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Preface 

In selecting the subject matter of this book, I have attempted to confine myself to the irreducible 
minimum of absolutely essential material. The course is dominated by l\vo central ideas and their 
ramifications: The theorem on rectifiabil ity of a vector field ( equivalent to the usual theorems on 
existence, uniqueness, and differentiability of solutions) and the theory of o n e -parameter groups of 
linear transfonnations (ie., the theory of linear autonomous systems). Accordingly, I have taken the 
liberty of omitting a number of more specialized topics usually included in books on ordinary 
differential equations, e.g., elementary methods of integration, equations ,vhich are not solvable with 
respect to the derivative, sin&'lllar solutions, Sturm-Liouville theory, first-order partial differential 
equations, etc. The last two topics are best considered in a course on partial differential equations or 
calculus of variations, while some of the others are more conveniently studied in the guise of exercises. 



On the other hand, the applications of ordinary differential equations to mechanics are considered in 
more than the customary detail. Thus the pendulum equation appears at the very beginning of the book, 
and the efficacy of various concepts and methods introduced throughout the book are subsequently 
tested by applying them to this example. 1n this regard, the law of conservation of  energy appears in the 
section on first integrals, the "rnethod of small parameters" is deduced from the theorem on 
differentiation with respect to a parameter, and the theory of linear equations ,vith periodic coefficients 
leads naturally to the study of the swing ("parametric resonance"). 

Many of the topics dealt with here are treated in a way drastically different from that traditionally 
encountered. At every point I have tried to emphasize the geometric and qualitative aspect of the 
phenomena under consideration. 1n keeping with this policy, the book is full of figures but contains no 
fonnulas of any particular con1plexity. On the other hand, it presents a ,vhole congeries of fundanlental 
concepts (like phase space and phase flows, smooth manifolds and tangent bW1dles, vector fields and 
one-para1neter groups of diffeomorphisms) ,vhich remain in the shado,vs in the traditional coordinate­
based approach. My book might have been considerably abbreviated if these concepts could have been 
regarded as known, but unfortunately they are not presently included m courses either on analysis or 
geo1netry. Hence I have been compelled to present them in so1ne detail, without assuming any 
background on the part of the reader beyond the scope of the standard elementary courses on analysis 
and I inear algebra. 

This book stems from a year's course of lectures given by the author t o  students of mathematics at 
Moscow University during the acade1nic 

Page viii 

years 1968 1969 and 1969 1970. In preparing the lectures for pubhcauon I have received great 
assistance fro111 R. I. Bogdanov. I wish to thank him and all my colleagues and students ,vho have 
com1nented on the preli1ninary mimeograph edition of the book (Mosco,v University, 1969). I am also 
grateful to D. V. Anosov and S. G. Krein for their careful reading of the manuscnpt 

V. I. ARNOLD



Frequently U1ed Notation 

Jl the sci (group, field) or real numbers. 
C the 1c1 (group, field) or complex numbers. 
Z 1hc 1e1 (group, ring) orintcgcrs. 
0 the empty SCI 

Xe X C: I' an clement X or a sublet X or a set I'. 
X u Y, l( r, I' 1hc union and intersection or the scu X and Y. 
x, r. x,. the SCI or clements in X but not in Y, the SCI X minus the 
element a£ X.

/: X - I' a mapping/or a sci X into a set Y. 

x - y the mapping carries the poin1 x into the point 7 .  
J • g the producl (composition) or two mappings (.f is applied first).
3, V, s> there exists, for every, implies. 
Theorem 0.0 the unique theorem in Sec. 0.0. 

I end orproorsymbol. 
• an optional (more difficult) problem or 
R" a linear space of dimension n over the field R
R, + Jl2 the direct sum or the spaces 1\1 and 1\2• 

GL(Jl") the group or linear automorphisms 
One can consider other structurc-s as well in the set R\ e.g., affine or 

Euclidean structure, or even the structure of the dirttl product of• lines. 
Thi• will usually be spelled out explicitly, by referring to"� affine space 
R"/' 11thc Euclidean space R"," "the coordinate space R•,'' and so on. 

Elements of  a linear space arc called v«tors, and arc usually denoted by 
boldface kuers (v, {, etc.). Vectors of the space R" arc identified ,..;,h sctsof 
n numbers, For cxirnptc, wc writev = (v1, • • •  ,v.) = v1e1 + ··· + c,_.e.,

where the set of n vectors e1, • . . , e. is called a basi.s in R•. The norm 
(length) of  1hc vector v in the Euclidean space Jl• is  denoted by fvl =d the 
scalar product oflwo vcclors v = (u., ... , v.), w =- {w., ... , wJ E- R• by 
(v, w). Thus 

{v, w) = v1w 1 + · · · + v"w"1
lvl = J(v, v) = Ju: + · · · + •!· 

We often deal with functions of a real parameter I called the,;,,,,__ Oilfcr­
entiation with respect to I (giving rise to a v,/«ily or rat, of�) is usually 
denoted by an ove.rdot, as in X ::;;; dx/dt. 



1 Ba1ic Concept• 

I, Pha1e Space, and Pha1e Flowe 

The theory of ordinary differential equations is one of tM buic toolt of
rnathcrnatieal science. The theory allows us to study all kindto( e,'Olutionary 
proce.,es with the properties of d1t,rmi•«.1 , finit1•d1m1•1io••lr1J, and di§,,.

111/iabi/il)•, Defore undertaking exact matMrnatical definitions, we coruidcr 
a few examples.
1,1, Example• of evolutionary proee11e1. A process is said to be 
deltrmi,iislic irits entire future course and iu entire pa.st arc uniquely dcttt • 
mined by its state at the present inS1an1 of time. The set of all possible slates 
of a process is cal led its phas, space. 

Thus, for example, c.fassical mechanics conJidcrs the motion of S)"ltcms 
whose past and future arc uniquely determined by the inioal positions and 
initial velocities of  all points of  the system. The phase space o(a mechanical
lystcm is just the set whose typical clement is a set orinSLantancous positiom 
and vcloci tics of al I paro ides of the system. 

The motion of particles in quantum mechanics is not described by a 
deterministic process. Heat propagation i s  a. scmi•dctcrministic process, i n
that its future is determined by its present but not its past. 

A process is said to bcfinilt•dimmsional i f  its phalc space is finitc-dimcn• 
sional, i.t·.

1 i f  the number of parameters required to  describe its st.ate is 
finite. Thus, for example, the classical (;\1'cwtonjan) motion ol'a system con ­
si sting of a finite number of patticlcs or rigid bodies comes under this head­
ing. In facr, the dimension of the phase space of a system of" par-tides isjus• 
611, while that ofa •i·stem ofn rigid bodies is just 12n. Asaamplcsofpro­
ccsscs which cannot be described by using a finitc.dimcnsiooa.J phase spatt, 
we cit� the motion of fluids (sLUdicd in hydrodynamics\, oscillations of 
strings and membranes., and the propagation of waves in optics and 
acoustics. 

A process is said to be differ,ntiable if i l$ phase space has the structure o( a 
differentiable manifold and if its change of state with time is described by 
differentiable functions. For example, the coordjnatcs and velocities. of UK" 
particles of a mechanical system vary in time in a differentiable manner, 
while the motions studied in shock theory do not have the differentiability 
property. By the same token, the motion of a system in classical mcclwiics 
can be described by using ordinary differential equations, while other tools 
arc used in quantum mechanics, the theory of heat conduction, h)·drody· 
narnics, the theory of clas,icity, optics, acoustics, and the theory of shod: 
waves. 

The process of radioactive decay and the process of reproduction ofbac· 



2 Chap. I Buie ConccplJ 

ccria in 1hc presence oro sufficient amount ornucrienc medium afford two 
more examples or detcrminiJtic finite-dimensional differentiable procnsa. 
In bo1h cases the phase space is o n e -dimenJional, i.e., 1he s1ate or the proccu 
is determined by the quantity or m311cr or the number or bacteria, and in 
both cases the proccsJ is described by an ordinary differential equation. 

It should be noted chat 1he form o(the differential equation or the proccu 
and 1hc very fact that we arc dealing with a dctcrmini1tic finitc-dime:nsional 
differentiable process in the first place, can only be established experimen­
tally-and hence only with a certain degree or accuracy. Howcvu, this 
state of affairs will not be emphasized a1 every turn in what folio""• instcAd, 
we will talk about real processes as ;r they actually coinc:idcd with our 
idealized mathematical models. 

1,2, Phase flow■• An exact formulation or the general principles just 
presented requires the rather abstract notions or pl11n, spac, and �fa,,,. 

·ro familiarize ourselves with these concepts, we oonsidcr an cnmplc due
to N. N. Konscantinov where the simple act or introducing a� spa«

allows us 10 solve a difficult problem.

Problem I. Two nonintcrsccting roads lead from City A to City B (Fig. I). 
Suppose it i s  known chat two cars connected by a rope oflength less than 'U 
manage to go rrom A 10 B along different roads without breaking the rope. 

Can two circular wagons of radius I whose centers move alon.g the roads in 
opposite directions pass each other without colliding? 

Solutio,r, Consider the square 

M = {(x1,x2):0.;; x,.;; 1,0 .;;x,.;; I} 

F ig. I Initial position of the wagons.

Cars 

, Wagons 
\ 

Fig. 2 Phase  space of a pair o( ,·chicles. 
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(�'lg. 2). The position of two vehicles (one on 1hc first road, thco1hcr on the 
second road) can be characterized by• point of the square'-', we need only 
let x1 denote the fraction of the distance from A to B along the ith road which 
lie, between A and the vehicle on the given road. Clearly there i, a point of 
the square /Ill corresponding to every possible state of the pair ol vchicld. 
The square A1 is called the phost sp,u,, and its points arc called pJ,,,r, ,-,.,,. 

Thus every phase point correspond, to a definite position of the pafr of 
vehicles (apart from their bcing conne ctcd),and every motion olth<e vehicles 
is represented by a motion of the phase point in the pha,c ,pace. For ex• 
ample, the initial position of the cars (in City A) oorrespondi to the lower 
left-hand corner of the square (x 1 � x2 • 0), a.nd the motion o( the can 
from A to /) is represented by a curve going to 1hc opposite (upper right­
hand) corner of the square. In juSI the same way, the inilial position of 1hc 
wagons corresponds 10 the lowrr right-hand oorncr of the square (x, • I, 
x, • 0), and the motion of the wagons is represented by a curve leading to  
1hc opposite (upper left-hand) corner of the square. But every pair of  cun-cs 
in the square joining difTcrcn1 pairs of opposite cornen must interxc1. 
Therefore, no matter how the wagons move. there comes a time whc-:n the 
pair of wagons occupies a position occupied a.t some time by the-: pair of ca.rs.. 
At  this time the diStancc between the ccn1crs of1hc wagons will be less 1han 
21, and 1hey will not manage to pass each other. 

Although differential equations play no role in 1he abo,-c example, the 
considerations which are involved closely resemble those which will concern 
us subsequently. Description of the states of a process as points or a suitable 
phase space often turn, out to be extraordinarily useful. 

We now re1utn to the concepts of dcterminacy,finjte-dimensionaJity,and 
difl'crcn1iabili1y of a process. The mathematical model of a detcnninl$1ic 
process is a plrasejlow, which can be described as follows in intuitive terms: 
Let M be the phase space and x e Man initial state of a procc:ss't and lctt'x 
denote the state of the process at time,, given that its initial sta.tc is x .  For 
every real I this defines a mapping 

g': M ➔ M 

of the phase space into itself. The mapping g', called the l•odDtma IIUJ#i"l, 
maps every statex e Minto a new statcg'x e M .  forexampl�,t0 is the' iden­
tity mapping which leaves every point o f  Min its original position. �for� 
over 

g
r♦J 

= g'i', 

since the statey = gJx ( Fig. 3) 1 
into which x goes after-times, goes after time
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Chap. I Ba.ic Con«pts 

t inlo the same state z e g'J a:s the stare z • ,1 • •x into which x goa after 
time , + s.

Suppose we fix a phase point x e NI, i.e., an ini1ial s1a1c o(1he proces.. In 
the course of time the s1a1c of the process will change, and ,he point x will 
dcscribc a phase curve (g'x, t e R) in 1hc phase space i\1. h is jus1 the f,.mily 
of I-advance mappings g': M - M that eonstitutcs a phouji,,w, with each 
phase point moving along its own phase curve. 

We now turn to precise mathematical definitions. In each ca5C ,t\l is an 
arbitrary set. 

Definition. A family (g') of mappings of a set 1\1 into itself, labelled by the set 
of all real numbers (1 e R), is called a one-parameter groupoflratlSj•Tllfllholu o( 
Mif 
g'♦ s 

• 
g'ft (I) 

for all s, I e R and g0 is the identity mapping (which lu,-cs c-·cry poinl 
fixed). 

PMblem 2 .  Prove 1ha1 a onc-paranic1ct group of 1ransforma1ions is a commuu.ln-r group 
and that C\'Cry mapping g': Af - ft1 i..s one-to-one. 

Definition. A pair (M, {g')) consisting of a set Mand a one-parameter group 
{.I/') of iransformations of M inlo itself is called a pluu,jlow. The sci Al is 
called 1hephatt space of 1hc Row, and its clements arc callcdphaupaillls. 

Definition. Let x e NI be any phase point, and consider the mapping 

tp:R-M, rp(I) = g'x (2) 

of the real line into phase space (Fig. 4). Then the mapping (2) is called the 
motion of the point x under the ac1ion of the Row (M, {g')). 
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H 

t R 

Pig .  G An integral curve in extended phase s:pa.«.

Definition. The image ofR under the mapping (2) is called apA,,,J,tlm'Wofthc 
Aow (M, {g'}). Thus a phase curve is a •uh.ct of phase space (fig. 5). 

Prcblun J ,  Prove that there is one and only one J)Nsc cur,.-c pusing th.tough � p:lllnt 
of phatt space .  

Definition. By an equilibrium position or fixed point x e A1 of a Row (Af, {,'}) is 
mcanl a phase point which is itself a phase curve: 

g'x = x Vt e R.

The concepts of extended phase space and int,gral "'"" arc ...ocia,tcd with 
the graph of the mapping q,. First we reall that the dirttl p,odwt A x B of 
two given sets A and Bis defined as the set  of all ordered pain(•, i), • e A, 
be B, while the graph of a mappingf: A - Bis defined as  the sub.ct of the 
direct product A x B consisting of all poinl.S (a,Jta)), a e A .  

Definition. By the extmd,d phase space of  a Aow (M, {g'}) is meant the direct 
product R x M of the real /•axis and the phase space 1'1. The graph of the 
motion (2) i s  called an int,gral curve (Fig. 6) of the Aow (M, (f}). 
Pri'>bkrn I .  Prove that the.r e is one ind «)nly one inecgra.l eun•c passing 11wough. n-uy point 
of extended pha� space. 

Ptobltm 5 .  Prove tha t 1hc horizonral line R x x, x • :\f is an in.tcgn.l cun� if and only if 
x is an equilibrium position,

P,ol,lt-m 6 .  Ptovc that a shift 

h': (R X M) - (R X M). h'(t, x) - (I + s. x) 

of extended phase: spact- along the- tjme- a.xis ca.tries i.nt,cgr2J curves imo intcgr.al CW"'CS. 



6 Chop. I Raso< Conttpt> 

1.3. Dllfeomorphllm■• Thr nbovr drfinition, formolitr the ronttpt ora 
de1<·r111i11istir pror,•,;. Thr ror..-sponding formalization or th<- ronttpu or
nnlu•-dlm,·n,lonnlity and dilrrrrntinbility ronsi>t. in rrquiring that th<-

1,hn,e ,,,are be a fi11i1,-dim1111io11al differmliablt manifold and that th<- phas.,
flow be n one-pa ramrtrr grou1, or di lrromorphhms or t hi, man,fold. 

We now tlnrify thr,r trrm,. 1-:xnmpln or difTrrrntiablr manifolds • ..., 
afforded l,y Euclidean i-paces and their open sct.s, circles, sphc:ra, tori, etc .  
A general definition will be given in Chap. 5, but for the time being i1  can be 
a,sumed that we arc talking about an (0�11) domain of Euclidean spatt. 

By a dij{trt11tiablt function/: U -R defined in a domain U or 11-dimen­
sional Euclidean sp;1cc R" with coordinates x 1, ... , x

,. 
we mean an ,-fold

continuously dilrerentiablc runc1ion/(.r1, ••• , x.) where I '-, '- oo. In 
most cases the exact value of, is of no interest and hence will not be indi­
cated i in ca.ses where it is required, wt will allude to "r•difTettntiability'" or 
the function cla.ss C'. 

By a differ111liablt mapping/: U - V or a domain U o( •-dimensional 
Euclidean space R" with coordinates x 1, • • •  , x,. into a domain f' of.,.. 
dimensional Euclidean space R• with coordinatcs_y1, ••• ,:,. we mean a 
mapping given by differentiable runctions:,1 .s f

1
(x, •...• x

,. 
. This means 

that ify1: v- Rar e 1he coordina1es in V, 1heny1 •/: U -Rare differ­
entiable runctions in U (1 � i � m). 

By a dijfeomorpl,i,mf: U ➔ V we mean a onc-10-one mapping such 1hat 
both/and/- 1: V ➔ U arc differentiable mappings.

Problem I. Which of the following runctions sp«ify a diffcornorphismf: R - R ol lhc lint
onto the line: 

j,(•) - 2x x1 xl e• e• + ,, 
. . . ' . 

/>;ol,/�m 2 .  Ptov,. tha1 if/: U - Vis a difff"Omotphism. then tht' Euclidean spatts •ith lhr 
domains U and Vas s1,1�ts hu·C': the sam e di�ion . .  
Hi'nt, UK the implicit function theorem.

D,ji11ition. By a one-paramtler group {g') of diff,omorphisnu or a manifold ill 
(which can be thought of as a domain in Euclidean space) is meant a ma.p-, 
pmg 

g: RX M - M, g(I, x) = g'x, l ER, 

or the direc1 produc1 R x M in10 M such that 
I) g is a differentiable mapping;
2) Themappingg': M- Misa diffeomorphismforcvcryteR;
3) The family {g', t e R) i s  a one-parame1cr group of transformations of i\1.

Example I .. M.,. R,g'x - x + t:t (veR).

Remark. Properly 2 is a consequence of properties I) and 3) (why?).
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1.4, Vector field,. Let (,11, {g')) bca phase now, given by aone-panmetcr 
group of diffcomorphisms of a manifold ,11 in  Euclidan space. 

Definition. Uy the pha,, «IMity v(x) of the now,' at a point x e ,If (Fig. 7) i1 
meant th •• vector rcpr.-,enting the velocity of motion of the phuc point, i.e., 

di g'x • v(x).
di r•O 

(S) 

The left-hand side o f  (3) is often denoted by x. Note that the dmvati•e is 
defined, since the motion is a differentiable mapping of a domain in Euclid­
ean space. 

Pro�l,m I. rro\'e tha1 

�I g'x - v(1'x),
at , •• 

I.e .. that a1 evcr·y innant of 1imc the vector rq>rntntfog tM \·c:loci1y ol mot.oft ol 1hc'
ph;ue point equals the \'CC tor rc:.,.-�cntin.g 1hc ph� vc:lociey at 1)1t \ff'Y pouu o( phaK
space c,<cuplttl by 1hc moving poin1 at the gi\'c-n lime-.

Uinl. Sec (I). The i1olution is given in S« .  3.2.

Ir x1, • • •  , .r,. arc the coordinates in our Euclidean space, so that 
x1: M - R, then the velocity vector v(x) is spttifial by • functions 
v,: M-.. R,i •I,,., ,n,callcdthccomponmtsofthcvdocityv.:ctor: 

v1
(x) = !!..I x,(g'x).

dt ,so 
Pto611111 2. Pro\·c 1ha1 ,., i, a fu.r)c1iot1 of class �-1 ;r the on�pan.mc1cr group 
1:R x M- M i.s ofcla.ss C•,

Defi11ition. Let M be a domain in Euclidean space with coon:linates 
x., ... ,x,. (x

1
:M - R), and supposcthatwithcvcrypointxe"\I thcrc:is 

associated the vector v(x) emanating from x. Then thi.s defines a «dor 
fiadv on 1\tl, specified in the xi coordinate system by n differentiable fu:nctiom 
u,: NI - R. 

M 

Fig. 7 The phase vdocily vector. 
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t" ig. 8 A ve<'IOr 11eld.

Thus the aggregate of phase velocity vectors forms a vector field on tM 
phase space M, namely the phase velocity field v (Fig. 8). 

P,Mll,m 3 .  Pr<we 1ha1 if xii a fixed poin1 of a pha\C flow, 1Mn vf.r) 0.

A point at which a vector of a given vector field vani1hcs is ca.HM a 
si11gular poi111 of the vector field.t Thus the equilibrium p0t1itions of a pha,c 
flow :ire singular points of the phase velocity field. The con\'cnc is true, but 
is nor so easy 10 pr'Ovc. 

1.5. The basic problem of the theory of o,r,linary dift"cru>tial cqu&• 
tions. The basic problem of the theory of ordinary differential equations 
corn;ists in investigating I) one-parameter groups {g') of diffcomorphisms 
of a manifold M, 2) vector fields on M, and 3) the relations lxt,.'ttll I) and 
2). We have already seen that the group {g'} defines a vector fidd on ,\f, i.e., 
the field of 1he phase vcloci1yv, in accordance with formula (3 . Con,'Cndy, 
it turns our that a vector field v uniquely determines a phase Row (under 
certain conditions to be given below). 

Speaking informally, we can say that the vector field of tM p� ,'Clocity 
gives the local law of evolution of a process, and tha1 the task of tM tMOry of 
ordinary diffctcnrial equations is to reconstruct the pa.st and predic1 d� 
future of the process from a knowledge of this local law of evolution. 

1.6. Examples of vector fields. 

Example I. It is known from experiment that the rate of ra�r,e da4J is 
proportional lo the amounl x {!fmatttr present ot any gieen tim.t. Herc the phase 
space is 1he half-line 

M = (.<: x > 0) 

(Fig. 9), and the indicated c.xpcrimcntal fact means that 

X = -kx, v(x) = -lex, "> 0, (4) 

t No1c tha1 the components of the field ha.\'C' no singularitia a.t a si:ngubr poio� � in 
fact arc contjnuously differentiable. The term usi.nguh..r point" stems &om thr fact tb.1.t the
direction or rhc vee1ors of rhe field changes nea.r such a point, in gcncnl disccmtinuously. 
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H 
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Fig. 10 1'hc phase plane (or Vt'rtical ran,
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i.e., 1hc vcc1or field v on 1hc half line i s  dircc1cd 1oward O and lhc: magni• 
1udc of the phase vclocily vcc1or is propor1ional 10 x .  

Example 2. h i s  known from expcrimcnl 1ha1 1/u r,production r•U of• c.'-.,of 
bacteria supplied with enough food is proportional to tlu 'l"antit., x of 6octau pr,,,,.t 
at any given time. Again Mis 1he half-linex > 0, bu1 1he vec10, fidd dilfcn in 
sign from that of the previous example: 

X = kx, v(x) = kx, k > 0. (5) 
Note 1ha1 equa1ion (5) corresponds 10 growth, with the increase: propor­
tional to the number of individuals present. 

Example 3 .  One can imagine a situation whc:rc I.he increase i.1 prt>/Jtn'tiDIIJJ.I to tAt 
Iota/ 11umbtrofpairs prtsent, i.e., 

v(x) a kx2 (6) 

(this situation is more readily encountered in physical chemistry than in 
biology). l.a1er we will sec 1hc ca1aS1rophic consequences of lhc: cxocssi,·cly 
rapid law of grow1h (6). 

Example 4. Vertiealfa/1 of a particle to the ground(starling from not too great an 
ini1ial heigh•) is  described experimentally by Galileo's law, which a.ucrts

1ha1 1he accclera1ion is constant. Herc the phase space .I/ is the plan<: 
(x,, x2), where x 1 is ,he height and x2 the velocity, while Calilco•s law is
expressed l>y formulas like (3), namely 

*, = -g (7) 
( -g is 1he aceclcra1ion due to gravi1y). The corresponding vcctoe field of
1he phase velocily has components u, = x

1
, •, = -g (Fig. 10).
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Exomplt 5. T/11 J111ul/ oJCillatio,u of a plan, f>tnd•l•m arc described by a ,,.,-o­
dirncnslonal phase plane whh coordino1cs x

1 
and x

1
, whcrc.r

1 
is 1hc angle ol'

deviation rrorn 1he vcriiul, x1 is 1hc angular vcloch>, and ,\1 it a neighbor­
hood or the origin or coordinates. According to the laws or mechanics, the 
oocclcra1lon ls pro1l0riional 10 1hc angle ofdcvia1ion. Thu• 

k • 1/g, (8) 

where I is 1he lenglh of1he pendulum and g is 1heaccclcra1ionduc to gravity. 
In 01hcr words, 1hc vcc1or field of 1hc phase vcloci1y has componcnlS 
v1 • x2, v2 - -kx1• The origin is a singular point of this vector field 
(Fig. 11). 

Exampu 6 .  A mort txact descrip1ion of th, (not n,t,ssari(;, small) osriluli,,,u •J IN

p,ndu/11m leads 10 1hc law 

(9) 

The corresponding vector field in the phase plane with eoordinatcs x1
, x

1 i s  
jus1 

(Fig. 12), \\'ilh singular points x1 = mn, x1 = 0 . .:"Jotc tha.t it is na.tural t o

.r, 

� 

,"-" / , 
'

,- , .z; 

,, // 
/ 

Fig. I I Small os.-illa1ions or a �ndulum. 

Fig .  12 Phas(' velocity field ofa pendulum. 
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Fig, 13 The ty1indriol ph:ue ,,)ace or a pendulum.

I 
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Fi3, I◄ Solution or tht diffcrtntial tquation l - v(..-) aati,fyinc dw in.ital condition
•(to) - .--o, 

regard 1hc phase space of the pendulum as being the surface of the cylinder 
(x I mod 2n, x1) ra1hcr than the plane (x1, x1), since changing 1he angle x1 

by 2n docs no1 change 1hc s1a1c of the pendulum. The vcc1or ficld oor ­

rcsponding 1 0  (9) can also be regarded as defined on 1hcsurfaccof a cylinder 
(Fig. 13). 

/>rob/em I. Sketch in1cgral cur\'� for Examples 1-3 a.nd �tu�•cs fo,r Examples 4 and>.

2. Vector Fields on the Line

VVe now show how 1he operation ofin1cgration (wi1h 1hc hdp of the funda­
mental theorem of calculus) alJows one to solve diffen:.ntia1 equations d�ltt• 
mined by vec1or fields on the line. We begin by introducing some definitions 
1hat will l>e used repeatedly below. 

2.1. Solutions of dilfcrential e quations. Let Ube an (open) domain of 
11-dimensional Euclidean space, and let v be a vector fidd in U (r,g. 14).
Then by 1he dijftrt11/ial equation dettrmined b:, thl rttto, field v is mean, 1he
equationt

x a v(x), XE U .  (I) 
t OiffC"rcntial equations arc sometimes said to be f'qua.hons contaming �--n rlVIC:tioos
and their dt"ri\'atiVt':S. This is faJst'. For example, the �uatlon
d •-j; = x(x(t)) 
is no1 a difrercn1ial equation. 
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Thedomnin 1/iscnllrd 1hrpha1,sJ)artofequation (1). 

Difi11itio11. lly n solutio11 of thr difTrrrntial equation (l) i, meant a d1ffcrcn1i­
nblc mapping <p: /- l/of1hr ini.rvnl I• {tG R,a <I< •}ofthen,al 
1-11xls (n • -oo, b • + ct) arr allowed) in10 the pha>e ,p;icc ,uch that

,, 
- tp(I) • v(1p(t)) 
dt ,. , 

for all t e I. 

In other word:s. as t vario, the point rp(I) must move in U in wch a�-')' 
1hn1 iis vr.locity al every instant of 1ime t equals 1he vcc1or v(x) ol'the field v 
ai the point x = tp(t) occupied by 1he moving poin1 at the gi,-en instant. 
The image of/ under 1he mapping ,pis called a pha1t '""" or thediffen:ntial 
cquaiion (1). 

Dif,11itiort. Suppose the value ofa solu1ion ,p: I - U of 1he diffcn:n1ial cqua-
1ion (l)  al 1he point 1

0
, a < /

0 
< b equals x0, i.e., •uppos., the phase eun.-e 

goes 1hrough 1he poinl .,0 
a1 the 1ime 1

0
• Then ,pis said 10 11110/7 ti,, uuti•I 

,oudi1iot1 

10 ER, Xo E U . (2) 

Exampl, /. If x
0 

is a singular poin1 of 1he vcc1or field, so 1ha1 v(x
0) = 0, •hen 

,p = ,·0 is a solu1ion of equation (I) sa1isfying 1he ini1ial condition (2). Such 
a solution is caJlcd an equilibrium position or  slotionar.., s.oluJion, and the point x0

is then also a phase curve. 
In general i1 is impossible 10 find 1he solutions ofa diffen:ntial equation 

explici1ly, s1ar1ing from a knowledge of 1he vcc1or field. The basic case in 
which this can be done is the case n ;;;; I, i.e., the case or vector fields on the 
line. We now study this case. 

2.2. Int egral curves. 

Definition. The direc1 produc1 R x U is called 1he ext,nde,l � 1pou o{ 
equa1ion (I), and (he graph or any solution of(!) is ealled an illhtTof nm, 
or(I). 

In 1he case under consideration (n = I), the extended phase spaee is a 
s1rip R x U in the dirccl product of the I-axis and 1he x-axis (Fig. IS). 

Suppose 1ha1 through every point (t, x) o f  extended phase spatt we draw 
a straight line whose angle of inclination with 1hc positive t•ax.is has ta.ngmt 
v(x). Then the resul1ing family of s1raight lines is cal led the ,lir,cti,,,, faltJ 
assotiattd with equation ( I )  or simply 1he dir«tumfald v .  

£very in1egral curve is tangent to the direction field vat each of its poin1S. 
Conversely, every curve tange.nt at  each ofitS points to 1hc dircc.tion vat the 
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.. ,. ............ . 

I I I I I 
,, ,, JI JI ,, 

... . .. . .. . . . ...

tq (b) 
' 

fig.  15 A direction fif!ld (a) and intC'gral cun-a (b) in ,,ucndnl pha,c spa<<.

given point is an integral curve (prove this!). 
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A solution of (I) satisfies the initial condition (2) if and only if the cor• 
responding integral curve goes through the point (10, x0). Thus finding the 
solution of (I) satisfying (2) is equivalent 10 drawing a curve through (10, x0) 

which is tangent at each ofits points to the direction fie.Id v. 
Note that the slope of the integral curves is the same everywhere: along a 

given horizontal lincx • const. 

Probltm /. Lee x - arc can l be a solution of' equaiion (1). Pro,-c chat x = arc can (t + I) 

i.s also a solu1ion.

flint. ThC' sol utio n  i, givcn in Sec. 10.1.

2.3. Theorem. ut v: U - R be a dijfermtiable function d,fiNJ., "" ut1awl 

U = (.,eR:cx < x < P}, -oo�cx</l�+oo

of the real axis. Then 
I) For euery 10 ER, x0 e U there exists a solutiDn ,p of equation (I) saLisfJutl ti,,
initial condition (2);
2) Any two solutions q,1 , q,2 of equation (I) satisfying (2) coincide i11 -lfalhboT·

hood of the poinll = 10;
3) The solution q, of equation (I) satisjyinJi (2) is svch 1/uJJ

J
O(•> de 

I - 10 = - if v(x0) ,t- 0,
•• v(e)

,p(I) = Xo if v(xo) = 0.
(3) 

Remark. Since v(e) is a known function, formula (3) allows us 10 find tbc 
function ,t, inverse 10 ,p (t = ,t,(x), q,(1) a x) by quadratures. \Ve can I.hen 
use the implicit function theorem ,o find ,p .  Thus formula (3) leads to the 
solution of equation (1) subject 10 the condition (2). 
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r 

.l'q 

.,

I' 

' 

Fig. 1G A i.olu•ion ,, and i11 inverK funcliou .,.

2.4. Beginning of tht, proof of Theor<,m 2.3. 

a)  If v(x0) • 0, let ,p(I) "' x0. Then ip is a "'lutinn of (I) and (2) uti>f)• 
ing (3). 

b) Let v(x0
) ,;, 0, and let ,p ho a ,nlution of( I) and (2). Tiw:n, b) the im­

plici1 funclion tht.-orem. tht· function tJ, invc� 10 v, (1 • tj,(.1'\. f'(x
0 • t0 

is defined in a sufficiently small neighhorhood of the point x
0 

(Fig. 16 and 

I 
- --.v(�) 

Since v(x0) ,;, 0, the function I /v(�) is continuous in a sulficicntly small 
neighborhood o f t  he point { = .,0• and hence 

,J,(x) - ,J,(x
0

) • -J
• d� 

•• v(�)

by the fundamental theorem of calculus. This uniqudr dcfin<S t/, in a suffi­

ciently small neighborhood of the point x = x0• The function 'l' im.-......- to v 
is also uniquely defined in some neighborhood of the point 1 • 1

0 
by the 

condition ,p(t
0

) a x
0 

(the implicit fimction theorem is applicable .since 
1/v(.,0) ,;, 0). 'rhus any solution of equation (I) subject to thccoodition (2 
satisfies (3) in a sufficiently small neighborhood of the point I = 1

0
, and the 

uniqueness assertion 2) is proved. 
c)  We must still verify that the function ,p inverse 10 ,J, is a solution of(I) 

and (2). But 

_ = _ = - • v(ip(I)),dip d,J,- 1 ( I )- ']
di dt x•.,C•> v(x) x•,,ci> 

and the thcorcrn is "proved." 

Probltm I. Find the gap in the proof. 

ip(lo) • X
o, 

2.5. Failure of uniqueness. Let v = .,Z/l, 10 = 0, x0 
= 0 (Fig. 17). Tiw:n 

it is easy 10 sec that both solutions ,p, = 0, ,p2 = (1/3)1 satisfy equation (I)
and the: condition (2). Of course, the function vis nondi.trcren1iablie, so that 
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Ill/ /Ill /I/ // 

II/I/ /I/Ill II 
/Ill/I 1/llb'/II 

,,,,.,,,.,,.,,,..,,,..,,,.,, � //;; 
,, .,,,. .,,, -.,,, ,, ,,,,. ,,, .,,, ,,,, .,,,,. ,, ,,, t 

//;}'/I/// '/II/Ill 
I/.IIIII// /Ill/I 

1/.IIIII/I/ /Ill/ 

Fig. 17 An ('.1uunple or nonuniquentu.

Fig. 18 Integral curves o( the cquarion t - b. 

thi, example does not contradict the theorem as stalLd. Ho..,�-cr th<e proof 
just given makes no use of the differentiability of v and goes through even in 
the ca.�c where the function vis rncrely continuous. Hence Lhc proof cannot 
be correct as given. Jn fact. the uniqueness assertion 2) was proved only for 
the case v(x0) ,ta 0, and we sec that if the field vis only continuous (and not 
differentiable), then uniqueness may well fail for solutions satisfying th<e 
condition q,(10) = x0 whc,e x

0 
is a singular point (v(x0) = 0). It cums out, 

however• that differentiability of v guarantees uniqueness C'\-cn in this cue .  
2.6. Example. Let v(x) = kx, U = R (Fig. 18). Using (3) to soh-c 1"" 
differential equation 

X = kx, k¢0 

of the form {I) subject to the condition (2), we get 

I - lo = r•<•> d� =� In q,(t)
•
o 

k� k x
0 

' 

where q, is a solu<ion such <hat q,(10) = x0 > 0. Thcrefo,e
q,(1) = Xot«•-••) 

(4) 

(5)
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for all I in a sufficirntly ,mall nrighborhood or 10, 

Chap. I Buie Con«p11 

Notr that the right-hand sidr or (5) is drfinrd on thr wholr 1-uit, and

rrpr,·srnts an rverywhrrr dlfTrrrmiablr (unction satisCying th<-inotial con• 
ditlon ,p(t0) • .,0 and thr difTrrrntlal equation (4) ror all I In ract, ,twas
pri·clst'ly •• the solution or rquation (4) that Napirr originally ,ntroduc,d 
the: exponential runction.

Problnn I. Prove th:u f'vrry solutio11 • of «(u.ahon (4), uu,fymg the condu.JOn • «.)

.-,0 > O, i, giveu by formula (S) on the whole in1e..-va.l •<I < 6 �here 11 • ckfiMd.

Sol11tlo"• We On <U'l!IUC, for cumple, as (oll0\11'1: (,.('I T bt the lttit uppu bound o{ 1ht 
ac:t of n u ,nbcn r such 1ha1 (�) holds for all t, '•  < I < ,. By hypochGd. te < r < •· 

If T < I>, fotinu1a (5) hold, fol' I - T b«au,c olt� com111u11y ol •. But thm 11 holch 1n
,ome ncighlx>rhood of T (to pro .. •c: 1hi,, re�AI the ugu.mt:m lading to  (Si. ttplMing '•
by �r :wd .t0 by•< 7') and noting that (5) implio •( T) '> 0). Thu, T • and bmula
(�) is provC"U for t0 < , <.. b, The case: 11 <I< t0 i, trntfd 1im1lar'ly,  

Hence ((lf'"mula ($) gives all lhe ,olut iou, of(◄) �•th•• > 0.

Comm,,.,,. ·mm the problem., pcl8ffi in S«. 1.6 on rad ioacti\� dtt.a.y and po.th ott.c,nial
c-olo11ie1 have bttu solved. l n  the lint pr-oblem the amouut of m.autt (.al.I. off t"l(ponuma.ly
�•ith time. 'f'he arnov,,t of radioactive substan<'e df'Crtasa to one h:llr dw: amoun1 mitially 
present in a time T - t-' lo 2, c-a lled the NJ{l-1.ifo o f  the given substal'ltt. In the sttOnd 
problem, the number of bacteria grows expoucnti:a.lly with 1im.c. a.nd doubles in umr
T - k .. ' In 2 (a.s lo ng a.s •he food lasts). Formula (S) alto contains the-tohiition or ma,ny 
other' prob1tn\$ (Fig, 19). 

Probl,m 2 .  A1 what altitude is the densi ty of the atnlOSphttt' one ha.tr iu va.luc- .it t he 

earth's surface, assuming that the temperatur e is C'Onstam? (A cubic mau ol ait •achs 
� 1250 gm at the earth's surf.a«:.) 

Ans. 8111 2 ::: 5.6 km. 1hc height of M1. l?.lbru1.

' 

1: 
'c.-, '-- {JOO/ 
.. 

ii 10(/ 

z 
IQ

/IGS$ll/KJ/1.fQ!5:X) 11511 l9t7tJ /$SQ 
Year 

Fig. 19 Growth of the number of sci en tific joumals (boch origin.al a.mi ttriew jou.mah).
fr'om V. V .  Na limov and Z. M. Mulchenko, Snmt.onvb;7 (in Ruuian). �lOl('OW (1969}. 
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JJ,0611111 3. Prove 1h,1,1 all ,h� aolu1ion1 or «1ua1wn (♦) a.a1i,ry1ng th<t 1,uual cond,UOl'I
•(10) - •o • 0 are Rl,o given by forinuli. (�).

luhould he noted that none o(thc (unctions(�) with x0 ,. Ovanuha for 
any value of I, I lcncc the unique 1olution or equation (◄) such that x0 • 0 
is the stationary solutio,1 x • 0. Thu,jormw/o ($) •t<•••l1jor el/ tit, selwt1••11•f 
th, 1/ilf,r111lial 1q11atio11 (4). 

In particular, the uniqueness assertion o(Thcorcm 2.3 is "�id ror aaua• 
tion (4). F'rom this one can easily in(er uniquencu for an)' equation (I) with 
a difTcrcntial,lc vector field v and for more general equations a.J ��IL 

The rea,on for the failure or uniqueness in the case v(x) • x'1 ' is that this 
field docs not foll off(ast enough as the pointx • 0 is approached. TMrefore 
the solution manages to arrive at  the singular point in a finjtc tinx. An
infinite time is required to reach the singular point in the c:ax v{x} = h, 
since the integral ·curves approach each other cxponcntiaUy. It  i1 char• 
actcristic of any differential equation with a differentiable \.Utor field v 
that its integral curve, do not approach each other more rapidly lhan ex­
ponentially, thereby accounting for the uniqueness. In particular, lM 
uniqueness proof in Theorem 2.3 is easily obtained by comparing tM gen­
eral equation (I) with a suitable equation of the form (4). 

2.7. A comparison theorem. Let v,. v2 be real functions continuous on an 
interval U of the real axis such that v 1 < v1, and let q,1, q,1 � .solutions of
the differential equation., 

x = v1(x), x = v1(x) (6) 

respectively, satisfying the same initial condition ,p1 
(1

0) = q,1(1
0

) = .r0
(Fig. 20), where ,p,. ,p1 arc both defined on the interval a < I < 6 ( - ao �
a < b � + oo). 

THEOREM. The inequality 

,p,(1) � ,p,(1) 

holds for all I ;,, 10 in lht interval (a, b). 

a t, p t 

(7) 

fig .  20 The slope or •i is grc.atc-r 1han that or•• at pOints. •ith equal._ but .l'IOt a.t pomu
with equal I ,
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J>roef. The inequali1y (7) is almost obviouJ ("1hc 1lower rider docs no1 go 
further"). t More e••e1ly, lei T be 1he lc.u1 upper bound of 1hc Jet of num­
bers t 1uch that (7) holds for all I, 10 < I < t. By hypothc.iJ, 10 < T < •.

l fT < h, then ,p 1(T) • ,p1(T) by thc con1inui1yof ,p,,,p1 and

d,p, 1/,p,- <-
di ••T dt ,-r 

by hypo1hcsis, so 1hat ,p 1 < ,p1 al all poi nu I > Tsuflicicntly near T. Bui 
then Tcannol be the indica1cd least upper bound. Thi, contradiction shows 
that T • b, as asserted. I 

R,mark. In the same way, it can be shown 1hat ,p1(t) ;;. ,,.,(1) for I< 10• 

2,8. Complcdon of the proof of Theorem 2.3. Lei .r0 be a stationary 
point ofa difl'crcn1iable vec1or field v, so 1ha1 v(x0) • 0. Then, ai we now 
show, the solu1ion of equation (I) sa1isfying the ini1ial c,ondition (2) is 
unique, i.e., if ,pis any solu1ion of( I) such 1ha1 ,p(10 ) • .r0, then i,(t) • .r0 •
There is no lo,s of generality in assuming 1ha1 .r0 = 0. Since the field vis 
difl'crcn1iablc and v(O) • 0, we have 

lv(x)I < klxl (8) 

for sufficiently small lxl ,6 0, where k > 0 is a positive constant. The r�
quired uniqueness now follows from 1hc fact that the integral curves of 
equation (4) 01hcr than x � 0, which arc steeper near x � 0 than the in1t­
gral curves of (I), cannot reach the line .r = 0 in a finite time, as alttady 
noted in Sec. 2.6 . 

This ca.n be prO\'cd mo1c rigorously, for �mplc. as follows: Lei • bt a dutioo of 
(I) and (2) such that •(10) - 0 (fig. 21). and suppose•<•,) > o. t, > '� Sintt • is a
con1inuous func1ion, there c.xis'ls an interval (Ii, 1.,) with the- follo""ing propatia: I)
•Ct,) -r 0, 2) •Ct1) > 0 for 11 <I< 1.,, 3) x. -•(I) satisfies (3) for /J < t <: t.,. lo fad, 
for 11 �·e can choose the grea1cs1 Jower bound oftbc r such that .(r) > 0 for r <, < '•
and for/J any r>oin, t, > ll $Uffieiently ne.u 'l• 

X 

'l'_(t) 

t, t t, t, t 

Fig. 21 The solulion • cannot vanish since it approaches zero more dowty thua t.bt­
e:xponential •i• 

t Nevertheless we note that the rate of change of •1 ct• rivm insl.aN CUI bC' largu th.ut 
the rate o( change or •l :u the same instant (Fig. 20}. 
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We now com1Ml'c the ll(;lutloo •(I), 1, c. I < I., ...,.hh 1ht ..olu1ior. 
.,(1) • .(,,),'11•1,t
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of equation (it) 11ubjec1 t0 1ht lnl1lal condhton •,(,,) •C•,). 8«,iu,t of (11. 1k c.....
'"'''"on thtortrn lmpllt, 

•(I)> i,(t,)t141 1•1 
(o,r all /

J 
< t <,,,and hence 

•Ct,) )i •(f,)tlll1 •1,) > Q
by ooncinuity, ·n1iHontradict1 •Ct,) • 0 and 1h°""1'S th.at tht:rds no I 1 ..ch Wt .,,,) > 0, 
,, > 10• The ca�,, < 10 and •ft 1) .. 0 arc treakd sim.flarly. I 
Prnbtnn I. Prove lh c uniqll(:ncu by the rnt'lhod of S« .  2.6, without ma.kine a compa_,..,.. 
wi1h equation (◄), Pro.,.c that a sufficient cor\d.1tion ror ,miq,U('�,: ti 1ha1 d� 10•�• 

be divergcrll at -'o•
P,Hlrm 2 , Prove the "niqucntNi a.ssenion for chc d1ff'c�ndal c-quati.on J - v(i,, -� 
v i1 a d irftrcn1iablc funclion, iu.,uming the t >1ds:tm« of a .tOlution x • t) utiJying lM 
initial co nditi on •(10) • x0.
flint ,  l.A::t)' - X - .c,). and make a comparlSOR with a suit:abic cqu.atioft , .. , .

3. Phase Flows on the Line

Having just learned how to solve diffcrcnlial cqualions dClcnnincd by a 
vector field on the line, we now sec what our result$ mean in the la.nguagt:or 
phase Aows. 

3.1. One-.parameter groups of linear transformations'"' \Vt begin with 
the particularly simple equation 

X = lex, XE R. (I) 

As we know, the solution of (I) satisfying the initial condition ,p(O) • x0 LS 

just 

,p(t) _ lr - e x0
• 

We now define a ••t•aduance mapping g': R - R.," carrying tht: initial c:oodj­
lion x0 

into the solution after time t: 

g'xo = l-'xo. 

The family of mappings {g'} is called thcpltas,jlow as10<ia1<dt1,itl1t'fl'IUWII (1), 
or with the vector field v = k x .  ="ote that the- mapping g·' i s  a linear trans­
formation of the line, namely an expansion of the line-I' times.. For-a.rbitrary 
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rral J and I w< •  IH\Y(' 
0 R ,\ - X, 

Mol"(•cwc•r A'x i< diffi•rc•111i,lhlc· wi1h rc·�pc-('1 10 both I and.- h fnllMH 1h;u
1/11 pl111J,jlow (II'} is n o,ie-pn111111t1e, 111oup of d,Jftomo,phums, ,.11,,, ,.,1, d,§,.. 
mor/}/1i,fl11 r'J" lir1tar lnmifo,matio11 ,if /J,e /in,. A Oll<'•pJramt·lt"r Rroup of dtfTC"O-­

rnorpliiiuu� of;.1 linear ,pace, wlwrc caC"h diIToomorphi,m i1 a linear tr.an�• 
forrnation1 will h<• called ,impl) a one-parnmtltr 1,roupof /,near 1,.,.,f.,,,..ttM.J. t
Thus 1hc pha,c flow {g'} ""o<ia1cd with .-qua1ion (I) i• a on<,-�r.uncl�r 
group of /i,m,t 1ra11!tfotma1iorh, and the motion,of poim, uo<kr 1M a('tion or
this phase flow arc ju�t the )Olu1 ion� of cq ua tion (I). 

1·11nl)R£M. Huer;• 011,-paramtltr gro11p (x'} of l,n,ar /ransformoltMS of IN/,,., R u
//i, phosejlow of11 dilfe,ential equatio11 of ihtform (I), so that 

g'x - e''x 

for somt k. 

lkforc proving the theorem, ,,.·c make a remark of a genera.I charac&tt. 

3.2. The differential equation of a on�paraineter group. Let {t'l be
a one-paramcwr group of difTcomorphi�ms of a domain I', and lc:t v be ahc 
vcclOr field of the pha�e velocity defi,wd by the relation 

v(x) = !..\ g'x,
dt ,.

0 

XE U .

·rHEOREM. T/11 motio,i ofihe phnst poi11t cp: R - U, cp(t) = g'x is os.Loti.oftlu

dijferendal equalio11 

.i: = v(x). (2) 

Proof. \iVc need only shov.• that the velocity of motion of the ph.a.sc point,t'x
at every instant of lime 'o coincides with the: phase velocity at the: pointrx. .
This is obvious. since the transformations g' form a group: 

di g'x = !_I g'•"x = !_ g'(g'•x) = v(.('•x). I
dt r•t

1;1 
dr r•O dt r•O 

3.3. The general form ofa one,..para.meter group of linear transfor­
mations on the line. Let {g'} be a one-parameter group oflinu.r transfor­
mations of a linear space L. Then the phase vdocity v(x) depends on x e L 

t Note that dijft-re.rttiabilily with respect tO l is implicit in the definition o/ a one-pu1mreter­
group of linear lra11s(orma 1ion.s g'. 
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li11tnr(y, ,iurc th,· dtoiva tiv,· (d/dt) I,. 0 "it h rt'<p«t to tile p•r.amctcr I o{ tll<' 
ru,wtion g(11 x) • g'.:.. wldc-11 i, linear in" i, it�lflinrar in x. t In 1>aruc--ular, 
if/, ii tlu.· f<•al linc: R, tlu.·o cvt·ry fu 11<'llon linear in\ i,ofthc fnrm v{.t) A:..t

wllcr'C J: • v( I), Thrrrfi,rc tht' modt111 cp(I) • ,'-.: i," �lutton � <'qUahon 
(2) wit ii v(,) • 4'·, i.r .. a ,nlu tion of rr1 uotinn (I). Si 11,c the un,q� "'lution
cp or t hi, cq tHit ion �" ti,f) •i ng tl1t cnndi tion cp(O) • r i, oft l1r formi'x • l''x,
tl1e proof of1'hcorcm 3.1 is now t·omplc .t c .  I

•P,-ohlnn I. Prove lhlll �vNy cOntinuou, Onc-parurK'tt'r group of lino, 1nnJorm.a1ioM
or the linr i� au1oma1irally dilfe�n11ablt-.
/-lint, Kc.·c.all 1he drfiniti(ln of 1he uponrn1ial (1,.11M"1ion fol" intt'gul, nriorw, and .,-ra ­
tional valuo of the argutnC'nl, 
C,,,,.,n,nt, Thu• i,1 dc·fl,1ing a o,1c--•1-...,11mr1C'r group or hn('ar ir;ansfonna,ttoM -.� could
h:wr rr1,laC'C'd the rt•t:1uirc-mt"nt th.at lht" tran�forma.oom: x' br- d1fTrr<-n t,�bk -.oh�
IO t by the • f"Nl\.lir(•ow,u that 1hcy bt con111luous 1n I 
• P,Hlm1 2 .  f.',nd all Ollt"•parame1C'r groop, of t,nta.r rra.n-.:rormatiQoM o{ tlk follo,.-,ng
linear spat-es: a) R J (the t('al plan I.'); b) C' (the: comp• lcx line, u· .• tbr ont--d.�t
lin('ar spaC'c: ovt'r the: lie-Id of C'om1 , lt'x 11umlJ.l•n),
Hint, In Chaf>. 3 we will dc·:1cribc all nnt,.parant<'lt'1" groups or lin('.-r 1r.1m;b-ma.tions ol
1hc: n-dimcnsiona l  real and complex sp,.--ic:cs R" :1nd C- .

3.4. A nonlinear example. Next we consider the more complicated difT�r• 
ential cqualion 

X = sin x1 XE R. 

P,obl�m I. 1-�ind thc solution or rhi'I equation sa1i1.()·ing the ini,�I rondi1ion •'0 x., 

Her't we can again define the /•advance mapping 

g':R-R, g'x0 : ip(I), 

where ¢(1) is the solution sacisfyi,,g the initial condition 9(0J = x0. 1nc 
mappings g' form a o n e -parameter group of d.iffeomorphisms of th� line, 
namely the- phase flow associated with ,he given equation. 1nc phase Row

{g') has fixed poinL< x : kn, k : 0, ±I, ... , and the diffcomorphisms 
g'(t � 0) are nonlinear transforrnalion.s of the line. TI1c lransformalion r
shifls every point:< toward the nearest odd multiple of n i f  t > Oand toward 
the nearest even multiple of n if I < 0 (Fig. 22). 

/>Tobltm 2 .  Provc tha t thc scqucn« of functions t"•• t, -oo con,•crgcs, bu:1 not uniiormly. 

The above examples give rise to the hope that with every diffe:tt.ntia.J 
equation on the line 

x = v(x), xe R, 

f Note: that the: linear nonhomogcncou.s func1ion/(z} = ax + 6 t'a.ils IO bt linear if• � O.
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Pig .  23 Oircc1ion fidd 11nd two solu1iom of the equa1jon k � xl. 

there is associated a one-parameter group {g'}, i'x = ,p(r) of diffcomor­
phisms of the line, where ,p(I) i s  the solution satisfying the coodition 
,p(O) = x. As the next example shows, this hope i s  ill-founded. 

3.5. Counterexample. C'.oruider the differential equation 

X = x
1 

characterizing "overly rapid growth" in the sense or Example 3 ofStt.  1.6 
(Fig. 23). This equation has the solution 

J•"l d{
I - lo =

r! '• { 

given by formula (3) of Sec. 2, often written in the form 
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r rd.,Jdt • J�'
I 

t• --+C, 
X 

I 
X • ---,,, 

I - C 

23 

(S) 

0,1e ,nu,1 not thi nk tluu the last rormula i1 cquivalcn1 to (3) nr 1ha& 1hcfunc-• 
1io11 x - -1/(t - C) is a solu1ion. In rac1, 11,c domain of definition oft�

ruuctio,1 x I!!! - I /(t - C) i s  oot an interval but ra,hel'" 1w o interval.st < C 
and t > C, so 1ha1 1hc rcS1ric1ion orx = - 1/(1 - C) 101hcsc in1crvalsgi,� 
two solutions which arc in no way related to each other (aJ long a.s we c-onfine 
oursclvt·s 10 the domain of real t, the only case con.sider«! in thiJ booki. 

These considerations show that if the growth ofa population i.1 pn>por-• 
tional tot he nu rnber or pairs, then the size of the population becomes infinite 
in a fi11itc time (wl,ercas 11,e usual law of growth is cxponcn1ial ,. Physic.ally 
thii conclusion corresponds to the explosive nature of the proass '. of course, 
for I sufficic11tly 11ear C, t lie idcaliz.atiou emailed in describing the process by 
the diffcrc11tial equation in qucs1iou become inapplicable, so that the si�c 
of,he population does not actually become infinite in  a finite ti� . On the 

01hcr hand, we see tha1 /ht formula far tltt t-adcanct mappi� (t'x
0 

• ,pit 
whtrt ,p(/) is the solution satisjj•ing tht initial condition ,p(O) ; x0) dJ,a -Kin a 
dijftomorphism g': R - R for any t � O.

P1oblt11t I. PrO\'C 1he i1alic-i:tcd tnst':rliOn, 

3.6. Conditions for the existe.nce ofa phase Bow. The reason why{.(}
in tl1e preceding probl�m i.s not a one.parameter group or diffcomor-phis.ms 
is 1101 1ha1 diffcren1iabili1y fails or 1ha1 1hc group propertr breaks down, but 
simply thal the function g' (t 'i: Oj is not dtfin�d on t.M whole x .. &ru. sintt some 
solutions manage to become infinite in a time not exceeding I (fig. 24 ,. 
Howevt>1', if the solutions do 1101 become infinite in a finite time, then the 
assertio11 made a1 ,he end orScc. 3.4 is indeed valid. 

Prob(e,n I. PrO\-C the: asst':rtion at the: <"nd of Sec .  3.i. an:uming th.tt che (UftC"ltCllft vis difftt-• 
entiable and identically uro for sufficiently l:tl'gll" lxl .

.r 

Fig. 24 Integral curves of the «1uation i = x1
• 
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I/int, 1'hr 11olu1lon I• coruaulrd i11 1htt proof or II nH)rf' l'"Mf'ill 1hrortm, .,.h.ll(h Mttth th.a,
('Yrry dirferc.•111IBblr \ '('flOf' 11rld on" ttimf>MI rnan,rold i, LhC" phut \tlor•lY 6rld o/ a on,-. 

p;, rM11r1rr group or difrto••�rphi,m, ( \tt \rc-. 3'i l. 
C11mm,nt, Thu• 1hr po\\ibilhy or 1hr rou,11tttumplt ol \N'. S.� �•rm, (,oan •hr , ••
pnr,uo r of , ht" II nr, 
1•,H/1"1 1, J'rO\'f 1hr ,.,�rrtion or Stt-. 3.!I, lll•'lum11111h.l.1 l"{.dl � Al•I .,. "for .11 If."'"

when� A :,nd II :trc p-0\ilivc comlAnh,
I/int ,  U,c the rompari1on Thcorcn, 2, 7, 

4. Vector Fields and Phase Flows in the Plane 

If tlic dinwnsion oCthc pha�c space of a differential cqua1ion is greater than 
I (for cxampk, equal to 2), then there is no gc:nc:ral method for findmg 
t'xrlicit solutiom. Mowcvcr there arc some special ca� "hich an be re• 
ducc-d to onc•dimcn!iional problem,. 

4.1, Direct pr,oducts. Con\idcr tv.·o difftrtntial equations 

x, = v1(x,),

x2 = v2(x2),
(I 
(2 

dctcrrninf'd l,y vector fields v I and v
1, differentiable in phase spaces CI and

U
2

, tt�pectively. 

Definition. By the direet produet ef tht dijftrtoti,,_/ ,quatio,u (I) and (2 is meant the, 
differential equation whose phase space:- i, llu: direct produc-t of C1 

and l ·1: 
this C<JUation is determined by the vector field b1hich i.s the "din:ct pcochKtu 

of the field� v1 and v2• Thus 

x = v(x), x e U, (3 

where U = U, x U,, x = (x,, x2). v(x) = (v
1 (x 1 ). v2(x

2)).
In particular, if the pha.lie spaces U1 c Rand U

1 
c Ran: orx--dimcn­

sional, then U is a domain in the plane (x
1

, x
2

) and 1hc diffettntial �uation 
' 

(3) i s  a system of two scalar differential equations of a special kind:

{ �• = v1 (x1 ), 

x2 = v2(x2),

x, Eu. CR, 

x, Eu, C R .

The above definition immediately implies the following 

(4) 

THEOREM. If q, is a solution of th, dirt<t prodU£1 (3) ef 1k di.ffert1c1u,./ .,,.,.ti,.,., (I) 
and (2), then q, is a mapping q,: I - U eftheform q,(t) = (q,1 (1), ,p2 (1 ,), u:hn-, 
q, 1 and q,2 are solutions of equations (I) and (2) d,fin,d on one and th, -i.Jn,;,,l I .

In particblar, if the phase spaces U1 and U1 arc one-dimensional, ""� 
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kuow how 10 ,ol,c carh or 1he cqur11ior1, (I) Jnd (2). 1 hercrnrc ... ��n al,o
cx1llid1ly ,olvc the •y<tem or two differential e'lu•tion, (4).

11 1  f11n, by 1'h<'orem 2.3, tht \Olu1lon • ,ati,ryn13 thf' 1111 11.at rond1d0n • fe) .., ,..• can bf, 
found in a 11righborhood or 1hr I"°"" , ,0 from thf' rrb110,u J •. 

rn !.fu '• I.,.,,�Au YI J .l'tt v, ) ' Xo (•1♦• -'It 

irv1(x1o) P. 0, Vio(x,o) Ii 0 .  lfv1(x10) • 0, the '1r,1 rclatiot'l l' n:plattd by•• .... , .. 
while i( v1(x10) 0, the: M"<'Ofld rdati<m ii repl.a«d by"' ,,.. fuu1Uy ,/ "• .-,. 
v,(x10) 0 .  then x0 is a iingul.ar point of1he \fflOf' fidd v .and an �uil1bnum pouu,o;•
of th«- ll)'lltem f'f), i.e., .,(t) ■ x0. I 

4.2. Examples of direct products. C'.c:>nsidcr the following system o( two 
differential e<1muion�: 

{x, - ·'"11

.\·1 • k:, l· 
Problnn I. Sk4"tc-h th'° forrc:�1,ondi113 \'fftOI' fidd,i: ;n 1� pl;1nt-for A- O • ._ I. I, 2. 

V't/e have already solved each or ,hesc equations st"paratdy. Thus the 
solution tp satisfying the initial condition �(10) = \'o is ofth<" fonn 

,o _ X ,1(, - to)
't'l - 20 

Hc.·ncc along evety phase curve., = tp(I) we have chhct x1 :. Oor 

lx,1 = C:lx,I', 

where C is a constafll independen t oft. 

Prohltnr 2 .  r, 1hc ('un·t: in 1hC' pha�· 1>lanc (v,, ..-1) gh-m by (6) .i. pha'W:' ('Un.it? 
.◄,u. �o .  

(5 

(6) 

The family or curves (6) where Ce R 1akcs variou• rorms depending on

the value of 1he parameter k. Irk > 0, we  get a family of •·generalized 
parabola� of exponent k,"t where the parabolas arc tangent to the z, .. axisif 

k > l and 10 the -<,·axi, irk< l (Figs. 25a and 2:xc). I( k = l. WC get a 
family or»raigh1 lines going 1hrough the origin (Fig. 25b). The arrange­
mc.·nt of phase curves shown in Fig. 25 is called a node. Fork < 0 the curves 
are hyperbolas (Fig. 26),t rorming a saddle poi111 in a neighborhood or ,he 
origin. Fot k .- 0 the cutves llttn into straight lines (Fig. 27). 

I I is cleat from (5) that cvcty phase curve lies entirely in one quadrant (or 
or1 one half of a coordinate axis. or possibly coincides with the origin which 
is a pha.se curve for all k). The arrows in the figures show lhc direction of

t The curv" arc actually parabolas only if k = 2 O< .t = i•
r The <un.·c:;1 ;,re actually hyperbolas only if k - - I.
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I I 

(a) U>) (CJ 

Fig .  25 Nodes: Phase c-ur\•n of the 1y11em .t1 - ••• ,, - .t•, ror l > 1. 4 - 1. aftd
O<k<I. 

r, 

d'lt� 
�tcr� 
Fig.26 A saddle point: Phasccurvoofthesys:trm.i, r1,i1 ,b-h.l<O. 

-'� 
-·-
-·-
-·-

:=:== .r, ·  
-·--·-
-

,
-

Fig .  27 Phase curves or the system .i1 - •u li - 0 .

motion of the point ,p(t) as I increases. 

Prohlem 3 .  Prove that each of the parabola.sx1 - xf (.t .. 2) comists orlhrtt �can"U. 
Oesctibe all the phaM" tun:n for the other va1ues of .t (k > 1 • .t = 1. 0 < .t < I, .t - 0, 
k < 0). 

O,mnvnt. It is i nteresti ng to obsef"\'e how one dra-.�-ing gOt"S into �notha as t cha� 
continuously. 

Problem ,. Draw the nodt' correspondi ng to .t � 0.01 �nd the sa.ddl,e point couaponding 
10k = -0.01. 

4..3. One-parameter groups of linear tran..sform.ation..s of the pla..ae­
Next we construct the phase Aow associated with our system, definjng t..M' 
I-advance mapping g' in the usual way, i.e., g'x = tp(t) where ,p(t) is the
solution satisfying the initial condition ,p(O) = x. It follow, from (5) thatg'
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a:, 

f'ig. 28 Pha•c Row or 1he 1yt1em 11 - x1, 1, z...,. 

27 

Fig. 29 Phas(' Row or1h( sys1em .i1.,. x1, .t2 - -,r1, Th(' tranJo,-mationst''att nlkd
hyperbolic: rota1ions.

is a linear lransformation of the plane, consisting of an e'-fold expansion 
along thex

1
-axis and an ,".fold expansion along 1hcx2-axi> (an 2-fold ex• 

pansion is actually a contraction ifa < I). The ma1rix oftM tramfonna­
tion g' has the diagonal form 

( ,, 0 ) 
0 ,, .. 

in the system of coordinates X
I 

t X
,2

, The difTcrcntiability of rx "';,h respcc• 
10 t and xis obvious. Thus the mappings g' form a one•parametcr group of 
linear transformations of the plane. The action of g', l = I on a set £ is 
shown in Fig. 28 for the case /c = 2 and in Fig. 29 for the case .t = -1. 

It should be noted that our one-parameter group of linear t.ransforma­
tions g' of the plane decomposes into the direct product of '"''O onc•para• 
meter groups of linear transrorrnationsorthc line (namely expansions along 
the x , •axis and expansions al"""g the xraxi.s). 

P,obltm I .  Oocs ('\·�ry on�paramctcr group o( linear translormati,ortS ol tbr pbnr dttlOffl� 
pos e  in the same way? 

Hint. Consider rotations ti.u'Ough the angle tor shifts orth� (ocm (x .. xl) -(x1 + X1-� xl) -
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5. Nonautonomou1 Equation•

The slmplcsc nonn111onomo11s diffcrc111lal equa1ion i• or1he rorm 

dy - • f(X,,J),
dx 

where 1he righ1,hand side depends on the independent variable x. \Ve begin 
our discussion of such cqua1ions with the following example. 

5.1. Equation• with acparablc variables. Once again consider 1hc 
direct product of two equations with one-dimensional phase spaces: 

{ .i: • f(x),
j - g(,J), ( 1) 

Herc ., e U c:: R is 1he coordina1e in 1he first phase space and_, e V c:: R is 
1he coordina1e in 1he second phase spacc, while/and l arc differentiable 
fonc1ions de1ermining vec1or fields in U and in V .  Sup�/{x

0) � 0, and 
consider the phase curve going through 1hc poin1 (x

0
,y

0
). lnen, as -.,e now 

show, this curve (Fig. 30) can be given by a curve or the rorm.1 = F(x) in a 
neighborhood or 1he poin1 (x0,y0). 

Parametrically 1he phase curve is given by 

X = <p1(1), y = 'P,(t), 

where 'P = (,p,, ,p2) is 1he solution or the system (1) satisrying the condition 
'P, (10) • x0, <i>,(t0) = J'o· Sincc/(x

0
) � 0, we have 

d,p,l � 0 .
dt t•ro 

By the implicit function theotcrn. the function tf,, t = tJ,(x) inversrc lO 91 is 
uniquely defined in a ne.ighborhood o f  the point x = r0• Let F(x) =
,p,(,f,(x)). Then 1he function Fis defined, continuous, and diffcrcntiablc i n a  

!/ 
:r{t),yft/ 

X 

Fig .  30 A ph.t.sc curve of the system ( I) �nd an integral c:un·c of equation. (2'). 
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neighborhood or the point x • x0, and 

d/1 dtpi
l 

dt/1 g(P(()) 
d,<lc • di ,-110 7h c 

• 
/(() ' P(xo) • Jo,

29 

by the theorem, on derivative, orcom1>0Sitc and implicit runction1. This is 
expressed condstly by s:iyi11g that Pis• solution oft he dirTe�ntial equation 

2 - g()') (2) d., j(x) 

satisfying the initial condition P(x0) -Jo• \Ve call (2) an <fdli• u.il/r 
separable variables. 

THEOREM. Lt/ the Jun(lions J and g bt dif,tt<d and continuousl.J ,liffna,li_ulc in a 
11eighbo,hood rifthepoints x • x0,)' • Yo rtsp«tfocly, uhtref(x0) 9' O,g(J,0) 9' 0. 
Tht11 t/1t solutio11 P rif equation (2) subject to the condition P(x0) • .lo uuts a,/ is 
u11iqu1t ;,, a ne,'gl1borhood of /ht poinl x • x0, and 1a1i.sfas the rtlatiM 

f • d( f''1•• drt
J •• J(() s J,. g(t/). 

(3) 

Proof. To construct a solution, consider the system (1). By Theorem 4.1, 
there exists a unique solution of ( 1) satisfying the initial condition .,(,0) =
(xo,J'ol, given by the formula 

f' d{ f' dtf 
J,.f({) = 

t -
lo = J,.g(tf)

in some neighborhood of the point I = 10• As shown above, the correspond­
ing phase curve is the graph or the solution For equation (2) subjttt to the 
initial condition F(x0) = J'o• Hence the solution F exists and satisfies (3). 
The uniqueness is also a simple consequence of the relation between tqua• 
tions ( 1)  and (2). I

Problem J. C:ut-)' oul 1h e  uniqueness proof. 
/>rohlem 2. Inves1igate the case where 1(.10) • 0 .
Pu;blan 3 .  $,1,1dy ,he diffcre,uial cqu.atioo 
d, = kl 
"" . 

of the form (2) in the domain x > 0, .1 > 0 .
Hinl. The solution F satisfying 1hc inii i.al condition F(x0) .- :,0 is dcinrd b- .all • > 0 
and is gi\�O by the formula 
F(x) - Cx', C-= YoXO'· 

t In the s.-:o.sc that any CYl'O solutions coi11cide Yl'hcrc lhcy are dc6.ncd. 
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Sre Fig,. 2:1-27. 

Prtbl11n � .  Oraw gr•ph1 or 1hc a.olu1iol'lt o( uch o( tht dift"trf'ntia.1 tqua1io,-.

£ ff. ,In, * ,in,
••JI•,•, -,,.-. - -llfllt :t IIR/

In the domain where the right-hand 1idt l, dcAnfd.

5.2. Eq .. atlon• with variable coefflclenta. Let v be • difl'en,ntiab� 
mapping ofa domain U in an(• + 1)-dimcnsional Euclidean space with 
coordinutes t, x

1 , •••• x,, into an n•dimcnsional Euclidean sp.1.ce with� 
ordinates v11 , , • , v

11
• Such a mapping determines a l'ttlor fidiv•J>Dttlutt• 

the time I and a corresponding nonautonomotts di.fftrtntial tqMatio,e or tqw•tiM witA 
variable co,ffici,ntJ 

x - v(I, x) (◄)

or, in more detail, 

d�, ( ) - • UI /;XII ,,, 1X,i t
dt 

,.t, ... ,n. 

Ex.amp(, I. The diff'ercnti.al cquat.ion  (2) �Jong, to this class, ,,.,;th an •ious mane"' ol
nota1ion (here n = I). 
Difrnition. Let ,p; I - R• be a differentiable mapping defined on some 
interval / of the /-axis and taking values in the n.dimcnsiooal Euclidan 
space R" with coordinates x1, ••• • x

,,
, such that the graph of• lies in 1M 

domail'I U and 

d

d 
tp • v(r, ,p(r)) 

I '•' 

for every re I. Then ,p is called a solution or the differential eq..ation (4). 
If I is interpreted as the time and the space{"} i., called phase space, then 

v can be regar-ded as a ,ime-var-ying phase velocity field in phase spac�. In 
this language, a solution tp is the motion o f  a point in phase space such that 
the velocity of the point al every in.slanl of time equals the val�of the phase 
velocity vector at the point occupied by the moving point at the given 
instant. 

Difrnition. A solution tp is said to satisfy thL initial condition y,(10) ; "o if 1he 
points I and (10, x0) belong to/ and U respectively, and if the ,-a!uc or" at 
the point 10 equals s:0• 

·r·hc solutions of a nonautot1omous equa,ion can be con��nicntly repre­
sented geometrically in the extended phase space U c RI x R• (Fig. 31). 

Just as in the autonomous case, the right-hand side v determines a direction 
field in the domain U (if n = I, vis the tangent of the angle ofinclinalion 
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.-ig. 31 I ntcgr� I curvn or 1ht tqu;nion t -v(•. t) in the tirntndtd ph;uc-ap.u U.

with the positive I-axis). 

