis is slightly displaced from its path, being moved
to a distance r > r, from the axis. The angular momentum of the element remains equal to
its original value y, = u(ro). The centrifugal force acting on the element in its new position
is therefore py%/mr>. In order that the element should tend to return to its initial position,
this force must be less than the equilibrium value u?/mr® which is balanced by the pressure
gradient at the distance r. Thus the necessary condition for stability is p® — p,? > 0.
Expanding u(r) in powers of the positive difference r — r,, we can write this condition in the
form

udp/dr > 0. (27.1)
According to formula (18.3), the angular velocity ¢ of the moving fluid particles is
§oQRI-RS @ -QIRRS T
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Calculating u = mr?¢ and omitting factors which are certainly positive, we can write the
condition (27.1) as

Q, R, ~Q, R, )¢ > 0. (27.2)

The angular velocity ¢ varies monotonically from ©, on the inner cylinder to Q, on the
outer cylinder. If the two cylinders rotate in opposite directions, i.e. if Q, and Q, have
opposite signs, the function ¢ changes sign between the cylinders, and its product with the
constant number Q, R,? = Q, R,? cannot be everywhere positive. Thus in this case (27.2)
does not hold at all points in the fluid, and the flow is unstable.

Now let the two cylinders be rotating in the same direction; taking this direction of
rotation as positive, we have Q, > 0, Q, > 0. Then ¢ is everywhere positive, and for the
condition (27.2) to be fulfilled it is necessary that

Q,R,? > Q, R, (27.3)

If Q,R,? <Q, R,? the flow is unstable. For example, if the outer cylinder is at rest
(Q, = 0), while the inner one rotates, then the flow is unstable. If, on the other hand, the
inner cylinder is at rest (£, = 0), the flow is stable.

It must be emphasized that no account has been taken, in the above arguments, of the
effect of the viscous forces when the fluid element is displaced. The method is therefore
applicable only for small viscosities, i.e. for large R.

To investigate the stability of the flow for any R, it is necessary to follow the general
method, starting from equations (26.4); for flow between rotating cylinders, this was first
done by G. L. Taylor (1924). In the present case the unperturbed velocity distribution v,
depends only on the (cylindrical) radial coordinate r, and not on the angle ¢ or the axial
coordinate z. The complete set of independent solutions of equations (26.4) may therefore
be sought in the form

vi(r, @, 2) = T ), (27.4)

the direction of the vector f(r) being arbitrary. The wave number k, which takes a
continuous range of values, determines the periodicity of the perturbation in the z-
direction. The number n takes only integral values 0, 1, 2, ..., as follows from the
condition for the function to be single-valued with respect to the variable ¢; the valuen = 0
corresponds to axially symmetrical perturbations. The permissible values of the frequency
w are found by solving the equations with the necessary boundary conditions (v, = 0 for
r = R, and r = R;). The problem thus formulated yields in general, for given n and k, a
discrete series of eigenfrequencies @ = w,'”’(k), where j labels the branches of the function
,(k); these frequencies are in general complex.

The role of the Reynolds number in this case may be taken by Q, R,*/vor Q, R,*/v for
given values of theratios R, /R, and Q, /Q, which determine the type of flow. Let us follow
the change of some eigenfrequency @ = @,"”’(k) as the Reynolds number gradually
increases. The point where instability appears (for a particular form of perturbation) is
determined by the value of R for which the function y(k) = im @ first becomes zero for
some k. For R < R_, the function y(k)is always negative, but for R > R we havey > Oin
some range of k. Let k. be the value of k for which y(k) =0 when R =R_. The
corresponding function (27.4) gives the nature of the flow which occurs (superimposed on
the original flow) in the fluid at the instant when the original flow ceases to be stable; it is
periodic along the axis of the cylinders, with period 2x/ k.. The actual limit of stability is, of
course, determined by the form of the perturbation, ie. the function ,”’(k), for which R,
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is least, and it is these “most dangerous™ perturbations that are of interest here. As a rule
(see below) they are axially symmetrical. Because of the great complexity of the calculation,
a fairly complete study of them has been made only in the case where the space between the
cylinders is narrow: h = R, ~ R, € R = §(R, + R;). The results are as follows.t

Itis found that a purely imaginary function w(k)corresponds to the solution which gives
the smallest R.,. Hence, when k = k_, not only im @ but @ itself is zero. This means that
the first instability of steady rotary flow leads to the appearance of another flow which is
also steady.} It consists of toroidal Taylor vortices arranged in a regular manner along the
cylinders. For the case where the two cylinders rotate in the same direction, Fig. 14 shows
schematically the projections of the streamlines of these vortices on the meridional cross-

7
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t A detailed treatment is given by N. E Kochin, I. A. Kibel" and N. V. Roze, Theoretical H ydromechanics
(Teoreticheskaya gidromekhanika), Part 2, Moscow 1963 S. Chandrasckhar, Hydrodynamic and
H ydromagnetic Stability, Oxford 1961; P. G. Drazin and W. H. Raad, H ydrodynamic Stability, Cambridge 1981.

$ In such cases there is said 1o be exchange of stabilities. The experimental and numerical results for several
mmhrmwuwtwmsmyuamﬂmhtkhwddosmw«hbang
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section plane of the cylinders; the velocity v, actually has an azimuthal component also.
The length 2n/k, of each period contains two vortices with opposite directions of rotation.

For R slightly greater than R, there is not one value of k but a whole range, for which
im @ > 0. However, it should not be thought that the resulting flow will be a superposition
of flows with various periodicities. In reality, for each R a flow with a definite periodicity
occurs which stabilizes the total flow. This periodicity, however, cannot be determined
from the linearized equation (26.4).

Figure 15 shows the approximate form of the curve separating the regions of unstable
(shaded) and stable flow for a given value of R, /R;. The right-hand branch of the curve,
corresponding to rotation of the two cylinders in the same direction, is asymptotic to the
line Q,R,* = Q, R, ?; this property is in fact a general one, not dependent on the smallness
of h. When the Reynolds number increases, for a given type of flow, we move upwards
along a line through the origin which corresponds to the given value of Q, /Q, . In the right-
hand part of the diagram, such lines for which Q, R,?/Q, R,? > 1 do not meet the curve
which bounds the region of instability. If, on the other hand, Q, R,?/Q, R,? < 1, then for
sufficiently large Reynolds numbers we enter the region of instability, in accordance with
the condition (27.3). In the left-hand part of the diagram (22, and Q, with opposite signs),
any line through the origin meets the boundary of the shaded region; that is, when the
Reynolds number is sufficiently large steady flow ultimately becomes unstable for any
ratio |, /Q, |, again in agreement with the previous results. For Q, = 0 (when only the
inner cylinder rotates), instability sets in when the Reynolds number, defined as
R =hQ, R,/v,is

R, =412/ (R/h). (27.5)

In the flow under consideration, the viscosity has a stabilizing effect: a flow stable when
v = 0 remains stable when the viscosity is taken into account, and one that is unstable may
become stable for a viscous fluid.

There have been no systematic studies of perturbations without axial symmetry in flow
between rotating cylinders. The results of calculations for particular cases suggest that the
axially symmetrical perturbations always remain the most dangerous on the right-hand
side of Fig. 15. On the left-hand side, however, when | Q,/Q, | is sufficiently large, the form
of the boundary curve may be somewhat changed when perturbations without axial
symmetry are taken into account. The real part of the perturbation frequency then does
not tend to zero, and so the resulting flow is not steady, which considerably alters the
nature of the instability.
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The limiting case (as h — 0) of flow between rotating cylinders is flow between two

parallel planes in relative motion (see §17). This flow is stable with respect to infinitely
small perturbations for any value of R = uh/v, where u is the relative velocity of the planes.

§28. Stability of flow in a pipe

The steady flow in a pipe discussed in §17 loses its stability in an unusual manner. Since
the flow is uniform in the x-direction (along the pipe), the unperturbed velocity
distribution v, is independent of x. Similarly to the procedure in §27, we can therefore seek
solutions of equations (26.4) in the form

v, =M (y, ) (28.1)

Herealso thereisa value R = R, for which y = im w first becomes zero for some value of k.
It is of importance, however, that the real part of the function @(k) is not now zero.

For values of R only slightly exceeding R_ , the range of values of k for which y (k) > Ois
small and lies near the point for which y (k) is a maximum, i.e. dy/dk = 0 (as seen from Fig.
16). Let a slight perturbation occur in some part of the flow; it is a wave packet obtained by
superposing a series of components with the form (28.1). In the course of time, the
components for which y (k) > 0 will be amplified, while the remainder will be damped. The
amplified wave packet thus formed will also be carried downstream with a velocity equal to
the group velocity dw/dk of the packet (§67); since we are now considering waves whose
wave numbers lie in a small range near the point where dy/dk = 0, the quantity

dw/dk = d(re w)/dk (28.2)
is real, and is therefore the actual velocity of propagation of the packet.

4
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This downstream displacement of the perturbations is very important, and causes the
loss of stability to be totally different from that described in §27.

Since the positiveness of im @ now implies only an amplification of the perturbation as it
moves downstream, there are two possibilities. In one case, despite the movement of the
wave packet, the perturbation increases without limit in the course of time at any point
fixed in space; this kind of instability with respect to any infinitesimal perturbations will be
called absolute instability. In the other case, the packet is carried away so swiftly that at any
point fixed in space the perturbation tends to zero as t — oo; this kind will be called
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convected instability.t For Poiseuille flow, it appears that the second kind occurs; see the
next footnote but four.

The difference between the two cases is a relative one, in the sense that it depends on the
choice of the frame of reference with respect to which the instability is considered: an
instability convected in one frame becomes absolute in another frame moving with the
packet, and an absolute instability becomes convected in a frame that moves away from
the packet with sufficient speed. In the present case, however, the physical significance of
the difference is given by the existence of a preferred frame of reference in which the
instability should be regarded, namely that in which the pipe walls are at rest. Moreover,
since actual pipes have a large but finite length, a perturbation anising anywhere may in
principle be carried out of the pipe before it actually disrupts the laminar flow.

Since the perturbations increase with the coordinate x (downstream), and not with time
at a given point, it is reasonable to investigate this type of instability as follows. Let us
suppose that, at a given point, a continuously acting perturbation with a given frequency @
is applied to the flow, and examine what will happen to this perturbation as it is carried
downstream. Inverting the function w(k), we find what wave number k corresponds to the
given (real) frequency w. Ifim k < 0, the factor ¢™* increases with x, i.e. the perturbation is
amplified downstream. The curve in the wR-plane given by the equation im k(w, R) = 0,
called the neutral stability curve or neutral curve, defines the region of stability, and
separates, for each R, the frequencies of perturbations which are amplified and damped
downstream.

The actual calculations are extremely complicated. A complete analytical investigation
has been made only for plane Poiseuille flow (between two parallel planes; C. C. Lin 1945).
We shall give the results here. §

The (unperturbed) flow between the planes is uniform not only in the direction of flow
(along the x-axis) but throughout the xz-plane (the y-axis being perpendicular to the
planes). We can therefore seek solutions of equations (26.4) in the form

v, = ghrrhimengy) (28.3)

with the wave vector k having any direction in the xz-plane. We are interested, however,
only in the growing perturbations that are the first to appear as R increases, since these
govern the limit of stability. It can be shown that, for a given value of the wave number, the
first perturbation not damped has k in the x-direction, with f, = 0. It is therefore sufficient
to consider only perturbations in the xy-plane, independent of z and two-dimensional (like
the unperturbed flow).t1

The neutral curve for flow between planes is schematically shown in Fig. 17. The shaded
area within the curve is the region of instability.§ The smallest value of R at which

t The general method of establishing the type of instability is descnibed in PK, §62.

% See C. C. Lin, The Theory of Hydrodynamic Stability, Cambridge 1955. A discussion of these and later
studies of the topic is to be found in the book by Drazin and Reid mentioned in 2 previous footnote.

tt The proof of this statement (H. B. Squire 1933) is that the equations (26.4) with a perturbation having the
form (28.3) can be brought to a form in which they differ from the equations for two-dimensional perturbations
only in that R is replaced by R cos¢é, ¢ being the angle between k and v, in the x:-plane. The critical number R,
for three-dimensional perturbations with a given k is therefore R, = R_ secé > R, where R is calculated for
two-dimensional perturbations.

§ The necutral curve in the kR-plane has a similar form. Since both @ and k are real on the neutral curve, the
curves in the two planes represent the same dependence expressed in terms of different variables.
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undamped perturbations are possible is found to be R, = 5772 according to later and
more accurate calculations by S. A. Orszag (1971); the Reynolds number is here defined as

R = U_h/2v, (28.4)

where U_,, is the maximum flow velocity and { h is half the distance between the planes, i.c.
the distance over which the velocity increases from zero to its maximum value.t The value
R = R, corresponds to a perturbation wave number k_ = 204/h. As R — o, the two
branches of the neutral curve approach the R-axis asymptotically, with wh/U_,, =~ R /"
and R™*/7 for the upper and lower branches respectively; on each branch,  and k are
related by wh/U = (kh)*.

Thus, for any non-zero frequency w that does not exceed a certain maximum value
(~ U/h), there is a finite range of R values in which the perturbations are amplified.{ It is
noteworthy that in this case a small but finite viscosity of the fluid has, in a sense, a
destabilizing effect in comparison with the situation for a strictly ideal fluid. 11 For, when
R — oo, perturbations with any finite frequency are damped, but when a finite viscosity is
introduced we eventually reach a region of instability; a further increase in the viscosity
(decrease in R) finally brings us out of this region.

For flow in a pipe with circular cross-section, no complete theoretical study of the
stability has yet been made, but the available results give good reason to suppose that the
flow has stability (both absolute and convected) with respect to infinitesimal perturbations
at any Reynolds number. When the unperturbed flow is awally symmetrical, the
perturbations may be sought in the form

v, = gmeti=rengy (28.5)

asin (27.4). It may be regarded as proved that axially symmetrical perturbations (n = 0)are
always damped. No undamped perturbations have been found, either, among those

t Another definition of R for two-dimensional Poiseuille flow is also used in the bterature: R = Uh/v, where U
is the fluid velocity averaged over the cross-section. Since U = § U__, , we have Uh/v = 4R/3 when R is defined
according to (28.4).

$ The proof that the instability of two-dimensional Poiscuille flow is convected has been given by S. V.
lordanskii and A. G. Kulikovskii, Soviet Physics JETP 22, 915, 1966. The proof relates, however, only to the
range of very large R, where the two branches of the neutral curve are close 1o the abscissa axis; that is, kk <€ 1 on
cach branch. The problem remains unresolved for R values such that kk ~ | on the neutral curve.

tt This property was discovered by W. Heisenberg (1924)
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without axial symmetry that have been studied (with particular values of n and in
particular Reynolds number ranges). The stability of flow in a pipe is also suggested by the
fact that, when perturbations at the entrance to the pipe are very carefully prevented,
laminar flow can be maintained up to very large values of R, in practice up to R z 107,

Where R=U.d/2v=Udv, (28.6)

d being the pipe diameter and U_, the fluid velocity on the pipe axis.

Flow between planes and in a circular pipe may be regarded as imiting cases of flow in
an annular pipe between two coaxial cylindrical surfaces with radii R, and R, (R; > R,).
When R, = 0 we have a circular pipe, and the limit R, — R, corresponds to flow between
planes. There appears to be a critical R, for all non-zero values of R, /R, < 1; when
Ry/R; =0, R, — c0.

For each of these Poiseuille flows there is also a critical number R’ which determines
the limit of stability with respect to perturbations with finite amplitude. When R < R_/,
undamped non-steady flow in the pipe is impossible. If turbulent flow occurs in any section
of the pipe, then for R < R_’ the turbulent region will be carried downstream and will
diminish in size until it disappears completely; if, on the other hand, R > R_’, the turbulent
region will enlarge in the course of time to include more and more of the flow. If
perturbations of the flow occur continually at the entrance to the pipe, then for R < R_’
they will be damped out at some distance down the pipe, no matter how strong they are
initially. If, on the other hand, R > R_’, the flow becomes turbulent throughout the pipe,
and this can be achieved by perturbations that are weaker, if R is greater. In the range
between R, and R, laminar flow is metastable. For a pipe with circular cross-section,
undamped turbulence has been observed for R > 1800, and for flow between parallel
planes for R >~ 1000 and upwards.

Since the disruption of laminar flow in a pipe is “hard”, it is accompanied by a
discontinuous change in the drag force. For flow in a pipe with R > R_’ there are
essentially two different dependences of the drag on R, one for laminar and the other for
turbulent flow (see §43). The drag has a discontinuity, whatever the value of R at which the
change from one to the other occurs.

One further remark may be made, to complete this section. The limit of stability (neutral
curve) obtained for flow in an infinitely long pipe has also another significance. Let us
consider flow in a pipe whose length is very great (in comparison with its width) but finite.
Let certain boundary conditions be imposed at each end, by specifying the velocity profile
(for example, we can imagine the ends of the pipe to be closed with porous seals which
create a uniform profile); everywhere except near the ends of the pipe, the unperturbed
velocity profile may be taken to have the Poiseuille form independent of x. For a finite
system thus defined, we can propose the problem of stability with respect to infinitesimal
perturbations; the general procedure for establishing the condition for such global stability
is described in PK, §65. It can be shown that the above-mentioned neutral curve for an
infinite pipe is also the limit of global stability in a finite pipe, whatever the specific
boundary conditions at its ends.t

§29. Instability of tangential discontinuiti

-Flows in which two layers of incompressible fluid move relative to each other, one
“sliding” on the other, are unstable if the fluid is ideal; the surface of separation between

t See A. G. Kulikovskil, Journal of Applied Mathematics and Mechanics 32, 100, 1968.
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these two fluid layers would be a surface of tangential discontinuity, on which the fluid
velocity tangential to the surface is discontinuous (H. Helmholtz 1868, W. Kelvin 1871).
We shall see below (§35) what is the actual nature of the flow resulting from this instability;
here we shall prove the above statement.

If we consider a small portion of the surface of discontinuity and the flow near it, we may
regard this portion as plane, and the fluid velocities v, and v, on each side of it as constants.
Without loss of generality we can suppose that one of these velocities is zero; this can
always be achieved by a suitable choice of the coordinate system. Let v, = 0, and v, be
denoted by vsimply; we take the direction of v as the x-axis, and the z-axis along the normal
to the surface.

Let the surface of discontinuity receive a slight perturbation, in which all quantities—
the coordinates of points on the surface, the pressure, and the fluid velocity—are periodic
functions, proportional to ¢"**~“%. We consider the fluid on the side where its velocity is v,
and denote by v' the small change in the velocity due to the perturbation. According to the
equations (26.4) (with constant v, = v and v = 0), we have the following system of
equations for the perturbation v

divy =0, %: +(v-grad)y = _g.:_’_.

Since v is along the x-axis, the second equation can be rewritten as
+0— = =" (29.1)

If we take the divergence of both sides, then the left-hand side gives zero by virtue of
divy = 0, so that p" must satisfy Laplace’s equation:

Ap' = 0. (29.2)

Let { = {(x,1) be the displacement in the z-direction of points on the surface of
discontinuity, due to the perturbation. The derivative /&t is the rate of change of the
surface coordinate { for a given value of x. Since the fluid velocity component normal to
the surface of discontinuity is equal to the rate of displacement of the surface itself, we have
to the necessary approximation

oot = v, —vé/éx, (29.3)

where, of course, the value of v/, on the surface must be taken.

We seek p' in the form p’ = f(z) €***~“". Substituting in (29.2), we have for f(z) the
equation d? f/dz? — k? f = 0, whence f = constant x e**. Suppose that the space on the
side under consideration (side 1) corresponds to positive values of z. Then we must take
f = constant x e **, so that

P’y = constant x >~ =g~k (29.49)
Substituting this expression in the z-<component of equation (29.1), we findt
V. =kp'y/ip; (kv — o). (29.5)

t The case kv = @, though possible in principle, is not of interest here, since instability can arisc only from
complex frequencies e, not from real w.



108 Turbulence §30

The displacement { may also be sought in a form proportional to the same exponential
factor ¢**~“" and we obtain from (29.3) v, = i{ (ke — w). This gives, instead of (29.5),

Py = —{p, (kv —w)/k. (29.6)

The pressure p’; on the other side of the surface is given by a similar formula, where now
v =0 and the sign is changed (since in this region z < 0, and all quantities must be
proportional to ¢**, not ¢ **). Thus

P2 ={p0*/k. (29.7)

We have written different densities p, and p; in order to include the case where we have a
boundary separating two different immiscible fluids.

Finally, from the condition that the pressures p’, and p’, be equal on the surface of
discontinuity, we obtain p, (kv — w)? = — p,w?, from which the desired relation between
w and k is found to be

= ko2t 3_:_'._\/(?_3 p2) ) (29.8)
P+ P

We see that w is complex, and there are always @ having a positive imaginary part. Thus
tangential discontinuities are unstable, even with respect to infinitely small perturbations. t
In this form, the result is true for very small viscosities. In that case, it is meaningless to
distinguish convected and absolute instability, since as k increases the imaginary part of @
increases without limit, and hence the amplification coefficient of the perturbation as it is
carried along may be as large as we please.

When finite viscosity is taken into account, the tangential discontinuity is no longer
sharp; the velocity changes from one value to another across a layer with finite thickness.
The problem of the stability of such a flow is mathematically entirely similar to that of the
stability of flow in a laminar boundary layer with a point of inflexion in the velocity profile
(§41). The experimental and numerical results indicate that instability sets in very soon,
and perhaps is always present.}

§30. Quasi-periodic flow and frequency lockingt t

In the following discussion (§§30-32) it will be convenient to use certain geometrical
representations. To do so, we define the mathematical concept of the space of states for the
fluid, each point in which corresponds to a particular velocity distribution or velocity field
in the fluid. States at adjacent instants then correspond to adjacent points.§

A steady flow is represented by a point, and a periodic flow by a closed curve in the space
of states; these are called respectively a limit point or critical point, and a limit cycle. If the

t If the direction of the wave vector k (in the xy-planc) is not the same as that of v but is at an angle ¢ toit, vin
(29.8) is replaced by v cos ¢, as is clear from the fact that the unperturbed velocity occurs in the initial nearized
Euler’s equation only in the combination v-grad. Such perturbations also are evidently unstable.

$ Numerical calkculations of the stability have been made for planc-paraliel flows whose velocities vary
between + v, according to a law such as v = 5, tanh (z/h); the Reynolds number 1s then R = g h/v. The neutral
curve in the kR-plane starts from the origin, so that for cach R value there is a range of & values (increasing with R)
for which the flow is stable.

t1§§ 30-32 were written jointly with M. 1. Rabinovich.

§ Inthe mathematical literature, this functional space with an infinity of dimensions (or the spaces with a finite
number of dimensions which may replace it in some cases; see below) is often called phase space. We shall avoid
this term here, in order to prevent confusion with its more specific usual meaning in physics.



§30 Quasi-periodic flow and frequency locking 109

flows are stable, then adjacent curves representing the establishment of the flow tend to a
limit point or cycle as t - oo,

A limit cycle (or point) has in the space of states a certain domain of attraction, and paths
which begin in that region will eventually reach the limit cycle. In this connection, the limit
cycle is called an attractor. It should be emphasized that for flow in a given volume with
given boundary conditions (and a given value of R) there may be more than one attractor.
Cases can occur where the space of states contains various attractors, each with its own
domain of attraction. That is, when R > R, there may be more than one stable flow
regime, and the different regimes occur in accordance with the way in which the R value is
reached. It should be emphasized that these various stable regimes are solutions of a non-
linear set of equations of motion.t

Let us now consider the phenomena which occur when the Reynolds number is further
increased beyond the critical value at which the periodic flow discussed in §26 is
established. As R increases, a point is eventually reached where this flow in its turn becomes
unstable. The instability should in principle be examined similarly to the procedure in §26
for determining the instability of the original steady flow. The unperturbed flow is now the
periodic flow v, (r, 1) with frequency w,, and in the equations of motion we substitute
v = v, + v,, where v, is a small correction. For v, we again obtain a linear equation, but the
coefficients are now functions of time as well as of the coordinates, and are periodic
functions of time, with period 7, = 2xn/w,. The solution of such an equation is to be
sought in the form

vy =TI(r, 1) e™™, (30.1)

where Il (r, t) is a periodic function of time, with the same period 7,. The instability again
occurs when there is a frequency @ = @, + iy, whose imaginary part y, > 0; the real part
@, gives the new frequency which appears.

During the period 7, the perturbation (30.1) changes by a factor g = e~*". This factor
is called the multiplier of the periodic flow, and is a convenient characteristic of the
amplification or damping of perturbations in that flow. A periodic flow of a continuous
medium (a fluid) corresponds to an infinity of multipliers and an infinity of possible
independent perturbations. It ceases to be stable at the value R, , for which one or more
multipliers reach unit modulus, i.e. u crosses the unit circle in the complex plane. Since the
equations are real, the multipliers must cross this circle in complex conjugate pairs, or
singly with real values + 1 or — 1. The loss of stability of the periodic flow is accompanied
by a particular qualitative change in the path pattern in the space of states near the now
unstable limit cycle; this change is called a local bifurcation. The nature of the bifurcation is
largely determined by the points at which the multipliers cross the unit circle.?

Let us consider the bifurcation when the unit circle is crossed by a pair of complex
conjugate multipliers having the form u = exp (F 2xxi) where xis irrational. This causes
the occurrence of a secondary flow with a new independent frequency @, = aw,, leading
to a quasi-periodic flow with two incommensurate frequencies. The counterpart of this
flow in the space of states is a path in the form of an open winding on a two-dimensional

t Tlusnsthcsnumon.fo:cumple.whchoumeﬁowmwhembklhcmnowpnncmthm:s
established depends in fact on the history of the process whereby the cylinders are caused to rotate with particular
angular velocities.

$ A multiplier cannot be zero, since a perturbation cannot disappear in a finite ime (one peniod 7).



110 Turbulence §30

torust, the now unstable limit cycle being the generator of the torus; the frequency ,
corresponds to rotation round the generator, and @, to rotation round the torus (Fig. 18).
Just as, when the first periodic flow appeared, there was one degree of freedom, we now
have two arbitrary quantities (phases), so that the flow has two degrees of freedom. The
loss of stability of a periodic motion, accompanied by the creation of a two-dimensional
torus, is a typical phenomenon in fluid dynamics.

Let us consider a hypothetical complication of the flow resulting from such a
bifurcation, when the Reynolds number increases further (R > R ;). It would be
reasonable to suppose that, as R goes on increasing, new periods will successively appear.
In terms of geometrical representations, this would signify loss of stability of the two-
dimensional torus and the formation near it of a three-dimensional one, followed by a
further bifurcation and its replacement by a four-dimensional one, and so on. The intervals
between the Reynolds numbers corresponding to the successive appearance of new
frequencies rapidly become shorter, and the flows are on smaller and smaller scales. The
flow thus rapidly acquires a complicated and confused form, and is said to be turbulent, in
contrast to the regular laminar flow, in which the fluid moves, as it were, in layers having
different velocities.

Assuming now that this way or scenario of development of turbulence is in fact
possible,} we write the general form of the function v(r,t), whose time dependence is
governed by some number N of different frequencies w,. It may be regarded as a function
of N different phases ¢; = w;t + B, (and of the coordinates), periodic in each with period
2n. Such a function may be expressed as a series

Vi)=Y A,, () exp {-i ) p.o.-}. (30.2)

which is a generalization of (26.13), the summation being over all integers p,, p3, - - - , Px-
The flow described by this formula involves N arbitrary initial phases f, and has N degrees
of freedom.t1

t We use the mathematical terminology, in which torus denotes a surface without the enclosed volume. Thus a
two-dimensional torus is the two-dimensional surface of a three-dimensional “doughnut™.

$ It was proposed by L. D. Landau (1944) and independently by E. Hopf (1948)

1t lfmukethcphspﬁnmordimmmepuhuaﬂwmmew
velocities are constants ¢, = @,. For this reason, quasi-periodic flow can be described as movement on a torus
with constant velocity.
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States whose phases differ only by an integral multiple of 2x are physically identical.
Thus the essentially different values of each phase lic in the range 0 < ¢, < 2n. Let us
consider a pair of phases, ¢, = w,t + B, and ¢, = w,t + f,. At some instant, let ¢, = a.
Then ¢, will have the “same™ value as x at every time

a- B,

1
(= " 2RS—,
@, W,

where s is any integer. At these times,
¢: = f2 + (wy/w,) (x— B, + 2xs).

The different frequencies are incommensurate, and therefore @,/w, is irrational. If we
reduce each value of ¢, to a value in the range from 0 to 2x by subtracting an appropriate
integral multiple of 2z, we therefore find that, when s varies from 0 to o, ¢, takes values
indefinitely close to any given number in that range. That is, in the course of a sufficiently
long time ¢, and ¢, simultancously take values indefinitely close to any specified pair. The
same is true of every phase. In this turbulence model, therefore, in the course of a
sufficiently long time, the fluid passes through states indefinitely close to any specified state
defined by any possible set of simultaneous values of the phases ¢, The time to do so,
however, increases very rapidly with N and becomes so great that in practice no trace of
any periodicity remains.t

It should be emphasized here that the path of turbulence development discussed above
is essentially based on linear treatments. It has in fact been assumed that, when new
periodic solutions appear through the evolution of secondary instabilities, the already
existing periodic solutions do not disappear, but on the contrary remain almost
unchanged. In this model, turbulent flow is just a superposition of a large number of such
unchanged solutions. In general, however, the nature of the solutions changes when the
Reynolds number increases and they cease to be stable. The perturbations interact, and this
may either simplify or complicate the flow. Here is an illustration of the first possibility.

Let us take a simple case by supposing that the perturbed solution contains only two
independent frequencies. As already mentioned, the geometrical representation of such a
flow is an open winding on a two-dimensional torus. A perturbation with frequency o,
arising at R = R, , may naturally be assumed to be stronger near R = R, , (where the
perturbdtion with frequency w, arises) and therefore taken as unchanged for relatively
small changes in R in that neighbourhood. Then, to describe the evolution of the
perturbation with frequency @, against the background of the periodic flow with
frequency @,, we use a new variable

ay (1) = |a,(t)|e"*:; (30.3)

|a,| is the shortest distance to the torus generator (the now unstable limit cycle for
frequency w, ),i.¢. the relative amplitude of the secondary periodic flow, and ¢, is the phase
of the latter. Let us consider the behaviour of a, () at discrete instants that are multiples of

t In established turbulent flow of this type, the probability for the system (fiusd) to be in a given small volume
near a chosen point in the space of phases @;, @3, - - . , @ is the ratio of this volume (5¢)" 1o the total volume
(2x)™. We can therefore say that in the course of a sufficiently long time the system wall be in the neighbourhood
of a given point only for a fraction ¢ ~*V of the time, where x = log (2x/5¢).

e
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the period 7', = 2n/w,. During one period, the perturbation with frequency w, changes by
a factor u, where

po=|ulexp(—2niw; /w,)

is its multiplier; after an integral number t of such peniods, a, is multiplied by u*. We
assume that R — R, is small; the growth factor of the perturbation is then also small, and
[u] =1 is positive but small, so that a, changes only slightly during the period T,; the
phase ¢, varies simply in proportion to r. We can thus treat the discrete variable t as if it
were continuous and represent the vaniation of a;(r) by a differential equation in .

The concept of the multiplier relates to very short time intervals after the onset of
instability, when the perturbation is still describable by lincar equations. In this range,
a,(t) varies as u" according to the above discussion, and

da,/dt = a,(t)log u;
just above the critical Reynolds number,

log u = log [u| — 2xiw, /@,
= lpul -1 - 2niw, /o,. (30.4)

This is the first term in an expansion of da;/dt in powers of a, and a,*, and when |a,|
increases (still remaining small) the next term has to be taken into account. The term
containing the same oscillatory factor is the third-order one o a,|a,|>. We thus have

da,/dt = a,log u— B, a;|a; |, (30.5)

where B,, like u, is a complex parameter depending on R, with re f, > 0; compare the
corresponding discussion relating to (26.7). The real part of this equation gives
immediately the steady value of the modulus:

la; ' = (lul = 1)/re B,.

The imaginary part gives an equation for the phase ¢, (t); with the above steady value of
the modulus, it is

dé,/dt = 2zw,/w, +|a,"”)* im B,. (30.6)

According to this, ¢, rotates at a constant rate, a property which is, however, valid only
in the approximation considered: as R — R, increases, the rotation is no longer uniform,
and the rate of rotation on the torus is itself a function of ¢,. To take account of this, we
add on the right-hand side of (30.6) a small perturbation ®(¢,); since all the physically
different values of ¢, lie in the range from 0 to 2x, @ (¢,) is periodic with period 2x. Next,
we approximate the irrational ratio w,/w, by a rational fraction (which can be done with
any desired degree of accuracyy @, /@, = m,/m, + A/2x, where m, and m, are integers.
The equation then becomes

d¢,/dt = 2zm;/m, + A+ |a;|* im B, + ®($.). (30.7)

We shall now consider phase values only at times that are a multiple of m, 7, i.¢. for values
of t = m, 7, where 7is an integer. The first term on the right of (30.7)causesinatime m, T, a
change in phase by 2am,, that is, by an integral multiple of 2z, which can simply be
omitted. The whole right-hand side is then a small quantity, so that the change in the
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function ¢, (7) can be described by a differential equation in the continuous variable T

1902 _ A+1a,9 im B+ Ok (308)
m, dt
in one step of the discrete variable 7, ¢,/m, changes only shghtly.

In the general case, (30.8) has steady solutions ¢, = ¢, for which the right-hand side
of the equation is zero. The fact that ¢, is constant for times that are multiples of m, T,
means that there is a limit cycle on the torus: the path is closed after m, turns. Since ®(¢,) is
periodic, such solutions occur in pairs (one pair in the smplest case) one on the ascending
and one on the descending part of ®(¢,). Of these two, only the latter is stable, for which
(30.8) has near ¢, = ¢,'” the form

d¢,/dt = —constant x (¢, —¢,”)

with the constant positive, and there is in fact a solution tending to ¢, = ¢,'"’; the second
solution is unstable, and the constant is negative.

The formation of a stable limit cycle on the torus is equivalent to frequency locking - the
disappearance of the quasi-periodic flow and the establishment of a new periodic one. This
phenomenon, which in a system with many degrees of freedom can occur in many ways,
prevents the occurrence of a flow that is a superposition of flows having a large number of
incommensurate frequencies. In this sense, we can say that the probability of the actual
occurrence of the Landau-Hopf scenario is very small; this, of course, does not mean that
in particular cases several incommensurate frequencies may not appear before locking
occurs.

§31. Strange attractors

There is as yet no complete theory of the origin of turbulence in various types of
hydrodynamic flow. Various scenarios have, however, been proposed for the process
whereby the flow becomes disordered, based mainly on computer studies of model systems
of differential equations, partly supported by experiments. The purpose of the discussion
in §§31 and 32 will be merely to give some account of these ideas, without going into the
relevant results of such studies. It should only be noted that the experimental results relate
to hydrodynamic flows in restricted volumes, and these are the flows to be considered in
what follows.t

First of all, the following important general remark is to be made. In the analysis of the
stability of periodic flow, only those multipliers are of interest whose moduli arecloseto 1
and which can cross the unit circle when R changes slightly. In viscous flow, the number of
these “dangerous™ multipliers is always finite, for the following reason. The various types
(modes) of perturbation allowed by the equations of motion have different spatial scales,
1.¢. distances over which v, varies significantly. As the scale of the motion decreases, the
velocity gradients in it increase and it is retarded to a greater extent by the viscosity. If the
allowed modes are arranged in order of decreasing scale, only a finite number at the

t Weshall in fact be concerned with thermal convection in restricted volumes, and with Couctte flow between
coaxial cylinders with finite length. The theoretical ideas on the mechanism of turbulence formation in the
boundary layer and in the wake in flow past finite bodies have not so far been much developed, despite the
existence of a considerable quantity of experimental results.
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beginning can be dangerous; those sufficiently far along the sequence are certain to be
strongly damped and correspond to multipliers with small modulus. This enables us to
suppose that the possible types of instability of periodic viscous flow can be analysed in
essentially the same way as for a dissipative discrete mechanical system described by a
finite number of variables; hydrodynamically, these may be, for example, the amplitudes of
the Fourier components of the velocity field with respect to the coordinates. The space of
states correspondingly has a finite number of dimensions.

Mathematically, we have to consider the time vanation of a system that is represented by
equations having the form

x(f) = F(x), (31.1)

where x(t) is a vector in the space of n quantities x'*, x*¥ . . . x™, which describe the
system; the function F depends on a parameter whose variation may alter the nature of the
flow.t For a dissipative system, the divergence of X in x-space is negative; this expresses the
contraction of the volumes in that space during the motion:$

divk =divF = éF"/éx" <. (31.2)

Let us now return to the possible results of interaction between different periodic flows.
Frequency locking simplifies the flow, but the interaction may also eliminate the quasi-
periodicity in such a way as to complicate the picture significantly. So far, it has been tacitly
assumed that when the periodic flow becomes unstable an additional periodic flow occurs.
This is not logically necessary, however. If the velocity fluctuation amplitudes are limited,
this means only that there is a limited volume in the space of states which contains the
paths corresponding to steady viscous flow, but we cannot say in advance what the pattern
of paths in that volume will be. They may tend to a imit cycle or to an open winding on the
torus (corresponding to periodic and quasi-periodic flow), or they may behave quite
differently, taking a complicated and confused form. This possibility is extremely
important for our understanding of the mathematical nature of turbulence formation and
the elucidation of its mechanism.

One can get an idea of the complicated and confused form of the paths within the
limited volume containing them, by assuming that all the paths in the volume are unstable.
They may include not only unstable cycles but also open paths which wind indefinitely
through the limited region, without leaving it. The instability signifies that two points very
close together in the space of states will move far apart as they continue along their
respective paths; points initially close together may also belong to the same path, since the
volume is limited and an open path can pass indefinitely close to itself. This complicated
and irregular behaviour of the paths is associated with turbulent flow.

This picture has a further feature: the sensitivity of the flow to small changes in the initial
conditions. If the flow is stable, a slight uncertainty in specifying these conditions causes
only a similar uncertainty in the determination of the final state. If the flow is unstable, the
initial uncertainty increases with time and the ultimate state of the system cannot be
predicted (N. S. Krylov 1944; M. Born 1952).

t In mathematical terms, F is the vector field of the system. If it does not depend explicitly on the time, as in
(31.1), the system is said to be autonomous.

$ For a Hamiltonian mechanical system, the divergence is zero by Liouville’s theorem; the components of x are
in that case the generalized coordinates g and momenta p of the system.
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An attracting set of unstable paths in the space of states of a dissipative system can in
fact exist (E. N. Lorenz 1963), and it is usually called a stochastic attractor or strange
attractor.t

At first sight, the requirement that all paths belonging to the attractor be unstable
appears incompatible with the requirement that all adjacent paths tend to it as ¢ - oo,
since the instability implies that the paths move apart. The apparent contradiction is
climinated if we note that the paths can be unstable in some directions in the space of states
and stable (that is, attractive) in other directions. In an n-dimensional space of states, the
paths belonging to a strange attractor cannot be unstable in all n — 1 directions (one
direction being along the path), since this would mean a continuous increase in the initial
volume in the space of states, which is not possible for a dissipative system. Consequently,
adjacent paths tend towards the attractor paths in some directions and away from them in
other (unstable) directions; see Fig. 19. These are called saddle paths, and it is the set of
saddle paths that forms the strange attractor.

Fic 19

The strange attractor may appear after only a few bifurcations forming new periods:
even an infinitesimal non-linearity can eliminate a quasi-periodic regime (an open winding
on the torus) and form a strange attractor on the torus (D. Ruelle and F. Takens 1971).
This cannot occur, however, at the second bifurcation (from the end of the steady regime).
Here, an open winding on the two-dimensional torus is formed. When the small non-
linearity is taken into account, the torus continues to exist, so that the strange attractor
could be accommodated on it. But a two-dimensional surface cannot carry an attracting
set of unstable paths. The reason is that paths in the space of states cannot intersect one
another (or themselves), since this would contradict the causality principle in the
behaviour of classical systems, whereby the state of the system at any instant uniquely
determines its behaviour at subsequent instants. On a two-dimensional surface, the
impossibility of intersections makes the paths so orderly that they cannot become
sufficiently random.

Even at the third bifurcation, however, a strange attractor can (but need not) be formed.
This attractor, which replaces the three-frequency quasi-periodic regime, lies on a three-
dimensional torus (S. Newhouse, D. Ruelle and F. Takens 1978).

The complicated and confused paths in a strange attractors lic in 2 imited volume in the
space of states. There is not yet a known classification of the possible types of strange
attractor that can occur in actual problems of fluid dynamics, nor even a set of criteria on

t Incontrast to ordinary attractors (stable hmit cycles, imit pomnts, and so on); the word “strange™ refiects the
complexity of its structure, to be discussed later. In the physics hterature, “strange attractor™ also denotes more
complicated attracting manifolds containing stable as well as unstable paths, but having such small domains of
attraction as to be undetectable in cither physical or numenical expenments.
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which such a classification should be based. The available information as to the structure
of strange attractors is derived essentially only from a study of instances arising in the
computer solution of model systems of ordinary differential equations, which are quite
different from the actual equations of fluid dynamics. It is, however, possible to draw some
general conclusions about the structure of strange attractors from the saddle-type
instability of the paths and the dissipative property of the system.

For clarity, we will refer to a three-dimensional space of states and imagine the attractor
inside a two-dimensional torus. Let us consider a set of paths on the way to the attractor, which
describe transient flow regimes leading to the establishment of “steady” turbulence. In a
transverse cross-section the paths, or rather their traces, occupy a certain area; let us see
how this area varies in size and shape along the paths. We note that the volume element
near a saddle path expands in one transverse direction and contracts in the other; since the
system is dissipative, the latter effect is the stronger, and volumes must decrease. These
directions must vary along the paths, since otherwise the latter would get too far away and
there would be too great a change in the fluid velocity. The net result is that the cross-
section becomes smaller, flattened, and curved. This should apply not only to the whole
cross-section but to every area element in it. It thus separates into nested zones separated
by voids. In the course of time (i.c. along the paths) the number of zones rapidly increases,
and they become narrower. The attractor formed as t — oo consists of an uncountable
manifold of layers not in contact, whose surfaces carry the saddle paths (with their
attracting directions “outwards”). These layers are joined in a complicated manner at their
sides and ends; each path belonging to the attractor wanders through all the layers and in
the course of a sufficiently long time passes indefinitely close to any point of the
attractor - the ergodic property. The total volume of the layers and their total cross-
sectional area are zero.

In mathematical language, such manifolds in one direction are Cantonian sets. The
Cantorian structure is the most characteristic property of the attractor and more generally
of an n-dimensional (n > 3) space of states.

The volume of the strange attractor in its space of states is always zero. It may, however,
be non-zero in another space with fewer dimensions. The latter is found as follows. We
divide the whole of n-dimensional space into small cubes with edge £ and volume & . Let
N (¢) be the least number of cubes which completely cover the attractor. We define the
attractor dimension D as the limitt

log Ne)
D = lim
c-0 '08 (1/8)

The existence of this limit signifies that the volume of the attractor in D-dimensional space
is finite: when ¢ is small, N (¢) = Ve -2 (where V is a constant), and N (¢) may therefore be
regarded as the number of D-dimensional cubes covering the volume ¥ in D-dimensional
space. When defined in accordance with (31.3), the dimension evidently cannot exceed the
total dimension n of the space of states, but may be less, and unlike the ordinary dimension
it may be non-integral, as happens for Cantorian sets.$

(31.3)

t This is known in mathematics as the limiting capacity of the manifold. Its definition is similar to that of
HausdorfT or fractal dimensions.

§ The n-dimensional cubes covering the set may be “almost empty™, .d(onhstusonwemhaveb<u.l-‘a
ordmarysus.thedeﬁmuonﬂlj)pvuommFotaa-plguhasuofNuohedponns.N(c)

and D = 0; for a line segment with length L, N (g) = L/cand D = 1; for a two-dimensional surface area A, N(s)
= §/c¢* and D = 2; and so on.
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The following point is important. If turbulent flow is already established (the strange
attractor has been reached), then the flow in a dissipative system (a viscous fluid) is the
same in principle as stochastic flow of a non-dissipative system with a space of states
having fewer dimensions. This is because, for steady flow, the viscous dissipation of energy
is compensated on the average over a long time by the energy coming from the average
flow (or from some other source of disequilibrium). Consequently, if we trace the
development in time of a “volume™ clement belonging to the attractor (in some space
whose dimension is determined by that of the attractor), it will be conserved on average,
the compression in some directions being compensated by the extension due to the
divergence of adjacent paths in other directions. This property can be used to obtain a
different estimate of the attractor dimension.

Because the motion on the strange attractor is ergodic, as mentioned above, its average
properties can be established by analysing the motion along one unstable path belonging
to the attractor in the space of states. That is, we assume that an individual path reproduces
the properties of the attractor if the motion along it lasts for a sufficient time.

Let x = x,(t) be the equation of such a path, a solution of (31.1). Let us consider the
deformation of a “spherical” volume element as it moves along this path. The deformation
is given by the equations (31.1) linearized with respect to the difference § = x — x, (1), i.e.
the deviation of paths adjacent to the one considered. These equations, written in
components, are

§0 = Au()E™, Ay (1) = [OF9/ex™], -x ) (314)

In the movement along the path, the volume element is compressed in some directions and
stretched in others, the sphere becoming an ellipsoid. Both the directions and the lengths
of the semi-axes vary; let the latter be [, (1), where s labels the directions. The Lyapunov
characteristic indices are

1 (o)
L= lim 8 10)
where [(0) is the radius of the original sphere, at a time arbitrarily chosen as t = 0. The
quantities thus determined are real, and equal in number to the dimension n of the space.
One of them (corresponding to the direction along the path) is zero.t
The sum of the Lyapunov indices gives the mean change, along the path, in the volume
element in the space of states. The relative local change in volume at any point on the path
is given by the divergence div x = div { = A, (1). It can be shown that the mean divergence
along the path is}

(3L5)

ﬁmljdv{mx Z L, (31.6)

I~ x s =]
o

For a dissipative system, this sum is negative; volumes in an n-dimensional space of states
are compressed. The dimension of the strange attractor is defined so that volumes are

t Of course, the solution of (31.4), with specified initial conditions at ¢ = 0, actually represents an adjacent
path only if all the distances [, () remain small. This, however, does not make meaningless the definition (31.5),
which involves indefinitely long times: for any large ¢, we can choose [(0) so small that the incanzed equations
remain valid throughout the time concerned.

$ Sece V. L. Oseledets, Transactions of the Moscow Mathematical Society 19, 197, 1969.
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conserved on average in “its” space. Todo so, we arrange the Lyapunov indices in the order
Ly2L,2...2 L, and take account of as many stable directions as is necessary to
compensate the stretching, by means of compression. The attractor dimension D, thus
defined is between m and m + 1, where m is the number of indices, in the sequence, whose
sum is still positive but becomes negative when L, , is included.t The fractional part of
D, =m+d (d < 1)is found from

Y L+L,,,d=0 (31.7)
=]
(F. Ledrappier 1981). Since, in calculating d, we take into account only the least stable
directions (omitting the negative L, that are largest in modulus, at the end of the sequence),
the estimate D, of the dimension is in general too high. This estimate offers in principle a
way of determining the dimension of the attractor from measurements of the time
dependence of the velocity fluctuations in the turbulent flow.

§32. Transition to turbulence by period doubling

Let us now consider the loss of stability of a periodic flow when the multiplier passes
through —1 or +1.

In an n-dimensional space of states, n — 1 multiphers determine the behaviour of the
paths in n— 1 different directions near the periodic path considered (which are not the
same as the direction of the tangent at each point of that path). Let a multiplier near + 1
correspond to the Ith direction, say. The other n — 2 multipliers are small in modulus, and
therefore all the pathsin the corresponding n — 2 directions will in the course of time come
close to a two-dimensional surface I containing the Ith direction and the direction of the
tangents. One can say that near the limit cycle the space of states is almost two-dimensional
as t — oo (it cannot be strictly two-dimensional, since the paths can lie on either side of
and go from one side to the other). Let the flux of paths near I be cut by a surface . Each
path, on repeatedly passing through o, determines in accordance with the initial point of
intersection X, the next point of intersection x;, ,. The relation x,,, = f(x,; R)iscalled a
Poincaré mapping or sequence mapping, it depends on R, in this case the Reynolds
number,} whose value determines the closeness to the bifurcation where the periodic flow
ceases to be stable. Since all paths are close to I, the set of points where they meet o is
almost one-dimensional and can be approximated by a line; the Poincaré mapping
becomes the one-dimensional transformation

X;+1 = flx;; R), (32.1)

with x simply a coordinate along the line.tt The discrete vanable j acts as the time
measured in units of the period.

The mapping (32.1) affords an alternative method of determining the nature of the flow
near the bifurcation. The periodic flow itself corresponds to a fixed point of the
transformation (32.1) - the value x;, = x_ which is unchanged by the mapping, i.e. for
which x; ,, = x;. The multiplier is the derivative 4 = dx,.,/dx, taken at x; = x,.The
points x; = x_ + ¢ near x, are mapped into Xx;, , = x, + u&. The fixed point is stable (and

t Including the zero Lyapunov index adds one to D, corresponding to the dimension along the path.
$ Or the Rayleigh number in the case of thermal convection (§56)
11 In this section x has of course nothing to do with the coordinate in physical space.
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is an attractor of the mapping)if |u| < 1: by iterating the mapping and starting from some
point near x,, we asymptotically approach the latter, as |, where r is the number of
iterations. If |u| > 1, however, the fixed point is unstable.

Let us consider the loss of stability of periodic flow when the multiplier passes through
- 1. The equation u = — 1 signifies that the initial perturbation changes sign after a time
T,, remaining the same in magnitude: after a further time 7, it returns to its original value.
Thus a passage of u through — 1 near a limit cycle with period T, creates a new limit cycle
with period 27, (a period-doubling bifurcation).t Figure 20 gives a conventional
representation of two successive such bifurcations; the continuous curves in diagrams a

and b show the stable limit cycles 27, and 47, the broken curves the limit cycles that have
become unstable.

(a)

Stable cycles
- = Unstoble cycles

Fic. 20

If we arbitrarily take the fixed point of the Poincaré mapping as x = 0, the mapping near
it which describes the period-doubling bifurcation may be expressed as the expansion

Xje1 = —[1+(R—Ry))x; +x.* + fx*, (32.2)

where f > 0.3 For R < R, the fixed point x, = 0 is stable; for R > R, it is unstable. In
order to see how the period-doubling occurs, we have to iterate the mapping (32.2) twice,
i.e. consider it after two steps (two time units) and determine the fixed points of the
re-formed mapping; if these exist and are stable, they correspond to the period-doubling
cycle.

The twofold iteration of the transformation (32.2) gives (with the necessary accuracy in
respect of the small quantities x; and R —R,) the mapping

X;42 =X+ 2(R=Ry)x;—2(1 + B)x, . (32.3)

This always has the fixed point x, = 0. When R < R, that point is the only one and is
stable, with the multiplier |dx;, ,/dx;| < 1; for flow with period 1 (in units of 7;) the time

t In this section the basic period (that of the first periodic flow) is denoted by 7, not by 7, . The critical
Reynolds numbers corresponding to successive period-doubling bifurcations will bedenoted hereby R R, . . .,
without the suffix cr (R, replaces the previous R ;)

1 The coefficient of R — R, can be made equal to unity by appropriately redefining R, and that of x,* can be
made + 1 by redefining x,; we assume in (32.2) that this has been done.

FH-E*
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interval 2 is also a period. When R = R, the multiplier is + 1,and when R > R, the point
x, = 0 becomes unstable. At that stage, a pair of stable fixed points are formed,

) o R~ Rl
Xe - 4 T+ B ] (324)
corresponding to a stable limit cycle of the double periodt; the transformation (32.3) leaves
cach of these points in position, while (32.2) changes each into the other. It must be
emphasized that the single-period cycle does not disappear at this bifurcation, but remains
a solution (unstable) of the equations of motion.

Near the bifurcation, the motion is still “almost periodic™ with period unity: the points
x,'" and x,® at which the paths return are close together. The interval x," —x, @
betwecn thcm is a measure of the amplitude of the oscillations with period 2; it increases as
V(R =R,), similarly to the increase (26.10) in the amplitude of periodic flow after it begins
at the point where the steady flow becomes unstable.

The repetition of period-doubling bifurcations is one route to the formation of
turbulence. In this scenario the number of bifurcations is infinite, and they follow one
another (as R increases) at ever decreasing intervals; the sequence of critical values R, ,
R,, ... tends to a finite limit beyond which the periodicity disappears altogether and a
complex aperiodic attractor is created in the space, associated in this scenario with the
formation of turbulence. We shall see that the scenario has noteworthy properties of
universality and scale invariance (M. J. Feigenbaum 1978).4

The quantitative theory given below starts from the hypothesis that the bifurcations
follow one another (as R increases) so quickly that even in the intervals between them the
region occupied by the set of paths in the space of states remains almost two-dimensional,
and the whole sequence of bifurcations can be described by a one-dimensional Poincaré
mapping dependent on a single parameter.

The choice of mapping used below can be justified as follows. In a considerable part of
the range of variation of x, the mapping must be a stretching one with |df(x; 1)/dx| > 1;
this allows instabilities to occur. The mapping must also bring back to a given range the
paths that have left it, since otherwise the velocity fluctuations would increase without
limit, which is impossible. The two requirements can be simultaneously satisfied only by
non-monotonic functions f(x; 1), that is, mappings (32.1) that are not one-to-one: the x; ,
values are uniquely determined by the preceding x;, but not conversely. The simplest form
of such a function has a single maximum, near which we put

Xper = flx; ) = 1—dx?, (32.5)

with 4 a positive parameter which is to be regarded (in terms of fluid mechanics) as an
increasing function of R.t1 We shall arbitrarily take the segment [ — 1, + 1] as the range of

t To be called for brevity a 2-cycle. The relevant fixed points will be called cycle elements.

$ The sequence of period-doubling bifurcations (numbered below as 1, 2, . . ) need not begin with the first
bifurcation of the periodic flow. It may in principle begin after the first few bifurcations with the appearance of
incommensurate frequencies, when these bave been locked by the mechanism discussed in §30.

tt The admissibility of mappings that are not one-to-one depends on the approximateness of the one-
dimensional treatment. If all the paths were exactly on one surface I, so that the Poincaré mapping would be
strictly one-dimensional, this non-uniqueness would be impossible, since it would imply that two paths with
different x; intersected at x,, , . In the same sense, the approximateness is responsible for the possibility of a zero
mnlupbenftheﬁxedmd&mnunmd&:mfmwamnﬂu
described as “superstable”, and is approached more rapidly than according to the above relationship.
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variation of x; when 4 is between 0 and 2, all iterations of the mapping (32.5) leave x in that
range.

The transformation (32.5) has a fixed point at the root of x, = | — Aix_? This becomes
unstable when 4 > A, where A, is the value of 4 for which the multiplier y = —24ix, =
~ 1; from the two equations, we find A, = 3/4. This is the first critical value of A4, which
determines the position of the first period-doubling bifurcation and the appearance of the
2-cycle. Let us now trace the appearance of subsequent bifurcations by means of an
approximate technique of determining some qualitative features of the process, though
this does not give exact values of the characteristic constants; exact statements will then be
formulated.

Repetition of the transformation (32.5) gives
Xjpz=1=A42%x2 - xS (32.6)
Here we will neglect the term in x,*. The remaining equation is converted by the scale
transformationt
X; =+ X;/%, a=1/(1-4)
to the form

X;

which differs from (32.5) only in that 4 is replaced by
A =9(A)=22(A-1) (32.7)

Repeating this operation with the scale factors a, = 1/(1 — 4,), etc,, gives a sequence of
mappings having the same form:

xj+2’ — l —l-sz9 "- — ‘(l--l)' (32-8)

The fixed points of the mappings (32.8) correspond to 2™<cycles.{ Since they all have the
same form as (32.5), we can deduce at once that the 2"<cycles (m = 1, 2, 3, ...) become

unstable when 4, = A, = 3/4. The corresponding critical values A_ of the initial
parameter 4 are found by solving the coupled equations

AL =0(A2), Ar=0(Ay), ..., A =0¢A

they are obtained graphically by the construction shown in Fig. 21. Evidently, as m — «©
the sequence of numbers converges to a finite limit A_, the root of A_ = ¢(A_); this is
A = (1 +/3)/2 = 1:37. The scale factors also tend to a finite limit: a,, —+ 2, where a
=1/(1-A,)= —-28.

It is easy to find how A, approaches A_ when m is large. From the equation A =
¢(A,+1) when A, —A,, is small, we find

Apg—Ansi = (A=—ALVA, (32.9)

+2 = l-A'.lsz.

t This is not possible when 4 = 1 (and the fixed point of the mapping (32.6) coincides with the central
extremum: x, = 0). The value 4 = 1 is, however, certainly not the next cnitical value 4, that is needed here.

1 Toavoid misunderstanding, it should be emphasized that after the scale transformations the mappings (32.8)
must be defined over extended ranges | x| € |z a, . .. 2, |, not |x| € 1 asin (32.5)and (32.6). However, in view
of the terms neglected, the expressions (32.8) can in practice give a description only of the range near the central
extrema of the mapping functions.
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Fic 21

whered = ¢'(A,) = 4+ /3 = 573. Thus A, — A, o ™, that is, A, approaches the limit
in geometrical progression. The same relation applies to the intervals between successive
critical numbers: equation (32.9) can be written in the equivalent form

Amsz=Ansy = (Aney — A (32.10)

As regards fluid dynamics, it has already been mentioned that 4 is to be regarded as a
function of the Reynolds number, and accordingly the latter has critical values which
correspond to successive period-doubling bifurcations and tend to a finite limit R . It is
evident that for these values we have the same limiting relations (32.9), (32.10), with the
same constant d, as for A,

The above arguments illustrate the origin of the basic features of the process, namely the
infinity of bifurcations, whose times of appearance converge to the limit A according to
(32.9) and (32.10), and the existence of the scale factor «. The values thus found for the
characteristic constants are not exact, however. The exact values (found by repeated
computer iterations of the mapping (32.5) ) of the convergence factor (F eigenbaum number)
o and the scale factor a are

0=46692..., a=-25029..., (32.11)

and the limiting value A, = 1-401.f The value of é is comparatively large; the rapid
convergence has the result that the limiting relations are very nearly satisfied after only a
small number of period doublings.

A deficiency of the above derivation is that, when all powers of x;* above the first are
neglected, the mapping (32.8) yields only the fact that the next bifurcation occurs; it does

t Thevalueofrl\._ is somewhat arbitrary, since it depends on how the parameter is used in the initial mapping.
i.c. the function f(x; ) (the values of é and z, however, do not depend on thus)
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not allow all the elements of the 2™<cycle described by this mapping to be determined.t In
reality, the iterated mappings (32.5) are polynomials in x,* whose degree is doubled at each
iteration. They are complicated functions of x; with a rapidly increasing number of
extrema lying symmetrically about x, = 0 (which also always remains an extremum).

It is noteworthy that not only the values of 4 and a but also the imiting form of the
infinitely iterated mapping are in a certain sense independent of the form of the initial
mapping X;,, = f(x,;4); it is sufficient that the function f(x;4) of one parameter be
smooth with a single quadratic maximum (let this be at x = 0) —it need not even be
symmetrical about the maximum at great distances from it. This universality increases
considerably the degree of generality of the theory described. The exact formulation of the
property is as follows.

Let us consider the mapping specified by f(x), i.¢. f(x; 4) with a particular choice of 4 (see
below), normalized by the condition f(0) = 1. By applying this twice, we get the function
f1f(x)]. We change the scale of this function and of x by a factor 2, = 1/f(1), obtaining a
new function

Ji(x) = aof[ f(x/25) ],

for which again f, (0) = 1. Repeating this operation, we find a sequence of functions
connected by the recurrence formula$

Jus1 (¥) = o ful fulx/2)] = T, . = 1/£,(1). (32.12)

If this sequence tends, as m — oo, to a definite limiting function /. (x) = g(x), then the latter
must be a “fixed function™ of the operator 7 defined in (32.12), i.e. must satisfy the
functional relation

g(x) = Tg = aglg(x/1)]), a=1/g(1), ¢(0)=1. (32.13)

According to the assumed properties of the admissible functions f(x), g(x) must be smooth
and have a quadratic extremum at x = 0; the specific form of f(x) has no other influence on
equation (32.13) or on the conditions imposed on its solution. We should emphasize that,
after the scale transformations used in the derivation (with || > 1), the solution of the
equation is determined for all values of the variable xin it, from — oo to + o0, and not only
in the range — 1 < x < 1. The function g(x) is necessarily even, since the admissible
functions f(x) include even ones, and an even mapping certainly remains even, after any
number of iterations.

Such a solution of equation (32.13) does in fact exist and is unique, although it cannot be
derived in an analytical form,; it is a function having an infinity of extrema and unlimited in
magnitude, the constant « being determined along with g(x). In practice, it is sufficient to
derive the function in the range [ — 1, 1], after which it can be continued outside the range
by iterating the operation 7. Note that at each stage of iteration of 7'in (32.12) the values of
fus1(x) in the range [ — 1, 1] are determined by those of £ (x) in a part of this range

t That is, all the 2" points x,'", x, %, . . . which change successively into one another (and are periodic) when
the mapping (31.5)is iterated, and are fixed (and stable) with respect to the 2™-fold iterated mapping. Toavoid any
doubts, it may be noted that the derivatives dx, | /dx, are necessarily the same at all points x,'", x,“,.. . . (and
therefore pass simultancously through —1 u&mﬁm“ﬁlujﬁmmwamﬁ
property (which is evidently necessary). ' )

1 There is an obvious analogy between this procedure and the one used previously in deriving (32.8)
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shortened by a factor |, | & |x|. This means that in the imit of many iterations, the
determination of g(x) in the range [ - 1, 1] (and therefore on the whole of the x-axis) is
governed by smaller and smaller parts of the initial function near its maximum, and herein
lies the ultimate cause of the universality.t

The function g(x) determines the structure of the aperiodic attractor formed by an
infinite sequence of period doublings. This occurs at a parameter value A = A_ which is
quite definite for a given function f(x;4). It is therefore clear that the functions formed
from f(x; A) by repeated iteration of the transformation (32.12) do in fact converge to g(x)
only for this isolated value of A. It follows in turn that the fixed function of the operator T'is
unstable with respect to small changes corresponding to small deviations of A from the
value A . The study of this instability enables us to determine the universal constant 4,
again independent of the specific form of f(x).§

The scale factor « determines the change (decrease) in the geometrical characteristics (in
the space of states) of the attractor at each stage of period doubling; these characteristics
are the distances between limit cycle elements on the x-axis. However, since each doubling
is accompanied by a further increase in the number of cycle elements, this statement must
be made more specific and precise. It is clear a priori that the scale cannot vary in the same
way for the distances between every pair of points.tt For, if two adjacent points are
transformed by an almost linear section of the mapping function, the distance between
them is reduced by a factor |a|; but if the transformation takes place by a section of the
mapping function near its extremum, the distance is reduced by a factor o’.

At the bifurcation (A = A,,) each element (point) of the 2*<cycle splits into two adjacent
points, the distance between which gradually increases, but the points remain close over
the whole range of variation of 4 as far as the next bifurcation. If we follow the conversions
of cycle elements into one another in the course of time, i.c. in successive mappings x,, ,
= f(x;;4), each component of the pair changes into the other after 2™ time units. This
means that the distance between the points in the pair is a measure of the oscillation
amplitude of the newly formed double period, and in this sense has especial physical
interest.

