38. A STUDY OF THE DIFFUSION EQUATION WITH INCREASE IN
THE AMOUNT OF SUBSTANCE, AND ITS APPLICATION TO
A BIOLOGICAL PROBLEM *
In collaboration with I.G. Petrovskii and N.S. Piskunov

Introduction

For the sake of simplicity we consider the two-dimensional diffusion equation

v v 0%
= =k(55+33) k>0, 1
dt Oz? + dy? > @)
where z and y are the coordinates of a point in the plane, ¢ is time and v is the
density of substance at the point (z, y) at time {. We now assume that diffusion
is accompanied by increase in the amount of substance at a rate which depends
on the density at the given point and time. We then obtain the equation

v v 0%

= =k(53 +59) + F(0). 2
ot O0z? + Oy? + F(v) @)
It is natural that we are interested only in the values of F(v) for v > 0.

Assume that F(v) is a function of v which is continuous, differentiable the

required number of times and satisfies the conditions

F(0) = F(1) = 1; )
F(v)>0,0<v<1; (4
F'0)=a>0, Fl(v)<a, 0<v<1. (5)

We thus assume that for very small v the rate F(v) of increase in v is
proportional to v (with proportionality factor ), and as v approaches 1, there
arises a state of “saturation” when v no longer increases. Accordingly we will

consider only solutions of equation (2) satisfying the condition
0<v<1. (6)

Arbitrary initial values of v for ¢ = 0 satisfying condition (6) determine one

and only one solution ! of equation (2) for ¢ > 0 subject to the same condition
(6).

* Bull. Moscow Univ., Math. Mech. 1:6 (1937), 1-26.
1 This fact will be proved in §3.
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Further, we will assume that the density v does not depend on the coor-
dinate y. In this case the basic equation (2) is written as
dv _ d2
dz ~ d dz?

We now assume that at the initial time ¢t = 0 we have v = 0 for £ < a and

+ F(v). (7

v =1 (that is, the density takes its maximum value) for z > b > a. Naturally,
the region of densities close to 1 will expand, with increasing ¢, from right to
left, displacing thereby the region of small densities to the left. In the special
case a = b the pattern looks approximately as shown in Figure 1. The segment
of the density curve (as a function of z) on which the major part of density
drop from 1 to 0 occurs, moves to the left with increasing time. In its shape
the density curve approaches a definite limiting curve for ¢ — co. The problem
is to find the limiting shape of the density curve and the limiting rate of its
motion from right to left. It turns out that the desired limiting rate is

Ao = 2Vka, (8)

and the limiting shape of the density curve is determined by the solution of the

equation
2 =k 4 p) ©)
%dz ~ "dz?
that vanishes when z = —o0o and is equal to one for £ = 4+00. Such a solution

always exists and is unique, to within a transformation z’ = z + ¢, which does
not change the shape of the curve.

Note that the equation (9) can be obtained in the following manner. We
seek a solution of equation (7) such that the curve representing the dependence
of v on z does not change its shape with varying ¢ and the curve itself moves

from right to left at a rate A. This solution has the form

v(z,t) = v(z + At). (10)
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Regarding v as a function of one variable z = £+ At, we obtain the equation

A% = k% + F(v).

This equation turns out to have solutions satisfying the above conditions
for equation (9) with any A > Aq. However, only for A = A¢ do we obtain the
desired limiting shape of the density curve under the above initial conditions. In
order to understand the fact that there are solutions of the form (10) to equation
(7) for A > Ao, that is, such that the region of large (close to 1) densities moves
at a rate greater than Ag, which at first glance seems astonishing, we examine
the limiting case k = 0. In this case there is no diffusion and equation (7) can
easily be integrated. Under our initial conditions, at points £ < a where the
density was initially equal to zero it remains zero for any ¢ > 0. However, it can
easily be shown by calculation that for any A > Ag there exist solutions (10)
to equation (7) satisfying all the above conditions. Here the apparent motion
of substance from right to left is due to the increase in density at each point
occurring independently of the course of the process at other points.

In §1 the facts presented in the Introduction will be applied to the study
of biological problems; in §§2, 3 these facts will be proved.

§1

Consider an area populated by a species. We first assume that a dominant gene
A is distributed over the area with constant concentration p (0 < p < 1). Fur-
ther, we assume that in the struggle for existence, individuals with the character
A (that is, those belonging to the genotypes AA and Aa) have an advantage
over individuals not possessing this character (that is, those belonging to the
genotype aa); more precisely, we assume that the ratio of the probability that
an individual with the character A survives to the corresponding probability

for an individual without the character is equal to
1+«

where « is a small positive number. Then, up to terms of order o2, we obtain
for the increment of the concentration p per one generation the formula (see
(1])

Ap = ap(1 - p)*. (11)
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Now let the concentration p be different at different points in the area
occupied by the species, that is, let p depend on the coordinates of the point
in the plane (z,y). If the individuals of the species under consideration were
fixed at the points of the area, (11) would still be valid. Assume, however,
that during the time between birth and reproduction, each individual moves
at random (all the directions of motion being equiprobable) and travels some
distance. Let f(r)dr be the probability that an individual passes a distance
lying between r and r + dr; then

(oo}
p= / r2f(r)dr
0
is the root-mean-square path. Therefore, instead of (11) we obtain
Ap(z,y) = / / p(§, n) dE dn - p(z,y)+

+ap(z,y){1 - p(z,v)}?, (12)

where

r=v(z-£)2*+ (y—n)2

We now assume that p is differentiable with respect to z,y and time ¢

(measured in generations), a and p are small, and the third moment
{oe)
o= [ ruear

is small as compared to p2. In this case, expanding p(£,7) in (12) into a
Taylor series in (§ — z) and (7 — y) and confining ourselves to the terms of
second order (the terms of first order disappear), we obtain ? an approximate
differential equation for p:

0 %p 9%
3= —(3£2+82)+ap(1—p)’. (13)

All considerations concerning the general equation (2) are applicable to
(13).