31 

Finding the solution satisfying the initial condition 1/'(l
o
) •••is Njuiva­

len1 10 drawing a curve through the point (1
0

, a0) of the domain U whose 
u1ngen1 a, <very point (1, • - fl'(/)) has a giv<n direction. Thii cu� (the 
graph of1he solution) is called an integral,.,,.,._

RtmMk. Ordinarily the laws of nature do not vary with time, and equations 
like (4) with ti 1imc-dependen1 right-hand side arise most often in the 
following situation. Su1>posc we consider some part I ofa physical system 
I + 11. Then, ah hough 1he law of evolu1ion of the whole S)-Stcm docs not 
vary with time, the influence of part 11 on part I may cause the law of n'Olu­
tion of part I to be time-dependent. For example, the inAucnce of the moon 
on the earth produces tides, and 1his inAucnoe i s  expressed J'Da,lhcmatically 
by the fact that the magnitude of the acceleration due lO gravity figuring i n  
the equation of motion of terrestrial objccu becomes variable. In suchsi , ua ­
tions, we say that the isolated part I is ,umaulonomous, which cxpbins d� 
term nonautonomous system as applied 10 (4). Of course, equations of the form 
(4) can occur in other situations as well, for example, in going from the J>iiir
of equations (I) 10 cqua1ion (2) with separa1cd variables.
Problem/ .  Fi,,d the solu1ion • or the diff(rential cqua.tion 
X - v(r) 
1a1isfying 1he ini1ial condition •{10) = ••· 
A1t.1. I t  was co solve this problem that Newton introduc«I intqration: 
•{I)= •o + ft v(t) dt. J,. 
Probkm 2 .  Pl'Qve that 1he phase curVQ of 1he aut0nomOuS syicem 
X=v{•), seUcR•, 
whtte • = (xa, ... , x.), v = {uu ... , u.), �. -,,.. 0 are gnpbs of ch,c, dulions of the 
nonautonomous system 
dx

1 

_ u1(x) 
ci;; -u1(x)' i-1, ... ,n-l,

and convttsely. 
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5.3. Remark8 on integration of dHTerential equadoos. A, <ho"'n 
nbO\IC, 1lle �olution, of the �implc41t ordinary differential cquatiom ran be 
found hy uJing the opcn:uion of i1Hcgration. t-'or thi, rca'On, the- pn,c.n�or 
fiuding itolu1io11;i oJ: differential cquolion, in �ncral i, \OllXhJ'nN nlkd 
i111cgrn1ici11. Tl1crc arc a numbc,· of mcthnd< for inccgra1i11g ,p..-ial kind, of
dif1Crc1ui"I equnlion�, nod li1u � or thc41c t"qua1io1n and the Mff�pondin,t 
method< can be found in the literature. t Anybody can enlarge the catalog of 
integrable differeutial equations by the �irnplc device of makin..g various 
sub�titution, in c<1uations that have already been solved. Experts in integn• 
tiou or di ffcrential cquatio1H (likcJ arobi) have io tl1is way been \."try suc-ccss-­
fu I in  solving spcriric applied problem�. 

1 lowcvcr, nil thC.li-C rnc1hods of integration have two fundamental shc>rt· 
comings, In the fir�l place, a\ shown by Liouvillc, man, diffn-mlu1/ 'fl"'""'"

cnn110I be Jofotd in explidljtJrm. For c"amplt, c:vrn a �imple cquatK>n like 

0cannot be i;olved by quadralurcs," i.e., ,he solution c.am-.ot be cxprcssc:d as 
a finite combination of elementary functions ot algcbtaic functions and 
iruegtal� of �uch f1,utc1ion.!l.t Secondly, a complicated formula gi\�ing an 
explicit solution often turns out 10 be less useful than a o;impk approximate 
formula. For c"amplr, the cqua1ion x3 

- 3x = 2a can be explicitly solved 
by Cardano•s fo1 ·mula: 

.< = Va + Ja2 - I + Va - Ja - I.

Howevc1· ifwc want to solve the equation for o = 0.01, it is useful to no{C 
that it has tlae root x ;::;- -- Jo for small a. a fact which is hardly ob\-ious from 
Cardano's formula. In just the same way, the pendulum equation i + sin x 
� 0 can b e  solved in explicit form by using (elliptic) integrals, but most 
proble,ns involving the behavior of a pendulum arc more easily 10lvcd by 
startingfro,n theapproximatccquationi + x = Oforsmatloscillationsand 
from qualitative consideraciorlS which do nor in,•olvc an explicic formula 
(see Sec. 12). 

t Sec e.g., A .  F. Filippo\', c.tlution of P,obk11u .,, Difftmrli#l Eqlldieaf (in Russian). 
Moscow (1961) and f: .  Kamke. Dijf,rc1ttfol £9uatW/ffJ, Al,tltods •f SoltthM aJ s.,:.,_..., I .
Ordimu:, Oij/t,tntiol Equations (in Cerman). Lcipz.ig (19:S6). the Jann- conlaini:ng ,omr 
1.6 X IOl cqualiora. 
l The r•roof of •his fact rnt"rnblcs the proof or the nonsolv.abi:lity of equations ol deg;itt S
in 1crn1S of radicals (Ruffini•Abc:J.Calois), and is deduced from the not'IIOh-..btlity oi a 
cctt:.in gl"()vp. Unlike ordinary Galois theory, we arc con('Cfflcd here •;th .a. DOftSOlk--a.bk 
Liegrou1) ra1hcr than a nonsolvablc finite group. The b ranch of mathemaucsdealing: •ith
these problem:. is C.'llled diffiuntial algthra. 
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1 ,:,1u,,1ion111u�ct'1>tlblt' 10 f'KMl t0lu1l on 11.r't' o0t'n uwf1.al u nampl", untt lh(-y IIOl'M'­
tirne, ohlbh brh,1vlor which orcur, ln mort' comi)Jl('llf'd ttin u w.dt. FOi' n..1m:pl,t. 
1hl-' 1, tror of ,o-olkd "1c-lf-, lmll1u t0lutloni" of a numbrt of f'qu..t,on. ol 1N1thmutteal
physlc-1 , Mnm:tvrr, rinding an rnC'lly aol vabl(' problrm ah,.,1y. Of)t't\t lhr po-.abJ1ty of
MJlvl11g ndghbo ri1 1.g r•rohlt'tnJ appro.--imatdy, by ptrlurb.111on thf'Of")', wy '"' �- 9. 
1 ro ........ \'f'r It ii d:rngc•rou, 10 r.w1rnd rr,ult1 obtnint'd by ••udr,ng an nacdr ,oh.1bk prot> 
ltm to ndghborlng 1>rob1..-m11 of a grn.-rnl form, In (,ut, an f'1tU'tly lnt(lrabk fq"-IIIOI\
I� of1rn ln11•grilblr prtt!M-ly b«aW<' lu solutions•� rnott ,Lmply bth.nnt � ... 1.ho.t o/
11tighborin8 no11i rutgrnbk J)l'Oblt'tt\ll, 

6. The Tangent Space

In investigating various kinds of mathematical obje"lS, it is alwa)"S irnpor­
ian1 10 examine how the objects behave under mappings. A kq• role is 
played in the study of ordinary differential equations by changes of vari­
ables, i .c.

1 
l,y choice or a suitaUlc coordinate system. Thus \'\"C must explain 

how the form ofa differential equation changes under a diffcttntiab� rna� 
ping, and since a differential equation is specified by a vector field, thcc -on ­
rcpts of vector field and vcloci,y vector mu.st be analyzed. 

Suppo!.C we think of the velocity vector naively as an arrow made up of 
spatial points. Then under a mapping the arrow becomes cu� and is no 
longer a vector. Uelow we will define a linear space wl-\ow: clements are 
velocity vectors of curves going through a given point x of a domain U .  This 
linear space is called the tan,�tn/ spact 10 U at the point x and is denoted by 
TU,. Let/: U - V be a differentiable mapping. Then we will alsoddill<' a

linear 1r1appirlg of tangent spaces 

J.I,: TU, ➔ TVJ(,i•

called the derivatiot of the mapping/ at the point x .
All the theorems in this section are c::s.scntia11y contained in a courx on 

analysis, the only novelty being the fact that our terminology is D"lOR

geomctriral. 
. 

6.1. Definition of the tangent vector. Le:t Ube a domain in .n-dirt'lell• 
sional Euclidean space with coordinates xi: U - R, i = I, ... , a, and let 
Cf>: I ➔ Ube a differentiable mapping of an open interval of the I-axis into 
U such that q.,(O) = x E U .  Then we say thalllren,rc, q., ltaC<s tb,J,wll ,c.f

The vtwcily vector of /he curve q., at t/,e point x in 1M syst,m oJ-diMta "• is 
specified by its tomponents 

d 
v, = - (..-,. q.,), 

dt ,so 
r=l, ... ,n, (I)

t More exactly, ., leaves the point x at the lime l - 0 .  Of cou.rsc, t = 0 an bt rqibccd b y
t-=- 10 by making appropriate changes in all the fonnu.las.. 
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Fig, 32 1'angem rutvts.

where (x, • ,p)(t) • x1(,p(t)) is the composite mapping / � U !AR.� 
no1ation v

1 • X,1,.0 is also useful.

Dtfi11ition. Two curves <p
1

, ,p,: 1- U (Fig. 32) leaving the same point 

.< • ,p, (0) • ,p2(0) arc said to be tang,nt (to each other) ;r the dis�nce
between the points ,p1 (1) and ,p,(t) is o(t), t - 0,t

Problem I. Prove that 1wo curve, arc 1angcnt •••point x if and only if their 
velocity vector!C at the point x are the same. 

The set of all tangent vectors of curves )caving xis an n--dimcnsional real 
linear space (with addition and multiplication by  numbcn being carried 
out componcn1 by component), called the tangent spau. 

No1e 1hat the coordinate system plays a role in this definition. and the 
resulting space seems at fir.a glance 10 depend on the coordinate system. 
Thus we would now like to give an invariant definition ofthcvdocityvec«>r 
and the tangent space, which docs not depend on the system of coordinates� 

Definition. A system ofcoordinatesy1: U -R, i = I, ... ," in a domain U 
of Euclidean space R• is said to be admissibu if the mapping 

y:U-R", y(x) • y, (x)e 1 + · · · + y0(x)e. 

(with basis vectors e
1 
in R") is a diffeomorphism. 

Problem 2 .  Prove that the curvesy • <p
1 

andy • ,p2 leaving the point7(x) arc: 
tangent if and only if the curves q,1 and q,2 leaving the point x arc tangent 
(Fig, 33), so that tangency of curv,s is a gtt!m<ln< co�,pt, ind,pa,dau of tk <> 
ordinat, syst,m. 

Definition. By 1he velotity vtttor v of a curve <p: / - U leaving a point x E U is 
meant the class of equivalent Cul"Ves leaving x and tangent to ,p (Fig. 34); in 
symbols, 

V - ,p(O), 
V = ;,l, . .-

f Waroing: The '""I" of the mappings•, and •-i can be: lines pcrpcndiculv .a:l z.. say.
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FiR, 33 Prctetvation o( tangency under' a ditft0m0rphilm. 

fig. 3'1 Class or curves tangent al a poin l x .
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P,obltm 3. Prove that tangency is an equivalence rclalion, i.e., chat I) 
� ~ �. 2) � ~ 'I => 'I ~ {, 3) � ~ 'I ~ C => � ~ {, where ~ means "is 
tangent to, at x.u 

Remark. The coordinate system plays no I"olc in our definition of the \•docity 
vector, but th, tlass of admusibt, coordinau sysu,ru in U docs play a role. This 
class is called adi/ftrtntiablt structure in U .  \Vithout specifying a diffcrcnti.tblc 
struc1ure in U, one cannot define the concepts or tangency of curves or 
of the velocity vector of a curve q,. 

6.2. Definition of the tangent space. 

Definition. By the tangtnl Sfxut to a domain U at a point xis meant the set of all 
velocity vectors of the curves leaving x (Fig. 35). The elements of this set att 
called tangent vectors. The tangent space to U at the point xis denoted by TU. 
(Tfor "tangen<"). t 

Lctx
J: u- R,i = l, ... ,nbean admissibJcsystcmofcoordinatcsinU. 

Then the velocity vector of a curve q,: I - U leaving the point x e Uhas 
well-defined components•• e R, i & I, ... , n, given by formub (1) (,cc 
Problem I). Thus the system of coordinates x, dc1crmincs a mapping 
X: TUx - R• of the tangent space to U at t.hc point xinto the a-dimension.a.I 

f If the rC'adcr i.s accu,tomcd to regard the \ 'eJocity \'tttor of a cun-e: as 1)-iag in the same 
space as th e curve iuc:lf, the n th e disti,�ctioo be� a tangient spatt to a lirw::ars:patt a.od 
the linear space it.self may lead tocc,rtain psychological difficulties. In th.cue, it if hdp(ul 
to repeat the preceding considerations with U thought of as the surface ola spbae. Then 
TU,. is th e ordinary tangent plane. 
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real space R• of vectors (•1, ••• , •.); the mapping X associates the numbcn 
v11 • , , , v" with the velocity vector oft he curve q,. 

TIIEOR£M I. Tht mapping X: ru - R· giutn • ., formula (1) is • -­

mappit ,g of TU, onto R•. 

Proof According to Problem I, the tangent vector {i.e., the clllSS h•} of 
curves tp: / - U which arc tangent to each other) is uniqudy defined by 
the components of the velocity vector in the system of coordinates x,. h 
remains to show that every vector {v1, ... , 11.) e R• is  the �locity ,-eaor of 
some curve. To show this, we need only ch00$C the curve q, dctaminttl by 
the conditions (x1 • tp){t) a x1(x) + o1t. I

Thus in a fixed coordinate system our abstract definitions of 1M: tangent 
vector and the 1angent space coincide with the naive definitions bucd on 
visualizing little arrows in the Euclidean space containing U .

So far our tangent space ru, is  simply a SCI which is nOt endowed with 
any further strucwrc. We now equip TU� with ,he slructu:reora real Ji.near 
space. Fixing a syslcm of coordinates x;, we can add langc.nt ,-ccton and 
multiply them by numbers by using the prccc:ding theorem to identify than 
wilh arrows (v p ... • u,.). h turns oul that the resulting operations arc 
independent o f  our choice of admissible coordinate sys,cm. 

Definition. Let { e TU,, 'I e TU,. -< e R .  Then the linear combination 
{ + -<'1 e TU, is defined as

{ + .. ,, = x-•<x{ + ix,,,

in terms of the one-to-one mapping X: TU, - R• detennincd by the 
admissible system of cootdinatcs x

i• In other words, we carry O\."Cr into TU
,.

the linear structure ofR•, identifying these sets with the hdp of the onc•to­
onc mapping X .

THEOREM 2. The linear combination { + ;_,, iJ ind,pc,dmt of th, odmwibl.e 
coordinate sysum figuring in its definition, and d,pauis anly on {, 'I, a,,d i..
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Proof. Let ;
1

: U - R, i • I, , , . , n be another admi"iblc ')'tcm of co­
ordinates, ond let Y: TU, - R• be the corres1>0nding ""'pp,ng of the 
tnngcnt Sf}nce to U at the r,oint x into the 11-dimcn1ional real sp;>ee R• of 
vccton1 (w

1
, , • •  , ,v.). The mapping )1 associates the numbers 

w, - !!.I c,,. "''· di ••O 
;.1, ... ,11 (2) 

with the class of the curve q,, and is one-to-one by Theorem L \Ve mus1 
show that the mapping yx- I ; R· - R· i.s an i.somorphism ortincar spa.ccs. 
It is already known that this mapping i s  one-to-one. Let 9,: / - Ube a 
curve whose velocity vector in the system of coordinates x, has components 
x1• \'le now find the components), oft  he velocity vector of this curve in the 
system of eoordinate11;,. The coordinates.1, can be expressed in terms of the 
coord ina ta x1 

as Cunctions.1, (x 1, • • •  , x.). B)• the rule for differentiation of a 
composite function, we have 

. I � il.1
, 

. I ,, 0 • I- -
i! 

.t J o, 
J• I X

} 
X 

or, more concise I y,

. a, . 
Y = iJ,,x. (3) 

Equation (3) gives the explicit form of the mapping yx-•, and this ""'P­
ping is a linear transformation. Thus the operations intn>duccd al,o..-c 
indeed e<juip TU

:x 
with the structure of a real n-dimcns.ional linear spa«: 

indef)tndenl/y �f the thoict of admissible toordiMlt 17sttm. I 

Rtmark. The coordinates x1 and j1 arc fixed in  the domain spacr R• • {x} 
and th, range space R• e {y}. According to (3), the matrix of the mapping 
yx- • in these coordinate systems is just ohcjacobian matrix(� il.r). 

6.3. The derivative ofa mapping. Let/: U - Vbc a dilferrntiablc map­
ping of a domain of n�dimensional Euclidean space with coordinates 
x

1: u- R,i = 1, ... ,ninto adomain Vofm..cfimcn.sionalEuclidcanspacc: 
withcootdinatesy

1
: v- R,j = I, ... ,m. Lctxbca point of the domain 

U, and lety = f(x) e V be its image (Fig. 36). 
Definition. By the derivative of 1h, mapping/ at th, point xis meant tht mapping 

J.I,: TU, - TV1<
••

of the 1angent space to U at the point x into the tangent space to Vat the 
point/(x) which carrit11 the velocity vector� leaving the point xofthecurve 
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Pig. 36 Oefioilion 0(1hc duiva1ive ofa mappan1/a1 a point K,

,p; I-+ U into the velocity vector leaving the point /(x) of th<: curve 
/ o t.p: / - V, i.e., 

J.1.(��l,.0) • � •·• (f • ,p
). (4) 

THEOREM. Formula (4) dtjitus a linear mappinifol, oftlw tangOtl s/>OC< TU, utll> 
/ht tangent space Tl'Jt••·

Proof We must verify first that the right-hand side of (4) is independent of 
the choice of the n:prcscntativc q, of the class of tangent curves at x, and
secondly that the mapping.f.l,is linear. Let i1 denote the components of th<: 
velocity vector X of the curve ((J at the point x, and J, the componmts of the 
velocity vector y oft he curve/• ,pat the point/(x). By the rule lordifl'erenti­
ation of a composite Cunction, we have 

. f.21-JJ - i.J x,. 
i• I i)xl 

($) 

whcrey1(x1 , ,  • •  , x,,),j: 1, ... , m arc the functions specifying Lhc: map-­
pingfin the coordinates x,,:,l' But both assertions of the theorem arc con• 
tained in (5). I

In addition, (5) implies the following 

Rtm<Jrk. Suppose that in TU� and TV/(.r) we introduce the componmts i,:, 
j

1 
of the tangent vectors in the coordinate systems x,,:,1 rcspccti\."cly. lne.n

the rnatrix oft he linear rnapping/.lx: TU$ - TV,.($) 
is the Jacobian macriJc 

(ily/ilx). It should be emphasized that 1/u mappingf.l, u indLpmdmJ � 1M 
eoo,dinate system, the coordinates being used only to prove the theorem. 
Probum J. find the deriV21ivc at x = 0 of the M3pping/: R - R given by the formub

y • xl, 
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llig, 37 A ll'1ttl>Plrlg which 1, ,- diffeomo,ph l� lo• ot:ighborhood of awy point �y 
not t,e OllC•CO-One. 

A11s,/.lo is 1hc mapping o f  the 1inc TR0 into the line TR., carrying the whok: line ,nto 0. 
P,ol,/m1 2 ,  Lei/: U - V, 1: V - W be: diffcrcnti•bJc mappinp. Pro\c t.lY1 the aom­
posite mllppi,,g Ii -I•/: U - Wis differcnliablc a,,d that Jli dtti\•.ttiw a, the- pow,#

equal.s 

"·'· -,.1,,�1 .,.1 ...

Prol,J,m J.  Lei/: U - V be a diffcomorphi..sm. Pro\·t tNt the mapping/.L.: TU. -nr,1a,
ia an iwmorphism or lioc.ar spaces. Civc an cumplc showit\g 1ha1 .., ,_,,,,, u fU

(•« Vig. 37). 
ProMm, ii. J..N/: R' - R' be the map1>ing gh·cn by the ro,mula (.-, -4 tr,>' ,, + i,,.
i = ✓-:-J, Show thatf.l. (x r;. 0) preserves angles (the Euclidean structutts ffl Tll!, Tll! 
are spcc.•ified by quadratic (omu .if + .tj and jf + jf ra.pcc1i,'Cly). 

6.4.. The inverse function theorem. Lei/: U - V be a diffcren1iable 
mapping from one domain in Euclidean space to another, and let x0 be a 
point of U .

TH£0Rt�M. If the dtrivatiu� 

J.lx
o
: TU Xo - rv,.,xo•

is an i.somorphism of lintar tran.sJormalions, tlun tltne exists a nngltl»r1-d IV •flk 
point x

0 
.su,h that the rutriction 

flw: W -f(�V) 

of J lo W is a dijfeomorphism. 

P,oof t The dim<;1l.SiOM or the tang�1H spaces ru
.._ 

and rv,t-.,, and hentt t he  dimcru;ions 
or ,he dom,1i,u U and V, are thC' same. Lei x1, •••• •• be admW:ible coon.:luu.ccs i n  U. 
and y1 ,.,., ;,

,. 
admissible coordinates in V .  Thie mapping/ is specified by functio,ft,s

y, •/, (x,., .• , x,.), i = 1, • .• , n .  Let 

F1(_.1> •.• , x,.,y, •... ,:,,.) = Jt -f,(x1, ••• , x,.). 
8y hypothc-sis, rhc dt:terminan1 or 1hc Jacobian matrix (�/Ox,)I. ... is � i.e., 1ht: 

1 The inverse fonction theorem i.s t'a.sily deduced from the i.mplicit function tbcottm,, a.nd 
vice vctsa. Hc-tc we derive the fovcr'$C func-t.ion theottm from the implicit function d-..c.:o.an.. 
since the latter always figures in coursc-son a nalysis while rhc formtt is usually left umt.1.tcd..
For a proor whi<'h i.s independent of the ;mplicit function theorem, sec, e.g... Sec. 31.9. 
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dttcrmln,1nl or (81',/8..,1)1,.,,1.,1 i11 ooorcro, Appl)'lf\l tht 1mpl1C'it fun<hon tM'Ort'M '°
tllt' 1y.1ttm orrunftlom P., i I,.,•, 'fin 1' rK'IJhbomood o(tht' potnl ....... Jr. •• ,,. •r 
flod 1h111 
I) In 111uf1lcicntly ,m11II nti3hho1hood F. oftht po1ntJ• ft'-♦) t�� ""'" runc,-om
A'1 .,1 (J".,, ,,Y.-) "uch 1h:.1 P(.-(,1),)) 0: 
2) Tht' •>•11ro1 F(A',l) O.)'• R h :n no 01hc-r toluhOfll X nnr ••; 
!) Thl' vulucw or the ru11nlo ,u .-1()) 41,1 thr point.re rqu.al 1hr coord,natn of thit point -., 
and th e 1111 ar c co11tlm1ovily diff(rtoilable the ilfflC' numbt'r ol tlmct ti 1M fuM,,;,,,.,.,./,
111 the oeighl>o�hond F. o f  thf point y0 (F' ig, 38), The (u.nctioru •• dt'tffffllnt a diflnm. 
1iablc: mappi ne .,, or 1he neighborhood E of thc point,. Ax.) into a nrighborhood of 
the-point x

., 
such 1hM/•• iJ the ide,uity maJlJ>i"I· 1..(,1• £'),. W. � ah<- mapp.ttg1 

/lw: 111 - £ \llld .,: F. -W art mutually in\'crK d1ff�nliable mappnp.. and hmtt 
diffc:Ol'no r1>hi.nni, I 
Probl,,n J ,  Prove thnl t1(E) it a ndghborhood of th e point ..-., i.e., ,on&.1.tM .JI poinu of 
the do main U whi(h a.re aufflcirnlly near the poio1 ••· 

6.5. Action of a difl'eomorpbi1m on a vector 6eld, L<l Ube a domain 
of Euclidean ,pace, and let v be a vector field in U. lf.r is a poinl of1hc do­
main U, then v(,\') is a tangent vector; 

v(.<) e TU,. 

Let/: U - Vbc a diffeomorphism. 

Definition. By the image of the uu:/or field v under th, diff,omorphisa/ (F"tg. 39) is  
meant the vector ficld/.v whose vec1ors arc obtained from the vcc1ors v(x) 
by applying the derivative/.!,: 

(/.v)11,1 9 /.1,v(x) e T"f,,1 •  

y 

E 

Fig. 38 The invcn.c function.

r 
-

Fig. 39 Ac1ion of 3 diffc:omorphism/ on a vector- field v .
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,,.ablm1 /, Prove 1h11 i( the field v I, dlfttrcnh•blir (u�, i, d«-tcrnmwd by ,.(old oc:,e.. 
1i11uou,ly cllfftrtn1l11blc funnion•, ,(.-,. , . , , x,.) ,n th,r •y t,ttm o (  coord1natn .-,). thim th,
r.rld /.v ,, 11l10 dlfTcrrn1l1bk (�•i1h tht anme ,, if th,r d,fl"tol'n0f'ph1�m/ • of ct .. (;9• '>­
/U,,,. Stt rnrmuln (,'\). 

Tt1 RORV.,, /.et/: U - Vbtadiflto111orphi1m. ThtnthtdifltrrntialtfWIIIM 

I: • v(.v), x 11 U (6) 

wit ii phase spau U dtltrmintd by the lite/or firld vis tqufoaltnt lo /ht,,,_.,;.., 

j - (f.v)(y), 7) 

1Litl1pl1ast spate V dt1trmi11td by thtvtctor fieldf.v, i.t., q,: 1- U u• JM•ti•ef(6 
ifando11/yif/•<fJ' t - Visasolutio110J(1). 

Proof Obvious. I

In other word-., let.,;/- Ube a wlu1ion of equation (G), .and let ti r) - •,...,... t).
If •(10) • ,,0, thM � lc.1\'t1 x0 aod J .. • le 1wC1 -''• /(,c0l. It fol�-. from thit ckfinic..ion 
or/. tha1 

f•• di d1 ,.,. 
4-1 f •• f.1�4-1 •
ar •• 0 ar 1.0 

f.l., d
d;I - (f.v)(,10),

,.,. 
Therefore:/ .. ., i.s .t solution or equation (7). To compl,ctC' the proor, ""'""C' appl.v- this: ttsuh
10 the in\'Crst diffeomorphis.m/-': V - U. 

6.6. Examples. The above 1hcorem allows us 10 invcs1ig.,1c and solve a 
great ,·ariety of differential equations. In fact, we: need only take: an cqua• 
lion 1ha1 has already been solved and 1hcn apply a difTromorphism. thereby 
solving the new equation as well. 

Example I. Consider 1he sySlcm 

{�, = -�2,
Xz = Xi,

(8) 

de1crmincd by a vector field in 1 h s -plane (•, = x,,o, = x,; F,g.40,. u,

/: R' - R' be 1he mapping carrying 1he poin1 (x,. x,) into the point
(y.,y

2
), wherey 1 = x1 + x2,y2 = x

1 - x2
• This linear mapping/is a 

diffeomorphism, and its derivative/.! ... has the matrix

Hence 1he new vec1or field (f.v)(.r) has componen1s w, = _r,, "'z = -.1,.
and our system is equivalen, to the system 

{!• = Y,,
J'z = -y,.
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/ 

fig. 41 The phase pl ane or 1hc new sy51cm.

Fig ,  .f2 The phase plane or the original system.

Chap. I BaJic Con«pu 

Fig .  43 A pendulum near itS upper equilibrium position. 
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This system, which is a direct product or onc-dimensinn•I S)'lterm, has
nlrcndy been studied and solved, The srstem hos• saddle point (hg ◄I)
and n solution or the form 

.Yt •)',(0),', .,, - .1,(0),-' .

Usingj- 0 to return 10 the original system, we get• rotat<d .addle point
(Fig. 42) and the solution 

x
1
(t) • x1

(0) cosh I+ x2(0) sinh I, 
x,(t) • x,(O) ,inh I+ x2(0) cosh I. 

R,mark. Let x be the angle or.mall deviation from the vcrticatoran invttt<d
plane pendulum (Fig. 43). The equation or motion or the pendulum takes
the forrtt i • x in an appropriate system or unit.s.f Let x • .r1, i1 = .r1•
Then the pendulum equation takes the form (8) for small deviations from
the vertical equilibrium pmition. 
P,HJ,m I. To whid1 motion, of 1he peodulun, do the v:ariou.s pha.K cun-u i:n F"•- 41
correspond ? 
Example 2. The equation x • -x for small oscillation, of a pendulum nar
its lower equilibrium position reduces lo the S)'SICm 

{ � 1 • Xz,

Xz = -x, 
(9)

irwe write x, • x, x2 • ic. The form of the vector field (Fig. 4'1) suggt:slS
the utility of polar coordinates 
X

I 
= T COS 0,

:r, 

/ 

1--·-�"-x, 
' 
- /

x2 = rsin O .

Fig, 44 The vec.tor flcld or 1hc pendulum equations (9} .
t Actually!c - sin x, whic h an be approximated byl = xrorsnullxandS4 l'Mdiffctt:ntt 
in signs or the right-ha,1d sidC!I o(thie �ndulum equation nea.r its upper a.nd lc,,wcr cquih"l>
riun, positions is explained as (ol lows. In a n,ejghborhood olthc upp,:-r �'briu.m position
thie momcnr or the (oroc of grsvlty (the weight) moves the pmdulum ia tit iil«tia -fib
indinatil.m and hence !c = +x. In a neighborhood of' the l�·u equilibrium position chc
moment or the (orcc of gravity movo the pendulum UI t4t diuc.hllft fl/>l»ak • ils iedi-tw
and hence i = -x. 
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fig .  115 Polar "coordinat«," 
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-

r 

Fig. ◄6 Phase c:urvcs o( the 1k'ndulum c:qu1uion1 in potar coordina1e1.. 

These form11las give a differentiable mapping of the half-plane, > 0 onto 
the plane{,<,, x2) minus the point O (Fig. 45). This mapping is not a diffco­
morphisrn. However for the domain V we can choose the planc{.r1 ,.r1) minus 
any ray, say the ray x, > 0, while for the domain U we can choose, the hair­
strip O < 0 < 2,r in the half-plane, > 0 .  Thcnf: U - Vis a diffcomor­
phism. and the system (9) in V is equivalent to a system in U, namcl)• 
(Fig. 46) 
{ ; = 0,() = -1.

The solution of this system is of the form 

r(I) = r(O), 0(1) = 0(0) - I, 

and hence the original system (9) has the solution 

x,(1) • ,0 cos (00 - 1), x2(1) = ,0 sin (00 - 1). 

PT<NJl,m 2. Vcriry Lhal thc:sc forrnul.u gi\'C all the sohalioru of the-SJ$10ll (9) b :all,. •nd 
no, just for (x., xJ) « V .  

Problon J .  Prove th:11 1hc ph:ai1c cul"\'ct att circlies (Fig. 47)� and lh:u thie t�:ach--ancc- m.l�

pings g' form a onc-paramcu:r group of linear transform.at.ions o( lhc pb..ot. •illltrc 6' is a 
rOlation 1hrough angle I with a matrix of the form 

( c�/ sin/)·-smt cost 
Returning to the pendulum equation X = -x, ,,·c find that the pendulum 
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:r, 

l�ig. 47 Ph:ut' cun·c:s or 1ht' pendulum NfUatiom in rcnangul.ar c-oord,natn.

:r, X
3 

.1; 
' I 

I I t 

I I 
, 

1-'ig. •IA lmcgral cur\'cs or tht' pc:ndulum cqu::uiom.

executes harmonic oscillations (x = ,
0 

cos (0
0 

- 1)) whose pttM>d �ual• 2,r

and docs not depend on the initial conditions. 

P,oblem - I. What arc the integral cur\'cs o( 1hc system (9) � 

Ans ,  Helices or pitch T = 2,r with common ax.is x1 a x1 = 0, wh,ett the- a.xis is a.l:so an 
inttgt:il CUI'\'(; (Fig. 48). 

Example 3 .  Consider th e syucm

I .ti = :c, r x,(I -:cf - Af), 
:f1 - -x1 + x1( I - xf - xi),

obtained from the sysicm 

I '�Jl,), 
6= -1 

(JO 

(II) 

by going O\'C-r to tte&aogular coordinates .r1 = , cos (J, x1 =,sin(). Actu:aDy, the-q,,usn 
( 11) is tquivaknt (with 1hc usual s1ipula1j&ns in\-olving th e nonuniqucnas of p,obr
eoordin.:i.tcs) to 1hc system 

I .i 1 -x1/(r),- 1 +xJ> 

X, - Jt,/tr),-1 - Xi, 

which reduces to (10) if/tr)• r{I - r1). 

Thus we must invtstigate the syst em ( 11) with f(r) r( I - ,1 ). Finl � com-du lM 
integr al curves of the <'quation ; - -Jtr) i n the half-pb nc (t, r),, • 0 {F11g. -49r� noting that
lht veetor field on th e li 1,e v = /{,) has three singula r points , - %. I. o .. ,..--b,c,rc th< 6dd
is dirtttcd toward the points , ± I and away from the poi:m, O. The phnc-<.'UJ"-U 

in 1he haJf.pli.lne (,, IJ),,.,.,. 0 a� obtained by n-..a.k.i:ng a .-OC.&tion (sintt 8 = 8• - , , .  
Rcturniug 10 rectangular coordimues. we get t he pieru.re shown i n  f"'ag. .50 .  The cu:n."C 

x1 = x1 = 0 is the only singular point. The phase curves startin g near dais point fflO'lo"'C 
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r 

r 

1:ig. ◄9 Jotegral Ctit\'a or,he e<)u.i1ion f- ,{I - ,1) and ph.ate cun.'ff o/lhc l)'ltan(IO)
in polar coordinrttcs, 

Fig. 50 Phase curves or the sys1em (10). A limit cycle . 

10" 
, Wildcats 

' 
' 

, , 

, ' , , 

' 
• ' , 

, • '

, 
• '

Hares •

/!JOO t90.; 81/l l!llf !!to 1!25 /JJ/J /9JJ 

Year 

fig. 51 Oscillatiom of the wildca1 ar,d hare pc,pulations i n C...n.ada.
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1iwny rroo1 it ru , inuc;uc, a,ul wind around th,c tirdc .rf + xf I from the ,�
iu t - I oo. Thi, drclc i, itJC:lr • ,,hue curv«', called • h••' Ql'l.t, ICo-n�,, 11 the: uwtal 
poln1 lic-1 ouuldc Ille did, xf t xj < I, then the 1>tuue rur,e wincb 41r0Mfld the lm,11 cydt
from the Oubidt' 111 t , too "nd (Jotl off 10 inflnoy for nq:111h·c ,. 

Limit ryda dtt(ribt 1hr 1111blc 1>crlodie rq:imn of the n101ion of at'I 1u1onomou.
sy,uc,n. For tic,uuplc', ., 1 11nd A, ml3l11 dr notc the dtH11ion1 of the m,,nbtt of ._,a«kau
11nd 1lie nu,nlwr or harC'1 rrom thdr cquiM>f"ium ,·a.lUC" (the C'orrnf)Oftdn'I «°'°"°'I 
cqu�lio,, I, not exactly or the form ( I 0>, bu1 has um,lu propuues). "nac:11 the lam11 cyck 
corre1pond1 10 the 1�r iodic 011c1ll :uions o( the wildcat and hare popu1atiioim_ ""kich att 

,omtwha1 ahirtcd in phue with ro1>«1 10 Ol'lt' another. This is actw.ly obland i.n the:
field, whh the oscill :11io," in the oumhc-r or w,ldnu laggin.g bthind f'"•· SI).

01hcr e,ci,mplct or the orc"rrrn� or ,table periodic- oteilla11on:1 undct' sta�ry a •
ternal condhions art" afforded by f'lockJ, iteam rng ines, c-:lec-trk bdls, tht human hon,
v.,cuum 1ubt- CMcillators gcner.-uing radio wa\'t:Si and variable- sears of the: Crphod 1ypc::
the opcm1ion or tue'h or thne mechanisnu is dCl(ribcd by a limn c,·tlc ,nan app,op,i..k
ph.iuc apace. However, it would be wrong 10 think th�t a.U mc,U�t()f'J prottt10, att d,e. 
ndb<"d by liinit cydet, and in fart rnut-h rno� complK.tttd brhu>ior o( phurt cun+o es
pauihlr in :a multidimco1ion11I phaJC" s1>.1cc. Ji, 1hi:1 rt'g.ard, we ntc tht prtt� of 1)...-&­

s('opt,, cite motion of plancu and artificial satell ites, 1n clud1ng thc-:ir t'OUl.lOnl about WU'
aiu:s (the 0011 1:H"riodkity or thCK motion. i, r<"!lponsablc- ror the compln111y ol lM caJ.Nrcbr
:u,d the t.liffi.,·uhy ir, t>rtdk1ing tides), a, well as lhc motion of charged putic.ks in a mac ­
ne1ic firld (r esponsible for tht' O<'c-urr<'n ce of the Aurora Bornlis). Stt a.ho Stts. 24 and
25.G.
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In 1hltt drnp1t..·1 ·  WC' formul..uc· 1he haii;k rc-,uh, of tl1r 1l1<"ory of ordm.ary 
diffi·r<•n1inl c·,pm1iou,, df'nli11k with 1lu· r-<i!itrntr and uniquC"n"" of iOlu•
1in11< and nffir.i i11t<'g1·al,, and ..,;,1, 1hr drj><•ndrnrr nf'<llu11on, on 11111,al

data rrnd pnrnmc•tc•r,c, \Vt• l>Mlf>nnr tlw proor, u1111I (:hap. 4.confimngour• 
!WlvcJ al 1hi� poinl to 3 di,C"u,,ion c1f ho\, 1 thr ,·arinu, u·iuh• .art rTlau·d to 
one.· anollu·r. 

7. The Vector Field near a Nonsingular Point

(:On�idcr the diffcrcntial equation 

x a v(x), X € (/, 

dc•tcl'minrd hy a smooth vr<·tor fit•ld v in an 11-dimrnttional phlit' Jpa<"C' { • •  
Lei "

o 
e I,· be a non,in�ular 1>oin1 of 1ht vc-ctor fic.-ld, '-() 1h�1 v x0) � 0

(Fig. 52). 

7.1. The basic theorem of the theory of ordinary dilrttHltial equa­
tions. Tlte uutot fitld v ii difftomorphic lo a tolls/ant fit.Id e I i• �Ct]' R,JiLwllllJ 
small nei_�ltl>orhood of a ,1on1ingulat point .. \fort txa(I/.J. t"4rt ttisl.s o Miltl,«,-.,J 
V of 1/ie poi111 x,, a11d a dijf,omorpl1ism f; I' - 11' of 1/ie nei.,h"'1ri...l I' .nl• • 
domain IV of Eudidean spa« R" (Fi ,(.  53) such thatf.v = e

1 
(r.clicre e, ts Ilic 

firJ/ basis uu/or of R"). If v is a fitld of da,s C'. I < r < oo, IN• J is•

dijftomorphism of class C,. 1.dtl, tl,e same,. 
Lee y1; R" - R 1, i = I, ... 

1 
11 Ix rectangular coordin.a,.cs in the Eu• 

II 

Fig. 52 �onsingular poinl x0 of a \ '('C'lOr field v .

:,;, !I, 

fig. 53 Rtc1ific:uion ora vector field by a diffeomorphismf.
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clirlc:rn Apace rcmtaining 1hc domain ,v, so that 1hc vrrtor e
1 

h.a1 compo,­
ncnl9 I, 0, ... , 0. According 10 Sec. 6, the l:"uic theorem can� formulated 
n, rnl lows: 

T/r, 1/ij/ert11lial ,qua1io11 (I), eonsidtrtd in a s•.ffititnllJ small nntU..1-# I' ,f • 110,,sr'rt1J11/(1r poi,11 •
o
, is tquiraltnl lo lht parlttulo,1.f 1implt tq110IIM 

ye W, 

; .e. t IO tl,e SJJltnt 

j, = I, 

i,, lltt ,lomai,, l•V. 

(2 

=j. - 0 (31 

The following is still another equivalent formulation orthcb,uic tMC>rcm: 
/11 a suificie11tly small neighborhood V of a non,ingular point "o, - ca c!w.M ""
admi1sible eoordi11ate system (y,, ... ,J'.) such that tquotion (I),,,. w u.riltm i• 14'
sta11dnrdfom1 (3) i11 thtse coordinates. 

The basic thcorern is an assertion orthr same character as tM th4!ort'.m of 
linear algebra on reduction of quadratic forms or matrices of <>p('n.ton to 
normal form. It gives an exhaustive description of the local beha,·ior of a 
vector field and or the differential equation (I) in a neighbo<hood of a non­
singular point x0, rcdutingcvcry,hing to the case o f  the trivial equation (2 
The proof of the basic theorem will be given in Sec. 32. 

7.2. Examples. The hasic theorem might be called the r«lifaoh• ,,-,,.,,
since the phase curves and integral curves or equation (2) a.-., straight lines. 
Fig. 54 shows the level lincsyi = const of the "rectifying coordinates .. for
the pendulum equations. 

P,obltm I. Arc 1he rc:c-tifying «iordin :uc:s )', untquc-ly dtfin<d? Pro .. 'C" tlwrit in tht cue:
,, = I tlw mol'di n.at(', is defined 10 within an aflint trandormation.f 9 ..,_ 6.

Prol>lr,n 1. Skccch level lints of rcc:1ifying cool'dinata fOl'" och o( the follo---ing ,--uior-fidds
in the domain U: 
a) v =-x,e, + bie,. U.,. (x.,x1:x, >0}: 
b) v = e1 + sill x1e:, U = RJ; 
c) v - x1e1 + ( I - ,\'f)e,, LJ (\'i,X1:-1< .. ,<t}. 

!11 

r 
-

-- -

- --

- - •

!IJ 
(al 

Fig. 54 Rcctiti.c:uj(ul or the pendulum cquatiottS.
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Fig. 55 A f.'ln1ily or curvtt which is nonr«tifiablc in 1t.e whole plane.

•P,obltm 3 ,  S uppose th,·u in R" we are given a (diffcr-c.ntiable) fie.kl ofu.ncm1 pl;a.no R.1.
Can thi, fleld al\.\.•ays be rectified (i.e., mmsformcd int0 a field o( paralld plana) 1n a
n eighborhood or A point with the help <If a suita.blc difficomorphtlm?

Hinl. If ,he field or planes i, rcclifiable. then it is a 6dd of plana tangu,1 to the family
or 1urfocn. 

AnJ ,  No. Con sider for example the field or plancup«i'Md by the fi.cld o(nof'Mah .. 2e
1 
+ e., 

in R'. There docs not cxi..st a surface with thi..s dirtttion as lhc normal at each poin.L
• Pro6/1-m f. Suppose a vector field v has no singular points in a domain U .  (;aft on,c then
rectify the field in the .,..•holc domain U, i.e., is tht basic th�cm true •·1th V = U?

Hinl. Construe, the field in the plane \.\.'hose phuc curves arc of the form abio--n in Fig. )S. 

7 .. 3. The existence theorem. The basic theorem immcd.iatdy implies 

COROLLARY I. T/,er, txiJts a solution of tquation (I) satis#nt ti;, imti,,J C#ditiM 

,p(to) • xo.

Pr(}(Jf If v(x0) = 0, kt ,p(t) • x0
, while if v(Xo) t, 0, then, by the basic 

theorem, equation (I) is  equivalent t o  equation (2) in a �ghborhood of 
the point x0 . But (2) has a solution,; (which?) satisfying the initial condition 
,j,(10) = y0 = f(x0). Hence equation (I), which is equivalent to (2), has a 
solutioo satisfyiog the initial condi,ion ',0(10) = x0. I

7 .f. The local uniqueness theorem. The basic thcor-cm also immediately 
implies 

COROLLARY 2. ltl 'Po : /1 - U, ,p2: /2 - U bt tu.v solutions ef <f"ali"" (I) 
satis/Jing the same initial C()ndition 

v(x.o) 'F O. 

Then there exists all inttrval 1
1 

containing 10 on wh.i,h. c,1 = tp2• 

Pr(}(Jj. This i s  obvious for equation (2). But equation (I) is equivaknt to 
equation (2) in a sufficiently small neighborhood of the point "o- I
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/11m11rk. We will soon sec thnt the restriction v(x0) ,< Ocan be dropped For 
11 • I thl, lias alrcndy been proved in Sec. 2. 

7,5, Local pha1e flow,. I.ct v be• vector field in the pha-K space U, and 
let x0 be a point or U.

D,ji11itio11, Ry n local pha11jlow determined by the v ector fidd v in a nnghbor• 
hood of the point x0 we mean a triple(/, V0, 1), consisting ofan interv.>I 
I • {I e R: Ill < c} of the real I-axis, a 11cighborhood V0 ofthc point x0,and 
a mapping g: / x V0 - U, which satisfies the following thrtt conditions: 

I) For fixed / e / the mapping g': V
0 

- U defined by I'• - 1(1, x) ii a
diffcomorphism; 

2) For fixed x e V0 the mapping ,p: I - Udcfincd by \1'(10) • ,'x ii a
,olution of equation (I) satisfying the initial condition l'(O) - x;

3) Tire group property g'• 'x - g'(g'x) hold, for all x, s, and I such that
lhc r'ight-hand side is defined, where for every point x e V0 1hctt aisu a 
neighborhood V, x e V c V

0 
and a numbcrcS > Osuch that the right-hand 

side is defined for Isl < cS, Ill < cS and all x e V. 

Example /. Consider the vector field v = e1 in a domain U of Euclidean 
space R", and construct the following local phase flow in a neighborhood of 
a point x0 e U .  Start with a cube of side 4e centered at x0 (Fig . 56). For 
sufficiently small e this cube is entirely contained in U. Lc1 J.'0 d�tc the 
interior or the smal ler cube of side 2e (one hair that of the original cube) and 
the same center, and let I be the interval Ill < •· Then define the mapping 
gbytheformulag(t,x) • x + e,1 . 

P,oblt,n I. Veri(y 1hat condi1ions l), 2), and 3) :11tt satisfied (or thlS cx.:unpk. 

Another immediate consequence of the basic theorem is the folJo"';ng 

COROLLARY 3. Th, wctor field v dettrmints a /«al phaujlow in a nnzl,l,o,/rood of a 
nonsingular point x0 (v(x0) "' 0). 

Proof. This has already bectt proved for equation (2). But, according to t� 

II 

Fig . .  56 Local phase Row of the equation i1 - c1• 
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• 

Fig . .i7 The local l)h1!hc flow(/, Y0, -) lat ob1alo� ftOM 1hc local phaw ft.ow, I. W•• A)
of the rectil'led cc.1v :uion b)' ap1>lying the diffeomOf'J)hn.rn / '.

basic t hcorcm, equation (I) is equivalent 10 equation (2) in a sufficiently 
small neighborhood or the point "•· I

In mOrt detail, 1(:1 (/, 11'0, 4) be i. local phatc flow olthc fidd ••in• ftfChbOr'hood W
of the ll0 io1 y0 - /(x0), where/: V - W i.s 1hc diffcomorphism figurine ,n thr t...lic
1hrorcm, Then the de11ired phaic flow i.s (/, V0

,1}, when· v. 1-•• "'• and
t J·' • h' •/(l'ig. 57). 
Remark I. In particular, Corollary 3 asserts that 

1) There exists an interval Ill <con which a solution of equation (1) is
defined satisfying any initial condition sufficiently near x0: 

2) The value or this solution ,p(t) depend• on I and x both continuously
and difl'crcntiably (of class C' if the field v is of  clas.1 C').

Remark 2. We will soon sec that the re'ltriction v(x0) 'F O can be dropped.

Problem 2 .  Prove that the value •(l) or 1hc solution • s:uisfying 1hc initial condi1ion 
.,.(10) ..- x6 i.s differentiable wilh resp«I 10 t0, x.o, and t for �uJrtcicntly sma..11 a, - i.,I.

7 .6. The theor-em on continuous dependence- and diff'tte-ntiability 
with respect to a param.eter. The preceding theorem immffliatdy

implies 

COROLLARY 4 .  UI 

x = v(x, ,x), XE LJ (IJ 

be a family ef differential equations determined in tlrL pitas, space U lt7 lli!dlTf fid,is v •J
class C' a11d depending di./Jtrtntiably (ef classC') on a param,u," e A, u;/,a, A is•

domain in Euclidtan spau. Suppou v(x0, "o) 'F 0 .  TlrLn the oalw •J 1M s«•liM 
,p{I) of ,qua1io11 (I,) satisfying th, initial conditwn 'l'(O) = x d,po,J, difamlialt/7 
(of class C') on t, x, and rxfar sufficitnl/y small Ill, I• - :,;01, and i,x - "ol• 

Proof. Herc a little ingenuity helps. Coruidcr Lhc vector field (v(x, 2), 0) in 
the direct product U x A (Fig. 58) and the corresponding system of e q ua ­
tions 

{ � = v(x, ,x),
IX = 0. (4) 
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V 

Pig. 58 ·n.e rh:u� spac� o( th� extended Sytlcm j - v(•. •). 4i 0

By the preceding theorem, the solution o((4) depend• difTerentiably on I, 
x, and «

0 
for sufficiently small !ti, Ix - "ol, and I« - «01, But th< solution 

of (4) satisfying the initial condition (x, «) i• (ff,«), where• i• the solution 
of equation (1,) satisfying the initial condition ff(10) • x. �relor< .-(1) 
also dcpc11ds diffcrentiably on 1, x, and"· I

Remark, The condition v(x0, «0) ,f, Ocan be dropped, aswill l,.,shown later. 

7.7. The extension tb.eorem. Let v be a vector fit-Id in a domain U. and 
let x0 be a point of U .

Defi11ition. I f t  here exists a solution cpof equation (I) ,atisfyiog the initial con• 
dition q,(10) � .t0 defined for all I e R, we say that tN,ol•tiMca lNutauhd 
i11definit,t.,. If there exists a solution defined for all 1 ;i. 10 (or all I.;; 10), we 
say I hat th, solution can bt extend,dforward (or backward) indtjiniut:,. 

Let r be a subset of  the domain U. I f  there c,c.ists a solution ., of equation 
(I) satisfying the initial condition q,(10) • x0 and defined on the interval
10 ,;; I <;. T and if cp( T) belongs to r, we say that t/r, so/111;.,. ,..,. IN ,xu,u/,,/
forward upto r. Extension backward up tor is defined similarly.

Let F be a compact subset of a domain U containjng a point Xo� and let r
denote 1he boundary of F (i.e., the set of poinlS x e Fsuch that c--cry �igh­
borhood of x contains points of the compkmentary set U,F). Suppose, the 
vector field v in the domain Uhas no singular points. Then i, i$ no, hard lo 
see thal 1he basic theotem implies 

COROLLAR v 5. The solution <p ef equation (I) can bt ,xt,mhdforward (..-bad.uard) 
eithtt indefinittl., or up to tht boundary ef F. This extmsion is uttiqw in IN mu, IM1 
any two .tolutions sati.ifying tlte same initial condition coincidt on tlt.e in.UTs«tit11t .j Utt 
inlervals of definition. 

P1Hf, First we prO\'C lhe uniqueness. l..(-t T be lhe least upper bound of 1ht $C.t ol ttu.m.bcn 
t tor which the solutions•• and •., coincide for a.II tin the inter,.·a.l '• !fit t 'i: r (r..g. 59).
Sup� T i.s an interior point of both intervals of definition. Then •,CT) - •1(7) 
because of the continuity o( •• and •

J
• By the- local uniqueness theorem., •1 <Oincida 
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Fig. !,9 The u nic:1u«·ncss or 1h.- txu·ruio n folJows from the local u:niqm tl.«llit.m.

Fig , Go Coo.s1ruc1ion of th«" txtc-,uion.

f"ig, 61 txi11encc of the rxtcnsioo up 10 time T i.nclusi" ""·

with • .1 io a ncighbothood oftht' poi1,1 T, so 1ha1 Tcannot be 1hit leas1 upper bound+ 

Hence T rnw1 ht the end poi ,H of one o f  1hc in1cn-als of diefinition, and 1hr t•--o soh.uiom 
coincide on the par1 of the intcrsttlion of thc:K i nu:n-als for •• ,-;hjch , ;;a, c.,. The" OM 

t < 10 i.s treauxl .sim ilarly.
We now comtruC'l tht' extension. lf thc twosolutiom coinct<lc on the inlO"tlttlion oltbr 

intervals of definition, then 1hcy can be C'.'Offlhin.ed to  form a solution ddinrd on \be u:nioa
of these interva ls {Fig. 60). LA:1 T be tht" lr.:a.st upper bound of 1hr t for wbirh tbett csisu
a solu1io,, ., of equatioo (I) sati.sfyi ng the initial condition •(t0) = .. a.ad a.ho thr am ­
dition •(t) E F for all t, t

0 
< t < : .  Ry hypothesis,. t0 

< T < oo .  If T co� lM $Ol!ution 
cao he cx1cnd«l indefini1dy fOl"'\"ard. Suppok T < co. Thrn. a� ,, ,rt  nnw shoil-•, tbttt 
exists a solut i01l • ddlned f°" all t, lo Ct I (; T .  such th.al •Cn � r. In fact,. it rouo..-s

from Corollary 3 tha1 every poini llo f' Uhas a neighborhood V0(-.) ;1..nd ;1. corrcspondi:ng 
nunlbcr c:(x0) > 0 such tha1 for all x f V0(x0) 1hc:r c  nisu a solution• ytisfying the- in:iti31 
condition •(10) = x a11d defined for It • lol < c (namely•= ,,-r.s,. SinttFis com­
pact, We can choose a finite covc-rirlg of 1hr set F fr0m thctt nc:ighborhonds ol the-points 
x0 f F.  U1 1: > 0 be 1he ,smallcs1 of the finite numbc:T of NW"rMponcUng n:umbcn -1-. . 
Since T i.s a least uJ)pcr bound, there exists a r bc-twttn T - I! and T such t}gt •it) f' F
for all/ in 1hc: i,uerval 10 < t ._; r. In par1icular •Cr)� F, i .e. ? th<- poin.1 • r) is c�·aat 
by one of the Mighborhoocb of the finite 00,"<:ring. He� there cxisu a tolu:ticwt •' 
ia1is-fying the initial condition •'(t) = •Ct) and dcfin ied for it - rl < • (F"� 61). By UlC"
uniqueness theorem, •' coincides with • on the whole intersection of the inten-als of



Sec. 7 Vector Field Near a Non,ingular Point 

-+---1---,1-'-i-
lo t

Fig. 62 T'he w!u1io,,, or the tqu.-1ion f - x1 + I <annot be atc-ndcd 1nck6nitdyntbrr
forward or backward. 

:i:, 

Fig. 63 The solutioo of the pend ulum cqtatiofls C'al\ be 01c-ndnl inddinitdy. "'--hilt tt­
maining in the di.sk P ,

definition, Henn· ¾'C tan use• and•· to OOflStruet a solutio n•" defintd re.- ,. < t < t + L
lil p artic;ular, •"'(r) cxlsu.

Finally, we thow ,hat •"(O) f F if t0 < 8 < T .  In (ac� n·ay solut.oft • satisfyinc th<
in iti.alcondition •(t0) - •o andddincdfor t0 < t < 8mw:1coincick"'ith•"'(uniqumc.).
rr •"(O) .aa •(O) did not belong 10 F, then T would not bC' the lcu1 upper bound o/ lhC' 1<1
tr: •(t) • F for t0 < t < t}. Morro\•t'f', •"( T) � r. In  fact •"( T) e F, bring I.ht lim.d of a 
«-quencc or point s •"(O,) e F, 0, -. T .  On the other hand, n-cry intO"\-al with T as its k(t,. 
ha nd end poin t oonta ins point s  I such lh at •"(t) docs not bdon;g 10 F, siott otba--.'"ltit all 
the points •"{t) would belong to F for all I in $0fflC nci.ghborhood of T.and then T •"Ollld 
not be the least upper bound .  This prO\'CS the th(OrC:ffl for cxtmsion fclnq,d, The cut 
I < 1

0 
is 1rca1ed .simil arly. If

Remark. �Ve will soon see that the restriction v(s) # 0 for alls e U cu, be 

dropped. 

£:cnmplc I. E\'en io the case wher-e U is the whole Euclida.n spaee , the solution. ca.tl1'0t 
alw a)'S b.: exttridtd indefinitely, e.g .• when n = I,  v(x) = xl + I (Fig.  6'2. ) .

£.,ur,npk 2 .  <.:oosider the J)('ndulum cqu:u:ioiu :i-
1 

= xJ.J:J = -x
1

• Let U ht tbt pbAie
(x., x2) minus the origin of coordi nates, and kt F be the disk lx111 + lxJIJ '( 2 .  "Incn the
solution satisfying the initial condition x1,0 - I, XJ.o - 0 can be exec-nckd inddinildy
(f;g, 63).

t As always in pro\'ing obvious th«>rems, it is easier to carryout the proolofthccctcQsion
thcoran than co read through i t .  
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Ptobl,nt /, For whiu inhl11I C'Oodhlo,u can tht IOlullon or ((IU;ahon, ""ith • htnh c-yck
(Sc:c. O.G, Ex�m,)lc S) be u1c,1drd lndrRnltfly1 
Probltm 2 .  Su1)po1c: t\'t1 •y lOlu1ion of equ111lon (I) nn ht tllltndtd ,ndrfiNldy bod! ro,,..�rd
1rnd l.>lu:kwnrd, t,4:111 dc-nott 1hc ,,adWt.n<'C' m1t.ppin1 Currying ('\C'f'Y poan1 oil�� 
111>M'"C' U l,Ho 1hc: valut •(I) of the t10lutlon ..,tlll(ylng 1ht innh,t <'ondahon • 0
Prove 1h,t1 f 1'J I, f l onc-1:wrnunt1tr 1roup or diflf'<lmOrphi,nu o( U. 

8. Applications to the Nonautonomous Case

We now consider the nonautonomou.s equation 

ic • v(I, x), (I) 

whose right-hand side is specified in a domain U or the uu,..,,, ph= •�cr
R••• •R x R',leR,xeR"(f'ig.64). 

8.1. The basic theorem (or the nonautonomous case. Lei (10, x0) be a 
point or the domain U. Then the basic theorem easily implies 

COROLLARY 6. Tloereexisu a neighborhood V eftht point (10, x0)"' U mid• d,fn­
morphismf: V - W of/ht nei11hborhood V onto a domain IV in Ew:litkan (• + 1 ) ­
dimtnsional space wilh c oordinalts 1,)1

1
, ••• ,;,,. s11Ch tlr.al equation (I) i,, J • is efl"r-o• 

lent lo the par tiru/arly simple equation 

dy 
= 0 

dt 
' 

in W .

y = (y,, .. ' .y.) (2) 

Thus the diffeomorphismf carries ohe point (1, x) into the point (1, y)
while leaving t unchanged. The equivalence means that q,: / - Vis a .solution 
of equation (I) if and only iff • ,p: I - I Vis a solution or equation (2). 

'The above corollary is eq1,1ivalcnt to the ba."-iC thc-orcm. A direct proof of 
the corollary will he given in Sec. 32. 
Pro6ltm I ,  OeduC'c Corollary 6 from the lxuiC' throran. 
P,obltm 2 .  l)t;ducc· the ))a_,.i«_, th('Or('m from Corollary 6,
.r 

w 

t t 

f-'ig. 64 R<..-..·tili< : :nion of integral C'U(\"O by a diffcomorph"'m / of otc-ndnt plQsc "Pt«·
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8,2. The existence theorem. Corollary 6obvinudy impli�

COROLLARY 7. J:o, sujfitit11tl,Ysmall II - r0( that «110 • solut1• •f tfMliM (I) 
satiifli,111 the i11itit,/ ro11d11ion <,t(l0) • x0 & U. 

8.3. The uniqueneoo theorem, Annchrr immediate con<cqucnceofCorol­
lary G is given by 

COROLLARY 8. Ar!)' two solutions of ,quot ion (I) satis/Ji•g tlu samr i,utiol tMditiM 
toi,uide on 11,e i11tersution of th, intervals on u.hi<h tAe:, art tkfintd. 

Proof We need nnly noce chac chi, is obviously true for equation (2 . I

Rtmark. Applying Corollary 6 en rhe case where v in ( I) i, independent of/, 
w e  sec thac chc rcquiremenc v(x0) ,t, 0 can be dropped in C'.orollary 2 of 
Sec. 7 .4. 

8.4. The differentiability theorem. Lee v • v(r, x) be a •�tor field in a 
domain U of excended phase <pace. In the nonautonomous case, the,. 
advance mappings do nm form a onc .. paramc:1c:r group or 1ransfonna1ions. 
However we can define "(t 1, /l) .. advancc mappings" as follows: 

Dtfini1io11. Byo /ocolfomi!J oftran.sformations t.: dtkrmintd /Jythtfa/dv(t, • in a 
neighborhood ofa point (10, x0) i s  meant a criple (/, 1'0,g) consisting of an 
interval / of the- r<'al axil containing 1 0, a neighborhood V0 of•hc poin• s0 in 
phasespaco, and a mappingg: Ix Ix V0 

- U,such that 
I) Forfixl'dl1,11 e/1hc mappingg;::(1'0 x 1,)- U definedby_t:(x,11)
= g(t,, t,. s) is  a diffeomorphism (on part of the plane I - ,, ; 
2) For fix,·d x E J'0, 1 1 E / the mapping ,p defined by (<,t(I), I = g(t, 11,,. IS
a solution of equation (J) saci,fying che initial condition <,t(11 = s:
3) The prnperry

.i:::(x, 1,) = g;;g!!(x, ,,) 

analogous 10 the group property (Fig. 65) holds for all '"• 11, ,,, and 13 for 
which the right-hand side is dt"fined, where for every point x E VO •here 

Fig. G.3 A 10<':II family of t1·ansfonn:ui01\$ .
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c·xi,i, a neighborhood V, • a V c: V0 and a number 6 > 0 such that the 
right-hand side is defined for It, - 101 < 6, i • I, 2, 3 and all•• V. 

The l;:1slc theorem now immediately implirs 

COROLLARY 9. 'r/11 u«torfi,ld v(t, a) d1ttrmi1<,s o /o,o/fomit.,ef1,.,.,fa,,,.•t,.,., i,, 
a 11,iglthorl,ood of t/11 point (10, •ol, 

PrO<Jj. Similar to that of Corollary 3. I 

H,rnark. Identifying every plane I • t0 in ext<ndcd pha.c space with phase 
space, we can regard she mapping,:: as a diffcomorphism of a domain of 
pha,e space into a domain of phase space. In the special case,. here equation 
( I) i, autonomous and v(t, x) • v(x) i• independent of I, ti,., difft0mor-

1>hi,m g:: depend, only on the difference 1, - 11 and coincides with the
(1, - 11)-advance mapping g"·••, (Thi, follows from ti,., uniqucnns
theorem and from the fact that if x • '1(1) is a solution oft!,., autonomous
equation, then so i, x • ,p(I + C).)

Thus Corollary 9 contains Corollary 3 as a special case, OMI u.�tlwMt tlu 
rtslrietion v(a) ,/, 0. 

P,ol,/u11 I. Prove th:u ,;: depends on just 11 - t, it aDd only if v(t, •) is ind,cpm,cknt of L

8.5. Dependence on a para.meter. The follo"1ing proposition ii also an 
easy consequence of the basic theorem: 

COROLLARY 10 .  /f v a v(I, x, C<) i, a Vttlor fald tkJMndint C'-di_ff,,-a,liol,I., M ti
poramet,r" (a, well as on t and x), then th,..,,,,. ,p(t) of th, ,olulNlf of tltt <f""IUHI 

x = v(I, x, C<) 

satiif)ing t/,e initial condition cp(t0) = x0 d,p,nds C'-diffu,ntiul7 M lo, Xo, "• 
and t. 

Proof. Similar to that of Corollary 4. I 

Note that {',0rollary 10 is applicable independently of whc1l,.,r or no, v 
vanishes. Therefore C-orollary 4 has now been proved withou1 lh<: restric­
tion v ,/, O. 

8.6. The extension theorem. Let v = v(t, x) bca vcc.torfidd in a domain 
U of extended phase space, let (t0,x0) be a point of U,and let Fbca ,ompact 
set containing this point (Fig. 66). Then the basic theorem immcdiatdy 
implies 

COROLLARY 11. T/1< 10/ution ,p of ,quation (I) satisfying tlu utitilll a,,u/itioa 
,p(t0) = x0 can bt ,.,t<ndtd batkward and forward up to 1/u boundm],of F. A-'!)' two 
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l 

Fig. 66 Extension or a solution up to the bound.ary or a comp:1ct I/ti F 1n otlNM'kd
llhtue sp,.1.c:e. 

sofotio11s satisfyi11g the same initial ,011dition coincide on tht inttrs«tiM -JIM utl.rrw,ls
•f d,fi11itio11.

Proof. Si111ilar 10 that or C'.orollary 5. I

P,46l11t1 I .  Prove that Corollary 5 is \1.:tlid even i(the f�ld v h.au.in.g.,.lu poinlJ.
P,001,m 2 .  Suppose e\•ery t0lu1ion of nt_ua1ion (1) can be atendtd inddinitdv forward or
b.u:kwal'd, Prove 1h:u x:: it a diffroinorphi"n of pha� SP-I Ct onto i�lt 
Probln1t 3 .  Sui:,posc, in addition, that the ,,ec,or field vis pcnodic in hrrK\totluit v't + T. •)
.., v(t, x) for all I and x .  Prove that the diffcomorphwns ftO'} (" an intqu) form a group..
1,e.1 

g;r = A• 

where A • t(, Which of the following two rc-lations is true:
t"., • • ,(QA•? 

9. Applications to Equations of Higher Order

By a differential equation ef order n we mean an equation of1hc form

d"x 
( 

dx d'x d•-•x) 
- - F I x, -, �.' '.' -� '
di" ' di dt"

' 
d1"-1 (I) 

where F(u0, u11 • • •  , u11) is a differentiable
defined in a domain U .

function (of class C', r :.,c I) 

9.1. Equivalence ofan equation of order ntoa syste,m of n&rst�:rder
equations. Sy a solution of equation (I) we mean a c•-mapping ,p: I - fl

ofanintcrvala < 1 < b(whcrc -oo �a< b � +oo}ofthcrcalaxisinto
the real axis such that 

I) The point wi1h coordina1cs

d,p
U;z = -

di ,. l 

. . . '

belongs to the domain U for every t e: /;

,.-1
"'

u,. = d•-1 'I t -i 
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2) For every t a I, 

d'tp ( d,pl d•- •,p )- - F t, tp(t), J I • • •  I d •-I di" ,., 
u t  

,., I ,., 

For example, the runctions ,p(t) • sin t and ,p(t) • cos I•� both solu­
tions or the equation 
d1x 
-- -x 
di' ' x,; R 

for the small oscillations of a pendulum. 
The phase space of the pendulum equation is the plane (.r, i), as in Sec. 

l.61 Example 5. We now consider the question of the dimer,s;onality of the 
phase space cor�sponding to the ,uh-order equation ( I). 

THEOReM. Equation ( l) is equivalmt lo the s.,stem 

(2) 

x. = F(I, X
a

, . . .  , x
,.
)

of nfirst-order equations in tlu stnst that if ,pis a solution of ,quaJio• (1), IAnl t/o, 
u,etor (II', </J, tj,, ... , ,p1•- •>) made up of tlu dtrioativts of tp is a sol■n- of IN
systtm (2), while if ( tp 

1 , • • •  , tp,) is a solution of tlu s.,st,m (2), thta tp, is a�
of  {I). 

P,0-0f. Obvious. I

Thus the phase space of any process described by a differcnoial equation 
of order n is of dimension n. The whole course: of the process 9 is determined 
by specifying n numbers at time t0, namely the values at 10 of thcdcrivat.ivcs 
of ,p of order less than n .
&a,nplt I .  The �ndu lum equation LS equivalent lO the- system 

ljl -xl, 
jJ - -Xu 

already invcsdgated in Secs. 1.6 and 6 .6 .  
£xampl1 2 .  The equa tion i - 0 i.s equi valent to the system 

I
*1 - x:,
'J - 0 ,

whose solution is easily found to be K1(t) - x1(0) - C. x1(t) • s.{O) +CL.Thus �'tty 

solutio n of the equ ation i • 0 is a polynomial of the fir,t dcgrtt in ,.

Probltm I .  Prove that the «juation d"x/dt• = 0 is satis6cd by a.JI polync:imia.ls oC dcgTtt kss 
1han n and onl y by f.he54: polynomials .
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9.2. The eid■tence and u.nlquenel■ theore.m■, Throrcm 9 I and Corol­
lr1rks 7 and 8 to 1111' ba,ic tl11'orem immrdiatrly imply 

COROLLA RV. Ciw,1 n point 11 • (u0, u 1, ••• , u.) of o domain U, IM #111tiM .j 
,quntiu11 (I) sntit/)'i111 th, i11i1iol ,011Ji1ion1 

q,(•ol a u" q, 
• 

d' - I 

I -d-, , - -�1 • ..
•••• 

(3) 

exists and is unique (in the ttns, that a'!}' two sol•tions sotis/J·in1 (3) ,.;,,,;1, M t/w 
i11ltrSt(lio11 of the int,rvals of definition). 

We can wrilc the inilial conditions (3) more: condsdy a.t

. . . , :1-·-,, - .. ,.. 
£.,u,mpl, I. 1'hc soll,uion of 1he pt�odulum «1u1i11on R -x (Fig. 67) Ptisfrvc lM initW
conditio,u
I - 0 ,  • 0, jl) 
i.s., ai O .  lf1heinitial c-onditioruarc

0, X • 0, UB 

then 11(1) = sin t, while if1hcy att 
l • 0, " - I, ' - o. 111 
then .,(1) • cost, 
P,o6ltm I. Find the solu1ions of 1he equatioo i .,.. .. of the i:n\'cn� pn,dulum F"c .  68,,
satisfying th<" in itial conditions (I). (II), (111), and
I - 0,
I ..., 0, 

• I, 
" - I, 

* t,
.t = , I. 

1\1 
\') 

\Vhat an • the motions of the p,4:ndulum cormpondm,g lo these folutiom? 

Counternample /, Consider the equation 2x = l1X and the initi:a.l conditions 
I= 0,, = 0, .t = 0 (Fig. 69). Then many solutions satisfy thcs,, conditions,

for example, q,(1) ::: 0 and q,(1) = 12. The point is tha11hccqua1ion in ques­
tion is not oft he foni, (I). 

II 

I Ill 

Fig. 67 Th.-cc: spc:c:ial solutions of the pendulum equation.
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Fi,g. 68 Five special .1e>lutiom of the cqualion of,� im·a-1«1 �ndulwn.

.2, ·

t 

Fig .  69 Noriuniqucneu of .a sol ution satisfying the inj1i:al concUtion" • i, O.

9.3. The differentiabilit·y and extension theorem.a. 

Probum I. Staoe and prove the theorem on continuous and differentiable 
dependence on the initial conditions and on parameters, and also thccxlcn• 
sion theorem, for the case of a differential equation of order«. 

9.4. Systems of equations. By a syJlm, of diffu,ntial ,qua1i,,,u we mean a 
system of equations oft he form 

d"1x1
- = Fi(,, x, ... ), 
dl"' 

i=l, ... ,n (4) 

involving n unknown functions X;, where the arguments of the functions F, 
include the independent variable,, the unknown fonctions.ri1

andthcdcriv­
ativcs of the x I of order less than rt 1 (j = L, ... , n). Solutions oflhe: system
(4) are defined as in Sec. 9.1. It should be emphasized that a solution of the
system is a vector function ('Pu .•. , <p.) defined on an intC'l'Va.l. Thus
(q,11 ••• , � .. ) i1 a single solution and nol n saluli.ons, an observation which ap­
plies with equal force to systems of a lgebraic cquationsand S)-stcmsof diflcr­
ential equations. 
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Fir11 or all, we explain the nature or,he pha,c, space corroponcling 10 the 
sy11em (4). 

, 11EOll8M. Th, l)'Sltm (4) is ,quil!(J/tnt to• l)'sttm of 

N • 1: 1
1 1 

I• I 

•• 

first-order dij}ermlial tqualions. In other words, tlu dimnuiDn of tlu JJMk sj>«t of tit, 
S.)'Slem (4) equals N.

Proof. As in Sec. 9.1, in1roduce the deriva,ivcsor 1hex1 of ord,crlcs, than •,as
the coordinates in phasc,pace. I

For example, ,uppo,c n • n, • n1 • 2 .  Then the system (4) is of th<c 
rorm 

N1 • F1
(t,x,,x2,X,,X2

), 
i2 :a F1

(1, x,, x21 X., X,2)1

and is equivalent to the system of four equations 

i, s F
1
(1, x), 

Example I. In mechanic, the system or Newton's equations 

..

iJU 
mjql = - iJq, I 

i=l, ... ,n (5) 

(where Vis the potential energy and the m1 > Oare mJWCS) is equivalent to 
the system of2n Ham.ii ton equations 

. iJH . iJH q,=-J p,:;;; --, i:;l, ... ,n.op, oq, 
where P, ;;;: m;<i,, 

" _n2 11 ,,2 

T= L5!J.= L �. 
i•I 2 l=I 2m, 

and H = T + Uis the total energy. Thus the dimension ohhc phascspaoc 
or (5) equals 2n.