Let us arrange all the elements of the 2™ * ' cycle in the order in which they are traversed
in the course of time, and denote them by x,, . , (t), where the time ¢, measured in units of
the basic period T, takes integral values: t/T, = 1, 2,. . ., 2" ' These clements are formed
from those of the 2™cycle by splitting into pairs. The intervals between the points in each
pair are

Cms1(t) =Xy ()= xgs (0 +T) (32.149)
where T,, = 2"T, = 1T, ., is the period of the 2"cycle, or half that of the 2™ * ' cycle. We

t The statement that there exists a unique solution of equation (32.13)1s founded on computer simulation. The
solution is sought, in the range [ — 1, 1], as a polynomial of high degree in x*; the accuracy of the simulation must
increase with the width of the x value range (outside that mentioned) to which we wash to continue the function by
iteration of 7. In the range [ — 1, 1], g(x) has one extremum, near which g(x) = 1 — 1-528x if it is taken to be a
maximum, a choice which is arbitrary in view of the invariance of equation (32.13) under a change in the sign of g.

§ See the original papers by M. J. Fagenbaum, Jowrnal of Staristical Physics 19, 25, 1978; 21, 669, 1979.

1t These are distances in the unstretched range [ — 1, 1] which is arbitranily taken, from the start, as the range of
x containing all cycle elements. Since a is negative, the bifurcations are accompanied by inversion of the positions
of the elements relative to x = 0.
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use the function o,,(t), a scale factor which determines the change in the intervals (32.14)
from one cycle to the nextt:

S+ 1 (1)/S0(0) = 0(0). (32.15)
Evidently
Cmarlt+T) = =0, (0), (32.16)
and therefore
Oult+T,) = —0a,lt) (32.17)

The function a,,(t) has complicated properties, but it can be shown that its limiting form
for large m is very closely approximated by the simple expressions

Ou(t)=1/xfor0 <t <iT,_, }
=1/ fordT, <t <T,,

with the appropriate choice of zero for .3

These formulae yield some conclusions as to the change in the flow frequency spectrum
when period doubling occurs. In fluid dynamics terms, x_(f) is to be regarded as a
characteristic of the fluid velocity. For a flow with period 7, the spectrum of the function
Xn(t) of the continuous time t contains frequencies ke, (k= 1,23, ...), iec the
fundamental frequency w,, = 2n/T,_ and its harmonics. After the period doubling, the flow
is described by the function x,, , , (t) with period 7., , = 27, Its spectrum contains not
only the same frequencies kw,, but also the subharmonics of w,, the frequencies 4w,
I=135,....

Let us write

(32.18)

x-'fl(') — *{C-# l(')+"-01(')}-
where ¢, . is the difference (32.14) and

N s 1 (1) = Xpa () + X0 iy (1 +T)

The spectrum of 5, , ,(f) contains only the frequencies kw,_; the Fourier components for
the subharmonics,

T, T.

1 T | 1 »
T_.;; I "--Ol(‘w/r‘dl :'2-1—.-‘J {".+l(t)—"-¢l('+rn)} (d/r.d‘
0 0

are zero, since 1, ; ,(t + T,,) = 1,4 ,(t). On the other hand, in the first approximation the
quantities 7,,(t) are unchanged in the bifurcation: n_ . ,(f) = n.(t); this means that the
strength of the oscillations with frequencies kw,, also remains unchanged.

t Since the two cycles exist in different ranges of values of 4, (A__,, A ) and (A_, A, . ) and the quantitics
(32.14) vary considerably in these ranges, their significance in the definition (32.15) needs to be made more precise.
We shall take them for the values of 4 where the cycles are superstabie (see the footnote following (32.5)) one such
value occurs in the range where each cycle cxists.

$ Weshall not give here the study of the properties of @,(t), which is ssmpie in principle but laborious; see M. J.
Feigenbaum, Los Alamos Science 1, 4, 1980.
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The spectrum of §,, , ,(t), on the other hand, contains only the subharmonics }lw,,, the
new frequencies which appear at doubling stage m+ I. The total strength of these
components is given by the integral

T,

J‘ $me s (0)de. (32.19)
0

’-OI - —L

T-'l

Expressing ¢, . (t) in terms of {_(t), we can write

T.
1

lpiy = T -2J' 0. (1) &2 (1)de

With (32.16)-(32.18),

T.
| =§(:—,+£;)%J &2 (n)de
0

1 1
= i(? - ?)’.,
and finally
1/, ., =108 (32.20)

Thus the strength of the new components which appear after a period-doubling
bifurcation exceeds the one for the next bifurcation by a definite factor independent of the
bifurcation number (M. J. Feigenbaum 1979).1

Let us now consider the development of the flow properties when A increases further
beyond A, (the Reynolds number R > R_), in the turbulent range. Since, at the moment
of its formation (at A = A_), the aperiodic attractor is described by a one-dimensional
Poincaré mapping, we can suppose that even for values of 4 slightly above A_ it is
permissible to treat the properties of the attractor in terms of such a mapping.

The attractor formed by an infinite sequence of period doublings is at its appearance not
a strange attractor as defined in §31: the 2*cycle occurring as the imit of stable 2™-cycles
when m — o0 is also stable. The points of this attractor form on the interval [ -1, 1] an
uncountable Cantorian set. Its measure on this interval, ic. the total “length™ of its
elements, is zero; its dimension is between 0 and 1, and is found to be 0-54.3

When 4 > A, the attractor becomes a strange attractor, i.e. an attracting set of unstable
paths. On the interval [ — 1, 1], the points belonging to it occupy ranges whose total length
is not zero. These ranges are the traces on the sectional plane ¢ of a continuous two-
dimensional band which makes a large number of turns and is closed. In this connection, it
should be remembered that the one-dimensional treatment is approximate. In reality, the

———

t This applics not only to the total strength of the subharmonics but also 10 cach of them. For each
subharmonic that appears after bifurcation m there are two (one to the right and one to the left) after bifurcation
m + 1. The ratio of strengths of the individual peaks that appear after two successive bifurcations is therefore
twice (32.20). A more exact value of this quantity is 10-48. This is found by analysing the statcat thepoint 2 = A
itself by means of the universal function g(x) at this point, all frequencies are already present, and the problem
corresponding to that raised in the last footnote but one does not anse. See M. Nauenberg and J. Rudnick,
Physical Review B 24, 493, 1981.

3 See P. Grassberger, Journal of Statistical Physics 26, 173, 1981.
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band has a small but non-zero thickness. The segments forming its cross-section are
therefore really strips with non-zero width. Across this width, the strange attractor has the
layered Cantorian structure described in §31.1 This structure will not be of interest, and we
shall return to a discussion in terms of the one-dimensional Poincaré mapping.

The general development of the strange attractor as 4 increases beyond A is as follows.
For a given 4 > A the attractor occupies a number of ranges in the interval [ - 1, 1]; the
spaces between these ranges are the attraction domains, and contain the elements of
unstable cycles with periods not exceeding some 2®. When A increases, the rate of
divergence of the paths on the strange attractor increases, and it “expands”, successively
absorbing the cycles with periods 27, 2**' ... ; the number of ranges occupied by the
attractor decreases, and their lengths increase. Thus the number of turns of the band
mentioned above is successively halved, while their widths increase. There is then a sort of
reverse cascade of successive simplifications of the attractor. The absorption of an
unstable 2™-cycle by the attractor is called a reverse doubling bifurcation. Figure 22
illustrates this process for two successive reverse bifurcations. In Fig. 22a, the band makes
four turns and the reverse bifurcation converts it into one with two (Fig. 22b); the final
bifurcation gives a band with only one turn and closed after a twist (Fig. 22¢).

(a) (b) (c)

Fic 22

Let the values of 4 corresponding to successive reverse doubling bifurcations be demoted
by A,, ., arranged in the order A, > A..,. We shall show that they are in geometrical
progression with the same universal factor é as for forward bifurcations.

Before the final (as A increases) reverse bifurcation, the attractor occupies two ranges
separated by a gap containing the fixed point x, of the mapping (32.5), which corresponds
to an unstable cycle with period 1:

_i(lwu)—l_
X, = 2% .

The bifurcation takes place at the value i = A,, when this point is reached by the limits of
the expanding attractor. Figure 22b shows that the outer limit of the attractor band
becomes the inner limit after one loop and the boundary of the gap between turns after
another. It follows that 4 = A, is given by the condition x;, , = x,, where

 Thedimension of the attractor in this direction is much less than unity, but it is not 2 universal property, and
depends on the specific mapping.
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is the result of twice iterating the mapping over the point x; = 1, the imit of the attractor;
A, = 1:543, The previous reverse bifurcations A,, K,.. .can be approximately de-
termined in succession by means of the recurrence relation between A ., and A, This
approximate relation is derived by the same method as was used above to deal with the
sequence of forward doubling bifurcations, and has the form A, = ¢(A,,. ) with the same
function ¢(A) from (32.7). The corresponding graphical construction is shown in the
upper part of Fig. 21. Since ¢(A) is the same for the forward and reverse bifurcation
sequences, 5o is the expression governing the convergence of the sequences of numbers A,,
and A,, (from below and above respectively) to lheu common limit A_ = A_:

The development of the strange attractor properties for 4 > A_ is accompanied by
corresponding changes in the frequency spectrum. The randomness of the flow is
represented in the spectrum by the presence of a “noise™ component whose strength
increases with the width of the attractor. Against this background there are discrete peaks
corresponding to the fundamental frequency of the unstable cycles and their harmonics
and subharmonics; at successive reverse bifurcations, the relevant subharmonics disap-
pear, in the opposite order to that of their appearance in the sequence of forward
bifurcations. The instability of the cycles which create these frequencies is shown by the
broadening of the peaks.

TRANSITION TO TURBULENCE BY ALTERNATION

Let us consider finally the elimination of periodic flow when the multiplier passes
through the value u = +1.

This type of bifurcation is described (in the one-dimensional Poincaré mapping) by a
function x;,, = f(x; R), which for a certain value R = R, of the Reynolds number
touches the line x,,, = x,. Taking the point of contact as x; =0, we can write the
expansion of the mapping function near it ast

X;o1 = (R=R,)+x,+x,° (32.22)
When R < R, (see Fig. 23), there are two fixed points

x, @ = F /Ry —R),

of which x,'" corresponds to stable and x,'*’ to unstable periodic flow. When R = R, the
multiplier at both points is + 1, the two periodic flows coalesce, and when R > R, they
disappear, the fixed points passing into the complex domain.

When R — R, is small, the curve (32.22) and the straight lin¢ x, , , = x; are close together
(near x; = 0). In this range of x, therefore, each iteration of the mapping (32.22) moves the
trace of the path only slightly, and many steps are needed for it to cover the whole range. In
other words, over a comparatively long interval of time the path is regular and almost
periodic in the space of states. Such a path corresponds to regular laminar flow in physical
space. This yields another theoretically possible scenario for the onset of turbulence (P.
Manneville and Y. Pomeau 1980).

It can be imagined that the particular region of the mapping function is adjacent to
regions which randomize the paths, corresponding in the space of states to a set of locally

tTheeoe(ﬁaentofR R, and the positive cocfficient of x,” can be made cqual to unity by appropriate
definitions of R and x;, and this is assumed in (32.22).
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unstable paths. This set is not itself an attractor, however, and in the course of time the
point representing the system moves out of the set. When R < R, the path reaches a stable
cycle, and periodic laminar flow is established in physical space. When R > R, thereis no
stable cycle, and a motion arises in which the turbulent periods alternate with laminar
ones, the scenario therefore being called the transition to turbulence by alternation.

No general conclusions can be drawn as to the duration of the turbulent periods. The
dependence of the laminar period duration on R — R, is easily ascertained, however. Todo
so, we write the difference equation (32.22) as a differential equation. Since x; changes only
slightly in one mapping step, we replace x,, ; — x; by the derivative dx/dt with respect to
the continuous variable ¢:

dx/dt = R—R_ +x*. (32.23)

Let us find the time 7 needed to traverse the segment between the points x, and x, lying on
either side of x = 0 at distances much greater than R — R_, but still within the range where
the expansion (32.22) is valid. We have

T= 7(31-&,3 [tan™" {x/\/(R-R,)}]Z,

whence

tac 1/ /(R=R.) (32.24)

this gives the required dependence. Thus the duration of the laminar periods decreases as
R — R, increases.

This scenario leaves unresolved both the way in which its starting-point is approached
and the nature of the turbulence that occurs.

§33. Fully developed turbulence

Turbulent flow at fairly large Reynolds numbers is characterized by the presence of an
extremely irregular disordered variation of the velocity with time at each point. This is
called fully developed turbulence. The velocity continually fluctuates about some mean
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value. A similar irregular variation of the velocity exists between points in the flow at a
given instant. No complete quantitative theory of turbulence has yet been evolved.
Nevertheless, several important qualitative results are known, and the present section gives
an account of these.

We introduce the concept of the mean velocity, obtained by averaging over long
intervals of time the actual velocity at each point. By such an averaging the irregular
variation of the velocity is smoothed out, and the mean velocity varies smoothly from
point to point. In what follows we shall denote the mean velocity by u. The difference
v = v — u between the true velocity and the mean velocity varies irregularly in the manner
characteristic of turbulence; we shall call it the fluctuating part of the velocity.

Let us consider in more detail the nature of this irregular motion which is superposed on
the mean flow. This motion may in turn be qualitatively regarded as the superposition of
turbulent eddies of different sizes; by the size of an eddy we mean the order of magnitude of
the distances over which the velocity varies appreciably. As the Reynolds number
increases, large eddies appear first; the smaller the eddies, the later they appear. For very
large Reynolds numbers, eddies of every size from the largest to the smallest are present.
An important part in any turbulent flow is played by the largest eddies, whose size (the
fundamental or external scale of turbulence) is of the order of the dimensions of the region
in which the flow takes place; in what follows we shall denote by [ this order of magnitude
for any given turbulent flow. These large eddies have the largest amplitudes. The velocity in
them is comparable with the variation of the mean velocity over the distance [; we shall
denote by Au the order of magnitude of this variation. We are speaking here of the order of
magnitude, not of the mean velocity itself, but of its variation, since it is this variation Au
which characterizes the velocity of the tubulent flow. The mean velocity itself can have any
magnitude, depending on the frame of reference used. ¥ The frequencies corresponding to
these eddies are of the order of u/l, the ratio of the mean velocity u (and not its variation
Au) to the dimension . For the frequency determines the period with which the flow
pattern is repeated when observed in some fixed frame of reference. Relative to such a
frame, however, the whole pattern moves with the fluid at a velocity of the order of u.

The small eddies, on the other hand, which correspond to large frequencies, participate
in the turbulent flow with much smaller amplitudes. They may be regarded as a fine
detailed structure superposed on the fundamental large turbulent eddies. Only a
comparatively small part of the total kinetic energy of the fluid resides in the small eddies.

From the picture of turbulent flow given above, we can draw a conclusion regarding the
manner of variation of the fluctuating velocity from point to point at any given instant.
Over large distances (comparable with [), the variation of the fluctuating velocity is given
by the variation in the velocity of the large eddies, and is therefore comparable with Aw.
Over small distances (compared with [), it is determined by the small eddies, and is
therefore small (compared with Au) (but large compared with the variation of the mean
velocity over these small distances). The same kind of picture is obtained if we observe the
variation of the velocity with time at any given point. Over short time intervals (compared
with 7 ~ Il/u), the velocity does not vary appreciably; over long intervals, it varies by a
quantity of the order of Au.

The length [ appears as a characteristic dimension in the Reynolds number R, which
determines the properties of a given flow. Besides this Reynolds number, we can introduce

t It seems that in fact the size of the largest eddies is actually somewhat less than [, and thar veloaty is
somewhat less than Au.
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the qualitative concept of the Reynolds numbers for turbulent eddies of various sizes. If 1is
the order of magnitude of the size of a given eddy, and v, the order of magnitude of its
velocity, then the corresponding Reynolds number is defined as R, ~ v, 4/v. This number
decreases with the size of the eddy.

For large Reynolds numbers R, the Reynolds numbers R, of the large eddies are also
large. Large Reynolds numbers, however, are equivalent to small viscosities. We therefore
conclude that, for the large eddies which are the basis of any turbulent flow, the viscosity is
unimportant. It follows from this that there is no appreciable dissipation of energy in the
large eddies.

The viscosity of the fluid becomes important only for the smallest eddies, whose
Reynolds number is comparable with unity. We denote the size of these eddies by 4,, which
we shall determine later in this section. It is in these small eddies, which are unimportant as
regards the general pattern of a turbulent flow, that the dissipation of energy occurs.

We thus arrive at the following conception of energy dissipation in turbulent flow (L.
Richardson 1922). The energy passes from the large eddies to smaller ones, practically no
dissipation occurring in this process. We may say that there is a continuous flow of energy
from large to small eddies, i.c. from small to large frequencies. This flow of energy is
dissipated in the smallest eddies, where the kinetic energy is transformed into heat. For a
steady state to be maintained, it is of course necessary that external energy sources should
be present which continually supply energy to the large eddies.

Since the viscosity of the fluid is important only for the smallest eddies, we may say that
none of the quantities pertaining to eddies of sizes 4 » i, can depend on v (more exactly,
these quantities cannot be changed if v varies but the other conditions of the motion are
unchanged). This circumstance reduces the number of quantities which determine the
properties of turbulent flow, and the result is that similarity arguments, involving the
dimensions of the available quantities, become very important in the investigation of
turbulence.

Let us apply these arguments to determine the order of magnitude of the energy
dissipation in turbulent flow. Let £ be the mean dissipation of energy per unit time per unit
mass of fluid.t We have seen that this energy is derived from the large eddies, whence it is
gradually transferred to smaller eddies until it is dissipated in eddies of size ~ 4,. Hence,
although the dissipation is ultimately due to the viscosity, the order of magnitude of ¢ can
be determined only by those quantities which characterize the large eddies. These are the
fluid density p, the dimension [ and the velocity Au. From these three quantities we can
form only one having the dimensions of ¢, namely erg/g sec = cm?/sec’. Thus we find

e ~ (Au)/l, (33.1)

and this determines the order of magnitude of the energy dissipation in turbulent flow.

In some respects a fluid in turbulent motion may be qualitatively described as having a
“turbulent viscosity™ v, Which differs from the true kinematic viscosity v. Since v,
characterizes the properties of the turbulent flow, its order of magnitude must be
determined by p, Au and I. The only quantity that can be formed from these and has the
dimensions of kinematic viscosity is [Au, and therefore

Viwrh ™~ lAll. (33.2)

t In this chapter ¢ denotes the mean dissipation of energy, and not the internal energy of the fluid.
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The ratio of the turbulent viscosity to the ordinary viscosity is consequently
Vard/¥ ~ R (33.3)

i.e. it increases with the Reynolds number.t
The energy dissipation ¢ is expressed in terms of v, by

€ ~ Vg (Au/l) (334)

in accordance with the usual definition of viscosity. Whereas v determines the energy
dissipation in terms of the space derivatives of the true velocity, v, relates it to the
gradient (~ Au/l) of the mean velocity.

We may also apply similarity arguments to determine the order of magnitude Ap of the
variation of pressure over the region of turbulent flow. The only quantity having the
dimensions of pressure which can be formed from p, | and Au is p(Au)’. Hence we must
have

Ap ~ plAu). (33.5)

Let us now consider the properties of the turbulence as regards eddy sizes 4 which are
small compared with the fundamental eddy size |. We shall refer to these properties as local
properties of the turbulence. We shall consider fluid that is far from all solid surfaces (more
precisely, that is at distances from them large compared with 4).

It is natural to assume that such small-scale turbulence, far from solid bodies, is
homogeneous and isotropic. The latter property means that, over regions whose
dimensions are small compared with /, the properties of the turbulent flow are independent
of direction; in particular, they do not depend on the direction of the mean velocity. It must
be emphasized that here, and everywhere in the present section, when we speak of the
properties of the turbulent flow in a small region of the fluid, we mean the relative motion
of the fluid particles in that region, and not the absolute motion of the region as a whole,
which is due to the larger eddies.

It is found that several important results concerning the local properties of turbulence
can be obtained immediately from similarity arguments. These results are due to A. N.
Kolmogorov and to A. M. Obukhov (1941). To obtain them, we shall first determine which
parameters can be involved in the properties of turbulent flow over regions small
compared with  but large compared with the distances i, at which the viscosity of the fluid
begins to be important. It is these intermediate distances which we shall discuss below. The
parameters in question are the fluid density p and another quantity characterizing any
turbulent flow, the energy & dissipated per unit time per unit mass of fluid. We have seen
that ¢ is the energy flux which continually passes from larger to smaller eddies. Hence,
although the energy dissipation is ultimately due to the viscosity of the fluid and occurs in
the smallest eddies, the quantity ¢ determine the properties of larger eddies. It is natural to
suppose that (for given p and ¢) the local properties of the turbulence are independent of
the dimension | and velocity Au of the flow as a whole. The fluid viscosity v also cannot
appear in any of the quantities in which we are at present interested (we recall that we are
concerned with distances 4 » Ap).

t In reality, however, a fairly large numerical cocfficient should be included. This is because, as mentioned
above, [ and Au may differ quite considerably from the actual scale and veloaity of the turbulent flow. The ratio
Veurd/ ¥ May be more accurately written v, /v ~ R/R, which formula takes into account the fact that v and v
must in reality be comparable in magnitude not for R ~ 1, but for R ~ R
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Let us determine the order of magnitude v, of the turbulent velocity variation over
distances of the order of A. It must be determined only by £ and, of course, the distance A
itself. t From these two quantities we can form only one having the dimensions of velocity,
namely (eA)). Hence we can say that the relation

v, o (ed) (33.6)

must hold. We thus find that the velocity variation over a small distance is proportional to
the cube root of the distance (Kolmogorov and Obukhov's law). The quantity v, may also be
regarded as the velocity of turbulent eddies whose size is of the order of A: the variation of
the mean velocity over small distances is small compared with the variation of the
fluctuating velocity over those distances, and may be neglected.

The relation (33.6) may be obtained in another way by expressing a constant quantity,
the dissipation ¢, in terms of quantities characterizing the eddies of size i; ¢ must be
proportional to the squared gradient of the velocity v, and to the appropriate turbulent
viscosity coefficient vy, ; o€ v,4:

€O Vw1 (02/4)" o 0, /4,

whence we obtain (33.6).

Let us now put the problem somewhat differently, and determine the order of
magnitude v, of the velocity variation at a given point over a time interval t which is short
compared with the time 7 ~ I/u characterizing the flow as a whole. To do this, we notice
that, since there is a net mean flow, any given portion of the fluid is displaced, during the
interval t, over a distance of the order of tu, u being the mean velocity. Hence the portion of
fluid which is at a given point at time t will have been at a distance tu from that point at the
initial instant. We can therefore obtain the required quantity v, by direct substitution of tu
for 4 in (33.6):

v, o (eTu)l. (33.7)

The quantity v, must be distinguished from v, the variation in velocity of a portion of
fluid as it moves about. This variation can evidently depend only on &, which determines
the local properties of the turbulence, and of course on t itself. Forming the only
combination of ¢ and t that has the dimensions of velocity, we obtain

v, o (e7)t (33.8)

Unlike the velocity variation at a given point, it is proportional to the square root of t, not
to the cube root. It is easy to see that, for r small compared with 7, v, isalways lessthan v,. §
Using the expression (33.1) for &, we can rewrite (33.6) and (33.7) as

v, o A“(A./l)" }
v, Au(t/Tﬁ.

This form shows clearly the similarity property of local turbulence: the small-scale
characteristics of different turbulent flows are the same apart from the scale of
measurement of lengths and velocities (or, equivalently, lengths and times). 11

(33.9)

t The dimensions of ¢ are erg/g sec = cm?/sec’, and do not include mass; the only quantity involving the mass
dimension is the density p. The latter is therefore not involved in quantities whose dimensions do not include
mass.

3 The inequality v, <€ v, has in essence been assumed in the derivation of (33.7)

11 In this connection, the term self-similarity is often used in recent Bterature.
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Let us now find at what distances the fluid viscosity begins to be important. These
distances 4, also determine the order of magnitude of the size of the smallest eddies in the
turbulent flow (called the “internal scale™ of the turbulence, in contradistinction to the
“external scale” [). To determine 4,, we form the local Reynolds number R,
~ U AN ~ Aus AP MY ~ R (4/1)*2, with the Reynolds number R ~ [Au/v for the flow
as a whole. The order of magnitude of 4, is that for which R, ~ 1. Hence we find

io ~ I/RL, (33.10)

The same expression can be obtained by forming from ¢ and v the only combination having
the dimensions of length, namely

io ~ (V*/ep. (33.11)

Thus the internal scale of the turbulence decreases rapidly with increasing R. For the
. corresponding velocity we have

this also decreases when R increases.

The range of scales A ~ [is called the energy range; the majority of the kinetic energy of
the fluid is concentrated there. Values 4 < A, form the dissipation range, where the kinetic
energy is dissipated. For very large values of R, these two ranges are quite far apart, and
between them lies the inertial range, in which i, <€ A </; the results derived in this section
are valid there.

Kolmogorov and Obukhov’s law can be expressed in an equivalent spatial spectrum
form. We replace the scales A by corresponding wave numbers k ~ 1/4 of the eddies; let
E(k)dk be the kinetic energy per unit mass of fluid in eddies with k values in the range dk.
The function E(k) has the dimensions cm®/sec?; the combination of £ and k having these
dimensions gives

E(k)oc e2Pk=3%3, (33.13)

The equivalence of this expression and (33.6)is easily seen by noting that v, gives the order
of magnitude of the total energy in eddies with all scales of the order of 4 or less. The same
result is reached by integration of (33.13):

o«

I E(k)dk oc &P /k*? ~ (€ ~ v
k

Together with the spatial scales of the turbulent eddies, we can also consider their time
characteristics (frequencies). The lower end of the frequency spectrum of turbulent motion
is at frequencies ~u/l. The upper end is

Wy ~ ufig ~ uR**/l, (33.14)

corresponding to the internal scale of turbulence. The inertial range corresponds to
frequencies
u/l € < (u/R**.

t Formulae (33.10)-(33.12) give the manner of vanation of the relevant quantitics with R. Quantitatively, it
would be more correct to replace R in them by R/R_.
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The inequality @ » w/! signifies that as regards the local properties of turbulence the
unperturbed flow may be treated as steady. The energy distribution in the frequency
spectrum in the inertial range is found from (33.13) by substituting k ~ w/w

E(w) o (ue)*w™ %73, (33.15)

where E(w)dw is the energy in the frequency range dw.

The frequency @ gives the time repetition period in the region of space concerned, as
observed from a fixed frame of reference. It is to be distinguished from the frequency o'
which gives the flow repetition period in a given portion of fluid moving in space. The
energy distribution in this frequency spectrum cannot depend on u, and must be
determined only by ¢ and the frequency @' itself. Again using dimensional arguments, we
find

E(w)xe/w? (33.16)

This is in the same relationship to (33.15) as (33.8) is to (33.7).

Turbulent mixing causes a gradual separation of fluid particles that were originally close
together. Let us consider two particles at a distance 4 that is small (in the inertial range).
Again, by dimensional arguments, the rate of change of this distance with time is

di/dt oc (e4)' . (33.17)

Integration of this shows that the time t over which two particles initially at a distance 4,
move apart to a distance 4, » 4, is in order of magnitude

PR LIALS (33.18)

Note that the process is self-accelerating: the rate of separation increases with 4. This
occurs because only eddies with scales < A contribute to the separation of particles at a
distance 4; the larger eddies carry both particles and do not cause them to separate.t

Finally, let us consider the properties of the flow in regions whose dimension 4 is small
compared with A,. In such regions the flow is regular and its velocity varies smoothly.
Hence we can expand v, in a series of powers of 4 and, retaining only the first term, obtain
v, = constant x A. The order of magnitude of the constant is v, /4, since for 4 ~ 4, we
must have v, ~ v, . Thus

v ~ v, Afdg ~ Au-RYAJL (33.19)

This formula may also be obtained by equating two expressions for the energy dissipation
&: the expression (Au)®/1(33.1), which determines ¢ in terms of quantities characterizing the
large eddies, and the expression v(v,/4)?, which determines ¢ in terms of the velocity
gradient for the eddies in which the energy dissipation actually occurs.

§34. The velocity correlation functions

Formula (33.6) determines qualitatively the correlation of velocities in local turbulence,
i.c. the relation between the velocities at two neighbouring points. Let us now introduce

—; ;'I;es-er-sultsal.l be applied to particles suspended in the flusd, which are passively conveyed by its motion.
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functions which will serve to characterize this correlation quantitatively. t One is the rank-

two correlation tensor
By = {(vy; = vy ) (v3 —05)), (34.1)

where v, and v, are the fluid velocities at two neighbouring points, and the angle brackets
denote an average with respect to time. The radius vector from point 1 to point 2 will be
denoted by r = r, —r,. In discussing local turbulence, we shall suppose this distance much
less than the fundamental scale [, but not necessarily much greater than the internal scale
Ao of the turbulence.

The velocity variation over short distances is due to the small eddies. The properties of
local turbulence, however, do not depend on the averaged flow. We can therefore simplify
the study of the correlation functions of local turbulence by considering instead an
idealized case of turbulent flow in which there is isotropy and homogencity not only on
small scales (as in local turbulence) but also on every scale; the averaged velocity is then
zero. This completely isotropic and homogeneous turbulencef can be regarded as
occurring in a fluid subjected to vigorous shaking and then left to itself. Such a flow will, of
course, necessarily decay in the course of time, and so the components of the correlation
tensor are also time-dependent.tt The relations derived below between the various
correlation functions apply to homogencous isotropic turbulence on every scale, and to
local turbulence at distances r < L

Since local turbulence is isotropic, the tensor B, cannot depend on any direction in
space. The only vector that can appear in the expression for B, is the radius vector r. The
general form of such a symmetrical tensor of rank two is

B, = A(r)oy + B(rinn,, (34.2)

where n is a unit vector in the direction of r.

To see the significance of the functions A and B, we take the coordinate axes so that one
of them is in the direction of n, denoting the velocity component along this axis by v, and
the component perpendicular to m by v,. The correlation tensor component B,, is then the
mean square relative velocity of two fluid particles along the line joining them. Similarly,
B, is the mean square transverse velocity of one particle relative to the other. Since n,
= 1, n, = 0, we have from (34.2)

B,=A+B, B,=A, B,=0
The expression (34.2) may now be written as

By = B,(r) (04 —nn,) + B, (r)nn,. (34.3)
Expanding the parentheses in the definition (34.1) gives

By = {0304 + (0202 ) — {01022 ) — {0y 02:).

Because of the homogeneity, the mean values of v, at points 1 and 2 are the same, and
because of the isotropy, {v,,v,, ) is unaltered when points 1 and 2 are interchanged (i.c.
when r = r, —r, changes sign); thus

(010 ) = (Va0 = i< v? D0a, {00y )= {00y, ).

t+ Correlation functions were first used in the dynamics of turbulence by L. V. Keller and A. A. Fridman (1924).
$ The concept is due to G. 1. Taylor (1935)
tt The averaging in the definition (34.1) must here, strictly speaking, be taken not as time averaging but as
averaging over all possible positions of the points 1 and 2 (for 2 given distance between them) at a given instant.
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Hence
Bu"i("’J 20u—2b,, by = (vy,vy ). (344)

The symmetrical auxiliary tensor b, tends to zero as r — o; for the turbulent flow
velocities at infinitely distant points may be regarded as statistically independent, so that
the mean value of their product reduces to the product of the means of each factor
separately, which are zero by hypothesis.

We differentiate (34.4) with respect to the coordinates of point 2:

0B, _ b, _ vy >
ax:. zaXI. 2 "1 5x aXu ’
By the equation of continuity, dv,, /éx,, = 0, and so
38‘. /aXI‘ = 0.

Since B, is a function only of r = r, —r,  differentiation with respect to x,, is equivalent to
that with respect to x,. Substituting (34.3) for B,,, we casily find

B, +(2/r)(B, - B,) =0,

where the prime denotes differentiation with respect to r. Thus the longitudinal and
transverse correlation functions are related by

1 d
B, = > a(" B,,) (34.5)

According to (33.6), the velocity difference over a distance r in the inertial range is
proportional to r' . Hence the correlation functions B,, and B, are proportional to r*/? in
that range. We then get from (34.5) the simple relation

B,=%B, (ix<r<l) (34.6)

For distances r € 4,,the velocity difference is proportional to r, and therefore B,, and B,,
are proportional to r*. Formulas (34.5) then gives

B,=2B, (r < ip) (34.7)

For these distances, B, and B,, can also be expressed in terms of the mean energy
dissipation &. We write B,, = ar?, where a is a constant, and combine (34.3), (34.4) and
(34.7) to find

by =3 (v? )y —ar’d, + taxx,.
Differentiating this relation, we have

_a_",!f_@zi>=15¢, Goui Sou \ _ g,

0x,, 0x5, 0x,, 6xy;
Since these hold for arbitrarily small r, we can put r, = r,, obtaining
{(@v:/0x))* ) = 15a, { (8v;/6x;) (0w /Ex;) ) = 0.
According to (16.3), we have for the mean energy dissipation

"*"((%’*gv‘x:)) ='{ «ax.) > (ax.'ax. }"5‘"‘
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whence a = ¢/15v.t We thus obtain the following final expressions for the correlation
functions in terms of the energy dissipation:

B, = 2er?/15v, B, = er’/15v (34.8)
(A. N. Kolmogorov 1941).
We next define the rank-three tensor
By = (03 =0y,) (03 = vy0) (0 —0y) ) (34.9)
and the auxiliary tensor

bt = {0300y ) = — {0030y ). (34.10)

The latter is symmetrical in the first pair of suffixes; the second equation (34.10) results
from the fact that interchanging points 1 and 2 is equivalent to changing the sign of r, i.c.
inverting the coordinates, and therefore changes the sign of the rank-three tensor. When
r = 0 and the points 1 and 2 coincide, b,, ,(0) = 0: the mean value of the product of an odd
number of fluctuating velocity components is zero. Expanding the parentheses in the
definition (34.9) gives B, in terms of b, ,:

By = 2(by i+ by + by ;) (34.11)

As r — oo, the tensor b, , and therefore B, tend to zero.

Isotropy shows that b, , must be expressible in terms of the unit tensor J,, and the
components of the unit tensor n. The general form of such a tensor symmetrical in the first
pair of suffixes is

b1 = C(r)oun + D(r)(dyn, +d,n)+ F(rinnn,. (34.12)

Differentiating this with respect to the coordinates of point 2 and using the equation of
continuity, we find
Oby,1/0%3 = { 001,003,/0x3 ) = 0.

Substitution of (34.12) leads, after a simple calculation, to the two equations
[P(3C+2D+ F')I'=0, C+2C+D)r=0.
Integration of the former gives
3C +2D + F = constant/r>.

When r = 0,C, D and F must be zero; the constant is therefore zero,and 3C+ 2D+ F = 0.
The two equations found then give

D=—-C-4C, F=rC-C (34.13)

Substitution of these in (34.12) and thence in (34.11) gives B, = —2(rC" + C) (o1,
+ 0ymy + yym;) + 6(rC’ — C)n;nn,. Again taking one of the coordinate axes to be parallel to
n, we find as the components of B,

B, = -12C, B, = —-2C+rC’), B, =B,=0. (34.14)

t Fori#ouopictmbuleoce.themundissipaﬁonisrehndto&e-mmvatﬂybytheﬁwlefamuh

(leurl vy ) =4 <(%-%)’> =gv
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From this, we see that the non-zero correlation functions B,,, and B,,, are related by

1d
B, = 6dr (rB,,,) (34.15)

We shall also need an expression for b, , in terms of the components of B,,,. From
(34.12)- (34.14),

1
b, = — 128 6un.+-—(r8.. +28...)(6..n.+6un.)-—(r8...'-8...)n.n.n.-
(34.16)

The relations (34.5) and (34.15) follow from the continuity equation alone. With the
Navier-Stokes equation, we can derive a relation between the correlation tensors B, and
B, (T. von Kdarmédn and L. Howarth 1938; A. N. Kolmogorov 1941).

To do so, we calculate the derivative db, /ot (a completely homogeneous and isotropic
turbulent flow, it will be remembered, decays in the course of time). Expressing the
derivatives dv,; /0t and dv,, /0t by means of the Navier-Stokes equation, we find

a é 1 @
ot ooy ) = “a—x" (300 ) "5;2‘ (030200 ) °;a—x;;(l’l n)—

1 @
-—a—*(h"u) +v8, (00 ) +v8 {00 ). (34.17)
P O0Xyy

The correlation function for the pressure and the velocity is
{(prv2)=0. (34.18)
For isotropy implies that this function must have the form f (r)a. And, from the equation
of continuity,
div; {pyv2 ) = (pydivyv; ) =0.

The only vector having the form f(r)n and zero divergence is constant x n/r*, and this
would not be finite at r = 0; the constant must therefore be zero.

Now replacing the derivatives with respect to x,,; and x,, in (34.17) by those with respect
to —x; and x;, we get

ot

Here we have to substitute b, and b,-,., from (34.4) and (34.16). The time derivative of the
kinetic energy per unit mass, 4 {v? ), is just the energy dissipation — & Hence

b‘. (b“'.+bu'i)+2'A b“. (34.19)
X,

é
5“ (*))= -3

A straightforward but lengthy calculation givest

1 ¢
~te-i5r = L em- (P T) (34.20)

T Themuhofthealwlauonoonsponduo(m'uhtkwl+§r6/avapplndtoachsde.bm
since the only solution of f+ 4rdf/dr = 0 finite when r = 0 is f = 0, the operator may be omitted.
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The value of B,, varies considerably with time only over an interval corresponding to the
fundamental scale of turbulence ( ~ //u). In relation to local turbulence the unperturbed
flow may be regarded as steady, as already mentioned in §33. This means that for local
turbulence it is sufficiently accurate to neglect the derivative éB,, /@t on the left-hand side
of (34.20) in comparison with &. Multiplying the resulting equation by r* and integrating
with respect to r we find, since the correlation functions are zero when r = 0, the following
relation between B, and B,,: 4B,

B, = —§a+6v—d'- (34.21)

(A. N. Kolmogorov 1941). This is valid when r is either greater or less than 4,. When
r ®» Ay, the viscosity term is small, and we have simply

B, = —ter. (34.22)

If we substitute in (34.21) for r <€ 4, the expression (34.8) for B,,, the result is zero, because
in this case we must have B,,, oc r°, and so the first-order terms must cancel.

The one equation (34.20) relates two independent functions B, and B,,,, and therefore
does not by itself enable us to find these. The presence of the correlation functions of two
orders is due to the non-linearity of the Navier-Stokes equation. For the same reason,
calculating the time derivative of the third-order correlation function would give an
equation containing also a fourth-order one, and so on. This leads to an infinite sequence
of equations. It is not possible to arrive in this way at a closed system of equations without
making some additional assumptions.

One further general remarkt should be made. It might be thought that the possibility
exists in principle of obtaining a universal formula, applicable to any turbulent flow, which
should give B,, and B,, for all distances r that are small compared with /. In fact, however,
there can be no such formula, as we see from the following argument. The instantaneous
value of (vy; = vy;) (v34 — vy, ) might in principle be expressed as a universal function of the
energy dissipation ¢ at the instant considered. When we average these expressions,
however, an important part will be played by the manner of variation of ¢ over times of the
order of the periods of the large eddies (with size ~ /), and this variation is different for
different flows. The result of the averaging therefore cannot be universal.{

LOITSYANSKIF'S INTEGRAL
We can rewrite equation (34.20) with b,, and b,, , in place of B, and B,,,:
éb, 16 ob,, .
3‘“ 7 'é; [2"" Fr" +r b".,} (34.23)

We multiply this by r* and integrate over r from 0 to oo. The expression in square brackets
is zero when r = 0. Assuming that it tends also to zero as r — o, we find

ES

A= J r*b,,dr = constant (34.24)

o

1 Due to L. D. Landau (1944).

3 The question whether fluctuations of & should be refiected m the form of the correlation functions in the
inertial range can scarcely be resolved with certainty until we have a consistent theory of turbulence; it has been
posed by A. N. Kolmogorov (Journal of Fluid Mechanics 13, 82, 1962) and A. M. Obukhov (ibid. 77). Existing
attempts to apply relevant corrections to Kolmogorov and Obukhov's law are based on hypotheses about the
statistical properties of the dissipation, whose correctness it is difficult 1o assess.
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(L. G. Loitsyanskii 1939). The integral converges if b,, decreases at infinity faster than r~ *,
and is in fact constant if b,, , decreases faster than r™*.

The functions b,, and b, are related by a formula similar to (34.5) for B, and B,,. We
therefore have (under the same conditions)

Jb.,r‘dr- -;jb,,r‘a.
0 0

Since b,, + 2b,, = {v,+v; ), the integral (34.24) can be put in the form
1
A= -;J'r’ {vy=vy ) dV, (34.25)

where d¥ = d*(x, — x;). This integral is closely related to the angular momentum of a
fluid in a state of homogeneous and isotropic turbulence. It can be shown (though we shall
not pause to do so) that the square of the total angular momentum M of the fluid in some
large volume ¥ within an infinite fluid is M? = 4xp? A V'; the increase of M as ./ ¥ and not
as V occurs because M is the sum of a large number of statistically independent terms (the
angular momenta of separate small portions of fluid) with zero mean values.

The value of M? in a given volume V' may vary because of the interaction with
surrounding regions of the fluid. If this interaction decreased sufficiently rapidly with
increasing distance, it would be a surface effect for the part of the fluid considered. The
times during which M? could change considerably would then increase with the
dimensions of V; these times and dimensions are to be regarded as very large, and in this
sense M? would be conserved.

The condition stated is closely related to the conditions, formulated in deriving (34.24)
from (34.23), for a sufficiently rapid decrease in the correlation functions. In incompressible
fluid theory, however, it is doubtful whether they are satisfied. The physical point lies in the
infinite speed of propagation of perturbations in an incompressible fluid. Mathematically,
this is shown by the integral form of the fluid pressure dependence on the velocity
distribution: if the right-hand side of (15.11) is regarded as given, the solution is

p [Pulr)o(r) dV”

4n ox';ox'y, k—-r|

As aresult, any local perturbation of the velocity instantaneously affects the pressure in all
space, and the pressure affects the acceleration of the fluid, and therefore the subsequent
change in the velocity.

A natural way of formulating the problem is as follows. At the initial instant (¢t = 0), let
an isotropic turbulent flow be set up, in which the functions b, (r,1)and b, ,(r, 1) decrease
exponentially with increasing distance. Expressing the pressure in terms of the velocities by
means of the above formula, we can then use the equations of motion of the fluid in an
attempt to determine the dependence of the time derivatives of the correlation functions at
t = 0 on the distance as r — co. This determines also the dependence of the correlation
functions themselves on r for t > 0. The investigation yields the following results.{

p(r)=

e ————

1 See |. Proudman and W. H. Reid, Philosophical Transactions of the Royal Society A 247, 163, 1954; G. K.
Batchelor and 1. Proudman, ibid. 248, 369, 1956. These rescarches have also been descnibed by A.S. Monin and A.
M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 2, §15.5, 15.6, Cambridge (Mass.) 1975.
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For t > 0, b,,(r,t) decreases at infinity at least as r* and perhaps exponentially.
Loitsyanskii's integral is therefore convergent. The decrease of b,, , isonlyasr *,and A is
therefore not conserved. Its time derivative is some non-zero negative (since b,, , is found
empirically to be negative) function of time. This function is entirely governed by inertial
forces. It is reasonable to suppose that, as the turbulence decays, these forces become less
important, and in the final stage they may be neglected in comparison with the viscous
forces. Thus A decreases (the angular momentum “spreads™ uniformly through infinite
space), tending to a constant limit which it reaches in the final stage of turbulence.

It is therefore possible to determine for this stage the law of time varnation of the
fundamental scale | and characteristic velocity v of the turbulence. An estimate of the
integral (34.25) gives A ~ v?/® = constant. Another relation is obtained by estimating
the rate of energy decrease by viscous dissipation. The dissipation ¢ is proportional to the
square of the velocity gradients; estimating these as v//, we find £ ~ v(v/[)*. Equating it to
the derivative 8(v?)/dt ~ v?/t, where t is reckoned from the start of the final stage of
turbulence, we have | ~ (vt)'’? and so

v = constant x ¢~ ** (34.26)
(M. D. Millionshchikov 1939).

CORRELATION FUNCTION SPECTRUM

As well as the coordinate representation of the correlation functions discussed above,
there is a spectral (wave vector) representation of these functions that has methodological
and physical interest. It is obtained by expansion as a Fourier space integral:

Bu(r) = | By(k)e**d’k/(2z)’,

w
-~

B, (k)= | By(r)e **d’x;
the spectral correlation function is denoted by the same symbol B, with a different
independent variable, the wave vector k. Since in isotropic turbulence B, (—r) = B, (r), we
have B, (k) = B, (— k) = B, *(k), and the spectral functions B, (k) are therefore real.

As r — o0, the functions B, (r) tend to a finite limit given by the first term in (34.4).
Accordingly, their Fourier components contain a delta function:

By (k) = §(2n)* 4(k) {v* ) — 2b, (k). (34.27)

The components with k #0 are the same for the functions B, and —2b,,.

Differentiation with respect to the coordinates x, in the coordinate representation is
equivalent to multiplication by ik, in the spectral representation. The continuity equation
0b, (r)/dx; = 0 therefore reduces in the spectral representation to the condition that the
tensor b, (k) be transverse to the wave vector:

k,b, (k) = 0. (34.28)

Because of the isotropy, the tensor b, (k) must be expressible in terms of k and the unit
tensor d; only. The general form of such a symmetrical tensor satisfying the condition
(34.28) is

by (k) = F P (k) (85 — kk,/Kk*), (34.29)
where F ‘¥ (k) is a real function of the wave number.
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The spectral representation of the rank-three correlation tensor is found similarly,
B, (k) being expressed in terms of b, ,(k) by (34.11); these tensors do not contain a delta
function. The continuity equation éb, ,(r)/éx, = 0 gives the condition that b, ,(k) be
transverse as regards the third suffix:

kiby (k) = 0. (34.30)
The general form of such a tensor is
b (k) = i F ¥ (k) {8,k /k+ Sk, k — 2k kb, /K ). (34.31)

Since b, ,(—r) = — by ,(r), the spectral functions b, ,(k) are imaginary; a factor i has been
included in (34.31), so as to make F *’(k) real.
Equation (34.19) in the spectral representation is

d
aba (k) = ik, [b, (k) + by (k)] - 2vk? b, (k).

Substitution of (34.29) and (34.31) gives
O F P (k,t)/ot = —2kF ¥ (k,t)—2vk* F ¥ (k,1). (34.32)

The function F ‘*’(k) has an important physical significance. To understand this, let us
approach the definition of the spectral correlation function at a somewhat ecarlier stage.t
We use the customary Fourier expansion of the fluctuating velocity v(r) itself:

v(r) = I v.é"'d’k/(h)’. v, = jv(r)t""d’x.

The latter integral is in fact divergent, since v(r) does not tend to zero at infinity. This is
unimportant, however, in the formal derivations below, whose purpose is to calculate the
mean squares, which are certainly finite.

The correlation tensor b, (r)is expressed in terms of the velocity Fourier components by
the integral

bu(r) = f ( taty Y e8Ik /(22 (34.33)

For this to be a function only of r = r, —r, , the integrand must contain a delta function of
k+ k', i.e. must be

(ratn ) = 27)° (BohS(k+K). (34.39)

This relation is to be regarded as a definition of a quantity here symbolically denoted by
(v,v,),. Substituting (34.34) in (34.33) and eliminating the delta function by integration over
d*k’, we find

b,(r) = I (v,o he* " d*k(2x)*;

that is, the (v,v;), are the Fourier components of b, (r), and are therefore symmetrical in i
and [, and real. In particular, b, (k) = (v*),, and we can now say that this quantity is

1 The following arguments are a paraphrase of the proof givea m SP 1, §122

m™m-r
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positive, as is evident from its relation (34.34) to the positive quantity {v,v, ) = {|v,P,
the mean square modulus of the fluctuating velocity Fourier component.

The value of the correlation function b, (r) for r = 0 determines the mean square velocity
of the fluid at any point in space. It is expressed in terms of the spectral function by

(VP)=b,(r=0)= jb..(l)d’k/(hr‘

or, substituting b, (k) from (34.29),

() = | FP(k)d’k/(2=)

F @ (k)-4=k? dk/(2=) . (34.35)

-
o

The meaning of this expression is clear from the foregoing: the positive quantity
F ®(k)/(2r)? is the spectral density of the kinetic energy per unit mass of the fluid in k-
space. The energy in the fluctuations whose wave number is in the range dk is E (k)dk,
where

E(k) = k*F ¥ (k)/2=. (34.36)

The first term on the right of (34.32) arises as the Fourier component of the first term on
the right of (34.19). When r — 0, the latter reduces to the derivative

d é
(vua—x'l;”u”u )+ (vué;"‘"u"u) - gu’o’n.'%ﬂu)

and is zero on account of the homogeneity. In the spectral representation, this means that

I k F®(k)d*k = 0, (34.37)

so that F (k) has variable sign.

Equation (34.32) has a simple meaning: it represents the energy balance of the various
spectral components in the turbulent flow. The second term on the right is negative; it gives
the energy loss due to dissipation. The first term (due to the non-lincar term in the
Navier-Stokes equation) describes the energy redistribution in the spectrum, i.e. the
energy transfer from the components with smaller k to those with larger k. The energy
density E(k) has a maximum at k ~ 1/I; the majority of the total energy of the turbulent
flow is concentrated near the maximum (in the energy range, §33). The energy dissipation
density 2vkE (k) is greatest for k ~ 1/i,; the majority of the total dissipation is
concentrated in the dissipation range. At very high Reynolds numbers, these two regions
are far apart and the inertial range lies between them.

Integrating (34.32) over d*k/(2x)° gives on the left the time derivative of the total kinetic
energy of the fluid; this is equal to the total energy dissipation —& We thus find the
following “normalization condition™ for E (k):



§34 The velocity correlation functions 145

ZvJ K*E(k,t)dk = ¢ (34.38)
0
In the inertial range of wave numbers (1// € k <€ 1/4,), the spectral functions, like the

correlation functions in the coordinate representation, may be regarded as time-
independent. According to (33.13), we have in this range

E(k)=C,e*? k™33, (34.39)
where C, is a constant coefficient, related to the coefficient C in the correlation function
B, (r) = C(er)*? (34.40)

by C, = 076C; sec the Problem. The empirical values are C =2, C, = I'5.f Then
|B,,|/B,*? = 4/5C*? = 03.

PROBLEM

Relate the coefficients C, and C in formulac (34.39) and (34.40) for the correlation function and the spectral
density of energy in the inertial range.

SoLuTion. The functions
B,(r) = 2B,(r)+ B, (r) = (113)B,(r)
(from (34.6)) and
B.k)= —=2b (k)= —4 F V()= - 8=* Etk)/k*
(k # 0) are related through the Fourier integral

B, (k) = IB.(r)t“"d’L

If the wave number is in the inertial range (1/] € k € 1/4,), the oscillatory factor cuts off the integral at an upper
limit r ~ 1/k <€ L. At small distances, the integral converges, since B, (r) — 0 as r — 0. In practice, therefore, the
integral is governed by distances that lie in the inertial range (i, <€ r < [}, and we can substitute in it B, (r) from
(34.40), at the same time extending the integration to all space. In the integral

I = Ir”zc'."d’&

we first integrate over the directions of r, obtaining
4n, 4x
'ST.MI "l’fd'-ﬁl.’[ C’}’(‘“
o o
The remaining integral is found by rotating the contour of integration in the complex {-plane from the right-hand
half of the real axis to the upper half of the imaginary axis. The result is
o8 W=
k2 ory3)
Combining these expressions, we have finally

> -C=076C.

“=zram

t The majority of the experiments relate to turbulence in the atmosphere or the ocean. The Reynolds numbers
in these measurements were as high as 3 x 10°.
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§35. The turbulent region and the phenomenon of separation

Turbulent flow is in general rotational. However, the distribution of the vorticity in the
fluid has certain peculiarities in turbulent flow (for very large R) in “steady” turbulent flow
past bodies, the whole volume of the fluid can usually be divided into two separate regions.
In one of these the flow is rotational, while in the other the vorticty is zero, and we have
potential flow. Thus the vorticity is non-zero only in a part of the fluid (though not in
general only in a finite part).

That such a limited region of rotational flow can exist is a consequence of the fact that
turbulent flow may be regarded as the motion of an ideal fluid, satisfying Euler’s
equations. t We have seen (§8) that, for the motion of an ideal fluid, the law of conservation
of circulation holds. In particular, if at any point on a streamline the curl of the velocity is
zero, then the same is true at every point on that streamhline. Conversely, if at any pointona
streamline curl v # 0, then it does not vanish anywhere on the streamline. Hence it is clear
that the existence of limited regions of rotational and irrotational flow is compatible with
the equations of motion if the region of rotational flow is such that the streamlines within it
do not penetrate into the region outside it. Such a distribution of the vorticity will be
stable, and it will remain zero beyond the surface of separation.

One of the properties of the region of rotational turbulent flow is that the exchange of
fluid between this region and the surrounding space can occur only in one direction. The
fluid can enter this region from the region of potential flow, but can never leave it.

We should emphasize that the arguments given here cannot, of course, be regarded as
affording a rigorous proof of the statements made. However, the existence of limited
regions of rotational turbulent flow seems to be confirmed by experiment.

The flow is turbulent both in the rotational and in the irrotational region. The nature of
the turbulence, however, is totally different in the two regions. To elucidate the reason for
this difference, we may point out the following general property of potential flow, which
obeys Laplace’s equation A ¢ = 0. Let us suppose that the flow is periodic in the xy-plane,
so that ¢ involves x and y through a factor having the form &*:*+%:_ Then

FPl/ox: + oy’ = — (kP + k) = — kP9,

and, since the sum of the second derivatives must be zero, the second derivative of ¢ with
respect to z must equal ¢ multiplied by a positive coefficient: 6°¢/dz* = k*¢. The
dependence of ¢ on z is then given by a damping factor of the form e ** for z > 0 (the
unlimited increase given by €** is clearly impossible). Thus, if the potential flow is periodic
in some plane, it must be damped in the direction perpendicular to that plane. Moreover,
the greater k, and k; (i.. the smaller the period of the flow in the xy-plane), the more
rapidly the flow is damped along the z-axis. All these arguments remain qualitatively valid
in cases where the motion is not strictly periodic, but has only some periodic quality.

From this the following result is obtained. Outside the region of rotational flow, the
turbulent eddies must be damped, and must be so more rapidly for the smaller eddies. In
other words, the small eddies do not penetrate very far into the region of potential flow.
Consequently, only the largest eddies are important in this region; they are damped at
distances of the order of the (transverse) dimension of the rotational region, which is just
the fundamental scale of turbulence in this case. At distances greater than this dimension
there is practically no turbulence, and the flow may be regarded as laminar.

t The applicability of these equations to turbulent flow ends at distances of the order of i,. The sharp
boundary between rotational and irrotational flow is therefore defined only to within such distances.
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We have seen that the energy dissipation in turbulent flow occurs in the smallest eddies,
the large eddies do not involve appreciable dissipation, which is why Euler’s equation is
applicable to them. From what has been said above, we reach the important result that the
energy dissipation occurs mainly in the region of rotational turbulent flow, and hardly at
all outside that region.

Bearing in mind all these properties of the rotational and irrotational turbulent flow, we
shall henceforward, for brevity, call the region of rotational turbulent flow simply the
region of turbulent flow or the turbulent region. In the following sections we shall discuss
the form of this region in various cases.

The turbulent region must be bounded in some direction by part of the surface of the
body past which the flow takes place. The line bounding this part of the surface is called the
line of separation. From it begins the surface of separation between the turbulent fluid and
the remainder. The formation of a turbulent region in flow past a body is called the
phenomenon of separation.

The form of the turbulent region is determined by the properties of the flow in the main
body of the fluid (i.e. not in the immediate neighbourhood of the surface). A complete
theory of turbulence (which does not yet exist) would have to make it possible, in principle,
to determine the form of this region by using the equations of motion for an ideal fluid,
given the position of the line of separation on the surface of the body. The actual position
of the line of separation, however, is determined by the properties of the flow in the
immediate neighbourhood of the surface (known as the boundary layer), where the
viscosity plays a vital part (see §40).

In referring (in subsequent sections) to a free boundary of the turbulent region, we shall
of course mean its time-averaged position. The instantaneous position of the boundaryis a
highly irregular surface; these irregular distortions and their time variation are due mainly
to the large eddies and accordingly extend to depths comparable with the fundamental
scale of the turbulence. The irregular movement of the boundary surface has the result that
a point in the flow fixed in space and not too far from the average position of the surface is
alternately on opposite sides of the boundary. When the flow pattern is observed at such a
point, there will be alternate periods where small-scale turbulence is present and absent.t

§36. The turbulent jet

The form of the turbulent region, and some other basic properties of it, can be
established in certain cases by simple similarity arguments. These cases include, among
others, various kinds of free turbulent jet in a space filled with fluid (L. Prandtl 1925).

As a first example, let us consider the turbulent region formed when a flow is separated at
an angle formed by two infinite intersecting planes (shown in cross-section in Fig. 24). For
laminar flow (Fig. 3, §10), the flow along one side of the angle (A0, say) would turn
smoothly and flow along the other side away from the angle (OB). In turbulent flow, the
pattern is totally different.

The flow along one side of the angle now does not turn on reaching the vertex, but
continues in its former direction. A flow appears along the other side in the direction BO.

t This is called the alternation (or intermittency) of turbulence. It is to be disunguished from the similar
property of the flow structure within a turbulent region, called by the same name The available models of such
phenomena will not be discussed here.
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The two flows mix in the turbulent region;t the boundaries of this region are shown,
dashed, in cross-section in Fig. 24. The origin of this region can be seen as follows. Let us
imagine a flow in which a uniform stream along A0 continues in the same direction,
occupying the whole space above the plane A0 and its continuation into the fluid to the
right, while the fluid below this plane is at rest. In other words, we have a surface of
separation (the plane A0 produced) between fluid moving with constant velocity and
stationary fluid. Such a surface of discontinuity, however, is unstable, and cannot exist in
practice (see §29). This instability leads to mixing and the formation of a turbulent region.
The flow along BO arises because fluid must enter the turbulent region from outside.

Let us determine the form of the turbulent region. We take the x-axis in the direction
shown in Fig. 24, the origin being at 0. We denote by Y, and Y; the distances from the xz-
plane to the upper and lower boundaries of the turbulent region, and require to determine
Y, and Y; as functions of x. This can easily be done from similarity considerations. Since the
planes are infinite in all directions, there are no constant parameters at our disposal having
the dimensions of length. Hence it follows that Y, , ¥; can only be directly proportional to
the distance x:

Y‘ = Xxlana,, Yz‘—‘xmaz. (36'l)

Fic. 24

The proportionality coefficients are simply numerical constants; we write them as tan a,,
tan a,, so that a, and a; are the angles between the two boundaries of the turbulent region
and the x-axis. Thus the turbulent region is bounded by two planes intersecting along the
vertex of the angle.

The values of a,, a, depend only on the size of the angle, and not, for example, on the
velocity of the main stream. They cannot be calculated theoretically; the experimental
results for flow round a right angle are a, = 5°, a2, = 10°.3

The velocities of the flows along the two sides of the angle are not the same; their ratio is
a definite number, again depending only on the size of the angle. When the angle is not
close to zero, one of the velocities is considerably the greater, namely that of the main
stream, which is in the same direction (40) as the turbulent region. For example, in flow
round a right angle, the velocity along the plane A0 is thirty times that along BO.

1 We recall that, outside the turbulent region, there is irrotational turbulent flow which gradually becomes
laminar as we move away from the boundaries of this region.

1 Here,and elsewhere, we refer 10 experimental results on the veloaty distribution in a transverse cross-section
of the turbulent jet, reduced by means of cakculations based on a semi-empirical theory (see the final note to the
present section).
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We may also mention that the difference between the fluid pressures on the two sides of
the turbulent region is very small. For example, in flow round a right angle it is found that
py = p2 = 0003pU,?, where U, is the velocity of the main stream (along A0), p, the
pressure in that stream, and p, the pressure in the stream along BO.

In the limiting case of flow round an angle of zero, we have simply the edge of a plate
with fluid moving along both sides. The angle 2, + a;, of the turbulent region is zero, i.c.
there is no turbulent region; the velocities of the flows along the two sides of the plate
become equal. As the angle AOB increases, a point is reached when the plane BO forms the
lower boundary of the turbulent region; the angle AOB is by then obtuse. As the angle
increases further, the turbulent region continues to be bounded by the plane BO on one
side. Here we have simply a separation, with the line of separation along the vertex of the
angle. The angle of the turbulent region remains finite.

As a second example, let us consider the problem of a turbulent jet of fluid issuing from
the end of a narrow tube into an infinite space filled with the same fluid. The problem of
laminar flow in such a “submerged jet™ has been solved in §23. At distances (the only ones
we shall consider) large compared with the dimensions of the mouth of the tube, the jet is
axially symmetrical, whatever the actual shape of the opening.

Let us determine the form of the turbulent region in the jet. We take the axis of the jet as
the x-axis, and denote by R the radius of the turbulent region; we require to determine R as
a function of x (which is measured from the end of the tube). As in the previous example,
this function is easily determined directly from dimensional considerations. At distances
large compared with the dimensions of the mouth of the tube, the actual shape and size of
the opening cannot affect the form of the jet. Hence we have at our disposal no
characteristic parameters with the dimensions of length. It therefore follows as before that
R must be proportional to x:

R = xtana, (36.2)

where the numerical constant tan « is the same for all jets. Thus the turbulent region is
a cone; the experimental value of the angle 2x is about 25 degrees (Fig. 25).1
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t Formula (36.2) gives R = 0 for x = 0; that is, the coordinate x is measured from the point where the jet
would start from a point source. This need not coincide with the actual position of the outlet aperture, but may be
behind it by a distance of the same order of magnitude as is needed to establish the dependence (36.2) Since weare
interested in the asymptotic form for large x, this difference may be neglected.
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The flow in the jet is mainly axial. Because there are no parameters having the
dimensions of length or velocity which could describe the flow in the jet,t the longitudinal
velocity u, (time-averaged) in it must have a distribution

u,(r, x) = ug(x) f [r/R(x)], (36.3)

where r is the distance from the jet axis and u, is the velocity on the axis. Thus the velocity
profiles in different cross-sections of the jet differ only as regards the scales of
measurement of distance and speed; the jet structure is said to be self-similar. The function
f(£), equal to 1 when ¢ = 0, decreases rapidly as the argument increases. It is equal to § for
¢ = 04, and reaches ~ 001 at the boundary of the turbulent region. The transverse
velocity has about the same order of magnitude over the cross-section of the turbulent
region, and at the boundary of the region is about — 0025 &, (being directed into the jet
there). This transverse velocity is responsible for the inflow into the turbulent region. The
flow outside the turbulent region can be found theoretically; see Problem 1.

The dependence of the velocity in the jet on the distance x can be determined from the
following simple arguments. The total momentum flux in the jet through a spherical
surface centred at its point of emergence must remain constant when the radius of the
surface is varied. The momentum flux density in the jet is of the order of pu®, where u s of
the order of some mean velocity in the jet. The area of the part of the jet cross-section
where the velocity is appreciably different from zero is of the order of R®. Hence the total
momentum flux is P ~ pu®R?. Substituting (36.2), we get

u~/(P/p)(1/x), (36.4)

that is, the velocity diminishes inversely as the distance from the point of emergence.

The mass Q of fluid which passes per unit time through a cross-section of the turbulent
region of the jet is of the order of puR?. Substituting (36.2) and (36.4), we find that
Q = constant x x: we write an equals sign because, if two quantities which vary within
wide limits are always of the same order of magnitude, they must be proportional. The
proportionality factor is conveniently expressed not in terms of the momentum flux P but
in terms of the mass Q, of fluid which issues from the tube per unit time. At distances of the
order of the linear dimensions a of the tube aperture, we must have Q ~ Q,. Thus the
constant is ~ Q,/a, and

Q = BQ,x/a, (36.5)

where f is a numerical coefficient which depends only on the form of the aperture. If the
latter is circular with radius a, the empirical value is § = 1-5. Thus the discharge through
the cross-section of the turbulent region increases with x, and fluid is drawn into the
turbulent region.}

The flow in any section of the length of the jet is characterized by the Reynolds number
for that section, defined as uR/v. By virtue of (36.2) and (36.4), however, the product uR is
constant along the jet, so that the Reynolds number is the same for all such sections. It can
be taken, for instance, as Q,/pav. The constant Q,/a which appears here is the only
parameter which determines the flow in the jet. When the “strength™ Q, of the jet increases

t NmmthanM,WM.:&nmﬂ&equd«e
should not appear in the formulae concerned.