2 As to the passage from (12) to (13), see, for instance, similar considerations in

A. Ya. Khinchin [2].
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Let us stress again the stipulated assumptions. We have assumed that the
concentration p changes smoothly, depending on place and time (differentia-
bility with respect to z,y,t), the changes result from the selection in favour of
the dominant character A in the ratio (1+ a) : 1 and from the random motion
of individuals such that the root-mean-square path of an individual during the
time between birth and reproduction is p, and finally, & and p are small (p is
small as compared to the paths on which substantial changes in the concen-
tration p occur). In this case, taking one generation as a time unit we obtain
equation (13).

We now consider the case when a large area has already been occupied by
the gene A with concentration p close to 1. It is natural to assume that there is
an intermediate concentration region along the boundary of the area. Beyond
this region p is assumed to be close to zero. In view of the positive selection,
the area occupied by the gene A expands, in other words, its boundary moves
towards places that have not yet been occupied by the gene A, and along this
boundary there always remains the intermediate concentration region. Our
first problem is to find the rate of advance of the gene A, that is, the rate at
which the boundary of the area occupied by the gene A moves along the normal
to this boundary. Formula (8) readily yields an answer to this question: since

in this case k is equal to p?/4, it follows that the desired rate is
A = pa. (14)

The second problem which naturally arises is to find the width of the
intermediate region. By formula (9), the concentration p along the normal to

the boundary satisfies the equation

dp

d’p 2
dn 2 + ap(l —p) )

_rdp
4 dn
whence, on dividing by « and substituting A from (14), we obtain

pd’p
adn?

P dp _
Vadn 4

Introducing the new variable » by means of the formula

+p(1-p).

n = (p/Va)y (15)
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we obtain the equation

dp _,d%

- = i3z +e(1-p), (16)

which contains neither a nor p. The boundary conditions for this equation are

the same as in the case of (9):
p(=00) =0, p(+o00)=1.

It follows from (15) that the width of the intermediate region is propor-

tional to
L=p/Va. (17)
For example, let p =1, a = 0.0001; then A = 0.01 and L = 100.

§2
In this section we consider the equation

dv d v

where A and k are assumed to be positive and the function F(v) satisfies the
conditions in the introduction.
We are going to establish the relations between Ak and o = F’(0) for

which this equation has a solution satisfying the conditions

0<v(z) <1,

v(z) — 1 as z — 400 and v(z) — 0 as z — —oo.

Let dv/dz = p. Then

d"’_v dp dv dp
dz? ~ dv dz dv

On substituting this into equation (18) we obtain

dp _Ap—F(v)

We are interested in those integral curves of this equation that pass be-
tween the straight lines v = 0 and v = 1 in the plane (p,v). Generally, these

can include curves of the following types:
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1. integral curves that are separated from the lines v = 0 and v = 1 by at
least a distance € > 0;

2. integral curves that go infinitely far away from the axis v and asymp-
totically approach one of the lines v =0 or v = 1;

3. integral curves that intersect one of these lines at a finite point lying
on the v-axis;

4. integral curves that approach the points v =0, p=0andv=1, p=0
and do not belong to any of the former types.

However, it can be easily seen that integral curves of the first type cannot
correspond to solutions of equation (18) satisfying the stated conditions, since
for such solutions v cannot be arbitrarily close to 0 or 1.

Integral curves of the second type do not exist at all, since curves of this
type must have points such that for very large |p| the value of |dp/dv| is very
large. However, the ratio (Ap — F(v))/kp is approximately equal to A/k for
large |p| (in view of the boundedness of F(v) on the interval (0, 1)).

Corresponding to the integral curves of the third type are solutions of
equation (18) that do not necessarily remain between 0 and 1. Indeed, assume,
for example, that a curve of this type approaches a point v =1, p = p; # 0.
In the vicinity of the line v = 1 we have

dp

A
d_vNZ:'éO’

therefore p can be regarded here as a function of v. Let p = ¢(v). Since
¢(1) = p; # 0, it follows that |¢(v)| is greater than a positive constant C on a
small interval (1 —¢,1+¢€). We denote by z, the value of z for which v = 1—e.

Then, integrating the equation dv/dz = ¢(z), we find

/z d v dv
T=—20= —_—
Zo 0 1—¢ ¢(v)

It follows that « does not exceed 2¢/C in absolute value when v varies from
1 — € to 1+ €. Therefore, when z changes from z; to zg + 2¢/C, v necessarily
passes through 1.

It remains to consider integral curves of the fourth type. Each of the points
v=0, p=0and v=1, p=0 is a singular point of the differential equation
(19). An integral curve of the fourth type must approach each of these points

without intersecting the lines v = 0 and v = 1 and therefore it does not twist.
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Thus, in order that such curves can exist, the characteristic equation for each

of these points must have real roots. We write F'(v) in the form
F(v) = av+ ¢1(v).

