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Group Velocity
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This paper gives a survey of the theory of group velocity for one-dimensional and three-
dimensional, isotropic and anisotropic, homogeneous and inhomogeneous, conservative
and dissipative, linear and non-linear, classical and relativistic systems exhibiting wave
propagation under free and forced-motion conditions.

1. Introduction

IN choosing a subject for this lecture, I had in mind the aim which permeates the
policy of the I.M.A. journals and Programme Committee, namely, to choose subject
matter that will be of interest to as many as possible of our members, and in particular,
to mathematicians working in more than just one branch or field of application of
mathematics. It occurred to me that these conditions would be met by a general survey
of what is known today about group velocity. The theory of group velocity is an
essentially mathematical theory that has been developed over the years with an eye
on a great variety of spheres of application. I am going to give an account of what
seem to me the most important parts of our knowledge of this subject, largely ignoring
history and concentrating rather on mathematics (and, of course, on its applications!).

I should like to apologize to those who attended Professor Synge's three very erudite
lectures here at King's College recently on the same subject I recognized that the
subject was indeed the same too late to be able to change significantly the material
of this lecture, but I hope that even those who attended both may still find useful an
elementary and relatively brief account of the subject, that proceeds by degrees from
simpler cases to more and more general ones.

I am sure that the properties of group velocity always surprise somebody who meets
them for the first time. The most striking feature of waves is, without doubt, their
capability of carrying energy over long distances; sometimes, of course, as well as the
energy, they carry also, more or less imperfectly, information. With many waves,
furthermore, the velocity of crests and troughs and their regular progress is extremely
evident. It is natural to imagine, then, that this "phase velocity" is also the velocity
with which energy is propagated by the wave, particularly because in some simple
cases, including sound waves and waves on a flexible string, the two velocities are^
indeed the same. For the vast bulk of wave motions occurring in nature, however,
the phtfse velocity, with which the crests and troughs are propagated, and the group
velocity, with which the energy is propagated, have quite different magnitudes; and
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2 M. J. LIGHTHHX

where the system possesses any degree of anisotropy they are normally also quite
different in direction.

Waves of interest include one-dimensional waves, such as may propagate along a
string, or a transmission line; two-dimensional waves, such as may propagate over
a water surface, or other surfaces of separation between different phases of matter;
and three-dimensional waves, propagating freely in space. One-dimensional systems,
and isotropic two- and three-dimensional systems, that is systems without quantitative
differences between waves travelling in different directions, have at least the consoling
property that energy is propagated in the same direction as that in which the crests
move. The magnitudes of the phase and group velocities are, however, not equal for
any waves whose phase velocity takes different values for waves of different length.
This state of affairs is usually described as dispersion, because it means that if we
imagine any general disturbance split up into components of different wavelength,
all these components will progress at different speeds, and therefore will tend to get
separated out, that is "dispersed", into a long wave train with the wavelength varying
rather gradually along it.

In this process of dispersion, the energy associated with waves of a given length is
propagated at the group velocity, say u, of those waves. Hence, after a time t has
elapsed, waves of that length will be found a distance ut farther on. Anyone who
imagined that, because the crests travel with the phase velocity v, those waves should
be observed at the quite different distance vt, would fail to find them. There he would
find waves, if any, of quite different length, namely those whose group velocity has
the value v. If he were mesmerized, in fact, into trying to follow individual crests,
he would find that these evolve into crests of waves of continually changing length,
or even disappear altogether. Only if he rigorously fixed his gaze on a point moving
with the group velocity u would he find that he was continually observing waves of the
same length. Thus, although it is variations in the phase velocity which cause the
phase and group velocities to be different, it is variations in the group velocity which
produce the dispersion.

Waves, as I said earlier, are often used as carriers, not merely of energy, but also
of information. Needless to say, the transmission of information is not assisted by
dispersion, and the dispersed waveform is hard to unscramble into the original
waveform. This is why every effort is made in transmission lines to match constants
so that dispersion becomes negligible. When this is successfully done, then the phase
and group velocities once more coincide. However, there are relatively few systems
where this is possible.

Many different approaches to the mathematics of group velocity have been used.
They can be divided into, first, kinematic approaches, which consider a general linear
combination of waves of varying length with frequency functionally related to wave-
length, and work out how the waves of different lengths become dispersed from one
another, and, secondly, dynamic approaches, which are basically quadratic rather
than linear. They prove, in particular, that energy flow takes place at the group
velocity and so make it possible to predict not only where waves of a given length will
be, but also what their amplitudes will be. I propose to describe both kinematic and
dynamic methods in this lecture, for one-dimensional and multi-dimensional systems,
with and without isotropy, with and without homogeneity and with and without
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GROUP VELOCITY 3

dissipation. The work will be confined to systems satisfying linear equations, except
for a brief final description of extensions to non-linear problems, in which Prof.
Whitham (1965a,b) and others have been active in recent years.

2. The Kinematics of Wave Crests (One-dimensional)
I shall begin, then, with the simple case of one-dimensional wave motions, to which

it is relatively easy to reduce the case of isotropic multi-dimensional wave motions.
The simplest method of deriving the formula for group velocity in this case, as indeed
in more general cases, is to consider the kinematics of wave crests (Lighthill &
Whitham, 1955; see also Havelock, 1914). This procedure is suitable at any rate when
dispersion has already caused the lengths of adjoining waves to differ by only a small
fraction. Under these circumstances, it is so rare for a crest to cease to be a crest, or
to divide into two crests, that we can to a good approximation apply a law of con-
servation of numbers of crests. This law takes the form of a hydrodynamical equation
of continuity:

dk dco

where co is the number of wave crests per second, i.e. the frequency, and k is the number
of wave crests per cm, i.e. the wavenumber (the reciprocal of the wavelength).
Equation (1) means that the change in number of crests in a fixed length equals the
difference between inflow of crests at one end and outflow at the other. If in equation
(1) we write co = kv, where v is the phase velocity, the analogy with the equation of
continuity becomes particularly apparent.

In a wave motion in which the frequency co is a function of the wavenumber k,
equation (1) becomes

dk dk
- + u—= 0,
at ox (2)

where u = dco/dk will be called the group velocity. Equation (2) says that, in the
(x,0-plane, along paths x—ut = constant (travelling with speed u), the wavenumber k
remains unchanged (Fig. 1). Waves of a given length are found, in fact, at points

Fio. 1. Homogeneous one-dimensional system. Geometrical significance of equation (2) which
governs wave dispersion.

along such paths, and there is a different path for each wavelength. Thus, the basic
fact about group velocity for such a system has already been derived.

Here we have taken the system as homogeneous, but an inhomogeneous system is not
much more complicated to treat. This is a system where the relationship between
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M. J. LIGHTHUJL

frequency and wavenumber changes gradually with position, so that co = co(kyx).
We cannot then deduce equation (2) for k from equation (1). We can, however, multi-
ply equation (1) by

u =

(where the subscript x signifies a derivative keeping x constant) and deduce
dco dco „
— + u— = 0,
at ox

because

(4)

(5)

Equation (4) says that the frequency co remains constant along paths (Fig. 2) satisfying
d4-u. (6)

FIG. 2. Inhomogcneous one-dimensional system. Geometrical significance of equation (4) which
>verns wave disoersion.governs wave dispersion.

