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Preface

In selecting the subject matter of this book, | have attempted to confine myself to the irreducible
minimum of absolutely essential material. The course is dominated by two central 1deas and their
ramifications: The theorem on rectifiability of a vector field (equivalent to the usual theorems on
existence, uniqueness, and differentiability of solutions) and the theoty of one-parameter groups of
linear transformations (1 €., the theory of linear autonomous systems) Accordingly. I have taken the
liberty of omitting a number of more specialized topics usually included in books on ordinary
differential equations, e.g., elementary methods of integration, equations which are not solvable with
respect to the derivative, singular solutions, Sturm-Liouville theory, first-order partial differential
equations, etc. The last two topics are best consider@d in a course on partial differential equations or
calculus of variations, while some of the others are more conveniently studied m the guise of exercises.



On the other hand, the applications of ordinary differential equations to mechanics are considered 1n
more than the customary detail. Thus the pendulum equation appears at the very beginming of the book,
and the efficacy of various concepts and methods introduced throughout the book are subsequently
tested by applying them to this example In this regard, the law of conservation of energy appears in the
section on first integrals, the "method of small parameters” 1s deduced from the theorem on
differentiation with respect to a parameter, and the theory of linear equations with periodic coefficients
leads naturally to the study of the swing ("parametric resonance"”)

Many of the topics dealt with here are treated in a way drastically different from that traditionally
encountered. At every point [ have tried to emphasize the geometric and qualimtive aspect of the
phenomena under consideration. 1n keeping with this policy, the book 1s full of figures but contains no
forinulas of any particular complexity. On the other hand, t presents a whole congeries of funndamental
concepts (like phase space and phase flows, smooth manifolds and tangent bundles, vector fields and
one-paraineter groups of diffeomorphisms) which remain in the shadows in the traditional cocordinate-
based approach My book might have been considerably abbreviated if these concepts could have been
regarded as known, bul unfortunately they are not presently included in courses either on analysis or
geonetry. Hence | have been compelled to present them in some detail, without assuming any
background on the part of the reader beyond the scope of the standard elementary courses on analysts
and linear algebra,

This book stems from a year's course of lectures given by the author to students of mathematics at
Moscow University during the academic

Page vin

years 19681969 and 19691970, In preparing the lectures for publication | have received great
assistance from R. |. Bogdanov. | wish to thank him and all my colleagues and students who have
cominented on the preliminary mimeograph edition of the book {Moscow Umversity, 1969). 1am also
grateful to D. V. Anosov and S. G. Krein for their careful reading of the manuscnpt

V. 1. ARNOLD



Frequemtly Used Notation

R the set (group, ficld) of real numbers.
C the 2ct (group, ficld) of cotnplex numbers.
Z (he set (group, ring) of integers.
& the emply sct
x€ Xc Y aneclement xof asubset X of aset V.
XY XV the union and intersection of the sets X and Y.
X\ Y, X\a the sctof clements in X but not in ¥, the set X minus the
clement a e X,
Ji X~ Y amapping fof aset Xintoaset ¥,
x = y (he mapping carries the point x into the point 5.
f <& the product {composition) of two mappings (g is applied first).
1,V. = there exists, lor every, implies.
Theorem 0.0 the unique theorem in Scc. 0.0.
§ end of proof symbol.
® an optional (more difficult) problem or
R" a linear space of dimension n over the field R
R; 4+ R, the direct sumn ol the spaces R, and R;.
GL(R") the groupof lincar automorphisms
One can consider other structures as well in the set RS e.g., affine or
Fuclidean structure, or even the structure of the direct product of 2 lines.
This will usually bespelled out explicitly, by referting to “the affine space
R"” “the Fuclidean space R",”’ “the cooidinale space R*” and so on.
Elemenws ofa linear space are called tecsors, and are usually denoted by
boldfaceletters (v, §, etc.). Vectors of the space R"are identified with sets of

n numbers. For example, wewritev = (9,,---,0) = vy + “ - + t.¢,
where the set of n vectors e, . .., e, is called a dasts in R® The norm
(length) ofthe vector vin the Euclidean space R*isdenoted by |vf and the
scalar product oftwo vectors v = (v,, . -.,0,.), W = (w,, . . - ,w.) € R%by
(v, w) Thus

(viw) =00, + - + yw,,

vl = J(w. v} = o7 + - + 2.
We often deal with functions of areal parameter ¢ called the tiow. Differ-

entiation with respect to ¢ (giving rise to a velocity or rate of changy) is usually
denoted by anoverdot, as ink = dx/d¢



1 Basic Concepts

1, Phase Spaces and Phase Flows

The theory of ordinary differential equations is one of the basc 100ly of
ma thernatical science. The theory allows us to study all kinds of evolutionary
processes with the properties of determinagy, finite-dimensionglity, and differ-
ontiabiltly. Before undertaking exact mathematical definitions, we coruider
a few examples.

1.t. Ezamples of evolationary processes. A process is said 10 be
deterministic if its entire future course and its entite past arc uniquely deter
mined by itsstate at the present instantoftime. Thesctofall possible states
of a process is called its phase space.

Thus, for example, classical mechanics considers the motion of systems
whese past and future are uniquely determined by the initial posivons and
initia) velocities ofall points of the system. The phase space of a mechanical
system isjust the set whose typical element is a set of instanianeous positions
and vclocities ofall particles of the system.

The motion eof particles in quantum mechanics is not described by a
determinsstic process. Heat propagation isa semi-deterministic process, in
thatits future is determined by its present but not its past.

A process is said 10 be firite-dimennional i€ its phase spaee is fnite.dimen-
siona), i.c., i [ the number of paramclers required (o describe 1ts state is
finite. Thus, for example, the classical {Newtonian) motion ol'a system coa-
sisting of a finite number of particles or rigid bodies comes under this head-
ing. In faet, the dimension of the phase space of a system of # particles is just
6u, while that ofa system of » rigid bodies is just 12a. As examples of pro-
cesses which cannot be described by usinga finite-dimensioral phase space,
we citi: the motion of {luids (studied in hydrodynamics), oscillations of
strings and membranes, and the propagation of waves in opiics and
acoustics,

A process is said (o be differentiable if ivs phase space has the sttucture of a
differentiable manifold and ifits change of state with time is described by
differentiable functions. For example, the coordinates and velocisics of the
particies of a mechanical system vasy in timein a differentiable manner,
while the motiens studied in shock theory do not have the differentiability
property. By the same token, the motion of a system in classical mechanics
can be described by using ordinary diflerential equations, while other tools
are used in quantum mechanics, the theory of heat conduction, hydrod¥
namics, the theery of elasticity, optics, acoustics, and the theory of shock
waves.

The process of radioactive decay and the process of reproduction of bae
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leria in the presence of a sufficient amount of nutrient medium afford two
more examples of detcrministic finite-dimensional diflerentiable procene.
1n both casesthe phasc space ison edimensional, i.e., the state of the procen
is determined by the quantity of maticr or the number of bacieria, and in
both cases the process is described by an otdinary differential equation.

1 should be noted that the lorm of the differential cQuation of the process
and thc very [3ct that we are dealing with a deterministic finite-dimenssonal
differentiable process in the fust place, can only be establizshed experimen.
tally—and hence only with a certain degree of aecuracy. However, this
statc of affairs will not be emphasized at every turn in what follows; instead,
we will talk about real processes as f they actually coincided with owr
idealized mathematical models.

1.2. Pbase flows. An exact formulation of the general principles just
presented requires the rather abstract notions of phase space and phase floco.
To familiarize ourselves with these concepts, we consider an example due
to N. N, Konstantinov where the simple act of intreducing a pbhase spasc
allows us to solve a difficult problem.

Problem i. Two nonintcrsecting roads lead from City 4 to Ciy 8 (Fig. 1).
Suppose itisknown that two cars connected by a tope oflength less than 24
manage to go [rom A1to B along diflerent roads without breaking the cope.,
Can two circular wagons of radius { whose centers move along the roadsin
opposite directions pax cach other without colliding ?

Salution. Consider the square

M={{x,2):0& x, €£1,0€x, 51}

Fig. | lmtal position of the wageans

F:g.2 FPhase space of a pair of vehicles,
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(Fig. 2). T'he pasition of two vehicles(one on the first road, the other on the
sccond road) can be characterized by a point of the square M; we need only
let x;denote the fraction of the distance from A to 8 along the tth road which
lics between A and the vehicle on the given road. Cllearly there is a point of
the square A corresponding to cvery possible state of the pair of vehicles.
T'he square M is called the pAase space. and its points are called phesy pocnys.

‘I'hus every phase point corresponds to a definite position of the pair of
vehicles (apart from their being conne cted), and everymotion of the vehicles
is represented by a motion of the phase point in the phase space. For cx-
ample, the initial position of the cais (in City 4) corresponds to the lower
left-hand eorner of the square (x, = x; = ), and the mouon of the can
frem A to 8 is represented by a curve going to the opposite (upper right
hand) corner of the square. {n just thesame way, the initial position of the
wagons corresponds to the lowrr right-hand eorncr of the square (x, = |,
x, = 0}, and the motion of the wagons is represented by a curve Icading to
the opposite {upper left-hand) cornerof the square. But every pairofcurves
in the square joining diflcrent pairs of opposite eorners must intersect,
Therefore, no matter how the wagons move, therec eomes a time when the
pairof wagons occupies a pasition occupied at some time by the pairofcars.
A tthistime the distance between the centers ofthe wagons will beless than
2{, and they will not manage to pass each other.

Although differential equations play no role in the above example, the
considerations which arcinvolved closely resemble those which will eonectn
us subsequently. Description of the states of a process as paints of asuitable
phase spaccoftenturns out to be extraordinanly usefil.

We now reiurn to the concepts of determinacy, finite-dimenssonality,and
diffcrcntiability of a process The mathematical model of a deterministic
processisa phase flow, which can be described as foilows inintuitive terms:
Let M be the phase space and x € M an initial statc of a process, andiet £'x
dcnote the state of the process at time ¢, given that its initial state is x. For
cvery real ¢ this defines a mapping

g M- M

of the phase space into itself The mapping g, called the 2-adaanee mapping,
mapsevery state x € Minto ancw statc g'x € M. For example, g8 isthe id esr
tity mapping which lcaves cvery point of M in its original posuon More-
over

gt+5 — ‘gfg.’
since the statey = g°x (Fig. 8), into which x goes after ime 5, goes after time
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Fig. 3 Change of state of a process in the coune of time

3 I

//-'_. ;/.q—
————

g 4 M

Fig. 4 Motion of a phae pont in the phase space AL

{ into the same state 2 = gy as the stale 2 = ¢’ * ‘xr int0 which x goes alter
time ! + 5.

Supposc we lix a phase point x € M, i.e,, an iniualstate of the proces. In
the course of time the state of the process will change, and the point x will
describe a phase curve {g'x, ¢ € R} in the phase spaese M 1 i just the amily
ol t-advance mappings g': M — M that constitutes a phase fiero, with each
phase point moving along its own phase curve

We now turn to precisc mathematical definitions. In each case Af is an
arbitrary sect.

Definition. A lamily {g') of mappings of a set Af into itscll, labelled by the set
of all real numbeis (1€ R), is called a one-parameter grovp of bersformntres of
Ml

g =g (1)
for all s, r € R and g° is the identity mapping (which leaves exvery point
lixed).

Preblem 2. Prene that a oneparameter group of transformations is 3 cammuraihve group
and \hat cvery mapping g' - A — AM is encto-one.

Definition. A pair (M, {g'})) consisting d’ a sct M and a one-parameter group
{2'} of transformations of M into itsell is called a phase fom The set M s
called the phAase space of the flow, and its elemenk are called pbase pomets

Defimition. Letx € Af be any phase point, and consider the nuapping
e R M, o) =gl (2)

of the real linc inte phase space (Fig. 4). Then the mapping (2) & called the
motion of the point x under the action of the flow (M, {g*}).



Ser. 1 PPhave Spaces and Phase I-lows 5

M
Fig. 5 Phase curves,
»
@l
| t '3

l18 6 Anintegral curve in extended phase space,

Definition. ‘'he image of R under the mapping (2) s called a phase corre of the
fow (M, {g'}). Thusa phase curveisa suhsetof phase space ( Fig. 5).

Problem 3. Prove that there is one and only one phast <¢urve passing \broagh every poins
of phate space.

Definition. By an equilibrium position or fixed point x € M of a flow (A, {£)) s
mcant a phase peint which is itself a phase curve:

ghxr=x YieR

The concepts of extended phase space and intégral curoe are asoGated with
the graph of the mapping ¢. First we recall that the diract product 4 x 8 of
two given scts A and B isdcfincd as the se t of all ordered pairs (a, 4), a € A,
b € B, while the graphola mapping f: & -+ Bisdefined as the subset of the
direct product A x B consisting ofall poink (a, fla)), a € A.

Definition. By the extended phase space of a flow (M, {g'}) is meant the direct
preduct R x M of the real f-axis and the phase space M. Thegraph of the
motion (2) iscalled an integral curce (Fig. 6) of the flow (M, [£'))-

Prublem 4. Prove that ther e1s one and enly one iniegral cune passing throasgh every point
o extended ph ase space.

Probiem 5, Prove that the horizontal line R X 1, x ¢ Af is anintegral corve if and ooly f
x 15 aa equili®rium position.

Problem 6. Prove that a shile
R: (R x M) — (R x M), (g} = {t + 3 x)

of extended phase space 2 0ong the time axis aarries int8ral curves into integral curves.
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1.3. Diffeomorphisms. T'he above definitions lermalize the concept of a
deteriniisue proesss. ‘[he cortexponding lormalizalion of the concepts of
finite-dimunsionality and differentiability consing in requiring that the
phase. space be a finte-dimentional differentiable manifold and that the phase
flow be a one-parameter group of di Heomorphisms of this manifold.

We now clarifly these 1erms. Lxamples of differentiable manifolds are
aflorded by lluclidean spaces and their open sets, circles, spheres, tori, ctc.
A generaldchinition will be given in Chap. 5, but fur thetlime beingitcan be
assumed thatwe are talking about an (open) domain ol Euclidean spa.ce

By a differentiable function f: U — R defined in a domain U of a-dimen-
sional l.uclidean space R"® with coordinates x;, , . ., x, we mean an r-lold
continuously differentiable fuaction f(x, ..., x,) wheie | €£7 £ . In
most cases Lthe exact value of r is of no interest and hence will not be indi-
cated, incases where it is required. we will allude to '‘r-diflerentiability” oc
the funciion class €.

By a differentiable mapping f: U — V of a domain U of a.dimensional

Euclidean space R" with coordinates x,,_ .., x, inlo a domain V of =-
dimensional liuclidean space R™ with coordinates %, . . ., yo we mean a
mapping given by diflerentiablefunctions y, = f,{x,, .. ., x, ). This mears

that il y;: ¥ — R ate the coordinates in V, then y,o f: U — R aie differ
cntiable functionsin U (1 €/ € m).

By a diffeomorpliism f: U — V we mean a onc-lo-one mapping such that
bothfand/ "': ¥V - U ate differentiable mappings.

Problem . Which of the . ‘ollowing junciioas speifY a diffeomorphism /2 R — R of 1be linc
onto the hine:

Slx) = 2x, 32, 23 ¢% ¢* + »?

Prodlem 2, Prove thauif f: U/ — V' is a Jifframorphism, then the Euclidean spaces with tbhe
domains {f and ¥ a3 subacis have Lthe samedimendion.,
flist. Usc the impliat function thcarem.

Bcfinition. By a one-parameter group {g') of diffeomorphisms of a manifold Af
(which can be thoughtof asa domain in Euclidean space) ts meant a map-

pmg
&R x M M, gt x) = g'r, t eR, xeM

of the direct preduct R » Minto M such that

1) gisadifferentiable mapping;

2) Fhe mapping g': M — M isa diflcomorphism [or every t € R;

3) The famtly {g', ¢ € R} isa one-parameter group of tiaanslorvwations of AL

Example /. M = R.g'x = x + vt (veR).

Remark. Property 2 is a conscquence of properties 1) and 3) (why?).



Sec. | Phase Spaces and Phase Flows 7

)1.4. Vector fields, Lei (A, (g'}) bea phase flow, given by a one-parameter
group of dilfeomorphisms of a manilold Af in Euclidean space.

Depnition. 13y the phase telocity v(x) of the Aow g' ava pointx € M (Fig. 7) &n
meant the vector representing the velocity of motion of the phase poiny,i.e.,

g'x = wv(x). (3)
=0

—

d!

The lef-hand side o[ {3) is often denoted by t. Note that the dedivative is
defined, since the motion isa differentiable mapping ofa domain in Euclid-
ean space,

Prodlem ¢. Trove that
d (] c
Zl,. &% = vigm),

[.e. thiat it every instant of time the veclor reproentng the velacity of motion of (he
phaze pojn equals the vector rejeesenting the pbase velocily at the very posmt of phase
space orcupietl LY the moving point at the given time.

ffint See (1). The solution is given in Sec. 3.2.

If x,,..., x, arc the coordinawes in our Euclidean space, so that
x,: M = R, then the velocity vector v(x) is specified by a (ubciions
v M- Ryt = |,...,n, callcdihe components of the velocityvector:

d ‘
"i(")=& x(g'x).
t=0

Prodlew 2. Prove that i« v a function of class £T-* if the one-acamerer gragp
&R x M -Mi elclass C.

Definition. 1ot M be a domain in Euclidean space with mandinaies
Xys .. 1&,{x;: M= R), and supposcthat with every point x € .M thereis
associated the vector v( x)emanating from x. Then this defines a secldor
fetdvon .M, specified in the x; coordinate system by # di fferentiable funcuons
i MR,

~

Fig. 7 The phas: veloaty vecior.
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Fig, 8 A vector field.

‘T'hus the aggregate of phase velecity vectors forms a vector field on the
phase space M, namely the phase velocity field v (Fig. 8).

Prodiei 3. Prove thatif x is a fixed point ol a phase Aow, then w(x) = 0.

A point at which a vector of a given vector field vanishes is called a
stugular point of the vector field.t Thus the equilibrium positvons of a phase
llow are singular points of the phase velocay ficld. The converse is nue, bue
is Not $0 easy to preve.

1.5. The basic problem of the theory of ordinary differential equa.
tions. The basic problem of the theory of ordinary differential equatons
consists in investigating 1) one-parameter greugs {g'} of diffcomorphisns
of a manifold A, 2) vector fields on Af, and 3) the relations betrween |) and
2). We have already seen that the group {g'} defines a vecter fiddd on M, ie.,
the ficld of the phase velacity v, in accordance with formula (3 ). Conversely,
it turns ow that a vector field v uniquely determines a phase flow (under
certain conditions to be given below).

Speaking infermally, we can say that the vecior ficld of the phase velocity
gives the focal law of evolation of a process, and that the task of the theory of
otdinary differential equations is 10 reconstruct the past and predica the
future ol the process rom a knowiedge of 1hs local law of evolutioa

1.6. Examples of vector fields.

Example {. 1t is known from experiment that the rate of radionctive dengy is
proportional to the amount x of maller presenl at ary given (ime. Here the pbase
space is the halfline

M= {x:x > 0}
(Fig. 9), and the indicated experimenial fact means that

= —kx, wvix) = —kx, k>0, (1)

t Nete that the compaonents of the ficld have no singularibies st a ungddar pomz, and m
(act are continuously differentia ble. The team “singuias point™ stoms from the &ct that \be

direction ef the vecters of the fickd chan ge neur such a poing, in general dooon trooady.
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M
Fig. 9 ‘The phaw spPace of sadioactive decay.
ot
A A TR A TR
¥y A
L |
(I

VoA
L =
b

‘*’
Ve s

A A

Fig. t0 The phase plane fur vertical fall.

i.e,, the vector field v on the half line is directed towa:d 0 and the magni-
tude of the phase velocity vector is proportional to x.

Example 2. [1isknown from experiment that the reproduction rale of a colowy of
bacteria supplied with enough food i1 proportranal to the quantily x of bactaria presont
at ary gever time. Again Af is the hall-line x > 0, butthe vector field diffevsin
sign (rom that of the previous example:

$=kr, v(x)=#kz, k>0 (5)

Note that equation {5) corresponds to growth, with the increase pro poc-
tional to the number ol individuals present.

Example 3. One can imagine a situation wheie the itncrease s proportional fo the
total number of patrs present, i.e.,

i = kx?, v(x) = &x? (6)
(this situation is more readily encountered in physical chemistey than in

bielegy). later we will see the catastrophic consequenees of the excesively
rapid law of growth (6).

Example 4. Vertical fall of a particle to the grovnd {starting fiom not too great an
winitial height) is described experimentally by Galileo’s law. which asacrts
that the acccleration is censtant. Here the phase space .Af s the plane
(x1, x3), where x, is the height and x, the velocity, while Galileo’s law is
expressed by formulas like (3), namely

X, = Xy, X, = =8 (7)

( —g is the acccleration due to gravity). The correspending vector freld of
the phase velocity has cemponents v, = x;,v, = —g (Fig. 10).
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Example 5, The small osctllations of a plane pendulum are described by a two-
ditnensional phase plane with coordinates x; and x;, where 2, isthe angle of
deviation ftotn the vertical, x; i3 the angular velocity, and M is a neighbor-
hood of the erigin of coordinates. According w the laws of mechanics, the
acccleration is probortional to the angle of deviation. Thus

‘*l — I!. -i': = k:l| k ] ‘;g. (8)

whetelis the length ef the pendulumand gisthe acceleration due to gravity.
[n other words, the vecter field of the phase velocity has components
v, = x;, vy = —4x,. The origin is a singular point of this vector Fcld

(Fig. 11).

Example 6. A more exact description of the (not necesserily small) ascitlations of the
pendutvm leads o the law

£, = x5, %; = =ksinx,. (9)

The corresponding vector field in the phase plane with eocordinates x,, =, is
Just

vy, = X3, ¥; = —ksinx,

(Fig. 12}, withsingular points x;, = mn, x; = 0. Notc that it is natuial to

g \ - &

Fig. 11 Simnall escillations of a pendulum

Fig 12 Phasze velocity ficld of a pendulum.
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Fig. 13 The cylindrical phase space of a pendulum.

Ty 1
>
l—i,—.—l—
a b b =

Fig. |14 Solwion ef the differential equation # = w(x) satisfying the initial condition
@(l) = X0,

regard the phasespace of the pendulum as being the surface of the cylinder
(X mod 27, x3) rather than the plane (x,, x;), since changing the angle x,
by 27 does not change the siate of the pendulum. The vector field cor
respendingto(9) can also be regarded as defined on the surface of acylinder
(Fig. 13).

Prablem i Skeich integral curves for Examples 1-3 and phase curves for Examples 4 and 5.

2. Vector Fields on the line

W e now show how the operation ol integration (withthe help of the hinda-
mental theorem of czlculus) aliows one to solve differential equationsdeter
mined by vecior fields on the line. We begin by introducing some defini tious
that will he used repeatedly below.

2.1. Solutions of differential equations. Let U be an (open) domain of
n-dimensional Luclidean space, and let v be a vector field in U (Fig. 14).
Then by the differential equation determined by the rector fuld v is meant the
equatient

£ = vi{x), x € U. (1)

* Diflecrential equations aresamelimes said 10 be equauons contaming ackooen fuxthas
and theit detivatives, This is falic. For example, the equaiion

dx.
a = X(x[f})

i$ not a differennal equation.
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Thedomain {/ is called the pAase space of equation (1).

Defuition. By a soluiion of the differi:ntial equation (1) is meant a differenti-
able mapping @:/ — Uoflthe interval / = {t€R, @ < 1 < $} of the real
f~axis{a = — o9, 5 = <09 arcallowrd) into the phase space such that

IV ol = viole))

dl,.,
ferallc e f.

In other words, as ¢ varies, the point @(¢} must move in L/ s such a way
that its velocity atevery instant of time t equals the vector v(x) of the ficld v
at the peint x = p(t) occupied by the moving point ai the given instant.
The image of f under the mapping ¢ is called a phase curee of the differential
equation (1).

Definition. Suppose the value of asclution @: f — {/of the differential equa-
tion (1) atthe point iy, a < ty < bequals xg, i.e.. suppose the phase curve
goes through the point xg at the ume . Then ¢ is taid to sansfy the el
condation

@lty) = %90 foeR,  xp€U. (2)

Example 1. 1 x4 is a singular point of the vector field. so that w(xg) = 0, then
¢ = xgisasolutienof cquatien (1} satisfying the inital condition (2). Such
a selutionis called an equafibrium pesition o rstatiorary siution, and the point x4
is then alse a phase curve.

In gceneral itis impossible to find the salutions of a differential equation
explicitly, starting from a knowledge of the vector field. The basic case in
which this can be doneis the case r = 1, i.e., the case of vector fields on the
line. We now siudy this case.

2.2.Integral curves.

Depnition. The ditect product R x U/ is called the extended phase space of
equation (1), and the graph of any soluticnof(1) is called an istegrel coe
of (1).

In the casc under consideration (# = |), the extended phase space s a
strip R x U in the direct product of the taxis and the r-axis (Fig. 13).

Suppase that through every peini (/, x} ofextended phase space we d1aw
a straight line whese angle of inclination with the positive t-axis has1angeny
v{x}. Then 1he resulting family of straight lines is called the doatiaw freld
associated with equation (| } or simply the diraction feld v.

Fvery iniegral curveistangent to the directon field v areach ofits poinss.
Cornversely, every curve 1angentai each of its poin 10 the ditecoon v ai the
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Fig. |5 A direciion ficld (a) and inicgral curves {b) in extended phase space.

given point is an integral curve (prove this!).

A solution of () satishes the initial condition (2) if and only if the coe-
responding integral curve goes through the point (¢g, xg). Thus finding the
solution of (1) satisfying (2) is equivalent to drawing a curve through (%, xq)
which s tangent ateach of its points to the direction ficld v.

Note that the slope of the integral curvesis the same everywhere along a
given horizontalline x = const.

FProflem {. Let = arc 1an ¢ be a solucion of equation (). Prove that x — arctan {1 + 1)
is also a solution.

Hint. The solutien s given in Sec. 10.1.
2.3. Theorem. Let v: U — R be a diffrentiable function defowed om an aatoval

U={xeR:a<x<f}, -~ €a<f€ +0

of the real axis. Then

1} For every to € R, xg € U there exists a solution @ of equation (1) setisfreze the
wnitial condition (2);

2) Any two solutions @, , ¢, of equation (1) seltifying (2) cotncide tn some na2gbbo
kood of the pointt = ty;

3) Thke solution @ of equation (1) satrgfying (2) icsuch that

ol d¢ )
= ‘o =v"xe m g’ V(XO) # 0’ (3)

@(l) = x if v(xg) = 0.

Remart, Since v(€) is a known function, formula (3) allows us to find the
function ¥ inverse 10 ¢ (f = W(x), ¢(¢) = x) by quadratures. We can tben
usc the implicit functien theorem to find ¢. Thus formula (3) iecads to the
solution ofequation (1) subject te the condition (2).
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4

—
1

fo
Fig. IG A solution ¢ and ws inverse (unction 4.

2.4. Beginning of the proof of Theorem 2.3.

a) Ifv(xg) = 0.levp{t) = xo. Then@is a soluinn of (1) and (2) sausfy-
ing (3)-

b) Let w(xg # 0, and let @ hea solution of (1) and (2). Then, by theim-
pplhicit function theorem, the function ¥ inverse 10 ¢ (! = (1), P(xg) = Jg)
1s defined in a suthciently small neighhorhood of the point xg (Fig. 16) and

v _ 1
dx|e=g  V(E)

Since v{xg) # 9, the luncuen l/v{£) is continunus in a sulliciently small
neighborheodofthe point { = g, and hence

(e
W(x) — ¢(xg) —L‘,v_{éi

by the fundamental theorem of calculus. This uniquely dcfines ¢ in a suffi-
ciently small aeighborhoed of the psint x = x5. Thefunclion ¢ inverse w0 ¢
is also uniquely defined in some neighborhood of the point ¢ = /g by the
condition @{ly) = x¢ (the implicit hmction theorem is applicable since
1/v(xg) # 0). Thus any solution ofequation (l)subjectio thecondition (2)
satishies (3) in a sufficiently small neighborhood of the points = ty, and the
uniqueness assertien 2) is preved.