Then, clearly, ¢;(v) = o(v). Therefore the characteristic equation at the
point v =0, p = 0 is given by

A—p =—
e
ko —p
whence
pPP=Ap+ak=0. (20)

This equation has real roots if
A2 > 4ak.

To obtain the characteristic equation at the point v = 1, p = 0 we make

a change of variables, putting v = 1 — u. This results in

dp _ —dp+%P(u)

du kp

where ®(u) = F(1 — u).
Obviously, F/(1) < 0 and ®'(0) = —F’(1) = A > 0. Consequently,

®(u) = Au + o(u),

and the characteristic equation at the point v = 1, p = 0 takes the form

-\ - A
70" L=
k -p
whence
P2+ Ap— Ak = 0. (21)

This equation has real roots when
A2 > —4Ak.

Since a > 0, it follows that equation (20) has real roots of the same sign.

Therefore the point (0, 0) is a node. All integral curves that fall in a sufficiently
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small neighbourhood of this point pass through it. As to equation (21), it has
roots of different signs when A > 0. Therefore if A > 0, then only two integral
curves pass through the point (1, 0), along well-defined directions. Let these
directions be specified by the equations

mu+np=0, mou+nyp=0. (22)

The coefficients m;,n,, m2, ny are known 3 to be determined from the equa-
tions

kmy —piny =0, kmy—pony =0, (23)

where p; and p, are the roots of the characteristic equation (21). Since the roots
are of different sign, it follows that the slopes of the lines (22) have different
signs as well.* Therefore each of the angles formed at the intersection of the
lines v = 1 and p = 0 contains only one integral curve of equation (19) passing
through the point v = 1,p = 0. Figure 2 shows an approximate configuration of
these curves. The curve II intersects the p-axis below the origin since equation
(19) implies that dp/dv > 0 in the part of the strip between v =0 and v = 1
that lies below the v-axis. Therefore the curve II may be excluded from further

consideration. It remains to examine the curve I.°

V74
Y4
/4 >0
LS LI \
':&‘Q&\“M\}\\;
7/
=7 =7 =y
Fig. 2 Fig. 3

We are going to prove that each curve of type I intersects the p-axis at the

origin. We first of all prove that this curve cannot intersect the p-axis below

3 See, for example, Bendixson [3] or Stepanov [4].

4 Using this technique one can show in just the same way that both slopes of the
tangents to the integral curves of (19) at the origin are positive.

5 If A =0, then one can only assert that there exists at least one integral curve
of the type I approaching the point (1, 0) along a definite direction whose slope
is negative (see [5]).
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the origin. To this end we consider the isoclines of equation (19). The equation

of the family of these lines has the form

Ap=F(v)
T C. (24)
Here C is the value of dp/dv at the point v, p. Hence
_ _F) /
P=3"Ck (24)

Equation (24) specifies a family of curves passing through the points
(0, 0) and (1, 0). Figure 3 schematically demonstrates this family. Each curve
is supplied with the corresponding value of C. The heavy line represents the
curve corresponding to C' = 0. As the vertices of the curves go up, C increases
accordingly and approaches the value A/k which corresponds to the lines v = 0
and v = 1. In the region lying between the curve C = 0 and the v-axis (shaded
in Figure 3) we have C < 0, and C becomes very large in absolute value at
points near the v-axis. Below the v-axis we have C > 0, and C decreases from
+00 to A/k as the vertex of the curve goes down from the v-axis to —oo.

It is now easily seen that an integral curve I (see Figure 2) cannot intersect
the axis Op below the origin. Indeed, in this case the curve I would intersect
the v-axis. Since dp/dv = —o0 on the upper side of this axis and dp/dv = +oco
on the lower side, the integral curve I is convex toward the line v = 1 at the
point where it intersects the v-axis. Therefore in order that this curve pass
through the point (1, 0) it is necessary that dp/dv become infinite above the
v-axis, which is impossible. For the same reason, an integral curve I cannot
intersect the line v = 1 above the v-axis.

We now prove that an integral curve I cannot intersect the p-axis above the
origin. To this end it suffices to prove that there exists a ray passing through
the origin and lying in the first quadrant that does not intersect any integral

curve intersecting the positive semi-axis p. From equation (24) we obtain &

(D)= 5=
dv/v=0 A—=Ck '
We now find C for which (dp/dv),=0 = C. To this end we have to solve

the equation

6 % denotes the derivative of the function p = p(v) determined by equation (24').
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that is,
kC?=CAr+a=0,
whence
A+ VAZ 4ok
¢ = ATV ~dak (25)
2k
Since we are assuming that
22 > 4ok,

it follows that the two values of C in (25) are real and positive. Denote by Co

one of these values and draw the line
p = Cov. (26)

It is easily seen that for all points of the strip between v = 0 and v =1
that lie above the line (26), or even on the line itself (except for the origin),”
we have

%>Co.

Therefore none of the integral curves passing through a point on the p-axis
above the origin can cross the part of the line (26) located above the v-axis.
We have thus proved that each integral curve of type I (see Figure 2) passes
through the origin.

We now prove that there exists only one integral curve of type I. (Of course,
we have to prove this only for A = 0.) Indeed, we have proved that all curves
of type I pass through the origin. On the other hand, it follows from (19) that
for p > 0 and fixed v the derivative dp/dv increases with p. It follows that two
integral curves issuing from the origin cannot pass through the point (1, 0).