Here, u will vary with position along such a path, but in a known manner because it
can be expressed as a function of x and of the frequency co which is constant along
the path. Wave packets of a given frequency propagate, then, with velocity u although
their crests travel with the quite different velocity v = co/k.

All this argument can be put into strictly physical language, in terms of an observer
who travels-(say) with velocity U, and who therefore passes Uk—co crests per second.
If another observer follows on behind him, passing every point a time T later, and the
two observers follow a path on which the frequency co remains constant, then the
number of wavecrests between the observers is coT which is constant, so that the value
of Uk—co, the number of wavecrests per second passed by each, must be the same.
It follows that

V = fk' (7)

which is the change in frequency during time T at a fixed point divided by the change
in wavenumber during the same time interval at the same point—in full agreement
with expression (3).

It is, of course, quite possible for waves of two more different frequencies to have
the same value of the group velocity «; in this case, all of them may be found travelling
together along the same path, where an apparently irregular motion would be observed
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GROUP VELOCITY 5

and Fourier analysis would be needed to resolve it into a small number of sine wave
components. The argument I have given could nevertheless be justified by applying
it separately to these different components. Another case where apparent local
chaos is intelligible only in the light of Fourier analysis is when one wave packet
passes through another wave packet which has lower group velocity.

The solution of equation (6) can be written in various forms, but the most convenient
is one in which we begin by writing the wavenumber k as a function of the frequency w
rather than the other way round. This is because co remains constant along the path.
Then the equation of such paths in an (x,t) diagram is

Cdx
t = —(-constant

Cfdk\
= x - ]

-Af
dcoj

dx + constant

k(a>,x)dx +constant, (8)

a form requiring us merely to integrate a known function with respect to one of its
variables and differentiate it with respect to the other.

If, furthermore, we argue that the total energy in each part of the frequency spectrum
remains constant, then it follows that the energy between two adjacent paths must re-
main constant. Obviously this can be used to infer changes in amplitude if the relation-
ship of energy density to amplitude is known. This method can be used just as reliably
for two- and three-dimensional propagation in isotropic systems, where the normal law
of dependence of energy density on amplitude is modified by an additional factor x"-\
where n is the number of dimensions. However, in the neighbourhood of a caustic,
i.e. an envelope of paths, the method gives a locally infinite value of the energy density,
which in reality is not found; the true peak in energy density near the caustic cannot
be calculated by this simple approximate method, which as we shall see has to be
replaced by a more refined one within a few wavelengths of the caustic.

3. The Method of Stationary Phase (One-dimensional)

The method so far described gives results quickly, but is not demonstrably firm on
its foundations, which therefore need bolstering up with some rather more rigorous
analysis of the result of linearly combining waves of different length when the frequency
is a function of the wavelength. The classical argument of Stokes (1876) infers a
surprising amount from the simple special case when waves with just two values of
wavelength are combined:

a cos 27t(/c1x —QjjO + a cos 2n(k2x—co2t)

= {2acos27t[(/c2-A:1)x-(Q)2-co1)/]}cos27t[(fc1 + fe2)^-((o1 + Q)2)']- (9)
The first term on the right is a slowly varying amplitude for the rapidly varying
second term, so that the formula can be interpreted (Fig. 3) as a series of packets
travelling with the velocity

U-TFT'
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M. J. LIGHTHILL

and incapable of exchanging energy with one another through the nodal points where
this amplitude is zero. It might be expected from this that a general wave packet, for
which neighbouring portions of wave have only slightly different wavenumbers, would

FIG. 3. The linear combination of two sine-waves interpreted as a series of wave packets
(equation (9)).

propagate at a speed equal to the limit of (10) for low frequency difference, namely,

dk
Obviously, the argument is still far too special, but it contains one idea that is

applicable to much more general cases. A point where the amplitude of (9) takes the
full value la, equal to the sum of the amplitudes of the component waves, travels
along at the velocity (10) for one very good reason: this point passes wavecrests of
the two wave systems at rates, Uki-coi and Uk2—a>2, which are equal. It is possible,
therefore, for these wavecrests to remain in phase, which for any other value of U
could not happen.

We now consider a much more general combination of waves of different lengths
in a homogenous system whereco is a function of k. Such a general linear combination is

<j>=i: (12)

We consider the problem of estimating this integral when t is large and x may also
be large. We assume that a> is an analytic function of k. We also assume that that the
form taken initially, when t = 0, by the dependent variable </> in which we are interested,
namely

r (13)
represents a disturbance confined to a limited region, that is, to a limited interval of
values of x. This requires that J\k) also is an analytic function of k.

We shall see that the main contribution to the integral (12) from a given small
interval of wavenumber is found when x and t have values such that the phase
kx—a>(k)t is stationary, i.e. practically constant throughout the interval, so that once
more it is possible for the crests of different wave components in this interval to
reinforce one another, instead of tending to cancel out by interference. We can prove
this most easily (Jeffreys & Jeffreys, 1950, p. 505) by writing the phase in equation (12)
as t\p(k), so that

k ( k ) (14)
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GROUP VELOCITY 7

We then transform the integral into one with respect to \J/, namely,

|e"*#, (15)

the integral being over that set of values of ^ that corresponds to the interval
— oo < k < oo.

TS\J/(k), which is an analytic function of k, is also one-valued, with\l/'(k) everywhere
positive, or everywhere negative, then fdk/dij/ is an analytic function of ip itself, and
the theory of Fourier integrals then tells us that, for large /, <f> is very small, of smaller
order than any inverse power of t. The situation is different, however, ifip'(k) becomes
zero anywhere. This usually implies that more than one value of k corresponds to
each value of ifr, but, more important for our purpose, it means that dk/dij/ is singular.
Where \p'(k) has a simple zero, dk/dtj/ has an inverse-square-root singularity; where
if/'(k) has a double zero, dk/di// has an inverse-two-thirds-power singularity, and so on.
We can then use the theory of the asymptotic behaviour of Fourier integrals (Lighthill,
1958), which tells us that the asymptotic value of equation (15) for large t is determined
by the behaviour of/ dk/a\j/ at its worst singularities. These are the zeros of 4i'(k), in
other words, the points of stationary phase. In the commonest case, when only
simple zeros are present, there is a contribution from the inverse-square-root singularity
corresponding to each. If the zeros oi^i'ik) are ku k2,..., km, the asymptotic form of
the integral (15) is

^ f(kr) exp [2niHl>(kr) + jni sgn

f(kr) exp {2nijk^-w{kr)q-^ni sgn co\kr)}

• ( }

Here sgn fj/"(kr) is + 1 where \J/"(kr) > 0 so that \p has a minimum and is — 1 where
4>"(kr) < 0 so that ip has a maximum.

Physically, the zeros ofip'(k) are the points where

x = tco'(k), (17)
that is, the values of the wavenumber k for which the speed of propagation co'(k) of
the energy associated with that wavenumber carries it a distance x during the (large)
time t. There is only one term in the sum (16) when the group velocity (o'(k) takes
each value only once, but in general, as mentioned before, two or more wave packets
may be superimposed on one another and travel along together because they happen
to have the same value of the group velocity.