¢) We must still verify that the function ¢ inveise te  is a solution of (1)
and (2). But

do_ i (L
r=yp(0} v(x)

_— — ] ~ —
7= v(p(1)) v(lo) = Xo
and the thecercm s “proved.”

= @ls)

Problem 1. Find the gap n the prool.

2.5. Failure of uniqueness Letv = 133, ¢, = 0,x0 = 0(Fig (7). Then
(L i3 easy te see that both selutiens @, = 0, @, = (¢/3)* satisfy eqQuation (1)
and the conditien (2). Of course, the function vis nondificientiable, so that
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Fig. L7 An example of nonuniquenes.

x

~Y

Fig 18 Integral curves ofthe eguation £ — &x,

this cxample does not contradict the theorem as stated However the proof
just given makes no use of the diffetentiability of v and goes through even in
the case where the function vis merely continuous Hence the proofl cannot
be correct as given. 1n fact, the uniqueness assertion 2) was peoved only for
the casc v(xy) # 0, and we see thatif the field vis only continvous {and not
difterentiable), then uniqucness may wecll fail for solutions sausfying the
cenditien @(!;) = x, where x g is a singutar point (v(x,) = 0). It turns out,
however, thatdiffcrentiability of v guarantess uniqueness even in this ease.

2.6. Example. et v(x} = &x. U = R (Fig. 18). Using (3) 10 solve the
diffcrential equation

t=ke, k#O )
of thc lorm (]) subject to the cendition (2), we get

o rmdé 1, ()

— =_—In 5

Xq ké k Xg
wherc @ is a solutien such that ¢(4) = x5 > 0. Therefore

@(t) = xoe*t T (3)
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for all { in a wulficiently small acighborhood of 4.

Note that the, right-hand side of (3) is defined on the whole ¢-axis, and
represunts an everywhere differenuable function satisfying the intial con.
dition ©(ty) m ¥y and the differential equation (4) for all 4. In fact, it was

precisely as the solution of equation (4) that Napicr originally iniroduced
the cxponential lunction.

Prodlem ¢, Prove that every solutionn @ of equation (4), satisfying the conditsoa ¢{le) =
ko > 0, {s given by formula (5) on the who'le inierval & < ¢ < & where it B debnad.

Sointion. We can nigue, for example, as follows: Lei T be the least uppo bound of the
sl of nuinbers r such thal (5) holds for all ¢ rg € ¢ < ¢. By hypolhesis, 4, < T <€ &
IFT < & formula (5) holds for ¢ — 7 because ol the cominuny of ¢. Buz then o1 Ookds on
somne naighborhood of T (to prove this, repeat the arguinent leading Lo (3), replacing (g
by 7" and xg by ¢ T) and noting that (5) implia ¢(7T) > 0). Thus T = § and fonala
(5) is proved for o € ¢ < & The cace a < ¢ < {g is reated similarly,

Hence frmula (5) give: all the solutions of (4) with x5 > Q.

Comment. 'Thus the problarns posed in Sec, | .6 onradioactive dec sy and grom th of bacserial
colonies have beeiisolved. I n the first problan the amount of matter falk off exposvonually
with ume, The amou it of radioacuve substanc e decreases to one hzll the amoon mually
presant in a time T =4~ lo 2, called the Aeif{ife ol 1he given substance 1n the serand
problem, the number of bacteria grows expanentially with time, and dovhles ia rme

T e k-'1n2 (aalong as the food lasts). Formula (5) alse contains Uve solution ol many
othec problems (Fig. 19).

Problem 2. AL what altitude i the density of the atncspliae one balf its value at the

carth's surface, assuming that the temperatureis ¢onstam ? (A cubic rocter of ar weighs
=2 1250 gm at the earth's surface))

Aus 810 2 5 5.6 km, the height of Mo Elbruy,

6691700 1750 1800 1858 1980 1350
Year

Fig. 19 Grewth of the number of sciaitific jonmals {both otiginal and ceview jaraaks).
From V. V_ Nalimovand Z. M. Mulchenko, Samamety (in Rutsian), Mascos (1969).
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Frablem 3. Peave thut sll ghe solutions of equaison (4) sathfYing the matal coaditon
®(10) = xg < Oure nho given by lorinula (8).

[tshould be noted that none ofthie functions (5) with x5 ¢ 0 vanushes for
any value of t. [lence the unique solution of equation (4) suchthatsy, = 0
is the stationary solution ¥ m 0. Thus formula (5) aacoxnts for all the selutsons of
the differontial equation (4).

[n particular, the uniqueness assertion of Thcorem 2.3 is valid for equa-
tion (4¢). From this one can easily infer uniqueness lor any equation (1) with
a differcntiablc vector field v and for more genceral cquations as well.

The reason for thefailure of uniqueness in the case v(x) = 3 isthatthis
lielddoes not fzll olf fascenough asthe point x = Qisapproaciwed- Therefore
the solution manages 1o arrive at the singular point in a finitc Line. An
inlinite time is required to reach the singular pointin the case w(x) = tx,
since the integral curves approach cach other cxponcnually. [t is char-
acteristic of any differential equation with a differentiable vecior ficld v
that its integral cutves do not appreach cach other more rapidly than ¢x-
poncniially, thereby accounting for the uniqueness. In particular, the
uniqueness proef in Theorem 2.3 is easily obtained by comparing the gen-
cral equation (1) with asultable equation of the form (4).

2.7. A comparison theorem. Let v, v; bereal function: continuous onan
interval U o the real axis suchthat v, < v,, and let p;, ¢, be solutiocns of
the differentialequations

¥ =), &= vy (6)

respectively, satisfying the same initial condition ¢,(55} = @2(tg) = =,
(Fig. 20), where @1, @, are both defined on theintervale < ¢ < 6(—00 <
a<b< +0).

THEOREM. 7 he tnequalily

i (%) < v, (0) (7}
hotds for all t 3 1 tn the interval (a, b).

x| e
Ty

7

4

T -~
I p ¢

tig. 20 Theslepe ofe; is greuter than that of @, 21 peink with equalx, bxil asd 21 pan s
with equal ¢,
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Proof. ‘Uhe incquality (7) is almost obvious (**the slower rider does not go
further').t More exactly, ler 7" be the least upper bound of the setof num-
bers T such that (7) holds for all ¢, 1y € ¢ < t. By hypothesis, 4o € T € &
[T < b theng (T) = 9,{T) by the continuityol ¢, ¢, and

d¢; d‘pj
@, <

tm ¥

by hypothesis, so that ¢, < ¢; at all points ¢t > T sufficiently near 7. B
then T cannot be the indicated lcastupper bound. ‘This eontradiction shows
that 7 = &, as asserted. J§

Remark. In the same way, it can be shown that ¢,(t) 2 @,(1) for 1 £ ¢,

2.8. Completion of the proof of Theorem 2.3. l.e1 x, be a stationary
peint of a diffcrentiable vector ficld v, sothat v(x,) = 0. Then, as we now
show, the solution of equation {l) satislying the initial pondition (2) i
unique,i.e., if @ isany solution of (1) such that g(iy) = xg, then @) = x,.
There is no loss of generality in assuming that xqg = 0. Since the field v is
differentiableand v{0) = 0, we have

lv{x)| < &|x| (8)

for sufficiently small |x| ¢ 0, where £ > 0 is a positive constant The re-
quired uniqueness new follows from the fact that the integral curves of
cqualion {4) other than x = 0, which are stecper near x = 0 than the inte-
gral curvesof (1), cannot reach the line x = 0 in a finite time, as already
noted in Sec. 2.6

This can be proved mosc rigorausly, lor example, as fellows: Iet v be a solunoo of
(1) and (2) such thav () = O (Fig 21), and suppose o{t;) > 0,2, > 1. Sinec e & a
eontinuous function, there cxists an interval (f;, 74) with the following groyp=vocs: 1)
olfz) =0,2) o(t2) >0 doc 1, <t 1y, 3) 2 = @ft) sarishes (3) lov t; < ¢ % ta. Ia ey,
for 1; we can checse the greatest lower bound of the t such that ¢{¢g) > Obor r <t €1,
and >r i3 any point &y > r; sufficiently near (;.

x

Wil
$ult)
. - -

‘F 32 t f, & ¢

Fig. 2t The solution e cannot vanish since it approasbes 2era mare showly than the
expoential @,

t Neyertheless we note that the rate of change of ¢, &f ¢ giren tastov can be larges than
the rate of change of @; 31 the same instant (Fig. 20}.
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We now compare thesolution o(f), 1z < ¢ € t5 with the woltution
ea(r) = o1yttt

of efquation (4) subject 10 the Inltial condition e(f)) = e(sy). Because of (H). the com-
parinan thenrem implics

o(i) 2 eltg)ettr =
for all 4 < 1 € g4, and hence
o(ly) > e(f))eti/aa >0

by euntinuily, This contradicts ¢(l;) = 0 and shown thal Lhere i3 no ¢, such thac l1,) > Q,
1, > tg. The cames 1, < tg and oil;) <= O are treated similarly. |

Problem /. Prove the uniqieness by the method ol Sex. 2.6, without makng a exnpasiaoo
wilh equation (4). Prove that a sufficient condition for uniQueness i kat the oegral

[t

be divergent at xg,

Piobiem 2, Prove Lhe uniqueness ameriion foe the differential equation 2 — w(x, ¢} wheve
v in a differenliable funcuion, assuming the existence of a solution £ = ¢{1) satiafy;ng the
imitial condition ¢(fy) = x¢.

Mirt, Levy — x — o(t), and make a comparison with a suitable equation {4}.

3. Phase Flows on the Line

Having just learned how to solve differential equations determined by a
vectorfield on the line, we now see what our results mean in tbe language of
phase Aows.

3.1. One-parametergroups of linear transformations. We begin with
the particularly simple equatien

x = kx, xe R (1)

As we know, the solution df (1) satisfving the initial condition ¢{0) = xo1s
Just
@(r) = &'xo.

We now define a “‘L-advance mapping g' : R — R carrying tbe inital condi-
tion x4 into the solution aflter time ¢:

g'xg = e“x.,

‘The lamily of mappings {g'} iscalled the phase flow associated with equation (1},
or with the vector field v = &x. Nole that the mapping g is a linear aans-
formation of thclinc. namely an cxpansion of the line #'times. Forarbitrary
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real 5 and £ we have

E”' - .ﬁ'iﬂlh gog - X,

Morcover 2'v is dilerentioble with respect 10 bath tand «. 1t (ollows that
the phuse fluw { 2"} 15 a one-paratieiey group of diffeomorphisms, where each diffec.
morplism s a linear trantformatian of the line. A one-paramcicy group of diffeo-
inorphisins of a lincar space, where cach diffcomnrphism is a linear trans-
formation, will he called simply a one-parameler graup of tiacar transformationt t
I'hus the phasc How {g'} associated with equation (1) is a one-parameler
group of fineus tra nsfon'mations, and the motions of poims under the action of
this phasc How arcjust the solutions of equation (1).

TNEOREM. Fvery one-parameler group {g'} of linear transformatioms of the lime R 15
thie phoseflow of a diffesential equation of the form (1), o that

g..l' = !tu'
Sorsume k.
Befoic proving the thecorem, we makce a remark of a general character.

3.2. The ditferential equation of a one-parameter group. Let {2t Le
a one-paramcicr group of diffcomarphismsof a domain €, and let v be the
vector ficld of the phasc velocity delined by the relation

d
v(x) = — ¥, xe U.
( ) d( = Og ’
1REOREM. The motion of the phase point @ : R — U, (1) = g'x 15 a solntian of the
differential equalion

X = V(X). (2)

Proof. We need anly show: that the velocity of motion of the phase point 2'x
at every instant of timc £y coincides with the phase velocity at the point gox
This is obvious, since the transformations g’ form agroup:

d d

— ‘x e
de dr

|o+tx —

y - g'(g°x) = v(gr). |
t=0 T

=0

!:tu.

3.3. The general form of a one-parawneter group of linear transfor-
mations on the line, Lct {¢'} beca onc-paramcter group of lemear t1 ansfor
mations of a lincar spacc /.. Then the phase velocity v(x) dependsonxe L

t Netc that differentiability with reapect 10 ¢ 3 implicit in the definition of a Gec paramewy
greup of lincar transforma tierns ¢”,
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linearly, siuce Uhe deriva tive (dfdt) |, o with respect o thie parameter ¢ of the
funclion g(¢, x) = g'awhichix linear in x isitself lincar in x.+ In particular,
it £ e realline R, thenevery functiionlinear in xis of the form v(z) = &x
where t wm v( ). Therefore the inolinn (t) = g'x is a solution of cquation
(2) with v(v} = 4&x,i.c.. asolution o cquation (1). Since the unigue slution
@ o thix efpuintio n satisfying the condition @(0) = xis of the lorm g'x = s,
the proof of Theorem 3.1 is now vomiplete. |}

*Problem 1. Prove 1hial every conlinuous onc-paramcler gioup of linar irarmeksrm s
ol the line is automatirally oilferrarable

Aini, Redall 1he defioiting of 1he expuncotial funcrion Ser integral, raswocal, and wea
tional values of 1he aigurnent,

Conment. Thut in delling a oneparamrier group of lincar iransdormations we could
have rrplaced the requirement that the namfermations g' be diffrren Liable with raget
15 ¢t by the suireoirni that shey be caminuous n ¢

*Moblem 2, Find all onr.parameier gronps of lincar ramaformations of the Bowing
linearspaces:a) R fihe real plane}; b) C* (1he complex line, 1.¢-.. e oncdeveraaral
linear space overthe ficld of complex numbsers).

Hint ln Chap. 3 we will deacribe all ane.paramcter groups of bncar warnskwmatons of
the ~dimensional real and complcx spacei RYand Co.

3.4. A nonlinear example. Next we consider the more complicated difler-
ential equation

X = sin x, xe R.

Probles 1. Find Lthe solution of thiy equation ishying the ioitial conditagpn o0} = Xe

Here we can again define the ¢-advance mapping
g"R R, g'x = g(t)

where ¢(¢) is the solutien saisfytng the inivial eondition (0} = x;. The
mappings g' form a oneparameter group of diffeomorphiens of 1he line,
namely the phase low associated with the given equation. The phase flow
{g'} has fixed poinis x = k1, £ = 0, +1,__., and the diffeomorphrsms
£2'(t # 0) are nenlinear translormations of the line. The tansfoymawon g*
shifts every point x toward the neaest edd multiple of #ift > Qand toward
the nearest even multipleof nift < 0(Fig. 22).

Problem 2. Prove tha the scquence of funciliors ge. &) — eo eonverges, but mot undarwl y.

The above examples give rise 10 the hope that wilh every diflereniial
cqualion on the line

jEV(X)) XGR,

t Nole Lhal the lincar nonhomogenecous funciien f{z) = ax + b feils @ be kincar dé # 0.
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Fig. 22 Phase space and extended phase space of the equation & - sn s
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Fig. 29 Dircction ficld and twe solutions of the eQuation 4 = z4.

there is associated a one-parameter group {g'l, £'x = ¢(t) of diffeomos-
phisms of the line, where ¢(¢) is the solution satisfying the conditon
©(0) = x. Asthe next example shows, this hopeis ill-lounded.

3.5. Counterexample. Consider the differenual equatien
i' - Xz

characterizing “‘overly rapid growth" in the sense of Example 3 of Sec. 1.6
(¥ig. 23). This equatien has the solution

O!f)d

given by Jormula (3) of Scc. 2, oficn written in the form
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dx
f m + C X = 1
“x Tt G

Onenust notthink that the lastformula is enuivalent 1o (3) oe that the func-

tion x = —If(t = C) is a solution, In fact, the domain of definition of the
fupction x = — /(¢ — C)is notan interval but rather two inlevals ¢t < €
and t > C,so1hatihe restrictionolx = — 1/(# — C) 10 thescintetvalsgives

two solutions whicharcin nowayrelatedioeach other (as long as we canfine
ourselves 10 the domain ol real ¢, 1he only case corsidered in this book).

T'hese considerations show that il the growth of a population is penpor-
tional tothe number of pairs, then the size of the population becomes infinite
in a Auile 1ime (whereas the usual law ol growth is exponential). Physcally
thiz conclusion corresponds 10 the explosive nature of the prooes {of course,
for tsulTicienly near C, the idealization entailed in descrabing the pyoces by
the differential equation in question beecomes inapplicable, 30 that the size
of 1he population does not aciually become infinitc ina finite time ). On the
other hand, we see that the formuta for the t-advance mapping (g'xq = it}
where () ts the solution satis{trg the imtial condition (0) = xg,) docs mot give a
diffeomorplasnt ¢': R — R foranyt # 0.

Probleamr 1. Prove the italicieal assertion.

3.6. Conditions for the ¢existence of a phase How. The ieason why {¢'}
in the precedi ng problem is not a one-parameter group of diffcomorphicms
is not thatdiflerentiability f(ails or that 1he group property bicaks down, but
simplythat the function g° (¢ # 0) 15 rot defired on the whole x-axts, since some
solutions manage o become infinite in a time not cxceeding ¢ (Fig. 24).
However, if 1the selutions do not beceme infinite in a inite time, then the
assertiort made at 1he end of Sec. 3.4isindeed valid.

Problent 1. Prove the asscrtion at the end of Scc. 8.4, assuming that the fumnion v i diffite-
entiable and identcally zero far sufficiently large |of.

Fig. 24 [ntcgral curves of the equation & = z3.
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Mint, The solwtjas is comained it the proof of & more general theorem, whie h asaects 1hat
every dilferentiable vevioe lield on i compaci manifold is the phase velocuy Seld of 2 ores
pirarietee group of difeosivoiphivms (eee Ser, 3%

Cuntment, Thus the possibility of (he counteeexample of Sece, 3.5 stemn from Lhe nemcomi -
pociness of Lthe llne.

Prabler) 2, Prove the asertion of Sec. 3.5 asauming thet |els)l < Alsl 4+ B bor all s R,
where 4 and 4i sare positive consianty,

Mint, Use the comparisan Theoreny 2,7,

4. Vector Fields and Phase Flows in the Plane

Ifthc dimension of the phasc spacc of a differential cquation s geeater than
I (fur cxample, cqual o 2), then there is no gencral mcthod for findmg
explicit solutions, [{owever there arc some special cases which can be re-
duced o one-dimensional problems.

4.1. Direct products. Cionsider two differentialcquations

X, = vilxy), x, € U, 1)

Xy = valxa), x, € [y, 2)

dctermined Ly vector fields v, and v, differcntiable in phase spaces U, and
{/;, respectively.

Definstion. By the direct product of the differential equations (1) and (2) ks mcant the
differential cquation whose phase space isthe direct productof U, and £7;;
thisequation is determined by the vector ficld which is the ““direct product™
of the ficlds v, and v;. Thus

x = v(x), x€ U, (3)

where U= U, x {3, x = (x;,x,), v(x) = (v,(x)), va(x3)).

I n particular, if the phase spaces 7, « Rand {7, < R are onc-dinmen-
sional, then U isa domain inthe plane (x,, x;) and (he differendial equacion
(8) isa system of two scalar diffcrenial cqualtions of a special kind:

{ & = vi(*) x el =R, (H

% = vy(x,), x3el/; cR.
The above definition immediately implics the following

THEOREN. If @ is a solutien of the direct product (3) of the differemizal cquations (1)

and (2), then @ is a mapping @: £ — U of theformp(t) = (@,(1), 92(2)). where
@, and @, are solutiens of equations (1) and (2) dafined on one and the some taloroal 1.
Jn parucaular, if the phasc spaces {7, and {3 arc onc-dim¢nsional. we
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kuow hiow to solve each of the equations (1) and (2). Therefore we can abo
explicitly solve the system of itwo differential enquatinn. (4).

Infact, by Thearem 2.3, the wlution » satislYing the inir'al condilion of fg) = sa ¢an be
found in a neighburhowxd of the preind 1 = 1p fram the relations

j:'t”y_% I = ._J::li;ﬁﬁ. Xg = (xegs 730)

if vy(xj0) ¥ O vaa(xy0) 2 O, If vi{Aig) = 0, the first relation i replaced LY o) = 244,
while if vi{z39) = @ the secord relation & replaced bY 932 & vy Funally f weias, o)
vi(xq0) * 0. then xy is a singular point of the vecior ficld v and an equalibrium position
of the aystem (4), i.c.. 9(¢) & xv.

4.2. Examples of direct products, Con«ader the following system of iwo
differential equations:

£| = X3,
ilz ] kX 3.
Lroblem 1. Skereh the corresponding vector ficlds in the plansfor 4 = @ 3.1, §, 2

We have already solved each of these equations scpatately: Thus the
wlution ¢ satisfying the inial condition @(2y) = *gisof the forn

@y = Xy "% @1 = Xa0e*"' 1 (5]
Hence along every phase curver = () we have eithcr x, = Oor

| = Claylb, (6}
where( 1sa constant independentol ¢

Prodlenr 2, 1< the ¢urve in the phase planc (x4, ;) given bY (6) a phaw corve?
4drs. No.

The fanily of curves (6) where C e R 1akes various forms depending on
the value of the parameter £. If &£ > 0. we get a lamily of ““generalized
parabolas of exponent 4.t wherc the parabolasare 1angent 10 the x, -« -anfs
k> 1 and to the vy-axis if £ < | (Figs. 23a and 25c). ITk = |, we get a
laraly of st2ight lines going through the origin (Fig. 23b). The arrange-
mcnt ol phase curves shown in Fig. 25 is called a aode. For & < 0 checunes
are hyperbolas (Fig. 26),3 foriing a szddle point in a neighborhood of the
origin. Fork = 0 the curves tiirn into straight lines ( Fig. 27).

hisclear{rom (3) thatevery phase curvelies entirely in one quadiant {(or
on one half of a coordinate axis, or possibly coincides with 1he ongin which
is a phase curve for all £). The arrowsin the figures show the dicection of

T Thecurves are actually parabolas only Mt =20rk =1.
1 The curiex arc acevally hyperbolas anly ifk e — I,
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L N Y
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by K)

Pig. 25 Nodes: Phase curves of the system #, = x,, 2; = dr; f00 2 > 1, & = |, and
0<i<l.

2/
N7

Fig. 26 A saddle poini: Phase curves of the system iy, = g, 52 = kvtr & < Q.

Fig,27 Phase cucves of the system £, x, 22 = 0.

motien el the point (i) as ¢ increascs.

Problem 3. Prove that each of the parabolas x; = x? (£ = 2) eonsisss of three pitase conves.,
Describe all the phase turvies for the othervaluesofl (6 > L 2= L0< 2 < L,k = O,
k< 0).

Commenrt. 1 is interesung to observe how one drawing gos into aootbher as £ chacgges
conlinuously.

Pnsblem 4. Braw the node corresponding o & = 0.01 and the saddle potit conespnading
te 4 = ~001].

4.3.0ne-parameter groups of linear transformations of the plaoe.
Next we construct the phase low associated with our system, defining the
{-advance mapping ¢° in the usual way, i.c., gx = ¢(¢) where @(2) 15 the
solutien satisfving theinitial sendition (@) = x. It lollows Fom (3) that g°
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Fig. 28 Fhase flow of the aysiem &, o x,, £; = 2x,.

Fig. 29 FPhase flow of the system &, = x, 2 = —«». The pandOtmatmns 2° are cabed
hyperbolic rotations.

is a linear transiormation of the plane, eonsisting of an ¢'-fold expasson
along the x -axis and an ¢*'-lold expansion along the x,-axis (an z-fold ex-
pansion is actually a contraction if « < 1). The matrix of the transborma-
tion g' has the diagonal lerm

s 0
(5 &)
in the system of coerdinates x , x,. The differentiability of €'x with respect
10 ¢ and x 1$ obvious. Thus the mappings £’ form a onc-parametcr group of
lincar transformations of the plane. The action of g, t = lonasat £
shown in Fig. 28 for the case £ = 2 and in Fig. 29 for thccasc & = — 1.
1t should be noted that our onc.parameter group of linear ransforma-
tions g* of the plane decomposes into the direct product of «wo one-para-
meter groups of hincar transformations ofthe line {namely expamacms aloag
the x,-axis and expansions alnng the x;-axis).

Prodler {. Does every one-parameicr group of linear transfma sons of the plane dewom.
posein the same way?

Hint. Censidce rotations Luough the angle £ or shiltsol the form (xy, 2;) — {xq 4 22f x3).
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5. Nonautonomous Equations

‘The slmplest nonautonomous dilferential equation is of the form

% . ﬂxt.y)'
where the right.-hand side depends ontheindependent variable x. We begin
our discussion of such equations with the following example

5.1. Equations with separable variables. Once again covmider the
direct product of two equations with one-dimensional phase spaces:
{f'ﬂﬂ’ ()
> = g(»)
Here x€ U < Ris the coordinate in thelirstphasespaceand ye V <« Ris
the coordinate in the second phase space, while fand g are differentiable
functions determining vector ficldsin {/and in V. Suppose f{zg) # 0. and
consider the phase curve going through the point (x5, y9). Then, as we now
show, this curve (Fig. 30) canbegiven by acuiveofthelormy = F(x)ina
neighborhood ol the point (x4, »e).
Parametrically 1he phase curve is given by

x=¢ ), ¥ =at),

where ¢ = (p, ¥,)is the solution of the system () satisfying the condition
@1(lo) =™ Xo, ¢3(te) = so- Since f(x9) # 0, we have

v,

dt # 0.

t=ig

By the implicit function theorem, the function ¢, ¢ = ¢ (x) inverse w0 @, &5
uniquely defined in a neighborhood of the point x = xo. Let F(x) =
¢:(¥(x)). Then the function Fisdefined, continuous, and diflerentiableina

7 20 1)

X X

FiB 30 A phase corve of the sysieas (1) and an inw@al curve of equaton (2}
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neighborhood of the point x = x,, and

d de, dy| _ g(F(§)) ) =
Ii'W....oEe TG+ Fled =

by the theorems on derivatives of combosite and implicit funclions. Thia s
exressed concisely Ly saying that F'is a solution of the differeniial equation

2~ ) @

satisfying the initial condition F(xg) = y,. We call (2) an equation with
separable variables,

THEGREM. [¢t the functions [ and g be defined and comtiruously differeatiabie & a
neighborhood of the potnts x m xo, ¥ m yg respectively, where f{xg) # 0,g(yq) % O.
Then the sotution I of equation (2) subject to the corndition F(xy) = yo exists and s
uniquet 1t a neighborkood of the point x = x4, ard sattsfies the relation

X d{ J‘le dﬂ
o TR = 3
5!0 {6) Yo g(") ]
Progf. To construct a solution, consider the system (1). By Theorem 4.1,

there exists a unique solution of (1) satisfying the initial condition ¢(1g) =
(x0. ¥0), Ziven by the formula

E‘ € _,_, = 5’ dn
x J(§) S M T0))
in some neighborhood of the pointt = ¢,. Asshown above, the carvespond-
ing phase curve is the graph of the solution F of equation (2) subjert to the

initial condition F(xy) = yo. Hence the solution F exists and sanshies (3).
The uniqueness i3 also a simple consequence of the relation between equa-

tions (1) and (2). 1

Problem 1. Carry out th e uniqueness proof.
Problem 2. lnvestigate the case where g{y) = 0.
Problem 3. Study the difereniiat equation

dy _
dx X

of the form (2) in the domain x > @,y > 0.

Hint The solution F sausfying the iniial eondition Fixg) = yo is defmed for all x > 0
and isgiven by the formula

Flx) = G, C = yoxz".

t I[n the sense thal any 1we selutions coiacide where 1they are defined
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Sre Figs. 25-27.
Prodtem ¢, Draw grapha of \he sulutions of each of the differential rquations

2 s g o Yng _2na

0o x' Wny
in the deinnin where the nighi-hand side i defined.