Pro/Jinn I .  State and prove 1hc theorems on cx.istcncc, uniqucnca;, continuous and diKer-, 
cntiablc dependence on initial conditions, and also t.he a-tension c.hcorcm,, b tbc SJS,tcm.
(4). 
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9.5. Remark, The equation of variallon,. The 1hco,..m on d,ffcrc,n1,. 
abili1y with 11:spcct 10 pararnc1crs is not only or thcorrcical ontemt, but ,s 
also a powerful compu1aiional tool. t For rxampk, supJ>OS<' "c can solve a 
system of dlffcrcrui•I cqu•tlons for a cer1ain value of the parameter rt,cn 
we can fond approximate solutioru for neighboring valuc,s or the parameter 
'l'o do this, we need only calcula1e the derivative of 1he solution ""h rc,<p«t 
10 1hc pararnc1cr (for 1he fixed value or the parame1er for which "-e can 
solve 1hc syS1crn). Then i1 is easy 10 sec 1ha1 this dcriva1ivc, regarded u a 
function of time, is itself a solution o fa  certain differential cqu:attOt'l, called 
the tq11atfon of r,a,iations. The cq ualion of variations can often be solwd "';th• 
out solving the original equation, since it i s  a (nonhomogcncous) /i,wr
equation. The effect of all kinds of small perturbations is invati�ted in 
various branches of science in this way (by invoking the "mc:chod ofs:ma.11 
parameters''). 

for example, oonsidcr the equation 

x - v(x, c) 
involving a small parameter e, where v � v0 + cv, + O(i.1), c - 0 .  By

the theorem on differentiability with respect to a parameter, the solution 
with fixed initial condition can be \-\•ritten in the form 

x(I) = x0(1) + ty(I) + O(t2), 
where x.0 is the solution of the "unperturbed" equation 

x • v(x, 0) 
and y is the derivative of the solution with respect to the parame.tcr £ at 
£ = 0. Substituting x(I) in10 the original differential equation. "-e gcct 

*o + £)' = vo(•ol + cv, (xo) + £ °;_0 y + O(t2
), 

•• 

a rcla1ion valid for all small,. Therefore the derivatives of both sides of the 
equation with respec1 t o t  at  t ;.;. 0 are equal, i.e., 

y = A(t)y + b(1) 

T The theol'em on differcntiatfon with rcs�t to tM' initial eonditions can thus t,c, med IO
approximate a bundle of solut.ions with initial condition,: near 0tt1ain uunpcnurbccr• nNCJ
for which the solution is known. 
t Since 

v0(s) = v0("<,) + •i.'I-. y + O(e')
for small� .  
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where 

A(t) -av.I ' 
bx "oll> 

b{t) • v
1
(a

0
(t)). 

Th it is the de!i red equation or variac ion.t. Note I hat y also sa1Ufics th� in,1ial 
c·ondi1ion y(O) • 0, since 1hc ini1ial condhion for a is 1hc sa= lorall ,. 

In solving problem, it is easier to derive the equation of varia1ions as 
needed, rather than attempt ro mcmori�c tl. 

P,oblrm I, A body fnlli �r,ir;,lly in :1 rncdium w11h 1-1'1\all rcsileancc dq,,rndi.o,: on both 
�it ion :11111 velod1y:

I -A r ,,f'(x, i), '< I. 

Calculate the effecl of 1hc rnioancc on 1hc ,nooon, 

SoJ11tion. In the :a�cncc of rni11anre (, O). thct;olu1ion is kn�n: 

I l ,,(1) - ,(0> ► ,,, - '"l'

A«otding 10 1hc 1hcol'cm on difTcrcn1i;uion wi1h ropctt 10 a p;ar-amc-ta. lM' tolut,on an

� wriu«•n in the form

K Mo r <)'(I) + 0(,') 

(Of" s1n:ill c ,  where., is che deri"·:uivc- or 1hc soh.i1ion with ra:pu:·t lo th< pua.mctu, for 
t ..., 0 .  Suo.1-tituting 1his aprcnion into 1he original difl'crcnti.21 <q;U21ion. wc-gct .an <"q'A• 

cion for)'. In fact, 

c-0,

3nd sin� 1his l'Cl:11ion holds for all ,mall ,. chc codnc:icnt or .any power o/ � i, the-t.amt in
both sides of the «(uation. In pu1icular1 lhi.s gi,·cs th< rou�;ng c-uily soh--cd �m.tion o/
1,1ati1uion.s: 

j F(x0(1), .i0(1)), .1(0) = j(O) = 0 .

.<ns. ,(1) • ,,(1) + ,J: J: F(,0({). x0({)) d{ d t  + O(c').

Warning. Strictly speaking, our argument is valid only for .sufficiently small 
I, bu1 in fact i1 i$ easily jus1ificd for any jinit, time in1crval (II � T, procidd 
that t do,s not extttd some quantity dep,nding on T (th, «nslanl impliat in tk tm,, 
writlen as 0(1:2) ,'ncrtases with T). 1 t i s  extremely risky to extm.d the results 
ob,ained in  this way to an ,'nfinite time interval: One cannot interchange 
the limits as I -+ co and e -+ 0 .  

Example I. Coruidcr a bucket of water whooc bouom has a small hole of 
radius t (f;g, 70). Given any T, there exislS a value of• so mall that the 
bucket remains almost rull during 1hc ti=/ < T. However, for cvtt) '  fixed 
t - 0, the bucke1 becomes empty as the time approaches infinity. 

Probltm 2 .  As is well known. a body of m.a.u m mO\:ing rcb.ti,-c 10 the- earth with ,-dociry • 
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, _.,, ,-o 

Fig. 70 1'he A,ym1>101ic bch.,vtor or 11\e per1urbed tql,lalio,, a. • -0 and a., t - •·

!I 

Fig. 71 Oellec1ion of a (alling body from the wrtical.

is subject to a Coriolis for<lc F -2mv x O. whttc O i, the angular "flOClty \'tt'IOt olt.hc 
earth. A stone is dropped (without initial \/elocity) i nto a m.iM olckpth 250 niia118C btitudc 
or Leningrad (l - GO•). How ru from the \/,er1tCal is the ,cone deflccred by tbt- Coriolis 
force (Fig. 71)? 

Solution. Here we arc dealing with the dilTerential equation 

li - g + 2X X 0) 

depending O(I the earth', angular vt'.loc ity O - 7.3 x 10-• xc· • as a puamieta. It ca.a 
be predic1cd in ad..,ance that tht-CorioUs force LS 5m3.IJ com�rul: lo tbt •---right. a..nd httlu 
0 can be regarded as a llftOII parameter .  According to theditft":rcntiability thcoum, • ·c U�"'t: 

,. = "• + Oy + O(Cl') 

for am.all O., where 

, . •• --(0) +•y·

Substituting this exp�ion for a into the differential cqua.tion, we gn the Uf!W.tioo ot 
variations 

y = 2,, x 11, 

and hence 

Yo(O) = y0(0) = 0, 

, I> 21 y - g X Cl
l° 

-l°h X Cl, I> h-Sy·

Th crt"forc the stone i.s deflected to the cast by 

2t 2, 7 • I 
3JhJ JOI co,.!"' T •250· 7• 10 •-

2
m"' 4 c,n.

Other examples of the application of the theorems on differentiability 
with respect to parameters and initial conditions are given in Secs. 12.10 
and 26.7. 
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9.6, Remark• on terminology. Equa1ions of 1he form ( I) and S)'ttcms or 
1hc form (4) are some1imes said 10 be i• no,maljo,m, or to be,,..,, 1L1IA 
r,sp,rt tot,,. l,iRh,st deri1H1tiws. Since 1hcsc are 1hc only kind ol cqua11ons and 
systems considered in this book, the 1crm 171/ttnof d,ffe,t•tial tpallo,u al"'&)'t
dcnotu a system in normal form or a system cquivalc111101 S)'tlcm ,n normal 
form (like the sys1em (5) of Newton's equations), 

We also note that the function appearing in 1he right-hand ,ick of the 
system (4) can be specified in various ways, e.g., explicitly, implicitly, 
parametrically, etc. 

Exan,pl, I, The formula 

j:l - X a 0 

is shorthand for two differtnl differential cqualions X - Ji and i = -Ji, 
each with 1he half-line x > 0 a, its phase space, Thoe equations arc deter­
mined by two different vector fields, both differentiable for .r > 0 (Fig. 72). 

When an equation is given implicitly, the right-hand side mus, be, 1rca1cd 
carefully, with a vicv .. • to determining its domain of definition a.nd ii\-oiding 
ambiguous notation. 

Example 2 .  Let x 1 = ,cos q,, x2 = , sin 'P ·  Then 1hc formula.si1 = ,,iz 
a u;, 

do not specify any sy,aem of diffcrcn1ial equations in the plane (.r1, .r,). The 
same formulas, regarded in any domain of the plane (.r., .r,) which docs not 
contain the origin of coordinates, lead to infinitely man.1 systems of diffcrcntia.l 
equations, corresponding to the infinitely many "branches" or the multiple­
valued function q,. 

Examplt 3. Hy a Ciairaut tquation is mean, a differcn1ial equation of the form 

x - xt + f(x). 

The Clairaut equation 

• l 
. X

X = XI - -
2 

.r 

f. 

(6) 

t 

Fig.  72 Integral curves of the two differcntia.l tqua.tions oompris,ed in the-single formula 
jl = x .  
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' 
t 

,. .. ,, .  13 l1l1tgl'al curves of the tWO«juation1 written t�1Mr as theClaanut ftlu.Ation 6J.

is shor1hand ror two dilfercnl dilfcren1ial equations defined in the: domain 
x .s; 11/2, each satisrying the condilions or the existence and uniqueness 
1heorcms in the domain x < 11/2 under 1he parabola (Fig. 73). lncrc arc 
1wo 1angents 10 the parabola through each point or1hi1 domain, and each 
1angent consist, or two tangen1 rays. Each or the tangent rays is an integral 
curve of one of the two cquation.s given by formula (6). 

Pro6/tm I .  ln..,atigiuc tkc Clairaut «au.\lioo i - l.t - 1.1.

10. Phase Curves of Autonomous System.s 

We now return to the autonomous case and consider some properties of  
solutions of autonomous systems and the corresponding phax: curves, 
beginning v.•ith 1he following example. 

10.J. Time shifts. Consider the equation

x<"> = F(x, X, X, •. .• x<"-1 •), 

where Fis a dilfercmiable function on the phase space R•.

(I) 

Problem I. Suppose ,r e sin I is a solution o f  equation (1). Prove that 
x = cost is also a solution. 

This is an immediate consequence of the following 

THEOREM. Lei <p: R - U b, tk solution of tk aulonomDuSdijfnauiol ,q,,aJi,,,. 

dx 
- = v(x) 
dt 

(2) 

determined by a vector faldv in tk phase spau U, and kt Ir': R - RI,, th, sl,;.fi l,y s 
carrying the point t e R into tk poinll + J e R .  Thm ,p • Ir': R - U is o ,o/,,J;a 
of (2) for arbitrDI') ' s. In othn words, if x = ,p(I) is a solution of (2), lnDI so is
X = <p(I + J). 
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Proef. An obvious consequence of the fact that

d,p(I + J)I - d,p(t)

dt 
, ,, 

dt ,.,.t .. 

for arbitrary 10 a R, s • R. I 

• v(,p(10 + s)) • v(.,(1 + s))I, ,.

69 

Remark. The theorem im,ncdiaccly implies chc analogous UK:nion ror 
au1ono,nous .s;•sltm1 and in particular for equation {I). Fo..-1 - ,cf2 we- gee 
the solution of the problem posed above. 

COROLLA RV. 1'htre is on• and onlj, one phaJe """ of th, autono-, ,,,..,tiMt (2) 
going tlirou.,h ,aeh point of phnse spaee. t

Proof Let 'I',: R - U, ,p2: R - Ube two solutions and let '1'(11) • 
,p(t1) • "· Then the solutions ,p1 and 'I') • 'I', • Jo'• - '' satisfy the same 
initial condition ,p2(11) • 'l',(t1) • x, and hence coincide by the unique­
ness theorem: q,2 - cp1 • 1,,,-,,. But the mapping," a.nd ¥ •Ir': ll - U

have lhc sair1c image, since chc mapping It: R - R is onc•co-onc. Thc:rc• 
fore ,p,(R) • ,p2(R). I

Rtmark. The phase curves ofa nonautonomous equation can intcncct �;th •  
out coinciding. Therefore the solutions of nonautonomous cquatioos a.tt 
best followed along integral curves. 

P, .. l,m 2 .  Suppose: one and onJy one ph.aK cu.rvc: goes through each pou,1 ol llH: phase 
space o f the niua tion X • v(t, •). Docs this imply that the equation II aur� L �

that v(t, a) is independent o( time? 
An.,, No. 

10,2. Closed phase curves. \Ve already know that diltinct plasc: curves 
of the autonomous equation (2) do not int<rscct. We now examine whether 
a single phase cuivc can intersect itself. 

Let ,p0: / ➔ U (fig. 74) be a solution of equation (2) taking the same 
value,p0(11) = ,p0(t2) a11wopointsl 1 < 12 e / .  

THEOREM. A solution 'l'o such that ,p0(1 1) = ,p0(12) eon bt extmJd ..U. th, u:1-k 
t•axis1 andthe1tsultingsolutionq,: R - Uu.-illluz.wlkpniod T = t1 - 11,i..1..1 
,p(t + T) = ,p(t)Jor all t. 

Proef. Every I e R can be uniquely represented i n  the form I = "T + <, 
0 <;; t < T. Let ,p(t) = ,p0(1, + T). Then 'I' is obviously a periodic fuoc­

t Here we have in min d maximal phase curves. By a lffll/Ul...t p,A,.# cv,w is meant the� 
of  the m.'lpping •: I - U where • is a 50lution which ca.nnot be extended onto any b.rgcr
interva1 / containing I (for exa mple, because I is the whole line (so that chnolutioa is already
e:ictendcd indefinitdy) or because •(') approaches the boundary of the domain U as t 
appro.i.chcs the boundary of the interval /}.
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Fig. 7◄ A dosed  phase curve and lhc: COf'rcsponding incqtal CUr\.e. 

tion with period T. To sec that q, is a solution, we no1c that• coincides in a 
neighborhood of every point I e R with a translate of the solution f'o (1his is 
obvious for points where t > 0 and follows from the facl tha1 f'o(l1) • 
,p0(t,) for points where t - 0). Hcnoe ,pis a solution, by Theorem 10 .  t,
and the proofis complcte, since ,p(l1) • q,0(11 ). I 

We now consider the set of all p,,riods of 1hc resulting con1inuous func­
tion q,, 

LEMMA I .  The s,t of all pnio<bof th, contin.,,usf•"'tion ,p: R - U is a c'4ud ,v/,­
group of th, group of r,a/ numbers R. 

Proof lf,p(t + T,) ii ,p(I) and ,p(t + T,) ii ,p(I), 1hcn,p(I + T1 ± T,) s 
,p(t + T,) = ,p(I), where :;= indicale< identical cquali1y in I .  :\forco.-er, 
if T, -+ T. then 

,p(I + T) ,. Jim ,p(I + T1) ,. lim ,p(I) ii ,p(I),
r-oo , ... ., 

by1hc continuityof,p. I 

LEMMA 2. E�ry closed subgroup C of th, group of r,al numbers R is ,ill,a R or {O} 
or a s,t {kT 0, k e Z} of all inugral multiples of some number T0 e R. 

Proof If C ,t, {OJ, then there exjst positive clements in C (if I < 0, then 
-t > 0). Let

To = inf{I: IE C, t > 0). 

Obviously O .;; T
0 < oo. Suppose T

0 
> 0 .  Then T

0 
belongs 10 C, since C is  

closed. The integral multiples of T0 
also belong to C, since Cis a subgroup. 

Moreover. C contains no o1hcr point.s.. In fact, the pointskT0 divide the line 
RintointervalskT0 <I< (k + l)T 0 (Fig. 75). lfthe groupChadancxtra 
clement, the elemenl would fall in an interval of the indicated type and then 
C would con1ain an clement I - kT0 such that O < I - kT0 < T 0, con-
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�lg I (A•I/Tg 
• • I( • • • 

f.'lg. 75 A clo.cd •ubgroup or 1he lint. 

X I

L 

-,

,%' I 

Pi g .  7G A clos.cd subg:roup or the plane:. 

fig .  '11 A l imit cycle.
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trary 10 the definition of T0 as a least upper bound. Hence: T0 > 0 implies 
C = (kT

0
: keZ}. 

We must still oonsider the case T
0 

= 0. In this ca.c, given any• > 0, C
contains an element It O < J < e and hence all points kt, k e Z. 'Ibc- poinu 
kt divideR into intervals oflength less than£, and hence there arc poinisofC 
in  every neighborhood of any point ofR. But then C = R, since: Cisacloscd 
set. I

• Problttn I. Find all dosed subgroups of the plane RJ (Fig. 76), the spac:c R.•. and the group
of the circle

s• - 1,.c,1,1- 11. 

Returning to periodic functions, we sec that th, st/ of pniods ,ith,a maw 11/J 
the whole lint (in which case the function is oonstant) or ,ls, CMSists of all 
integral multiples of th, smallest period T

0• 

Thus a self-intersecting phase cur,,,e 
is either a s1ationary point or a closed curve which first becomes dosed at 
time T0, as in the case of a limit cycle (Fig. 77). 
Probkm 2 .  Prove that a closed phase curve lS difrcomo.rphic to a circle/ uolc.. the c.un"'\°

l"roucn to a point .

t The dcfinicjon of a difl"eornorphic mapping of one c.vri.-t onto another is gi,.� r..:. ex• 
ample, in Sec .  33.6. 
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I/Int, 'the 1fiffcomol'phl,m ..-an I� tlr,C'rl brd by the (ormula
( 21ft , 211,) •Ct) - ('OJ T;. fill r. .

Noncloscd phase curves c•n wind around each other in a c:omplicattd
way, 1,hhough they cnnnot intersect ,·ach other. 

P,ob/,,n 3 .  Plncl the cloeutc1 of lhc phax curVC:ll o( the- .. Jou bl< J)ie't'dutu:rn": 
R, x1, I:, - -2.\:,, 
A,u, A poin1, circles. and 1oti S' x S' {.cc Stea. 24 and 2�.G).
• JJ,obf,,n 4 .  t.c1 •: R - U ht a ,olution of (2) corresponding co a nondm,cd phut cun-c-.
80 thM •(11) '/; •<',) ir,, .;, ,,. ·rhcn the mapping• oftht line- R onlO ck phaX' cvn� 
r - •CR) is one-to -one, with invc:rsc •• I; r - R. 
Is .,-• ncc::n,arily continuous�

/lint. Sec the pn�cafing proble m .  II can h.appcn tha.1
lim •(t,) • r,' .. lim 11 - co . 

• •• 

11. The Directional Derivative. First Integrals

Many geometric concepts can be described in two ways., cithcT in the b.n­
guage of J><>int.s in space or with the help of functions defined on th<: space, a 
duality often found 10 be useful i n  various branches of ma1h<:ma1ics. In 
particular, vector fields can be described not only by using curves, but also 
in terms of dijfertnJiation of functions. The b.uic theorems can 1hcn be fonnu­
la ted in terms of first inttgra/s. 

11.1. The derivative in the direction ofa vector. Let U� a domain in
Euclidean space, x a point of U, and v a tangent vector, v e TU, (fig. 78). 
Let/: U ➔ R be a differentiable function, and let ,p: / ➔ Ube any curve 
leaving x with velocity v, ,p(O) = x .  Then the interval / is m..ppcd into •he
real axis by the composite fonction 

f•,p: I ➔ R, (/• q,)(1) = /(,p(I)), 

Fig. 78 Dc:rivativ<' ofthc function/in the dirtttion of the \.'C'Ctor v .
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which is a real function or i:, real variable. 

'' 

Defi11i1ion. By the d,rivntit� of 1h1fu11aio11 J ,n th, d111U1on of 1/w mt•• v u """"' 
th, number 

d 
t./1, • -d J • q,, 

I '• o 
To jus1ify this definilion, we must vcri(y that the number in question doc:s 

not depend on the choice of the curve 'I', but only on the �locity �•or v.

This follows, for example� from 1he expression for 1he derivati� in 1cnns o( 
the coordinaces. By 1hc rule for differentiation ora composite function, �c 
have 

d " of t./1. a - /•"' - I: - .,,di ,.0 ,., iJx, � (I) 

whcrex1: u- R is a systcmof coordinatcsin the domain Uand thc••att 
1he componen1s of 1he vec1or v in 1hi, system (which arc independen1 or1he 
choice of tp). 

11.2. The directional derivative of a vector field. Now let v Ix a vector 
field in a domain U, so that there i s  a tangent vector v(x) e TU. at C\.-cry 
point x fi: U. If/: U - Risa differentiable function, we can fonn its deriva• 
live in 1he direc1ion of v(x). This gives a number L../1, a, c--ery poin, or U.

Defi11ilion. By 1hc derivalivt ofth,functionf; U - R in th, dir«I• of llvfald v i s
meant the new function l.,f: U ➔ R whose value at xcquab the derivative 
of/in 1he direc1ion of v(x). 
£x4,nfH� I. U1 e, be paralld lo the first basjs vector of t.hcsundard b.uis of"£udoea.n •·"• 

i.t"., the vCCIOI' wi1h compoticnts I, 0, . .. , 0 in a system o( coordina1a z,.•, ••••• .r., in U. 

Then dearly 

L • .f = -If. 

h follows from (I) tha1 if 1he function/and 1he fidd v arc of clusC, then 
the func1ion L,Jis of class c·-

1
• 

11.3. Properties of the directional derivative. Le, F denote the set of all 
infinitely differen1iable func1ions /: U - R. This sci has 1he na1ural 
structure of a real linear space (since addition of functions pttSCnres difTcr- ­
entiabili1y) and even of a ring (since a produc1 or differentiable Functions is 
differcn1iable). Let v be an infinitely differentiable vector field. Then 1he 
derivative L.J of 1hc function/eF in the direction of vis  again an clement 
of F (1he infinite differen1iabili1y is csscn1ial here!). Thus differentiation in 
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the direction of the fodd vb a mapping L.: F- Fofthc ring of infinitely 
difTcrc111iablc functions into luclr. 

Probl,m I. Prove the following properties or the operator/,, (cx«pt ror one 
of1hc propcrtlrs which braise): 
I)/,.(/+ g) • t./ + l.g; 
2) L.(/g) • fl.g + gl.f;
3) L.+v • L-. + L.;

4) l10 •fl.;
5) l

0l. • t.L •. 
(Hcrcf.g arc sufficiently smooth functions, and u, v arc sufficicnlly smooth 
vector fields.) 

11.4. Remark• on terminology. Algcbrai,u apply the term iifamfi•t•• 
to any mapping or an arbitrary (commutative) ring Finto itself which satis­
fies properties I) and 2) of the mapping l •. The set or all diffcrtntiationsof a 
ring forms a module over the ring. 

Thus the vector fields in U form a module over the ring F of infinitely 
differentiable functions defined in U .  Properties 3) and 4) mean that the 
operation l carrying the vector field v into the differentiation L. is a homo­
morphism of F-modules. Property 5) means that the differcntiat.ions L. and 
L. commute (and in general they do not),
• Pto6ttm 2 .  Is the homomorphism Lan Lsomotphism?

Analyst.s call the mapping L.: F - F a linear /wmog-, diffamli41
op,rator of tkfirst order. This designation is explained by the fact that p roper­
ties I )  and 2) imply 1ha1 the mapping L.: F - Fis an R-lincaroperator. In
the local coordinates x 1, • • •  , x,. 1his opcr-ator takes the form

a l �•,-+ ···• 
iJx, 

(sec formula (I)). 

I 1.5. Lie algebras of vector 6.elds. 

Probl,m 3. Prove that the differential operator l.L,, - l•L• is not of the: 
second order (as it appears 10 be at firSt glance), but rather ofthc: first O<der, 
i.e.,

where e is a vector field depending on the fields a and b .
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Comm,nt. The licld c, denoted by fa, b], is calll"d the ,omm"4ti.r or Pow. 
braek;t oft he fields a and b. 

Probltm 4. Prove 11,e following three properties of1he commuiator: 
a) [a, b + Ac] • fa, b] + Afa, c], A e R (linearhy);
b) fa, b] + fb, a] • 0 (antisymmetry);
c) f[a, b], c) + fib, c], a] + ([c, a), b] • 0 (Jacobi's idc,ntity).

Comm,111. A linear space equipped wi1h a binary operation satisfying the: 
above three conditions is called a Li, al�bra. Thu, vc:ctor field,, 1aken with 
the operation of commutation, form Lie algebras. Other examples of Lie 
algebras arc the following: 

I) Three-dimensional space equipped wi1h the operation of vc:ctor
multiplication; 

2) The space of all n x n matrices with the operation carrying A, B into
AB - BA.

Problem 5 .  Starting from the oomponenu of the fields a and bin tome c,o. 
ordinate system, find the components of thc.ir com.mutator. 

Ans. fa, b I a i... •r, - br,- .I f ( ob, o••) 
J• 1 ux

, ux
1 

• P,oJ,l�m 6 .  Let t' be the phase Row c:ktcnnin<'d by the ,:rteor field a a.nd Jr- the- flow
determined by the field b ,  Prove that the Rows commute C,'k' • lr".r') � and only if the­
commutator or the fidd.s ,0ani1hn.

11.6. First integrals. Lei v be a vcclor field in a dorl\ilin U, aod let 
f: U - R be a differentiable function. 

D,fa,ition. The function/is said 10 be a fast integralt of the diffettn1ial equa­
tion 

x � v(x), xe U (2) 

if its derivative in the direction of the vcc.tor field v vanishes: 

L.J = 0. (3)

The following 1wo properties are obviously equivalent 10 tqUiltion (3)
and can be 1akcn as the definition of a firs, integral: 
I) Tlufw,etionf iJ tOllJlanl along every solution q,: / - U, i.e., if 9 is a solution,
then everyfunc 1ion/o q,: 1- Risa constant;

t The strange tum first inlrpal i.s a rclic of the titM-when mathonatic:i:lnss:tall tried coSOh� 
all differential equations by integration. In those days, the term incc:gral (« parcicub.r 
in,egral) was used to designate what we now call a soJution .  
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Fig. 79 A 1>h:ttc cur� lio entirely on one lcwl •uM.acc of I.he fint intqraL

fig. 80 A tystem without noncorutant fint intqral.L 

(a) (b) �) 

Fig, 81 Which 0(1hetc sys1cms have nonc:onua.n, fin.1 iniqnh? 

2) Every phastcurw btlon�s w one and only om k.,,/ stlf of tlufrmdi,,,,f(Fig. 79).

Example I. Consider the following system whose phase space is the whole 
plane (Fig. 80): 

This system has no first integrals different from a consrant. In fact, any 6nt
integral is continuous in the whole plane and constant on e�ry raye:rranat­
ing from the origin, and hence is a constant. 

Problem I. Show that evc:ry first intcg-r-al is com.tant in a neighborhood ol a limit q,dc: 
(F;g. 81a) orequai;on (2). 

t By the s,t ofl,ttUC of a fu.n cti onf: U - R is mant the full prcimagcofthc pointC • � i..c:.,
the sci/ -1C C U .
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hnve a nonco1111an1 firtl in1�1ral (F il•• 81b, c, d)? 
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Nonconstan1 Orsi integrals arc rarely cncoun1crcd. I lence in 1hosc: CAKS 
where they exist nnd can be round, they arc o(grc3.l interest. 

Example 2 .  Lei H he a differcn1iable (r ;;. 2 1imes) func1ion o(2,e variables

p1, • • •  , p,., (J 1, • • •  , q,.. Then by Hamilton' J canonical t:q11alio,uf we mean the 
sys1cm of2,1 cquation.s 

i/H 
f,, - - -, 

ilq, 

i!H 
q, - -,

ilp, 
t•l, ...• n. (4) 

THEOREM (Law of con1ervatJon of energy). Tluf•nction H: R,. - R is•

first integral of tht system of (anoni(al eq11ations (4 ). 
Proof. h followsfrom(l) and (4) 1hat 

L fl = f [off (-?!:!.) + ?!:!_ ?!:f.] = 0 .  I• ,. , op, oq, oq, op, 

11.7. Local first integrals. The absence of nonconstan, firs1 in1cgrals is 
rcla1cd 10 1he 1opological struc1ure of 1he collection of phase cw-vu. In 
general, the phase cur�.sof a system of differential equa1ions do nor all s1.ay 
on 1he family of level surfaces of any func1ion, and hence there is no non­
constant first integral. However, the phase: curves do have a simple structu.tt 
/O(ally, in a neighborhood of any nonsingular poin1, and nonconstanl fint 
in1egrals do exist locally. 

Lei Ube a domain in n-dirnensional Euclidean spaoe, let v be a differ­
entiable vector field in U, and let x b e  a nonsingular point (v(.r) ,;. 0). 

THEOREM. There exists a neighborhood V of the point Xe u su,:h IMJ ,,pu,lio,t (2) 
has n - I functionally indtp,rukntt first integrals f,, ... ,J._, ia V _  A-for-,, 
any.first integral ef (2) in Vis a function off,, .•. ,J._,.
Proof. The theorem is obvious for the standard equation 

j1 • • • • a: j.,. a Q (5) 

t It was shown by Hamilton th.at the differential equations of a great ,--ancty of p.obkt.ns 
cncountcTed in mechanics, opti� calculus of variation� and olhcr brandwsol tc:ic:n«-ca..o 
be written in lhc form (4), 
t It wtll be recalled from calculus th.at the functioos/1y •••• f.: U - R. arc fuoclion;al.Jy 
indepc1,dcn1 in a n eighborhood of a point x • U if lhc rank of thcdcri,-a.b,"C/.L. oicbc ma;p-­
pi ng/: U -R• determined by the functions/11 •••• /. cqu:lls • ·  
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v. 

Fig. 82 The coordinate J,. is a fil"lt integral.

Chap. 2 Baiic Thmrcms 

in R' (l'ig. 82). In fact, the firs, intcgrab arc arbitrary differtntiablc func­
tions of the coordina1csy2, ... ,y,., and the coordinatcsy2, ... ,7. give us
n - I runctionally independent first intcgrab. Thcs.amc i, I.rue roraiuation 
(5) in any convex domain �1' of the space R'. t By the basic tMC>rem (Sec.
7.1 ), equation (2) is of the form (5) in some neighborhood of the point x in
suitable coordinatcs.1, and this neighborhood can be regarded as• convex
domain in the coordinates)' (otherwise replace it by a smaller convex neigh­
borhood). It remains only to note that the property of a function being a
first integral and the property of functional indcpcndcncc arc both i n ­
dependent of the coordinate system. I

11.8. Tirnc-clcpeodcot first integrals. Lctf: R x U - R be a differ­
entiable function in the extended phase space of the equation 

x = v(t, x), l ER, XE U, (6) 

which is in general nonautonomous (the right-hand side v(t, x) is as,umcd 
to be differentiable). Then the functionfis said to be a 1i--,kp,,,Ja,Jfo11 
integral if i t  i s  a first integral of the autonomous system obtained from (6) by 
adjoining the equation i = I: 

X = V(X), XeR x U, X = (t, x), V(t, x) = (I, v). 

In other words, eve'.1 integral curve of equation (6) /us entiret., o,ro,u 1-1 sci of lM 
fun&tionf (Fig. 83). 

The vector field V dOC$ not vanish. It follows from the preceding theorem 
that equ ation (6) has n functionalf)I imkpmdmt (timL-tkpmdnil) first iaugrols 

f,, ... ,f, in some neighborhood of evny point (t, x) (IJld t!UJI every (tim,-tkpmd,ttl) 
first integral of (6) can be expressed in t.trms off,, ... J, in this nnglJ#n-1-d. 

In particular, the autonomous equation (2) with an n-dimensional phase 

t A domain in R" �s 5c-. id to be un«x if whenever it contains t""-o points.. ir USO con.a.ins the
line segment joining the two poinu .  Giv e.an example of a first intqral ol(S) .tud:adocs not 

rcduoc to a function of ,1: • ... , � .. in a nooconvcx domain W of the spa.er R•. 
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I, 

Fig ,  83 I nttgral cur\!c, on a level surface or a umc-dq,cndC'nt 6nt intqn.L 
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space has 1 1  1imc,dcpcndcnt functionally independent first integrals in the 
neighborhood of nt!l (not necessarily nontingular) point. 

P,oM,m I. Suppose every solution o( equ:uion (6) C'an bt txtcndcd onto W whok l•axis­
ProvC' th.11 cquiuioo {G) thco hasn runc11on.111ly independent (1imt--d("f)ffldm.1) fin, ,niqnh
in the whole extended ph.a1c1pacc. in ccrnu o(whi,ch we can expte. C\,U, uffi(",,O(pc:ocknt) 
first in1i:-gral. 

By a firsl integral of• differential equation (or of a system of diffcrcntilll 
equations) of a1·bi trary order is me.ant a hrs, integral of the equival�nt sys­
tem of first-order equations. 

12. Conservative Systems with One Degree of Frcedo,n

As an example of the application of first integrals 10 the invcstig;ttion of 
differential equations, we now consider a frictionless mechanical S)-S:tc:m 
with one degree of freedom. 

12.1. Oe6nidons. By a conseroaliL� syslem u:ilh one degreeoj fr•IR is meant a 
system described by the differential equation 

x • F(x), (I) 

where F i s  a differentiable function defined on an interval / of the relll 
x-axis. Equation ( I) is equivalent 10 the system

(x1,x2)e/xR. 

The following terminology is customary in mechanics: 
/ the configuration space; 
x, = x the coordinate; 
x 

2 
.;:; i the velocity; 

X the acceleration; 
I x R 1he phase space; 

(2)
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(I) Ncw1on'1 cqualion;
F 11,e force field;
F(x) 1hc force.

Chap. 2 Basic Th<o"'ms 

We also consider 1he rollowing runction1 defined on phaS<C spa«:
r - l,f2 - 1,\': the Ainetie ,,,,rv;
u - -r:. F(O d� the f,oltnlial tntrgy; 
E - T + U the total mtthanital tritrg,. 
Obviously F(x) = -i!U/i!x, so that tht f>oltnlio/ tntrlJ d,1,,,..i,,u tlk q,,-.

Example I. For the pendulum (Sec. 1.6), we have 

R • -sin x, 

where xis the angle or deviation, so that 

F(x) • -sin x, U(x) a -cos x 

(Fig. 84). Moreover 

X = -x, F(x) = -x, U(x) • ix', 

for small oscillations or the pendulum, while 

X = x, F(x) a x, U(x) s -¼x' 

for small oscillations or the inverted pendulum (Fig. 85). 

{I 

Fig. 84 Po1cntial cne1'gy or 1hc pcrtdulum.

.r 

fig. 8S Potent i.a I energy of the pendulum near the Jo- ·cr and upper cquilitwium poaitiom...
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12,2, The law of eon1ervatlon of eneray. 

·r, tiOREM, 1111 total ttllfll.J Eis afirll i11l1grol ,if /ht IJJ/tm (2).

Proof. We need only note that 

:i[�xl(t) + U(x,(1))] • x1x1 + U'x, • x1F(x,) - F(x1)x1 • 0, I
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With the help of this theorem, an equation of the form (1), for cu.mple 
the pendulum equation, can be invC$tigatcd and explicitly solved "in 
q uadraturcs." 

12.3. Level curve, of the energy. Turning 10 the pha,e curves o( the 
system (2), we note that each such curve lies entirely on one level set o( the 
energy. We now study these level sets. 

THEOREM, 111< /t11tl st/ 'If /ht t11<rgJ 

{(x,. x2): !xl + U(x,) • E)

is a smooth wrue in a n1i11.hb01hood of <a<h of ill poii,11, u.-i//1 /� ccupbot1 .j tlu 
equilibrium /H>sitions, i.e., tht points (x1, x2) u.•here

F(x,) = 0, x, = 0. 

Proof We use the implicit function theorem, observing that 

iJE
- = -F(x1), 
ox, 

If one of these derivatives is nonvanishing, then the set oflevd £is thcgnph 
of a differentiable function of 1hc form x1 • x1 (x2) or x

2 
= x2(x1) in a 

neighborhood of the point in  question. I 

Note that the exceptional points (x1, x2) figuring in the theorem, where
F(x,) = Oandx2 = O,arcjustthe stationarypoints (equilibrium positions) 
of the system (2) as well as the singular points of the vector field of the pha,e 
velocity. Moreover, the same points arc the critical points of the total energy 
E(x,,x,), while the points where F(x,) = 0 arc the critical pointst o(1hc 
potential energy U. 

To draw the level curves of the energy, it is  useful to think o( a bad
sliding in a "potential well" U (Fig. 86). 

Suppose the total energy has a fixed value £ .  Since the potential� 
cannot exceed the total energy, the projec1ion onto configuration spa«-

t By acritUal pqint of a function is mesnt a point .tt which the 1012) diffcrcntialolthc(UJ'K:tion 
vanishes. The YJluc of the (unction at such a point is caJJul a aiti4=ol Nt1--.
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... , 

fig. 86 A bc-:.d in 3 pou:ntial well and the corro:ponding phax cun"t

(thcx,•axis) of the level curve of energy £lies in the�• {x1 e /: U(x1 ) ,;; £} 
of 1,oints at which the value of the potential energy docs not exceed £ (the 
bead cannot go higher than the level £ in the potential well). �1orcovcr, 
the larger the velocity (in absolute value), the smaller the potmtial cncrgy, 
since lx,1 = J2(E - U(x,)), i.e., the bead picks up vc.locity as it falb into 
the well and loses velocity as it rises from the bottom of the wc.11.  Note that 
the velocity vanishes at the "turning points/' where U(x1) = £. 

1 t follows from the evenness of the energy with rc:spcct to x 2 that the level 
curve of the energy is symmetric with respect to the x,-axu (the bead 
traverses each point twice in opposite ditt:c1ions with the same spttd}. 

These simple considerations suffice to aJlow us to sketch ltvd curves or 
the energy for systems with various potentials U. First we consider the sim• 
ple,;1 case (an infinitely deep potential well wi1h one auractive center{), 
where F(x) decreases monotonically: F({) • 0, / • R (Fig. 86). 

If the value£, of the total energy is smaller than 1he minimum £, of the 
potential energy, the set oflevc.l £ = £1 is empty (the motion of the bead is 
physically impossible). The set of lcvc.1 £ = £, then consists of the single 
point({, 0) (the bead rats at the bouom of the well). 

If 1he value £3 of the 101al energy is larger 1han the critical value £2 =

U({}, the set oflevel £ = £3 is a _symmetric smooth closed curve surround­
ing the equilibrium position{{, 0) in  the ph= plane {the bead slides back­
ward and forward in the wclJ, rising to the height £,, at which 1imc 1he 
velocity vanishes, then falling back into the well and going through({, 0), 
at which time the vc1ocity is maximum, afterwards rising again on the other 
side, and so on). 

To study more complicated cases, we proceed in the same way, i.e . ., wc 
progressively increase the values of the total energ y£, stopping at the values 
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Fig, 88 What is Lh<" appearance- of the lc,·d cun--n of the- c-mrgy ror ra<'h ol mc,.t
potential�?
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of£ equal 10 the critical values of the potential energy U (whe.., U'({) = 0) 
and in each case examining the curves with values of£ a little smaller and 
a little larger than the critical value. 

Example I. Sup1=e the potential energy U ha1 three critical pomu, a 

minimum� 11 a local maximum {2, and a local minimum (3• Then f""wg. 87
shows the level curves corresponding 10 the values £

1 
= U({,), U({,) <

£, < U({,). E, C U({,), U({,) < E. < U(c!,), £, = U(c!,), £. > U({,). 

Prob/rm I. Sketch )C"\'d curvn o(lhc energy for the p(:ndulum <"qUa.tionX -sin xand b 
the J)C'nduh.un c:q1.Jatio 1,s ntar the lower and uppc-r equilibrium posJUOM X = -Jt and
i - x}. 

P,06/tm 2 .  SkctC'h le\'d curvn of the C'nergy for lhC' Kt:J,ln ,ottfllWt
t (.' U---+

:, X X 

and for thc potl!'ntia ls shown in Fig. 88. 

t The change in di;stanc,c-)x1wcien a pfa.ncl (or comet) and th,t$un is dacnlxd by Xn.o""Ulft•s
equation with this pot«itlal.
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12.4, Level curve• of tho energy near a 1ingular point. In llud) ,n,t the 
behavior orlevel curves ncnr a rri1 icnl va lut' or th<: tntrgy, ii II uK(ul to kttp
1hc rollowin11 foci, in mind:

R,111ark /, If t/11 pot,illial ""'II) is a q11ndra11cform (/ • Jk<1, 1/,m IN/,.,,/ n,,,�,

of tlr, llttrgy ,,,, St.f'oud-ord,r """", 2 ,�· • \ � + Ax!, 
1 n 1hc a11rnc1iv� ra11;r1 

wr havr A > 0 and thrtriuc-al point O i1a m,mmum 
or the po1en1ial energy (Fig. 89). The level curves of the energy arc then 
homothe1ic ellipses cen1ercd at 0. 

In ll1e repulsive case, we havck < 0 and the cri1ical point Ois a maximum 
or the po1cntial energy (Fig. 90). The lcvd curves of 1hc energy are then 
homo1hetic hyperbolas ccn1ered a1 0, 1ogcthcr with 1hc pair of aspnptotes 
x1 • ± JTcx,. These asymptotes arc also called sq,arolrius, sin« they sep;t• 
rate hypcrl,olas ordilfen·rn 1ypes rrom one ano1hcr.

Fig .  89 Lc\•cl curvn of the: energy for an allr.t.cLiw: quadratic potential

V 

:r, 

Fig. 90 Levd cur\'ff of thc rncrgy fo r  a repulsi\•c quadr atic potential
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ll,mnrk 2 .  T/11 i11crtmtnl qf nfu11ctio11f(x) is a q•ad,aticform i• • ""titHri..d ,j •

t1011d1g,,1ero11 eriticol point, provi,lttl 011/y thnt coordi•atts ar, s•ital,/J ,,-_, 
Mrrc WC assume lhM /(0) • 0 and 1ha1 lhC dcrivalivc:s /'(O) and r(O) 

c•i11. Thrpoln10i1acri1lcal point o(Jir/'(O) • O,and 1hecri11calpoin1 O 
is  11,en said 10 be 11om/1gtt1t1at, ir/"(0) " 0 .  

LEMMA I (Mor■e). In o 11,ighborhood of a nondtt<Mrat, critical,..,., 0, IN,.. 
ordi,111/e y cnn be chosen in such a UNl.1 JJ,ot 

c • sgn/"(0). 

Of course,y • sgn xJl/(x)I is such a coordinale, and 1hc assertion consislS
in showing lhat the correspondence x ..... :, is  diffcomorphic in a neighbor• 
hood of 0. 

In proving Mor11C's lemma, we make use of 1hc following proposition: 

LEMMA 2 (Hadamard). t /..,// be a differtnliabkf11nction (of cw, C') _,, IMI 
both/and its dtriuativef' uanishollht point x • 0. ThLnf(x) • x1(x), u./rnt I is• 
differe11tioblefunctio11 (of class C' _, in o neithborhood of the poi•I x • 0). 

Proof We need merely nole 1ha1 

/(x) = .=....,,- ...c. dt = f'(tx)x dt = x f'(tx) di, 
f I d/(tx) f I J' o dt o o

where 

g(x) = J:J'(tx) dt 

i, a fune1ion of class c·-1• I 

Applying Hadamard's lemma twice to the function/figuring in 1',1orsc's 
lemma, we find tha1 f = .t2,p(x), where 2,p(O) • /"(OJ ,t. 0 .  HmttJ • 
xJl,p(x)l and Morse's lemma is proved, since the function ✓111{.rr)I is differ­
entiable (r - 2 times if/is of class C') in a neighborhood of !he point x = 0 . 

.r, 

Fig .  91 Tangents to the �paratriccs of a repulsive si.ngub.r point.

t Both lemmas can be extended to the cue orru:nctions o( IC"·cral variables.. 
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Thus Inn neighborhood o fa  nondcgenerate critical point the ltvcl eurvu 
of the energy become either ellipses or hypcrbolu under a difl'comorphic 
chnnge of the system of ooordinates (x 1, x1).

P,061,m I, Fmd 1he tangent. 10 the ,irpara.1rlcfj or a rc-puJ.uve .tn,ular point((/'"(() < 0). 

A., .•• • .t: ✓IV'(!)I (,, - () (t'l3. 91),

12.5. Extenalon of 1olutlon1 of Newton'• equations. Suppooe the 
potential energy is defined on the whole x-axis. Then the law of co=rvation 
of energy immediately implies the following 

THEOReM. If the potential 1,urgy U is positiu tct,yu:Jw,, t then,-, ..iwi111t of 11,, 
equation 

dUR- -­

dx

ean be extended indefinitely. 

(I') 

Exompl, / ,  Ir U • -ix', the solution x • 1/(t - I) cannot be «:tdldcd u.p 10 I• I.

First we prove the fo)lowing ''a priori estimatt:0 : 

LEMMA. If a solution exists for Ill < r, then it satisfi,s tht inequaliti.u 

lx(t)I .;; J'Ir., lx(t) - x(O)I < J'Ir. ltl,

wl,ere 

E
0 

= ¼x'(O) + U(x(O)} 

is the initial value of the energy. 

Proof. According to the law of conservation of energy, 

tx'(t) + U(x(t)) = £0,

and since U > 0, the first inequality is proved. The second inequality fo l ­
lows from the first, since 

x(t) -- x(O) = I� x(9) d9. I

Proof of t/,e thtor<m. Let Tbc an arbitrary positive number, and let n (Fig. 
92) be the rectangle

lx
1 

- x
1(0)1 .;; 2..J'[r. T, lx11 .;; 2.,/2Eo 

f Naturally, changing the potential c:ncrgy U by a constant docs noc change cquatioa, (11 .  
Hcrtcc it is onl y essential that Ube bounded from below.
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Fig. 92 The rectangle which 1he pha.se point cannot leave in time T. 

V 

0 b X 

Fig. 93 The sc, or poinu K where U(x) < E (Ea noncritical enc.rgy ln-d).
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in the phase plane. Consider the parallelepiped Ill :!;; T, (x,:x,) en in the

extended phase space (x,, x,, 1). By the extension theorem, the solution can 
be extended up to the boundary of the parallelepiped. It follow. from the 
lemma that the solution can leave the parallelepiped only through those 
faces on which Ill = T .  Hence the solution can be extended up toarbiuary 
I = + T, and hence can be extended i ndefinitcly. I 

Probltm I .  Prove the ponibtlily of indefinitely alcandi.ng tbt: solutiom ol l.M: .ys-1cm ol 
Newton's cqu.ations

:i au · 1 N O -• R" '";,o• - .... �. , .. , ... , ' 111,> • .. 

... 

in \he case or positivc potential energy ( U > 0). 

12,6. Noncritical level curves of the energy. Suppose the potmtial 
energy U is defined on the whole x-axis, and let£ be a noncritical value o f
the energy, i.e., let Ebe different from any of the values ofthe function U at 
its critical points. Consider the set of points {x: U(x) < £} where the value 
of Uis less than£ .  Since U is continuous, this set (Fig. 93) consists ol' a finite 
or countable number of intervals (two of these intervals nta)' extend to 
infinity). A1 the end points of the intervals U(x) = £,and hencr U'(x) # 0 
since £is a noncritical value. Every point of the set {x: U(x) = E) is for this 
reason the end point of precisely one interval in which U(x) < E. Therefore 
1he whole set {x: U(x) < £} is either the entire x-axis or the union of no 
more than countably many pairwise disjoint cloocd intervals, possibly 
together with one or two rays extending to infinity. In the following 
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0 

f'ig. 94 A ph.uc curve dirf�morphic to a cird�. 

Fig. 95 A pha� curve diffeomorphic to a Ii�.
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theorem, we consider one or these intervals a � x < I, (Fig. 94), where 
U(a) s U(b) = £and U(x) <£fora< x < b.

THEOREM. The equation 

-!xi + U(x
1

) = E, 

determines a Jmooth turue, in the plarte (x 1, xl
). This ain.ie is dijfeomorplw IIJ a circle

a11d i. a phase curut of the system (2). Simi/art:,, th, ray a .;; x < a, (o, - co < x 
.;; b),where U(x) < £,is the proje<1io11 01110 the x

1
-axis of a phtue cvmem.ff,o_,pi,u 

to a straight li11t (Fi?, 95). Finally, i11 the case where U(x) < EM ti,, tt:lw/., lint, 
the set of level E tousistJ of two phase ,urr,es 

-'
2 

= +J2(£ - U(x,)). 

Thus the set of level £, where 1he energy£ is noncritical, consists of a 
finite or countable number of smooth phase curves. 

12.7. Proof of Theorem 12-6. The law or conservation of mcrgy allows us 
to solve !\ewton's equation explicitly. In facl, for a fixed value of the total 



Sec. 12 Conscrvaoivc Sy11em1 89 

,, 

Pig .  90 The ph1ue point 1raverte1 half the pha)t cunc (fro.n • 10 6) 1n a fwwtc UlM 
T/2•t1 -t, . 

.. .. 

e, t
o

f f 
' 

Fig, 97 Uae of reflection 10 extend the 1olu1i0n (J( Newton's cqu.-tioa.

energy£, the magnitude ( but no1 the sign) o(thc velocity ii is<ktaminal by 
the position x, since 

x • ± ✓2(£ - U(x)), 

and we already know how to solve this one-dimensional equation� 

(3) 

Lei (x 1 ,x2) be a point of our level set, whcrex2 > 0 (Fig. 96). 1'1akiog use 
of (3), we look for a solution ,p o f  equation ( I) satisfying the initial condition 
<P(10) = x 1,rp(10) = x2,obtaining 

J•<•1 d� 1 - 10 = ,, ✓2(£ - U({))

for I near 10• \',/e now observe that the integral 

T 
J
• d{ 

2 = • ✓2(£ - U({ll

(4) 

converges, since U'(a) ,' 0, U'(b) ,' 0. Therefore (4) defines a cootinuoUI 
function <Pon some interval 11 

.;; I .;; 1, with ,p(1
1) = a, ,p(l2) =•·This 

function satisfies Newton's equation everywhere (Fig. 97). 
The interval (11, 1

2
) is of length T/2. \Ve now extend <Ponto the next 

interval of lenglh T/2 by using symmetry considerations: <P(I 2 + t) = 
,p(12 - t}, 0.;; t .;; T/2, further extending <P by periodicity: q,(t + T) ., 
,p(I). The resulting function, defined on the whole line, sati.sfio Newton's 
equation everywhere, and moreover cp(t

0) = x1 , 4>(10) = x2• Thus1A--e: ha� 
constructed a solution of the system (2) satisfying the initial condition 
(x., x 2), which turns out to be periodic "'1th period T .  The concspondiog 
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Fi.g, 98 D«-omp01hion or a critical level curve ol the cnffJY into phut cvrva. 

closed phase curve is just 1hc part oft he set oflcvcl £lying ov,:r the int<'.rval 
a ,;; x ,;; b. This curve is diffcomorphic 10 a circle, like every cloocd phase 
curve (sec Sec. 10). 

The case where Lhc interval extends to infinity (in one direction or the 
other) is simpler than 1hc case just oonJidered, and is left as an exercise. I

12.8, Critical level curve,. The structure of critical level curves can be 
more complicated. Note that such curves contain fixed poinr.s (x1, x2) 

(where U'(x,) = 0, x
2 = 0), each of which is itself a ph.lK curve. If 

U(x) < E everywhere on the interval• ,;; x ,;; b, except for U(a) • U(i) 
• E, and if both end points arc critical points, so that U'(•) • U'(i) = 0,
then both open arcs

x2 = ± J2(E - U(x,)), • < x, < b

(Fig. 98a) are phase curves. The time taken by the phase point to traverse 
such an arc is infinite (Theorem 12.5 + uniqueness). 

If U'(a) = 0, U'(b) ,t, 0 (Fig. 98b), the equation 

ixl + U(x,) • E, 

determines a noncloscd phase curve. Finally, if U'(a) ,t, 0, U'(i) ,t, 0 (Fig. 
98c), then the part of the critical level set lying over the interval a ,;; x ,;; 6 
i s  a closed phase curvc,just as in the case of a noncritical lcvd £ .  

12.9. Example. The above considerations w;n now be applied to the pen· 
dulum equation 

X = -sinx, 

with potential energy U(x) = -cos x (Fig. 99) and critical pointsx1 = ta, 
k = 0, ± I, ... The closed phase curves r,scmble ellipses near the point 
x1 - 0, x

1 
a: 0, and these curves correspond to small oscillations of the 

pendulum. The period T of the oscillations depends only slightly on the 
amplitude, as long as the amplitude is small. For larger valucsof thecna-gy 
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.%'1 

a:, 

Fig, 99 Pha,.e curves or the pendulum equat ion i - -tin .r. 

8 

Fig. 100 Cyli,ldrical phase space or the pendulum.
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constant, we get larger closed curves, until the energy reaches a critica.J 
value equal 10 the po1<n1ial energy of the pendulum in the upside-down 
position. The period of the oscillations then increases (sin« the time of 
motion along the: scparatriccs making up the critical kvd set is infinite). 

For larger values of the energy we get nonclosed curves on which x1 docs 
not change sign, i.e., the pendulum rotates rather than oscillates, achiNing 
the largest value of its ve1ocity at the lower position and the smalltst value 
al the upper position. Note that values of x, differing by 2.b< concspond to 
identical positions of the pendulum. Therefore it is natural 10 choose the 
cylinder (x I mod 2n, x2) rather than the plane (x,, x1) as the phase space of 
the pendulum (Fig. 100). 

Taking the picture already drawn in the plane and wrapping it around 
the cylinder, we get the phase curves of the pendulum on thcsuriacc of the 
cylinder. They arc all closed smooth curves, except for two fixed pojnts 
A, B (the lower and upper equilibrium positions) and two ,epantriccs 
C,D. 

Prohlnn. I .  Draw graphs or the funetions x
1 
(t) a.nd x

2
(t) f0r tht solutioft wilt-. entJS:t aeu 

but iomewhat below the critical energy in the upper po5,itioa\. 
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Fl,g, 101 'n1e angle or de\'lation or  the pendulum and 1he vf'IM1ty ol 1b fflObOn r«
amplitudes neat n .  

A,u .  See Fig .  10 I. The functions x1 (I) a,,d ,.:,(I) can be cxptaKd i n  tcrmt. o/ J;ft and Cl'I (lhe 
c-lliptic ai ne a n d elli 1nfc CO!ine). Ai E approachts the lower crfocal valw. the OM'ilht,ona
or the pe:1,dulum bt:come apprOXimatdy har monic, with s.n and en eoinc in:to 11.n and <'OI. 

PrtJhlm, 2 .  Al what rate docs the period o(the os.ci'.llatioru of a pendulum app,oach infinity. 
as the ener gy E a1>pr0.tcho the upper crilical value £1 ! 
A1'J,  At a logarithmic rate (- C In (£

1 
- E)). 

Hi,il, See formula (4).

12.10. Small perturbadons of a conservative 1y1tem. Having i n ­
vcsligatcd the motions of a conservative syst<:m, we can nowust tM th('Ol'cm 
on differentiability with respect to a paramc«r (Stt. 9.5) to study noghbor• 
ing systems of a general form. In doing so. wie encounter a qualitativdy n� 
phenomenon of great importance in the applica1ions, i.e., �llaJio,u 
or selj-txtittd ostillatio,u.

P,obltm I .  I nvcstigate the phase curvts or the system

I
.ti - Xi + tJ1 (x1, xa)t 

;tJ - -x, + tf1 (1t .. 1t1), 
differ in g onl y  slightly from the system o( equa tions for small osc:iRa.tions of a pendulum.
Solution, Fort - 0 we get the equations (or smal l  oscillations o(a pendulum. By the theottm.
on diffcrcnfiability with respect to a parameter. 1hc solution (on a finite time intav.af) 
differs by a cor recti on or order e from the harmonic oscillations 

x1 = .◄ COS (t - t0), 1ta = - .◄ si n (t - 10). 

prov ided c is small. Hen «, ror sufficiently small c - c( T). the p �  poiftt stays near the: 
c .irclc or radius A during the interval T .

Unlike the co�rvative case {t - 0), the phuc curve is not ncceuarilyc:lmcd fc. • fl 0. 
and it may have the form or a spiral (Fig. I 02), with a .small distance (of onScr c) bet�
,,eighbori ng turns. To determine whether the phase cu� approaches th,c origin. ol a,.. 

ordinates or recedes from thc ori,gin, wc considcrthc incremcntoftheenc:rgy£ • W + W
afte r  o ne circuit ar ound the origin . \Ve a re particularly i nterested in the sign o( this
i n crement, which is positi ve On tht expandi ng (unwinding) spin.I, ncpt:ive on lhc coo. 
t ractin g (tightening) spiral, and ze,o on 1he Jimjt �yclc itself. We now dcdtK"C an a� 
pr oxima1c exprcuion, namely formula {6), for the <"'ncrgy inaement.

The derivative of the energy in the directjon of ou r vector field is c�y �ua.tcd . net  
is proportional to e :
E(x,, x,) • <(x,.f, + x,f,). (SJ 
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F 

A 

.�ig, 102 Phase cmvo of 1he van dcr Pol equalion and the i.nercmfflil of mttSY aftitr
one circui1 around the origin.

To calcul ate the c�rgy increment after one circuit, this (unc'tioo shoukl be in.tqntcd
along a tur n  of th� pha..se 1rajettory, but 1hc l.atter is unrortu.natdy not known. Bue., n 
altt.ady C)l'plaincd, the 1ur11 it close to a circle. and ht"ncc, 10 within an at<'llnl(y o( O ,-I), 
the integral can be taken along ,he circle S or radju1 A: 

a, - ,-J:" t(A cos 1, -A sin t) dt ➔ O(,J),

Substituting (5) into thi1 (ol'mula, we gett 

t>.E = ,F(A) � O(,') 

where 

F(A) - f /, ,1,, -I, ,1,, 

(6) 

(the integral U taken along a circle o f radius A lr-a\-cncd in the councadockwile dir«­
tion).

Onc,e having calculat� the func1jon F(A), we can in"�tigatc lM bma,io, of'thc phatt
curves, Ir the function F is positive, the energy increment 6£ after one circuit is aho 
positive (for small )>Ol'litivc f"), In this CA.st, the phuc cun·e is an un�;nding spin.I. and lhc
sys1em executes inrre�ing oscill ations, On the othu h and. if F < 0 ,  lhcn � < 0 Ji.nd
the phase spital is contracting .  In the- latter ca.sic. the o,c:ilbtions damp ouL

It can happen that the function F(A) chang,cs sign (Fil, 102). Suppo1C F .-t) hu a 

simple zero A0• Then for small , the equal.ion

O.£(x .. x1) =0 

is sa1isficd by .t dosed curve r in the phase pla ne, near the circle of radius .... (U'lis l"ollows
from the impl icit function thcottm). Obviously r is a closed plusc c:vn�. i.t, a limit
cycle of our system, 

The lljgn of the de riv ative

p dFI 
• dA ......

d e1crmines whether neighboring phase curves wind onto the limit cycle or unwiftd from 
it. The cyrle is unstabl, if�P" > 0 and st.ablt if�P" < 0 .  In fact, in the fiffl cue die ,energy 
increase afte r  one cir cuit is greater than zero if the phase cu.n-c lies outside the-cyde a nd  

les., than -zc.ro i f  it lies inMde the cycle � hence the phase cu.n-c a l wa)"S mG\.-U away from the

t Hett we use 1hc fact 1ha1 tbr1 = x1 dt, d:c1 -= -x1 dt along S .
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tyclc. However. In the i,econd CII\C', 1he phHe wrva approuh the cy'('k both (,om lhe 
irHldc 11nd from 1he out\ldc • .u In ►�ig. 102.

Exampl, I. Considrr the equation

/I • -x + ex(I - x'),

culled the va11 dtr Pol ,quation. Evaluating the integral (6) with/, • 0,
/, - x,( I - x/), we get 

F(A) • "( A' -�•)· 
This function has a simple zero A

0 
a 2 (Fig. 102), and is positi,� fOC'smallcr

A and negative for larger A. Therefore for small t the van dcr Pol .-quation
has a stable limit cycle, close to the circle x' + .i'' s 4 in 1hc phase plane.

Suppose we compare the rnotlon or the original ooruavati\.� system
(t • 0) wi1h wha1 happens fort ,I, O .  In 1he oorucrva1ivc sys1cm, there can 
occur oscillation, of arbitrary amplitude (all the phase curva arc dosed),
wi1h 1he am11litude determined only by 1hc ini1ial condi1ions. In the non­
conservative system (t ,I, 0), qualitativdy diffcrcn1 phcnomcna are pos­
sible, for- example, a stable limit cycle. In this-case, very different initial con­
di1ions lead 10 1hc establishment of a periodic oscillation of ooe and thesamt
comple1ely de1ermined amplitude. The rcsul1ing steady-slate regime is
said to be auto-oscitlato,y. 
•P,ol,/urt 2 ,  Investigate th� auto-oscillatory mo1jons of .a pendulum ,.,:th sma.l {rictioft
subject co the act ion or a constarH 1orque /11:

i + sin x + d - /if.

Hi11t. Thi's problem is analytcd in detail for al"bitrary c .and A1 in A .  A .  Anclronov? A .  A .
Vitt, aiod S. f : .  Khailtin, Thto7ofO,cillnlionJ (in Rus:s.i.an), MOKOw (19.>9). Chap. 7 .  
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Linear systems arc alma.I 1hr only large clan of  differential equauo,u ror 
which there exists a definitive theory. This theory i ,  =entiall) a brant'h o( 
linear olgcbra, and allows u, 10 solve oll autonomous linear equations. 

The theory or linear cquo1ion• is al,o useful as a first approximation 10 
the study or nonlinear probl<m,. For example, it allows us 10 invntigatc the 
stability or equilibrium 1>osi1ion, and the 1opoloSic•I rlauifieauon ol•i"8u•
tar points of vector fields in the nondcgcncratc cases. 

13. Linear Problems

We begin by considering two examples of siluation.s i n  which linear cqua• 
tions arise. 

13.1. Example: Linearl&atlon. C'.onsidcr the differential equation deter•  
mined by a vector field in phase space. \\le already know that the field has a 
simple structure in a neighborhood ora non,ingular point (v .;, 0), i.e., i t  ii 
rectified by a diffcomorphism. We now consider thcstructu�of ,hc6cld i n  a 
neighborhood or a singular point, namely a point where the field vector 
vanishes. Such a point x0 is a stationary point of our equation. lfth< tqua• 
tion describes some physical process, then x0 is a stationary state of the pro­
cess1 namely its ''equilibrium position.11 Therefore studying a nrighbochood
of the singular point means studying how the process evolves. when its initial
conditions deviate slightly from their equilibrium values (consider, for e x ­

ample, the upper and lower equilibrium positions of the pendulum). 
To irwcstigate the vector field in a neighborhood or a point.r0 where the 

field vector vaniShC$, it is nalural to make a Taylor series expansion of the 
field in the given neighborhood. The first term or the Tayloe series ii linear,
and the process of dropping the remaining terms is called 1;,.,,,,,;u,1io,r. The

linearized vector field can be regarded as an example of a vector field ";,h a 
singular point x0• On the other hand, it might b e  expected that the bchavioc 
of the linearized equation is close to that of the original �uation (sin« 
small quantities of higher order arc dropped in making the lincariu.rion). 
Of course, the problem of the relation bctwttn the solutions of the originaJ 
equation and those of the linearized equation rcquirns-pecial investigation�
This investigation is based on a detailed analy sis of the linear �ua.tioo, a 
topic which will be our first concern. 

Problem J. Show that linton';:.otion is 010: in.vorio"J �•Jio,,.. i., .• •• optr•ti•---' i ·  ttl..,..,_,,_ 
of lJK (00,dinal< SJSl<m. 

�lore cx.ac•ly, suppose the field Y in the domain U is gi"·cn in thic system o( �tcs 
x1 by components t •1(x), and let the singular point ha\·e coordinates x1 - 0. so tha1

lt1(x) = 0, i =· I, ... • n .  11,cn 1hc original cqu.:u.ion ta.ltcs the ronn or a sysu:m
i, ..,. 11,(x), i= l, ...• n .
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The linu.ulud 19un1io,. 1, now dtfi1H �d •• 1ht «1u.ahon 
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Co,uldct the mngrnl Ytttor ( • Tl/0 whh c:oo,pol'ltn1• (,. I 1, •• , -. Thc-n ttk ltnnr 
cc1utulo11 con be writlt'n ln 1ht (orrn 
t - A(, 

whcl'e A is 1hc linear map1>ing A: TU0 - TU• 11>«1fitd by tht matruc: (•1,1. h II tlOW 

:1mr1 ed ,hat 1/11 '1wppin1, A d«J tt0t d.,p,1td on tJt.t l)Jlt• -.J ,..,,1i .. ,,_, •,fi.,._, .. w •.J-it.wa. 
P,Hlrm 2 . 1.ineariit lht J>('ndulurn equation J 
x0 - hr, .to - 0. 
13.2. Examplet One-parameter groups ofliaear traasformatioos or

R•, Another problem leading at once 10 linear differential cquatiom ii the 
problem of describing one-parameter groups of linear transformations of 
the linear space R". 

First we note that ii is not11rol lo identif., tltL lafl,(t•I spa,, to tit, ti,.,or s,-U R" 
nt any poi111 wit/, the lin,ar space ilSelf. In fact, we identify the elem<nt ,> of the 
tangent space TRZ, whose representative is the curve fP: / - R• .. •CO • x,

with the vector 

v = lim q>(I) - XE R" 
,-o I 

of the space R" itself (the correspondence v - cp is one-teronc). 
This identification depends on the structure of the linear spa.ct R" and 

is 1101 preserved under diffcomorphisrns. However, in  the linear probl.:ms 
which wi II now concern us (for example, in the problem or one-par.a meter 
groups of linear transformations), the structure of the linear space in R" is 
fixed once and for all. Therefore we now mah IN idrntifeation TR; = R" IUllil 
such lime as wt retur,1 to nonlinear problems. 

Let {g', I e R) be a one-parameter group oflincar 1ranslorma1ions, and 
consider the trajectory (fJ: R - R" of a point x0 e R". 
Pro/Jkm I. Pr<wc 1h :u •(t) is :a solu1ion or 1hc cqu.a1ion

x; = .-1• 
satis(ying 1he ioitial condition •(O) = a, where . .f: R• - R• L� t.be linn.r optntot

( a= an R. -eodomoi-phism) ddincd by 1he formub 

Ax � di g'x vx cR•. 
df ••O 

Hint. Sec Sec. 3.3. 
Equation (I) is ••id 10 be linear. Thus, to describe all one-parameter 

groups of linear transformations, w e  need only investigate the solutions or

the linear equation (1). 
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We will sec Inter that the eorrcs1>0ndcncc between one-paramet<T groups 
{g'} of linear transformations and linear equation, of the type ( I 11 onc-to­
onc. Thus every 01>crator A: R' - R' spcciRcs • one-parameter group (t'}, 

Hxn,.,Jtl, I ,  l.t•1 11 I, and 1.-t A 1k multl1>htahon by tM num�f' A, 1Mn 1' "aft ,.U.Wd 
rxpo"'ion,
J-,<tb/tm 2. t,'hld tlte "rlotity Orld or p,olirn. o( :ii ng:td body rotating ...,,th a.ngub.t ,.dorll) 
u ,  about an axis going 1hrough the orig in,

13.3. L!.neal" equation•. Let A: R" - R"' be a linear opcr-ator in the• 
dimensional real space R". 

Dtfi11;1iq11. Hy a fortar tqu.ntion is meant an equation , .. i1h phase space R• 
determined b)' a velocity field v(x) • Ax: 

X • Ax. (I 

The full descri 1>1ion of equation (I) i s  "a system of n homogeneous linear
differential equations of the first order with constant real coefficients." 

Let xr, i • I 1 • •  , 1 n be a fixed system of(lincar) coordinates in R•. Then 
equation (I) can be written as a system of II cquatioru 

i = I, , .. , n, (I') 

where (a,1) i s  the matrix of the operator A in the given coordinate systtm.
This mairix is called the mat,i.< of tht S)'>i<m (I'). 

For n = I the solution of equation (I) satisf)'ing the initial condition 
,p(O) = x0 is given by the exponential 

,p(t) = ,''"•· 

It turns out that the solution is still given by the same formula in tM"gcncral 
case, provided we explain what is meant by thcexponemialofa linear oper­
ator. \IVr- now turn our attention to this problem. 

14. The Exponential of an Operator

The function eA, A e R can be defined in either of two equivalent W3)'S: 

A' A' 
,, = E + A + - + - + (I) 

2! 3! 

,, = lim (£ + ::!)' (2) 
.. -oo 

It 

(where £denotes unity). 
Now let A: R" - a• be a linear operator. To define eA., we must first 
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def, nc the concc1>t of the Ii mit of a seq uencc orlincar 01,c,raton. 

14,1. The norm ofan operator. Let ( ·, ·) be: a Kalar prod..ct in R", and 
lrt l•I • J(x, x) be the norm of the vector x • R•, i.e., the square root of  
the scalar 1>rodurt ofx with itself.

Deji11i1ion. Uy the 11orm ofa linear o1,crator A: R" - R" is meant the number

IA•I IAI • sup-. 
••• l•I 

Ccometrically IAI is just the larges, "expansion cocfficicn1" of the 1ransfor­
ma1ion A.

Prohltm /, Prove that O < 1,11 .,.. oo. 
Hi'nt .  IA I sup IA•I. the sphc«- is C'ornpact� and tM runction IAaJ " t"Onllnuout..

l•t. I 

Pr"'ltm 2 .  Prove chat 

l.lAI • lllJAI, IA +Bl.; IAI + 181, 1.481.; IAJIBI,
where A, 8: R• - R• arc linc;u- op(r11 1or1 and A.• Risa num btr.
P,obltm 3. �• (o,1) be th e m:a,rix or th e opcratOf' A in an orthonorrrul bun. Proff l}g,1 
m:x 1t •1, < 1-•I' < l;; lai,11 •

Hinl. Sec C. £. Shilo v, An ln1roducti0tt to tM TN-, .J l..ut.r Sp,ou.s (translated by R.A. 
Silverman), Dover , New York ( 1974), Sec. S3, .

14.2. The metric space of operators. The ,c, L of all linear opcraton 
A: R"' - R" i s  itself a linear space over th� fidd of real numbers (by defini­
tion, (A + .lB)x = Ax + .lBx).

P,M>Jtm I. What is 1he di,nension or1hc linear spa« L? 
Ans. n1 • 

Hint. An opc-rator is spe cified by i1s matrix. 

We now define the distance between two operators as the norm of the 
difl'crcncc A - B: 

p(A, B) = IA - Bl. (3)

1·HeOREM. TM space of linear operators witlt the metric pis a compkk -tu sp«,.t

t By a mttrit Jf>or.e is meant a pair consisting of a sc-1 �f and a fUJ'Ktion p: ·" , .\I - R.
called the mtt,it. such 1ha1 
l )  p(x,y) > 0 V x,y • Af, p(x,y) = 0 if and ooJy it x = :,;
2) p(x,y) a: p(;,, x) V x,y • /&1� 
3) p(x,y) < p(x, z) + p(z,J) V x,J, O< M .
A scqucnecx, or points of a metric spac,c .1'1 t:Sca llrd a c.-', SflfW'IC' irV , > 0:) X: p(z,.z,) 
< , V i,j > N .  A se quence x, is said 10 tML>n� tO a point x if V,: > 0 :i N: ,<� x,) < • 
"Ii > N .  The spaec Mis said 10 be compt,u if every Cauchy scqucnec is eonvapL 
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Pr�/. I I follow, from 1hc dcfini1ion (3) chat p > 0 iC A ,. 8, p(A, A) • 0, 
11(1), A) • p(A, I)). The 1rianglc inequality 

11(A, C) Ci p(A, 8) + p(8, C) 

is an immcdiMc consequence oCthc Inequality IX+ YI Ci 1XI + IYI (S«. 
14.1,Problem2)iCwc,ctX • A - 8, Y • B -C.Thuspisamctric,and 

the space lcquippcd with pi, a metric space. The completeness or l is easily 
proved (sec below). I 

14.3, Proo£ or complet�n."•· l..e1 A, be a Cawchy .equen«. i.e., s:uppc:.c th.At (or � 
r > 0, 1here i, an N{,) > 0 1uch 1hat p(A., A.) < t if•, l > N. Civitft any•• R•, rom, 
1he sequroce of po in11 •• • R•, •, - A.-:. 1'hen s, LI a Cauchy leql,t(n«:"' tht spatt R• 
e<1uip1>cd wi1h the Eudidcan metric p(•, y )  - I• - yJ, In r11ct, by dw ckfiNbaft of tlw
,,orm or an opctator, 

I•. - •• 1 < p(A., A,>l•I < •1•1
fot m, k > N. Sioce l•I is a fixed number (ind�ndcnt of"' and .l), it � th.at -. II a 
Cauchy aequtnce. The ,pace R• i s complete, and httL-« the limit

y - lim •• • R• ' .•
exists .  Note that I•, - YI < tl•I for .t > N(1:), whc:r-c N(c) is the same numbt:r indq,cnc:l-­
ent or• u above. The poin t y dC'pcnds linearly on th< point :a (1hc limit ol a wm cq-u.ls 
thC' sum of thC' limita). Thi1 give, a li ,,e.ar opcra1or .-t: R• - R•. A.s = y. A • L But 

p(A., A) = IA, - Al - sup 1••
1
1 rl < •

• , t> • 

for .t > N(t). Therefore 

and the spa«- L is complC'tc. I
P,o6ltm J. Prove that a sequence of operators A, converges if and only if the .acq:uencw: ol 
thC"ir matrices in a fixed basis convc-rges. UK this 10 givC' another proof o/ compldftliCS. 

14.of. Series, Lei M be a real linear space, provided with a metric p such 
that 1he distance between two points of 1\1 depends only on the diffettntt 
bee ween the points and 

p(lx, 0) = lllp(x, 0), XEM, le R.