We now prove that the curve I corresponds to the solution of equation
(18) satisfying the conditions stated at the beginning. First we note that any
perpendicular to the v-axis intersects the integral curve I of equation (19) only
at one point, since otherwise dp/dv would take the value co above the v-axis.
Therefore p is a function of v, that is, p = ¢(v), along this curve. Also recall that
the curve I intersects the v-axis at the point (1, 0) at an angle whose tangent
is negative and at the origin at an angle with positive tangent. Therefore for
small values of v we have

P = kv + o(v), (27)

7 Here p is the function of v defined by equation (18).
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while for small values of 1 — v we obtain
p=k2(1 —v)+o(1 —v), (28)

where k;, and k, are positive.
Recall now that p = dv/dz. Therefore dv/dz = ¢(v), whence dz =
dv/¢(v). Integrating the latter equation we obtain

‘v
VYo (v),

By virtue of (27) and (28), it follows that £ — —oco as v — 0 and z — o0

T—2o= 0<v <.

for v — 1, as required.
§3

Instead of equation (7), which was discussed in the Introduction, we here con-

sider the equation
dv d%*v
dt dz?

where the function F(v) satisfies the following conditions:

= F(v), (29)

F(0)=F(1)=0; (30)
F(v)>0,0<v< ] (31)
F'(0) =1, (32)
F'v)<1,0<v<1; (33)

F'(v) is bounded and continuous on (0, 1). Moreover, we assume that
F(v) is differentiable the required number of times. The general equation (7)
presented in the Introduction can always be reduced to the form (29) by means
of the change of variables

z=+/k/az and t = {/a.

In this section our primary aim is to prove that as ¢t — oo the part of the
density curve v(¢,z) (as a function of z) corresponding to the major portion

of density drop from 1 to 0 moves to the left with increasing time at a rate



254 DIFFUSION EQUATION AND APPLICATION TO A BIOLOGICAL PROBLEM

approaching 2 (from below) and the shape of the curve itself approaches that
of the graph of the solution u(z) of the equation

d%u du

dz a3 2d_ + F(U) (34)
that vanishes as £ — —oo and tends to 1 as £ — o0o. The existence of this
solution has been proved in §2.

Before proving the basic assertions in this section we consider the equation

dv d%v
dt ~ dz?

a special case of which is equation (29). We will prove the existence of a solution

= F(z,t,v),

taking prescribed values at ¢ = 0, and study some properties of the solution.

Theorem 1. Consider the equation
dv d*v
dt  dz?

where the continuous bounded function F(z,t,v) satisfies the Lipschitz condi-

= F(z,t,v), (35)

tion with respect to v and z, that is,
IF(zz,t,vz) - F(::l,t,vl)l < k|v2 - ‘U1| + klzg - 2,'1| (36)

(where k is a constant not depending on z,t,v). Let f(z) be a bounded function
defined for all values of z. For simplicity, we assume that f(z) has only a finite
number of points of discontinuity. Then there ezists a unique function v(z,t),
bounded for bounded values of t, which fort > 0 satisfies equation (35) and for
t = 0 is equal to f(z) at each point at which this function is continuous. In
what follows, when saying that v(z,t) is equal to f(z) fort = 0 we will always
mean only the points of continuity of f(z).

Proof. Let vo(z,t) be a bounded function satisfying for ¢ > 0 the equation

0%
ot 0z2

and equal to f(z) for ¢t = 0. Substituting this function for v into the right-hand

=0 (37)

side of (35) we obtain the solution of this equation that vanishes on the z-axis

(see [6]), using the formula

in(et) = 5z [ dn [~ ZRECZILC=D pe, e, myas. (39
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The function
v(z,t) = vo(z,t) + 91(z,1)

is equal to f(z) for t = 1, and for t > 0 it satisfies the equation

31)1 321)1
w - 622 = F[z,t,vo(z,t)].

More generally, using the formula

¢ + exp(—(z — -
vi4+1(2,t) = vo(z,t) + 5\-1/——;/0 dﬂ/_m p(=( E_)_2/4(t r’))F(f,ﬂ,vi)df

Vi—n
(39)
we find the function v;4,(z,t) satisfying the equation
. 24
M — M = F(z,t,v;) (40)

ot 0z?
for t > 0 and equal to f(z) for t = 0.

We prove that the sequence of functions v;(z,t) is uniformly convergent.
Indeed, taking into account (36) we find from (39) that

My (t) = s‘il: [vig1(z,n) — vi(z, )| <
ns

1 [t [* exp(—(z — &)2/4(t — n))
<3 / dn / ) e |F(€, m, vi(€,m))—

~FE vl < [ EMi(n)dn,  (41)

since

* exp(=(z —&)*/4t—n)) . _
[ e =
However, denoting by My an upper bound of the values of |f(z)| and F(z,t,0)
we obtain

lvo(z,t)| < Mo,

and, by virtue of (38), it follows that
t
My < / (k+ 1)Modt = (k + 1)Mot = Mt.
0

Hence, using inequality (41) we easily obtain

ME-t

M; < ;
(Y

)
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which readily implies the uniform convergence of the sequence v;.
We set
v(z,t) = .l_lglo vi(z,1).
When t = 0, the function v(z,t) is equal to f(z). Moreover, as is easily seen,

this function satisfies the equation

t +00 2

(e,t) = (e )+ gz [ an [ SREEELEZ D) pee g, o, me.
(42)
Hence, it is clear that v(z,?) is a continuous function of z and ¢ for ¢ > 0.
It is proved in the above-cited memoir of Gevrey [6], pp. 343-344, that for
any bounded function F' the second term on the right-hand side of (42) has
a bounded derivative with respect to z. By condition (36), it follows that for
t > 0 the function F(z,t,v(z,t)) has bounded derivatives of any order with

respect to z, and therefore v(z,t) satisfies equation (35) (see [6], p. 351).
The uniqueness of the bounded solution is proved in the following way.
Assume that there exist two bounded functions vy (z,t) and vs(z,t) taking the

same value at ¢ = 0. Then they satisfy the equation

vo(z,t) — vi(z,t) =

=z | Pt %‘“t =D r(¢e,n,0) — F(E,mo)lde.  (43)
We set
M(t) = sup [v2(z, 1) — vi(z, )|

Using (36) we obtain from (43) the inequality

M(t) <k /o " M(n)dn,

which is impossible.