5.2. Equations with variable coeflicients. Let v be a differentiable
mapping of a domain U inan {(» + 1}-dimensional Euclidcan space with
coordinates {, x,, ... s x,into an n-dimensional Euclidcan space with eo-
ordinates vy, . . ., y. Sucha mapping determines a vestor firld v depemdiap on
the ime L and acorresponding nonautonomous differentiaf eguation Or equation unth
variable cotfficients

or, in moredctail,
dx !
d—lt=”i(“xl»-*-sxa)) i=14,...,8

Example 1. The differential equation (2) belongs to this class, with an obwious change of
notation (here n = |).

Definition. Let ¢: 1 — R" be a differentiable mapping defined on ssme
interval / of the t-axis and taking values in the n.dimensional Euclidean
space R" with coordinates x,, . . . , x,, such that the graph of @ lies in the
domain {and

4 v = v(t, 9(1))

d! tet
lor every t € L. Then ¢ is called a solution of the differential eqnavon (4).
Iftis interpreted as the time and the space {x} iscalled phax space, then
v can be rcgarded as a timevarying phase velocity ficld in phase space- In
this language, a solution ¢ is the motion ofa pointin phase space such that
the velority of the point atevery instant of time equalsthe value of the phase
velocity vector at the poiat occupied by the moving point at the given
instant.

Definition. A solution ¢ is said to satisfy the initiel sondition @{ly) = = if the
points ¢ and {t, x,) belong to Fand Urespectively, and if the value of ¢ at
the point ¢, equals xq.

‘T'he solutions of 2 nonautonomous equation can be convenientdy 1epie
seated gcometrically in the extended phase space U = R' x R*(Fig 31).
Justas in the autonomous case, the right-hand side v determincs a dizecaion
ficld in the demain ¢ (ifn = |, v is the tangent of the angie of inclination
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I

¢ 3

Fig. 31  trnicgedl curvesof the equation 2 = w(x, i) in Ihe ectended phase spucc .

with the positive {-axis).

['inding the solution satisfying the initial condition g(tg) = =, is equiva-
lent 1o drawing a curve through the point (tg, m¢) of the domain U whose
tangent at cvery point ({, x = ¢(t)) has a given direction. This curve (the
graphofthe solution} is called an :rtegraf curve

Remark, Ordinarily the laws of nature donot vary with time, and equations
like (4) with a ume-dependent right-hand side arise most often in the
lollowing situation. Suppose we consider some part [ of a physical system
[ + 11. Then, although the law of evolution of the whole system does not
vary with time, the inluence of part JTon part [ may cause the law of evolu-
tion of part I e be time-dependent. For example, the influence of th e maoo
on the carth produces tides, and thisinfluenceis expressed mathematically
by the lact that the magnitude of the acceleration due o gravity Rgurieg in
the equation of motion of terrestrial objecis becomes variable. Insuch si t ua
tions, we say that the isolated part [ is nexauteriomows, which explains the
term nonautonomous system as applied 1o (4). Of course, equations of the form
(4) can occur in other situations as well, for example, in going from 1hec pair
of equations (1) to equation (2) with separated variables

Problem 7. Find Lhe soluuen ¢ of the differential eQuation

X = v(e)

satis[ying the inital condition o(to) = xp.

Ans. [ t was @ solve this problem that Newton intioduced integratioa :
2() =0 + ﬂv(t}a&-

Problem 2. Prove that the phase curves of the ausonomons system

X = v(R®), xel/ R,
where 2 = (), --- , ®)s v = (bj0-v- s W), 0 # 0 are graphs of the solulions of the
nonaulonemous systemn
deg _ wilx) , o
. ‘,‘t(‘}’ & |-~..,u ',

and conversely,
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5.3. Remarks on integration of differential equations. As chown
above, 1he solutions of the siraplest ordinary diflerential eqQuatioms can be
found hy using the operation of integration. For this reason, the proeess of
hinding solulions ok dilferential enquations in general is sometimes called
integration. 'Ihere are a nurnberol metheds for inlegrating special kinds of
dillerenmial equations, aod livs nf theswe enualions and the corresponding
mecthods canlbe found in the literature. t Anybody can enla:ge the catalog of
intcgrable differential equations by 1he simple device of making various
substitutionsincauations that have already been solved. Experts in integra-
tion ofdilferential equations{like Jarobi) have io this way beenverysyocess
lulin solving specific applied problems.

lHHowever, all ihese nethads of integration have two fundamental short-
cornings. I'n the {irnt place, as shown by Liouville, maty differeairal cquatioms
cannot be solved inexplictl furm. For example, even asimple equation like

Y oy s
dx

“cannot be solved by quadratures,” i.e., the solution camot beexpressed as
a finitc cornbination of clementary funclions or algebraic functions and
integrals of such limciions.3 Secondly, a complicated formula giving an
explicit solution often 1urns cut to be less useful than a simple approximate
formula. For exarnple, the cquation x* — 3x = 2a can be explicitly solved
by (‘ardano's lorrnula:

x=2/a+\f? -1 +i/a—v"a=- .

However if we want to solve the cquation for a = 0.01, it is useful to note
that it has the root x = -— {a lor small a.a fact which is hardly obvious fiom
Cardano’sforimula. In just thesame way, the p¢ndulurn €quation ¥ + sin x
= 0 can be solved in explicit form by using {elliptic) integrals, but mast
probleins involving the behavior of a pendulurn are more easily solved by
starling {r®intheapproximateequationx + x = 0forsmall osollations and
rom qualitative considerations which do nor involve an explicit lamula
(see Sec. 12).

t Sce cg., A F. lilippov. Collectior of Probleves o2 Diffremtial Equatimes (in Rm,)'
Moscow (196]1) and E. Kamke, Bifferentinl Equations, Methods of Solutian amd Seletus, 1.
Ordenary Differential Egzations (in German). Icipzig (1936), the iatier eont2meey. surwr
16 < |10* equations.

t The trool of this fact rescmbles the proof of the noreolvability df equathans of degree 5
in tcems of radicals (Ruflini-Abcl-Calods), and is deduced from the cexepbvabilicy-of 2
ccerqin group. Unlike ordinary Galois thecory, we are concermed here with a amr=dvable
Licgroul raihcethan a noisolvable finite greuwn The branch of mathematis draliag with
thesc problems is called differential algebra.
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Equations suaepilble 10 exart sclution are aften uselul ma examples, urwe ey some
timen exhibit bedystior which orcurs in more complicaled casey m well. For example,
this (e trae af sp.called sllaimilor solutions' of a number of equations of maithemacical
phvsles, Muorcover, finding an exacily sl vable problem alweys cpem e pamibality of
slving neighborirg prablems appraximatd ¥, by periurbaiion theory, sy (see See. 9.
lHowever it m dinnsgorous 0 extend results obiained by studying an exactly solvable prob-
lem 0 ncixhboring Prablemn of a general form. In Face, an exacily inlegrable equation
Is olien integrable precsely becawe is sulutions are moee simpPly behaved than 1Boer of

leighboring rianintegrable preblema.

6. The Tangent Space

[n investigating various kinds of mathematical objecls, it is always i1npor
tant Lo examine how the objects behave under mappings. A key role s
played in the study of ordinary diflerential equations by changes of vari-
ables, i.c., by choice of a suitable coordinate system. Thus we must explain
how the {trm of a differenuial equation changes under a difierentiable map-
ping, and since a differential equationis specified by a vector field, the c on-
ceplsof vector field and vclocity vector must be analyzed.

Supposc we think of the velocity vector naively asan arrow made up of
spatial points. Then under a mapping the arrow becomes curved and is oo
longer a vector. Below we will dehne a linear space whose elements are
velacity vectors of curves going through a given point x ofa domain U/. This
linear space is called the targent space 1o { at the point x and s denoted by
TU,. Letf. U — V be a differentiable mapping. Thenwe will abso definc a
linear wnapping ol 1angent spaces

Sulst TUy = TV,
called the derivatize ol the mapping /a1 the point x.
All the theorems in this section are essenlially contained in a course on

analysis. the only novelty being the fact that our terminology is morc
geometrical,

6.1. Definition of the tangent vector. ket U be a domain in a-dimen
sional Luclidean space with coordinates x,: U = R, i =1, . ., 2 and let
¢: { — & be a differentiable mapping of an open interval of the t-axis into
Usuch that¢(0) = x& . Then we say thal tAe quroe ¢ leazes the poat x.§

The velocity vector of the curve @ at the point x ir the system of cosvdimales x; is
specified by its components

U!:%‘=o<xie(p), f:l,...,ﬂ, {l)

T More cxacily, ¢ | caves the point £ at the time ¢ = 0. Of coursz, ¢ = 0 can be replaced by
t = 1o by making appropnate changes in all the formulas.
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Fig. 32 l'angent cueves

where .(x, o p){t) = x(¢(t)) 5 the compositc mapping [ -2 U 25 R, The
nolation v; = £ {,.¢i5alko uscful.

Defimition. Two curves @,, ¢;: / — U (Fig. 32) leaving the same point
r = ¢,(0) = ;(0) arc said to be targent (to cach other) if the distance
between the points ¢, (¢) and ¢,(¢) s o(t),t — 0.t

Problem !, Prove that two curves are tangent at a point xif and only if their
velocity vectors at the peint x are the same.

Theset ofall tangent vectors ol curves leaving x is an a-dimensional real
lincar space {with addition and multiplication by numbers beiag carried
out component by component), called the tangent spaee.

Note that the coordinate system plays a role in this defitition, and the
resulting space seems at first glance to depend on the coordinate sysiem.
Thus we would now like to give an invariant dehnition of the velooty vextor
and the tangentspace, which does notdepend on the system of coordinates

Defimition. A system of coordinates y;: U -+ R, 7 = 1,. .., nina domain U
of Euclidean space R"is said to be admiistble if the mapping

»U =Ry () =y (x)e) + 0 4 yu(¥ea
(with basis vectors e, in R*) is a diffcomorphism.

Problem 2. Provethatthe curves ¥ « @, and y « @, leaving the point »(x) are
tangentif and only il thecurves ¢, and ¢; leaving the point x are tangent
(Fig. 33), so that tangency of curves ti a geomewic coneedt, indepondemt of the co-
ordinate system.

Definition. By the velocity vector vofa curve @ I - Ulcaving apointxe Uis
meant the class of equivalent curves leaving rand tangentto g (Fig. 34);in
symbols,

vad@, v=12

: (:0.
t Warning . The ranges of the mappings ¢, and 9 can be lines parposdantas at 2, .
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Fig. 33 Preservation of tangency undes a diffcoroorphiam.

Fig. 31 (laa of curves tangent at a point x.

Problem 3. Prove that tangency is an equivalence relation, i.c., that |}
E~CDEE~n=2n=~¢3)E~np~(=f ~(, where ~ means *'is
tangent to,atx. "'

Remark. The ceerdinate system plays norolein our definition of the velocty
vector, but the class of admisstble coordinate systems in U doces play a role. Thas
cla is called a differentiadle structure in U. Without specifying a differentiable
structure in U, one cannot define the concepts of tangency of curves or
of the velocity vectorof a curve @.

6.2. Definition of the tangent space.

Definstion. By the fangent space to g domain U at a point x is meant the set of all
velocity vectors of the curves leaving x (Fig. 33). The elemenas of this set are
called (argent vertors. The tangentspaceto {atthepoint xis denoied by TU,

{ T'ler “‘tangent’).

Letx;: U = Rt = |, ..., nbeanadmissiblesystem of coordinatesin ¥
Then the vclocity vector of a curve ¢@: f = U leaving the point x € U has
well.defincd components v, e R, i = ), ..., r, given by formula (1) (scc
Problem |). Thus the system of coordinates x; dciermines a mapping
X: TU, — R"of the tangent space to { at the poin t x into thea<dimamsional

1 Ifthe reader s accustomed to regard the \elocity vector of a airve as bning in the ame
space as the curve itsel(| then the distinction betweeo a tangent 3pace %0 a incar spaxce aod
the linear space itsell may lead to ceriain psychologial diffxultes o ths ase, it & betplad
torepeat the preceding comideiations with {f theugbt of as the surface of a spbae. Then
TU . is the ordinary tangent Plane.
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Fig. 35 The tanBenl space to a domain ¢ at a point &.

rcal spacec R"ofvectors(vy, . . ., 0,); the mapping X associates the numbes
), ..., v, with the velocity vector of the curve ¢.

1sOREM 1. The mapping X: TU — R" given b dformule (1) is & ometo-cme
mapptnig of TU, onte R™.

Prgof. According o Problem !, the tangent vector (i.c., the clas {¢} of
curves ¢! { —+ U which are tangent to cach other} is umiquely defined by
the components of the velocity vector in the system of coordinates x;. [t
remains to show that every vector (v, . . ., 2,) € R"isthe velooty vector of
some cuive. To show this, we need only choose the curve ¢ determined by
the conditions {x; > ¢)(t) = =;(z) + vi. |1

Thus in a fixed coordinate systern our abstract definitions of the t1angent
vector and the tangent space coincide with the naive definitzons based on
visualizing little arrows in the Euclidcan space eontaining U.

So far our tangent space TU, is simply a s¢t which is not endowed with
any lurther structure. We now equip TU, with the structure of a real luwvear
space. Fixing a system of coordinates z;, we can add tangent vectoss and
multiply them by numbers by using the preceding theorem eo identify them
with arrows (vy,..., 2,)}. It turns out that the resulting oprrations are
independent ofour choice of admissible coordinate system

Befinition. Let Ec TU,, we TU,, Ac R. Then the linear combination
&+ An e TU,_ s dchined as

E+ Ay = XY x§ + Axw)

in terms of the one-to.one mapping X: TU, — R" dctermined by the
admissible systern of coordinates x;. In other words, we carry overinto TU
the linear structure of R", identifying these sets with the help of the one-to-
onc mapping X.

THE®REM 2. Tke flinear combination § 4+ Ay i indeprendent of the edanmble
coordinale system figuring in its definetion, and depends anly on &, %, and 4.
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Proof. Let y: U 4 R, t m |, ..., a be another admissible system of co-
ordinates, and let Y: TU, —= R* be the corrasponding mapping of the
tangent space to {/at the point x into the x-dimensional real space R® of
vectors {0,, . .., ,). The mapping Y associates the numbery

w‘-; (y. e @), TN PAPRR (2)
(=0

with the class of the cutve @, and is one-to-one by Theorem L. We musi
show that the mapping YX~': R* — R" is an isomorphism of linear spaces.
It is already known that this mapping is onc-to-one. Iet@: / — U be a
curve whose velocity vector in the system of coordinates x, has components
%,. We now find the components y, ofthe velocity vector of this curve in the
system ofcoordinates y,. The coordinates y,can be expressed in terms of the
coord inates x; as lunctions y, (x;, . . . , x,). By therule for diflerentiation ofa
composite function, we have

< @
}‘IO L) Z a;’l A'.jlozu

=1 X"x

or, more concisely,
-
Y= a;x, (3)

Equation (3) gives the explicit form of the mapping YX 7!, and this map-
ping is a linear transiermation. Thus the operations introduced above
indeed equip 7U, with the structure of a real r-dimensional liecar space
tndependently of the chotce of admissible covrdinote spstem. |

Remark. The coordinates x; and j; are fixed in the domain space R* = {x}
and the range space R® = {y}. According to (3), the matrix of the mapping
YX ~ !in these ceordinate systemsis just the Jacobian marrix (dy/62)-

6.3. Thederivative of a mapping. let f: U/ — | be a differentable map-
ping of a domain of n-dimensional Euclidean space with ocoordinates
22U < R,1 =1,...,nintoadomain |'of m-dimensional Euclideanspacc
withceordinates y,: V' =+ R, 7 = 1,.. ., m. Let x bc a point of the domain
U,and lety = f(x) € V be its image (Fig. 36).

Definition. By the dertvative of the mapping f at the point x is meant the mapping
folx: TV, - TI‘J}(X,

of the tangentspaceto U at the point x into the tangent space to |"at the
point f{ x}which carries the velocity vector §leaving the point x of the curve
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Fig. 36 Dehinition of 1he derivative of @ maPPui8 f al a poni «.

¢: / = U into the velocity vector leaving the point /(x) of the curve
[l =V, ic.,

_ d
d! (=0 dt

THEOREM. Formula (4) defines a lincar mapping f ! . of the tangent space TU, taio
the tangent space T¥; .

WAXY (4)

im0

Sols

Progf. We must verify first that the right-hand side of (4) is independent of
the choice of the representative ¢ of the class of tangent curves at x, and
secondly that the inapping f,|.is linear. Let %; denote the componenis of the
velocity vector X of the curve ¢ at the point z, and 7, the compoaents of the
velocity vector ¥ of the curve f o ¢ at the point f(x). By the rule for difierenu-
ation of a composite fiunction, we have

)
jj = ‘zl } (S)
where y;(x,, ..., x,),/ = |, ..., mare the functions specifying thc map-
ping fin the coordinates xy, y;. But both asscrtions ofthe theorem are coa-
tained in (5). §

In additien, (3) implies the Iollowing

Remark. Suppose thatin TU, and T¥,,, we introduce the components i,
7, of the tangent vectors in the ceerdinate systems x,, y; respectively. Then
the matrix ofthe bnear mapping f,|.: TU, - TV,,isthe Jacobian matrix

(dyfox). It should be emphasized that the mappeng 1,4, is mdgpaden? of the
ecerdinate system, the coordinates being used only to prove the theorem_

Prodlert 1. Find the derivative 2t x = 0 of the mapping f: R — R given by the famula
)y = ' R
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“ig. 37 A mapping which it o difcomorphism ia a ne'ghborhood of evaay point may
not (e One.lo-one.

Ans, folo 18 the mappingof the line TR into the kne TR, canying the whole line juto 0

Pioblem 2. Ler f1 U =V, g V= W be diffcrentiable mappi;ga Prove that the aumn-
pusite mapping A = g« f1 U — W is diflcreniiable and that (13 desivative at the posm &

eQuinls
figle = £0|nu 'folr

Prodleme 3. Ler f1 U — V be adiffcomorphism. Prove that the mapping f,l,: TU, — 7V,,,,
i3 an jeemorphisii of lioear spaees. Cive an example showing that thy comerse U false

(sce Fig. 37).

Prodlem 4. L.c1 f: R¥ — R? be the mapping given by thve formula (=) 4 org)? = 2, + ;.
i = ' _ I.Show that f,], (x # 0) preservies angles (the Eudidean shucturss in TRE, TR
arc spevified by quadratic ferms 2 + %2 and 3§ 4 37 respeetively).

6.4. The inverse function theorem. Let /: U/ — V be a diffesontiable
mapping [rom onc domain in Luclidean space to another, and |ct x4 be a
point of {/,

THEORKM, [f the derivative
f*lr,,: TU:‘, - TVf‘xo’

15 an (sone0rphrsm of linear trarsformations, then there exists a neighborkood B of the
poird x g ruch that the restriction

Tiwi W = fiW)
of f te W ts a diffeomerphism.

Proyf.t The dimensions of the tangent spaces TU, and TV,,,, and benee the dimexrass
of the donmviins & and ¥, are the same, Let 14, - - -, z be admisible ssrdmates sn U,
and ¥,,..., ) admisible coordinates in V. The mapping f s specified by Funcmas
Yo o= Sr(xpe oo, %a)y0 = 1, ..., m, Let

P-‘(fh NRPR 5 TR A IR I /¢ TN AN
By hypothesis, the daceminant of the Jacobtan matrx (3fi/dx))]., s =y, jc., the

t The inverse function theorem is rasily deduced from the implicit function Vewem, aod
vice veesa. Heee we derive the inveese function theorem from theimplicl fumctsow theo em,
since the Jatter Al ways iguics in @oucscson analysis whale the former is usuaBly keft wwtaied .
For a proof which isindependent of the implicit function thewou, s, €2.,5ec.31.9
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dewcroilnant af (84/9x5)]s,, st por i¢ NONZero. Applying the implicis fuacion thearemn to
the system of functions #,, i = |,, .., R in » neighBorhood of the PO [z, fzg)}, we
Mnd thal

1) 1 o aullcienlly sl neighhorhood £ of the point yo = fiag) there eant o functone
2= 0 (Yiv e ora) Suth that Flo(2). ) m 0;

2} The aysten £(x,.¥}) = 0. »¢ £has no other solutions x near x4

8) The vuluci of the functinis wi( ») 8t the point 74 equal 1he coordinatas of the point ag,
and the @ arc conlmiowly dilfecentlable the saimne number of times a1 1he functons f,
n the neighborhand £ of the paoint yo (Fig. 38). The funclions ¢y delomune a difiyeo-
1iable mapping v of the neighbarhood & of the point y; = fixe) into a negBborbood of
the point x4 such that [+ e s the identity mapping. Let o[ £) = #. Throrthe-mspprng
Nw W — Fande: £~ arc mutinlly invase differeniabie mappings, and bence
difficomorphising 1

Erbleme £, Prove that (E) is a neighborhood of the point xg, 1.€.. tontains al povpas of
the domain U whith are suificiently ncar the poam x,,

6.5. Action ofa diffeomorphism on a vector field. Let U be a domain
of Fuclidean space, and let v be avector fieldin U. If xis a point of the do-
main {7, then v(x) is a tangent vector:

v(x) e TU,.
Letf: U« VDbeadiffcomorphism.

Definition. By the image of the vector field v under the diffeomorphism f (Fig. 39) is
incant the vector field f, v whase vecters are obtained from the vectors v{y)
by applying the derivative £, )«

(ftv)ﬂ.xl =j¢|xv(x) € T‘{fl&}'

i
£

=
ol

Ty
Fig. 38 Thec inverse lunction.

U N v

Fig. 3 Action of a diffecomorphism / on a vector ficdd v.
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Prodieni 1. Frove that if the Aeld v is differennable (1.e. in determined by ».5odd con-
b esuoun]y clitfersntiuble funciions (2, . .., x) in 1he Raicm of coordinaies 5 ). 1hen the
ficld fov is alic differenifuble (with the ssme v, if the diBromorphiom f w of dlam C 1),

Hint, See fornla (5),
TUEOREM. let fi U — V be adiffeororphism, Then the differenticl squation

i = v(x), xe U (6)
with phase space U deterntined by the veclar freld v is equsoalent to lAe equation
y=U0, el (7)

with phasespace V deternuned by the vector field fov, 1.e.,9: [ — U114 selution 8/ (6)
if and oaly if fo @: I = Visasolution of (7).

Progf. Obvious. [j

In other woidy, I} w: § — U be a volution of equation (6). and lel 3(r) — o{ly + 7).
Ifo(lg) = 1o, then @ leaves xo and S - @ leavei g = f(xg). I follows from the detaaaw

of £, 1hat

d d d
m l-l.f" . J;Lnof‘ ‘ f.!h alt-oa
WA = Ve,

Therefore f . w isa solution of equation (7). To complete ite prool, we applv this seaudt
o the inverse diffcomorphism £ v U,

6.6. Examples. ‘['he above theorem allows us to investigase and solve a
greatvaricty of differcntial cquations [n fact, we nced only 1ake an oqua-
tonthat hasalrcadybeen solved and then apply a diffeomorphism, thereby
selving the ncw cquation as well.

Exanple 1. Consider the system
1.' - Xz’
{ . (8)
Ay = Xy
detcrmined by a vector ficld in theplane (o, = x;, v; = x,; Fi8.40). Let
J:R? 2 R? be the mapping carrying the point (x,, x;) into the point
(»:,0:), where ), = x, 4 X, ¥; = ¥, — x,. This linear mapping f is a
diffeomerphsm, and its derivative /| . has the matrix

1 1

I =i )
Hence the new vector field ( /,.v)(5) has components w, =¥, &; = —)2,
and our system is equivalent to the system

{jﬁ =yla
2= -y,
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Fig. 40 The vector field vy = xy, 0y = x,.

L

Fig. 41 The phasc planc of the new sysicns.

ATz

=
ANY

Fig. 42 The phuse planc ol the eriginal sysicm.

o

Fig 43 A pendulum near 115 upper #quilibrium posivicn

Basic Coneepls
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This system, which 8 a dircct product of one.dimensional systems, hasa
alrcady been studied and solved, The system has a saddle point (Fig. 41)
and a solution of the form

i =y, (0), Yz = y3(0)e” ",

Using /' to return to the original system, we get a rotated saddle point
(Fig. 42} and thesolution

x,(s) = x,(0) cosh t + x,(0) sinh ¢,

%2(t) = x,(0) sinht + x,(0) cosh ¢

Remark, Let x be the angle of smalldeviation fitom the vertical of an inverted

planc pcndulum (Fig. 43). The equation of motion of the pendulum takes

the fort: ¥ = x in an appropriate system of units.t Let x = xy, &, = %
‘Then the pendulum equation takes the form (8) for small deviations from

the vertical equilibrium pmition.

Prodters 1. To which motions of the peodulum do the various phase cuswes m Fig 42
correspond ?

Example 2. The equation ¥ = —x[or small oscillations of a pendulum near
its lower cquilibrium position reduces to the system

{ U= (9)

if we write x, = x, x; = x. The Jorm of the vector held (Fig. 44) suggen
the utility of polar coordinates

x, = rcos0, X, = rsin @.
%2

e
_‘..__ 3___—-r—¢-

\ b
— v

Fig. 4¢ The vector field of the pendulum equations (9)

\ Actually % = sin 5. whichcanbeapproximated by I = 2 for smali x and 2. The diffxrerme
in signs of the ﬂgbt-hand sides of the peadulum equation near its upper and lower eqalbb-
riumw positions is expPlained as fellews. [ a neighborhood of the uppes cquBitwwmm pasition
the moment of the force of gaavity (the weight) moves the pendulum i the direxTion of its
inclinations and hence ¥ = 4 x. In a neighborhood of the lower equilibeium poston the
moment of the force of gravity move the pendulum ia Mhe doettion oponc lo s iacimtign

and hence ¥ = —x.
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|

K

27

Fig 15 Polar “coardinates'’

A |

m' as oy — -~

=
r

Fig. 46 Phase curies of the bendulum rquations in polar coordinares.

These formulaz give a differentiable mapping of the half-plane r > 0 onto
theplanc (4, x,) minus the point O (Fig. 45). This mapping is no12 diffeo.
morphism. However for the domain ¥ we can choose the plane (x,,x3) minus
any ray,saythcrayx, > 0, while |or the domain U we can choose the half-
strip 0 < # < 2% in the hallplanc 7 > 0. Then f: U — V' is a diffcomor-
phism, and the system (9) in ¥ is cquivalent to a systemn in U, namcly

(Fig. 46)

i=0,
{6= -1

The solution of this system iz of the form

r(1) =2(0),  O() = 0(0) — ¢,

and hcncce the original system (9) has the solution

£, (8) = rg cos (O = 1), xy(t} = 7o 5in (o — &).

Problem 2. Verify that these formulas give all Ui sohitions of the sysieo (9) For 31l 4, and
not just for (x,, x;) e ¥.

Probtem 5. Prone that the phase curves are ciceles (Fig. 47), and 1hai 1he tadvance map-
pings £* forin a onc-pafamctir gronp o linear transformstions of the plaoe, whar 28 1s a
rotation threugh angle ¢ with a maicix of the foim

cos! sint)
—smt¢ cos! )’

Rcturning to the pecndulum cquation x = —x, we find that the pepdulum
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Fig. 48 Intcgral curver of the pendulum cquiationms

executcz harmonic oscillations (x = 7gcos {8 — 1)} whosc peruxd equals 2x
and does notdepend on the initial condiuons.

Problen 9., \What arc the integral curves of the sysiem (9) 2

Ans, Helices of pich 7 = 28 with common axiv 2, = z; = 0, where the axs i abo an
incegeil curve (Fig. 48).

Example 3, Consider thesystem

£, =x; Fx(l —xf — 2}, (10}

X = =2y +x{l —xF — x?),

obtained from the sysiem

i flr),

§=-1 on
by going over to teciangular coordinates x, = rcos 8, x: = 7 sin & Actaally, the syam
(11) & cquivalent (with the usual stipulauons involhving the nonuzgarmss of polas
c¢oordinates) to the system

) - xt/[’)'-. * X2
{ % @ xy firdr-) — x,,
which reduce; 10 (10) if /{r) « r{l — ).