The amplitude falls off like the inverse square root of the time because after time /
the energy is spread over a distance proportional to /, so that the energy density
varies as 1rx and the amplitude, therefore, as t~t. Specifically, the energy between
wavenumbers kr and kr+dk is initially Ef\kr) dk, where E is some constant, and later
spreads out to fill a distance

| tco\kr)-tco'(kr+dk) \=t\ a>\kr) | dk. (18)

Then, therefore, the energy density is
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8 M. J. LIGHTHH.L

consistently with the value

* * > (20)

for the amplitude. Thus, in the sum (16) the only extra piece of information that we
would not have been able to predict from the kinematic analysis is the phase factor

exp [ - in i sgn o>"(/cr)] (21)

which simply decreases the phase by 45° where co" is positive and increases it by the
same amount where co'js negative.

The special case, when co"(kr) = 0 for a particular solution k = kr of the equation
xjt = co'(k), needs individual treatment, and corresponds to the caustic that I men-
tioned earlier (Fig. 4). The simple form (16) of the solution is then not applicable.

When co (kr) = 0 for a solution k = kr of

*,) = x/t, then (*,/) Is on a caustic

Caustic

Fio. 4. Homogeneous one-dimensional systems; geometry of a caustic.

The integral (15) with respect to ip has an inverse-two-thirds-power singularity, and
the asympotic contribution from waves of wavenumber kr is

falling off only as the inverse cube root of the time. Sometimes we need to approximate
<f> not actually on the caustic, as here, but rather near it. Then it is best to evaluate
the contribution from k = kr, where co"(kr) is nearly but not exactly zero, by replacing
co(k) in the original Fourier integral (13) by the first four terms of its Taylor expansion
about k = kr and evaluating the remaining integral in terms of the Airy function
(Jeffreys & Jeffreys, 1950, p. 508). This function decays exponentially on the shadow
side of the caustic, and is oscillatory on the other side. In between it rises to a peak
close to the value (22).

The analysis I have just given in the particular case of systems homogenous in x
has confirmed the value of the approximation derived from the kinematics of wave-
crests. Now, instead of duplicating the extension to the non-homogenous case, which is
cumbersome by this method, I shall give rather a brief analysis of the extension to
dissipative systems, considering only such small dissipation as reduces the wave
amplitude by only a small fraction in one wave period. I suppose in fact that for
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GROUP VELOCITY 9

waves of wavenumber k the amplitude is reduced by a factor e-2*°W' in time /, where
o(k) <3 w{k). (We assume further in what follows that a'(k) 4, a>'(k).) Then w(k) must
be replaced by

co(k)-io(k) (23)
in the integral (12). The analysis then goes through as before, but the kr must satisfy

io'{kr) = *t. (24)

An approximate solution for small a is

ia'(ki0))

*-"*' +o/Xfc<°>)' ( '
where fc*0) is the solution with no dissipation, satisfying

a/(fc<°>) = *. (26)

When we use the earlier expression (16), with a>(k) replaced by (23), it becomes

$ /(fc<°>) exp {27iilk^x-(oiki0))f]-2na(k^)t-lni sgn o>"(/c<0))}

*~£ 0 I " W I }* (2?)

to a first approximation, when cr is small. The replacement here of kr by k^0) can be
shown to introduce very small errors, in particular because k^ is a point where the
phase term in square brackets is stationary.

The physical meaning of the asymptotic form (27) is simply that every wave packet
exhibits a time rate of decay of amplitude to a close approximation the same as for
periodic waves of the same wavelength, and that in other respects the theory of group
velocity is not affected by the presence of a small amount of dissipation. By contrast,
when the dissipation rate <r(k) is comparable with the total variation in co{k), as is the
case in anomalous dispersion of an electromagnetic wave, the theory of group velocity
is affected very greatly indeed (Stratton, 1941).

4. The Kinematics of Ware Crests (Homogeneous Anisotropic Systems)

But it is time to consider the propagation of waves in anisotropic systems. These
are important, of course, in relation to waves such as electromagnetic or elastic waves
in anisotropic media such as crystals; they are also important in relation to waves in
the presence of an external field; for example, rotation about an axis makes many
types of mechanical waves anisotropic; so does a gravitational field when the medium
has non-uniform density, and a magnetic field when it is conductive. Now, it is reason-
able, encouraged by the success of the method which used the kinematics of wave
crests in homogeneous one-dimensional systems, where the conclusions were fully
substantiated by the more rigorous analysis, to apply the same method to anisotropic
three-dimensional systems, first homogeneous and then non-homogeneous (Whitham,
1960; see also Hamilton, 1837). In making this jump we are leaving out the quite
important two-dimensional systems, but that gap is, obviously, rather easy to fill in.

In this three-dimensional case, the geometry and kinematics of the wavecrests can
be specified (Fig. 5) by means of a phase function U(xi,xi,X3,i), which is continuous
and changes by unity between one crest and the next; more generally, the phase
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10 M. 1. LIGHTH1LL

function U changes by 1 in any distance of one wavelength perpendicular to the surfaces
of constant U. Thus, we suppose that each of the local physical quantities takes the
form

a{cixux2,xi,t) exp [2niU(xux2,xi,t)]}> (28)
in which a complex amplitude, in general diflFerent for each quantity, is multiplied by a
phase factor the same for each quantity. Obviously, diflFerent physical quantities may

Waves in three dimensions

U = (a fixed constant fraction)
+ (an arbritrary integer)

Phase function U(xuX2,xz,t)

Each local physical quantity » real part of
a(xuxz,x3,t) exp[2niU(xuxz,x3,>)]

where o(x,,x2lx3,0 different for each quantity.
Wavenumber vector (kukz,kz)

Magnitude - > o v e ) t n^ l t l ' direction J- wave crests.

FIG. 5. Phase function and wavenumber vector for waves in three dimensions.

have their crest or peak values at different places, but the function U describes all of
them; the crests for every physical quantity lie on curves of the form

U = (a fixed constant fraction)+(an arbitrary integer).

We suppose, furthermore, that a functional relationship exists between frequency
and wavenumber. The wavenumber in three dimensions has direction as well as
magnitude (Fig. 5); its magnitude, as usual, is the reciprocal of the wavelength, and its
direction is perpendicular to the wavecrests. If the components of the wavenumber
are (kiJc2,ki), then locally the phase factor varies in proportion to

exp [2ni(k\Xi+k2x2+kix3 -tot)]. (29)
This means that

dU . dU dU dU

dXi dx2 dx3 dt

I have said that, in a homogeneous anisotropic system, we assume that the frequency
is a function of the wavenumber vector:

e> = MiteM)- (31)
In other words,

8U /8U dU 8V\fe) (32)
We may then ask how wave packets of given wavenumber vector (kuk2,ki), and
hence also given frequency, propagate. We obtain the answer by diflFerentiating
equation (32) with respect to xa (where a may be 1, 2 or 3). This differentiation gives

_ 8HJ_ _ df d2U d£ d2U df d2U

dxadt dkt dxjSx^ dk2 dxjdx2 dk3 8xadx3 '
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GROUP VELOCITY 11

which can also be written as

dt dkidxY dk2dx2 dk3dx3

This states simply that the wavenumber vector ka remains constant under changes
in the time and the three position co-ordinates which are in these ratios:

dx,= d£ dx2=d£ dx, = 8£
dt dkS dt dk2' dt dk3'

 { }

Thus, waves of given wavenumber (and hence also of given frequency) propagate at
a velocity

(dm dco dco\feJ (36)
which is the gradient of the function fQcukzJci) with respect to the wavenumber
vector. This formula for group velocity is seen to be a natural extension of the one-
dimensional result.