! Thetotal flux through any infinite plane across the jet is infinite, i.c. a jet issuing into an infinite space carries
with it an infinite amount of fluid.
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(the value of a remaining constant), the Reynolds number eventually reaches a critical
value, after which the flow simultaneously becomes turbulent along the whole length of the
jet.t

PROBLEMS

ProsLeM 1. Determine the mean flow in the jet outside the turbulent region.

SOLUTION. We take spherical polar coordinates r, 8, ¢, with the polar axis along the axis of the jet, and the
origin at its point of emergence. Because the jet is axially symmetrical, the component u, of the mean velocity is
zero, while u, and u, are functions only of r and 6. The same arguments as were used in the problem of the laminar
jet (§23) show that u, and «, must have the forms w, = f(§)/r, &, = F(#)/r. Outside the turbulent region we have
potential flow, i.e. curl u = 0, so that du /d86 — d(ru,)/dr = 0. But ry, is independent of r, so that du, /00
= (1/r)dF /d0 = 0, whence F = constant = — b, say, or

% = —b/r. (N
From the equation of continuity,

d 1
’—,5'("%)* 00_0(.'-” =0,

we then obtain

The constant of integration must be — b if the velocity is not infinite for # = x (it does not matter that / is infinite
for @ = 0, since the solution in question refers only to the space outside the turbulent region, whereas § = 0 lies
inside that region). Thus

b1 +cos §) b

..---—’no -.—;“". (2)

The component of the velocity in the direction of the jet (u,) and its absolute magnitude are
Y= — (3)

The constant b can be related to the constant B = Q,/ain (36.5). Let us consider a segment of the cone formed

by the turbulent region, bounded by two infinitely close cross-sections of the cone. The mass of fluid entering this

segment per unit time is dQ = — 2xrpsina- wdr = 2xbp(l 4+ cos 2)dr, while from formula (36.5) we have
dQ = B dx = Bcos adr. Comparing the two expressions, we obtain

Beosa

- 4

b th(l+eoc¢) 4

At the boundary of the turbulent region, the velocity u is directed into this region, making an angle §(x —a)

with the positive direction of the x-axis.

t hmdutomkemduhdmfambﬁd’mh it is customary to employ
certain “semi-empirical” theories, based on assumptions concerning the dependence of the turbulent viscosity
coefficient on the gradient of the mean veloaity. For example, in Prandtl's theory it is assumed that (for plane
flow)

Yourh = Flann/aﬂ-

where the dependence of | (called the mixing length) on the coordinates is chosen in accordance with the results of
similarity arguments; for instance, in free turbulent jets we put | = cx, ¢ being an empirical constant. Such theorics
usually give good agreement with experiment, and are therefore useful for interpolatory calculations. However, it
is not possible to give universal values to the empirical constants which charactenize cach theory; for example, the
value of the ratio of the mixing length [ to the transverse dimeasion of the turbulent region has to be chosen
diffierently in various particular cases. It should also be mentioned that good agreement with experimental results
can be obtained with various expressions for the turbulent viscosaty.

m-re*
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Let us compare the mean velocity 4, inside the turbulent region (defined as 4, = Q/xpR* = B/xpx tan’ a)
with the velocity (u, ), at the boundary of the region. Taking the first equation (3) with # = a, we find
(4, hoe/ 8, = (1 —cos 2)

Fora = 12°, this ratio is 0001 |, i.c. the velocity at the boundary of the turbulent region is small compared with the
mean velocity inside the region.

ProsLeM 2. Determine the law of vanation of size and veloaty in a submerged turbulent jet issuing from an
infinitely long thin slit.

SOLUTION. By the same reasoning as for the axial jet, we conclude that the turbulent region is bounded by two
phnenimmﬁn;alon;the;&.i.ubchl-v&hdthejasrcxm;m-n-ammmtkja(pcm
length of the slit) is of the order of pu’ Y. The dependence of the mean velocity « on x is therefore given by u
~ constant/,/ x. The discharge through a cross-section of the turbulent region is Q ~ pu¥, whence Q = constant

Jx Thelocal Reynolds number R = uY/vincreases in the same way with x. The experimental data give a value
2a x 25° for the angle of a plane jet, about the same as for a arcular jet.

§37. The turbulent wake

For Reynolds numbers considerably above the critical value, in flow past a solid body, a
long region of turbulent flow is formed behind the body. This is called the turbulent wake.
At distances large compared with the dimension of the body, simple arguments enable us
to determine the form of this wake and the way in which the fluid velocity decreases there
(L. Prandtl 1926).

As in the investigation of the laminar wake in §21, we denote by U the velocity of the
incident stream, and take the direction of U as the x-axis. The fluid velocity at any point,
averaged over the turbulent fluctuations, is written as U + u. Denoting by a some mean
width of the wake, we shall find a as a function of x. If there is no lift, then at large distances
from the body the wake is axially symmetrical and circular in cross-section; in this case, a
may be the radius of the wake. If a lift force is present, a direction is selected in the yz-
plane, and the wake is not axially symmetrical at any distance from the body.

The longitudinal fluid velocity component in the wake is of the order of U, while the
transverse component is of the order of some mean value u of the turbulent velocity. The
angle between the streamlines and the x-axis is therefore of the order of u/U.
The boundary of the wake is, as we know, the boundary beyond which the streamlines of
the rotational turbulent flow cannot pass. Hence it follows that the angle between the
boundary of the longitudinal cross-section of the wake and the x-axis is also of the order of
u/U. This means that we can write

da/dx ~ u/U. (37.1)
Next we use formulae (21.1), (21.2), which determine the forces on the body in terms of
integrals of the fluid velocity in the wake (the velocity now being interpreted as its mean
value). The region of integration in these integrals is of the order of a°. Hence an estimate
of the integral gives F ~ pUua®, where F is of the order of the drag or the lift. Thus
u ~ F/pUd*. (37.2)
Substituting in (37.1), we find da/dx ~ F/pU?a*, from which we have by integration

a~ (Fx/pU?). (37.3)
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Thus the width of the wake increases as the cube root of the distance from the body. For
the velocity u, we have from (37.2) and (37.3)

u~ (FU/px*), (37.4)

i.c. the mean fluid velocity in the wake is inversely proportional to x1.
The flow in any section of the wake is characterized by the Reynolds number R ~ au/v.
Substituting (37.3) and (37.4), we obtain

R~ F/vpUa~ (F?/p*Ux¥* )\

We see that this number is not constant along the wake, unlike what we found for the
turbulent jet. At sufficiently large distances from the body, R becomes so small that the
flow in the wake is no longer turbulent. Beyond this point we have the laminar wake, whose
properties have been investigated in §21.

In §21 formulae have been obtained which describe the flow outside the wake and far
from the body. These formulae hold for flow outside the turbulent wake as well as outside
the laminar wake.

We may mention here some general properties of the velocity distribution round the
body. Both inside and outside the turbulent wake, the velocity (by which we always mean
u) decreases away from the body. However, the longitudinal velocity u, falls off more
rapidly ( ~ 1/x?) outside the wake than inside it. Far from the body, therefore, we may
suppose u, to be zero outside the wake. We may say that u, falls from some maximum
value on the axis of the wake to zero at the boundary of the wake. The transverse
components u,, u, at the boundary are of the same order of magnitude as they are inside
the wake, diminishing rapidly as we move away from the wake at a given distance from the
body.

§38. Zhukovskii’s theorem

The velocity distribution round a body, described at the end of the last section, does not
hold for exceptional cases where the thickness of the wake formed behind the body is very
small compared with its width. A wake of this kind is formed in flow past bodies whose
thickness (in the y-direction) is small compared with their width (in the z-direction); the
length (in the direction of flow, the x-direction) may be of any magnitude. That is, we are
considering flow past bodies whose cross-section transverse to the flow is very elongated.
These bodies include, in particular, wings, i.c. bodies whose width, or span, is large in
comparison with their other dimensions.

It is clear that, in such a case, there is no reason why the velocity component u,
perpendicular to the plane of the turbulent wake should fall off appreciably at distances of
the order of the thickness of the wake. On the contrary, this component will now be of the
same order of magnitude inside the wake and at considerable distances from it, of the order
of the span. Here, of course, we assume that the lift is not zero, since otherwise the
transverse velocity practically vanishes.

Let us consider the vertical lift force F resulting from such a flow. According to formula
(21.2), it is given by the integral

F,= —pUqu,dydz, (38.1)

where, on account of the nature of the distribution of u,, the integration must now be
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taken over the whole transverse plane. Furthermore, since the thickness of the wake (in the
y-direction) is small, while the velocity u, inside the wake is not large compared with its
value outside, we can with sufficient accuracy take the integration over y to be over the
region outside the wake, writing

w x »:

J' u,dy:ju,d)w Iu,dy.

% " -®

where y, and y, are the coordinates of the boundaries of the wake (Fig. 26).

Fic. 26

Outside the wake, however, we have potential flow, and u, = é¢/dy; bearing in mind
that ¢ = 0 at infinity, we therefore obtain

J’ll,dy = ¢2 -‘l‘

where ¢, and ¢, are the values of the potential on the two sides of the wake. We may say
that ¢, — ¢, is the discontinuity of the potential at the surface of discontinuity which may
be substituted for a thin wake. The derivative u, = ¢¢/éy must remain continuous. A
discontinuity in the velocity component normal to the surface of the wake would mean
that some quantity of fluid flows into the wake; in the approximation in which the
thickness of the wake is neglected, however, this inflow must be zero. Thus we replace the
wake by a surface of tangential discontinuity. Next, in the same approximation, the
pressure also must be continuous at the wake. Since the variation of the pressure is given in
the first approximation, according to Bernoulli’s equation, by pUu, = pUd¢/0x, it
follows that the derivative d¢/éx must also be continuous. The derivative d¢/dz (the
velocity along the wing) is in general discontinuous, however.

Since the derivative d¢/dx is continuous, the discontinuity ¢, — ¢, depends only on z,
and not on the coordinate x along the wake. Thus we have the following formula for the
lift:

F,=—-pU j(%—ﬁ)dl (38.2)

The integration over z may be taken over the width of the wake (of course, ¢, — ¢, =0
outside the wake).
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This formula can be put in a somewhat different form. To do so, we notice that, using
well-known properties of an integral of the gradient of a scalar, we can write the difference
¢, — ¢, as a contour integral

§ma ¢-dl = §(u,dy +u,dx),

taken along a contour which starts from the point y,, encircles the body, and ends at the
point y,, thus passing at every point through the region of potential flow. Since the wake is
thin we can, without changing the integral except by quantities of higher order, close this
contour by means of the short segment from y, to y,. Denoting by I' the velocity
circulation round the closed contour C enclosing the body (Fig. 26), we have

I'e §'°dl =¢:— 91, (38.3)

and for the lift force the formula
F,= —pU _[ rd: (384

The sign of the velocity circulation is always chosen to be that obtained for a counter-
clockwise path. The sign in formula (38.3) also depends on the chosen direction of flow. We
always suppose that the flow is in the positive direction of the x-axis (from left to right).

The relation between the lift and the circulation given by formula (38.4) constitutes
Zhukovskil's theorem, first derived by N. E. Zhukovskii in 1906. Cf. §46 for the application
of this theorem to streamlined wings.

PROBLEMS

PrOBLEM 1. mammmamdmmmw-mmm.
cylinder with infinite length.

SOLUTION. The drag f, per unit length of the cylinder is of the order of pUnY. Combining this with the relation
(37.1), we find the width Y of the wake to be

Y= AJ(xf,/pU?) ()

where A is a constant. The mean velocity u in the wake falls off in accordance with u ~ \/(L/px)n:ellqnolds
number R ~ WIv~L/vaumdqnndanofxndthueumn_

We may mention that, according to experimental results, the constant coeficient in (l)uA = 09 (Y baing
the half-width of the wake; if Y is taken as the distance at which the velocity «, falls to half its maximum value (at
the centre of the wake), then A4 = 0-4).

ProBLEM 2. Determine the flow outside the wake formed in transverse flow past a body of infinite length.

SoLumion. Outside the wake we have potential flow; we shall denote the potential by @ to distinguish it from
the angle ¢ in the system of cylindrical polar coordinates which we take, with the z-axis along the length of the
body. As in (21.16), we conclude that we must have

§rdf-§’-l0 -df = f,/pU,

where now the integration is over the surface of a cylinder with large radius and unit length with its axis in the x-
direction, and f, is the drag per unit length of the body. The solution of the two-dimensional Laplace’s equation
AQ® = 0 that satisfies this condition is @ = (f,/2xpU) logr. Next, we have for the lift, by formula (382), f
= pU (®, — ®,). The solution of Laplace’s equation that diminishes least rapidly with increasing distance and has
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a discontinuity of the phne =0 is ® =constant x ¢ = ~ ¢/, 2xpU, the constant being determined by
¢: ~ ¢, = 2x. The flow is given by the sum of these two solutions, ie

.'L—'U(Lh‘"“’ )
The cylindrical components of the velocity w are
W =00/0r=f/2xpUr, u,=(1/r)0®/0¢ = ~[/2xpUr. (3)

The velocity w is at a constant angle tan "' ( £/£) to the r-direction.
ProsLeM 3. Determine the manner of bending of the wake behind a body with infinite length when there is a
lift force.

SoLumion. Ifthereisa lift force, the wake (regarded as a surface of discontinuity) is curved in the xy-plane. The
function y = y(x)vhnhdu«mthsumbytkmdx/(-,+v)-dy/u, Substituting, by (3), u, =
~J,/2xpUx and neglecting u, in companson with U, we obtain

dy/dx = ~f/2zpU*x,
whence
y = constant — ( f,/2xpU *)log x.



CHAPTER IV

BOUNDARY LAYERS

§39. The laminar boundary layer

We have several times mentioned the fact that very large Reynolds numbers are
equivalent to very small viscosities, and consequently a fluid may be regarded asidealif R is
large. However, this approximation can never be used when the flow in question occurs
near solid walls. The boundary conditions for an ideal fluid require only the normal
velocity component to vanish; the component tangential to the surface in general remains
finite. For a viscous fluid, however, the velocity at a solid wall must vanish entirely.

From this we can conclude that, for large Reynolds numbers, the decrease of the velocity
to zero occurs almost exclusively in a thin layer adjoining the wall. This is called the
boundary layer, and is thus characterized by the presence in it of considerable velocity
gradients. The flow in the boundary layer may be either laminar or turbulent. In this
section we shall consider the properties of the laminar boundary layer. The boundary of
the layer is not, of course, sharp; the transition from the laminar flow in it to the main
stream of fluid is continuous.

The rapid decrease of the velocity in the boundary layer is due ultimately to the viscosity,
which cannot be neglected even if R is large. Mathematically, this appears in the fact that
the velocity gradients in the boundary layer are large, and therefore the viscosity terms in
the equations of motion, which contain space derivatives of the velocity, are largeeven if v
is small.{

Let us derive the equations of motion of the fluid in a laminar boundary layer. For
simplicity, we consider two-dimensional flow along a plane portion of the surface. This
plane is taken as the xz-plane, with the x-axis in the direction of flow. The velocity
distribution is independent of z, and the velocity has no z-component.

The exact Navier-Stokes equations and the equation of continuity are then

dv, dv, 1dp &v, v,
v,a—x +U,a—y = —;$+'(6-xf+.3-y’_)' (39.1)
dv, v, 1 dp v, v,
— —_— b — — — .2
"'ax“”ay pay+'(ax’+ayz . (39.2)
dv, dv,
-a—x + ay 0. (39.3)

The flow is supposed steady, and the time derivatives are therefore omitted.

t Theconcept and basic equations of the laminar boundary layer theory were formulated by L. Prandtl (1904).
157
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Since the boundary layer is thin, it is clear that the flow in it takes place mainly parallel to
the surface, i.e. the velocity v, is small compared with v, (as is seen immediately from the
equation of continuity).

The velocity varies rapidly along the y-axis, an appreciable change in it occurring at
distances of the order of the thickness é of the boundary layer. Along the x-axis, on the
other hand, the velocity varies slowly, an appreciable change in it occurring only over
distances of the order of a length I characteristic of the problem (the dimension of the body,
say). Hence the y-derivatives of the velocity are large in comparison with the x-derivatives.
It follows that, in equation (39.1), the derivative é*v,/éx* may be neglected in comparison
with d%v, /dy*; comparing (39.1) with (39.2), we see that the derivative dp/dy is small in
comparison with dp/dx (the ratio being of the same order as v, /v, ). In the approximation
considered we can put simply

dp/dy =0, (39.4)

1.e. suppose that there is no transverse pressure gradient in the boundary layer. In other
words the pressure in the boundary layer is equal to the pressure p(x) in the main stream,
and is a given function of x for the purpose of solving the boundary-layer problem. In
equation (39.1) we can now write, instead of dp/éx, the total derivative dp(x)/dx; this
derivative can be expressed in terms of the velocity U (x) of the main stream. Since we have
potential flow outside the boundary layer, Bernoulli's equation, p +1pU? = constant,
holds, whence (1/p)dp/dx = —UdU/dx.

Thus we obtain the equations of motion in the laminar boundary layer in the form of
Prandtl's equations:

dv,  do, g’v,- 1dp

"t oy T Tpax
dUu
=U—-, 9.

U o (39.5)

ov, 0o,
Px + 3y 0. (39.6)
The boundary conditions on these equations are that the velocity be zero at the wall:
v,=0,=0 fory=0. (39.7)

Away from the wall, the longitudinal velocity must tend asymptotically to that of the main
stream:
v, =U(x) for y— ao. (39.8)

It is not necessary to specify a separate condition for v, at infinity.

It can easily be shown that equations (39.5) and (39.6), though derived for flow along a
plane wall, remain valid in the more general case of any two-dimensional flow (transverse
flow past a cylinder with infinite length and arbitrary cross-section). Here x is the distance
measured along the circumference of the cross-section from some point on it, and y is the
distance from the surface along the normal.

Let U, be a velocity characteristic of the problem (for example, the velocity of the main
stream at infinity). Instead of the coordinates x, y and the velocities v, v,, we introduce the
dimensionless variables x’, y’, ¢/, v',:

x=1Ix, y=ly/JR o,=Uyr,, @v=Ur,//R (39.9)
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(and correspondingly U = U,U’), where R = U, I/v. Then the equations (39.5) and (39.6)
take the form

S W P, AU
X A y W —:2 - R
ox o O e« (39.10)
o', o,
o oy =Y |

These equations (and the boundary conditions on them) do not involve the viscosity. This
means that their solutions are independent of the Reynolds number. Thus we reach the
important result that, when the Reynolds number is changed, the whole flow pattern in the
boundary layer simply undergoes a similarity transformation, longitudinal distances and
velocities remaining unchanged, while transverse distances and velocities vary as 1/,/R.

Next, we can say that the dimensionless velocities v”,, ¢’, obtained by solving equations
(39.10) must be of the order of unity, since they do not depend on R. From formulae (39.9)
we can therefore conclude that

v, ~ Up/ /R, (39.11)

i.e. the ratio of the transverse and longitudinal velocities is inversely proportional to \/R.
The same is true of the boundary layer thickness 4: in the dimensionless coordinates x', )’
we have &' >~ 1, and hence in the coordinates x and y

5~1/ JR (39.12)

Let us apply the equations for the boundary layer to the case of plane-parallel flow along

a semi-infinite flat plate (H. Blasius 1908). Let the plane of the plate be the xz half-plane

with x > 0 (the leading edge of the plate thus being the line x = 0). The velocity of the main

stream in this case is constant (U = constant). The equations (39.5) and (39.6) become

dv, év, %, év, @v,

v, ox +v, ay’ — V?y'z-, FX +07y = (. (39.13)

In the solution of Prandtl’'s equations, we have seen that v /U and v,J (I/Uv) can

only be functions of x' = x/land y’ = y ./ (U/Iv). The problem of a semi-infinite plate has

no characteristic length [, however. Hence v, /U can depend only on a combination of x’

and y’ which does not involve /, namely y'/./x' = y./(U/vx). Similarly, the product
v', /X must be a function of y'//x.

In order to take into account immediately the relation between v, and v, expressed by
the equation of continuity, we use the stream function ¢ as defined by (10.9):

v, = 0¢/dy, v, = —0o¢/ix. (39.14)
The above-mentioned properties of v,(x, y) and v,(x, y) correspond to a stream function
¥=JxUI(E) &=y U/ (39.15)

Then
e, =Uf'@  5=3J/0URE - (39.16)

An important conclusion can be drawn without determining quantitatively the function
f(&). The chief characteristic of the flow in the boundary layer is the distribution of the
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longitudinal velocity v, in it (since v, is small). The velocity v, increases from zero at the
surface of the plate to a definite fraction of U for a given value of {. Hence we can conclude
that the thickness of the boundary layer in flow along a plate (defined as the value of y for
which v, /U reaches a certain value ~ 1) is given in order of magnitude by

é ~ J(vx/U). (39.17)

Thus, as we move away from the edge of the plate, 4 increases as the square root of the
distance from the edge.
Substituting (39.16) in the first equation (39.13), we get an equation for f({)

F"+2"=0. (39.18)
The boundary conditions (39.7) and (39.8) become
JO=0)=0, [fl(o)=1L (39.19)

the velocity distribution is evidently symmetrical about the plane y = 0, and it is therefore
sufficient to consider the side y > 0. Equation (39.18) has to be solved numerically; a graph
of the function f’(£) thus obtained is shown in Fig. 27. We see that f'({) tends very rapidly
to its limiting value of unity. The imiting form of f () itself for small { is

[ O)=4+0E%), a=0332 (39.20)

there cannot be terms in & or £*, as is easily seen from (39.18). The limiting form for large ¢
is
J@=¢-,  B=172 (39.21)
it can be shown that the error in this expression in exponentially small.
The frictional force on unit area of the surface of the plate is
Oy = N(00,/0Y), =0 = N/ (U*/¥x) f*(0)
or

0., = 0332 /(npU3/x). (39.22)
If the plate has a length [ (in the x-direction), then the total frictional force on it per unit
length along the edge is

I

F=2 I 0., dx = 1328 ./ (nplU>). (39.23)
o

The factor 2 is due to the fact that the plate has two sides exposed to the fluid.t The
frictional force is proportional to the 3 power of the velocity of the main stream. Formula
(39.23) can be applied, of course, only to long plates, for which R = Ul/v is sufficiently
large. Instead of the force, it is customary to define the drag coefficient as the dimensionless
ratio

C = F/ipU?-2L. (39.24)

t The boundary layer approximation is not valid near the leading edge of the plate, where 6 2 x. This, however,
is not important in cakulating the total force F, because the integral converges rapidly at the lower hmit.
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By (39.23), this quantity for laminar flow past a plate is inversely proportional to the square
root of the Reynolds number:

C = 1328/ /R. (39.25)

As an exactly definable characteristic of the boundary layer thickness, we can use the
displacement thickness 6* defined by

Ud* = I (U ~=v,)dy. (39.26)
o
Substitution of v, from (39.16) gives
8* = /(vx/U) j (1-f)d¢
0

= Jx/U)E=f (D) xs
and, with the limiting expression (39.21),
0* = B./(vx/U) = 172 /(vx/U). (39.27)

The expression on the right of the definition (39.26) is the amount by which the discharge
in the boundary layer is less than in a homogeneous flow with velocity U. We can therefore
say that 4* is the distance by which the flow is displaced outwards from the plate because of
the retardation of the fluid in the boundary layer. This displacement has the result that the
transverse velocity v, in the boundary layer tends, as y -+ 20, not to zero but to the non-zero
value

v, =3/ OU/X)Ef =i~ = =3B/ (WU/x) = 086,/ (vU/x). (39.28)

The quantitative formulae obtained above relate, of course, only to flow along a flat
plate. The qualitative results, however, such as (39.11)and (39.12), hold for flow past bodies
of any shape; in such cases / is the dimension of the body in the direction of flow.

We may make special mention of two cases of the boundary layer. If we have a plane
disk, with large radius, rotating in the fluid about an axis perpendicular to its plane, then to

08 |-

06 -

()

04 -

02 -

Fic 27



162 Boundary Layers §39

estimate the thickness of the boundary layer we must replace U in (39.17) by Q2x, where Qs
the angular velocity of rotation. We then find

o~ J(v/Q). (39.29)

We see that the thickness of the boundary layer may be regarded as a constant over the
surface of the disk, in accordance with the exact solution of this problem obtained in §23.
The moment of the frictional forces on the disk, as obtained from the equations for the
boundary layer, is of course (23.4), since this formula is exact and therefore holds for
laminar flow with any value of R.

Finally, let us consider the laminar boundary layer formed at the walls of a pipe near the
point of entry of fluid. The fluid usually enters the pipe with a velocity distribution which is
almost constant over the cross-section, and the velocity falls to zero entirely within the
boundary layer. As we move away from the entrance to the pipe, the fluid layers nearer the
axis are retarded. Since the mass of fluid that passes each cross-section is the same,
the inner part of the stream, where the velocity is almost uniform, must be accelerated as its
diameter is reduced. This continues until a Poiscuille velocity distribution is asymptoti-
cally reached; this distribution is thus found only at some distance from the entrance to the
pipe. It is easy to determine the order of magnitude of the length [ of the “inlet section™. Itis
given by the fact that, a distance | from the entrance, the thickness of the boundary layer is
of the same order of magnitude as the radius a of the pipe, so that the boundary layer fills
almost the whole cross-section. Putting in (39.17) x ~ [ and é ~ a, we obtain

| ~a’U/v~aR. (39.30)
Thus the length of the inlet section is proportional to the Reynolds number.t

PROBLEMS

ProeLEM 1. Determine the thickness of the boundary layer near a stagnation point (sec §10)

SOLUTION. Near the stagnation point the fluid velocty (outside the boundary layer) is proportional to the
distance x from that point, so that we can put U = cx. By estimating the magnitudes of the terms in the equations
(39.5)and (39.6) we find 6 ~ J(v/c)hu(hlhﬂmdthbod.yh;cu&cﬁamﬁupdﬂhﬁnna

PrOBLEM 2. Determine the flow in the boundary layer in a converging channel ( §23) between two non-parallel
planes (K. Pohlhausen 1921).

SoLumion. Considering the boundary layer along one of the planes, we measure the coordinate x along that
plane from the point O (Fig. 8, §23). For an ideal fluid we should have the velocity U = Q/axp; this simply
expresses the conservation of the discharge Q in the flow, x being the angle between the planes. Thus we have on
the right-hand side of (39.5) UdU/dx = — Q%/a*p*x”. It is easily seen that equations (39.5) and (39.6) then
become invariant under the transformation x —ax, y =~ ay, v, < v,/a v, - v, /a, @ bang any constant. This
means that we can look for v, and v, in the forms

v, = (Q/apx) f(§) v, = (Q/2px) (5 & =y/x,

which is likewise invariant under the transformation mentioned. From the continuity equation (39.6) we find that
Ji = &/, and then (39.5) gives the following equation for f({x

(pva/Q)f" = 1-J7. (n

t We shall not discuss the theory of the boundary layer for a compressible flusd, which is considerably more
complicated than that for an incompressible fluid. The compressibility has to be taken into account when the
velocity is comparable with that of sound, or greater than this. Because of the then considerable heating of the gas
and the body past which it flows, we have to deal with the equations of motion in the boundary layer together with
the equation of heat transfer in it. It may also be necessary to take account of the temperature dependences of the
viscosity and thermal conductivity of the gas.
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The boundary conditions (39.8) show that we must have f(0) = 0, () = |. The first integral of (1) is
(pva/2Q) f* = f~4§ S + constant.
Since, as { -+ <0, / tends 1o unity, we see that /” also tends to a definite hmut, and it is clear that this can only be
zero. The constant is thus determined, and
(pva/2Q) % = =§(f= 1V (S+ 2. (b}
Since the right-hand side is negative in the range 0 € f < |, we must have Q < O a boundary layer of the type
under consideration is formed only in converging flow (with large Reynolds numbers R = |Q |/pav), not in
diverging flow, in agreement with the results of §23. A further integration gives finally
S =3 tanh?[tanh "' /(2/3)+ JRK) -2 3
The thickness of the boundary layer & ~ x/./R. The derivative /"(0) = 2, /(§R), as is seen from (2). The
frictional force per unit wall area is therefore

0,, = (MU/x)['(0) = /(48U np/3x) = (2/x*) / 0 1Q P /3a’p%).

§40. Flow near the line of separation

In describing the line of separation (§35) we have already mentioned that the actual
position of this line on the surface of the body is determined by the properties of the flow in
the boundary layer. We shall see below that, from a mathematical point of view, the line of
separation is a line whose points are singular points of the solutions of (Prandtl’s)
equations of motion in the boundary layers. The problem is to determine the properties of
these solutions near such a line of singularities.t

We know already that, from the line of separation, there begins a surface which extends
into the fluid and marks off the region of turbulent flow. The flow is rotational throughout
the turbulent region, whereas in the absence of separation it would be rotational only in the
boundary layer, where the viscosity is important; the curl of the velocity would be zero in
the main stream. Hence we can say that separation causes this quantity to penetrate from
the boundary layer into the fluid. By the conservation of circulation, however, this
penetration can occur only by the direct mixing of fluid moving near the surface (in the
boundary layer) with the main stream. In other words, the flow in the boundary layer must
be separated from the surface of the body, the streamlines consequently leaving the surface
layer and entering the interior of the fluid. This phenomenon is therefore called separation
or separation of the boundary layer.

The equations of motion in the boundary layer lead, as we have seen, to the result that
the tangential velocity component (v,) in the boundary layer is large compared with the
component (v,) normal to the surface of the body. This relation between v, and v, derives
from our basic assumptions regarding the nature of the flow in the boundary layer, and
must necessarily be found wherever Prandtl’s equations have physically meaningful
solutions. Mathematically, it is found at all points not lying in the immediate
neighbourhood of singular points. But, if v, <€ v, it follows that the fluid moves along the
surface of the body, and moves away from the surface only very shghtly, so that there can
be no separation. We therefore reach the conclusion that separation can occur only on a
line whose points are singularities of the solution of Prandtl’s equations.

The nature of these singularities also follows immediately. For, as we approach the line
of separation, the flow deviates from the boundary layer towards the interior of the fluid.

t The treatment of the problem given here, due to L. D. Landau (1944), is somewhat different from that usually
given.
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In other words, the normal velocity component ceases to be small compared with the
tangential component, and is now of at least the same order of magnitude. We have seen
(cf. (39.11)) that the ratio v, /v, is of the order of 1/ /R, so that an increase of v, to the point
where v, ~ v, means an increase by a factor of ./R. Hence, for sufficiently large Reynolds
numbers (which, of course, we are considering) we may suppose that v, increases by an
infinite factor. If we use Prandtl’s equations in dimensionless form (see (39.10)), the
situation just described is formally equivalent to an infinite value of the dimensionless
velocity v', on the line of separation.

In order to simplify the subsequent discussion a little, we shall consider the two-
dimensional problem of transverse flow past a body with infinite length. As usual, x is the
coordinate along the surface in the direction of flow, while y is the distance from the
surface of the body. Instead of a line of separation, we now have a point of separation,
namely the intersection of the line of separation with the xy-plane; in the coordinates used,
thisis the point x = constant = x,, y = 0. Let x < x, be the region in front of the point of

separation.
According to the above results, we have for allt y

v,(X, y) = 0. (40.1)

In Prandtl’s equations, however, v, is a kind of parameter, which is usually of no interest
(on account of its smallness) in investigating the flow in the boundary layer. Hence it is
necessary to ascertain the properties of the function v, near the line of separation.

Itis clear from (40.1) that, for x = x,, the derivative év, /@y also becomes infinite. From
the equation of continuity,

Ov,/0x + dv,/dy = 0, (40.2)
it then follows that (dv,/dx), x, 1s infinite, or
dx/dv, =0 (40.3)

for v, = vy, where x is regarded as a function of v, and y, and 1, (y) = v,(xp, ¥). Near the
point of separation, the differences v, — v, and x, — x are small, and we can expand x, — x
in powers of v, — v, (for a given y). From (40.3), the first-order term in this expansion must
vanish identically, and we have as far as terms of the second order x, — x = f(y) (v, — vo)?,
or

v, = to(y) + 2(¥) /(X0 — x), (40.4)

where a = l/\/fis some function of y alone. Putting now

oo, _Ov, _  aly)
dy 0x  2./(xp—x)
and integrating, we have for v,

v, = B(¥)/ /(X0 —x), (40.5)
where B(y) is another function of y.

—— —— ————

t Except y = 0, where we must always have v, = 0 in accordance with the boundary conditions at the surface
of the body.
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Next, we use the first equation (39.5)

dv, dv, v, 1dp
v,ax+v,a -73;3 —;a; (40.6)
The derivative d*v,/dy? does not become infinite for x = x,, as we see from (40.2). The
same is true of dp/dx, which is determined by the flow outside the boundary layer. Both
terms on the left-hand side of equation (40.6) become infinite, however. In the first
approximation we can therefore write for the region near the point of separation
v,0v, /0x + v,0v, /dy = 0. With the equation of continuity (40.2), we can rewrite this as

dv, v, 20 (v,
v, e v, e v, = (v;) 0.
Since the velocity v, does not in general vanish for x = x,, it follows that the ratio v, /v, is
independent of y. From (40.4) and (40.5), we have to within terms of higher order
o __ By
x "0( )') \/ (xo - X) )

If this is a function of x alone, we must have f(y) = § Ar,(y), where A is a numerical
constant. Thus

-

<

0, = —voly)
"2/ (xe—x)
Finally, noticing that « and f in (40.4) and (40.5) obey the relation a = 2, we obtain
a = Advy/dy, so that

(40.7)

v, = Uo(y) + A(dve/dy) \/ (xo — X). (40.8)

Formulae (40.7) and (40.8) determine v, and v, as functions of x near the point of
separation. We see that each can be expanded in this region in powers of ./ (x, — x), the
expansion of v, beginning with the — 1 power, so that v, becomes infinite as (x, — x) =¥ for
X = Xo. For x > xy,i.c. beyond the point of separation, the expansions (40.7) and (40.8) are
physically meaningless, since the square roots become imaginary; this means that the
solutions of Prandtl’s equations which give the flow up to the point of separation cannot
meaningfully be continued beyond that point.

From the boundary conditions at the surface of the body, we must always have v, = v,
= ( for y = 0. We therefore conclude from (40.7) and (40.8) that

0o(0) =0,  (dvo/dy),-o =0. (40.9)

Thus we have the important result (due to Prandtl) that, at the point of separation itself
(x = xo, y = 0), not only the velocity v, but also its first derivative with respect to y is zero.

It must be emphasized that the equation év, /éy = 0 on the line of separation holds only
when v, becomes infinite for that value of x. If the constant A4 in (40.7) happens to be zero,
so that v,(xo, y) # o0, then the point x = x,, y = 0 at which the derivative év, /dy vanishes
would have no other particular properties, and would not be a point of separation. A can
vanish, however, only by chance, and such an event is therefore unlikely. In practice a point
on the surface of the body at which év,/éy = 0 is always a point of separation.

If there is no separation at the point x = x, (i.c. if A = 0), then for x > x, we have
(Ov./3y)y = o < 0,i.e. v, becomes negative (with increasing absolute magnitude) as we move



166 Boundary Layers §40

away from the surface, y being still small. That is, the fluid beyond the point x = x, moves,
in the lower parts of the boundary layer, in the direction opposite to that of the main
stream; there is a “back-flow™ of fluid at this point. It must be emphasized that from such
arguments we cannot conclude that there is necessarily a point of separation where dv, /dy
= 0; the whole flow pattern with the “back-flow™ might lic (as it does for A = 0) entirely
within the boundary layer and not enter the main stream, whereas it is characteristic of
scparation that the flow enters the main body of the fluid.

It has been shown in the previous section that the flow pattern in the boundary layer is
similar for different Reynolds numbers, and, in particular the scale in the x-direction
remains unchanged. It follows from this that the value x, of the coordinate x for which the
derivative (0v,/dy), - ¢ is zero is the same for all R. Thus we have the important result that
the position of the point of separation on the surface of the body is independent of the
Reynolds number (so long as the boundary layer remains laminar, of course; see §45).

Let us also ascertain the properties of the pressure distribution p(x) near the point of
separation. For y = 0 the left-hand side of equation (40.6) is zero together with v, and v,,
and there remains

v(0%v,/8y%), =0 = (1/p)dp/dx. (40.10)

It is clear from this that the sign of dp/dx is the same as that of (¢%v,/dy?), . o. When
(0v,/dy), = o > 0 we can say nothing regarding the sign of the second derivative. However,
since v, is positive and increases away from the surface (in front of the point of separation),
we must always have (%v,/0y?),.o > 0 at x = x, itself, where év, /dy = 0. Hence we
conclude that

(dp/dx), ., >0, (40.11)

i.e. the fluid near the point of separation moves from the lower pressure to the higher
pressure. The pressure gradient is related to the gradient of the velocity U (x) outside the
boundary layer by (1/p)dp/dx = — U dU/dx. Since the positive direction of the x-axis is
the same as the direction of the main stream, U > 0, and therefore

(dU/dx), ., <0, (40.12)

i.e. the velocity U decreases in the direction of flow near the point of separation.

From the results obtained above we can deduce that there must be separation
somewhere on the surface of the body. For there is on both the front and the back of the
body a point (the stagnation point) at which the fluid velocity is zero for potential flow of
an ideal fluid. Consequently, for some value of x, the velocity U(x) must begin to decrease,
and finally it becomes zero. It is clear, however, that the fluid moving over the surface of the
body is retarded more strongly closer to the surface (i.c. for smaller y). Hence, before the
velocity U(x)is zero at the outer limit of the boundary layer, the velocity in the immediate
neighbourhood of the surface must be zero. Mathematically, this evidently means that the
derivative dv,/dy must always vanish (and therefore there must be separation) for some x
less than the value for which U(x) = 0.

In flow past bodies of any form the calculations can be carried out in an entirely similar
manner, and they lead to the result that the derivatives év,/éy, év./éy of the two velocity
components v, and v, tangential to the surface of the body vanish on the line of separation
(the y-axis, as before, is along the normal to the portion of the surface considered).

We may give a simple argument which demonstrates the necessity of separation in cases
where the fluid would otherwise have a rapid increase of pressure (and therefore a rapid



§41 Stability of flow in the laminar boundary layer 167

decrease in the velocity U) in the direction of its flow past the body. Over a small distance
Ax = x, = x,, let the pressure p increase rapidly from p, to p, (p; ® p,). Over the same
distance Ax, the fluid velocity U outside the boundary layer falls from its initial value U, to
a considerably smaller value U, determined by Bernoulli’s equation:

U =U%) = (pa=pi)/p.

Since p is independent of y, the pressure increase p, — p, is the same at all distances from
the surface. If the pressure gradient dp/dx ~ (p; = p,)/Ax is sufficiently high, the term
vd*v, /dy? involving the viscosity may be omitted from the equation of motion (40.6) (if, of
course, y is not small). Then, to estimate the change in the velocity v in the boundary layer,
we can use Bernoulli's equation, putting 4(v,* —v,%) = —(p, —p,)/p, or, from the
equation previously obtained, v, = v,? — (U,? — U,?). The velocity v, in the boundary
layer is less than that of the main stream, and we can select a value of y for which v,? <
U,? = U,2. The velocity v, is then imaginary, showing that Prandtl's equations have no
physically significant solutions. In fact, there must be separation in the distance Ax, as a
result of which the pressure gradient is reduced.

An interesting case of the appearance of separation is given by flow at an angle formed
by two intersecting solid surfaces. For laminar potential flow outside an angle (Fig. 3), the
fluid velocity at the vertex of the angle would become infinite (see §10, Problem 6),
increasing in the stream approaching the vertex and diminishing in the stream leaving the
vertex. In reality, the rapid decrease in velocity (and corresponding increase in pressure)
beyond the vertex would lead to separation, the line of separation being the line of
intersection of the surfaces. The resulting flow pattern is that discussed in §36.

In laminar flow inside an angle (Fig. 4), the fluid velocity is zero at the vertex. In this case
the velocity diminishes (and the pressure increases) in the flow approaching the vertex. The
result is in general the appearance of separation, the line of separation being upstream
from the vertex of the angle.

PROBLEM

Determine the order of magnitude of the least possible increase Ap in the pressure which can occur (in the main
stream) over a distance Ax and cause separation.

SOLUTION. Let y be a distance from the surface of the body at which, firstly, Bernoulli’s equation can be
applied and, secondly, the squared velocity ¢*(y) in the boundary layer is less than the change |AU? | in the
squared velocity outside that layer. For o(y) we can write, in order of magmitude, o(y) 3 y do/dy ~ Uy/é, where é
~ /(vl/U) is the thickness of the boundary layer and ! the dimension of the body. Equating, in order of
magnitude, the two terms on the right-hand side of equation (40.6), we find

(1/p)8p/Ax ~ vo(y)/y* ~ vU dy.
From the condition v* = |AU?| = (2/p)Ap we have U?y? /6% ~ Ap/p. Eiminating y, we finally obtain

Ap ~ pU*(Ax/If.

§41. Stability of flow in the laminar boundary layer

Laminar flow in the boundary layer, like any other laminar flow, becomes to some extent
unstable at sufficiently large Reynolds numbers. The manner of the loss of stability in the
boundary layer is similar to that which occurs for flow in a pipe (§28).

The Reynolds number for flow in the boundary layer varies over the surface of the body.
For example, in flow along a plate we could define the Reynolds number as R, = Ux/v,
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where x is the distance from the leading edge of the plate, and U the fluid velocity outside
the boundary layer. A more suitable definition for the boundary layer, however, is one in
which the length parameter directly characterizes the thickness of the layer; such, for
instance, is the displacement thickness 4* defined as in (39.26)

R, = Us*/v = 172 /R,; (41.1)

the numerical factor is for a boundary layer on a flat surface.

Because the change in the layer thickness with distance is comparatively slow, and the
transverse velocity in the layer is small, in investigating the stability of flow in a small
portion of the layer, we may consider a plane-parallel flow with a velocity profile that does
not vary along the x-axis.t Then, from a mathematical point of view, the problem is
analogous to that of the stability of flow between two parallel planes discussed in §29. The
only difference is in the form of the velocity profile: instead of a symmetrical profile with
v = 0 on both sides, we now have an unsymmetrical profile in which the velocity varies from
zero at the surface of the body to some given value U, the velocity of the flow outside the
boundary layer. The investigation leads to the following results (W. Tollmein 1929;
H. Schlichting 1933; C. C. Lin 1945).

The form of the neutral curve in the @R-plane (see §28) depends on the form of the
velocity profile in the boundary layer. If the velocity profile has no point of inflexion, and
the velocity v, increases monotonically with the curve v, = v, (y) everywhere convex
upwards (Fig. 28a), then the boundary of the stable region is completely similar in form to
that which is obtained for flow in a pipe: there is a minimum value R = R, at which
amplified perturbations first appear, and for R -+ o both branches of the curve are
asymptotic to the axis of abscissae (Fig. 29a). For the velocity profile which occurs in the
boundary layer on a flat plate, the critical Reynolds number is found by calculation to be
Ré.c = 420:

A velocity profile of the kind shown in Fig. 28a cannot occur if the fluid velocity outside
the boundary layer decreases downstream. In this case the velocity profile must have a
point of inflexion. For, let us consider a small portion of the surface, which we may regard
as plane, and let x be again the coordinate in the direction of flow, and y the distance from
the wall. From (40.10) we have

v(@*v,/3y?), =0 = (1/p)dp/dx = — U éU/éx,

whence we see that, if U decreases downstream (éU/éx < 0), we must have é*v,/dy® > 0
near the surface, i.e. the curve v, = v, ( y)is concave upwards. As y increases, the velocity v,
must tend asymptotically to the finite limit U. It is then clear from geometrical
considerations that the curve must become convex upwards, and therefore must have a
point of inflexion (Fig. 28b). In this case the form of the curve defining the stable region is
slightly changed: the two branches have different asymptotes for R — o0, one tending as
before to the axis of abscissae and the other to a non-zero value of @ (Fig. 29b). The
presence of a point of inflexion also reduces considerably the value of R,.

t Insodoing, of course, we pass over the question of the effect which the curvature of the surface may have on
the stability of the boundary layer. There is also some inconsistency in the approximations made, because the only
plane-parallel flows (with the velocity profile depending on only one coordinate) that satisly the Navier-Stokes
cquation are those with a linear profile (17.1) or a parabolic profile (17.4), whereas Euler’s equation is satisfied bya
plane-paralle] flow with any profile. Thus the main stream flow considered in the theory of boundary layer
stability is not, strictly speaking, a solution of the equations of motion.

$ For R, — o0, @ tends to zero, on the two branches | and Il of the neutral curve, as R,~! and R, '/*
respectively. The point R = R, corresponds to a frequency @_ = 015 U/é* and a wave number k_, = 0-36/6°.
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The fact that the Reynolds number increases along the boundary layer makes the
behaviour of the perturbations as they are carried downstream somewhat unusual. Let us
consider flow along a flat plate, and suppose that a perturbation with a given frequency @
occurs at some point in the boundary layer. Its propagation downstream corresponds to a
movement in Fig. 29a to the right along a horizontal line @ = constant. The perturbation is
at first damped: then, on reaching branch I of the stability curve, it begins to be amplified.
This continues until branch II is reached, whereupon the perturbation is again damped.
The total amplification coefficient for the perturbation during its passage through the
region of instability increases very rapidly as this region moves towards large R (i.c. as the
corresponding horizontal segment between branches I and Il moves downwards).

There is as yet no complete answer regarding the (absolute or convected) instability of
the boundary layer under infinitesimal perturbations. For a velocity profile with no point
of inflexion, the instability is convected for R values where both branches of the neutral
curve (Fig. 29a) are close to the abscissa axis; the proof is the same as for plane Poiseuille
flow in §28. For lower values of R and for velocity profiles having a point of inflexion, the
problem is still unsolved.

Since the Reynolds number varies along the boundary layer, the whole layer does not
become turbulent immediately, but only that part of it for which R, exceeds a certain value.
For a given velocity of the incident flow, this means that turbulence begins at a particular
distance from the leading edge, which becomes smaller as the velocity increases. The
experimental results show that the point where turbulence begins in the boundary layer
also depends considerably on the strength of the perturbation in the incident flow. As this
decreases, the onset of turbulence moves to higher values of R;.

There is a fundamental difference between the neutral curves in Figs. 29a and 29b. The
fact that, as R; — o0, the frequency on the upper branch tends to a non-zero limit signifies
that the flow becomes unstable for any viscosity, however small, whereas for a curve as in
Fig. 29a perturbations with any non-zero frequency decay as v — 0. This difference is
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caused by the presence or absence of a point of inflexion on the velocity profile v, = v(y).
Its origin may be traced mathematically by considering the stability problem for an ideal
fluid (Rayleigh 1880).

We substitute, in the equation (10.10) for two-dimensional flow of an ideal fluid, the
stream function in the form

V=yo(y)+¥(xy0
where ¥, is the stream function for the unperturbed flow, so that ¥," = v(y) ¥, is a small
perturbation, which we seek in the form
¥y = @(y)e* =,
Substitution in (10.10) gives the following linearized equationt for ¢, :
(v—w/k)(@"—k*¢)—v"¢ = 0. (41.2)

If the flow is bounded (in the y-direction) by a solid wall, ¢ = 0 there (since v, = 0); if the
flow is unlimited in width on one or both sides, a similar condition must be applied at
infinity, where the flow is uniform. We shall regard k as a given real quantity; the frequency
@ is then determined from the eigenvalues of the boundary-value problem for equation
(41.2).

_f Any function ¥, (y) satisfies (10.10) identically; cf. the first footnote to this section.
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Wedivide (41.2) by v — @/k, multiply by ¢*, and integrate with respect to y between the
limits of the flow y, and y,. Integration by parts of the product ¢*¢" gives

y y
“1hl2
f(l¢'l’+k’l¢l’)GY+ Jlil‘l dy = 0. (41.3)

v—w/k
N N

The first term is always real. Assuming the frequency to be complex and separating the
imaginary part of the equation, we get

¥z
imo | — 2 dy = 0. (41.4)
"N

In order to have im @ # 0, the integral must be zero, and this certainly implies that v” is
zero somewhere in the range of integration. Thus instability can occur (when v = 0) only
for velocity profiles having a point of inflexion).t

Physically, this instability is due to the resonance-type interaction between the
oscillations of the medium and the movement of its particles in the main stream; in this
sense, it is analogous to the Landau damping (or amplification in the case of instability) of
oscillations in a collisionless plasma (PK, §30).1

According to (41.2), the natural oscillations (if any) of the flow are associated with the
part of it where v”(y) # 0.1 It is convenient to examine the mechanism of oscillation
amplification for the case where the velocity profile has an oscillation source localized in
one layer of the flow. Let us take a profile v( y) whose curvature is small everywhere except
near a point y = y,. Replacing this simply by a kink in the profile, we get a term Ad(y — y,)
in v"(y). This makes the main contribution to the integral in (41.3). We will describe the
flow by means of coordinates in which the source is at rest, i.c. v(y,) = 0, as shown in
Fig. 30. Separating the real part of equation (41.3), we have

¥2
"2 2 2 dy_YVen "™\
I(Id’l +k%|o|%)dy o 0.

Let A > 0, as in Fig. 30. Since the first term in this equation is certainly positive, we must
then have re (w/k) > 0, the phase velocity of the wave being towards the right. The
resonance point y, at which the phase velocity is the same as the local flow velocity, v(y,)
= re(w/k), is to the right of y,. Fluid particles moving near the resonance point and
overtaking the wave transfer energy to it; those leaving the wave absorb energy from it; the
wave is amplified (there is instability) if there are more of the first particles than of the

t It should be noted that the formulation of the stability problem with the exact equation v = 0 is physically
not quite correct. It ignores the fact that a real fluid necessarily has a small but non-zero viscosity. This causes
various mathematical difficulties: some solutions disappear, because of the lower order of the differential
equation for ¢, and new ones appear which do not occur when v = 0. The katter effect is related to the singularity
of equation (41.2) (which is absent when v # O at the point where of y) = @/ k, the cocflicient of the highest-order
derivative in the equation is zero.

$ This analogy was noted by A. V. Timofeev (1979) and by A. A. Andronov and A. L. Fabrikant (1979). The
discussion below is as given by Timofeev.

tt When v'(y) = 0, equation (41.2) has no solutions satisfying the necessary boundary conditions.
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second. T Because the fluid is assumed incompressible, the number of particles reaching an
element d y of the width of the flow is proportional to d y; thus the number of particles with
velocities in the range dv is proportional to dy = (dy/dv)de = dv/v'(y), so that 1/v'(y)
acts as a velocity distribution function. Consequently, for instability to occur, it is
necessary that the function 1/v’(y) should increase, and v’ ( y) decrease, as we pass the point
y, from left to right. That is, we must have v”(y,) < 0; since v” is positive at y,, the velocity
profile must have a point of inflexion somewhere between y, and y,.

The case where A < 0can be treated similarly, and gives the same result; here, the phase
velocity of the wave and the velocity of the resonance particles are to the left.

§42. The logarithmic velocity profile

Let us consider plane-parallel turbulent flow along an unbounded plane surface; the
term “plane-parallel” applies, of course, to the time average of the flow.{ We take the
direction of the flow as the x-axis, and the plane of the surface as the xz-plane, so that yis
the distance from the surface. The y and z components of the mean velocity are zero:
u, = u, u, = u, = 0. There is no pressure gradient, and all quantities depend on y only.

We denote by o the frictional force on unit area of the surface; this force is clearly in the
x-direction. The quantity ¢ is just the momentum transmitted by the fluid to the surface
per unit time; it is the constant flux of the x-component of momentum, which is in the
negative y-direction, and gives the amount of momentum continuously transmitted from
the layers of fluid remote from the surface to those nearer it.

The existence of this momentum flux is due, of course, to the presence of a gradient, in
the y-direction, of the mean velocity . If the fluid moved with the same velocity at every
point, there would be no momentum flux. The converse problem can also be stated: given
some definite value of o, what must be the motion of a fluid with a given density p to give
rise to a momentum flux ¢? With a view to deriving the asymptotic behaviour for very large
Reynolds numbers, we again start from the supposition that this behaviour will not
explicitly involve the fluid viscosity v, although the latter becomes important for very small
distances y; see below.

t mﬂwmlhennnnadywhmwthemmm“ummmmmd
the wave is therefore not zero when averaged over time (as it is for other particies refative to which the flow in the
wave oscillates). It may also be noted that the above-mentioned direction of energy exchange corresponds to a
tendency for the velocity gradient in the flow to decrease, and in this sense is equivalent to allowing for a very
small viscosity.

$ The results given in §§42-44 are due to T. von Kirmdn (1930) and L. Pranddl (1932).
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Thus the value of the velocity gradient du/dy at any distance from the wall must be
determined by the constant parameters p, o, and of course the distance y itself. The only
combination of p, o and y that has the right dimensions is \/ (e/py?). Hence we must have

du/dy = v,/xy, (42.1)

with the quantity v, (having the dimensions of velocity), which is convenient later, defined
by

0= pv .3' (‘2.2)

and x a numerical constant, the von Kdrmdn constant, whose value cannot be calculated
theoretically and must be determined experimentally. It is found to bet

k=04 (42.3)
Integration of (42.1) gives

u=(v,/x)(log y +¢), (42.4)

where cis a constant of integration. To determine this constant we cannot use the ordinary
boundary conditions at the surface, since for y = 0 the first term in (42.4) becomes infinite.
The reason for this is that the above expression is really inapplicable at very small distances
y from the surface, since the effect of the viscosity then becomes important, and cannot be
neglected. There are also no conditions at infinity, since for y = o the expression (42.4)
again becomes infinite. This is because, in the idealized conditions which we have imposed,
the surface is unbounded, and its influence therefore extends to infinitely great distances.

Before determining the constant ¢, we may first point out the following important
property of the flow considered: contrary to what usually happens, it has no characteristic
constant parameters of length which might give the fundamental scale of the turbulence.
This scale is therefore determined by the distance y itself: the scale of turbulent flow at a
distance y from the surface is of the order of y. The fluctuating velocity of the turbulence is
of the order of v,. This also follows at once from dimensional arguments, since v, is the
only quantity having the dimensions of velocity which can be formed from the quantities o,
p, y at our disposal. It should be emphasized that, whereas the mean velocity decreases with
decreasing y, the fluctuating velocity remains of the same order of magnitude at all
distances from the surface. This result is in accordance with the general rule that the order
of magnitude of the fluctuating velocity is determined by the variation Au of the mean
velocity (§33). In the present case, there is no characteristic length | over which the
variation of the mean velocity could be taken; Au must now be defined, reasonably, as the
change in u when the distance y changes appreciably. According to (42.4), such a change in
y causes a change in the velocity u that is just of the order of v,.

At sufficiently small distances from the surface, the viscosity of the fluid begins to be
important; we denote the order of magnitude of these distances by y,, which can be
determined as follows. The scale of the turbulence at these distances is of the order of y,,
and the velocity is of the order of v, . Hence the Reynolds number which characterizes the

t This value, and that of another constant in (42.8), are obtained from measurements of the velocity profile
near the walls of pipes and rectangular channels, and in the boundary layer on fiat surfaces.
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flow at distances of the order of y, is R ~ v, yo/v. The viscosity begins to be important
when R becomes of the order of unity. Hence we find that

Yo ~ v/v,, (42.5)

and this determines y,.

At distances from the surface small compared with y,, the flow is determined by
ordinary viscous friction. The velocity distribution here can be obtained directly from the
usual formula for viscous friction: ¢ = pv du/dy, whence

u=ay/pv=102y/v. (42.6)

Thus, immediately adjoining the surface, there is a thin layer of fluid in which the mean
velocity varies linearly with y; the velocity is small throughout this layer, varying from zero
at the surface itself to values of the order of v, for y ~ y,. We shall call this layer the viscous
sublayer. There is no sharp boundary between it and the rest of the flow, of course, and in
this sense the concept is a purely qualitative one. It must be emphasized that the flow in the
viscous sublayer is turbulent.t

We shall not be further interested in the flow in the viscous sublayer. Its presence has to
be taken into account only in making the appropriate choice of the constant of integration
in (42.4). This constant must be chosen so that the velocity becomes of the order of v, at
distances of the order of y,. For this to be so, we must take ¢ = — log y,, so that

u = (v,/x)log(yv,/v). (42.7)

This formula determines (for a certain range of y) the velocity distribution in the turbulent
strwntwhich flows along the surface. This distribution is called the logarithmic velocity
profile.

The argument of the logarithm in formula (42.7) should include a numerical coefficient.
As written, it has only “logarithmic™ accuracy. This means that the argument of the
logarithm is supposed so large that the logarithm itself is large. The introduction of a small
numerical coefficient in the argument of the logarithm in (42.7) is equivalent to adding a
term of the form constant x v,, where the constant is of the order of unity; in the
logarithmic approximation, such a term is negligible in comparison with that containing
the large logarithm. In practice, however, the argument of the logarithm in the expressions
derived here and below is still not very large, and therefore the accuracy of the logarithmic
approximation is not high. The accuracy of the formulae can be improved by including an
empirical numerical factor in the argument of the logarithm, or, equivalently, adding an
empirical constant to the logarithm. For example, a more accurate expression for the
velocity profile is

u = 0, [2:5log(yv, /%) + 51]
= 2:5v, log(yv, /013 v). (42.8)
The two formulae (42.6) and (42.8) have the form
u=v, /@ &=yo,/v (429)

t In this respect the name “laminar sublayer™ still sometimes used is unsustable. The resemblance to laminar
flow lies only in the fact that the mean velocity is distributed according to the same law as the true velocity would
be for a laminar flow under the same conditions.

The fluctuating flow in the viscous sublayer has some peculiar features that have not yet been given an adequate
theoretical explanation.

$ This simple derivation of the logarithmic profile is due to L. D. Landau (1944).
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where f({) is a universal function. This is a direct consequence of the fact that { is the only
dimensionless combination that can be formed from the available parameters p, o, v and
the variable y. For this reason, such a dependence must hold at all distances from the
surface, including the region intermediate between the ranges of applicability of (42.6) and
(42.8). Figure 31 shows a graph of f ({) on a decimal log scale. The continuous curves | and
2 correspond to (42.6) and (42.8) respectively; the dashed curve is the empirical dependence
in the intermediate region, which occurs for values of { between about 5 and about 30.

p— - - — —— . - —————
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f(€)

Itis not difficult to determine the energy dissipation in this turbulent flow. The value of ¢
is the mean value of the component I, of the momentum flux density tensor. Outside the
viscous sublayer, the viscosity term may be omitted, leaving I1, = pv,v,. With the
fluctuating velocity v', and noting that the mean velocity is in the x-direction, we have
v, =u+v',,v, =0, Thent

o=pu 0, )=p v, 0 Y +pulv,)
=p{v,v,). (42.10)

The energy flux density in the y-direction is (p + 4 pv?)u,, the viscosity term being again
omitted. Putting v? = (u+v",)* +v',> + v",? and averaging the whole expression, we get

P +3p v 2+ 0 2 +0. 20, )+ pu (v, ).

Here only the last term need be retained. The reason is that the fluctuating velocity is of the
order of v, , and hence, to logarithmic accuracy, it is small compared with u. The turbulent

———— ———— ——— - -

t The momentum flux tensor for the transfer by turbulent eddies is called the Reynolds stress tensor; the
concept is due to O. Reynolds (1895).

m-G
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fluctuations in the pressure are p’ ~ pv,?, and so we can, to the same accuracy, neglect the
first term in the above expression. Thus we have for the mean energy flux density

(g)=pulv,v,) =ue (42.11)

As the surface is approached, this flux decreases, because energy is dissipated. The derivative
d{q)/dy gives the dissipation per unit volume of the fluid; dividing it by p, we get the
dissipation per unit mass:

e = v, /xy = (1/xy)e/p)*?. (42.12)

So far, we have assumed that the surface is sufficiently smooth. If it is rough, the
formulae derived may be somewhat modified. As a measure of the roughness, we can take
the order of magnitude d of the projections from the surface. What is important is the
comparative size of d and the sublayer thickness y,. If the latter is much the greater, the
roughness is not significant, and this is what is meant by a sufficiently smooth surface. If y,
and d have the same order of magnitude, no general formulae can be obtained.

In the opposite limiting case of a very rough surface (d » y, ), some general relationships
can again be established. In this case, we obviously cannot speak of a viscous sublayer.
Near the projections on the surface, turbulent flow occurs, with characteristics p, o, d; the
viscosity v, as usual, will not appear explicitly. The flow velocity is of the order of v,, the
only available quantity having the dimensions of velocity. Thus we see that in flow along a
rough surface the velocity is small ( ~ v, ) at distances y ~ d, instead of y ~ y, as for flow
along a smooth surface. It is therefore clear that the velocity distribution will be given by a
formula obtained from (42.7) on replacing v/v, by &

u = (v,/x) log(y/d). (42.13)

§43. Turbulent flow in pipes

Let us now apply the above results to turbulent flow in a pipe. Near the walls of the pipe
(at distances small compared with its radius a), the surface may be approximately regarded
as plane, and the velocity distribution must be given by formula (42.7) or (42.8). Since the
function log y varies only slowly, we can use formula (42.7) to logarithmic accuracy to give
the mean velocity U of the flow in the pipe if we replace y in that formula by a:

U = (v,/x)log (av, /v) (43.1)

By U we mean the volume of fluid that passes through a cross-section of the pipe per unit
time, divided by the cross-sectional area: U = Q/pna’.

In order to relate the velocity U to the pressure gradient Ap/I which maintains the flow
(Ap being the pressure difference between the ends of the pipe, and  its length), we notice
that the force on a cross-section of the flow is za® Ap. This force overcomes the friction at
the walls. Since the frictional force per unit area of the wall is ¢ = pv,?, the total frictional
force is 2nalpv,®. Equating the two forces, we have

Ap/l = 2pv 2 /a. (43.2)
Equations (43.1) and (43.2) determine, through the parameter v,, the relation between the
velocity of flow in the pipe and the pressure gradient. This relation is called the resistance
law of the pipe. Expressing v, in terms of Ap/I by (43.2), and substituting in (43.1), we
obtain the resistance law in the form

U = /(aAp/2x?pl)log[ (a/v)./ (aAp/2p1)]. (43.3)



§43 Turbulent flow in pipes 177

In this formula it is customary to introduce what is called the resistance coefficient of the
pipe, a dimensionless quantity defined as

_ 2a8p/1
pU*

The dependence of 4 on the dimensionless Reynolds number R = 2aU/v is given in
implicit form by the equation

1/\/A = 0-88log (R,/2) - 08S5. (43.5)

We have here substituted for x the value (42.3) and added to the logarithm an empirically
determined constant.t The resistance coefficient determined by this formula is a slowly
decreasing function of the Reynolds number. For comparison, we give the resistance law
for laminar flow in a pipe. Introducing the resistance coefficient in formula (17.10), we
obtain

A (434)

4= 64/R. (43.6)

In laminar flow the resistance coefficient diminishes with increasing Reynolds number
more rapidly than in turbulent flow.