Thus we must incvestigate the system (J1) with f(r) = r(| — r*}. Fos! we conudes e
intceral curves of the cquation # == f1r} in the half-plane (¢,r),r . 0 (FR. 49), aomng thar
the vectur ficld on the bae v = f{¢} has threesingularpan r — + 1.0, Wipae the Gedd
i5 dircv:ted toward the points r = 4| and away from the pomt 7 = . The phase cooves
in the halt-plane {r.8),r .- 0 ar¢ obtained by makiwg a rotation (sme 8 = & — 11
Rcturning 10 rectangular coordinate;, we get the premre schownin Fig 50. Tbe caiee
x, = x, = O is the only singular poiat The phasc curves starting ncar ths po@mr move
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AN
=

Kig, 49 [megral curves of the equation ¢ = r(t — 73) and phase curves of 1be syTiem ( 10)
n polar coordinates

Fig. 3 Phase curves of the system (10). A lwmt cycle.

, Waldcats

W00 1905 50 B 1920 1825 1930 B
Year
Fig. 51 Oscillations of the wildcat and hare populations in Canada
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away front & s t increascy anil wind around the tircle 2f + x§ = | frooy the imide
as f — 0. This circle is itsclf a phase curve called s fimir gely, | {omever, (I the avtial
polnt lies outside tre disk «f + x{ € ), then the phase curve winds scoand the lamit cycle
from the vutside ant — +90 and goes off L0 infnity for ncgative ¢

Limit cycles deweribe the stable penodic regima of i motion of aa avichames
syswem. For exaniple, x; ond va migh denote the deviations of the pumber of widcats
and 1he nuimber of hares from their equilibtium values {the ¢orrameding dlagal
equation is nat cxactly of the firm (t0), bur has similar properiies). Then the lmnic cycie
corcesponds 1a the periodic oscillations af the wildcat and hare populawioss, which arc
somuwhai shiflted in phase with respect 10 one another. This is actually observed in the
firld, with the escillistions in the numher of wildcals 1,80 g behind (£ig. 51).

Qiher exumples of the occuerence of nable periadie ascillations undee stauonary ex-
ternal conditions arc nfforded by clocks, stcam engines, electnc bdls, the busnan beart,
vacuum tubr oecillatois generating radio waves, and variable siars of tbe Crpheeidd type;
the operatinn of earh of these mechaniems & described by a limn cycle ia anzppropnale
phasc space. However, it would be wrong o think that all scillatory proremn are de.
suribed by limit cycles, and in fact muth more comPlicated bhavior of phase cuarves 8
passible in n muliidimemional phase spacc. v this regard, we cite the precession of gyro-
siapee, t1e motion of plancts and artificial satellites, sncluding their rotabons about Acts
as [the aanperiodicity ol these motions is reiponsib'c for the compleaity of the cabendar
abd the ditfivully in prediciing tides), as well as sl motion of charged partcks in a mag-
neiic fi-ld (cesponsible for the occurnrence of the Aurora Bocealis). Sce abo Secs. 24 and
25.6.



Basic Theorems

in this chaped we lormulaie the basie resulis of thie theory of ordinary
diffimential cquations, dealing with the existence and uniqueness of solu-
tions and of hiestintegeal, and witli the dependence af solutions o innial
data and parametees, We pasiponce the penals wunl Chap. 4, confinang our-

selves al this point to o discussion of hinw the various tesulls are related to
nne anotler.

7. The Vector Ficld near a Nonsingular Point

Consider the differential equation
X = vix), xe {/, (1)

determined by asmonth veetnr lield v inan #-dimensinnal phase space 7,
Let 2 € {7 be a nonsingular point of the vector ficld, «o that vize) # 0
(g. 92).

7.1: The basic theorem of the theory of ordinary differential equa-
tions. The vector field v s diffeomorphic (0 a eonstars field e, in eery safficiently
smatl neighborkood of a nonsingular point. More exactly, there exisis a meighborbood
¥ of the pornl sy, and a diffeomorphism 2V — W of the neighborkood | emte a
demain |V of Luclidean space R (Fip. 53) such that [ v = e, (where &, 1s the
st basis vecter of R"), If v is a field of class . | £ r < oo, the [ tv a
diffenmorphism of class C7 with the same v.

Levy:R" = R', { = i,..., n be rectangular coordinates tn the Eu-

Fig. 32 Nonsmgulac point xp of a vector ficld v.

'LF yﬂl. w
‘-.- i
P
— =
|
= =
Xy g

Fig. 53 Rccuificarion of 3 vector ficld by a diffcomorphsm £,



Sce. 7 Vertor Field Near a Nonsingulae Point 49

cliddcan space cantaining the domain 1Y, 40 that the vector @, hay compo.
nents 1,0, ..., 0, According to Sec. 6, the basic theorem can beformulated
an follows:

The differential eguation (1), constdered in a sufficiently small nexghborhood v of o
Aensingular Point wq, is equivalent to the partccntarly simple equation

i = "'11, b4 [ ] “V, (2I
i.e., lo the system
)',l=|, j'.:"—“"'=j-=0 (3)

i the domains LV,

The lollowing is still another cquivalent fortmulation of the basic theorem:
In a safficiently small neighborhood V of a nonsingular point xg, eme can choose an
adnussible coordinate systene (y,, . . . , y,) swck that equairon (1) can be cwritien in the
standard form (3) tn these coordinates

The basic thcorem is an asscrtion of the same chacacter as the theorem of
linear algebra on reduction of quadratic forms or mateices of opecatoss to
normal form. {t gives an exhaustive description of the local belavior of a
vector field and of the diflerential equation (1) in a neighborhood of a non-
singular point xo, reducing everything to the case of the trivial cquation (2).
The proolof the basic theorem will be givenin Sec. 32.

7.2. Examples. The hasic thcorem might be called the rectificarian thevvem,
since the phase curves and integral curves ofequation (2) arestraight lines.
Fig. 5¢ shows the level lines y; = const of the “rectifving cooedinates™ foe
the pendulum equations.

Prodlem 1. Aze the rectifying coordinates 3, uniquely defined ? Prove thar m 4be cas
N = | the crirdinate y is defined o within an affine transfoin@tion ¥ - o = b

Protlem 2. Skeich level lines of rectifying ecordinates fot ¢ach of the followog vervor bcds
in the domain U

A) v =xier = 2xey, U e §z,,52: %, > 0];
b) v = ¢ + sin xe;, U = Ra;
) v xe, + (I — xi)e,, U lenxa: =) 72 < 1)
Tz %24
> | EEE :
h - || -
%ﬁﬁ . = ~
- - a—
Ly & &

(a)
Fg. 53 Rcctificaticn of the pendulum equations.
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o]

-
L 3

Fig. 55 A family of curies which is nonrectifiable in itbe whale plane

*Problem 3. Suppose thal in R? we aregiven a (differenuable) Reld of tangent planas R3.
Can this field alwaya be rectified (i.e., transformed into a hield of paralled planes} m a
neighberhood of a point with the help of a suitable diffecmozph ism ?

Hent, If the field of planes iy rectifiable, then it is a fiedd of planes tangem 10 1he famdy
of sutfaces.

Ans, No. Consider for example the field of planes specified by the ficld of oxorab rre, 4 €
in R2, There does not exist a surface with thisditecion as the noinal at each pointc

*FProblem 4. Suppose a vector field v hasno sizgular poines in a donwain /. Can aox Lhen
rectify the field in the whole domain U, i.e,, is the basic theocem tuc with V = /2

Hint. Constryuct the field in the plane whoese phase curves are of the foem shown tn Fig. S&

7.3. The existence theorem. Thc basic thcorrm immediately implics

COROULLARY L. There ¢xists a solution of equattor (1) satis/ying the tnitial sondition
w(fo) - Xo‘

Progf. 1f v(x;) = O, lct ¢(t) = x4, while if v(xg) # 0, then, by the basic
thcorem, cquation (1) is equivalent to equatien (2) in a neighborhood of’
the peint xg. But (2) has a solution § (which?) satisfying the initial condition
W) = Yo = _f(x9). Hence equation (1), which & equivalent to {2), has a
solution satisfying the initial condilion ¢{fo) = Xo- |

7.4. Thelocal uniqueness theorem. The basic thecorem alsoimmediately
implics

corotLARY 2. Let i [, = U, @2 I, = U be two solutions ef eguatiom (1)
satesfying the same initial condition

@1(to) = @3(le) = x5, wixp) # 0.
Then there exists an interval I containing (g on which @, = @,-

Proaf This is obvious for cquation (2). But equation (1) 1s equivalent to
cquation (?) in a sufficiently small ncighborhood of the point xo. |
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Hemark. Wewillsoon see that the restriction v(xe) ¥ Ocan bedropped. For
rn = | this hasalrcady been proved in Sce, 2.

7.5. Local phase flows. Lict v be a vector ficld in the phase space U, and
let x5 be a point of Ul

Defintiion, By a local phaseflow determined by the veetor ficld vin a neighbor.
hood of the point x, we mean a triple (£ Vg, £), consisting of an interval
! = (s € R: |¢t| <¢£)oftherealf-axiy arneighborhood Vp ofihe Point =g, and
a mapping g I x V4 — U, which satisfies the following 1hree conditions:

1) For fixed ¢ € 7 the mapping g': Vo — U defined by g's = pgft, x) isa
diffcomorphism;

2) For lixed x € ¥, the mapping @: 7 — Udelined by ¢{tg) = g'x is a
solution of cquation (1} satisfying the initial condition ¢(0) = x;

3) The group property g**'x = g*(g'x) holds lor all x, s, and ¢ such that
the right-hand sidc is defined, where lor eveay point x € Vg there exists a
ncighLorhood V, x € V¥ « V,and a number § > 0such thad the Aghe-hand
side is defined for |s| < &, |¢| < dand all x e V.

Example 1. Consider the vector ficld v = ¢, in a domain U of Euclidean
spacc R", and construct the following local phase flow in a neighborhood of
a point xg € U. Start with a cubce of side 4¢ centered at xg (Fig 56). For
sufficiently small ¢ this cube is entirely contained in U. Let Vg denote the
interior of thc smaller cubce of side 2¢ (onc half thatof the original cube) and
the samec center, and lct / be the interval |#| < €. Then define the mapping
g by theformulag(s, x) = x + e,¢

Prublem ! VVerify that conditions ), 2), and 3) are sausfied for 1his exampde

Another immecdiate conscquence of the basic theorem s the following

COR®OLLARY 3. The veclor freld v determines a local phase flme in a neighbovhoad of a
nonsingular potnt xg (v(xg) # Q).

Proof. This hasalrcady becn proved for equation (2). But, ascording to the

Fig. 5% Local Phase flow of the equation x, = <.
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b=

Fig. 57 'Ihc Incal phase dlow 1], Vg, 2) is oblained from ihe local phase Bow (4, ivy, 4)
af the rectified vgquation by applying the difeanorpham /-,

Lasic theorem, cquation (1) is cquivalent to equation (2) in a sufficiently
small ncighborhood of the pointxy. §

In more detail, 11 (4, 8V, 4) de a local phase low ofthe ficld ¢, in 2 neighborhood 1Y
ol the poiv yo = fima), where f; ¥V — W is the diffeanoiphism figuiwg in the basic
thecocem. then the devired phase flow is (4, Vo, g}, where Vg = /%) and
g =/ <AL f(Fig, 57).

Remark 1. In particular, Corollary 3 assertsthat

1) There exists an interval |t < ¢ on which a solution of equation (1) is
dcfincd sauslying any iniual condition sufficiently near xg;

2) The value of this solution ¢(t) depends on tand x both continuously
and differentiably (of class C* il thefield v is of class (7).

Remark 2. We will soen sec that the resiniction v(xg) # 0 can be dvopped.

Prottem 2, Prove that the valuc eofy} of the solution e gatisfying the milzal conditaom
»(lo) %o is differentiable with cespeCi (0 Lg, %o, and ¢ For sufficiently szl | — tgl.

7.6. The theorem on continuous dependence and differentiability
with respect to a parameter. The preceding theorem immediately
implies

COROLLARY 4, Lot

X = v(x a), xe U (1)

be a famuly of differential equations determined in the phase space U by cector ficlds v of
class C'’ and depending differentiably (of class C7) on a parameter x € A, where Aisa
domain in Euclidean space. Suppose v(xg, 2g) # 0. Then the valwe of the soluizon
o(t) of equation (1) satisfying the initial condition @(0) = x depends driffesentiably
{(¢f elass C") on ¢, x, and = for sufficiently small le|, jx — %gl, and |& — &qf-

Proof  Here a little ingenuity helps. Comnsider the vector field (v(x. @), 0) in
the direct product U x A4 (Fig. 58) and the corresponding system ofeq ua
tions

* = V(!, m)»
{a=o_ “
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Fig. 8 Tlie phiasc spacc of the extended sysieem & - vim, &), & = 0

By the preceding thecorem, the solution of (4) depends differentiably on ¢,
x, and & for sufficiently small [¢], |x — =g|, and {& — ag|. But the solution
of (4) satisfying the initial condition (x, @) s (¢, @), wherc @ is the solution
of cquation (i,) satislying the initial condition ¢{¢g) = =. Thercfore ¢(t)
also depends differentiably on ¢, x, and a. ]

Remark. The condivion v(xy, @) # 0can bedropped, as willbeshownlater.

7.7. The extension theorern. Lctv be a vector ficld in a domain U, and
lat xy be a point of UJ.

Definition. |fthere exists a solution ¢ of equation (1) satisfying the initial con-
ditien ¢(tg) = x4 defined for all te R, we say that the solusiom can be extended
indefinitely. [f there exists a solution delined tor all ¢ 3 g (or allt £ 1), we
say thatthke sofution can be extended forward (or backward) indefinisafy.

Let T be a subsetoflthedomain U Ifthercexists a solution ¢ of ¢equation
(1) satisfying the initial condition ¢({,) = x¢ and defined on the intesval
e £ ¢ < Tand { ¢(7) belongs to T, we say that the solutrom cam be extended
Jorward up toT . Extension backwardup to T isdefined similarly.

Let /" bc acompact subset of a domain {f containing a poant x4, and let I’
denote the boundary of F (i.e., the set of points x € Fsuch thatevery neigh-
berheed of x contains points of the complementary set J \ F). Suppose the
vector lield v in the domain { has nosingular poin& Then it is oot hard 10
see thal the basic theorem implies

COROLLARY . 1'he solution e of equation (1) can be extended foruward (or backacard)
cither indefinitely or up to the boundary of 1. This extension is unique in the serse that
any two solutions satisfying the same initial condition eoincide on the tniersection of the
intervals of definition.

Preaf Firit we preve the uniquenes. Let 7 bethe least upper bound of 1he set of nambeory
z for which the solutions @, and @, coincide for all 2in theintenal Lo < ¢ < r (Fig. 59).
Suppose T is an interior point of both intervals of definition. Then @,(7) = *(7)
because of the continuity of ¢, and 2. By the local uniqueness themram, @, covncsdcs
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¥

Fig. 59 The uniqueness of the exieruion follows from the local urdgoroes heovem.

Fig.§! Existencc of the extensioo up to time 7T inclusive.

with ®; in & neighborhood of the posat T, 0 that T cannot be the I uppey bound
Hence T must he the ead poiitofonc of the intervals of deBinition, aid the rwo sobatsows
coincide on the part of the intciseciion of these intirvals for which ¢ > . The casr
t 5 fo is treated similacly.

We now construct the extensian. If the two solot s cointide an the inwvwecion of 1he
intcrvals of definition, then they can be comtined to form a solution dcfined oa the waon
of these intervals (Fig. 60). Let 7 we the leas upper bound of the ¢ for which tbhere exims
a solution ¢ of equation (i) satisfying the initial condition e{ly) = Zg and ako 1be eon-
dion e{t) e Flor ab t. ¢ty St 7. By hypothess, ¢4 § T € 0. [[ T ~ 00, tbe soduizon
can be extended inddinitely forward. Suppose 7 < 0. Then. ae yvc oow show, there
exisis 3 jolution @ defined fov all ¢, o & ¢ € 7. such thai «(T) ¢ [. In B2y i1 follows
from Corollary 3 that every point xg e L/ has a neighborhood Vyix,) and a eorvesponding
number ¢{xg) > O suchthad for all x € Vo xg) there existsa solution ¢ satsfying (be iniual
condition e(ty) = x and defined for ]t - 2,] < e (mamely @ = g'~ "} Since F & eomn-
pact, we can choese a finite covering of the yet F fiom these necighborborads of 1he PoInts
X, € F. Lot ¢ > 0 be the smallest of the finite number of cneresponding numbars €(xg ).
Since 7 is a Jeast upper bound, there exists a tbetween 7 - ¢ and T such thar @it} e F
for all 7 in the jivterval ¢4 & ¢ & r. In particular w{r) ¢« F, ic, hhe paioy olr) Bcrard
by onc of the neigh®erhoods of the finite covering Heace these exinag a solaton @°
satisfying the initial condition e’(7) = e{z) anddefined for t — 7| < « {Fiz 61). BY dn
unMucncss theocem, o coincides with @ on the whole intesection of (he meen2ls of
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Fig. 62 The solutions of the ¢quation £ = £ + | cannot be extended iadGastdy aither
fotwared or hackward.

Fig. 63 The solution of the pend ulum equations ¢an beexiended indefimtdy, while te-
maining in the disk £

definition. Henoe wiecan use @ and o' 10 ¢onsiruct a solution o definedfor ¢ € ¢ < ¢ 4 €.
In particutar, @{r) cxists.

Finally, we show that e*(@) e Fif2, € 8 < T. lo fact, every solutioo e sansfying the
initialcondition ¢(tg) =~ X anddchinedioe ¢ € ¢ € @ musicoincide with ¢ (enaqurars).
e’ (§) = o(@ did not helong to #, then T would not be the kasit uppes bound of thesen
le:o(e)s Fhrto € 1 € t}. Morcover, 8 (T) « T In Bact o*( T) r F, being (he lima of 2
scquence of poins () v £, 8, —- 7. On the other hand, every 1nterval with 77 a3 as defi-
hand ¢nd pointcontains points ¢ such thal ¢*(¢) does pot belong 10 F, sxe othawee all
the points @°(¢) would helong to F for all ¢ in soeie ntxghborhood of 7', and then T woald
not be the lcast upper bound. This proves the theorem for cxiension ksward The ase
t < tois trcated similarly, [i?

Remark. We will soon see that the restriction v(x) # Ofor all x € U can be
drepped.

Example 7. Even in the (ase where U is the whole Euclidean gpa ce, the salution canans
alwayg be exicnded indefinitely, e.g., whenn =1, v(x) = 23 + 1 (Fig 62).

Example 2, Coosider the pendulum equatioru £, = 13, 23 = —x;- Let U be the plane
(x, £3) minus the origin of coordinales, and iet £ be the disk |2, + {512 €2 Then the
solution sanslying ihe initial condition zy g = I, 33 ¢ = 0 can be cxiendad mdhizusdy
(Fig. 63).

1 Asalways in proving obvious thoorems, it is easier €0 caz1y Gut the prood of the cxmrrmeo
thcorern than 10 read throaghit
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Prodtem . For whut initial conditions can the soluticn of cqualions with a henit cycle
(Sce. 6,6, Exuniple 3) be extended indefinitely?

Prodlem 2, Suppasce eviirysolution of equation (1) enn beevtended indefimtely both forwaed
and bickward, Lot g1 denote the fadvance mapping (carrying cvery point i, of the phase
ypirce U into the value o(¢) of 1he salutlon sstisfying ihe imiial rondition »{0) = mg)
Prove that {g'} s oneparatne icr groun of dificomorphisma of U,

8. Applications to the Nonautonomous Case

We now consider the nonautonomons equation
X = v(1, =), (1)

whoseright-hand sideis spceified in a domain U of the extendrd phase space
R*' =« R x Rtre R, xeR"(Fig. 64).

8.1. The basic theorem for the nonautonomous case. Let {1, x,) bea
pointolithedomait U. Then the Lasic theorem easily implics

COR®LLARY 6. There exists a neighborkeod V of the point (1, o) ta U and a diffeo-
morphusm f+ V — W of the neighborhood V onio a domain W in Ewtidesn(a + 1)-

dimensional space with coordinates .y, . . . ,y,such that equation { 1) in Vs equava-
lent to the par ticularly simple equation

dy

- = 0, = (Y- 2

T y = (> a} (2)
th .

Thus the diffecmorphism f carries the point (¢, x) into the point (¢, y)
while leaving t unchanged. The equivalence means thate: / — F'is a sofution
of equation( 1} if and only il f+ @: / — I isasolution of cquation (2).

The above coroliary is cquivalent 1o the basic theorem. A direct proof of
the corollary will he given in Sec. 32.

Probtem ¢, Deduce Corolary b [rom 1he basgic thcocema.
Prodlems 2. 1)+duce the Bosic theorzm froy, Coecdlary 6.

z )
44
i
t, ¢t

Fig. O3 Rectification of integr:t] cueves by a dilfeonicephism / of xicathed plrase space.-
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B.2. The existence theorem. Corol lary 6 obviou<ly implies

COROLLARY 7. For sufficiently small |t — 1g] there extits a solution of equonen (1)
satisfymy the imtial condiiion @) = xge U.

8.3. The uniquenens theorem. Annther immediate consequence of Corol-
lacy € is given Ly

COROLLARY 8. Any two solutions of equatiorn (1) satisfytng the same tnitral condstion
coincide on the intersection of the intervals on which Lhey are defined

Proof. We necd only note that this is obviously true fsr equation (2). i

Remark. Applying Corcliary 8 to thecase where vin (1) is independent of ¢,
we sec that the requircment vixg) # @ can be dropped in Covollary 2 of
Scc. 7.4.

8.4. The differentiability theorem. Lci v = v(y, x) bea vector fieldin a
domain U of extended phase space. In the nonautonomous case, the ¢-
advance mappings do not form a onc-paiameter group of transformations.
However wecan define (8, 13)-advance mappings’ as follows:

Definition. By o local fomily of transformations g determined ¥y the fuld w(t, z ina
ncighUorhood of a paint ({g X,) is meant a triple (7, ¥y, 2) consisting ofan
interval f of the real axis containing { 5, aneighborhood ¥, of the point x4 in
phase space,and a mapping g: { x { x V5 — U, suchhat

) l'or fixed 4, {z € / thec mapping 8,i: (Vo x &) —» Udefinedby g/2x. ¢,
= g{t;,¢,,x)isa diffcomarptiism {(on partofthe plane t = ¢,);

2) For ixed x € Vg, t, € /the mapping ¢ defined by (9(2), 1) = e{t.t,, =5
a solution of equation () satisfving the initial eondition ¢ (¢, ) = x:

3) The property

£ix ) = gngin(x )

analogous to the group property (Fig. 63) holds for all x, t,,¢;,and ¢; for
which the right-hand side is defined, where for every point x € V there

Fig. 03 A lecal family of uansfermaniens.
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cxists a nrighborhood V, x@ V' © Vp and a number 8§ > 0 such that the
right-hand sidcisdefined for Jt; — f5] < 8,¢t = 1,2 Jandallxe V.
T'he basic thcorem now immcediaterly implies

COROLLARY 9. TVievector field w(t, x) determines a local fomily of transformaisons in
a neighborhood of the point (1o, %)

Proof. Similar to that of Corollary 3. |

Remark. 1dentifying cvery plane ¢ = tg in extended phase space with phase
space, we can regard the mapping g¢ as a diffeomorphism of a dJomain of
phasc space into a domain of phase space. In the special case where equation
(1) is autonomous and v(t, x) = v(x) is independent of ¢, the diffeomoer
phism g, depends only on the difference ¢; — ¢, and coincides with the
(¢; — t,)-advance mapping ¢~ "'. (This follows from the uniqueness
theoresn and from the fact thatif x = ¢(!) is a solution ofthe autonomous
cquation, thensoisx = ¢t + C).)

Thus Corollary 9 contains Corellary 3 as a special case, duf wtthont the
restnctior v(x) # O.

Prodlent 1. Prove that gﬁ dePends on just ¢y — 2, iland only i v(r. x) B imdegpeodoot of ¢

8.5. Dependence on a parameter. The following proposition is also an
casy conscquence of the basic theorem:

cOROLLARY 10. If v = v(!, x, &) 150 vector feld depending C'-differentiably on a
porametsr & (as well as or t ard x), ther the solue @(t) of the solutiom of (Be cquation

* s v(‘b X, a)

sati3fyirg the iritial condition @(lo) = x, depends CT-differentiably s 1y, %o, %,
ard (.

Proaf. Similar to that of Corollary4. |

Note that Corollary 10 is applicable independently of whether or not v
vanishes. Therelore Corollary 4 has now been proved without the restric-
tion v # @,

8.6. The extension theorem. Lt v = v((.x) be avectsr field in a domain
U of extended phase space, let (€, x9} be apoint of . and let £ be a compact
sct containing this point (Fig. 66). Then the basic thcorem immediately
implies

COROLLARY 1. The selution @ of equabon (1) salisfying the imlial eambhran
@(lg) = xo can be extended backward and forward wp o the bourdary of F. Agy txo
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I v
2
t =%

Fig. 66 Exiension of a solution uP o the bouidary of a compact 3¢t £ in extendod
phase spece,

sofutions salvifying the same initial condition ¢oincrde on the tntersecion of the intervols
of definition.

rogf. Similar to that of Clorollary 3.

Prodiem 1. Peove that Corollary 5 is valid evenif 1he field v has yogular points.

froblem 2, SuPPOse eviery tolution of equation (1) can be extended indchnitdv fosward or
Dackwird, Prove thiat g;f ita diffeomorphism of phase space anto el

Problem 3.Suppose, it addition, that the vecior held vis periedic in tine.sothatwit 4+ 7. =)
v(¢x) forall fand x. Prove that the diffcomorPhizns [£257) (ran inic@ar) oem a groop,

;tw

3T = A°

where A g{. Mhich of the followini® two relations s tive:

BT = Al T = A

9. Applications to EqQuations of Higher Order

By a diflicrential cquation ¢f order n we mcan an cquation of the fosm

d°x dx d%x dr'x
ST ﬁ‘ S T, ey g I
d* ((’x dt df dt"") M

where Fluy, uy, ..., u) is a differentiable function (of class C", r = )
delined in a demain ¢.

9.). Equinalence of anequation of order nto a system of x irst-order
equations. By a sofution of cquation (1) we mean aC*-mapping@:-f + R
ofanintcivaia < ¢ < (wherc — @ € 2 < & € 4+ 0} ol the real axis into
the real axissuch that

[) The point with ¢coordinates

d du-[v
uy = 1, u = (1), *z=d—r R
t=rt TE 24

Lelongs to the domain U for every 1 € {;
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2) For every r € 4,

d”@ J'P dl01¢ )
7:TI-Q- F(t'w(r).zt.f.'..’ d“' Iog I

For example, the functions () = sin¢and ¢(¢) = 03 ¢ are both solu-
tions of theequation

P
%;.-—x, XER

for the small oscillations of a pendulum.

The phase space of the pendulum cquation is the plane (x, 3), as in Sec.
1.6, Example 5. We now eonsider the question of the dimensionality of the
phasc space corresponding to the nth-order equation (1).

THeOREM, £quation (1) ir equivalent to the pystem
ky = k3
-il = -I'_“

2

.'Y., =F(t’xl,~sa’x.)

of n frst-order equations in the sense that if \p ir a solution of equation (1), then the
vector (@, @, @, . . ., @™ ') made up of the derivatives of @ is a slution of the
Ostem (2), whitetf (@, - - ., @,) i5 a Solution of the system (2), thea @, i3 mliution
of (1).

Proof. ®bvious. ||

Thus the phase space of any process described by a differentialequation
ofordcr n is of dimension . The wholc course of the process @ is deteimined
by specifying n numbers at time ¢, namely the values atigof the derivatives
of ¢ of order less than a.

