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ON THE PREVALENCE OF APERIODICITY

IN SIMPLE SYSTEMS

by

Edward N. Lorénz _ | “%7c1

0. Introduction

As the lone meteorologist at a seminar of mathematicians, I feel that a few words

regarding my preseace may be ia oxder. Let me fegin with some remarks aboot ﬁhe-mathe;
-matics of'meteoroiogy.

One of the most familiar problems of interesf to meteorologists is weather fore-
casting; Mathematically this is an initial-value problem.- Thé‘athosphere and its
surroundings are governed by a set of physical laws which in principleacan be expressed
as a system of integro-differential equafions. At the turn of the century, the fore-
cast problem ﬁas identified by Bjerknés [1] as the problem of'solving these equations,
.sing initial conditions obtained from observations of current weather. Detailed
numerical procedures for solving these equations were formulated during World War I

fby'Richardson [81, but the practical solution of even rather crude approximations had
to'await the adveat of ooﬁputers.

Aﬁother problem of interest is climate. 'This is a problem in dynamicai systems.
The cliﬁaté is often identified with the set of all long-term statiotical properties
of the atmospheric equations. It is commonly assumed that one can deviae a finite
system of ordinary differential equations whose typical solutions.nearly dupiicate
those of the more realistic system. In the phase space of such a system, weather
forecasting, particularly at short range, is a local problem;whileAclimate is global.

The atmosphere is a forced dissipative system; the forcing is thermal, while the
dissipation is thermal and mechanical. Any system of equations whose general solution
can hope to approximate the atmosphere must likewise contain forcing aﬁd dissipation.

'JThe various orbits in phase space are therefore not confiaed to ‘separate energy sur-

faces, as they would be in a conservative system.

During my early exposure to theoretical meteorology, 1 had wondered wlether there



might instead be a single surface which a few special orbits would occupy,- and whicﬂ
the remaining orbits would approach. I had even hoped to discerr some smooth function

~ which would vanish on this surface, and would assume positive values on one side and
negative vélues on the other. Needless to say I was unsuccessful, and,in tﬁe light of
mére recent reéults, the search for such a function seems rather naive. I presently
turned to other matters.

My return to dynamical systems was prompted by an interest ip weatheruforegasting
réther thén climate. By the middle 1950's "numerical weather prediction", i.e.,
forecaéting by nﬁmerically integrating such approximations to the atﬁosPheric equations
as could feasibly be handled, was very much in vogue, despite the rathef mgdiocre'results
which it was then yielding. A smaller but determined group favored statistical pre-
diction, and especially érediction by linear regression, using large numbers of pre-
dictors. Apparently because of a misinterpretation of a paper by Wiener [12], the
idea became established that the statistical method could duplicate the performance of
the dynamical method, despite the éssentiél nonlinearity of the dynémic equatiohs.

I was skeptical, and decided to test the idea by applying.the statistical-methodrto

a set of artificial data, generated by solving a system of equations'ﬁumerically. Here

the dynamical method would consist of solving the equations all over again, and would

obviously give perfecf results. I doubted very much that the statistical method would
. do likewise.

The first task was to find a suitable system of equations to solve. In principle
any nonlinear system might do, but a system with some resemblance to the atmbspheric
equations offered the possibility of éome useful by-products. The system would have
to be simple enough to be able to simulate a rather long stretch of weather with a
reasonable amount of computation. Moreover, the general solution would have to be
aperiodic, since the statistical prediction of a periodic seriés would be a trivial
matter, once the periodicity haa been detected. VIt was not obvious that these condi-
tions éould be met.

At about this time our group was fortunate enough to secure its own digital compu-
ter, which still sits across the hall from my office. The computer was slow by today's

standards, but we were competing with no one for its use. Moreover, its very slowness
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the compufation and introduce new numbers whenever the preéent output appeared uninter-
esting.

We first chose a system which had been used for numerical weather prediction.

The system represented-thevthree—dimensional structure of the atmosphere by two hori-
zontal surfaces, and we proceeded to expand the horizontal field of each atmOSpheric

variablg in a series of orthogoﬁal fuﬁctions. We then reduced the system‘to manage-—

able size by discarding all terms of the series except those representing the largest
few horizontal scales, and programmed the resuiting system.fpr the little computer.

For a while our search produced nothing but stéady‘qr periodic solutions, but at-
last we found a system of twelve equations whose solutions were unmistakably aperiodic.
It was now a simple matter to put the statistical forecasting method to test, and we
found, incidentally, that it failed to reproduce thernumeriéally generated weather data.