Suppose also that M, taken with this metric, is a complete metric space. 
Then Mis said to be a normed linear space, and the fonction p(x, 0) is called 
1he norm or x and is denoted by lxl. 

£xflmpl.e /, Euelidea ,, space ,\1 = R• with the mc1ric: 

p(x,y) - I• - YI = J (• -Y, • - y) .

Examplt 2 .  The space l of linear operators .-t, 8: R• -R• with the metric 
p(A, 8) = 1 -◄ - 8j. 
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The di•tance l,e1wec11 clements A, 8 II A1 will be dcnolcd by IA - Bl,
Since the clements of A1 can be added and mul1iplicd by numbers and ainc,c 
Cauchy 1<:<111cncc1 in M have limits, the 1hcoryofacricaof1h<, form 

A
1 
e A1 

is literally the s:1mc ,11 the theory o f  numerical aeries. The 1hcoryof scrio of 
functions can also be carried over a t  once to the casc offonctions with values 
in M. 

Problem I. Prove the following 1wo theorems: 

Wl!,IJ!.RSTRASS' Tl•�$T. ljlht Jtri,s 

r.1, 
' - ' 

of functions/
1

; X - �{ is majoriud b)' o com .. �,,,nt nutMrical se,US, i.t., if 

11,1 < .,, L "r < co, 
I• I 

1/i,n the serie, ( 4) is absolutely and uniformly conv,rgenl on X .  

(4) 

01"fERENTIATION OfSERIES. /Jlhe series (4) of Junaionsf;: R - Af u -,""

·attd if the .rtrie1 of derivatives

ft{/j J• I dl 
(5)

is uniformly conuergent, then the series ( 4) can be dijftrmlialtd i,,.. 67 Ina (1 i., IN
coordi11alt 011 the line R):

!_ f J, a f df,.
dt ,. 1 , • I dt 

Hint. The proof for the case M = R is given in advanced calculus and can 
be carried over word for word to the general case. 

lf.5. Definition oftbe exponential t". Lei A: R• ➔ R• be a linear o pe r ­
ator. 

Definition. By ,he exponentiate• of the opera/Qr A is meant the liocar opcrator 
Al «> At 

t• =E+A+-+ ··· =r.-2, k' •· t•O · 

where£ is the identity operator (Ex = x). 

THEOREM. Given any A, the .series tA is unifarml.y conz:ogml • cay .11.J X = 
{A: IAI ,;; a}, a e R. 
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l'r0<1j. I fllll < a, the series•• is majorizcd by the numerical scrks 
,,, 

l+a+
2i

+ 

101 

which converges 10 t'. It follows from \Veientr.us' tnt that the series,• i, 
uniformly convergent for 1111 4- a. I

Problem I. C:alculatc the matrix,,,. if the ma1rix A is or the form 

b) (� �);
(0 I 0) 

d) 0 0 I .
0 0 0 

14.6. Example. (',onsider the set of all polynomials of degree las than a in a 
variable x with real coefficients. This set has the natural structure o fa  rc;ol 
linear space, since polynomials can be added and multiplied by numbers. 
Probl,m I ,  Find 1hc dimtmion o( the 11,acc of all polyno,mals of dcgrtt kit th.a.n -. 
Anl, n; ro, example, I, x, x1, • , • , x--' i.1 a ba11s.

\Ve will denote che space of all polynomials of dcgree las than a by R". t 
The derivative of a polynomial por degree las than n is itself a polynomial of 
degree less than n. This gives rise to  the mapping 

A:R"➔R", dp 
IIJ> = -. 

dx 

Pro '1ltm 2 .  Prove that A i.s a linear operator, and find its kernel a.nd imag,c. 
Ans. Ker A= R1, Im A= R•- 1• 

(6) 

On the other hand, let N' (t e R) denote the operator of shift by I, cart) ' •
ing the polynomial p(x) into p(x + 1).

Problt,n :J .  Prove that II': R• - R• is a linear operator, and find its kttnd. and image. 
Ans. Ker/-/'= 0, Im H' = R". 

Finally we form Lhe operalortu. 

THEOREM. If A is th,.optrator (6), thtn 
e'11 = J/1, 

Proof. This is just Taylor's formula for polynomials 
I dp 12 d 2pp(x + t) � p(x) + 
l!d< + 2!.t<' +

(familiar from calculus). I

t Thus we idcnti(y the space otpolynomi.als. equipped 111,'lth the basis indi::ltcd ita Problem 
1, with the isomorphic coordinate space R•. 
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14.7. The exponential of a dJagooal OJHrator. Sup� 1he ma1rix or 
the opcra1or A is diagonal, with diagonal clements A,. ..• , .i. •• 'Olc:n i1 ii 
easy 10 sec tha1 1hc matrix or the opcra1or ,• ls obo diagonal, wi1h diagonal 
clc1ncnts,"'1,,,. ,,"" 

D,ji11i1io11. An 01x:ra1or A: R" - R" iJ said 10 be: dilllonal ;r its matrix i1
diagonal In some basis. Such a basis i, called an 111m&a1u. 

P,ol,/,,,. I. Giv e  11n example: of a nondi agon.al open.tor, 

ProJ,J,,n 2 .  Prow: th.a t the e:igcnvalun of a di agona.l open tor A arc rcat 

Prohlrm 3. Prove thal if all" cigenvalutt ofan opc:rator A: R• -R• are r('lll and Mlinct. 
1hcn A is diagonal, 

ul A be a diagonal of>trawr. Th,n ,• is mo11 ,aniJtolculat,d io.,. ,;,,.�. 

Enr11pl, /, Sup1>0Se the operator A h.as a mJ.trix of the form

G :) 
in II b.uis •u e1• Sint-c the cigc,walutt l, 2, 11 0 are rc;al and dillti_na. the �n*
A it diagonal with cigcnb.uis 1

1 
= e

1 
+ e 1

, 1
1 = e1 

- e,. The matrix o/ A in this basis
is just 

(� �)-
Hence the ma tr ix of the opera tor, .. i n the dgcnbuis is 

(,, 0) 0 I '

Thus chc matrix or the operator ,,. is 

1(,1. + I ,1 - ') 
2 t1 - I r1 + I 

in the origjnaf basis .  

14.8. The exponential of a nilpotent OJHr&tor. 

D,jinilion. An operator A: R" - R• is said 10 be ni/polmt ifsom,, powu of A
equals 0. 

Pl'oblt,n I. Prove th.at the operator with matrix 

i:s nilpotent. Mol'C gcnc:rally, prove that if all the clcmentt of the matru: of an operator 
on and below the mai n diagonal :lire �cro, then the operator is nilpocenr.

Ptooltm 2 .  Prove tha t the djffcrenti:uion opcr:.tor d/h in the sp3c:e oL au polyftOl'l'liaJs ol 
degree lcu than n is nilpotent. 
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If /111 op,,,,,or A is 11;/pott,11, 1h,n tht s,,i11 r4 1,rminat11, i.t., rtJ.wu t• • fouu 
sum. 

Probl,m , .  (!hlcuh11e r'A (t • R) whc:re A: R• - R• 11 the: optn&or whh Matn.a: 

(:
b

· .. �) 
(I o\•c:r the main diagonal and O c:lsewhc:re), 
Jl{,rt, One way or ,olving this problem is co utit Taylor's rormuJa for polynombk. l'M­
diffcrcntial 01�ra1or d/rlx ha� 11 muriK of the indkatfti typ,t: in tome bun (wllich Ofte?°.l,
For furihcr' dcmils, 1cc $«. 25, 

14,9, Q.ua1l-polynornlal1, Let l be a fixed real number. "J'Mn b)' a p,u; .

poly11omia/ with expo11t11t l is meant a product of the form e1'p(.s) whcrcp is a 
pol,-nomial. The degree of pis called the tkxru o( the quasi-polynomial. 

l'robl,,,, I .  Prove ,hat tht" 1c1 of all quasi•1)0lynomial1 with cxpoM:nt A ol dc:crtt kll than 
n is a liocar spaC'c. What i, the dim ens.ion of this t.patt ?' 
Ans. n: for example,,"•, ,uh, .... ,t"· ,, ..... is a basis.

Remade. There is a certain ambiguity implicit in the con�pt of a quasi• 
polynomial,just as in the case of a polynomial. A (quasi-) polynomial can be
regarded as an exp1tssio11 made up of signs and le11en, in  which cas-e the solu• 
tion of the preceding problem is obvious. O n  the other hand,�� can regard 
a (quasi-) polynomial as afunllio11, i.e., as a mapping/: R - R. ActuaUy 
both conceptS are equivalent (when the coefficients of the polp,omials arc 
real or com pie• numbcrst). 
P,obl,m ? .  Prove that C\'C'ry function/: ll - ll which an be writtt".n as a. quui-polynomial 
has a uniqne rcprc1cnlation as a quasi-polynomial. 
flint. \\'c n<"cd only note that if ,0p(x) = 0, then thie cod6ciients ol the polynomial,�) 
all \'anish. 

The 11-dimcnsional linear space of quasi-polynomials of degrtt less than" 
with exponent ,l will be denoted by R•. 

TH�ORtM. The differential op,rator d/dx is a lin,ar opnaior from RA u, R• swJt tllJJJ 

e''"" = fl' (7) 

for every t e R, where H': R" ➔ R" is the operator of shift bJ t, i.e., (H'l)(x) = 
f{x + t). 

Proof. Proving first that the derivative and shift of a quasi-polp101niaJ of 

t We will $(l()n c-0nsidcr (quasi-) polynomials with real coefficients. 
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degree less thnn II is itself a qunsi-polynomial ofdcgr« less than•• we note 
thnt 

!!. (,"p(x)) • J.,"p(x) + i'p'(x),dx 
,;i,+ '1p(x + t) • ,'••''p(x + I),

Moreover, ,he linearity of both the dcrivativr and the shift i,ap�rent. Note 
also ,hat the Taylor series of a quasi-polynomial u absolutely conv,,rgent on 
the whole real line (since the Taylor serie,of ,,, andp(x) arc absolutely con­
vergent), Comparing the Taylor series 

., f''•(x) f(x + I) • r ·........0�1• 
... o 11!

and the expansion 

., A' 
,, .. - L _,., 

11•0 ,,! 

we get (7). I

P,fllll,m 3. Ca lcul ate: 1hc: matrix of the operato r �,,. if the: matrix of A � of the form (; l::-:)
0 ·; 

(,l on lhc: main diagonal, I O\'cr 1hc main diagonaJ. 0 clKWMff). for aampk:, nkubtir 

exp ( � : ). 

Hint. This is prc('i�ly the form of the matrix of the diffcrmlUtion opera.tor in the- spai« 
of qua,i-pol ynomiab (in which ba!J:i:J ?). Fo r  fur1hcr details, sec s«. 2 5 .  

15. Pro�rties of the Exponential

We now establish a numberofproperticsoftheopcratore": R" - R•. These 
properties allow us to use,,. to solve linear differential equations-

15.1. Tb" group prop.,rty. Let A: R" - R' be a linear operator. 

1'H£0REM, The family of linear operalots ,,A: R" - R", I€ Risa ML--p,artunda 
group of /in,ar transformations of R•. 

Ptoof. Since it i s  already known that e'A is a linear operator-, we need only 
verify that 

(1)
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and 1h"1 •" depend , dilTerentiably on 1 .  In fac1, "c will sho,- 1ha1 

tf IA A fA 
_, - "' .
dt 

IOS 

(2) 

as ,night be experted ofan exponcn1ial. To prove 1hcgroup property (I), ,.e
nrst 11111l1iply 1hc scric, in power, of A formally, obtaining 

(J;; + IA + 1; 111 + .. · )(e + sA + s; A' + · · ·)
- E + (1 + s)A + (�+ts + �)A' +

The coellicienl of A' in the product cquab (I + s)1/L!, since formula (l)
holds in the case of numerical series (A e R). The lcgi1imacyof the tcrm-by­
tcrm 11111ltiplica1io11 i.s proved in the same way as the lcgi1imacyor1hc term• 
by-term multiplicati01\ or absolutely convergent numerical series {the series 
for e'" and �" arc absolutely convergent, since the series ror eJ•I• and ,l•I•

where a • IA I arc convergent). 
To prove (2), we di/Tcrcnciatc the series fore"' with rcspccc 10 I formally, 

obtaining a series of derivatives: 

., d • ., t' 
1: _!...11• •AL -A'. 

••o dt k! ••o kt 

This series converges absolucely and uniformly in any domain IAI .;; •• 
Iii ,;; T,just like the original series. Hence che derivative of che sum of the 
series exists and equals the sum of the series or derivatives. I

\Ve can also pl"(lve (I) by reducing the proof directly to  the numerical c::uc. af1er fi:nt
Pl'O\!ir\g the following

U!iMMA, let pc Rl=u ..• • = .... J h, o polJ·nomial in tJw Hriah/1! =., ... , :... IC'itA -ra:­

t.oqfi�itnts , ond ltt A 1 , • • •  , A,...: R• - R• 6� lintar op,Yo.tors. 71ttit 

IP(A.,.,,, A.)I.;; p(IA,1,, •• , IA,1), 
Proof. An immediate con sequence of See. 14.1, Problem 2 ,  I 
Proof of farmula ( I). Lott S.{A) denote the partial ,um of the series for rA: 

• A' S.(A) = !: - .,-o k! 

Then S. is a polynornfa.l in A with nonncgati\-C coc.fficien1s.. \\'e mun. J,,o,w that the 
diffctt:oce
a. = S

0
(tA)S

0
(sA) - $0((1 + s)A)

c:onverga to O ,u m - oo. Note that A. is a polynomial in sA and rA with� 
'-"f.ffititnts. In fact, the terms in the product series of  degree: no higher lhan • in .d arc: all
obta.incd by multiply ing the te:rms in the factor series of dqr-cc no higher than• in •◄ .
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Moreover, S.((J � 1)A) I, a pullal ,um o r  tht produe1 11trtt"l, and hfflft A-• tht- ,vm 
or all lernu i11 1hc 1•roduc:t S.(1A)S.(,A) or df'lrtt h•ghu than"" in A lu·t a.SI 1,W. cotfl. 
cltnh or 1' 1>toduc:1 or 1>0lynoml1l1 whh llOIHlC'llh\'C' Cotfficknt:t att �lt'C',

11 (o llow• fro10 the ltrnma 1h11
141.(tA, 1A)I < 41.(ltAI, l•AI), 
l.e1 r and a de1101e 1he oonotg,11ive numbt,, IIAI a,\d l1Al1 ,o that 

41.(r, <1) - s.(r)S.(o) - s.(r + <1).
Since t't• - ,, • ", 1he righ1.ha ,,d 1ide approacht'I O :1.1 • - oo. Thua 

lim A.{tA, ul) 0, 
... 

and formula (I) ii p,oved. I
P-,ol,J,,,, I .  h i1 true 1h:u ,,. • • - ,,.,•. 
AnJ, No, 
Prol,l,m 2 .  P rove that det ,,. ;. O .  
I/fol,,._.• (t-')·1• 

P,ol,/,,,. 3 .  Prove that Ir A is an anti11ymmctr.c opcr-uor in Euclid�n .paor. then th,,t,
operator,• i11 orthogonal. 

15.2. The basic theorem of the theory of linear equations with COD.• 
stant coefficients. Theorem I 5.1 immcdia1dy implies a formula for 1hc 
solution of the differential equation 

X • Ax, XE R". (3)

THEOR£>t. Th, solution of equation (3) satiifying IM initial conditio,, t'(O) • "o u 

t ER. 

Pr1X1f Accol'ding to 1he ditrcrcn1ia1ion formula (2), 

'; = A,"x
0 

= A,p(t),

(4) 

so 1ha1 <pis a solu1ion. Moreover ,0 = £, ,p(O) = x
0• 

This prm-.s the theo­
rem, since by the uniqueness theorem every solution coincides�.;Lh (4) in its 
domain of definition. I

15.3. The general form of one-paramete.r groa.ps oflia.ea.r tra.a.sfor­
mations of the space R". 

THEOREM. Let g': R" - a• be a one-paramet" g,..,p of linear trasf-1i,,,u. 
The11 thtrt txiJiS a lintar operator A: R" - R• such 1Jtat g' = ,"4

• 

Proof. Lei 

dg' 
A=-

dt ,=o 
g' E 

- lim -
,-o I
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We hove already proved (sec Sec. 3.2 ond Problem I, p. 96) that the, tnj«-
1ory ,p(I) • g'x

0 
i, • solu1ion orcqua1ion (3) satisfying the initial cond1tion 

,p(O) • x0. Ou1 g'x0 • ,"x0 because or(◄). I

The operator A i, called the i1!Ji11i111imal l<•ttato, or 1hc group (I)
JJ,al>lnn /, l'rO\ft 1hiu 1he infinht-'•lrnal gener11or 1� unk1ut.Jy d(:tumiMd by th� Jf'OUP­
lltmark. Thus there is a onc-to--onc correspondence bctwcm linear differ•
cntial equations or the form (3) and their phase llOW$ (,'), when: each phase
flow consists oflincar diffcomorphisms. 

15.f, Another definition of the exponential.

THEOREM, if A; R" � R" is a lintor operator, lhtn

A I' (/' A)M 

e = 1m •. + -
,..-GO fn 

Proof Consider the difference

•• - E + - = L 7 - :=l:- A'( A)M ., ( I CM) 
m ,.o k.. m 

where the series converges since the series fore" converges and

(5)

is a polynomial. The coefficients in the righ1-hand side arc nonncgati�
since 

I m(m - I)··· (m - k + I) I
- ;;. -''---'---'-----"- -.k! m·m· · ·m k! 

Therefore, se11ing IAI = a, we get

,. - F. + - .; L -.:- -¼ .. = ,. - I ( A)m ., ( I CM) ( 
m ,-o k! m 

Q)M+ - 'm 

where the expression on the right approaches zero as m - co. I

15.5. Example: Euler's formula fort'. Let C be the complex line:. \,\'e
can regard C as the real plane R2 and multiplication by a complex number
z as a linear operator A: R 2 - R 2. The opcra1or A is then a rotation
through the angle arg z together with a Jz)-fold expansion. 
P,ol,/tm I. Find the matrix of multipJicati0rt by z. = • + U, in lhc basis e

1 
= I, e1 = i..

(u -•) 
A JtS . D u ·
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Fig. 103 11,c romJ)lcx nvmber I + (:{M).
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\Ve now find ,•. According to formula (S), we must first form the opu­
ator 1;; + (A/m) corresponding to multiplication by l + (•/•), i.e.,
rotation through the angle arg(l + (z/m)) together with cxpaniion by a
factor of I l + (z/m)I (Fig. 103). 

Problem 2 .  Prove that

arg (1 + .:)-
"' 

Im;+ o(1), 
z 

l+­
m 

as m ➔ oo.

• I + Re!.+ o(�)
m m 

(6) 

The operator· (F. + (A/m))• is a rotation through the angk •
arg(l + (z/m)) together with an expansion by a factor of II + (z/•)i-.
Using (6), we find that the angle of rotation and the �ff,cient of ex ­
pansion have the limiting values 

lim m arg ( I + :.) = Im z,
"" ... (IQ ,n 

limll +:.•=tac :_ 
"'-«> m 

(7)

TH£0R£M. Ltt z = u + iv be a compkx numbu and A: R 2 
- R 2 tit, �a!J>• •f 

multiplication by z. Then ,• is the operator of multiplication by IN C41#/'la umw

t'(cos v + i sin v).
Proof. An immediate consequence of (7). I

Definition. The complex number

t'(cos u + i sin v) = lim (1 + •)• 
11t- GO m 

is called the,xpon,nlialofthe complex number z = • + iuand isdCJ>Otcd by 
t1 = ff(cos v + i sin u). (8)
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Remark. 1rwe identiry the comple• numbcr t with the oixration of mul­
tiplicotion i>y z, the dcAnition reduce, to a theorem, since the exponential 
ofan operator has already been defined. 

JJ►ol>lt,H : J .  1:1nd ,o, ,•, ,•, ,••, ,,.,,
p,,,1>111H ./, J>rO\'C th.,t ,,, • •• t' •,•• whcr(l 11, 11 • C. 

Remark. Since the exponential is also defined by a series, we halve 

z' 

•' •l+z+21+ zeC (9) 

{the series is absolutely and uniformly convergent in every disk lzl 4- •). 

ProM,m 5. Comp:1ring thii r,crie, with Eu1cr's formul� (8), deduce the T.ayt« wrio ol sin.,
:uld C'O, v .  

R,mark. Conversely, from a knowledge or the Taylor series of sin•• cos•• and 
,', we can prove formula (8), taking (9) as the definition or,'. 

15.6. Euler lines. Combining formulas (4) and (5), we get a method fo, ap­
proximate solution of  the differential equation (3), known as the -/Jwd •f

Euler lint,S. 

Consider the differential equation with linear phase space R"dc,cnnincd 
by a vector field v .  To find the solution ,p of the equation x = v(s), s e R" 
satisrying the initial condition s0, we proceed as follows (Fig. 104). The 
velocity at the poin, x0 is known and is just v(x0). Suppose we lcavc,..and 
move with velocity v(s0) for a time interval 61 = t(N. Then we arrive at lhc 
point x1 = x0 + v(,.

0
)61. �Ve then move with velocity v(,.,) lor another 

time interval 61, and so on: 

k a 0, I, ... , N - l. 
The last point"• will be denoted byX.(1). 1'ote that the graph rccprcsccnting 
lhe motion with piecewise-constant velocity is a polygonal cun.-c {line) c on -

R" 

x,., 

.J.. lJ Jt
N N N 

fig. 104 An Euler line.

t R 
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,iuing of Nscgme,111 in 1he ex1cndcd phase space R >< R•. 11,i, polygonal 
curve i� known ns an F.ultr /i,,,. I c iJ na1Ural co cx�c• tha1 as N - ao thr 
sequence of Euler lines will converge to an integral curve, so 1ha1 fo,- large 
N the last point x.(1) will be close 10 1he value of 1he solution" al time t
,01i,fying the inhial condition 11'(0) • •o· 

'fHP.OREM. For /ht li11tar tquatio11 (3), 

lim X.(1) • ,p(I). (10) 
-�., 

Proof. II follows from 1he conS1ruc1ion 0(1he Euler line for v(x) • Ax thal 

x. - ( E + %)" ••·
Therefore 

lim x.(1) • •"•o•

by (5), which implies (JO), by (4). I 

Prohltm J .  Prove 1hat 001 only docs thc cod poim o( the Eule r  line �h • fl. bu•
also the whole �c<1ucncc o(pittewise•lincar func1N>ns ••: 1- R•. wl1h 1hc Euler fines u
1hcir graphs, converges uniformly to the solution • on the intcn-al 10. t). 

Remark. In 1hc general case (where 1he vcc1or field v deptnds on " .. ,,. 
lintady), the Euler line can also be wriucn in the form 

( tA)" 
x. = E+

N 
"•· 

where A i s  the nonlinear operator carrying the point x into the point v(x). 
We shall sec later (Sec. 31.9) tha1 even in this case the sequcntt of Euler 
lines converges 10 a solu1ion, at least for sufficiently small 111, Thus the a­
pression (4), in which the exponential is defined by formula (5), gives the 
solu1ion of all differential equations qui1e generally. t

The Eulerian 1heory of the exponential (which is csscn1ially the same in 
all its variants), from the definition of the number t and ,he Euler and 
Taylor formulas for,, up 10 formula (4) for the solution of linear equations 
and 1hc me1hod of Euler lines, has many other applications going bc}-ood 
1he scope of this course. 

t In prac1icc, 1hc wt: of Euler Jina i.s no1 a con"-cnic:n: way or solving diffcrcn1i:alequarions 
approximately, since 10 ob1ain high -accuracy ""'C mw:1 choote a very ,nu.U ,-aluc of the 
"itep" O. t .  More oflcn one uses various rc-fincmcnts of the Eu ler method. in which the inte­
gra.1 cun•c i.sapproximatcd not bya line segment. but rat.hcrbyanan:Japuabobolsomc 
degree or other. The most frcqucndy u.sed m ethods att those: of A� S.mc:1, and 
Runge, discussed in books on appr0xima.1c computations. 
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16. The Determinant or the Exponential

111 

Suppose the operator A i, specified by itJ matrix, Then length) alculationJ 
111ay b,· rc·quircd 10 find the matrix of the operator t". 110 ... �r, as.,..., will 
Moon sec, the dc1crminan1 of the matrix or," c.an be calculated vuy raJily. 

16.1. The determinant of an operator. 

Dtfi11itio11, lly 1hedelermina11t of a li11earop,rator A: R" - R", denoted bydct A, 
is incant the determinant or1hc matrix or A in  any basi.1 e1, ..•• e •. 

The determinant of the matrix of the operator A dOCJ not dcp,:nd on the 
basis. (n fact, if (A) i s  the matrix of the operator A in the buts e 1, • • •  , e.n 
then the matrix of A in another basis is or1he rorm (B}(A)(B-1). But dearly

dct (Bl(A)(B-') - dct (A). 

The determina111 of a matrix is the orienltd vo/um, of the paralu.kJ,ipdt 11:i.se 
tdgts are giwn b.JI /he columns of/ht matrix, 

For exaniple, for 11 = 2 (l'ig. 105) the determinant 

I
x, x, 

.,, .,, 

is the area or1he parallelogram spanned by the vectors {1 = (x,,.11) and 
{, e (x2,y2), taken with the plus sign ir the ordered pair or vectors ({1• {2)
specifies the same orientation ofR2 as the pair of basis vcc1ors {e1, e2) and 
with the minus sign otherwise. 

The ith column in the matrix of the operator A in the basis e, ••..• e. is 

., 

r, B
1 

.�ig. 10.) The dc1ctminan1 of a matrix equals the oricnced aria of the panlldogr.un
sp�nncd by the colurnm of the rnatr-ix. 

t The paralltll/>i/ud with edges ( , •..• • (. e R• is the subset of R• ronsistingol a.I point. of 
thcformx,(1 + ···+x.( •• O<:x,< l,i= 1.2 •...••. For11.=2tbcp.u-a.Oc:kpipcdis
ealled a pa,allelogram. Starting from any definition of ,Uumc:. we ca.o e:uily J>l'°''C tht 
italkiud assertion. Otherwise the assertion can be: ta.kC11. as the d,fonrioa ol &he ,--olwnt: of a
parallelepiped.
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made up of1hc componenis of1he image Ae1 
oft he rth basis ,tttor ••· Hen« 

th, d1t11mi,umt ef t/11 optrntor A is th, ori,r1ttd uil•mt of tlw 1ma11 ef tlil 11111/ n,H (14,
pnralltltpip,d witl1tdgt1 •,. .•. , •.l 1111dtr ti,, mapp,fll A. 

Prob/1111 I. Let n be a parallelepiped wi1h linearly independent tdgc-c Prov< 
tlrn1 1 he '"'io of1hc (oriented) volume of the image An of the parallclepiptd 

under the mapping A 10 the (oriented) volume of n i, independent of n and 

equal, cle1 A. 

Rtmark. The reader familiar with the theory of measurement ofvolufflCI in

R" will no1c that n can be replaced by an y other figure wi1h ,-olumc. 
ThlL, th, delermir,ant of an operator A u 1/w cotjfirunl of ,.,,,.1U1.., of.,,,,.,,_ 

,,./ume in t/11 stnse th11/ tlworitnted ,,./um, of •11Jfig•r1ut:cpandtd bJ •f«IM,jdct A 
u11der 11/!f,/iration of A. Geometrically, i1 i, far from obvious that the volume
cxpan:tion i:s the same for all figures (even in the planar case,, since a linear 
1ran,forma1ion can drastically change the shape ofa figure. 

16.2. The trace of an operator. lly the /rac,ofa matrix A - (•,,·, dcnottd 
by Tr A,t is rueant the sum ofiu diagonal clements 

Tr A • L 0
11

. 

I• I 

The trace of the matrix ofan operator A ;  R" - R"' docs not dcptnd on the 
bash,, but only on the operator itself. 

P,obl,m I. Prove 1ha1 1hc I race of a matril'I �u.tls the-sum of .111 11 o( iu �,-,run. •-hilr
lhc dc1crminant equal. s  the produ(t or 1he cigcm--alun.

Hin!. Apply 1hc fonnula 

(,l - x,) ••• (,l - x.) = ).• - (x, + .. · + ,.),1•-• + ·•· + (-t)••, ... .._ 

10 the p0lynomial 

de, (A - ,le) - ( -).)• I ( -,l)• -I t .,. +
·-.

Since the eigenvalues arc independent of,he bas.is, we ha'\'C the follo"A-ing 

D,ji11ition. By ,he tract of an opnator Ai, meant the trace of its matrix in any 
(and hence in every) basis .

16.3. Relation between the determ.ina.ot and the trace. 

THEOREM. If A: R" ➔ R" is a linear operator and ca real numbu. tlta 

det(E + tA) = I + cTr A + O(t2) 

asc ➔ 0. 

t The trace of A is somctima denoted by Sp A (from 1.hc Gcmun �-orct -spur-). 
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l'irst proef. The dc1crminant or the operator F. + cA equal, the p<'Oduct ol
the eigenvalues or the operator. llut the eigenvalues or F. + cA (with due

regard ror m11ltipliei1y) equal I + ,;,, where 1he ;, arc t� cigcnvaluet ol
A. I I follows chat

• • 
dee (F. + cA) • L (I

I• I 

+ cl,) • I + c L •1 + O(c1), 
I I 

I 

S«o"d p,oof, Clt:"atl y •C«) dc1(E + ,A) is a polynomial in , iu("h c..tui, • O I. \\*c
must d1ow 1h11t •'(O) Tr A. �noting 1hc dtmC"r'ltJ o( 1hc maltl'C £ + ,A by x1,. � 

have '·I t a" I <!!Ji 7i t •O - ;,J• 1 ax,, It-,, '

wher'e A i� 1he dc:tc:tlt'linant of £ + ,A (x,,). B)' definition. the pa.rtul dffintfr�-
8A/ax,Jlc e<1v1tls 
�I dct (/, ➔ hr, 1), 
11n �-o 

whctc (,11) i• the: 1na1r-ix whmc only non•cro element is a I in 1hc ith row andjlh column.. 
Out 
dct (£ + ht,1) • l 1 +

I 
• 

if i � j ,
n if i-j,

and hence 
a1> I I o ;r ; ,;. j,
lxu ,: = I if i = j .

Jc follows tha 1 

-,-
- I: -yU - }: au =- Tr A. I d,I • d.Jt • 

Q t, & •() l•I (1' l•I 

Incidentally, we have again proved that the trace is independent olthc 
basis. 
COROLLARY. Suppose small thangts are made in tire tdg,s of• poroluufnpd. T1ro
the main tontribution lo the thonge in volume of the parolltltpiptd is tlw to th, dumg,
of each tdgt in its own dirttlion, thangts in tire di,ution of tire other <,/g<s � Ml.7
a Sttond•()rder to111ribulion to the th.a11ge in volumt. 

For example, the area or the parallelogram shown in Fig . 106, which is 
close to being a square, differs from the area or the shaded rectangle only by 
infinitesimals of the second order. 

This corollary can also be deduced from elementary geometrical consid• 
erations, leading to a purely geometric proof or.he above theorem. 

16.4. The determinant of the operator t". 

THEOREM. For Q'!)' linear operator A: R" - R•, 

dett
tt

=t
TrA, 
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f'ig. 106 A1,proxim:uedctcnnination of the aru oh puallcJog-rarn "'hkh ifclotc 10 

being a 11qui.rt. 

P,oef. According to  the second definition of the exponential, 

dct ,• • dct lim (£ + �)• = lim dct (£+ A)•, 
"' ... «> m "'--ao m 

since the determinant of a matrix is a polynomial (and hence COf\tinuous) in 
its clcmcnls, Moreover, by Theorem 16.3, 

dct ( £ + ;) • = [ dct ( £ + ;) ]• = [ I + � Tr A + 0 (�) ]•,., - a,.

It only remains to note that 

lim [1 + � + o(�)]• = ti'
m ... ao m m 

for any a ER, in particular for a = Tr A .  I

COROLLARY I. Tiu opetalot tA i.t nons;ngular. 

COROLLARY 2. Tiu operator•• preseru,s tlu onmtalion oJR• (i.e., de1 ,- > 0). 

COROl.l.ARY 3 (Liouville's fc,rmula). Tiu t-adlJallet moppi•t t' eftJ,, luwu

equation 

X = Ax. 

multiplies tlu IJ()/umt of any figure by tlufa<tort"', wlurt a = Tr A. 

Praoj. Note 1ha1 

dct g1 = dct ,,,. = ,T, ,,. = t1 Tr ... I

In particular, this implies 

(1)
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A•O 
/1>/J 

11 S

1 - 'i g ,  107 Oduwior of arc:. undt:r tr:rnsformuiom of lhc pha,c flow of the pmd:ulwn
C(fU.'\tion with cocllkicnt of friction -.t. 

COROLLARY 4, /f the trauof A tqua/$ 0, then the pltastjlowoj,quoJior< (I) pa,n,u 
vo/1m1t, i.e., g' earri,s tvt,Y /l(lra/1,lepip,d into a para/1,upip,d of tf11'U •--·
Proof �lcrcly note 1ha1 •• - I. I

Example I .  Consider 1he equation

JI - -x + kx 

of a pendulum wilh coellicien1 offric1ion -k, equivalcnl 10 1hc sys1cm

{ �·x, + kx, 

with matrix

( _ � �) 
(Fig. 107). The 1race of 1his ma1rix equals k. Lei {g'} be 1hc ph2Jc Row

defined by 1he above system. Then if k < 0 the transformation l' carries
every domain of 1he phase plane into a domain of smaller area. On thcotha
hand, in a syslem wilh negative friction (k > 0), the area of the domain 
g'U, I > 0 is larger 1han 1ha1 of U .  Finally, if  there is no friction (.t : OJ, the
phase flow preserves area. This is hardly surprising, since in this last case,
as we know from Sec. 6.6, g' is a rotation th.rough the angle,. 
Probltm I. Suppose the real p:aru of all the dgcnvalucs o/ A att neg:aln� Show \b.a.t tbt
tf':\mform,uions g' of the p!1.:ue flow or equatiOt\ ( I) thett dec:rcaK ,-01.:tamir (t > 0). 
PrQbltm t. Prove that the cigen\•alucs of the opc:ruor r' �ua.l � ... ,. wbett lhc l. M't tht:
eigenvalues or the opcralor A. U5C this 10 pro1.-c Theorem 16.4.

17. The Case of Distinct Real Eigenvalues

In practical problems involving differential equations, the matrix of the
operator A is given in some basis and ,-.,c must explicitly ca.Jcub1t the matrix 
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of 1he 01,cratnr ,• in 1he same basis. \Ve bt,gin by solving 1his problem in 1hc
pnr1ic11larly simple ca,c where A has di11inc1 real eigenvalues

17.1. Diagonal operator■, Consider 1he linear difTeren1ial equahon 

xoR", (I) 

where A: R' - R' is a diagonal operator. The matrix of 1he opcratO<' A" of 
1hc form 

("'··.o) 
0 "· 

in i1s eigcnbasis,t where 1he .I., arc 1hc eigenvalues of A. The matrix of1h<: 
operator eA ha.s the form

(••·• ... o)
0 ,..,, 

in 1he same basis. Thus the solution ,p of equation (I) satisf);ng th<: initial 
condition ,p(O) = (x 10, ... , x.0) has components 

k=l, ... ,n 

in this basis. 

If then eigenvectors of the operator A arc real and distinct, then A is 
diagonal (R' decomposes into a direct sum of one-dimensional subspaces 
invariant under A). The procedure for solving (I) in this case goes as  
follows: 

I) Form the ehara,teristic (or ,ceu/ar) ,quation

det (A - -lE) = O; 

2) Find the roots J.,, .•. , J., of this equation (the J., arc assumed to be real
and distinct);
3) Find the eigenvectors { ,, ... , {, satisfying 1hc linear equations

.:
.t 

#,: 0, k • l, ... , n;

4) Expand the initial condition with respect to the cigenvcaon:

t \Ve first go over to an cigcnbasis irthc matrix olthc �rat0r . .f isorigiu.llygn'Cft .b'l an-­
other basis. 
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5) Wri1e 1hc a,nwcr

In particular, we have the rollowing 
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COROLLARY. let A bt a diago11al op,rotor. Tiu• tlu tltmtn/S •f tlv .,.,,uc ,••

(1 e R) ;,, a,!)' basis art li11,a, ,ombi11ations ofth, ,xpon,•tiols , .. ,, re/mt t.lrt � .,, 
lhe eig,11valu,s of the mattix A. 

17.2. Example. C'.onsider the pendulum with friction 

{x,-xi,
X2 - -x, - kx2•

The mairix or1he operator A is then 

so that 

Tr A a -k, det A = I. 

The corresponding characteristic cqua1ion 

)1 + k) + I = 0 

has distinct real roots if its discriminant is positive, i.e., ift!t > 2. Thus 1hc
operator A is diagonal if the coefficient of  friction k is sufficiently large (in 
absolute value). 

Now suppose k > 2. Then both roots .1.1, ).
2 

arc negative, aod � equ.a• 
tion takes the form 

{ �· Y2 

), < o. 

i, < 0 

in the cigcnbasis. Therefore, as in Sec. 4, we get the solution 

J',(1) = •'•'y,(0), 
y2(1) = •'" y2(0), 

and the phase curves have a node as in fig .  108. Ast - + oo all �solutions 
approach 0, and almost all the integral curves become tangent to 1�.1,-axis 
iflJ.2 1 > ll,1 (y2 then approaches O faster than,11). The picture int� plane 
(x,. x2) is obtained from that in the plane (y,,.1,) by making a liocar trans· 
formation. 
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Fig. JOA Pha!IC cur� of the pendulum equation wi1h strong friction lft tht actnbai.t1t,.

r, 

I II Ill 

Fig. 109 Pha.sc curvn of the pendulum c-qu:uion with ,1r0ng friction in the wu:al buiL 

For example, suppose k = 10/3, so that ).1 = -1/3, l1 = -3. To find 
the eigenvector (

11 we use the condition x1 = -3x1, obtaining (1 =

e2 
- 3e 1

• Similarly, we get �, • e, - 3e1. Since ll,1 < f) .1(, the phase 
curves have the form shown in Fig. 109.  Studying Fig .  109, we come lo the 
following remarkable conclusion: If the coefficient offnction I. is sufficiently 
large (k > 2), the pendulum does not execute damped oscillations, but 
rather goes directly into its equilibriurn position; in fact, its ,"elocit)• x1

changes sign no more than once. 

P,oblLm J .  find the motions of 1hc pcndu.Jum corresponding 10 the phMc aanu I. II.�
I JI in Fig ,  109. Omw a typical graph or x(l).

Prob/1m 2 .  l1h�tig:11e the motion of the inverted pc-ndulu.rn with fric1ion:

j - X - kk. 

17.3. The discrete case. All that has been said about ,he cxponcn1ial ,''­

with a con1inuousargumcn1 t applies equally well to thc exJX>llCDtial A•with 
the discrete argument n .  In particular, if A is a diagonal operator� A• i.s most 
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ro11w·nit-n1ly calc11lr11<-d by going over 10 a diagonal basi,. 

Pmb/,,., I. Tiu• l•'lboor-.c-('1 U"{f\H'"n<'f' 
0, I, I, 2, 9, 'i, 8, 13,,,. 
I, dr'1uf'<I by 1hr eomlhlotu, 
,1'41 0, ,, I ' ,, 
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1'- "ind iu1 t"xpli<'i1 formula for••· Pro\ r- 1h:u x. fl:"°""'t like a 1romf"m<" PrOI"""°"• and fi.nd 

Jim lim x.
• • • 

(, - (1. 0), 

n. 

c. - A( •• I• A 

'rhett'fo 1't' x. i1 thr fin11 t'Omponr,u or the we,or A•-1( 1• 

An1,a In VS2
1-+ 1

,x. ?30.1-J.l),wher""A1., - 1 
+
2

✓5 ut1��,-...luno (A .

Commt,tl. The s.:w1C' "rgurnenl rt'duco the 1tud y of any ,Hw,mt UfWM� ,f •4n l, ddirwd 
by II  rtl.1tion 

logC'du-r with lht first k tanu x0, x 1, ..• , x._ 1 .f 10 lh(' 11udy of lh«= cxpcnm.ual functioft
A•, whr-re .-1: R' - R4 is 3 lint:ar optt:uor .  Tbffd'or" lc,no-;,.•in.g how 1 0  nkvlatc- tM
m1ttr·i)( or an C';c.ponC'nlial cn.:1blts U.i 10 C':tiltulat� au rr-tul'rt'fll M"qU('ntts. 

Re1utniog lO the general problem of calculating ,,A, ·we note 1ha1 1hc 
roots oftloc charactcri<tic cqua1ion dct (A - i.E) = 0 maybecomplu. To 
study thi" case, we first consider linear equations with a complex phase 
space c·.

18. Complexification and Decomple:nficatioa

8efotc sludying complex differential equations, we introduce: the concepts 
or complcxifitati<>n of a real space and decomplcxification of a complex

space. 

18.1. Decomplexi6cation. Let C" denote an n•dimcnsional linear space 
over 1he field of complex numbers C .  Then by the d«ompknfoatio• of tlv 
1pa.ce C" is meant the real linear space which coincides with C- as a group 
and in which multiplication by real numbers is defined in the same ,,.-ay as 

t The fact 1hat the definition of a ttc-urrcnt scqumcc or ord� .t 1tquir-cs know-lNlgc of lhc­
finl k h:rm11 of the.-scquc:ntc is intim a1dy connttkd with the fact that t.ht � _sp,3.tt of 2 
diffen-ntial c:quation o f onkr k is o f dimension k. This coooectioo bccoma 2ppattnt if t he  
diffen:n1ial cqu:uion i$ written as a limit of diffe�nc:e equations.. 
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In C', while 111ultiplica1ion hy Ce>tnJ>lcx numb<,,.. is no1 drfin«I a, all. (In 
oilier worth, 10 decomplexiry C" mean, 10 forge, abou1 1he Slr>Klun, of •h< 
C-rnodule while prrscrving I he s1ruc1urr or1hr R-modulc.)

I Ii, ea,y 10 sec 1ha1 11,c decc>1111>lrxinea1ion or1hr space C' is a 2"-d,mcn­
sional real linenr space R i.. Wr will dcno1e dcromplrxifica1ion by a sup,r• 
$C"ript R cm 1hc 1rn. Thu,, for�xnmplt, •c • Rl. 

l(e,,, .. , e" i.s a basis in C", then e,, ... , e., ie., ... , re. is a ha.tis in
Relf _ a 211. 

Let A: CM - C• be a C-linear operator. Then by the d,u,.pluifa•t••tt •/ 
tlteop,rau,r A is 1t1cant chc R.linearopcrator •A: llC- - � which roincida 
with A point wise::. 
l'rohltm I .  Le, e1,, ..• • .. and r ..... , t. be baJt'I in 1� apa«s C- and C- raprcu,-dy. 
and Ice (A) be I he malr-ix of 1hc operator A. F'ind thf' matrix of th(' decomp&tx1.6td optnlOf' 
""· 

A,o, (; -!)• whcl'C (A) (h) + i(p),

J-a,MJJnn 2 .  Prove: tha 1 
R(,t + II) - RA + RII, R(,111) � R,CR8,

18,2. Complexi6.cation. L�t R" be an n•dim("nsional rn.l li�ar space. 
Then by the tompltxiji,ation oftht spate R" is meant then-dimensional com• 
plex linear space, denoted by CJt•, which i, corutructrd as rollows. The 
points of CR• are pairs ({, If) with { e R", If e R". Dcno1ing such pain 
({, lfl by { + ;,,, we define the operations or addition and multiplication by 
complex numbers i n  the usual way: 

({, + ;,,,) + ({, + ;,,,) = ({, + {,) + i(11, + ,,,,,

(u + iu)({ + ilf) � (u{ - Vlf) + i(v{ + ulf).

JI is ea\ily verified that the resulting C-module: is an n--dimcnsional complex 
linear space C'a" = C". If eu ... , e,. is a basis in  R•, then tM vectors 
e1 + iO, .. , , e" + iO form a C-basis i n  C' = cR". The v«ton ( + iO 
are denoted briefly by {. 

Let A: RM - R' be an R-lincar opera1or. Then by the�-•/ 
the op,rator A is meant the C -lincar operator c A: CJt• - cit� dcfin<ed by the 
formula 

A({ + ilf) s A{ + iA If· 
P,obl,m I. Lee eJt •• ,, � .. a.nd t,, ... , t. be b:ts,cs i.n chc s�cics R• a.ad Jl• �--dy. 
and 1cc (A) be rhc matrlx o(thc opcracor A. fjnd chc ma1rix of chc c::o.mpkxi6cd opaaeor 
CA, 
A•s. (CA) = (A). 
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Prol,I,,,. 2 . l'rovt 1h.11 
O(A I /1) CA I CIJ, O(A8) CAOIJ, 
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H,111ark 011 t,rminology. The 01>rrn1ions of complexific41io11 and d«omplr,ifi• 
cation arc delined hooh for spaces and for mappingJ, Algrbniiu eall such 
opera tionsf,mc/ors. 

18.3. The complex conjugate. Consider ,he 2n-dimensional real linear
space R 2' = RCR', obtained from R• by complcxification followed by dc­
complcxification. This space concains an n-dimtn$ional subspa« of vectors 
of ohc form { + iO, C e R ', called the rtul plan, R • c= R ••. The subspatt of 
vectors of the form O + iC, Ce R' is called the im•1•••ry p/4M iR" c= R2". 
The whole space R 2" is the direct sum o(cheK- twon-dimcnsional subspactt4

The operntor i£ of multiplication by i in C' - "R• is transformed af«r 
dccomplcxificaoion into an R-linear operator 11{i£) • /: R'-- - R'-- (Fig.
110). This 01>erator / maps ohe real plane i,omorphically into the imagjn;ory 
plane and vice versa. The square of the operator/ equals -£. 

P,obltm / .  Lel c-1,,.,. e., be a ba�i in R• Jand e1,., •• �-� ie1, •••• it-:., ab.tis tn ai.. -
RC.R•. Find the matrix or the operator/ in this basis. 

(0 6) Ans. (/) - 6 - O .

Let ,,: R 2" - R 2' { Fig, I 11) denote the operator of taking tlx complex 
conjugaoc,sothata(( + i11) = ( - ;,,, Thcactionofaisoftendcnoccdby 
an ovcrbar. The opcra1or a coincides with £ i n  the real plane and "·ith -E

in the imaginary plane. Note that a is inoolu.tory: t12 
= E. 

lRn 

(\ 

Fig .  110 The opcr-ator of multiplication by i .

iR" 

Fig. 111 The complex conjugate.
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Lei A: 0a� - ca, be• C-line"r operaior. By the tomplu tMJ•1•t• A of tlw
op.rntor A is mean, ''" operator ,i: ca� - Ca• defined by 1he formub 

Az•Az Vz11ca�. 
Problnn 2 , J•rovc lhlH A I,• Cllnc:.1r ot�rM1or. 
/Jtobltm 3 , J

l
fO\'(' th1'1 lht' fflltrix or 1he otH"r1110, � "'. ,,./ NJu •• lh,r COfflpk,c: awu••ir

or 1hc m:utix or A ill the umc bui!. 
P,oblttt1 '1. Ptovc: tha1 
A + Ti - A � 71, Ali• A ii ,

Proltltm 5 .  Prove that a corn1>lcx linear 01:>erator A: CR• -Crt• is th.t com.pit-x,fica1J(llft 
of a re-al opcra1or ir and only i( A - A .  

18.4. The exponential, determinant, a .nd trace of a eomple.x ope.r• 
ator. The cx1>0ncn1ial

1 dctcrmina,11. and en.cc or a complex operatof' att
defined in cxaccly the same way a.sin the real c�, and they have aanly the 
same properties a.sin the real case, 1hc only difference lKing that 1hc dttC:f'. 
minant is now comp1c:x and hence no1 a volume. 

Problem I. Prove 1hc following propertiesoftheocponential: 

"(,•) = ,"•, 

Problem 2. Prove the following properties of the determinant: 

dct "A • ldet Al', dct A • det A, de, CA • de, A. 

Probl•m 3 .  Prove the following properties or the trace: 

Tr"A • Tr A+ Tr A, Tr A• 'FrA, T,cA • Tr A .

Probltm 4, Prove that the formula 

con1inucs to hold in 1hc compJcx case .  

18.5. The derivative or a curve with complex values'" By a ar,.y ,rill, complex values is meant a mapping q,: / - C" of an open intcrva.l / of the ttal
axis into the complex linear space C'. The dniN.tice of th� cun.� f' a1 a
point 10 e / is defined ln the usual way and i sa  vcctor ofthcspact C":

d,p = lirn ,p(10 + h) - ,p(t0).
di ,.,0 111-0 

h 

Example I. Let 11 = I, ,p(t) = /' (Fig. 112). Then

d,pl = i
di ,=,o .
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Fig. 112 The dcrivalive or lhc Cul'vc:., - ,11 at th� point O «1w.ls i.
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Examining lhc case n • I in more detail, we note that cuno "'i1h ,alucs 
in C can be m11l1iplicd as well as added. since multiplication i, defined in C: 

('I', + '1',)(1) � 'l',(1) + 'l',(1), 
('1','1',){I) • '1',(1)'1'2(1), I e I.

Probl,m I. Prove t hac 

d 

dt('I', + 'I',) 
11'1' I d,p I 

=-+-, dt dt 
d 

di ('l','I',) 
d,p, = -'I',
dt 

Comme,it. In particular, the derivalivc of a polynomial with complex cor:ffi.
cients is given by 1he same formula as  in the case of real c«fficicnts. 

If n > I, we cannot multiply 1wo curves with values in C" .  Howc,.-er, 
since C,. i� a C-module, we can multiply the curve 'I': / - C"' by a function 

f: I - C: 

(/'1'){1) = /(1)'1'(1). 

Problem 2 .  Prove that

d C 

dt( 'I')
d('I', + 'I',) d'I', d'I', 
-'-�.,....�� - - + -di di dt '

whcrt·, naturally. il is assumed that the derivatives i n  question c,cisl. 

THF.OREM. I.ti A: C '  - C' be a C-lintar opualor. Thoi lht C.liwar.p,aa.Ulr 

from Cit into C' exists for every t e R .
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Proof. Thi, can be prov<d i11 exactly the same way OJ in the real <AK, but 
we can al,o start from the real case. In ract, decomplexiryin,i C", -.e g<1 

"(!!_,,,.) • !!."(•'") • f!.,•t"•> • ("A),'1"" • •(Al''). I
dt 1/t dt 

19. Linear Equations with a Complex Phase Space

As oflen happens, 1he complex case is simpler 1han 1he real.-. The com­
plex case is imponanl in its own righ1; moreover. investigation ofchc co m ­
plex case will help us in our study of1he real case.

19.1. Definitiona, Lei A: C" - C' bea C-linearoperator. By a lincarcqua­
cion with pha.se space C" is meant an equation 

t • Az, z e C". (I) 

The full description or (I) is "a system o r  homogenrou, lineM diffttcntial 
equations oft he first order with constant complex cocfficicnu." 

By a solution q, of equation (I) satisrying the initial condition -,(10) = z0,
,0 e R, z0 e C" is meant a mapping q,: I - C" of an interval oft he real I-axis 
into C" such that 10 e I, ,p(t

0
) = z0 and

for every t e I .  In other words, a mapping fP: / - C" is said to� a solution 
of (I) if af1er decomplexifying the space C" and the operator A, the mapping 
q, i s  a solution of the following equation with a 2n..dimcns:ion.al real phaK­
space: 

19.2. The basic theorem. The following theorem is proved in exactly the 
same way as in the real case (sec Theorems 15.2 and 15.3): 

THEOREM. Tht solution ,p of tquation (I) satisfying th, initial coMiJjq,, ,p(O) - z. 
is givtn by lht formula q,(t) = t''z

0• 

A1orto1'<r, <ll<TJI o�•P,,,'1Jlldu gTOII/> 
{g',1 e R) ofC-lintar transformations of tht spact C" isofth,form 

g' a 
,..c, 

wht,e A : C" ➔ C' i1 a Clinear o/)<ralor. 
Our goal is now to investigate and explicitly calculate ,,A.
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19.3. The dla1onal ca1e. l,et ,I: c• - C" be a C-linear opc,rator, and con• 
)Ider the rharac1cris1ic- tqu:uion

dr,t (A - AF.) • 0. (2)

TIIKOMtM, If t/11 n roots A 1, • • •  , A. 'If tquation (2) art di11inct, INn C" tl«t,,.,_stS 
i111011,lirtrl rumC" • c: + · · · + C� nfont-dimtn1ional111b1p,,tt1C:. ,C� 
;,warianl untie, A and t'", whtrt in tath one--dimtruional incarioJ trdl/JO<t, J.ll'f 
C1, ,,,. rttlutts to mulripHcation by till tompl,x numbt'r t1•'.

Proof. The operator A has n linearly indepc,ndent ci�nlines:t 

C" • c: + .. · + C!. 

The operator A acts like multiplication b y  l, on the line C), and hcntt the 
operator' e'A ac1s like muhiplication bye"''. I

We now consider 1hc one-dimensional case (n • l) in  mon dc1ail. 

19.4. Example. Consider the linear equation 

:i = Az, z E C, ). e C, I E R, (3) 

with the complex line as its phase space. As '-"'c already know, dx solution of 
(3) is just

,p(t) = ,,, z •.

Consider the complc:,c function e4';  R - Cora real variabl4!' t. Ir ..tis real, 
the furw1ion ,'• is real (Fig. 113), and the phas,, How of equation (3) consist> 
of expansion by" fa<·tor of i". If A is pur�ly imaginary, so that l = iw,

w ER, ,hen by Euler's formula 

e4' = /"u = cos wl + i sin wt. 

In 1his case, 1he phase Row of equation (3) is a family {t'} of ro12tions 
through the angle wt (Fig. 114). Finally, in 1he general case, A ="' + iw 

t t 

Fig . 113 Cra1:>h or,h� run�1ion c:,.., for rc:al , .

! 

t This is ,hr-onl>• plac-e whc:tt th<: ("Ompkx cas,e differs from thf' r<-a.1 CbC. Tht g:ra.ttt 
,omplcxily oflhc real case-is due IO the fact lb.at tht-fie-Id R is not .a.JgcbniiaD)·doM'd. 
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C 

,, 

Fig. I 14 Phase and i111cgrat curvt"'\ of the «IU.lHOn i la for purdy � l. 

C 

Fig,  II� PhascandirHegtal curvaor1he�1uaiioni-.(a.f01'l o+�•<0.@>0. 

and muhiplica1ion by," is 1he produc1 o f  mu hi plication byt' and multipli­
cation by ,•w• (see Sec. I 5.5): 

(4) 

The 1ransforma1ion g' of 1he phase How of equation (3) is then an ,''.fold 
expansion together with a simuhancous rotation through the angle cot.

\/\ 1e now consider the phase curves in the gc:ncral case. fo,-example, sup­
pose a< O,w > O(Fig.115).Thcnaslincrcascs,1heph..,.,point,,.,z0 ap­
proaches the origin, winding around the origin "in the countttdoc:k-wise 
direction," i.e., from l to i. In polar coordinates, with a suitable choicr: of 
initial angle, the phase curve has equa1ion 

r = �', 

or 

I 0 • k In r .

k = afw 

A curve of 1his kind is called a logarithmic ,piral. The phase eun-.s are a lso  
logarithmic spirals for other combi nalions of the signs of a and w (rigs. 116, 
I I 7). In every case ( cxcep1 l = OJ, 1hc point z = 0 is the unique fixed point 
of 1he phase Aow (and the unique singular point of the eon-csponding equa-
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. as a functjon of time. 

t11>0 
w>O 

t 

t11>0 
w<O 

127 

tion (3) of the vector field). This singular point is called af,a,s (we assume 
that a 'F 0, w 'F 0). If c, < 0, 1hen ,p(t) - 0 as I - + a:>, and 1he focus is 
said 10 be stable, while if a > 0, 1he focus is said 10 be 11nstal>u. If" = 0, 
w #; 0, the phase curves arc circles with the singular point as thdr tmla 
(fig. 118). 

Choosingthccoordinatez;;; x + iyinC1,wcnow invcstigatcthccbange
of 1hc real and imaginary parts x(t) andJ(t) as  the phase point moves. It  
follows from (4) 1ha1 

x(t) = re" cos(wt + 0), J(t) • re•' sin(wt + 0), 

where the constants rand O are determined by the i11i1ial condit.ions (Fig. 
119). Thus the coordina1es x(t) andJ(I) cxccu1e "harmonic oscillations of 
frequency w with exponentially increasing amplitude r?-0

" if a: > Os and 
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da,npcd o,cilla1io11, if« < O. The changr of x or J wilh 1imr can al,o be, 
wrluc:11 in the form 

A,'' co, wt + 8<'' sin wt,

whcl'e 1he consrn111s A and Bare determined by 1he initial conditions 
R,mark I. By studying equation (3) in 1hls way, we have sunuhan<:oU>ly 
invcscigaled all one-parame1er groups of C.lincar transformatiom of the 
complex line. 

Rtmark 2 .  At the same lime, we have investigated the system 

{ .t • a.x - C'JV',
j•wx+ay 

orlinear equations in the real plane obtained by dccomplc><ifying cq�tion 
(3). 

Theorems 19.2 and 19.3, 1oge1her with ,he above calcub,tions, immedi­
ately imply an explicit formula for the solutions of equation (I). 

19.5. Corollary. Suppost then root, l,, . . .  , J.. of 1/tl ch4ract,ruliL <q,u,tio• (2) 

art distintt. Tl1tn ewr., solution rp of tquation (I) is of thtform 

• 
(1(1) = :E ,,.,"�·�., 

.. , 
(5) 

where the (. are conslanl otclcrs independent of lltt initial conditioru IVIIII 1/w , .. art
compltx con.rt ants depending on the initial condition.1. Fort.vtry tlt.oiuef UtlJI CM.llaJtU,

formula (5) gives a solution of equation (I). 

Proof. We need only expand the initial condition with rcsixct to the dg,,n ­
basis: 

rp(O) - C' {' + . . . + ,.{.. I

H z1 , • • •  , z
,. 

is a linear sys1cm of coordinates in C:, then 1M real pare x,
and the imaginary par171 of every component of the solution '1'(1) changes 
with time like a linear combination of the functions �•cos°''-' and 
,.., . Sin Wi

1 
J.C.,

• 

x, = L ,.,�·�'(cos Wi + o.,)
k=I 
' 

= I: A,1:�111 cos w,,t + B
1c,e-•• sin w1

1, 
4' = I (6)
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where A, • «, + iw1 and 1hr vnrious,. 0, A, Barr rral coniu1n11deptnding

011 the inl1ial conditions. 

20. Comple:dficatlon of a Real Linear Equation

We now use the results or our study of thr complex equation 10 invntig.ttr 
the real case. 

20.1. The eomplesifled equation. Let A: R" - R• be a linear operator, 
specifying a linear equation 

X = Ax, x e R". (I l 

The complexification of equation (I) is  the equation 

(2) 

with a comp1cx phase space. 

LEMMA I. Tl1t so/ulions of tquation (2) wit/r comf)kx conjugal< inili41 a,uiitiMS art
Jhernseluts complex conjugates. 

Proof. If q, is the solution with initial condition q,(10) = ,0 
(Fig. 120), 1h<:n 

,p(l0) = z0. Once we show that Ip i s  a solution, the lerr ma ,-ill bc pro,.-cd 

(because of the uniqueness). But 

'!!£.= ;lip = CAq, = CA IP = CA IP, 
dt dt 

I 

R,mark. Instead of equation (2), we migh1 have chosen the more genual 

equation 

i = F(z, t), 

rp(t) 

Fig. 120 Corn.plcx oonjugale �utions.
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fig. 121 A M>l ullou with " f(:o1I ioltlal condidon unnot ha.w compla nlua..

whose right-hand side rnkcs co,nplex conjugate values at compltx conjugate 
poi nu: 

F(i, 1) • F(z, 1). 

Forcxnmplc, 1hisCOf'1dilion is satisfied by any polynomial in the coordin�tcs 
z. or 1hc vector z in a real basis whose c�mcicnu arc real fonc1ion1 or,.

COROLLARY. Tht solution of equation (2) u:itlt a r<al 1n111al roltllit- u r<al 11M 
Slltisfies equation (I).

Proof IC ip 'F <p (fig. 121), 1he uniqueness theorem would be ,iolated. I

In the next lemma, the linearity of the equation is essential. 

L£'1MA 2. Thtfunetion z = ,p(t) is a solution efth, compu,ifod ,,,.,.,,., (2 if a,u/ 
only if its real an,/ ima_ginar;, parts satisjj, the original tquation (I). 

Proef. Since 

CA(x + iy) = Ax + iAy, 

the dccomplexificd equation (2) decomposes in1oa direct product 

{ x • Ax,
y = Ay,

x eR.11, 

ye R". I 

le is clear from Lemmas I and 2 chat from a knowledge of the complex 
soh11ions of equation (2) we car\ fi11d the real .solution.s of equation { I , and 
conversely. In particular,jormu/a (6) of S«, /9.5 gi..., tht txplintf.,,,. of tJ,, 
solution in the cast where the clioracteri"stic equation It.as no multipU r#ls. 

20.2. lnvariant subspaces ofa real o�rator. LN A: R• - R• bca real 
linear opera1or, and lei ,! be one of the roocs (in general complex) of the 
charac1eristic equation dct(A - ,!£) = 0 .

LEMMA 3. If { e C" = CR• is an e(�envtrtor of the op,rator CA uidt �• i� 
then ( is an eigenvector with ei_�envalue }., 1\1ore01¥1, ). and 1 hare lite ume ,ulti. 
pli,ity. 
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Fig. 123 The rul llart of an cigcnvcnor IKI� to an inv.atUo, real p&.a.,w .
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Proof Sin,·e lli! • 0A, 1he equa1ion CA{ • l( i1 cquivalen1 10 CAt • J.t 
and the characlcri1tic equation has real coefficients. I

Suppose now that 1he eigenvalues ).1, • • •  , A. e= C of chc opcr.uor 
A: R' - R" arc dis1inc1 (Fig. 122). Among 1hcsc eigenvalues we ha,·e a 
certain number v of real eigenvalues and a certain numberµ of complex 
conjugate pairs (where\'+ 21, = n,so 1hat thc parityofthcnumberofrieal 
eigenvalues equal, 1hc pari1y of n).

THEOREM. The spae, R" dtt-ompos,s into a dirccl sum of vonc-dimouiMIII sdspaus 
invariant undtr A and )1 two-dimensional subspacu inoorian.t under A. 

Proof. To every real eigenvalue there corresponds a ttal cigcn\tttor and 
hence a Or)e-dimensional invariam subspace in  R ... Let A, ,l be a pair or
complex conjugate eigenvectors. Then to). there correspond5an eigcn\-ector 
� e c• a CR' of 1he cornplexified opera1or cA. By �mma 3, the complex 
conjugate vector � is also an eigenvector, with eigenvalue A .  T'hc complt:x 
plane C2 spanned by the eigenvectors C, ( Ls invariant under the open.tor 
cA, and th< ·  real subspace R" c CR" is also invariant undercA. Hentt their 
intersection is also lnvariant under CA. We now show that this intersection 
is a 1wo-dimensional real plane R' (Fig. 123). 

To this end, consider 1he real and imaginary parts of1hc eigcn�tttor {: 

I 
x =

2
(� + {)eR", 

Being C-linear combinations of the vectors c! and t the vecton :sandy 
belong 10 1he in1e,scc1ion C' I"\ R". The vectors x and y arc C-lincarly 



13i Chap. 3 Linear Sy>1<n>t 

indtpcndent, tincr 1hc C•ir1tkpcndcrH vtc1on ( and� art lint�r romb1na• 
tionsorxand y: 

� • X + iy, � • X - iy.

Hence every vector ,, or 1hc pl:rnr C1 ha.s a unique rcpttscnta1ion aJ a tom• 
pkx II near c"muhi na lion of I ht rrnl vrrl01'1 • and y: 

11 = ax + by, a, be C.

Such a vector is rca I (,, = ij) if and only if ax + by • ax + 6y, i.r., if and 
only if a and b arc real. Thus tl,e inltrstctio• C' t"\ R• is tit, tu.Hilli,,.,.._J ,,./ 
plane ,pa11ned by tlie vtc/ors x and y which ar, tire r,al a•d ima-ti""'7 f»TIJ of IN 
eiauweetor (.  Moreover, A and l arc the eigenvalues of the restriction of1hc 
operacor A co the plane R 2• Jo foci, complcxificacioo d� not change cigen• 
vah1es. Aflcr complcxifying chc restriction of A to R 2, we get the ratriction
of0A to C'. Bui the plane C' is spanned by 1hc cigcnvec1ors of 1hc operator 
0A wi1h eigenvalues,! and l Hence• and X are the cigenvalucso1'1hc rcstric•
,ion of A 10 R1. 

1vVc muse siill show chat the one-dimensional and 1werdi�nsional sut>. 
spaces ofR" jus1 conS1ruc1ed arc R-linearly indcptndent. But this follows a, 
once from I he fact that the n eigenvectors of I he operator c A arc C-lincarly 
independent and can be expressed linearly in  terms of tht v«ton 
(, (k = I, ... , v) and x,, y, (k = I, ... ,µ). I

Thus in /he eaJt whnt all the eigtnualue.s of the O/Hfll.tor A: R• - R• on sunp/1
1 

lhe Linear dijftrenlial equal ion 

X = Ax, XE R" 

decomposes into a direct product of equations wit/r on,-dim,nsioMI 1111d 1-dimm­
rional pha.se spaces. 

We note that a polynomial with "general" cocfficienl.S has no multiple 
roots . Hence, to invcstigace linear differential equations, we must first of all 
consider linear differential equations on the line (as we have already done) 
and in the plane. 

20.3. Linear rquations in the plane. 

THEOREM. Let A: R 2 
- R 2 be a linear opuator with ,omplu t:it,O&Nlau ).., ;. _

Then A is the dtcomplexification of the optrator I\: C1 
- C' ef maltipliu1-., tltt 

compl,x number,!. More exactly, the plane R' C4n b, equipp,d u:ith th, strw:t11r, of IN 
line C', so that R 1 = •c• and A = .,..I\.
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l'r•ef. The proof �oruisu or " rnther m)'itrriou• ralcul•tion,t �t 
x + iy a 0R I be n complex eigenvector or the oprrator cA ..;th <ig,nv�lur
A. • a + ;w. Thr vrc1ors x ;u1d y rorm a hasi., in R 1• On the one hand, we­
have
0A(x + iy) • (ex + iw)(x + iy) • cxx - wy + i(wx � :ry ,

while on the other, 

c,l(x + iy) • Ax + iAy, 

and hence 

Ax• ax - wy, Ay = wx + «y, 

i.e., lhc: opcra1or A; R 1 - R 2 in 1hc basis x, y has the s.amc m;atri.x

asthco1>era10r RAofmuhiplicationbyl =a+ ,win1hcl>;uisl, -i.Thui
the desired cnmplex structure in R1 is obtained by taking x for I and y for 
_,. I

COROLI.ARY ) • !..ti A: R 2 -+ R 2 ht a li11tar lra,uformation of tM £.Mdidnn, p/llM 
with complex eigerwaluts J., J.. Then the traniformation A is a.ffind:, tf!6Mlnl ,. a 
IJ.l:f•ld ,.,pa11sion tog,thn with simulta11,ous rotation tltrouglt tit, angl, arg ,I. .  

COROLLARY 2. T/,e phaujlow of th, lin,ar tquation (I) in tltt £,,didtan /JUlN R' 
with tompltx eigenvalues)., ). � a ± iw is a.ffintl:, ,quit<tltnt to a famil:, of,'' :f«d

expansions u·ith simultaneou.s rotation through. the anilt wt. 
In particular. the singular point O is a focus, while the phase curves art" 

affine images of logarithmic spirals approaching the: origin as t - +coin 
lhc ease where the real part a or the eigenvalues A., l is nc:gafr,:c: and mo,.'lng 
away from I he origin in the case where a > 0 (Fig. 124). 

1 n the case" = 0 (Fig. 125), the phase curves are a family of concentric 
ellipses. with the singular point a� their unter. In this case, the tnm.fonna• 
1ions arc called elliptical r()tations. 

20.4. Classification or singular points in the plane. Now let 

t ·r·hc ('alt ula1ion ca,, be-T(l)lactd by the-following argum<nt. U-, l = • - ir:,. a.nd drfint
an opcra1or /: R' - R2 by the- C'ondition A --. aE ...._ CJJI .  Such .an opaa.t« / aisu. 1UIC('
<Q F Oby hypot.hais. 1'hc-n /2 = - £, s:ince lhc opttalOI' A u.lisfics its own chuac\cristic 
equation. ·raking / to be multiplication by r. we- get the ncccuary rompkx structwc in R:-.
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e• l24 The af11ne imagr o( a rig. 
Joga1i1hmic iipil'.-1.

Fig. l26 An unslablc focu.s, 

Fig .  128 An unstable node. 

Fig. 130 Centers. 

('h 3 Lin,�r S),stem• . ap. 

Fig. 12.._ An dfipciul rouuoa. 

Fig .  127 A satLcllc poi:n t .

«<0 

Fig .  129 St.lblc foci. 

r, g. 131 Uns�bk foci. 
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be any llncnr equaoion In 1hr 1>lnne, and suppose 1hr roou l1, l, o( ohc
characu:rislic cquntion arr diitinc\, H thr rootJ arr �al and), < AJ, ,h� 
«1ua,ion dccomposrs into 1wo one•dirncnsional equiuion1 and \\cgc1 oMor
1hc cn,c, already soudicd in (;hap. I (Fig,. 126, 127, 128). 

llerc we 0111i1 ohc boundary cases where l1 or l, equal, 0. Thew ca.n are 
or much lctiJ in1crc:111 1incc thty nrc rartly tncountC'rtd and ar'C' no, prc-•
served under an arbitrarily small perturbation; 1hry can be investigated
wlth no difficulty whauocvcr. 

Ir ohe roots arc complex, so 1ha1 .l, ., • a ± iw, 1hen, depending on 1hc
sign or a, we geo one orohe cases shown in Figs. 129, 130, 131. The ca,e of a
ccncer is exceptional, but is encountered, for rxamplr, in coRKrv.uivr s:ys­
ocms (see Sec. 12). The case of rnuhiple rooo, is also exceptional. As an
exercise, ohe readcr should verify 1ha1 I he case shown in  Fig. 126 corre,ponds
10 a Jordan block with ,l1 • .l2 < 0 (a "degenerate node"). 
20.S. Example: The pendulum with fricdon. We now apply everything
said 10 the equation 

ii= -x - kx 

of small oscillaoions of a pendulum with friction (k is the coefficient of fric­
tion). The equivalent system 

{
X1 sx2,
X1 = -xi - kx1,

has the matrix

with determinant l and trace -k. The corresponding characlcristic equa­
tion 

.l2 + k.l + I = 0
has complex roots iffkl < 2, i.e., if1hc friction is 001 too large. t

The real part of each of the complex rooo, 

A,.1 ;;:;: a +  foJ
equals -k/2. Hence if the coefficient of friction iJ positive ad l»l t• 1,ug,
(0 < k < 2), t/,e lower ,quilibrium position of IM pa,dubim (x 1 = x 2 = 0) iJ a
1tabltf(J(U1. Ask - 0, the focus becomes a et"ntc.r .  The smaller dx codliciau
of friction, the slower the phase point approaches the equilibrium position 
t The case o( real roots is considered in Sec. I 7 . 2 .  
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Fig .  132 Ph1uc: curve o( a �ndulom with ,mall fnnion,

:r 
-ftrt! 

re·lt 

O<l«Z 

' 

0 � Jf <2 

1c�2 

' 

' 

:r 

--1.'-­
r 

Fig,  133 The 1r.insi1io n  from damped oscillations 10 nonoscill.ator)' motioaolthcpcod•
lum: Phase curves aod graphs of solutioos for thrtt values of tM' cod6cicn1 olfriction_ 

Fig. 134 PhaS(: pJa,,e of 1hc pendulum with small friction. After a anaiJ'I number ol
re\'olutions, the pendulum begins co swillg near LIM: Jo.,-cr equilibrium position.. 
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as 1 - + oo (Fig. 132). Explicit formula, for the change or x, • xwith time 
can i;c ob1nincd fr<'>m Corollary 2 of Sec. 20.3 and the formula, ofS«. 19.4. 
Thu, 

x(I) • rt'' co,(w1 - 0) • A," en, wl + Bt'' sin wt,

where ohc cocfficicnis r and O (or A and 8) can be determined from the ini­
tial conditions. 

Hence the oscillations or the pendulum arc damped, with ,ariabk am­

plitude re" and period 2,r/w. The larger the coefficient of friction, the 
faster the amplioude decreascs.t The frequency 

w p J1 -� 
decreases as the coefficient of friction k increases. Ask - 2, the frequency 
approaclw, 0 and the period approaches oo (Fig. 133). Forsmall .t, \'it ha\'e

k' 
W � I --

8 ' 
k - 0. 