Example /. The pendulum equation is cquivalent to the systera
ii - Xy,
£, = —x,

already investigaied in Sees | 6 and 6.6

Exanple 2. Theequation ¥ = @is cquivalent to the system
{ ii X2,
‘3 == Ol
whos solution is casily lound 10 be x3(¢) = x3(0) = C, x, {t} = x,{0) + @ Tows cvery
solution of the cquation ¥ = 0 is a POl Ynomial ol the first degree in 4.

Probbm /. Prove that the equatien d"x/d” — 0 is salished by all polynocaab of OTTT lese
than 7 and only by these polynomials.
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9.2. The existeace sud uniqueaness theorems. Theorem 9.1 and Corol-
Jariea 7 snd Bto the basic theotem immediately imply

conoLLanry, Gived a point it = (ug, 4,, ..., u,) of a domain U, the sixtion of
equation (1) sansfiing the initiat conditions

- L
q)(u()) = Uy, df e = Mip 509 2;:-_-1- . = M, (3)

£xists and s unique (In the sense that ony two solutions satisfying {3) coomcide om she
infersection of the intervals of definition).
Woe can write the imitial conditions {3) more concisely as

b=y, ¥x=muy, *mu, ..., AV =y

Example 1. Thesolution ofthe pendutum equation ¥ = —x (Fig. 67) savislymag the indtaal
conditiens

(=0, a=0, =0 (1)
s = 0, IMNheinitial conditions ace

I =0, x @ 0, =1, (II)
then w(l) = sing, while if they are

{ w0, £ |, 2 =0, anj

then o(t) e cos f,

Probler [, Find the solutions efih¢ cquation ¥ = z of the invened peadulum (Fig. 69),
satisflying the initial cenditions ([). (113, (II1), and

(20, x0, 2=l (IV)
1:0F )’—l, x R I'V)

\What are' the motions of the pendulum corresposrfing Lo these solutions ?
Counterexample . Consider the cquation 2x = t2¥ and the initial eonditions
j=0,1 =0, = 0(Fig69). Then many selutions satisfy 1these conditions,
lor cxainple, p(t) = 0and @(t) = ¢°. The points thalihe equationin ques-
tion is not of t he form (1).

i’

Fig. 67 Thece spetial solutiens of the pendulum eqimtioa
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Fig, 68 Fivesperial solutions of the cquaton of the inverted penduliam.

P

Fig. 68 Nonuniquenes of a solution satsfying Uk initial condition x = & = 0.

9.3. The differentiability and extension theorems.

Problem I. Stale and prove the theorem on eontinuous and diflerenuable
dependence on the iniual conditions and on parameters, and also the exten-
sion theorem, for the case of a difierential equation of order »

9.4. Systems of equations. By a system of diffevential equations we avean a
system of equations of the form

T o Fx. . ) i=1, ... ,n (1)

involving n unknown functions x;, where the argumenis of the funcuons F,
include the independent variable ¢ the unknown functions x;,and the deriv
ativesof the x ;of order less thann; {3 = 1,. .., #). Solutiens of the systesw
(4) aredefned as in Sec.9.1. Lt shauld be emphasized thata solution of the
system is a vector function (¢,, ..., ¢,) defined on an intcrval. Thus
(@1, - - -, ®,) 112 single solution and not n selutions, an observation which ap-
plies with equallorce tosystems of algebi aic equatiorsand systenis of di fer-
ential equations.
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Iirst of all, we explain the nature of the phase space corresponding to the
systrm (4).

TnEOREM, The system (4) is equivalent to a system of ‘e

N = ):: 1,

iml
Sfast-order differential equations In other words, the dimension of the phase jpace of the
system (4) equals N.

Praof. Asin Sec. 9.1, introduce the derivatives ofthe x, of order less than m; as
the coordinates in phase space. |

FFor example, suppose n = i, = &; = 2. Then the system (4) is of the
form

) -F,{:,x“x;,i,,i;),

fz — Fz{‘, X“ Xz, j'. j!).

and is cquivalent te the system of four equations

..i'l = IJ. .‘..'1 —] .1.'._1 'IE-J- - FI[,‘:J" i‘ SFz(‘a x)’

wherex = (x,, x5, X5, %,).

Example {. in mechanics the system of Newton’s equations

- U .
md = g i=bL...,n (5)
(where Uisthe petential energy and the m; > O are masses) is equivalent to
the system of 2z Hamilton equations

- oH —ai{ t =1 ]
=y T T T T >
where p;, = mgq,,

and H = T + Uis the total encigy. Thus the dimension of the phase space
of (5) equals 2a.

Problem 1. State and prove the theorems on exstense, uaqueness, CoAENTn aad didfer-
entiable dependence on initial conditions. and abo the exiemmior, (heorem, far car systap
(4).
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9.5. Remark, The equation of variations. The theorem on different.
ability with respect to parainctersis not rnly of thcorelical interest, baat s
alse a powerlul computalienal tool.t For example, suppose we can solve a
systaat) of dliferential equationa for a certain value of the parameter. Then
we can (ind approximate solutiens for neighboring values of the parameter.
'I'e dothis. we netd only calculate the derivative of the solution with respect
to the paramncter (for the fixed value of the parameter for which we can
selve the system). 'Then it is easy to see that this derivative, regarded as a
function of time, isitseila solutien efa certain differential equateots, called
the equation of variations, The equalion of variations can often be solved with-
out solving the original equation, since it is a (nonhomogeneows) (imem
equation. 'T'he effect of all kinds of small perturbations s investigated in
various branches of science in this way (by invoking the **method of amall
parameters’’).
For example, considcer the equation

X = V(!, 8)

involving a small parameter e, where v = vo + ev, + O{z”), ¢ - 0. By
the theorem on differentiability with respect te a parameter, the solution
with fixed initial condition can be written in the form

x(t) = xo(t) + 2y(1) + O(?),
where x4 is the solution of the “unperturbed™ equation
X = V(!, 0)

and y is the derivative of the solution with respect to the parameter € at
¢ = 0. Substituting x(¢) into the original differential equation, we ge1

R ov
Xo + 6F = vo(xo) + 2vi(xo) + ‘3_,: y + O¢h),

%o

a rclation valid for all small £. Therefore the derivatives o both sidesofthe
equation with respect togcate = 0 areequal,i.c.,

y = A()y + b(¢)

t The theeccmn on diffeceniiatian with respeai to the initial eonditions can thas be osed to
approximate abundic of soluions with initial c ondisoas ncar arain“uapatcbed” values
for which the solution i known,

! Since

votx) = vo(xs) + e3¢ v+ 0l

for small e.
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A(t) =22, b)) = v (={1).
X uytn

This i the desired equation ol variations, Note (liat yalso satisfies the instial
condition y(Q) = 0, sinee the initial condition for x i3 the same for all &

In solving problems it is casier to derive the equation of variations as
needed, rather than atteinpt 10 memorize it.
Prodlem . A bedy (ulls vertically in 2 medium with small rasisianc dependiag oa both
position and velooity:
Row —g + Ny £}, s |,
Colculatc the cficct of the resistance on the motian,

Solstion, In the abscnce of tesistance (¢ = 0), the solution is known:
‘2
£o(t) @ x(0) 4 o — 2y

Accerding 10 the theorem on differenti ation with pespect 1o a parameter, ibe sodutsco aan
be written in theform
x = xo F &) + O(ed)

for small r, wheee » i the darivative of the solution with rapect to the paramfa ¢ for
e — 0. Substituting this exPression in10 the original diffcrentiat oqinalion, we get an oqua-
nwon for): In fact,

B, + e = —p + eF(ng, %) + O(e?), ¢—90,

and sincc this eclution holds for all small e, the coeffcient of any power ol ¢ & the same i
boih side: of the cquation. In particular, this gines the lollowing casily sdved equation of
variations:

¥ = Flxa{t), xe(¢)), »0) = #(0) = 0.
Ans 5(1) < golt) '+ eﬁ [ Fieo(@). 2al®) dd v + O

Warmng. Strictly speaking, our argument is validonly for sufhGently small
t, but infact it is easily justified for any foute time inteival lf] £ T, pr<eded
that ¢ does not exceed some guantity depending on T (the constant implicat (= the term
written as 0(e?) increases with T'). it isextremely risky to extend the results
obtained i n this way to an mfntte time intesval: One cannot inteichaage
the limitsas { -» a0 and £ -» @,

Exampte ! Corsider a bucket of water whose bottorn has a small hole of
radius ¢ (Fig. 70). Given any 7. there exists a value of £ so small that the
bucket remains almost full during the time ¢ < 7. However, for every: ixed
¢ — 0, the bucket becomes empty as the time approaches infinaty.

Problem 2. As s well known, a body of mass m moving sclative 10 the enth with veloory v
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‘-QW

Fig. 70 The nsymbiotic behavior of 1he periurbed equation as ¢ — 0 and m 1 — aa,
L/

A
X

y
Fig: 71 Defeclion of a Galling body from the vertical.

s subject to a Corolis force F = 2mv % 0, where Q s 1he angular velodity vecioe of 1he
enrih. Asteic is dropped (without initial velocity) intoa mine of depth 250 ny a1 1he latitude

of Leningrad (1 = #0°). How [ar from the veriical s the stonve defiecaed by the Cowln
force (Fg 71)?

Selution. Here we are dea ing with the diferential equation
E=gt+t2x X0

dcpcndfng on the earth’s angular velocity 2 2.3 x 0-3 sec~! as a paraoxrwy. it Go
he Predicied in advanee ihal the Coriolis l'orec is snall campared 10 t e wegght, 2 0d broor
Qcanheregarded a3 a small parameier. According 1o thediffereniaability theorem, we have

= = 2 + Qy + O(L12)
for onall A, where

3 = 20) + g'}f.

Suhatituting 1his expresion for 2 into the differential equation, we get the cquatioo of
varialions
y =28 < Q, ¥o(0) = ¥o(0) =9,

and hence

_ 3 2
y-gxrl%-%ihxf.u, bk
Therefore the stone is deflected to the casthy

’--lmz 4 <.

2t 2.7 .
3 bl 193] cos 4 = =7 .250.7- 107 2.

Other examples of the application of the theorems on diffeventiability
with respect to paramcters and initial conditions are given in Secs. 12.10
and 26.7.
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9.6, Remarks on terminology. F.quations of the form {]) and systems of
the form (4) are somntimes said to be in acrmal form, or to be selord wenth
respect (0 the lighest derevotives. Since these are the only kind of equations and
systema considered in this beok, the werm system of differential equations always
denotesa system in normal ferm or a system equivalent 10 a system in normal
form (like the system (5) of Newton's equations).

We also note that the [unctivn appearing in the right-hand side of the
system (4) can be specified in various ways, e.g, explicitly, implicitly,
paramectrically, etc.

Exaniple I. The formula

> 2

X—X:.

is shorthand [ur two different difierential equalions ¥ = /¥ and £ = — /%,
cach with the half-line x > 0 as its phase space. These equations are deter-
mincd by two differentvector felds, bothdifferentiablelor x > O (Fig. 72).

When an equation i given implicitly, the right-hand side musi be treated
carclully, witha vicw to determining its domain ofdefnition and avoiding
ambigious notation.

Example 2, Let xy = 7¢co9 @, x; = r sin ¢p. Then thelormulasx, = r, %, = 7¢
do not specily any systern of differential equations in the plane {z,, x;). The
same formulas, regardedin any domainofthe plane (x,, x;) which doesnot
contain the origi nolceerdinates, lead to infiritely manysystenis of differential
cquations, correspondingto the infinitely many “bianches’ of the multiple
valued lunction @.

Exampte 3. By a Clairaxt equation is meant a diflerential equation of the form

The Clairaut equation

o v

£ ¢

£g. 72 \ntegral curves of the twe differential equations eocmprised in the angle foxmafa
21 = x,
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Ti¥ 73 loiegral curves of the two equations writlen tageiher as the @lairaut equation {6).

18 shorthand for two different diflerential equations defined in the domain
x £ 13/7, each satisfying the conditions of the cxistenee and uniqueness
theorems in the domain x < t2/2 under the parabola (Fig 73). ‘There are
two tangents to the parabola through each point ofthis domain, and each
tangent consists of two tangent rays. Eachof the tangent rays is an integial
curve of onc of the two cquation:.given by formula (6).

Problen /1, Investigaie the Clairaus equation ¥ — 31 — 23,

10. Phase Curves of Autonomous Systems

We now return to the autonomous case and consider some proparties of
solutions of autonomous systems and the corresponding phase curves,
beginning with the |ollowing example.

10.1. Time shifts. Consider the equation
X = Fle, 0% 00, 1, (1)
where /7 is a differentiable function on the phase space R*.

Problem [. Suppose x = sin ¢ is a solution of equation (1). Prove that
x = costisalsoa solution.
Thisis an immediate consequence of the following

THEOREM. fLet ©: R — U be the solution of the autonomoxs differestial equvation

dx

= v(x) (2}
determined by a vector field v in the phase space U,and let k. R — R be the skifi by s
carrying the pointt € Rnlo the pointt + se R. Then @ o ' : R — U 15 a silatice
of (2) for arbitrary 5. In other words, if x = (1) is @ mlution of (2), then w0 is
x =t +35)
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Proof. An ubvious consequence ol the act that

de(t + ;)‘ _ dp(t)
de dt

! =l

= v(p(to + 5)) = v(p(t + 1)), .,

lelat e
for arbitrary (g e R, ;&€ R. [}

Remark. The theorem iminediately implies the analogous amertion for
autonamous §Hstems and in particular for equation (). For s = #/2 we geu
the solution of the problem pascd above.

COROLLARY. There i5 one and only one phase curve of the gulonowmms cquation (2)
going through each pornt of phase space.t

Proof. Let ¢ : R — U, ¢3: R = U be two solutions and let ¢{1,) =
¢(t3) = x. ‘Then the solutions ¢, and @y = ¢, «4'*~ * saisdy the same
initial condition ¢@,(¢;) = @5(¢;) = %, and henee coincide by the unique-
ness thearem: ¢, = ¢, < A"~/ But the mappings ¢ and g« #*:. R - U
have the same itnage, since the mapping 4°: R — R is one-to-oone. There-
fore ¢, (R) = ¢,(R). 1

Remark. The phase curves ofa nonautonomous equation can intersect wit h
out coinciding. 'T'herefore the solutions of nonautonomous equatams arc
best [@llowed along integral curves.

Prodlem 2. Suppesc enc and enly enc phase curve goes throngk cach potnl of e phase
space of the equatien x = v(t, x). Doss this imply that the equanoo » aulamzan, , ¢,
that v(t, £) i independentofl time?

Ans, Ne.

10.2. Closed phase curves. We already know that distinal plase cuives
of the autonomous equation (2) do notintersect. We now examine whether
asingle phase cuzve can inteisect 1tielf

Let ¢g: £ —+ U (Fig. 74) be a solution of equation (2) taking the same
value @, (¢,) = @,(2,) atiwopeins!, < ¢, /.

THEOREM. A solution Yo such that @y (1)) = @gt;) can be extended outo the wbale
t-axis, and the resulting solution @: R — Uwill have theperiod T = t; — t;, 22,
ot + T) = (1) forali e

Proof. Every t e R can be uniquely represented in the form ¢t = a7 + 1,
@<t < 7 Letop(t) = ¢o(¢; + T). Thea ¢ is obviously a peniodic fune

t Here we bav cin ou'nd maximal phase cuives. By a menmof phaa cwve s meann the icrage
of the mapping ¢: { — U where ¢ i as0lution which caniot be cxiendcd cato agy lacger
interval fconaning/ (fer example, because /is thewhole line{so that the sohstiom s alrcady
extended indefinitely) oe becaine ofr) approaches the bowwdary of the daxmin ¢ as ¢
approaches the boundar y of the intezval 7).
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Fig. 74 A closed phase curve and the corraponding iniegral curve.

tion with period 7. To sce that ¢ is a solution, we note that ¢ coincida ina
neighborhood of every point ¢ € R with atranslate of the solution ¢¢ (this is
obvious for points where v > 0 and (ollows from the fact that gg(f) =
9,(¢;) lor points where T = 0). Hence ¢ is a solution, by Thwoeem 10.1,
and the proofiscomplcte, since @(t,) = ¢o(t,). B

We new censider the set of all periods of the resulting continuous (une
tion .

LEMMA 1. TRe et of all peviods of the continuous function @: R — U'is a dosed saub-
eroup of the group of real numbers R.

Progf . If@(t + T) = () and (t + T3) = (t), thenep(t + T, £+ T;) =
¢t + 7)) = (1), wherc = indicates identical equalityins. MMoreover,
if7, = T, then

e + T) = lime(t + 7)) = lim ¢(t) = (1),

(~am j= ©

byshccontinuityof¢_. |

LEMMA 2. Every closedd subgroup G of the group of real numbers R is either R or {0}
or aset {kT o k €Z} of all integral multiples of some number Ty € R.

Froaf. 1f G # {0}, then there exist positive elements in G (if t < 0, then
-t> 0. 1let

To=inffr:te G t> 0}

®bviously 0 < 7, < . Suppase 7y > 0. Then 7 belongs1o G, since Gis
closed. The integral multiples of T, also belong to G, sinee Gis a subgroup.
Moreover, C contains no othcr peints In fact. the poin & 7o divide the line
Rintointervals Ty < t < (k + 1)T 4 (Fig. 75). Ifthe group G hadan extra
clement, the clement would fall in aninteval of the indicated type and then
G would contain an clement ¢ — &7, such that ® < ¢ — &7 < Tg, con-
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Fig. 7% A closed subgroup of the line.
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¥ig 76 A claed subgroup of the plane,

Fig, 77 A limit cycle.

trary te the definition of 7, as a least upper bound Hence Tp > 01mplies
C = (kT ke Z}.

We must still consider the casc Tg = 0. Inthis case, givenanye > 0, G
contains an element ¢, 0 < ¢ < ¢ and hence all points &2, k € Z. Tte points
k divide Rintointervals of length less than ¢, and hence there are pointsof G
i ncvery neighborhood ef any pointof R. ButthenG = R, since Gis a dased
set, ||

* Probiem {. Find all closed subgroups of the plane A3 (Fig. 76), e space R®, and the grap
of the cirde

St (z¢ C:)z) = I}.
Rcturning to periedic functions, we scec that the set of periods ather makes wp
the whole fine (in which casc the function is constant) o7 dse emsists of all

tntegral multiples of the smallest period To. Thus a sell-intersecaing phase curve
is either a s1ationary point or a clased curve which first becomes cdhased at

time T, asin the case of a limitcycle (Fig. 77).

Problem 2. Prove that a closed phase curve s dif avaEphic to a carcle,! unbes the cave
reduces (o a poim.

¥ The definition of 2 diffeomoPhic MAPPINE of One CUNT ONK ANoTRY is RIven, (or ex-
ample, in Sec. 33.6.
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Jing 'he diflcomorphlom can be deseribed by ihe formula
2rd . Im
() ~ [co Il .
¢ T TS
Nonclosed phase curves can wind around each other in a complicated
way, altheugh they cannot intersect cach other.

voblen 9. Fincl 1he cloaures of the phase curves of the * double peawdulem™:

x' =X\, El "2‘].
Ans. A polng, circles, and tori ' X §' (see Sees. 24 and 25.6).
*Problem €, Lot @2 R — &/ be a solution of (2) corrcaponding 10 a nonckmed phase curve,
10 that ol1,) 2 e(t3) T8, # t;. Then the mapping » of ibe linc R ono the phase curve
[ = ¢(R) i onc-to-one. with invcrace =" I — R

Is ¢- ! ncccesarilY continuois?

Fint. See the preacding prable m. 1t can happen thar

i o{t) e [, |‘im 0 ®.
i -

11. The Directional Derivative. First Integrals

Many geometric concepts can be described in two ways, cither in the lan-
guage of poinisin space or with the help of functions defined oa the space, a
duality eften found to be uselul in various branches of mathematics. In
particular, vector ficlds can be described notonly by using curves, but ako
in terms of differentiation of functions. The basic theorems can then be formu-
lated in terms of Arst integrals.

11.1. The derivative in the direction of a vector. [ ct { bc a domain in
Euclidean space, x a p#int of {/, and v a tangent vector, v € TU, (Fig. 78).
Let f: U -+ R bea differentiable lunction, and let 9: 7 — U be any curve
leaving x with velocity v, ¢(0) = x. Then theinterval / is mapped into the
real axis by the compaesite function

Seo: IR, (fe 0)(8) = floln)y,

n
v ks
rix)
ey,
! L @

Fig. 78  Bc¢rivalve of the function f in the direcrioo of the vector v,
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which is a real function of s real variable.

Dsfinition, By the derivative of the function fin the dizection cf the oector v ts meant
the number

Je .

+t 20

d
!‘vfll - a}

To justfy thisdefinition, we must verify that the number in question docs
not depend on the choice of the curve @, but only on the velocity vector w.
'This follows, lor example, fiom the expression for the derivative in teems of
the coordinales. By the rule lor differentiation of a composite function, we
have

d &, of
L - — ° = — 5
v/ls d‘ ‘.Of Q ‘;‘ ax‘ x v‘ (1)

where x;: & — Ris a systcmof coordinates in the domain & and the p; are
the components of the vector vin thissystem (which are independent of the

choice of p).

11.2. The direcuonal derivative of a vector field. Now let v be a vector
field in a domain {, so that there is a tangent vector v(x) € 7L/, at every
peintx e U.Iff: & — R isa difRerentiable function, we can focmw its deniva-
tive in the direction of v(x). Thisgives a number £, f|, atevery point o U.

Defmition. By the derivative of the function f: U — R in the diraction of the field vi s
meant the new function L_ f: U + R whose value at x eQuals the desivative
of fin the direction of v(x).

Example 1. Lot e, be parallc] to the fitst basisvector of the standard basis of Ciatudon space,

i.e,, the veciar with eomponcnts 1,0, . .. . 0 in a systeen of contdinaies xy 3z, - .-+ zoin UL
Then clearly

Les=34L,
o/ .
It follows from (1) that if the function fand the field v are of class C°, then
the function L, fisof classC"~ 1.

11.3.Properties of the directional derivative. Let Fdeootce the scrof all
inlinitely differentiable functions f: &/ — R. This set has the natural
structure of a real linear space (since addition of functions pacserves diffes
entiability) and even of a ring (since a product of differentiable funcuoasis
diflerentiable). Let v be an infinitely diRerentiable vector field. Then the
derivative L, f of thc lunction f& £in the direction of vis again an clanent
of F (theinfinite diflerentiabilityis esential here!}. Thus diflerencation in
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the direction of the ficld v is a mapping L, F — F of the ring of infinitely
differcntiable Munctions into imsell,

Problem {. Prove the lollowing properties of the operator L, (except for one
of the properties which is false) :

DL+ 8w L S+ L

2) L,(f8) =fLug + &L T

3) losy = Ll + L,

9 1y = fla;

5) I L, = L., Le

(Herc f, g are sufficiently smeoth functions, and u, v are sufiaently smooth
vector lields,)

11.4. Remarks on terminology. Algcbraism apply the term differentiation
to any mapping ofanarbitrary (commutative) ring Finto itself which satis-
fies properties 1) and 2) of themapping L,. The setof all differentiations of a
ring lorms a module over thering,

Thus the vecior fields in U form a module over the ring F of infinitely
differentiable functions defined in {/. Propertics 3) and 4) mecan that the
operaiion L carrying the vector field v intothe diflerentiation L, is a homo -
morphism of F-modules Property 5) means that the differentiations L, and
L, commute (and in general they do not).

*Problem 2, 1s the homomorpliam L an isomorphiam ?

Analysts call the mapping L, : F = F a linear homolemeas differeatial
operater of the first order. This designation s explained by the fact that proper
ties 1) and 2) imply that the mapping £L,.: F — Fis an R-lin¢ar opesator. In
the local ceordinates x,, . . . , x,thisoperator takes the form

L =ul,_+...+:|l._..._

M aX| -&-'l'.
(sec tormula (1)).
11.5. Lie algebras of vector fields.

Problem 3. Prove that the differential operator L Ly, — L,L, is not of the
second order (as it appeais to beat firstglance), butrather ofthe fust ceder,
1.¢.,

L-Li . LbLl - '[":*

where ¢is a vector field dependingon the fieldsa and b.
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Comment. The licld ¢, denoted by [a. b}, is called the commusasor oc Potssom
bracket of the ficlds aand b.

Problem 4. Prove the following three properties of the commutatos:
a) (a,b + Ac) = [a, b]) + Ala, c], 4 eR (lincarity);

b} [a,b] + [b.a] = 0 (antisymmetry);

c) [la) b], €] + [[b, €), a] + [[c, a), b] = 0 (Jacobi's identity).

Comment. A lincar space equipped with a binaty operation satisfying the
above three conditionsis called a Lie algebra. Thus vector ficlds, taken with
the opcration of commutation, {erm Lie algebras. Other examgdes of Lic
algebrasarc the following:

1) Three-dimensional space equipped with the opetation of vector
multiplication;

2) The space of all n x n matrices with the operation cairying A, 8 into
AB — BA.

Problem 5. Starting from the components of the ficlds a and b in some co-
ordinate systemn, find the components of their commutator.

s o da
Ans.[a:s B]; = 3, (a-—‘ — b;—i).
'bxj Ox ;

= |

*Problems 6. Let ' be the phase How detennined by the vector ficld a and & the Bow
dutermined by the field b, Prove that the lows commute (g'% = A%¢”) f and ocaly f the
commutator of the fields vanishes,

11.6. First integrals. Let v bc a vector field in a domain U, and let
f: U — R be adifferenuable function.

Be¢finition. The lunciion fis said te be a fzst integralt of the differentialequa

tion

¥ = v(x), xe U (2)
ilitsderivative in the direction of the vector field v vanishes:

L. f=0 (3)

The :0llowing (wo properties are obviously equivalent to equation (3)
and can be takcn as the definitionofa fust integyal:
I} The function [ it constant along every solution @: I — U, i.e., if @ is a solutioa,
then every function f- ¢: / - R isaconstant;

t Thestrange term fiest indegral is a relic of the ti me when mathemanicn ns stlll tried 10 sobve
all dificrential equatiens by int¢gration. In thase days, the taam incgral (or pactaular
inlcgral} was used (o designate what we now <all a solution.
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Kig. 7 A phase curve lics entirely on onelevel surface of the fint integral

N
ZON

Fig 80 A system without noncozutant finst integials.

© »457 E

Fig. 81 ¥hich of these sysiems have nonconstant Firs) integrak?

2) Loery phase curve belongs o one and only one level sett of the frorction f (Fig. 79).

Example 1. Consider the following system whose phasc spaec is the whole
plane (Fig 80):

X, = x,,
i: = 1':.
This system has no first integrals diflerent from a constant. In fact, any first

integral is continuousin the whele plane and constant on every ray cimanai-
ing from the origin, and hence is a constant.

Problemm 1. Show that every Girst integral is constant in a aaghborhood of a limit cycle
(Fig. 81a) of #quation {2).

t By the set o/ leval Cof afun dtionf: U — Rismeantthefull preimage ol e potuC e R,ie,
theset f1C S U.
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Problem 2, For what values of & does the system of equations

2 = xy,
‘, b *"|

(wy,m3)m R!

have s noncoathat fin integrnl (Fige. Blb, ¢ d) ?

Nonconstant first integrals are rarely encountered. Hence in those case
whete they exist and can be found, they arc of greatinterest.

Example 2. Let H be a differentiable (r 3 2 times) lunclion of 2« variables
Pvro 3Py My vy ¢a- Then by Hamilton' s canonical equationst we mean the
system of 2/ equations

oH oH
ﬁ: -

A -, ! m ]s e s v ML 9
20, g 7y (9)
THEOREM (Law of couservation of euergy). Ths finction H: R — Risra
Jirst integral of the system of canonical equations (4),

Proaf. 1t lollowslrom (1 } and (4) that

2 [0H o cH oH
L = — — — 1=
o ig:l [aﬁz( 69:) * 09, aPi] *

11.7. Local first integrals. The absence of nonconstant fust integrals is
rclated to the topological structure of the eollection of phase curves. In
general, the phase curves of a systemn of differential equations do not all siay
on the lamily of level surlaces of any funcuon, and hence there ts a0 non-
censtant lirst integral. However, the phase curves do have a smple structure
locally, in a neighborheed ef any nensingular point, and coneonstant frst
integrals do exist lecally.