The direction in which these waves propagate is normal to the so-called wavenumber
surface, that is, the surface of constant frequency^A:i, ki, k^) = constant. Furthermore,
since they are waves with fixed values of ku kz and £3, the direction and the speed
of propagation remain constant for the wave packet, which therefore travels in a
straight line. On the other hand, both the speed and direction of movement of the
wavecrests are quite different, being represented actually by the vector

cokt cok2 a>k3 \

+kl+kV kl+kl+H' kl+ki+klj- ( }

To sum up, energy travels in straight lines in a homogeneous anistropic system, with
a direction and speed given by the group velocity vector (36), and both are in general
different from the phase velocity's direction and magnitude.

We can illustrate this result by considering the particular case when the waves
originate from a small region during a small interval of time (Lighthill, 1960). In this
case, waves can spread out from this region in straight lines in all directions in which
normals to the wavenumber surface ( / = constant) lie. Some of these directions may,
actually, be normal to that surface at several points. In such a direction, waves with
wavenumber corresponding to each one of these points may be found, and will be
found if waves with the wavenumber in question were among those originally generated.
However, the magnitude of the group velocity will in general be different for each,
so that the wave packets with different wavenumbers will at a given time have reached
different points along that direction.

Figure 6 illustrates this for waves generated at an approximately constant frequency
during a short time interval in a homogeneous plasma in a uniform magnetic field,
when the magnetic pressure is small compared with the plasma pressure. If the fre-
quency, divided by the gyrofrequency of the ions, is negligibly small, then the wave-
number surface is a plane (marked "0" in the figure). This means that energy can be
propagated only in the direction normal to the plane.

Magnetohydrodynamicists are, in fact, familiar with the proposition that dis-
turbances are, in such a case, transmitted only along magnetic lines of force. However,
when the ratio of the frequency to the ion gyrofrequency is not negligibly small, the
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12 M. J. UGHTHTLL

wavenumber surface splits into two. When, for example, the ratio is one-quarter, the
two sheets are those marked "£" in the figure. The energy of waves whose wavenumber
corresponds to a given point on the surface propagates in the direction of the normal
to the surface at that point, and in this particular case the directions normal to the
left-hand sheet all lie within a certain cone Ni; while those normal to the right-hand
sheet lie within a somewhat larger cone Nz- All the energy that is created remains,
therefore, within this larger cone N2< while the speed with which energy of a given
wavenumber is propagated is the gradient of frequency along the normal to the
wavenumber surface at the corresponding point. The upper diagram on the right
shows the waves, that were created in a certain short time interval, at a given later

Waves generated
in limited region
in small Interval
of time (aj/to, =j-)'

Direction
of

magnetic
field

Waves generated
continuously at
fixed frequency

Wavenumber surface for
different wlcu/ (where
Wj= ion gyrofrequency)

FIG. 6. Diagrams illustrating waves in a homogeneous plasma in a uniform magnetic field, when the
magnetic pressure is small compared with the plasma pressure.

time t. Those associated with the left-hand sheet all lie within the cone N\, and have
travelled considerably further than those associated with the right-hand sheet (which
lie within JV2). The spacing and angle of the crests is representative of the direction
and magnitude of the local wavenumber vector. From a physical point of view the
interest lies in the wide dispersion of the waves exhibited already when the ratio of
frequency to ion gyrofrequency is one-quarter, a situation completely different from
that in which the ratio is very small, when all the energy would be concentrated at
the point marked with a star.

This upper diagram illustrates, then, the problems arising when the waves are all
generated during a small interval. Quite a different appearance is assumed by the waves
when they are, instead, generated continuously, at a fixed frequency, within a small
region. The different magnitude of the group velocity in different directions is not then
particularly important; time is unlimited, and so waves are found at all distances
from the region in every direction in which they propagate. The angle of the crests for
waves propagated in a given direction is, however, the same as in Fig. 5. It is not
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GROUP VELOCITY • 13

difficult, in fact, to calculate the shape of one of the crests from this condition. Such
a surface of constant phase for the waves generated turns out to be what the geometers
have for a long time called the reciprocal polar of the wavenumber surface, that is
the locus of the poles of the tangent planes to that surface. This follows from the fact
that the point xa on a surface of constant phase, corresponding to a given point ka

on the wavenumber surface, must lie in the direction perpendicular to the tangent
plane at that point, and is furthermore at a distance inversely proportional to the
distance from the origin to that plane, because the scalar product of xa and Jt« must
be constant on a surface of constant phase. For the problem we have just been
discussing some surfaces of constant phase for continuously excited waves are shown
in the lower diagram on the right of Fig. 6. The somewhat complicated look of these
waves is in only apparent contradiction with the very simple law governing their
propagation: namely, that the energy travels in straight lines.

5. The Kinematics of Wavecrests (Inhomogeneous Anisotropic Systems)

It is desirable to turn now to the inhomogeneous case, when the relation between
frequency and wavenumber varies with position, although at any fixed point it does
not change with time. Thus we assume that

co = RkvXx). (38)
Naturally, we expect that energy will continue to be propagated locally at the same
velocity

• "' = £ ' (39)
although this will now vary.from point to point. Also, because the equations of motion
do not involve the time explicitly, energy in waves of a given frequency should remain
always in waves of the same frequency. However, the equations do involve the space
co-ordinates explicitly, so that, as these waves propagate into different regions of
space, their wavenumber vector ka can be expected to change. We may hope, therefore,
first, to prove that, when changes in xa and t are in a proportion given by the velocity
(39), that is, when

the frequency co remains constant, and, secondly, we may hope to find how the wave-
number vector ka varies.

To do both these things, we write equation (38) as
8U

and differentiate with respect to xa, giving

_ 82U _ df 82U df d2U df 82U 8£

dxjdt dkx dx0Ldxl dk2 dxadx2 dk3 dxxdx3 dxa

This can be rewritten as

h?+?Lhi+?LJs+?Lh±=JJL
dt dkldxl dk23x2 dk3dx3 dxj
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14 M. J. LIGHTHILL

and we can interpret this by saying that when x\, x2, X3 and t change according to
equation (40), ka changes according to the equation

This very simple rule, governing how the wavenumber associated with a given packet
of energy varies as the packet is propagated through space, is very strongly reminiscent
of the Hamiltonian form of the equations of motion of a dynamical system, and it
comes as no surprise to learn that this rule also was discovered by Hamilton; see for
example equation (7^) on p. 182 of Hamilton (1837). Equations (40) and (43) have to be
solved simultaneously to find out how the wave packet is propagated through xa

space and ka space. With modern computational aids this is no great problem, how.
ever, whereas the direct computation of the waves themselves, involving a complicated
partial differential equation with four independent variables, is expected to remain
out of reach of such aids for some time to come.

The check, that, when / is a function of ka and xa without explicit dependence on
the time, the two equations (40) and (43) imply that the frequency, i.e. the value of/
itself, remains constant for the wave packet, is now very straightforward, being identical
with the proof that, for a dynamical system whose Hamiltonian is without explicit
dependence on the time, every motion of the system carries a constant value of the
Hamiltonian, that is, of the total energy. The fact that frequency behaves like energy
in this way and wavenumber like momentum is directly related to the fact that quantum
mechanics associates with every particle a wave of frequency proportional to its
energy and of wavenumber proportional to its momentum.