Figure 32 shows a logarithmic graph of 4 as a function of R. The steep straight line
corresponds to laminar flow (formula (43.6)), and the less steep curve (which is almost a
straight line also) to turbulent flow. The transition from the first line to the second occurs,
as the Reynolds number increases, at the point where the flow becomes turbulent; this may
occur for various Reynolds numbers, depending on the actual conditions (the intensity of
the perturbations). The resistance coefficient increases abruptly at the transition point.
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t The coefficient of the logarithm in this formula is given to correspond with that in formula (42.8) for the
logarithmic velocity profile. Only in this case does formula (43.5) have the theoretical significance of being a
limiting formula for turbulent flow at sufficiently large values of the Reynolds number. If the values of the two
constants appearing in formula (43.5) are chosen arbitrarily, it can only be 2 purely empirical formula for the
dependence of 4 on R. In that case, however, there would be no reason to prefer it to any other simpler empirical
formula which adequately represents the experimental results.
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The formulae above are for smooth-walled pipes. Similar ones for pipes with very rough
walls are obtained on simply replacing v/v, by d; cf. (42.13). The resistance is then, instead
of (43.3),

U = /(aAp/2x* pl)log (a/d). (43.7)

The argument of the logarithm is now a constant, and does not involve the pressure
gradient as (43.3) did. We see that the mean velocity is now simply proportional to the
square root of the pressure gradient in the pipe. If we introduce the resistance coefficient,
(43.7) becomes

A = 8x?/log?(a/d) = 1-3log*(a/d), (43.8)
i.e. A is a constant and does not depend on the Reynolds number.

§44. The turbulent boundary layer

The fact that we have obtained a logarithmic velocity distribution which formally holds
in all space for plane-parallel turbulent flow is due to our having considered flow along a
surface with infinite area. In flow along the surface of a finite body, only the motion at short
distances from the surface—in the boundary layer—has a logarithmic profile. The
thickness of the boundary layer increases along the surface of the body in the direction of
flow, according to a law which we shall determine below. This explains why, for flow in a
pipe, the logarithmic profile holds for the whole cross-section of the pipe. The thickness of
the boundary layer at the wall of the pipe increases away from the point of entry of the
fluid. At some finite distance from this point, the boundary layer fills almost the whole
cross-section of the pipe. Hence, if we suppose the pipe sufficiently long and ignore its inlet
section, the flow in the whole pipe will be of the same kind as in the turbulent boundary
layer. We may recall that a similar situation occurs for laminar flow in a pipe. This is always
in accordance with formula (17.9); the viscosity is important at all distances from the walls,
and its effect is never limited to a thin layer adjoining them.

The decrease in the mean velocity, both in the turbulent and in the laminar boundary
layer, is due ultimately to the viscosity of the fluid. The effect of the viscosity appears in the
turbulent boundary layer in a rather unusual manner, however. The manner of variation of
the mean velocity in the layer does not itself depend directly on the viscosity; the latter
appears in the expression for the velocity gradient only in the viscous sublayer. The total
thickness of the boundary layer, however, is determined by the viscosity, and vanishes
when the viscosity is zero (see below). If the viscosity were exactly zero, there would be no
boundary layer.

Let us apply the results of §43 to a turbulent boundary layer formed in flow along a thin
flat plate, such as was discussed in §39 with respect to laminar flow. At the boundary of the
turbulent layer, the fluid velocity is almost equal to the velocity of the main stream, which
we denote by U. To determine this velocity at the boundary we can, however, use formula
(42.7) with logarithmic accuracy, putting the thickness  of the boundary layer instead of
y.t Equating the two expressions, we obtain

U = (v,/x)10g(c,3/%) (44.1)

t In practice, the logarithmic profile is not observed over the whole thickness of the boundary layer. The last
20-25%, of the velocity increase at the outside of the layer occurs faster than logarithmically. These dewiations
seem to be due to irregular oscillations of the layer boundary; cf. the discussion of turbulent region boundaries at
the end of §35.
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Here U is a constant parameter for a given flow; the thickness 4, however, varies along the
plate, and v, is therefore also a slowly varying function of x. Formula (44.1) is inadequate
to determine these functions; we need some other equation, relating v, and 4 to x.

To obtain this, we use the same arguments as in deriving formula (37.3) for the width of
the turbulent wake. As there, the derivative dé/dx must be of the order of the ratio of the
velocity along the y-axis to that along the x-axis at the boundary of the layer. The latter
velocity is of the order of U, while the former is due to the fluctuating velocity, and is
therefore of the order of v,. Thus dé/dx ~ v, /U, whence

d ~v,x/U. (44.2)

Formulae (44.1) and (44.2) together determine v, and 4 as functions of the distance x.t
These functions, however, cannot be written explicitly. We shall express 4 in terms of an
auxiliary quantity. Since v, is a slowly varying function of x, it is seen from (44.2) that the
thickness of the layer varies essentially as x. We may recall that the thickness of the laminar
boundary layer increases as \/ x,i.e. more slowly than that of the turbulent boundary layer.

Let us determine the dependence on x of the frictional force ¢ acting on unit area of the
plate. This dependence is given by two formulae:

oc=pv,% U= (v,/x)log(v, x/Uv)

The latter is obtained by substituting (44.2) in (44.1), and is valid to logarithmic accuracy.
We introduce a drag coefficient ¢ (referred to unit area of the plate), defined as the
dimensionless ratio

¢ =20/pU? = 2v,/U). (44.3)

Then, eliminating v, from the two equations given, we obtain the following equation,
which gives (to logarithmic accuracy) ¢ as an implicit function of x:

J/@x*/c)=log(cR,), R, =Ux/v. (44.4)

The drag coefficient ¢ given by this formula is a slowly decreasing function of the distance
x

. Let us express the thickness of the boundary layer in terms of the function c(x). We have
v, = \/(0/p) = U/ (4c). Substituting in (44.2), we find

d = constant x x,/c. (44.5)

The empirical value of the constant is about 0-3.
Similarly, we can derive expressions for the turbulent boundary layer on a rough surface.
According to (42.13), (44.1) is then replaced by

U = (v,/x)log(d/d),
where d is the size of the projections on the surface. Substituting 4 from (44.2), we get
U = (v,/x)log(xv,/Ud),
or, with the drag coefficient (44.3),

v @x*/c) = log(x,/c/d). (44.6)

— —— . - — -

t Here x must, strictly speaking, be reckoned as approximately the distance from the point where the laminar
layer becomes turbulent.
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§45. The drag crisis

From the results obtained in the previous sections we can draw important conclusions
concerning the law of drag for large Reynolds numbers, i.e. the relation between the drag
force acting on the body and the value of R when the latter is large.

The flow pattern for large R (the only case we shall discuss) has already been described,
and is as follows. Throughout the main body of the fluid (i.e. everywhere except in the
boundary layer, which does not here concern us) the fluid may be regarded as ideal, with
potential flow everywhere except in the turbulent wake. The width of the wake depends on
the position of the line of separation on the surface of the body. It is important to note that,
although this position is determined by the properties of the boundary layer, it is found to
be independent of the Reynolds number, as we have seen in §40. Thus we can say that the
whole flow pattern for large Reynolds numbers is almost independent of the viscosity, i.e.
of R (so long as the boundary layer remains laminar; see below).

Hence it follows that the drag also must be independent of the viscosity. There remain at
our disposal only three quantities: the velocity U of the main stream, the fluid density p and
the dimension [ of the body. From these we can construct only one quantity having the
dimensions of force, namely pU ?I°. Instead of the squared linear dimension of the body /2,
we introduce, as is customarily done, the proportional quantity S, the area of a cross-
section transverse to the direction of flow, putting

F = constant x pU?S, (45.1)

where the constant is a number depending only on the shape of the body. Thus the drag
must be (for large R) proportional to the cross-sectional area of the body and to the square
of the main-stream velocity. We may recall for comparison that, for very small R ( < 1), the
drag is proportional to the linear dimension of the body and to the velocity itselfl
(F ~ vplU; see §20).1

It is customary, as we have said, to introduce, in place of the drag force F, the drag
coefficient C defined by C = F/$pU?S. This is a dimensionless quantity, and can depend
only on R. Formula (45.1) becomes

C = constant, (45.2)

1.e. the drag coefficient depends only on the shape of the body.

The above behaviour of the drag force cannot continue to arbitrarily large Reynolds
numbers. The reason is that, for sufficiently large R, the laminar boundary layer (on the
surface of the body as far as the line of separation) becomes unstable and hence turbulent.
However, the whole boundary layer does not become turbulent, but only some part of it.
The surface of the body may therefore be divided into three parts: at the front there is a
laminar boundary layer, then a turbulent layer, and finally the region beyond the line of
separation.

The onset of turbulence in the boundary layer has an important effect on the whole
pattern of flow in the main stream. It leads to a considerable displacement of the line of
separation towards the rear of the body (i.e. downstream), so that the turbulent wake
bcyond the body is contracted, as shown in Fig. 33, where the wake region is shaded. § The

T Tbeﬂowmabnbbkdpssaspemlm&vbaethedngmmmmlwvmfahmR,sec
Problem.

: For example, in transverse flow past a long cylinder, the onset of turbulence in the boundary layer moves the
point of separation from 95° to 60° (where the azimuthal angle on the cylinder is measured from the direction of
flow).
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contraction of the turbulent wake leads to a reduction of the drag force. Thus the onset of
turbulence in the boundary layer at large Reynolds numbers is accompanied by a decrease
in the drag coefficient, which falls off by a considerable factor over a relatively narrow
range of Reynolds numbers near 10°. We shall call this phenomenon the drag crisis. The
decrease in the drag coefficient is so great that the drag itself, which for constant C is
proportional to the square of the velocity, actually diminishes with increasing velocity in
this range of Reynolds numbers.

It may be mentioned that the degree of turbulence in the main stream affects the drag
crisis; the greater the incident turbulence, the sooner the boundary layer becomes
turbulent (i.e. the smaller is R when this happens). The decrease in the drag coefficient
therefore begins at a smaller Reynolds number, and extends over a wider range of R.

Figures 34 and 35 give experimentally obtained graphs showing the drag coefficient as a
function of the Reynolds number R = Ud/v for a sphere with diameter d; Fig. 34 is plotted
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t The first departure from steady flow past a sphere (R in the neighbourhood of 50) is not accompanied by any
discontinuity of the drag. This is because the transition is continuous in the case of soft self-excitation. A change
in the nature of the flow could occur only if there were a kink on the C(R) curve.
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logarithmically. For very small R (< 1), the drag coefficient decreases according to C
= 24/R (Stokes’ formula). The decrease in C continues more slowly as faras R > 5 x 10°,
where C reaches a minimum, beyond which it increases somewhat. In the range of
Reynolds numbers 2 x 10* to 2 x 10°, the law (45.2) holds, i.e. C is almost constant. The
drag crisis occurs for R between 2 x 10° and 3 x 10°, and the drag coefficient diminishes by
a factor of 4 or 5.

For comparison, we may give an example of flow in which there is no critical Reynolds
number. Let us consider flow past a flat disk in the direction perpendicular to its plane. In
this case the location of the separation is obvious from purely geometrical considerations:
it is clear that separation occurs at the edge of the disk and does not move from there.
Hence, as R increases, the drag coefficient of the disk remains constant, and thereis no drag
crisis.

It must be borne in mind that, for the high velocities at which the drag crisis occurs, the
compressibility of the fluid may begin to have a noticeable effect. The parameter which
characterizes the extent of this effect is the Mach number M = U /c, where c is the velocity
of sound; if M < 1, the fluid may be regarded as incompressible (§10). Since, of the two
numbers M and R, only one contains the dimension of the body, these two numbers can
vary independently.

The experimental data indicate that the compressibility has in general a stabilizing effect
on the flow in the laminar boundary layer. When M increases, the critical value of R
increases. For example, when M for a sphere changes from 0-3 to 0-7, the drag crisis is
postponed from R >~ 4 x 10° to R =~ 8 x 10°.

We may also mention that, when M increases, the position of the point of separation in
the laminar boundary layer moves upstream, towards the front of the body, and this must
lead to some increase in the drag.

PROBLEM
Determine the drag force on a gas bubble moving in a iquid at large Reynolds numbers.

SOLUTION. At the boundary between the liquid and the gas the tangential fluid veloaity component docs not
vanish, but its normal derivative does (we neglect the viscosity of the gas) Hence the velocity gradient near the
boundary will not be particularly high, and there will be no boundary layer in the sease of §39; there will therefore
be no separation over almost the whole surface of the bubble. In calkculating the energy dissipation from the
volume integral (16.3) we can therefore use in all space the veloaty distribution corresponding to potential flow
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past a sphere (§10, Problem 2), neglecting the surface layer of hiquid and the very narrow turbulent wake. Using
the formula obtained in §16, Problem, we find

Y L3 J P —

Hence we see that the required dissipative drag is F = 12negRU.
The range of applicability of this formula is actually not large, since, when the veloaity increases sufficiently, the
bubble ceases to be spherical.

§46. Flow past streamlined bodies

The question may be asked what should be the shape of a body (with a given cross-
sectional area, say) for the drag on it resulting from motion in a fluid to be as small as
possible. It is clear from the above that, for this to be so, the separation must be as far back
as possible: the separation must occur near the rear end of the body, so that the turbulent
wake is as narrow as possible. We know already that the appearance of separation is
facilitated by the presence of a rapid downstream increase in the pressure along the body.
Hence the body must have a shape such that the variation in pressure along it, where the
pressure is increasing, takes place as slowly and smoothly as possible. This can be achieved
by giving the body a shape elongated in the direction of flow, tapering smoothly to a point
downstream, so that the flows along the two sides of the body meet smoothly without
having to go round any corners or turn through a considerable angle from the direction of
the main stream. At the front end the body must be rounded; if there were an angle here, the
fluid velocity at its vertex would become infinite (see §10, Problem 6), and consequently the
pressure would increase rapidly downstream, with separation inevitably resulting.

All these requirements are closely satisfied by shapes of the kind shown in Fig. 36. The
profile shown in Fig. 36b may be, for example, the cross-section of an elongated solid of
revolution, or the cross-section of a body with a large span (we conventionally call such a
body a wing). The cross-sectional profile of a wing may be unsymmetrical, as in Fig. 36a. In
flow past a body with this shape, separation occurs only in the immediate neighbourhood
of the pointed end, and consequently the drag coefficient is relatively small. Such bodies are
said to be streamlined.

Fic. 36

The direct friction of the fluid on the surface in the boundary layer is important in the
drag on streamlined bodies. This effect for non-streamlined bodies (which were considered
in the previous section) is relatively small and therefore, in practice, of no significance. In
the opposite limiting case of flow parallel to a flat disk, the effect becomes the only source
of drag (§39).

N-G*
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In flow past a streamlined wing inclined to the main stream at a small angle «, called the
angle of attack (Fig. 36), a large lift force F is developed, while the drag F, remains small,
and the ratio F,/F, may therefore reach large values ( ~ 10—~ 100). This continues,
however, only while the angle of attack is small (usually < 10°). For larger angles the drag
rises very rapidly, and the lift decreases. This is explained by the fact that, at large angles of
attack, the body ceases to be streamlined: the point of separation moves a considerable way
towards the front of the body, and the wake consequently becomes wider. It must be borne
in mind that the limiting case of a very thin body, i.c. a flat plate, is streamlined only for a
very small angle of attack; separation occurs at the leading edge of the plate when it is
inclined at even a small angle to the main stream.

The angle of attack a is, by definition, measured from the position of the wing for which
the lift force is zero. For small angles of attack, we can expand the lift as a series of powers
of a. Taking only the first term, we can suppose that the force F is proportional to . Next,
by the same dimensional arguments as for the drag force, the lift must be proportional to
pU?2. Introducing also the span [, of the wing, we can write

F, = constant x pU?al ., (46.1)

where the numerical constant depends only on the shape of the wing and not, in particular,

on the angle of attack. For very long wings, the lift may be supposed proportional to the

span, in which case the constant depends only on the shape of the cross-section of the wing.
Instead of the lift on the wing, the lift coefficient is often used; it is defined as

C, = F,/ApULL,. (46.2)

For very long wings, according to what was said above, the lift coefficient is proportional to
the angle of attack, and depends on neither the velocity nor the span:

C, = constant x a (46.3)

To calculate the lift on a streamlined wing by means of Zhukovskii's formula, it is

necessary to determine the velocity circulation I'. This is done as follows. We have
potential flow everywhere outside the wake. In the present case, the wake is very thin, and
occupies on the surface of the wing only a very small area near its pointed trailing edge.
Hence, to determine the velocity distribution (and therefore the circulation I'), we can solve
the problem of potential flow of an ideal fluid round a wing. The existence of the wake is
taken into account by the presence of a tangential discontinuity, extending into the fluid
from the sharp trailing edge of the wing, where the potential has a discontinuity ¢, — ¢,
= I'. As has been shown in §38, the derivative é¢/éz also has a discontinuity on this
surface, while the derivatives d¢/0x and é¢/¢y are continuous. For a wing with finite span,
the problem in this form has a unique solution. The finding of the exact solution is very
complicated, however.

If the wing is very long (and has a uniform cross-section), then, regarding it as infinite in
the z-direction, we may regard the flow as two-dimensional (in the xy-plane). It is evident
from symmetry that the velocity v, = é¢/0z along the wing must be zero. In this case,
therefore, we must seek a solution in which only the potential has a discontinuity, its
derivatives being continuous; in other words, there is no surface of tangential dis-
continuity, and we have simply a many-valued function ¢(x, y), which receives a finite
increment I' when we go round a closed contour enclosing the profile of the wing. In this
form, however, the problem of two-dimensional flow has no unique solution, since it
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admits solutions for any given discontinuity of the potential. To obtain a unique result, we
must require the fulfilment of another condition (S. A. Chaplygin 1909).

This condition consists in requiring that the fluid velocity shall not become infinite at the
sharp trailing edge of the wing; in this connection we may recall that, when an ideal fluid
flows round an angle, the fluid velocity in general becomes infinite, according to a power
law, at the vertex of the angle (§10, Problem 6). We can say that the condition stated
implies that the jets coming from the two sides of the wing must meet smoothly without
turning through an angle. When this condition is fulfilled, of course, the solution of the
problem of potential flow gives a pattern very like the true one, where the velocity is
everywhere finite and separation occurs only at the trailing edge. The solution now
becomes unique and, in particular, the circulation I' needed to calculate the lift force has a
definite value.

§47. Induced drag

An important part of the drag on a streamlined wing (with finite span) is formed by the
drag due to the dissipation of energy in the thin turbulent wake. This is called the induced
drag.

It has been shown in §21 how we may calculate the drag force due to the wake by
considering the flow far from the body. Formula (21.1), however, is not applicable in the
present case. According to that formula, the drag is given by the integral of v, over the
cross-section of the wake, i.e. the discharge through the wake. On account of the thinness
of the wake beyond a streamlined wing, however, the discharge is small in the present case,
and may be neglected in the approximation used below.

As in §21, we write the force F, as the difference between the total fluxes of the x-
component of momentum through the planes x = x, and x = x, passing respectively far
behind and far in front of the body. Writing the three velocity componentsas U +v,, v,, v,,
we have for the component I1,, of the momentum flux density the expressionTl1,, = p

4+ p(U +v,)?, so that the drag force is

fe([[- [oenweormwe

X=X, x-x.

On account of the thinness of the wake, we can neglect, in the integral over the plane
X = x;, the integral over the cross-section of the wake, and so integrate only over the
region outside the wake. In that region, however, we have potential flow, and Bernoulli’s
equation p+4p(U +v)? = p, +4pU? holds, whence

P=Po— puox -#p(vxz + v’l + v:z)' (‘7'2)

Here we cannot neglect the quadratic terms as we did in §21, since it is these terms which
determine the required drag force in the case under consideration. Substituting (47.2) in
(47.1), we obtain

F,=( J]' - J]- )(po+pU’+va,+{p(v,’—v,’—o,’)]dydz.

x-x' X=X,
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The difference of the integrals of the constant p, + pU? is zero; the difference of the
integrals of pUv, is likewise zero, since the mass fluxes

[

through the front and back planes must be the same (we neglect the discharge through the
wake in the approximation here considered). Next, if we take the plane x = x, sufficiently
far in front of the body, the velocity v on this plane is very small, so that the integral of
$p(v,? —v,* —v,)over this plane may be neglected. Finally, in flow past a stremlined wing,
the velocity v, outside the wake is small compared with v, and v,. Hence we can neglect v,?
compared with v, 4+ v,? in the integral over the plane x = x,. Thus we obtain

F.=4p H (v,? + 0,7 )dydz, (47.3)

where the integration is over a plane x = constant lying at a great distance behind the
body, the cross-section of the wake being excluded from the region of integration.t

The drag on a streamlined wing calculated in this way can be expressed in terms of the
velocity circulation I' which determines the lift also. To do this, we first of all notice that, at
sufficiently great distances from the body, the velocity depends only slightly on the
coordinate x, and so we can regard v,(y,2) and v, (y,2) as the velocity of a two-dimensional
flow, supposed independent of x. It is convenient to use as an auxiliary quantity the stream
function (§10), so that v, = dy/dy, v, = —d¢/éz. Then

e () () o

where the integration over the vertical coordinate yis from + oo to y, and from y, to — o,
where y, and y, are the coordinates of the upper and lower boundaries of the wake (see
Fig. 26,§38). Since we have potential flow (curl v =0) outside the wake, 8%y /dy?
+ 8%y /dz* = 0. Using the two-dimensional Green's formula, we thus find

F.= —4p§+(awanm

where the integral is taken along a contour bounding the region of integration in the
original integral, and d/dn denotes differentiation in the direction of the outward normal
to the contour. At infinity y = 0,and so the integral is taken round the cross-section of the
wake by the yz-plane, giving

- l3),-) J

Here the integration is over the width of the wake, and the difference in the brackets is the

t Formuh(473)mypvetbeunptmthnhemr v, do not decrease in order of magnitude as x
mMnsMwmammdmmess—Immnm:nmmn
deriving formula (47.3). At very large distances behind the wing, the wake finally becomes so thick that it becomes
approximately circular in cross-section. At this point, formula (47.3) is invald, and v, v, diminish rapidly with
increasing x.
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discontinuity of the derivative dy/@y across the wake. Since é¢ /@y = v, = d¢/0z, we have

(5)-5).-)-2). %

F,=14p I Y(dI/dz)dz.

so that

Finally, we use a formula from potemhl theory,

o= ) ) b

where the integration is along a planecontour, r is the distance from d/ to the point where ¥
is to be found, and the expression in brackets is the given discontinuity of the derivative of
¥ in the direction normal to the contour.t In our case the contour of integration is a
segment of the z-axis, so that we can write the value of the function ¢(y, z) on the z-axis as

a3 (3) e

dFU)
'-ﬂ ——log|z—2'|d7.

Finally, substituting this in F, we obuin the following formula for the induced drag:
I

F=-2 dr(z)_ dr(z)

4: dz
o0

* (L. Prandtl 1918). The span of the wing is here denoted by I, = I, and the origin of z is at
one end of the wing.

If all the dimensions in the z-direction are increased by some factor (I' remaining
constant), the integral (47.4) remains constant.§ This shows that the total induced drag on
the wing remains of the same order of magnitude when its span is increased. In other
words, the induced drag per unit length of the wing decreases with increasing length.t1
Unlike the drag, the total lift force

F,=—pU Il'dz (47.5)

log|z—2'|dzd? (47.4)

t This formula gives, in two-dimensional potential theory, the potential due 10 a charged plane contour with a
charge density

((@y/én), - (0¥/dn), ) 2x.
! Toavoid misunderstanding, we should mention that it does not matter that the logarithm in the integrand is
increased by a constant when the unit of length is changed. For the integral which differs from that in (47.4) by
having a constant instead of log|z — 2’| is zero, since

J(dr/dxnz =T,

and the definite integral is zero because I' vanishes at the edges of the wake

tt In the limit of infinite span, the induced drag per unit length is zero. In reality, a small amount of drag
mmmwwmwmmummnnomm-ehvewm
deriving formula (47.3). This drag includes both the frictional drag and the remaining part due to dissipation in
the wake.
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increases almost linearly with the span of the wing, and the lift per unit length is constant.
The following method is convenient for the practical calculation of the integrals (47.4)
and (47.5). Instead of the coordinate z, we introduce a new vanable 6, defined by

z=4(1—-cos) (0D<h<n) (47.6)
The distribution of the velocity circulation is written as a Founer senies:

M= -2UI } A,sinné. (47.7)
LI |
The condition that I' = 0 at the ends of the wing (z =0 and [, or § = 0 and =) is then
fulfilled.

Substituting the expression (47.7) in (47.5) and effecting the integration (using the
orthogonality of the functions sin 6 and sin nf for n # 1), we obtain F, = {pU?zl?A,.
Thus the lift force depends only on the first coefficient in the expansion (47.7). For the lift
coefficient (46.2) we have

C’ = ‘AA 1 (47.8)

where 4 = [/l is the ratio of span to width of the wing.
To calculate the drag, we rewrite formula (47.4), integrating once by parts:

Fo=t j j @l @79

It is easily seen that the integral over z’ must be taken as a principal value. An elementary

calculation, with the substitution (47.7),1 leads to the following formula for the induced
drag coefficient:

C.,==i ) nA’ (47.10)
a=]
The drag coefficient for a wing is defined as
C,.=F, /}pU3lLL, (47.11)

being referred, like the lift coefficient, to unit area in the xz-plane.

t In integrating over z* we need the integral
mnﬂ’__ xan-l
cos® —cosé snf
=]
In integrating over z we use the fact that

Idﬂuﬂﬁnnﬂ“:h (m=n)

=0 (m#n)
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PROBLEM
Determine the least value of the induced drag for a given lift and a given span [, = |

SOLUTION. Itisclear from formulae (47.8) and (47.10) that the least value of C,_ for given C, (ie. for given A, )is
obtained if all A, for n # | are zero. Then

Comia = C,'/xi (1)
The distribution of velocity circulation over the span is given by the formula

MNe - ‘1‘ ULC, /21~ 2)) Q)

If the span is sufficiently large, then the flow round any cross-section of the wing is approximately two-
dimensional flow round a wing with infinite length and the same cross-section. In this case we can say that the
;itcuhtion distribution (2) is obtained for a wing whose shape in the xz-plane is an cllipse with semi-axes 4/, and
L

§48. The lift of a thin wing

The problem of calculating the lift force on a wing amounts, by Zhukovskii's theorem,
to that of finding the velocity circulation I'. A general solution of the latter problem can be
given for a thin streamlined wing with infinite span, the cross-section being the same at
every point. The method of solution given below is due to M. V. Keldysh and L. 1. Sedov
(1939).

Let y = {,(x) and y = {,(x) be the equations of the lower and upper parts of the cross-
sectional profile (Fig. 37). We suppose this profile to be thin, only slightly curved, and
inclined at a small angle of attack to the main stream (the x-axis), that is, both {,, {,
themselves and their derivatives {,’, {," are small, i.c. the normal to the profile contour is
everywhere almost parallel to the y-axis. Under these conditions, we may suppose the
perturbation v in the fluid velocity, caused by the presence of the wing, to be everywhere
(except in a small region near the rounded leading edge of the wing) small compared with
the main-stream velocity U. The boundary condition at the surface of the wingis v, /U = [/
for y = {. By virtue of the assumptions made, we can suppose this condition to hold for
y = 0, and not for y = {. Then we must have on the axis of abscissae between x = Oand x

=l,=a

v, =U{)(x) fory—=0+, v, = U{,"(x) for y—=0—. (48.1)
y
B e n
o __L__ e "2\
a

Fic 37

In order to apply the methods of the theory of functions of a complex variable, we
introduce the complex velocity dw/dz = v, — iv, (cf. §10), which is an analytic function of
the variable z = x + iy. In the present case this function must satisfy the conditions
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im(dw/dz) = - U{,'(x) for y-oo+.}
im(dw/dz) = —=U{,'(x) for y—0-,

on the segment (0, a) of the axis of abscissae.
To solve the above problem, we first represent the required velocity distribution v(x, y)
as a sum v = v"' 4+ v~ of two distributions having the following symmetry properties:

vL(x, =y)=v(x,y) v ,x, ~y)= -v',(x.y).}
i x, =)= =0 (xy), o' x, =y =0",(xy)

These properties of the separate distributions v~ and v* do not violate the equation of
continuity or that of potential flow, and, since the problem is linear, the two distributions
may be sought separately.

The complex velocity is correspondingly represented as a sum

w=w,+w_,
and the boundary conditions on the segment (0, a) for the two terms of the sum are
(mw'.], .0+ =[mw . ], .o = =8U,"+{))
(imw'_ ], 0. = =[imw'_], .o =U{,"={3) }
The function w’'_ can be determined at once by Cauchy’s formula:

(48.2)

(48.3)

(48.4)

where the integration in the plane of the complex variable ¢ is along a circle L with small
radius centred at the point { = z (Fig. 38). The contour L can be replaced by a circle C’ with
infinite radius and a contour C traversed clockwise; the latter can be deformed into the
segment (0, a) twice over. The integral along C is zero, since w'(z) vanishes at infinity. The
integral along C gives

A (A S
w_ = ’n i—z -dé. (48.5)
0
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Here we have used the boundary values (48.4) of the imaginary part of w'_ on the segment
(0, @), and the fact that, by the symmetry conditions (48.3), the real part of w' _ is continuous
across this segment.

To find the function w', , we have to apply Cauchy's formula, not to this function itself,
but to the product w', (z)g(z), where g(z) = \/[2/(z — a) ], and the square root is taken with
the plus sign for z = x > a. On the segment (0, a) of the real axis, the function g(z) is purely
imaginary and discontinuous: g(x + i0) = —g(x —i0) = —i,/[x/(a~ x)]. It is clear from
these properties of the function g(z) that the unapwy part of the product gw', is
discontinuous across the segment (0, a), while the real part is continuous, as with the
function w'_. Hence we have, exactly as in the derivation of formula (48.5),

s ()= _z_t (2, (cc)tcz © - iz

(4]
Collecting the above expressions, we have the following formula for the velocity
distribution in flow past a thin wing:

dw_ _U [z- jc. (¢)+c,(c)\/__ 85— c,(c) G4 )
— . (48,

Near the rounded leading edge (i.e. for z — 0), this exptasion in general becomes
infinite, the approximation used above being invalid in this region. Near the pointed
trailing edge (i.e. for z - a), the first term in (48.6) is finite, but the second term becomes
infinite, though only logarithmically.t This logarithmic singularity is due to the
approximation used, and is removed by a more exact treatment; there is no power-law
divergence at the trailing edge, in accordance with the Chaplygin condition. The fulfilment
of this condition is achieved by an appropriate choice of the function g(z) used above.

Formula (48.6) immediately enables us to determine the velocity circulation I' round the
wing profile. According to the general rule (see §10), I' is given by the residue of the
function w'(z) at its simple pole z = 0. The required residue is casily found as the coefficient
of 1/zin an expansion of w'(z) in powers of 1/z about the point at infinity:dw/dz = I'/2niz
+ ...,and I is given by the simple forumula

r= UI(C:' +Cz')\/a—i—€d¢ (48.7)
o

We may point out that only the sum of the functions {, and , appears here. The lift force is
unchanged if the thin wing is replaced by a bent plate whose shape is given by the function
1 +3a).

For example, for a wing in the form of a thin plate with infinite length, inclined at a small
angle of attack «, we have [, = [, = a(a— x), and formula (48.7) gives I' = —naaU. The
lift coefficient for such a wing is C, = — pUT /4pU‘a = 2za

— e

t Thud:mgcncednsnpparsf(l and {; vanish as (@ — x)*, k > 1, near the traiing edge, i.c. if the point at the
trailing edge is a cusp.



CHAPTER V

THERMAL CONDUCTION IN FLUIDS

§49. The general equation of heat transfer

It has been mentioned at the end of §2 that a complete system of equations of fluid
dynamics must contain five equations. For a fluid in which processes of thermal
conduction and internal friction occur, one of these equations is, as before, the equation of
continuity, and Euler’s equations are replaced by the Navier-Stokes equations. The fifth
equation for an ideal fluid is the equation of conservation of entropy (2.6). In a viscous fluid
this equation does not hold, of course, since irreversible processes of energy dissipation
occur in it.

In an ideal fluid the law of conservation of energy is expressed by equation (6.1):

%Gpv‘ +pe) = —div[pvido® +w)].

The expression on the left is the rate of change of energy in unit volume of the fluid, while
that on the right is the divergence of the energy flux density. In a viscous fluid the law of
conservation of energy still holds, of course: the change per unit time in the total energy of
the fluid in any volume must still be equal to the total flux of energy through the surface
bounding that volume. The energy flux density, however, now has a different form. Besides
the flux pv(}v? + w) due to the simple transfer of mass by the motion of the fluid, there is
also a flux due to processes of internal friction. This latter flux is given by the vector v- o',
with components v,6”;, (see §16). There is, moreover, another term that must be included in
the energy flux. If the temperature of the fluid is not constant throughout its volume, there
will be, besides the two means of energy transfer indicated above, a transfer of heat by what
is called thermal conduction. This signifies the direct molecular transfer of energy from
points where the temperature is high to those where it is low. It does not involve
macroscopic motion, and occurs even in a fluid at rest.

We denote by q the heat flux density due to thermal conduction. The flux qis related to
the variation of temperature through the fluid. This relation can be written down at once in
cases where the temperature gradient in the fluid is not large; in phenomena of thermal
conduction we are almost always concerned with such cases. We can then expand qas a
series of powers of the temperature gradient, taking only the first terms of the expansion.
Theconstant term is evidently zero, since ¢ must vanish when grad 7 does so. Thus we have

q=—xgradT. (49.1)

The constant «x is called the thermal conductivity. It is always positive, as we see at once
from the fact that the energy flux must be from points at a high temperature to those at a
low temperature, i.e. ¢ and grad 7 must be in opposite directions. The coefficient x is in
general a function of temperature and pressure.

192
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Thus the total energy flux in a fluid when there is viscosity and thermal conduction is
pv(v? +w) —v-a’ — x grad 7. Accordingly, the general law of conservation of energy is
given by the equation

.aa‘.(ipp){.pc)- ~div[pv(}v’ + w)—v-0'—x grad T'). (49.2)

This equation could be taken to complete the system of fluid-mechanical equations of a
viscous fluid. It is convenient, however, to put it in another form by transforming it with
the aid of the equations of motion. To do so, we calculate the time derivative of the energy
in unit volume of fluid, starting from the equations of motion. We have

v de dp
(ipv’+p¢) iv’ TPV Py e

Substituting for 6p/6: from the equation of continuity and for dv/ét from the
Navier-Stokes equation, we have

d .
5; pv* +pe) = —4v* div(pv) —pv-grad v’ —v-gradp +

0
+ 0,1‘5 +p3¢ — ediv (pv).

Using now the thermodynamic relation de = T'ds—pdV = T ds + (p/p?) dp, we find

Oe ds p adp ds
%~ Tatya=Ta paven
Substituting this and introducing the heat function w = £ + p/p, we obtain

3
3; dpv? +pe) = — (4o + w)div (pv) — pv-grad §v* —v-gradp +

Next, from the thermodynamic relation dw = Tds+dp/p we have gradp=
p grad w— pT grads. The last term on the right of the above equation can be written

v‘a—a“-——-( O ) — a",,av-gdw(v -0')— a’.av
ox, ox,
Substituting these expressions, and adding and subtracting div (x grad 7), we obtain

%(}pv‘+pa)= —div[pvdv®’ +w)—v-0' —xgrad T) +

+pT(g—:+v-gnds) aiv--dnv(xp'dT). (49.3)

Comparing this expression for the time derivative of the energy in unit volume with
(49.2), we have

pT(as+v-p’ads) o’,-.%:i-div(xydT) (494)
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This equation is called the general equation of heat transfer. If there is no viscosity or
thermal conduction, the right-hand side is zero, and the equation of conservation of
entropy (2.6) for an ideal fluid is obtained.

The following interpretation of equation (49.4) should be noticed. The expression on the
left is just the total time derivative ds/dt of the entropy, multiplied by p7. The quantity
ds/dt gives the rate of change of the entropy of a unit mass of fluid as it moves about in
space, and 7"ds/dt is therefore the quantity of heat gained by this unit mass in unit time, 50
that p7'ds/dt is the quantity of heat gained per unit volume. We see from (49.4) that the
amount of heat gained by unit volume of the fluid is therefore

0y 0v/0x, +divik grad T').

The first term here is the energy dissipated into heat by viscosity, and the second is the heat
conducted into the volume concerned.

We expand the term o’ dv,/0x, in (49.4) by substituting the expression (15.3) for o’,,. We

have 2 av. 20 ap'
"i
Tagy 6x. ax. (ax. ox, ~$0a7 ox, ) ol C 6 ’

It is easy to verify that the first term may be written as

h(av g'f‘-i .-.gv')z

and the second is oo o
I
ca "ax, C—:-}'-C(dlvv)’
Thus equation (49.4) becomes
0 . cv v, \?
PT(-a%+vopa‘s)=d|v(x'.d1‘)+§,,(5.x:+g!:;_§6“$l‘) +
+ c (div ')2. (49'5)

The entropy of the fluid increases as a result of the irreversible processes of thermal
conduction and internal friction. Here, of course, we not the entropy of each volume
element of fluid separately, but the total entropy of the whole fluid, equal to the integral

J.psd V.

The change in entropy per unit time is given by the derivative
d[Jpst]/dt = j[éwvét]d*’-

Using the equation of continuity and equation (49.5) we have
?-%';s) g+s‘;—p= —sdiv (pv)—pv- gnds+ dxv(xgndT)-i»
n avi ov, o\ 0, ..
The first two terms on the right together give —div (psv). The volume integral of this is
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transformed into the integral of the entropy flux psv over the surface. If we consider an
unbounded volume of fluid at rest at infinity, the bounding surface can be removed to
infinity; the integrand in the surface integral is then zero, and so is the integral itself. The
integral of the third term on the right is transformed as follows:

I;dnv(xgndT)dV I (xm‘T)dy I "“”1

Assuming that that the fluid temperature tends sufficiently rapidly to a constant value at
infinity, we can transform the first integral into one over an infinitely remote surface, on
which grad 7 = 0 and the integral therefore vanishes.

The result is
"_(t_"!'D’ n ""_ "_"- _3s.mY
+ I ET(am)zay. (49.6)

The first term on the right is the rate of increase of entropy owing to thermal conduction,
and the other two terms give the rate of increase due to internal friction. The entropy can
only increase, i.e. the sum on the right of (49.6) must be positive. In each term, the integrand
may be non-zero even if the other two integrals vanish. Thus cach integral separately must
always be positive. Hence it follows that the second viscosity coefficient { is positive, as well
as x and n, which we already know are positive.

It has been tacitly assumed in the derivation of formula (49.1) that the heat flux depends
only on the temperature gradient, and not on the pressure gradient. This assumption,
which is not evident a priori, can now be justified as follows. If q contained a term
proportional to grad p, the expression (49.6) for the rate of change of entropy would
include another term having the product grad p - grad 7 in the integrand. Since the latter
might be either positive or negative, the time derivative of the entropy would not
necessarily be positive, which is impossible.

Finally, the above arguments must also be refined in the following respect. Strictly
speaking, in a system which is not in thermodynamic equilibrium, such as a fluid with
velocity and temperature gradients, the usual definitions of thermodynamic quantities are
no longer meaningful, and must be modified. The necessary definitions are, firstly, that p, &
and v are defined as before: p and pe are the mass and internal energy per unit volume, and
v is the momentum of unit mass of fluid. The remaining thermodynamic quantities are
then defined as being the same functions of p and ¢ as they are in thermal equilibrium. The
entropy s = s(p, &), however, is no longer the true thermodynamic entropy: the integral

Ipsd Vv

will not, strictly speaking, be a quantity that must increase with time. Nevertheless, it is
easy to see that, for small velocity and temperature gradients, s is the same as the true
entropy in the approximation here used. For, if there are gradients present, they in general
lead to additional terms (besides s(p, £)) in the entropy. The results given above, however,
can be altered only by terms linear in the gradients (for instance, a term proportional to the
scalar div v). Such terms would necessarily take both positive and negative values. But they
ought to be negative definite, since the equilibrium value s = s(p, ¢) is the maximum
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possible value. Hence the expansion of the entropy in powers of the small gradients can
contain (apart from the zero-order term) only terms of the second and higher orders.

Similar remarks should have been made in §15 (cf. the first footnote to that section),
since the presence of even a velocity gradient implies the absence of thermodynamic
equilibrium. The pressure p which appears in the expression for the momentum flux
density tensor in a viscous fluid must be taken to be the same function p = p(p, ) as in
thermal equilibrium. In this case p will not, strictly speaking, be the pressure in the usual
sense, viz. the normal force on a surface element. Unlike what happens for the entropy (see
above), there is here a resulting difference of the first order with respect to the small
gradient; we have seen that the normal component of the force includes, besides p, a term
proportional to div v (in an incompressible fluid, this term is zero, and the difference is then
of higher order).

Thus the three coefficients 5, {, x which appear in the equations of motion of a viscous
conducting fluid completely determine the mechanical properties of the fluid in the
approximation considered (i.e. when the higher-order space derivatives of velocity,
temperature, etc. are neglected). The introduction of any further terms (for example, the
inclusion in the mass flux density of terms proportional to the gradient of density or
temperature) has no physical meaning, and would mean at least a change in the definition
of the basic quantities; in particular, the velocity would no longer be the momentum of unit
mass of fluid.t

§50. Thermal conduction in an incompressible fluid

The general equation of thermal conduction (49.4) or (49.5) can be considerably
simplified in certain cases. If the fluid velocity is small compared with the velocity of sound,
the pressure variations occurring as a result of the motion are so small that the variation in
the density (and in the other thermodynamic quantities) caused by them may be neglected.
However, a non-uniformly heated fluid is still not completely incompressible in the sense
used previously. The reason is that the density varies with the temperature; this variation
cannot in general be neglected, and therefore, even at small velocities, the density of a non-
uniformly heated fluid cannot be supposed constant. In determining the derivatives of
thermodynamic quantities in this case, it is therefore necessary to suppose the pressure
constant, and not the density. Thus we have

ds ds\ éT Cs

w(or) a was=(5) wmer
and, since 7(ds/dT), is the specific heat at constant pressure, c,, we obtain 77s/0t
= ¢, 0T/dt, T grad s = ¢, grad 7. Equation (49.4) becomes

t Worsestill, the inclusion of such terms may violate the necessary conservation laws. It must be borne in mind
that, whatever the definitions used, the mass flux density j must always be the momentum of unit volume of fluid.
For j is defined by the equation of continuity,

dpjét+divi=0;
multiplying this by r and integrating over the fluid volume, we have
d(fprdv)dr = [jav,

and since the integral {ord ¥ determines the position of the centre of mass, it is clear that the integral {jdV is the
momentum.
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pc,(%?+v-pﬂT)-div(x'dT)+a’.§£. (50.1)

If the density is to be supposed constant in the equations of motion for a non-uniformly
heated fluid, it is necessary that the fluid velocity should be small compared with that of
sound, and also that the temperature differences in the fluid should be small. We emphasize
that we mean the actual values of the temperature differences, not the temperature
gradient. The fluid may then be supposed incompressible in the usual sense; in particular,
the equation of continuity is simply divy = 0. Supposing the temperature differences
small, we neglect also the temperature variation of 5, x and ¢, supposing them constant.
Writing the term o', dv,/0x, as in (49.5), we obtain the equation of heat transfer in an
incompressible fluid in the following comparatively simple form:

T v [év, én\?
a—"f'V'ﬂ‘.‘T‘xAT*f'z—c"(a—x."f'a—xi). (50.2)
where v = n/p is the kinematic viscosity, and we have written x in terms of the thermometric
conductivity, defined as

X = K/pc,. (50.3)

The equation of heat transfer is particularly simple for an incompressible fluid at rest, in
which the transfer of energy takes place entirely by thermal conduction. Omitting the
terms in (50.2) which involve the velocity, we have simply

8T/t = yAT. (50.4)

This equation is called in mathematical physics the equation of thermal conduction or
Fourier's equation. It can, of course, be obtained much more simply without using the
general equation of heat transfer in a moving fluid. According to the law of conservation of
energy, the amount of heat absorbed in some volume in unit time must equal the total heat
flux into this volume through the surface surrounding it. As we know, such a law of
conservation can be expressed as an “equation of continuity™ for the amount of heat. This
equation is obtained by equating the amount of heat absorbed in unit volume in unit time
to minus the divergence of the heat flux density. The former is pc, é7/0t; we must take the
specific heat ¢, since the pressure is of course constant throughout a fluid at rest. Equating
this to —divq = kAT, we have equation (50.4).

It must be mentioned that the applicability of the thermal conduction equation (50.4) to
fluids is actually very limited. The reason is that, in fluids in a gravitational field, even a
small temperature gradient usually results in considerable motion (convection; see §56).
Hence we can actually have a fluid at rest with a non-uniform temperature distribution
only if the direction of the temperature gradient is opposite to that of the gravitational
force, or if the fluid is very viscous. Nevertheless, a study of the equation of thermal
conduction in the form (50.4) is very important, since processes of thermal conduction in
solids are described by an equation of the same form. We shall therefore consider it in more
detail in §§51 and 52.

If the temperature distribution in a non-uniformly heated medium at rest is maintained
constant in time (by means of some external source of heat), the equation of thermal
conduction becomes

AT=0. (50.5)
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Thus a steady temperature distribution in a medium at rest satisfies Laplace’s equation. In
the more general case where x cannot be regarded a constant, we have in place of (50.5) the
equation

divixgrad7) = 0. (50.6)

If the fluid contains external sources of heat (for example, heating by an electric current),
the equation of thermal conduction must correspondingly contain anather term. Let Q be
the quantity of heat generated by these sources in unit volume of the fluid per unit time; Q
is, in general, a function of the coordinates and of the time. Then the heat balance equation,
i.e. the equation of thermal conduction, is

pc, 0T /ot = kAT +Q. (50.7)

Let us write down the boundary conditions on the equation of thermal conduction
which hold at the boundary between two media. First of all, the temperatures of the two
media must be equal at the boundary:

T| - Tz. (50.8)

Furthermore, the heat flux out of one medium must equal the heat flux into the other
medium. Taking a coordinate system in which the part of the boundary considered is at
rest, we can write this condition as x,grad 7, -df = x, grad 7, -df for each surface
element df. Putting grad 7'-df = (87/én)df, where é7/én is the derivative of T along the
normal to the surface, we obtain the boundary condition in the form

K, 0T,/on = x, 0T,/én. (50.9)

If there are on the surface of separation external sources of heat which generate an
amount of heat Q' on unit area in unit time, then (50.9) must be replaced by

x, 8T, /én —x; 3T, /on = Q™. (50.10)

In physical problems concerning the distribution of temperature in the presence of heat
sources, the strength of the latter is usually given as a function of temperature. If the
function Q(7') increases sufficiently rapidly with 7, it may be impossible to establish a
steady temperature distribution in a body whose boundaries are maintained in fixed
conditions (e.g. at a given temperature). The loss of heat through the outer surface of the
body is proportional to some mean value of the temperature difference 7 — 7, between the
body and the external medium, regardless of the law of heat generation within the body; it
is clear that, if the generation of heat increases sufficiently rapidly with temperature, the
loss of heat may be inadequate to achieve an equilibrium state.

There may then be a thermal explosion: if the rate of an exothermic combustion reaction
increases sufficiently rapidly with temperature, the impossibility of a steady distribution
leads to a rapid non-steady ignition of the substance and an acceleration of the reaction
(N. N. Semenov 1923). The rate of explosive combustion reactions, and therefore the rate of
heat generation, depend on the temperature roughly as e~ Y7, with a large activation energy
U. To investigate the conditions for a thermal explosion to occur, we must consider the
course of the reaction when the ignition of the substance is comparatively slow, and
therefore use the expansion
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where T, is the external temperature. The problem thus leads to a study of the equation of
thermal conduction with a volume density of heat sources

Q - Qo,-lr-m (50.11)
(D.A. Frank-Kamenetskii 1939); see Problem 1.

PROBLEMS

ProsLEM 1. Heat sources with the strength (50.11) are distributed in a layer of material bounded by two
wdehm.metmnammmFﬂmmtaammn
distribution to be possible (D. A. Frank-Kamenetskii 1939)+

SOLUTION. The equation for steady heat conduction is here
k& T = ~Qu&'T- T,
with the boundary conditions 7" = T, for x = O and x = 2/ (2/ bang the thickness of the layer) We introduce the
dimensionless variables t = a(T ~ T,) and { = x/I. Then
Ui =0, i=Quaf/x
Integrating this equation once (after multiplying by 2r'), we find

= u(e'.—

where 1, is a constant, which is evidently the maximum value of ©; by symmetry, this value must be attained half-
way through the layer, i.c. for { = 1. Hence a second integration, with the condition t = 0 for { = 0, gives

V:wf v f =1

Effecting the integration, we have
e~Hecosh et = /Ay )

The function i(1o) determined by this equation has a maximum 4 = A_ for a definite value 1, = 15 if 4 > A,
there is no solution satisfying the boundary conditions.{ The numencal values are i = 088, 55 = 1' 211

PROBLEM 2. A sphere is immersed in a fluid at rest, in which a constant temperature gradient is maintained.
Determine the resulting steady temperature distribution in the fluid and the sphere.

SOLUTION. The temperature distribution satisfies the equation AT = 0 in all space, with the boundary

conditions
T.’Tz. ‘.”'/&-"”2/&

for r = R (where R is the radius of the sphere; quantities with the suffixes | and 2 refer 10 the sphere and the fluid
respectively), and grad 7 = A at infinity, where A is the given temperature gradicat. By the symmetry of the
problem, A is the only vector which can determine the required solution. Such solutions of Laplace’s equation are
constant x A -r and constant x A -grad (1/r) Notiang also that the solution must remain finite at the centre of
the sphere, we seek the temperatures 7, and T, in the forms

T' -C|"', T; :CIA"/"+A".
The constants ¢, and ¢; are determined from the conditions for r = R, the result bang

- R 3
T, . T, = [|+-'3—-"-(—) ]A...
Ky +2‘2 K, +k3 r

t Awedambddmmdrehldmsmbyﬁnk{m-madﬂarmdah
Chemical Kinetics, New York 1969.

$ Only the smaller of the two roots of equation (1) for i < i_ corresponds to a stable temperature
distribution.

ﬁThemnupon&ngvﬂuafaasphunlm(ﬂhnhnna,z}nt‘,-N? and for an
infinite cylinder 4, = 200, 5, = 1-36.
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§51. Thermal conduction in an infinite medium

Let us consider thermal conduction in an infinite medium at rest. The most general
problem of this kind is as follows. The temperature distribution is given in all space at the
initial instant ¢ = O:

T=T,(r)fort=0,

where 7, (r) is a given function of the coordinates. It is required to determine the
temperature distribution at all subsequent instants.

We expand the required function 71r,t) as a Fourier integral with respect to the
coordinates:

T(r,t) = jT.(l)exp (ik-r)d’k/(2n)°, T.(1) = jT(r, fexp(—ik-r)d®x. (51.1)

For each Fourier component 7, exp (ik -r), equation (50.4) gives
d7,/dt+ k*4T, = 0.
This equation gives 7, as a function of time:
Ty = exp (— k™ xt)Tgy.

Since we must have 7" = T, (r) for t = 0, it is clear that the T, are the expansion coefficients
of the function 7, as a Fourier integral:

Ta = jTo(r') exp (— ik -r)d’x.
Thus
T= JjTo(r')np (—k*yt)exp[ik - (r — )] d>x d°k/(2n) .

The integral over k is the product of three simple integrals, each having the form
J exp (—af?)cos B d¢ = /(x/z)exp (— f*/4a),

where { is one component of k; the similar integral with sin in place of cos is zero, since the
sine function is odd. Thus we have finally

1 2 3
- e ’ . A 51.
T(r,0) S(apt) ITo(r Jexp{—=[lr—r))/4yt}d’x (51.2)
This formula gives the complete solution of the problem; it determines the temperature
distribution at any instant in terms of the given initial distribution.
If the initial temperature distribution is a function of only one coordinate, x, then we can
integrate over )’ and z’ in (51.2) and obtain

l x
- -\t -(x-x) dx’. 1.3
T(x,t)= 27—( ) J- oflx)exp[—(x d) (51.3)
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At time t = 0, let the temperature be zero in all space except for one point (the origin),
where it is infinite in such a way that the total quantity of heat (proportional to [7,(r)d’x)
is finite. Such a distribution can be represented by a delta function:

To(r) = constant x &(r). (51.4)

The integration in formula (51.2) then amounts to replacing r’ by zero, the result of which is
1

T(r, t) = constant x T exp (—r/dy) (51.5)

In the course of time, the temperature at the point r = 0 decreases as t ~ 1. The temperature
in the surrounding space rises correspondingly, and the region where the temperature is
appreciably different from zero expands (Fig. 39). The manner of this expansion is
determined principally by the exponential factor in (51.5). The order of magnitude [ of the
dimension of this region is given by

i.e. | increases as the square root of the time.

Q'l/a

Similarly, if at the initial instant a finite amount of heat is concentrated on the plane
x = 0, the subsequent temperature distribution is

T(x, t) = constant x ﬂ:;l—‘-)exp (—x*/4yr) (51.7)
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Formula (51.6) can also be interpreted in a somewhat different way. Let [ be the order of
magnitude of the dimension of a body. Then we can say that, if the body is heated non-
uniformly, the order of magnitude t of the time required for the temperature to become
more or less the same throughout the body is

T~ lz/l, (51.8)

The time t, which may be called the relaxation time for thermal conduction, is proportional
to the square of the dimension of the body, and inversely proportional to the thermometric
conductivity.

The thermal conduction process described by the formulae obtained above has the
property that the effect of any perturbation is propagated instantaneously through all
space. It is seen from formula (51.5) that the heat from a point source is propagated in such
a manner that, even at the next instant, the temperature of the medium is zero only at
infinity. This property holds also for a medium in which the thermometric conductivity
depends on the temperature, provided that y does not vanish anywhere. If, however, yisa
function of temperature which vanishes when 7" = 0, the propagation of heat is retarded,
and at each instant the effect of a given perturbation extends only to a finite region of space
(we suppose that the temperature outside this region can be taken as zero). This result, as
well as the solution of the following Problems, is due to Ya. B. Zel'dovich and A. S.
Kompaneets (1950).

PROBLEMS

PrOBLEM 1. The specific heat and thermal conductivity of a medium vary as powers of the temperature, while
its density is constant. Determine the manner in which the temperature tends 1o zero near the boundary of the
teponwhxhnapmmuhnmavdhdwwldfm-m“unhwm
that region being zero).

SoLuTiON. If x and ¢, vary as powers of the temperature, the same is true of the thermometric conductivity x
and of the heat function
v-jt,dr

(we omit a constant in w). Hence we can put y = g™, denoting by W' = pw the heat function per unit volume.
Then the thermal conduction equation

pc, 0T jét = div(x grad T)
becomes
W/ét=adiv(W" gred W) (1)

During a short interval of time, a small portion of the boundary of the region may be regarded as plane, and its
rate of displacement in space, v, may be supposed constant. Accordingly, we seck 2 solution of equation (1)in the
form W = W(x — vt), where x is the coordinate in the direction perpendicular to the boundary. We have

—odW/dx = ad(W"dW dx)dx, (2)
whence we find, after two integrations, that W vanishes as
W |x|'™, 3)

where | x| is the distance from the boundary of the heated region. This also confirms our conclusion that, if n > 0,
the heated region has a boundary outside which W and T are zero. If » < 0, then equation (2) has no solution
vanishing at a finite distance, i.c. the heat is distributed through all space at every instant.

PrOBLEM 2. A medium like that described in Probiem 1 has, at the initial instant, an amount of heat Q per unit
area concentrated on the plane x = 0, while 77 = 0 everywhere cise. Determine the temperature distnbution at
subsequent instants.
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SOoLUTION. In the one-dimensional case, equation (1) is

g.“’- .i(w.a_"’
ox

at dx

From the parameters Q and a and variables x and ¢ at our disposal, we can form only one dimensionless
combination,

@)

{ = x/(Q%ar)' **=, (5

Q and a have the dimensions erg/cm? and (cm?/sec) (cm®/erg)”. Hence the required function W (x, 1) must have
the form

W= (Q%/at)' " * " A2, (6)
where the dimensionless function f({) is multiplied by a quantity having the dimensions erg/cm’. With this

substitution, equation (4) gives
(2+n)i([‘d—l)+cd—]+]- o

@\« &«
This ordinary differential equation has a simple solution which satisfies the conditions of the problem, namely
S = [nide* - SV 2 +m)' ™, ™

where §, is a constant of integration.

For n > 0, this formula gives the temperature distribution in the region between the planes x = +x,
corresponding to the equation { = + {,; outside this region, W = 0. Hence it follows that the heated region
expands with time in a manner given by x, = constant x t'** **. The constant £, is determined by the condition
that the total amount of heat be constant:

&
Q= I“’dx-Q jﬂ()&. (8)
~ Xy ~&
whence we have
2 e’ e 1
(o:u-(_*:)ra _P:}“‘:/:’ )
For n = —v <0, we write the solution in the form
1
f(‘)'[ﬁ'_—')“o’*(’)] - (10)

Here the heat is distributed through all space, and at large distances W decreases as x 2. This solution is valid
only for v < 2; for v 2> 2, the normalization integral (8) (which now extends 1o + o) diverges, which means
physically that the heat is conducted instantancously to infinity. For v < 2, the coastant £, in (10) is given by

e L 22— U~

$o . ram (11
Finally, for n - 0 we have &, — 2/,/n, and the solution given by formulae (S)-(7) is
I e -
i ."5.{2\/(w)' " et 7 man) P (X )

in agreement with formula (51.7).

§52. Thermal conduction in a finite medium

In problems of thermal conduction in a finite medium, the initial temperature
distribution does not suffice to determine a unique solution, and the boundary conditions
at the surface of the medium must also be given.

Let us consider thermal conduction in a half-space (x > 0), beginning with the case
where a given constant temperature is maintained on the bounding plane x = 0. We may
arbitrarily take this temperature as zero, i.c. measure the temperature at other points
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relative to it. At the initial instant, the temperature distribution throughout the medium is
given, as before. The boundary and initial conditions are therefore

T=0 for x=0;, T=Tyx,»,2) for t=0 and x>0 (52.1)

The solution of the thermal conduction equation with these conditions can, by means of
the following device, be reduced to the solution for a medium infinite in all directions. We
imagine the medium to extend on both sides of the plane x = 0, the temperature
distribution for t = O and x < 0 being given by — 7,,. That is, the temperature distribution
at the initial instant is given in all space by an odd function of x:

To(—x, 5, 2) = —Tolx, y, 2). (52.2)

It follows from equation (52.2) that 7,(0, y,2) = —T,(0, y,z) = 0, i.e. the necessary
boundary condition (52.1) is automatically satisfied for ¢ = 0, and it is evident from
symmetry that it will continue to be satisfied for all ¢

Thus the problem is reduced to the solution of equation (50.4) in an infinite medium
with an initial function Ty (x, y, z) which satisfies (52.2), and without boundary conditions.
Hence we can use the general formula (51.2). We divide the range of integration over x" in
(51.2) into two parts, from — o0 to 0 and from 0 to co. Using the relation (52.2), we then
have

x {exp [ = (x = x')*/dyt] —exp[— (x + x)*/4y1] | x
x exp{—[(y=y)+(z—-2)")4p}dx' dy dz. (52.3)

This formula gives the solution of the problem, since it determines the temperature
throughout the medium.

If the initial temperature distribution is a function of x only, formula (52.3) becomes

1 r .
T(x, t)= '2'7@ I To(x) {exp[— (x — x')*/4xt] —exp [ — (x + x)*/4yt] } dx'.
0

(52.4)

As an example, let us consider the case where the initial temperature is a given constant

everywhere except at x = (. Without loss of generality, this constant may be taken as — 1.

The temperature on the plane x = 0is always zero. The appropriate solution is obtained at

once by substituting 7,(x) = — 1in (524). The integral in (52.4) is the sum of two integrals,

in each of which we change the variables as in { = (x"— xVZJ(p). We then obtain for
T(x, t) the expression

T(x, t) = 4 {erf [ — x/2/ ()] —erf [x/2\/ (x0)) }.
where the function erf x is defined as

erfx = 72;“.?" dé, (52.5)
o
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and is called the error function (we notice that erf oo = 1) Since erf (= x) = —erf x, we
have finally

T(x, 1) = —erf [x/2/(x1)). (52.6)

Figure 40 shows a graph of the function erf x. The temperature distribution becomes
more uniform in space in the course of time. This occurs in such a way that any given value
of the temperature “moves™ proportionally to ./t. This last result is obviously true. For
the problem under consideration is characterized by only one parameter, the initial
temperature difference 7, between the boundary plane and the remaining space; in the
above discussion, this difference was arbitrarily taken as unity. From the parameters 7,
and x and variables x and t at our disposal we can form only one dimensionless
combination, x/,/(xt); hence it is clear that the required temperature distribution must be
given by a function having the form 7 = T,f(x/\/(x1))
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Let us now consider a case where the surface bounding the medium is a thermal
insulator. That is, there is no heat flux at the plane x = 0, so that we must have d7/éx = 0.
We thus have the following boundary and initial conditions:

0T/ox =0for x=0; T=Tylx,y,z)fort=0,x>0. (52.7)

To find the solution we proceed as in the previous problem. That is, we again imagine the
medium to extend on both sides of the plane x = 0, the initial temperature distribution
being this time symmetrical about the plane. In other words, we now suppose that
To(x, y, z) is an even function of x:

TO(— X, yo Z) - TO(xv Yt z)' (52’8)

Then 0T y(x, y, 2) Jox = —0To(— x, y, 2)/0x, and 6T,/éx = 0 for x = 0. It is evident from
symmetry that this condition will continue to be satisfied for all «.

Repeating the calculations given above, but using (52.8) in place of (52.2), we have the
general solution of the problem in a form which differs from (52.3) or (52.4) only in
having the sum instead of the difference of the two exponentials.

Let us now consider problems with boundary conditions of a different type, which also
enable the equation of thermal conduction to be solved in a general form. Let a heat flux (a
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given function of time) enter a medium through its bounding plane x = 0. The boundary
and initial conditions are then

~Kk0T/dx =q(t)for x =0, T=0fort = —a0, x>0, (52.9)

where ¢(t) is a given function.

We first solve an auxiliary problem, in which g(r) = &(t). It is easy to see that this problem
is physically equivalent to that of the propagation of heat in an infinite medium from a
point source which generates a given amount of heat. For the boundary condition
~ k0T /ox = (t) for x = 0 signifies physically that a unit of heat enters through each unit
area of the plane x = 0 at the instant ¢ = 0. In the problem where the condition is
T = 25(x)/pc,, for t = 0, an amount of heat

fpe,rax=2

is concentrated on this area at time t = 0; half of this is then propagated in the positive
x-direction, and the other half in the negative x-direction. Hence it is clear that the
solutions of the two problems are identical and we find from (51.7)
kT(x, t) = / (/nt)exp (— x*/4x1).

Since the equations are linear, the effects of the heat entering at different moments are
simply additive, and therefore the required general solution of the equation of thermal
conduction with the conditions (52.9) is

kT(x, 1) = I ;(—l—r 9 g(r)exp [ — x*/4x(t — 1)) dr. (52.10)

In particular, the temperature on the plane x = 0 varies according to
- _X
kT(0, 1) = I \/ -3 g(r)dr. (52.11)

Using these results, we can obtain at once the solution of another problem, in which the
temperature 7 on the plane x = 0 is a given function of time:

T=Tyt)forx=0; T=0fort= -0, x>0. (52.12)

To do so, we notice that, if some function Tl(x, ) satisfies the equation of thermal

conduction, then so does its derivative 67 /dx. Differentiating (52.10) with respect to x, we

obtain
oT(x, 1) _ xq(7)

K o —x*4y(t —1))dr.

J 2=y P

This function satisfies the equation of thermal conduction and (by (52.9)) its value for
x = 0 is g(t); it therefore gives the required solution of the problem whose conditions are
(52.12). Writing T(x, t) instead of —xd87/dx, and T,(t) instead of g(t), we thus have

'

To()
Tix, t)= 5 \]; l) (‘ t)’ exp [ —x*/4y(t —1))dr. (52.13)
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The heat flux ¢ = — xd7/dx through the bounding plane x = 0 is found by a simple
calculation to be

K d7,(r) dr
q(t) = 7('lj I “dt 7(' - (52.14)

This formula is the inverse of (52.11).