During our coﬁputations we decided to examine oné of the solutions in;greéter
detail, and we chose some intermediate conditions which had been-typéd out by the com-
puter and typed them in as new initial conditions. Upon returﬁing to tﬁe cémputer'

“an hour later, after it had simulated about two months of "weather";iwe found that it
completelﬁ disagreed with the earlier solution. At first we suspected machine trouble,
which was not unusual, but we soon realized that the two solutions.did not 6rigiﬁate
from identical conditions._ The éomputations had been carried internally to about éix
decimal places, but the typed output contained.only three, so that the neﬁ initial
conditions qonsisted of o0ld conditions plusismall perturbations. These perturbations
were amplifying~quasi—exponentially; doubling in about four simulated days, so that
after two months the solutions were going their separate ways.

it soon became evident that the instability of the system was the cause of its lack
of periodicity. The variables all had limited ranges, so that near repetitions of some
previous conditions were inevitable. Had the system been stable, the difference between
the original occurrence and its near repetition would not have subsequently amplified,

~and essentially periodic behavior would have resulted.

I immediately concluded that, if the real atmospheric equafioné Eehéved like the

model, long-range forecasting of specific weather conditions would be impossible.



VThe observed aperiodicity of the atmosphere, once the normal diurnal and annual
v;riations are removed, suggests that the atmosphere is indeed én,unstable system.
The inevitable small errors in observing the current wéather should therefore amplify
and eventually dominate.

Still, I felt that webcould better appreciate the problems involyed by studying
a simpler example. The ideal éystem would contain only three variables, whence we -
could even construct models of orbits in phase space, or of the surface, if any, which
fﬁesé orbits ﬁould approach; However; our attempts to‘strip down the'twelve-variable
system while retaining the aperiodicity proved'fruitleés.

The break came when I was visiting Dr. Barry Saltzman, now at Yale Upiversity.
In the course of our talks he showed me some work on thermal convection, in which he
used a system of seven ordinary differential equations [5]. Most of his numerical
solutions soon acquired periodic behavior, but one solution réfuséd to settle down.
Moreover, in this solution four of tﬁe variables appeared to approach zeré.

Presumably the equations governing the remaining three variables, with the temms
containing the four variabies eliminated, would also possess aperiodic solutions.r
Upon my return I put the three equations on our combutef, énd coﬁfirﬁed the aperiodicity

which Saltzman had noted. We were finally in business.

1. A Physical System with a Strange Attractor.

In a changed notation, the three equations with aperiodic solutions are

dx/dt = -oX + oY . - : (1.1)
dy/dt = -XZ + rX-Y . . ' 1.2)
z/dt = XY - bZ . : (1.3)

Although originally derived from a model of fluid convection, (1.1)-(1.3) are more
‘eésily formulated as the governing equations for a laboratory watef wheel, constructed
by Professor Willem Malkus of M.I.T. to demonétrate that such equations are physically
realizable. The wheel is free to rotate about a horizontal or tilted axis. Ité

circumference is divided into leaky compartments. Water may be introduced from above,




whereupon the ﬁgeel can become top-heavy and begin to rotate. Different compartments
will then move into position té recéive the water. Depending upon the values of the
 §onstahts of the.apparatus, the‘wheel may be obserQed to remain at rest, rotate conti-
nually in one direction or the other, or reverse its direction at.regular or irregular
intervals.

The equations are written for a wheel of radius a with a horizoﬁtal axis; and
-with its mass confined to the rim. its angular vglocity'-Q (t) may be altered by
tﬁe action of gravity g on the nonuniformly distributed mass and by frictional
damping proportional to f . The mass p (t,0) per unit arc of circumference ﬁay
be altered By a mass source increasing linearly with héight, a mass sink proﬁortional
to. p , and, at a fixed location in space, by rotation of the wheel. Here t is

time and O is arc of circumference, measured counterclockwise. The wheel then obeys

the equations

d(a?p Q)/ac = - gapcos 8 -k a?p @ » - T (.8)
3p/ot + 9 3p/96 = A + 2B sin 0 - hp . ' @a.s)
répresenting the balances of angular momentum andvmasé, where ———i,denotes an

 average with respect to ¢, and A, B, k, and h are positive constants. From (1.5) it
follows that p approaches -A/h exponentially; assuming that p has reached

A/h , (1.4) and (1.5) yield the three ordinary differential equations

dQ/dt = -k 9 —(gh/aA) p cos @ . (1.6)
dpcos 8/ dt = - Q psin 8 ~-h p cos.® 3 11.7)>
dpsin@/dt=Qpcos 8 ~-~hpsinb+ 3B . (1.8)

With a suitable linear change of variables, (1.6)-(1.8) reduce to (1.1)—(1.3),'with
b=1.