As one simple illustration of the practical application of these results, I should like
to refer to the propagation of sound through an atmosphere in non-uniform motion.
The effects of non-uniform winds influence greatly the propagation of sound over
long distances and needed to be studied very seriously when accurate calculations of
the possible intensity on the ground of "booms" from supersonic aircraft were being
made (Warren, 1964). Now, the relation between frequency and wavenumber at a
point where the sound speed is a and the wind speed is (VuV2,Vi) is

co = V1k1 + V2k2 + V3k3 + aj(k\ + k2
2 + ft!). (44)

This gives, first, that the group velocity, with which energy is propagated, is

( 4 5 )

namely, the vector sum of the wind velocity and of a vector whose magnitude is a and
whose direction is normal to the wavecrests. This result may appear rather obvious,
but one of the very few mistakes in Rayleigh's Theory of Sound occurs in Section
289, where the energy is assumed in this problem to be propagated exactly at right
angles to the wavecrests. Secondly, it gives that, as energy travels along one of these
rays of sound, at the group velocity, the wavenumber vector changes according to
the law

dka_ dVt dV2 dV3 ^
dT ~ ~ ^ f c l ~ 3 ^ k 2 - a ^ k 3 ~ 5 7 / ( k l + k 2 + f c 3 ) - (46)
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GROUP VELOCITY 15

In the most general case, the rays must be computed by numerically solving this,
with the equation for dxa/dt, as a system of ordinary differential equations, which is
relatively straightforward. One particular type of inhomogeneity, however, is of great
practical importance and allows us to reduce the problem to a simple integration.
When the relation between co and ka depends on only one space co-ordinate, say xi,
which in the atmospheric problem might be the altitude, then the wavenumber
components k2 and k^ remain constant, and the differential equation for the com-
ponent ky has the simple integral <o = constant. This enables the rays to be calculated
directly, by integrating equation (40) with k\ given by the condition a> = constant.

For example, in the atmospheric case with only the V2 component of wind non-
zero, equation (44) for the frequency co gives

The equation (40) for the rays can then be written

dx2 V2co+k2(a
2-Vl)

_ _ _ _ _

dx3 k3a
1Z~ ~ IV(m — V k \2 — n2(h2^-k2W ' ' '

which can be numerically integrated with exceptional ease since the right-hand sides
are just known functions of x\. The acoustic amplitudes are then determined from the
condition that energy propagates along ray tubes in inverse proportion to the cross-
sectional area of a ray tube. A convenient form of this condition is that

d{x2,x3)Ul ?tv = c o n s t a n t along a ray, (49)

where & is the energy density.
Hitherto I have discussed inhomogeneous systems in which the relation between on

and ka varies with the space co-ordinates only. In the still more general case, which
however is less often of practical importance, when it depends explicitly also on the
time, the results can be put in a similar form most neatly if we use the idea from
relativity of regarding the time simply as a fourth co-ordinate, *4, and the frequency
as minus a wavenumber component,

dU
o,= - - = - k 4 . (50)

The most general relation between frequency, wavenumber, time and the space co-
ordinates can then be written

J = 0, (51)

where X goes from 1 to 4 and kx is the derivative dU/dxi of the phase function with
respect to xx.

If now we differentiate (51) with respect to xi, we obtain

* dF d2U dF
Z JT T-J- + J- = 0 > (52>

p= i dk dxjjdx dxx
 v '
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16 M. J. LIGHTHILL

which says that if a ray in space-time is defined by the equations

^ = ~ , (53)
dx okp

where x is a parameter, then along such a ray
d±=-d±. (54)
dx dxx

Thus, the Hamiltonian form of the equations is preserved in this still more general
case. Professor Synge in his lectures pointed out that the same equations would describe
an even more general situation, namely, the situation defined by specifying that a ray
is a path in space-time between two points such that the integral

:ldxl + k2dx2 + k3 dx3 + k4dxA) • (55)

along the path is stationary, where the kx are constrained to satisfy F{kx,xx) = 0.
This integral represents the phase change between the two points, so that stationary
phase is being applied even though, in this greatly generalized theory, the quantity
in brackets is no longer assumed equal to the exact derivative of a phase function U.

6. The Method of Stationary Phase (Decay of an Initial Disturbance in Three Dimensions)
I shall not pursue this any farther, however, but rather go back to the case of the

homogeneous system and check the results inferred from the kinematics of wave-
crests against an asymptotic analysis of the result of linearly combining waves of
different wavenumber vector when the frequency is a function of the wavenumber
vector. It is interesting to sketch briefly the methods involved in this, even though
there is not time to describe them in detail. I shall consider separately two types of
problem; the first is that of how a disturbance, initially confined to a small region,
spreads out in.space.

We shall suppose that it can be Fourier analysed as

J —00 J - 0 0 J —

y (when

J —00 J — 00 J —

k2dk3, (56)

so that initially (when t = 0) we have

Mfca. (57)

The same methods as in the one-dimensional case can be used to show (see, for
example, Chako, 1965) that the asymptotic behaviour of the integral (56) for large t
is dominated by terms associated with the points, if any, where the phase term in
square brackets is stationary, that is, where

r - 8c°t - u t rssn
Xa ~ XT' — uxl- P°J

This says that waves of a given wavenumber travel a distance t times the group
velocity in time t.

In order to derive the contribution from one such point, say k^, where the phase
is stationary, we might hope to reduce the problem to a one-dimensional one, by
expanding the phase in a Taylor series up to terms quadratic in ka—k^ and then
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GROUP VELOCITY 17

estimating the integral as a product of terms involving separate integrations with
respect to ku fc2 and k3. This is impeded in practice by the fact that the quadratic
terms include not only the squares of ka-k*? but also products of two of these. The
quickest way to get an answer is temporarily to rotate the axes in (kiMM) space in
such a way that in the new axes

d2co

dkjk.
at ka = (59)

(See Lighthill (1960, Appendix B), where the analysis given is more complicated,
however, because the relationship between a> and k is supposed given in an implicit
rather than explicit form.) Then the contribution to the integral (56) from ka = &£r>

can be approximated as a product of three simple error integrals

L
exp {2n.•[*?>*! + k2

rhc2 + kghc3-co(k?)t]} f" exp f - T t / ^ Y ' V i - dky

exp sgn
(60)

Having found the answer in these special axes we can then throw it into a form
invariant under rotation of axes by replacing the product of second derivatives in the
denominator by the determinant

COd2co d2co

0K>\ OKtOKy OiC-tOfC'

d2a> d2a> d2co

kjk^ dk\ 8k28k3

d2a> d2co 82co

(61)

k3dki dk3dk2 dk

which is invariant under rotation of axes and in the special axes where the cross-
derivatives vanish takes that value. In other words, if we write the asymptotic form
of <j> as the sum

>) exp
(62)

is stationary, the phase addition term 0<r) beingover all k1^ where J^
a - l

in at a minimum (where the signs d^io/dxl in (60) are all — 1), — |TI at a maximum,
and in or —\n at a saddle-point according as the function increases along two or
along only one of the three principal directions, then each term is invariant under
change of axes and therefore is valid in any system of axes, not just the one in which
it was derived.