The solution is easily obtained for the important problem where the temperature on the
bounding plane x = 0is a given periodic function of ime: 7 = T, ¢ “*for x = 0. Itisclear
that the temperature distribution in all space will also depend on the time through a factor
e~ '"“*, Since the one-dimensional equation of thermal conduction is formally identical with
the equation (24.3) which determines the motion of a viscous fluid above an oscillating
plane, we can immediately write down the required temperature distribution by analogy
with (24.5):

T = Toexp[ - x/ (@/2x)Jexp{i[x/ (@/2x) — ex]}. (52.15)

We see that the oscillations of the temperature on the bounding surface are propagated
from it as thermal waves which are rapidly damped in the interior of the medium.

Another kind of thermalconduction problem comprises those concerning the rate at
which the temperature is equalized in a non-uniformly heated finite body whose surface is
maintained in given conditions. To solve these problems by general methods, we seek a
solution of the equation of thermal conduction in the form 7 = T, (r)e- ', with 4, a
constant. For the function 7, we have the equation

AT, = - AT, (52.16)

This equation, with given boundary conditions, has non-zero solutions only for certain
4, its eigenvalues. All the eigenvalues are real and positive, and the corresponding
functions 7,(x,y,z) form a complete set of orthogonal functions. Let the temperature
distribution at the initial instant be given by the function T, (x,y,z). Expanding this as a
series of functions 7,

TO (l') = Zcu Tn (l’).

we obtain the required solution in the form
T(r) =Y c, T, (r)exp(—4.) (52.17)

The rate of equalization of the temperature is evidently determined mainly by the term
corresponding to the smallest 4,, which we call 4,. The “equalization time™ may be defined
as t = 1/11.

PROBLEMS

ProBLEM 1. Determine the temperature distribution around a spherical surface (with radius R) whose
temperature is a given function 7, (¢) of time.

SoLuTiON. The thermalconduction equation for a centrally symmetrical temperature distribution is, in
spherical polar coordinates, 8 T/ét = (x/r)é* (rT)/ér’. The substitution r T (r,t) = F (r,t) reduces this to ¢ F /it
-xa’F/ar’ which is the ordinary onc-dimensional thermal-conduction equation. Hence the required solution
can be found at once from (52.13), and is

R(r—R) To(t)
T(rt)= 2’7“1) “ t)’ exp[ —r— R /4yt —1))ds.
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ProsLEM 2. The same as Problem 1, but for the case where the temperature of the spherical surface is T,e ™.

SOLUTION. Similarly to (52.15), we obtain
T = Toexp(—iwt)(R/r)exp[ (1 =iNr - R)/ (@/21)})

ProsLEM 3. Determine the temperature equalization time for a cube with side a whose surface is
(a) maintained at a temperature 7" = 0, (b) an insulator.

SOLUTION. In case (a) the smallest value of 4 is given by the following solution of equation (52.16)
T, = sin(xx/a)sin(xy/a)sin(xz/a)

(the origin being at one corner of the cube), when r = 1/4, = a* /32" 1 Incase (b)we have T, = cos(xx/a) (or the
same function of y or z), when t = a*/x%y.

ProOBLEM 4. The same as Problem 3, but for a sphere with radius R

SOLUTION. The smallest value of 4is given by the centrally symmetrical solution of (52.16) T, = (1/r)sin kr;in
case (a), k= n/R, and t = 1/xk* = R*/y=x*. In case (b) k is the smallest non-zero root of the equation
kR = tankR, whence we find kR = 4493 and r = 0050 R¥/y.

§53. The similarity law for heat transfer

The processes of heat transfer in a fluid are more complex than those in solids, because
the fluid may be in motion. A heated body immersed in a moving fluid cools considerably
more rapidly than one in a fluid at rest, where the heat transfer is accomplished only by
conduction. The motion of a non-uniformly heated fluid is called convection.

We shall suppose that the temperature differences in the fluid are so small that its
physical properties may be supposed independent of temperature, but are at the same time
so large that we can neglect in comparison with them the temperature changes caused by
the heat from the energy dissipation by internal friction (see§55). Then the viscosity term in
equation (50.2) may be omitted, leaving

oT/ot+v-gradT = y AT, (53.1)

where y = x/pc, is the thermometric conductivity. This equation, together with the
Navier-Stokes equation and the equation of continuity, completely determines the
convection in the conditions considered.

In what follows we shall be interested only in steady convective flow.t Then all the time
derivatives are zero, and we have the following fundamental equations:

V'm‘T= 0T, (53.2)
(vograd)y = —grad(p/p)+viv, divi=0. (53.3)

This system of equations, in which the unknown functions are v, T and p/ p, contains only
two constant parameters, v and y. Furthermore, the solution of these equations depends
also, through the boundary conditions, on some characteristic length [, velocity U, and
temperature difference 7', — T,,.The first two of these are given as usual by the dimension
of the solid bodies which appear in the problem and the velocity of the main stream, while
the third is given by the temperature difference between the fluid and these bodies.

In forming dimensionless quantities from the parameters at our disposal, the question
arises of the dimensions to be ascribed to the temperature. To resolve this, we notice that

t In order that the convection can be steady, it is, strictly speaking, necessary that the solid bodies adjoining
the fluid should contain sources of heat which maintain these bodics at 2 constant temperature.
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the temperature is determined by equation (53.2), which is linear and homogeneous in 7.
Hence the temperature can be multiplied by any constant and still satisfy the equations. In
other words, the unit of measurement of temperature can be chosen arbitrarily. The
possibility of this transformation of the temperature can be formally allowed for by giving
it a dimension of its own, unrelated to those of the other quantities. This can be measured
in degrees, the usual unit of temperature.

Thus convection in the above-mentioned conditions is characterized by five parameters,
whose dimensions are v = y = cm?/sec, U = cm/sec, | = cm, T, — T, = deg. From these
we can form two independent dimensionless combinations. These may be the Reynolds
number R = Ul/v and the Prandtl number, defined as

P=v/x. (53.4)

Any other dimensionless combination can be expressed in terms of R and P.1

The Prandtl number is just a constant of the material, and does not depend on the
properties of the flow. For gases it is always of the order of unity. The value of P for liquids
varies more widely. For very viscous liquids, it may be very large. The following are values
of P at 20°C for various substances:

Air 0733
Water 675
Alcohol 166
Glycerine 7250
Mercury 0044

As in §19, we can now conclude that, in steady convection (of the type described), the
temperature and velocity distributions have the form

T-T, r v r

o) o-o(in) >
The dimensionless function which gives the temperature distribution depends on both R
and P as parameters, but the velocity distribution depends only on R, since it is determined
by equations (53.3), which do not involve the conductivity. Two convective flows are
similar if their Reynolds and Prandtl numbers are the same.

The heat transfer between solid bodies and the fluid is usually characterized by the heat
transfer coefficient x, defined by

a=gq/(T,-T,), (53.6)

where g is the heat flux density through the surface and T, — 7, is a characteristic
temperature difference between the solid body and the fluid. If the temperature
distribution in the fluid is known, the heat transfer coefficient is easily found by calculating
the heat flux density ¢ = — xd7/dn at the boundary of the fluid (the derivative being taken
along the normal to the surface).

The heat transfer coefficient is not a dimensionless quantity. A dimensionless quantity
which characterizes the heat transfer is the Nusselt number:

N= G’/K. (53.7)

t The Péclet number is sometimes used; it is defined as Ul/y = RP.
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It follows from similarity arguments that, for any given type of convective flow, the Nusselt
number is a definite function of the Reynolds and Prandtl numbers only:

N = f(R,P) (53.8)

This function is very simple for convection at sufficiently small Reynolds numbers. These
correspond to small velocities. Hence, in the first approximation, we can neglect the
velocity term in equation (53.2), so that the temperature distribution is determined by the
equation A 7" = 0, i.e. the ordinary equation of steady thermal conduction in a medium at
rest. The heat transfer coefficient can then depend on neither the velocity nor the viscosity,
and so we must have simply

N = constant, (53.9)
and in calculating the constant the fluid may be supposed at rest.

PROBLEM

Determine the temperature distribution in a fluid moving in Potsewmlle flow along a pipe with circular cross-
section, when the temperature of the walls varies lincarly along the pipe.

SoLUTION. The conditions of the flow are the same at every cross-section of the pipe, and we can look for the
temperature distribution in the form 7 = Az + f(r), where Az is the wall temperature; we use cylindrical polar
coordinates, with the z-axis along the axis of the pipe. For the velocity we have, by (17.9), 0, = v = 26(1 — */R?),
where ¢ is the mean velocity. Substituting in (53.2), we find

2 (2)-20-6))

The solution of this equation which is finite for r = 0 and 2ero for r = R is

flr)= -ER_I[E-(:)zq.l(:)‘}
" r |4 \R) 4\R
The heat flux density is

q = x[3T/or) g = dpc,iRA.
It is independent of the thermal conductivity.

§54. Heat transfer in a boundary layer

The temperature distribution in a fluid at very high Reynolds numbers exhibits
properties similar to those of the velocity distribution. Very large values of R are
equivalent to a very small viscosity. But since the number P = v/y is not small, the
thermometric conductivity y must be supposed small, as well as v. This corresponds to the
fact that, for sufficiently high velocities, the fluid may be approximately regarded as an
ideal fluid, and in an ideal fluid both internal friction and thermal conduction are absent.

This viewpoint, however, must again be abandoned in a boundary layer, since neither
the boundary condition of no slip nor that of equal temperatures would be satisfied. In the
boundary layer, therefore, there occurs both a rapid decrease of the velocity and a rapid
change of the fluid temperature to a value equal to the temperature of the solid surface. The
boundary layer is characterized by the presence of large gradients of both velocity and
temperature.
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It is easy to see that, in flow past a heated body (with R large), the heating of the fluid
occurs almost exclusively in the wake, while outside the wake the fluid temperature does
not change. For, when R is large, the processes of thermal conduction in the main stream
are unimportant. Hence the temperature varies only in the region reached by fluid that has
been heated in the boundary layer. We know (see §35) that the streamlines from the
boundary layer enter the main stream only beyond the line of separation, where they go
into the region of the turbulent wake. From the wake, however, the streamlines do not
emerge at all. Thus the fluid which flows past the surface of the heated body in the
boundary layer goes entirely into the wake and remains there. We see that the heat
becomes distributed through the regions where the vorticity is non-zero.

In the turbulent region itself, a very considerable exchange of heat occurs, which is due
to the intensive mixing of the fluid characteristic of any turbulent flow. This mechanism of
heat transfer may be called turbulent conduction and characterized by a coefficient x,_,,in
the same way as we introduced the turbulent wviscosity n_, in §33. The turbulent
thermometric conductivity is defined, in order of magnitude, by the same formula as v,
(33.2) x o~ 1w

Thus the processes of heat transfer in laminar and in turbulent flow are fundamentally
different. In the limiting case of very small viscosity and thermal conductivity, in laminar
flow, the processes of heat transfer are absent, and the fluid temperature is constant at
every point in space. In turbulent flow, however, even in the same limiting case, heat
transfer occurs and rapidly equalizes the temperatures in various parts of the stream.

Let us begin by considering heat transfer in a laminar boundary layer. The equations of
motion (39.13) are unaltered. A similar simplification must now be performed for equation
(53.2). Written explicitly, this equation is (since all quantities are independent of the
coordinate z)

oT oT _ (é’T &'T
D,a + D,—a; = X(a—xi +-a;i
On the right-hand side we may neglect the derivative é° 7/éx® in comparison with
3*T/ay*, leaving
oTr  oT_ @&'T
0,5;"'0,6)' = layl.

By comparing this equation with the first of (39.13) we see that, if the Prandtl number is
of the order of unity, then the order of magnitude & of the thickness of the layer in which
the velocity v, decreases and the temperature 7 varies will again be given by the formulae
obtained in §39, i.e. it will be inversely proportional to J R. Theheatfluxg = —xdT/dnis
equal, in order of magnitude, to x( T, — 7, )/4. Hence we conclude that ¢, and therefore the

Nusselt number, are proportional to /R. The dependence of N on P is not determined.
Thus we have

(54.1)

N=/Rf(P). (54.2)

From this it follows, in particular, that the heat transfer coefficient « is inversely
proportional to the square root of the dimension / of the body.

Let us now consider heat transfer in a turbulent boundary layer. Here it is convenient, as
in §42, to take an infinite plane-parallel turbulent stream flowing along an infinite plane
surface. The transverse temperature gradient d7/dy in such a flow can be determined
from the same kind of dimensional argument as we used to find the velocity gradient
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du/dy. We denote by g the heat flux density along the y-axis caused by the temperature
gradient. This flux is a constant (independent of y), like the momentum flux ¢, and can
likewise be regarded as a given parameter which determines the properties of the flow.
Furthermore, we have as parameters also the density p and the specific heat ¢, per unit
mass. Instead of ¢ we use as parameter v,; ¢ and ¢, have the dimensions erg/cm?sec
= g/sec’ and erg/gdeg = cm?/sec’ deg. The viscosity and thermal conductivity cannot
appear explicitly in d 7/dy when R is sufficiently large.

Because of the homogeneity of the equations as regards the temperature, already
mentioned in §53, the temperature can be changed by any factor without violating the
equations. When the temperature is changed in this way, however, the heat flux must
change by the same factor. Hence ¢ and 7 must be proportional. From ¢, v,, p,c,and y we
can form only one quantity proportional to g and having the dimension deg/cm, namely
q/pc,yv,y. Thus we must have d7/dy = Bq/xpc,v, y, where B is a numerical constant
which must be determined by experiment.t Hence

T = (Bq/xpc,v,)(logy +c). (54.3)

Thus the temperature, like the velocity, varies logarithmically. The constant of integration
¢ which appears here must be determined from the conditions in the viscous sublayer, as in
the derivation of (42.7). The temperature difference between the fluid at a given point and
the wall (which we arbitrarily take to be at zero temperature) is composed of the
temperature change across the turbulent layer and that across the viscous sublayer. The
logarithmic law (54.3) determines only the first of these. Hence, if we write (54.3) in the
form T = (pq/xpc,v,)[log(yv,/v)+constant], including in the argument of the logar-
ithm a factor equal to the thickness y,, then the constant (multiplied by the coefficient of
the bracket) must be the change in temperature across the viscous sublayer. This change, of
course, depends on the coefficients v and y also. Since the constant is dimensionless, it must
be some function of P, which is the only dimensionless combination of the quantities v, g,
p, v, and ¢, (g cannot appear, since 7 must be proportional to ¢, which already occurs in
the coefficient). Thus we find the temperature distribution to be

T = (Bq/xpc,v,)[log(yv,/¥)+ f(P)] (54.4)

(L. D. Landau 1944). The empirical value of § here is about 0-9. The value of f for air is
S(OT)=1-5.

Using formula (54.4), we can calculate the heat transfer for turbulent flow in a pipe, along a
flat plate, etc. We shall not pause to do this here.

TURBULENT TEMPERATURE FLUCTUATIONS

In referring to the temperature of a turbulent fluid, we have of course meant the time
average. The actual temperature at any point in space undergoes very irregular variations
with time, similar to those of the velocity.

We shall suppose that a significant change in the temperature occurs over the
same distances / (the fundamental scale of the turbulence) as for the mean flow velocity.
The same concepts and arguments involving similarity as were used in §33 in discussing the
local properties of turbulence can be applied to the small-scale (4 <[) temperature
fluctuations. Here it will be assumed that P ~ 1; otherwise, it may be necessary to use two
internal scales, determined by v and by y. The inertial range of scales is then also the

t Here x is the von Kirmin constant appearing in the logarithmic velocity profile (42.4). With this definition, §
is the ratio v, /X wety Where v, and x ., are the cocfficients in ¢ = pc, 1,4 T/dy, 0 = pv du/dy.
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convective range: the equalization of temperatures within it takes place by mechanical
mixing of “fluid particles” at different temperatures without involving true thermal
conduction, and the properties of the temperature fluctuations in this range are
independent of the large-scale flow also. Let us determine how the temperature differences
T, depend on the distance 4 in the inertial range (A. M. Obukhov 1949).

The energy dissipation by thermal conduction, per unit volume, is x(grad 7)*/T;
compare (49.6), or (79.1) below. Dividing this by pc,, we have y(grad 7)* /T = ¢/ T, which
determines the rate at which the temperature is lowered by dissipation; assuming the
turbulent temperature fluctuations to be relatively small, we can replace 7 in the
denominator by a constant mean temperature. The quantity ¢ thus defined is another
parameter (besides &) which determines the local properties of turbulence in a non-
uniformly heated fluid.

With the method described in §33 (see after (33.1)), we express ¢ in terms of quantities
which relate to fluctuations with scale Ai:

Substituting from (33.2) and (33.6)
Yowrbi ~ Vet ~ AV;, U, X (e2)'?3,

we get the required result
T‘I ' #- 1/3 13/3_ (54.5)

Thus, when A3 i,, the temperature fluctuations, like the velocity fluctuations, are
proportional to A'/.

At distances A < Ay, however, the temperature is equalized by true thermal conduction.
At scales A <€ Ay, the temperature varies smoothly. By the same reasoning as for the
velocity (cf. (33.19)), the differences 7 are then proportional to 4

PROBLEMS

PROBLEM |. Determine the limiting form of the dependence of the Nussclt number on the Prandtl number ina
laminar boundary layer when P and R are large.

SorLuTion. For large P, the distance &' over which the temperature changes is small compared with the
thickness & of the layer in which the velocity v, diminishes. & may be called the thickness of the temperature
boundary layer. The order of magnitude of ' may be obtained from an estimate of the terms in equation (54.1).
Over the distance from y = Oto y ~ &', the temperature varies by an amount of the order of the total temperature
difference T, — T, between the fluid and the solid body, while the velocity ¢, varies over this distance by an
amount of the order of U’/ (since the total change, of the order of U, occurs over a distance ). Hence, for
y ~ &', the terms in equation (54.1) are, in order of magnitude,

P T/3y* ~ x (T, —To)é? and v,8T /éx ~ US'(T, - T,)/l6.

If the two expressions are comparable, we have 8> ~ y15/U. Substituting & ~ I/./ R, we obtain & ~ I/R!P}
~ 8/ P}, Thus, for large P, the thickness of the temperature boundary layer decreases, relative to that of the
velocity boundary layer, inversely as the cube root of P.

The heat flux g = —x@7/dy ~ x(T, — T,)/&', and the required hmiting law of heat transfer is found to bet

N = constant x R¥PY.

t For the values of the thermal conductivity actually found, the Prandt] number does not reach the values for
which this limiting law holds. Such laws can, however, be applied to convective diffusion; this obeys the same
equations as convective heat transfer, but with the temperature replaced by the concentration of the solute, and
the heat flux by the flux of solute, the “diffusion Prandt] number™ being defined as Py, = v/D, where D is the
diffusion coefficient. For example, for solutions in water and similar iquids, P, reaches values of the order of 10°,
while for very viscous solvents it is 10° or more.
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ProsLEM 2. Determine the limiting form of the function f(P), in the loganthmic temperature distribution
(54.4), for large values of P.

SOLUTION. According to what was said in §42, the transverse veloaity in the viscous sublayer is of the order of
ve (¥/0)?, while the scale of the turbulence is of the order of y*/ y,. The turbulent thermometric conductivity is
therefore

Loas ~ P Yol¥/yo)* ~ viy/ye)*

(where we have used the relation (42.5)k 1,4 is comparable in magnitude with the ordinary coeficient y at
distances y, ~ yo P ~ 1. Since ., increases very rapidly with y, it is clear that most of the temperature change in
the viscous sublayer occurs over distances from the wall of the order of y, . and may be supposed proportional to
¥:, being in order of magnitude gy,/x ~ gyo/x Pt ~ gP¥/pc, 0, Comparing with formula (54.4), we see that
function f(P) is a numerical constant times Pi.

ProsLEM 3. Derive a relation between the local correlation functions
Bry= {(T2=T,)¥). Bgr=lea—e N =T, )F")
in a non-uniformly heated turbulent flow (A. M. Yaglom 1949)

SoLuTion. The calculations are similar to those in §34. Together with B, and B ;,, we use the auxiliary
functions

brr" (T, T;), b.-rr' (o T, T3),
and to facilitate the calculations we regard the turbulence as compietely homogeneous and isotropic. Then
Bry=2(T")~2byp Byr=4,y U

the mean values (v, 7,73 ) = — (v, T, T; ), and mean values of the type (v,,T,* ) are zero, because the fluid is
incompressible —compare the derivation of (34.18). With the equations

T/ét+(v-grad)T = y AT, divw=0,
we calculate the derivative
Obyr/t = —20b 4 1/0%,, 4220 Brr 2)
The isotropy and homogeneity also mean that
byr=np,rr (3)

where nis a unit vector parallel tor = ry; —r,: b, rand b depend only on r. Using (1) and (3), we can put (2)in
the form

~2¢ — By rjét = div(aB, ;) — 12 Byr

-d _xé aa_n)
33" Bap) aa(” ar
where ¢ = — 40 (T? )/dt asin the text. Since the local turbulence may be regarded as steady, we neglect 8B -/t

Integration of the resulting equation with respect to r gives the required relation, analogous to (34.21),
B,ry—2ydByy/dr = —4ré. 4)

When 7 » Ao, the term in y is small, since from (54.5) By o r3. Then, from (4}
B,rr= —iré.
At distances r € iy, we have Byyoc r?, and B, may be neglected; in this case,
anirIO[z-

§55. Heating of a body in 2 moving fluid

A thermometer immersed in a fluid at rest indicates a temperature equal to that of the
fluid. If the fluid is in motion, however, the thermometer indicates a somewhat higher
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temperature. This is because the fluid brought to rest at the surface of the thermometer is
heated by internal friction.

The general problem may be formulated as follows. A body of arbitrary shape is
immersed in a moving fluid; thermal equilibrium is established after a sufficient length of
time, and it is required to determine the temperature difference 7, — 7, then existing
between the body and the fluid.

The solution of this problem is given by equation (50.2), in which, however, we cannot
now neglect the term containing the viscosity as we did in (53.1); it is this term which is
responsible for the effect under consideration. Thus we have for a steady state

- v (dv, ép\?
v gl’.‘T—lA T+Z’(a—x.+5;.) . (55.1)

This must be supplemented by the equations of motion (53.3) of the fluid itself and also,
strictly speaking, by the equation of thermal conduction in the body. In the limiting case
where the body has a sufficiently small thermal conductivity, we can neglect the latter and
suppose the temperature at any point on the surface of the body to be simply equal to the
fluid temperature at that point, obtained by solving equation (55.1) with the boundary
condition d7'/dn = 0, i.e. the condition that there be no heat flux through the surface of
the body. In the opposite limiting case where the body has a sufficiently large thermal
conductivity, we can use the approximate condition that the temperature should be the
same at every point of its surface; the derivative @ 7/ én will not then in general vanish over
the whole surface, and we must require only that the total heat flux through the surface of
the body (i.e. the integral of @ T/ dn over the surface) should be zero. In both these limiting
cases the thermal conductivity of the body does not appear explicitly in the solution of the
problem, and we shall suppose in what follows that one of these cases holds.

Equations (55.1) and (53.3) contain the constant parameters y, v and c,, and their
solutions involve also the dimension | of the body and the velocity U of the main stream.
(The temperature difference 7, — T, is not now an arbitrary parameter, but must itself be
determined by solving the equations.) From these parameters we can construct two
independent dimensionless quantities, which we take to be R and P. Then we can say that
the required temperature difference 7T, — T, is equal to some quantity having the
dimensions of temperature (which we take to be U?/c,), multiplied by a function of R and
P:

T, — T, = (U%/c,)f(R,P) (55.2)

It is easy to determine the form of this function for very small Reynolds numbers, i.e. for
sufficiently small velocities U. In this case the term v-grad 7 in (55.1) is small compared
with x A 7, so that this equation becomes

2
(i"' +ﬁ') _ (55.3)

vy
T=—" .
s ox, | ox.

2c

P

The temperature and velocity vary considerably over distances of the order of . Hence an
estimate of the two sides of equation (55.3) gives x(7, — T,)/I* ~ vU?/c, I*. Thus we
conclude that, for small R,

T, — T, = constant x PU?/c,, (55.4)

-5
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where the numerical constant depends on the shape of the body. It should be noticed that
the temperature difference is proportional to the square of the velocity U.

Some general conclusions concerning the form of the function f(P,R) in (55.2) can be
drawn in the opposite limiting case of large R, when the velocity and the temperature vary
only in a narrow boundary layer. Let 4 and 4’ be the distances over which the velocity and
temperature respectively vary;  and &’ differ by a factor depending on P. The amount of
heat evolved in the boundary layer in unit time owing to the viscosity of the fluid is given by
(16.3). This integral per unit area of the surface is of the order of vp(U?/8%)é = vpU?/é.
The same amount of heat must be lost from the body, and it is therefore equal to the heat
flux g = —xdT/dn ~ yc,p(T, —T,)/8". Comparing the two expressions, we find

T, —To = (U*/c,)f (P). (55.5)

Thus, in this case, the function f is independent of R, but its dependence on P remains
undetermined.

PROBLEMS

ProsLEM |, Determine the temperature distribution in a fluid moving in Poiseuille flow in a pipe with arcular
cross-section whose walls are maintained at constant temperature 7.

SowuTion. In cylindrical polar coordinates, with the z-axis along the axis of the pipe, we have v, = v =
26[1 = (r/R)*), where ¢ is the mean velocity of the flow. Substitution in (55.3) gives the equation

1d (dT) 16
rar\"dr '

The solution finiteat r=0and equal o T, forr=R is

rree -]

ProsLEM 2. Determine the temperature difference between a solid sphere and a fluid moving past it at small
Reynolds numbers. The thermal conductivity of the sphere is supposed large.

SoLuTION. We take spherical polar coordinates r, 6, ¢, with the origin at the centre of the sphere and the polar
axis in the direction of the velocity of the main stream. Calculating the components of the tensor dv,/dx,
+ dv, /0x, by means of formulae (15.20)and (20.9), for the velocity of flow past a sphere, we obtain equation (55.3)
in the form

1@ (,er 1 af. er
ma (75 )+ aaa 0 (5095 )
= —A(R/r)*[cos’8{3 ~6(R/ry + AR [r)*} +(R/r)),

where A = 9u’P/4c,. We look for T'(r,8) in the form T = f(r)cos’# + gir), and, separating the part which
depends on 6, find two equations for f and g:

P 42 f =6f = = A[}R/ry —S(R/r}* + AR/rS),
r’g" +2rg’ +2f = — A(R/r)".
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From the first we obtain
J o= ALAR/Y +(R/ry* = MRV ) + ¢, (R/r);

the term having the form constant x r¥ is omitted, since it does not vanish at infinity. The second equation then
gives

g= ~YALHR/D + JR/r 4 HUR/IN* )= de, (RIrY 4, Rir 4 ¢y

The constants ¢, ¢;, ¢y are determined from the conditions
T = constant and I(dT/ér)r’ sinfdé =0

for r = R, which are equivalent to f (R) = Oand ¢'(R) + § /"(R) = 0: also T = T, at infinity. Thus ¢, = — SA/3,
¢; = 2A/3,cy = T,. The temperature difference between 7, = T(R)and T, isfound tobe 7, — T, = Su’P/8¢,.
It may be noted that the temperature distribution obtained actually satisfies the condition @7 /ér = Oforr = ﬁ
ie. f'(R) = g'(R) = 0. Hence it is also the solution of the same problem for a sphere with small thermal
conductivity.

§56. Free convection

We have seen in §3 that, if there is mechanical equilibrium in a fluid in a gravitational
field, the temperature distribution can depend only on the altitude z 7 = T(z). If the
temperature distribution does not satisfy this condition, but is a function of the other
coordinates also, then mechanical equilibrium in the fluid is not possible. Furthermore,
evenif T = T'(z), mechanical equilibrium may still be impossible if the vertical temperature
gradient is directed downwards and its magnitude exceeds a certain value (§4).

The absence of mechanical equilibrium results in the appearance of internal currents in
the fluid, which tend to mix the fluid and bring it to a constant temperature. Such motion
in a gravitational field is called free convection.

Let us derive the equations describing this convection. We shall suppose the fluid
incompressible. This means that the pressure is supposed to vary only slightly through the
fluid, so that the density change due to changes in pressure may be neglected. For example,
in the atmosphere, where the pressure varies with height, this assumption means that we
shall not consider columns of air of great height, in which the density varies considerably
over the height of the column. The density change due to non-uniform heating of the fluid,
of course, cannot be neglected; it results in the forces which bring about the convection.

We write the variable temperature in the form 7 = T, + T, where T, is some constant
mean temperature from which the variation 7" is reckoned. We shall suppose that 7™ is
small compared with 7.

We write the fluid density also in the form p = p, + p’, with p, a constant. Since the
temperature variation 7" is small, the resulting density change p’ is also small, and we can
write

p' = (0po/0T),T" = —poT". (56.1)

Here g = —(1/p)dp/dT is the thermal-expansion coefficient of the fluid.t
In the pressure p = p, + p’, p, is not constant. It is the pressure corresponding to
mechanical equilibrium, when the temperature and density are constant and equal to 7,

———— e e e ———

t We shall assume that § > 0.
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and p, respectively. It varies with height according to the hydrostatic equation
Po = Pog*T +constant = — p,gz + constant, (56.2)

the coordinate z being measured vertically upwards.

In a fluid column with height h, the hydrostatic pressure drop is p,gh. This causes a
density change ~ pgh/c?, where ¢ is the velocity of sound; see (64.4). According to the
condition stated, this change must be negligible, not only in comparison with the density
itself, but also in comparison with the thermal change (56.1). That is, we must have

gh/c* < pO, (56.3)

where © is a characteristic temperature difference.
We start by transforming the Navier-Stokes equation, which has, in the presence of a
gravitational field, the form

ov/ot+ (v-grad)v = —(1/p)gradp+vAv+ g

this is obtained by adding the force g per unit mass to the right-hand side of equation
(15.7). We now substitute p = p, + p', p = po + p'; to the first order of small quantities, we
have

gradp _ gradp, + gradp’ gradp, .
p Po Po P

or, substituting (56.1) and (56.2),

d dp’
gradp gy o
P Po

With this expression, the Navier-Stokes equation gives
ov/ot+ (v-grad)v = —grad(p'/p)+vLAv—pT'g (56.4)

where the suffix has been dropped from p,,. In the thermal conduction equation (50.2), the
viscosity term can be shown to be small in free convection compared with the other terms,
and may therefore be omitted. We thus obtain

T jot+v-gradT =y AT (56.5)

Equations (56.4) and (56.5), together with the equation of continuity div v = 0, form a
complete system of equations governing free convection (A. Oberbeck 1879, J. Boussinesq
1903).

For steady flow, the equations of convection become

(v-grad)v = —grad (p'/p)— BT g+vly, (56.6)
v-grad7 =y AT, (56.7)
divv= 0. (56.8)

This system of five equations for the unknown functions v, p'/p and 7" contains three
parameters, v, y and fg. Moreover, the solution will involve the characteristic length h and
the temperature difference ©. There is here no characteristic velocity, since there is no flow
due to external forces, and the whole motion of the fluid is due to its non-uniform heating.
From these quantities we can form two independent dimensionless combinations (the
temperature is to be regarded as having a dimension of its own; see §53), which are usually
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taken to be the Prandtl number P = v/y and the Rayleigh numbert
R = fgOh’/vy. (56.9)

The Prandtl number depends only on the properties of the fluid; the Rayleigh number is
the chief characteristic of the convection as such.
The similarity law for free convection is

v=(v/h)f(r/h, ®,P), T=0/F(r/h R P) (56.10)

Two flows are similar if their Rayleigh and Prandtl numbers are the same. Convective heat
transfer under gravity is again described by the Nusselt number (53.7), which is now a
function of # and P only.

Convective flow may be either laminar or turbulent. The onset of turbulence is governed
by the Rayleigh number: the convection becomes turbulent when # is very large.

PROBLEMS

PrOBLEM 1. Reduce to the solution of ordinary differential equations the determination of the Nusselt
number for free convection on a flat vertical wall. It is assumed that the velocity and the temperature differences

are appreciably different from zero only in a thin boundary layer adjoining the surface of the wall (E. Pohlhausen
1921).

SoLUTION. We take the origin on the lower edge of the wall, the x-axis vertical, and the y-axis perpendicular to
the wall. The pressure in the boundary layer does not vary along the y-axis (cf. §39), and therefore is everywhere
equal to the hydrostatic pressure p, (x), i.e. p° = 0. With the usual accuracy of boundary-layer theory, equations
(56.6)-(56.8) become

o, o
éx éy éy’
ér ér &r
0,5— +l',3; bad lg‘ » p (1)
v, dv,

with the boundary conditions v, = v, = Oand T = T, for y = 0 (T, being the temperature of the wall), v, = 0
and T = T fory = w(T,ban;theﬂmdmmmaammwmmbemmo
ordinary differential equations by introducing as the independent vanable

¢ =Gly/@xi® P, G=pa(T, - T /¥, @
where h is the height of the wall. We put
v, = (2v/h*? )/ (Gx} () } -
T-To=(T, - T ¥Q3)
The last equation (1) then gives
v, = vGA (&9 —30)/(4xk’ i,
and the first two give equations for ¢() and 8(Sk
" +3¢9"—207+8=0, § +3PoF =0 (4)

t Tbc Gmshofnwnber G = fgOh*/v’ = R/P is also sometimes used.
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It follows from (3) and (4) that the boundary layer thickness & ~ (xA’/G}. The condition & < A for the solution
to be valid is satisfied when G is sufficiently large.

The total heat flux per unit area of the wall is

=4,

- = k0 (0, P)(T, - TG/,
The Nusselt number 15

N=f(P)GE,
where f (P) is determined by solving the equations (4)

PROBLEM 2. A hot turbulent submerged jet of gas is bent round by a gravitational field; find its shape (G. N.
Abramovich 1938).

SOLUTION. Let 77 be some mean value (over the cross-section of the jet) of the temperature difference between
the jet and the surrounding gas, u some mean velocity of the gas in the jet, and | the distance along the jet from its
point of entry; | is supposed large compared with the dimensions of the aperture by which the jet enters. The
condition of constant heat flux Q along the jetis Q ~ pc, T"uR? = constant and, since the radius of a turbulent jet
is proportional to [ (cf. §36), we have

T"ul® = constant ~ Q/pc,; (1)
we notice that, in the absence of the gravitational field, w oc 1// (see (36.3)) and it then follows from (1) that 7
o 1/
The momentum flux vector through the cross-section of the jet is proportional 10 pu® R*a ~ pu’ P, wherenis
a unit vector along the jet. Its horizontal component is constant along the jet
u? P cosf = constant, )
where @ is the angle between m and the horizontal, while the change in the vertical component is due to the “lift
force™ on the jet. This force is proportional to
PBaT R* ~ pBgT'F ~ BaQic,u
Hence we have

d(Pu*sinf)/dl ~ BgQ/pc, (3)
It then follows from (2) that d(tan 8)/dl = constant x | cos?8, whence we obtain finally
L
de
cosiag = comstant x A (4)

where 0, gives the direction of the emergent jet.
In particular, if 6 does not vary appreciably along the jet, (4) gives # — 8, = constant x [*. This means that the
jet is a cubical parabola, in which the deviation d from a straight line is = constant x I°.

PROBLEM 3. A turbulent jet of heated gas (i.c. one with a large Rayleigh number) rises from a fixed hot body.
Determine the vaniation of the velocity and temperature in the jet with height (Ya B. Zel'dovich 1937).

SoLuTion. Aslntheprecedmgase.tllendmsoﬁhenumuodbmmrmmmmdw
have, analogously 1o (1) of Problem 2, T uz? = constant, and instead of (3) d(z*«”)/dz = constant /u, where zis
the height above the body, supposed large compared with the dimension of the body. Integrating, we find
u 23, and for the temperature 7" x 2737,

PROBLEM 4. The same as Problem 3, but for a laminar convective jet nsing freely (Ya. B. Zel'dovich 1937).

SoLuTion. Together with the relation 7"'uR? = constant, which expresses the constancy of the heat flux, we
have u?/z ~ vu/R? ~ fgT", which follows from equation (56.6) From these relations we find the following
variation of the radius, velocity and temperature with height: R x |/ z, » = coastant, T~ « 1/z. It may be noticed
that the number & o« 7" R® x /z, i.c. increases with height, and the jet must therefore become turbulent at a
certain altitude.
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§57. Convective instability of a fluid at rest

If the Rayleigh number is gradually increased in a given configuration of a fluid and
solid walls, a point is reached when the fluid at rest becomes unstable with respect to
infinitesimal perturbations.t This gives rise to convection; the transition from pure
thermal conduction in the fluid at rest to the convective regime takes place continuously.
The dependence of the Nusselt number on # therefore has only a kink at the transition,
not a discontinuity.

The theoretical determination of the critical value # _ is to be carried out as described in
§26. The treatment will be repeated here for the case now in question.

We write

T' =To+t, P =potpw, (57.1)

where 7", and p’, refer to the fluid at rest; r and w are perturbations. 7' and p’,, satisfy the
equations

AT =d*T"y/dz* =0, dpo/dz = pBaT .

The first of these gives T’y = — Az, where A is a constant; in the case considered here,
where the fluid is heated from below, A > 0.

In equations (56.4) and (56.5), the small quantities are v (the unperturbed velocity is
zero), r and w. Omitting quadratic terms and considering perturbations which vary with
time as e, we get the equations

—iwv = —grad w+ vl v - firg,
—iwt—Av,= yAt, divv=0.

It is useful to write these in dimensionless form, measuring lengths in terms of h,
frequencies of v/h?, velocities of v/h, pressures of pv*/h*, and temperatures of Ahv/y. In the
rest of this section and in the Problems, all symbols denote the appropriate dimensionless
quantities. The equations become

—iwv= —gradw+ v+ #mm, (57.2)
—iwtP = At+v,, (57.3)
divv =0, (57.4)

n being a unit vector in the z-direction, vertically upwards. The dimensionless parameters
A and P now appear explicitly. If the solid surfaces bounding the fluid are kept at constant
temperatures, the following conditions must be satisfied thered:

v=0 t=0 (57.5)

Equations (57.2) — (57.4) with the boundary conditions (57.5) determine the spectrum of
eigenfrequencies @w. When # < #_, their imaginary parts y=im @ <0, and the
perturbations are damped. The value of # _ is given by the point at which, with increasing
A, an eigenfrequency with y > 0 first appears; at ® = ®_, y passes through zero.

t This is not to be confused with the convected instability discussed in §28.
$ We are considering the simplest boundary conditions, appropriate to perfectly conducting walls. When the
conductivity of the walls is finite, the equation of heat transfer in the wall has 1o be included. Cases where the fluid

has a free surface will also not be discussed. Here it would, strictly speaking. be necessary 1o take into account the
deformation of the surface by the perturbation and the resulting surface tension forces.
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The problem of convective instability of a fluid at rest has the particular feature that all
the eigenvalues iw are real, so that the perturbations decay or are amplified monotonically,
without oscillations. Accordingly, the stable flow resulting from the instability of the fluid
atrest is steady. We shall show this for a fluid occupying a closed cavity with the boundary
conditions (57.5) at its walls.t

We multiply equations (57.2) and (57.3) by v* and t* respectively, and integrate them
over the volume of the cavity. On integrating by parts$ for theterms v* - A\ vand t* A\ r,and
noting that the integrals over the cavity surface are zero on account of the boundary
conditions, we find

* o 3
—iw | |v? dV = |(— |curl v]* + Ro*,)dV,

o -

- ~ ' (576)
—iwP ||t dV = |(—|grad t]* + t*p,)dV.

o v /

Subtracting from these the complex conjugate equations gives

—ilw+ w*) jlvl’ dvV =2 I(tv‘, - t%p,)dV,

—ilw+w*)P Iltl’ dV = - I(tv‘, - t%p,)dV.

Lastly, we multiply the second equation by # and add, obtaining
rew j( Iv]? + RP |z}*)dV = 0.

Since the integral is positive definite, it follows that re @ = 0, as was to be proved.tt When
A < 0 (the fluid is heated from above), formally corresponding to # < 0, the integral can
be zero, and iw may be complex.

Let us now return to the equations (57.6). Multiplying the second equation by # and
adding, we find for the growth rate y = — iw the expression

-y=J/N, (57.7)

Y chollowv S. Sorokin (1953) in this derivation and in the subsequent formulation of the variational

¢ Usnng the equations
v eAv= —v*curlcurl v = div(v*xcurlv) — |curl v |*,
*At = div (r* grad 1) — |grad <P,
v grad w = div (wv)

t+ Mathematically, this proof amounts to showing that equations (57.2)- (57.4) are self-adjoint. Physically,
the result can be interpreted as follows. Let a perturbation cause 2 fluid clement 1o move upwards, say. It is then
surrounded by cooler fluid, and its temperature is reduced by conduction, but remains above that of the
environment. The buoyancy force on it is therefore upwards, and it continues 1o move in the same direction, more
slowly or more quickly according to the relation between the temperature gradient and the dissipative
coefficients. In either case, there is no “restoring force™ and therefore no oscillations. When a free surface is
present, a restoring force is provided by surface tension, which seeks 10 smooth the deformed surface; if this force
is taken into account, the statements made are no longer correct.
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where :

.
J = |[(curl v)? + ®(grad 1)’ — 2#0,) dV,

. » (57.8)
N = |(v} + #Pt%)dV;

J ;
vand r are assumed to be real. Itis well known that the eigenvalue problem for self-adjoint
linear differential operators allows a variational formulation based on expressions having
the form (57.7), (57.8). Regarding J and N as functionals of v and r, we make J an
extremum under the constraints divy = Oand N = |, the latter acting as a “normalization
condition”. Following the general rules of the variational calculus, we form the variational
equation

8J 4+ y8N — I 2wd(div v)dV = 0. (579)

where the constant y and the function w(r) act as undetermined Lagrange multipliers.
Calculating the variations (with integration by parts, using the boundary conditions
(57.5)) and equating to zero the expressions with the independent variations dv and dt, we
in fact get equations (57.2) and (57.3). The value of J calculated from this variational
problem determines, by (57.7), the lowest value of —y = —7,, that is, the growth rate of
the most rapidly amplified perturbations (or the decay rate of the least rapidly damped
ones, depending on the sign of y).

According to its derivation, the critical value # _ defines the limit of stability with respect
to infinitesimal perturbations. For the case of convective instability of a fluid at rest,
however, this value proves to be alse the limit of stability with respect to any finite
perturbations.t That is, when # < ® _ there are no solutions of the equations of motion,
other than the state of rest, which do not decay in the course of time. We shall now prove
this result (V. S. Sorokin 1954).

For finite perturbations, the equations of motion have to be written in the form

Ov/ot = —gradw + Av+ R —(v-grad) v, }
Pot/ot = At+v,—Pv-grad t,

which differ from (57.2) and (57.3) by containing non-linear terms. We carry out with these
equations just the same operations as we did with (57.2) and (57.3) when deriving (57.6)
and (57.7). Since div v = 0, the non-linear terms reduce to divergences:
ve(v-grad)v = div(io’y), t(v-grad)r = diviiciy),
and give zero when integrated. We therefore arrive at the relation
¥dN/dt = -J,

which differs from yN = —J (57.7) only by having the time derivative instead of the
product yN. According to the vanational principle formulated above, —J < y, N for any
functions v and t. Hence

(57.10)

dN(r)/dt < 2y,N(1),

t When referring to perturbations with finite amplitude we mean here those for which the non-linear terms in
(56.4) and (ﬁj)mcuw@ummmmmwmmm
equations are still satisfied.
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whence
N(t) € N(O)e> (57.11)

Below the critical value (# < #_), all growth rates are negative in the linear theory,
including the largest one y,. It therefore follows from (57.11) that N(t) - Oas t - o0, and,
since the integrand in N is positive definite, the functions v and  tend to zero also.

Let us now return to the calculation of #® . Since all the cigenvalues iw are real, the
equation y = 0 for # = & _ implies that @ = 0. The value of #_ is then found as the
smallest eigenvalue of # in the equations

Av—m‘w+Qtl=0.}
At= —p, divi=0;

this problem too can have a variational formulation (see Problem 2). Note that P does not
appear in the equations (57.12) or in the boundary conditions. Thus the critical Rayleigh
number which they yield for a given configuration of the fluid and the solid walls is
independent of the fluid substance.

The simplest problem, which is also of theoretical importancet, is that of the stability of
a layer of fluid between two infinite horizontal planes, of which the upper one is
maintained at a lower temperature than the other.

Here it is convenient to reduce (57.12) to a single equation. Taking the curl curl =
grad div— A of the first equation, then the z-component, and using the other two
equations, we get

(57.12)

Adt=RAN,t, (57.13)

where A ; = 3%/3x? + 3*/3y? is the two-dimensional Laplacian. The boundary conditions
on the two planes are
t=0, v,=0, Ov,/0z=0and I;

the last is equivalent to v, = v, = Ofor all x and y, by the equation of continuity. From the
second equation (57.12), the conditions on v, can be replaced by conditions on higher
derivatives of t

Pt Fiad < ot

7% whaTt
We seek 1 in the form
t=fl2)d(x,y), ¢ =e*" (57.19)
where k is a vector in the xy-plane, obtaining for fiz) the equation

dI 3
(az _kl) f+Qk’f=0.

The general solution is a linear combination of coshuz and sinhuz, where u =
k*— #3k3 3/1, with the three different values of the cube root. The coefficients in this

t First proposed experimentally by H. Bénard (1900) and discussed theoretically by Rayleigh (1916).
3 It has been shown by A. Pellew and R. V. Southwell (1940) that iw is real in this case.
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combination are determined by the boundary conditions, which lead to a system of
algebraic equations, and the condition for these to be compatible yields a transcendental
equation whose roots determine the functions k = k (#), n= 1, 2, . ... The inverse
functions # = &,(k) have minima for certain values of k, and the smallest of these gives
# .1 The value is found to be 1708, and the corresponding value of the wave number k , is
3 12 in units of 1/h (H. Jeffreys 1928).

Thus a horizontal layer of fluid with thickness h and a downward temperature gradient
A becomes unstable when}

BgAh® /vy > 1708 . (57.15)

When & > & _, there is steady convective flow, periodic in the xy-plane. The whole space
between the pﬁma is divided into adjacent identical cells, in each of which the fluid moves
in closed paths without passing from one cell to another. The outlines of these cells on the
bounding planes form some kind of lattice. The value of k_ determines the periodicity of
this lattice but not its symmetry; the linearized equations of motion allow in (57.14) any
function ¢(x, y) that satisfies the equation (A, — k*)¢ = 0. The uncertainty cannot be
eliminated in the linear theory. There must evidently be a “two-dimensional” structure of
the flow, having in the xy-plane only a one-dimensional periodicity, as a system of parallel
bands.tt

PROBLEMS

ProsLEM 1. Find the critical Rayleigh number for the occurrence of convection in a fluid in a vertical
cylindrical pipe along which a constant temperature gradient is maintained; the pipe walls are (a) perfectly
conducting or (b) perfectly insulating (G. A. Ostroumov 1946}

SOLUTION We seek a solution of (57.2) — (57.4) in which the convective velocity v is everywhere parallel to the
axis of the pipe (the z-axis) and the flow pattern does not vary along this axis, ie. ¢, = v, r and dw/az depend only
on the coordinates in the plane of the pipe cross-section.§ The equations become

Ow/dx =0wjdy=0, Ljo= —~Rr+dw/dz, Lir=0p,

where # = ﬂgAR‘/zundRmhepnpeuda?mtbeﬁmmnfolonu&/az-oomnt;dumnsungt
from the others, we find A ;v = #v. On the walls of the pipe (r = 1) we must have ¢ = 0 and r = 0 for case a,
dt/dr = 0 for case b. In addition, the total mass flux through a cross-section of the pipe must be zero.

The equation has solutions of the form J_(kr)cos ng and I, (kr)cos ng, where J, and [, are Bessel functions with
real and imaginary argument respectively, k* = #, r and ¢ are polar coordinates in the pipe cross-section. The
onset of convection corresponds to the solution for which # is least. This is found to be the solution withn = 1:

v = vgcos @ [J (kr)l (k) — I, kr)J, (k)]
T = (vo/ 2% cos ¢ [, (kr)l, (k) + I, (hkrlJ, (k) ),

ot nedamkoflheakuhuonsmmby(lZG«:huuadEM.MnnCm&ahmyof
Incompressible Fluids, Jerusalem 1976, and also in the books by Chandrasekhar and by Drazin and Reid cited in
§27.

! For a given value of A, this condition is always satisfied when h is sufficiently large. To avoid
misunderstanding, it should be mentioned that we are concerned here only with values of h for which the fluid
density does not vary significantly in the gravitational field. The condition is therefore not applicable to tall
columns of fluid. For these, the condition derived in §4 should be used, and shows that convection may be absent
for any column height if the temperature gradient is not too great.

tt The theoretical indications are that just above #_ only this structure is stable with respect to small
perturbations; “threc-dimensional™ prismatic structures are unstable. The experimental results depend
considerably on the conditions used, including the shape and size of the side walls, and are not definite. The three-
dimensional hexagonal structure seems to be due to the influence of surface tension at the upper free surface and
the temperature dependence of the viscosity; in the theory given here, v has of course been treated as a constant.

§ The equations also have solutions periodic in the z-direction, which contain 2 factor €. These, however, all
give higher values of &, It should be noted that the solution under consideration with k = 0 also satisfies the
exact (not lincarized) equations (57.10), since the non-lincar terms (v-grad)v and v-grad r vanish identically.
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with the gradient dw/dz = 0. The flow described by these formulac is antisymmetncal about a vertical plane
through the pipe axis bisecting the cavity; the fluid descends in one half and nises in the other. The solution shown

satisfies the condition v = 0 for r = 1. In case a, the condition r = 0 leads 10 J, (k) = 0; its smallest root gives
#, = k* = 216. In case b, the condition dt/dr = 0 leads 10

Jolk) Iglky 2

PRI
The smallest root gives # = 68

ProsLeEM 2. Formulate a variational principle for the problem of # cigenvalues with equations (57.12).

SOLUTION. We put the equations in a more symmetrical form by replacing t by a new function = 1./ ®,
again changing the unit of temperature measurement. Then
JC?.-“--—AV. \/Qv,- - AT, dive=0
Proceeding as in the derivation of (57.7), we find ./ # = J/N, where

J= }I[(eulvl’ﬂgn‘ PMY, N= I.,uv;

N is positive, as is casily seen by converting it to # =4[ (grad 7)* d¥. The variational principle is formulated as
requiring an extremum of J under the constraints div v = 0 and N = 1. The mimsmum of J determines the
smallest eigenvalue of /.



CHAPTER VI

DIFFUSION

§58. The equations of fluid dynamics for a mixture of fluids

Throughout the above discussion it has been assumed that the fluid is completely
homogeneous. If we are concerned with a mixture of fluids whose composition is different
at different points, then the equations of fluid dynamics are considerably modified.

We shall discuss here only mixtures with two components. The composition of the
mixture is described by the concentration ¢, defined as the ratio of the mass of one
component to the total mass of the fluid in a given volume element.

In the course of time, the distribution of the concentration through the fluid will in
general change. This change occurs in two ways. Firstly, when there is macroscopic motion
of the fluid, any given small portion of it moves as a whole, its composition remaining
unchanged. This results in a purely mechanical mixing of the fluid; although the
composition of each moving portion of it is unchanged, the concentration of the fluid at
any point in space varies with time. If we ignore any processes of thermal conduction and
internal friction which may also be taking place, this change in concentration is a
thermodynamically reversible process, and does not result in the dissipation of energy.

Secondly, a change in composition can occur by the molecular transfer of the
components from one part of the fluid to another. Th equalization of the concentration by
this direct change of composition of every small portion of fluid is called diffusion.
Diffusion is an irreversible process, and is, like thermal conduction and viscosity, one of
the sources of energy dissipation in a mixture of fluids.

We denote by p the total density of the fluid. The equation of continuity for the total
mass of the fluid is, as before,

dp/dt + div(pv) = 0. (58.1)

It signifies that the total mass of fluid in any volume can vary only by the movement of fluid
into or out of that volume. It must be emphasized that, strictly speaking, the concept of
velocity itself must be redefined for a mixture of fluids. By writing the equation of
continuity in the form (58.1), we have defined the velocity, as before, as the total
momentum of unit mass of fluid.

The Navier-Stokes equation (15.5) is also unchanged. We shall now derive the
remaining equations of fluid dynamics for a mixture of fluids.

In the absence of diffusion, the composition of any given fluid element would remain
unchanged as it moved about. This means that the total derivative dc/dt would be zero, i.e.
the equation dc/dt = dc/dt + v-gradc = 0 would hold. This equation can be written,
using (58.1), as

d(pc)/dt +div(pcv) =0,
227
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i.c. as an equation of continuity for one of the components of the mixture (pc being the
mass of that component in unit volume). In the integral form

d
&J‘xdy- —&ﬂ'd'

it shows that the rate of change of the amount of this component in any volume is equal to
the amount of the component transported through the surface of that volume by the
motion of the fluid.

When diffusion occurs, besides the flux pcv of the component in question as it moves
with the fluid, there is another flux which results in the transfer of the components even
when the fluid as a whole is at rest. Let i be the density of this diffusion flux, i.e. the amount
of the component transported by diffusion through unit area in unit time.t Then we have
for the rate of change of the amount of the component in any volume

o=t

or, in differential form,

d(pc)/dt = —div(pcy)—divi. (58.2)
Using (58.1), we can rewrite this equation of continuity for one component in the form
p(@c/dt + v-gradc) = —divi. (58.3)

To derive another equation, we repeat the arguments given in §49, bearing in mind that
the thermodynamic quantities for the fluid are now functions of the concentration also. In
calculating the derivative d(3 pv? + pe)/dt (in §49) by means of the equations of motion, we
had to transform the terms pde/ét and — v-grad p. This transformation must now be
modified, because the thermodynamic relations for the energy and the heat function now
contain an additional term involving the differential of the concentration:

de = Tds+(p/p*)dp +pdc,
dw = Tds+(1/p)dp + udc,
where u is an appropriately defined chemical potential of the mixture. Accordingly, an

4 The sum of the flux densities for the two components must be pv. If the flux deasity for one component is
pev + i, that for the other component is therefore p(l —cjv—i
$ It is known from thermodynamics (see SP 1, §85) that, for a mixture of two substances,

de = Tds—pdV +p,dn, +p;dn,,

where n,, n, are the numbers of particles of the two substances in unit mass of the mixture, and g, , g, are the
chemical potentials of the substances. The numbers n,, n, satisfy the relation n, m, + m;m; = 1, where m, and m,
are the masses of the two kinds of particle. If we introduce as a variable the concentration ¢ = n,m,, we have

Comparing this with the relation given in the text, we see that the chemical potential g is related to g, and g, by

B B2
p=——
m, m
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additional term pudc/ot appears in the derivative pde/dt. Writing the second thermo-
dynamic relation in the form

dp = pdw - pT ds - pudc,

we see that the term — v-grad p will contain an additional term puv-gradc.
Thus we must add pu(dc/dt + v-gradc) = — udivi to the expression (49.3). The result
s

%(ipv’ +pe) = ~div[pv(ie’ +w)~v-a’' +q] +

Os , O, . .
+pT(a+v-mds)-c.a—x.- +divg—pudivi. (58.4)

We have replaced —xgrad7 by a heat flux q, which may depend not only on the
temperature gradient but also on the concentration gradient (see the next section). The
sum of the last two terms on the right can be written

divq—pdivi = div(q— i) +i-grad u.

The expression pv(3v? + w) — v-¢’ + q which is the operand of the divergence operator
in (58.4) is, by the definition of q, the total energy flux in the fluid. The first term is the
reversible energy flux, due simply to the movement of the fluid as a whole, while the sum
—v+0’ + qis theirreversible flux. When there is no macroscopic motion, the viscosity flux
v+o' is zero, and the heat flux is simply q.

The equation of conservation of energy is

%(}pv’+pc)= —div[pv(de? +w) —v-0' +q]. (58.5)
Subtracting from (58.4), we obtain the required equation

pT(Z—:-H-gnds)-a',a-:‘;-div(q-ni)-i-gndu, (58.6)
which is a generalization of (49.4).

We have thus obtained a complete system of equations of fluid dynamics for a mixture
of fluids. The number of equations in this system is one more than for a single fluid, since
there is one more unknown function, namely the concentration. The equations are the
equation of continuity (58.1), the Navier-Stokes equations, the equation of continuity
(58.2) for one component, and equation (58.6), which determines the change in entropy. It
must be noticed that equations (58.2) and (58.6) as they stand determine only the form of
the corresponding equations of fluid dynamics, since they involve the undetermined fluxes
i and q. These equations become determinate only when i and q are replaced by
expressions in terms of the gradients of concentration and temperature. The correspond-
ing expressions will be obtained in §59.

For the rate of change of the total entropy of the fluid, a calculation entirely similar to
that of §49, but using (58.6) in place of (49.4), gives the result

psdV = — (Q—pi)-grad7 . igradp . i (58.7)

where we have omitted, for brevity, the viscosity terms.
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§59. Coefficients of mass transfer and thermal diffusion

The diffusion flux i and the heat flux q are due to the presence of concentration and
temperature gradients in the fluid. It should not be thought, however, that i depends only
on the concentration gradient and q only on the temperature gradient. On the contrary,
each of these fluxes depends, in general, on both gradients.

If the concentration and temperature gradients are small, we can suppose that i and q
are linear functions of grad u and grad 7. The fluxes q and i are independent of the
pressure gradient (for given grad u and grad 7' ), for the same reason as that given with
regard to q in §49. Accordingly, we write i and q as

i=—agraduy—fgrad7, q= —dgradpu—ygrad T+ pi.

There is a simple relation between the coefficients § and 4, which is a consequence of a
symmetry principle for the kinetic coefficients. This symmetry principle is as follows (see
SP1, §120).

Let us consider some closed system, and let x,, x,, . . . be some quantities characteriz-
ing the state of the system. Their equilibrium values are determined by the fact that, in
statistical equilibrium, the entropy S of the whole system must be a maximum, i.e. we must
have X, = 0 for all a, where X, denotes the derivative

X, = —3S/dx,. (59.1)

We assume that the system is in a state near to equilibrium. This means that all the x, are
very little different from their equilibrium values, and the X, are small. Processes will
occur in the system which tend to bring it into equilibrium. The quantities x, are functions
of time, and their rate of change is given by the time derivatives x,; we express the latter as
functions of X, and expand these functions in series. As far as terms of the first order we
have

x.a = Z Teb xb- (59-2)
b
Onsager's symmetry principle for the kinetic coefficients states that the y,, (called the
kinetic coefficients) are symmetrical with respect to the suffixes a and b:

7‘ = 7‘.. (59.3)
The rate of change of the entropy S is

$= -3 X%,

Now let the x, themselves be different at different points of the system, i.c. each volume
element have its own values of the x,. That is, we suppose the x, to be functions of the
coordinates. Then, in the expression for S, besides summing over a we must integrate over
the volume of the system:

$=— I Y X %, dv. (59.4)

Itis usually true that the values of the x, at any given point depend only on the values of the
X, at that point. In this case we can write down the relation between X, and X, for each
point in the system, and obtain the same formulae as previously.
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In the problem under consideration we take as the x, the components of the vectors i
and q — pi. Then we see from a comparison of (58.7) and (59.4) that the X, are respectively
the components of the vectors (1/7" ) grad uand (1/7 *) grad 7. The kinetic coefficients y,,
are the coefficients of these vectors in the equations

i = -ar(ﬁ‘r"‘.)_", (gul T)'
a—pi = -ar(g'r‘#.)_,,,(g-q)_

By the symmetry of the kinetic coefficients, we must have 7 ? = 67, 0r é = 7. Thisis the
required relation.
We can therefore write the fluxes i and q as

i=—agrady—fgrad T, }
q= —pTgradpu—ygrad T + si,

with only three independent coefficients a, B, y. It is convenient to eliminate grad u from
the expression for the heat flux, replacing it by i and grad 7. Then we have

i=—agradu—fgrad T, (59.6)
q=(u+pT/a)i—xgrad T,

(59.5)

where
k=y—-pT/x (59.7)

If the diffusion flux i is zero, we have pure thermal conduction. For this tp beso, Tand u
must satisfy the equation agrad u + fgrad 7 = 0, or adu + fdT = 0. The integration of
this equation gives a relation of the form f(c, T) =0 which does not contain the
coordinates explicitly. (The chemical potential is a function of the pressure, as well as of ¢
and 7, but in equilibrium the pressure is constant) This relation determines the
dependence of the concentration on the temperature which must hold if there is no
diffusion flux. Moreover, for i = 0 we have from (59.7)

= —xgrad T,

so that x is just the thermal conductivity.
Let us now change to the usual variables p, T and ¢. We have

grad p = (Op/0c), ; grad ¢ + (0u/0T ), ,grad T + (0u/dp), rgrad p.
In the last term we use the thermodynamic relation
d¢ = —sdT + Vdp+pudc, (59.8)
where ¢ is the Gibbs free energy per unit mass, and ¥ is the specific volume, obtaining

(Op/dp).. = *¢/dpdc = (éV/éc), ,
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Substituting grad x in (59.6) and putting

6;4)
o-_(_ .
p\oc ),y (59.9)

pkyD|T = a(0p/dT ), ,+ B,

k, = p(@V/éc), ;/(0u/éc), (59.10)

we obtain
i=—pD[gradc +(k,/T)grad T + (k,/p)gradp], (59.11)
q = [k (0u/dc), ;— T (0p/dT), .+ pli—xgrad T. (59.12)

The coefficient D is called the diffusion coefficient or mass transfer coefficient; it gives the
diffusion flux when only a concentration gradient is present. The diffusion flux due to the
temperature gradient is given by the thermal diffusion coefficient k .D; the dimensionless
quantity k,is called the thermal diffusion ratio.

The last term in (59.11) need be taken into account only when there is a considerable
pressure gradient in the fluid (caused by an external field, say). The coefficient k, D may be
called the barodiffusion coefficient; we shall discuss it further at the end of this section.

lnasmgle fluid there is, of course, no diffusion flux. Hence it is clear that k, and k, must
vanish in each of the two limiting cases ¢ = 0 and ¢ = 1.

The condition that the entropy must increase places certain restrictions on the
coefficients in formulae (59.6). Substituting these formulae in the expression (58.7) for the
rate of change of the entropy, we find

2 2
Ipsdl’ f"("“ T v+ i—TdV +. (59.13)

Hence it is clear that, besides the condition x > 0 which we already know, we must have
also a > 0. Bearing in mind that the derivative (du/éc), ,is always positive according to
one of the thermodynamic inequalities (see SP1, §96), we therefore find that the diffusion
coefficient must be positive: D > 0. The quantities k, and k,, however, may be either
positive or negative.

We shall not pause to write out the lengthy general equations obtained by substituting
the above expressions for i and q in (58.3) and (58.6). We shall take only the case where
there is no significant pressure gradient, while the concentration and temperature of the
fluid vary so little that the coefficients in the expressions (59.11) and (59.12) may be
supposed constant, although they are in general functions of ¢ and 7. Furthermore, we
shall suppose that there is no macroscopic motion in the fluid except that which may be
caused by the temperature and concentration gradients. The velocity of this motion is
proportional to the gradients, and the terms in equations (58.3) and (58.6) which involve
the velocity are therefore quantities of the second order, and may be neglected. The term
—i+grad pin (58.6) is also of the second order. Thus we have péc/dt +divi = 0, pTds/dt
+ div(q—pui) = 0.

Substituting for i and q the expressions (59.11) and (59.12) (without the term in grad p),
and transforming the derivative és/ét as follows:

B_(2) To(Z) g7 (%) &
ot \oT)., ot \oc),,o¢ Ta \eT), .o
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(since by (59.8) (ds/dc), y= —@*$/cdT = —(dp/@T), ), we obtain after a simple
calculation

dc/dt = D[Ac+ (k,/T)AT), (59.14)
0T/ dt = (ky/c,) (3p/dc), ; &c/dt = yAT. (59.15)

This system of linear equations determines the temperature and concentration distri-
butions in the fluid.