Let U be a domain in n-dimensional Euclidean space, let v be a differ-
cntiable vector field in {/, and let xbea nonsingular paoint (v(x) # 0).

THEOREM. There exists a nesghborhcod V of the point x € U such that equabinn (2)
has n — 1 functionally independent? first integrals f,, . . ., fo_, & V. Moo,

any first inteeral of (2) in Vis a functionof f, . .. , fu-,.

Praof. The theorem is obvious lor the standard equatien
=L Jy= =3 =0 (9)

t It was shawn by Hamilton thatthe differential equations of a great vaney of prabicrs
encountered in mechanics, oplics, calculus ofvanations, and othar branthes of scer=rcan
»e written in thelomm (4).

1 1t will be recalled from calculus that he functioas /., . . ., fa: U — R arc facmscally
independent in a n eighberhood of a point = ¢ U if the 1ank of the daivathe f,], of e o p-
ping f: U — R™ determined by the funcuions f,, - - . . f. equals oz,
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Fig. 82 ‘The eoordinate y b a fint integral.

in R"(Iig. 82). In fact, the first integrals are arbitrary diflerentiable func-
tions of the ceerdinates y,, . . . , »,, and the coordinates 3,, ... , 7, give us
a — | functionally independent fiist integrals. The same is iru e for equation
(5) in any convex domain W of the space R". t By the basie tiveoremn (Sec.
7.1}, equation (2) is of 1he lorm (5) in some acighberhood of the point xin
suitable coordinates y, and this neighborhood can be regarded as a convex
domain in the coordinates y (otherwise replace it by a smaller convex neigh-
borhood). 1t remains only to note that the property of a [unction being a
first integral and the property of functional independeonce are both in-
dependent of the coordinate systemn. |}

11.8. Time-dependent first integrals. Let /: R x { - R be a differ
entiable functionin the extended phase space of the equation

x=vit.x), teR, =xeU, (6)

which is in general nonautonomous (the righi-hand side v(1, ) is assumed
to be diflerentiable). Then the function f is said to be a tisme.depend-ns forst
integral if itisa firstintegral of the autonomous system obtained from {6) by
adjeining the equation { = 1:

X=V(X), XeRxU X=(4,1, Vi, =(l,v).

In other words, every integral curve of equation (6) fies entirely on e ledd set of the
JSanction f(Fig 83).
The vector field ¥ does not vanish. I lollows from the preceding theorem
that equation (6) has n funclionally independent (time-dependent) fost insegrals
S1s « o+ s S insane neighborhood of every potnt (2, x) and that every (time -dependcm)
firstintegral of {6} can be expressedin termsof £, . - - f, tn thas ne ghborhood.
In particular, the autonomeus equation (2) with an a.dimemrioaal phasc

t A domainin R 15 53id to be sonzxx if when ever it 400 tains two poin 1S, 11 akso cootairs the
tine sugment joining U two poins. Givean example ofa 615t insegial o (3) winidd does anc
reduce to a finctionofy;, . . ., y.in a nonconvex domain Wolthe spaee R
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i

/
Fig 83 Imcegral curves on a lewcl surface of a ime-dependent first imegral.

space has i time-dependent functionally independent first integrals in the
neighborhood of any (not necessarily nonsingular) point.

Problem 1. Supposc cvery solution of equation (6} can be extended onto tbhe whole r-axxy
Peove that equatien (6) then hasa funcrionally independent (time.dopendcns) Bntantcgraks
in the whole extended phasespace, in 1cenuof which we can cxpres cvery | nme-dopcadens)
first integeal.

By a first integral of a diflerential equation (or of a system of diff evential
equations) of arbi trary order is meant a first integral of the equivalent sys-
tem of first-order equations.

12. Conservative Systems with One Degree of Freedom

As an cxample of the application of first integrals to the investigation of
differential equations, we now consider a fiictionless mechanical system
with one degree of freedom.

12.1. De€initions. By a conserrative system with one degree of freedom is meant a
systern described by the diflerential equation

X = f(x), (1)

where £ is a differentiable function defined on an interval f of the real
x-axis Equation (1) is equivalent to the system

{ CIm eelxr )
The fellowing terminology is customary in mechanics:

/  the configuration space;

x3 = x the coordinate;

x, = £ the velacity;

X the acceleration;

/ x R the phase space;
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(1} Newton’s equaltion;

#  the {oree lield;

#{x) 1he lorce.

We alyo consider the following functions defined on phase space:

T e §i = }x}  the kinetic energy,

Um -]:o £(£) d&  the potential energ y;

E =T+ U the total mechanical energy.

Obviously F(x) = —dU[dx, so that the potential enery delcrwines the sysum.

Example {. For the pendulum (Sec. 1.6), we have
¥ = —3in x,

where x i3 the angle of deviaton, so that

F{x) = —sinx, U(x) = —cos x

(Fig. 84). Moreover

X= —x, Flx) = —x, Ulx) = I,
lorsmall oscillations of the pendulum, while

. F(x) = x, Ux) = —4x°

jor small oscillations of the inverted pendulum (Fig. 83).

X = x

Fig. 84 Poteatial energy of the pendulum.

L\ NT

Fig. 85 Perenualeneigy of thependulum nearthe Jow er aud uppe cqmbiluromn Po= G
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12.2. The law of conservation of energy.
‘THEOREM, The toial enery E is a first integral of the system ().

Preaf. We necd enly noltc that

F[740 + U ] = s + U = 1R - Ry = 0. 0

With the help of this theorem, an equation of the form (1), for example
the pendulum cquation, can be invesiigated and expliciily solved “in
quadratures."’

12.3. Level curves of the energy. Turning to the phase curves of the
system (2), we note that each such curve lies entirely on one Jevel se1 of the
cnergy. We now siudy these level sets.

THEOREM. The level set of the energy
{(x\ %2): 4x3 + Ulx,) = E)

is a smooth curpe tn a neighborhood of each of its points, with the exogpaon of tAe
equiltbrium positions, i.e., the points (x,, x3) where

F(X.) =O. Xz=0.

Proof. We use the implicit functien thcorem, obseiving that

E i) )
—— = F — B &

if one of these derivatives is nenvanishing, then the set of level £1is the graph
d a diflerentiable functien of the form r, = r,(x;) or x; = x3(x,) in a
ncighberhaed of the pointin question.

Note that the exceplienal points {x,, x,) guring in the itbectem, where
F{x,) = ®andx,; = @, are)ustthe siationary peints (equilibrium pasitions)
of the system (2) as well as the singular pointsof the vector field of the phase
velocity Moreover, the same peints are the critical points of the total energy
E(x,, x3), while the points where F(x,) = 0 are the critical pointst of the
pelcatial energy U.

To draw the level curves of the energy, itis uscful 1o think of a bead
sliding in a *’ potential well”” {/(Fig. 86).

Suppose the tolal energy has a fixed value E. Since the poiential cnergy
cannel cxceed the total energy, the projection onto configuratico space

t By acritical point of a funclion ismeant a pPoint at which 1he to1a) diffcienriai of 1he firrwan
vanishes. Thie value of the function atsuch a peinit is calied a erificel satwe
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Fig.86 A beud in a pountial well and the cortaponding pbase curve.

(the x,-axis) of thelevel curveof energy Eliesinthe set {x, € i: Ul{x,) € E}
of points at which the value of the potential energy does notexceed E (the
bead cannot go higher than the level E in the porential well). Morecover,
the larger the velocity (in absolute value), the smaller the potential energy,
since |x3| = J2(£ — Ulx,)), i-e., the bead picks up velocity as it falk into
the well and loses velocity as it rises from the bortom of the well Note than
the velecity vanishes at the “tucning peints,” where U(x,) = E.

1t follows (i:em the evenness of the enetgy with respect 10 x; that the level
curve of the energy is symmetric with respect 10 the x,-axis (the bead
traverses each point twice in opposite dircctions with the same speed).

These simple coasiderations suffice 1o allow us 10 sketch level curvs of
the energy (o1 systems with various potentials U. First we consider the im-
plest case (an inlinitely deep potential well with one atiractive center §),
where F{x) decreases monotonically: F(¢é) = 0,/ = R (Fig 86).

If the value £, of the total energy is smaller than the minimum E, of the
potential energy, theset of level £ = E| 5 empty (the motion of the bead is
physically impessible). The set of level £ = E; then eonsists of the single
point (£, 0) {the bead rests at the bottom of the well).

If the value £; of the total energy is larger than the critical value E, =
U(&), theset of level E = E; 5 a symmetnic smooth closed curve surround
ing the equilibrium position (£, 9}inhe phase plane (the bead slide back-
ward and forward in the wcll, rising to the height £,, a1 which im< the
velocity vanishes, then falling back into the well and going duowgh (£, 0),
at which time the vejocity & maximum, afterwards rising againoathecother
side, and so on).

To study more complicated cases, we proceed in the same way, i.e.. we
progressively increase the valuesof the total energ y E, sioppiag ai the values
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Fig.87 Level curas of the energy for a potential with twawells,

1 -

\ T

Fig. 88 \What i the appeacance of the level cunves of the energy for each of Dexe
potenaalk?

of £ equal 10 the critical valuesof the petential energy U/ (where U°(§) = 0)
and in cach case examining the curves with values of £ a little smaller and
a little larger than the critical value.

Exampte 1. Suppaese the potential energy U has three critical powngs, a
minimum ¢ ,, a local maximum £ ;, and aloca)l minimum ¢3. Then Fig. 87
shows the level curves cerresponding to the values £, = U{&,}, U({,) <
Es< U(§y), Ey = U(§;), U(&,) < Es < Ul§1), Es =U({1), £s > U(&,)-
Problem £ Shkatch level curves of the energy far the pecodd w equavon ¥ = -~ wa raod for
the pcadulun Cquatuess ncar he lowee and upPer ¢qQuilibrium potitions (¥ — — x aod
¥ = x).
Problem 2. Skctch level curves of the energy Ior the Ky podential §

,. I, ¢
t=-14%
and fur the poicntials shown in Fig. 88.

t The change in dtitance Iweiwcen a planet{or comet) andtbe sun & described by Niwion's
equacion with this petcipal.
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12.4. Level curves of the encrgy near a singular point. Instudyng the
ehavior of leve] curves near a eritical value of the energy, it s uselul to keep
the following lacts in mind:

Remark 1. If the potenrial energy (s a yuadratic form U = {kx?, iArm the level carves
of the energy are second-urder curves 28 = x5 + kxi.

In the attrartive case, we have £ > Oandtihe eritical poini0isa mynimum
of the poteniial energy (Fig. 89). The level curves of the energy are then
homotheti¢ ellipses centered at 0.

In the reputsive case, we have ¥ < Oand the ceilical pointQis a maximum
ol the potwential energy (Fig. 90). The tevel cuives of the energy are then
homothetic hyperhelas centeced at 0, logether with the pair of asymptotes
x, = +'kx,. Thescasymptotes are also called separasrices, since they sepa-
rate hyperbolas of different types {rom one another.

o

i

/
>

Fig. B9 Il.cwel curves of the energy for an attractuve quadra tic potentzal

(74
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Fig. 90 1.evcl curves of the encigy for a repulsive Guad:atic potential,
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Remark 2. The increment of a_function f(x) 11a quadratic form m a seighborioed of a
nondegenera ie criticol potnt, provided anly that soordinates are suitably chosen.

Here we assume that /(0) m O and that the derivatives f*(0) and f(0)
exist. The pointQisa critical pointof £ if £°{0) = 0. and the critical point 0
is then said 0 be rondegenerate if f*(0) % O,

LekmMMa | (Morme). Ina neighborhood of a mondegenarate ¢ritical pmus 0, the ¢o-
ordinate y can be chosen insuch a way that
f = Cy*, ¢ = sgnf"(0).

Of course, y = sgn x\/l_f{;ﬂ is such acoordinate, and the assertion consisis
in showing that thecorrespandence x - yis difeomorphic in a aeighbor-

hood of 0.
In proving Marse’s lemma, we make use of the following proposition:

LesMA 2 (Hadamard).t Let f b a differentiadle function (of ddass C”) suck that
both fand its derivative [ vanrish at the point x = 0. Thm f{x) = ug(x), aderegise
differentioble function (of class C* =" in a neighborhood of the point x = 0).

Proaf. We nced merely note that

flx) = [ i) =j'f'(u)x &t = lej*(tx) at,
0 0

where

£(x) = j':/'(zx) @

i a funclion of class C*— 4. |

Applying Hadamard’s lemma twice to the function / figuring in Morze's
lemma, we find (hat f = 22¢(x), where 2¢(0) = f~(0) # 0. Hence y =

xJTe(x)| and Morsc’s lemma is proved, since the function figtz)i=differ
entiable (r — 2 times if fis of class C*) in a neighborhood ofthrepeex = 0.

Tz )

E .
£ Xz,

Fig. 91 Tangents to the separatiices of a repubsive sitgulbir Paine,

' Both lertmas can be extended to the case of functions of senvesal variables
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‘Thus in a neighborhood ola nondegenerate eritical point the levei curves
of the energy become ceither ellipacs or hyperbolas under a dificomorphic
change of the system ol coordinates (x,, x3).

Prodlim 1. Findthe langents (0 the scparatrices of a repulsive singular potat (U (8) < 0).
A, xam & VIO'Q) (x0 = &) (V. ),

12.5. Extension of solutions of Newton’s equations. Suppose ihe
potential encigy is defined on 1he whole x-axis Thenthelawof comervation
of energy immediately implies the following

THEOREM. If the polential energy U s positioe eoeryivhere,t then coevy selutiom of the
equation

X= —_" I’
dx "

can be extendsd indefinitely.
Exantple J. If U = — x4, the solution ¥ = 1J(z — 1} cannot be extended up 10 ¢ w .

Fuist we prove the following “a prori estimate™:
LEMMA. If a solution extsts for ltl < t, then it satssfes the inegualities
#(O| € V2B, [x{t) — x{0) < /25, 1,
where
Eo = 130} + U(x(0))
is the initial value of the energy.
Proof. Accerding (o the law of conservation of energy,
$20) + UED) = Eo

and since U/ > 0, the fiist inequality is proved. The second inequality fo
lows from the first, since

(]

x(¢) = x(0) = Lsc(o) 6. 1

Proof of tin theorem. 1€t T be an arbinary positive number, and let IT (Fig-
92) be the cectangle

lx, = x{0)] € 2\/2E, T, [x2] € 225,

t Natucally, changing the patential energy by 2 eonstant does not chacge egazam (1)
Hence it is only essential that U be bounded from below.
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Fig. 92 The rectangle which the phase point cannot leave in time T
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a b \
Fig. 98 The ser of points x where U/(x) < E (E a noucsitica! energy beved).

i n the phase plane. Consider the parallelepiped ltf] £ 7. (z,!x;) € inthe
extended phase space (x,, x3, ¢). By the extension theorem, ihe sojuiion can
be extended up te the beundary of the parallelepiped. It follows from the
lemmma that the solution can leave the parallelepiped only theough those
faces on which |t] = T. Hence the solution can be extended up toarbsitrary
{ = + T,and hence can be extended indefinitely.

Problem 7. Prove the pessibility of indefinitelY extending (he solutions of tbe system of
Newlon's squalions

1%

u!,'.‘.‘: JT,’ $ ':..-,N, m.}ﬁ. re R

in 1he case of positive potential energy (U > 0).

12.6. Noncritical level curves of the energy. Suppose ihe polential
energy { & defined on the whole x-axis, and let £ be a noncriuical value of
the energy, i.c., let £ be different from any of the values of the firaciion Uat
its critical points. Consider thesetoflpoints{z: U(x) < £} where the value
of Uis less than £. Since U is continuous, this set (Fig. 93} corssts of a finite
or esuntable number of inteivals (two of these intervals may extend to
infinity). At the end points of the intervals U(x) = £, and hence U™{x) # 0
since Eis a noncritical value. Every pointof theset {x: U{x) = E}is for this
reason the end point ofprecisely oncintervalin which U(z) < E. Thaefore
the whole set {x: U(x) < E} is either the entize x-axis or the union of no
more than countably many paiwise disjoint closed inteivak, possbly
together with ene or two rays extending to infinity. In the following
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Fig. 94 A phase curve dificomorphic o a circle.
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Fig. Y5 A phasc curve diffeomorphic to a line,

theorem, we consider one of these intervals a € x € § (Fig. 94), whae
U(a) = U@) = Eand U(x} < Elorea < x < b.

THEOREN. 7hecquation
i+ U(x)=E,  a<x <b

determines @ snooth curoe in the plane (x,, x3). This caroe is diffeomorplic o a ¢ircle
and is @ phase curve of the system (2). Similarly, theray a € x < w(r =W < x
< 8), where U(x} < E,15 the projection onto the x,-axts of a phase coroe diffeomorphic
to a straight {ine (Fi3. 95). Fingtly, in the case where U(x) < E on the whole line,
the set of level E cousists of bwo phase curves

Ny = + /2L - U(x)}).

Thus the set of level £ where the encrgy E is noncritical, comnsists of a
finilec or ceuntable number of smoeth phase curves

12.7. Pcoof of Theorem 12.6. Thelaw of conseivation of energy allows us
10 solve Newton's equation explicitly. In fact, for a fixed value of the 01l



Sec. 12 Conscrvative Sysicms 89

Fig. 36 ‘The phuse point traverses half the phase curve (from ¢ 10 8) ia 8 finite ume
T2 ety — £y,

[ ‘/IZD\

4@

Fig. 97  Use of rellection 1o exiend the solulion of Newton's equation.

energy X, the magnitude (but not the sign) of the velocity x is detcvmined by
the position x, since

= +J2(E = T, (3

and wcalrcadyknow how 1o solve thisone-dimensional equation

Let (x |, x,) bea pointof our level set, where x; > 0 (Fig. 96). Makiag use
of (3), we look for asolution ¢ ofequation (]) satisfying the initial condition
P(to) = x4, 9 (tg) = x3, obtaining

B _ eu) dﬁ
), AESTE @

fert near t;. We now sbserve that theintegial

T=r i
2 a\/i(é'zm)

converges, since U’(a) # 0, U'(§) # 0. Thetefore (4) defines a cootinvous
function ¢ on some interval ¢, € ¢ € {; with @(l,) = a, ¢(1;) = é. Thus
function satisfies Newton’s cquation cverywhere (Fig 97).

The interval (¢, t,) is of lengith T/2. We now extcnd @ onto the next
interval of length 72 by using symmcuy soasidcrations: @(¢; + 1) =
p(t; — 1), 0 € v € T/2, further extending ¢ by petiodicity: (¢t + T) =

¢(¢). The resulting lunciion, defined on the wholeline, sausfics Newton’s
equation everywhere, and moreover ¢(tg) = x,, ¢(lg) = x5 Thuswe have
constructed a solution of the system (2) satisfy)ng the initzal sondition
(xy, x3), which turns out to be periodic with p¢tiod 7. The correspondiag
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Fig. 98 Decompaositien of a critical level curve of the en®BY into phase carver

closed phase curve is just the part of the set of level £lying over the interval
a2 € x < 4. This curve is diflcomorphic o a citcle, like every clased phase
curve (see Sec. 10).

The case where the interval extends 10 infinity (in one direction or the
other) is simpler than the case just considered, and 8 left as an exercise. |}

12.8. Critical level curves. The structure of critical level curves can be
more compslicated. Note that such cuives contain fixed points (x,, x;)
(where U'(x,) = 0. x, = 0), each of which ts itself a phase curve. If
U{x) < E everywhere on the interval a € x € b, exceptfor Ua) = U($)
= £, and if boih end points are ciitical points, so that U'(a) = U'(s) = 0,
then both open arcs

x= £JHE-O(x)), a<x <b

(Fig. 98a) are phase cuerves. The time taken by the phase point to nnaverse
such anarcisinfinite (Theorem 12.5 + uniQueness).
IfU(a) = 0, U’(8) # 0 (Fig. 98b), the equation

$x3 + U(x,) = £, a<x, =b

determines a nonclosed phase cuive. Finally,if U’(e) # 0, U*'(s) # O (Fig.
98c), then the part of the critical level set lying over the intervale € x € &
15a closed phase cuive, just as in the case of a noncintical level E.

12.9. Example, The above considerations will now be applied 1o the pen-
dulum equation

¥ = —sinx,

with petentialenergy U{x) = —eos x (Fig. 99) and critical poins x; = £z,
k=0, £1,... The closed phase curves rescmble cllipses near the poimt
x, =0, x; =0, and these curves eorrespond 1o small asallations of the
pendulum. The peiiod 7 of the oscillauons depends only slighiiy on the
amplitude, as long as the amplitude is small. For larger values of theenagy



Sec. 12 Conscrva tive Systems 91
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Fig. 99 Phase curves of the pendulum equation £ = —uin x

Fig. 100 Cylindrical phase spacc of the peadulum.

constant, we get larger closed curves, until the energy reaches a cntcal
value equal to the potenlial energy of the pendulum in the upside-down
position. The period of the oscillations then increases (sirvce the ime of
motion along thc scparatriecs making up the critical level set is infinite).

For larger values of the eneigy we get nonclosed curves on which x; does
not change sign, i.e., the pendulum rotates rather than oscillates, achieving
the largest value of its velocity at the lower position and the emallest value
at the upper position. Note that values of x,; differing by 2tx connespond 10
identical positions of the pendulum. Therefore it is natural tochoose-the
cylinder {x, mod 2n, x,) rather than the plane (x,, x,) as the phase space of
the pendulum (Fig. 100).

Taking the picture already drawn in the plane and wrapping it around
the cylinder, we get the phase cutves of the pendulum on the surface of the
cylinder. They are all closed smooth cutves, except for two fixed points

A, B (the lower and upper equilibrium positions) and two separainices
C,D.

Problen: }. Braw graphs of the functions x, (£) arwd x;{¢) #or the solutice with enceBy mear
but semewhas belaw the critical energy in the uppey posilian,
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Fig. 101 'The argle of deviation of the pendulum and the velority of it emtscm for
amplitudes near .

Aits, Sce Fig. 101. The {unctions £, (¢) aind 23(¢) can be exptetaed i n terms of sn and en (the
clliptic sinc and elliptic cosine), As £ approaches tbe lower critical value, the oanlisigns
of the pepdulum become apmoximately h armonic, with sn and cn going into un and ons.

Prvadlen 2. At what rate dacs the period of the oacillatiom of a pendulum approach infiaily,
as the energy £ approachea the upper critical value E, ?

Ang, At a logarithmic rate (~ Cln (£, — E)).
Hint See formula (4).

12.10. Small perturbations of a conservative system. Haviag in-
vestigated the motions of a conservativesysiem, we cannow wse the theovem
on diff creatiability with respect to a parameter (Sec. 9.3) 16 siudy neighbos-
ing systems ol a general lorm. Indoing so, we encounter a qualiatively new
phenomenon of greaw imponance in the applications, i.e., eulo-esallotions
or self-exciled oscillations.

Problem 1. Invé&stigate the phase curves aof the system

["'. = x; + d:(xl) ‘z)r
Ep= —x + tfy(2, 1),

differing only slightly from the system of egua tioas {or srnall oscillatioas of a peodalwa.

e€l, =1 +x§ < R?

Solution. For e = 0 weget the equations forsmall aacillations of a pendulam. By the thrarem
on differenia bility with cespect to a paramelter, ih solution (on a Amile Lime intexval)
differs by a correction of order s [rom the harmonic oscillavaons

X' = ri (e 2] (t - tQJ, X3 = -1 Si" [t _— lg).

provided ¢ is small. Hence, for sufficiently small & = &{ 7). Lhe phase Point ssays aear the
circlc of radius 4 during the intecval T.

Unlike the conservative case (¢ = 0), the phase curveis 1ol necestasily dosed foe e # 0,
and it may have the form of a spiral (Fig 102), with a small dista nce (of cxder ¢] between
weighbering (uras. To determine whether the phase curve approaches the arigia of .
ordinales or recedes i:om Lhe origin. we consid er the incrament of thcenetgy £ = §x7 + §=3
after one circuit around the origin. YWe are paticulasly intersied in the sgn of thn
increment, which is pasitive on the expandirg (unwindiog) spizal, "Bauve on 1be com-
tracting (tightening) spiral, and 2,0 on the limitl cycle indf. \We oow dedmec an ap-
proximai¢ expression. namely formula (6), for the encigy increaent.

The decivative of the e¢nergy in the direction of our vectlor field is casly evaluased and
is proportional loe:

£("'U x3) = &{x . fL + x2./3)- (9)
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Fig. 102 Phase curves of the van der Pol equaion and the mcremant of owvgy afker
one circuil around the origin.

To calculate the energy increment alter one drcuit, this funciion shoadd be jasegrated
along a wrn of the phase trajeciory, dut the lauver i unfoi tunaldy not keown But, a3
altcady explaincd, the tuen is close 10 a circle, and hence. 10 within an acowracy of O(?),
the integral can be taken along the circle S of radius A:

Ae oﬁ E(Acos & —Asin ) & + 0(e2).

Substiuting (5) into this farmula, we gett
AE = eF(A) + O(sd) (6)

where

F(A) =§f:dx: - /i dn

(the integral s taken along a circle of radius A wraversed in the counterchekwoe direx
tion).

Once having calculaed the funclion F(A), we can investiga e the behavier of the phase
curves Il the funcuon F is pasitive, the enagy increment 3 £ afier coe ancot & abo
posiuve (for srnall positive e). {n this case, the phase curie & an unwindiag sprak aod the
systan execules increasing ascillations. On the other hand, f F <0, dhem AE < 0 and
the phase piral s contracting. In the lawer case, the escillations damp out

It can happen that the function F(A4) changes sign (Fig. 102). Supymee Fi4) has a
simpe 3ero Ag. Then [>r small 8 the equauon

AE(XL, X)) = 0

issatidied by u closed cune [ in the phase planc, ot ar the circle of radias 4, (this Gilows
from the implicit function thesrem). Obviously £ s a closed phase cwve, i.e., a Emit
cycle of our systemn.

The sign of the derivative

dF
£ =74 e e

delermines whether neighboring phase curves wind onto the kmit ¢ycle ov unrwind from
it. The cycle is unsiable il eFf* > 0 and stab'e if eFf* < 0. 1n lacs, in the first e the eagy
increase afler one circuit is greater than zero if the phase cuzve hies cnande the cy<ie a od
less than aecoi it lies inside the ¢ycle: hence the phase curve always moves away fram sbhe

t Here we use the factthal dxy = z; &, dr; = —x1, dtalong S.
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cytle. However, in the second cose, the phase curves approach the eycic both fram 1he
insjde and from the vunide, a8 in Fig, 102.

Exampts 1. Consider the equation
Ym —x 4 et(l = 2%,

called the van dJer Pol eyuation. Evaluating the integral (6) with f, = 0,
Sz = x2(1 = x1), we ger

F(A) = n(m _’i;.).

This function hasa simple zero 4y = 2 (Fig. 102), andis positive for smaller
A and negativelor larger A. Therelore for small € the vander Pol equation
has a stable limit cycle, close to thecircle x? 4+ %2 = 4 in the phase plane.

Suppose we compare the motion of the original coiservative system
(s = 0) with what happensiorz # @. In the corservative sysiem, there can
occur oscillations of arbitrary amplitude (all the phase curves are closed),
with the amplitude determined ouly by the initial conditions. [a the non-
conservative system (¢ # 0), qualitatively different phenomena are pos-
sible, lor example, a stable limit cycle. In this case, very diffcrent initial eon-
diuons lead © the establishment of a periodic asciliation of onc and the same

completely determined amplitude The resulung sieady-state regime is
said to be auto-oxiflatory.