2
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18 M. J. UGHTHUi

We can interpret this result physically, by using (58) to note that the volume of space
occupied at time t by energy whose wavenumber vector lies in an elementary volume
dki dkz dk%, centred on the value k[r), is

ct dx2 dx3 = dktdk2dk3
d(kuk2,k3)

flrir u n 1 dfe1dfc2dk3 = t 3 | A < r ) l d f c i ^ 2 ^ 3 - (63)
^/c1 ,K2,/c3; J*«=t<r)

Accordingly, as this energy spreads out to fill greater and greater volume, the energy
density must vary inversely as f3| A<r) | and therefore the amplitude would be expected
to vary as the inverse square root of this as we found above.

7. The Method of Stationary Phase (Forced Motions in Three Dimensions)

After this brief treatment of the propagation and decay of an initially limited dis-
turbance, I shall describe, though again only briefly, a second problem treated by the
method of stationary phase in three dimensions, but intrinsically different in that the
disturbance is of fixed frequency and is maintained by means of a steady source
operating at that frequency within a limited region. This, then, is a problem of forced
motion. Specifically, I suppose that the quantity to be determined, (j>, satisfies the
equation

f(xltx2,x3), (64)
i 8xt 2ni ox2 2ni ox3 2ni

where P is some polynomial in the partial differential operators shown, and the source
term of fixed frequency a>o on the right vanishes outside a limited region. The problem
is to determine the form of (f> at distances from that region large compared with its size.

In cases relevant to this lecture, that is, when the homogeneous equation (without
a forcing term) P<f> = 0 possesses solutions in the form of waves, and the problem in
the forced motion is to determine the wavenumbers and amplitudes of the waves
found at large distances along each direction out from the source region, there is a
well-known mathematical difficulty, namely, that equation (64) does not have a unique
solution tending to zero at infinity. On the contrary, it has a large multiplicity of such
solutions. Out of all these, however, only one is of any physical interest. This is the
one commonly described as satisfying the "radiation condition". I should like to say
something about how to obtain this unique solution of physical interest in rather
general wave problems.

Out of many ways of deriving it, I am inclined to think that the most convenient and,
physically, the most logical is to require that the steady-state wave motion must be
"arrivable at by switching on (the source) and waiting" (see Lighthill, 1960, pp. 412-414
and also p. 430). Different methods of switching on can be considered, varying from
the most abrupt, in which the right-hand side of equation (64) takes the form shown
for t> 0 but is zero for t < 0, to far more gradual methods. The most gradual method
is that in which the right-hand side is replaced by exp[27i(e—ia>o)t]JXxi,X2,xi) where
8 is very small, so that the forcing term has grown to its present strength from zero
during all the time from <= — oo; we then find a solution <j> proportional to
exp[2n(e—ia>o)t]. This is, evidently, equivalent to allowing the frequency co to have a
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GROUP VELOCITY 19

small positive imaginary part e (which is later allowed to tend to zero). All these
methods of switching on produce identical steady-state solutions, except in the not
very physically important condition when the system is unstable to disturbances of
certain wavenumbers and the forcing term / includes components with those wave-
numbers, for which wave solutions increasing in amplitude exponentially with time are
possible. In this condition the more abrupt methods of switching on can trigger off
the instability while the very gradual method would not do so. In the other cases
(which are of far greater practical importance) the different ways of switching on all
give identical results. I shall not refer again to any except the very gradual method.

In this, we obtain a solution tending to zero at large distances from the source
region by supposing that/ and <j> have three-dimensional Fourier transforms, in terms
of which they can be written as

HI
and as ^ = exp [2n(e—ioo0)t]<f>v where

^00 /*OO f*CO

J — ao J — oo J — oo

Then equation (64) tells us

ieyb, = F.

(65)

3. (66)

(67)

FIG. 7. To make estimates at large distances along a particular straight line / stretching away from
the source region, we temporarily use the special axes shown.

The problem is to find (j>o, the limit of <p, as e-*0 from above, at large distances from
the source region along any straight line / stretching away from it. As in the previous
problem, this estimation is carried out most easily if we first effect a rotation of axes.
In order to estimate <f>o on a particular line /, we temporarily choose axes (Fig. 7)
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20 M. J. LIGHTHUX

such that / is the positive xi-axis. On /, therefore, x2 and X3 are zero, while xi is
positive, and

r
3J -

-— ——. (08)
P(kuk2,k3>(o0 + iE) •

We estimate the inner integral in equation (68) by moving the path of integration
to one (Fig. 8) on which the imaginary part of ki takes a suitably chosen positive
(constant) value h. The integral over the new path is small of order e~2lAxi for large xi,
and we shall regard quantities of this order of magnitude as negligible. Between the
two paths the only singularities of the integrand are poles at zeros of the denominator,
since the vanishing of/ outside a finite region implies that its Fourier transform F is
regular. We must therefore calculate the sum of the residues at those poles.

.**,
Displaced path of Integration

• - ° • I - -V
Path of integration

» Zeros of P [kf,k2,ki,a>0)
o Zeros of P (kuk2,k3,ooo +!e); these values of * (

near the real axis have positive imaginary part
If P(fr,,*2,*3,c«) = 0 defines a function cu(*,,*2,

with f
FIG. 8. Illustrating how the radiation condition is derived by displacement of the path of integration

in equation (68).

Now, for the systems capable of wave propagation in which we are chiefly interested,
there are zeros of the denominator for real fci when e = 0 (at least in some ranges of
k2, ki and co; these represent plane-wave solutions). For small positive e these zeros
may be expected to be displaced from the real axis, and will then contribute to the
sum of residues only if they are displaced into the region where the imaginary part of
fci takes positive values, between 0 and h. Evidently, giving co a small positive imaginary
part will give the fci for which P = 0 a positive imaginary part if the equation
Pi_k\,k2,ki,(o) = 0 specifies the frequency co as a function of the wavenumber
(fc1.fc2.fc3) such that

^>0. (69)

We have already obtained the result, therefore, that wave energy will be found along
the line / only if the component of the group velocity along / is positive. This, then,
is the physical significance of the radiation condition. The contribution to the inner
integral in equation (68) from each pole will be

aiXfcfcfcoO/afc
in the limit as e->0 when this inequality is satisfied, and will be zero otherwise.
Obviously P may have other zeros, with imaginary parts positive even for e = 0,
but if A is taken less then all those imaginary parts then these singularities do not lie
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GROUP VELOCITY 2 1

between the two paths for small enough e. The asymptotic form of 4>o is then given
by substituting for the inner integral in (68) a sum of terms (70) from all real ki
satisfying P(ki,k2Jci,(Oo) = 0 together with the inequality (69). In other words,

s

where the surface S of integration (Fig. 9) is the part of what I earlier called the wave-
number surface (denning waves with co = coo) on which dco/dki > 0. This then is the
answer for equations which possess plane-wave solutions; for those which do not,
the limiting process involving e does not have to be introduced, and the answer comes
out even more simply in terms of those zeros of P which have smallest positive
imaginary part.

The phase fr, x, is
stationary at points
/(^ ' where normal to
S is parallel to /(,-oxls

FIG. 9. The surface of integration S, and the points of stationary phase, in the integral (71).