There is a particularly important case where the concentration is small. When the
concentration tends to zero, the diffusion coefficient tends to a finite constant, but the
thermal diffusion coefficient tends to zero. Hence k, is small for small concentrations, and
we can neglect the term k; A 7 in (59.14), which then becomes the diffusion equation

dc/ot = DAc. (59.16)

The boundary conditions on the solution of (59.16) are different in different cases. At
the surface of a body insoluble in the fluid the normal component of the diffusion fluxi =
— pD grad c must vanish, i.c. we must have dc/én = 0. If, however, there is diffusion from a
body which dissolves in the fluid, equilibrium is rapidly established near its surface, and
the concentration in the fluid adjoining the body is the saturation concentration ¢, ; the
diffusion out of this layer takes place more slowly than the process of solution. The
boundary condition at such a surface is therefore ¢ = ¢,. Finally, if a solid surface absorbs
the diffusing substance incident on it, the boundary condition is ¢ = 0; an example of such
a case is found in the study of chemical reactions at the surface of a solid.

Since the equations of pure diffusion (59.16) and of thermal conduction are of exactly
the same form, we can immediately apply all the formulae derived in §§51 and 52 to the
case of diffusion, simply replacing T by ¢ and y by D. The boundary condition for a
thermally insulating surface corresponds to that for an insoluble surface, while a surface
maintained at a constant temperature corresponds to a soluble surface from which
diffusion takes place.

In particular, we can write down, by analogy with (51.5), the following solution of the
diffusion equation:

M
ey, 1) = a(;b—'—)} exp(—r?/4D1) (59.17)

This gives the distribution of the solute at any time, if at time ¢ = 0 it is all concentrated at
the origin (M being the total amount of the solute)

There is an important comment to be made regarding the above discussion. The
expressions (59.5), or (59.11) and (59.12), are the first non-vanishing terms in an expansion
of the fluxes in terms of the derivatives of the thermodynamic quantities. It is known from
kinetic theory (see PK, §§5, 6, 14) that such an expansion is microscopically (for gases) one
in powers of I/L, the ratio of the molecular mean free path [ to the characteristic distance
L for the problem. Including terms in higher-order derivatives would imply including
quantities of higher order in this ratio. The terms next after those shown in (59.5), formed
from derivatives of the scalars u and 7, would involve third-order derivatives, grad Ay
and grad A T; there are certainly much less than those already included, in the ratio (I/ L)%

The expressions for the fluxes may, however, also contain terms involving velocity
derivatives. With the first-order derivatives dv,/éx, we can construct only tensor quantities;
these form the viscous stress tensor which appears in the momentum flux density tensor.
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Vectors can be formed from the second-order derivatives. For example, the diffusion flux
density vector contains terms

i"= pd, Av+pi, grad divv. (59.18)

The condition that these terms be small in comparison with those which already appear
in (59.11) and (59.12) leads to further conditions on the validity of the latter. For example,
if it is meaningful to retain the grad p term in (59.11) while omitting the terms (59.18), we
must have

D(p, —p\)/pL» AU/L?,
where p, — p, is a characteristic pressure drop over the distance L, and U is a characteristic
velocity drop; in this estimate, we have put k, ~ 1 (see Problem). According to kinetic
theory, D and 4 can be expressed in terms of quantities describing the thermal motion of
the gas molecules. It is evident from dimensional considerations that /D ~ [ /v,, where v,

is the mean thermal velocity of the molecules. Using also the fact that the gas pressure
p ~ pv,?, we obtain the condition

p:—py ® poUI/L (59.19)

This is by no means necessarily satisfied. On the contrary, in the important case of
steady flow at low Reynolds numbers, the grad p and A v terms in the diffusion flux have

the same order of magnitude (Yu. M. Kagan 1962). For this flow, the pressure gradient is
related to the velocity derivatives by (20.1)

(1/p)grad p = vAv, (59.20)
we assume that the gas may be regarded as incompressible. The kinematic viscosity is
v~ v.l, and this equation therefore gives

P2 —p1 ~ poU/L ~ po UlJ/L,

instead of the inequality (59.19). Since Av is expressible directly in terms of grad p by
(20.1), the need to include the grad p and A v terms at the same time signifies that the
barodiffusion coefficient k, is replaced by an effective coefficient

(k')‘= k'—pI'/P'D. (59.21)

Note that it is therefore a kinetic quantity and not a purely thermodynamic one like k, in
(59.10).

PROBLEM
Determine the barodiffusion coefficient for a mixture of two perfect gases.

SoLuTion. We have for the specific volume V = kT (n, +n;)/p (the notation is that used in the second
footnote to §58), and the chemical potentials are (see SP 1, §93)

M = L(p. T)+ Tlog[ny/(n, +n3)),

#2 = L(p, T)+ Tlog[n;/(m; +n;)).
The numbers n, and n, are expressed in terms of the concentration of the first component by n,m, = c,
nym, = 1 —¢c. A calculation using formula (59.10) gives

l=-¢c ¢
k, = (m; —m,)c(l —c)[—- +—]-
- om,
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§60. Diffusion of particles suspended in a fluid

Under the influence of the molecular motion in a fluid, particles suspended in the fluid
move in an irregular manner (called the Brownian motion). Let one such particle be at the
origin at the initial instant. Its subsequent motion may be regarded as a diffusion, in which
the concentration is represented by the probability of finding the particle in any particular
volume element. To determine this probability, therefore, we can use the solution (59.17)
of the diffusion equation. The possibility of this procedure is due to the fact that, for
diffusion in weak solutions (i.e. when ¢ <€ 1, which is when the diffusion equation can be
used in the form (59.16)), the particles of the solute hardly affect one another, and so the
motion of each particle can be considered independently.

Let w(r, t)dr be the probability of finding the particle at a distance between rand r + dr
from the origin at time t. Putting in (59.17) M/p = 1 and multiplying by the volume
4nr? dr of the spherical shell, we find

w(r, t)dr = 3 J(: D) exp(—r?/4Dt)r* dr. (60.1)
Let us determine the mean square distance from the origin at time t. We have
r = J‘ riw(r, t)dr. (60.2)
o
The result, using (60.1), is
r? = 6Dt. (60.3)

Thus the mean distance travelled by the particle during any time is proportional to the
square root of the time.

The diffusion coefficient for particles suspended in a fluid can be calculated from what is
called their mobility. Let us suppose that some constant external force f (the force of
gravity, for example) acts on the particles. In a steady state, the force acting on each particle
must be balanced by the drag force exerted by the fluid on a moving particle. When the
velocity is small, the drag force is proportional to it and is v/b, say, where b is a constant.
Equating this to the external force f, we have

v = bf, (60.4)

1. the velocity acquired by the particle under the action of the external force is
proportional to that force. The constant b is called the mobility, and can in principle be
calculated from the equations of fluid dynamics. For example, for spherical particles with
radius R, the drag force is 6anRv (see (20.14)), and therefore the mobility is

b = 1/6mnR. (60.5)

For non-spherical particles, the drag depends on the direction of motion; it can be
written in the form a;,v,, where a, is a symmetrical tensor (see (20.15)). To calculate the
mobility we have to average over all orientations of the particle; if a,, a,, a, are the
principal values of the symmetrical tensor a,, then

b=1(l+l+L). (60.6)
3 a, a, a,
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The mobility b is simply related to the diffusion coefficient D. To derive this relation, we
write down the diffusion flux i, which contains the usual term — pD grad ¢ due to the
concentration gradient (we suppose the temperature constant), and also a term involving

the velocity acquired by the particle owing to the external forces. This latter term is
evidently pcv = pcbf. Thust

i= —pD grad c + pchf. (60.7)
This can be rewritten as

i= -—‘;---—-gnl;n-pcbf

where u is now the chemical potential of the suspended particles (which act as the solute).
The dependence of this potential on the concentration (in a weak solution) is

p=Tlogc+y¥(p, T)
(see SP 1, §87), so that

i= —(pDc/T )grad u+ pchbf.

In thermodynamic equilibrium, there is no diffusion, and i must be zero. On the other
hand, when an external field is present, the condition of equilibrium requires u + U to be
constant throughout the solution, where U is the potential energy of a suspended particle
in that field. Then grad u = — grad U = —{, and the equation i = 0 gives

D =Tb. (60.8)

This is Einstein’s relation between the diffusion coefficient and the mobility.
Substituting (60.5) in (60.8), we find the following expression for the diffusion coefficient
for spherical particles:
D =T/6nnR. (60.9)

Besides the translatory Brownian motion and diffusion of suspended particles, we may
consider also their rotary Brownian motion and diffusion. Just as the translatory diffusion
coefficient is calculated in terms of the drag force, so the rotary diffusion coefficient can be
expressed in terms of the moment of the forces on a particle executing a rotary movement
in the fluid.

PROBLEMS

PROBLEM 1. Particles execute Brownian motion in a fluid bounded on one side by a planc wall; particles
incident on the wall “adhere™ to it. Determine the probability that a particle which s at a distance x,, from the wall
at time t = 0 will have adhered to it after a time ¢.

SoLuTiON. The probability distribution w(x, 1) (where x is the distance from the wall) is determined by the
diffusion equation, with the boundary condition w = 0 for x = 0 and the imitial condition w = d(x — x;) for
t = 0. Such a solution is given by formula (52.4) when T is replaced by w, y by D, and w, (x") in the integrand
by d(x’ — x ) We then obtain

wix, ) =3 J— <Dn P —x— — Xo)* /4Dr] —exp[ — (x + xo)° /4D1]}.

t Hmc may bcdeﬁmdsthenmbadnspaddprtdspa-.—sd&e&nd.ud i as their number
flux density.
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The probability of adhering to the wall per unit time is given by the diffusion Sux Ddw/x for x = 0, and the
required probability W(r) over the time ¢ is
W)= oj'(a-/oxl,..a.
9

Substituting for w, we find
W) = 1 —erf[xe/2,/(DD)).
ProsLEM 2. Determine the order of magnitude of the time t duning which a particle suspended in a fluid turns
through a large angle about its axis.
SOLUTION. The required time t is that during which a particle in Brownian motion moves over a distance of
lheo:?a'ol'iu lincar dimension a. According to (60.3) we have t ~ /D, and by (60.9) D ~ T/na. Thus
t~na’/T.



CHAPTER VII

SURFACE PHENOMENA

§61. Laplace’s formula

In this chapter we shall study the phenomena which occur near the surface separating
two continuous media (in reality, of course, the media are separated by a narrow
transitional layer, but this is so thin that it may be regarded as a surface). If the surface of
separation is curved, the pressures near it in the two media are different. To determine the
pressure difference (called the surface pressure), we write down the condition that the two
media be in thermodynamic equilibrium together, taking into account the properties of
the surface of separation.

Let the surface of separation undergo an infinitesimal displacement. At each point of the
undisplaced surface we draw the normal. The length of the segment of the normal lying
between the points where it intersects the displaced and undisplaced surfaces is denoted by
6{. Then a volume element between the two surfaces is 8(d f, where df is a surface element.
Let p, and p, be the pressures in the two media, and let 8{ be reckoned positive if the
displacement of the surface is towards medium 2 (say). Then the work necessary to bring
about the above change in volume is

J'(‘Pl +py)oldf.

The total work 4R done in displacing the surface is obtained by adding to this the work
connected with the change in area of the surface. This part of the work is proportional to
the change df in the area of the surface, and is adf, where a is called the surface-tension
coefficient. Thus the total work is

OR = —J(Pn-Pz)de+ﬁﬁ (61.1)

The condition of thermodynamic equilibrium is, of course, that 4R be zero.

Next, let R, and R, be the principal radii of curvature at a given point of the surface; we
reckon R, and R, as positive if they are drawn into medium 1. Then the elements of length
dl, and dl; on the surface in its principal sections receive increments (8(/R,)dl, and
(6/R;)dl; respectively when the surface undergoes an infinitesimal displacement; here
dl, and dl, are regarded as elements of the circumference of circles with radii R, and R;.
Hence the surface element df = dl, dl, becomes, after the displacement,

dl, (1+8(/R,)dl;(1 +8(/R;) = dl, dl;(1 +8(/R, +{/R;),
i.e. it changes by 6{d f(1/R, + 1/R;). Hence we see that the total change in area of the

surface of separation is
1 1
of = J'&((R—"*R—l)df (61.2)
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Substituting these expressions in (61.1) and equating to zero, we obtain the equilibrium

J l

This condition must hold for every infinitesimal dnphcemem of the surface, i.e. for all 5.
Hence the expression in braces must be identically equal to zero:

1 1
Pl‘Pz'G(- *—)- (61.3)

This is Laplace's formula, which gives the surface pressure.t We see that, if R, and R, are
positive, p, — p, > 0. This means that the pressure is greater in the medium whose surface
isconvex. If R, = R, = o, i.c. the surface of separation is plane, the pressure is the same in
either medium, as we should expect.

Let us apply formula (61.3) to investigate the mechanical equilibrium of two adjoining
media. We assume that no external forces act, either on the surface of separation or on the
media themselves. Then the pressure is constant in each body. Using formula (61.3), wecan
therefore write the equation of equilibrium as

1 1

R, + R, = constant. (614)
Thus the sum of the curvatures must be a constant over any free surface of separation. If
the whole surface is free, the condition (61.4) means that it must be spherical (for instance,
the surface of a small drop, for which the effect of gravity may be neglected). If, however,
the surface is supported along some curve (for instance, a film of liquid on a solid frame),
its shape is less simple.

When the condition (61.4) is applied to the equilibrium of thin films supported on a solid
frame, the constant on the right must be zero. For the sum 1/R, + 1/R, must be the same
everywhere on the free surface of the film, while on opposite sides of the film it must have
opposite signs, since, if one side is convex, the other side is concave, and the radii of
curvature are the same with opposite signs. Hence it follows that the equilibrium condition
for a thin film is

1 l
—_—— = 1.5
R, Rz 0. (61.5)
Let us now consider the equilibrium condition on the surface of a medium in a
gravitational field. We assume for simplicity that medium 2 is simply the atmosphere,
whose pressure may be regarded as constant over the surface, and that medium 1 is an
incompressible fluid. Then we have p, = constant, while p,, the fluid pressure, is by (3.2)
p; = constant — pgz, the coordinate z being measured vertically upwards. Thus the
equilibrium condition becomes
1 1 gpz

— + — +—- = constant. 61.6
R, R, « (61.6)

t ‘l'heptoofpvenheredsﬁmfromthansrl §156, essentially only in that here we are considering a surface
of separation having any shape, not necessarily sphenical.

R~z
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It should be mentioned that, to determine the equilibrium form of the surface of the
fluid in particular cases, it is usually convenient to use the condition of equilibrium, not in
the form (61.6), but by directly solving the variational problem of minimizing the total free
energy. The internal free energy of an incompressible fluid depends only on the volume of
the fluid, and not on the shape of its surface. The latter affects, firstly, the surface free energy
Ja df and, secondly, the energy in the external field (gravity), which is gp | z dV. Thus the
equilibrium condition can be written

« Idf-c- ap jx dV = minimum. (61.7)

The minimum is to be determined subject to the condition
jdl’ = constant, (61.8)

which expresses the fact that the volume of the fluid is constant.
The constants a, p and g appear in the equilibrium conditions (61.6) and (61.7) only in
the form a/gp. This ratio has the dimensions cm?®. The length

a = ./(2a/gp) (61.9)

is called the capillary constant for the substance concerned.t The shape of the fluid surface
is determined by this quantity alone. If the capillary constant is large compared with the
dimension of the medium, we may neglect gravity in determining the shape of the surface.

In order to find the shape of the surface from the condition (61.4) or (61.6), we need
formulae which determine the radii of curvature, given the shape of the surface. These
formulae are obtained in differential geometry, but in the general case they are somewhat
complicated. They are considerably simplified when the surface deviates only slightly from
a plane. We shall derive the appropriate formula directly, without using the general results
of differential geometry.

Let z = {(x, y) be the equation of the surface; we suppose that { is everywhere small, i.e.
that the surface deviates only slightly from the plane z = 0. As is well known, the area fof
the surface is given by the integral

oo ) o

or, for small {, approximately by

2 2
A A e

o{ 086( of ad
6]’ {531-4'37’-}“(”.

The variation éf is

t For water (eg), @ = 0-39cm at 20°C.
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Integrating by parts, we find

a2y
6[‘ -I(a—xj +67’ )dedy
Comparing this with (61.2), we obtain

1 1 3L

R, +Rz - (ax,+ay,). (61.11)
This is the required formula; it determines the sum of the curvatures of a slightly curved
surface.

When three adjoining media are in equilibrium, the surfaces of separation are such that
the resultant of the surface-tension forces is zero on the common line of intersection. This
condition implies that the surfaces of separation must intersect at angles (called angles of
contact) determined by the values of the surface-tension coefficients.

Finally, let us consider the question of the boundary conditions that must be satisfied at
the boundary between two fluids in motion, when the surface-tension forces are taken into
account. If the latter forces are neglected, we have at the boundary between the fluids
N (03,4 — 0y, u) = 0, which expresses the equality of the forces of viscous friction on the
surface of each fluid. When the surface tension is included, we have to add on the right-

hand side a force determined in magnitude by Laplace’s formula and directed along the
normal:

1 1
MOy u—MOy 4= a(k—'+-k—z)n.-. (61.12)

This equation can also be written

(Py—p2)n = ("1.&“0’2.&)"&+¢(RL+RL)R.'- (61.13)
1 2
If the two fluids are both ideal, the viscous stresses ¢’ are zero, and we return to the simple
equation (61.3).

The condition (61.13), however, is still not completely general. The reason is that the
surface-tension coefficient x may not be constant over the surface (for example, on account
of a variation in temperature). Then, besides the normal force (which is zero for a plane
surface), there is another force tangential to the surface. Just as there is a body force
— grad p per unit volume in cases where the pressure is not uniform, so we have here a
tangential force f, = grad a per unit area of the surface of separation. In this case we take
the positive gradient, because the surface-tension forces tend to reduce the area of the
surface, whereas the pressure forces tend to increase the volume. Adding this force to the
right-hand side of equation (61.13), we obtain the boundary condition

1 1 Ox
[Pl—Pz“'a(R_l"'E‘)]nn '("1.:""2.&)&4‘5;; (61.14)

the unit normal vector n is directed into medium 1. We notice that this condition can be
satisfied only for a viscous fluid: in an ideal fluid, 0", = 0and the left-hand side of equation
(61.14) is a vector along the normal, while the right-hand side is in this case a tangential
vector. This equality cannot hold, except of course in the trivial case where both sides are
zero.
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PROBLEMS

ProsLeM 1. Determine the shape of a film of hiquid supported on two circular frames with their centres on a
line perpendicular to their planes, which are parallel; Fig. 41 shows a cross-section of the film.

N

SoLuTiON. The problem amounts to that of finding the surface having the smallest area that can be formed by
the revolution about the line r = 0 of a curve 7 = z(r) which passes between two given points A and B. The area of
a surface of rotation is

L]
[ 2:] Fir,r')dz, F =r(l +"‘)’.

where r' = dr/dz. The first integral of Euler’s equation for the problem of minimizing such an integral (with F
independent of z) is

F —r' OF |&r" = constant.
In the present case, this gives
r=c, (147}

whence we have by integration r = ¢, cosh[(z —¢;)/c; ]. Thus the required surface (called a catenoid) is that
formed by the revolution of a catenary. The constants ¢, and ¢; must be chosen so that the curve r(z) passes
through the given points 4 and B. The value of ¢; depends only on the choice of the onigin of z. For the constant
¢, however, two values are obtained, of which the larger must be chosen (the smaller does not give a minimum of
the integral).

When the distance h between the frames increases, it reaches a value for which the equation for the constant ¢,
no longer has a real root. For greater values of h, only the shape consisting of one film on each frame is stable. For

example, for two frames with equal radius R the catenoid form is impossible for a distance h between the frames
greater than 1-33R.

ProsLEM 2. Determine the shape of the surface of a fluid in a gravitational field and bounded on one side by a
vertical plane wall. The angle of contact between the fluid and the wall is # (Fig 42)

Fic 42
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SOLUTION. We take the coordinate axes as shown in Fig. 42. The plane x = 015 the planc of the wall, and z = 0
u(hcplamoﬂheﬂudwrfml‘ufromlhenl‘nenhofmdlhmﬁn: = z(x)are R, = o R; =
~(1+2) /2", so that equation (61.6) becomes

2 ™ '
?'61:")"”"""" @
where a is the capillary constant. For x = oo we must have z = 0, 1/R; = 0, and the constant is therefore zero, A
first integral of the resulting equation is
2
Juse= 4" @
From the condition at infinity (z = 2" = 0 for x = @) we have 4 = 1. A second integration gives
= — "-J—z‘ ( _f.’.)
x 75003& . +a e +xq.
The constant x, must be chosen so that, at the surface of the wall (x = 0) we have 2" = ~cotfor, by (2),z = A,
where h = a,/(1 —sin6) is the height to which the fluid rises at the wall itself.

ProsLeM 3. Determine the shape of the surface of a fluid nsing between two parallel vertical flat plates (Fig.
43).

1
,g x

Fic 43

SOLUTION. We take the yz-plane balf-way between the two plates, and the xy-plane to coincide with the fluid
surface far from the plates. In equation (1) of Problem 2, which gives the condition of equilibrium and is therefore
vahdeverywhaeonthemfaoeoﬂhellmdMm&ephsﬂmmmux-ao
again the constant as zero. In the integral (2), the constant A is now different according as |x| > §d or
|x| < 4d (the function z(x) having a discontinuity for | x| = $d). For the space between the plates, the conditions
arez = 0for x = 0and z" = coté for x = §d, where 0 is the angle of contact. According to (2) we have for the
heights z, = z(0) and z, = z(§d) 2, = a. /(4 — 1), 2, = a, /(4 —sinf). Integrating (2), we obtain

. /14 ~coud)
(A-72%)a*)dz =1a m{d{
Jll=(4=2/a)) VA —cosi)’
2o . ®
whentiunewnrhblerdaudtozbyx-d(A—mtlT&iucb&mwmthin
terms of elementary functions. The constant A is found from the condition that z = z, for x = §d, or

[—

The formulae obtained above give the shape of the fluid surface in the space between the plates. Asd — 0, A tends
to infinity. Hence we have ford € a

-9
"=7‘2 f eoscdtsy‘;cou.

A = (a*/d*) cos® 6. The height to which the fluid rises is 2, 3 7, 3 (@°/d) cos &, this formula can also be
obtained directly, of course.
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ProsLeM 4. A thin non-uniformly heated layer of fluid rests under gravity on a horizontal plane solid surface;
its temperature is a given function of the coordinate x in the plane, and (because the layer is thin) may be
supposed independent of the coordinate z across the layer. The non-uniform heating results in the occurrence of
a steady flow, and its thickness { consequently varies in the x-direction. Determine the function {(x)

SoLUTION. The fluid density p and the surface tension a are, together with the temperature, known functions
of x. The fluid pressure p = p, + pg({ — z), where p, is the atmospheric pressure (the pressure on the free surface);
the variation of pressure due to the curvature of the surface may be neglected. The fluid velocity in the layer may
be supposed everywhere parallel to the x-axis. The equation of motion is

nd*v/dz* = dp/dx = g[d(p{)/dx - 2dp/dx]). (1)
On the solid surface (z = 0) we have v = 0, while on the free surface (z = {) the boundary condition (61.14) must
be fulfilled; in this case it is n[dv/dz]), .. = da/dx. Integrating equation (1) with these conditions, we obtain
e = gz({ - $2)d (p({)/dx - $gz(3(* — %) dp/dx — z da/dx. 2
Since the flow is steady, the total mass flux through a cross-section of the layer must be zero:
¢

!-d:-u

Substituting (2), we find

a? 2
*P;*K ;-;d—x'

which determines the function {(x). Integrating, we obtain
o = 3,'*” p '*4"«-.-} &)

If the temperature (and therefore p and a) varies only slightly, then (3) can be written
0 = Lo (po/p) 4 3(a—20)/pg.
where {, is the value of { at a point where p = p, and a = =,.

§62. Capillary waves

Fluid surfaces tend to assume an equilibrium shape, both under the action of the force
of gravity and under that of surface-tension forces. In studying waves on the surface of a
fluid in §12, we did not take the latter forces into account. We shall see below that
capillarity has an important effect on gravity waves with short wavelength.

As in §12, we suppose the amplitude of the oscillations small compared with the
wavelength. For the velocity potential we have as before the equation A¢ = 0. The
condition at the surface of the fluid is now different, however: the pressure difference
between the two sides of the surface is not zero, as we supposed in §12, but is given by
Laplace’s formula (61.3).

Wedenote by { the z coordinate of a point on the surface. Since { is small, we can use the
expression (61.11), and write Laplace’s formula as

Here pis the pressure in the fluid near the surface, and p,, is the constant external pressure.
For p we substitute, according to (12.2),

p= —pgl{—pdd/at,
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obtaining

2 (37 &
”‘*"at (ag ayc) .

for the same reasons as in §12, we can omit the constant p,, if we redefine ¢. Differentiating

this relation with respect to t, and replacing 4{/dt by d¢/dz, we obtain the boundary
condition on the potential ¢:

0 a’¢ ’¢ ¢
pgaz —a;z — 5(5;—1'6— =0 for z=0. (62])

Let us consider a plane wave propagated in the direction of the x-axis. As in §12, we
obtain a solution in the form ¢ = Ae** cos(kx — wt). The relation between k and @ is now
obtained from the boundary condition (62.1), and is

@* = gk +ak®/p (62.2)

(W. Thomson 1871).

We see that, for long wavelengths such that k < J (gp/a), or k € 1/a (where a is the
capillary constant), the effect of capillarity may be neglected, and we have a pure gravity
wave. In the opposite case of short wavelengths, the effect of gravity may be neglected.
Then

wl = ak’/p_ (62-3)

Such waves are called capillary waves or ripples. Intermediate cases are referred to as
capillary gravity waves.

Let us also determine the characteristic oscillations of a spherical drop of incom-
pressible fluid under the action of capillary forces. The oscillations cause the surface of the

drop to deviate from the spherical form. As usual, we shall suppose the amplitude of the
oscillations to be small.

We begin by determining the value of the sum 1/R, + 1/R, for a surface slightly
different from that of a sphere. Here we proceed as in the derivation of formula (61.11).
The area of a surface given in spherical polar toordinatest r, 8, ¢ by a functionr = r(6, ¢)
is

2z =

o[ [ ) ) s

A spherical surface is given by r = constant = R (where R is the radius of the sphere),and a
neighbouring surface by r = R + {, where { is small. Substituting in (62.4), we obtain
approximately

f= j! {(R +0F +_2,_[(%), s (gi)’]} sin6 d6 dé.

t lnthermndadthsm¢duacthemmhlqhadnmmmwby&
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Let us find the variation éf in the areca when { changes. We have

In »
6f-jf{2(k+c)x %%4 l'o:i?:}“"“o“
oo

Integrating the second term by parts with respect to 6, and the third by parts with respect
to ¢, we obtain

5f = I I{z(n “"—6‘%( 'no%)-;;,égﬁ-}xsinowu

If we divide the expression in braces by R(R + 2{), the resulting coefficient of 4{df
= O{R(R +2{) sinfl df d¢ in the integrand is, by formula (61.2), just the required sum of
the curvatures, correct to terms of the first order in {. Thus we find

1 1 2 2L 1 1 & 1 éf. &
n—,'*n—,'i‘iz‘iz{;..sz*aaa—o(“"io)}- e

The first term corresponds to a spherical surface, for which R, = R, = R.
The velocity potential ¢ satisfies Laplace’s equation A ¢ =0, with a boundary
condition at r = R like that for a plane surface:

Y 2 20 11 af. &\ 1 ¥

P “{E'F'F[Eéa—o( °"a—o)*€niéa—¢5]}+’°‘°'
The constant p, + 2a/R can again be omitted; differentiating with respect to time and
putting d{/dt = v, = dy /dr, we have finally the boundary condition on ¥:

a2y W @ af. .o 1 3y
Paf‘—{zar a,[ ..o'a—o(“"”?aa)*;.-;sz]}'°

for r=R. (62.6)

We shall seek a solution in the form of a stationary wave: ¢ = ¢ “*f(r, 6, @), where the
function fsatisfies Laplace’s equation, A\ f = 0. As is well known, any solution of Laplace’s
equation can be represented as a linear combination of what are called volume spherical
harmonic functions r'Y,, (0, ¢), where Y, (6, $) are Laplace’s spherical harmonics:
Y. (0, @) = P™ (cosB)e™*. Here P;" (cosf) = sin™8 d™ P, (cos#)/d (cosf)™ is what is called
an associated Legendre function, P,(cosf) being the Legendre polynomial of order I. As is
well known, [ takes all integral values from zero upwards, while m takes the values 0, + 1,
+2,..., L
Accordingly, we seek a particular solution of the problem in the form

¥ = Ae “r' P (cosf)e™". (62.7)
The frequency @ must be such as to satisfy the boundary condition (62.6). Substituting the
expression (62.7) and using the fact that the spherical harmonics Y, satisfy

1 8/, oY\ 1 &Y
s—mb-a—o(mnO—ga-)i- sin20 a‘z +‘(l+l)Y-80,
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we find (cancelling ¢)

pw? + la[2—1(1+1))/R® =0,
or

@? = al(l-1)(I+2)/pR? (62.8)

(Rayleigh 1879).

This formula gives the eigenfrequencies of capillary oscillations of a spherical drop. We
see that it depends only on [, and not on m. To a given [, however, there correspond 2/ + 1
different functions (62.7). Thus each of the frequencies (62.8) corresponds to 2/ + 1
different oscillations. Independent oscillations having the same frequency are said to be
degenerate; in this case we have (2/ + 1)-fold degeneracy.

The expression (62.8) vanishes for | = Oand | = 1. The value | = 0 would correspond to
radial oscillations, i.e. to spherically symmetrical pulsations of the drop; in an incom-
pressible fluid such oscillations are clearly impossible. For | = 1 the motion is simply a
translatory motion of the drop as a whole. The smallest possible frequency of oscillations
of the drop corresponds to | = 2, and is

@ o = +/(82/pR?). (62.9)

PROBLEMS

ProsLEM 1. Determine the frequency as a function of the wave number for capillary gravity waves on the
surface of a liquid with depth h.

SOLUTION. Substituting in the condition (62.1) ¢ = A cosikx — ext) cosh k(z + k) (cf. §12, Problem 1), we
:}mm:)kz-w-ak’/p)unhul-'akh)lnmmfaﬁm-&fabunm(ki(l)nhve
= ghk® +ahk®/p

PrOBLEM 2. Determine the damping coefficient for capillary waves.
SOLUTION. Substituting (62.3) in (25.5), we find y = 29k?/p = 29e*? /p" P 2* 2.

PrOBLEM 3. Find the condition for the stability of a horizontal tangeatial discontinuity in a gravitational
field, taking account of surface tension (the fluids on the two sides of the surface of discontinuity being supposed
different (W. Thomson 1871).

SoLuTiON. Let U be the velocity of the upper fluid relative to the lower. On the onginal flow we superpose a
perturbation periodic in the horizontal direction, and seck the velocity poteatial in the form
¢ = Ae** cos (kx — i) in the lower fiuid,
¢ = A'e " cos (kx — wt) + Ux in the upper fluid.

For the lower fluid we have on the surface of discontinuity v, = 8¢ /&2 = &/, where [ is a vertical coordinate in
the surface of discontinuity, and for the upper fluid

v, =09 )0z = Ud[/ox + & /v
The condition of equal pressures in the two fluids at the surface of discontinuity s
POt + pgl —ad*{|ox* = p'd¢ |t + p'gl +¥p'#* — U

only terms of the first order in A’ need be retained in expanding the expression v — U?. We seek the
displacement { in the form { = a sin(kx — ). Substituting ¢, ¢" and { in the above three conditions for z = 0, we
obtain three equations from which a, A and A" can be chiminated, lcaving

kp'U . [[kele—p)) _Kpp’ Uj+3’_]

p+p PP (p+p’f PP

m-1e
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In order that this expression should be real for all &, it is necessary that
Ut<daglp=p)p+p V199"
If this condition does not hold, there are complex @ with a positive imaginary part, and the motion is unstable.

§63. The effect of adsorbed films on the motion of a liquid

The presence on the surface of a liquid of a film of adsorbed material may have a
considerable effect on the hydrodynamical properties of the surface. The reason is that,
when the shape of the surface changes with the motion of the liquid, the film is stretched or
compressed, i.e. the surface concentration of the adsorbed substance is changed. These
changes result in the appearance of additional forces which have to be taken into account
in the boundary conditions at the free surface.

Here we shall consider only adsorbed films of substances which may be regarded as
insoluble in the liquid. This means that the substance is entirely on the surface, and does
not penetrate into the liquid. If the adsorbed substance is appreciably soluble, it is
necessary to take into account the diffusion of it between the surface film and the volume of
the liquid when the concentration of the film varies.

When the adsorbed material is present, the surface-tension coefficient « is a function of
the surface concentration of the material (the amount of it per unit surface area), which we
denote by y. If y varies over the surface, then the coefficient z is also a function of the
coordinates in the surface. The boundary condition at the surface of the liquid therefore
includes a tangential force, which we have already discussed at the end of §61 (equation
(61.14)). In the present case, the gradient of a can be expressed in terms of the surface
concentration gradient, so that the tangential force on the surface is

f,= (0x/dy)grady. (63.1)

It has been mentioned in §61 that the boundary condition (61.14), in which this force is
taken into account, can be satisfied only for a viscous fluid. Hence it follows that, in cases
where the viscosity of the liquid is small, and unimportant as regards the phenomenon
under consideration, the presence of the film can be ignored.

To determine the motion of a liquid covered by a film we must add to the equations of
motion, with the boundary condition (61.14), a further equation, since we now have
another unknown quantity, the surface concentration y. This further equation is an
equation of continuity, expressing the fact that the total amount of adsorbed material in
the film is unchanged. The actual form of the equation depends on the shape of the surface.
If the latter is plane, then the equation is evidently

0y /0t + é(yv,)/0x + d(yv,)/dy = 0, (63.2)

where all quantities have their values at the surface (taken as the xy-plane).

The solution of problems of the motion of a liquid covered by an adsorbed film is
considerably simplified in cases where the film may be supposed incompressible, i.c. we
may assume that the area of any surface element of the film remains constant during the
motion.

An example of the important hydrodynamic effects of an adsorbed film is given by the
motion of a gas bubble in a viscous liquid. If there is no film on the surface of the bubble,
the gas inside it moves also, and the drag force exerted on the bubble by the liquid is not the
same as the drag on a solid sphere with the same radius (see §20, Problem 2). If, however,
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the bubble is covered by a film of adsorbed material, it is clear from symmetry that the film
remains at rest when the bubble moves. For a motion in the film could occur only along
meridian lines on the bubble surface, and the result would be that material would
continually accumulate at one of the poles (since the adsorbed material does not penetrate
into the liquid or the gas); this is impossible. Besides the velocity of the film, the gas velocity
at the surface of the bubble must also be zero, and with this boundary condition the gas in
the bubble must be entirely at rest. Thus a bubble covered by a film moves like a solid
sphere and, in particular, the drag on it (for small Reynolds numbers) is given by Stokes’
formula. This result is due to V. G. Levich.

PROBLEMS

ProBLEM 1. Two vessels are joined by a long decp channel with width e and leagth [ with plane paraliel walls.
The surface of the liquid in the system is covered by an adsorbed film, and the surface concentrations y, and y, of
the film in the two vessels are different. There results a motion near the surface of the iquid in the channel.
Determine the amount of film material transported by this motion.

SoLUTION. Wetake the plane of one wall of the channel as the xz-plane, and the surface of the liquid as the xy-
plane, so that the x-axis is along the channel; the iquid is in the region z < 0. There is no pressure gradient, so that
the equation of steady flow is (cf. §17)

v o

oy ot
where vis the liquid velocity, which is evidently in the x-direction. There is a concentration gradient dy/dx along
the channel. At the surface of the liquid in the channel we have the boundary condition

=0, ()

név/éz=da/dx for z=0 (2)
At the channel walls the liquid must be at rest, ie.
ve=0 for y=0 and y=a 3)
The channel depth is supposed infinite, and so
v=0 for z- —co. 4

Particular solutions of equation (1) which satisfy the conditions (3) and (4) are
v, = constant x exp [ (2n + 1)xz/a] sin (2= + 1) xy/a,
with n integral. The condition (2) is satisfied by the sum
pm dade o y =P ap[aa+l)u/¢]-(h+l)ty/c
dx 5% (2."'"’
The amount of film material transferred per unit time is

¢= f ety (L i) e

the motion being in the direction of a increasing. The value of Q must obviously be constant along the channel.
Hence we can write

where a; = a(y,; ), a; = a(y;), and we assume that 2, > 2,. Thus we bave finally

o 2L )| remom [

s
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ProsLeM 2. Determine the damping coefficient for capillary waves on the surface of a iquid covered by an
adsorbed film.

SoLumoN. Ifthe viscosity of the liquid is not 100 great, the stretching (tangential) forces exerted on the film by
the liquid are small, and the film may therefore be regarded as incompressible. Accordingly, we can calculate the

energy dissipation as if it took place at a solid wall, i.c. from formula (24.14) Writing the velocity potential in the
form

‘_“‘u--'-u.
we obtain for the dissipation per unit area of the surface

Eya = = Vlhomo)ikgy .
The total energy (also per unit area) is

E- pj';‘ dz = §plkd*/k.
The damping coefficient is (using (62.3))
~7ﬁ.l{3 k'l"lll.ln
1= 328" = T 2
The ratio of this quantity to the damping coefficient for capillary waves on a clean surface (§62, Problem 2) is

(ap/kn*)' /4, /2, and is large compared with unity unless the wavelength is extremely short. Thus the presence
of an adsorbed film on the surface of a liquid leads to a marked increase in the damping coeflicient.



CHAPTER VIII

SOUND

§64. Sound waves

We proceed now to the study of the flow of compressible fluids, and begin by
investigating small oscillations; an oscillatory motion with small amplitude in a
compressible fluid is called a sound wave. At each point in the fluid, a sound wave causes
alternate compression and rarefaction.

Since the oscillations are small, the velocity v is small also, so that the term (v-grad)v in
Euler’s equation may be neglected. For the same reason, the relative changes in the fluid
density and pressure are small. We can write the variables p and p in the form

P=po+P, Pp=pot+p, (64.1)

where p, and p, are the constant equilibrium density and pressure, and p’ and p’ are their
variations in the sound wave (p’ <€ po, p’ € po). The equation of continuity dp/dt + div(pv)
= (), on substituting (64.1) and neglecting small quantities of the second order (p’, p'and v
being of the first order), becomes

dp' /0t + po divy = 0. (64.2)
Euler’s equation
Ov/0t + (v-grad)v = —(1/p)gradp
reduces, in the same approximation, to
0v/0t +(1/po)gradp’ = 0. (64.3)

The condition that the linearized equations of motion (64.2) and (64.3) should be
applicable to the propagation of sound waves is that the velocity of the fluid particles in the
wave should be small compared with the velocity of sound: v < ¢. This condition can be
obtained, for example, from the requirement that p’ <€ p, (see formula (64.12) below).

Equations (64.2) and (64.3) contain the unknown functions v, p’ and p’. To eliminate one
of these, we notice that a sound wave in an ideal fluid is, like any other motion in an ideal
fluid, adiabatic. Hence the small change p’ in the pressure is related to the small change p’ in
the density by

P = (3p/dpo).p’. (64.9)
Substituting for p’ according to this equation in (64.2), we find
Op' /3t + po(Cp/Bpo),divy = 0. (64.5)

The two equations (64.3) and (64.5), with the unknowns v and p’, give a complete
description of the sound wave.

251
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In order to express all the unknowns in terms of one of them, it is convenient to
introduce the velocity potential by putting v = grad . We have from equation (64.3)

p=—pi¢/, (64.6)

which relates p’ and ¢ (here, and henceforward, we omit for brevity the suffix in p, and p,).
We then obtain from (64.5) the equation

3¢/ —-ANe =0, (64.7)
which the potential ¢ must satisfy; here we have introduced the notation
¢ = /(@p/op). (64.8)

An equation having the form (64.7) is called a wave equation. Applying the gradient
operator to (64.7), we find that each of the three components of the velocity v satisfies an
equation having the same form, and on differentiating (64.7) with respect to time we see
that the pressure p’ (and therefore p’) also satisfies the wave equation.

Let us consider a sound wave in which all quantities depend on only one coordinate (x,
say). That is, the flow is completely homogeneous in the yz-plane. Such a wave is called a
plane wave. The wave equation (64.7) becomes

*¢/0x? —(1/2)*¢jo = 0. (64.9)

To solve this equation, we replace x and ¢ by the new variables { = x —ct,n = x +ct. Itis
easy to see that in these variables (64.9) becomes 8*¢/dné¢ = 0. Integrating this equation
with respect to §, we find d¢/0n = F (n), where F () is an arbitrary function of ».
Integrating again, we obtain ¢ = f, () + f;(n), where f, and f, are arbitrary functions of
their arguments. Thus

¢ = filx—ct)+ fr(x +c1). (64.10)

The distribution of the other quantities (p’, ', v) in a plane wave is given by functions
having the same form.

To be definite, we shall discuss the density, p’ = f, (x —ct) + f3(x + ct). For example, let
f2 =0, so that p’ = f,(x —ct). The meaning of this solution is evident: in any plane
x = constant the density varies with time, and at any given time it is different for different
x, but it is the same for coordinates x and times ¢ such that x —ct = constant, or x
= constant + ct. This means that, if at some instant ¢t = 0 and at some point the fluid
density has a certain value, then after a time ¢ the same value of the density is found at a
distance ct along the x-axis from the original point. The same is true of all the other
quantities in the wave. Thus the pattern of motion is propagated through the medium in
the x-direction with a velocity c; ¢ is called the velocity of sound.

Thus f,(x —ct) represents what is called a travelling plane wave propagated in the
positive direction of the x-axis. It is evident that f,(x + ct) represents a wave propagated in
the opposite direction.

Of the three components of the velocity v = grad ¢ in a plane wave, only v, = d¢/0x is
not zero. Thus the fluid velocity in a sound wave is in the direction of propagation. For this
reason sound waves in a fluid are said to be longitudinal.

In a travelling plane wave, the velocity v, = vis related to the pressure p’ and the density
¢’ In a simple manner. Putting ¢ = f(x —ct), we find v = 8¢/0x = f'(x—ct) and p' =
—pd@/ot = pcf’(x — ct). Comparing the two expressions, we find

v=p'/pc. (64.11)
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Substituting here from (64.4) p' = ¢*p’, we find the relation between the velocity and the
density variation:
v=cp'/p. (64.12)

We may mention also the relation between the velocity and the temperature oscillations
in a sound wave. We have 7" = (87/dp)p' and, using the well-known thermodynamic
formula (7/0p), = (T/c,)(@V/0T), and formula (64.11), we obtain

T = cfTv/c,, (64.13)

where = (1/V)(8V/dT), is the coefficient of thermal expansion.
Formula (64.8) gives the velocity of sound in terms of the adiabatic compressibility of
the fluid. This is related to the isothermal compressibility by the thermodynamic formula

(Op/p), = (c,/c.)(Op/dp) (64.14)

Let us calculate the velocity of sound in a perfect gas. The equation of state is pV = p/p
= RT/u, where R is the gas constant and u the molecular weight. We obtain for the
velocity of sound the expression

¢ = /GRT/p), (64.15)

where y denotes the ratio ¢, /c,. Since y usually depends only slightly on the temperature,
the velocity of sound in the gas may be supposed proportional to the square root of the
temperature.t For a given temperature it does not depend on the pressure. §

What are called monochromatic waves are a very important case. Here all quantities are
just periodic (harmonic) functions of the time. It is usually convenient to write such
functions as the real part of a complex quantity (see the beginning of §24). For example, we
put for the velocity potential

¢ = re[dolx, y, 2)e™ ], (64.16)
where w is the frequency of the wave. The function ¢, satisfies the equation
Ao+ (@*/cP)po =0, (64.17)

which is obtained by substituting (64.16) in (64.7).

Let us consider a monochromatic travelling plane wave, propagated in the positive
direction of the x-axis. In such a wave, all quantities are functions of x — ct only, and so the
potential is of the form

¢ = re{A exp[ —io(t —x/c)]}, (64.18)

where A is a constant called the complex amplitude. Writing this as A = ae” with real
constants a and «, we have

¢ = acos(wx/c —wt + ) (64.19)

The constant a is called the amplitude of the wave, and the argument of the cosine is called
the phase. We denote by m a unit vector in the direction of propagation. The vector

k=(o/ch=_2=/in (64.20)

t Itis useful to note that the velocity of sound in a gas has the same order of magnitude as the mean thermal
velocity of the molecules.

1 The expression ¢ = p/p for the velocity of sound in a gas was first derived by Newton (1687). The need for
the factor y was shown by Laplace.
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is called the wave vector, and its magnitude k the wave number. In terms of this vector
(64.18) can be written

¢ = re{Aexpli(k-r—wt)] ). (64.21)

Monochromatic waves are very important, because any wave whatsoever can be
represented as a sum of superposed monochromatic plane waves with various wave
vectors and frequencies. This decomposition of a wave into monochromatic waves is
simply an expansion as a Fourier series or integral (called also spectral resolution). The
terms of this expansion are called the monochromatic components or Fourier components of
the wave.

PROBLEMS

PrOBLEM 1. Determine the velocity of sound in a nearly homogencous two-phase system consisting of a
vapour with small liquid droplets suspended in it (a “wet vapour™), or a hquid with small vapour bubbles in it. The
wavelength of the sound is supposed large compared with the size of the inhomogencitics in the system.

SOLUTION In a two-phase system, p and T are not independent variables, but are related by the equation of
equilibrium of the phases. A compression or rarefaction of the system s accompanied by a change from one
phase to the other. Let x be the fraction (by mass) of phase 2 in the system. We have

s (1 =x)s; +xs,, }
V- (' -x)yl *‘yx.
where the suffixes | and 2 distinguish quantities pertaining to the pure phases | and 2 To calculate the derivative

(0V/dp), we transform it from the vanables p, 5 10 p x obtaning (0V/dp), = (@V/dp),
- (0V/dx),(ds/dp),/(ds/dx),. The substitution (1) then gives

aV ‘y’ y: y'd,z ‘y| y"‘
(5)."‘[3':—,. ]“ "’[ > oa ]- @

The velocity of sound is obtained from (1) and (2), using formula (64 8)

Expanding the total derivatives with respect to the pressure, introducing the latent heat of the transition from
phase I to phase 2 (¢ = T'(s; — 5,)), and using the Clapeyron-Clausius equation for the derivative dp/dT along
the curve of equilibrium (dp/d7T = g/T(V; — ¥, ) sec SP1, §82), we obtain the expression in the first brackets in

(2) in the form
v, 2T (Y, [
(Tp-) \ (BT) L n)‘-;,'("z":l'-

The second bracket is transformed simalarly.

Let phase | be the liquid and phase 2 the vapour; we suppose the latter 10 be a perfect gas, and neglect the
specific volume V', in comparison with ¥ ;. If x <€ | (a liquid containing some bubbles of vapour), the velocity of
sound is found to be

(1

c=quph ,/RT\/(C'. g (3)

whweknsthepseonsuntandmhemdecnhrnagnmvdouynnpcdmmn;thus,vhnvmm
bubbles form in a liquid (cavitation), the velocity of sound undergoes a sudden sharp decrease.

If 1 —x <1 (a vapour containing some droplets of liquid), we obtain
1 ’ 2 C“T
- 4
& RT q+ ¢ @
Comparing this with the velocity of sound in the pure gas (64.15), we find that here also the addition of a second
phase reduces the value of ¢, though by no means so markedly.

As x increases from 0 to 1, the velocity of sound increases monotonically from the value (3) to the value (4). For
x = 0and x = | it changes discontinuously as we go from a one-phase system 10 a two-phase system. This has the
result that, for values of x very close 1o zero or unity, the usual lincar theory of sound is no longer applicable, even
when the amplitude of the sound wave is small; the compressions and rarefactions produced by the wave are in

this case accompanied by a change between a one-phase and a two-phase system, and the essential assumption of
a constant velocity of sound no longer holds good.
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ProsLEM 2. Determine the velocity of sound in a gas heated 10 such a high temperature that the pressure of
equilibrium black-body radiation becomes comparable with the gas pressure.
SOLUTION. The pressure is p = nT + a7, and the entropy is
s = (1/mjlog(TYn) + T */n.

In these expressions the first terms relate to the particles, and the second terms 1o the radiation; n is the number
density of particles, m their mass, and a = 4=’ /458’ ¢* (sec SP1, §63) 1 The density of matter is not affected by the
black-body radiation, so that p = mn. The velocity of sound, denoted here by w to distinguish it from that of light,

is given by
o 00.3)/015»
Ap,s) dnT)/ dmT)’
where the derivatives have been written in Jacobian form. Evaluating the Jacobians, we have

.3-5_7[ 2a'T*
5-(! 2T )|

§65. The energy and momentum of sound waves

Let us derive an expression for the energy of a sound wave. According to the general
formula, the energy in unit volume of the fluid is pe + $po®. We now substitute p = p, + p',
¢ = gy + &, where the primed letters denote the deviations of the respective quantities from
their values when the fluid is at rest. The term 4p'v? is a quantity of the third order. Hence,
if we take only terms up to the second order, we have

Poto + p’ a(":)'rip" +4por’.

The derivatives are taken at constant entropy, since the sound wave is adiabatic. From the
thermodynamic relation de = 7ds—pdV = Tds + (p/p*)dp we have [d(pe)/dp), =¢
+p/p = w, and the second derivative is

[0%(pe)/0p], = (@w/dp), = (dw/3p),(dp/dp), = */p.
Thus the energy in unit volume of the fluid is
Poto +wWop' +1c%p? [pg + dpor?.

The first term (pgy&,) in this expression is the energy in unit volume when the fluid is at
rest, and does not relate to the sound wave. The second term (wyp’) is the change in energy
due to the change in the mass of fluid in unit volume. This term disappears in the total
energy, which is obtained by integrating the energy over the whole volume of the fluid:
since the total mass of fluid is unchanged, we have

J‘p'dV =0.

Thus the total change in the energy of the fluid caused by the sound wave is given by the
integral

J’Gpov’ +3c%p% poidV.

The integrand may be regarded as the density E of sound energy:

E = }pov® +$c*p*/ po- (65.1)
t+ The temperature is in energy units, as elsewhere in this book.
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This expression takes a simpler form for a travelling plane wave. In such a wave
= pov/c, and the two terms in (65.1) are equal, so that

P
E= Povz. (65-2)

In general this relation does not hold. A similar formula can be obtained only for the (time)
average of the total sound energy. It follows immediately from a well-known general
theorem of mechanics, that the mean total potential energy of a system executing small
oscillations is equal to the mean total kinetic energy. Since the latter is, in the case
considered,

i J‘Pogd Vv
we find that the mean total sound energy is
I EdV = J povidV. (65.3)

Next, let us consider some volume of a fluid in which sound is propagated, and
determine the flux of energy through the closed surface bounding this volume. The energy
flux density in the fluid is, by (6.3), pv($0? + w). In the present case we can neglect the term
in v?, which is of the third order. Hence the energy flux density in the sound
wave is pwv. Substituting w = wy, + w/, we have pwy = wypv + pw'v. For a small change w
in the heat function we have w' = (éw/dp),p’ = p'/p, and pwv = wepv + p'v. The total
energy flux through the surface in question is

§(“’op' +p'v)-dL

The first term here is the energy flux due to the change in the mass of fluid in the volume
considered. We have already omitted the corresponding term wgp’ (which gives zero on
integration over an infinite volume) in the energy density. Hence, to find the energy flux,
whose density is given by (65.1), we should omit this term, and the energy flux is simply

§p’1od£

We see that the sound energy density flux is represented by the vector

q= p’ V. (65.4)
It is easy to verify that the expected relation
GE /ot +div(p'v) =0 (65.5)

holds. In this form the equation gives the law of conservation of the sound energy, with the
vector (65.4) taking the part of the energy flux density.

In a travelling plane wave (left to right) the pressure variation is related to the velocity by
P’ = cpov, where v = v, is taken with the appropriate sign. Introducing the unit vector nin
the direction of propagation of the wave, we obtain

q = cpov’n = cEn (65.6)
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Thus the energy flux density in a plane sound wave equals the energy density multiplied by
the velocity of sound, a result which was to be expected.

Let us now consider a sound wave which, at any given instant, occupies a finite region of
space nowhere bounded by solid walls (a wave packet), and determine the total momentum
of the fluid in the wave. The momentum of unit volume of fluid is equal to the mass flux
density j = pv. Substituting p = p, + p’, we have j = p,v + p'v. The density change is
related to the pressure change by p’ = p'/c?. Using (65.4), we therefore obtain

j= pov+q/c%. (65.7)

If the viscosity of the fluid is not significant in the phenomena under consideration, we can
assume potential flow in a sound wave, and write v = grad ¢; it should be emphasized that
this result is not a consequence of the approximations made in deriving the linear
equations of motion in §64, since a solution such that curl v = 0 is an exact solution of
Euler’s equations. We therefore have j = p, grad ¢ + q/c’. The total momentum in the
wave equals the integral | jdV over the volume occupied by the wave. The integral of
grad ¢ can be transformed into a surface integral,

jgm‘ ¢dV = §¢d(.

and is zero, since ¢ is zero outside the volume occupied by the wave packet. Thus the total
momentum of the wave packet is

j jdv = (1/c%) qu V. (65.8)

This quantity is not, in general, zero. The existence of a non-zero total momentum means
that there is a transfer of matter. We therefore conclude that the propagation of a sound-
wave packet is accompanied by the transfer of fluid. This is a second-order effect (since q is
a second-order quantity).

Finally, let us consider a region of space unlimited in length but finite in cross-section (a
wave train with finite aperture), and calculate the mean value of the pressure change p'ina
sound wave. In the first approximation, corresponding to the usual linearized equations of
motion, p’ is a function which periodically changes sign, and the mean value of p’ is zero.
This result, however, may cease to hold if we go to higher approximations. If we take only
second-order quantities, p’ can be expressed in terms of quantities calculated from the
linear sound equations, so that it is not necessary to solve directly the non-linear equations
of motion obtained when terms of higher order are taken into account.

A characteristic property of the sound in question is that the difference between the
velocity potentials ¢ at different points remains finite when the distance between them
increases without limit (and the same is true of the difference in the values of ¢ at a given
point in space at different times): this difference is

2

¢2— &, =§"¢“~

1
which can be taken along any path between the points 1 and 2, and the property stated is
obvious if we note that a path can be chosen which lies along the wave train but outside it.{

t Essentially similar arguments have been used in deriving (65.8) from the proposition that ¢ = 0 everywhere
far from a wave packet.
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We therefore start from Bernoulli’s equation: w + $o* + 8¢/t = constant, and average
it with respect to time. The mean value of the time derivative 8¢/t is zero.t Putting also
w = wo + w' and including w, in the constant, we obtain w* + §¢* = constant. Since the
constant is the same in all space, and w’ and v are zero far from the wave train, the constant
must evidently be zero, so that

w+iv? =0. (65.9)
We next expand w in powers of p’, and take only the terms up to the second order:
w = (Ow/dp).p’ + §(3%w/dp*)p"%;

since (dw/dp), = 1/p, we have

o r_r -("’_P) LA
Po 2p°\0p/), po 2%p0*
Substituting this in (65.9) gives

P = —4pov? + P2 /200> = —dpot? + p” */2p,, (65.10)

which determines the required mean value. The expression on the right is a second-order
quantity, and is calculated by using the p’ and v obtained from the solution of the
linearized equations of motion. The mean density is

p' = (3p/p),p + 1@ p/0p*),p". (65.11)
Since the cross-section of the wave train is finite, it cannot be regarded as exactly a plane
wave, but if the linear size of the cross-section is sufficiently great relative to the sound
wavelength, there may be a very close approximation to a plane wave. In a travelling plane
wave, v = cp’/po, 50 that v = c’?/po’. and the expression (65.10) is zero, i.e. the mean
pressure variation in a plane wave is an effect of higher order than the second. The density
variation p' = $(3%p/dp®),p’? is not zero, however. } In the same approximation, we have
for the mean value of the momentum flux density tensor in a travelling plane wave p’
+ pvity = P’ + Poviy. The first term is zero. In the second term, we introduce the unit
vector n in the direction of propagation of the wave (the same as the direction of v, apart
from sign), and, using (65.2), obtain for the momentum flux density

My = Enn, (65.12)

If the wave is propagated in the x-direction, only the component [T, = E is not zero.
Thus, in this approximation, there is only an x-component of the mean momentum flux,
and this is transmitted in the x-direction.

It should be emphasized once more in connection with the discussion in the preceding
paragraph that the wave train has a limited cross-section. For a strictly plane wave, the
results would not be valid; in particular, r might not be zero even in the quadratic
approxnmatnon (see §101, Problem 4). This arises, formally, because for a strictly plane

T Bytbemddeﬁmmdtbemnlmwhnfa&cudmmdnyhmﬂl)
I(T)-f(

- [ 4o

be Wcmymenuonthathedmnuve(a’plép‘).umfaddupm.dlhcd‘mp < Oina travelling
wave.
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wave (which cannot be “by-passed”) it is not in general correct to say that the potential ¢ is
finite in all space or at all times. The physical difference is the result of the possible
occurrence (in a wave train with a limited cross-section) of a transverse flow which
equalizes the mean pressure.

§66. Reflection and refraction of sound waves

When a sound wave is incident on the boundary between two different fluid media, it
undergoes reflection and refraction. The motion in the first medium is a combination of
two waves (the incident wave and the reflected wave), whereas in the second medium there
is only one, the refracted wave.

The relation between these three waves is determined by the boundary conditions at the
surface of separation.

Let us consider the reflection and refraction of a monochromatic longitudinal wave at a
plane surface separating two media, which we take as the yz-plane. It is casy to see that all
three waves have the same frequency @ and the same components k, k, of the wave vector,
but not the same component k, perpendicular to the plane of separation. For, in an infinite
homogeneous medium, a monochromatic wave with constant k and @ satisfies the
equations of motion. The presence of a boundary introduces only some boundary
conditions, which in the case considered apply at x = 0, i.e. do not depend on the time or
on the coordinates y, z. Hence the dependence of the solution on ¢, y and z remains the
same in all space and time, i.c. @, k,, and k, are the same as in the incident wave.

From this result we can immediately derive the relations which give the directions of
propagation of the reflected and refracted waves. Let the plane of the incident wave be the
xy-plane. Then k, = 0 in the incident wave, and the same must be true of the reflected and
refracted waves. Thus the directions of propagation of the three waves are coplanar.

Let 0 be the angle between the direction of propagation of the wave and the x-axis.
Then, from the equality of k, = (@/c)sin 8 for the incident and reflected waves, it follows
that

0,=86/, (66.1)

i.e. the angle of incidence @, is equal to the angle of reflection 8,’. From a similar equation
for the incident and refracted waves it follows that

sinf,/sin @, = c,/c,, (66.2)

which relates the angle of incidence 6, to the angle of refraction 8, (¢, and c, being the
velocities of sound in the two media).

In order to obtain a quantitative relation between the intensities of the three waves, we
write the respective velocity potentials as

¢, = A, exp[io{(x/c,;)cos 8, + (y/c;)sinb, —1}],
¢, = A, expliof (— x/c;)cos 8, + (y/c,)sin 8, —1} ],
¢, = Aexpliof (x/c;)cos 8, + (y/c;)sin; —t} ).

On the surface of separation (x = 0) the pressure (p = — pé¢é/étr)and the normal velocities
(v, = 8¢/0x) in the two media must be equal; these conditions lead to the equations
wso-l_ mol

Pi(A; +A))=pA;, — (A —A))=—TFA,
Cy C2
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The reflection coefficient R is defined as the ratio of the (time) average energy flux densities
in the reflected and incident waves. Since the energy flux density in a plane wave is cpv?, we
have R = ¢,p,0,"* /e, pyv,* = |A,'?/|A, . A simple calculation gives

R = (P: tanf; - p, ln_g._)’.

2 66.3
p,u003+p,m0. ( )

The angles 0, and 0, are related by (66.2); expressing #, in terms of ,, we can put the
reflection coefficient in the form

R = [chzmon ‘l’n/(‘-'l2 ‘szﬁnzon)] :
pacacos b, +p, \f(clz —¢;* sin’6,)
For normal incidence (6, = 0), this formula gives simply

_ 2
R= (M) , (66.5)
Pa2Ca + pyCy

(66.4)

For an angle of incidence such that

(66.6)

the reflection coefficient is zero, i.e. the wave is totally refracted. This can happenifc, > ¢,
but p,c, > p,c,y, or if both inequalities are reversed.

PROBLEM
Determine the pressure exerted by a sound wave on the boundary separating two fluids.

SoLuTION. The sum of the total energy fluxes in the reflected and refracted waves must equal the incident
energy flux. Taking the energy flux per unit area of the surface of separation, we can write this condition in the
form C‘E'w0| = C]E(“O. +C1£3m‘£'p E.. E.’lﬁ&mhmmhmmm
Introducing the reflection coefficient R = E,’/E,, we therefore have

c,cosf,
- 30080, a -R)f.-
The required pressure p is determined as the x-component of the momentum lost per unit time by the sound wave

(pctuniuﬁr;ol‘thebouhty). Using the expression (65.12) for the momentum fux density tensor in a sound
wave, we

p = E,cos* 6, + E, cos?6, — E, cos* ;.
Substituting for E,, introducing R and using (66.2), we obtain
p = E, sin8, cos 8,[ (1 + R)cot §, — (1 — R)cot 6,).
For normal incidence (6, = 0), we find, using (66.5),

(’lc: +p2ca)°

§67. Geometrical acoustics

A plane wave has the distinctive property that its direction of propagation and its
amplitude are the same in all space. An arbitrary sound wave, of course, does not possess
this property. However, cases can occur where a sound wave that is not plane may still be
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regarded as plane in any small region of space. For this to be so it is necessary that the
amplitude and the direction of propagation should vary only slightly over distances of the
order of the wavelength.

If this condition holds, we can introduce the idea of rays, these being lines such that the
tangent to them at any point is in the same direction as the direction of propagation; and
we can say that the sound is propagated along the rays, and ignore its wave nature. The
study of the laws of propagation of sound in such cases is the task of geometrical acoustics.
We may say that geometrical acoustics corresponds to the limit of short wavelengths,
A=0.

Let us derive the basic equation of geometrical acoustics, which determines the direction
of the rays. We write the wave velocity potential as

é = ae”. (67.1)

In the case where the wave is not plane but geometrical acoustics can be applied, the
amplitude a is a slowly varying function of the coordinates and the time, while the wave
phase y is “almost linear” (we recall that in a plane wave ¢ = k -r — @t + a, with constant k
and w). Over small regions of space and short intervals of time, the phase y may be
expanded in series; up to terms of the first order we have

Y =yo+r-grady +1dy/or

In accordance with the fact that, in any small region of space (and during short intervals of
time), the wave may be regarded as plane, we define the wave vector and the frequency at
each point as

k=0/or=grady, o= -dy/i (67.2)

The quantity ¢ is called the eikonal.
In a sound wave we have @?/c? = k* = k.? + k,* + k,*. Substituting (67.2), we obtain
the basic equation of geometrical acoustics:

W\ [\ (W) 1[aw\ _
(a) *(5;) *(5) -a(3) o &=

If the fluid is not homogeneous, the coefficient 1/¢? is a function of the coordinates.

As we know from mechanics, the motion of material particles can be determined by
means of the Hamilton-Jacobi equation, which, like (67.3), is a first-order partial
differential equation. The quantity analogous to ¢ is the action S of the particle, and the
derivatives of the action determine the momentum p = 45/ér and the Hamilton's function
(the energy) H = — S /0t of the particle; these formulae are similar to (67.2). We know,
also, that the Hamilton-Jacobi equation is equivalent to Hamilton’s equations

p = —0H/or, v=i=0H/op.