In the convective model the motion takes place between a weormer lower surface
and a cooler-upper surface, and is assumed to occur in the form of long rolls with

fixed parallel horizontal axes and quasi-elliptical cross sections. The water wheel



is therefore like a "slice" of a convective roll. The variables X, Y, Z measqfe_
- the rate of convective overturning and the horizontal and vertical temperature
variations. The damping results from internal viscosity and coﬁductivity, and
0o denotes the Prandtl number, while r 1is proportional to the ﬁayleigh number.
Because the horizontal and vertical teﬁperature structures differ, Y and 2Z
‘need not damp at the same rate, whence b need not equal unity. The equations
may afford a fair reprgsentation of real convection when r is near unity, but
they become unrealistic when r is large, since real gohvective rolls would then '
break up into smaller eddies. |
Although we have discussed (1.1)-(1.3) in detail elsewhere [4], wé shall repeat

some of the results needed for the later discussion. . First, it follows that

¥d x>+ Y%+ (z-0-1)2)/ dt =
[0 x> + Y2 + b(2-% 0 -~ 3r)2) + bk 0 + %r)? (1.9)
The ellipsoid. E in (X,Y,Z) - phase-space defined by equating the right side
of (1.9) to zero passes through the center of the sphere S, whose equation is
X2 + Y2 + (2-0-1)? = c?, and hence lies wholly in the region Rb, enclosed by
So » provided that ¢ exceeds the maximum diameter of E . It follows from
(1.9) that every point exterior to E and hence every point exterior to
'So » has a cdmponent of motion toward the center of So s So that every orbit T
ultimately becomes trappéd in Ro.
Next, if S 1is a surface enclosing a region R of volume ' V4

dv/dt = —(0 + b + 1)V . : ' (1.10)
Hence, following the passage of time intervals At, 2At, ..., S is carried into
-surfaces Sl’ 82, ... enclosing regions Rl’ RZ’ - of volumes Vl, Vz, ces s
where Vn > 0 exponentially., I1If § = So , R&aRr;RZ;... » Whereupon every orbit
is ultimately trapped in a set R_ = RsnRv\R A ... of zero volume. This set could
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be a point, a curve, a surface, or a complex of points, curves, or surfaces.



“- " The attractor set is R, » or a portion of R_.
Egs. (1.1)-(1.3) possess the obvious steédy solution X =Y = Z = 0; this
becomes unstable wﬁen r >1. 1In this event - there are two additional steady
- solutions X =Y = i;(br—b)% » Z=1~1 ; these beconme unstablg when T
passes its critical value
r, = co+b+3) (0 -b - 1)_; ’ ; - N _ (1.11)>
‘This ecan occur only if d >b + 1. We shall consider only solutions where
r ;: rc;-these are most readilf found by numeriéal intégration.
In the first example we shall use Saltzman's values .b = 8/3> and
o = 10 s whence r, = 470/19 = 24.74; as in [4] we shal} use the slightly
supercritical value r = 28. Here we note another lucky break; Saltzman used
/0 = 10 as a crude approximation to the\Prandtl number (about 6) for wéter. Had
he chosen to study air, he would probably have let ¢ = 1, and the aperiodicity
would not have been :discovered.
For advancing in time we use the alternating 4—cyé1é scheme [6],.equivalent
to a fourth-order Runge-~Kutta scheme, with a time increment &t = 0.005. Our
initial point X =Y = 6.0, Z = 13;5 lies on the parabola passing through the fixed
points. |
Fig. 1.1 shows the variations of X, Y, and Z from t = 9 t§ t .= 18; the | N
behavior seems to be typical. Evidently Z is always positive, ané possesses a
succession of unambiguously defined maxima and minima, spaced at fairly regul#r but
ﬁot exactly equal intervals. In absolute value X and Y behave somewhat like
Z, but they change sigﬁ rather irregularly.
Fig. 1.2 shows the projection of the orbit on the Y-Z plane, from t = 9 to
t = 14. The three unstable fixed points are at 0; C, and C'. The curve sﬁirals.
outward rather regularly from C' 6r C until it reaches 5 critical distance, where-
upon.it crosses the Z-axis and merges with the spiral'about Cor C'.
Following a brief initial interval the orbit should be virtually confined to
- the aﬁtractor set. Fig. 1.3 shows the topography of the attractor, as seen from
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the positive X-axis; the curves are contours of X. Wherevthere'ére two values of
X; the higher one occurs_if the orbit is just completing a circuit ébout C. As
one follows an orbit, the two sﬁegts of.the attractor appear to mefge; however,
this would require pairs of eorbits to merge, which is impossible. Hence Qhat
appeérs to be a single sheet must be coﬁpﬁsed of two sheets, extremely close
together, so that what looks like two merging sheets must contain four~sﬁeets.