Thus the friction increases the period only verysljghtly, and its in.8ucnccon 
the frequency can be neglected in many calculations. 

J>,ol,Jrm I .  Draw phase curvts for the nonlincari:t.ed pendulum with friction 
X - -sinx •-kt 
(f'ig. 134). 
flint. Cal,·ul;i1c the derivative or 1he U)1al energy along the pl\ut c,un� 

70.6. General solution of the linear equation in the case of simple 
roots of tbe characteristic equation. We already know that c,,cry sohJ­
tion q, of the complex.ified equation is a lincarcombina1ion 

• 

Q>(tl = :E ,,,·•'{, 
l • I 

of exponentials (see Sec. I 9.5), where{, is any eigenvector with eigenvalue 
J.4; htrt we choose real eigenvectors if lht eigerwolves are ua( and annpu:x tt>-fatau 
eigenvtclor.t if t/11 eigenualut.t au complex conjugau.s. Moreover, wt also know that 
the solutions of the real equation arc the solutions of  it:s complcxification 
with real initial conditions. A necessary and sufficient condition for the 
vector Q>(O) to be real is that 

• • 

:E ,,{, = :E c,c,. 
k•I l:•I 

f Nevertheless, the pendulum still m.tkcs. inlinitdy many swings for a.t1:y va)QC .t < 2.. lf 
k > 2, however, the pendulum changa its direction o(morion no more dattoncc. 
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For I his 10 hold. th, co!.l)ici•ntJ of""' r•tcto,s must b, ttal ••d IM1t ,f tt,,.,,tu tM· 
J11ga1, ,,«tors m1;JI be compt,x conji(g,,t,s, Nott rur1her that cht II compl-t'C con­
stant� c

1
, ,  , • , ,

,. 
nrr uniqurly dtu:rrnincd by the solulion of chc «Jmplc'C 

cc1un1ion (ror • nxcd d1<Jitc ofcigrnvcc1ors). Thi, proves 1hr follo-.;ng 

·1•11go•e>i. r:111,y solu1ion of 1/11 rcol •quot ion has a ••iv•• rrp,u,•101,.,. ,J tlt,f,,,,.

' 

,p(t) - I: "•····�. +
k • I 

••• 
I: 

II••• I 
(3) 

(for a fix•d cltoict of ,ig•nu«lors), whtr• th, •• are rtal constants Hi tlu ,, lffff/lWC
constants. 

Formula (3) i, called 1hc gtntral solution of the equation. \\le can also writ< 
(3) in 1hc form

.. .. ..
,p(I) • I; ••••••(, + 2 Re I; ,,,•"(,. 

t • I I••+ I 

Note cha1 ,he general solu1ion depends on Y + 2µ • 11 �al corutants «1, 

Re,,,. and J m '"· These constants arc uniquely dctcrminro by the inilial 
conditions. 

COROLL.-.RV I. L•I ,p = (,p,, ... , ,P.) bt a solution of a JftlOfl ,J n ,uJ /i,,,,., 
dij/trtnlia/ •qu•lions of Int first ordtr with matrix A, and sufJ/Jost all tlv -11 ,J tJv
thar,uteriJtit equation of lht ma1n'x A art simple. u:hLrt tM rtal r..i.s au dtllllud b:, 
J.1 and lht complt.t ,oot.s bya,1c ± iw,. Then ttieryjlll'tltion "'• is a U11aUc.llt.6ina.tW11 
of lhtfunclions 

{4) 
Proof. Le, ,p � �,e. + · · · + �.e. be 1hccxpan,ion of1hcgcneraliolu1ion 
(3) wilh respec1 10 ,he coordi11atc basis e, •...• e •• lxaring in mind that
,<o:11:til!:J1o)' = ,:r11'(coswi + i sin w11). I

1'o solve linear systems in practice, we can u.sc: the method of undc1t.r• 
mined coefficients 10 look for solutions in the form oflincarcombinatio.nsor 
1hc runctions (4). 

COROLLARY 2. Lt/ A be a real matrix with real <igerwalU<S ).• ttNI ,.,.,pwc ,iga,­
values «t ± fr»t, all of which are simple. Thm tVt.,Y tltmtnl of IN ,notrix ,,A il a 
linear co mbination of th, fun<lions ( 4). 

ProoJ. Every column of ,he matrix e'"' is made up of components of the 
image of a basis vector under the action of ,he phase flo\, · of tM: system of 
differential equa,ions wi1h matrix A. I
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{(,r1111rk. f:vtry1hing s:&id abovr immcdi3tt"ly rarrin ovrr 10 tquations and 
,y,1e111, of cqur11ioru or order higher 1han I, inosmuch ms 1hne rt'du« 10 
sys1erns or lio,n-order equalions (see Sec. 9).

1•,o1,1,,., I • .,,i11d 111 read •olu1io1n of 1hc c(p .. •11on1

'f+1t•O. 

21. Classi.fication of Singular Points of Linear Systnns

As shown above. the general real linear sysu�m (wh� charac1cristic �ua-
1ion has no 111ulti1>le roots) reduces 10 a direct product of OM-di,,,..mion.1,I

aod 1wo -dimensional systems. Since one-dimensional and t�"'O-dimtnsion.al 
sys1cms have already been studied, we arc now in a position to invatigatc 
multidimrn.sional systems. 

21.1. Example: Singular points in three-dimensional space. Herc 
1he charnc1eris1ic equation is a real cubic equation. Such an �uation can
have either three real roots or one real and two complex roob, and man)• 
different cases can occur, depending on the arrangement oftlx roots J.1• J.11

1, in 1he plane of the complex variable} . .  Examining the or<kr and signs of 
the real parts oft he roots, we find that 10 "nondcgenera«" c.ues (Fig. 135) 
arc possible, as well as. a number of "degenerate" cases (sec �.g., Fig. 136), 

0 
f}�

0 
2)------0-

0 

J) 

4) 
0 

S) 
0 

J') 
0 

4? 

s? 
0 

F;g, 135 £igcovalucs of a re-al opct1t0r A: R.3 
-R.>. Nondcgctttt2tt cues.

6)
--t 7/r u>-4 

Fig. 136 Some de generate cases.

0 
$) ••• 
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Fig. 137 Phase apace of a linear equation
in the case A, < A, < A

1 < 0 .  The phase 
flow at a contraction in all three directions.. 

A, 0 
l • 0 
). ).I 
, 

Fig. 139 The case Re li.3 < A., < 0: 
Contraction i n 1he direc:1fon or ( 1 and rota• 
tion with faster contraction in chc plane or
(1 and (1• 

f, 

Fig, 141 The c,a,sc Rcl1•2 < 0 < 13:

£xpansion in 1hc direct.ion of (1 and rota� 
tion with contraction in the plane of ( 1 

and (1
• 

Chap. S Linear Systems 

Fig. 138 The: CUC l, < l.a < 0 < 1.: 
Contraction jn two dittet.ions and cqM.n ..

lion in the third. 

Fi,g. 140 The caJC )._, < Re 11__, < 0: 
Contraction i n the dlr«lionol (1 and rota �

tion with slower contraaioa in tht: pb.oc ol 
(, anc:1(3• 

F',g. 142 Equiwlcrtl llc,,,o. 
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where the real part or one or the roots•• vanishes or equals the real part of a
root not conjugate to•• (here we do not consider the case or multiple rootJ). 
The investigation or the behavior or the phase curves i n  each of these cases 
presents no difficulty, 

Bearing in mind that,,, approaches Oas I - + oo irRc 4 < O (the more 

rapidly, the smaller Re 4), we get the ph.lsc curves 

,p(t) - Re(,,,'•'{, + ,,r''{, + ,,,'•'C,l 

shown in Figs. 1 3 7 -141. Cases l ' ) -5') arc obtained from cases 1 ) -5) by
changing the direction or the 1-a,<is, so that correspondingly we need only 
rever1c the direction or all the arrows in Fig,. 137-141. 

l"rllhl,m J .  Draw phase curve, (or ca.,c, 6)-9) in fig. 136.. 

21.2. Linear, dlll'erentlable, and topological equlval-«. Each or 
lhcsc clM!iAcations is based on some equivalence r�lation. There cxdt at 
least three reasonable equivalence relations ror linear systems, corYCSpond­
ing to algebraic, differentiable, and topologjcal mapping,. 

Definition. Two phase Aows {f'}, (g'}: R" - R" arc said to be 'f'U«Jout ir 
there exists a one-to-one mapping h: R" - R" carrying che flow(/'} into the 
flow {g'} such chat h •J' • g' • h for every IE R (Fig. 142). (\Ve then say 
thac "chc flow {f')is transformed inco the Aow{g'} by the change of coordi ­
nates h.") Under these conditions, the Aows arc said to be 
I} l.inearly equivalent if the mapping h: R" - R" in qucstK>n ;. a liNd,
automorphism i
2) Dijf,rentiablyequivaunl if the mapping h: R" - R" is a diffto-pms11t;
3) Topologi,a/lyequivaltnl ihhe mapping h: R" - R• is a ,.,,_,,.,p!ris,,,, i.e.,
if his onc•to--one and continuous in both directions.

Problem I. Prove chac linear equivalence implies differentiable cquivalcnoc,
while differentiable equivalence implies copologjcal equivalence. 

Remark. Note chat the mapping h carries phase curves or the 8ow (/'} inio 
phase curves of the flow (g'), 

Problem 2 .  Docs every linear aucomorphism h E CL(R") carrying phase 
curves or chc flow {f'} into phase curves of the flow (g'} establish a linear 
equivalence between the flows? 

An.t. No. 

Hint. Let n • l,f'x .- e'x, g'x = e2'x .  

t The terms "conjugate" amt .. ,imilar" arc sometimes used as synonyms b-.. icquivdc:nt" 
as defined he,re. 
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Probl,m !J .  Provr that thr rdation1 or linrar, dilrrrrntiablr, and topological 
<•quivalencr arc• actually rquivalrnc.- N"lations, i.r., thal

f~f, I~ I/, II ~ k -I~ k. 

In particular, ,·vrrything ,aid is •1>1>licablr to thr phas, flows of linc-ar
�ystrm�. For brrvlty, wr will talk about rquivalrncc- or thf" systt-nu 1�m .. 
sdvcs. Thus we havr dividtd all linrar systrms in10 rquivaltntt cla.s.sn i n  
thr'rt wa)'!, corresponding to linear, diffrrrn1iablt, and topological �ujw_ .. 
lt>nctt. We now study thc-sc- clas�s in rnorr drtail. 

21.3. The linear cla••l6cadon, 

T11£0REM. Lei A, B: R" - R
"' be li,tenr opaa1or1 all of wltou ntt-•colus •rt 

simpl,. Th,11 th, syst,rru 

i • Ax, 

5' - By, 

are linearly equivaltr1I if a11d only if th, ,ig,ntvzlu,s of th, operators A ad 8 ,,.,.,,k,

Proof A necessary and sufficient condition ror linear t:quiv-akntt of linca.r 
systems is that 8 = hAh-1 for some h E GL(ll"), since y - Ai • hAx =
hAh-1

y (Fig. 143). But the eigenvalues of the oprrators A and AAA-1 coin•
cidc (here simplici ty of the eigenvalues is unimportant), 

Converscly
1 

suppose the eigenvalues or A arc simple and coincide ";th 
the eigenvalues of  8. Then, according 10 &c. 20, A and 8 dtt0mpo5<" into 
direct products of identical (linearly equivalent) one..,dimcnsioml and two-­
dimensional systems. Therefore A and 8 arr linearly cquivalcnL I 

Probl,m I .  Show lhat the sy.ucms 

I 
.t, = .... + .. ,.
l: = X1 

arc not linearly equivale111, cvel'I 1hough their eigen"'"21ua coincide. 

21.4. The diff'erentiahle cbssi6cation. Our next th<Orcm is almost 
obvious: 

l 
• 

t 
Fig. 143 Linearly equiv alent systems.
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·111eOR£M, Two ti,ttnr IJlltttll

* • /Jx, x ell' 

"" 1lifj,r,11tinb/J ,quiual,nt if 011d 011/y if thtJ art /in,a,IJ ,quwalmt. t 

143 

Proof Leth: ll" - ll' IJ<" a diffro,11orphisrn carrying the ptu.s,, Row ol'thc­
S)"tcm A into the phase flow or the ,ystem 8. The point x • 0 is a fixed 
point or the phase flow or the S)'5trm A. Thrrrfore It carrin O into°"" of' the­
fixed points e or the phasr flow or the ,ystrm B, ><> that Be = 0 Thc-difTco­
moq>hi"n 6: ll" - ll" or shin by c (.Sx = x - c) carrin the- p� Row of'
B into i1sc·lf1 since 

:!.. (x - c) • x • Bx • B(x - c), 
dt 
whilr the diffeomorphism 

h
1 

• �oh: R" - R"

carriesthclloworA intothcllow orBandleav<'50fixed:h
1
(0 = 0. 

Now kt /I: R" - R" be the derivative of 1he diff�morphisrn k, at 0, so 
that//= "•l

o 
E Gl(ll'), The diffcomorphi,msh1 

••"and r•••• coincide 
for cv,:ry I, and hcnC"c so do their derivativn at s = 0: 
Ht'A is e'"H. I

22. Topological Classification of Singular Points

Consider two linear sys1cms 

X:;:;; Ax. X;:;: Bx, XE R"'. 

all of whose eigenvalues have nonzero real parts. Let m _ denote the number 
of eigenvalues wi1h a negative real para and m ,. the number 1A;th a positivie 
real part, so that m _ + m • = n. 

22.1. Theorem. A necessary and suffimnt condition/or topob,gial 'fm""laa of
two li,re(lr systems, all of whose eigenvalues hoc, non zero rul parts, is tltat tM narmba 
of tigenuoluts with ntgativt (and htnce posit ii'<) r,a/ parts I,, the sam, ia lto//r ,pUltU: 

m_(A) = m.(B), m.(A) = m,(B). 

t II in1.1st not be 1hough1 tha1 C\'ery diffcomorphism aublishing the eqlln--alcooc oft.he 
systems is linear (for example, lc:t A = 8 = 0).
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Pig, 14◄ 'rof..ciloglcally cqulvaltnt and nonntu1\illent iy,tcmr..

Fig. 145 Top0logical �uivaltnce ofa system and of111 lineariu1.ion.

For exa1111>lc, 1his 1hcor<m assens 1hau1able nodes and foci (Fig. I«) are 
1opologically cquivalcn1 10 each 01hcr (m_ = 2) but not topologically 
equivalenl to a saddle point (m_ = m+ = 2). 

Jus1 like 1hc index of iner1ia of a nondegeneratc quadratic fonn, the 
,,umber m _ (or m •) is the unique topoJogicaJ invaria.nt of a lin�ar S)"St.tm. 

Remark. A similar rcsuh holds locally (in a ndghborhood ofa fiMd poin1) lor 
nonli,1ear systems whose linc-ar part.s havr no purely imaginary eigenvalues. 
In panicular, in a neighborhood ofa fixed poin1 such a system iJ iopologi­
cally cquivalcn1 10 ils linear pan (Fig. 145). Herc we will not go into t!K 
proof of this proposition, of great importan� in the stud)• of nonlinta.r 
systems. 

22.2. Reduction to th" cas" m _ = 0. The topological cqui,'lllcncc of 
linear systems with identical values of  m_ and m + is a conseqllfflCC of the 
following three lemmas: 

t-£MMA I. Direet prodru:ts of topologu:ally equwalou 17sunu are wpohgiull:, • fllU'<l ·
lent. More ,xaetly, if t!IL sysum, sj)«ifad by th, opnawn 

A B · R"'• ➔ R•• J'  l • ' 

are carried into each ollur by the homtomo,phisms 

hi : R"'• - R"'•, 

tlun there exists a homeomorphism 
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«m')i,ig 1h, ph111, flow of 1h, produ(I 1y1t;m 

X 1 •A1x1, 

into 1/11 ph1111flo1u ofth; produ(I syst,111 

* I • 81X 11

Proof. Simply Ice 

h(x., x2) � (h,(x1), h2(x2)). I

The ntxl lemma i.s familiar from a course in linea.r algebra. 

14S 

LEMMA 2. If th, operator A; R• - R' has NJ puuly imagina1,1 ,.,,,.,.1.,_,, 1Jo,,, IN 
space R" decomposes inlo 1M dirttl sum R• - R•- + R•· oftw.n,6sf>oUS i a ­
vnrinnl under /he opera/or A, such that all th, rigmr,altlil of IM ustri<tio,,ef A I• R•· 
hav, negnti,� real parts and all th; eigenualun of tit, ,at,i(lion ef A u R• · l,,,c, 
positive real parts ( Fig. 146). 

Proof. This rollows, for example, from the ch,orem on the Jonan normal
form. I 

Lemmas I and 2 reduce che proor orcopological equivalence to the l'ollow­
ir\g special case: 

LEMMA 3. Let A: R" - R" be a lintar operator all of wltostrigmrohta Mttponli« 
rtal parts. Then the 1ys1,m 

i = Ax, XE R" 

i, topologically ,quivaltnl lo th, llandard sysllm (Fig. 147) 

X • x, x e R". 
Pr(}()f The lemma is almost obvious in the one-dimensional cast and in th� 
case of a focus in the plane, and hence, by Lemma I, in any system without 
multiple roots. The proor or Lemma 3 in  thc general CaS<' "'ill � given 
lacer. I

Rm. 

-

-1-- ----R
m

.

Fig.  146 Invariant subspaces of an operator with no purdy imaginary ciguavalucs.. 
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J,�ig. 147 All uni1able nodes are lopolQSieally tqu.inl(:nt.

Fig ,  148 L(vtl surface or the l .. yapunov func1ion.. 
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22.3. The Lyapuaov Cuactioa. The proof of Lemma 3 is ba>cdon the c on ­
struction ofa special quadratic form, calltd the Lyapunoof.-ioa. 

THEOREM, l,t A; R" - R" be a /in,ar opua/JJT all af w!,tn, ,ig..,.,Jrus l«zr, p.,i ­
tivt r,al part..s. Then thert txists a Eudidtan stru.cturt in  R" SU<la Utot thl IJ«I« As 
makes an acute angl.e with the radius vector x ot tvety point x ,#: 0. 

In other words: 
Th,r, txiJts a posilivtdefiniu quadratic form ,2 in R" nu/r tliat iJs dcmzti«;. tit, 

direction of the v,ctor fald Ax is positive; 

L •• ,, > 0 V x ,;, 0. (I) 

Or alternatively: 
Th,re exists an ellipsoid in R" witlr c,nler Osuch tliat th,.,,,., Ax is du,etd n t ­

ward at ev,ry point x af th, ellipsoid (Fig .  148). 
The equivalence of all three formulations is easily verified. \Ve will prove 

(and subsequently use) the theorem in the second formulation. The proof is 
most convenient in  the complex case; 

Suppose all th, eig,noo/ues .i, of th, op,,ator A; C" - C' /iac, p.sitir, ,au parts.

Th,n th,re exists a positive definite quadratic farm r2
; "C" - R r,:/w, tkri,,oti" 

along th,direction efthe uecwr fald "Az is a posiJiv, d,finiuquadratic J.,.,

L"••'' > 0 V z ,;, O. (2) 

Applying the inequality (2) in the case where the operator .-f is the eo m ­
plexification ofa real operator and z belongs to a real subspaa- (Fig. 149), 
we get the real theorem (I). 
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f'ig. 149 L c\'cl aurfa<'e of the Lyap1.1nov funct'°" '" C-. 

Fig. 150 POOtivc dcf1n11cncss of the form (4) in 1he U.'¢" • I. 
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22.4. Construction or the Lyapuaov £aactioa. \Ve ,..;n c� th,, 
Lyapunov function r2 to be the sum of the squares or the moduli of the co­
ordinates in a suitable complex basis: 

• 
,, = (z, zl = i: ,,,,. 

• • I

1 n a fixed basis we can identify the vector z with a set of numbtn z 1, • • •  , z.

and the operator A; C' --+ C' with a matrix (a
.,). A calculation now shows 

that lhe derivative is a quadratic form: 

l1t,.(z, i) = (Az, i) + (z, Az) = 2 Rt (Az, i). (3) 

If t,;, basis is an tigenbasis, lhi,function is posiliD< �jinilL (Fig. 150). In !act, we 
then have 

• 
2 Re (Az, z) a 2 L Re l,lz,12

. (4) 
.., 

But all the real parts or the eigenvalues _., arc positive, by hypo,hcsis, and
hence the form (4) is positive definite. 

lf 1he operator A has no dgcnbasis, 1hcn it has an ualmos1 proper" basis 
\,•hich can be used with equal success to construct the Lyapunov func1ion. 
!vfore exactly. we have 

LEMMA 4. let A: C' --+ C' tu a Clintar operator and l,t t > 0 .  Tr.nt a l>asu 
{" ... , {. can bt ehosen in C' in whit!, tht matrix ef A has "upper-1ria11gulm"f-
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f, c• 

Fig ,  I.SI Comtruc1ion ofa basis iJl which th(' matrnc ol'1he opuuo, K tnangul.a,.

with all ,i,m,r1ts abo,,, th, mai11 diagonal of modulus /us Wn t: 

(.l., < t)(A) • . • 
0 1, 

Proof. The cxis1,ncc of a basis in which thr matrix is up�r-triangular 
follows, for example, from the theorem on the Jordan canonic:al form. 

\\fe can t"asily construct such a basis by induct:M>n in 11, u,:ing only tht bet t.lut nuy 
linear operator A: c• - C• has an eigenvector. ut ( 1 be this ttetor (f'"ig. ISi). a..nd con­
side r 1hc factor space C"/C< 1 =i c-- '. Then rhe <>pttator A detttminics a.n operator 
A: c-- 1 - c--1 on the (actor space. Lee 'h, •..• •• be a ha.sis in c-· • in •hida the­
matrix or 1hc operator A is upper-triangula r, and let{, .... , ( .. be any f'q>lt'st:nuti,-u o/
the cla.sso 11,, •.. , "• in C" .  Then { i, C,, ... , {.tithe desired baJn. 

Now suppose the matrix of the o�ralor A is upJXr-triangular in th� basis 
{,. ... , { •. Then t/r, tkmtnts abov, the main diagonal can bt ma4,,u6itran/J small 
bJ replaci11g the basis 11tcwrs bJ proportional lltC/ors. In fact, l<t •u br the dc�u 
oftheoperatorAinthebasis{,,sothata., = Oifk > I.Thcn thcdcmrnuof
the matrix of ,1 in the basis {; = N'{, arc just 

But l•,,I < t for a l l -I > kif N is sufficiently large. I

The sum of the squares of the moduli in thi• "t-almost proper" basis wiU 
be chosen as the Lyapunov function (for sufficiently small c). 

Consider the set of all quadratic forms in R'. This set has the natural 
structure of a linear space R"'<"'• 1>12• Our next result is almost obvious:

LEMMA 5. Th, Stl of pcsitiut definite qundratkforms in R• isopo, i,, R--<•• 11". I•
ollrtr wor,4, if a form 

-

a(s) = L a1,x._x1

A,I• J 
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is positi111 d,jinit,, th,n th,r, ,xists ant > 0 Sll(h th,,/ l<'<'Jf••m o(x) + 6(x) u_/vr, 
lb.,! < t (for all k, I, I < k, I < rn) is also positiw dtfo,it,. 

Proof The form n(x) is t>OSitivr at all poi nu oft hr unit sphrrc-

L x: - I, 
.. ' 
Thr sphere is compact1 and thr form is continuous. Thcrr-10� tM grc-attst
lowrr bound is achieved, so that a(x) ;i, 11 > 0 <verywhe,... on th<, spll<'rc-. 
lf!b.,! < c, then 

lb(x)I .;; I; !b.,I < m't
11,I • I 

on the splwre. Tlwrefore the form a(x) + b(x) is posi<ivr on 1h<, sph<,,... if 
c < «/m2, a,,d hr,,ce i.s positive- dthnitc. I

Remark. Our argument also implif'S that rvery positive dcfi.nit� quadnuic 
form a(x) satisfies the inequality

al•! 1 .;; a(x) ,,; Plxl', (5)

cvcryw here. 

Problem I. Prove that the set of nondegcncrate quadratic forms with a gi"·en 
sigoature i:( open.

Exampk I. The space of quadratic forms ax'+ 2bx,1 + 91 in  twovariabks 
is a three-dimensional space with coordinares a, b, < (fig. 152). Tll<' case 
b2 • aesepara1es this space into three o�n parts according tot�signatu�. 

22.5. Proof of Theorem 22.3. Consider th<' derivative along th<, dir<etion 
of 1he vec1or field R Az of the sum of th<' squares of the moduli of 11,,, co­
ordinates in the "e•almost proper" baslS chosen in Lemma 4 .  Acconiing ro 
(3), this derivative is a quadra1ic form in th<' real and imaginary pares ofth<, 
coordina1cs '• = x, + &,,. Separating th<' terms in (3) corresponding 10 1h<, 

_, 

+ 

+ 

a 

F.ig. 152 The space of quadratic forms.
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rlemenll o( tlu- matrix (A) on the main diagonal from thost 00rrnpondong 
10 1h,· ,lt'nwnu o( (A) above the main diagonal, wr grt 

L�_..,1 • p + Q., 

wht•rr 

Q = 2 Re L o.,z,z1• 

,., 

Since the diagonal tlemtnts o( 1hr triangular matrix (A) arr jun 1hr ngrn• 
values 1, o(thc operator A, Int quodrolicform 

• 

P - 2 Re L 1,(xl + J'l)
.. , 

in Int oariables x,, y, is p,,sitiv, definite and ind,pmd,nl of IN ct.«, ef ksu. t I 1 
follows from Lemma 5 that for sufficiently small t, the (orm P + Q.(which
is close to P) is also positivr definite. In fact, for sufficiently small c, tht
corfficients of 1hr variables x,,Y, in 1hr form Q. b,,come arbitrarily small 
(since l•.,I < c fork</). But this implies (2) and hence (1). I

Rtmatk. Since L,."r
2 is a positive definite quadratic form, it satisfies an 

inequality of the type (5): 

0 < " < p. (5') 

The following series or problem, le<ids 10 another-proof o("J'nc.ottm 2.3.

P,obltm 2 .  Prove thae diffe re ntiation i n 1he dir«tion of the ,.-cctor fidd A.• in R--p-u a
linear operator L,.; R••• • i,;;i - R•1• • 1112 from tht: spa.« of quadn.tK bms on&• llMO
itllC'IC. 

P,obltm 3 .  From a knowledge or che eigt..'Tlvalucs l, or the opuator A, 6ncl 1hc eigcn"--a.lua
of 1hc- op(ra1or l,.,

Ans. ,t, + 11, I <: i,j <: " ·

HU'tl ,  Suppose A has an eigenbasis, The n lhc eigcm.·ccton of L,. consist ol tlM: quadr2tic 
forms equal lO pl'oclucu o(pain of linea r forms which are  eige nvectors ol1ht opttatcw d\Ul 
10 A.  

Prohlt.m 4 ,  Pro"'c tha1 the opel'lltOI' L,. l$ an isomorphism if A has no pafr of cigul,-alua 
1, ,, such that 1 = -,,. In particular, pr o\/e tha 1 i( lM real pans of ,all the c,p,-a.iucs of
the op erator A arc of the same sign, thcn e, ·e ry quadratic rorm on R• is the dc:rn.1.ti,"T of a
quadra1jc fo rm in the dir �ti on of the \'CCtOf' fidd Ax.

P,oblem 5 .  Pro\' e 1ha1 if the r eal  parts of all the eigcn\-alucs of an opcn.lOt A att pmi�-c­
and if 1he derivative of a quadtatic farm in the di rection of the field As is positi,,-Tdc6nitt.. 
then the form is i1.sclf p(l5ilive ddini1e (and hence satisfies all the rcquittmcnts ol"'l1lcorem
22.3), 

t It should be: n oted that the tMP/Jing RC--R spccincd by 1hc (o,m P-, dlfltWI c:m the 
choice of basis.. 
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Fi1, l!>3 Construc1ion or the hotneotnorphi.srn Ai,

Hint .  Rcpre5cn l the fom, as the inlqral or its dcriVllltiff along the phut cvn--a. 
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22,6. Conotructlon of the homeomorpl,lsm /r, In order to provr Ltmma

3, we now construct a homeomorphism II: R" - R• carrying tM phase Row

(/') of the equation • - Ax (Rr .I, > 0) into th< phasr Row (,'} of the
equation x • x. Ltt SI)(' the sphtre (or rllipsoid) 

S • (xeR": r1(x) • I}, 

where,, is the Lyapunov function ofS..C. 22.3, and let /r i,., such that
i) The points of S arc inval'ianl under h; 
ii) If x

0 is a point of S, then Ir carries thc-point f'"
o 

of thc-p� tnajc-ctory
of the equation x • Ax into the point g'x

0 
of the pha,c tnaj<etory of the

equation• • x (Fig. 153): 

{ h(f'x.0) = g'x0 V I E R, x0 E S,
/r(O) = 0. (6)

We must now verify the following facts, whose proofs arc almost obvious:
I) Formula (6) uniquely defines the value of/r at every point x ER"; 
2) The mapping h: R" - R" is one-to-one and continuous in  both dir«­
tions; 
3) h • f' = g' • Jr. 
22. 7, Proof of Lem.ma 3 .  fin.t we prove 

Ul ,MMA 6. Ltt •= R!' - k" lu on.1 soluti01t of IN 1ptt.OOII Ai = _. i"isliM.tfi- �. -' J,,ra
th, r,al fundi<»t 

p(t) - In,'(•(<)) 

ef th, ru,I ,;oriol,/1 t. Thm th, mltf!Pinz p: R - R is • t6ff� tutd 

... �.;/1. 
Proof. By che uniqueness theorem, we have 

,'(,(t)) # 0 Vt• R. 

(7) 
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Moreover 

¥ , 

111tldie1 the c,1lru!Hfl (7) bttau'le o((:;'), I

COMOl l,Al4Y I, ,. .. � ,., polNI • 'I O '"" 61 U/JffJtnttl Ut dv feM 

• •/
1
•0, 

(ll 

1clwt • o •$,I• Rand (F) is tAt pJ,a.>#Jlow of tJv ,._,- j_ As. 

P,oef_ Cotuider the solution .,. wi1h initial condioon .,(O) •· By l.mlm.a 6. ,'(•<d) I
forsomct, The point•G •<r) bcio.1g, to lhtsp�S. Se-tting/ -r • .-cCd, ■ -r-.. I 

COkOU,MtY 2 • .,.,., ,,,,,,j,,1/{lliofT (8) is ""i9w. 

Proof, The phase Cu I've lc--.-vin,g • ( Fig. 153) is un.iqu<' and intenttb t� sphttc-tn a •nck 
point ■0

, by Lemnm G .  The uniqucnCJs oft foUows f,om the- monoc0niclty of ,<1). acun 
by L.emma G .  I

·nus wc  have cons1ruc1ed a onc,to,.one mappin,g of the d 1rce1 product of thrt-lent 

the sphere on10 t:uc-lid(".&n apace minus a 1ingle p0in1:

F: R )( s-- I - a�,o. F(t, •ol -/'•o•
Jc follows from the th�cm on the depcndcncir- of tbt so,luuon on tht uutQ..f condHions 
tha t F, as ...,,en all the inverse mapping F-1, lS c on tinuous (and C\'("n a di.fl"eomorphism).

We now noie �hal 

t-2
for the sta nda rd equation X • a.. Hence the rN.pping

C(t, "o) - ,.
,._ 

lS 11ls o one--to·or-.e and contin uous in bo1h dirtttions.. According 10 lhc definition (6). 
the mapping h coincides with the mapping G • F -1: R•,o-R•,o n-p---y--iattr accpt

a t thc p0in t O. Thus we have proved that It.: R• - R• is .a ()O('oto-one rm.pping.
The continuity oth an d It-' e, .. erywhere C":itCe-pl at the" poin 1  0 fOilto,,..., from theeonlinuity 

or F ,  F-' an d C, c-' ; actually It i.s a diffcomorph.ism C\'ctyWhcr-c except at the polfn O 
(f'ig. 154). The continuity of It and Jr-1 a t O follows trom Lffluna 6 .  nu. km.ma nscn
allows us to obtain an explicit estimat e for r1{ -'(•)) in tcnns of , 1(•). <: I:

(,'(s))"• <; ,2 (h(s)) <; (,2(s))'"· 

In fact, let•= F(I, ao). t ( 0 .  Then /JI< ln,1(a) < oland ln,1(.\(a)) = 2'� M�"ff,
for x :;, 0 we: have: • ,. Pao, and hcnee 

(h •f'J(s) • h(f'(./"'o)) • h(f"'><o) • t""'o 
• g'(t"'o) • t'(h(s)) • (g' • h)(s),

fig. 154 The homeomotphism. Ir is a diffcomo,ptusm n·crywhctt except at O. 
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Fig. l55 The uandard saddle:.

while for • - 0 we alto lu\.'C {It•(')(•) - Ct' • A)(a). Thus 1M vaLchty of aaenioM 
I )-3) or Sec:. 22.Ci has finally �en atabli.shcd, and lhc proof o/Lc:mrm, 3 • nowcomfkk-1 

22.8. Proof of Theorem 22,l, It follows from Lemmas I, 2, and 3 that 

every linear systrm X • As, whf"rc the o�rator A: R" - R• has no puttly 
imaginary eigrnvalu,., i, topologically equivalent 10 the siandanl multi•
dimcnsiona1 "saddle0 

(Fig. 155). Hence two ,uch systems with identical numb,;rs •-and•• are 

topologically equivalent (to each other). Note that 1he subspatts Jt•· and 
R"'• are invariant under the phase flow {g"}. Ast inctta.sn-. C\;cry point of 
Jt•- approaches 0, 

Problem I. Prove 1ha1 g's - 0 as t - + 00 if  and only ifs ea•-. 

Therefore Jt•· is called the incoming strand of the saddle. In just the same 
way, a•· is called the outgoing strand, defined by the conditjoo .(s - 0 as  
l � - CO.

We now prove the second part ofThcorem 22.1, namely, i-"1pol.�J
equiualtnl systems have the same numbtr of eigmva.lu.t.s u,·ith n.tgatiw u.al /JdnS· This 
number is just the dimension m_ oft he incoming strand.and hen�wt nttd 
only show that tht dimensionsof tn, incoming strands of two toj!ol•tialiJ,quiMuxt 
saddlts art idtnti,al. 

First we note that every homeomorphism h carrying the phase flow of one 
saddle into the phase Aow of another must cany the incomjng strand of one 
saddle into the incoming strand oft he other (since approach toOast - + 00 
is preserved under a homeomorphism). Hence the homeomorphism /t abo 

establishes a homeomorphic mapping of the incoming strand of one saddle 
onto the incoming strand of the other. 
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Thr fact that the strands have thr s:.unr dimension now follows from ch�
following key proposition of topology: 

Tht dime11sio11 of the spnt,t R• is a topolo1ical inoariant. i,,1., 11 •IN1NlliNJllt.is• 

h: R .. ➔ R" ca11 exist only btlwe.en spaeesoflhe same dimtn.sion.f 
Although this proposition seems "obvious/• its proof is not as)' and will 

not be given here. 

P,oblun 2 .  Pro� that the 4 nddlcs with a thrtt--dimcmi«w phur spa« such da.tt 
(m_, m .) � (3, 0), (2, I), (I, 2), (0, 3) >o'C 1opologfllly noncqui .. knl <wi1hou1 u,i,-,g <he 
unpr-ove<, topological proposition).

Hinl.  I\ one-dimensional atra.nd corui..st,5 of three pha.,,e curves, ""+.ilc a IDW.c:icli:rnrmioM.1
strand consists or infinitely many pha.s(" curves (Fig, 156). 

Thus for R 1, R 2, R l we have complei<ly proved 1he topological dassi6-
c a  tion of linear systcm.s whose eigenvalues ha� nonzrro real parts_ How­
ever for R"', n > 3 we are compt:Jled to rdcr to thc aboVC": unpro..-ed proposi­
tion on the topological invariance of dim("nsion. I 

Prolll-tm 3. Carry out the copologieal clauifica1i0n of linear opcr.uon A: R--- -R• with no
cige1w3lucs of modulus I. Show that the unique topological invariant is W number al 
eigenvalues of moduJus less than I.

23. Stability of Equilibriurn Positions

The problem of stability of an equilibrium position of a nonlinear system is 
solved in 1he same way as for a linearized system, provjdcd the latter has no 
eigenvalues on the imaginary axis. 

t However there exist one-to.one mappings R• - R•. as"'-ell as continuous mappings ol 
R"' onto R• with m < n (for example R' -Rl') .  
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23.1, Lyapunov 01ablU1y, C",0nsidrr 1hr rquacion 

k • v(x), x au c: R•,
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(I) 

whrro· vi, a vc·ccor firld diffrrrntiablr, > 2 timrs in 1hr domain U. Suppol<' 
rquation (I) ha, an ,·quilibrium posh ion (Fig. 157), and ch-eootdinatn 
x1 such tho11hr rquilibrium 1>01itio11 is oc 1hr origin: v(O) • O. Thr solution 
with initial condition tp(t0) - 0 is just-,• 0, and we at"t" int�rn•Nl int�

behavior of solutions with nrighborirlg initial conditions.

D,fi11itio11. An rquilibrium 1>01ition x • 0 or ,quation {I) is said to Ix ,t,o61, 
(in l.,rapu11ov' s sens,) i( givrn any t > 0, chrrr rxisCJ a 6 > 0 (drp,nding only 
on c and not on I, about which morr later) such chat for ,vrry "o for which 
l•ol < 6, t 1hr solution ,p or (I) wich initial condition fl'(O) • x., can Ix 
rxcrndrd onlO 1hr wholt half-line I > 0 and sacisfirs thr inrquality ,.c,)t <t 
for all I> O(Fig. 158). 

P,ol,l,m I. lnva1iga1e 1hc Lyapunov stability of tM' �uilibrium po1ittON oft� follo-,nc 
equa1ion,: 
a}i-=O;

b) * - x; 

l 
t 

...... \ 

-- II 

-- \ "
1-: \ 
_,, I '-

I 

Fig. 157 Oo 1hc ph:uc curvesstaninginasuffic.c'n:tlysma.Uneighborhoodofancquiltl:ri­
uin posilion stay near the cqui1ibrium posi1ion? 

-
, t 

Fig. 158 Difference in behavior or integral tun-u ror i:tab� and unisuhlie �dibriwn
pos.i1ions.
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vtO/ 
0 

t 

Pig. I �9 I ntcgml curve, ror all 1uymp1odC'ally n.ible cqul1,br11,1m polloOft

Fig. 160 Phase curves o(cqu:uions (1) and (2). 

Proldtm 2 ,  Prove 1ha1 the abo..,e definition is correct. i-c:., that 1he s1abil1iry o( the: irquiHb­
rium posilion is independent o( the 1ystcrn of cO<>rd,�ta figu ring in tbt ckfiniOOII. 
Probl,,,, 3 .  Suppose it i.s known that for any N > o. c > 0, thctt Wm a dution • ol
cqualion (I) such that 1•(0)1 <•and 1•(1)1 > Nl•(OJI for som< I> 0 .  Do<S llus imply 
that the equilibrium pos.i1ion • -0 is unstable?

23.2. Asymptotic stability. 

Dtjinitio11. An equilibrium position s a O of equation (I) is said to be 
a,ymptotically stab/, ifit is stable in Lyapunov's S<enS<e and if 

Jim ,p(t) = 0 
,-+ 00 

for every solution ,p(t) with an initial condition c,(O) lying in a sufficiently 
small neighborhood of zero (Fig. 159).

P,ol,lt m  I .  Jnvatigatc the asymptotic stabifoy o( the �ui!ibrium positions ol the f allow ­
ing equations: 
a) X = O; 
b) i = x; 

Probltm l .  Svppose every sohation approaches the equil ibriu m pOsitioo u , _ +00.
1)o(s this imply Ly:i.punov $tabili1y of the cq_ui1ibriurn position?

23.3. Stability in terms of the behavior oftbe first approximation. 
Together with equation (I). we now consider the l.incariz.ed equation 
(Fig. 160) 

A: R" - R•. (2) 

Then v = v1 + v2• where 

v,(x) = As, v 2 = O(lsl 2).
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Fig. IG2 l.(' wl surfoC'C" oflht' Lyapunov function.

IS7 

1 IIEOREM. Suppose a/11/i, ,ig,r1va/u,s J., of 1/o, op,,alor A /,e ,n 1/t, /ifl Wf-JJJ••

Re,!< 0 (Fig. 161). Thm lht equilibrium po1i11on" • 0 of ,p,,,.• (I u 
aS)•mptulira/{v Slab/,. 

Probltm I. Ghc an t'Xomplt' of an unstable-<-qui:iibrium pos.itiou (in thit sn,s,t olLyapu"'°'
of t"quation (1) for '-''hich a ll Re l4 .;; 0.
Commtnl. It c.m b\" shown 1ha1 i f  the rt'al par ·• of ,1.1 la.st ont c:ig,enoJu,,- ti ,-,sil:itt, Ihm 
the equilibrium pOiition is u1ts1a bk. II\ 1ht' raSt" ol �NO re-al paru,,, thir subllit)' ckpu..ds

on terms of ,he Taylor SC"rin of ordt'r higher ,ha.n 1.

Pn >bfrm 2 .  Is 1hc zero equilibrium posi tion of 1he 1)'$1,r-m

I 'i' = x,.
�J = -.l'j 

11.ib lt" (both in L.yapuoov's sc-1uc- :and asymp101k.-Uy)?

.-1,u. If n i, eH:-n, i1 ls unstabJc (in Lyap uoo .. • 's SC'ow), whilir if II is odd, it iJ Nbk in 

Lyaptmov•� \Wtl$t" bu1 not asymp101ically. 

23.4. Proof of Theorem 23.3. According to Sec. 22.3, 1hcn, cxisu a 
Lyapunov function, i.e., a positive definite quadratic form ,1 whose deriva­
tive in the direction of the linear field v

1 
is negative definite, so tha.t 

L r' ,;: -2•r2

"1 ....: I 

where y is a positive conscan1 (Fig. 162).

LEMMA, The dtrivatiu, of 1/o, LJ•apunovfun,litm in the dirution of tlo, •oliNar fald v 
sali.rjies /ht in,qualil)' 

L.,,2 :s;; -y,2 (3) 

in a sl/lficienlly small neighborhood of lht poinl x = 0 .
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Proof. Clearly 

But 

l.;1 • 0(,3), (4) 

so that the second term is much smaller than the first if, iJ small. In fact, 

• iJJ 
l.J• r -

0 
u1 

f• I XI 

for any firld u and any function/, where i n  out case u a v
1

,/ zs ,2, •• as
0(,1

) and iJ.fliJx, - 0(,) (why'), which implies (4).
Thus there exist constanu C > 0, a > 0 such that

ll.,'I, ,;; Cir'(x)l'11

for all x with l•I < 11 .  The right-hand side is no larger than .,,• lor ,uJ!i. 
cicntly small !xi, and henc,, 

L.,,2 � -2y,2 + y,2 = -y,2

in a neighborhood of the point x = 0 .  I

Proof of Theorem 23.3. Let ,p be a nonzero solution of equation {I) 
satisfying the initial condition x = 0 in a sufficiently small ndghborhood of 
the point x • 0, and consider the following fonction of timt': 

p(I} = In r1(,p(t)), I ;;> 0. 

By the uniqueness theorem r1 (,p(t)) ,;, 0, so that the function ,pis defined 
and differentiable. According to the inequality (3), we ha,·e 

• I d 
2 

L.,,2

p = ' 
-r • 'P =

--,-
� -y.

r ot;pdl r 

It follows 1hat r1(,p(t)) decreases mono1onically and approaches O as
,_ +ex>: 

p(t) � p(O) - yt,
r1(,p(t)) � r2(,p(O)),-,, -+ 0. I

Problem I. Find 1he gap in 1his proof. 

(5) 

Ans. We did not prove thal the solution ,p can be extend<-d indefinitely 
fon.,,ard. 
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Compt,1io11 ef /ht proof. Let a > 0 Ix such that the in,quality (3) holds ror 
lxl < a, and consider the compact set 

F = (x, I: r2(x) ,s;; a, ltl ,,; T) 

in extended phase space (Fig. 163), L<t 'I' Ix the solution with initial C'.Otldi­
tion ,p(O), wl,cn- r2 ( 'l'(O)) < a. By the extension theorem, we can extend ., 
forward up 10 the boundary or the cylinder F. But the deri,-.ui,..- of the 
function r2

,p(1) is negative as long as the point (1, .,(1)) belongs toF. Thcr�
fore the solution cannot leave the lateral surface or the cylinder F (where 
,, • a2), and hence it can Ix extended up to the end race or 11M, cylinder 
(where I = T). Therefore, since Tis arbitrary (and independent of a), the 
solution 'I' can be extended indefinitely forward. Moreover. ,'(9'(1)) < tr1
and the inequality (3) holds ror all I ,i, 0 .  I

Remark I. Actually we have proved more than the asymptotic ,rability or 
the equilibrium position. In fact, it is clear from the in,quality (5) that the 
convergence fP(l) - 0 is uniform (with respect to initial condicions So 
sufficiently close 10 0). tvloreover, (5) shows the rate or convergence (namcl)' 
exponential), 

In essence, Thcor,m 23.3 asserts that the uniform convergence 100ofthe 
solutions or the linear equation (2) is not destroyed by a nonlinear �tur ­
bation v2(x) • 0(1><1

2) of the right-hand side or the ,quation. A similar
assertion is valid for various perturbations or a more general natutt. for 
example, we might consider a nonautonomou.s perturbation v2(x. I) such 
that lv2(x, 1)1 ,,; ip(lxl) where ,J,(lxl) = o(lxl) as x - 0. 

l',00/tm 2 .  Pro1,•c tha1 under- thit col'Klitions o( the lMOJ'cm, equations (I) a.ad fl) a.rit

lopologically equivalent in a ncighborhood or the cquilibrium position..

Remark 2 .  Theorem 23.3 leads to the following algebraic problem, known 
as  the Routh-Hurwil z probltm: Dtttrmint whttlrtr or not all tit, ZLTN ef • p,a 
pof;-nomia/ Ii, in th, lift half-plan,. This problem can Ix solved by a finite 
number of arithmetic operations on the cocffici�nts oft he pol)'llOmiaL 1nc 
appropriate algorithms are described in courses on algebra (HUf°\'itz.'s 
criterion, Sturm's method) and complex analysis {the argument principle, 
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, he met hod• or Vyshnrgradski, 1'yq11i>1, and 1\1 ikhailov), t \V, "ill return to 
the Rou1h-l l11rwil1. prol;lrm in Src. 36.4. 

24. The Case of Purely Imaginary Eigenvalue•

Linear c�qu,uio11s with no purely imaginar)• r-igcnvalues have bttn invcsti­
gaoed in deoail (Secs. 21 and 22), and their phax curves behave rather 
simply, e<hibiting a saddle (Sec. 22.8). \Ve now tum to the c:ax of linear
equatio,u wi1h purely imaginary cigc-nvaluc:3, whose phax cul"�a offer 
examples of more complicated behavior. Such �quations are t-ncountcrnl, 
for c,ample, in the theory of oscilla,ions or conservative S)-.tems (stt See. 
25.6), 

24,1. Topological classlflcadon, Supp<>se all th• eig,nvalun l,. ... ,.t., 
of the linear cqualior\ 

X • Ax. x e R", A: R" - R11 (I) 

are purely imaginary. Then under what conditions arc two such equations 
topologically equivalent? The answer to this question is not known, and 
evidently the problem cannot be  solved by presently availabk mat&mati­
cal methods. 

P,oblem J ,  Prove fhat in 1he casc of the plane (n • 2, l,.1 • f-irt> � O) • .tgdwaic�,--.­

lc.ncc (i.e., cquali1y of cigc.nvalucs} is a nttcssar')' and su.ffioc.m conditMIO for t.opologia.l
equivalcr,«. 

24.2. Example. Consider the cqua1ion 

*, = w1 x 1, 
A.'. 2 +iw1 , -

*, = -W 1X1 , 
(2) 

xJ = W2X,o 

*· -WzX3 
;.J,4 = +iw2-

in R4• The space R4 decomposes into a direct sum R" = R1
•1 + R>.·• of 

owo planes (Fig. 164), and correspondingly the system (2) decomposes into 
two independent systems 

t Sec e.g., A.G .  Kurosh, A. UH/rst lit Hig.ht, Alg,lmi (in RussQn). MOIP)W (1968). Chap. 9; 
M.A. Lavrcntcv and B .  V. Shaba1, A1ttlr6d1eftN n°'?-.JFrmc:ti4,uff a C ifCn Yaridlt f111 
Rus..1ian) ,  Moscow (1958), Chap. 5; N. C .  Chcbotattv 2nd N. N. Mctma.n, 71w Jt..dt..
Hu1'U,Jl·t1, Prohltmfo, Poly,.,,,ia/J and &tirt Funtti..s (in Russian). Trvdy M.a.L lnu.. �. 
MOS<OW (1949), No. XXVI. 
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A.._+--

Fig. lf-,,4 l'ha.sc spau of the S)'Sltm (2). 

Fig. IG.i A 1on.1s .  

{ *, x, 

{ -�,.\'4 

= Cl)1Xz, 

- -w,x,. 

:: WzX4, 

� -W2X3, 
(x3, x4) e R3_4 . 

tn each of these planes, the phase curves arc circles, say 

S' = {xeR,,2:x/ + xj • C > O}

161 

(3) 

or points (C: = 0), and the phase flow consists or rotations {through angles 
w,t and w21 respectively). 

Every phase curve of equation (2) belongs to the direct product of tM 
phase curves in the planes R1 ,2 and R3•4• Suppose chc two curves a.tt 
circles. with the direct product 

T2 
= S1 x S' = {x E R4 

� xf + xi = C, xi + x! = D}, 

called a t w o -dinun1itmal torus. To bcttervisualiie the torus T2, we can proceed 
as follows. Consider the surface of the doughnut in R 3 (Fig. 165) obwn<:d by 
ro1a1ing a circle about an axis \•1.,hich lies in its plane bu1 docs not intersect
it. A point of thissurfacc is specified by1woangularcoordina1es91,92 mod2i,, 
called the ltmgitudt and the lalitude for a reason which is apparent from the 
figure. The coordinates 01 and 02 give a diffcomorphism ofth<:surfattofth<' 
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doughnut nnd the direct product 7'1 ofthr two circles. 
'f'hr square O < O, < 2n, 0 < 01 < 2n in thr planr ofthr coordina1n 

O,, 01 cnn ur rrgardrd as a mnp ofthr torus T1 (Fig, 166) ir,.,e "pule 
wgc1htr" rvery pair of poinu (0

1
, 0) nnd (01 , 211) a, wdl a. rveri paaor or 

poini, (0, 01) nnd (2n, 01). Tlor wloolr planr can abo be "'!t•rd<d u the
mn1}, bu1 1hcn rvrry poin1 or the tor11, l,u infini1rly m•n) 1m•ttr1 on the 
map. 

The 1oru1 T1 c R" ii invariant under the phase floworcqmuion (2),and 
the l}ha,e curves of (2) lie on the surfaor T'. If 0, i. the pol•r angle in the 
plane R, ,2 rnca.!ured from the di rec lion or x2 to that or x 1, ,hen, according
t o  (3), 0, • w 1 • Similarly, mcaJuring 01 from x, to x1, \,·c �• 01 • w1.
Thu, tit, ph,u, /raj,C1orit1 of tlt,flow (2) •• 1/u su,Jau T' 10111,b /J,, �§nn,li•l 
equolio,, 

('I) 
so 1hat the longi1ude and latitoode of the phue point both change unifonnl). 
This motion corresponds to 1ha1 or a point "winding" around 1hc torus 
(Fig. 167), represented by a straigh, line on the map or the torus. 

24,3, Phase curves of equation (4) on the torus. Two numbers w
1 

and 
w2 are said 10 be rationally indtpendmt if 

(k., k2 integral) 

:rr 

0 

Fig, 166 A map of the torus.

0, 
-+--+-+--+ 

-+- -+--+-+,_ 

0, 

Fig. 167 A point winding around 1he torus. 

, 
-�
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im1>liej k1 • A1 • 0, For example, J2 and J8 arc rationally dcpcnden1, 
b111 not �IG and JS.

, t1£0R8M, lfw, a11d tu1 ar, T11tio1111//y dtfx"dtnl, t lrno «t17plroMntrw,f ,,,,..iiMt

(4) 011 lht toru, is ,loJtd, llow,wr, if 10, ••d w1 Ort ra/lana//y ,,J,,.,,.,ln,1, ,A,.
,r11ry plu111 roirvt ofequatio11 (4) i, eiw,;ywhtrt dnos,t on tlrt tom T' (Fog. 168).

In other word.1, 1v 1>po1t 1ha1 every square or an Infinite chaaboud • occuped by a 
,i,�glc (idcociC'ally placed) rabbi 1, and 1uppo,,,c a hunitt thoou in a dlrttllOft W-. angle 
of inrli n:ui<in with the lines of the chessboard hat an irratM>AAI tan1cn1.. Til,cn the hvnt.u 
will hll a1 lciut one rabbit. (It is cfar th.at if the tangent of the angle ol ,.ndtnauon • 
r�11iona\, 1hcn we can place sufficiently 1mal I rabbit.I on the chcuboard in tudt a wa11hat 
the hunter will mi".) 
L£MMA. Suppose th,<ircl,S' is ro/oltd through•• anglta.wlriclr is ;-ui,

with 2n (Fig. 169), Thtn tht imagts 
0, 0 + a., 0 + 2«, 0 + 3a, . . . (mod 21t) ($) 

of '"V' poi111 on tilt <irclt undtr rtptaltd opplicotion •f the rotation J-• sd rdutJi is

twry•whtrt dense on the circle. 
Proef. The theorem can be deduced from the structure of the closed sub-

Fig. )68 An everywhe
r
e dense curve on the torus. 

0•1« 8-<¥ 8 .,,,.

8,kf • 8 
0,11« 

(J,4c& 8•Ja 

F ig. 169 I magcs of a point of the circle under rq,caced a.pplica.1.-0n of a rotation th.rough 
che angle CJ. 

r A sc.t A is $aid to be #ot.,yw&,# dmk in a space B if thcr-c is at least OtM": poitit o/ A. .ift a.a 
arbitrarily small neighborhood or every point or B .  
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11ro11p, or 1hr linr (••• See. 10), but wr will prov• ii rrorn ,c�1ch, "an,ng 
from 1hr ,implr combinatorial rac1 1h01 i/4 + I ob;«ts art pl««l 1• k ult,, 
then 111 ltaJI one ttll tonlain1 ,rrort than one ob;ttl ("Dirirh1ct•i c-t-11 pnncipl,0

). 

S11ppo8c wt divide 1hr cirdr into k rqual halr-oixn in1<rvab orlmgth 211 t

Then nrnong the Orn A + I poinc, or 1hr srqurnrt (�). 1htre are 1wo pomc. 
in 1hr <nme halr-oprn interval. Lrt 1h,,e poinc, b, 0 + Jt7. and O + ,2
(p > q), and lei s • p - q .  Then 1hc angle of rotation si differs rrom a 
rnuhiplc of 2n by le,, than 2n/k, and any two consecutive poinis of 1he 
sequence 
0, 0 + sor, 0 + 2sor, 0 + 3sor, . . . (mod 2Jt) (6) 

(Fig. 170) arc the same distance d apart, where d < 2Jt/A:. Hence any ,. 
neighborhood of any point of S1 contains points of the sequence (6), 
provided only that we choose k large enough to make 2Jt/k < , .  I

Rtmork. We did r-.01 use the fact that i i1 incommensurable with 2•, but ii 
is obvious that the lemma is false if� i.! commt:n.surablc with 2a. 

Problem I. Find and eliminate 1he gap in 1hc proof of the theorem.

Proof of th, th,ortm. The solution of equation (4) is of the form 

0,(1) � 01 (0) + w,t, 0
2
(1) = 0

2
(0) + w,1. (7) 

Suppose w1 arld w2 arc ta1ionally de�ndcnt, !oO that 

Then the equations in T

w, T = 2nk2, w2 = -2nk,

are compatible, and their solution gives the period or 1he closed phase cun.'<'. 
(7). On the other hand, suppose w, and w, arc rationally indq,mden,. 
Then w1/w

2 
is an irrational number. C',onsider the consccuti..-e points of 

intersection o f t  he phase curve (7) with the meridian O, � 0 (mod 211). The 
latitudes of ,he poin,s arc 

O,. = 020 
+ 2n"'2k (mod 2n)

w, 

(Fig. 171). By the lemma, the set nf points or intersection is csuywhett 
dense on the me.-.idian. But if Lis a s,raight line in the plane and if we draw 
straight lines through a set of points everywhere dense in /. in  a din:ction 
different from 1he direc1ion of L, rhen 1hc lines form a set which is �·Cf)·· 
where dense in the plane. It follows thar the imagct 
t Herc (xJ dcnote"S tht: illkgral pa.rt of x .  i . � · .. chc largest integer <. x .
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' . . 

• 
':,e,,s., 
•6• SOI

0 

Fig. 170 The poin1110 1-- 1u«,,, I, 2, .. ,

e, 

0,. 

� .,... 
trr • 

Zrtk 0
1 

Fig, 171 H.cduc1ion 0(1hr 1h�rcm 10 the lemma. 

iJ,(1) = 01(1) - 2n[0
;�']•

� [0,(1)] 112(1) = O,(t) - 2n � 

16� 

or the phase curve (7) on the square O ,;; iJ, < 2n, 0 ,;; O, < 2,. is every­
where dense. Therefore the phase curve or equation (-l), and hence of 
equation (2), is everywhere dense on the roru,. I

The foll owing probl ems give a nu mber of simple implications o(Theorcm. U outl.idc-
1hc 1hcory of ordin ar)' diffcre:n1fal equation�. 

Prohltm I .  Co nsider 1hc sequence 

I, 2. 41 8, I, 3, 6, I, 2, 5, I, 2, 4, 8 ,  ... 

of fint digits of c.:onsccuiivc powers of 2. Ooa a 7 C\.'tt appear in thil .seq,,ientt? �fc:i«: 
generally, docs 2� begin wilh an arbitrary combination of digitJ?

PYoblrnt 2 .  Prove 1hat 

sup (cos 1 •r sin v'2I) = 2 .
0<1<• 

Proble m  3. Find all elMcd subgroups of the group s• o f  complex numben of modQlus I • 

.'Ins. I ,  sl, l ;rn. 

24.4. The 01ultidimensional case. Suppose the eigenvalue, of equation 
(I) in R 2• arc all simple, or the form

i. == +iw
1

, +iw1, ..• , ±iw •.
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0 

0 

I 

fig. 172 A ph1uc curve of the 1y11cm d - I, , ✓2, I - ./! is cvff'f""'--hcr-C ck-Mt-on
1hc thrtc-dimrnsional tonu.

Then, arguing as in Sec. 24.2, we can show that the pha.Jc au,·es lie on the 
m-dimensiooal torus

r· - S' x · · · x S' • ((0., ... , O.) mod 2n} ; R·,z·

and satisfy the equations

0 I • W II {J l • W 1, , • • ' () • • OJ,.. 

The numbel'S w1, • • •  , co.,. are said to be ,ationolly intkpn,datt if

k 1w1 + · · · + k .. w. • 0 {k., ... , k. integral)

implies k, = · · · = k. = 0 .

•P,obl.em I. PtO\'C that if chc: freque ncies w1, • • •  , (&)• a.re rationally indc:pffldalt_ thm
every phase: curv e of equation (I) lying on the 10r\.ls r• ti c:,rcrywhcrc dcmt io r-.

Corollary, Suppose: a heme makes j,unps ( ..;� • .,/3) on .a field where corn il plaatcd in the
pattern of a squ:i.rc grid (Fig. 172). Then the hon<: is a:r1.ain to knock down at kasi one
pl.-n1, 

2t.5. Uniform clistribution. The everywhere dense curva considcrro 
above have the remarkable property of being "uniformly dis1ribu1cd" on 
the surface of a torus. We now formulate the appropriate tbmtt.m in tM' 
simplest case. A sequence of points O,. 02, ••• on the circle S' = (8 mod2a}
is said 10 be uniformly distributtd if given any arc � c s•, 1M' number 
N(t,., k) of points of the 14initial sc<:tionn O O ••• , Ol of the sequence which
bdong to a i s  asympto1ically proporoional 10 ohe length of a, i .. c., if 

lim N(!J., k) = l!J.I.
,_., k 2n 

• Probwn I .  Prove th.at the seqvencc O ,  O + a, Q + 2a is uniformly dis:tn"bu.tcd on s• il
the angle a i.s incommensurable with 2x.

Corolla,:,. The numbers 2'" begi n more ofte n with 7 than wilh 8. Suppose A "1'(.t) of the 
numbers I, 2, 4,.,., 2• begin with 7, while N.(.t) begin with 8 .  Thm &ht limit 

lim N,(k) 
•·• N,(k)

cx.ist.s. 
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P,,./,JH 2. find thl, llrnll 111\d 1how 1h11t h 1-. gttaltt than I. 
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Co"1111,,.,. Thf' inili11I ,rction of 1hr 1-N)Uf'nff' (�t. 2◄.3, Prob. I) ind,a� 1M1 t�rt' .,.. 
rrwel' ,rvrrh. 'l'ht11 1- due 10 •ht r,c, that tht irn1ion.ail numbtr l<>s1-2 0.,010 • " 
\'try cl011.- 10 ,he r.11ion;il r'I\Hn�r 3/10. 

25. The Case of Muldple Eigenvalues

The sohuion or a linear cqua1ion with constant coefficinus f'rou«s to 
calculation of the matrix t'A •, ..  ,,The explicit form of r4' i.s gi\.--en in Seu. 
19.5 and 20.Gfor chc ca,ewhere che eigenvalues orche macrix are all distincc.
We now use the Jordan normal form t o  find t'" in the cast of multiple 
eigenvalues. 

25,1. Calculation of,•• where A 11 a Jordan block. 
culacing •••, where A is a Jordan block 

l I
l

, l 
: R" - R", 

), 

One way or ca l -

was indicaced in Sec. 14.9 (ic will be recalled chac chc diffcrcntia1ion 
operator in the space of quasi-polynomia1se1'P-c.(t) ha.s the mauix A in the 
basis,,= 1',''/k!,O '- k < n). In far1,according10Tayloc'sfonnula,the 
matrix 11' • ," i, 1hc matrix or the ,hifc opcra,or /{1) ~ f's + t) in 1hc
indica 1ed hasis. Thus 

,.,,.,, (t + s)' = '(' h (s)e 
I.I i.., "' ,, 
A. I 

where the clements hu(s) or the matrix .H• arc found by using the binomial 
theorem and turn out to be quas.i-po1ynomia1s in s wilh expo�nts .i. or

degree less 1han n. 
Another way or calculating eA' is based on the following 

LEMMA. If Jlte lint(lr opt1C1lor1 A, 8: R" - R• commut,, JtJ I.Ital .lfB -; BA, 
then e" • 8 = eAt8.

Prwf Compare 1he formal series 

,•,• = ( E + A + �: + · · · )( E + 8 + :: + · · ·) 

= E + (A + 8) + l(A 2 + 2AB + 81) + · · ·, 
,••• = E + {A + 8) + l(A + 8)1 

+ · · ·

= E(A + 8) + l(A' + AB + BA + 81) +
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The scric• coincide If All • IJA, ,Ince,••' • ,.,, for x,, • R. Bu, 1!,en 
,r14111 • e14 1 •, since thr �rit� are absolutely cnnvtrgr:nt. I

Suppose we reprC:4'('111 A in 1hr form 

A • it:+ 6, 

where 

6• 

0 I 
0 

I 
0 

i� a nilpo1cn1Jorclan Ulock. Since AR commu1cs with any optra1or. "� hav� 

Tllf:OREM. Tltt maftices ,&• m,d t'° nrt gitvrt b..1 

,., =

, .. = 

•'' 

I 
I 

11/2 ... 1•-1/(11 - I)! 

te'·' 
•'' 

I 

I 1' /2 
I 

I 

I" - 1 i·' /(1' - I) I

,,,., 

,,, 

' 

(I) 

Prmif. Since /l operate'> on the basis e1, ••• , e,. like a shift O - ,., -
t2 .-. • • • _. e

l
, t,.4 acts like a shiCl hy k places and has the matrix 

0 ... 

0 

[\ ,, ' 
,11' • E + lJ.t + ._ + 

2 

e:,:,-•,•-1 
+ 

(11 - I)! {l\" = 0). 

The calculations go through without change 111 the: complex case 
(J. e c, A: c· - c·i. 1 
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25,2, lmpllcadono, l'ori1111la (I) immrdia1dy implic,
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COROLLARV I. /,,1 A: C' - C" bta lin,arop,rator w1thttgmoolw1 .1.1, ••• , ;_, 

of mu/tipliti/J' ,, 1, , • , , •• rtJptttivtiJ, TMn nvrJ tltmtnl of tltt M•lnx of IN 
op.,ator ,'', I e I\ (i11 '"V' fottd ba1i1) is• s•m of 9•asi•J141.1nom,ob ,n t, tLNrt 1M 
Ith q11n1i-poiJ110111ilil h111 ,xpon,nt .1.1 1md is of dttrtt l,11 than ,,. 

Proof. C:onsidcr the matrix of the operator ,-., in the basis in  "hich the
mairix or A has.Jordan form. The 1hco�m 1hcn follows from (l),sincc 1hc 
elemen1s oft he matrix of,,,.' in any 01 her ba.sis arc linear combinations (with 
constano coefficienu) of the clcmrnts of th< matrix of r" in the indicated 
basis. I

COROLLARY 2. /,ti Ip bt • 10/ution of th, differmtiol tquation 

X • Ax, x e C", A: C' - C". 

r1,,,, ,.,.,., tolll/)(Jlltnt 'P1 of the Utt/Of Ip (in.,,_, fixed bui,) ;, •, .... of f"Ji­
pof;momia/J i11 t, whtrt tht Ith qua,i,pol)•nomiol p1, hos ,xponmt .1.1 a,ul u of Jtgu, 
less than \1 1

; 

• 
,pj(t) = L e''' P11(I). 

I• I 

Proof. Merely note that ,p(t) = ,'',p(O). I

COROLLARY 3. lti A: R" - R" bt a Jin.tor operoJor with rtal DtDIDlllllll l, ef
multiplicity , ,, (I .. I .. k) and compltx ,igmval.u a, ± i{/0 of-ltipliag µ1

( I ,;; I ,;; 111). Thtn tlltfJ tltment of th, matrix of e'' and <«TJ UnrpMU>tl of tit, 
solution of th.t tquation X = Ax, x ER• is a him of t.ompltx fllaSi-p,,,ly..miaJ.s u:itJ, 

,xpon,11/f .1.
1

, cc, ± iw,. whtrt th, d,gre, of the quasi•J141.Jnomial rritlt ex,,.,.,., ).1 is 
ltJJ than,,, and that of the quati-polynomial with uponmt er, ± io,1 is kn tJwu, Pt:

Proof. An immediate consequence of Corollaries I and 2. I

The sum figuring in Corollary 3 can also be wrinc.n in the less convcnieru 
form 

• • 

<P;(t) = L ,,,, P;,(t) +
I• I 

L t"'(9;1(1) cos w,t + ';,{1) sin w,i), 
I• I 

where p
1
,, q1,, r1, are polynomials with rtal coeffieients of degrtt lt:SS 1han

,,,, ,,,, ,,, respectively. This representation follo,,-s from the faet that 

Re u'' = Re ,"(x + (y)(eos wt + i sin wt) = t"'(x cos WI -J sin OJI) 

if z = x + f.y,). = a + iw. �loreover, it is clear from these formulas that if 
the real parts of all the eigenvalues are ncgativ� then all the solutions 
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apr,roach Oas t - + 00 (lls mu,o be 1hr cair, according 10 Sea. 72 and Z3). 

25.3. Applica1lon1 co ay,cema ofhlgber-order equaclon._ \Yriting • 
sy11ern of higher-order rqua1lo,u a, a l)'Slrm of fir11-ordcr �uation,, "' 
reduce 1hr problem 10 the problem con,idcrcd above, which in turn can� 
solved by reducing thr matrix to Jordan rorm. In pr.1c1for, ho\o\n<tt, ii is 
of1cn more convcnicni 10 proceed dilfcren1ly. Flr11 of all, "' nocc tha1 the 
eigenvalues of the cquivalcn1 first•ordcr sy11cm can Ix round without 
wfl111"1g down the ma1dx of the system. In fac1, for rvery rigc:nvaluc A. \o\-C­

have an eigenvector and hence a solucion fl'(I) - ,1'.,(0) or the equivalent 
firs1-order system. Bui 1hcn ,he original sys1cm has a solution of the form 
J/,(1) - e1'J/,(O). Thus, substilu1ing ,; - ,1'{ in10 1hc original S)>Stcm, we  
sec 1hai 1he sys1em has a (nonzero) $Olu1ion of the given form if and only if l 
satisfies a certain algebraic equation, from which 1lx eigenvalues 11 can M 
dc1crmined. We can 1hcn look for 1hc solutions 1hemsdvo in the fonn o( 
sun1s or quasi•J>olynomials \<1i1h cxponcntS l1 and undctttmincd cor:ffi ... 
cicnts. 

Exnmplt I, Lt1 

..-4'"• - x . (2) 
Sub.,tiru ting x - r''( in to (2), we gel ,t',-"'( - ,-A'(. l' • I. 11 ,2,.,.,.. = I, -I, i. -i.. 
Thus cvcty sol ucion of (2) is of the for-m

X - Cit'+ CJt-• + c_, co,'+ c .. sin, . 
Exampl,- 2 .  Let 

I�• =x1,

:C1 = -"•· 
(3) 

Substitu ting x - t...,{ in to (3), we gd 12{, = {2, A.2(J = (1• This J)'lJc.ffl ollinar cqua -
1io n• in(,, {J has a non1r-ivial s olution iran<l only if ,t• I. Hcnccnuysolutionol(S)
is of the form

... • Cie' + C2,-·1 + c_, cos I+ c .. sin ,. 
x1 = D1t' + DJ1:-• + D_, cost+ D,. sin t,

which gi ... es 
D_, = -C3,

af1c:r- substituiion into (3). 
Example :J .  Let 
x11"'' -2x+x=0. 
Substitu tjng x :a:,.,..,{ into (4), we gr.1 

D,. = -C,.

.!' - 2.!2 + I = 0, .P • I, 1., 2,i., • I, I, -1. -1.

Thu s C\'er-y solu1ion of (4) is or the form

X • (Cit + C1)t' + (C>t + C,.),.·1

• 

(4)
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P,Hlm, I. t1ind 1he Jord.an norml'I (Ofm or the fourth,.Ofdc:t m.a1r1x <'orrnpond1nc 10 

cquMlon (4), 
25,f, Tbe ca1e of a 1lngle equatloa of order •· In general, 1hc 
m11hiplici1y of 1hc eigenvalues do,:s nol dcltrminc 1hc sizes of 1hc Jordan 
blocks. The 1ir11aiion bc�omc1 1implcr if we arc dealing w11h 1hc hncar 
opcra1or A corrc1ponding 10 a single di1Tercn1ial cquaiion of order'" 

•• e C.

Then Corollary 2 implies 

COROLLARY 4, l:.vt'.)' solution of tquotion (5) is of tlteform 
• 

q.,(1) - !; ,'•'p,(t), 
I• I 

where A 11 • • •  1 A, are lht roots of lht cltarollcn'sti, equation 

A." =a,.,1,.•- 1 
+ ··· +a.

(S) 

(6) 

(7) 

of multiplici(I• v 1, • , • , v1 rtsputivtly, and t«n p1 is a polptomial of d,K'tt us, /MIi
V 1 ·

Proof. Equalion (5) has a solution of 1hc form ,••e if and only if l is a roo1 of 
cqua1ion (7). I

Turning to the equivalent system of first-order equations 

0 I

0 I

X = Ax, A = (8) 

a, • . • QI 

we get 

COROLLARY 5. If t/tt operator A: C•-+ C' /tas a matrix of t/teform (8), tit,,, to
tot')' ti,�erwalut). of A /}i,r, corr,spontf., precisdyonejordan bt«k of siu <'i""I I# IA< 
multiplicity of ,t

Proof. According 10 (6), there i s  a single cigcndircction corresponding lO 
every ,t In fac1, Jc, { be an cigcnvcc1or of the opcra1or A .  Then ,he first 
component ,'1e0 of rhc vcc1or ,''{ is one of the solutioru of (6). Bui then 1hc 
remaining components are derivatives: Ct = 11(0• Hence l uniquely 
determines the direction of(. To complete the proof, we no,c that each 
Jordan block has its own cigcndircction. I

P,obl,m I .  Is every line:ir combina1ion of quasi-polynomials (6) a .solutio,n cl eqwition (S)? 
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25,5, Recurrent 1equenee1, 0111· study or the exponm1ial r"' "'"h • 
continuous nrgum('nc t can ca,ily bt carrittl ovrr to tht> cax o( 1hr C"ICf>O"' 
nt•ndAI A" with the di,crrtr nrgum{'nt 11. In particular, wr can 1nvcs1ig;uc­
any rec11rrcn1 scquencr drllned by• relation or1hr rorm 

(9) 
(for example, the sequence 0, I, 2, 5, 12, 29, ... ,pec:ifird by the rdation 
x,. • 2x,._ 1 + x,. .. i and the initial COl'�dition x 0 = 0, .r1 = I}. 