*Problam 2. Investigate the auto escillatory motions of a pend dum with somall friction
aubject 1o the actinn of 3 constant turgue AT:
Z +ainxy + ex = MM

Hem. This problem i analyzed in detail for arbiteacy x and Afin A. A, Aadrarov, A. A.
Vitt, and S. E. Khaikin, Therr of Qscillations (in Rusmman), Moscow (1959}, (hap. 7.
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Iincar systema are almost the only large class ol differential equations for
which there exisis a definitive theory, 'f'his theory is essentially a branch of
lincar algebra, and allows us to solve all autonomous linear equaitions.

‘T'he theory of lincar equations is also use(ul as a Airst approximation lo
the study ol'nonlinear problems. IFor example, itallows us to investigate the
stabiluty of equilibrium positions and the topological rlassifieation ol singu-
lar points of vector fields in the nondegencrate cases.

13. Linear Problems

We begin by considering iwo examples of situations i n which lincar equa-
tions arise.

13.1. Example: Linearization. Consider 1he differential equation deter
mined by a vector fieldin phase space. We already know that the ficld has a
sim|ile structure in a neighborhood of a nonsingular point (v # 0). i.c,itis
rectified by adiffeomorphism. We now consider thestructuce of the feldina
neighborhood of a singular point, namely a point where the field vecior
vanishes. Such a poinl xg is a stationary point of our equatioa. If the equa-
tion describes some physical process, then x, 5 a siationary staie of the pro-
cess, namely uts “‘equilibrium position.” Therelore studyinga neighbochood
ofthe singular point means studying how the process evolves when its imnial
conditions deviate slightly from their equilibrium values (comider, for ¢ =
ample, the upper and lower equilibrium positions of the pendulum).

To investigate the vector field in a neighborhood of a point x;, where the
field vector vanishes, it is natural to make a Taylor series expansion of the
field in the given neighborhood. ‘The first team of the Taylot serics is linear,
and the process of dropping the remaining terms s called (ieesrization. The
linearized vecior ficld can be regarded as an example of a vecior ield with a
singular point x . On the other hand, itmight b cexpecied thatthe behavior
of the linearized equation is close 10 that of the original equatioa (since
small quantities of higher order are dropped in making the lincarization).
Of course, the problem of the relation between the solutions of the osiginali
equation and those ol the linearized equation requires special investigation.
This investigation is based on a detailed analysis of the lincar equation, a
topic which will be our first concern.

Problern £. Shaw thal (incanzetion 1s an incaliant operanon, ic., ar oPvation abach i i oadgemdea
of the coordimate SWtem.

Mare eractly, suppose the field v in thedomain U isgiven in the systan of camdoutes

xr by camponenis :;(x), and lel the singovlar ponl have coordinales x, = 0. so sha
Ylx) = 0,1 = 1, ..., n. Then the anginal equatien 1akes the leem ol a syseam

fo=g(x), =1, .. ,n.
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The linearized sguntion it now debinid as the ¢rjuation

9
‘I*’.z‘ma:h i - .n---rm gy, © g%..o.
Coslder the 1angent veetor & ¢ Tl with components &, F = |, ... . & Then the linear
cduation cann be writlen in the fisrm
d = A,

where A is the lincar mapoing A: TU g — Ty specified by the matnx (a). (¢t 5 oow
asscrt ed that the mapping A does not depend on the Ditem of coordhasies 1, figworg sa s defimbina

Prodfeme 2, Lancarive the penduium eqQuation £ = —sin ¥ near the equilibrium position
¥y = hn, £y = 0.

13.2. Example:One-parameter groups of linear wransformations of
R". Another problem leading at once 10 lincar diflerenual equations is the
problern of describing one-parameter groups of linear ransformatiovs of
the lincar space R®.

First we note that r¢i5 natural la identify the tangeni space to the lisear space R*
at any point with the linear space iself. In facl, we identily Lhe element ¢ of the
wangent space TR, whose representative is thecurve 9; { —= R" ¢(0) = x,
with the vector

v = lim w—e(‘) “ iR
t+0 t
of the spacc R"itsell(the correspondence v —+ ¢ s onc-to-one).

This identification depends on the structure of the lincar space R* and
1s not preserved under diffeomorphisms. However, in the lincar problems
which will now concern us (for example, in the problem of one-parameter
groups of linear transformaltions), the structurc of the linear spaccin R” is
fixed onceand for all. Therefore we now make the idenstfcation 7R = R® anril
such lime as we reluru to norlinear probdlems.

Let {g‘, t € R} be a one-parameter group of linear ransiormations, and
consider the tajecory ¢: R — R"of a pointxg e R"

Problem 1. Prove thut o(l) is a snlution of the cquaation

x = Jx {1}
satisfring the inicial conditien o(0) = x, where . 4R* — R* & (he Eknrar opotor
(= an R-cndomorphism) defined by-the formula

4dx = ‘% '.og'x vx ¢ R".

Hikt, See Sec. 3.3.
Equation (1) is said te be {iear. Thus, 10 deseribe all one-parameter

groups of linear wransformations, w e need only investigate the solutions of
the linecar equation (|).
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We will see later that the correxpaundence between one-parameter groups
{g'} of lincar transformations and linear equationtolthe type (1) s one-to-
one. Thus every yperator 4! R" — R"spec:fies 2 one-parameter group {£'}.
Example §. Lot & = |, and let A e multiplication by e number & Then g* i 3o . 500
cXPamion,
froblem 2. Vind rhe velocity field of poinis of a n@d body rotaiing with angular vetacity
ut about an axis going thzough the vrigin.

13.3. Lincar equations. Let 4: R" — R" be a linear operator in the »
dimcnsional real space R".

Definition, By a {inear equation s meant an equation with phase space R*
determined by a velocity field v(x) = Ax:

X = Ax (IJ

The full descriplion of equation (1) is *‘a system of # homogeneous lincar
differentual cquations of the first order with constant real cocfhicients.”

Letx;,t m I,...,nbeafixcdsystemol (lincar) coordinates in R". Then
cquation (|) can Lbe written as a system of n equations

k, = Z ;% jy e =10,...,nm, (1°)
=1

where (ay) is the matrix of the apcrator Ain the given coordinate system.
This matrix is calied the matrtx of the spstem (7).
For 2 = | the solution of equation (1) satisfying the initial condition
#{0) = xg isgiven by the exponential
oA

p(t) = %o

It wrns out that the solution is still given by the samc lormula in the general
case, provided we explain whatis meant by the exponemial of a lincar oper
ator. We now turn our attention to this problem.

14. The Exponential of an Operator

The function ¢?, 4 € R can bedefined in either of two equivalent ways:
A2 43

eﬂ=E+A+Q_!+§+---1 (n
e = lim (s-»-’—') (2)
a— -

(where £ denotes unity).
Now let 4: R" = R" be a lincar operator. To define ¢!. we must first
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define the roneept of the limit ofa sequence of linear operaion.

14.1. The norm of an operator. Lct( -, *) bea scalar productin R, and
lct || » /{x. x) be the norm of the vector xe R®, i.c., the squareroot of
the scalar produrt of x with itselk

Defuntion, Ry the norm ofa linear operator 4: R* - R"is meant the number

/g
Al = sup I_!
az0 |‘|

Geometrically |4| is just the largest “expansion coefficien!’ of the transfor
mation A.

Preblem 1. Prove that 0 & (4| < oo.

Hint, |A| = sup |.4z|, the sphere is compact, and the luncuon |43] K contameoo
|l =2

Problem 2, Prove that
[Ad| = (2|4, |4+ 8l < 4l +18], 48| < |48l

where A, 3: R — R*arc kncar opetators and e R is a num bee,

Prabltm 3. 121 (a,5) be the malrix of the operatoe 4 in an octhanoninal basrx. Prove tha
A3 3,

max ; el € |47 < ‘Z; Jaul

Mint See G.E. Shilav, An Introdistzon to the Theowy of Lirenr Spawer (uamiaied by R. A,
Silverman), Dover, New Yark (1974), Sec. 34.

14.2. The metric space of operators. The set L of all linear operators
A: R" — Risitsella linear space over the field of real nurabess (by defini-
tien, (A + iB)x = Ax + 7 8x).

Problem 1. What is the dimeasion of the hincar space L?
Ans.n?,

fint. An aperatar i1s speafred by 115 martrix,

W e now dehne the distance between two operatoss as the notm of the

difference 4 — B:
p(A, B) = |4 - B| (3)
YHEOREM. TAe space of linear aperators with the meiric p iv acomplese metric spoce. 1

t By ameiric space is meant a pair cansisting of a set Af and a funcoon 2z M x W — R,
called the metr, such that

1)p(x.y) 30V x,y6 M p(x.y) =0 ifand cody ifx = »;

) p(xy) =p(r, ) VxyeM,;

3) pls,») € plx. 2) + P2, ) V¥ 5,0, 2 M.

Ascquence x, of pointsof ametricspace Af k@ lleda Cony soqurae fV ¢ > 03 ¥: p(x,, x))
<s Vet > N. A xquence xis said 10 comverge 10 apoint xifV e > 03 N:p(x, x,) < 6
Yi > N.Thespace A s sad (e be wmplste ifevery Gauchy sequence is convearg@t
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Pref. It follows from che definition (3) that p > 0if 4 ¢ B, p(A, A) = Q,
p(f, A) = a{A, B). The iriangle inequality

(A, C) &€ p(A, B) + p(B,C)
is an immediate consequence of the inequality |[X + Y] € 1X| + |Y] {See.
14,1, Problem 2) ifweset X = A = B,V = B — C. Thus pisa meuic, and

the space L equipped with gisa meuzicspace. The completenessof L 1s casily
proved (see below),

14.3. Proof of sompletenens. 12t A, be a Cauchy sequence, i e., suppose that fos cvery
£ > @, theee is an N{e) > @ such that p(4a, A,) < e ifm £ > N. Civen any = ¢ R*, form
the sequence of pointy &, RS, 8, = A3, Then x.is a3 Cauchy sequence n the spase R®
euipped with the Euclidean melsic p(a, y) = |8 — y|. In (act, by the defmnsisan of the
narm of an operalaor,

|ma — x| € (A, AN)Ix| € elx|

(or m & > N. Siace |zl is a fixed number {independent of m and &), it Eflows thatx, is a
Cauchy sequence, Thespace R is camplete, and hence the limit

y = l.ll'l B, q R-
{ =
exisis, Note that |8y — y| < e|a| for & > N(2), where N {¢) 5t he jame number ovdeped

ent of x as above, The paint ¥y dePtnds hneady on the pxnt = (the limit of 2 oM quals
the sum af the limits). This gives a Bnear operaror JI: R* — R*, Az =y, Ael Bus

P, 4) = |4 — A4 = ’.".’ol‘!ﬁill i
for & > N(s). Therelore
A = lim A,,
[ -]
and the space L & camplete.

Problean 1. Peove that a sequence of aperators 4, conveiges if and ordy i 1he sogaowce of
their matrices in a fixed basis converges. Use this Lo give anether proof of exnpletevemn.

14.4. Series. Let M be a real linear space, provided with a meuric g such
that the distance between two points of Af depends only on the difference
between the peints and

p(Ax,0) = [A|p(x,0), xeM, AeR.

Suppose also that M, 1aken with this metric, 15 a complete metric spase.
Then M is said to be a normed lincar space, and the function p(x, 0) is called
thenormol x and is denoted by |xl.

Example 1. Euclidean space M = R* with the meiric

piry) == ~¥l= Jix —y.x— vy}
Example 2, Thespace L of inear operatars /, 8:R* — R* with the memnc
p{4,8) = |4 — 8]
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‘The distance between clements A, 8 @ A will be denoted by |4 — 8],
Since the clements of Af can be added and multiplied by numbers and since
Cauchy sequences in M have litnits, the theory of series of Lhe form

A, + Ay + 7, AeM

is literally the vame as the theory ofnumerical series. The theory of series of
functions can also be carried over at onec to the case of functions with values
in M.

Problem 1. Prove the following two theorema:

WEIERSTRA' TRAT, If the seriss

Y/ @)

of functions fi: X — M t5s majorr z¢ed &y a convergent mumerical sevimt, i.¢., tf
i)
I/l < ap, a; < ¢, a,eR,
{= |

then the series (4) ts absolutely and uniformly convergent on X.

PIFFERENTIATION @ F sERIES. If the sertes (4) of functions f.: R — M is cauncygent
‘and if the series of derivatives

2 ¢
L ®)

15 uniformly convergent, then the series {4) can be differentiated tevm by term (2 is the
coordinrate on the fine R) :

d bl B 0 %
Ei‘glj“ - igl dt

tfint. The proof lor the case M = R isgiven in advanced calculus and can
be carnied over word lor word to the general case.

14.5. Defnition of the exponential¢*. Let A: R* -+ R" be a inca: oper
ater.

Definttion. By the exponential ¢* of the operator A ismeantthe lincar operator

A2 2 A
ed=E+A+_+..-= ,
2! I-OT!

where Eis the identity operator {Ex = x).

THEOREM. Gwen any A, the series ¢ is waformly convergent am avery set X =
{A: 4] € a},aeR
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Proaf. 1f14] € a the series ¢? is majorized by the numerical seties

| PR
+a+2—!+ v

which conveiges 1o ¢°. It follows from Weierstrass® test that the series ¢! s
uniforily convergent for 14| € a. )
Probtym I. Caleulate the matrix ¢! if the maitrix 4 is of the form

o1 0

10y VINAY 01\
o2 o) oo afs)

14.6. Example. Convider the set of all polynomials of degtee lss thansina
variable x with real cocflicients. This set has the natutal stucture ofa ical
lincar space, since polynomials can be added and multiplied by numbers.

Problem f, Find 1be ditnension of 1he 33ace ol all polynoimals of degree lem than &
Ans. n, for example, |, x, ¥, . ., x*-' is a baus.

We will denote the space of all polynomials of degtee tess than = by R®.+
The derivative of a polynomial p of degreeless than » isitsell a polynomial of
degree less than . This gives rise to the mapping

A:R* & R, Ap-_-%. (6)

Problem 2. Prove \hat 4 is a linear operator, and fuwd its kernel and image
Ans, Kee A = R!, Itn A = R*- ¢,

On the other hand, let /! (¢ € R} denote the opciator of shift by ¢, carmy -
ing the polynomial p(x) into p(x + 1).
FProblem 3. Prove \hat //': R* — R*® is a lincar opezatoe, and find its kermel a0d image.
Ans. Kere H' =0, [mm H* = R".

Finally we form the operalor '“.
THEOREM. {f A t5 the operater (§), then
et = I
Proof. This b just Taylor’s lormula for polynomials

tdp t2d¥
+ 1) = PX) g e

px 40 =P ¥ e
(familiar from calculus). J

t Thus we identify che space of polynomials, equipped with the basisiodicand m Protlan
1, with the isomei phic ¢coordinate space R",
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14.7, The exponential of s diagonal operator. Suppose the mairix of
the opcrator A is diagonal, with diagonal clements 4, ..., 1, Then it is
casy 10 scc that 1he matrix of the operator ¢ is also diagonal, with diagonal
clcments ey, . . ., e,

Defurition. An operator A: R® — R" i3 1aid 10 be diagonal if its matrix is
diagonal in somc basis. Such a basisis called an agendans.

Prodlem 1. Give an example of a nondiagon.| operator.

Problen 2, Prove that the cigenvalues of a diagonal operaior 4 are raal.

Peobiem 3. Prove that il all e eigenvalues of an Gprraior A: R — R? are real and datincy,
then A is diagonal.

Let A be a diagonal operator. Thene? &s most easely calenlated in an cigenbasts.
Example 1. Supoese the opeiator A has a matrix of the form
()
L
in a bask e,, @;. Since the eigeavalua 4, = 2,1, = 0are real a nd doaiseet, the optrator

A is diagonal with eigenbasis £, — e, + ¢;, [; = ¢, — €; The matrix of A in this bhads
is just

2 O)
(0 0/
Hence the mairix of the operaior ¢? in the cigenbases is
(5
0o /)
Thus the matrix of the opeiator ¢ s

Ifed 41 2 — |
A\ | :‘+I)

in theorigiial basis,

14.8. The exponential of a nilpotent operator.

Definition. An operator A: R* — R”" is zraid 10 be ri{potent if some power of 4
cquals 0.

Problem 1. Preve thar the operater with matrix
(o o)
0o 0
i nilpotent. More generally, prove that if all the elemenis of the matnx of an CPTator

on aad below the main diagonal are zero, then the operator s nilpowns

Problem 2. Prove thal the differentiation op&rasor di'dr in the space of all polyammiab of
degree less than nis nilpolent.
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If the opevator A is nifPolent, then the serees ¢* terminales, .¢., reducss to a fonile
s,

Prodlem 3. Cilculate ¢4 (t « R) where A: R® = R° is the operalor with mateix

LU 0
a
o
0 "0
(1 over the main diagovial and O elsewhere).

FHint. One way of sulving this problemy 8 to use ‘Taylor's formula for: polyvoroiak. “Ihe
differential operator df/dc haa a matrix of the indicaled Lype in some basis (which one ?).
For Eurther cetails, see Sec, 25.

14.9. Quasi-polynomials. Let A be afixed real number. Tlhen by a guasi-
polynomial with exponent 2 is meant a product of the form ¢"p(x) where pis a
polynomial. The degree of p is called the degree of the quasi-polynomial.

Prodtent /. Prove thal the sec of all quati-bolYnomnials with exporent 2 of degree bess than
r isa linear space. \Whal ia the dimenaion of this space?

Ars r: [or example, ¢2%, xe**.. ... 2= '¢** it a basis.

Remurk. There is a certain ambiguity implicit in the concept of a quas-
polynomial, just as in the case of a polynomial. A (quasi) polynomial can be
regarded as an exprestion made up of signs and letiers, i n which case the solu-
tion of the preceding problemis obvious @ nthe other hand, we can regard
a (quasi) polynomial as a function, i.e., as a mapping f: R — R Actwally
both concepts are equivalent (when the coellicients of the polynomials are
real or complex numberst).

Problem 2. Prove thal every funclion f: R — R which can de wrillen as a Quas -polyormis)

hasa unigie representalion as a quasi=polYnonial.

Hinl, We need onlY nole thal if ¢4=p{2) = 0, then the acctbeients of the polyoramial pix)
all vanish.

The r-dimcensional lincar space of quasi-polynomials of degree less than =
withexponent, will bedenoted by R

THEOREM. The differential eperator dfdx is a linear operator from R® 1o R® smchk (hat

PILILY N § L (7)
Jor every L € R, where H': R* — R" is the operador of skift by ¢, i.e., (H')(x) =
flx+ 8.

Proof. Proving first that the derivative and shift of a quasi-polyiomial of

t \We will soen consider (quaw-) polynonials with real cocfBaomis,
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degiec less than n is itsclf a quasi-polynomial of degree less than », we note
that

Ed' (#2p(x)) = e 'p(x) + p(x),
X

AU ply + 1) moetieMp(x 4+ o).

Morcover, the linearity ofboththe derivative and the shiftis appaient. Note
alsothatthe Taylor series ol a quasi-polynomial is ahsolutcly conveigent on
the whole real line (since the Taylor scrics of ¢** and p{x) aic absolutely con-
vergent). Comparing the Taylor series

fx + 1) = z‘f‘"'(‘),.

aap 2!

and the expansion

I
"A L} —[“,
»a "!

weget (7). |
Problem 3. Calculate the matiix of the apriator ' if the mawrix of A = of the foam

11,0
( A'l )

o
0 A

(A on 1he main diagenal, | aver the main diagonal, 0 clsewhere). For eramgle, calkculase

el 1)

Hint. The is precisely the form of the matrix of the differentiation operair in e sPace
of quasi-polYnomials (in which Wa:s?). For fuzier denails, see Sec. 23,

15. Properties of the Exponential

We new establisha number of properties oftheoperatore?: R* — R® Thoc
properties allow us to usc ¢* to solve linear diflerential cquations.

15.1. The group property, Let 4: R* — R*be alincar operator

THEOREM. The family of linear operators €4 R® —+ R", 1 € R is @ car paveometer
group of linear transformationsof R".

Proof. Since 1t isalready known thate'“ is a linear opetator, we need only
verify that

L1+

= ' 0
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and that e'* depends differentiably on ¢, Infact, we will show that
4,

d—‘f‘ = A4, (2)
as n jght be experied ofan exponential. To prove the group property (1), we
first mnltiply the scriesin powers of 4 lormally, obiaining

¢ 5
(F--HA +§A’ + -~)(E+;A +§A’+ )
=£+(:+:JA+( + i+ )A’
2 2

The coefficient of 4* in the product cquab {t + 5)*/&!, since formula (1)
holds in the case of numerical series (4 € R). The legitimacy ofthe term-by-
term mnltiplicationis proved in the same way as the lcgitimacy of the term-
by-term muliiplicatien ofabsolutely convergentnumerical series (the series
for ¢4 and &4 arc absolutely convergeny, since the series for ¢'1* and o
where 2 = |{A|arc convergent).

To prove (2), we differentiate the series for *° with respect o ¢ formally,
obtaining a series of derivatives:

® 4 'k
- .4 = 4 —A‘
A<D dt:t' 2
This series converges absolutely and uniformly in any domain |4f < ,
lel € 7, just like the original series. Hence the dezivative of the sum of the
series exists and equals the sum of the series of desivatives |

We can ako prove (1) by reducing the proof directly 10 1he numerical case, afeer faxt
proving the ‘ollowing

LumMA. Let pc Rz, ... . 2 Lde o polowmiol in the vanadles =, ..., » cith ewewpetie
cogfficients, and Ut Ay, ..., Av: R" — R® be linear operatnrs Them
| B{Ass .- s Aull < (A4l - - -\ |A&)-

Prosf. Animmediate consequence of Se¢. 14.1, Problem 2. 1
Proof of formule (1). Let S.(A) dewote the partial sum of 1he sesies for 42

S-(A) - .E-Oi_‘.r -

Then S» 5 a polYnomial in 4 with nonnczative coxfhoenis. We must show thae the
difference
An = S(tA)S.(sA) — S.((¢ + s} A)

conveges 0 0 as m — oo, Note that &, it a polynonml in 54 and 14 wirh ety
cogfficients In fact, the terms n the produc: series o (degree no bigher thanm m 4 aic all
obtained by multiplying the terms in the fictosr serxs of d<giee no higher thao m m A.
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Morcover, Sal({s + ¢)A} is a partial sum of the product series, 8nd henoe 3. » the sam
of all tertin i the product Sa{tA)S,(:A4) of defiree higher than a in A. But all the car®.
cientn of 0 produci of 3olynominls with nonneganve coefficients are arwwgtive

1t {allows frn the lenma that

|8aftA s4)| € BafltAl, hAd]).

l.et £ and & droite the nennegative numbers j24| and 34|, 30 that
Aglr, g) = Sa(r)Salo) — Salr + o).

Since ¢'¢* = ¢**2, the right.hand side apprasches @ a3 & — . Thus
_Iu:i daltd, sA) = 0,

and loemula (1) is proved. 1

Probleni 1, |4 it teye thated«® o o4g®,

Ans, No,

Problem 2, Prave thatdet ¢! £ 0,

Hint, =4 w (¢e4) -2,

Probdlem 3. Prove that il A is an antisyminctric operator in Euclidean spase, then the

apcrator ¢* i arthoganal.

15.2. The basic theorem of the theory of linear equations with com-
stant coefficients. Theorem 15.1 immedately implies a formula for tie
solution of the diflercnual equation

x = Ax, x e R". {3)
THEOREM. T'Ae solution of equation (3) satisfying the initial condition ¢(0) = x5
plt) = e'x,, teR (4)
Proof. According tothe dilferentiation formula (2),

‘z_‘:’ — A'xo = Ap(l),

so that @ is asolution. Moreover¢® = £, 9(0) = x5. This prove the theo-
rem, since by theuniqueness theorem every solution coincides with (4) m is

domain of dehmuon. [f

15.3. The general form of one-parameter gronps oflinear transfor-
mations ofthespaceR’.

THE®REM, Lef g': R" — R be a one-parameter group of linear transformations.
Thew there extsts a linear operator A: R* — R suck that g = .

Proof. Let
_ dg! - F

= Itm
d’ t=0 1-0 ¢
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Wc have already proved (see Sec. 3.2and Problem |, p. 96) that the trajec-
tory p{t) = g'x, isa solution of equation {3) satislying the initial sondition
o(0) m Xg. Bul g'%g = ¢'“x, because of (4). §

I'he operator A is called the infinilesimal gemevator of the group {£'},
Frodlem 1. Prove that the infinitesimn| gencratoe is wnicjuely determined by Lhe groop

Remark. Thus therc is a one-to-one correspaondence between lincar differ
cntial equations of the form (3) and their phase Aows{g‘}, where cach phase
Aow consists of lincar diffco morphisms.

15.4. Another definition of the exponential,
THREOREN. {f A: R" — R"15.alinear aperator, then

eA = lIm (;: + i)'. (5)

M- Ly

Progf,. Consider the difference

A ~ o< l L’.
(e+2) = v (2 - “C\a
( +m) tg:O(k! ';;)

where the series converges since the scries for ¢ converges and

(-4

is a polynomial. The coefficients in the right-hand side are noancgative
since

;m(m -1 (m=k+ 1)1
il m-m: -m kt

Therefore, setting |2l = a, we get

() s S (em et = (1 +2)"

whcre the expression on the right approaches zeroasm — . |

15.5. Example: Euler’s formula for ¢*. [ <t C be¢ the complex fine. We
can regard C as the real planc R? and muliiplication by a eompicx number
z as a linear operator A4: R? = R% The operator A is then a rotation
threugh the angle arg z together with a |z{-fold cxpansion.

Probiem L. Find the matiix of multiplicatiess by z = a + pin the bass e; = ), e; =L

v -
ARrs. ( tI).
o N
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Fig. 103 The complex number | + (2/m).

We now lind 4. According to [ormula (5), we must first form the oper
ator £ + (Afm) corresponding to multiplication by | + (z/m), i.c.,

rotation through the angle arg{l + (z/m)) together with expansion by a
lactor of |1 + (zfm)| (Fig. 108).

Problem 2. Prove that

(1 5)m il o(5)

=1 + R+ o(l—) [6]

m m

| + 2
m

as i — €0.

The operator (K 4 (A4fm))™ is a rolation through the angle =
arg(! + (2/m)) together with an expansion by a factor of [l + (z/m)|"
Using (6), we find that the angle of rotation and the eocflicient of ex-
pansion have the imiting values

lim marg(l +i)= lm z,
m

LY ot (7)
[1try li 4+ 2] =t
m

Mmoo

THEOREM. Let z = u + 1vbe a complex number and A: R? — R? the opovalor of
multiplication by z. Then e ts the operator of multiplication by the somplex member
¢“(cos v + isiny).

Progf. An immediate consequence of (7). |
Depinition. The complex number

e“(cosv + 1siny) = hm (1 + z—)
m

™M — O

is called the exponential of the complex number z = a1 + iz aod is denowed by

bJ

e’ = &(cosv + i sin 7). (8)
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Remark. [f we idenuifly the complex number z with the operation of mul-
uplication by z, the definitien reduces 10 a theorem, since the exponential
of an operator hasaiready been defined.

Moblem 3, Lind ¢2, ¢!, ¢ e~ 037,

Prodlemn 4. Prove thut ¢1*% w it where gy, 230 C.

Remark. Since the exponenual is also defined by a series, we have

2

¢’-l+z+,‘z)—1+"‘. zeC (9

(the series is absolutrly and uniformly convergent in every disk |z2| € a).

Prodlem 5. Comprring thisserie: with Euler's formula (8), deduee the Taybos series of sin &
nd cos .

Remark. Conversely, froma knowledge ofthe Taylor series of sinp, cos 2, and
¢', we can prove lormula (8), taking (9) asthe definition of ¢'.