Remark. For regions bounded by lines £ = ¢,(¢) and = ¢2(t) on the left and
on the right and by straight lines t =tg and ¢ = ¢; > o from above and below,
respectively, the above-mentioned memoir by Gevrey [6] contains a proof of the
existence and uniqueness of a bounded function satisfying equation (35) in the

interior of the region and taking prescribed bounded continuous values on the
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lines z = ¢;(t), = = ¢2(t), and t = to. It can similarly be proved that there
exists a unique bounded function satisfying equation (35) in the interior of a
region G bounded only on one side by a line z = ¢(t) and by straight lines
t =tp and t = ¢; > to from above and below and taking prescribed bounded

continuous values on the lines z = ¢(t) and t = t,.

Theorem 2. If the function F(z,t,v) is replaced by another function Fy(z,t,v)
such that always
Fy(z,t,v) > F(z,t,v),

then the function v(z,t) does not decrease, provided that the initial conditions

remain unchanged.

Remark. If (35) is interpreted as the heat equation, then the function F(z,t,v)
characterizes the heat source intensity, and physically Theorem 2 becomes quite

clear.

Proof. Let the functions v(z,t) and v,(z,t) satisfy equation (35) and the equa-

tion

vy 0%y

5t a2 = Fi(z,t, ),

respectively.
After term-by-term subtraction we find that the function

w(z,t) = vi(z,t) — v(z,t)

satisfies the equation

ow 0w

W oz a2 Fl(x)t’vl)_F(zit’v)

We set
w(z,t) = w(z,t) exp(—kt),
where k is the same as in inequality (36). Then

ow O*w

W - —a;— =kw +exp(kt)[F1(I,t, vl) F(z,t,v)]

Hence,

o(z,t) = 2\/'/ o [ Rt /A=) (1 1 exp(kn)Fy(€, m,01)—

Vi-n
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o= g [an [ 2PCEZIIE ) gy

+exp(k'7)[Fl(£) 77,"1) - F(&) '7,01) + F(f»ﬂ, ‘01)—

—F(€,n,0)ld€ > 5= / / exp(= (z- /A=) gy

Vi—1

+exp(kn)[F (€, n,v1) — F(§,n, v)]}d€ >

(e QA=)
2= o[ (ko - Kol (44

The expression in the square brackets is equal to zero if @w > 0 and to
—2kw if w < 0. We denote by —m(t) the infimum of w(¢,n) — |@w(é,n)| for
n < t. To prove the theorem it obviously suffices to show that m(t) = 0. To

this end we note that (44) implies the inequality

a(a,0) 2~ [ min)n,

and therefore

m(t) < k /0 m(n)dn,

which is only possible if m(t) = 0.

Theorem 3. When f(z) increases, the value of v(z,t) does not decrease.

The physical meaning of this theorem is as clear as that of the forego-

ing theorem, provided that (35) is interpreted as the heat equation for a bar.
The function f(z) represents the initial temperature of the bar. When this
temperature increases, the subsequent temperature also increases.
Proof of Theorem 3. Let vy(z,t) and vy(z,t) satisfy equation (35), let these
functions be equal to fi(z) and f2(z) respectively, for t = 0, and let fa(z) >
fi1(z). We prove that vy > v;.

The function w = v, — v; satisfies the equation

ow &w
ot 0z?

By condition (36),

= F(z,t,vy) — F(z,t,v1).

F(z,t,v2) — F(z,t,v1) > —k|w|.
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Therefore by Theorem 2, the function w(z,t) is not less than the function
v*(z,t), that is equal to fa(z) — fi(z) when ¢ = 0, while for ¢ > 0 it satisfies

the equation
o _ o
ot 0z?
If ¢t is bounded, then exp(—kt)v** is a (unique, by Theorem 1) bounded

= —kv*|.

solution of this equation, where v**(z,t) satisfies equation (37) with the ini-
tial condition v**(z,0) = f2(z) — fi(z) (this function is clearly non-negative).
Consequently,

w=wv3—v; >0,

as required.
Theorem 4. If everywhere f(z) > 0 and F(z,t,0) =0, then we also have
v(z,t) > 0.

Proof. By Theorem 3, when f(z) decreases, the function v(z,t) does not in-
crease. When f(z) = 0, we have v(z,t) = 0. Consequently, f(z) > 0 implies
that v(z,t) > 0, as required.

Theorem 5. If, in addition to the hypothesis of Theorem 4, f(z) > 0 on an
interval of positive length, then fort > 0 we have

v(z,t) > 0.

Proof. The proof follows from that of Theorem 3 by setting v = v and v; =0
and taking into account the fact that the function v**(z,t) can be represented

by a Poisson integral and is therefore necessarily positive for ¢ > 0.