COROLLARY 6 .  The nth ltrmofthe rtturrmt r,9,unced,fintd b,1 (9) ,,,,,,..,••lw
as11m 

• 
x, - t J.'f>,(t1) 

I• I 

of qua.ti-poly110111ials in ", whett A,, , .. 1 A, au lht n,,nvahus •I t"'1 ..alrtx 
eorr,spo,,ding lo the Jtqutnct, of multipUcity 11

1
, ••• , "• tts/'«-lir:J7, llllll t•d1 J,1 u • 

polynomial of degree /us than v ,. 

Proof First we note that the matrix in question is the matrix of the operator 
A: R' - R' carrying the section{,- 1 = (x0_,, • • •  , x._ 1

) of length! of our 
sequence into the next section(,. • (x,._, • 1, ••• , x,.) orICt1gth k: 

0 I x,.-t x ...... t 

0 
A{.- I - = = { •. 

0 
•• .. , a, a, x,. - 1 x. 

It is  important 10 note that the operator A does not depend on•· Hen« x. 
i s  one of the components of the vector A•(, where� is a constant vector and 
the matrix of A is or the form (5). VVc now apply Corollary 5, ttducing the
matrix or A to Jordan form. I

In making the cakulations, there is no need ci1hcr 10 write do-.,•n tM' 
matrix or reduce it to normal form. In fact. any c.igc.nva)uc ofthc' operator 
A corresponds 10 a solution or equation (9) or the form x. = i.". Substituting 
x, = )." into (9), we find that). satisfies the equation

;.• = a 1i•-1 
+ · · · + a.1 

which, as iseasilyverified, is just thc characteristic cquation of thc:opc.rator-ii. 
Exampl� I. For the sequence 0, 1, 2, 5 ,  12, 29, ... corroponding 10 the: rcb:tiua 
x. = 2x •• 1 + x,._J, (10)
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we hnvo A' • 2.l I I. A,,J I .t: J2. llenre the .equ�nc� 
•• (I I J2)•, •• (I - ✓2)•
both ,111b:fy (10), 1rnd 10 do •II llntt1r combi1111iom
•• <1(1 f ✓2)• �r,(I J2)•

173 

or thN 11e<1uMC'n (1rnd only ,ut.h linnr C'Omb1nadon1), Amoi11 ,� comb..n.attOfta. 11"
e11,y 10 find 1he o,,e rol' whkh "• o • .t1 I. In (an,'°'"'"• tht- r<1.auon., 
,, f·  ,, - 0, ./2(t 1 t1) • I, 
we find 1 ha1 

( I + J2}" �( 1�..,.✓
�

2�)• 
•• - 2✓2 

- 2 ✓2

Comm,nt, As n - «>, the fin1 1enn incrc.a.ws nponentaally, while 1hit littOftd ttnn d,c,­
creJuc- exponcn1ially. Thcre(ott 

(I + J2)"
•• .. 2✓2 
(or large n, and in p.artkuhar .-".,Ix.;::::::- I + J'l. .  -rhft g:iYCS us very good �tiom 
IO J2: 
J2 =,x.,., -1t.,,, 

•• 

Choosing-x., - 0, I, 2, .5, 12, 29,, •. , we get 

✓2 "' I I O - I' ✓2 "' 52 
2 - 1.5,

✓._12-5 ,." - 5 - ."T,
29 - 12

✓2., 12 - 1.417 .•.

Thes,e arc 1he same appro:xima1ions used to c.akub.te ./2 in a.ncimt � a.ad can be 
ob1aio«I by expan di ng ./'1. in :1 con1inuou-1 fnu::1t0n.  Mo�·tt (x._ 1 - x.) �. is (ht bat 
or all rouional approximation, 10 ,/'l with denomin aton no1 cxcttd.ing .-_. 

25.6. Small oscillations. In Sec.  25.4 we consid<ercd 1hc case whttc t o  
each root of the charactcriiuic equation, regardless ofiui mtdtiplicit·y. thctt 
cotttsponds a single eigenvcc1or, namely 1hc case of a single equation of 
order 11. \-Ve now consider 1he case (which, i n  a certain sense, is the opposi1c 
or 1he one just cited) \..,here each toot has a number of eigcnvcccors equal 10 

its multiplicity. This i� the case of small oscillations of a conservati�-c 
mechanical system. 

Let U he a quadratic form in the Euclidean spau R• givcn by a symmetric 
operator A, i.e., let 

U(x) = j(Ax, x), XE R", A: R" - R", A-' � A, 

where A' denotes the transpose of A) and consider the djffcn:ntial cqua.tionf 

x = -grad U, {II) 

1 The \'eCt()t field gtad U is ddined by the condition that dl/(() - (gad U. () b n-uy 
v,cc-1or � e TR;, where (, • •) de:notn the Eudidnn st'2la.r product. ln (ortboocnn,,al) 
rectangular cootdinat�. the field grad U Nii components ( U/2x,. .... iU i-z.,. 
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thinking or U as 1he po1rntial energy. In investigating (11), it is uscful 10 
imagine o bead sliding down the graph or the potential energy (1tt S«. 12). 
Equation ( 11) can also be written in the form 

i • -Ax, 

or as a sy111em of II linrnr srcond•ordrr �uationJ in thf' coordin.a.10 of a. 
Following our general rule, we look for a solution or the fom, • - ,''(. 
This gives 

(A + J.2£)( • 0, dct(A + J.2£) = 0 .

II follows that ,t 2 has n real values (why?), and corropondingly that ). has 
2n real or purely imaginary values. If these values arc all dilrcttnt, then 
every solution or (11) is a linear combination of cxponcntiab. tr thctt arc 
muhiple rool.S, we encounter the problem of Jordan bloc.ks. 

1'HBORe:.,. If tl1t quadratieform U is nl)ltdrtt,uralt, Uurt ,aeh rit,-Nlw). Ml• 
numbtr of lintarly indtptndtnt tig,nuectors equal I• its m•ltipl�ii,,. C."u,-.tli"liJ,

tutry solution of equation ( 11) ca.n bt wrilltn as a sum of ,xpon,nti,,ls :t 

,. 

,p(I) = L , ••. ,., (,EC'. (12) 
. - ' 

Proof The form U can be reduced to princip,,1 axts by making an orthogo­
nal transformation, i.e., there exists an orthonormal basis e., ... , e. in 
which U becomes 

I • 
U(x) = 

2 
L a:x;,
.. , 

Since U is nondcgcncratc, none of the numbers a, vanishes. In the indicattd 
coordinates, equation (11) becomes 

i
,. 
= -a,;c., 

whether or not there are mulliple roots.t Thus our system decomposes in,o 
the direct produc, of n "pendulum equations." Each of these equations 
{X = -ax) can be solved at once. In fact, if a > 0, then a = c>2 and 

x = C1cos wt + C2sin wt, 

f It is in 1eres1ing lo note th at Lagrange, who 6nt in .. ·cstigalcd 1he equation olsma.Ucscilb ­
ti ons ( 11). initially made a mis takie., thinkj ng th at ••k"'Cular·· terms of the form�(« J siao,t
in the real case} were rcquj rcd in the case or multipie roots., as in tM: earlier � of lM 
section. 
l Note that wc have made essential usc of the orthononnality of the basis e, ••••• e,... If mt
bas.is were not orthonormal, the components of the .. ·cclQI'" grad i !:¼ ;;iw,U _, � -...., .
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Fig,  173 U'vcl curve or 1hc pot('nlial c:n"rli(y and dirttlions of th� �ctffHhc OIC'il·

lations.

x, .z; 

Fig. I 14 One or the l,i»ajow tigurr, with CtJ
1 

- 1. w, 2.

while ir {l < 0, then" - -oc2 a,1d

X = C,cosh at + C2sinh a.I= D1t
u + D

z
t-

111
• 

In particular, these formulas immediately imply (12). I

If the form Uis positive definite, then the•• are all positive and tM point.r 
executes n independent oscillations (called "'normal mod.an) along the- ,r 
mutually perpendicular directions e

1
, • • •  , e, (Fig. 173). Tix numbers W., 

which satisfy the equation det{A - w'E) = 0, are called tM clt,,raclrristu 
(or 11atural) frequmdts. The orajcctory of the point x = '1'(1) in R", when:• 
is a soluoion of(! I), lies in ohe parallelepiped J.r,J ,!, x,, I SI. S "• wMtt 
X, is the amplitude of the kth charac1eris1ic oscillation. The parallelepiped
reduces to a rectangle if n = 2. 

If the frequencies w, and cu2 are commensurable, the 1.rajtttory is a 
cl0<ed curve, called a Lissajous figure (Fig .  174). However, if w

1 
and w, are

incommensurable, the trajectory fills the whole rectangle dcnscl). 

Problem I. Draw LiMajous figures for w
1 

= I, w
2 
= 3 and c>

1 
= 3, 

w, = I. 

Probltm 2. Prove that one of the Lissajous figures with w
2 

= n(l:)1 is 1M: 
graph of the polynomial 

T,(x) � cos(n arccos .r) 

of degree n, called a Ckbyshev polynomial. 

Problem 3. What do the trajectories x = ,p(t) look like if U = x! - .-1? 
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Problem 4. For which U i, 1hr equilibrium posilinn x • x • Oof tquation 
(11) srnblt
(a) In Lyapunov's sr,.,,: (b) a,ymp101ically?

26. More on Q.ua1I-Polynomlal1

In solving linear equations with constant coefficients, we hav�- ttpeatcdly 
encountered quasi-polynomial,. We now e,cplain the rt'&50n for this 
phenomenon, and �ivc some further applica1ions or quasi-polynomia.ls. 

26,1, The space or in6nitoly dill'orontiablo functions. Lei F be the 
sci of all complex-valued infinilcly dilfcrcnliablc func1ions ddined on the 
real line R. The s.ct F has the natural structure of a complo linear ,pace, 
smcc 

f,,/1 EI',

obviously implic, c1/1 + ,,J, e F. 

D,finition. The functionsf,, .. . ,J. e Fa� said 10 be lintarl;, utd,pmdorJ if 
they are linearly i1ldependcnt regarded as vcc1ors or the linear space F, i.e., 
if 

cf+ "· +cf.=0 I I " " 

implies c1 = · · · = '• = 0. 

(c1, ••• ,c,.EC) 

P,oblcm I. Fot what \•alues of a and /Jatc the fun("tions sin cd and sin #I lincarf'f dcpcuc:lmt?
Probl,m 2 ,  Prove thal the functions ,.1,,, ... • el,.J .uc linearly indcpcndau if the' n.umbcn

J.• are distinct, 
l li1tl, This follows from the cxls1cncc of a linear cqua.cion of order • 'With sclutiom
,.1,,, .. , ,,A,,1 (sec $cc. 2G.2).

The space F contains all quasi-polynomials 
•-I 

/(1) G ,,, L ,,,• 
•=• 

\vith exponent). and, more generally, all finite sums 
l "•- I 

f(I) = L ,,,, L ,,.1•, 
•= 1 ... -o 

or quasi-polynornials with different cxponertt$. 

(I) 

Problan 3. Ptov<: 1h31 c"·cry function which can ht-: rcpccscnted by a sum of tbc fcwm I)
has a un ique tcpt<:sen tation of  thil. form. In other words. prove- lha.t if at -(I) 11 . .., 
idrn1ic-0ll.,, Ihm t.Jt.,Y a,,Jfi<i.mt '•• tqua/J 0 .  
Hint. F'ot (>r\c possible solu tion sec the:: corollary below. 
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26,2, The 1pace of 1olutloa1 of a Uacar equatloa. 

1 '111'.0RE.,, Th, stt X of all solu1io11s of 111t li•tar tpali1H1 

x<"> + ,,1.r'"• 1) + · · · + a,.,i, • 0

is 1111 rr-dimtnsio,wl li11eM subsp,u, of F .

111 

(2) 

Proof. Consider the operator D: F - F canying every runction into iu 
derivative. The operator Dis linear: 

D(c,/1 + c2/2) • e,Df, + ,,DJ,.

Let 

A - a(D) - D' + a,D·· I + ... + •.e

be a polynomial in 1he operator D, Then A is a linear oper.uor A: F -F.
The soluoions ofequaoion (2) arc just ohc clements of the kcmd of A, t so 
that X • Ker A. But rhc kct1lcl of a linear opcra1or is a linear spa«, and 
hence Xis a Ii near space. 

Next we show chat Xis isomorphic to C'. Given any q, e X. "� as.sociacc 
with q, a set of n numbers, namely the values of the func1ion fP and its fint 
n - l derivatives a t  the point t = 0:

'Po = (,p(O), (D,p)(O),, .. , (D'-1

,p
)(O)). 

This gives a mapping 

B:X-C", B,p = 'Po, 

which is clearly linear. The image of Bis the whole space C', since by the 
existence theorem, 1hetc exists a solu1ion ,p € X wi1h any girtn initial condi­
tions ,p0• �1oreover, the kernel of the mapping B consists of the single dc­
ment 0, since by the uniqueness theorem, the in.itial conditions •o • 0 
uniquely determine the solution (,p = 0). Therefore B isan isomorphism. I

COROLLARY. ltt J.,, . . .  , J., bt /ht rools of tk characlemlic tl(ll<'ti.w a(;.) 
= 0 

of tilt dif/trtnlial tquation (2), of mullipluity v,, . . .  , v, rtJP,ctiJ:J,1. T/,a, aa:,
solution of tqualion (2) ha, a uniqut rtprtsenlalion of tk form (I) ,nu/ Wt'7 n,m of 
quasi-polynomials of tk farm (I) salisfas ,quaiion(2). 

Proof. Formula (I) gives a mapping 4>: C' - F, associating a function/ 
with every set of n coefficients,,,.. The mapping Cl> is linear. �loreovtt the 
image of 4> contains the space X of  all solutions of equation (2), since 
according t0 Sec. 25.4, every solution of equation (2) can be: "Tiuen in the 
t \Ve already know that all the solutions or cquuiart {2) att infi.njldy dtfl'crcntia.� i..c:, 
belong to f' (sec Sec. 25.4). 



178 Chap. 3 Linear Systems 

rorm (I). By 1he above 1hrorrrn, 1he dimension or X ,qualt •· Bui a linear 
rr,apping of the s11acr C" onto a spacr X of thr samr dimrn.sion i1 an i,o..
morphl,111. Therrforr <I> rsrnblishrs an isomorphbm bc1wrrn C" and X I 

26.3. lnvarlanco under 1hlru.

,·11&0REM, Tit, S/)11'< X of so/utio111 of tit, dtjft,tnlial t9uatio• (2) is i11NnMI 
u11dtr shifls <or')'ing thtfun<1io11 ,p(t) into ,p(I + s). 

Proof. The sl1iCt of a solu1ion i s  a solution. as in the c� of anyau1onomous 
eq11a1ion (Sec. 10.1).1 

The following arc all a:amplo of 1hi(1°invarian1 tubt5Ncn of,� 1pai« F:
l:.'xar,1p/t I. The onc•dimc:nsiooal ,pace fu"'). 
Exar,1/Jt 2 .  The space or quasi•J>Olynornia.ls (, ... ,, 0(1)) o( di�mion "· 
Exar,1p/t 3 .  The pl.\nc (r1 cos wl + ,1 sin wt}, 
Exar11ft/t ii. The space ( /t0(1) cot WI + q0(t) 1m wtl of dimension 2ft .

h can be shown 1hac every finitc-dirncn.sional shirt-invariant subspace or 
1he space Fis the space or solu1ions or some differential equa1ion (2). In 
other words, such a subspace always decomposes into a direct sum of spaa:s 
or quasi-polynomials. This explain, 1he significance of quasi-polynomials 
in the theory of linear differc1uial equations with constant coefficients. 

If an equalion i.s invariant under some group of transfonnations, then the
space of functions invariant under the group will play an important role in 
solving the equation. This is how various spttial functions ariK: in mathe­
ma1ics. For example, there is a connection bc1wee:n the group of rocations 
of the sphere and the fini1e--dimensional spaces of functions on 1he sphere 
f1sphcrical functions") which are invariant under rotations. 

• Pro6t,m I. Find all linitc•dimcnsional sut»paecs of  lhc s�cc of $fflOOlda rWICbelnl on the:
drclc which arc invariant under rotations or the circle.

26.4. Historical remark. The theory of linear differential equations 
with cons1an1 cocfficienis was creaied by Euler and Lagrange before the 
discovery or 1hc Jordan normal form of a matrix. They reasoned as follows: 
Let .l1 and l.2 be two roo1s of 1he characteristic c.qua1ion. The solutions: 
,
.1
., and ,Ai, corresponding 10 these roots span a two-dimtttSional plane 

{c ,,••• + ,,,,�} in the space F (Fig, 175). Suppose the equation changes in 
such a way 1ha1 11 approaches 11• Then e11' approaches r'1

' and th� plane 
degenerates imo a line for J.1 = J.1• The question now arises of whc1hcr •he 
plane has a limiting position as l1 - J..1• If J..1 � l.1� we can choose r'•'� 
,A,, - e11

' ra1hcr than e,1.1
', eAJt as the basis . But 

e-Ai' - ,,1.,, � (lz - l1 )t,1,r,
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and hence, as A.2-+A.1, the plane spanned by ,11' and ,1,t - ,,a,,, or tquiva• 
lently the plane spanned by ,,,, and (,'•' - ,''')/(A2 - A,), goes in10 tl>c 
limlcing plane spanned by e1•' and 1,.' • 11• Therefore it i s  natural to expect
1ha1 1he solulions of ohe limi1ing equa1ion (with 1he double root l, - 11) 

\\'ill lie in the limiting plane {c1 t111 + ,211'"'1'}, where chc fac1 1ha1 c,,.1., + 
c2tt111 is a solution of the orginal diffcttmial equation can be vcri6ed by 
dircc1 subs1itucion. The same tcasoning cxpla.im the appcarantt of the 
sohuions t'e" (k < v) in 1he case of a v -fold root. 

The above argument can easily be made p,,rfcc1ly rigorom (for example, 
with 1he help of the theorem on differcmiable dependence of tl>c solutions 
on a parameter), 

26.5. Nonhomogeneous equations. Given a linear operator A: l1 -L2,. 

by a salulion of the non homogeneous equation 

Ax =f 

with righ1-hand side/ is meant any prcimage x e L, of the clement/ e l2

(Fig. I 76). Every solu1ion of 1he nonhomogencous equation is the sum of a 
parlicularsolution x I and the general solution of the: homogmand equation 
Ax= 0: 

A -'J = x, + Ker A. 

The non homogeneous equation is solvable if and only if/belongs 10 tl>c 
linear space Im A = A(L1) c L,.

In particular, consider 1hc differential equation 

_.l•> + a,x<•- '' + · · · + a.x = f(t) (3) 

(a nonltomogeneous linear equation ef otder n u.;t.Jr. constan.l c«.ffiaDW). 

THEOREM. If tloe riglot-lrand sidef(t) of equation (3) u a sum of q,uujpolpnti,,b, 
then so is every solution of equation (3). 

Le, 

Q.• = (e''P<.(t)) 
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be the space or all qurui-polynomial, or degree lo, than m and ccponent ). .
'The linear operator D (carrying every (unction into its dcri,�tive) carriel 
Q.'" ioto il.self, and hence the operator 

A= a(D) - I)"+ a,D•-• + ··· + a.E: Q.• - Q.• 

is also a linear operator from Q.• into ii,clr. \Ve can now write equation (3) 
in the rorm A.r • J ,  and to investigate the solvability of(3), we must find the 
image Im A - il(Q."') of the mapping A. 

L£MMA I. Suppose) ,  is 110/ a roo/ of /ht characltrlllrc tq•alion, s. tit.I •(l) ,; 0 .

The11 A: Q."' -Q.M is an isomorphism. 

Proof. The matrix or the operator I): Q."' - Q.• in a suitable basis is the 
Jordan block with) .  on the main diagonal. In thc,amc basis, theopcr.uor A 
has a triangular mattix with a().) on the main diagonal. Hence 

det A = [a(l)J• ,; 0, 

and II is an isomorphism. I 

COROLLARY I. Suppose). is""' a rool·of lht dr.aracleriJti, tquaJUlfll., tmd SIJ/ll»M
tq11atio11 (3) has a quasi-poly11omial o/dtgrtt /us than m and apo,w,t). cs iJs ri(lu­
hand sid,. Thm ,q11atio11 (3) has a particular solwion which is also• ,w-J>M.,_..;ol

of degree It.JS tha11 m 011d t.>:JJont.nl J.. 

Proef. An immediate consequence of Lemma I. I

LEMMA 2. Suppou). is a t<JOI of thtthatatttrisliLtquati,mof n111.lliplicity •,.s.1""1

a(z) = (z -).)'b(z), 

Then 

AQ."' = Q.•-•.

Proof. Here 

b(l) ,; 0 .

A = a(D) = (D - ).E)'b(D), 

where b(D) : Q."' - Q."' is an isomorphism, by Lemma I. I, remains to show 
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1hn1 (/) - ).E)'Q.• • Q.M-•, llut the matrix or the operator D - )E ,nth<" 
hMis 

,. 
e, • -,"'

A I ' 

i, n 11n,,01cn1.Jordnn block, i.e. , D - ) E acts on the ba,is like a shift.

rlcnce thcoperator (D - ).E)' acts like a shift by v places and map, Q."' onto 
Q.•-•. I

COROLLARY 2. u/ ,( bt a r()O/ of mu/liplirilJ v of I� clwr«ttri1tit 19w;.,, 
a(,!) • 0, nm/ /,if E Q.' bt a quaJi-polynomial of d,g,u ltsJ 1ha11 I:•"" t1tJ»,t<lft l.
The11 equatio11 (3) has a so/11tio11 <fJ e Q.' • • 1Lhith is a ifUOJi•polJ-i•I of «ptt /us

than k + \' tmd ex/xmt111 )., 

Proof. We need only set m • k + v in �mma 2. I

Proof of /1,e theorem. �. I: be the SCI or all p<miblc sums or quasi-poly­
nomial�. 1�hen I is an infinitc•dimcnsional subspace of 1hc spa.a: F .  By
Corollary 2, the image A(I:) or the operator 

A = a(D): I: - I: 

contains all quasi-polynomials. rlcncc A(I:) coincides with r., being a linear 
space. Therefore equation (3) has a particular solution which is a sum of 
quasi-polrnomials. 1, remains only 10 add the general solution or th<" 
homogenc.·ous equalion, which, according to Sec. 25.4, is itself a sum of 
quasi-polynomials. I

Remark /, If f = ,••p .. (t), then equation (3) haJ a pa,ticu/a, JMati,,,. of IN 
form q, = ("i'tt <11(1). In fact, there exists a particular solution in 1he form of 
a quasi-polynomial of  degree less than k + v .  But the terms or dcgrtt less 
than v satisfy the homogeneous equation (sec Sec. 25.4) and hence can be 
dropped. 

Remark 2 .  Suppo,;e equation (3) is reaL Then we can look for a s olution in 
the form of a real quasi-polynomial if). is real, and in the form 

?'(P(l)cos wt + q(t)sin wt] 

if). � a + ho .  Here the solution ca1'1 contain a sine function �·en in 1M 
case where the right-hand side or (3) consists only or a cosine. 

Prob/mt I. Find 1hc rorm of the particubr-solution o( each of the following <qua.tiom.:
a)X±:-r-t1

; b)X;tx-,H; c)X.±x=k-'; d)X;tx-t�sint;
c) X ± x =,,,cost; fJ x J:; 2ix •,:,.,sin to d) ,.cw, + 4x = ,:t' cos L
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26.6. The met.bod of comples ampUtudee. In the case of complex 
root!, il is usually 1im1)ler to carry out the calculations as follows. Lc:t
equation (3) be real, and reprcsent/(1) as the real part ofa complex func­
tion: 

/(1) • Re F(t). 

Let <1>(1) be a complex solution of the equation 

a(D)<l>(t) - F(t). 

Then, taking teal parts, we sec that 

a(D)q,(t) -f(t), 

where q, • Re <I> (since • - Re a). Thus lo sol., a 114"'--I,_, li,,,111 
equation with right-hand sid, f(t), wt n,.d only rtiard f(t) as IN rttU f»rl ef • 
tompl,xfu11etion F(t), solv, th, tquation with ri1ht-hond side F(t), ,.,,J t.u t/v rttU

part of th• solution. 

Exomplt I. Let 

/(1) = cos wt c Re ,'w•_ 

The quasi-polynomial F(t) • ,,u, is of degree 0, and hence we can look fora 
solution <I> of the form C1,'w•, where C is a complex constant (called the 
complex omplitud,) and vis the multiplicity of the root iw. Thettfott 

q,(t) = Re (C1•,'w'). 

If C E rt11
, then q,(t) = rl'cos(wl + 9). Thus the complex amplitude C 

contains information about both the amplitude rand the phase 8of thc real 
solution. 

Example 2. Consider the behavior of  a pendulum (or of any other oscilla­
tory linear system, for example a weight on a spring or an oscilbtory 
electric circuit) under the action ofan external periodic force: 

ii + w'x = f(t), /(I) = cos vi = Re /" 

(Fig. 177). The characteristic equation ).2 
+ w' = 0 has roots l = +i0>.

If v1 '#- o,1, we must look for a particular solution of the form� = Cth'. 
SubStituting <I> into the differential equation, we get the quantity 

I 
C � 1 i, w - y

which can be writtc,-. in trigonometric form as 

C = r(v),'f<•>. 

(4) 

(5)
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Fig.  178 The arn1>litudc and ph.a.sc or forcro 0Killa1ions of a frktionlcn ptndvlum AS
a fun c1ion or the frequenc y or the external for� .  

According to (4), the amplitude rand th<: phase, 0 hav,: th<: ,,,.Jucs shown i n
Fig. I 78. t The real part of <I> equals r cos(,·t + 0). Henc<: ch<: g,:n<:nl solu­
tion of 1 he nonhomogeneous equation is of the form 

x • r cos(vl + 0) + C,cas(wt + O,), 

where C, and 0
1 

are arbitrary conslants.
Thus the oscillations of a p,11dulum u11d,r the action ,if on ext,rulf•ra cPSi,t of 

''forcedoscil/atio11s" r cos(vt + 0) with thefrcqw"')l,iftlreexternalfarcetn1d"ftu 
osci//a1io,u'' with the naturalfrequen<y w. The dependence o( the ampHtudc, of 
the forced oscillatior'ls on the frequency of the a.temal fortt has the 
characteristic resonance shape: The nearer the frequency of the external 
force to the natural frequency w, the more: the external focce "'rocks0 1JM,; 
system. This phenomenon of resonance, observed when the frequency of the 
external force coincides with the natural frequency of the oscillatorysyste.m.,

is very important in the applications. for example, in all kinds of calcula­
tions involvi,,g engineering structures, care must be taken to� that t� 

natural frequencies or the strucLUre are not close to the frequencies oft� 
external forces which will be experienced by the structure. O�-isc C'\·cn 
a small force, acting over a long time interval, will be able to rock tM 
structure and destroy it. 

t Thcchoiec8 = -n (rather than +A") forv > wisjustincd by Eurnp&,e3bdow.
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,, 

l t 

,� 13, 170 1"he 1u1l\ or '"-O haHn0t1llt whh ni:ighbor1111 frfqUtt)('1f'I (bratt) and 1h l,m,1
in th� c:m� o(rnonancc ("roding"),

The phase O of1he forced osdlla,ions undergoes ajurnp of - "a,• pane,

lhrough the resonance frequency w. When vis near w, ubcau"' al"C obscrvN'I 
(Fig. 179), i.e., 1he amplitude o f t  he pendulum aherna1cly waxes (when the 
rclalion or 1he phases or,he pendulum and 1he e.ien,al rorce ii such that th<e 
e,c:1ernal for"CC l"OCk.s 1hc pendulum, communicalingcncrgy •oi1) and "--ana 
(when lhc relation between 1hc phases changes in such a w�y 1hat the 
ex1ernal force "brakes" 1he pendulum). The closer 1h<e frequencies• and w,

1he more slowly 1he phase relatio11 changes and the larger th<: period of the
bea1.s. As" - w, 1hc period of the beat..s approachcJ infinl1y. At resona1\CC 
(v = w) the phase relation is constant and the forttd oscillations can grow 
indefinitely. In fact, for v = w we lnok for a particular solution of t.lx: ronn

(6) 

in accordance with the ge,,eral rule. Subs1i1u1ing (6) i,uo the differential 
equation, we get C;;;; I /2iw and hence 

I . X = -sin Wli 
2w 

so that the forced oscillations grow without limit (Fig. 179). 

Exampu 3. Consider the pendulum with rriction: 

JI + kx + w'•· = f(I).

The corresponding characteristic equation 

). ' + k), + w' = 0 

has roots 

l
1
,2= -7+in, 

k 
Q =Jw' 

(Fig. 180). Suppose th< coefficient of friction k is posim·<e and SD1'1.IJ

(k' < 4w2), and let the external force be oscillatory: 
f(I) = cos vi = Re ,'". 
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Fi8. 181 The• am1:>litudr and r>h:uc ofromed ote.llario.u of a p«Klutum with (rictior\ a,
a ru,,c1io11 of the frequen<'y or •he excrroal ron-c. 

If the coefficient of friction is different from 0, then iv cannot be a root of th� 
characteristic equation (since A.

1 
,? has a non-zc:ro real pan). HttlC� �� 

should look for a solution C'lf the form 

.,: = Re Ci"'. (7) 

Substitution of (7) into the differential equation gives 

C=��-- --
w - v + ikv (8) 

Suppose we wri1e C io 1hc 1rigor1omc1ric form (5). Then, according to (7)� 
the graphs of the amplitude r and phase O of the forced oscillations, as 
functions of 1he freque,,cy v of 1he external force, have tM: appcarantt 
shown in Fig. 181. 

Adding the general solution C,,-"cos(Ot + O,) of th<: homogmeous 
equation to tl1e particular solution, we get the general solution 

x = r cos(,•t + 0) + C,,-"cos(Ot + 0,)

of the nonhomogeneoustt(ua1ion. The second tenn on the right a.pproachcs 
0 as t - + ex>, leaving only the forced oscillations x = r cos(Tt + 8). 

Comparing the behavior C'lf the fric1ionlcss pendulum (Fig. 178) ";th its 
behavior for positive values of the coefficient of friction (fig. 181), we find 
that the tjftct of small frictio11 011 th, r,sonam:, is such /Ml th, amplibllk •f IN 
ostillations at re.sonante do not lucomt i,ifinitt. bu.I rathL.r inutast # a dLfei.tt ,fori.te
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v11lttt w/,i(/1 iJ i1111trs,IJ propo,tio11nl to t/rt totfficit•I qf frit1ion. In ract, the runc­
tion r(v) cxprc»ing the dc1>cndenrc or the amplitude or the ,teady-•tatc 
oscill:11io111 011 the frequency of the cxten,ol fon:c has a sharply defined 
maximum near,, • w (Fig. I 8 I), and it is clear from (8) that the h<ighc or 
this maximum increases like I /Aw ask decrcaJeS. 

From n "physical" point or view, lt is easy to predict tM �ct that th� 
amplitude of the steady-sutc forced oseilla1io1u is fini1c, by simply alcu­
lating 1hc energy balance. At large ampli1udcs, the energy Jou due to fric­
tion is greater than the energy communicated to the pendulum by the 
external force, and hence the amplitude will decrease until a regime iJ 
established in which the energy loss due to friction t'<)uals 1he work done by 
1hc ex1ernal force. The si,c of 1hc ampli111dc of 1hc stcady-stacc oscillations 
increase$ in inverse pro1>0rtion to the coefficient or friction k ask - 0. The 
phase shif1 0 is always negative, i.e., IM for«d oMillolio,u •hL•p 1,tl IN 
t:<ltwnl Joru. 

P,Htl,m J ,  l�ovc 1h;u every s0Ju1ion or II nonhomogeneow, linear 1yt,t('ffl of cquatioM 
whh c:om111n1 cocfficicn11 .1nd a r-igh,.h,rnd t-ide
I = f 1-'11 � Cu 1•,

cqual 10 a sum or qua.J.i•polynomi.als wi1h vtttor- coefficients,. is i1.sdr a tum of q uasi ­
polynomials with vector cocfficicn,,., 
P,�lw, 2. Show th;u every 1olu1io n  or a nonhomagcncous linear rC'CWTm« relation

A'• - (a1•'•-1 + ·'' + 4ft-T•-•> -/(N) 
with a right-hand side equal co a sum of qua.Ji.polynomials is ibclf a sum ol q�y­
nomials. find a formula for the general term of the sequence 0, 2, 7, 18,. ◄I, a&. ••• 
(x. - 2..-._ 1 + n), 

26.7. Application to the calculation of weakly noDlli,ear oKilla­
tions. Jn studying the dependence of the solution of an equation on 
parameters, we have to solve a ,1onhomogencous linea, cqua1.i.on, namely 
the "equation of variations" {see Sec .  9.5). In pa,ticula,., if th� '"un�r­
turbed" system is linear. the pt0blem often teduces to the solution of a 
linear equation with a right-hand side which is a sum of exponentials (or 
trigonometric functions) or quasi-polynomials. 

Problun I .  Find the dependence or the pc:riod of oscillations of a pendulum dacribcd by 
the equation X = -si.nx on the ampUtudc A, assuming that A is sqp.D.. 
Ans, T - 21t( I + (A1/16) + O{A4)J. F<ir- exan,-pl� if lhe angle of deriacion O 30•, the
period occccds 1he period or s.maU oscillations by 2 po-c;cnL 
Solution. Considu the solutfon or 1he pendulum <qua.lion with initial c:ondilion .c{O) = A. 
.t(O)•O as a func1ion of A, This function is smooth, by the thcorcmoodiffcrentiab&e 
dependence on the in itial conditions. Expand ing the function i:n Ta.)i« aeries in • .f nc::ar 
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A 0, we gtt 
• Ax,(1) I A1x1 (1) I A1,,(1) I O(A'),
•o 1hu1

J • Al, I A'J, I A'J, I O(A'),
t At, I A'R, I A11, I O(A'), 
.to x AM1 ._ A1x1 I Al(N1 i"f> • O(A•), 
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The cqu alion I - -sin x holdt for every A, and hence s1, .,.,, "' satitly thc cqu,ion:t 

,. - -..-.. ,, - -x,, (9) 
The initial condit ion x(O) - A, 1(0) • 0 alto holds KW f'�Y A, and� tlw- <qm.ho• 
(9) talltfy the following in itial condhioru:: 

x1 (0) • I, 
Solving the:" first two equal.ion, (9) subject co lM conditiont ( 10), we Id-

so tha1 x, satisfla the equation 

,,(O) J,(O) 0 .  

Solving ( 11) b y  che method or co1nplex a,nplitudcs, say, ._.e get
x, = a(cos t - cos 3t) + p1,j" ,,

wherc a - 1/192, p • 1/16. 

(10) 

(II) 

Thus thc dfe<:t of th e nonlineari ty (sin x ,' x) on lhc oscilla tions ol cJac, pendulum

rc<haca t to 1he presence of an extra term A.,x, + O(A4): 

x • A rot t + A1[a(cos I - cos 3t) + J1I sin t] + O(A4), 

The �riod Tor th e 05Cillati:on, is just the point at wht<:h x(t) ha, its �um. and i, 
near 2it fo r small A. To find 1hii po int, we we lhe eondition .i(T) = 0: 

A{ -,;n T + A'l(P - a),;n T + 3a ,;n 3T + f/T"" TJ + O(A•)I • 0. (12) 
To solvt" (12) .approxiniately for small A, le t T 2• + •· This gi,•n th,c, «-qua.Lion 
,;n • = A1[2•// + O(u)J + O(A') 
ror 11. By 1hc irnplicit function cheorem, 

• = 2nPA' + O(A'),
1.e.,

T = 2•[ I + 1� + o(A')].

wh t"re o(A') ..,. O(A•) 11ince T(A) is even.

t Here it is meful to recall 1he bucket with 1he hok in its bouom (� tbt warni"I in Stt.. 
9S). Frorn the pracncc o f  the ".secular'' tcr-m t s:in tin th< foTmul.a for .. ,. we an draw no 
concl usions whal50<':ver about the bt"ha,,ior or  the pendulum .u t - oo, Out-�lion 
is va lid only for a finite 1imcinter-val, and the term O(A•) bccomcslargc(or�L T!wsou:r 
,olution ofthc equation for 05Cillationsof a pendulum act·ually mnains bounded (by A}b 
aU t, as ill apparmt from th e law of conservation of cnagy. 
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P,obltm 2. I 1wc:11lg111e 1hc dr1�ndcncc: or the: 1>trt0d T of 1M o.t•llat.Ont on � amphtW
A for tl10 cquntion 

I t- (IJ1Jt I a.x' 6."" 0. 

AHJ, .,. 

P,ob/1,r,1 J, l)tdure 1hc 1ame r("lult from lht" uphdt formula fol' the- P"'"Od (S«. 12.7). 

27. Nonautonomous Linear Equation.s

That part of the theory of linear equations which docs no1 depend on shifl 
invatiance can easily be carried over to linear equations and systems whh 
variable coefficients. 

27,1. Definition. By a (homo_(tt1tous) /in,ar equation u.itA e,,ri�bu co, §, ­
citlllJf is meant an equation of the form 

x • A(t)x, x e R', A(t): R" - R', (I) 

where I belongs to a n  open interval / of the real axis (possibly the who!<, real 
axis). 

Geometrically the solutions of equation (I) arc represented by integral 
curves in the strip / x R' of extended phase space (Fig. 182)- As usual, we 
will assume that the function A(I) is smoo1h.t 

/£xompl, I .  Consider the pendulum equation ii = -w'x. The: frequency 
w is determined by the length of the pendulum, and the oscilbtiom of a 

Fig. 182 Jn1qral curves of a linear cqualion. 

Herc we assume that the cocffidc:nts arc rea l. The complex case is compktdy � 
! It is actuall y enough 1oassumc that .'l(t) is com.i nuous (1tt Sec- .  32.6l.
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pendulum ofvnriable length or,• descrilx<l by the onologou• equa1100 

N • -w1(t)x. 

This equa I ion can be wri 11cn in the form (I): 

{i·,•x,, ( 0 
l .4 • 

.,, • -w (1).,,, -w1(t)
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Tl,c swing (Fig. 183) is an examp le ora pendulum or variable: lcngth. In
fac1. by varying 1hc position of her ccn1cr ofgtavity, th<" girl on 1hc '";ng

ca11 periodically vary the value oft he  parameter w. 

27.2. Ex.istence of 1olution1. One solution of equation ( I i• 01>-;ously 
the null solution. F'or an arbi1rary initial condition {10, x

0 
E / x R•. t� 

exi'1cm·e of a solution defined in a neighborhood of the point '• follows
from lh<-• general theorems oCChap. 2 .  1-·or a nonlinrar cqua1ion it may n0t 
be pos,ibl,· to extend tl,is solution onto the whole interval / (Fig. tat . 
However, linear equations have the s�c-ial rcaturc 1ha1 none of their snlv­
cions can hc<.·omc infinitr in a finite 1imc interval. 

THEOREM. Evtr)i sol111iort of equalio,, (I) can bt e.,·tendtd onlo Ilk ,clt,,k Ul.knvJl I .

The idea of the proof is tha, Jxl ,;; CJxl for a linear equation. and hcncc 
lhe solulion can grow no fastrr than ec'. 

To givt- a rigorous proof, we pro<ttd ,u follO\OO-s, A)', nocing finl dut ii I•. •J is a com. 
pan inlerval in /, lhc:n th<" nnrrnt o( the opc•rator . .f{I) is bou.ndt-d on(•. •J: 
IA(l)I , C C(n, b),

Fig. 183 The $·wing • 
.:r: 

tq I t 

Fig. 184 ,\ noncx1cndablc solution or  rhc cqua1ion i = x-2 .  
f \\'c assume th at some EucJjdean metric has ben1 chosen in R•. 

(2)
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f lL._.., -11+-I -�►0---;-1,�•-•-r

Jllg. 18.5 A lldo,i t1timau: 0(1hc grn�·th o f t  ht totution on lhc 1ntcrv.tt f-.61, 

f' 

1 I I 
, I 

F'i� .  166 F:,oc,uicm ofa solutioo up lo I - 6 .

<EMMA, l,I •(I) b<•,o/o,/i,,,eftf.,.li,,,(I) d(/iotd,..IA,i,,Jnr4/[,., 11, .. ,1.,, • < .. < t<.

{l •  .. ig. 18S). Tit.tit •(t) satufits Ult II fm'ori tstima.u 

l•C•ll < •'" -•••t•(loll, C'l 

J>,oef. The csLirnatc is obvious for 1hf" null solution, Ir •(i.J -,. 0, 1hcn • t) #, 0 by 1hc
u1tiqucncu 1hcQrcm. Let r(r) = l•(r)I- Then the funcrion L(r) = In ,..a is ckfinicd Gw

t0 < r < r. Bur 

l-�<2C• 
because or (2), arid hence 
l(I) < l(10) + 2C(I - 10), 
which implies (l). I 
Proef of tlu tJr,o,,m. l.c1 l"c:111 = H ..,. 0 ,  and <'Onstdtt the compact set 
F,.. {t, x; a< t < •• f•l1 < 2&1"' .... "'I 
i1t extended phase space (fig. 186). By the extension t�m.. the solurion •"1th ini1ial
<:ondi1tOn •(t0) • Xo <:.an be extended ron..•ard up 10 the bounduy o/ the q--tinckr- F. 
The boundaiy of F c0tui.s1s or two end fac:-CJ (t •· t - •> and a latcnl surface (i.z:11 = 
20e2<=•1-•1). The solutio n  cannot leave,. �  on tM latcnl surface� sin« 

l•(t)l2 i( o,2cv•-•l 

by the lemma. Hence chc solulion can be c.xtcndcd to rhe right up to l = •· Si.milady. 
i t  c-�n be ,hown chac the sol ution can be cxrcndt:d to the left up tot - -. Sance• and t
arc arbi1 rary, the proof is now compktc. I 

27.3. The space of solutions of equation (I). Let X be, th<: set of all 
solutions of equation (I), defined on the whole interval/. Since solutions a.re 
just mappings <p: / ➔ R" with values in the linear phase spaoe R", they can 
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be added nnd 111uhiplitd by numbers: 

(<,'I', + <1,p1)(1) • c,,p,(1) + <1,p1(1), 

191 

Tl oBOR&M I. Th, s,t :< of all solutions of ,quation {I) dtfintd M 011 illlmwl I is• 
linear SJHICI. 

Proof Obviout, since 

d 
-(c,,p, + '1'1'1) • ,,i;, + <1/,01 • c,A,p, + <1A.,1 m A(c,.,, + ,,.,1)- Idt 

THEOREM 2. The linear spau :< of solutions of a lin,ar ,quatiM is is-J>lu< t• 
the phase spae, R• of the equation. 

Proof Let I e I, and oonsidcr the mapping 

8
1
:X-R", 8,,p - ,p(t) 

associating with every solution it,c value at time t. Tilc mapping B, is linear, 
since the value of a sum of solutio,u equals 1hc sum or their values.. The 
image of B, is the whole phase space R11

, since by the cxistena theorem, for 
every x0 e R" there exists a solution q, with initial condition 4'(10) = &o· 
Finally, the kernel of B, equals {O}, since the Solution wi1h initial condition 
q,(10) = 0 is identically zero, by the uniqueness theorem. I

Thus the mapping B, is an isomorphism of:< onto R•. TI1is is the basic result of 
the theory of linear equations. 

Definition. By a fundamental S.)'Sl1m of solutians of equation (I) is meant any 
basis of the linear solution space X .

Probl,m I .  find a fondamental system of solutions of cquatiOn (I) with 

A=(-��)
Theorem 2 ha.� a number ofimmcdia,c coNCq_ucnccs: 

COROLLARY I. Ev,ry equation (I) has a fundtm1mtal 1711- of 11 ,#lrdio,u 
'1'11 •''I"'"· 

COROLLARY 2. £111,y solution of equation (I )is a /in,a,combinati.of """1i,,,uof 
a fundam,ntal S)'Stem. 

COROLLARY 3. Any n + I solutionsoftquatian (!) ar,/ineariJ,d,pacdau. 

COROLLARY 4. The (10, I 1)-advan£t mapping 

,.,, = B e- •, R" - R· 
510 r, ro 
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,, I 

Fig . 187 1'he linear transformati(m of phase span-produc-rd by ad, •nn.tlC dw tolubom:
of a linear NtUalion from t0 lo 11,

is a li11,ar isomorpl1ism (Fig. 187). 

27.4. The Wronoklan. Let e,, ... , e. be a ba,is in the phase space Jl•. 
The choice of a basis fixes a unit of volume and an  orientation in R•, thttt:by 
assigning a definite volume to every parallelepiped in phase space. 

Dtjinitio11. By the IVro,ukia1t (dtltr111i11anl) ofa system of vector functions 

,p,(1): / ➔ Jl•, k - I, ... , n

i s  meant the numerical function �V: / - R whose: \•alue at the point t�uals 
the (oriented) volume of the parallelepiped spanned by 1hc ,-ccton 
,p 1 (1), ... , ,p.(1) e Jl•. Thus 

W(t) = 

where 

"'' ,(1) 

'l',.(1) 

'l',,(1) 

'1' •• (1) 

,p,(1) = q,.,(t)e, + · · · + q,._(1)e •.

In particular, let the 'I', be solution, of equation (I). Their images under 
the isomorphism B, constructed above are vectors ••<') ER• in ph� 
space. These vectors arc linearly dependent if and only if the \Vronski.m 
vanishes at the point/. This implies 

COROLLARY 5. A sysumef solutions,p., ... , ,p.ef,quation ( I) uf,uuillmadalif
and only if ill �1'ronskia11 is non uro at some poinJ. 

COROLLARY 6. lftM �1/ronskian efasyslLmefsolutionseftquaJiM (I) oa,w/,,s
al ewn one poinJ, Jhm ii vanishe,s identitallyfor all J .
Problr.m I.  Can the \Vroiukian of a sy,tem of li nearly independent '-"'C'CIOI" functions••
van�h iden1ically? 

Problr.m 2 .  Prove thac 1he \Vronskian of a fundamental system of solutions is proportional 
to the de1ermi nan1 of the (t0, t)-advance mapping: 
W(t} = d« (1:,) W(10) .
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J/ir,I, Sa Ser, 27.6. 
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27 .5. The cate of a tingle equation of order •• C:on,,d,r the homo­
gc11co1.1it li11car e(1w1tio11 of order 11

x'"1 + a1x'" 1 • + • • · + a.x • 0, (◄, 

with cotfflcient� 11
., 

• o,(I), t e I which are in  general variable. 
Some scco11d-ortler differential equations with variable c«ff,denu arc 

encountered so often in the applicatio,1:s that thc-y have spttial nam� and 
their solutions have been "tudicd and tabulated in no less detail than theMne 
and ccxint· ft.met ion". t

f-:Xtt,,t/JI, I. n,-"'l's tqu111MN1

I ( •') R + ;l + I - t' x - 0, 

i � (a � p � I )I
1(1 I) 

l a/J
0i I ;r,--n• -

I''..Xampl� 3. ,\-/11tlri1u's equntiM 
i + (it + b <'OS t)l .. 0 .

We could write t,quation (4) a• a system of nfirst-ordcrcquatiomand then 
apply the prcrcding considerations. However, we prefer to consider the 
space.\' of solutions of equation (4) directly. The space Xis a lir.earspattof 
functions tp: / ➔ R which is naturally isomorphic to the space of solutions 
of the equivalen1 system or it equalions. To specify the: isomorphttm,. wt 
assign each (f) the: vector functio1l.1; 

1/J = (q,, ,j,,. ' ' • q,<•-")
made up of the derivatives of q,: 

COROLLARY 7. Tht spau .\' of solu1io11s of tquation (4) a uo11111rpluL II tit, pit,,M
spact R" of equatio11 (4), whtrt the isomorphism can b, sp«ifod •.1 assipi•.t u,d, 
tp e X the (rec/qr 

(q,(tol, ,p(t o), ... , q,<•-••c,oll 
made up t?f tl,e dtricrativts of (f) at somt poi11t 10. 

Defi11ition. By afu11damt11tal sysltm of so/ulions of equation (4);. meant any 
ba�is of the solution space X .  

t Sec e.g .• t:. Jah1lkc and F. Emde, Ta.bits ef llit�' 1-'wnt:ti,o,u, sOnh edit� l"C"--iscd by 
F. l.&cli, McCraw-Hi11, NCoA· York (1960).
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r,111,1,,., I. Ptnd 3 fundamtntal 1ywtt'm or •olullor.1 or <quauon (◄) for dw uw "'"Mn tht 
C'Ocflkh�nu ft IHC! com11n1, e.g., for I I u 0. 
An.,, tl'•"'I, 0 < , "'- v, where A b a root of muh1phc11y v of th(, c-"3rM1tt-KIIC' eqwihon 
111 the t:m: of C1om1>lu roott A a l i.tv, we mu:11 chanC(' ,,,._. 10 ,•• «» flll, t" ..,. fl/II
1 11 ,,articular, for I -+ u • 0 we have { COIi CIJI, tin wt Ir , ro' _-1, 0, 

OOlh al, ,inti at if O • -a' < O ,or,•',, ... , 
1,, if •-0. 

Definition. By ,he fVronskion of a system of numerical functions 

q,,(1): / - R, k=l, ... ,n

i.s meant the uurncrical function �V: I - R. whose value at the point t equals 

fV(I) = 

q,,(1) 
<P,(1) 

q,,(1) 
(1),(1) 

In other words, Wis just the Wronskian of the system of vector functions 
q,,(1): / - R" ob,aincd from ,he q,, in the usual way: 

,p,(t) = (q,,(1), \i>,(1), ... , q,(•- "(1)), k=l, ... ,n. 

Everything sa id about the Wronskian of a system of vector solutions of 
equation (I) carries over without change to the \Vronskian of.a system of 
solutions of equation (4). In particular, ,,·c have 

COROLLARY 8 .  /flhe fVronslcian of a sysumofsolut�nsof equalitm (4) L'OJtisJraal 
even one point, then i t  vanishes ide.nti.cally. 

Probltm 2 .  Suppose the \\tronskian of two functions vanishes at the point, ... Docs it Wlow-
1ha1 the Wronskian vanishes identically? 

COROLLARY 9 .  lftlu 1-Vronskianof asysltm of,ollllionsof,quafD• (4) cuuiwal 
e1ien one poinl, th.en Jht solutions are linLa.rly dlpauhnJ. 

ProbU.m 3 .  Suppose th e \Vrons.kian of tw o funetions vanish� identically. Does it� 
that th e functions are linearly dependent? 

COROLLARY I 0 .  A S)'Sltm of sollllions q, 1, • . •  , q,, of equation (4) isfiu,,lama,!,J
if and on9' if its Wronskian is nonzero al some poim. 

Example 4. Consider 1he sySlcm of functions <'•', ... , ,.._,_ Thc:sc func­
tions form a fundamental system of solutions of a linear cqua.tion of the 
form (4) (which one?). Therefore they arc linearly indepcnde,u, so that 
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their Wrouskinn is nouzc:ro. Bui thi, drtrrminant equab 
',l I I ... ,,.,.,

l ,,.,.,, ... A ,1 .. , tJ.1 � '" I ,l,.)f ). ' fV • • -· 

•1t•l.l11 . . . J.:- 1 ,,..., A"' - I ., . I 

COROLLARY 11. Tiu Va11der111onde dtltrminanl 

). ' J.. 

is 11011z110 if the mtmbers ) . ._ nre diJtintl. 

. . . 

. .. 
)., 

,t
•· I
• 
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Examplt 5 .  The pendulum equation R + w 1x • 0 has cos wt, sin wt as a 
fundarne111al sys1crn of solutions. The \\lronskian 

Wa 
COS WI 

-w sin wt 
sin wt 

W cos WI 
aw 

is constant. This is hardly surprising, since the phase Aow of the prnduJum 
equation preserve> area (sec Sec. 16.4). 

27.6. Liouville's theorem. \Ne now examine how the volume of figures 
in phase space changes in the genetal case under the action of 1M' translor­
rriation g;0 during the time from /0 to I. 

Tll£0REM (Liou ville). Tio, fVro111kian of a sys/rm of sol•tio,u of tfrlalUJ• (I) 
sati.tfits the dijftrenlial tquatio11 

IV= a IV, a(t) = Tr A(t), 

i11voluin .� th, lrau oftltt op,ra/or A(t}. 
It  follows from the theor"Crn, which we '".-ill prove in a mo�t, that 

fV(I) = exp { f. a(r) dr} W(t0), dct i. = exp { f :<•J dr}. 
In fact, we can easily solve equation (5), obtaining 

- � o dt, In fV - In fj/0 = o(r) dr.dW 

J' l•V ,0 

(S) 

(6) 

Incidentally, formula (6) again shows that the Wronskian of a S)..-tcm of 
solutions either vanishes ide,uically or else docs not vanish at alL 
P,olJJ,m I. Find the ,•oJumc or the image 0(1hc u.n.it cube: 0 <: x, <: 1, i = J. � 3, 1ilndc:r-the 
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r•• 

fl, 

Fig. 188 Accion of che 1>h1.sc flow on 1he 1>aralldtpiptd II. ,pa.nntd by .a (uncb.m,mt:AI 
1ys1cm or solutions.

act io,1 of 1he 1ra1t1fonna1ior1 dur-i,1_g time t of the ph.atc Row of the system

.:t, - 2x, - x
2 - x.>, 

,, - x, + Jti + x,.

j.) - x, - JtJ - x,.

A,u. W(t) - t1'W(O) - ,,,, since Tr A 2. 

The idea of1he proofofLiouville's 1hc:orem is 1hc following. lrd,�c:ocffi­
cicnts arc cons1am, the theorem reduces to Liouvillc's formula prm·� i n  
Sec. 16 .  4. "Freezing" the coefficierns A(t), 1.e., equating them to their values 
at some fixed instant of time t

1 
we can convince oursch•es of the valjdity or

equation (5) for arbitrary t. 

Pr oof of Liou (:ille'I tlr,o,,m. U:t 

be the ( r, r + O) .. advan cc mapJ>ing (t-4 ig. 188), where A is s mall. This lanar tramforma. 
cior1 of phase 11>acc canics 1hc value or any solu1ion • of cqu.ation (I) at th,,� r in.In 
its value a, the 1ime r + A. A«ording 10 (I),

•<• + 6) • •C•l + A(,J•(,)6 + •(�).

i.e .• 

g:,. = £ + 6A(t) + o(.6). 

Therc(ore, a ccordi1lg to S ec .  16.J, 1hc coefficient of \·.,.umc np.ansion w,dr-r- the tnnc,.

formatio n 1: '"' equals 

det g; • 0 
- I + 6n + •(6}, 

where a • Tr A. But W(t') i.s the volume or the paralkkpiped n. s:pannittl bylM' ,�ucs
of our system of s0Ju1ions at the time r, and the transformation z: •"" arrics thrsc \---a!UO 

into the valuCl or the same system of solution s  at the time r..&. 6 .  "TIie panlk:kpipcd
n. ♦ 4 Sp3nn cd by the new values has volum e  U'(r ..&. .l}. Thiercfott

W(,+.6) = dtt (&; ·•JW(t) = (I + a(,)6 + 0(6)111'(,), 

whic;-h implies (5). I 

It follows from Liouvillc's theorem that the lVronskian of the system of 
solutions of equation (4) equals 
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IV(I) • ex,, {- f. a,(t) dr} fV(10).
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I !ere 1hc appearance nfthc minu, iig11 strm� from 1hr fact ,ha, in "riting
(4) i11 the form orn •)"Item (I), we 11\1,st iranspmc a,x'• 1' ti) the n11ht-hand
side. The inairix oCthc r<'luhing system is 

0 I 

with -a, as the only nonzcto elemenl nn its main diagonat

Example I. In the case or lhc swing, with equation

R + fl.t)x • 0, (7) 

/ht tq11ili6riu111 f)osilio11 x - x a O cam,ot 1H asymptotically stobk for .. , dw,u, of

f(t). In fart, consider any basis C, 'I in the plane R' of1hc initial ronditinns 
(Fig. 189). Stabilitymeanstha1g:

0
c-+ O,g;.,,-+ O,inwhich case IV(t) - 0

for the corresponding Cundamen1al sys1<m. Bu, (7) is cqui,.,,lcnt to the
system 

{.i1 •X1, 

x
1 = -f(t)x,,

with matrix

Since Tr A = 0, it follows 1ha1 �V(I) = const, contrary to 11 ·  - 0 .
Ptobltrrt 2 .  (:onsi<lcr the swin_g with fritrion
i + a(l)i + w•(t)x O.  

Show 1hat asymptocic stability is impossible if 1hc t"Ot'fficinu of frinioa ft Mp.ln� i+�
R' 

t 

Fig. 189 The phase Ao"" '  of an asymptotically stable linear .system.
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tr r,(I) • 0 (01 •  all , , h ii lrue 1h.11 ,he· N:fU!llbnum Jl(J'IIIIOO (0. 0) '" ··••)' t-Otibk ., lk 
f{l('llkltot or rrlctloo ,, po,,hlvt?

D,jini1io11. lly the di11tr,:,nr, or n vcrtor llrld v in the Euclidean spacr R' 
with rccrnnKulnr C'oordinn1e1 x1 it meant tht" fonc1ion 

❖ Du, div v • '- ,·
(•I c1X1 

J n particular,for • linear wt/or field v(x) = Ax, th, di"'''"'' uj•slllw lr«••f

Int o/J<ralor A :

div Ax a Tr II. 

The divergence of a vc<"tor field dctrrrnine§ the rate of volume cxpamion 
due 10 the corresponding pha..«:: Oow. 

Let /J be a domain in the Euclidean ph;uc space of the (not neccssatily 
linear) equation x • v(x), let D(1) denote the image or D under the action 
or the phase now, and let V(1) denote the volume of the domain D(I).

• Problem 3 .  Prove tl,c following stronger version o f  lUJuvilU's tJ.on,.,.:

dV 
= f d iv v d.<

di Jom 
(Fig. 190). 

COROLLARY I. If div v & 0, lntn Int pJuu, flow prum,,s 11w --- •f OIIJI 
domoirr. 

Such a phase flow can be thought or as the flow of a n  incompressible 
uphase fluid" in phase space. 

COROLLARY 2. Th, pha,ejlow of 1-/amilton's tqualions 

' ill-I 
Pt• --,

i!q, 

ptestrvu volume. 

' iJ/-1 
qt - -, 

iJp, 
k•l, ... ,n 

Fig .  190 The phase Row of a vcc:tor 6t'ld of divagcncc-uro presava a«:aw 
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Proef. Merely note I hot 

I• ,'!. ( iJ1// 0211) 
{ IV V • J. -�- -

t. I ilq,O(J, i!(J,i!q, 
- 0. I

Thi, fact plays a key role in sta1i'1ical phy,ic.. 

28. Li.near Equations with Periodic Coefficients

199 

The lhcory or linear cquacions with �riodic coefficients s"°", how to 
"pump up" a swing and explains why the upixr equilibrium position ora 
pendulun--1, which is usually unstable, bc-comcs s1ablc if 1hc point of suspcn• 
sion of thl' pendulum executes sufficicrHly rapid oscillations in 1ht \!'Cr1ical 
direction. 

28.1, The period-advance mapping. Consider the difl'crcntial ,qua­
tio,, 

it; • v(x, I), v(x, I + T) = v(x, /), (I) 

whose right-hand side depends periodically on time (Fig. 191). 

Example /. The motion of a pendulum with periodically ,-arying para· 
meters (for example, the motioo of a swing} is described by a sys:tcm of 
equations of the form (1): 

w(t + T) = w(t). (2) 

Vvc will assume that all the solU1ions of equation (I) can � a1end� 
indefinitely.Thi.s is certainly true for the linear equations in which wc ar� 
par1icularly interested. 

The periodicity of the right-hand side of ( I) leads 10 a number of special 
properties or the corresponding phase flow. 

X 

0 r 21 t 

Fig. 191 The: extended phuc spa« of an equation with periodic coefficients. 
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LEMMA I. Th, (1,. 1,)-adva11tt mapping r.:: R• - R• of pltllM ,,-, Htl Ml 
thn,1g, wl1tn both 11 nnd 1, nrt incrtnstd by ti,, p,riod T of ti,, ri1ht-MAd 11d, ,j (I). 

Proef. We m11s1 show 1hn1 1hc shlfi \lt(t) • .,(, + T) ofa .olu1ion o( 1'(1) 
by 1hc 1in1e Ti, i1self • soh11ion. llut a shifl of1he extended ph-spaec by T
along the time axis carries the dlrcc1ion fidd ofcqua1ion (I) in10 iud((tig. 
191 ). Therefore au in1cgral curve or (I) shificd by Tis s1ill evcrywh<erc 

tangential to  the dircc1ion field, and hence rcmain.s an integral curve. h 
follows 1hat 

g1,+T • g'' 
11tT 11' I 

In pariicular, consider 1he transforma1ion l� produced by the phai,, 
now during one p<:tiod T. This jjpc-riod-advancc" mapping, �•hich we 
dcnole by 
A • g�: R" -. R111

(fig. 192), will play an irnpor1an1 role in 1hc considera1ions 1ha1 lollow. 

Exampt, 2 .  For 1hc sysiems 

which can be regarded as  periodic with any period T, 1hc mapping A is a 
rotation and a hyperbolic rotation respectively. 
LEMMA 2. Tht tran.ifo,mationJ g•rr form a group

g.T - A'0 
- ' 

and moreover 

,..,r,s _ g',,,.r 60 - oso ·

Proof. By Lemma I, 
g11T-ts _ g• 

11T 
-

o, 

Q r l 

Fig .  l92 The pcriod-3dvancc mapping .
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and h,•,wt•

.,•1'•.i, • .,1tF'•,"1tr • g•
0

111T ""O "'"T .,. 0...\0 • 

S1•tting I • r, Wt' grc 

gh" • 0 r • A1"c{, 

and hcnct· ,or - A" by induC'tion. I
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To ,v,ry prop<>rly of 1he solu1ior1s of cqua1ion (I) 1h,r, corttsponds an
ana logou, prop1•r1y of 1hr p,·riod-advanrc mapping A.

'1'1Ui:OR1-.:M. 

I) A poi111 "• is ajix,dpoi11t oj1h,mappi11g A(Ax0 
• x

0
) ,Jantl•ttl:,,ftltL J.t"1iM

wit/1 illitial eo11ditio11 x(O) • x
0 

is ptriodit u:11/t P,,1od T. 
2) A periodic solution x(I) is stable in l:J•ap.nov's """ (as.,,.ptOlir•II:, st•bl,) if
and 011/y ijth,ji,ud point x

0 
'!/tht mapping A is stab/, in L:,apu110,,'1 ,nu, (.,.,,,.pt.,,­

cally sin bl,). t
3) lftlu .<J•Iltm (I) is li11tar, i.t., ifv(x, 1) = v(t)x is a lintor/1'MbMefx, tl,c,
lht mappi11,e A is linear.
4) if, mureou,r, /ht trau of the lintar optrator V(t) ranisltu, In IN maJ>PUll A
to,utrvt.t volumt: drt A • I.

Proof. A,s,rtions l)and2) follow from theronditiong!•• = 1oAandfrom 
the  continuous dependence of the solution on th� ini1ial conditions in the 
inlerval ro. Tl. Assertion 3) follows from the fac1 1ha1 a sum of solutiomof a 
linear sys1em is itself a solution, while ass�rtion 4) follows from Liouvill�"s 
theorem. I

28.2. Stability conditions. We now appl)• the above theorem 10 the 
mapping A of ,he phase plane (x,. x,) on10 iuelf corresponding 10 the S) -S ­
tem (2). Since the system (2) is linear and the trace of the matrix of ilS 
right-hand side vanishes, we have the following 

COROLLARY. The mapping A is lintar anti prum:u ar,a (det A = I). 77r all 
solution of the sys/em of equations (2) is stable if and on/:, if th, maPJ>i•l A is stab/,. 

Prohl,m I .  Prove thal a rotatjon of the plane is a. stable nupping, •ilik- a. h)pcrbolic: 
ro1a1ion is unslablc. 

We now make a more detailed study oflinear mappings of th� plan� onto 
itse1f which preserve area. 

t A fixed poin1 Ko of the mapping.◄ issa.id 1obcstuk ii; L;,o!Jt.m«;'sscnkifV c > 031 > 0
such that Js - s01 < d implies IA*s - A•aol < c: for a.II• - 1, � .•. M>d c,i1,,.,,.,,.'!7
stahl�if A•• - A•.xo, -Oasn - co. 
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rrA ,1 

t\ I A, 

0 

TrA<2 

0 

", 

Fig. 193 Eigcnvafuo of the J.>(r-iod �advancc mapping.

Chap. 3 Li.,..ar S)'11tms 

·rtteoiteM. ,..,, A b, a linear ar,a-presttcill,K mappi•� ef th, p/•ru ••'- ilMIJ
(det ,1 =I}. Th,nlhenrappingAisstabl,iflTrAI < 2a•d•nsta61,iffTrAl>2.

Proof. Lei ,!
1 

and J, be 1he eigenvalues of A, sa1isfying the characteristic
equation

J2 -,!TrA+l=0

with real coefficients

,, + ,, = Tr A, J,.;, = det A = I.

The rools .;, and ,!2 of1he eharaeleristic equation att real iffTr Al > 2 and
complex conjugates if !Tr Al < 2 (Fig. 193). In 1he first case, one of the
eigenvalues has absolute value greater than I and lhe olhcr absolute value
less 1han I, so 1hat A is a hyperbolic rotation and hence unstable. In 1hc
second case, the eigenvalues lie on the unit circle:

.. ,i, = ,,J., = IA,12 = I.

Hence the mapping A is equivalent to a rotation through the angle2 (whett
A. 1 ,2 = e± ;111 ), i.e., A i s  a rotation for a suitable choice of a Euclidean $ LruC •

lure in the plane (why?) and hence stable. I

Thus 1he whole question of1hc stabili1y of the null solu1ion of1hc sys1cm 
(2) reduces 10 calculating the 1raee of 1hc ma1rix A. Unfortuna1dy, lhc
trace can be calculated explicitly only in special cases. The uacccan always
be found approxima1cly by numerical integration of the ,qualion in lhc
interval O � t � r .  Jn the important case where w(t) is almost constant�
some simple general considerations arc useful.
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28,3, Strongly ■table 1y1tem1, Comidcr a linear sysiem (I) wi1h a 
1wo-dlrncn•ic)nal 1,ha,c space (i.e., wilh n • 2). Then (I) i, uid 10 � a
Hamiltonim,syst,m If 1he divergence of v vanishes. A, no1ed abo.e, 1he phaic 
llow of a J lamiltonian systt"m consc:rvrs ar,;a.: dct A • I. 

Definition. The null solu1ion ora linear llamil1onian ,ys1em i ,  uid 10 � 
stron_f(y stab/, iri1 is s1ablc and Ir the null $Olution or eve')' neighboring hnear 
Hamiltonian system is also stable. 

The preceding two theorems now imply the rollowing 

COROLLARY. Tht null solution is stro�ly stabu iflTr Al < 7. 

Pr(J()j. lflTr Al < 2, then ITr Al < 2 for the mapping A eorraponding to 
any system "suf11cicntly near" the original system. I

We now apply this rcsuh to a sys1cm wilh almost constant cot:fficiaus. 
Considcl', for cxarnplc, the equation 

/I - -w2(1 + cn(t)Jx, (3) 

where a(t + 2,r} = a(I), say a(t) • CO$ I {a pendulum whose frequCllC)' oscil­
la1cs about w with small amplitude and period 2,r). t Every S)'1tcrn (3) can 
be represented by a point in 1he plane or the parame1ers wand• {Fig. 19-1). 
Obviously the stable system, with ITr Al < 2 form an open se1 in •he pbnc 
(w, c) and the same is lruc of the unstable systems wi1h ITr Al > 2, while 
the "boundary ofinstabili1y" is the set with cqua1ion ITr Al = 2.

Tl-If.OREM. Et,try point of Jhe w -axis, exctpl tltt points 

k 
w=

2
, *�0,1,2, ...

with irit,gral and half-integral coordinates, co"uponds to a strongly $/Jlbu spum (3). 

e 

I 

Fig. 194 The regi.on of instabi:lity for parametric resonance.

t In the case o(t) = cos/, equatjoo (3) lS C3Jled ,\fa/Jtiah �,pu,tion.. 
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Thus the set of unstable systems can approach the w-axi• only at the 
points w = k/2. In other words, a swing can be "pumped up" by making a 
small periodic change in its length only in the case where the period of 
change of the length is near an integral numbcrofhalf.pcriodsofthenatural 
frequency. a result everybody knows from experiment. 

The proof of the theorem is based on the fact tha, fort= 0, equation (3) 
has constant coefficients and can easily be solved . 

. 

Probf.tnt I, Find the matrix of the period.advance nuppi.ng A fc>r the $)'Stan (3, ._ith 
i: - 0 in the basis x, i ,
Sol.u.tion. The general solution is 
x = CI cos wl + C2 sin wt, 
so that 
X = COS(l)I, :i = -ws:in wt 
is the part icular solu1ion satisfring 1hc init ial <0ndition ,c - I, :i • 0, while

I • 
IC - - SJO (;QI• 

(Q 
i=cos(l)I 

is the parcicular solu1ion $3.lisf}'in.g the initial conditH>n x = 0, X -..� I.
Ans .  

( cos 21w> 
A-

-wsin 2nw
;1 sin 21u.v 

). 
<'0!2nw 

Proof of tlu thtortm. Note that ITr Al = 12 cos 2nwl < 2 if w ,# k:12,
k = 0, 1, . . . I

A more careful analysist shows that quite: generally (and, in particular, 
for a(I} = cos I), the region of instability {the shaded region in Fig .  1�) 
approaches the w-axis near the points w = /c/2, k = I,  2, . __ Thus fo, 
certain ratios of the frequency of the change of parameters to the naruraJ 
frequency of the swing (w s:: k/2, k = I, 2, ... ), the lower equilibrium 
position of the idealized swing i s  unstable, and it  can be .. pumped up0 byan 
arbitrarily small periodic change oflcngth. This phenomenon is known a.
"parametric resonance." The characteristic feature of paramcrric 
resonance is that it becomes strongest when the frequency vof change of the 
parameter> (v = 1 in equation (3)) is  twice a. large as the natural fttquency 
w. 

Remark. In theory, parametric resonance is observed for infinitely many 
ratios w/v ::o k/2, k = 1, 2, ... , but the only cases usually obsoved in 
practice are those where k is small (le = I, 2, less often 3). The point is that 

t For example, sec Problem 2 solved below.
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a )  For large k the rrgion o( inSlability •pproachrs the w-••is with a narrow 
conguc, nnd for the resonance frequency ta we havr vrry narro� limits 
(~e' for a smooth runction a(t) in (3)). 
b) The Instability itsdr is weak for large .t, sinee the qulln1i1y !Tr Al - 2
Is small and 1hc dgenvaluc:s arc near I ror large .t .
c) Even a sligh1 amo11n1 or (ric1ion lr•d• 10 1hc prrscnee ora minimum
value t, or 1hc ampli1udc ncccs,ary for 1hc occurrence o( .tlh-ordtt
parametric rcsonnnce, with the oscilla1ions bdng damped out fot" smaller
values or c,. Moreover, c, grows rapidly with k (Fig. 19!'>).

II should also be noled 1ha1 x becomes arbitrarily large (or equation (3) in 
1he case o( in.iabili1 y. In ac1ual sys1c1ru, 1hc oscillations a11aim only a finite 
amplitude, since the linearized cqua1ion (3) itsc:J(bttomes meaningless (or 
large x and we ,nust cake account of nonlinear cffcclS. 

,,,,.,�,,, 1. find 1ht" rorm of 1fic rtgion of in11al).l,1y in 1ht pl.anoc (<&>. I.) few � sys,:aaa 
dr.uribed by Ifie cqualion 

N - -/(l)x, (4) 

/(1) = I., + •• 0 .. I < •• • < I, (41 w - 1:. 11 < t < 2,r, 
/(I+ 2n) -/(1).

Solution. It follows fro ,n 1hc solution of Pmblcm I 1hat A AJAa, when 

<o1,1 = N z « .

Hr.hCC the bounda t)' of the zone of in.stability has the UJuation 
jTr Al =- 12,1,1 - (�+ t r),) ,1,11 2. 

w, '"• 
Since i < I, we ha\'C 
tQ-i.w+i

:::I
. 

t.lJ, (JJ - t

I 

,., 

fig. 19.) I nflucncc of slight friction on lhc region of ins.tabi1ity. 