I must return to this answer (71) now and simplify it still further. This is done
by the method of stationary phase. The phase ktxi is stationary on the wave-number
surface S at those points A£r) where the normal to S is parallel to the ifci-axis (Fig. 9).
Having already fixed the &i-axis, along the direction / in which we are estimating <j>0,
we now find it easiest to calculate the contribution to (71) from each such position of
stationary phase by a temporary choice of the k%- and fc3-axes along the principal
directions of curvature of the surface. If we take the associated curvatures K2 and
Ki positive where concave to the positive fci-direction and negative where convex,
then locally the surface S has the approximate equation

which, substituted in (71), makes it easy to calculate the contribution <f>r to the asymp-
totic form of <po from the point fc'r) where the normal to S is in the fci-direction as

~ F(kP)exp[2nikPx,+ini(sgnK2+sgnK3)~\
*P = 27t ' 7~i p̂  • (73)

These contributions from dhTerent points /fcj-r), which must be added up, are not in
general in identical axes, so that they must first be put into forms invariant under
rotation of axes as

f (dpyfc fdp\2j3)+l° (74)

where K(r) = K2K3 is the Gaussian curvature (product of the two principal curvatures)
at ka = k^, and the phase addition term 0<r> takes, when K(r) > 0, the value 0 where
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22 M. J. LIGHTH1LL

the surface is convex to the direction P increasing and n where it is concave to that
direction, and, when K(r> < 0, the value \n or -\n according as that direction is
parallel or antiparallel to /. The asymptotic solution along /,

<j> = 4>0 e - 2 * " 0 " ' - e-2"-fZ4>n (75)
where the summation is taken over points k[r) of the surface co = coo where the normal
to the surface is parallel to / and co increases in the direction of /, is a solution with
amplitude decreasing as the inverse first power of the distance R = <J{x\+x\+x%).

The proportionality to the inverse square root of the modulus of the Gaussian
curvature K(r) at the point &<r) can be understood physically as follows. The normals
from a small area dS around the point fc<r) fill a cone (Fig. 10) whose cross-sectional

FIG. 10. Physical intepretation of the expression for waves produced in forced motion (equations
(74) and (75)). The energy is diminished by a factor | K \~1R~2 in distance R, and the amplitude
by | K \-*R-K

area increases with distance R like | K(r) | R?4S. The energy created in the source
region with wavenumbers lying in this elementary area dS is therefore diminished
by a factor | K(r) \-lR~2 at distance R, which makes the factor on amplitude

There is not time to discuss further properties of the asymptotic solution (75).
As in the one-dimensional case, the method is easily modified to give the proper asymp-
totic form near a caustic (i.e. a locus of cusps of wave crests) and in other singular
cases (Lighthill, 1960, pp. 408-411).

8. Energy Propagation Velocity
I began this lecture by saving that I would describe both the kinematic and the dynamic

approaches to the mathematics of group velocity. Hitherto I have described basically
kinematic approaches, which, for a general linear combination of waves with frequency
and wavenumber functionally related, evaluate how the waves of different wavenumbers
become dispersed from one another. From time to time I have shown the results on
amplitude variation to be consistent with the assumption that the energy in waves
of each wavenumber is propagated at the group velocity, but I have still not proved
explicitly that this is so.

This result is in many ways the most surprising of all, for whereas in a motion with
varying wavenumber a derivative, like da>/dka, may be expected to be important,
the fact that, in a perfectly periodic motion of fixed wavenumber, energy is propagated
at a velocity which can be expressed as a ratio of changes of frequency and wavenumber
in going to a neighbouring wave solution, appears distinctly odd. To prove this result
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GROUP VELOCITY 23

for a general periodic wave motion, how are we to introduce the concept of the changes
in frequency and wavenumber on passing to a neighbouring solution?

One very amusing answer to this question was supplied by Rayleigh (1877) in the
one-dimensional case, and can easily be extended to the three-dimensional case
(Lighthill, 1960, Appendix A). This answer supposes that, in a general dynamical
system, a pure imaginary change in wavenumber is made, and shows that the corres-
ponding imaginary change in the frequency with which the system oscillates in small
disturbances would be replaced by zero frequency change if the motion of every
particle in the system were resisted by an additional small force proportional to its
momentum. The energy flow across a plane in this steady state is then calculated by
balancing it against the dissipative action of those forces throughout the region
beyond that plane.

Instead of elaborating further on that, I prefer to give an argument applicable to
still more general systems than classical dynamical ones, an argument that utilizes
real rather than imaginary changes in frequency and wavenumber, and that calculates
energy flow by more localized considerations. I shall, furthermore, give the argument
in a generalized form due to G. B. Whitham (unpublished, but see the forthcoming
paper Whitham (1965b) for a still more general treatment) which obtains the velocity
of energy propagation in any plane periodic wave, even one of finite amplitude, in a
homogeneous system in which energy is conserved. (This result, then, unlike those in
the rest of the paper, is valid even for non-linear equations of motion.)

Any such system homogeneous in space can be specified (see, for example, Goldstein
(1950), p. 350) by a single function: a Lagrangian density .S? (or Lagrangian per unit
volume), which is a function "of (say) n local variables (such as displacements, field
strengths, variables of state, etc.) r\\,r\i,..., t]n, together with their first derivatives

There is no direct dependence of se on JCI, xz, x3 and t, only an indirect dependence,
due to the dependence of t]it ?/, and jj, on those variables.

Possible developments of the system in time are specified by Hamilton's principle,
that the time integral of the Lagrangian is stationary. The usual form of the principle
states that

5 \dt | Sedx = 0 (77)

for any changes Stji in the function tji(xi,x2rx3,t) which vanish at the beginning and
end t = ti and t = f2 of the arbitrary time interval of integration and on the boundary
of the arbitrary volume of integration V. This implies the equations of motion

f V = 0 (78)
dx\dfj,J drj,

This formulation of the equations of a homogeneous system is of great generality.
For a classical dynamical system & is the kinetic energy minus the potential energy,
per unit volume. For a relativistic dynamical system the Lagrangian for each particle
can be written in terms of its rest mass m, potential energy V and velocity cf} (where c
is the speed of light) as —mc2y/(l -ft*)-V. From this Lagrangian for each particle a
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24 M. J. UGHTHILL

Lagrangian density can be calculated. Electromagnetic fields E and H contribute
(in rationalized m.k.s. units) ieE^-ifM2 to the Lagrangian density &, and, when
charge and current densities p and j are also present, additional terms — p4> + j . A,
where <f> and A are the scalar and vector potentials. Other types of field can be taken
into account similarly in the Lagrangian formulation. In all cases the density of total
energy is

and it follows from the equation of motion (78) that the rate of change of the energy
density 8 with time can be written as

8A=-Y?L* (80)

where /„ is an "energy flux vector"

Equation (80) says that the energy in a rectangular element changes at a rate equal to
the differences between the energy flux across opposite faces of the element. For
periodic plane waves, we may define an energy propagation velocity u* as

(82)

where for example <#> signifies the mean energy density S, that is, % averaged over
an integral number of wavelengths or periods. In terms of u*, the averaged form of
equation (80) can be written

5(<£X)
dt a~i dxx

showing that mean energy is converted by the group velocity vector field u* in exactly
the same way as the mass of a compressible fluid is by the hydrodynamic velocity field.