Theorem 6. If F(z,t,1) =0 and f(z) < 1, then v(z,t) < 1.
Proof. By Theorem 3, when f(z) increases, the function v(z,t) does not de-

crease. When f(z) = 1, we have v(z,t) = 1. The theorem now follows.

Theorem 7. If fort = 0 the function v(z,t) is equal to @ monotone increasing
differentiable function f(z) and, for t > 0, satisfies the equation

v 0%

E - E:; = F(t,v), (45)
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then v(z,t) is a non-decreasing function of z for any t > 0.

Proof. By Theorem 1,

o(z,t) = v0(z,t) + 5= / F(n,v(€,n)) exp(—(z — €)*/4(t — m) 4e

Vi=n
(46)
where for t > 0 vo(z,t) satisfies the equation
v 0%
o 027" 4

and equals f(z) when t = 0. If f(z) is differentiable, then dvo(z,t)/0z tends
to f'(z) as (z,t) tends to (z,0) (see [6], pp. 330-331). On the other hand, the
partial derivative with respect to z of the second term on the right-hand side
of (46) does not exceed (4//7)Mt'/? in absolute value, provided that |F| < M
(see [6], p. 344). Therefore dv(z,t)/0z tends to f'(z) as t — 0. If we also
assume that the function v(z,t) has derivatives 8?v/dtdz and 8%v/dz>, which
is true when F(t,v) is three times differentiable with respect to v, then the
function w(z,t) = dv(z,t)/dz satisfies the equation

ow O*w OF
i T (48)

Whence, applying Theorem 4, we find that w(z,t) > 0, which is the desired

result.

Theorem 8. If
fO@@) = fO(z) as e =0,

so that
400
/ £ — fO)dz — 0,
- 00

then for any t > 0 the function v(*)(z,t) satisfying (35) when t > 0 and equal
to f()(z) whent = 0, tends to the function v(®)(z,t) (also) satisfying equation
(35) when t > 0 and equal to f(O)(z) when t = 0.

Proof. We will look for v(9)(z,t) and v(°)(z,t) by the technique of successive

(€) (0)

approximation, as in the proof of Theorem 1. The functions vy’ and vy~ are

determined by the formulas

expl—\T — 2
et =gz [ roe oMy

vo(z,t) = E’lﬁ f z f<°>(s)e""(-(=f; £°/40) 4




DIFFUSION EQUATION AND APPLICATION TO A BIOLOGICAL PROBLEM 261
It follows immediately that
v§(z,t) — vo(z,t) as € — 0

when ¢t > 0.
The difference 6&‘)(z,t) - 17(10) (z,t) (we use the same notation as in the

proof of Theorem 1) is given by the formula

L[ [ exp(=(z — §)*/4(t — 1)) (c (
m/ ""’/_m Vi1 [F(€m,967) = F(&,m, 0§,

whence

v} (2,t) = [5(z,t) — 3 (=, )| <

k_ [ [T exp(=(z = §)*/4(t =), (o ©
<gmfaf e FUGU RGO

We set

(et =g [ 1O© - 1O TRE G0 g

Obviously,
vy (2,1) > o9 (2, 1) — vO(z, )],

and therefore

¢ +2 exp(—(z — £)? -
et < o [an [ 2REEZ RO e e =

t
= k/ vy (z,t)dn = ktvg(z,t).
0

The latter inequality follows from the fact that v§(z,t) satisfies equation
(47). Thus,
vy (z,t) < ktvg(z, ).

Using the same technique we find that

(kt)

i
A vy(z, ).

v} (z,1) = [o{)(z, 1) — v{V(z, )| <

It follows that, by selecting a sufficiently small ¢, we can make the sum
S oo vi(z,t) and hence the expression |v(9)(z,t) — v(°)(z,t)| arbitrarily small,

as required.
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Theorem 9. The function v(z,t) that satisfies equation (45) fort > 0 is zero
fort =0 and z < 0 and is equal to 1 fort =0 and ¢ < 0, is a non-decreasing
function of z for any t > 0, and dv(z,t)/0z > 0 fort > 0.

Proof. According to the above lemma, the function v(z,t) can be regarded as
the limit of the functions v(€)(z,t) as € — 0 which assume the same values as
v(z,t) on the z-axis for |z| > ¢, are continuous together with their derivatives
with respect to z throughout the z-axis, and are monotone. However, it has
just been proved (Theorem 7) that for ¢ > 0 the function v(€)(z,t) is monotone
increasing in z. Therefore this is also true for v(z,t).

We now prove that for ¢ > 0 the derivative dv(z,t)/8z is positive. To this
end we have only to show that for ¢ > 0 the relation dv(z,t)/0z = 0 is imposs-
ible. This can be done in the following way. For ¢ > 0 the derivative dv(z,t)/0z
satisfies equation (48). Therefore the expression w(z,t) = exp(Mt)dv(z,t)/dz

satisfies the equation

ow 9*w _ [OF _
%3 = M
where M is an upper bound of |0F/8v|.
Since
OF/ov+ M >0,

it follows from Theorem 2 that for ¢ > to > 0 the function @w(z,t) is not less
than the function W(z,t) equal to w(z,t) for t = ¢, and satisfying the equation

.—..—.—:0

for t > to.

The function W(z,t) is positive for all ¢ > ¢y since for ¢ = ¢, it is not
identically equal to zero if ¢, is sufficiently small.

In what follows we will denote by v(z,t) the function satisfying equation
(29) for t > 0, equal to 0 for ¢t = 0 and z < 0, and equal to 1 for t = 0 and
z>0.