V Continuing with this reasoning, we find that thesevfbur sheet5~m§st be eight
sheets, then sixteen, etc, and we conclude tﬁat there is actually an infinite com—.
plex éf sheets. The closure of these sheets forms the atfractor set; a curve
~normal to the sﬁeets would intersect it in a Cantér set. Attractors of this

sort have become known as strange attractors [9].

The regularity of the spirals about C and C' in Fig. 1.2 implies that the
value Zn Qf Z at its nth maximum determines with fair précision the value Zn+l
at the following maximum, as well as indicating whether Y will change sign
before the next maximum occurs. Fig. 1.4 is constructed as a scatter diagrém.

of successive maxima of Z , but in fact reveals no scatter. . It appears to define

. a difference equation
Zn+1 = F(Z ) : : _ -(;.12)

whose analytic form cannot however easily be deterﬁined. We shall base our
subseque;t conclusions rather heavily on the appearancé of Fig. l.A,and on the
assumption that it is for practical purposes a curve.

Maxima of Z are intersections of the orbit with the ;onic bZ = XY;
The curve in Fig. 1.4 is therefore a form of Poincaré map; we shall call it a

, N . - ] ' -
Poincare curve. The conic intersects a surface of constant Z > Q0 in a

hyperbola. Since the attractor has zero volume, it intersects the hyperbola in a
set of measure zero, which must be a Cantor set. The orbits emanating from this
Cantor set reintersect the conic in a set whose Z-coordinates form another

, , : o,
Cantor set. It follows that a vertical line in Fig. 1.3 intersects the Poincare
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Fig. 1.2. Projection of segment of solution of Eqs. (1.1)-(1.3) on
Y-Z plane. Numbers 9-14 indicate values of t. Unstable,
Z -fixed points are at 0, C, and C'.
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Fig. 1.3. Topography of the attractor for Eqs. (1.1)-(1.3). Solid -
lines are contours of X; dashed lines are contours of lower
value of X where two values occur. Heavy curve is natural -
boundary of attractor.
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.Fig. 1.4. "Scatter diagram" for successive maxima of Z for Egs. (1.1)-

(1.3), revealing lack of scatter.



curve in a Cantor set, so that the curve is really composed of a Cantor set of
curves. However, the extieme.horizontal distance betweén two curves on the same
side of Zn =-38.5 is about 10—4 times the distance between two curves on opposite
sides, so that the Poincaré curve is closely approximated by a pair of merging
curves, i.e., a single curve with a cusp.

A sequence Zl, ZZ’ %.. of successive magima may be exactly‘periodiC, i.e.,

T Zn with m # n. It may be asymptotically periodic, i.e., asymptofic go a
periodic sequence Zi, Zé, -+ , in which case the'lattef sequeﬁce must be‘stéble..
Finally it may be aperiodic. The corresponding orbits will likewise be periodic
(exactly or asymptotically) or aperiodic.

Assuming reasonable smoothmess of F , there will be a finite number of
exaétly periodic seQuences of a given period, and hence a countable number
altogether. Thus almost all sequences are either asymptotically periodic or
aperiodic. If no periodic sequences are stable, almost all sequences are apefiodic.

If a maximum 2  is altered slightly, 2 will be altered by the same

n+l
amount, multiplied by the slope An = d Zn+1/d Zn of the Poincare curve. ~An
exactly periodic sequence of peéiod N is therefore unstable or stablevaccording
to whether or not the product AN of the slopes at the N poin#s exceéds unity
in absolute value. Since it appears from Fig. 1.4 that the slope exceeds_uﬁity

everywhere, there are no stable periodic sequences, and the general solution of

(1.1)~(1.3) is aperiodic.