For periodic plane waves, Hamilton's principle can be used in a slightly special
form to obtain an expression for the energy propagation velocity ua. This special
form states that such a wave satisfies (77) for all changes St], that are periodic with the
same frequency and wavenumber as the t]t themselves, provided that ti—1\ is an integral
multiple of the (time) period, and V is a rectangular box with four of its sides per-
pendicular to the wave fronts, and the other two parallel to wave fronts and an integral
number of wavelengths apart. For then we have

«ft f JBMT

f'1, f $Ydx d(dse\ ' d fdse
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GROUP VELOCITY 25

because the first integral vanishes by (78) while, in the second, the inner integral
vanishes because H —1\ is an integral multiple of a period, and, in the third, the inner
integral vanishes because it equals a surface integral with the contributions from each
pair of faces of the rectangular box V cancelling out.

Before using this result to calculate tu, I will remark that, in the denominator of
the expression (82) for 14,, the mean Lagrangian density <JS?> vanishes in the special
case of waves of infinitesimal amplitude. For classical dynamical systems, this is the
familiar result (Rayleigh, 1877) that mean kinetic energy equals mean potential
energy in waves of infinitesimal amplitude. For more general systems subject to
Hamilton's principle, it follows most easily by changing each tji to (1 +e)t]i. This
changes 2? to (1 +e)2-Sf, because the hypothesis of infinitesimal amplitude is equivalent
to -Sf being homogeneous of the second degree in all its variables. The variational
result (84) can therefore be true only if

N
Jfi JV

(85)

is itself zero (otherwise, multiplying it by (1 H-e)2 would not give it zero variation),
and this means that <^f> = 0.

However, for waves of finite amplitude, this argument fails since :S? is not necessarily
a homogeneous function of its variables. Simple examples show, in fact, that <J5?> is,
in general, not zero for periodic plane waves of finite amplitude. The corresponding
term in the denominator of equation (82) for u* cannot then be omitted.

One inclines, naturally, to ask whether

"° = £ ' (86)

for plane waves of finite amplitude. However, a serious obstacle to the possible truth
of such an equation is that for these the frequency co is in general a function not only
of k\, kz and £3 but also of some quantity representing the amplitude of the wave.
(It can in general vary also with other parameters, called " pseudo-frequencies " by
Whitham (1965b); but this possibility is not allowed for below.) The derivative in (86)
can therefore have meaning only if it is understood in the sense "keeping constant
both the wavenumber components other than ka and also some measure of the
amplitude". Now, we have already noted that the mean Lagrangian density <.SP>,
although zero for infinitesimal amplitude, has in general different values for finite
values of the amplitude. Whitham's result is that equation (86) remains true if the
measure of amplitude which is kept constant in calculating the derivative is (5?y/a).
That is,

-(—\ (87)

The classical result for infinitesimal amplitude is evidently a special case of this,
since <-2">/(o remains constant and equal to zero for all infinitesimal-amplitude waves.

To prove (87), let plane periodic waves have the form

(88)
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26 M. J. LIGHTHILL

where the functions / i ( z ) , . . . , /*(z) are all periodic functions of z with period 1.
Then equation (84) holds for any infinitesimal changes whatever in t h e / which leave
them still with period 1.

Consider now a more drastic perturbation, in which also the frequency and wave-
number change. If

(89)

where
, (90)

and the <5/i(z) like the//(z) have period 1, then

= 5 f&[Mz),cof't(z\-kJ'l{zy] dz

G'1 " dy

«,5
Of the three terms on the right-hand side, the first represents the changes resulting
from changes in the// without changes in co and kx and must vanish by equation (84)
(Hamilton's principle for changes in the r\t which maintain frequency and wavenumber),
while the second and third parts, on multiplication by co, can be expressed in terms
of the mean values that appear in the expression for ua; that is,

^ ( 9 2 )

We can now obtain the relationship between Sco and 8ka, which makes <^?>/co remain
constant, by substituting

wdi&y = <sey5(a (93)

in equation (92). If we use expression (82), this gives

8<o= tu*5k*> (94)
which finally proves (87).

The quantity <-£?>/<» which is kept constant in (87) is the integral of the Lagrangian
density with respect to time over a single period. It is the quantity which remains
stationary, when we go from a periodic solution rjt to neighbouring values TJI+5T]I

which are periodic with the same frequency and wavenumber but are not, in general,
solutions. This explains what may appear surprising in the proof I have given, namely,
that I did not use the fact that the functions (89), with their perturbed frequency
and wavenumber, are solutions of the equations of motion. It was not necessary,
because the value of <^>/a) would be the same for them as for neighbouring functions
which are not solutions!

It seems likely that this result of Whitham's, that the velocity of energy propagation
in plane periodic waves of finite amplitude, in a general three-dimensional homo-
geneous conservative system, is equal to the gradient of the frequency with respect
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GROUP VELOCITY 27

to the wavenumber vector in changes, from one plane periodic wave to another of
neighbouring wavenumber vector, in which the measure of amplitude represented by
the integral of the Lagrangian with respect to time over a single period remains
constant, is the first step in a major process of extension of group velocity and ray
theory to non-linear dispersive systems just as far-reaching as was Whitham's work
(1956) on non-dispersive systems of intermediate amplitude, based on the principle
that the ray geometry will be approximately as for an infinitesimal-amplitude system
but that the law of propagation of waveforms along ray tubes takes a new form.

9. Concluding Remarks

I believe I have now said as much as could well be said at one stretch about my
subject. Two points about its relationship with modern physics still, perhaps, need to
be made. First, that relativity forbids energy to be propagated at a speed exceeding
the velocity of light c. It follows that no wave motion of a conservative system can
have a group velocity greater than c, although phase velocities greater than c are
rather common. (The restriction of this conclusion to conservative systems must be
emphasized; as noted at the end of section 3, in the presence of large dissipation the
theory of group velocity needs major modifications.)

For example, the relationship between frequency and wavenumber in an electro-
magnetic wave propagating in an ionized gas is

where ne is the number of electrons per cni3 and me and e are the mass and charge (in
e.s.u.) of the electron. It follows that the phase velocity v = a>/k exceeds the speed of
light c; however, the group velocity is

dco c2k
u = — = — 5 r* < c.

dk

The second point, a related one, concerns the waves that Schrodinger's wave
mechanics associates with a particle. They have frequency and wavenumber propor-
tional to the particle's energy and momentum, as I mentioned earlier. In relativistic
mechanics, this gives

E me2 p mcP
C0 = h = hj(l-p2)' =h = hjil-p2)

for a particle of rest mass m and velocity c/?. The phase velocity of the associated
waves is therefore

co c

but the group velocity, with which they carry energy, is

dco = dco/dp _

dk dk/dp H

The waves carry energy, in fact, simply at the velocity of the particle itself, and indeed
are equivalent to the particle as energy carriers.
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28 M. J. LIGHTHILL

To conclude, then, the mathematical theory I have described in this lecture touches
upon several interesting and important parts of physical and engineering science as
well as upon more than one major branch of mathematics. Much of the theory is old,
and during its long life has found very many applications. This part will find even
more applications now that computational aids make the problem of ray tracing by
Hamilton's equations (40) and (43) so simple a matter. This can be done easily, now,
in the case of complicated internal wave motions in stratified media, rotating media
or plasma in magnetic fields, and will be done increasingly. At the same time there
are signs that further extensions to this powerful theory are being, and will continue
to be made.
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