Theorem 10. For any fized z < 0 we have

v(z — 2t,t) — 0 as t — +o0.
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Proof. The function %(z,t) = v(z — 2t,t) satisfies the equation

9 9% 9% _
a—w——2£+}?(0).
On the other hand, the function v*(z,t) = v(z — 2t,t) exp(—z) satisfies
the equation ®
o _ o
ot 0zx?
By the conditions (32) and (33) imposed on F(v), the function F(v) — v
is non-positive. Therefore v*(z,t) is less than the function satisfying equation
(37) for t > 0 and, for t = 0, equal to zero for z < 0 and to exp(—=z) for z > 0.

= [F(?) — ?]exp(-z).

The latter function tends to zero uniformly with respect to z as t — oo.

Theorem 11. For a fized t we regard the derivative Ov(z,t)/0z as a functlion
of v. This is possible in view of Theorem 9. Let

Ov(z,t)/0z = P(v,1). (49)

Then as t increases and v is fized, the function 9 does not increase.

Proof. Consider the functions v(z,t) and v(z + ¢,t +to) = vy,(2,t), where c is
a constant and o > 0. We put

w(z,t) = v(z,t) — vy, (2, 0).

Let 90 be the set of points (z,t) such that w(z,t) > 0. First we prove
that this set is bounded only on the left by a line emanating from the origin
and along which the coordinate ¢ is nowhere decreasing. To prove this we note

that w(z,t) satisfies the equation

ow 0%w

W - w = k(zlt)l (50)

where k(z,t) is a bounded function, namely

k(z,t) = F'(u(z,1)),

8 It is easily seen that the function v*(z,t) remains bounded when t > 0 is
bounded.
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and #(z,t) is a number lying between v(z,t) and v, (z,t). Therefore the set
M cannot contain isolated portions® not adjoining the z-axis. Thus, the set
consists of a single portion adjoining the positive semi-axis z, as is clear. In
order to prove that the set 9 is bounded on the left by a line along which ¢
is non-decreasing we assume that, on the contrary, this line contains a portion
of the form shown in Figure 4. For example, suppose that, starting from the
point A, this line goes downward. Then the function w(z,t) assumes negative
values to the right of the line OA whereas on the line OA it is equal to 0, while
for z > 0 it takes on positive values on the z-axis. However, using the same

methods as in the proof of Theorem 4 we can show that this is impossible.

Fig. 4

In just the same way it can be proved that the set 9 is unbounded from
the right.

The above remarks allow us to prove the stated theorem quite simply.
Indeed, in view of the arbitrariness in the choice of ¢, v(z¢,t) and v, (zo,t) can
be made equal for any pre-assigned ¢ and some z = zy. Then, by the above
argument,

v(z,t) > v, (2,t)

for all £ > z, and consequently

61)10
az (20) t))

0
6_:(30) t) Z
which is the desired result.

Theorem 12. For anyt we have

dv(z,t)
Oz

> u'(z)

® The proof of a similar assertion for the case of finite portions can be found in
[7], pp. 386-387. It can be shown that the same is true for infinite portions as
well. Cf. the Remark to Theorem 1.
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provided that v(z,t) = u(z). Here u(z) is the solution to equation (34) which
was discussed at the beginning of this section.

The proof is completely similar to that of the foregoing theorem. It is only
necessary to replace the function ve,(z,t) by u(z + ¢) and the function w(z,t)
by the difference v(z,t) — u(z + ¢).

Theorem 13. Let
v*(z,t) = v(z + ¢(2),1),

where the function ¢(t) is chosen in such a way that
v*(0,t) = ¢ = const.
Then

v*(z,t) — v*(z) uniformly with respect to z as t — oo.

Proof. It follows from (49) that

v dy
z= — 51
[ o b
By Theorem 11, the integrand increases monotonically as ¢ — co. More-

over, by Theorem 12, the integral [ :‘ Wauiﬁ cannot increase indefinitely. There-
fore we can pass to the limit under the integral sign in (51). Let

P(v,t) — P(v) as t — oo.

Then the limit of (51) is
oo / dv
T Je ¥(v)

¥(v) >0,

it follows that this condition determines a function v* of z. It remains to show

Since, by Theorem 12,

that v*(z,t) converges to v*(z) uniformly. To this end we note that (51) implies
that z(v*,t) converges uniformly to z(v) on any interval ¢ < v* < 1 —e¢. If we
now take into account the fact that, by Theorem 11, the function ¥ (v*,?) is
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bounded on each such interval, it follows that the function v*(z,t) converges
uniformly to v*(z) for the values of z such that v(z) is contained between ¢
and 1 — € (where € is arbitrarily small). But outside this interval of values of
z, v*(z,t) — v*(z) uniformly since for sufficiently large ¢ the function v*(z,t)

assumes values that differ slightly from 0 or 1.
Theorem 14. Asty — +00 the sequence of functions
v, (2,t) = v[z + ¢(to), t + to)

converges uniformly to a solution v(z,t) of equation (29) in the regiont < T =
const. The function ¢(tg) is defined so that

v4,(0,0) = ¢ = const

for all ty.
Proof. The function

w(z,t) = vy, (2,t) — vig47(2,1)

satisfies the equation
ow 9w
ot  0x?
where 9(z,t) is contained between v, (z,t) and vt 47(2,t). By Theorem 13,

= F'(%)w, (52)

for sufficiently large to, we have
lw(z,0)| <,

where € > 0 is arbitrarily small. By Theorems 2 and 3, the function w(z,t) is
less than the function w(z,t) = e¢exp(kt), where k is an upper bound for the
values of | F'(u)|, since for ¢ = 0 the latter function assumes a value that is not
less than w(z,0) and for ¢ > 0 satisfies the equation

ow 0*w

ot  0z?
the right-hand side of which is not less than the right-hand side of (52) for
w = . It can similarly be proved that

= k|w],

w(z,t) > —eexp(kt).