2. Aperiodicity.in a Quadratic Difference Equation

In the previous section we used a difference equation, defined graphically
rather than analytically, to draw conclusions regarding a system of differential
equations. We now turn to an analytically defined difference equation.

The single first order equation

e o2 . (
');n+1— a(xn- xn) ‘ . (2.1)



to which any quadratic difference equation may be reduced by a linear change of
variables, has been exﬁensively studied as the "simplest" nonlinear equation; a
comprehensiﬁe discussion is given by Guckenheimer [2]. fhe solutions of (2.1),
like those of (1.12), may be exactly or asymptotically periodic, or aperjodic.

We shall replace (2.1) by

n+l *n | > ' : B ' v 2.2

X a’-a. The variable Xn is then the slope of the

[y

-where X = a(l-2% ) and A =
n n
graph ofv Xn+l against Xn' It is evident that if —%:E_A:i_4 and onl L a,

|Xn|_§ a for all n ; if also A > O, IXnI <A for large enough n. If

=

A = X ' ’ A ’ ' (2.3)
N n=1 n N .

a periodiC'éolution-with XN = X0 is ﬁnstable or stable according to whether or
‘nof | ANI < 1. |

Our principal concern is with the probability P that if A and XQ are
chosen ;andomly from (0, 4) and (0, A) , the sequence XO,Xl,XZ,..._
will be aperiodic; séecifically we aré interésted'in wﬁether P =f0 or P > O.
In an eérlier study [5] we conjectured that P >‘O. Ve are as yet unable ta
prove the conjecture, so we shall simply present supporting evidence, wﬁich.
will at times lack the rigor needed for a proof. |

Our interest in this question stems from the existence of relations between
difference and differential equations, as illus;rated by Egs. (1.1)—(1.3) and
(1.12). We believe that the answer for a large clasé of difference equations is
the same as the answer for (2.2), and that many systems of differential equations,
including some representiné physical systems, give rise to difference equations
of this sort. In a sense, then, we arevasking whether aperiodicity is an
exceptional or a normal phenomenon. |

The point where Xn=0 is called a singularity. For any A , we shall call

the solution with X0=O the singular solution. A useful theorem [3, 5, 11]



tells us that if a stable periodic solution exists, thé.sing&lar solution
approaches it asymptotically. A corollary is that there is at most one stable
periodic solution.r |

| We shall call a value of A periodic if a stable.periodic solution exists,
and aEeriodic otherwise. If the (Lebesqué) measure of the set of aperiodic
§alues of A in (0, 4) exceeds zero,. P->‘O. - -

It is easily shown that a stable solution of period 1 (steady) exists if

“H <A <-§ ;5 this bifurcates toarperiod 2which is stable if g-< A< %— , and
thence to period 4, 8, ... , the sequence of intervals terminating at

A = 2.802. Within (2.802, 4) there are some aperiodic values of A.

Numerical solutions of'(Z.Z)‘suggest that if A' and A"’ are‘distinct
apefiodic values of A > the corresponding singular solutions eventually acquire
opposite signs. It follows that for some intermediate vaiue Ac ,» the singular
solution is exactly periodic, and stab;e, sincé AAN = 0._ Such a valué of A
will be called central.

By continuity there is an interVal.enclosing Al where | ANI‘< 1, whence
a continuum of periodic value; of A separates A' from A'' . The set of
"aperiodic values is therefore nowhere dense.

For example, X3=0 whe; A= Ac = 37510 and XO=0, and the interval where
period 3 is stable extends from Av=bAa = 3.5 (exactly) to A é 3.538.

For slightly higher values of A , period'6;vthen period 12, etc. are stable,
.and for Stiil highef val;es-up to A= Ae = 3.581 , thg singular solution is

semiperiodic of period 3, i.e., there are three nonoverlapping intervals such that

Xo, X3, X6’ ... OCcCupy one, Xl’ Xh, .+». occupy another, and XZ’ XS’ «ee
occupy the other. Within the semiperiodic range there are some periodic values
of A , the periods being multiples of 3. For the aperiodic but semiperiodic values,

a variance spectrum would contain lines superposed on a continuun. We shall

call the interval from A,a to Ae a semiperiodit band.
A similar semiperiodic band encloses each other central value of A . The

band for period 1 is the entire interval (-%, 4), since a completely aperiodic
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band (except for period 2) is virtually a small copy of (-%, 4) , containing
within it the éame structuré, Thus there are bands within bénds within bands, etc.
A band which 1ie$ within no other band except (-%, 4) will be called prime; .
other bands will be called composite. Thg period of a composite band is obviously
a composite number; the converse does not hold. -