From the above analogy between the mechanics of a material particle and geometrical
acoustics, we can write down similar equations for rays:

k= -dwr, i=adwék (67.4)

In a homogeneous isotropic medium @ = ck with ¢ constant, so that k = 0, = cn (n being
a unit vector in the direction of k), i.c. the rays are propagated in straight lines with a
constant frequency w, as we should expect.
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The frequency, of course, remains constant along a ray in all cases where the
propagation of sound occurs under steady conditions, i.c. the properties of the medium at
each point in space do not vary with time. For the total time denivative of the frequency,
which gives its rate of variation along a ray, is dw/dt = dw/dt + - dw/dr + k - dw/dk. On
substituting (67.4), the last two terms cancel, and in a steady state dw/dt = 0, so that
dw/dt = 0.

In steady propagation of sound in an inhomogencous medium at rest @ = ck, wherecis
a given function of the coordinates. The equations (67.4) give

i=cn, k= —-kgradc (67.5)

The magnitude of the vector k varies along a ray simply according to k = @/c (with @
constant). To determine the change in direction of m we put k = wn/c in the second of

(67.5) wi/c —(wn/c?)(i-gradc) = —k gradc, whence dn/dt = —gradc +n(n-gradc).
Introducing the element of length along the ray dl = cdt, we can rewrite this equation

dn/dl = —(1/c)gradc + n(n-gradc)/c. (67.6)

This equation determines the form of the rays; m is a unit vector tangential to a ray.t

If equation (67.3) is solved, and the cikonal ¥ is a known function of coordinates and
time, we can then find also the distribution of sound intensity in space. In steady
conditions, it is given by the equation divq = 0 (q being the sound energy flux density),
which must hold in all space except at sources of sound. Putting q = cEn, where E is the
sound energy density (see (65.6)), and remembering that m is a unit vector in the direction of
k = grad y, we obtain the equation

div(cE grady/|grad ¥|) = 0, (67.7)

which determines the distribution of E in space.

The second formula (67.4) gives the velocity of propagation of the waves from the
known dependence of the frequency on the components of the wave vector. This is an
important formula, which holds not only for sound waves, but for all waves (for example,
we havealready applied it to gravity waves in §12). We shall give here another derivation of
this formula, which puts in evidence the meaning of the velocity which it defines. Let us
consider a wave packet, which occupies some finite region of space. We assume that its
spectral composition includes monochromatic components whose frequencies licin only a
small range; the same is true of the components of their wave vectors. Let @ be some mean
frequency of the wave, and k a mean wave vector. Then, at some initial instant, the wave is
described by a function having the form

¢ = exp (ik-r)f(r). (67.8)

The function f(r) is appreciably different from zero only in a region which is small (though

it is large compared with the wavelength 1/k). Its expansion as a Fourier integral contains,

by the above assumptions, components having the form exp (ir - Ak), where Ak is small.
Thus each monochromatic component is, at the initial instant, proportional to

¢, = constant x exp [i(k + Ak)-r]. (67.9)

t As we know from differential geometry, the derivative da,dl along the ray 1s equal to N/R, where Nis a unit
vector along the principal normal and R is the radius of curvature of the ray. The expression on the right-hand
side of (67.6) is, apart from a factor 1/c, the derivative of the veloaty of sound along the principal normal; hence
we can write the equation as |/R = —(1/c)N-gradc. The rays bead towards the region where ¢ is smaller.
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The corresponding frequency is w(k + Ak) (we recall that the frequency is a function of the
wave vector). Hence the same component at time ¢ has the form

¢, = constant x exp [i(k + Ak)-r — io(k + Ak)).

We use the fact that Ak is small, and put w(k + Ak) = @ + (fw/dk)-Ak. Then ¢,
becomes

¢, = constant x exp [i(k -r — wt)] exp [iAk - (r — tdw/dk)]. (67.10)

If we now sum all the monochromatic components, with all the Ak that occur in the
wave packet, we see from (67.9) and (67.10) that the result is

¢ = exp [i(k -r — @t)] f(r — téw/k), (67.11)

where fis the same function as in (67.8). A comparison with (67.8) shows that, after a time ¢,
the amplitude distribution has moved as a whole through a distance téw/dk; the
exponential coefficient of fin (67.11) affects only the phase. Consequently, the velocity of
the wave is

U = dw/dk. (67.12)

This formula gives the velocity of propagation for any dependence of @ on k. When
o = ck, with ¢ constant, it of course gives the usual result U = @/k = c. In general, when
(k)is an arbitrary function, the velocity of propagation is a function of the frequency, and
the direction of propagation may not be the same as that of the wave vector.

The velocity defined by (67.12) is called the group velocity of the wave, and the ratio w/k
the phase velocity. However, it must be borne in mind that the phase velocity does not
correspond to any actual physical propagation.

Regarding the derivation given here it should be noted that the motion of the wave
packet without change of form, expressed by (67.11), is approximate, and results from the
assumption that the range Ak is small. In general, when U depends on @, a wave packet is
“smoothed out” during its propagation, and the region of space which it occupies increases
in size. It can be shown that the amount of this smoothing out is proportional to the
squared magnitude of the range Ak of the wave vectors which occur in the composition of
the wave packet.

PROBLEM

Determine the altitude vanation in the amphtude of sound propagated in an isothermal atmosphere under
gravity.

SoLuTiON. In an isothermal atmosphere (regarded as a perfect gas) the veloaity of sound is constant. The
energy flux density evidently decreases along a ray in inverse proportion to the square of the distance r from the
source: cpv® o 1/r?. Hence it follows that the amplitude of the velocity fluctuations in the sound wave varies along

arayinvuu!yuermdin'tolhehuonurtfauhpxap(-mkn-tcezinhealimdgpthe
molecular weight of the gas and R the gas constant.

§68. Propagation of sound in a moving medium

The relation @ = ck between the frequency and the wave number is valid only for a
monochromatic sound wave propagated in a medium at rest. It is not difficult to obtain a
similar relation for a wave propagated in a moving medium (and observed in a fixed system
of coordinates).
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Let us consider a homogeneous flow with velocity . We take a fixed system K of
coordinates x, y, z, and also a system K’ of coordinates X', y', 2 moving with velocity u
relative to K. In the system K’ the fluid is at rest, and a monochromatic wave has the usual
form ¢ = constant x exp [i(k - ¥ — kct)). The position vector r’ in the system K’ is related
to the position vector r in the system K by r' = r —ut. Hence, in the fixed system of
coordinates, the wave has the form ¢ = constant x exp {i(k-r— (kc+k-u)t]]. The
coefficient of t in the exponent is the frequency @ of the wave. Thus the frequency in a
moving medium is related to the wave vector k by

w=ck+u-k (68.1)

The velocity of propagation is
dw/dk = ck/k + w, (68.2)

this is the vector sum of the velocity ¢ in the direction of k and the velocity u with which the
sound is “carried along” by the moving fluid.

Let us next determine the sound wave energy density in the moving medium. The total
instantaneous energy density is

Yo+p)m+v)+42p%p = pi? +§p' + pv-u +3pv* + plu-v+2p”?/2p)

(cf. (65.1); the suffix O to the unperturbed quantities is omitted). The first term here is the
energy of the unperturbed flow. The next two are first-order small quantities, but on
averaging over time they give second-order quantities related to the energy of the mean
flow due to the wave. All these are to be omitted, and the required energy density of the
sound wave as such is given by the last three terms, in the brackets. The velocity and the
pressure change in a plane wave in the moving medium are related by

(@—k-u)v = ke’p'/p,
which follows from the linearized Euler’s equation

Ov/ot+ (u-grad)v = —(1/p)gradp.
With (68.1), we have finally as the sound energy density in the moving medium
E=E,0/(w—k-u), (68.3)

where E, = ¢*p?/p = p'*/pc? is the energy density in the frame of reference moving with
the medium.t

Using formula (68.1), we can investigate what is called the Doppler effect: the frequency
of sound, as received by an observer moving relative to the source, is not the same as the
frequency of oscillation of the source.

Let sound emitted by a source at rest (relative to the medium) be received by an observer
moving with velocity u. In a system K’ at rest relative to the medium we have k = wy/c,
where @, is the frequency of oscillation of the source. In a system K moving with the
observer, the medium moves with velocity — u, and the frequency of the sound is, by (68.1),
® = ck — u-k. Introducing the angle 6 between the direction of the velocity u and that of
the wave vector k, and putting k = @, /c, we find that the frequency of the sound received
by the moving observer is

@ = wo[ 1 — (u/c)cosF]. (68.4)
_}"I;quauon (&j)iénkintmdﬁmaqmmmammmmedm
quanta (phonons) N = E/hw = E,;/k(w— k-u) is independent of the choice of reference frame.
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The opposite case, o a certain extent, is the propagation in a medium at rest of a sound
wave emitted from a moving source. Let u be now the velocity of the source. We change
from the fixed system of coordinates to a system K’ moving with the source; in the system
K', the fluid moves with velocity — u. In K’, where the source is at rest, the frequency of the
emitted sound wave must equal the frequency @, of the oscllations of the source.
Changing the sign of uin (68.1) and introducing the angle # between the directions of wand
k, we have @, = ck[1 — (u/c)cos #]. In the original fixed system K, however, the frequency
and the wave number are related by @ = ck. Thus we find

@ = @/ [1 — (u/c)cos F). (68.5)

This formula gives the relation between the frequency @, of the osallations of a moving
source and the frequency @ of the sound heard by an observer at rest.

If the source is moving away from the observer, the angle 8 between its velocity and the
direction to the observer lies in the range 4x < 0 < =, so that cos# < 0. It then follows
from (68.5) that, if the source is moving away from the observer, the frequency of the sound
heard is less than w,.

If, on the other hand, the source is approaching the observer, then 0 < 6 < 4=, so that
cos® > 0, and the frequency @ > @, increases with u. For ucosf > ¢, according to
formula (68.5) @ becomes negative, which micans that the sound heard by the observer
actually reaches him in the reverse order, i.e. sound emitted by the source at any given
instant arrives earlier than sound emitted at previous instants.

As has been mentioned at the beginning of §67, the approximation of geometrical
acoustics corresponds to the case of short wavelengths, i.c. large wave numbers. For this to
be so the frequency of the sound must in general be large. In the acoustics of moving media,
however, the latter condition need not be fulfilled if the velocity of the medium exceeds that
of sound. For in this case k can be large even when the frequency is zero; from (68.1) we
have for @ = 0 the equation

ck=—u-k, (68.6)

and this has solutions if u > ¢. Thus, in a medium moving with supersonic velocities, there
can be steady small perturbations described (if k is sufficiently large) by geometrical
acoustics. This means that such perturbations are propagated along rays.

Let us consider, for example, a homogencous supersonic stream moving with constant
velocity u, whose direction we take as the x-axis. The vector kis taken to licin the xy-plane,
and its components are related by

(W — k2 =ck?, (68.7)

which is obtained by squaring both sides of equation (68.6). To determine the form of the
rays, we use the equations of geometrical acoustics (67.4), according to which x = dw/dk,,
y = dw/dk, Dividing one of these equations by the other, we have dy/dx =
(8w/dk,)/(8w/0k,). This relation, however, is, by the rule of differentiation for implicit
functions, just the derivative — dk,/dk, taken at a constant frequency (in this case zero).
Thus the equation which gives the form of the rays from the known relation between k,
and k, is

dy/dx = — ok /ok,. (68.8)

Substituting (68.7), we obtain
dy/dx = +c¢/\/(u* —&%)
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For constant u this equation represents two straight lines intersecting the x-axis at angles
+ a, where sina = ¢/u.

We shall return to a detailed study of these rays in gas dynamics, where they are very
important.

PROBLEMS

ProsLEM 1. Derive an equation giving the form of sound rays propagated in a steadily moving medium with a
velocity distribution u(x, y, z), when u <€ ¢ everywhere. It is assumed that the veloaty u vanies appreciably only
over distances large compared with the wavelength of the sound.

SOLUTION. Substituting (68.1) in (67.4), we obtain the equations of propagation of the rays in the form

k= —(k-gradju—kxcurle, i=v=chkk+u
Using these equations, and also
du/dt = du/dt + (v-grad)e = (v-grad)e = (c/k)(k-grad)u,

we calculate the derivative d(kv)/dt, retaining only terms as far as the first order in u The result is d(kv)/dr =
— kvaxcurl u, when a is a unit vector in the direction of v. But d(kv) dt = ad(ke)ds + kvda/dt. Since n and da/dt
are perpendicular (because n® = |1, and therefore m-a = 0), it follows from the above equations that & =
~aXcurlu. Introducing the element of length along the ray di = cde, we can write finally

da/dl = —~axcurluc (1
This equation determines the form of the rays; m is a unit tangential vector (and is no Jonger in the same direction
as k).

ProsLEM 2. Determine the form of sound rays in a moving medium with a velocity distribution w, = u(z),
u, = u, =0

SoLumion. Expanding equation (1), Problem 1, we find dn_dl = (n /c)du/dz, dn_dl = O; the equation for n,
need not be written down, since n? = 1. The second equation gives n, = constant = n,_,. In the first equation we
write n, = dz/dl, and then we have by integration n, = n_, + w(z)/c. These formulac give the required solution.

Let us assume that the velocity uis zero for z = 0 and increases upwards (du/dz > 0) If the sound is propagated
“against the wind” (n, < 0), its path is curved upwards; if it is propagated “with the wind”™ (n, > 0), its path is
curved downwards. In the latter case a ray leaving the point z = 0 at a small angle 10 the x-aus (Le. with n, , close
to unity) rises only to a finite altitude z = z__ . which can be calculated as follows. At the altitude 2 the ray is
horizontal, i.e. n, = 0. Hence we have

,'.2+.’2 = .".x‘f.”.:*h&../f- l.

sothat 2n, ou(z,,, )¢ = n, o*, whence we can determine z_,, from the given function »(z) and the initial direction
n, of the ray.

ProsLEM 3. Obtain the expression of Fermat's principle for sound rays in a steadily moving medium.
SorLumon. Fermat’s principle is that the integral

fra

taken along a ray between two given points, is a minimum; k is supposed expressed as a function of the frequency
@ and the direction n of the ray (see Fields, §53). This function can be found by chminating v and k from the
relations @ = ck + w-k and v = ck/k + u. Fermat's principle then takes the form

6§ (VI = )P + (@-dIf] —u-dl}i¢ - ') =0

In a medium at rest, this integral reduces to the usual one, § dlc.

§69. Characteristic vibrations

Hitherto we have discussed only oscillatory motion in infinite media, and we have seen,
in particular, that in such media waves with any frequency can be propagated.
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The situation is very different when we consider a fluid in a vessel with finite dimensions.
The equations of motion themselves (the wave equations) are of course unchanged, but
they must now be supplemented by boundary conditions to be satisfied at the solid walls or
at the free surface of the fluid. We shall consider here only what are called free vibrations,
i.e. those which occur in the absence of variable external forces. Vibrations occurring as a
result of external forces are called forced vibrations.

The equations of motion for a finite fluid do not have solutions satisfying the
appropriate boundary conditions for every frequency. Such solutions exist only for a series
of definite frequencies w. In other words, in a medium with finite volume, free vibrations
can occur only with certain frequencies. These are called the characteristic frequencies of
the fluid in the vessel concerned.

The actual values of the characteristic frequencies depend on the size and shape of the
vessel. In any given case there is an infinite number of characteristic frequencies. To find
them, it is necessary to examine the equations of motion with the appropriate boundary
conditions.

The order of magnitude of the first (i.c. smallest) characteristic frequency can be seen at
once from dimensional considerations. The only parameter having the dimensions of
length which appears in the problem is the linear dimension / of the body. Hence it is clear
that the wavelength 4, corresponding to the first characteristic frequency must be of the
order of /, and the order of magnitude of the frequency @, itself is obtained by dividing the
velocity of sound by the wavelength. Thus

Ay~ o ~c/l (69.1)

Let us ascertain the nature of the motion in characteristic vibrations. If we seek a
solution of the wave equation for the velocity potential (say) which is periodic in time,
having the form ¢ = ¢y(x, y, z)e ™", then we find for ¢, the equation

Ao + (@) = 0. (69.2)

In an infinite medium, where no boundary conditions need be applied, this equation has
both real and complex solutions. In particular, it has a solution proportional to &* %, which
gives the velocity potential in the form

¢ = constant x exp [i(k -r — wt)].

Such a solution represents a wave propagated with a definite velocity—a travelling wave.

For a medium with finite volume, however, complex solutions cannot in general exist.
This can be seen as follows. The equation satisfied by ¢, is real, and the boundary
conditions are real also. Hence, if ¢y(x, y, z) is a solution of the equations of motion, the
complex conjugate function ¢,* is also a solution. Since, however, the solution of the
equations for given boundary conditions is in general uniquet apart from a constant
factor, we must have ¢,* = constant x ¢, , where the constant is complex and its modulus
is unity. Thus ¢, must have the form ¢, = f(x, y, z)e” “, the function fand the constant a
being real. The potential ¢ thus has the form (taking the real part of ¢e™ )

¢ = f(x, y, z)cos (wt + a), (69.3)

i.¢. it is the product of some function of the coordinates and a simple periodic function of
the time.

-—
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This solution has properties entirely different from those of a travelling wave. In the
latter, the phase k «r — wt + « of the oscillations at different points in space is different at
any given instant, except only at points separated by a distance equal to the wavelength. In
the wave represented by (69.3), all points are oscillating in the same phase @t + a at any
given instant. Such a wave is obviously not “propagated™, it is called a stationary wave.
Thus the characteristic vibrations are stationary waves.

Let us consider a stationary plane sound wave, in which all quantities are functions of
one coordinate only (x, say) and of time. Writing the general solution of d*¢,/0x*
+ @*¢o/c? = 0 in the form ¢, = acos (wx/c + f), we have ¢ = acos (ot + a)cos (wx/c
+ B). By an appropriate choice of the origins of x and t, we can make x and f zero, so that

¢ = a cos wt cos wx/c. (694)
For the velocity and pressure in the wave we have
v = 0¢/0x = — (aw/c)cos wt sin wx/c,
p' = — pdd/dt = pwsin wit cos wx/c.

At the points x = 0, nc/w, 2nc/w, . . . , which are at a distance nc/w = §4 apart, the
velocity v is always zero; these points are called nodes of the velocity. The points midway
between them (x = nc/2w, 3nc/2w, . . . ) are those at which the amplitude of the time
variations of the velocity is greatest. These are called antinodes. The pressure p’ evidently
has nodes and antinodes in the reverse positions. Thus, in a stationary plane wave, the
nodes of the pressure are the antinodes of the velocity, and vice versa.

An interesting case of characteristic vibrations is that of the vibrations of a gas in a vessel
having a small aperture (a resonator). In a closed vessel the smallest characteristic
frequency is, as we know, of the order of ¢/l, where | is the lincar dimension of the vessel.
When there is a small aperture, however, new characteristic vibrations with considerably
smaller frequency appear. These are due to the fact that, if there is a pressure difference
between the gas in the vessel and that outside, this difference can be equalized by the
motion of gas into or out of the vessel. Thus oscillations appear which involve an exchange
of gas between the resonator and the outside medium. Since the aperture is small, this
exchange takes place only slowly, and hence the period of the oscillations is large, and the
frequency correspondingly small (sec Problem 2) The frequencies of the ordinary
vibrations occurring in a closed vessel are practically unchanged by the presence of a small
aperture.

PROBLEMS
PrOBLEM 1. Determine the charactenstic frequencies of sound waves in a flusd contained in a cuboidal vessel

SOLUTION. We seek a solution of the equation (69.2) in the form
¢o = constant X COs gX COSry COs 52,

where g% + ¥ 4+ 5* = @*/c*. At the walls of the vessel we have the conditions v, = d¢/x = 0 for x =0 and a,
d¢/dy = 0 for y = 0 and b, 3¢/8z = 0 for z = 0 and ¢, where g, b, ¢ are the sides of the cuboid. Hence we find
q = mx/a, r = nn/b, s = px/c, where m, n, p are any integers. Thus the characteristic frequencies are

@ = i la + 0 B + PP /)

PROBLEM 2. A narrow tube with cross-sectional area S and length [ is fixed 1o the aperture of a resonator.
Determine the characteristic frequency.
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SOLUTION. Since the tube is narrow, in considering oscillations accompansed by the movement of gas into and
out of the resonator we can suppose that only the gas in the tube has an appreciable velocity, while the gas in the
vessel is almost at rest. The mass of gas in the tube is Spl, and the force on it 1s S(p, ~ pl where p and p, arc the gas
pressures inside and outside the resonator respectively. Hence we must have Splie = S(p — p, ), where v is the gas
vclocilyinthembc.ﬂntimedciminoﬂhemhjmbyp-c’).-lthmpauiw'neialhe
gas density in the resonator ( — p) can be supposed equal to the mass of gas leaving the resonator per unit time
(Spv) divided by the volume ¥ of the resonator. Thus we have p = — ¢“Spo/ ¥, whence

P —~ASpi/V = ~3S(p—p V.

This equation gives p — p, = constant x cos ¢, where the characteristic froquency e, = ¢,/(S/I¥). This is small
compared with ¢/ L (where L is the linear dimension of the vessel), and the wavelength is therefore large compared
with L.

In solving this problem we have supposed that the incar amplitude of the osallations of gas in the tube is small
compared with its length L If this were not so, the oscillations would be accompamied by the outflow of a
considerable fraction of the gas in the tube, and the lincar equation of motion used above would be inapplicable.

§70. Spherical waves

Let us consider a sound wave in which the distribution of density, velocity, etc., depends
only on the distance from some point, i.¢. is spherically symmetrical. Such a waveis called a
spherical wave.

Let us determine the general solution of the wave equation which represents a spherical
wave. We take the wave equation for the velocity potentiak A @ — (1/c%)@*¢/ét* = 0. Since
¢ is a function only of the distance r from the centre and of the time ¢, we have, using the
expression for the Laplacian in spherical polar coordinates,

¢ , 1 0 co
oatl (rz _a'_). (70.1)

We write ¢ = f(r, t)/r. Substituting, we have the following equation for f: &%f/ar?
= ¢2d%f/or®. This is just the ordinary one-dimensional wave equation, with the radius r as
the coordinate. The solution of this equation has, as we know, the form f= f,(ct—7r)
+ f;(ct +r), where f, and f; are arbitrary functions. Thus the general solution of equation
(70.1) has the form

6= _Jilet—r) fz(C} +n (70.2)

r r

The first term is an outgoing wave, propagated in all directions from the origin. The second
term is a wave coming in to the centre. Unlike a plane wave, whose amplitude remains
constant, a spherical wave has an amplitude which decreases inversely as the distance from
the centre. The intensity in the wave is given by the square of the amplitude, and falls off
inversely as the square of the distance, as it should, since the total energy flux in the wave is
distributed over a surface whose area increases as r°.
The variable parts of the pressure and density are related to the potential by p’ =

— pd@/ot, p' = — (p/c?)é¢/dt, and their distribution is determined by formulae having the
same form as (70.2). The (radial) velocity distribution, however, being given by the gradient
of the potential, has the form

po 2 hlet=ntfolct+n) |
ar

(70.3)
r
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If there is no source of sound at the origin, the potential (70.2) must remain finite for r = 0,
For this to be so we must have f,(ct) = — f,(c1), ie

_Jlet=n~flet+n)
r

¢ (704)

(a stationary spherical wave). If there is a source at the origin, on the other hand, the
potential of the outgoing wave from it is ¢ = f(ct — r)/r; it need not remain finite at r = 0,
since the solution holds only for the region outside sources.
A monochromatic stationary spherical wave has the form
¢=Ae "™ — —, (70.5)

where k = w/c. An outgoing monochromatic spherical wave is given by

¢ = AV . (70.6)
It is useful to note that this expression satisfies the differential equation
AP+ kp = —4nAe™ ™ (r), (70.7)

where on the right-hand side we have the delta function é(r) = (x)d(y)é(z). For é(r) =0
everywhere except at the origin, and we return to the homogeneous equation (70.1); and,
integrating (70.7) over the volume of a small sphere including the origin (where the
expression (70.6) reduces to Ae” “*/r) we obtain —4xAde “* on each side.

Let us consider an outgoing spherical wave, occupying a spherical shell outside which
the medium is either at rest or very nearly so; such a wave can originate from a source which
emits during a finite interval of time only, or from some region where there is a sound
disturbance (cf. the end of §72, and §74, Problem 4). Before the wave arrives at any given
point, the potential is ¢ = 0. After the wave has passed, the motion must die away; this
means that ¢ must become constant. In an outgoing spherical wave, however, the potential
is a function having the form ¢ = f(ct — r)/r; such a function can tend to a constant only if
the function fis zero identically. Thus the potential must be zero both before and after the
passage of the wave.t From this we can draw an important conclusion concerning the
distribution of condensations and rarefactions in a spherical wave.

The variation of pressure in the wave is related to the potential by p’ = — pd¢/dt. From
what has been said above, it is clear that, if we integrate p’ over all time for a given r, the
result is zero:

j pde =0 (70.8)

This means that, as the spherical wave passes through a given point, both condensations
(p’ > 0) and rarefactions (p’ < 0) will be observed at that point. In this respect a spherical
wave is markedly different from a plane wave, which may consist of condensations or
rarefactions only.

t Unlike what happens for a planc wave, where we can have ¢ = constant + 0 after the wave has passed.
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A similar pattern will be observed if we consider the manner of variation of p” with
distance at a given instant; instead of the integral (70.8) we now consider another which
also vanishes, namely

I rp'dr = 0. (70.9)
0

PROBLEMS

ProsLEM 1. Attheinitial instant, the gas inside a sphere with radius @ is compressed so that p° = constant = A;
outside this sphere, p' = 0. The initial velocity is zero in all space. Determine the subsequent motion.

SoLuTION. The initial conditions on the potential @(r, 1) are @(r, 0) = 0, é(r, 0) = F(r), where F(r) = 0 for
r>aand F(r) = —c*A/p for r < a. We seck ¢ in the form (70.4). From the imitial conditions we obtain
J(=n=Ar) =0, (=r)=f(r) = rF(r)/c. Hence ['(r) = = [ (~r) = —rF{r)2c. Finally, substituting the value of
F(r), we find the following expressions for the derivative /() and the function f({) itself:

for 1>a f)=0 Jl=0C
for |l <a, S =clA2p, () =i - )Adp,

which give the solution of the problem. If we consider a point with r > & i.c. outside the region of the initial
compression, we have for the density

for t < (r—a)/c, p=0
for r—ajfc<t<(r+a)e, p =%r=c)Ar;
fort>(r+a)ec, p' =0

The wave passes the point considered during a time interval 2a/c; in other words, the wave has the form of a
spherical shell with thickness 2a, which at time ¢ lies between the spheres with radu cf — a and ot + a Within this
shell the density varies linearly; in the outer part (r > ct), the gas is compressed (p° > 0), while in the inner part
(r < ct) it is rarefied (p" < 0)

ProsLEM 2. Determine the characteristic frequencies of centrally symmetrical sound oscillations in a spherical
vessel with radius a.

SoLuTion. From the boundary condition é¢/ér = 0for r = a (where ¢ is gaven by (70.5)) we find tan ka = ka,
which determines the characteristic frequencies. The first (lowest) frequency is @, = 449¢/a.

§71. Cylindrical waves

Let us now consider a wave in which the distribution of all quantities is homogeneous in
some direction (which we take as the z-axis) and has complete axial symmetry about that
direction. This is called a cylindrical wave, and in it we have ¢ = @(R, 1), where R denotes
the distance from the z-axis. Let us determine the general form of such an axially
symmetrical solution of the wave equation. This can be done by starting from the general
spherically symmetrical solution (70.2). R is related to r by r* = R* + 2%, so that ¢ as given
by formula (70.2) depends on z when R and t are given. A function which depends on R and
t only and still satisfies the wave equation can be obtained by integrating (70.2) over all z
from — o to oo, or equally well from 0 to co. We can convert the integration over z to one
over r. Since z = /(r* — R?), dz = rdr/,/(r* — R?). When z varies from 0 to co, r varies
from R to co. Hence we find the general axially symmetrical solution to be

x x

J. fl(ﬂ"') _fz_(“_‘l"_') (L1)
&

(- R’) \/(r‘-k’i
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where /, and f; are arbitrary functions. The first term is an outgoing cylindrical wave, and
the second an ingoing one.
Substituting in these integrals ct +r = {, we can rewrite formula (71.1) as
ct-R x

f.mdc f(&)dE
= I Jie-o-r Y | Je-cr-r7 2

ct+R
We see that the value of the potential at time ¢ at the point R in the outgoing cylindrical
wave is determined by the values of f; at times from — o tot — R/c; similarly, the values of
f, which affect the ingoing wave are those at times from ¢ + R/c to infinity.
As in the spherical case, stationary waves are obtained when f,({) = —f;({). It can be
shown that a stationary cylindrical wave can also be represented in the form

CA+R

F&)de
¢= I JIR—G-ar]’ 53

where F({) is another arbitrary function.
Let us derive an expression for the potential in a monochromatic cylindrical wave. The
wave equation for the potential ¢(R, 1) in cylindrical polar coordinates is

18 ( o9\ 18
iﬁ(“si)‘? a =Y

In a monochromatic wave ¢ = e~ “* f{R), and we have for the function f(R) the equation [
+f'/R + k*f = 0. This is Bessel's equation of order zero. In a stationary cylindrical wave, ¢
must remain finite for R = 0; the appropriate solution is J, (kR), where J, is a Bessel
function of the first kind. Thus, in a stationary cylindrical wave,

& = Ae " Jo(kR). (71.4)

For R = 0 the function J, tends to unity, so that the amplitude tends to the finite imit A.
At large distances R, J, may be replaced by its asymptotic expression, and ¢ then takes the
form

¢ = A\/Zﬂ'{k‘ 2 (71.5)
x  J(kR)
The solution corresponding to a monochromatic outgoing travelling wave is
¢ = Ae " H,'"V(kR), (71.6)

where H," is the Hankel function of the first kind, of order zero. For R — 0 this function
has a logarithmic singularity:

¢ = (2iA/m)log (kR)e . (71.7)
At large distances we have the asymptotic formula
2 exp[i(kR — et — 1:)]
=A |-——— 71.8
6= 4 [2 Ut 719

We see that the amplitude of a cylindrical wave diminishes (at large distances) inversely as
the square root of the distance from the axis, and the intensity therefore decreases as 1/R.
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This result is obvious, since the total energy flux is distributed over a cylindrical surface,
whose area increases proportionally to R as the wave is propagated.

An outgoing cylindrical wave differs from a spherical or plane wave in the important
respect that it has a forward front but no backward front: once the sound disturbance has
reached a given point, it does not cease, but diminishes comparatively slowly as ¢ — co.
Suppose that the function f; (§) in the first term of (71.2) is different from zero only in some
finite range ¢, < ¢ < §,. Then, at times such that ¢t > R + {;, we have

&
¢=I_£(¢ﬁL )
{ Vet =& —R?]

i.e. inversely as the time.

Thus the potential in an outgoing cylindrical wave, due to a source which operates only
for a finite time, vanishes, though slowly, as t — co. This means that, as in the spherical case,
the integral of p’ over all time is zero:

J’ p'dt =0. (71.9)

Hence a cylindrical wave, like a spherical wave, must necessarily include both condens-
ations and rarefactions.

§72. The general solution of the wave equation

We shall now derive a general formula giving the solution of the wave equation in an
infinite fluid for any initial conditions, i.e. giving the velocity and pressure distribution in
the fluid at any instant in terms of their initial distribution.

We first obtain some auxiliary formulae. Let ¢(x, y, z, ) and ¥(x, y, z, 1) be any two
solutions of the wave equation which vanish at infinity. We consider the integral

I= 'fw&—&&)dv.

taken over all space, and calculate its time derivative. Since ¢ and ¢ satisfy the equations
Ap—¢/c* =0and Ay —¥/c? =0, we have

dl/de = J‘(¢$—¢'$)d”= | (dAYy —yL oMWV

= ¢ |div(¢ grady — ygradé)dV.

The last integral can be transformed into an integral over an infinitely distant surface, and
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is therefore zero. Thus we conclude that d//dt = 0, i.e. [ is independent of time:

I-J’w&—&&)dy- constant. (72.1)

Next, let us consider the following particular solution of the wave equation:
¥ =0[r—clto—0))r (72.2)

(where r is the distance from some given point O, 1, is some definite instant, and é denotes
the delta function), and calculate the integral of ¢ over all space. We have

I&dV— f¢-4v’dr=4zj’r6[r—c(t,—l)]dr.
0 0

The argument of the delta function is zero for r = c(t, — ) (we assume that ¢, > ). Hence,
from the properties of the delta function, we find

I ydV = dnc(t, —1) (72.3)
Differentiating this equation with respect to time, we obtain
I ydV = —4nc. (72.4)

We now substitute for ¢, in the integral (72.1), the function (72.2), and take ¢ to be the
required general solution of the wave equation. According to (72.1), I is a constant; using
this, we write down the expressions for I at the instants ¢ = 0 and ¢ = t,, and equate the
two. For t = ¢, the two functions § and ¥ are each different from zero only for r = 0.
Hence, on integrating, we can put r = Oin ¢ and ¢ (i.e. take their values at the point 0), and
take ¢ and ¢ outside the integral:

I= ¢(x,y.2.to)j$dV-$(&y.Lu)I¢dP'.

where x, y, z are the coordinates of 0. According to (72.3)and (72.4), the second termis zero
for t = t,, and the first term gives

I=—4ncd(x,y,2,5)

Let us now calculate I for t = 0. Putting § = &§/ét = — &y/ét,, and denoting by ¢, the
value of the function ¢ for t = 0, we have

I= -K%%’wo&)dh —5‘3—0 fm...dV-I&o&..odv.

0

We write the element of volume asd ¥ = r*drdo, where do is an element of solid angle, and
then we obtain, by the properties of the delta function,

I¢o¢c-ody = I¢o'6('—ao)d'do =cly I‘o..-a.doi
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the integral of ¢,y is similar. Thus

d .
| = —aTo- (“0 J‘ﬁ'-a. dO)-“o J"‘"“odo'

Finally, equating the two expressions for I and omitting the suffix zero in t,, we obtain

1 (@ :
¢(X,y,l.‘)-z;{a (‘I%,_“do)‘F‘j“‘,.adO}. (725)

This formula, called Poisson’s formula, gives the spatial distribution of the potential at
any instant in terms of the distribution of the potential and its time derivative (or,
equivalently, in terms of the velocity and pressure distribution) at some initial instant. We
see that the value of the potential at time ¢ is determined by the values of ¢ and ¢ at
time ¢ = 0 on the surface of a sphere centred at O, with radius ct.

Let us suppose that, at the initial instant, ¢, and ¢, are different from zero only in some
finite region of space, bounded by a closed surface C (Fig. 44). We consider the values of ¢
at subsequent instants at some point 0. These values are determined by the values of ¢,
and ¢, at a distance ct from O. The spheres with radius ct pass through the region within
the surface C only for d/c <t < D/c, where d and D are the least and greatest distances
from the point O to the surface C. At other instants, the integrands in (72.5) are zero. Thus
the motion at O begins at time ¢ = d/c and ceases at time ¢ = D/c. The wave propagated
from the region inside C has a forward front and a backward front. The motion begins
when the forward front arrives at the point in question, while on the backward front
particles previously oscillating come to rest.

/
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PROBLEM

Derive the formula giving the potential in terms of the initial conditions for a wave depending on only two
coordinates, x and y.

SOLUTION. An element of area of a sphere with radius ct can be written df = ¢ t* do, where do is an element of
solid angle. The projection of df on the xy-plane is dxdy = df /[ (ct)® — p* J/cz, where p is the distance of the
point x, y from the centre of the sphere. Comparing the two expressions, we can write do = dxdy/ct /[ (ct)?
~ p*). Denoting by x, y the coordinates of the point where we seck the vatue of ¢, and by £, the coordinates of a
vanable point in the region of integration, we can therefore replace do mn the general formula (72.5) by
dédn/ct /[ (1) —(x — & — (y —n)* ], doubling the resulting expression because dx dy is the projection of two
elements of area on opposite sides of the xy-planc. Thus

1 @ o (S m)dldn
P(x,y,5,0) = ;‘Ejjjt(“?:(}-é e

L1 “' _ Sokmdidn
22 ) TtV —x-F - (y—-wr)’
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where the integration is over a circle centred at O, with radius ct. If ¢, and @, are 2er0 except in a finite region C of
the xy-plane (or, more exactly, except in a cylindrical regpon with its generators paraliel to the z-axis), the
oscillations at the point O (Fig. 44) begin at time ¢ = d/c, where 4 is the least distance from O to a point in the
region. After this time, however, circles with radius ¢t > d centred at O will always enclose part or all of the region
C,and ¢ will tend only asymptotically to zero. Thus, unbke three-dimensional waves, the two-dimensional waves
here considered have a forward front but no backward fromt (f. §71)

Fic 45

§73. The lateral wave

The reflection of a spherical wave from the surface separating two media is of particular
interest in that it may be accompanied by an unusual phenomenon, the appearance of a
lateral wave.

Let Q (Fig. 45) be the source of a spherical sound wave in medium 1, at a distance [ from
the infinite plane surface separating media 1 and 2. The distance [ is arbitrary, and need not
be large compared with the wavelength A. Let the densities of the two media be p,, p,,and
the velocities of sound in them ¢, , c,. We suppose first that ¢, > ¢,;then, at distances from
the source large compared with 4, the motion in medium 1 will be a superposition of two
outgoing waves. One of these is the spherical wave emitted by the source (the direct wave);
its potential is

$,° =e*/r, (73.1)

where r is the distance from the source, and the amplitude is arbitrarily taken to be unity.
We shall, for brevity, omit the factor e ** from all expressions in the present section.
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Fic. 46

The wave surfaces of the second (reflected) wave are spheres centred at Q’, the image of
the source Q in the plane of separation; this is the locus of points P reached at a given time
by rays which leave Q simultancously and are reflected from the plane in accordance with
the laws of geometrical acoustics (in Fig. 46, the ray QAP with angles of incidence and
reflection 0 is shown). The amplitude of the reflected wave decreases inversely as the
distance r’' from the point Q' (which is sometimes called an imaginary source), but depends
also on the angle 0, as if each ray were reflected with the coefficient corresponding to the
reflection of a plane wave at the given angle of incidence 6. In other words, at large
distances the reflected wave is given by the formula

, _ €[ pacacosf—p, V(€ —c;’sin za)
0= b e | 72

cf. formula (66.4) for the reflection coefficient for a plane wave. This formula, which is
clearly valid for large r’, can be rigorously derived by the method shown below.

A more interesting case is that where ¢, < c,. Here, besides the ordinary reflected wave
(73.2), another wave appears in the first medium. The chief properties of this wave can be
seen from the following simple considerations.

The ordinary reflected ray Q AP (Fig. 46) obeys Fermat's principle in the sense that it is
the quickest path from Q to P, among paths lying entirely in medium 1 and involving a
single reflection. When ¢, < c;, however, Fermat’s principle is also satisfied by another
path, where the ray is incident on the boundary at the critical angle of total internal
reflection 6, (sin 6, = ¢, /c,), then is propagated in medium 2 along the boundary, and
finally returns to medium 1 at the angle 6,. The path is QBCP in Fig. 46, and it is evident
that @ > 6,. It is easy to see that this path also has the extremal property: the time taken to
traverse it is less than for any other path from Q to P lying partly in medium 2.

The geometrical locus of points P reached at the same time by rays which
simultaneously leave Q along the path @B, and then return to medium 1 at various points
C, is evidently a conical surface whose generators are perpendicular to lines drawn from
the imaginary source Q' at an angle 6.

Thus, if ¢, < c,, together with the ordinary reflected wave, which has a spherical front,
there is propagated in medium 1 another wave, which has a conical front extending from
the plane of separation (where it meets the refracted wave front in medium 2) to the point
where it touches the spherical front of the reflected wave; this occurs along the line of
intersection with a cone having semi-angle 6, and axis QQ° (Fig. 45). This conical wave is
called the lateral wave.



278 Sound §73

It is casy to see by a simple calculation that the time along the path QBCP (Fig. 46)is less
than along the path QAP to the same point P. This means that a sound signal from the
source Q reaches an observer at P first as the lateral wave, and only later as the ordinary
reflected wave.

It must be borne in mind that the lateral wave is an effect of wave acoustics, despite the
fact that it follows the above simple interpretation in terms of the concepts of geometrical
acoustics. We shall see below that the amplitude of the lateral wave tends to zero in the
limit 4 - 0.

Let us now make a quantitative calculation. The propagation of a monochromatic
sound wave from a point source is described by equation (70.7)

Ap+K¢= —4nd(r—1), (73.3)

where k = w/c and 1 is the position vector of the source. The coefficient of the delta
function is chosen so that the direct wave has the form (73.1). In what follows we take a
system of coordinates with the xy-plane as the plane of separation and the z-axis along
QQ', with the first medium in z > 0. At the surface of separation the pressure and the z-
component of the velocity, or (equivalently) p¢ and é¢/¢z, must be continuous.

Using the general Fourier method, we obtain the solution in the form

= %, I J o (2)expli(x,x + x,y) Jdx dx,, (73.4)
where x =
. (2) = I J- ¢ exp[ —i(x,x + x, y)Jdxdy. (73.5)

From the symmetry relative to the xy-plane it is evident that ¢, can depend only on the
quantity |x| = \/(x,* + x,?). Using the formula

tutw) = 5. | costusinerae,
o

we can therefore write (73.4) as

1
¢=3 I ®.(2)Jo(xR)xdx, (73.6)

where R = \/(x? + y?) is the cylindrical coordinate (the distance from the z-axis). It is
convenient for the subsequent calculations to transform this formula into one in which the
integral is taken from — o0 to oo, expressing the integrand in terms of the Hankel function
H,""(u). The latter has a logarithmic singularity at u = 0; if we agree to go from positive
to negative real u by passing above the point u =0 in the complex u-plane, then
H,"V(—u) = Hy'""(ue'™) = Hy'"V(u) — 2J,(u). Using this relation, we can rewrite (73.6) as

= 4% I $.(2)Ho' " (x R)xdx. (73.7)
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From equation (73.3) we find for the function ¢, the equation
dl ¢. w?
EZ-’_ - (‘z - ?’)é. = -“6(2 - ’). (73'8)

The delta function on the right-hand side of the equation can be eliminated by imposing on
the function ¢,(z) (satisfying the homogeneous equation) the boundary conditions at
z=|:

CXE) P CXE) R } (73.9)

(d¢./dz),. — [d9,/dz]),- = —4=
The boundary conditions at z = 0 are
(pédos —[pddo- =0, }
(d¢./dz)e. — [d¢,/dz],- = 0.
We seek a solution in the form
¢, = Ae "+ for z >
¢, =Be " +Ce&* forl>z>0, (73.11)
¢, = D&+ for 0> z

(73.10)

Here

”‘z - xz -klz, “23 = Kz -kzz (kl = m/tl, kz - w/C3),

and we must put

=+ =k for x >k,
(73.12)

p=—iJ(k*—x*for x <k

The first of these is necessary so that ¢ should not increase without hmit as z — oo, and the
second so that ¢ should represent an outgoing wave. The conditions (73.9) and (73.10) give
four equations which determine the coefficients A, B, C and D. A simple calculation gives

B= C“l:z;‘::!s_n_’ C= 2"-"" 3

Hy zzp 2P My } (73.13)
D=C—Pr A=B+C™.

HiP2+ B2Py J

For p, = p,, ¢; = ¢, (i.c. when all space is occupied by one medium), B is zero and
A = Ce¥¥; thecorresponding term in ¢ is evidently the direct wave (73.1), and the reflected
wave in which we are interested is therefore

¢ = % j B(x)e ~* Hy'"")(x Rxdx. (73.14)

In this expression the path of integration has to be specified. It passes above the singular
point x = 0 (in the complex x-plane), as already mentioned. The integrand also has
singular points (branch points)at x = +k,, +k,, where g, or g, vanishes. In accordance

meJ*
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with the conditions (73.10), the contour must pass below the points + k,, + k,, and above
the points — k,, —k,.

Let us investigate the resulting expression for large distances from the source. Replacing
the Hankel function by its asymptotic expression, we obtain

(Ul DT K )
‘- | — = [ ~(z4 Dy, +ixR)dx. 73.15
O ) i aps + apy) N 2imR L+ Do ) (1359
c
Figure 47 shows the path of integration C for the case ¢, > ¢,. The integral can be
calculated by means of the saddle-point method. The exponent if (z + 1),/ (k,* —x?) + xR]
has an extremum at the point where

vc/\/(k,z —x%)=R/(z+1) = r'sinf/r cos§ = tan 6,

Fic. 47

Le. Kk = k, sin 0, where 0 is the angle of incidence (see Fig. 45). On changing to the path of
integration C’ which passes through this point at an angle of x/4 to the axis of abscissae, we
obtain formula (73.2).

In the case ¢; < ¢, (ie. k; > k;), the point x = k,sinf hes between k, and k, if
sinf > ky/k, = ¢,/c; = sinby,i.e.if 6 > 6, (Fig. 45). In this case the contour C’ must make
a loop round the point k,, and we have, besides the ordinary reflected wave (73.2), a wave
¢,"” given by the integral (73.15) taken around the loop, which we call C” (Fig. 48). This is
the lateral wave. The integral is easily calculated if the point k, sin 6 is not close to k,, i.e. if
the angle 0 is not close to the internal-reflection angle 6,.1

t For an investigation of the lateral wave for all values of 6, see L. Brekhovskikh, Zhurnal tekhnicheskot fiziki
18,455, 1948. This paper gives also the next term in the expansion of the ordinary reflected wave in powers of i/R.
We may mention here that, for angles 6 close to 6, (in the case ¢, < c; ), the ratio of the correction term to the
leading term falls off with distance as (A/RM, and not as i/R.
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Near the point x = k,, u, is small; we expand the coefficient of the exponential in the
integrand of (73.15) in powers of ;. The zero-order term has no singularity at x = k,,and
its integral round C” is zero. Hence we have

23,
ol Iu. ’p, \/2m"“’[ (z+ Dy, +ixR Jdx. (73.16)

Expanding the exponent in powers of x — k; and integrating round the loop C”, we have
after a simple calculation the following expression for the potential of the lateral wave:

2ip, kyexp(ik,r'cos(6,—6)]
723k, /[c0s B, sin Osin® (6, — 6))

In accordance with the previous results, the wave surfaces are the cones r’ cos(6 — 6,)
= R sinf, + (z + l)cos 6, = constant. In a given direction, the wave amplitude decreases
inversely as the square of the distance r’. We see also that this wave disappears in the limit
A= 0. For 6 — 6,, the expression (73.17) ceases to be valid; in actual fact, the amplitude
of the lateral wave in this range of # decreases with distance as r'~*/¢.

¢, = (73.17)

§74. The emission of sound

A body oscillating in a fluid causes a periodic compression and rarefaction of the fluid
near it, and thus produces sound waves. The energy carried away by these waves is supplied
from the kinetic energy of the body. Thus we can speak of the emission of sound by
oscillating bodies. In what follows we shall always suppose that the velocity u of the
oscillating body is small compared with the velocity of sound. Since u ~ aw, where ais the
linear amplitude of the oscillations, this means that a € Af

In the general case of a body of arbitrary shape oscillating in any manner, the problem of
the emission of sound waves must be solved as follows. We take the velocity potential ¢ as
the fundamental quantity; it satisfies the wave equation

Ad—(1/2)é* pjor* = 0. (74.1)

At the surface of the body, the normal component of the fluid velocity must be equal to the
corresponding component of the velocity u of the body:

op/on = u,. (74.2)

At large distances from the body, the wave must become an outgoing spherical wave. The
solution of equation (74.1) which satisfies these boundary conditions and the condition at
infinity determines the sound wave emitted by the body.

Let us consider the two limiting cases in more detail We suppose first that the
frequency of oscillation of the body is so large that the length of the emitted wave is very
small compared with the dimension [ of the body:

i<l (74.3)

t Theamplitude of the oscillations is in general supposed small in companison with the dimensions of the body
also, since otherwise we do not have potential flow near the body (cf. §9). This condition is unnecessary only for
pure pulsations, when the solution (74.7) used below is really a direct deduction from the equation of continuity.



282 Sound §74

In this case we can divide the surface of the body into portions whose dimensions are so
small that they may be approximately regarded as plane, but yet are large compared with
the wavelength. Then we may suppose that each such portion emits a plane wave, in which
the fluid velocity is simply the normal component u, of the velocity of that portion of the
surface. But the mean energy flux in a plane wave is (see §65) cpe?, where v is the fluid
velocity in the wave. Putting v = u, and integrating over the whole surface of the body, we
reach the result that the mean energy emitted per unit time by the body in the form of
sound waves, i.e. the total intensity of the emitted sound, is

I=cp §u_.—’ df. (14.4)

It is independent of the frequency of the oscillations (for a given velocity amplitude).
Let us now consider the opposite limiting case, where the length of the emitted wave is
large compared with the dimension of the body:

s s (74.5)

Then we can neglect the term (1/c%)8*@/dt?, in the general equation (74.1), near the body
(at distances small compared with the wavelength). For this term is of the order of w?¢/c?
~ ¢/A*, whereas the second derivatives with respect to the coordinates are, in this region,
of the order of ¢/I°.

Thus the flow near the body satisfies Laplace’s equation, 2\ ¢ = 0. This is the equation
for potential flow of an incompressible fluid. Consequently the fluid near the body moves
as if it were incompressible. Sound waves proper, i.e. compression and rarefaction waves,
occur only at large distances from the body.

At distances of the order of the dimension of the body and smaller, the required solution
of the equation A ¢ = 0 cannot be written in a general form, but depends on the actual
shape of the oscillating body. At distances large compared with [, however (though still
small compared with 4, so that the equation A ¢ = 0 remains valid), we can find a general
form of the solution by using the fact that ¢ must decrease with increasing distance. We
have already discussed such solutions of Laplace’s equation in §11. As there, we write the
general form of the solution as

¢ = —(a/r)+ A-grad(1/r), (74.6)

where r is the distance from an origin anywhere inside the body. Here, of course, the
distances involved must be large compared with the dimension of the body, since we
cannot otherwise restrict ourselves to the terms in ¢ which decrease least rapidly as r
increases. We have included both terms in (74.6), although it must be borne in mind that
the first term is sometimes absent (see below).

Let us ascertain in what cases this term — a/r is non-zero. We found in §11 that a
potential —a/r results in a non-zero value 4npa of the mass flux through a surface
surrounding the body. In an incompressible fluid, however such a mass flux can occur only
if the total volume of fluid enclosed within the surface changes. In other words, there must
be a change in the volume of the body, as a result of which the fluid is either expelled from
or “sucked into” the volume of space concerned. Thus the first term in (74.6) appears in
cases where the emitting body undergoes pulsations during which its volume changes.

Let us suppose that this is so, and determine the total intensjty of the emitted sound. The
volume 4na of the fluid which flows through the closed surface must, by the foregoing
argument, be equal to the change per unit time in the volume V of the body, i.e. to the
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derivative d¥'/dt (the volume V being a given function of the time): 4na = V. Thus, at
distances r such that | € r € A, the motion of the fluid is given by the function ¢ =
— V(t)/4nr. At distances r » A, however (i.c. in the wave region), @ must represent an
outgoing spherical wave, i.e. must have the form

f(l - f/C,

¢=~-"— , (74.7)

Hence we conclude at once that the emitted wave has, at all distances large compared with

l, the form _

_He=ria
dnr

¢ = (74.8)
which is obtained by replacing the argument ¢ of ¥ (1) by t —r/c.

The velocity v = grad ¢ is directed at every point along the position vector, and its
magnitude is v = d¢/dr. In differentiating (74.8) for distances r » A, only the derivative of
the numerator need be taken, since differentiation of the denominator would give a term of
higher order in 1/r, which we neglect. Since @V (t — r/c)/ér = — (1/¢) V (t — r/c), we obtain

v=V(t—r/c)n/dxcr, (74.9)

where n is a unit vector in the direction of r.

Theintensity of the sound is given by the square of the velocity, and is here independent
of the direction of emission, i.c. the emission is isotropic. The mean value of the total
energy emitted per unit time is

[ = pc§?df= (p/l&‘tz)§( 3y,

where the integration is taken over a closed surface surrounding the origin. Taking this
surface to be a sphere with radius r, and noticing that the integrand depends only on the
distance from the origin, we have finally

I =pV?/axnc. (74.10)

This is the total intensity of the emitted sound. We see that it is given by the squared second
time derivative of the volume of the body.

If the body executes harmonic pulsations with frequency w, the second time derivative
of the volume is proportional to the frequency and velocity amplitude of the oscillations,
and its mean square is proportional to the square of the frequency. Thus the intensity of
emission is proportional to the square of the frequency for a given velocity amplitude of
points on the surface of the body. For a given amplitude of the oscillations, however, the
velocity amplitude is itself proportional to the frequency, so that the intensity of emission
is proportional to w*.

Let us now consider the emission of sound by a body oscillating without change of
volume. Only the second term then remains in (74.6); we write it ¢ = div[A(t)/r]). Asin the
preceding case, we conclude that the general form of the solution at all distances r » [ is
¢ = div[A(t — r/c)/r]. That this expression is in fact a solution of the wave equation is seen
immediately, since the function A(t—r/c)/r is a solution, and therefore so are its
derivatives with respect to the coordinates. Again differentiating only the numerator, we
obtain (for distances r » )

¢ = —A(t—r/c)-njcr. (74.11)
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To calculate the velocity v = grad ¢, we need again differentiate only A. Hence we have, by
the familiar rules of vector analysis for differentiation with respect to a scalar argument,

D |

and, substituting grad(t —r/c) = —(1/c)gradr = —n/c, we have finally
v=mn(n-A)/cr (74.12)

The intensity is now proportional to the squared cosine of the angle between the
direction of emission (i.e. the direction of n) and the vector A; this is called dipole emission.
The total emission is given by the integral

-5

We again take the surface of integration to be a sphere with radius r, and use spherical
polar coordinates with the polar axis in the direction of the vector A. A simple integration
gives finally for the total emission per unit time

I= ‘l" Al (74.13)

The components of the vector A are linear functions of the components of the velocity u of
the body (see §11). Thus the intensity is here a quadratic function of the second time
derivatives of the velocity components.

If the body executes harmonic oscillations with frequency @, we conclude (reasoning as
in the previous case) that the intensity is proportional to «* for a given value of the velocity
amplitude. For a given linear amplitude of the oscllations of the body, the velocity
amplitude is proportional to the frequency, and therefore the intensity is proportional to
w®,

In an entirely similar manner we can solve the problem of the emission of cylindrical
sound waves by a cylinder with any cross-section pulsating or oscillating perpendicularly
to its axis. We shall give here the corresponding formulae, with a view to later applications.

Let us first consider small pulsations of a cylinder, and let S = S(r) be its (variable) cross-
sectional area. At distances r from the axis of the cylinder such that | < r <€ 4, where lis the
transverse dimension of the cylinder, we have similarly to (74.8)

¢ = [S(1)/2x]log r, (74.14)

where f(t) is a function of time, and the coefficient of log fr is chosen so as to obtain the
correct value for the mass flux through a coaxial cylindrical surface. In accordance with the
formula for the potential of an outgoing cylindrical wave (the first term of formula (71.2)),
we now conclude that at all distances r » | the potential is given by

e
S(r)dr
J’ e (74.15)

As r — 0 the leading term of this expression is the same as (74.14), and the function f(t) in
the latter equation is automatically determined (we suppose that the derivative $(r) tends
sufficiently rapidly to zero as t = — oo). For very large values of r, on the other hand (the
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wave region), the values of t —t' ~ r/c are the most important in the integral (74.15). Wecan
therefore put, in the denominator of the integrand,

(=) =r/c? = /)t =1 =r/c),
obtaining

t=rle

_ S(r)dr
J(zr) J(cu—r) ]

Finally, the velocity v = d¢/dr. To effect the dlﬂ'muaﬁon, it is convenient to substitute
t=t'=rfc=4§:

(74.16)

$(t-r/c C)
R

the limits of integration are then nndependent of r. The factor 1/./r in front of the integral

need not be differentiated, since this would give a term of higher order in 1/r.

Differentiating under the integral sign and then returning to the variable ', we obtain
t=rjc

S(r)ar
v 21\/(2r) 7[c((—t’) r) (M37)

The intensity is given by the product 2arpcv?. It should be noticed that here, unlike what
happens for the spherical case, the intensity at any instant is determined by the behaviour
of the function S(¢) at all times from — oo to t—r/c.

Finally, for translatory oscillations of an infinite cylinder in a direction perpendicular to
its axis, the potential at distances r such that | <€ r <€ 4 has the form

¢ = div (A log fr), (P15

where A (t) is determined by solving Laplace’s equation for the flow of an incompressible
fluid past a cylinder. Hence we again conclude that, at all distances r» |,

A(0)dr
—dw I Jle=0y =F~/12Y .19

In conclusion, we must make the following remark. We have here entirely neglected the
effect of the viscosity of the fluid, and accordingly have supposed that there is potential
flow in the emitted wave. In reality, however, we do not have potential flow in a fluid layer
with thickness ~ \/ (v/w) round the oscillating body (see §24) Hence, if the above
formulae are to be applicable, it is necessary that the thickness of this layer should be small
in comparison with the dimension ! of the body:

Vo)<l (74.20)

This condition may not hold for small frequencies or small dimensions of the body.
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PROBLEMS

PrOBLEM 1. Determine the total intensity of sound emutted by a sphere executing small (harmonic)

translatory oscillations with frequency w, the wavelength being comparable in magnitude with the radius R of the
sphere.

SOLUTION. We write the velocity of the sphere in the form u = u, ¢ “*; then ¢ depends on the time through a
factor ¢ ' also, and satisfies the equation ¢ + k¥ ¢ = 0, where k = @/c. We seck a solution in the form
¢ = u-grad f(r), the origin being taken at the instantancous position of the centre of the sphere. For f we obtain
the equation w-grad (Af+k"f) =0, whence A f+k’f = constant. Apart from an unimportant additive
oonn:t.mtb«d’otehvej- A" r. The constant A is determined from the condition d¢/dr = u, for r = R,
and the result is

T MR- KR

Thus we have dipole emission. At sufficiently large distances from the sphere, we can neglect unity in comparison
with ikr, and ¢ takes the form (74.11), the vector A being

r

e

- —mhr-Rpy W
A ot - 2~ 2kR-K*R*

Noticing that (re A)* = 4|A[*, we obtain for the total emission, by (74.13)
2%p Rée*

— L
30 % G Rl
For wR/c < 1, this expression becomes / = xpR® |u, |*@w*/6c”, a result which could also be obtained by directly
substituting in (74.13) the expression A = { R ufrom §11, Problem 1. For @R/c » | we have | = 2zpcR*|w, /3,
corresponding to formula (74.4).
The drag force acting on the sphere is obtained by integrating over the surface of the sphere the component of
the pressure forces (p' = — p(@’),.. z) in the direction of w, and is
ax . =R +iQ+ R
FogpoRke— g
sec the end of §24 concerning the meaning of a complex drag force.

Je

ProBLEM 2. The same as Problem 1, but for the case where the radius R of the sphere is comparable in
magnitude with ./ (v/@), whilst i » R.

SoLuTioN. If the dimension of the body is not large compared with ./ (v/w), then the emitted wave must be
investigated not from the equation A\ ¢ = 0, but from the equation of motion of an incompressible viscous fluid.
The appropriate solution of this equation for a sphere is given by formulae (1)and (2)in §24, Problem 5. At great
distances the first term in (1), which diminishes exponeatially with 7, may be omitted. The second term gives the
velocity v = — b(u-grad)grad(1/r). Comparison with (74.6) shows that

A= —ba={R[1-3/(i-1)x—32ix"]u,
;_::re;u: R./(@/2v),ie. A differs from the corresponding expression for an ideal fluid by the factor in brackets.
r is
"%“‘(”é*%*%*q‘:‘“)"‘"‘
For x » 1 this becomes the formula given in Problem 1, while for x < 1 we obtain
I = 3zpR*v' &’ |wy ' /267,
i.e. the emission is proportional to the second, and not the fourth, power of the frequency.

ProBLEM 3. Determine the intensity of sound emitted by a sphere executing small (harmonic) pulsations with
any frequency.

SoLuTiON. We seck a solution of the form ¢ = (au/r)&*" ~®_ R being the equilibrium radius of the sphere,
and determine the constant a from the condition [é@/ér], g = w = we™ ™ (where u is the radial velocity of
points on the surface of the sphere):

a= R?/(ikR-1)
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The intensity is / = 2xpc|uo *k* R*/(1 + k* R?). For kR « 1, | = 2zpe’® R*| w)*/c, in accordance with (74.10),
while for kR » 1, I = 2npcR? |, |, in accordance with (74.4).

ProsLEM 4. Determine the nature of the wave emitted by a sphere (with radius R) executing small pulsations,
when the radial velocity of points on the surface is any function «(f) of the ume.

SOLUTION, We seck a solution in the form ¢ = f(')/r, where ¢ = t — (r -~ R)c, and determine / from the
boundary condition d¢/dr = u(t) for r = R. This gives the equation d//dt + ¢/U)R = — Reu(r) Solving this
linear equation and replacing ¢ by t’ in the solution for f, we obtain

cR
olr.t)= -T.-cm I u(t)e R de (1)
If the oscillations of the sphere ccase at some instant, say ¢ = 0 (ie. w(1) = 0 for r > 0), then the potential at a
distance r from the centre will have the form ¢ = constant x ¢ /X after the instant t = (r — R)/c, i.e. it will
diminish exponentially.

Let T be the time during which the velocity u(t) changes appreciably. If 7» R/c, ie. if the wavelength of the
emitted waves A ~ ¢T » R, then wecan take the slowly varying factor w(r)outside the integral in (1), replacing it by
u(r’). For distances r » R, we then obtain ¢ = — (R*/r)u(t —r/c), in accordance with formula (74.8). If, on the
other hand, 7 € R/c, we obtain in a similar manner

R
o= -‘—’- j-(t)dt. v = d¢/ér = (R/r)ulr),

in accordance with formula (74.4).

ProBLEM 5. Determine the motion of an ideal compressible fluid when a sphere with radius R executesin it an
arbitrary translatory motion, with velocity small compared with that of sound.

SoLuTiON. We seck a solution in the form

¢ =div[f(r)r). (1
where r is the distance from the origin, taken at the position of the centre of the sphere at the time ' =t —
(r — R)/c; since the velocity u of the sphere is small compared with the velocity of sound, the movement of the
origin may be neglected. The fluid velocity is

3iff-a)ja—f 3(f-mja-f (" -a)n
'-m“--—'-,—- *——tr-’—_- —ar " )

where n is a unit vector in the direction of r, and the prime denotes differcatiation with respect 10 the argument of
f. The boundary condition is v, = u-n for r = R, whence " (1) + (2¢/R) 1" (1) + (2*/R*)f(t) = R u(1). Solving
this equation by variation of the parameters, we obtain for the function f(1) the general expression
f(t) = cR¥e~ VR J’o(t)ild—t;—t-’f‘/‘ch. 3)
In substituting in (1), we must replace t by ¢’ The lower limit is taken as — <o 50 that fshall be zero for t = — 0.
PROBLEM 6. A sphere with radius R begins at time ¢ = 0 to move with constant velocity w,. Determine the
sound intensity emitted at the instant when the motion begins.

SoLuTion. Putting in formula (3) of Problem S u(r) = Ofor « < Oand u(r) = &, for r > 0, and substituting in
formula (2) (retaining only the last term, which decreases least rapidly with increasing r), we find the fluid velocity
far from the sphere:

v= —l(l-u.)iz—k-c“""s'-(c—‘-’-h).
r R
where 1" > 0. The total intensity diminishes with time according 10
I = (8%/3)cpR*u,* e~ **/R sin® (cf /R —}m).
The total amount of energy emitted is §xpR* u,*.
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ProsLeM 7. Determine the intensity of sound emitted by an infinite cylinder, with radius R, executing
harmonic pulsations with wavelength A » R.