()) 
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t..e, /;. be lufh 1h1u 

!!!! + !:!I 2(1 + C.), 
«111 «111 

Then an taay rnlcula1icm givo 
2 ' C. ;:!,, + 0(,') < I, 
,. 

Using the formulas

2t1 t1 - cos 2n, + cos 2n:w, 
2,1,1 - oos 2.1u - cos 21't.V,

we rewri1e cqua1ioo {5) in the fotm 

-/;. cot 2,u: + (2 + 6)cos 21u11 - :t:2 
or 

2 2 + C. (0, 2.,cot n:w- �+A 

... 2 
-2+6oos2,u

" '"".. 2+3

I II the fint cue cos 2,m, � I, and he:nce we wrhc "' - 4 + •• 1•1 < I. 

cos 2nw • cos 2no - I -2,..1
0

1 + O(o'). 
Thus, r�dting (7) as 

ooo 2nw = I - 2 ! 6 (I - cos 2nc),

w e have 

2,r1o1 + 0(0") =- dtr1 t:
1 + O(t'), 

Substituting (6) into (8), we finally get 

•' 
• z: :t- + o(,•),

w 

i.e.,
•' w - * ± T + •l•'l

(fig. 196). Solving (7') in the same way, we gc1 
I • w = k + 2 ± n(l + I) 

+ o(c) •

.. 

f 'ig. 196 The region ofinstability for equation (4). 

(6) 

(7) 

(7') 

(I)
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Jl,ub/,m 3. (; 1"' the up1,rr {U\u1Uy umtablr.-) tqUJl1�tum po1,1t..-m of a ptnd:uh,.m b«om,it

.!ltabl«- 1( thr 1Mli1 11 of 1uiJkmion 04C1ll11r, 111 1ht \t'flkal dirttttOn,

An1, Th e Ul)fl(r ec1 ulllb, lum J>081tlon br.comft uablr fo r •uff"t<'ttnd,- ,,.pad Ol<iH:at"°"'
or 1hr 1Xll 111 of  au�J'4"ndon. 
Solutl11t, I A:'t / l)t" th(' lrngth of 1hr l'.N'ndulum ind • < / 1M amphtudt ol dw OIClllaooM
or ,he J>OI Ill or IUiJ)Ct1don. I.rt thr J)('riod of IIW' OKUlation1 of I hr point of lutpt""'°" bt 
2 r. whtre the a«lC'l era1ion or the point or .1.u.sJk:Mlon k «1m1ant and toqu;al eo .,.., dumic
cve,-y tual(-axriod (then c 8«/r1), The �uation of m04k>n an Ix •--nlkn ,n tlw form 

A - (,QJ J aJ}.r, 
whrrc thr sign c:hango after du: hm e r and ,,,, 1/1, a1 ,fl. If th e Ol<ibbOM of tM' 
point or tUSJk'mion are sufficiently n.pid, then a• > (;,1·

1, wM.-e a• &,Jtr•. As •• tht
prette:llng 1>roblc:m, wc hl\'C A A 1A,, where 

( 
ca,t, i, } ,inh kr). 

A, *' a' -+ w' 
.t ainh ,h cm:h 4r 

aod 

( c�n, A•;no, ). 
A,• fl' - a' - w1• 

-Cl 5i n Or cos Ch 

Hence 1he 11abili1y <:oodi1ion JTr AJ < 2 1altcs 1.hc form 

12 cosh .tr ,os !lr + (A -¥) s:inh ,h sin Clrl < 2. (9) 

We now sho w  1hal th.is condition holds ror sufficicndy rapid o,cill.-.tiom o/ tw poioc 
of suspension, i.e., for , > I (f < I). Introducing dimcnsion.lo.s nriablcs « .a..nd p sudi 
that 

! - •' < I 
I 

• 

we have 

l-µ'<1,
' 

Therefore the expansions 

eosh.h - I + ◄r(I + µ1) + ;c' + 
005flr - I - 4,1(1 - µ1) + ;s-6 + · · ·, 

(A -¥) sjnh ,h sin Ch • 16'l-
µ

1 + • · •

arc valid ror small #. and µ with accuracy O(c:' + JI"). Thus the stabaity aoodicioa (9) 
bctomes 
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✓� ,, . s' 

or 

( 2• 
r • !7" 

1111\ <'omlition HIii be Y.-riHt'H iu 1he r.-.1111 

N • � ,,,i s; 0.2 lli1'1�. 

( hap. 3 l,11\<'ar Sy,trm, 

whe� A' l/2r ii 1he frc:-qu.:-ncy of fl!M"ill:11ion oftht- pomt ofsuspc-mion. For �mplir. 
if 1hc leng1h o( tht 1lC'nduh11n I,/ 20 fm alld •ht- point of ,uspcn)ion 0u•n,1a OKilb· 
tions of am1lli1ude II I nn, thf'n N , 0.2 Hl•, '!'iiii]w 10 qlll, 1 n panwubr. tht uppn 
equilibrium l'°'il ion i, ,1abl(" ir 1hc· f11. <t1uN11 y of o,,rfllatHm of 1hc- po.nt of wspnuaon 
C"ffec·ch 3f1, 11ay, 

29. Variation of Constants

The following mclhod is oncn userul in inv�tigaLing equations nnr

"unpttturl)("Jn equations that have alr�ad)r UC'cn �,udiffl. Let, bt a fint 
integral of lhc unperturlxd equation. 'fhtn c is no long�r a fint int.tgral of 
tht- neighboring "pt-rturbed" cqua1ions. Hnwf"Vf'r, it is  on� pos.,ibk to 
recognize (exactly or approximately) how the valuroc(,p(t)) vary with time-, 
where({) is the solution of the unpcrturlxd �uation. In particuJar, suppc:IISt 
the original equation is linear and homog�neous, ·whilci:- 1M' prnurb<-d 
equation is nonhomogrneou�. Then lhis mc1hod le-ads toan aplicic formula 
for the solu1ion1 where. because or lhe linr-ari1y. tht- �rturba1ion nttd not 
satisfy any "smallness" requirement. 

We begin by noting that the particularly simpl, nonhOfll<l8enrous linear 
equation 

x = f(t), l E /,

corresponding to  the ''simplest'' homogtncous equation 

X :;; 0, 

can be solved by quadratures: 

(I) 

(2) 

,p(I) = ,p(t0) + J' f(t) dt. (3) 
'• 

29.1. The general case. More generall)', consider the nM�,,.,,us 
linear equation 

x = A(l)x + h(t), xeR", tel, (4)
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C 
.... 

f' 

t 
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Fig. 197 The c,oordinato of the point c ar� fint integrals of the ��uac.ion.

cor"rcsponding to the homogeneous equation 

x � A(t)x. (�) 

Suppose we know how 10 solve (5) ands • tp(I) i, its solution. Then in the 
extended phase space we use coordinates rectifying the intqral curves of 
(5), i.e., the point (,p(t), 1) i• .. signed the coordinates c • .c,.l and I (Fig. 
197). Equation (5) takes the particularly simple form (2) in the new 
coordinates, and we can go over to the rec1ifying coorcUnatcs by malting a 
tr-an.sformation linear in x. Hence the nonhomogcncous �uation (4) takes 
the particularly simple fonn (I) in the new coordinates, and can easily be 
solved. 

29,2, Solution oC equation (4). Suppose we look for a solution of the 
non homogeneous equation (4) of the form 

,p(I) • g'c(t), c: / - R", (6) 

where g': R• -+ R" is the linear (1
0, 1 ) -advance mapping for the homo­

geneous equation (5). Oiffcrcn1ia1ing (6) with respect 10 1, we get 

q, = .fc + g'c = Ag'c + g'c = A,p + g'c,

which gives 

g'c = b(I) 

after subsii1u1ion into (4). This proves the following 

THEOREM. Formula(6) gives the solution of <'f"Olion(4) if and ordJif c S4Sisfastlu 
equation 

c = C(t), (7) 

where C(t) = (g')-1b(t). 

coaot.LAJ<Y. The solution of the nonunear <'f"olion (4) wilh inib4l -,Jjti,,n 



210 Chap. S Lin�•• Sy11�ms 

,p(t0) • c is giwn by

,p(I) • g'(c + J:. (g')" 1h(t) dt).

Proof Apply forrnula (S) 10 cquoiion (7), which it or 1� particularly
•irnplc form (I). I 

Remark. In coordinalc form the theorem goo as follows: Cimt •fiutd••
mtnlol system of solutions of lht homogen,oo,s tfUation (5), tht ,.,.._,,_,
equation (4) con bt solvtd by substituting a lintar combi111ttio11 of ul•twas ef IN
Jundomen/o/ sysltm into tht nonhomogtntous •q•alwn and rt1ardi11g IN twjfiLimtJ of
th, linear eombinotion os unknown Junetion.s of timt. Tiu ,,suiting efffliM fa, 
dtttrmining /ht coef/ici,nts is then of tht partic.larl:, simpl,form (I). 

Probltm J. Solve the equation J + x /(t). 
Solution. Form 1hc cor«sponding homogeneous S)'llffll 

I'• • X,1.1 

'J - -x,,
wi1h 1hc known system of fundamental solutiom x1 • cos t, X,1. • -si.n I .uid .r1 = sin ,. 
x2 - cos I ,  In accordance with the general r1>k, �-e look for a tolutH)II ohhc rorm 

x, • ,1(/) Cott + t,1. (I) sin I,
To dctcnnint: t1 and t19 ...,,c have the system 
l' COi t + la sin t = 0, 
Therefore 

-l1 sin/+ l1. cost =f(t).

11 = -/(t) sin I,

$0 that fin.ally 

t2 -f<t)cost,

,(1) = [•(OJ -tj\,) sin r dr] cos 1 + [,(OJ + f.A•J <OS r dr] ,;n r. 



4 Proof• of the Baile Theorems 

In lhis chapter we will prove the thcorcnu on oci.11cnc�. uniqtKnns, 
conlinuity,and differenliabilily or ordinary differential cquationJ,uwdl :u 
the theorems on rcctilinblllt)' o(o vector field and o(a ficldof dirtttioM. � 
proofs abo contain a technique for eonJtru<ting approximate solutioM or 
differential cquntlo,u. 

30. Contraction Mappings

We now give a method for finding a fixed point of a mapping of a m<:tric 
space into itself. This method will be used later to conJtruct solutions of 
diffel'cntial equations. 

30.1. Definition. Let A: M - M be a mapping of a metric space: ,If 
(with metric p) into itself. Then Mis said 10 be a cont,a(lio� ma� if thcK 
exists a constant A. 0 < • < I such that 

p(Ax, A_y) ,s;; Ap(x,_y) V x,_y e M. (I) 

Exo mpl, I. L<:t A: R - R be a real function of a rt'!a.1 \.-a_riabk (Fig. 198). If &br dtri"� 
of A is C"Vcrywhen:: of alnolutc value Ins 1ha1l 1, then A need not be a cont.ra<'bOD mapping.
However A is a contraction mapping if, 

IA'I -. ! .  < I. 

Examp.J, 2 .  I.ct A: R.• - R• be a linear operator. Jf all the cigc:nvaluc:s o( A lie Rrirtly
in.s:idt: the unit disk, then there uists a Euclidean metric (a Lyapuncw function in t he
senM"; of Su. 22.3) such chat A is a contraction m apping. 

P,oMm1 I. Which or the following mappings of tht line (with chc onhn:ary mrtric) in.co
itself are contraction mappings:

a).1 = $in ..-; b))' = ✓xl + I; c).1 = arcu.ns? 

P,ol,/�m 2. Can < be replaced by < in che ineqvali1y (I)?

30,2, The contraction mapping theorvn. A point x e .\f is call<d a 
fixed pcint of the mapping A: M - M if Ax = x .  

A.r 

Fig.  198 Fixed point ofa contraction mappin g .
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X 

Chnp. 4 Proo& or, h• Batie Thc:ottmt 

Fig. 19'9 Sequt"rltC': orimaga ofa point II vodtt • mapping A. 

TIISOREM. lit A: M ➔ Mb, a contraction mappini of a compkk m,tnt •J>IIC• i\1
into itstlf. Then A has a uniqu,fix,d point, a;, ..... ., point x E i\1, ,,., Slf'U'N<

of images ofx under application of the operator A (Fig. 199) ,,_,8" i. tl,,fixed 
point. 

Proof. If p(x, Ax) = d, 1hcn

p(A"x, A""x) ,;; )."d. 

The series 

converges, and hence the sequence A•x, ,, = O? J, 2, ... is a Cauchy 
sequence. But the space A1 is complete, and he.nee the limit 

exists. The point Xis a fixed point or A. Jn fact, since ('\.-Cry contraction 
mapping is continuous (choose a = r.), we have 

AX:: A lim A"x a: lim A"• 'x = X .  

Moreover every fixed point Y coincides with X, since 

p(X, Y) = p(AX, AY) ,;; ).p(X, Y),). < I = p(X, Y) • 0 .  I 

R�mark. The points x, Ax, A 2x, ... are called 111cu1.sii� app,oximatimu 10 X .  
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Let x be an approximation to the fixed point X o f a  contraction mapping A. 
Then the accuracy of the approximation i.s a.sily cslimatcd in tams of 1he 
disiance d bc1ween the poi nu x and Ax. In fac1 

d 
p(x, X) '-

I - A• 

since 

d +Ad+ A'd + 

(fig. 200). 

d• ,-_--,A

31. The Existence, Uniqu<,ness, and Continuity Theorems

V't/c now construct a contraction mapping of a complete mctric spatt whost­
fixcd point de1ermincs 1he solu1ion of a given differcn1ial equation. 

31.1. Successive Picard appro,tl1natl0Ds. Consider th<, differential 
equa1ion i = v(x, I} de1crmincd by a vcc1or 6dd v in a domain of the ex­
tended phase space R"" (Fig. 201). Then by 1he Picard mapt,i,,i v.-e mean 
thcfollowingmappingofthcfunction q,:, _ x into the function A•='- s 
defined by 

(A,p)(t) = x0 + J' v(,p(,}, ,}d, .
•• 

Ccomctrically 1hc 1ransi1ion from ,p to A,p (Fig. 202) means using one 
curve q, t o  construct a new curve A'P whose tangent at C"-ery point t is 
parallel 10 1hc dircc1ion field determined by ,p rather than 10 the field on the 
new curve Aq, itself. Note that q, is a solution satisfying the initial condition 
,p(t0

) = "• if and only if ,p = A,p. 
I nspircd by the contraction mapping theorem, we now consider ttK 

successive Picard approximalionstp, Atp, A2
,p, ... , bcginning,say, �ith ,p= :so-
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Fig. 201 An in1.-g,al C\ll'Y( 0(1ht <"qua1ioo X v(•,I). 
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fig .  202 The Picard mappin g .
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Fig. 203 Picard approximations for the equation :i • l(l),

X .z:oe' A2p Aft' 
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Fig .  204 Picard approximations (or the cquarion X = •· 
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6KOfftJ,/I I, I.el j f(I),

(A•)(•) .. I J' r(r) dr'• 
(f'ls, 20.ll), Then the flr1t 11e1> lud, 11 once to an uac:t .olution.
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l!:xonipl, 2. IICII i •• I Ip O (Fig, 204). In th,� ta� the con,t-rsmtt of the ap--
1,ro,clmatlom fan written down immediately, In rac:t, •t the p(Mnt I �e h.a,e 

A• ., •P + J� •o dr • Jlo(I + t),

A 1• - •o ·f J: -.(, + r) dr - •o{I '') i-•+r, 

( 
,, ,·1 A'• - •• I + I j- '2° + · · · + .I ,

Remark I. Thus the two dcfinicions

I) e' = lim ( I + �)•,
,._QD n 

2) t' - J + '

of 1he exponen1ial correspond 10 two ways of solving the particularly simple
difTcrcnlial equation X = x approximatc.ly, namely the method of Euler
lines and the method of suc�ive Picard approximations. Historically the
original definiti01\ of the exponential was simply 

3) 1' i� the solution of the differential equation X = x satisf)'lng the
ini1ial condiiion x(O) = I.

Rtmark 2. The convergence of the approximations for the equation
i = kx can be shown similarly. The reason for the convagmtt of th�
successive approximations in the general case is juSl that the equation
i a kx is ''the worst/' i.e., the successive approximations for any equation 
converge no more slowly than those for some equation of the form i = .tx. 

To prove the conveJ"g_cncc of the successive approximations, we construe.•
a complete metric space in which the Picard mapping i s  a contraction
mapping. We begin l,y recalling some facts from a course on analysis.

31.2. Preliminary estimates. 

I) Tht norm. The norm of a vector x in the Euclidean spatt R• �ith
scalar produc1 ( ·, ·) will be deno1ed by jxl = J(x, x). The space R• with
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the metric p(x, y) • I• - YI it• complete me1ric spaee. W,: no1e two key 
lneq1H1 litie<, t 11n111cly the trianglt intqun/ilJ 

I• + YI '- lxl + IYI 

nncl the Stliwnrz i11rq11nlil)' 

I(•, y)I � l•I IYI• 

2) The vector intt(rnl. Let f: [a, b] - R' be a vector function with
values in R" which is con1inuous on ra, b]. Then the vector integral 

I• J: f(t) dteR'

is defined in the usual way (with the help of Riemann sums). 

LEMMA, 

IJ: f(I) dt � IJ: lf(l)I d,1. (1) 

Ptoof. Using 1he triangle inoqualily to compare Riemann sums, w e  get 

IL f(t,)6,1 ,;; L 1rc,,J11a,1. I 

3) The 110,m of an operawr. Let A: R • - R' be a linear op,:rator from one
Euclidean space into another. Then we denote the norm or A by 

IAI � sup IA•I.
•<R"',0 lxl 

We then have 

IA + Bl .;; IAI + 181, IABI .. IAI 181. (2) 

1·hc set of linear opc.rators from R• into R• becomes a complct� m�t.ric 
space if we set p(A, B) = IA - Bl. 

t Let us recall 1he proof or these incq uali1ics. Draw the 1we>-dimcns�l pbnc through the 
veclors • and y of the Euclidean space. This plane i.n..hcrits the Eudidea.lld.nli«uTC (rom R ...
Bvt in the f:udidean pl an<" both incquali1ics ar\" known from dancntary g�. This 
prO\ 'CS the incqualili\".s in any Euclidean space, for cxampJ'° in R•. In pMticub.r, •·� h.a,·�
pro\ ,cct wirho ul any C'.tlcuJations at all tha.t 

I: x,.1, <; E xf I: .Y�,I • 1· • • j • I I• I o • I 

and similarly
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Fig ,  206 The dcrivath·c: of a mapping f .  
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31.3. The Lipschitz condition. Let A: 1'1
1 

- 1'1, be a mapping of a 
mctl'ic space A1, (wi1h mcctic p1) in10 a mecric space A11 (with �tric p1}, 
and let I. he a posilivc real number. 

Definition. The mapping A is said to satu.f:J a lipsdrit z tontliti«r u.itlt ,_llml 
l tand we write A e Lip L) ifit increases the distance between 1·""-oarbitrary
poinu of M1 no more rhan /, rimes (Fig. 205}:

p,(Ax, Ay) E; Lp,(x,y) V x,yE M,. 

A mapping A is said to sati,jy a Lipschitz condition ifthr,c exists a constant L 
such that A E Lip/,. 

P,obltrn I, Which or the following mappings sa1is.fy Lipschi1:z. conditlOnS 1.bc ffle1ric • 
F.uc-lidl'an in e:aeh case): 
a),Y-1-1 ,,aR; b), 
d)y- Jx? - x1,x:), xi;

IX.x">O; c)J=Jxf+xl,

e:} =lxlogx, O <x<;J.
) 0, x = Oi 

f);,•.r',x,C,J.,!.; I� 

J"rohltm 2 .  Prove that tvery cootrac1ion mapping satis6cs a Lipschitz: coodibe)ft, and that 
every mapping sati.sfyi1lg a L.ipschjt.z condition is eon.tinuous..

31.4.Difl'erentiahilityandLipschitzconditions. Let r: t: - R"bca 
smoorh mapping (of class C', r -" I) of a domain U of the Euclidean spatt

R � into the Euclidean space R" (Fig .  206). The tangent space to a Euclidean 
space has the natural Euclidean struclurc al every point, and henct: tht: 
derivative 

£.J. = r .. : TR:' _., TR((•> 

off at  the point x E U c R"' is a linear operator from one Euclidean space 
into another. 
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Fik, 207 Co111illuous diO'trt"lllil'bilicy irnpli�• vahdity of a LlpK"hil.1: ronct.uon. 

THEOREM, /,e/ V bt any substt of tl,e domain U u.hid i, both'°""'' •d ,.,,.poct.

Tht11 a eontin11011sly dijftrtnliable mappin,x C satirfa, • lips<hit z c.111111-.., V aitlt
con.rlant /, ,q11al lo the ltaJ/ upp,r bound of

l •• V: 

I, • sup lf,,I .
.. v 

Proof. Let z(t) = x + l(y - x), 0 .; I .; I be 1he line segmcn1 joining 
the poincs x, ye V (Fig. 207). By the fondamcn1al 1hrorcm ofcalculUJ,

f(y) - f(x) = -f(z(t)) dt - r,,,.1t(t) dt, J
I d 

I' o dt o 

and hence 

J: f._1,1t(t) dr � J: Lly - •I dr = Lly - xi,

by formulas (I) and (2), since i = y - x. I

Remark. The least upper bound of 1he norm of 1he dcrivati"� If,! on I' is 
actually achieved. In fact, f eC' by hypo1hcsis, and hence the derivative£, 
is continuous. It follows that If.I achieves its maximum Lon the compact 
SCI V .  

In undertaking the proof of lhc convergence of the Picard approxima­
tions, \\'C will examlnc the approximations in a smal1 neighborhood of a 
given poinl, The following four numbers will b,- US"<I 10 describe this 
neighborhood. 

31.5. The quantities C, L, a', b•. Suppose 1hc right-hand side v of the 
differential equation 

x = v(x, 1) l3) 

is defined and diffcrcnliable (of class c·, r � I) in a domain u C a• X R I

of extended phase space. We fix a Euclidean structure in a• and hcntt in 
TR;. Consider an arbi1rary pnint (x0, /

0
) e C (Fig. 208). The cylinder 

r = {x, t: II - t01 � a, I• - x01 � b)
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J,�ig .  208 The: t.')'lindcr rand the conc: Ke,

:r 

t0 I 

Fig ,  209 Odlnilion or h(•, I).
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lies in the domain U for sufficiently small a and 6 .  Let C and L dfflOte the 
least upper bounds of the quantities lvl and Iv.I on this cylinder, where here
and subsequently the asterisk denotes the derivative (with rcsixct to s) for 
fixC"d t. SirH'C the cylinder is compact, these least uppcrboundsattachit\·cd: 
lvl ,.; r., Iv.I ,.; L. 

Now let K0 be the cone with vf'rtcx (10, x
0

), 0o·pc-ning"' C. and ahitudc:4',
s o  ,hat 

Ko = {x, I: 11 - lol .. a'. Ix - •ol .. c11 - 1.1}.

If the number a' is small enough. the cone K
0 

lies inside the cylinder r.

Moreover, if the numbers a', b' > 0 arc small enough, every cone K_. 
obtained from K0 by parallel displaccmcnt of the vertex to the point (lo- x),
where Ix - x

0
1 � b\ also lies inside r. Tht' numbcna"' and•· att assumed 

10 be small enough so that K, <= r, and we will look for a solution "of 
cqua1ion (2) of1hc form ,p(I) = x + h(s, 1) subject to thc initial condition 
,p(10) = x (Fig. 209). The corresponding integral curve then lics insidc the 
cone Kx. 

31.6. The metric space lvl. Consider all possible continuous mappings h 
of the cylinder I• - x

0
1 ,;; 6', It - 1

0
1 ,;; a' into the Euclidean space: a•,
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and let ,W dcnntc tl,r S<'t nf,uch mn1,pings which -atiify thee<ira roodttoon

lh(•, 1)1 < (.'II - lol 

(In par1ic11lt1r, h(•, 10) • 0). We Introduce a metric pin 111, by Klltng

p(h,. hi) • llh, - hi ll • max lh,(,, I) - hi(x, 1)1.
h •111 <•• 11-tol<•'

·rH£0REM. T/111,1 J\1, tquipJNd with the mtlrit p, is  II comp/tit 11t1tri, 1/»u.

(4) 

Ptoof. A uniformly convergent sequence of continuous functionscon"-crgcs 
10 a c.ontinuous function. If the functions satiify the inequality (4) bclocc

passing 10 1hc limit, then chc limit function also 1atisfies (4 with the same 
constanl C .  I

Note 1ha1 the space 1\1 depends on three positive numtxn •'. 6\ and C.

31.7. The contraction mapping A: /11 - /If, Next we introduce a 
mapping A: M - NI defined byt 

(Ah){•, 1) = J' v(• + b(x, t), t) dt.
'• 

(5) 

Because of the inequality (4), the point (s + b(s, t), t) belongs 10 the cone 
Kx, and hence to the domain of definition of the field v. 

THEOREM. If a' is suffici1111/y sma/1,formula (5) d,fin,ts a conlr«liM -M>i•t of
1/tt spact /11 inlo irself. 

Proof I) First we show that A carriu 1\1 into itst/f, The function Ab is 
continuous, since the integral or a continut)US function depending contin­
uously on a parameter is continuously dependent both on t� pa.ralllC'tcr 
and on the upper limit. �1.orcovcr, Ah satisfies the incqualhy (4)� since 

l(Ab)(s, 1)1 ,;; 
If. v(s + b(s, t), t) d,,,;; If. C dtl,;; Cit - 101,

Therefore AM c NI .
2) Next we show that A iJ a contraction mllpping* i.c.

1 
that

QAh, - Ah211 ,;; -lllh, - hi ll, 0<-l<I.

To this end, we estimate Ab, - Ab2 at the point (s, 1), \¥c have {Fig. 210) 

(Ah, - Ab2)(x, 1) = J' (v, - v2) dt,
•• 

t In comparing (S) with the Picard mapping o(Stt. 31.1, it should be: borne: io mind that-.T 
ttre now looking for a solution of the form" f .b. .  
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, hz 
, "'h , ,

tq t 

f'ig, 210 (:umpati10n ofv
1 

and v,. 

where 

v1(t) • v(x + b1 (x, t), t), i - I, 2. 
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According 10 Theorem 31.4, for fixed t 1hc func1io1\ v(x, t satisfies a 
Lipschitz rondition (in the first argument) with constant L1 and hence 

lv,(t) - v,(r)I ,;; Llb,(x, t) - b2(x, r)I,;; Lib, - b,l-

Nlorcovcr, according tn Lemma 31.2, 

l(Ab, - Ab,)(x, 1)1 -.1r. I.Jib I - b, dtl .. La' b I - .. , • 

Therefore .-ii is a conlrar1ion mapping if l.a' < l .  I

31.8. The existence and uniqueness theorems. 

COROLLARY. Suppo1r lht ,;ghl•hnnd sidt v of lht dijfumlial tq1111Jff1• (3 is

contimwus(r d[ffereutiable iu a ueigJ,borhood of a point (t0, x0 ) •/ tt"tt:JUltd pJu,.u 
,spare. 7 ·1teu, gi11en m!) poinl x suffidmtl.J• dost to s.0 , thtrt is a ntiiJu,r,,/t#,1 •f 10 i•

which a s11/111io11 o/(3) ,atiif.ri11g th, initial conditio11 '1'(10) = xis ufo,td .. \/or-,,, 
1M, solution defJet1ds co11tirwou.sl;· 011 lht i11i1ial point x. 

Proof. .'\c•f'ording 10 �l·l,rorr-m 30.21 1 he con1tac1ion map pins;. I hb a lixcd
point b E .\/, Lei g(x, I/ = x + b(x, 1). Titer> 

g(x, 1) = x + J' v(g(x, t), r) dt,
'• 

vg(,,11 
• = v(g(x, I), 1).
,., 

I I fi:>llo,\·� 1 ha l g ,.u i,fo...,, rquat ion ('.l I for fix<-d x and , fw init.ial condition 
g(x,/0) = xlort = t0.i\Jon:ov<•rgi�cnn1inuou,,loimt·he.\l. I

Thui. ,,·t· have· p.-ovc-·d tlu..: <'xi:-.trrn·t· tlu .. ··orcin fot t·qua1ion '3 and �ib. 
i1ed a solution which depends <'on1inuoui-lyon 1lw ini1ial f'onditions.. 
P,,;bf,m I. 1'

1

, 1 \ t ·  1lw uniqu c·m� tht..-Ornu. 
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Solutlo" I. l.r1 6' 0 In 1hc d.-finl1ion of A f .  1'llrn 1hr uniqurnn, o(dw- fixtd point ofth.t
con1racllon rrn,pplng A: Af • /l1 implir, the uniqUC'nn, of 1hr M>luuon wihJ't•"I t,W.
lnhfal condition .,{,o) •o), I 

Solutio1t 2 .  I.rt•• and•, be- two ,olut lmn a.11i,(yln1 tM ,.uuf' initbl c:ond111on •• ,., ..
"1(10) •o 1111d dcfintd for It ltl .c. "· MorfO'n- Irr 

11•11 • m•• 1•(1)1, 
I• •1,I -c,' 

wht1·c O c.: n' < (T. Thcn 

,,(1) - ,,(1) • J' [vC•,(r), r) vC•,(r). r)J ,,. 
'· 

f'or sufficien tly smr.11 a· 1hr poin1, {•1(r}, r) and C•,(r). r) lit i,. the- cylindn- whim
v • Up t .  Thrl'cforc 11•1 -•,11 < La'll•1 - •,11, �h.Ch implin I'•, •,II O ,r
lt t '  < I. Thus ihr solu cio ,u •• and"' .;oincidr in ,ont(' llC':ighborhood ol thc- point'• I

i11c local uniqucnc:M thc�m is now J.)l'O\'«I,

31.9, Other appUcations of contraction mappinK"•• 

P,oblr,n I. P, •o \'t' the in\·t� funnion throrf'm. 

/lint. II is 1uniciro1 10 i,wcr1 a C1-map1>i11g wi1h a um• li,war parl y • + • a , •h,,rn,
•'(O) - 0 in a ntighborhood or the ,>Oint O • R• (a linar ch.an� oha.riabks ttd\Kft the 

gc1wral case to this n,.sc), Suppo,;c wr look for a IOlution of tht- form a • y + ♦ yf .
Then we 8CI 1hc equ:uion 

•CY) - •(y t- •Cy))

for •· TherC"fott 1he dn.ittd fonnion ♦ is a foc.N poim of the mapping A ddirwd by tht 
formula 

Moreover ,1 i� a contrartion mappin g (in a su itable" �tric). s:in,e the" clnn�ti,,-� ol tht
fum·tion ¥ is small in a n(ighborhood o f the point O (b«au 5C'  of the-,ondirion •• 0 01.

Pmhltm 2 .  Pro\',c 1ha1 1hc Eulrr linr appm,U'hts a solutlOR as ill s.1cp approat'hr,. XTO. 

&lution. Let IA • t' h4 be tht' Eulc·r line wii..h step .l. and in.itia1 cottd.ition C:-£ -.. i.,, - • 

(Fig .  211). In 01her wonh, lr-1

i i  
�g.(x, 1) ~ v(g.Cx. 1(<)), s(I)),

whcr(' J(/) • 10 t- k.) :ind I. is tht' i111('gral part of (I  t0) · .) .  Th� di(iucnct �-"ttn fflC' 

:c 

4 4 

t0
t1 sf(} t 

a' 

t 

Fig ,  211 The Eulc:r line g4{x,I).
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fa 
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t�ig, 212 Stran ds of1he approximation A and itt linc-ar put A • • •

Eult'r line and th e solu1ion I c.tn � es1im at� by wing the formula m S«. 30.3: 
I 111. Ill 'llh. - hll < r=.IIAh. - h.11 ,  

Ou1 

(Ah.)(•, 1) - J' v(s.(•, r), r) dr, 
'• 

h"(•. t) • J' v(s"(•.s(r)), ,(r)) dr, 
,. 

and as � - 0 th e diffettnC'C bt1ween the inl�ra.ndJ: approatha un, unironnly t.n r, 
J rl < ,,. (because e>f 1he equiron1inuhy of v). Th('rtf0te JI.Ah• "•II -0 as .) -o� and 
the Euler line ap1>road1e1 a 10lu1ion, I
•Probltm : J .  1..c:t A b<" a diffeornorphism or a neighborhood o( the point O• R• oato a

n eighborhood of th e same- point carrying O into 0, and suppo,c the li.ota.r put of A at 0 
(i.e., the linear operator Au : Jl• -R•) has no cigcrwalun o( modulus I. Ltt •- ht' lM 
numb er of eigenvah.u:s with IJ.I -. . ·  I and m,. the number of rigcnva.lua with Ill> I. 
Then A•• has an invariant subspace R • - (tht" inroming stn.nd) and a.n in,-aria.nt sub­
space R"'• (the ov1going 11rand), whoec poi nu approach O under aP91-ication of A! .. 
where N- +oo for R • - and N- -oo for R•· (F"ig. 212}. 

Pro\ · e ,hat 1hc- nonlintar mappillg A also has inv.11,ri.an i .1ubmanifolds . \f• - and .\f•. in 
a neighborhood of 1hc poin1 O (incomi ng and 01.ngoi.ng strands), tango,1 a1 O IO I.hr 
subspaces R.,- arld R .... where A"•- 0 for •• , \ f • - as J\'- +oo and A,..s -0 b 
•• M•• as N- - oc, .

Hin1. Take any subman ifold r0 o f  dime nsion "'· (langcnr 10 R•· at O. say). and apply a
power o( A co r 0• US(" the method of contraction mappings to prow: tM con\agm« o/ 
the resuhin8 approximations r.., = A

l'lr0, N- +oo to J\J• •• 
• P,ohl�m ii .  Prove 1h e cxistenee of  incoming a.nd outgoing strands at a noolinea.r s.addk
point X = v(•), v(O) = 0 (it is assumtd that nonC' ol the cigcn\0 alua o/ t.bt open.aor 
A - v.(O) lies on the imaginary axis).

32. The Differentiability Theorem

J n this section we will eventually prove the rectification theorem. 

32.t. The equation of variations. \Vith any differentiable mapping
f: U � V we can associate a linear mapping of tangent spaces at C'\'ery
point:

r •• : TU. - TV,<•>· 
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I II jusl lhc- same way, we ca u associa1r with th<" difft·rcruial C"qua,tOn 

X • v(x, 1)
1 xcl'c:R' 

a sys1cm of di1Tcr-cn1ial c<.1ua1io11s 

{ x = v(x, 1), 
y • v.(x, 1), 

XE Uc R'\ 

y c TU., 

(1) 

'2)

linear in the tangent vector y (Fig. 213). \Ve call (2) tho �rsuaef,.-•li-ef
variations for equation (1). 1'hc asterisk in (2), and in subsequent fonnulas, 
denotes the derivative ,-..•i1h respect to x for fixed t. ThlL, v.{x.1 is a linr-a..r 
operator from R" into R". 

Together with the system (2). i t  is convenient to consider the-S)'Stcm 

{ x = v(x, I), 
i. • v.(x, t)z, 

xe:UcR", 

z:: R" _., R", (3 

obtained from (2) by rcplaring the unknown vector y by an unlmo�'ll lincar 
transfonnation :.. We will apply the term equation ofi:artatiOl&I to the system 
(3) as well.

Rtmatk. In genetal, given a linear equation

y = A(t)y, (2') 
it is useful to considct the associated equation

i = A(t)z, z: R" - R•. (3') 

involving the linear operator z .  From a kno,,•lcdge of one of the equations 
(2') and (3'), we can easily find the solution of the 01her (how?. 

32.2. The differentiability theorem, 

·rHEOREM. Suppose the right-hand sidev of equation (I) u tu,ia<MJ�:,diffa­
entiab/e in a neighborhood of the point (x

0
, 1

0
). TirLn tht solution g('JL, t) ef ,tp,atit»t
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(I) snti,J)·in.� the i11it1nl co11d1tia11 g(x, t0) • x ts a conttn11011slJ rl1/n1•1t•M1 ftiN•
tia11 of th, i11itinl ro111/itio11 x, as x and I"°') in um, ((>oss,bl,sma/1") ,.,,tAkr4-I
afth,poi,11 (•o• t0):

var:• • 1 G r:1 

(qftlass (:' 11 •itl1 r11p,ct tax). 

Ptoq/, Since v E C1 � v. E C1 , chc <i;yslcm of equations o( \·ariation" (2 
saddi,•frri tl1e conditions of Set·. 311 and the �ucncc: of Picard apptOXima­
tions nmvcrgrs '-"'iforrnly ln a <tW>lulion of (3) in a �ufficicntly-small ncigh­
horlloocl ,.r the poin1 /0• Imroducing 1hc initial condition, .,0 - x {iuffi• 
cicntly tlC'ar x0) and tJ,0 = h', \\C drnotc the Picard appro.ximatinns by•• 
(for x) and ,J,, (for z), so that 

If',+ 1 (x, t) • x + J' v(,p,(x, t), r) dt,
•• 

,J,,., (x, t) • E + f' v0(,p,(x. t), r),J,,(x. t) dr .
'• 

{4) 

{$) 

No1ing that 'l'o• • ,J,0, we deduce from (4) and (5) by induction in• that 
q,,. • 1 • = 1/111 + 1• Thcrtforc the �cqucncc {\f,

,.
} is the �ucncc of derivatives

of the sequence {,p.}. Hoth sequences (4) and (5) arc uniformly convergent 
for sufficirn1ly small It - t01, bt'ing sequences of Picard approximations of 
the sys1em (3). Then Lhe sequence { 'P,.} i� uniformly convergent together 
with its dtrivatives with r-�pc:ct to x. Hence the limit function 

g(x, t) = lim ,p,(x, I) 

is uniformly differentiable in x. I

32.3. Remark. At the same time, we have just proved the following 

TH£OR>:M. Th, derivative g. a( the sol•tion of tq•atian (I) u:ith resp«t i. llv i,ritiol 
co11dition x sati.sjies the equal ion of variatiofl.S (3) u...ith lhe initial contfition ::(10) = £: 

i) 
-g(x, 1) = v(g(x, I), 1),
Cl 

i} 
,,-g 0(x, 1) = v.(g(x, t), t)g.(x, t),01 

g(x, 1
0

) = x, g.(x, t0) = 1-: .

This theotern explains the meaning of the equations of variations. namely 
they describe 1he action o f t  he (t

0
, t)-advance transformation on the u.ngcnt 

vectors to the phase space ( Fig. 214 ).  
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Jtig. 21◄ Acdo11 or lhc (141, t)-advancc cn.nsform .. teon on a curv� in ph.u,ir -'f»tt and on
ii, tangent vcc1.or. 

32,4. Higher derivatives with respect to x and 1. Lc:1 , ;;. 2 be: an 
integer. 

1'HEOREM T,. Suppose the right-hand side v of <9•otion (I) is (Olllin._t_, Jrf'rr• 
tntiablt r timtJ in • ntighborhood of a point (x0, 1). Then th, soluti• g(x, 1) •f ,, ... 
lion (I) satisfyi11g till initial condition g(x, 1

0) • xis an (r - I )-f,1,/ ,.,.11__,t., 
dijftttnlioblt fiirution of the initial tondition x, OJ x and t r,a,;, i,, Hmt C,,,1s1bl,1 
smoller) ntighborhood of the poi11t ( x0, 10): 
VE C'' => g E c;- t. 

Proof Since veC•� v. eC'- 1, 1he •ys•em o(cquatioruofvariations (3)

satisfies the conditions of Theorem T,_ 1• Hence Theorem T,_ 1 impljcs
Theorem T., r > 2:

VE C' => V E c,- J =-- g E er• l => g e er-- I 
• • • • • 

This proves Theorem T,, since Theorem T1 is just Theorem 32.2. I

32.5. Derivatives with respect to x and t. Again let, � 2 be an integer.

THeOReM T;. Under the conditions of Thtorcm T., tlr, solution g(x,1) is a difer­
tntiablt function of class C' - ' with ruJMct to  both r,onablts x and t: 

VE C' c> g E c;r- •.

The theorem is an obvious consequence of the preceding t..hcoKnL How• 
ever, a formal proof goes as follows: 

L.£M.M.A, u, f be of1.1nt1i,m (witJr L'd.lua UI R'") tkfind _,. IN du«1 r.,,,_, � • ...... C "!( £s&I,,.,. 
1p,au R'"' ond an int�u,a/ I oft� t-4Xi1: 
l:Gxl-R'". 

Omsidn Ille i.nleg,·o/ 

F(s, 1) - J' f(s, r) dr, 
,. 

X, C, [lo, I) C I .

T/i'1) IC c�, f C C" -I implies F ' C" .
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Proef q/ tit,''"'"'"· All)' ,ch pariial deriva1ivc of 1M' ful'K'1ion F with ropttt to •hit nnablcs 
x1 and, lnvolvlng dlfff'rtntlatlon with mpect 10 t can bt' "p,rOKd in tffffil oil and 1M'
partll'I d•:rivalivt:, or ,he func1ion r of order INI than ,, and hcnn i• cononuo,ya. """°"
an y ,11! par tlAI dc:r iva1ivc with rnpctt 10 chc v1m11bJn x1 b ('ontlnu0ut by h� t

/>,� ef tit, tlt,omn, We have 

1(•. 1) • • I f' •(1(•, r), r) dr.
,, 

Writing f(11, r) - v(1(•, r). r) and appl ying IM lemma, we find chat

,,o--• n c: ⇒,,o-.

According to Theorem T,, g • c: for p .e. , .  Thus we get ,uccasi:vdy 

1,eo ⇒,,c• ⇒ . . .  ⇒,,l"- 1
• 

Ou1 I• C0 by ScC'. Sl.8 (the &0lu1ion depcodJ con1inuous.ly on a, 1). Thia compkta lh-t 

1>roor or Theotem r;, I
P,01>1,m I. Prove lha1 if 1he tigh1,hand ,idc of the diffamtia l c:.qu.ttJOn I it at1.6n1tdy
diffc"1!nliablc:, then th e: solutil>n is alw an infinitely djffcrmtlablc fu11ttl0ft o/ 1ht 1nmal
conditions: 
v, c• ⇒ 1,c•. 

ll�mark, h • ·an al so be U1c>wn 1hat if the right-h.and side v is ana lytic (bu a Ta)W taict. 
converging to v in a neighborhood of every point), then the sol ution .I .aho de.pa.ct..
anal)'tically on• and,.  It i s  natural to stud)' differential equations with anal)"lit right�hand 
sides: for both complex values: of 1he unknowns and (ol particular i:mportaJlft) (or C'Offl*
plex V3lucs of the time t.f 

32.6. The rectification t,heorem. This thco.-cm is an obvious consequence 
of Theorem r:. Before proving it, we rccalJ two simple geometric proposi ­
tions. Let L, and L, be two linear subspaces of a third linear space L (Fig. 
215). Then L, and L, arc said 10 be tranJt•<r'l< if their sum is the whole space 
L: L, + l

1 
� L. For example, a line in R3 is transverse to a plane if it

intersects the plane at a nonzero angle. 

PROPOSITION I. Ev,ry k-dimmsional subspau R• in R• Ira, an (n - lc)-dvnauWMI

transverse subspace (infatt, at l,ast on, of the<:; coordinate planu ef t/u spar, R•-•

will be tram,erse to R•). 

/ 

fig .  215 The line L1 is traruvcne 10 the plane L1 i n the space R'. 

t Concuniog this thcor)', sec e.g., V .  V .  Colubao, l.«bdd.,. tlu Aaal..JIO' 1--,-1' Dife ­
mlial Equatu>n.s (in Ru ssian), Moscow (1950). 
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The f)rooris given in course, on liucaralgcbra (1hc 1hrorcm on 1he nank or 
n IIHH,.ix). 

rRoro11110, 2. If a /i,ttar mapping A: /, - 1\1 map, an, tu'O ,,_,,, ,.,,,,.,,, 
o'1/r, trausv,rsr subs/1aus, IJlfn it maps l 011111 th, u hot, spott A1. 

Proof AL • AL, + ,II,, • Id. I 

Proof of the rectifitation theorm,: No11au/011omoMJ cas, (s,:c Sec. 8.1 ). C-.oru.ider 1hc 
mapping C of a do1nain of 1hc direct producl R• x R into 1hc extended 
phase space of1hc equation 

x • v(x, 1) (I) 

defined by 1he rormula C(x, 1) - (g(x, I), 1), where g(x, I) is a solu1ion or 
(I) satisfying the initial condition g(x, t0) • x. Then, as we nows.how, C is
a rectifying diffcomorphism in a neighborhood or1hc poin1 ("o, 10).

a) Tire mappir\f Cu dijfrrentiable (of classC'- 1 if v EC C'), by Theorem T;.
b) T/1t mapping C lraocs I 1111d1a,,grd: C( <, 1) = (g(x, 1), I).
c)  The mapping C

0 
carriu the standard v,clor fald e (x = 0, I = I) W• ti,, 

giuenjield, i.e., G0c = (v, I), since g(x, 1) is a solu1ion of (I). 
d) T/1t mapping Cu a diffeomorphum in a ntig/rborlH>ad of llte fJeilll ("o, 10). In

fact, calculating the r-c.sttiction of the. linear operator C.1, • ..-. to the trans-­
verse planes R• and R 1 (Fig. 216), we get

The plane R" and the line wi1h dir"C-<:tion v + e arc ,rans\-cne. Thcrcfott 
C. is a linear mapping ofR"' 1 onto R" • 1 and hence an i.sornorphism (1hc
Jacobian of c. a, 1hc point (x0, 10) is non,ero). h follow, from the in,-us,,
func1ion I heorcm Lha1 C is a local diffeom<>rphism.

Proof of the rtttification thtorem: Autonomous cast (sec Sec. 7.1). Consider the 
aulonomous eqt1alion 

X = v(x), XE u c:: R". 

R" 
e 

fig. 21 G Ucri\·Mi\·c or 1he mapping Cat th<" point (Xo, ,.).

(6)
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R
""' 

(J 

\ :�
r� 

�((,ti. 
{ I ,1' , 

L,•1 cite pl,ast· v,·loci,y v
0 

a, the point x
0 

bt-diffrrt'nl from O .-ig. 217 . Thm 
tlwr<· t•xi"1s an (n - I )•dimensional hnM'rplanc R•-1 c R"' passing 
lhrough x0 and 1rarhvcrsr 10 v

0 
(mor<· exartly. a c-orn"11,ondin� plant in 1hf' 

tangl•n I space.· T( '• 1 rau�vc.·r,1· to I lw liuc RI wi1 h di r«tinn v0 
. Let G be the-• 

,napping of chc domain R" 1 x R where R" 1 • {{}, R • (I} into ,h,-
do111ai11 R" defined h)' cite formula G({, I) = g({, I) "here, { lin on R•- • 
neat x

0 
and g((.1) i-: 1h<- value of 1hc solution of equation (6 ..atisfyin� thf' 

initial c·ondition <?(0) -;;;: � a.1 the time, .  Then, as ·wi· no" show, c- • is a 
rcc1ifying diffcomorpl1i,1n in a :-.ufficicntly small neighborhood olthc point 
({ s x

0
, I e 0). 

a) Tltt mnppin.� C is dijftrtntiablt (Ce (.v-1 if v e C1, lty 1nron-m T; .  
b) The mapping c- 1 ;, retlijj,in�. $incc r.. carric-. the 1,1andard Vt'CIOI" field

e (C = 0, i = I) into c.e = v, bt'C<IUS< g(C, I) :.atisfiN�quation 6,. 
c) 11tt mappmg G is o lo«,/ diffeomorplti1m. In fac:1, c-alcula1iog 1ttf" linnr

opcra1or (:.1110,,0 on 11 1(' tran�veNe plane, R• - 1 and R 1, wr grt

Thus ,lie operator c.1.0,fo carrit.'S the pair of tram.tVl'f'Se subspacn r-•

and RI c: Rn into a pair or transverse subspat-.-s. Therefore C.I
.,. ... is a 

linc-a, mapping ofR" onto R", and hence an i'ilunorphi::,m. h follows from 
the invl·rst· function theorem 1ha1 C is a local diffcomorphiilll (f = c- • m 
the notation of Sec. 7). 

Remark. Since the differentiation theorem was pmvt'd wi1h the loss of one 
derivative (v e C' => g e C'- 1 ), we can only guaranu_:e that th(' rectifying 
diffeomorphisms belong 10 the s1noo1hnes.s class l.''-1. HO\'-C"'tt, as ,,ill bi(,
shown below, the diffcomorpliismju.st construct«l i� actually of clauC. 

32.7. The last derivative. In proving Th('()rcm 32.2, the field v was as-. 
sum<·d 10 be twice continuously diffcrcntiabk·, bu1 actually mtt'C COll ­
tinuous di ffcrcntiabilit y is sufficicnl. 



230 Chai), 4 Proo& of chc 11.uic Ti-r�m• 

·r11EQRE.,, lf
t/1t ri[1l11-ho11d sidt v(x, 1) oftht d,fftrtnliol tq•oli.,. i • v(x, I u

ro111i1111oust., 1/ijftrt11tiob/1, tht11 t/1t so/111io11 g(x, I) 10111/)11'8 tht 1•1t1•/ tMi111••
g(x, 10 ) • xis a ,0111i1111ou1/y dijftrt11tiab/1/•ntlion ojtltt init10/ <M4111M:

veC' • gaC!, 

C:OROLl,.ARl�S. 

I) veC' o geC'for,;;. I. 

(7) 

2) I
f 

v e C', th, ,u1ijjoi11g dijftomorphism conslr•cled in S«. 32.6 i, ,..,11 • ...i,1 
dij[trt11tiable, tim,s, 

The corollaries arc deduced from (7) by liccral rcpc1i1ion of the mn• 
sideracion, of Secs. 32.4-32.6. However, the proofofchc 1'-tcm (7 i�lf 
requires some ingenuity. 

P,ooj .,J tht 1/r-t<J,,m, Wr begin with th.-following confl<kntiom. 

I l'.MMA ). lfl 

y - A(l)y, 
bt a linta, tq1u11io, 1 u.llOJt ,i11t1-Aond Jidt iJ a tonli1t.....,//Jtlfd;,.,, •ft. 1lttt tJt,, ..,.,_� 8 
ronti, 1140UJI..,, i$ ,miqut/..r Mlmnintd 67 Ult initUfl ,.-h.,UM •ho) y0, Ml/ i1,,-.ae ,..-·

ni t  y0 
and I .  

(8 

Proof. Thr proof of th<' clC.isl("n(<', uniqutll4:Sll, and con1inu.ity th�n\S 5'-t-. 31 Uk:S o,n)y 
the difTcr<'ntiabilit)' with rnp..-c1 to x. for fixed t (ae"1ually only � oisc� of .a Lipac:hiu. 
conditi on in x). Thercror'" the proor r'C'ITiains \'alid if the dq,,endcnu on , is :11•1:mrrl t o  
bt on ly con1inuous. I 

Note that the .sol u1i on deptonds linearly on Y• and is a t0ntinuoudy d.i:�tiablr f unc ­
tion or t .  'f1letefor, ·  the: so l ution bit-longs 10 the cl.us C' with rcspecl to boc.h Ye and , _
1.1:.MMA 2 .  If 1l1t liriea, o�,ato, A in Ummo I ol.H �.,. • /Jdt•..etn • ..,J if•�­

A(t, cr) 1'1 amtim,1ou1, thtt1 tlae solutWn i.111 c<N'ltinuotuffllltll;. efY•• I, llNI o:. 
Proof. The· so l ution c,1n be <"OnstructN as the limit of a s,equC'nCc orPteard apprOJtinutiom..
whetc each approximation is a ('Ontinuous function of Yo�'• and a .  The t,c_qu,C'n« of a� 
proximations is uniformly con,·e rgen t in the variables Y•· 1. and «. :u � b.1:td' "-at'Y in 2 

s uffici,·n tly small ne ighborhood of any poin t {y
0

, '•• a
0

).  Hence the limit is a <'Olltinuou:s
fun ction of y0, t .  and a. I

W , ·  now apply Lemma 2 10 the cquadon o f  '-'21rialions.. 

L&MMA 3. The vstern of cquotion,1 of ,vr,iotion1 

I 
X "" v(x, t),
Y = v.(x, t)y 

has a solutlon wlri,1, is um'qwl)' detmnined b)' it.1 initi•I tMl!itiMs ad dlfit.'flh ,,--·•· _.,.J_, • *•

,onditWns, p,<n.idcd on/,1 tlurt the field v is � clau C'. 
P,oof. By the existence theorem ofS,c,C, 31.8. the 6nt �uation of the syst.cm has a tolutioft.. 
which is uniq1.1d y deiermi n«l by its initial <:onditions Ito· 10 and depends on that a:od:i­
tions continuousl y. Substituting 1hjs solu tion inco the St:COnd equation.. •� get a linear
equation in y whose right-hand side dc:pcnds continuously on t and also on the inilal 
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condition •·u (regarded a1 • puame1cr) or the IOluhoo of the f'ln, equal.oft. Bue.. by 
Lemma 2, 1h l.1 Unc:M equation ha1 a tol\lllon wh.Kh ,_. dctermul<d by ,tt ,n.,bal cbt.1 Y• 
And h II con1lrwom fum:IICN1 o r  t, y0, a11d 1he parameter-.. I 

11,u, lllt tl/Wllion ef '-"''/"''°"' ,, UhVfM, tL'"' ;,. IN UJI • • c•, NCHc- that In t.ht atit • • C' 
""C pro,·ed that che derlv:.th·e of the talu1ion with rnP«• to •he rnht.AI cbu. Yl•'kt lfw 
e,1u11llon or v11riA1iom (S), but 1h11 can no lo11;1t:r be a.1erted, 1-IMt we M.111 do nae know 

wlle1her chiJ deriva1lve exi111. 
1'o pn>vc.· the <liffetcn1iability of the solution v.'t1h l'ftpcct to t.M: inuul �� •-c: 

fine c:omidt-r a ,pedal caJC:. 
UMMA 4 ,  Suf,,,.st llit iwto, fit/ti •(•,I) ef t.l(ISJ C•--' ill ,l,rrn.,.tt'« "'• Mil -- «.,..,,

• - 0 Ju, all I .  Tllt1t tltt solution rif 1M tqMtJtion 1 ... w(•, t) is iilnmtJM# nil ,,,,,,a,. a,
im'tinl tondl'l'loJU at t/r, Jtfint • .. 0,
P,O()j, Uy hypothoi.J, 

I•(•. 1)1 - •0•1) 

io a neighborhood of 1he p oint • - O .  U,ing 1M formula of S« .  ,0.3 10 cthrNk tht 
error of th� approximation • - � 10 the 1olution • • •<•) satidyinc 1he Wt.al c,oncb­
tio,n •(t0) - •o, we find that 

I• - "ol .; � IJ' •("o, r) ••I.; K max Iv(-., r)I 
I -A '• ,.<,i(t

for sufficiently small IXol and 1, - t01, wh«-:rc the constant Xis inc:kpcndcn.1 ol-.. Tb.,a 
f• - •ol - o(lx0I), which implies chat • is differen1.i.able '4ith rapo t to -. at ttr"O. I

\V� rlOW reduce the general case 10 the speci al situ.at.ion of Lemma 4. To do� ,,,.T ftttd 
ooly ch()()$(" a suitable coordinate a,ystem in exk:ndcd phas,e IJM tt .  Fi.m � note �1 the 
solutio n under consideration can always � regudftl as tM null solution: 

l.SMMA 5. Ut • - •(I)� o so-iutiOII ef l/luquotUm X - v(•. t) .,;,A• ritftt.-.1 ,i,h '!{ d..u C1 • 
d<fint.d in o dornai.n of utmdtd pliost JfMK-t R" X R 1. Tltttt. tNu ttisu • C'4 u ,-S. '!{ 
txlt.ndtd pltolt. SJN,�� wl,iJI, prt.Stn'tS ti1N. i.t., (•. I) - (•1 (•. I}, t} •• nd CMTW:s &6, _....., • 
inJo •• a:. 0 .  
P,ooJ. Since • • C•, we nttd only make the shill a:1 = • - •Cl). I 

In the system of cOOf"dinates C•u I}, the right-hand side of our equation cqualsO at tb,c, 
p oint •• - 0. We now show that che deri\>ath•c ol the right-hand side ,,,.;th rcs.pect co•• 
t.an also be rnade 10 vanis h  with the help or a suitable change- of eoordinato ,,,.-hich is
linear in •· 

l.J!;MMA 6. Under tlu u.mditions ef I.Ammo 5 ,  tli, coordinatu (•., l) r.an j,, "-ta ia ,_. •
U.1Q)'tllat tlu equoli.on X = v(s, t) is�ic.okn.t Ii) IMeflldt.lm S.1 

= v
1(a1, t). m6a-,IWJ,eUv1 

and its dt.riuatic.v: 0v1/QX1 l>otll 1.vmisA al Ult {NMt x1 = 0 .  Mor«tttr. lluf� a1 (X. t) a-. ,lw, 
,lrosm "'bt lin,ar (but not n«usa,ily liomogtl'ltO'W'} in•·

Accordi ng 10 Lemma 5, we can aNume that v1(0.1) • O.  
To pl'ovc Lemma 6, we first consider the fol�irlg: special cue: 

UWMA 7, TIie 4USt1tion of lA.mma 6 ii 4Jalidfor llv /in,:a.r �liM X - A(t}s. 
Proof. Vie need only Ch00$,C a1 to be th«-: value of the solu1ion s;atilfying the initial cond► 
tion •C•) - • a1 a fixed time 10• Ac cordi ng to Lemma I. x1 = B(l}• whc:rc B(t): R• - R• 
i s  a Linc-ar operator of class C1 in, .  But our linea.r equation ta..k.cs the fonn i:1 - 0 in the 
coordin ates (• .. t). I 
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l',IHlf qJ ltN11111 1 6, t-'lr111 w1• llnr:ol,r 1hc· rqu:uion A \II(■, t) a, ,rro. 1"" • """ for m  1h--
c·qu1ulon ol' wuiMio,n

• .1(1)•. .i(I) v0(0, I). 

lly hy1>01l1MI\ v ,C•, t1nd IWntl" A ,co, Uy l.rmrn.a 7, '°'" nn c-hcl,ow, C'�t.tw11n
•• /J(t)x 11m h 1hM •hi" Hnt•,.,i,td <,qu1U1011 I, of1tw- for,n t1 0 1n 1k nn.. C'O<Wdu'\11f't­
ll I, t •,11y 10 .loe(' 1hi,1 tht' dtcht 0h111'ld 111idl" o( lht" ot1t11nal non linnr ..-qu,HIOft hat a ttto
11,war 1>1111 In 1h11 monhnatt ,�trm. I n  race. IN • ,b.  f Q.. a Ca, to that
Q o(lxl), C IJ • ), Making tlw..,. 11ub<11ttutiom in thf' rquation X "• •� �• 1M' 
d1ffC'r!'ntial n1uo1tion for••:

AC•, � Q .  

Hut, by th e: ddinilion ofC, 1ht· fi"t l<'f'tn, ffl1 tl1c- ln'1 and nght (th<" tf'nm lliw-ar 1n a1 an 
equal, and hrn,c-

i, c- 1Q(C•., ,, -<l•,11- 1 

Combining 1..A""mm:u fi and <f, Wt" dNiuC'f' 

1.�M"" 8. 1'Jr, 1elutN111 4th, dijfn11ttml rqu,ntion X •' •· I) tiutA • ,,-,,.,""'-J s-" .J tt., c•

drP,ttdJ dtjf,u11t,r,h{, M tlt., ,,.,,;,,,, tMdttior,, n, ,,,,,.,,tiu ,: .J" ,,,, • .,,. inM ,n,,,rt .. 11w,
ir,iti11I eond,litJr, ,11t,..fin IN IJStm, of 'lflHlti(Jlf, ,f 1-w,Ml•u

X: = y(x, I). ' :(10) •c F., R• - R•. 

Pux,j. Write 1h(" ..-qu:uin-n in 1hr- t"onrdin:uc 'tf'l('m of Lcmm:1 6 and thc-n �pply Lrmma ◄-1

To pron· cl1(' th("Or"('m, Wf' now nrt-d only , ·mfy tM conlinuJl y o( 1hr dtti,.tti,"'C" of the
sol ution with rnpt•c'I 1 0  lh(' ini1ial c<>nditinn. /\c-C'Ofdmg to Lnnma 8. th.ii dn-i,,111,,r
exists and .,.-.,i�fo"\ th< · sysu·m or c-quatioo, <>r, ari�1tOM. ft follows from l...cnum. 1 th.at tbr
soh.11 ion� of 1hi:. s�tem dC'pt'n<I cnnhnuously nn x., a.nd , .  and the- tbnwrm K fina.Dy 

proved. I 



5 Dlff'erentlal Equations on Manifolds 

111 thl, clrn1)1cr we deflne differentiable manirold,, proving• 111<,ottm on 
cxiS1cnce of" f)ha,e llow deu·rmincd by a vtttor field on a manifold Lack ol' 
space will no, pc1·111i t ui to go into 1hc· many intcn·sting and dttp rault1 that
have hc•cn obtained in 1he llu•ory of diffrrential equation.son manifold, ft.<

p1'<'scn1 cl1ap1cr i� intended rncrcly ns an in1r-n<luc-1,on 10 thti ,ubJ«t. ,,h,ch 
lie., ru lht jun<'lion oranalysi5 and 1opolo�•-

33. Diff'erentlable Manifolds

Tloc co11crp1 or a diffcrcniiablc or smooth manirold plays just a, funda•
mental a rolr in gcornc:try and aualysis as chc concept� of group and liMM 
spa,·c play in algebra.

33.1, Example• of manifolds. Once manifold• arc defined (bc:lo,, l, we 
will find I hat I he following ohjec,s an-all manifolds (Fig. 218). 
I) Tlw lin .. ar s1>acc R" llr anr domain (open subset) I' ofR".
2} The splwrc S" defined by the «aualion xf + · · · + �!. 1 • I in t�
Euclidf•an space R"-+ 1, in par1icular, thc circleS'.
3) The torus T' = S' >< S' (cf. Sec. 24/.
4) The projective space

RP' • {(,0:x,:, .. ,x,)}. 

It will be rccalkd that the points of this space arc straigh1 lines passing 
through the origin of coordinatc·s in R" • 1• Such a line is specified by  any or 
its 1>0ims (other than 0). The coordinates of this point {x0, .r-1, ••• , x.) in
R"• 1 are <·alkd the homogtntnu.s cootdiualu of the corresponding poin1 o f
project iv<· space. 

The la.s1 example is  particularly useful. I n comidcring the ddinitions that 
follow, it will be useful to think in terms of affine <"00rdina1cs in a projective 
space (see Sec. 33.3, Exaonplc 3). 

R"Itl:t'@/,@ 
,z 

Fig. 218 Exam pin of m:ioi(old s .



234 Chap. 5 Differ<:mial Equa1ions on l\1anirold, 

33,2, Definition•. A di/ftrtntiabl, ma11ifold J\'I i1 a JCI ;\1 equipped with a
diffcrcn1inblc 11ruc1ur,:. To equip M wilh a diffn,ntiohl, """'"'" oc- -•Jtld 
structurt, we ,peclfy an atla1 con,isiing or mops which arc ,omp.1,.k.

D,}initio11 I. Dy a map i, meant• domain Uc: R" 1ogcthcr with a one-to-one 
mapping 'fl: tV - U of a 1ubsc1 W of the Jet ,W on10 U (f'ig. 219). \Ve call 
tp(x) an imatt of the point x@ 11' c: Mon the map U .  

Consider two maps 

({>,: w, - u.,

(Fig. 220). lf'1hc set• w, and W
1 

intersect, 1hcn 1hdr in1crstttioo 11'1 n 11'
1

has an image on both maps: 

The transformation from one map to another is specified by the following

mapping bet ween subst/J of lintar spaces: 

Dtji11ition 2 .  Two maps 

tp1: W, - U1, ,p1: W1 - U1 

Fig. 219 A nu,p.

H 

w. •

/ll·. 0 

Fig .  220 Cornpa1iblc maps. 
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are called to111/101r'b/, ;r
I) The sr11 U,

1 
and U

1
, ore 01)<11 (l'O'sibly empty);

2) The ma1lpings tp11 and ,p
1
, (dtnncd ir 111

1 r-. 111
1 

it noncmp1y arc d1ffeo­
morphh1111) of clo1nnin� o f  R •,

1/emork. Oc1)<11di11g on 1hc smoothness clau or 1hc mappings -,,1, we, gel
diffcrtrtt classes o r  manirolds. tr by a diffcomorphism we mean a d,ffeo­
morphism or class C', i 4;; r 4;; oo, 1hcn the manirold (defined by 1hc atlas 
giving rise 10 1hc mappings ,p,1} will be called a dijftrtntiobl, ..,.,f,ld ef ,less
C', tr r - 0, so tl1a1 1hc f/JIJ arc only required 10 b e  homcomorphi1ms, "c gc1 
the definition ora topological 111a11ifold. 1 rwe  require the ,p1110 be analytic,t 
we gel ana/.Jtlic manifolds. 

There al"C 01hcr possibili tics as  well. For ex.ample, fixing an orieruation in 
R" and requiring 1ha1 the diffcomoq,hisms ,p11 preserve this orientation
(i.e., 1ha1 1hc 'l't) have posi1ivcJacobians a1 every point). "c arrive at the 
ddini1 ion or an ori,,,1,d manifold. 

Definition 3 .  By an atlas on ,\1 is meant a set of maps q,,: �V, - U,such that 
I) Every pair o r  maps is compa1iblc;
2) f:vc.-y point x e M has an image on at least one map.

Definition 4. Two atlases on 1W arc said to bc:tquicaltnl if1hcirunion is itsclfan 
atlas (i.e., ;r every map or 1he first ailas i, compatible with e--cry map of the 
second). 

J t i s  easy to see that Dcfinicion 4 actually defines an equivalence relation. 

Dejinitio11 5 ,  6y a dif/trtnliabl, structure on  /11 is meant a class o{ equivalent 
a 1 lascs. 

Al this poin1
1 

we note two conditions oflcn imposed on manifolds to a"-oid 
pathology: 

I} Separability, Any two points x,y e /11 have nonintersccting ncighboc­
hoods (Fig. 221), i.e., either there exist two maps 

with nonintcrsecting w, and Wi containing x andy respcclively
1 

or there: 
exists a map on which both points x andy have images. 

If sep.1,rabilicy is no, required, chen the set obtained from ,�-o li.ncs R .- fxt. R • VI
by identirying points with equal negative coordinates x and .7 win be� nq_ ni{old .  The 
theorem on un iq u e  Clllct1$ion of 50fu1i0t1s of differential cqmtions wiU fail to hold on tliKh
manifold.$, although 1he local uniqueness theorem will be I.NC .

t A function iuaid to be anal)·tic if i1 is the sum of its own Ta)lo..-series in a. .oc:igh.boabood
of every point .  
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Ko� r'Ju 

c____0 ___ cv__) 
Fig. 221 St'po1rabili1y. 

C:hn1,, 5 OifTcrenciol F.quotion, on ll1amfolch

Fig. 222 Atlns or a sphf'rl!'. Th<' family or drdN on th.- sphe
r
e tang:mt al tbc point N

is r,:,prf:'Sc-nt('(i on the ll)Y.·cr map by a family or parallel linc<1 and on 1h.c- upptT" m.ap by a 
ramily orrnn,gcnl drdcs.

2) CowJlabilil)·. 'fhcrc exists an atlas ,\I with no more th.an a countable
number of maps. 

Henceforth the term "manifold'' will mean a differentiable manilold 
satisfying the st.•patabili1y and countability cor\ditions. 

33.3. Examples of atlases. 

l)ThesphereS2 wi1hcqua1ionxi +xi+ xj = I inR3 canlxequippcd
with an alias consisting of two maps, for example Uy using stcn:og;aphic 
projec,ion (Fig. 222). Here we have 

W, = S'°"-N, 

w, = S'"'-S, 

U, ;;;: Rf, 
U, = Ri, 

P,oblm1 / ,  \\"rite forn •ulas for the mappin g-. •1.l arKI ,·tt1fy 1h.at lh«" 1--., ml.pl arr t"On't­

p ::uiblt. 

Similarly, we can US<' an atla� C'Onsi-.ting of two maps lo define a diffC'r•
em ia ble s1 r1..1crnre in S".

2) An at la$ for 1lie 1orus can be constructed by using angularcoordina,c:s,
namely 1he la1i1ude O and ,he longimdc ,/, (Fig. 223). For example,"'< can 
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Fis .  223 Atlas ofa torus. 

' , ,  
• ,

:r;
=

:J 

... , 
\Zz

.z; 

7 

Fig.  22•• Affine maps of tht' projccti\'C planr .

consider the four maJJ5 obtained when O and tJ, vary in  the intervals 

0 < 0 < 2n, 

0 < o/, < 2n,

-n < 0 < n,
-

n < o/, < n .

237 

3) An alias for 1he projective plane RP' can be made up of1he following
three "affine maps" (Fig. 224): 

•o J'1 
x, 

.,, 

x, 
if X

o 'F 0, - -, --

Xo Xo

X
o 

x, if 'F o.xo:x1 :Xz �Z1 =-, ,, =- .< I x, x, 
- X

o 
., 

x, 
if x, 'F o ."• - -, �-

x, x, 

These maps arc compatible. For example, compatibility of ,p
0 

and "• 
means ,hat 1he mapping cp0_1 of1he domain U

0., = {y1,y2
:7

1 
# O}ofthe 

plane (y.,y2 ) onto the domain U,,o = {z1, z,: z
1 

'F O} of the p�
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Fig ,  226 An open ,llbscl. 

C:hap, 5 Differtntial F,qua1lon1 on 111anif'okb 

{z,. z2) given by the formulas z 1 =.1�•, z2 =y1y�1 is a diffcomorphism
(F'ig, 225), 

Proof. No1c that )'1 = z�'.y2 = z2z�•. I

Simila.-ly, we can use an atlas c01lsjs1ing of n + I affine maps to equip the
projective space RP" with a differentiable structure:. 

33.4. Compactness. 

Definition. A subset C of a manifold Mis said t o  be open ifi1S image ,p(JI-' r, C) 
on every map ,p: W - U is an open subset orthe domain U of linear space 
(F'ig, 226). 

P,obltm /. Pr0\·e that the inlcrsection or two and the union of any number of open sut.cu 
or a rnanirold is open.

Definition. A subset Kofa manifold Mis said t o  be compact i f  c--eryc:o--ering 
of the set K by open sets has a finite subeovcring. 

P,obl�m 1 .  Prove that the sphere $'" i.s compac-1. ls the projec1i\·c spacc RP'" (OfflpH'f > 
Hint, Usc 1he foJlowing theorem. 

THEOREM. Suppose a subset F of a manifold M (Fig. 227) is IN .,,;,. ef a fo,ilL
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fig. 227 A mmplltl t.ubitt.

!I O Hf, 
M 

Fig .  228 A eonncctcd manifold Mand a di.teorulCC1td manirold ,Ml U ,\f , .
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number of s,,bitls F,, tath ef whith has a tompa.t.t imatt onont o[IAL a4/}J F1 c IY,� 
cp1: W;- U,,whtrtcpi(F,)isacompactitlinR•. ThtnFiscompoct. 

Proof. Let {G
1
) be an open cove ring ofthesc:t F .  Then {q,1{C1 

n IV,)} isan 
open covering of the compact set q,1 (F1) for every i .  Lettingj range ovu the
tesulting finite set of values, we get a finite number of C

1 
co,·cring F .  I 

33.5. Connectedoes• and dlmensi.on. 

Defi11itio11. A manifold ,W is said to be coM«l<d (Fig. 228) if given any '"" 
pointsx,y e ,W, there exists a finite chain of mapsq,,: �1'

1 
- U,such that IV

1

contains x, l4'" containsy, W, n W1+ 1 Vi is nonempty, and U1 is connected.

A disconnected manifold .M decomposes intocon11«/td con,/»lfDW .\I� t

Probl.rm I .  Arc lhc manifolds defined by 

x1 + ,11 - :.2 - C, C ,' 0

in R.l (in RPl) connccto:I? 
Prol>Um 2 .  ·me set of aU matrices of order ,a "";th nonzero determinants has ch,c natur11 
structure of a diffel'entiablc: manifold (a domairt in R" .. ). How m.i.ny coru,ecud com­
ponent.s does lhis manifold h�vc?

Ttt£0R£M, Ut A1 be a connected manifold, an d  kt 

q,1 : W; � Ur 

t I.e., any two points of U, can be joined by a polygonal curve in U, C R•.



2�0 C:lrnp. 5 

or 

w, 

Fig.  229 A difft:n•n1iablc.-111.11>ping .

• 

st 

.-r � 
-,-----

Fig, 231 A r-1.11'\'(' oo a enani(�d .\1.

DifTrn-n1i.1I Equa1io1>1 on llbnirold, 

bt its mop1. Tl,en all tht li,uar JfMrtS R II l'011.taini11.t th.t domai11.J t ·, lwtv /ill llllW 
dimensirm. 