Because of_the similarity of the bands, the measure bf the aperiodic‘values
of A"ié positivé'if'ana only if the measurebof the values of A exceedihg 3/2
and not contained in prime bands is positive. We might then attempt to answer
~our question b§ summing the lengths of the pfime bands. Table 1 presénts these for
, periods 2:7; the baﬁd for period 2 ends at 3.0874; and it is evident that the
remaining bands do not £fill much of the space in (3.0874, 4). However, for any
large period there exist a few prime bands, located very close to prime bands
of much lower period, which, although narrow, are exceptionally wide for their:
period. For.e§amp1e, of the 26,817,356,775 bands of period 41, whose average .
width is certainly < 3.4 x 10_11, one, with Ac = 3.49788, has a widtﬁ of
1,73 x 10~7. We have ﬁoﬁ been able to show that these exceptional bands, taken
‘together, do not fill the space which the *'normal" Bands leave nearly empty.

Our conjecture that P > 0 was originally proﬁpted.by the observation
that when a value of A in (3, 4) -was chosen at random, the resulting singular
_solution was_usgally aperiodic. We must therefore.nofe;that with the usual |
computer precision most solutions become incorrect before 100 iterations.. The
inevitable round-off errors introduced in the early itérations amplify by arfactor
whose averagé may apéroach 2.0 per:iterafion; until the noise drowns the signéi,
Indeed, May [7] regards the compute; solutions as simulations, ahd suggests that
there may be periodicities éénsiderably higher tﬁan 100 which the simulations fail
to reveal.

To test this possibility we have repeafed some of the computations with a
special multiple-precision program, using as many as 500 decimal places, and
carrying upper and lower bounds to the true value of X . These bounds remain

close together.for 1000 and sometimes 3000 iterations. For no tested values of



Table 1. Limiting values Aa’ Ae’ central values Ac’ and widths Ae - A

of prime semiperiodic bands of period §_7, for Eq. (2.2).

N A A A AA
2 ©1.50000 2.00000 3.08738  1.58738
7 3.14943 ©3.14978 3.15255  0.00312
5 3.24879 3.25083 3.26672 ~0.01793
7 3.34791 - - 3.34813  3.34991 ~0.00200
3 3.50000 3.50976 3.58066 0.08066
7 3.66458 3.66463 3.66502 0.00044
5 3.72117 3.72156 3.72466 0.00349
7 3.76958 3.76961 3.76978 0.00020
6 3.81450 3.81456 3.81503 0.00053
7 3.85428  3.85430 3.85441 ~0.00013
4. 3.88110 3.88160 ~ 3.88552 0.00442
7 3.90740 ~3.90741  3.90747 10.00007°
6 3.93353 3.93355 3.93369 0.00016
7 3.95436 3.95436 3.95438 0.00002
5 3.97082 3.97085 3.97108 . 0.00026
7 3.98363 3.98363 © 3.98364 ~ 0.00001
6 3.99275. 3.99275 3.99277 0.00002
7 3.99819 3.99819 3.99819 0.00000

A where»we had not féund é periodicit& less than about 30 did we discover any
higher periodicitieé.~ If the interval (3, 4 is'filled. by‘ semiperiodic bands,
the periods must Be high indeed.

What we did génerally observe in these sqlutions was that the p;oduct AN
coﬁtinued to increase quasi-exponentially with N . The periodic bands seem to
consist of those rare values of A where, after many iterations, we suddenly
:encounter a value of X so close to zero that it cancels the remaining factors
in‘AN._ Encountering a value which partially cancels the product, and then
another‘value which completes the cancelation, is also possible but seems less

likely.