SOLUTION. According to formula (74.14), we find first of all that, at distances r « A (in Problems 7and 8 ris the
distance from the axis of the cylinder), the potential is ¢ = Ru log kr, where w = w, ¢~ ™ is the velocity of points
on the surface of the cylinder. From a companison with formulae (71.7) and (71.5), we now find that at large
distances the potential has the form ¢ = — Ru ./ (in/2kr) ™. The velocity is therefore

v = Ru ./ (zk/2ir)ne®™,

whu;;tu ! perpendicular to the axis of the cylinder, and the intensity per unit length of the cylinder is
I = §n*pwR IKI

ProBLEM 8. Determine the intensity of sound emitted by a cylinder executing harmonic translatory
oscillations in a direction perpendicular 10 its axis.

SOLUTION. At distances r € A we have ¢ = —div(R*ulog krk of. formula (74.18) and §10, Problem 3. Hence
we conclude that at large distances

¢ = R* /(in/2k)div (¥ w//r) = — R*uw- -\/ufme'

whence the velocity is v = — kR? ./ (ink/2r) u(u -u) ¢*. The intensity is proportional uared cosine of the
mhhamthedmmdmlhboandmmwmnl-(a‘ )per’ R* |my |

PrOBLEM 9. Determine the intensity of sound emitted by a plane surface whose temperature varies
periodically with frequency @ < ¢?/y, where y is the thermometric conductivity of the fluid.

SOLUTION. Let the variable part of the temperature of the surface be 77, ¢~ ™. These temperature oscillations
cause a damped thermal wave (52.15) in the fluid:

=T, Pl et N

and the fluid density therefore oscillates also: p* = (6p/éT),T" = — pfT", where § is the coefficient of thermal
expansion. This, in turn, results in the occurrence of a motion determuned by the equation of continuity: pdv/dx
= —0dp'/0t = —iwpfT’. At the solid surface the velocity v, = ¢ = 0, and far from the surface it tends to the limit

LR -MI Tdx = 17-2' ﬁ,/t.nf'.f"'.

This value is reached at distances ~ ,/(z/e), which are small compared with ¢/e, and we thus have a boundary
condiitiot;ontbe;esuhingaoundnw.ﬂanewc&dtk‘ﬂaﬁypa-‘mof&emfutobe
I'=Yeppoy|T |

ProBLEM 10. A point source emitting a spherical wave is at a distance | from a solid wall which totally reflects
sound and bounds a half-space occupied by fluid. Determine the ratio of the total intensity of sound emitted by
the source to that which would be found in an infinite medium, and the dependence of the intensity on direction
for large distances from the source.

SoLuTioN. The sum of the direct and reflected waves is given by a solution of the wave equation such that the
normal velocity component v, = d¢/dn is zero at the wall. Such a solution is

et T
‘-(—’—1'—"-)(

(we omit the constant factor, for brevity), where r is the distance from the source O (Fig. 49), and ' is the distance
from a point O’ which is the image of O in the wall. At large distances from the source we have ' 3 r — 2/ cos 6, 5o
that
- )
$=— — + ¢~ Miond)

The dependence of the intensity on direction is given by a factor cos® (kicos8).

To determine the total intensity, we integrate the energy fux § = p'v = — pdgrad (sec (654)) over the
surface of a sphere with arbitrarily small radius, centred at 0. This gives 2zpke (1 + [1/2k/] sin 2k!). In an infinite
medium, on the other hand, we should have simply a spherical wave ¢ = ¢ ™= r, with a total energy flux 2npke.
Thus the required ratio of intensities is 1+ (1/2k/)sin 2kl
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ProsLEM 11. The same as Problem 10, but for a fluid bounded by a free surface.

SOLUTION. At the free surface the condition p' = — pé = 0 must bold; in a monochromatic wave this is
equivalent to ¢ = 0. The corresponding solution of the wave equation is

&AL
‘-(—'—-7)‘ .

At large distances from the source, the intensity is given by a factor sin® (ki cos §). The required ratio of intensities
is 1 —(1/2kl) sin 2kL

§75. Sound excitation by turbulence

Turbulent velocity fluctuations also are a cause of sound excitation in the surrounding
fluid. The present section will give the general theory of this effect (M. J. Lighthill 1952).
We shall consider the case where the turbulence occupies a finite region V, surrounded by
an infinite volume of fluid at rest. The turbulence itself is treated in terms of incompressible
fluid theory, the density changes due to the fluctuations being neglected. This means that
the velocity of the turbulent flow is assumed to be much less than that of sound (as was
assumed throughout Chapter I1I).

We shall begin by deriving the general equation, taking into account not only the motion
in the sound waves but also the flow in the turbulent region. The only difference from the
derivation in §64 is that the non-linear term (v-grad)v must be retained: although v is
much less than c, it is much greater than the fluid velocity in the sound wave. We therefore
have instead of (64.3)

Ov/ot+ (v-grad)v+ (1/p, ) gradp’ = 0.
Taking the divergence of this equation and using (64.5),

ap’ /0t + poc? divv = 0,
we obtain

1 &p , é ov,
32 P =0 5;._(0.3;.)-

The right-hand side of this equation can be transformed by means of the equation of
continuity div v = 0 (the turbulence being regarded as incompressible), and the differenti-
ation with respect to x, taken outside the brackets. The final result is

1% ) T,

dar AV =P55 Ta=un (75.1)
the suffix in p, being again omitted. Outside the turbulent region, the expression on the
right is a second-order small quantity and may be omitted, so that we return to the wave
equation of sound propagation. The non-zero right-hand side in the volume V; actsas a
source of sound. In that volume, v is the velocity of the turbulent flow.
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Equation (75.1) is of the retarded-potential type. The solution which describes emission

from a source is
-aj-T‘. ('I ’ '! g_t’l )

P
: 75.
0x,0xy, b i R (54

P (l’, ‘) - "_; [
see Fields, §62. Here, r is the position vector of the point of observation, r, that of a
variable point in the region of integration, and R = |r —r, |; the integrand is taken at the
“retarded” time ¢t — R/c. The integration in (75.2) is in practice to be taken only over the
volume ¥, in which the integrand is non-zero.

The majority of the energy of turbulent flow is at frequencies ~ u// which correspond to
the fundamental scale / of the turbulence; u is the characteristic velocity (see §33). These
will evidently be also the main frequencies in the spectrum of sound waves excited. The
corresponding wavelengths A ~cl/u® I

To determine the emission intensity, it is sufficient to consider the sound at distances
much greater than the wavelength A (in the wave region); these are also much greater than
the linear size of the source, i.e. of the turbulent region.t The factor 1/R in the integrand may
be replaced in this region by 1/r and taken outside the integral (r being the distance from
the point of observation to an origin taken somewhere inside the source); we thereby
neglect terms that decrease faster than 1/r, which in any case do not contribute to the
intensity of waves going to infinity. Thus

’ P P Talry, 1) .
p(t,t)=4—tr-ﬂ:—~ — -]‘-N‘dh. (75.3)

0x,,0%,,

The derivatives in the integrand are taken before the evaluation at t — R/c, that is, only
with respect to the first argument of the 7, (r,, ). They may be replaced by derivatives of
the functions 7, (r, t — R/c) taken with respect to both arguments, the derivatives with
respect to the second argument being subtracted. The former are complete divergences,
and their integrals give zero when transformed into integrals over distant closed surfaces,
since 7}, = 0 outside the turbulent region. The derivatives with respect to the variable
coordinates r, which appear in the argument r — R/c may be replaced by those with respect
to the coordinates of the point of observation r, since r and r, occur only as the difference
R = |r—r,|. We thus obtain

prt)= axr 9x,0x, Talr,,t—R/c)dV,. (75.4)

The time t — R/c differs from t — r/c by ~ I/c. This, however, is small compared with the
periods I/u of the fundamental turbulent eddies. This allows the argument t — R/c in the
integrand to be replaced by t = t —r/c.{ Then, differentiating under the integral sign and
noting that dr/dx; = n; (where m is a unit vector along r), we obtain

p(r,t)= 2;‘::’;" nn, Ira(h’ 7)dV;. (75.5)

where a dot denotes differentiation with respect to t.
The tensor 7}, like any symmetrical tensor with non-zero trace, can be put in the form

Ta = (Ta—31,0,) +§71,65 = Qu + Q4 (75.6)

t In referring to orders of magnitude we make no distinction between the fundamental scale | and the size of
the turbulent region, although the latter may be noticeably larger.

{ Here, we do not consider the emission spectrum, but take only the principal frequencies which determine the
total intensity. Note also that the substitution in question could not have been made at an carlier stage, in (75.3),
since the integral would then be zero.
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where Q,, is an “irreducible” tensor with zero trace, and Q is a scalar. Then the spherical
wave (75.5) separates as a sum of two terms:

pr,t) = 3;5:’} { IQ(n- 1)d¥, +nn, J’Qa (ry, 1)dV¥, } (75.7)

which respectively represent the emission from monopole and quadrupole sources.

Let us next calculate the total emitted intensity. The sound energy flux density in the
wave region is along n at every point, and its magnitude is ¢ = p’'?/cp. The total intensity is
found by multiplying ¢ by r* do and integrating over all directions of n.t In practice,
however, we are interested not in the instantaneous fluctuating value of the intensity but in
the time-averaged value (the turbulence being here assumed “steady”). The latter
operation is carried out by writting the squares of the integrals as double integrals and
averaging (denoted by angle brackets) under the integral signs. The result is

- ?cf)’:c" (Q(ry, DQ(ry, 1) YAV, dV; +
. e
+ %:4;5‘ (Qualry, 1)Qu(ry, 7)) dV,dV;. (158)

The cross product of the two terms in (75.7) disappears on integration over directions, and
so the total intensity is the sum of the monopole and quadrupole emissions. In the present
case, these two parts have in general the same order of magnitude.

Let us estimate this order of magnitude (or rather, determine the dependence of / on the
turbulent flow parameters). The tensor components 7, ~ u®, where u is the characteristic
velocity of the turbulent flow. Each differentiation with respect to time multiplies this
order of magnitude by the characteristic frequency u/l. Hence Q ~ uw*/%. The correlation
between the turbulent fluctuation velocities at different points extends to distances ~ .
The quantity of energy emitted as sound by unit mass of the turbulent medium per unit
time is therefore

1,
T3 d cl
_This emission intensity is thus proportional to the eighth power of the turbulent flow
velocity.

The turbulent flow is maintained by power supplied from some external source. In the
“steady” case, this is equal to the energy dissipated per unit time. The latter is, per unit
mass, &, ~ u” /1.3 The acoustic efficiency may be defined as the ratio of the emitted power
and the dissipated power:

(75.9)

£,/e4 ~ (u/c)’. (75.10)

The high power of u/c has the result that when u/c < 1 the effectiveness of turbulence as a
sound source is low.

¥ This integration is achieved by using the following expressions for the mean products of two and four
components of n:
nn, =436a, mman, = K(0ad.+8.8,.+5.5,)

$ See (33.1). We here do not distinguish between u and Au; the choice of the frame of reference in which the
flow is considered is determined by the fact that the fluad is assumed to be at rest outside the turbulent region.
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§76. The reciprocity principle

In deriving the equations of a sound wave in §64, it was assumed that the wave is
propagated in a homogeneous medium. In particular, the density p, of the medium and
the velocity of sound in it, ¢, were regarded as constants. In order to obtain some general
relations applicable for an arbitrary inhomogeneous medium, we shall first derive the
equation for the propagation of sound in such a medium.

We write the equation of continuity in the form dp/dt + pdivy = 0. Since the
propagation of sound is adiabatic, we have

dp dp\dp 1dp 1 /[ép
a;'(;a;) a«~Fa" ?( o ""’)
and the equation of continuity becomes dp/dt + v-grad p + pc® divy = 0.

As usual, we put p = p, + p’, where p, is now a given function of the coordinates. In the
equation p = p, + p’, however, we must put as before p, = constant, since the pressure
must be constant throughout a medium in equilibrium (in the absence of an external field,
of course). Thus we have to within second-order quantities dp’/ét + p,c divy = 0.

This equation is the same in form as equation (64.5), but the coefficient p, c? isa function
of the coordinates. As in §64, we obtain Euler’s equation in the form dv/dt = —(1/p,)
grad p’. Eliminating v, and omitting the suffix in p,, we finally obtain the equation of
propagation of sound in an inhomogeneous medium:

_gradp’ 1 &Fp
div ’ 32 0. (76.1)
If the wave is monochromatic, with frequency @, we have p' = —w?p’, so that
. gradp’ of
divEXP LY p=0 62
- 14 (76.2)

Let us consider a sound wave emitted by a pulsating source of small dimension; we have
seen in §74 that the emission is isotropic. We denote by A the point where the source is, and
by p,(B) the pressure p’ at a point Bin the emitted wave.t If the same source is placed at B,
it produces at A a pressure which we denote by p,(4). We shall derive the relation between

p.(B) and P.(A)
To do so, we use equation (76.2), applying it first to the sound from a source at 4 and
then to the sound from a source at B:

diy BF24P gradp',
——L 4+ =0, div=>—/"+
P pc’p‘ P m""
We multiply the first equation by p’, and the second by p’, and subtract. The result is

p’.d]vg.“_p‘.‘ p‘ ’“"
P P
= div(p_"_"_'ﬂé_”_" ':‘P_'!) =0.
P

t The dimension of the source must be small compared with the distance between A and B and with the
wavelength.
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We integrate this equation over the volume between an infinitely distant closed surface C
and two small spheres C, and C, which enclose the points 4 and B respectively. The
volume integral can be transformed into three surface integrals, and the integral over C is
zero, since the sound field vanishes at infinity. Thus we obtain

§ (Pl’.:p—"“Pav.:P )df-O. (76.3)

C‘OC.

Inside the small sphere C,, the pressure p’, in the wave from a source at A falls off
rapidly with the distance from A, and the gradient grad p’, is therefore large. The pressure
p’p due to a source at Bisa slowly varying function of the coordinates in the region near the
point A, which is at a considerable distance from B, so that the gradient gradp’, is
relatively small. When the radius of the sphere C, is sufficiently small, therefore, we can
neglect the integral

§(p"/p)mdp'.'df
over C, in comparison with
§(p'./p)mlp" -df,
and in the latter the almost constant quantity p’, can be taken outside the integral and

replaced by its value at the point A. Similar arguments hold for the integrals over the
sphere Cg, and as a result we obtain from (76.3) the relation

P'a(4)§'n:p‘ -df = p‘(m§ _ﬂ_’t_‘_p_.“
Ca

But (1/p) grad p’ = — dv/dt, and this equation can thcrd'on: be rewritten

The integral

§v‘-df

over C, is the volume of fluid flowing per unit time through the surface of the sphere C , i.c.
it is the rate of change of the volume of the pulsating source of sound. Since the sources at
A and B are identical, it is clear that

and consequently
P'4(B) = p'p(A) (76.4)



294 Sound §77

This equation constitutes the reciprocity principle: the pressure at B due to a source at A
is equal to the pressure at A due to a similar source at B. It should be emphasized that this
result holds, in particular, for the case where the medium is composed of several different
regions, each of which is homogeneous. When sound is propagated in such a medium, it is
reflected and refracted at the surfaces separating the various regions. Thus the reciprocity
principle is valid also in cases where the wave undergoes reflection and refraction on its
path from 4 to B.

PROBLEM

Derive the reciprocity principle for dipole emission of sound by a source which oscillates without change of
volume.

SoLUTION. In this case the integral

§v,-a-o. (1)
C

A
and the next approximation must be taken in calkculating the integrals in (76.3). To do so, we write, as far as the
first-order terms,

Pe=PglA)+r-gradpy )
where r is the radius vector from A. In the integral
§(r.!-':’~4 i 3

Ca
the two terms are now of the same order of magnitude. Substituting here for p' x from (2) and using (1), we get

ﬂ(,.,.‘,.,g-:n_ —y ;_-"g}..,

4
Ca
Next, we take the almost constant quantity grad p'y = — p¥, outside the integral, replacing it by its value at A:

PRAVIE §{5;1dt- :(!-" Pa dt)}

P
Ca
where p,, is the density of the medium at the point A. To calculate this integral, we notice that near a source the
fluid can be supposed incompressible (see §74), and hence we can write for the pressure inside the small sphere C
by (11.1), P’y = — pé = pA -r/r’. In a monochromatic wave ¥ = —iwv, A = — iwA; introducing also the unit
vector n, in the direction of the vector A for a source at A, we find that the integral (3) is proportional to
p4vp(A)-m,. Similarly, the integral over the sphere C yis proportional 1o — pgv ,(B) - n g, with the same factor
ofpropomﬁty.ﬁqmﬁumemmwmn&d.mwm
PavplA) -, = pgv,(B)-ug,
which expresses the reciprocity principle for dipole emission of sound.

§77. Propagation of sound in a tube

Let us now consider the propagation of a sound wave in a long narrow tube. By a
“narrow” tube we mean one whose width is small compared with the wavelength. The
cross-section of the tube may vary along its length in both shape and area. It is important,
however, that this variation should occur fairly slowly: the cross-sectional area S must vary
only slightly over distances of the order of the width of the tube.

Under these conditions we can suppose that all guantities (velocity, density, etc.) are
constant over any transverse cross-section of the tube. The direction of propagation of the



§77 Propagation of sound in a tube 295

wave can be supposed to coincide with that of the axis of the tube at all points. The
equation for the propagation of such a wave is most conveniently derived by a method
similiar to that used in §12in deriving the equation for the propagation of gravity waves in
channels.

In unit time a mass Spv of fluid passes through a cross-section of the tube. Hence the
mass of fluid in the volume between two transverse cross-sections at a distance dx apart
decreases in unit time by

(Spv), , 4 — (Spv), = [O(Spv)/dx])dx,

the coordinate x being measured along the axis of the tube. Since the volume between the
two cross-sections remains constant, the decrease must be due only to the change in density
of the fluid. The change in density per unit time is dp/ét, and the corresponding decrease in
the mass of fluid in the volume S dx between the two cross-sections is — S(dp/dr)dx.
Equating the two expressions, we obtain

Sdp/ét = —d(Spv)/éx, (77.1)

which is the equation of continuity for flow in a pipe.
Next, we write down Euler’s equation, omitting the term quadratic in the velocity:

dov/ot = —(1/p)dp/éx. (77.2)

We differentiate (77.1) with respect to time, regarding p on the right-hand side as
independent of time, since the differentiation of p gives a term which involves v dp/dt
= pdp'/ot and is therefore of the second order of smallness. Thus Sd%p/dr® =
~ d(Spdv/dt)/dx. Here we substitute the expression (77.2) for év/dt, and express the
derivative <:f the density on the left-hand side in terms of the derivative of the pressure
by p = p/c”. ’

The result is the following equation for the propagation of sound in a tube:

13 (ép\ 1&p

m(‘a—x)‘?af‘“ )
In a monochromatic wave p depends on time through a factor e, and (77.3) becomes

10 [.0p 2

s5§( a‘i)*" p=0. (77.4)

where k = w/c is the wave number.f

Finally, let us consider the problem of the emission of sound from the open end of a
tube. The pressure difference between the gas in the end of the tube and that in the space
surrounding the tube is small compared with the pressure differences within the tube.
Hence the boundary condition at the open end of the tube is, with sufficient accuracy, that
the pressure p should vanish. The gas velocity v at the end of the tube is not zero; let its
value be v,. The product Sy, is the volume of gas leaving the tube per unit time.

We can now regard the open end of the tube as a source of gas with strength Sv,. The
problem of the emission from a tube thus becomes equivalent to that of the emission by a

—_—— — _—— —

t+ Here, and in the Problems, p denotes the variable part of the pressure, which we have previously denoted
by p'.
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pulsating body, which is solved by formula (74.10). In place of the time derivative ' of the
volume of the body we must now put Sv,. Thus the total intensity of the sound emitted is

I = pS%i,* /4xc. (77.5)

PROBLEMS

ProsLEM 1. Determine the transmission coefficient for sound passing from a tube with cross-section S, into
one with cross-section ;.

SOLUTION. In the first tube we have two waves, the incident wave p, = @, " and reflected wave
P, = a,'e "****9 In the second tube we have the transmitted wave p, = @, ~““. At the point where the tubes
join (x = 0), the pressures must be equal, and so must the volumes Sv of gas passing from one tube to the other
per unit time. These conditions give a, + a," = a,, §, (@, —a,") = 5,0, whence o, = 24,5, /(S, + S;) The ratio
D of the energy flux in the transmitted wave to that in the incident wave is

D = S0, 1'/S, Io, P
45,5; -l (S, S.)
(S +sz)’ S;+5,
PrOBLEM 2. Determine the amount of energy emitted from the open end of a cylindrical tube.

SoLuTion. In the boundary condition p = 0 at the open end of the tube, we can approximately neglect the
emitted wave (we shall see that the intensity emitted from the end of the tube is small) Then we have the condition
Py = —p,’,where p, and p,’ are the pressures in the incident wave and in the wave reflected back into the tube; for
the velocities we have correspondingly v, --,.n(ht&taﬂ“ynt&ddt&mﬁeuu =u,+0,

= 2u,. Tbemgyﬂuxmthemdemnvesdp, -ﬁg Using (77.5), we obtain for the ratio of the
emitted energy to the energy fluxin the incident wave D = =c”. For a tube with circular cross-section (radius
R) we have D = R*w?/c?. Since, by hypothesis, R < ¢/, it follows that D < 1.

ProsLEM 3. One of the ends of a cylindrical pipe is covered by a membrane which executes a given oscillation
and emits sound; the other end is open. Determine the way in which sound is emitted from the tube.

SOLUTION. In the general solution
p = (ae"* + be™ "™

we determine the constants a and b from the conditions v = u = we ™ lhcgﬂvdoatydthemhnne.al
thedoeedend(x-O).andp-Outbeopaeul(x-lﬂ'haegwd"i»k 0,a—b = cpuy. Determining
a and b, we find the gas velocity at the open end of the tube to be 5, = w/cos kL If the tube were absent, the
intensity of the sound emitted by the oscillating membrane would be given by the mean square §7|uf’
= 5%w?|u|*, according to formula (74.10) with Su in place of V; Sis the cross-sectional area of the membrane. The
emission from the end of the tube is proportional to §*|u, |*es”. The amplification coeficient of the pipe is
A = 5%|vo|*/8%|ul* = 1/cos? kl. This becomes infinite for frequencies of oscillation of the membrane equal to the
characteristic frequencies of the tube (resonance); in reality, of course, it remains finite because of effects which we
have neglected (such as friction due to the emission of sound).

ProBLEM 4. The same as Problem 3, but for a conical tube, with the membrane covering the smaller end.

SoLuTION. Thecross-section of the tubeis S = S, x*; let the values of the coordinate x which correspond to the
smaller and larger ends be x,, x,, 50 that the length of the tube is | = x; — x, . The general solution of equation
(77.4)is p = (1/x)(ae™* + be™ **)e " '**; a and b are determined from the conditions » = ufor x = x, and p = Ofor
x = x,. The amplification coefficient is found to be

Sox3*ies P Ex,?

Sixlup G0kl kx,cosklf

A=

s hs:.fm - mmsmlwfa.m-mmm“wmnm
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SoLumon. Equation (77.4) becomes #*p/dx® + adp/@x + k¥ p = 0, whence
p= c"’"(cf“ +be ") ™,

withm = ./(k? ~ {a’). Determining a and b from the conditions » = w for x = Oand p = 0 for x = |, we find the
amplification coeflicient.

PR L _
So? luf? [$(2/m)sin mi + cos mi)?
for k > 4o and
P R o— w = /s’ — k%)
(4 (a/m) sinh w'l + cosh m'1]?
fork < {a.

§78. Scattering of sound

If there is some body in the path of propagation of a sound wave, then the sound is
scattered: besides the incident wave there appear other (scattered) waves, which are
propagated in all directions from the scattering body. The scattering of a sound wave
occurs simply on account of the presence of the body in its path. In addition, the incident
wave causes the body itself to move, and this in turn brings about additional emission of
sound by the body, i.e. further scattering. If, however, the density of the body is large
compared with that of the medium in which the sound is propagated, and its
compressibility is small, then the scattering due to the motion of the body forms only a
small correction to the main scattering caused by the mere presence of the body. In what
follows we shall neglect this correction, and therefore suppose the scattering body
immovable.

We assume that the wavelength 4 of the sound is large compared with the dimension [ of
the body; to calculate the properties of the scattered wave, we can then use formulae (74.8)
and (74.11).1 In doing so, we regard the scattered wave as being emitted by the body; the
only difference is that, instead of a motion of the body in the fluid, we now have a motion
of the fluid relative to the body. The two problems are clearly equivalent.

For the potential of the emitted wave we have obtained the expression ¢ =

— V/4nr — A -r/cr®. In this formula ¥ was the volume of the body. In the present case,
however, the volume of the body itself remains unchanged, and ' must be taken not as the
rate of change of the volume of the body, but as the volume of fluid which would enter, per
unit time, the volume ¥, occupied by the body if the body were absent. For, in the presence
of the body, this volume of fluid does not penetrate into ¥, which is equivalent to the
emission of the same volume of fluid from V. The coefficcent of 1,/4xr in the first term of ¢
must, as we have seen in §74, be just the volume of fluid emitted from the origin per unit
time. This volume is easily found. The change per unit time in the mass of fluid in a volume
equal to that of the body is Vg, where g gives the rate of change of the fluid density in the
incident sound wave (since the wavelength is large compared with the dimension of the
body, the density p may be supposed constant over distances of the order of this
dimension; hence we can write the rate of change of the mass of fluud in V, as Vg simply,
where p is the same throughout the volume V). The change in volume corresponding to a
mass change Vg is evidently ¥, 5/p. Thus ¥ in the expression for ¢ must be replaced by

t Atthesametime, the dimension of the body must be large in companison with the displacement amplitude of
fluid particles in the wave, since otherwise the fluid is not in general in potential flow.
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Vop/p. In an incident plane wave, the variable part p° of the density is related to the
velocity by p' = puv/c; hence p = g’ = pi/c, and we can replace V,p/p by Vyi/c.

When the body moves in the fluid, the vector A is determined by formulae (11.5), (11.6):
dnpA; = myu, + pVou,. We must now replace the velocity u of the body by the reversed
velocity v of the fluid in the incident wave which it would have at the position of the body if
the latter were absent. Thus

A= —myu,/4np — Vyu,/4x. (78.1)
We finally obtain for the potential of the scattered wave
G = — Vob/dmer — A-r/cr?, (78.2)

the vector A being given by formula (78.1). Hence we have for the velocity distribution in
the scattered wave

v = Votn/dnrc? + n(n-A)/rc? (78.3)

(see §74), m being a unit vector in the direction of scattering.

The mean amount of energy scattered per unit time into a given solid angle element dois
given by the energy flux, which is cpv,* do. The total scattered intensity /_ is obtained by
integrating this expression over all directions. The integration of twice the product of the
two terms in (78.3) gives zero, since this product is proportional to the cosine of the angle
between the direction of scattering and the direction of propagation of the incident wave,
and there remains (cf. (74.10) and (74.13))

Vol Yo P e 4
Ie= oo s? +35 A% (78.4)

The scattering is generally characterized by what is called the cross-section do, which is
the ratio of the (time) average energy scattered into a given solid-angle element to the mean
energy flux density in the incident wave. The rotal cross-section o is the integral of do over
all directions of scattering, i.c. it is the ratio of the total scattered intensity to the incident
energy flux density, and evidently has the dimensions of area.

The mean energy flux density in the incident wave is cpv>. Hence the differential
scattering cross-section is

do = (v.2/v?)Pde. (78.5)
The total cross-section is
Voz v 4: A’
= e '2 3‘_‘ '1 (78.6)

For a monochromatic incident wave, the mean square second time derivative of the
velocity is proportional to the fourth power of the frequency. Thus the cross-section for
the scattering of sound by a body which is small compared with the wavelength is
proportional to w*.

Finally, let us briefly discuss the opposite limiting case, where the wavelength of the
scattered sound is small compared with the dimension of the body. In this case all the
scattering, except for the scattering through very small angles, amounts to simple
reflection from the surface of the body. The corresponding part of the total scattering
cross-section is clearly equal to the area S of the cross-section of the body by a plane
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perpendicular to the direction of the incident wave. The scattering through small angles
(of the order of A/1), however, constitutes diffraction from the edges of the body. We shall
not pause here to expound the theory of this phenomenon, which is entirely analogous to
that of the diffraction of light (see Fields, §§60, 61). We shall only mention that, by
Babinet's principle, the total intensity of diffracted sound is equal to the total intensity of
reflected sound. Hence the diffraction part of the scattering cross-section is also equal to S,
and the total cross-section is therefore 25.

PROBLEMS

PROBLEM 1. Determine the cross-section for the scattering of a plane sound wave by a solid sphere with radius
R small compared with the wavelength.

SoLuTION. The velocity at a given point in a plane wave is » = acoset. In the case of a sphere (see §11,
Problem 1), the vector A is =4 R”v. For the differential cross-section we obtain

o*R*
d--?-(l—ioosﬂ)‘d.,

whaeaulheanﬂebamtb&xumdthnadmmdth&mdmmm
mtcnmyugreneu in the direction 6 = x, which is opposite to the direction of inadence. The total cross-section
is

o = (Tx/(R*&* /). ()

Here (and also in Problems 3 and 4 below) it is assumed that the density p, of the sphere is large compared with
the density p of the gas; if this were not 5o, it would be necessary 10 take account of the movement of the sphere by
the pressure forces exerted on it by the oscllating gas.

ProBLEM 2. Determine the cross-section for the scatiering of sound by a drop of fluid, taking into account the
compressibility of the fluid and the motion of the drop caused by the incdent wave.

SoLuTmion. When the pressure of the gas mmmmmur the volume of the
drop is reduced by (V,/p,,)(ap./ap),p‘- Vocpu/poce’, where p, is the density of the drop, ¢, the velocity of
sound in the fluid, andpthedemyo(thep;lntkwﬂtl)ndﬁl!\nmmupha
Voolcbythedaﬂ‘m Vo (B/c = Bep/cy® po ). Moreover, in the expression for A we must replace — v by the
difference w — v, where u is the velocity acquired by the as a result of the action of the incident wave. For a
sphere we have, using the results of §11, Problem 1, A = R7v(p — p, )/ (29, + o) Substituting these expressions,

we have the cross-section
S A-n) et
dow— {1 =—"~ J=3cos6—"-} do.
9c* ' Po oo 200 +p
The total cross-section is
,-4_?‘8‘{(. <o )’ﬂh.ﬁ}
o P/  Qpotor)
ProBLEM 3. Determine the cross-section for the scattering of sound by a solid sphere with radius R much less

han ./ (v/w). The specific heat of the sphere is supposed so large that its temperature can be regarded as a
constant.

SOLUTION. In this case we have to take into account the effect of the gas viscosity on the motion of the sphere,
and the vector A must be modified as shown in §74, Problem 2. For R (@/v) € 1 wehave A = —3¢'Rn/2m.

The thermal conductivity of the gas also results in scattering of the same order. Let T ¢ ““bethe
mmaapmmtmthmwunmwwmawum§52.Problun2)

T = T'oe " [1 - (R/rje~ 1 -~ RJ 0]

(forr-RwemusthaveT'=0).Thzmdhatuaﬁcndﬁo-&epb&eqhuepcmmu(fa
R/ (@/x) € 1)q = 4xR*x[dT"/dr], . g = 4xRxT oe “* This transfer of heat results in a change in the
volume of the gas, which can be taken to affect the scattering like a corresponding effective change in the volume
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of the sphere, V = ~4xRyfT ge "™ = —4xRy(y — 1)v/c, where §is the coeflicient of thermal expansion of the
gas and y = ¢, /c,; we have used also formulae (64.13) and (79.2)
Taking account of both effects, we obtain the differential scattering cross-section

do = (@R/) [x(y = 1) = veos#)  do.
The total cross-section is

o = dx(@R/Y [y - 1P +1¥)

These formulae are valid only if the Stokes frictional force is small compared with the inertia force, ic.
nR € Mw, where M = 4xR” p, /3 is the mass of the sphere; otherwise, the movement of the sphere by viscous
forces becomes important.

PrOBLEM 4. Determine the mean force on a sobd sphere which scatters a plane sound wave (4 » R)

SoLUTION. The momentum transmitted per unit time from the incident wave 1o the sphere, i.c. the required
force, is the difference between the momentum in the incident wave and the total momentum flux in the scattered
wave. From the incident wave an energy fux ocE, is scattered, where E, is the density in the incident wave;
the corresponding momentum flux is obtained by divdi ?c.ntliﬂhcd’mc . In the scattered wave, the
monwmumlluxintothesolida.ndedmdoisz = E,do; projecting this on the direction of
propagation of the incident wave (which is obviously the direction of the required force), and integrating over all
angles, we obtain

E, | cosfde.

-

Thus the force on the sphere is

P
F = L (1 —cosF)de.
”
Substituting for do from Problem 1, we obtain F = 11xw* R* E, /9.

§79. Absorption of sound

The existence of viscosity and thermal conductivity results in the dissipation of energy in
sound waves, and the sound is consequently absorbed, i.c. its intensity progressively
diminishes. To calculate the rate of energy dissipation E__, , we use the following general
arguments. The mechanical energy is just the maximum amount of work that can be done
in passing from a given non-equilibrium state to one of thermodynamic equilibrium. As
we know from thermodynamics, the maximum work is obtained when the transition is
reversible (i.c. without change of entropy), and is then E__, = E, — E(S), where E, is the
given initial value of the energy, and E(S) is the energy in the equilibrium state with the
same entropy § as the system had initially. Differentiating with respect to time, we obtain
E_ .., = — E(S) = — (0E/dS)S. The derivative of the energy with respect to the entropy is
the temperature. Hence 0E/4S is the temperature which the system would have if it were in
thermodynamic equilibrium (with the given value of the entropy). Denoting this
temperature by T,, we therefore have E__, = —T,S.

We use for § the expression (49.6), which gives the rate of change of the entropy due to
both thermal conduction and viscosity. Since the temperature T varies only slightly

through the fluid, and differs little from 7, it can be taken outside the integral, and T, can
be written as T simply:

' 2
Epoy = —;I(gnd T)’dV-}qJ'(‘% +z—: —i&.g—::) dv - [ |(divv)’dV.

(79.1)



§79 Absorption of sound 301

This formula generalizes formula (16.3) to the case of a compressible fluid which conducts
heat.

Let the x-axis be in the direction of propagation of the sound wave. Then v, =
Vo cos (kx = wt), v, = v, = 0. The last two terms in (79.1) give

2
-G'HC)I(%E’-) dV = -k’(in+()%’jﬁn’ (kx —wt)dV.

We are, of course, interested only in the time average; taking this average, we have
—k* (31 + ). dvo? V,, where V, is the volume of the fluid.

Next we calculate the first term in (79.1). The deviation 7~ of the temperature in the
sound wave from its equilibrium value is related to the velocity by formula (64.13), so that
the temperature gradient is

0T/ox = (BcT/c,)dv/0x = —(PcT/c,)vok sin (kx — wt).

For the time average of the first term in (79.1) we obtain — xc* 78?0 k?* ¥, /2¢,%. Using the
thermodynamic formulae

¢,— ¢, = TP*(p/dp); = TP*(c./c,)(@p/dp), = TP e, /c,, (79.2)

we can rewrite this expression as —ix(1/c, = 1/c,)k%n* V.
Collecting the above results, we find the mean value of the energy dissipation:

Epe = — $K206? Vo[ (30 + O + x(1/c,— 1/c,)). (79.3)
The total energy of the sound wave is
E=1pvV,. (19.4)

The damping coefficient derived in §25 for gravity waves gives the manner of decrease of
the intensity with time. For sound, however, the problem is usually stated somewhat
differently: a sound wave is propagated through a fluid, and its intensity decreases with the
distance x traversed. It is evident that this decrease will occur according to a law e ~ "™, and
the amplitude will decrease as e ™™, where the absorption coefficient y is defined by

¥ = | Egees |/2¢E. (19.5)

Substituting here (79.3) and (79.4), we find the following expression for the sound
absorption coefficient:

w? 1 1)\]_ ae? 796
7-‘2—‘;‘5[(3'14'()*'*(&-—‘_—')]: . (79.6)
We may point out that it is proportional to the square of the frequency of the sound.f

This formula is applicable so long as the absorption coefficient determined by it is small:
the amplitude must decrease relatively little over distances of the order of a wavelength (i.c.
we must have yc/w < 1). The above derivation is essentially founded on this assumption,
since we have calculated the energy dissipation by using the expression for an undamped

t M. A.Isakovich (1948) has shown that there must be a special absorption when sound is propagated in a two-
phase system (an emulsion). Because of the different thermodynamic properties of the two components, their
temperature changes during the passage of the sound wave will in general be different. The resulting heat
exchange between the components leads to an additional absorption of sound. On account of the relative
slowness of this heat exchange, a considerable dispersion of the sound takes place comparatively quickly.
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sound wave. For gases this condition is in practice always satisfied. Let us consider, for
example, the first term in (79.6). The condition yc/@ < | means that vw/c* < 1. Itis known
from the kinetic theory of gases, however, that the viscosity coefficient v for a gas is of the
order of product of the mean free path / and the mean thermal velocity of the molecules,
the latter is of the same order as the velocity of sound in the gas, so that v ~ lc. Hence we
have

vo/c? ~ lofc ~ /i<, (79.7)

since we know that | € A. The thermal-conduction term in (79.6) gives the same result, since
X~V

In liquids, the condition of small absorption is always fulfilled when the problem of
sound absorption, as stated here, is significant at all. The absorption over one wavelength
can become large only if the viscous forces are comparable with the pressure forces which
occur when the substance is compressed. In these conditions, however, the Navier-Stokes
equation itself (with the viscosity coefficients independent of frequency) becomes invalid
and a considerable dispersion of sound, due to processes of internal friction, occurs.t

For absorption of sound, the relation between the wave number and the frequency can
evidently be written

k = w/c + iac®, (79.8)

where a denotes the coefficient in (79.6). It is easy to see from this how the equation for a
travelling sound wave must be modified in order to take absorption into account. To do so,
we notice that, in the absence of absorption, the differential equation for (say) the pressure
p' = p'(x —ct) can be written dp’/éx = —(1/c)dp’/ét. The equation whose solution is
e'** =" with k given by (79.8), must clearly be

v __1u Zr

ox ca ‘e et

If we replace t by 1 + x/c, this equation becomes
op’'/éx = ad’p'Jé?,

i.e. a one-dimensional equation of thermal conduction.
The general solution of this equation can be written (see §51)

|
p(x,1)= 3 i) po(t’)exp[ — (v —1)*/4ax]dr’, (79.10)

where p’o (1) = p'(0, 7). If the wave is emitted during a finite time interval, this expression
becomes, at sufficiently large distances from the source,

. o L
p(x.t)=2—\/(;ax)cxp( t’/&u)J’po(t)dt’. (79.11)

In other words, the wave profile at large distances is Gaussian. Its width is of the order of
V/ (ax), i.e. it increases as the square root of the distance travelled by the wave, while the

t A special case where strong absorption is possible but can be discussed by the usual methods is that of a gas
with a thermal conductivity which is unusually large compared with its viscosity, on account of effects such as
radiative transfer at very high temperatures (sec Problem 3)
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amplitude falls off inversely as ./ x. Hence we at once conclude that the total energy of the
wave decreases as 1/,/x.
It is easy to derive analogous formulae for spherical waves; to do so, we must use the fact
that for such a wave
I pdt=0

(see (70.8)). Instead of (79.11) we now have
p'(r, T) = constant iy
or
p'(r, ) = constant x ;t;exp( — 12 /4ar). (79.12)

Strong absorption must occur when a sound wave is reflected from a solid wall. The
reason for this is the following (K. F. Herzfeld 1938; B. P. Konstantinov 1939). In a sound
wave not only the density and the pressure, but also the temperature, undergo periodic
oscillations about their mean values. Near a solid wall, therefore, there is a periodically
fluctuating temperature difference between the fluid and the wall, even if the mean fluid
temperature is equal to the wall temperature. At the wall itself, however, the temperatures
of the wall and the adjoining fluid must be the same. As a result, a large temperature
gradient is formed in a thin boundary layer of fluid, where the temperature changes rapidly
from its value in the sound wave to the wall temperature. The presence of large
temperature gradients, however, results in a large dissipation of energy by thermal
conduction. For a similar reason, the fluid viscosity leads to strong absorption of sound
when the wave is incident in an oblique direction. In this case the fluid velocity in the wave
(in the direction of propagation) has a non-zero component tangential to the surface. At
the surface itself, however, the fluid must completely “adhere™. Hence a large tangential-
velocity gradientt must occur in the boundary layer of fluid, resulting in a large viscous
dissipation of energy (see Problem 1).

PROBLEMS

PrOBLEM 1. Determine the fraction of energy that is absorbed when a sound wave is reflected from a sobd wall
The density of the wall is supposed so large that the sound does not penctrate it, and the specific heat so large that
the temperature of the wall may be supposed constant.

SOLUTION. Wetake the plane of the wall as the plane x = 0, and the planc of incadence as the xy-plane. Let the
angle of incidence (which equals the angle of reflection) be 6. The change in density in the incident wave at any
given point on the surface (x = y = 0, say)is p';, = Ae ““. The reflected wave has the same amplitude, so that
p'y = p', at the wall The actual change in the fluid density, snce both waves (incadent and reflected) are
propagated simultaneously, is p' = 24¢ ™. The fluid velocity n the wave s given by v, =cp'\n,/p, v;
= cp’;m,/p. The total velocity on the wall, v = v, + v, is therefore v = ¢, = 24sm 0 x ce”"/p (or, more
precisely, this is what the velocity is found to be when the correct boundary conditions at the wall in the presence
of viscosity are not applied). The actual variation of the velocity v, near the wall is determined by formula (24.13),
and the energy dissipation due to viscosity by formula (24.14), in whach the above expression for v must be
substituted for v,e ™",

t The normal velocity component is zero at the boundary because of the boundary conditions, whether or not
viscosity is present.

rH-x
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The deviation 7" of the temperature from its mean value (whach is the temperature of the wall), if cakulated
without using the correct boundary conditions at the wall, would be found 10 be (see (64.13))
T" = 2Ac*TPe " /c,p. In reality, however, the temperature distribution is determined by the equation of
thcl:'dcon:‘m;ion.wilhmmymr = Ofor x = 0, and 1s accordingly given by a formula entirely
similar to (24.13).

On calculating the energy dissipation due 1o thermal conduction as the first term in formula (79.1), we obtain
for the total energy dissipation per unit area of the wall

I x . ;/‘2“”[\/,(:-' - |) + \/--’o]

The mean energy flux density incident on unit area of the wall from the incident wave is cpv,’ cos § =
(c*A?/2p)cos 6. Hence the fraction of energy absorbed on reflection is

z)/_@[ \/,5.304»\/1(:‘:")]

ccosf
This expression is valid only if its value is small (since in deriving it we have supposed the amplitudes of the
imu?mmumuoummmm-um*dmammum
near §x.

ProsLEM 2. Determine the coefficient of absorption of sound propagated in a cylindrical pipe.
SOLUTION. The main contribution to the absorption is due 10 the presence of the walls. The absorption

coefficient y is equal to the energy dissipated at the walls per unit time and per unit length of the pipe, divided by
twice the total energy flux through a cross-section of the pipe. A calculation similar to that given in Problem 1

leads to the result
r= el Vo v(2-1)}

ProBLEM 3. Find the dispersion relation for sound propagated in a medium with very high thermal
conductivity.

where R is the radius of the pipe.

SoLuTiON. In the presence of a large thermal conductivity the low in a sound wave is not adiabatic. Hence,
instead of the condition of constant entropy, we now have

s =xAT'[pT, (1)
which is the lincarized form of equation (49.4) without the viscosity terms. As a second equation we take
P=A4p, (04

which is obtained by climinating v from equations (64.2) and (64.3) Taking as the fundamental variables p’ and
T’, we write p’ and 5" in the form
P = (0p/eT),T" +@p/op)rP, & =(@s/T), T +(@5/Cp)yp.

We substitute these expressions in (1) and (2), and then seck 7" and p’ in 2 form proportional to €** =, The

compatibility condition for the resulting two equations for p’ and T~ can (by using various relations between the
derivatives of thermodynamic quantitics) be brought to the form

@ o\ i’

e-e(Ge ) mo ?

which gives the required relation between k and @. We have here used the notation
¢, = (@p/oph, cr = (@ploply = <.’y
where y = ¢, /c, is the ratio of specific heats.
In the limiting case of low frequencies (@ < ¢?/x), equation (3) gives

which corresponds to the propagation of sound with the ordinary “adiabatic™ velocity ¢, and a small absorption
coefficient which is the second term in (79.6). This is as it should be, since the condition @ < ¢/ means that,
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during one period, heat can be transmitted only over a distance ~ ./ (/@) (cf. (51.7)) which is small compared
with the wavelength ¢/w.
In the opposite limiting case of large frequencies, we find from (3)

w fr
ko —4i—glc?~
"r* 2y € =er’)

In this case the sound is propagated with the “isothermal” velocity ¢, which is always less than ¢, The absorption
coefficient is again small compared with the reciprocal of the wavelength, and 1s independent of the frequency and
inversely proportional to the thermal conductivity.t

PrOBLEM 4. Determine the additional absorption, due 10 diffusion, of sound propagated in a mixture of two
substances (1. G. Shaposhnikov and Z. A. Gol'dberg 1952)

SoLuTiON. The mixture contains an additional source of absorption of sound because the temperature and
pressure gradients occurring in the sound wave result in irreversible processes of thermal diffusion and
barodiffusion (but there is evidently no mass-concentration gradicnt, and therefore no mass transfer) This
absorption is given by the term

(1/TpD)@p/éC), y Ii’d v

in the rate of change of entropy (59.13); we here denote the concentration by C to distinguish it from c, the velocity
of sound. The diffusion flux is

i= —pD[(ky/T) grad T + (k,/p) grad p).
with k, given by (59.10). A calculation similar to that given in §79, using vanious relations between the derivatives
of thermodynamic quantities, leads to the result that there must be added to the expression (79.6) for the
absorption coefficient a term

o= 27’5(%:;:@; {(:-; )..r * :“:(;-;),_c (g‘),, } ;

ProBLEM 5. Determine the cross-section for the absorption of sound by a sphere whose radius is small
compared with \/(v/w).

SoLuTioN. Thetotal absorption is composed of the effects of the viscosity and thermal conductivity of the gas.
The former is given by the work done by the Stokes frictional force when gas moving in a sound wave flows round
asphere; asin §78, Problem 3, it is assumed that the sphere is not mowved by this force. The effect of conductivity is
given by the amount of heat g transferred from the gas to the sphere per unit time (§78, Problem 3k the energy
dissipation when an amount of heat g is transferred, the temperature difference between the gas (far from the
sphere) and the sphere being 7, is g7 '/T. The total absorption cross-section is found to be

o= ’i':-k [3-4-21(:-:- n)}
§80. Acoustic streaming

One of the most interesting ways in which sound waves are affected by viscosity consists
in the formation of steady vortex flow in a stationary sound wave when there are solid
obstacles or solid boundary walls. This acoustic streaming occurs in the second
approximation with respect to the wave amplitude; its characteristic feature is that the
velocity in it (in the region outside a thin boundary layer) is independent of the viscosity,
even though it originates from the viscosity (Rayleigh 1883)

t Tbesecondroo(ofequuion(BLVﬁkr&ﬂhk’.Mbw-amwﬁdlmnﬁdly
damped with increasing x. In the limit wy <€ ¢* this root gives

k= \/(io/p) = (1+i)/ (@20,
in agreement with (52.15). In the case wy » ¢* we have

k=(1+i)/(ex./2xc,)
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The properties of acoustic streaming are most typically scen when the characteristic
length in the problem (the size of the obstacles or of the flow region) is much less than the

sound wavelength 4, but much greater than the penetration depth é = ./ (2v/w)for viscous
waves (§24):

AP Ip»d. (80.1)

In view of the second condition, we can distinguish in the flow region a narrow acoustic
boundary layer in which the velocity decreases from its value in the sound wave to zero at
the solid surface. Since the velocity in this layer, as in the sound wave itself, is much less
than that of sound, and the characteristic dimension & is much less than 4 according to
(10.17), the flow there may be regarded as incompressible.

Let us consider the acoustic boundary layer at a plane solid wall (the xz-plane), assuming
two-dimensional flow in the xy-plane (H. Schlichting 1932). The approximations resulting
from the thinness of the boundary layer have been described in §39 and remain valid for
the non-steady flow under consideration. The non-steadiness simply means that Prandtl’s
equation (39.5) includes time-derivative terms:

x avx avx alv‘ oU éU
-— +0, vy = U4+ —;

a Pty 'y TV ata (80.2)

the derivative dp/dx is expressed in terms of the flow velocity U (x, t) outside the boundary
layer by means of (9.3). In the present case,

U = vy coskx-coswt = pgcoskx-re e ™, (80.3)

where k = w/c; this corresponds to a plane stationary sound wave with frequency . The
required velocity v in the boundary layer is expressed in terms of the stream function
w(x, y, 1) by

Uy = N/ay, v, = -a*/ax’

and the continuity equation (39.6) is then satisfied automatically.

We shall solve equation (80.2) by successive approximations with respect to the small
quantity vo, the amplitude of the velocity fluctuations in the sound wave. In the first
approximation, the quadratic terms are omitted altogether. The solution of the equation

', Y, ) .
o Y 3y = — i, coskx-e™ ™

which satisfies the necessary conditions at y =0and y =0 is
vV, =re {vy cos kx-e (1 —e™ ™)},
where
x =/ (—iofy) = (1-i)/s. (80.4)

The corresponding stream function (satisfying the condition ¥'*’ = 0 at y = 0, which is
equivalent to v'*), = 0) is

¥ = re {v, cos kx - (y)e ], (80.5)
M) =y+e "/
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In the next approximation, we write v = v'*’ 4 v'* and obtain for v'*, from (80.2), the

eauation Wb, W, U v, . e,
___"_ —— T § ) B D_____
P 3 U ¥, o o, - (80.6)
The right-hand side contains terms with frequendes w+o=2wand o-w=0. The
latter give rise to time-independent terms in v'*), which are the ones representing the steady
flow in question; we shall take v'*' to mean only this part of the velocity. The corresponding
part of the stream function is written as

¥ = (v5*/c) sin 2kx - (P (y), (80.7)
and we obtain for {'*(y) the equation
62((1)" =§_i|c(lr|2+§n(c|ncurl (808)

the primes denoting differentiation with respect to y.

The solution of this equation must satisfy the conditions {'® = 0, {**” (0) = 0, which are
equivalent to v, = v'¥ = 0 on the solid surface. The condition far from this surface can
only be that v'*)_ tends to a finite value (not necessarily zero). Substitution of (80.5)in (80.8)
and a twofold integration gives the following result for the derivative {'*:

() =3—te P —e " siny/d—
—4e "% cos y/d + (y/48)e " (cos y/ —sin y/d).
As y = oo, it tends to

{3 () = 3/8, (80.9)

corresponding to a velocity
v'¥,(0) = (3v,%/8¢)sin 2kx. (80.10)
This demonstrates the effect described at the beginning of the section. We see that
outside the boundary layer there is (in the second approximation with respect to u,) a

steady flow whose velocity is independent of the viscosity. Its value (80.10) serves as a
boundary condition for determining the main acoustic flow (see Problem).t

PROBLEM

Dama:tbem&rmwthemhuwamwﬂchephuy-Ondy-h).
where there is a stationary sound wave (80.3). The distance h between the plancs, which acts as the characteristic
length [, satisfies the conditions (80.1) (Rayleigh 1883)

SoLUTION. Since the velocity o' of the required steady flow is much less than that of sound, the flow may be
rePMedunmomptaahk.Mm , SinCeE 1, is assumed infinitesimal in the sound wave (and therefore so is
vo/c), the quadratic terms in the equation of motion may be neglected.§ Then equation (15.12) for the

stream function reduces to
At‘lx)g(axz ) ‘mgo

t ThemmmvdoutympondlnwlherdoatymIQu
v, = — (3u, k/4c) y cos 2kx € ¢,

In solving the problem of flow outside the boundary layer, this arises automatically from the equation of
continuity with the boundary condition #*, =0 at y = 0.

b4 Thulglhemwu/cummuchmﬂcthnuydmahﬂmdtkpmﬂan.m
particular, v,/c < §/h.
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(this arises from the viscosity term, but the viscosity itself does not appear in it). We shall seck ¢'* in the form
(80.7). According to the condition h < A, the derivatives with respect 10 y are much larger than those with respect
to x; neglecting the latter, we obtain for {*'(y) the equation

(=0 (1
From the obvious symmetry of the problem, the flow is symmetrical about the plane y = § A Hence
) = P k=) ()= =T R ),
and therefore
() = ={Ph-n
A solution of equation (1) having this property is
(D) = Aly—ih) + By — W’

The constants A and B are determined by the boundary conditions {“(0) = 0, {*”(0) = 3/8. This gives for the
stream function

w'-’ll;-m[-o-mm-w/um
and thence the velocity distributions

P 3:':} sin 2kx(1 — 3(y — 14/ @A),

9, m = con oy~ — 3~ P/ AA)

The velocity v/, changes sign at a distance $h(1 —1/,/3) = 0:423- A from the wall.
The flow described by these expressions consists of two senies of vortices lying symmetrically about the median
plane y = 4h and periodic in the x-direction, with period §i.

§81. Second viscosity

The second viscosity coefficient { (which we shall call simply the second viscosity) is
usually of the same order of magnitude as the viscosity coefficient 5. There are, however,
cases where { can take values considerably exceeding 5. As we know, the second viscosity
appears in processes which are accompanied by a change in volume (i.c. in density) of the
fluid. In compression or expansion, as in any rapid change of state, the fluid ceases to be in
thermodynamic equilibrium, and internal processes are set up in it which tend to restore
this equilibrium. These processes are usually so rapid (i.c. their relaxation time is so short)
that the restoration of equilibrium follows the change in volume almost immediately
unless, of course, the rate of change of volume is very large.

It may happen, nevertheless, that the relaxation times of the processes of restoration of
equilibrium are long, i.c. they take place comparatively slowly. For instance, if we are
concerned with a liquid or gas which is a mixture of substances between which a chemical
reaction occurs, there is a state of chemical equilibrium, characterized by the concen-
trations of the substances in the mixture, for any given density and temperature. If, for
example, we compress the fluid, the state of equilibrium is destroyed, and a reaction begins,
as a result of which the concentrations of the substances tend to take the equilibrium
values corresponding to the new density and temperature. If this reaction is not rapid, the
restoration of equilibrium occurs relatively slowly and does not immediately follow the
compression. The latter process is then accompanied by internal processes which tend
towards the equilibrium state. But the processes which establish equilibrium are
irreversible; they increase the entropy, and therefore involve energy dissipation. Hence, if
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the relaxation time of these processes is long, a considerable dissipation of energy occurs
when the fluid is compressed or expanded, and, since this dissipation must be determined
by the second viscosity, we reach the conclusion that { is large.t

The intensity of the dissipative processes, and therefore the value of {, depend of course
on the relation between the rate of compression or expansion and the relaxation time. If,
for example, we have compression or expansion due to a sound wave, the second viscosity
will depend on the frequency of the wave. Thus the second viscosity is not just a constant
characteristic of the material concerned, but depends on the frequency of the motion in
which it appears. The dependence of { on the frequency is called its dispersion.

The following general method of discussing all these phenomena is due to L. L
Mandel’shtam and M. A. Leontovich (1937). Let £ be some physical quantity characteriz-
ing the state of a body, and &, its value in the equilibrium state; {, is a function of density
and temperature. For instance, in fluid mixtures { may be the concentration of one
component, and then &, is the concentration in chemical equilibrium.

If the body is not in equilibrium, § will vary with time, tending to the value §,. In states
close to equilibrium the difference £ — &, is small, and we can expand the rate of change £ of
¢ in a series of powers of this difference. The zero-order term is absent, since { must be zero
in the equilibrium state, i.. when ¢ = &,. Hence, as far as the first-order term, we have

E=—(E-&) (81.1)

The proportionality coefficient must be negative, since otherwise { would not tend to a
finite limit. The positive constant t is of the dimensions of time, and may be regarded as the
relaxation time for the process in question; the greater is t, the more slowly the approach to
equilibrium takes place.

In what follows we shall consider processes in which the fluid is subjected to a periodic
adiabatic} compression and expansion, so that the variable part of the density (and of the
other thermodynamic quantities) depends on the time through a factor e **; we are
considering a sound wave in the fluid. Together with the density and other quantities, the
position of equilibrium also varies, so that £, can be written as §, = oo + §o', where §o is
the constant value of £, corresponding to the mean density, and &, is a periodic part,
proportional to e ~“*. Writing the true value £ in the form { = o + {’, we conclude from
equation (81.1) that £’ also is a periodic function of time, related to §," by

§'=8& /(1 —iwn) (81.2)

Let us calculate the derivative of the pressure with respect to the density for the process
in question. The pressure must now be regarded as a function of the density and of the

value of ¢ in the state concerned, and also of the entropy, which we suppose constant and,
for brevity, omit. Then

op/dp = (0p/dp); + (0p/e§), 0% /Cp.
In accordance with (81.2), we substitute here

o o 1 3 _ 1 &
dp dp Il—iwt dp 1—iwr dp’

1 A slow process which results in a large { is often the transfer of energy from translatory degrees of frecdom of
a molecule to vibrational (intramolecular) degrees of frecdom.

$ The change in the entropy (in states close to equilibrium) is of the second order of smallness. Hence, to the
first order of accuracy, we can speak of an adiabatic process.
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obtaining
o _ 1 [(), () %, (%
oo = =i (ap),* (26), 3 ~==(3 ).}

The sum (dp/dp), + (9p/d8),08,/dp is just the derivative of p with respect to p for a process
which is so slow that the fluid remains in equilibrium; denoting it by (Jp/dp),,, we have

finally
op 1 dp . _(op
" r—‘s&[(a—p).."""(a‘p)c]' et

Next, let p, be the pressure in a state of thermodynamic equilibrium; p, is related to the
other thermodynamic quantities by the equation of state of the fluid, and is entirely
determined when the density and entropy are given. The pressure p in a non-equilibrium
state, however, differs from p,, and is a function of { also. If the density is adiabatically
increased by dp, the equilibrium pressure changes by dp, = (0p/dp)dp, while the total
increase in the pressure is (dp/dp)dp, with dp/ép given by formula (81.3). Hence the
difference p — p, between the true pressure and the equilibrium pressure, in a state where
the density is p + dp, is

e[ 3 Jo- ()

We are here interested in the density changes due to the motion of the fluid. Then dp is
related to the velocity by the equation of continuity, which we write in the form
d(dp)/dt + pdivv = 0, where d/dt denotes the total time derivative. In a periodic motion
we have d(dp)/dt = — iwdp, and therefore dp = (p/iw)div v. Substituting this expression
in p — po, we obtain

=P __(2_,. 2
P=Po =y~ —(co" —c.7)divy, (814)
where we have used the notation
Co® = (Op/3p)eg» €= = (@P/OP);, (81.5)

the significance of which will be explained below.

In order to relate these expressions to the viscosity of the fluid, we write down the stress
tensor 0. In this tensor the pressure appears in the term — péd,, . Subtracting the pressure
po determined by the equation of state, we find that in a non-equilibrium state o, contains
an additional term

T X
—(P—Po)da = i‘-’e& (c .2 —co’)dadivy.

Comparing this with the general expression (15.2) and (15.3) for the stress tensor, in which
div vappears in the term { div v, we conclude that the presence of slow processes tending to
establish equilibrium is macroscopically equivalent to the presence of a second viscosity
given by

{ = tplc? —co?)/(1 —iwr) (81.6)
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These processes do not affect the ordinary viscosity 5. For processes so slow that wr < 1,
(is
fo = tplc.? —co’) (81.7)

it increases with the relaxation time t, in accordance with what was said above. For large
frequencies, { depends on the frequency, i.e. it exhibits dispersion.

Let us now consider the question of how the presence of processes with long relaxation
times (we shall speak of chemical reactions) affects the propagation of sound in a fluid. To
do so, we might start from the equation of motion of a viscous fluid, with { given by
formula (81.6). It is simpler, however, to consider a motion in which viscosity is neglected
but the pressure p is given by the above formulae instead of by the equation of state. The
general relations which we obtained in §64 then remain formally applicable. In particular,
the wave number and the frequency are still related by k = w/c, where ¢ = ./ (@p/dp), and
the derivative dp/dp is now given by (81.3); the quantity ¢, however, no longer denotes the
velocity of sound, being complex. Thus we obtain

k= o/[(1 - iwt)/(c® — ¢, tiwn)]. (81.8)

The “wave number™ given by this formula is complex. The meaning of this fact is easily
seen. In a plane wave, all quantities depend on the coordinate x (the x-axis being in the
direction of propagation) through a factor ¢**. Writing k in the form k = k, + ik, with k,,
k, real, we have e** = ¢*1* ¢=k:* j ¢ besides the periodic factor &** we have a damping
factor e~** (k, must, of course, be positive). Thus the complex nature of the wave number
formally expresses the fact that the wave is damped, i.c. there is absorption of sound. The
real part of the complex wave number gives the variation in phase of the wave with
distance, and the imaginary part is the absorption coefficient.

It is not difficult to separate the real and imaginary parts of (81.8). In the general case of
arbitrary o the expressions for k, and k, are rather cumbersome, and we shall not write
them out here. It is important that k, is a function of the frequency (as is k;). Thus, if
chemical reactions can occur in the fiuid, the propagation of sound at sufficiently high
frequencies is accompanied by dispersion.

In the limiting case of low frequencies (wt < 1), formula (81.8) gives to a first
approximation k = w/c,, corresponding to the propagation of sound with velocity c,. This
is as it should be, of course: the condition wt < | means that the period 1/w of the sound
wave is large compared with the relaxation time, i.c. the establishment of chemical
equilibrium follows the variations of density in the sound wave, and so the velocity of
sound is determined by the equilibrium value of the derivative dp/dp. In the second
approximation we have

o io't

k = ~ + 2. (€2 —¢od), (81.9)

i.e. damping occurs, with a coefficient proportional to the square of the frequency. Using
(81.7), we can write the imaginary part of k in the form k, = @*{,/2pc,’; this agrees with
the {-dependent part of the absorption coefficient y as given by (79.6), which was obtained
without taking account of the dispersion.

In the opposite limiting case of high frequencies (wt > 1), we have in the first
approximation k = w/c,, i.¢. the propagation of sound with velocity . —again a natural
result, since for @t > 1 we can suppose that no reaction occurs during a single period, and
the velocity of sound must therefore be determined by the derivative (Gp/dp); taken at

m-x*
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constant concentration. The second approximation gives

ko 240 (81.10)

The damping coefficient is independent of the frequency. As we go from @ <€ 1/t to
¥ 1/1, this coefficient increases monotonically to the constant value given by formula
(81.10). It should be noted that the quantity k,/k,, which represents the amount of
absorption over a distance of one wavelength, is small in both limiting cases (k,/k, < 1);it
has a maximum at some intermediate frequency, namely @ = ./ (co/c..)/T.

It is seen from (81.7) (e.g.) that

€ > Cop 81.11)

since we must have { > 0. The same result can be obtained by simple arguments based on
Le Chatelier’s principle. Let us suppose that the volume of the system is reduced, and the
density increased, by some external agency. The system is thereby brought out of
equilibrium, and according to Le Chatelier’s principle processes must begin which tend to
reduce the pressure. This means that dp/dp will decrease, and, when the system returns to
equilibrium, the value of dp/dp = ¢* will be less than in the non-equilibrium state.

In deriving all the above formulae we have assumed that there is only a single slow
internal process of relaxation. Cases are also possible where several different such
processes occur simultaneously. All the formulae can casily be generalized to cover such
cases. Instead of a single quantity £, we now have several quantities §,, §;, . . . which
characterize the state of the system, and a corresponding series of relaxation times t,,
T,, - . . . Wechoose the quantities £, in such a way that each of the derivatives {, depends
only on the corresponding §,, i.¢. so that

b= — =Sl (81.12)
Calculations entirely similar to the above then give

A =c. +) a/(l —iwt,), (81.13)

where ¢, ? = (dp/dp),, and the constants a, are

a, = (0p/08,) (08,/0p) - (81.14)
If there is only one quantity ¢, formula (81.13) becomes (81.3), as it should.