DIFFUSION EQUATION AND APPLICATION TO A BIOLOGICAL PROBLEM 267

Thus, we have shown that the sequence of functions v,,(z,t) converges
uniformly in a region ¢t < T to a function %(z,t) as t; — +00. Let us show that
9(z,t) satisfies equation (29).

Using (42) we write

vio(zv t) = vlo,o(z’ t)+

L[ [T @Yt =)
+2\/7_I"/0 dn[m m F( ‘o(f)n))df (53)

We can pass to the limit in this relation by substituting v for v;,. However,

as was shown in the proof of Theorem 1, a function satisfying equation (53)

satisfies equation (29) as well.

Theorem 15. Asty — +oo the first partial derivatives of vy (z,t) with respect
to z and t tend to the corresponding partial derivatives of v(z,t), uniformly in

a region € <t < T where € and T are posilive constants.

Proof. The uniform convergence of dv,/0z can be proved by means of relation
(53). Indeed, for t > € the partial derivative of the first term on the right-hand
side with respect to z converges uniformly since this term can be represented
as a Poisson integral. In order to show that this is also true for the second term
for t < T we consider the difference between the two values of it corresponding

to to =ty and ¢, = ty. This difference is equal to

§_\1/_1_r /0' dn -/—:" exP(—(z\_/th_z’/"i(t = 1) [F(vq,) - F(v:g)]dﬁ- (54)

By Theorem 14, the difference

F(v%({,t)) - F(v,g(f,t))

is arbitrarily small for sufficiently large t; and tj. By applying to this case the
above-mentioned result of Gevrey, we see that for sufficiently large ¢, and ¢j the
partial derivative of (54) with respect to z tends uniformly to zero, provided
that t < T.

The function wy,(z,t) = Ovi,(z,t)/0z satisfies the equation

dwy, 0wy,

ot Oz?

= F’(‘Ugo)U)go.
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We have already proved that for ¢ < ¢t < T the right-hand side of this
equation converges uniformly as tg — +00. Therefore the argument used for
proving the uniform convergence of dv;,/0z can be applied in the proof of
the uniform convergence of dw;, /8z = 8%v;,/8z?. And since the function vy,

satisfies equation (29), the uniform convergence of dv;,/dt is also proved.

Theorem 16. Let the function vy (z,t) (9(z,t)) be equal to a constant ¢ on
the line z = ¢ty (t) (z = ¢(t)). Then

b1, (t) — ¢'(t) as to — oo
uniformly with respect tot fore <t <T.
Proof. The value of ¢; (t) (¢'(t)) at the point (¢¢,(t),t) (#(t),t)) is equal to

_ O, /0t (_ 0v/6t )
Ovy, [0z 0v/dz /"

By Theorems 12 and 14,

[84(2) —8(t)] < @

throughout the region G (¢ < t < T'), provided that t, is sufficiently large and
€1 is arbitrarily small. By Theorem 15, for the same values of the arguments

the difference between the numerators and the denominators of the fractions

dui, /Ot . 85/t
do, /07 ™9 55/02

(55)

is arbitrarily small, uniformly in the region G. Moreover, the derivative 0/0z
does not exceed a positive constant in the strip ¢(t) — €2 < z < ¢(t) + €2.
Consequently, the fractions in (55), for the same values of the arguments and

sufficiently large g, differ by less than €3 in the strip
e<t<T, ¢()—e€<z<P(t)+e.

Also, taking into account the fact that the expression gg;—g% is uniformly
continuous in this strip and therefore the difference between its values at points
in this strip with the same ¢ is arbitrarily small for sufficiently small e3, we

complete the proof of the theorem.
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Theorem 17. For anyt we have
(z,t) = u(z +2t) and d¢/dt — -2 ast — o0

(the notation is the same as in Theorem 14).

Proof. Consider the function
v*(z,t) = v(z + c1(2), ),
where the function ¢ (t) is chosen so that
v*(0,t) = ¢ = const.

Then B % Bu*
v v v .
ot = az2 Tallgg HFO0.
On the other hand, by the definition of #(z,t) the value of v*(z,t) does

not depend on ¢ for any z. Therefore
8v* /8t = 0 and ¢/ (t) = const.

It follows from §2 that this constant cannot be greater than —2 and, by
Theorem 10, the constant cannot be less than —2. Consequently , it is equal

to —2, and, by Theorem 16, we have
dg/dt — —2 ast — oo,

as required.

Remark. Assume that the initial values of v(z,t) differ from those considered
up to now; namely, let

1) v(z,0) = 1 for z > ¢y;

2) v(z,0) =0for z < ¢z < c1;

3) v(z,0) assumes arbitrary values between 0 and 1 for ¢; < z < ¢;.

Then it is easily seen that in this case the rate at which the region in
which the major part of the drop of v from 1 to 0 occurs moves to the left,

nevertheless tends to 2 since

v(z —e1,t) < 9(z,t) < v(z — c,t),
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where %(z,t) denotes the solution of equation (29) satisfying the new initial

conditions.
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