Accordingly, for our final bit of evidence supporting our conjecture we
have éonstructed a statistical model of the difference equation (2.2). We take
A > 0 and choose Xl’XZ’ . brandomly and independeﬁtly from the inteivél
(-A, A). ZLetting A N again be given‘by (2.3),‘§e seek the probability P(A)
that I I\Nl > 1 for all N . This model cannot prove or disprove our conjecture,
since successive values ofv X generated by (2.2) are not independent, aﬁd the
distribution of these values of X in (-A, A) is not pniform. Thé model can be
regarded as’highly indicative. |
We find that P(A) = 0 if A"é;e, but P(A) =1 - A"JA >0 if A > e; where‘
A' < e is a number such that (log A')/A' = (log A)/A. For example, if A = &,
b ; 2 and P = 1/2; if A = 3.375, A' = 2.25 and P = 1/3. To establish this result
we let Py be the probability that TANl <1 for n<N , and note that
1- Pl = 1/A. , while by direct integration PN - PN4-1~ equals 1/A times ab
function of (log A)/A. Hence 1 - P(A) and 1 - P(A'") diffef only by the factor
A'/A. Since the (geometric) mean of X is <1 when A < e, the result follows.
The implication is that for (2.2), in the vicinity of A = 3.375 about.oﬁe
third of the values bf A should be aperiodic, while near A = 4 about one‘half
should be aperiodic. The more general implication is that aperiodicity is a
normal -phenomenon. It is remarkable that aperiodic values for (2.2) first
appear at A = 2.802, which is so close tp) e . Actually the numerical solutions
'suggesﬁ that near1y a11 values of A near 4 are aperiodic; the discrepancy may

occur because the model has assumed a uniform distribution of X , while in

reality the larger values tend to occur more frequently. .

3. Some Attractors are Stranger than Others

It is apparent that there is a wide variety of systems_of equations with .
aperiodic general solutions. There should therefore be a wide variety of strange
attractors.

Let us'consider (1.1)-(1.3) for other values of the parameters. For the.

- Vd
values of b and o previously used, but for r = rcy , the Poincare curve



would look about like Fig. 1.4, but with unit slope at the fixed point. Since it
would still be concave upward everywhere, no stable periodic solutions would be
introduced. |

For any b , T, is large if o is near b+l orAif 0 1is large, and

there is a value
o = bl + [2(b+1) (b+2)] (3.1)

for‘wﬁich r. dassumes a minimum value . Tom ° To keep our study manageable,.
we shall varj b , letting .0 =0, and rk= L in all cases. it is of
intgrest that when b = 8/3, ﬁhe values o0 = 10 and r = 28 used breviously are
.not far from o, = 9.52 and rom = 24.72.

We shall again base our conclusions mainly on the Poincafé maps. For
purposes of comparison we shall divide X, Y, 2 by their values at C, so that
the fixed points become (0,0,0), (1,1,1), and (-1,-1,1),

In our numerical integrations wé have chosen initial conditions on the para-
bola Y=X, Z = %2 passing through the fixed points. We assume that after
passing one or two maxima of Z the orbit is close to the attractor, and we
study the remainder of the solution. By suitably'adjustiﬁg the initial point
along the pafabola, we can force the orbit to visit the rarely viéited portions
of the aﬁttactor. |

Fig. 3.1 shows the Poincare curves for b =2, 1, and 1/2. Thevcurve for
b =2 ié much like Fig. 1;4, and there is no po#sibility of a staﬁle periodic
solution. For b = 1 and 1/2, singularities have appeared, at Z = 1.75 and
Z = 1.60, and the possibility of periodic solutions with IANI < 1 arises.
Actually these do not occur, becau;e solutions with points close to the singu-
larity also contain points close to the cusp.

However, for b = 1/2 the solution with a maximum of Z exactly at 1.60 has
the eighth subsequent méximum close to 1.60. If the curveiweré a single
curve rather than a Cantor set of curves, we could be sure that by changing b

slightly we would obtain a solution of period 8 with A = 0. Lacking this
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assurance, we find for b = 1/2, by adjusting the initial conditions along the
parabolé, a solution»where the third maximum 6f Z exactly hits the singularity.
We then adjust b and repéat the process, until we have found the desired solutic
of period 8. Finally we extend the solution through sevéral more periods to be
sure that it is indeed stéble.

With some search we located a stable period 8 at b = 0.498007.’ Varyiné b
by intervals of 0.25 X 10_6, we found no period 8 at b = 0.49800625, and a
stable period 8 only from 0.49800650 to 0.49800750. The solution becomes a
stable period 16 fxom 0.49800775 to 0. 49800825, and is semiperiodic at 0.49800850
and 0. 49800875 with apparently a stable period 24 at the latter value. At
0.49800900 the stable periodicity is gone. We’have, in fact, found an extremely
narrow semiperiédic band of b which gvidently possesses the same structufé as
the semiperiodic bands of A noted in the previous section.

Lowering b to 1/4 and then 1/8, we encounter in Fig. 3.2 some possibly
unexpected additional cusps. Points near or to the right of these cusps can be

. reached only after a nearly direct hit on the first cusp, and represent'extremely

rare events.