Pr()(.!/: t\ conscqm·nfc of the fact that a diffcomorphism bct,,·t'Cfl domains of 
linear spac<-·s ii. po�!i-iUlc- only if the /\pacN havr th<' same dilll<'mion and•� 
fact that any two dnmain'i IV; and I V

i 
ofa ronnt'c-lcd manifold .\f can be 

joined by a fini1c rhain nfpairwi.s<: intt .. n><"C"lingdnrnaim1. I 

The number n figuring in the thc.·on:m i� C'allcd the dilfll!a_fNill of the 
manifold .-\I, dcnolc-d hy dim A1 .  For ,:xampl<". 

dim R" :;; dim S" = dim T" :;; dim RP" ; n. 

A dlscooncrtc-d 1nanifold i.s !-.aid 10 Ix 11-dimcnsional if all its conncc-1cd
componcncs have chc !-an1:c dim.en�ion n. 
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Pttbltm 3. l�,,ulp I l1t irt Of H) or II II o, th()fCo.u,I m, t 11( n of ord,., , ,  ""'1th thr unw,u.-,r of a
dlffr1t"nlfoltlf' 1111rnlfold. llmd ht ronnf"Htd co1ttJ>011f'nl• and ••• d1rnC'•11MOft. 

A•s. O(•l ,fO(•) < 21, dim 01•) ,t(N I l
2 

33.6. Differentiable mapping,. 

/)efinitiou. A tuappi11M/: ,\I 1 _. .\/ 1 ofoue(, "-manifold into anotMr dsatd 1n
br d/Der"1tiabl, (of class C') if i1 is given by diff,�ntiablr fu1l<'1ions (of cl.us 
C') io lfw local coordinales on Al 

I 
and .\f 1• 

In 01lttr w ords, ltt "• : 11' 1 - l 11 hr a map or ,\I,. arting oo a ot1ghbothood o/ a pcMnt 
x•Af1,andt11: IY1-U1 a mapof.\11,actingOfla nr1ghbothoodof11poim/l'"I• It', 
{Fig. 229). Tl 1('11 tlir Oli.lpping of doru:aiii. of Euclickan ,part .,,, ·/- •i' dffintd in a
ndghborhood of tht 1>oin1 • 1 (x) mwt be diffcrC'nliablC' of ..-la• c�.

lixamplt I. Thr projcc1ion o fa  <phcrr 01110 1h, plan, (Fig. 230 is a difl'rr· 
c·ntiahlc mapping. Note lhal o clifrcrcnciablc mapping nttd no, cafT) a 
clifTcrcntialJlc manifold into a dilferen1iablr rnanirold

C'xample 2 .  By a eu,v,t on a manifold .\I k•aving the pnint x e .\fat time t0 8 
meant a difff'te1uiable mapping/: / - .\I or an interval/ of 1)1e: ttal /-axis 
containing lhc point /0 iruo a manifold .\I such that/\lo) = x .

t-:.ramplt 3 .  By a dijfto111orphis111J: ,\1 1 ... .\11 of a manirold .\11 on1oa mani­
fold �f 1 is meant a differen1iablt' mappingf. whose invetw: 1- •: JI 1 - .\I 1 
exis1s and is cliffcremiable. Two manifolds .\f I and .\I 2 arc said co �
dijfoomorphfr if there cxins a diffeomorphism from one on10 the oth(-r. foT 
example, the sphere and the ellipsoid arc diffromorphic. 

33.7. Remark. II is easy to sec that c\·cry connected O M •dirtKnsional 
111a1'lifold is diffeornor-phic to a circle (ir it is compact) or 10 a line (ifit is 
,,oncompact). 

Examples oftwo-di1n.ensional manifolds arc the sphere, the torus (diffeo-­
n,orphic to a "sphere with one handle") and the .. sphere \\'lth • handles" 
(Fig. 232). 

000 . . .

f"ig .  232 No ndiffeomorphic , .... ·o,-dime nsional ma,,jfo,lds.

f Synonymous.ly, a pautntdriud tun�, since on�dimcnsional submanifolc:h (ddincd in
Sec 33.8) o(the 1nanifold Mare som,e1j1nd al.so c:1llcd cun·cs on ,M .  A p:an.mctrittd ai.n-c 

csn h:we po,inL'I ofsel(,intersttti01l, cusps, c1c . (Fig. 231). 
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I n courat1 on topolflly it i_. 1>rovtd 1h11, cH,-y two-dimtftNOnal compact connttttd
orlcntrd manifold IJ dlff�morphlc 10 • 1phtrt wilh • ;it O handl"'- Uuk • bow'n about 
1h1 t:!c-dl , ntll.JOnAI manlroldt. ►�or rx11m1>lt0 11 i, not known whtthtt f'\.ffy <ompa<t Mmpty
conoectedl 1h�re•dlmt1ulonal manlrold It dlfftomOt'phic to 1ht 11,)Mff S1 (,-.,r,

lt)f,,1A1,i1) or t'Vtn homr,omorphic: to s•.

Thr dlffrrtntl11blc 111nd topolo8ir:al clanlfin,lloni of manifold• do Mt eoe.nc-ck ,n
hlghrr dlnmuion.1 , l•'or uamplr, thtrt ulit prtt,ttl)' 28 1moo4h rnam.tc.lth, alkd .,U"-1,
,1/)Jt,�11, homcx,mor1>hic 10 the.- 1phere S', but not d1fff!OfflOl"phi.c to cacll oat.a.

A Milnor sphere in C1 wilh coordinates ::
1

, ••• , :.
1 

is ddincd by dw 1wo <-qtat.ions 

:·tl .. I t- :.J t- :l + :.! � :.: o. 
J:,J• I •" � f:,I' I, 

1-'or k - I, 2, ..• , 28 we get 28 Milnor spheres.% One ot 1.hnt 28 Mat\ifolcb • � 
morphic to the sphere S'. 

33.8. Submanifolds. The sphere in R> wi1h equa1ion .r2 
+ r + z2 

= I 
is an c,carnple ofa subset ofEuclidea1'I space inheriting the natural structure 
of a differentiable manifold from R >, namely 1he s1ruc1Ure o( a nd11tmfald 
ofR >, The general dcflni1ion of a sub manifold goes as follows: 

Definition. A subse1 Vofa manifold ,W (Fig. 233) i s  said 10 be a m,,,.,,;fJ,Jif 
every point x e V has a neighborhood IV in i\1 and a map'" II' - U ,uch 
1ha1 <P( �I' n V) is a domain of an affine subspace of1he affincspatt R" co n ­
taining U. The submanifold V itself has the: natural structure of a manifold 
( W' e W n V, U' s <P( �I'')). 

The following fundamcn1al fac, is given wi1hou1 proof and will not be
used subsequently: 

THeOReM, Euery manifold M" is dijf,omorpnic i,, a JMbmanifo/d ef £,,did.to sJ>ou

RN of sufficiently largt dim,nsion Uor examph N > 2n. ILMrt n - dim 1\fj. 

Fig. 233 A submanifold. 

t A ma nifold M i.s said to� simpt., �tmn«ILd if �-cry c:lo,cd cu.r,,c i:n 1'1 cat1 bt: cootirt--.sly 

$hrunk to a point .  
t Sec E. Brieskor-n, B�ispiL.k �"' Diffumtut.ltop,oJo� t'ttlll SUfgJan/4to,., I nvcnt. �.f.ath. 2 ( 1966).
1-14 ,
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Thus 1hc abstract concrpt of• manifold don not actually compri,c, a 
larger daH of objects than'1k•dimcnsional surfacH in N•di�nsionalspacc. 0 

Thr aclva11tagc of the abs1rac1 approach is  that it includes 1hok cas,:s "h�� 
no crnbrdding in Euclidean space is s�ifi«:l in advanc,, and whn-c such a 
specificaiion would only l<ad to spuriou, complication, (a, in IM ca5" ol'tM 
projrctiv<' space- RP"). 'l'hc situation here is the same as for finjte--<li�n• 
sional linear spaces (thry arf" all isomorphic to the coordinattspattof points 
(x 1, ••• 1 x,.)1 but spr-ciCying coordinates ortcn mcrdy complicates mattcn 

33.9. £sample. 1-'inally we coniidcr 1ht' rono�•r\l fivt- in1ffnting ,natuf.okts (F"1g. 23-4, • 
I) 1'ht gror;p M 1 ,... SO(S) ef o,tho,onol "lotrictJ fl H"-r 3 •-' .,_,,,,.JJ,.., -1. Si.nu C""l'
mairix or 1H1 ha, 9 demenls, J\-11 it a sut�e, of the s:pat'e R•. It t1 uiy to titt tbt thK
subset i1 �iclually a svbrn,.ni(old.
2) Tlit Jtl JW z - r,s: ef all vttlors ef fe.11111- I ""'°" I# 11v sJl!Krt S1 in thr�
Euclidean space. As an cxc.rci�, the ruder should introcfocc the structure ol a d1ffcr­
cn1iahl e rnanifold in10 . .\1 l (t;'(. Sec. 34).
3) TJtt 1Jt,u-dimmsior,n( proj«tir., spnu ,\f, RP.I.
4) TM cmif,g11rnti1>n spact ,H,._ 11/ a ri.iid Hd,1 r.u1mcd at a fi.xrd Poin1 0. 
,',) Tht subsd M, oJ lltt  Jf>tJU RO ..- Rc.1 ddtrtni.J 6.,1 t4t ftfW.tiMJ
z� + zj + zJ - 0, 
1, ,I' + 1,,1• + 1-,1' - 2. 

•P,ol>ftm I .  Wl ,ich of lhc m.anifold1 M1,,,., Al, uc diffcomo,rphic?

34. The Tangent Bundle. Vector Fields on a Manifold

Wi1h every smooth manifold ,'>f there is associated another manifold (or 
1wice 1hc dimension), called the 1a11ge111 bundle or ,'>land denoted by TAf.t 
The whole theory o f  ordinary differential equations can irnm«lfa.tdy be 
carried over to manifolds, with the help of the tangent bundle. 

34.1. The tangent space. Given a smoo1h manifold M, by IM c«IM C 
ta11gcut to i\1 al tl1t point xis meant the equivalence class of c:un.-cs 1ea,;ng x, 
1wo curves ( Fig. 235) 

y,: I ➔ Ill ,  Yi: I ➔ ,\,f 
t A tntljml b,mdlt is :a special case or a"'�' b,mdk; a .i.ti"II more gcncraJ coattp is IN• of a 
b¥ndlt. spau. All these no1ion, arc basic in topology and analysis, but ""-C aJillfux-Ot.U'Mh---cs
here co tan.gent bvndlcs, wMch arc p:trticularly imponant in lM theory of� differ .  
cnii:.I cqua1ions. 
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N 

�I �•CA/ 

,- 9' 

9'��
Pig. 235 The rnngco1 ,·l"rtor. 

M 

f'ig, 236 A t�ngt-OC ,p:11C't". 

Ucing equivalerll if their images 

1/>Y,: / - U, ¢y2:/-U 

on any map arc cquivalcnc. 

I 

Note that 1hc concept of equivalence of curves docs noc de:ptnd on the 
d,oicc of the map of the atlas (sec Sec .  6): Equivalence on a map c,1 implies 
equivalence on any other map q,j, since the traruformation "'i from one 
map to ano1hcr i!t a diffc-ornorpliism. 

'f'he set of vectors tangent to ,\1 at x has the- structure ora linear space, a 
s1ruc1urc independent of the choice of map (stt Sc,. 6). This linear space is 
called 1he ln11gt11/ spa<r to ,Wat x and is denoted by T.\1,. The dimmsion of 
TJ\1 ,c. is the same a" the di rncnsion of .�1. 

Example/ .  Let M• he a submanifold of t he affine space R•· (r,g. 236 . Then 
TA1; can be thought of as an 11-dimcnsional plane: in R"' going through x .
Here, however, i t  mu.sl he kept in mind that 1hL JangLnl spaca I• .\1111 lii.J1Ul£1 
poinJs.,·a,rdydo11otinlt1stcl: TJ\1x

'"' TJ\1
1 

2 0-

34.2. The tangent bundle. Consider the union 

T1\1 e U TM, 
"" 

of the tangcm spaces 10 a manifold Mat all points x" .11. Then the ,ct T.\I 
has the natural structure of a smooll, rnanifoJd. 
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w M 

Fig. 237 <.:oordin.at(:S of1hc t:rngcnt \!ttlor.

TM
_.. 

:r: )-, • 
M 

IP r---
:r: 

H 

Fig. 238 t\ tangw1 bundl e.

In fa.ct, ('(HI.sider a ny map on •he nl:mifold �I, .and I-cl (x., . .•• i.): U'- Uc R•
(fig. 237) he local coordinates in a n eighborhood 11' ofthe poin t x sptta(yiag this map.
1-:vcry veccor t tangent 10 ,\•! at a p0fo1 x., IV i.s determined by its components ( 1 ••••• (.
in the indicated coordin ate syst<"m. In fact, if 1: I - ,\Ill a cu.n,e le3,-in,g • in 1.h,c dir«•  
t ion of ( at t imt" t0, then

(r = *'' x,(y(I)).
t ,.,. 

Thus C:\'UY vector-( tangent to ft1 at a point of tht- dom.a
f
o It' is .1pffifio:I by 2a nu.mbcn

x,, ...• x,., ( 1, •••• (,.. 1he" coordintitcs of the .. pOint of ta ngency
• 

.. a.nd the • -com­
ponents" {1• Thi s gi\•n a map of part of the set TAI:

f'{() (z,,, ••IX,., (i, •••I(,.), 

Oiffcc:n t map s of T,\•f corresponding to diffttcnt nuP' of thie .atJu of .i.U arc com­
patible (of cla.u c,- • if ,\1 is of class C'). In fact, lcty,, ...• J. be anothtt loaJ roord:in.atc 
$ys1em on ,W, and let ,,, , ...• ,,,. be the componcnlS of a v� 1or- in 1his l) "Skffl - Then

)'r•.Y1(x1,••·•-",.), llr i:��J (i-l, ... ,11)
J•li.:A'J 

are .smoo1h functio n� of x, and(,- Thw the S<"I T.lf of all tangenc ,-utors &o .\I a<quira a 
smooth manifo ld structure of dimension 2n .

Definition. The manifold T,W is called the tang,nt bundk (spa,,) of the mani ­
fold ,11. 

There exist natural mappings i: M-+ TAI {the 1t11ll s«tion) andp: T.\f .... \f 
(projection) such that i(x) is the zero vector of T.11, and p(() is the point x 
a, which� is tangent to ,11 (fig. 238). 
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l •'lg ,  239 P1trallrllu1hlt: and nonpar.tllrlizablt '  m.1nifokh.

1:ig. 2<10 A bundle whieh i• 001 a d1rcc1 product.

Pfflblt,n I. Prove that the mappings i and JI arc d1rfcrmt.1ablc. that i '--' a d1ft<Om01phl'lm 
or M onto i(M), and that JI .. i: M - J\I is thc identity mapping. 

The prtirnages of the points x e Munder the mapping p: T.\f - .If arc 
callcdjibruofthe bundle TM. Every fibre has the structure of a linear space. 
The set Mis called the ba,e of the bundle TJ\1. 

34.3. Remarks on parallelizability. The tangent bundle of th<: affine 
space R" or of a domain U c R" has the: structu� of a dittel product: 
TU • U x R'. In fact, the 1ange111 vec,or 10 U can be specified by a pair 
(x, (), where x e U and ( is a vector of1he linear space R•, for which 1h<:rc 
exists a linear isomorphism with TU, (Fig. 239). This can be expressed 
differe111ly by saying that affine space ispara/lL/izablt, i.e., equality isddincd 
for tangent vectotS to the dornain Uc R" at different pointsxand,-. 

The tangent bundle 10 a manifold M need not be a direct product, and i n  
general we cannot give a reasooablc definition or equality for vectors 
"attached" 10 different points of M (Fig. 239). The situation h<:rc is the same 
as for a Mobius s<rip (Fig. 240), which isa tangent bundle w;th a cin:lc as its 
base and straight lines as its fibres, but which is not the direct product ofth<: 
circle and a line. 

Definition. A manifold Mis said to be paralltli:ud if its 1ang01t bundle is ex ­
pressed as a di rec, product, i.e., if a difTcomorphism of TAf• � �,1• x R• 
carrying T,l;f_, linearly into x x R' is given. A manifold is  said to be fJtUol­

leli zable ifit can be parallelized. 

ExQmplt I .  Any domain in Euclidean space is naturally pualldizo:i .

Problem I .  Pro,·e th:u the tonu T• is parallcliublc, but not the- Mobius strip. 
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t-'ls. 24 l The hedgehog theorC'm.

r 

J.'ig, 2◄2 The dcriv:ilive o( the mapping/ at thC' point x .  

247 

•nlEOR8M. Only tltrttof tlte splterts S' are paralltluablt, namtlyS', S', w S1• I•
par,;tular, //11 lwo•dimensional sphtre is nonpo,.olltli table:

TS',;, S' X R2
.

This implies, for example, that a hedgehog cannot be combed: At lea.st 
one quill will b e  perpendicular to the surface (Fig. 241 ). 

The reader who has solved the problem at the end of  Sec. 33.9 will find it 
easy to prove the nonparallelizability of S1 (Hinl: RP

3 1: S' x S1). -n,.,

parallelization of Sl is obvious, while that of S1 is an instructive cxcrclS(' 
(Hint: S' is a group, namely the group of quaternions of modulus I). A 
complete proof of the above theorem requires a rather deep penetration 
into 1he iul�ject o f  topology; in fact, the theorem was proved only relati\·ely
recently. 

Analysts arc inclined to regard all bundles as direct products and all 
manifolds as parallelized. This miStake should be avoided. 

34.4. The tangent mapping. Lctf: .\1 - N be a smooth mapping of a 
manifold Minto a manifold N (Fig. 242), and lctf., denote th,, induttd 
mapping of the tangent spaces. The mappingf., ( = f.l,) is defined a.sin 
Sec. 6.3, and is a linear mapping of one linear- space into another-: 

J •• : T1\1• - TAf
<x>· (I) 

Let x vary over ,11. "then (I) defines a mapping 

f.: TM - TN, f.1, .... =f., 

of the tangent bundle of ,11 into the tangent bundle of N. This mapping is 
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TN 
r. 
·-

I' 
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Fig .  243 The tangent mapping. 

---o ----M$ 

A ,·r('1nr field.

ur�­
x7-

/of --

\ '''\ 

differentiable (why?) and map< the fil>rn of T.lf linearly into the fibtts of 
TN (Fig. 243).

The mapping f., is called the tan.enll mappin.e off (the notation 
TJ: T iW -, TN is also u.-d). 

Pm/)/tm I. 1�1 /: M - N ancl 1: N - /,,; he �uWWlth nt.apping,.. •;th <'OmpolitlOn 
g .. f; :\1 - K .  Prove that (t •f). t• .f., i.r •• that

N TN 

1/\· ⇒ ,.j \·· 
M-K 'rM--TK. 

,., (J•/1. 

Co11m1tlft on tmni�lot.r - In :1naly,..is thi, formula K <'allN 1hc- ,.,_.I(' {ot' dif«-ttfttiatinft nl a
C'Ornposiu •  rt1nr1ion, whik iu :.lg,·brn i1 i� ull«I the- .atNn""'1tt)f,mctMi4111y<rltlw: 1n.mition
tn the Ulll8Clll mapping .

34.5. Vector fields. Let .1\1 be a smooth manifold {of class C .. 1,. ,,;th 
tangcm bundle T,11 (Fig. 244).

Dtji11itio11. Hy a u,(lor fit!dt v (of class(.'') on .If is mrant a srnooth mapping 
v: iW-, T,\I (of class C'} surh that th,· mapping p • v: .\I - .II is the 

t The tt"rn1 Jttliou of tkt l0t1tt'II 611.,,dl, l$ also uSC'd.
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s' 

s 

Fig. 245 A vdochy ritld, 

idcntil)' rnappiug Ii or equivalently such that the diagram 

Ti\'f 

·/ \·
/11-�4· ,wt 

is commutative, i.c.,p(v(x)) = x .

249 

Remark. If 1\f is a domain of the space R• with coordinates x1, • • •  , x
.» 

thi, 
definition coincides wi th the old one (Sec. 1.4). However, the prcw:nt de:fi.ni.
tion involves no special system of coordinates. 

Example. C onsider 1he family of rolations g' or 1hc sphere S' through the 
angle I abno1 1he axis SN (Fig. 245). Every poin1 or 1he sphere xe S' de­
scribes a curve (a parallel oflatitucle) under 1hc ro1alion, with velocity 

d v(x) & - g'x e TS;. 
di ,.o 

This gives I he mapping v: S1 -+ TS
1, where obviously p v = £, i.e., vis a 

vec1or field on S'. 
J n general , a one•paramc1cr group of diffcornorphisms g': Jf -- .\I of the 

manifold /1/ gives rise 10 a vec1or field or1hc phale veloci1yon .If, in precisely 
the same way as  in Sec. 1,4. The whole local theory or (nonlinear ordinary 
differential equations can immediately be carried o,rer to manifolds

> 
since 

we were careful at  the time (in Sec. 6) to keep our basic concc:pts iJ'li<k... 
pendent o f t  he  coordinate system. In parti<'-ular, the basic local tlxott.m on 
rcctifiabili1y o f a  vcc1or field and 1he local 1hcoremo on existence, unique-
1'less,continuity,and differentiability with respect to initial conditions carry 
over to manifolds. ·rhc specific character of the manifold comes to thc- fott 
only in considering nonlocal problems. The simples, or� problffllS 
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concerns the existence or solutioru or the cxistcncc or a phlHC flow with a 
given J>hnsc velocity field.

35. The Pha1e Flow Determined by a Vector Field

The theorem to be proved below is the simplest theorem or the quali�ti,-e 
theory of differential equations, giving oonditioru under which i1  makes 
sense to ask about the behavior of solutiom or a differential tquation on an 
infinite time interval. In particular, the cheorcm implies 1he con1inuity and 
diffcrcn1iabili1y of the solution wi1h rcspcc1 101he inilial data in the large 
(i.e., on any fini1c 1ime in1crval). The theorem i, abo mcful as a model or,hc 
technique of constructing diffcornorphisrns. For example, we can UJC the 
1hcorcm 10 prove 1hat every clo,cd manifold having a smoo1h func1ion ,..;,h 
only 1wo cri1ical points is homeomorphic 10 a sphere. 

35.1. Theorem. lei A1 br a smooth manifold (of c/a,s C•, , ;i, 2), 9' ut 
v: 1\,/ - T,\,f b r a  vr<tor fold (Fig. 246). Afortour, /rt tlw vrclor v(x) k '1furt1t 

from th, ,rro V<Clor of T,W, onl., in a compacl subs,t K of th, manif,ld ,\f .  n,,,, 11tu, 
exists a one-parameter group of dijfromorphisms g': ,\1 - A1 for u:/uclt v is du pl,as, 
wlo<il.)! fold: 

d 
-g'x = v(g'x).
dt 

(I) 

OORO�I.ARY I. Every vtclor fold v on a compact manifold M is dv pMS4 ttl«iljl 
f1tld of a one-parameter group of difftomorphisms. 

In pariicular, under 1hc condi1ions of 1he theorem or 1hoscofCoroll2ry I, 
we have 

COROLLARY 2. Euerysolution of the difl�rential equation 

x = v(x), xeM 

. 
. . . 

M 

--'=
=

=
=

::L -M
:;,: 

Fig. 246 A vector field \'antShing out.side a com.pact set X .

(2)
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eon bt ult11dtd i11dtjini1,f)I forward and batku:a,d, u,,ifh 1/it , .. ,., of tA, #1111,.,. 1'11 •t 
lime I dtp1ndi11R Jm()(JtltJJ on t and tlte initial condition x. 

R,mark. The compactncs, condition cannot b<, dropricd, 
£xnmpl1 I. rr M R. t .,, (..re Stt, !J.�).11irt0ludon1 unno1 M r,ornckd i.-:ldi.n,,dy.

1':.Xff1riplt I. M tx: 0 < 1t < If• l • I. 

VJc- now proceed to prove the theorem. 

35.2, Construction of the diffeomorplu.sm• 1' for small t. F., �
poi111 ,< e /11 there ,xis IS an open neighborhood U c ,11 and a n•mlNr c > 0 ,wl, tlut
Rivt11 a11y poinl ye IJ and any I wilh Ill < •• the solution 87 of •fUI- (2) satu­
/ying th, inilial condiliony (al I = 0) txists, is uniqut, d,ptnds difftTnt1ia/Jl.1.,. t ••d
.Y, and 1nti,tjit1 tht ,ondilion 

g'•� • .ll'.lf7 

i/111 < c, Isl < •• II + sl < •· 
In fact. the poiot x has an image on some map, and our asse,rtion has btt.n 

proved for equations in a domain of affine space (sc:c Chaps. 2 and 4). t 
Thus the compact set K is covered by neighborhoods U from ,-hich ""' 

can selc<-1 a finite cov«"ring { Vi}. Let tj be the corresponding numbers e:, and 
choose to a min c1 > 0. Then for ltl < c0 we can define diffcomorphisms 
g': M -, /11 in 1/,e large such that g'x = x for x outside K and i'., = l'I' if 
ltl, Isl, II+ sl < c0• In fact, although the solutions of equation (2) with the 
initial rondi1ion x (fort • 0) defined by wing different maps arc different 
a priori, ,hey coincide for Ill < to because of the choice of �o and the local 
uniqueness theorem. l\1forcovcr1 by the local theorem on diffc�tiability, 
the point g'x depends differcntiably on I and x, and s.incc ,,�-• = £, the 
mapping g': NI ➔ ,\1 is a difTcomorphism. �otc a lso that 

!!. g'x = v(x). 
di ,=o (3) 

35.3. Construction of gr for arbitrary J. Let I be represented in the form 
(n•o/2) + r, where 11 is an integer and O .;; r < to

/2 (this rcprcsau:ation 

t 1'hc proof of the uniqueness requ ires a sl igh1 additional argument: It Mv:U bc,.--crificd dut 
uniqu,·ncs, of the wlu1ion with gi .. •c: n i nitial c:ondi1ions on C'\·cry fiJc«t m.ap implies utt.iqu<­
ncss on the manifo ld. Un iqut.-ncu may well fail on a nonscp;irablc m;uaifold (o:irmda. few 
example, the ('(1ua1 ion A = 1,j = I on the manifold obuin«t Cr-om th< lines Ix) � IJI by identifyi ng points with cq\lttl ncg:ati\·c coordinates). Howa·cr. ifchc � ,If asscpani• 
blc, 11,cn 11,c \lniqucncss proof of $ct' .  7. 7 gOd through. fine Kpar-abili1y is used 10 pr(ft-e

1he e;oinc-idenec of the values or the .rolutions •,(T) :1nd •1{T) at the fust point Tdtcr 
whkh ,hey no longer coincide.) 
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exisc. ,111<1 i� unique). The difrcomn, phi,m, �• ond x' haw alttady l>ttn 
dcnnctl. Wriring II' • (i'G/1)".(, we get• difrcomoqihisrn or .If onto !of. f'or 
ltl < c0/2 1hc new dcr.11i1lo11 .,grec, wirh 1h31 orS«. 35.2. and hence (3) 
holtk Moreover, i1 i "  rai)' 10 ,cc 1ha1 

,t
i
•- 1.•1.' (I) 

ror arbil rn.,·y .t and/. 

In foc:1, lc1 

' "'� I·/', ' I I *� � ,. 
1'111:n tl 1r- ld't 1,nd right-h:.1-.d �ide, o( (4} hecon1(' Ct•l')'t·' and (1••" •�.rl'"f",4. T•-o
cu1r.1 ar(' pooible: 
l)mln 
2)11,ltt

*• p I q 
k - I, p 

' .•
I q 

Dul the difft:0111011,hi�H" .(••"• K"• and t' roo1rnule". �n,t" f;I ,.2. lf1 "•"2.. Thn 

in,plit" (4) in boil, thr firs• and SCf'Ond caf<C" (1'1'
1

# 
,•z• sin«- J;J. lf'1• :,1 ' -l•

p "9 . � � ,). 
We must s1ill vcriry that lhc point .f:'x dcJXnds diffcrcntia.bly on t and x .

This follovv", for example. from the fart tha1 i = (g'1�'\'V, while f' 'x dc--­
pencls c.Jiffere 1'l1iably on t and x rnr �unicie:,uly large N, by S«. 35.2. 

Thu1' {i} is a one-para meter group or di ffcorttorphisms o( the manifold 
1\1, and V is rhc corn,,ponding field or 1hc phase "clocil)'- The pmol' of 
Theorem 3:·,. I i� nr,w complc1e. I

3-5.4. Rernark. 11 i-. a 'iimple con,cquC"ncc nrThN>retn 3.:;, 1 d1at em, u h ­
tfo11 of !ht 11011aulont>mous tquothm 

x = v(.,·, t), .r E ,If, /ER 

defi,ud by ti time-dtj)t11dt11I rttt:,r Jr<ld v n11 a rampart maui/old .\I l'n IN t.\/l'111id 
indtfinile{v 

. J n  par1iC"ular, thi� cxplaius why w(' can <'Xtl"nd solutions n( the lint2r
equation 

X = v(x, 1). v(x, t) = A(t)x, I e R, x e R• (5) 

indefinitely. In fart, we will r<'gard R .. as 1hc affioc- par1 of the: projective 
spa<·c RP", where the latter i� ol>rnincd from its ani.nc part by adjoining 1hc 
plan(' at infinity: RP" = R• v RP"- 1

• Let v be a linc-ar vcc1or fidd in R•, 
so d,a, v(x) = Ax. Then we can <'"a�ily prove 1hc following 
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Fig, 2i7 Exu:n.sion of:. lint'�r \'tttor fidd onto proj«IJ\t' t.»i«,

tRP""' 

'-' I I I

' \ I I/ .½
' / 

fig. 2•18 Brh:wi or orthC' t'XIC'n.sion of1he fie-Id Mar•� plaM at infirut,.

2S3 

LEMMA. "f'ltt 11,c/or field v on R' ,an be uniqut!Jtxltndtd loa smootl,fa/iv' M RP". 
The field v' on the plane al infinity RP"- 1 is tanfml lo RP"- 1

• 

l n particular, suppose that (for every t) "'e extend the field v(t spttif>;ng
(5) to a field v'{I) on RP". C--.onsider the equation

X • v'(x,1), x e RP", 1 e R .  (6 

Since projective space is compact, every solution of (6) can be extcndal 
indefinite!)' ( Fig. 24 7). ;\ <Olu tion initially belonging to RP-- 1 always stays
in RP"- 1 

1 since the field v' is 1angem to RP"-1. By 1he uniq�ness 1hcorcm,
1hc solutions of the equation with initial conditions in R• remain in R• for 
all 1. But equation (6) is oft he form (5) in R•. Thus every solution of(!>) can 
b e  extended indefinitely. 

Problem. Prove the lemma. 

Solution I. Let x 1, • • •  , x
,. 

be affine coordinates in  RP" and.11, • • •  ,:,. othCT 
affine coordinates such that 

k = 2, ... , n .

Then the equal ion of RP"- 1 is jusl ;1

1 
.: 0 i n  th� new coordinates. The­

differential equation (5) 

i=l, ... ,n 
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iakc.• the form 

V', - -)', (•11 + 'E ... ,.), di •> I 
dy, � ( 
dt • 011 + ,;-, a,.,.,, -Y4 a 1 1 + 'E II 11.1,), 

I> I 

k > I

i11 the new coordinates (Fig. 248). From thnc formulas, valid for.11 ,t, 0, it is
clear how to complete the definition of the field atJ, - 0. For.,, • 0 we 
get dy,/dt • 0, thereby proving the lemma.

Solution 2 .  An affi11e transformation can be rrgardcd as a ptojcctive tran.d"or•
mat ion, leaving the plane at infinity (but not its pointJ) fixed. In panicuia.r. 
the linear transformations t141 can be extended to diff'cornorphismsof proj«­
tive space leaving the plane at infinity fixed. Thnc difTcomorphisrns form a 
one•parnmeter group, with v' as its phase velocity field. 

36. The lnde" of a Singular Point of a Vector Field

We now consider a few simple applications of topology to tM Study of 
differential equations. 

36.1. The index of a curve. \-Ve begin with some intuitive considerations 
which will be backed up later by exact definitions and proofs (Stt Sec. 36.6). 

Consider a vector field specified in an oriented Euclidean plane. Sup� 
\VC are given an oriented dosed curve in the plane, which docs no, go 
through any singular points of the field (Fig. 249), and suppose, a point 
makes one circuit around the curve in the J>05:ltive dirtttion. Then t.Jx fidd 
vector at the point in question will rotate continuously as the point move,; 
around the curve. t When the 1>0int returns to its original position, having 

I 

8 

J 

6 

.5
fig. 249 A eurvc of index I. 

t To kttp 1rackof 1hC' rcvol utioniof the vcc-tor, it is co,wMlicnt to tt:fcr d ,.-u10B toa. single
point 0, follo wing the naturaJ p:ua lldiution of the-plane. 
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Fig. 250 Curve:, whh various indices.

• 

gone around the curve, the vector also return.s 10 its original position, but in 
doing so, it may make several revolutions in one di�ction OI' the other. Tht 
number of revolutions made by the field vcc1or in travening the cunc once 
is called the index of the curve. Herc the number of revolutions is taken with 
the plus sign if the vector rotates in the direction specified by the orientation 
of the plane (from the first basis vector to the second), and with the minu, 
sign otherwise. 

Example /, The indices of the curves"'• P, 7, and cS in Fig. 250 arc I, 0, 2. and 
- I respectively.

Example 2 .  Let O be a nonsingular point of the fidd. Then the index of c--ery 
curve lying in a sufficicntly small neighborhood of O equals zero. In fact, the 
direction of the field at O is continuous and hence changes by less than 11/2,

say, in a sufficiently small neighborhood of 0 .  

Problem I. Suppose Wt specify a vector fidd in the plane R' - ac ... ;thout 
the point Oby the formula v(z) • r', where n is an intcgtt "•hich is not 
necessarily positive. Calculate the index of the circle z = ,,..oriental in the 
direction of increasing IP (the plane is oriented by the frame I, i). 

Am. n. 

36.2. Properties of the index and their implications. 

PROPERTY I. Tk index of a closed curue do,s not change ,md,r ,� tkf-o­
tion, as long as the curve dou ,u,t go through an)' singular poinl.S. 

In fact, the direction of the field vector changes continuously away from 
the singular points. Therefore the number of rcvolu1ions also dcpcnch 
continuously on the curve, and hence must be constant, being an intcgc .... I 

PROPERTY 2. The index'!/ a curve does not change U1UUTcon1inuou.stkfomuzti.,.oftk 
vtctor fold, provided onry that there au no singular points of tk fold OIi t1te aoT< dt,ri,,g 
lk whole course 'If tk d<formatio11. 
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The,c 1wo propcr1ic11 which arc quite obvious 1ntui1ivcly,t have a 
numhcr or deer> i 111pl ication1: 

T11ROR6M I. Ch�r, a W<IOr fitld i11 th, plant, It/ D bf• tir<•I•• dulc •-' S 111 ...,,,,. 
••)'• t /J lht indtx of tht '"""Sis nonuro, tlt,n ,,.,,, is 01 ltoJI .,., 11,w,t,,, ,,..., 
i,uidt D. 

Proof. If there arc no singular poin1s in D, then Scan be ddorn,cd ron• 
1inuously inside D wi1hou1 going through any singular point',"° that aner 
the dcforn'latio,, we get a curve arbitrarily close to a point O in D (\o\-c can 
even deform S inco the poin1 0). The index of the resulting small curve 
equals zero. Bul the index docs not change under deformation, and hence 
it musi originally have been equal 10 zero, contrary 10 hypothesis. I

Proltl�m I .  Prove th:a1 1he 1�ttm or difTcTentlal �uations 
' - • + P(,,)'), J -.r + Q.(•,.r), 
where P and Q. 1m: (unctioM bound«I in the ,.hole plane, hAS llt lt'M• one (quil,brivm
posirlon. 

THEOREM 2 (Fundamental theorem of a .lgebn,). Evn:, ,q,uuiM

z" + a, z• -1 
+ · · · + a. = 0 

has al Uasl one complex root. 

first we prove the following 

(I) 

LftMMA. l,t v b, the vet/or fold in th, plaM of the compux variabk z �,,.,. b:, IN 
formula 

v(z) = z" + a I z"- r 
+ · · · + n,.,

so that lht singular poinls ofv arejusl lh, root.of 1q,,a1t011 (I). Tit,,, the iadex in th, 
fitld v o f  a circle of sujfidtnl/:, lar.�t radius equals n .  § 

Proof In fact, the formula 

v,(z) � ,• + t(a,,•-• + · · · + a.), 0,;; I,;; I

defines a continuous deformation of the original fidd into the fidd z". If 
r > I + l•,I + · · · + la.I, 1hcn ,• > 1•,1,.-- 1 

+ · · · + l•.1- Hen« there
are no singulat points on a circle of radiw, during the whole course of'the 
deformation. I I follows from Properly 2 that the index of this circle is the 

t The aee1.1rn1e rorm1.1la t.ion and proof of lhnc a.sstttions ttqui.ro 50lnc: IOpOlogic:al tcd> 
niq1.11:, namdy 1he u,c of homotopid, homologies, or somc1hin, similar(IO this end,. "'c wi1: 
use Green's formvla below). S« e.g., W. C. <,;hinn and N .  E. Steenrod, Ftn1 Ca,,u,u I,/ 
Topol,g)', New Yo,k (1966). 
l \\Te can also c onsider the mon-general case whett D tS 2ny plane dol'IUU'I bounded by a 

simple closed curve S .
§ Here we use thcs.ame orientation a.sin Sec. 36.1, Problem I. 
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same in the original field as in the field t". But the index equals• in the field
•"· I 

/>roof of T/1tortm 2 .  Let r be the same as in the proof of the lemma. Then, by 
Theorem I 31'1d 1he lcr1una1 thcr-c is at lca11 one singular point of the v«tor 
field, i.e., at least one root of equation (I), inside the disk of radius,. I

l'UEOREM 3 (Fixed point theorem). Etvry s,,.,.11,t mappint f: D - D •f • 
cwsed disk into itself has al lttul ont fixed poinl. 

/>roof We take the plane of the disk D 10 h<: a linear space, having its ongin at 
the center or the disk (Fig. 251 ). The fixed points of the mapping/ arc just 
the singular points of the vector field v(x) = f(x) - x .  If there arc no 
singular points in D, 1hcn there arc none on the circle bounding D .  This 
circle has index I in the field v .  In fact, there exists a continuousddonnation 
of the field v inlo the field -x such that there arc n o  singular points on the 
circle during the whole course of the deformation (ror example, "-c nttd 
onlysctv,(x) = 1/(x) - x,O,;; I,;; l).Henoethecircle hasthcsamcinda 
in both fields v0 = -x and v 1 • v. But a simple direct calculation shows 
that the index of the circle lxl = r in the field -x cquals I. Tocomplcte the 
proof, we again use Theorem I t-O deduce that therC is at leas, one singular 
point of the field v, i.e., at least one fixed point of the mappingf, inside the 
disk. I

36.3. Tb-, index of a singular point. Let O bean isolated singular point of 
a vector field in the plane, i.e., suppose there are no other singular points in 
some neighborhood of 0. Consider a circle of sufficiently small radius 
centered at 0. Suppose the plane is oriented and let the orientation of the 
circle be positive (as in Sec. 36.1 ). 

THEOREM. The index of a circle of sujficienlly small radius cmlatd 01 tm i,o/01,J 

t The: theorem is valid for any continuous m.a.ppingy but here we pro,<c: the tbeo,ran only
under the assumption of smoothness (sec S«. 36.6).
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Fig. 252 The indic:� ohi mplc singular points �u,il ± I.

singular point O do,s not d,p,nd OIi tlu radius •I tlu ,fr,u, provid,d MCIJ lMl""' ,.,r,., 
is sujft<ient!� small. 

Proof Any two such circles can be continuously deformed into each other 
without going through singular points. I

Note alJo that im1tead or a circle, we can choose any other curv� going 
around O once in the positive dircclion. 

Definition. The index of any (and hence every) sufficiently small poouh·ely 
oriented circle centered at an isolated singular point of a vector6e:ld is called 
the index efthe sin.�ular point. 

Examplts. Suppose the singular point i s  a node, saddle point, or focus (or 
center). Then the index of the singular point i s  +I, - I, or + I rcpecti,dy
(Fig. 252). 

A singular point of a vector field is said to Ix simple if the operator of th<: 
linear part of the field at the point is nondcgcneratc. The class of singular 
point1 in the plane consists of nodes, saddle points, foci, and cxntcn. Thus 
the index of such a singular point is always +I. 

P,�l,m I .  <..:onstruct a \. 'CCIOt field wi1h a singular point o(indcx "- ·

Hint, S«, ror example, the problem in Sec. 36.1.

Proble,n 2 .  Pro11e that lfle index of a si.ngvl.ar point is indq,cndcnt of tht cboitt: of oricn t 1 -
tion or the plane.

Hint. Changing lhe orientation simultan('Ol,l,S(y changes both the p<IUlRT dirtt.tion of
travcning the circle and the positive direction or counting the number of rC"-dvtions.

36.4. Index of a curve in terms of indices of singular points.. Ltt D be 
a compact domain bounded by a simple curve S in the oriented pb.nc. 
Suppose S has the standard orientation of the boundary of D, i.-,., sup� 
D lies to the left of an observer traversing Sin the J>O$ilive direction. This 
means that the positive orientation of the plane i s  given by th<: dihedral 
made up of the velocity vector along S and the normal vC'Clor dircacd 
inside D.
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Now suppose we arc given a veclor field in 1hc plane, wath no t1n"ul1r 
poi1H1 011 the curve: Sand ouly a finite number or singular porn ts mqdc the 
domainD. 

1 IIV.ORP.M, Th, ir1d,x rif the'""' S ,qua/, th, sum of tll, mdtCtJ of llw Jl1'l"I•• J»t•IJ

of th, j,,ld IJ•i1111 i11,itf, D. 

First we prove that the index of a curve hu the followi"'! additivity 
property: 

u:MMA, Cit.1tn two oriented cun·t.s y I and y 2 goin1, tltrou1.lt 1l11 somt 1»i1t1, Ul 71 + 71 
bt the ntw oritnltd turt't obtained by trat1trsin1fi,st y I ond afl«u:c,ts 71• T1wa tltt 
indexrify, + y1,qunl,1h,s11mof1/re indicuofy,andy1• 

Proof The field vector makes n
1 
turns in going around y

1 
and •1 more ,urns 

in going around y2, and hence 11 1 + n2 turru in all. I

P,oof of //,e th,orem. We 11artition D into parts D1 such that thett i•  no mott
1han one singular poin1 of the field imidc each part (Fig. 2.S3), and no 
singular point.s at all on the boundaries of Lhc parts . �1orco\·cr, we assign 
each of the cutve5 y, boundiog 1he parts D

i 
the orientation appropriate to 

1hc boundary (Fig. 253). Then, by the lemma, 

ind LY, & indS + Eind 61, I ; 
where the closed curve 6

1 
is made Uf) of a part of the boundary of D1 

lying 
inside D and i s  traversed twice in opposite dircclioos. The index or each 
curve 0

1 
equals 0, since 0

1 
can be contracted into a point ";thout passing

through singular points (sec Sec. 36.2). The index of the cun.·e 71 
cqua.ls the 

index of the singular point surrounded by y1 (or O if the domain D1 su r ­
rounded hy y, contains no singular points). I

P,oh/,m I. Lee f>( :) be a polynomial of degr« • in a compla: ",aria.hie z. and kt D be a
domain in the z-plane bound«! by a curve $ .  Suppost there are no un:,,. of the poly. 
nomial on S .  Prove lhat the number or zeros of the �ynomial inside D (wich multipli­
cities la.ken into accounc) equals the index of the cunre Sin lhe field ,.. = J(z). i...e:, lht 

I I 

fig .  2�'.3 The index of che curve S equals t.he wm of the indtCCS of the cu.f''CS 7, a.od 72 •
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numbt-r 6f' r evolut ioru (wiodlng numl>tr) or 11\( c-urvt Jll(S) around tlw on11n.
Com,,.,,.,, Thi, 81vo II way or .olvlng the Rov1h,Hurw111. pmbltffl ol Stt. tS 4: FvJ 14,
n1m16u n. q/ u,us ,if II iir:,,11 po(J,,o,m'lfl {,. tA, l(ft .. 1/-;IMt. To thlt- md. 'At cOftMdn-a ha lf •  
di,k or 1uffirltn1ly largt nidlu1 In the lr-0 ha tr-plane- with 111 «ntrr at th«- point , 0
and lu dl,une1.:r 111011g the irm13in1ry uii. � numbtr of u·roa in th<- l,rt\ haN'•plllM
�1u11I, the indu or 1he boundary So( the hlll(-d11k ( i r  1he radius II largt" <nouch and ,/ 
chc: polynornli.l h1u no purtly Imaginary terot), To nkulatt the lndn o/ 1hir � S.
we nt"t"t'I only find lht' number o( revolu1ioo1 " around 1hc On1in of th(, """I"' ol tk
i ma gi nary axil (oriented fro,n i 10 +I), Jr, rate. it "tas.,ly "'f:rifiNj Wt

"- - indS• v +;. 

since the image under the mapping , or a Kmicirck- of suffic�dy b.� ndius maffl
approximately fl/2 tt\!oludons around the origin ( a  number dOKr 10 111;'2:. tk b.rsn dw 
radiui). 

/11 pn,ti,11/or, all,,,, UfOJ ,., 4 JIOIJMMitJI q/ thrtt It IW ... Ut,t lift 4,,/f-,,_, ,/a/-', I/ &4, 

point p(il) p,J 11,01,md tlrt o,i1in 1t/2 ti,nlJ {i11 tli, dirttt,_f,_, I .. i) a, I Nrinft- -oo at +oo. 

36.5. The oum ot the indlcea ot alagular points oa a spb�re. 

•Problem I. Prove 1hat 1hc index ora singular point ora vector field in IM 
plane is invariant under a diffcomorphism.

Thus the index is  a gcomciric concep1 which is  indcpcndmt of tM coo r ­
dinate system. This fact allows us to define the index ora singular point not 
only in ,he plane but also on any two-dimensional manifold. In fac'l, we 
nee.cl only consider the index of the singular point on any map, and the: index 
will then be the same on lhe other maps. 

Example I. Consider the sphere x' + y' + z' = I in Euclidean three­
dimensional space. The vector field or 1he velocity or rotation about th<, 
z-axis (X • ,Y.j = -x, i s 0) has two singular- points., a t  th� north and 
south poles (Fig. 254), each or index + I .

s 

Fig. 2S4 A vector field on th� sphere with two singular points of inda 1.



Sec. 36 Index oro Singulor Poin1 ora Vec1or Field 261 

Suppos,· we ore giv,·n • vec1or field on 1he sphere wilh only otolatcd 
singular pflinu. Thrn 1hrrc arc only• Oni1r number of such pomu, .,.,.,� the 
sphere- is c·ompncl. 

•·ro 180•11 ... Th, s11m ef the indic,s ef •ii tht 11•,t•l•r po,nll ef • jirltl • 11,, sp/tnt 11
i11dep,11d,111 of //11 thoit1 ofth,fald.

his rlcar from 1he above example thatthrss•m tq••b 2.

/d,n ef the proof Consider a map of the sphere covering 1he whole sphere 
cxccp1 for one poin1, which we call 1hc pole. Then consider the fitld ol'the 
basis vector e 1 in the Euclidean plane of 1hi.s map, and carry the field over to 
1hc sphere. This gives a field on 1he sphcrc (defined except at the pole) which 
we continue 1o dcno1c by e1. 

Now con,idcr the map of a neighborhood of the pole. In the plane o{ this 
map wr can also draw 1hr vcc1or field e 1 on thesphen; defined cxttpt atoM 
poin1 0. The appearance of this field is shown i n  Fig. 255. 

LIOU,tA. Tht i11d1x of Q cloud turvt RDim: onu around tht point O u, t4t Jll•NT fold 
juJI eo,utructtd equals 2. 

Proof \¥c need only carry out explicitly the operations described abcn�, 
choosing for the two maps, for example, maps of the spherc under stereo­
graphic projection (fig. 222). Parallel lines on one map then go into the 
circles shown in Fig. 255 on the second map, from which ll is dear that the 
index equals 2. I 

Completion o f  1h, proof Consider a vector field v on 'the sphtte, choosing a 
nonsingular point of the field as the pole. Then all the singular points of the 
field have images on the map or the complement of the pole. The sum of the 
indices of all the singular points of the field equals the index of a circle of 
sufficiently large radius in the plane or this map (by Theorem 36.4). \\le now 
carry this circle over to the sphere, and then from the sphere to the map of a 
neighborhood of the pole. The resulting circle on the lauer map has index 0 
in the field under consideration, since the pole i s  a nonsingular point of the 

Fig .  255 Thevcc:1or fidde1,p;lral1cl on one mapof thcsphcre, but drawa oo another rm;p. 
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------------·

·--------

J- 'lg ,  2-'6 On every Mand 1he a.urn o( the nurnbtt ol' peaks and 1hr nu.mbf,r of valkys b
I grca1er 1h :rn 1he 11umbtr o(paU("I.. 

field. S1aying on 1he new map, we can interpret the index or a circle on the 
finl map as the 11 11umbcr or revolutions of  the field v rtlotitw t• tltt fi,tli e

1
" in

going once a round 1 he circle. This num bcrcquals + 2, since as �c go around 
the circle surrounding the point O on the new map in the positivcdittc-tion 
for 1hc first map, the image field e1 o n  the n<"w map makrs -2 N:'\'olutions 
while 1hc field v rnakcsO revolution,. I

• Prob/,-,1t 2 .  l,c:1/: S' , R 1 \)(' a 11-noo1 h runc tion on tM aphttc-, all oJ ..._.tao., cntinl points
a.re simple (i.e., whoac 1e<ond diffC'rcntial is nondcgcncn.tc a l n·ny ("'nua.J poantJ. Prou·
that

m0 -m1 + m,: • 2, 

where m
1 

is 1he m.imbcr of' critical poi,Hs whose Hessian matrix (i;Zf!ZzP,) bu i ncptn-c­
eigenvalues. I 11 01hcr words, tlit numlNr tf rtrini.. ..;-, IN __,. .J .M.r ,,.._, Jll,a di,
numbt, of maxi,no alwo)'S tqtMJls 2. 

For example, the 1otal number of mou1nai11 pctb oo euth plus tbr total nW'l'lbtt of 
val leys is 2 greater than the numbc·r of pa.ssn .  If we restrict ou.neh·o to an nh.od or a; 
c:on1ioent, i.e., it we coos.ider rv11c1ions on " diik with no sil'\gular points on i1:1 boundary�
1hen ni0 - m1 + ,nl ,, 1 (fig. 2:.6). 

Hint.  Coosider the gradil'flt of the fonc1iooj.

•P,oJ,lmt .1.  Prove Eultt's llrlonm on pol;Jrtdra, wh.ich asscru that

a0 -a1 +a,-2

for every bou•�ded (Onvbc p<>lyh«tron with a0 \·cntCes, tr1 edges., and ol &as..

Hint. ihis problem can be reduced 10 1he pre«ding problem.

• P,obltm I. P,or.v: that lht sum X of tht indius ef IN sut,pl.dr jHlutlS .j • ttd# JtU • olfll!1
compael two,.di'mmsiOMI niani/old f! itul,pmdmt of 11\t fol.d .

The numbei-x in question is call(() 1he Eultr dtoroftnistiic of thf: manifold.. For cumple.
we have ju se s«n th.it 1he Evler char.acreristic z(Sz) of the sphere equals 2. 

ProJ,U,n 5 .  find the £uler characteristic: ol 1he torus, o/ the pretzel, and of tbr � •-ith
n handles (Fig. 232).

An.,. 0, -2, 2 -2n. 

• f>ro61mt 6. Extend the results of Problems 2 and 3 from the sp.hctt to aAY cunpact 1w1> 
dime,uional maoifold, i.e .• prove 1ha1

m0 - m, + ml • a0 - tr1 + a, = x(M).



Sec. 36 l11dcx of a Singular Poin1 of a Vec1or Field 26S 

36,6, A more rigorous approach. We now give an cxac1 dcfinilion of1hc 
number qf r,uolulions or winding numb,r of a vcc1or field. Lc1 v be a smooth 
vcc1or field defined in• domain U of 1he plane (.r1, .r2), with components 
u1(x 1, x,) and u1(x 1, x1), where the system of coordinates x., .r2 s()CC'iflcs an 
orientation and a Euclidean structure in the plane. Lei u• denote 1hc do­
main obrnlncd from U by delc1ing the singular pointi of the field, and kt 

J,u·-s•, 
v(.r) 

f(x) • lv(.r)I 
be a mapping of U' onto a circle. This mapping u smooth (sinoe singular 
points of the field have been excluded). Given any point x e U', we can 
inlroducc an angular coordinate cp on a circle in a neighborhood of the 
imagef(x) of the point x .  This gives a smoo1h real func1ion r,(K1 , .. ,) defined 
in a neighborhood of x .  Calculating the total differcn1ial of-,,"� gc1 

u1 v2du - u du,
d,p - d arctan - • } �u, u, + l/2 (2) 

for v, ,;, 0. The left and righ1-hand sides of (2) arc also equal for•• s 0, 
u, ,;, 0. Thus although 1hc func1ion cp is defined only locally and only 10 
within an integral mu hi pie of 2,r, 1hc differential of  <P is a ,..ell-defined 
smooth differential form in the whole domain U\ We denote: this form 
by dcp.

Definition. By the index of an orienud cl01td "'"" y: S' - U' we mean the 
in1egral of the form (2) along y divided by 2,r:

ind y � -
1 
J. dcp (3) 

2,r j, 
We can now give rigorous proofs of the various theorem, appearing 

above. For example, 1he proof of Theorem 36.4 goes as follo""' 

Proof. Let D be 1he domain wi1h boundary S inside which 1hc gi\'cn field v 
has only a finite number of singular points, and lcl D' be the domain 
ob1ained from D by deleting small circular neighborhoods of the singular 
points. Then the boundary of D', wi1h oric.ntation taken inro account, is 
just 

i!D' I= s - L s,,
I 

where S, is a circle going around the ith singular poinr in the. positi,-c: direc -
1ion (Fig. 257). Applying Green's formula to the domain lY and the 
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fig. 257 The domain 10 whkh Crttn's formula i.t appl�

in1cgral (3), we gel 

The lefi-hand side vanishes, since 1he form (2) is locally a total difl'cnntial. 
Bu11henindS - EindS1,becauscof1hedefinition(3). I 

•1>,01)/111, J ,  Pl'ovc thal the indu ora dOltd cun·� i1 an in1qtt.

•Probkrn 2. Give cornplc1e proofs or the aMCt1iOn1 in Stts. 36.1·36.3.

36.7. The multidimensional case. The multidimcru:ionalgcncraliu1iOI" 
of 1he concept of the winding number is the dtgrtt of a mappi,,g, by which is 
mean, the number of preimagcs counted with due regard for the signs 
delermined by 1he oriema1ions. For example, the degree of LM mapping of 
an oriented citdc onto another oriented circle shown in Fig. 258 equals 2, 
since the number of prdmagcs of the pointy, with sign taken into accoun� 
equals I + I - I + I = 2. 

To give a general definition, we proceed as follows. Let/: i\1; - i\1i be a 
smooth mapping or one n-dimcnsional oriented manifold onto another such 
manifold. A poinl x E M; in the preimagc manifold is called a rtg,d,rr p,,i,,J if 
the derivativeofthe mapping/ at the point xis a nonsingular linear operator 
f.,.: TM�A - ™2/l•>· For example, the point x in fig. 258 is regular� but 
not the point x'. 

D,finition. By 1hc dtgr« oftht mapping/ at a ugui,,, point xis meant the number 
deg,/ equal t o  + I or -I depending on whether/., carries thcgivm orien ­
tation of the space TM;

,. 
into the given orientation of the spa.cc TA1i,. or 

into the opposite orientation. 

Problmt I. Pr<wc lh:at 1hc dt"grtt or a lint-ar automorphism A: R• - R"' is c.laie sa.lDC' a.t 
all points and cqu31s 

deg-.., A = sgn dct A - (- I)•-, 

where rn_ is tht" number ot eigenvalues of the opt"nuor A with a negatn--c real pat'L 
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V 

Fig. 258 A mapping or dqrec 2 .

26.S 

l',ob/,,,, 2 ,  Civt"n a linear automorphism A: R• - R• in E...clidan •paC",, � a nuppins
or 1ht" unit •1>here oruo it.l(lr by the rormula/(.i) - A(.r)/IAxl, Find the- dqrtt o/ lM
rnapphig/ at tht J)Oint x. 
A•1. d<s,f d<s A. 
Prt>blrm 3. l.c1/: S•-' - s-- • � a mapping carrying� point ot tM s;pbffe a.n.to lM 
diamecrica.lly OJ>J>OSitt" point. Wha1 is tht" dtgrtt ol/at the point,.., 
A••· d<s,f � ( - t)•. 
J>,ol,l,m - I .  Let A: C" - C- br "- C•lint"ar automorphism. Fi.nd the dq;rtt o/ its dttom­
pleXifica1ion "A.

AnJ. + I. 

Now consider any pointy of the image manifold A1;. The pointy e A1; is 
said 10 be a regular valut of th, mapping f if all the points o( iu compkte 
preimagef- ';•are regular. For example, the pointy in Fig. 258 is a r,gular
value. bul not the point;•'. 

THEOREM. If the manifolds Mi and M; Ort tompatt mtd conntt.ttd, thnt 
I) Rtgular va/u,s txist;
2) Th, numbtr of poinlS in tht preimag, of a ugu/4.r Nlut isfinitt;
3) Tht sum of the dtgrus of th, mapping at all th, points oft/re prm,u,g,•f • rtgul,,r 
valut d0t1 not depend on the par titular rtgular value ,mt/Lr considnal»II_

The proof of this theorem ls quite complicated, and can be: found in the 
literature on topology. t

R,mark I. Actually almost all points o( the manifold A1; att ttgular values,
i.e., che nonregular values forrn a set of measure zero.

R,mark 2 .  The compactness condition is e.sential not only for the tttOOd 
assertion of the theorem, but also for the third assertion. (For example, 

t S« H. I. Levin� SiJt&vlar1'.tiLs ef Diff,rmtUl.olr t.lll/JIIUt;ts., Math.. Inst. Ul'UY. Bonn (1959}. 
Sec. 6.3. 
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con,idcr the embedding or the ncgotive real axis in the run real axi1.) 

Jlunark 3. The number or poin11 In the prc:imagc (without rqp,rd for sign) 
con be dilfcrc:nt for difTcrc:nt regular values (for example, in fig. 258 thc 
valucy ha! four such points, whiley" has prc:ciscly two). 

Defi11itiori. Dy the dt,trt• ef the mnppi11J:fis mcant the sum of the dcgrttS ol'/at
all the points of the preimageora rcgularvalucor/: 

deg/• L deg,/
x•f • 11 

P,obt,m S .  J,"'
i nd the degr« of the mapping of th e circle l.zl - I onto itd si'ttft by 1ht

r0tmula/(z:)- r.'\n • O, ±1, t21 • •  , 

Ans .  n ,  
P,ob/,,,, 6.  Fi nd 1hc d<"grce or 1he mappi r\g of 1ht' unit ,p� i n Eudido.n � R• cmto
itsdf g i ven by the formul.-/(,.) Ax/lAxl, whtt'c A: R• - R• is .A nomir.,du Ii.nor
Ol>fflllOf', 
Ans. dt:. g/ - sgn dN JI. 

Pto6l,m 1 ,  Fi nd the degree of 1hc mapping of 1hr complex projective liaw CPt onso itsdf 
given by 1hc formula 
•)/(:) = :•; b)/(:) = ,·•. 

Ans. a) 1•1; b) -1•1• 
Probttm 8 .  Find the degrtt of the mappi ng of the- comple x  line- CP1 011\o itsdt &""m by ai 

polyn omial of d egree n. 
• Problnn 9. 1.A:1 f: U' - S1 be the mapping constructed in Stt. 36.6 with lhot hdp of a
\'(ClC)r field v in a domain u·, Ice y: s• - U' bc ack,scdcurve.and let A-/• 7:S' -s•.

Prove that the index or y as defined in S«. 36.6 coinci des with thie dqrtt o1,: 

ind y = deg Ii. 

Definition. By the index of an isolated singular point O or a vector field v defined 
in a domain of Euclidean space R"' containing O i s  meant the: degree or the 
mapping h corresponding to the field, i.e., of the mapping 

h:S"-
1 -s--•, s•·• = {xER": !xi= r} 

of a small sphere of radius, centered at  O onto itsclf given by the formula 

h(x) = 
rv(x) .
lv(x)I 

P,obltm 10. Provi e that if thie operato r vu or the linear part o/ the 6dd vat a sangubr 
point O has an inverse, then th e indc,c or O equ.ils the dcgr« of•••· 

Probl�m I I. Find th e index of the singular point O o( th ie field in R.• corrcspoadit1g IO thie 
«ruati on i - -Jt. 

Ans. (-1)". 
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'J'hc ,-o,wcpt or degree allows u, to formulate multldimcn,ional analogues

or the 1wo.Jime111ional 1locorcms ,·o,uidercd above. ·n,e proof• ran be 
round in book, on topology. 

In partil'ular, /ht sum X of /ht in,lius of 1/o, 1i11-1ulo, points of•""'*' fa" •fatd
on• tompot/ m•nifoltl II/ nrbi1rory tlimtnsion is ind,p,ndtnl of /it, clt,,.u •/11" fa" a,/ 
d,p,ntlJ only 011 lht p,op,,1i11 of lht manifold ils,/f. 11,e numb,r xi• �•llcd 1he 
Euler tltn,acltri11ic of the manifold. To calculate X, we need only invcstiptc 
tloc singular points or any differential cqua1ion defined on the manifold. 

Prob/rm I 2 .  Fiod th e Euler tharac1tl'i.11ic or the lt)httt-S-, o( the prc:;uti"e �tt llP'. and
o f  the tonu T",

A11,. x(S") • 2x(RJ>") I I ( I)", x(T"J o.

Soltitio11. The1-e i1 a difrertflti;al equation without singular poinu on a tONl o( arbitrary
dimcn1.i0n (�(' e.g., Sec. 2<t . .S), and hcncr x(7") - O. 

It i s  c lear tha1 x(S'") 2x(A.P-), In faf't, comider the mapping,: S--R•· • onyinc 
every poin t oft� sphcrt' s• c: R• • 1 into the line joining lM point to t..bt origt.n o( coo,di,, 
n.-tN, The mapping p i, locally diffcornorphk, wi1h the p.rftm.agc o/ nny poant of 
1>rojcc1i"·c 1patt being two diame1rically oppowtc points of the 1 pMtt .  "l'httdaT n"fl'Y
\'eccor field on RP" de terminn a field on S- with 1witt as many iingular poinu., when-tht
index or e:u h of the d iamc1rically oppos:ite singubr points on. 1.he s;phe� it I.be t;afflC' a, th<

index or the torropondi ng point in projective SJn«.
To ralcula te x(S-), we ddine a spbrrt' by the ,equuion xi + · · · + ,t'a = I in W 

Euclidean ,pace R• • • and et>nside-r the field x•: S- - R.. \\l'c thttt form the d"ifl"crcntial
filU3tion 

j gr ad x0 

on the sph ere, and i1h•�1ig a1e i1s s.ing ... lar points (Fig. 259). Tk .. 'ttl<W 6dd gr.lid ••
va nisht'1 a t 1wo poi,us, the north pole (x 0 I) and the south pol( (x• -1). Linori:z.
ing 1he difft'ren1i.al equalion in neighborhocxl:t of tM north and tO\lth paks rcsptt'li,dy.
we gel 
� • -�, � • R• • TS';,

,j ... ,,� ,,  • R'" = rs;. 

Fig. 2$9 Lineariiat ion of a differentia l equatio n  on a sphere near its singub..r paints-
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Hr.nee the: north l)Olt hat indt'x (-1)• tlld 1hc: .ou1h po� hat ;ndu (-t 1)-
♦ 

t0 tM, 

x(S-) • I I (-1)". 

In p11rlituh1t'. h follow, 1h11 mr, f-rctfl /lfld ,_ • rm,,.Ji,,.,,.,..,.,/ "'1,,r, ..... ., ,,_.,, _, 
,,,.,,.,,,, polNI, 

11,obl,m J !J ,  Conururt • vc:tlor fidd without Mn1ular poinu on th� odd..4f.VMftMOn.ll 
1phert SJ ... ', 

/lint. Con.sider the scrond-ordc:r diffcrcnth1I «tU�tion R • x, , r  • R.•. 



Sample Examination Problem• 

An ,rror ef 10-20% is allowtd in all num"kol p,oblt'11J,

I. To ,1op a boa1 a1 a dock, a rope is 1ht0wn rrom 1hc boat which is then 
wound around a po,1 auachcd 10 1hc dock. Wha1 is 1hc braking lot-tton the 
l>on1 ir 1hc rope makrs 3 10r11s around 1hc po11, irthe coefficient of friction of
1hc rope around 1hc po11 isl, and ir a dockworker pullt at the free end of
1hc ropr with a rorrc orlO kg? 

2. Consider 1hc mo1ion

� • 1 + 2 sin x

or a pendulum subject 10 a cons1an1 1orquc. Draw phase cu,,...,. or the 
pendulum on 1hc ,urfocc or a cylinder. Which mo1ions of the �ndulum 
correspond lO the variou.! kinds of curves? 

3. Calculate the matrix, .. ,. where A is a given matrix oforder2 or 3.

4. Draw 1he image of 1hc square lx,I .;; I, lx,I.;; I and the trajectory of
the phase now or 1hc system 

x, - 2x2:, 
arter time,. 
5. Find 1he number of digi1, required 10 write 1hc hundred1h term of the
sequence I, I, 6, 12, 29, 59, , .. (x

,.. 
= x.- 1 + 2x._ 2 + n, x1 = x2 = I). 

6. Draw the phase curve oft  he sys1em 

X = X - y - z, j = X + )',

going through the point ( 1, 0, 0). 

7, Find all a, p, y for which the three functions sin a..t, sin /Jt, sin yt att linearly 
dependent. 

8. Draw the trajectory of a polnt in the plane (x 1 , x2) cxccutingsmalJ oscilla­
tions

au 

X; = - Oxr, U = �(5x/ - 8x 1x 2 + 5-'1),

subject to the initial conditions 

X
I 

= I' 

9. A horizontal force of 100 gm lasting I sec acts on  an initially s-uuionary 
mathematical pendulum oflength I m and weight I kg. Find the amplitude
(in cm) of the oscillations which result after rhc force ceases 1oacL

269 
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I 0 .  I nv1•,1 lgn IC the l.)'npu nov <UI bilhy or the null solution or.� ')'lem

"'1) -{ (, • x1, ( { 0.4 ror2kn < 1 < (2k + I)•,
x1 • -w1,r1 , 0.6 for (2k - l)n < I < 2kn,

k • 0, ±1, ±2, ...
11. Find all the ,ingular points orthcsystem

)' � .r' + 1' - 2).

l nvcstigate the stability and determine th<" type: of <"ach singula, poin1, and
cJraw tlw eorr'cspondi,1g pha-.c rurvc�. 

12. Find all singular points of the system

j = sin x + sin:,

on 1he toru, (.r mod 2n,.Y mod 2n). Investigate the stability and determine
the type of each singular 1><>in1, and draw the corresponding p� cu,,,cs. 

13. It is known from experience that when light is refracted at the iotttfacc
between two media, 1he sin� of the angles formed by the incident and
refracted rays wi1h rhc normal to the interface arc inversely proportional t o
the indices of refr;1ction of the rnc..'1Jia: 

sin a
1 n2 

sin a:2 ;;; n, ·
Find 1he form of 1hc light rays in the plane (x,.1) if the index nf refraction

is n • n(J). S1udy 1hc case 11(1) • I/)' (the halr,planey > 0 with this index
of refraction gives a model of Lobachevskian gcomet,r). 
14. Dr-aw the rays emanating in different directions from the origin in a
plane with index ofrcfrac1ionn = n()') = ,• -1' + I. 

Commrnl. The solution of this problem explains the phenomaion o( the
mirage. The index of refraction of air over a desert has a maximum at a
certain height, since the air is more rarefied a t  higher and low-er (hot) layers
and the index of refraction is inversely proportional to the ,,clocityoflighL
The oscillations of the ray near the layer with maximum index of rcfract.K>n
is inlerpreted as a mirage. 

Another phenomenon explained by the same kind of ray oscilla,;ons is
that of acoustic channels in the ocean, along which sound cao be propagated 
for hundreds ofkilome1ers. The reason for this phenomenon is the interplay
of temperature and pressure leading to the formation of a layer of maximum 
index of refraction (i.e., minimum sound velocity) al a depth ofS00-1000 m.
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An aco,u1ic channel can be used, for example, 10 give ...,.m,ns o( 1idal 
waves. 

15. Draw gcodc•ics on a 1orus, u,ing Clairau1's 1hcorcm ,..h,ch sta1-,s 1ha1
1hc produr1 of 1hc di,mncc from 1hc axis of rcvolu1ion and 1he i,nc o( 1hc
angle made hy 1hc gcodc,ic wilh a meridian i, COMlant along tVCI')
gcodCJic on a surface of rcvolu1ion.
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Potential well, bead sliding in, fil-83 

Principal axes, 174 
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detenninistic, l 

differentiable, l 

evolutionary, l 



finite-di,nensional, l 

local law of evolution of, 8 

Projective space, 233 

atlas for, 237-238 

Projection, 245 

Q 

Quasi-polyno1n ial(s), I 03, 176-188 

degree of, I 03 

exponent of, I 03 

space of, I 03 

It 

Radioactive decay, � -9, 1§. 

Rationally independent nu,nbers, 162, 166 

,·-differentiability,§. 

Real plane, ill 

Rectification theorem, 49, 227-229 

for nonautono,nous case, 56 

Rectifying coordinates, 49 

Recurrent sequence(s), 172-173 

of order k, 119 

Regular point, 264 

Regular value, 265 
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Reproduction of bacteria, 2., .!.§. 

Resonance, 183 

parametric, 204 

Routh-Hurwitz proble1n, 159, 260 

s 

Saddle, 153 

incoming strand of, 153 

outgoing strand of, 153 

Saddle point, 25 

Schwarz inequality, 216 

Secular equation (see Characteristic equation) 

Self-excited oscillations, 22. 

Scparatrices, 1!i 

Series of functions, I 00 

differentiation of, I 00 

Set of level C, 76 n 

Shabat, B. V., 160 n 
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Singular point(s), 8 

index of, 258, 266 

in the plane, 133-135 

si1nple, 258 

in  space, 139-140 



on a sphere, 260 

stun of indices of, 261 

S1nall oscillations, 173-176 

Solutions of a differential equation, 11., 30 

continuity and differentiability of, 52, 58, 62, 221, 224-225 

existence of, 50, 57, 21, 221 

extension of 53, 58, 62 

funda,nental syste,n of, ill 

higher derivatives of, 226 

stationary, ll 

uniqueness of, 50, 57, 21, 221 

Sphere, 233 

atlas f'or, 236 

Stability 

asyn1ptotic, 156, 20 I n 

Lyapunov, 155, 20 I n 

strong, 203 

Steenrod, N. E., 256 n 

Strong stability, 203 

Subrnanifold, 242 

Successive approxirnations, 212 

Swing, 189, 197 
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t-advance ,napping, .
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(I 1, t2)-advance 1napping, 57 

Tangent bundle, 243,245 

base of, 246 

fibres of, 246 

section of, 248 n 

Tangent mapping, 248 

Tangent space, IL 
34, 1.2., 244 

Tangent vectors, 35, 243 

Titne shift,� 

Topological 1nanifold, 235 

Torus 

111-din1ensional, 166,267

two-di1nensional, ill, 233 

atlas for, 236 

longitude and latitude on, ill 

phase curves on, 163 

phase trajectories of flow on, 162 

Trace 

of a cotnplex operator, 122 

of a matrix, ill 

of an operator, ill 

Transverse subspaces, 227 

Triangle inequality, 99, 2 I 6 
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Uniformly distributed points, 166 

Uniqueness theorem 

V 

for equation of order n, fil. 

local, 50 

for nonautono1nous case, 57

Vandermonde determinant, 195 

van der Pol equation, 94 

Variation of constants, 208-210 

Vector bundle, 243 n 

Vector field(s) 

delinition of, l 

dirferential equation detennined by, JJ. 

divergence of, 198 

exan1ples of, 8-1 I 

i1nage of, under a diffeo1norphis1n, 40 

on the line, JJ.-19 

linearized, 95 

on 1nanifolds, 248 

singular point of, 8 

winding nurnber of, 263 



Vector integral, 2 I 6 

Velocity vector, 33 

Vertical fall, 9 

deflection fron1, 66 
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w 

Weierstrass' test, I 00 

Winding nu1nber, 263,264 

Wronskian 

of a syste1n of nu1nerical functions, 194 

of a syste,n of vector functions, 192 
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