1.0 LS

Fig. 3.2. Poincaré curves for Egs. (1.1)-(1.3) for b = 1/4 (left)

and b = 1/8 (right), with o = Gm and r = L




For b = 1/4, points near the singularity at Z = 0.145 are preceded by points

near the first cusp, but not so near as when b = 1/2. The semiperiodic bands

near b 1/4 should therefore be somewhat wider. We find, in fact, a stable

period 3 from 0.2596 to 0.2609, becoming period 6 from 0.2609 to 0.2612. Another
stable period 3 occurs from 0.2685 to 0.2697, becoming period 6 from 0.2697 to
0.2704. One periodic solution has one point sllghtly to the left of the cusp;
.the other has one slightly to the right,

Neat b =1/8 stable périodic solutioné are abundant. In.fact; at b = 0.115
the flxed p01nt acquires a slope of -1, and for b < 0.115 period 1 is stable.
Period 2 is stable from 0.120 to 0.135, period 4 is stable at 0.140, and at
0.145 the solution is semiperiodic with period 2. Periodicity disappears by 0.150
At 0.165 and 0.170 a second period 2 appears, becoming period 4 at 0;175 and 0.180.
The solution isbsemiperiodic at 0.185, and aperiodic at 0 190.

We find, then, that the range of b from 0.1 to 1.0 is teemlng with seml—
pefiodlc bands. It seems probable that, as with the difference equatlon (2 2),
any two aperiodic values of b are separated by a semiperiodic band in most
cases very narrow. Below 0.25 most values of b -are periodic, and above 0.5

-most are aperiodic. 1In any event, aperiodicity is not an exceptional phenomenon,
even below b = i;l. Above b = 1.T the singularity disappears, and all values
of b are aperiodic. - |

Since period 2 is stable at b = 1/8, one may wonder how Fig 3.2 can show
a curve &nstead of just'two points. When the general solutinn is aperiodic, say
at b = 0.15, an arbitrary orbit rapidly approaches the‘attractor set. At
b = 1/8 such an orbit approaches a set which is essentially an analytic exten-—
sion of the attractor set from higher values of B . Only somewhat later doeé

- it become trapped by the stable periodic orbit, which is the true attractor.
Fig. 3.2 describes its behnvior in the meantime.

A point on>the Poincaré map corresponds to a segment of an orbit between two

maxima of Z . For b= 2, as with Figs. 1.3 and 1.4, p01nts to the rlght or

left of the cusp correspond to segments which do or do not cross from one wing of

. .



the attractor (the region around C or C') to the other. The cusb corresponds -
to an orbit which mékes a direct hit on the origin and terminates. Orbits ema-
nating from the origin form a natural boundary for the attractor, and leave holes
surrounding C and C'.

For b= 1o0r b = 1/2, where a singularity occurs, the orbits emanating from
the origin still form natural boundaries, but the holes at C and C' b, as
viewed from the X-axis, are bounded by another orbit which corresponds to the
'singularity. Llnes parallel to the X-axis are tangent to the surface at the
edge of a hole, and away from the edge there are two values of X for a given
Y and Z , on orbits cbrresponding to poiﬁts to the left-aﬁd right of the
singularity. As one cohtinues around C or C' , these two orbits appear to
meige; i.e., the curved surface becomes folded, while they also appear to join up
with an orbit from thé other wing..

At b = 1/4, p01nts to the right of the second cusp correspond to orbits,
including those emanating from the origin, which cross the X—Y and Y-Z planes anc
then cross back again in descendiﬂg from a maximun of Z s seen from the
Z—axis they spiral downward. The second cusp itself corresponds to another direct
hit on the origin; hence the two cusps must have equal_heights. A topographic
map of the attractor would, in some locations, have to show four‘values of X |
Wthh would be on orbits proceeding :from a large maximum and a small maximum ‘of
Z in one wing of the attractor and two distinct intermediate maxima in the
other wing. At b = 0.4, where the second cusp first appears, the trajectory ema-
nating from the origin would run back into it; above and below b = 0.4, the
attractors are thus topographically distinct.

Strange attractors appear to be characteristic of forced dissipative systems
with aperiodic general solutions, such as systems describing turbulent flow.
Presumably the attractor can become stranger as the number of variables increases.
What we havé shown is that we need not go beyond three equations, nor even
change the form of the equétions, to find more complicated attractbrs than the

one which we originally presented.
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