15.6. Euler lines. Combining lormulas (4) and (5), we get a method for ap-
proximate solution of the differential equation (3), known as the method of
Fuler tines,

Clonsider the differential equation with lincarphase space R" determined
by a vector licld v. To find the solution ¢ of the equation X = vix), x€ R"
satisfying the iniual condition x5, we proceed as follows (Fig. 104). The
velacity at the point xgis known and is just v(xg). Suppose we leave x5 and
move with velocity v(xg) for a ume inteival Af = t/ N. Thenwecarriveat the
point x, = xXg + v(xg)At. We then move with velocity via,) for another
ume interval Af, and 50 on:

X, 4 = X+ vix Al k=01..., N1

Thelast poinix, will be deneted by X (¢). Note that thegraph representing
the motion with piecewise-constant velocity is a polygonal curve (line) ¢ on-

@)

T 2t i
N N N 2L

Fg. 184 An Eulerline.
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sisting of N scgmenus in the extended phase space R x R". This polygonal
curve i5 known as an Euler fine. | ia nalural 10 expect that as N — @ the
sequence of Euler lines will converge to an integral curve, 30 that for large
N the last point X, (t) will be cloae to the value of the solution ¢ at time ¢
satisfying the initial condition 9(0) = x,.

THEOREM. {“ur the linear equation {3),

lim Xy(r) = (). (10)

N a0

Proof. I lollows from the construction of the Euler line for v'x) = A= that

LA

Therejore

lim Xx(2) = ¢'*x,,

N =
by (5), which implies (10), by (4). @

Problers {. Prove that rot only does the end point of the Euler line zppwmach o{¢l, buz
also the whole sequence of piecewise-linear funciions wa: { — R®, with the Eader Bnes as
their graphs, convel ge: uniformly to the solution » on the internal |Q, ¢].

Remark. In the general case (where the vector field v depends on x mee-
lirearly), the Euler line can also be written in the form

tA\"
Xy = (E + W) X0,

where A is the nonlinear operator carrying the point xinto tbhe point wv'x)_
We shall sec later (Sec. 31.9) 1hat even in this case the sequence of Euler
lines converges to a solution, at least lor sufficiently small {¢|. Thus the ex-
pressien (4), in which the exponeniial is defined by formula (3), gives 1be
solution of all diflerential equations quite generally.{

The Eulerian theory of the exponenual (which is essentially the came in
all i1s variants), from the definition of the number ¢ and tbe Euler and
Taylor lormulas for ¢ up 10 jormula (4) for 1he solution of linear equations
and the method of Euler lines, has many other applicaliore gaing deyond
the scopeof this course.

1t In praciice, sthe use of Euler lings isnot a convenica’. way ol solving diffesen 133 | €gua sionys
approximately, snce 10 ebtain high accu:acy we must choox a very snali value of the
“step" At. More slten one uses varous refinenrents of the Eu Jer method, in windh the -
gra! cuneis approxmated not by a line segment, but ratber by an asrc of a parabols of some
degree or other. The most firquently used metbods are those of Adamc, SSewer, and
Runge, discussed in books en appioximate compuamiions.
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16. The Determinant of the Exponential

Suppose the oprratar Aisspecified by its matrax, Then lengihy calculations
lay be required 1o find the matrix of 1he operator ¢4. However, a3 we will
1001 sce, the detertminant of the matrix of ¢ can be calculaied very casily,

16.1. The determinant of an operator.

Definttion. By the determinant of a linear sperator A: R* —+ R", dcnoted by des 4,
is incant the determinant of the matrixof 4inanybasis e, .. . e,.

The determinant of the matrix of the operator A does not depend on the
basis. In fact, if (4) isthe matrix of theopcrator 4 in the basss e, . . ., e,
then the matrix of 4 in another basis is of the lorm (8)(A)(87"). But chearly
det (BHANB™!) m der (A).

The determinant of @ matrix is the oriented oolume of the pasralielepipedt whose

edpes are given By the colamni of the matrix,
For example, lorn = 2 (Fig. 105) the determinant

X, X3

DI 5
18 the area of the parallelogram spanned by the veciors §; = (x,,.»,) and
$, = (x2,7,;), taken with the plussign il the ordered pairof vecioe (£, §5)
specifies the same orientation of R* as the pair of basis vectoss (e, €,) and

with the minus sign otherwise.
The ith column in the matrix of the operator 4 in the basis ey, . . . , € 13

82‘

o
5 &

Fig. 103 The derevminam of 2 matrix eQuals the 0/icied area of the parafkhugram
spaonet by the columns of the matx.

t The Laratlelepped with edges &, , . . . , &a ¢ R® is the subset of R* eomsisTiag of all poones of
theormy$, + -+ 28,08 € Li=1,2,....,aFne =2 the garalkbpmgd s
called a pParellelogram. Starting fom any definition of volwne, we ¢an cas@y pxOove the
ltaliciaed assertion. Otherwize the axertion can be taken as the defoshios of (Gie vohaoe ol 2

pacallelepiped.



112 Chap. 3 Lincar Syaterms

made up of the components of the image A& of the rith basis vector @,. Hence
the determinemt of the operator A s the oriented volume of the image of tAr uart cube {the
parallelepiped with edges €, . . ., @) under the mapping A.

Problera 1. Laa M be a parallelepiped with hnearly independent edges. Prove
that the ratio of the (orienied) volume of the image AT of the pacalicle piped
under the mapping 4 to the (oriented) volume of I is independent of IT and
cquals det A.

Remark. The reader lamiliar with the theory of measurement of voluraes in
R" will notc that I1can be replaced by any other hgure with volume.

Thus the determinant of an operator A is the coafficient of expannoa of esieated
volume (i the sense that the oriented volume of any figure is exponded by a factorof der A
under application of A Geomeirically, it is{ar firom obvious that the volume
cxpansion is the same for all figures (evenin the planar case), since a lincar
transfortnation candrastically change the shape ofa figure.

16.2, The trace of an operator, liy the (raceofa matrix 4 = (a,;), denoted
by Tr 4,1 is rucant the sum of its diagonal clements

n
TrA — z a“.
1=

The 1race of the mairix of an operator 4 : R® — R*docs not depend on the
basis, but only on the operator itself.

Prodlem 1. Prove 1hat the trace of a maifix equals the sum of al) & of in Cgrovabex, while
the determinant equak: the product of the eigenvalues.

Hint. Apply the ‘onnuia
(A=x) o (A—x) =& — (g + -+ ai® ' 4 o () -

te the pelYnomial
dec(A — GiB) = (~2)" + (- A~ B au + o
Since the eigenvalues are independent of the basis, we have the following

Definition. By the trace of ar operator 4 ix meant the trace of its malrix in any
{and hence in every) basis,

16.3. Relalion between the determinant and the trace.
THEOREM. // 4: R" - R" 5 a lirear operator and & a real number, then
det{E + ¢A) = 1 + ¢ Te 4 + O{eY)

asg = 0.

t Thetrace of A issometimes denoted by Sp £ {(fiom 1he German ward TSpar™)-
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First pragf. 'T'he determinant of the operator £ + ¢4 equals the product of
the cigenvalues of the operator. but the cigenvalues of £ + ¢4 (with due
rcgard for multiplitity) equal | + c¢d;, where the 1, are the cigcnvalues of
A. It follows that

det (£ + uA}-‘i: (I +cd) =t +c3 4+ 0h). B

Second proaf, Clearly o(s) = det(£ + £4) is a polynooval in v such aal ¢[0) = ). We
tnust show that ¥’(0) =« Tr A. Dencling the elements of the matrin £ + ¢4 by g, we
have

de s da{ dx,

?c_..o J.Eljxj S-#’

where A is the deterininant of £ + eA = (r,;). By definition, Lhe pasuml devivalive
0AIdx,)x cuvals

o
a‘hodct (E + he,)),

where {¢;;) i3 ihe tnairix whome only nonzero element is a 1 in the ith row a:d b column.

By
| ir ¢4/,
det (£ 4+ Aery) =I L4k F T,
and hence
38 _{l i 1#J,
dmgle L1 if i=J
It follows tha
dw - L TrA 1

3-0-‘§07‘_ i=\

Incidenially, we have again proved that the trace is independent of the
basis.

COROLLARY. Suppose small changes are made in the edges of g pavalldetiped. Then
the main conlribution lo the change ir volume of the parallelepiped is due Lo the change
of eack edge in it own direction, changes in the divection of the ather edpes making omly
a second-erder contributionto the change in volume

%

For example, the arca of 1he parallelogiram shown in Fig 106, which =
close to being a square, differs from the area of the shaded reciaagle only by
infinitesimals of 1he second ordet.

This corollary can also be deduced from elementary geomeincal coasd-
crations, leading 10 a purely geemeuwic proof of the abeve theorem.

16.4. The determinant of the operator 2°.

THE®REM. For any linear operator A: R" —- R",

dete® = e7° 4,
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Al DONONNNNN
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Eig. 106 Approxirnate detenmination of the area of a pazallel ograin which i clase 10
bemmg a sQuare,

Proof. Accordingto the second definition of the exponential,

det ! = det lim (E +§) = lim dcl(E +£) ,

M- m o

since the determinant of a matrix is a poly'nomial (and hence continuowus) in
its elements. Moreover, by Theorem 16.3,

det (5 +g)° B [dcl (E + g)]" - [1 +1Ted 4 o('—:,)]-,- .

[tonly remaias Lo note that

. a t\ )"
] 1+ 2+ = ¢
,,:":,[ - 0(,;)]

orany e € R, in particular fora = Tr 4. ||
COROLLARY | . Thegperator ¢? is nonsirgular.
COR®LLARY 2. The operotor ¢ preserves the ovientation of R* (i.e., det* > 0).

coroLLARY 3 (Liouville’s formmula). The t-advarce moppime s' of the bmeay
equation

x = Ax, =xeR" (1)
multiplies the volume of onty figure by the factor ', whoea = Tr A.

Proaf. Note thal

detg’ =dete =e™ = ¢ Ted

In particular, this implies
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) A<0 'Y/ Ftﬂ, & 'Ly, Y
R/ AN = T
by o't
— l -

Vig. 107  Behavivr of area under (ranslorsnagors of the phasc flow of e pendubam

equation with coefhcient of (nction - 4.

COROLLARY 4. If the trace of A equals O, then the phase flow of eduation (1) Feore
volume, i.e, g carries every parallelepiped into a paralielepiped of cqual ppl eme.

Proof. Mcrely note thate® = 1. |
Example I. Consider the equation
Xm —x <4 ki’

ofa pendulum with coefficient of [“iction —&, equivalent to the system

£ = x,,
X, = —x; + kx»

with matrix

0 1
(-1 ¢)
(Fig. 107). The trace of this matrix cquals £. Ler {g'} be the phase flow
defined by the abeve system. Then if £ < O the transformadon £ Ganis
every domain of the phase plane into a domain d smaller area. On the other
hand, in a system with negative friction (¢ > @), the arca of the domain
g'U.t > @islarger than thatof U. Finally,ilthereis no frichon (£ = 0), the

phase flow preserves area. This is hardly suiprising, since in this last case,
as we know from Sec. 6.6, g' isa rotation through the angle ¢

Problem 1. Supposc the real pars of all the cigenvalues of A ate negative. Show that the
tramaformations £° of the pt:age Aow of equatior (1) (hen decicase volume (¢ > 0).

Problem 2. Prove that the ¢igenvalues of 1he operator ¢4 equal 't rvbac the &; are the
cigenvalues of e optiator 4. VUse this te prove Thicotemy 16.4.

17. The Case of Distinct Real Eigenvalaes

In practical problems involving differential equations, the matrix of the
operator A is givenin seme basis and we must explicitly calculate the marx
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of'the operatar ¢4 in the same basis, We begin by solving this problem in the
particularly simple case where A4 has distincl real eigenvaluea,

17.1. Diagonal operators. { onsider the lincar diflercntial equation
Xk = Ax, xeR" (1)

where 4: R" «» R"is a diagonal operator. The matrix of the operaior 4 is of
the form

A 0
0 A

in its eigenbasis,t where the A; are the cigenvalues of A. The matrix of the
operator ¢ has the form

P L ()
0 ‘ ehnr
in the same basiz Thus the solution ¢ of equation (1) satisfying the initial
condition ¢(®) = (x,,. . . ., x0) has componenis
@, = & x . k=1,...,n

tn this basis,

If the » eigenvectors of the operator 4 arc real and distiscy, then 4
diagonal (R" decomposes into a direct sum of one-dimensional subspaces
invariant under A). The procedure for solving (1) in this case goes as
tollows:

L) Form the characteristic (or secular) equation
det (4 — AE) = 0

2) Find thcroots 24, . . ., /4, of this equation (the 4;arc asumed 1o be1cal
and distinct) ;
3) Find the eigenvectois &,, . . ., &,satisfving the lincarequanons

A& = 4l G# 0, A=1....m
4) Expand theinitial condution with respect 10 the cigenvectors:
Xy = J:EI Gl

t We fir;t Eo over to an cigeabasis if the matrix of the operatoe . i aaqgz0y gneen i an-
other basis,
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3) Write the apswer
L]
@ll) = a.£| C,M'e,.
In particular, we have the following

COROLLARY. Let A be a diagonal operator. Then the elements of the matrix o**
(t € R) tnany dasis are linear combinations of the exponentials & Eruheve the X, are
the etgenvalves of the mairix A.

17.2. Example. Consider the pendulum with faiction

x‘l - X,
i’z = —X, — kx;.

The matrix of the operator A isthen

(-1 -0)

-1 =k )

so that

Trad = —4& detd = 1.

The corresponding characteristic equation
AP+ k141 =0

has distinct real roots if its discriminant & positive,ie., if jA| > 2. Thus the
operator 4 is diagonal if the coefficient of friction 4 & sufficiently laige (in

absolute value).
Now supposc & > 2. Then both roots 4,, 4, are negative, and ithe equa-

tion takes the form

{y’,zﬂ.,_y,, AL <0,
P2 = A3y A, < 0

in the eigenbasis. Therefore, as in Sec. 4, we get the sclution

n(t) = ¢ »,00),
y2(t) = %' »(0),

and the phase curves havea nodcasin Fig 108. As¢t — + op all the solutions
approach 0,and almost all the integral cuives become tangent to the 5, -axis
if12;] > {21| (2 then approaches @ faster than_y (). The pictuie in the plane
{x1, xz) is obtained from thatin the plane(y,, »,) by making a linear 1ans
formatiea.
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\[

Fig. 108 Phase curves of the pendulum equation with sirong fiiciioa m the cgenbass.

! H o
N
.

I\

Fig. 109 Phase curves of the pendulum cquation with sizong friciion in the el bagic

For example, suppose £ = 10/3,s0 thati, = — (3,3, = —3. To find
the eigenvecier £,, we use the condition x; = —3x,, ebiaining &, =
e, —- 3e,. Similarly, we get &; = e, — 3e;. Since [,| < |4,], the phase
curves have the form shown in Fig. 109. Studying Fig. 109, we come to the
lollowing remarkable conclusien : If the coefhcient of friction £ ssufficiently
large (¢ > 2), the pendulum does not execute damped osollatious, but
rather goes directly into its equilibrium position; in lact, its vefoctty x,
changes sign no more than once.

Probdlem {. Find 1he motions of Lthe pendulum ¢orresponding 1o the phase caves 1. 11, and
IIlin Fig 109. Draw o 1ypical graph of x{¢).

Problewt 2, lavestizaie the metion of the inveried pendulum with fricison:
X =X — k.
17.3. The discrete case. All that has been said absut the exponential ¢4

with a continuousargument ¢ applies equally well 1o the expomential 4" with
the discrete argument «. Ia particular, if 4is a diagonal sperator, 4° is most
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colwveniently calculiied by going over to a diagonal basis,

Prodleni £, The Fibanecer seijuence

oL L23%s 13, ..,

is detuiedd by the conditlons

o 0, ap =l Ny ™ Epuy ¥ gy f a3l

Find in ex plicit forinula for xu. Prove that 3, grows like a Bcomeiric progresmon, and hiod

em limax,

Hint, Note that the vector §, = (5, 5, ) can be expressed linearly in terms of £, _,

fo=00), Gmtt A=) ).

Therelore 2, i the Bt companent of the vecior A*-2§,.

ARs. @ < ln i%t—l, Zo -‘;!H? —~ A3), where &, , = L K the cgrovalucol 4.

Coniment, The :ame argument reduces the nud y of any recurrent sequence of wdey ¢, defianed
by u. eclition
Ky = y¥g .y + Bg¥a g + **% 4 Oe_ s, n o ok,

togeihier with the first & werins xp, 1y,.. ., xe_s,t 10 the study of the cxpooroual funcsino
A% where J1: R — R' is a linear operyiez Therefore knoning bow 10 calcafaie the

mautrix af an caponeiial enables us 10 ¢aleulate all recurzent stquences.

Rewurning (o 1the general problem of calculating ¢4, we oote thai the
roets of thc characteristic equationdet (A - AE) = U may bec somplex To
study thix case, wc fitst consider linear equations with a complex phase

space C".

18. Complexification and Decomplexification

Before studying complex ditferential equations, we inttoduce the coneepts
of complexificaiion of a real space and decomplexification of 2 complex

space.

18.1, Decomplexdfication. Let €" denote an r-dimensional linear space
over the lield of complex numbers C. Then by the daomplexification of the
space C" is meant the rcal linear space which coincides with C® as a group
and in which muluplicauon by real numbers is defined in the same way as

t “the jact that the deliniticn of a recuzrent sequence of order £ requires knowtodge of e

fint & tevms of the s:quence is mtim ately connected with the factthat the phaer space of a
differ:oual equationolorder & i1s of dimension . This conneclion becoars aggmarene if t he
dilfercptial cquanen is waitien as a hmn of difference cquations.
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in C", while multiplication Lv complex numben & not defined a1 all. (In
other wordy, to decomplexify €C" means to ['orge; aboult the siructure of the
C-madule while preserving the structure of the R-madule.)

Il iscasy 1 see thatihie decowplexification of the space C"is a 2e-dimen-
sional real linear xpace R?® We will denote decomplexification by a super-
script R on theleit. 'Thus, for example, "C = R?,

Ifet, ..., e 13 a basis in C", then e, . . . , e, 1€, ... ,1€,1%2a basis in
l!cn - Rln.

Let 4: C™ — C" be a C-linear operator. Then by the depeplexification of
the eperator A is tueant the R-linear operator *4: RBC* — ®C*which coincides
with 4 pointwise.

Prodlem 1. Lere,,. .., eaand £y, ..., f.be bases in tbe 3paces C° and C* repexovely,

and let (A4) bethe mairix of the operatar A. Yind 1he natrix ol 1th e decoopdez fied operasos
RA.

An, (; f) where {A) = (a) + ¢(8).

Problems 2. Prone 1hat
R4+ B) = RA +RE, R(4B) RARE

18.2. Complexification. Lct R” be an n-dimensional real lincar space.
Then by the complexificalion of the space R® is meant the n-dimencional com-
plex linear space, denated by “R* which is constructed as follows. The
points of R” are paits (&, #) with § e R®, g € R%. Denoting such pairs
(& ) by & + in, we define the operations of addition and multiplication by
complex numbersin the usual way:

(§. +im) + (&3 +2ng) = (& + &) +1(m + 72),
(w4 W) +im) = (u§ — v9) + t(z§ + un).

It is easily verified that the resulting C-module is a nr-dimensional complex
linear space “R" =C". Il e,,..., e, is a basis in R, then the veceors
e, +10,..., e + & lorma C.basis in C' = °R". The vectns & + 10
are denoted briefly by §.

Let A: R™ — R" be an R4incar operatoc Then by the camplaifration of
the operator A is meant the C-linear operaior €4: CR® — R* defined by the
formula

AS +in) = AL + idy.

Probiem 1. 1cr €;5... ., emand 6, .., f. be hases in 1he spaces R™ and R* cesprrtindy,
and le1(A4) be the matrix of the operater 4. Find 1be matrix of the compiadfud opo atos
CA.

Ans. {CA) = (4).
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Prablesr 2, Prove thas
QA+ A CA + C4, 0(AB) = CACH

Remrk on terinmmology. 't'he oprrations of complexification and decomplexifi-
cation are delined hoth for spaces and for mappingy Algebraists call such
ope . tions funciors.

18.3, The complex conjugate. Consider the 2n-dimensional real lincar
spacc R?" = RCR", obiained Irom R* by complexification followed by de-
complexification, This space contains an n-dimensional subspace of veciors
of the form & 4 10, ¢ € R, called the ra! plane R* ¢ R?**. The subspace of
vectors of the form @ 4 (§, { € R" is called the imeginary plane tR® — R2°,
The whole space R?" is the direct sum of these two a-dimensional subspaces.

The operatori £ of muluplication by {in € = CR" is transformed alter
decomplexification into an R.lincar opcrator ®*(1£) = /: R** — R (Fig,
110). Thisoperator Imaps the real planeisomorphically into the imaginary
plane and vice versa. Thesquareof the operator f equals - £

Problem 7, Let ey, ..., enbeca basit n R*and €¢;,.... €a. 1€}, ..., e, a bumais in R1" =
RCR* Find thc matrix of the opcrater / in this basis,

0 E
Ans. (]) (E ‘).

Let g: R? —« R2" (Fig. 11!) denote the operator of taking tle complex
conjugate, sothat g{& + ig) = & — /9. Theaction of 7 is oftendenoted by
anoverbar, The opcrater g coincides with £intheieal plane and with — £
in the imaginary planc. Notc that gis tnoolutory: & = E.

N

Fig. 100 T'he operuter of multiplication by .

M
n-

R
&
"ﬂ

Fig. 11 The complex sonjugate.
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Let A: SR™ — SR” be a Cilinear operator. By the complex conjugate A of the
vperator A {3 meant the operator A: CR™ — CR" defined by 1he formula
Az = A2 YzeCR™
Prodlem 2, I'tove thut A is a Clinear operalor.

Prodlem 3, Prove thut The matnix of the operator A 1 @ real dasws is the comglas conjugeie
ol 1the mitrix of 4 in the same basls,

Pioblem 4. Prove thal
TITH-A+% AF-A5, HW-ii

Predlem 3, Prove that 8 complex lincur oseracar A: CR= — CRe s the campheoifics 130n
of'a rcal nperatar ifand only if 4 = &,

18.4. The exponential, determinant, and trace of a complex oper-
ator, The exponenual, determinant, and wrace of a complex operator are
delined in exacuy thesame way as in the real case, and they have exactly the
same propertics a in the real case, the only diflerence being that the deter-
minant is now complex and hence not a volume.

Probtem 1. Prove the lollewing properties ofthe exponential:
Rie1) = R4, e = ¢l ") = Mo,

Problem 2. Prove the jsllowing properties of the determinant:
dct R4 = |dct 4}2, dct 4 = det 4,  det €4 = dec A.
Problem 3. Prove the following properties of the utace:

Tr®4 = Tr 4 + Tr A, Tr A = Tr A4, Tr€4d = Tr A.
Problem 4. Prove thatthe lormula

det e? = £Tr4

continucs to hald in the complex case.

18.5. The derivative of 2 carve with complex values. By a aowe wmth
complex values is meant a mapping ¢: / = C"ofl an open interval { of the real
axis into the complex linear space C". The deaivative of the curve ¢ a1 a
pointfy € {isdefined in the usual way andisa veetor of the space C°:

d‘ 1eo AN=0 n

Example 1. Let u = |, @(f) — " (Fig. 112). Then
do|  _ ;

df I=le
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N

N

Fig, 112 The derivative of the ¢urve ¢ = ¢' a1 the poant O eQuals 7.

Examining thccasen = | in moredetail,we notethatcurves with values
in C can be multiplied as well as added, since multiplication is definedin C:

(@1 + 92)(t) = o {0) + ¢z(f).
(010,)(0) = o, (Depalt), te

Problem {. Prove that

dVL de,
+ -
(@. + @)= - ¥ 3

_de, deg,
EE(‘PJV’IJ - T‘PZ + ¢, N

Commen!. | n particular, the derivauvc ofa polynomial with complex coe.fh
cients is given by the same formulaasin the case ofreal coefhcienes

If » > I, we cannot multiply two curves with values in C*. However,
since C is a C-module, we can multiply the cuive @: / -+ € by a function

j: /= C
{®)() = fIDe(r).

Problem: 2. Prove that

R d _":d'p dp deg
"“'[E ) = (c ) — =?

&' a V" a dr
dig, +¢:) _de,  do, dife) _ j'
T a ot dy ’ dl di JI

where, naturally, it is assumced thae the derivatives in Question exist.

THEOREM. fef A: C° — C" bea C-lirear operator. Then the C-linear opevator

d rA
—e' = '
d;f

JSronm C" into C° exists for every t € R.
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Proaf. Thiscan be proved in exacily the same way as in the rcal case, bui
we canalsostart [rom the real case. In fact, decomplexifying C®, weRel

]
d 14 - fn t4 _i TL VP WEGK] PIRNN TRy
(ac ) & (e'4) dt‘ ("A)e (A«*). 1

19. Linear Equations with a Complex Phase Space

Asofien happens, the complex case is simpler than the real case. The com-
plex case is imporiant in its own rikht; morcover, investigation of the co m-
p lex case will help us in our study of the real case.

19.1, Definitions.Let A: C' — C'bea C.linearoperaitor. Bya lincarequa-
tion with phase space C" is meant an equation

Z = Aa, ze C. (1)

The full description of (1) is ‘‘a system of homogeneous linear differential
cquations of 1the first order with constant complex coefhicienss.”

By a selution ¢ ofequation (1) satisfying the initial condition ¢(tg) = 2o,
te € R, 2y € C" is mcant a mapping ¢: { — C"ofanintcrvalof thercali-axis
into €* such thatty € f, ¢(ty) = 29 and

dip
—_— — .-{
= (1)

i=g

forevery t € /. In other words, a mapping ¢ : !/ ~ €' issaid 1o be a solution
of(1) ifafier decomplexifying the space C* and 1he operator 4, the mapping
@ 1s a solution of the following equation with a 2r-dimensional real phase
space:

i=R4z ze R¥" = RO,

19.2. The basic theorem. The followingtheorem is proved in exacily the
same way as in the real case (see Theorems 15.2and 15.3):

THEOREM. 7he solutton ¢ of equation (| ) satis(rtng the inifial conditim @(0) = x,
ic given by the formula @(t) = ¢'*z,. Moreover, 67y omepavametsr growp
{g'.te R} of C-linear transformations of the spare C* is of the form

gt — et

whoe A: C* o C° 1sqg Clinear operaler.
Our goal is now to investigate and explicitly caiculate ¢'“.
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19.3. The diagonal case. l.ct A: C" -+ C* becaC-lincaroperatoe, and con-
sider the characterisiic equation

dut (A — AF) = 0. {2)

Tukowyrm, If thenroots i |, . . ., A, of equation (2) are distinct, ther C® decomposes
vt a direct sumC* = G 4 -+ 4 C! of one.dimensional subspoces C}, . . ., C'
invarinnt under A and ¢4, where in each one-dimemsional invariant swbspace, sar
C., e' reduces to multiplication by the complex number e**'.

Proof. The operator A has n linearly independent eigenlines:t

C'=C| + -+ +C..

The operator A acts like multplication by 4, on the line C., and hence the
operator ¢'* acts like multiplication by ¢'*'. |

We now consideriheone-dimcnsionalcase (& = 1)in move deiail.
19.4. Example. Consider the linear equation
t = /=2, 2c C, Je€C t(eR, (3)
with the complexlineasits phase space. As we already know, the solution of
(3) is Just
P{‘) = et Zg.
Consider the complex function ¢’ : R — C of a real vaiiable £. If 4 is seal,
the functione’! is real (Fig. 113), and the phase low of equation (3) consists

ol expansion by 2 lactor of ¢*'. 1f 4 is purcly imaginary, so that 2 = iw,
w € R, thenby Euler's lormula

¢M - ef«n

= ¢cos Wt + isin wl.

In this case, the phase Aow of equation (3) is a {family {¢'} of rosations
through the angle ¢ (Fig. 1 14). Finally, in 1he geneial case, 2 = 2 + w©

A A

A
£ e et

w il

| 3 | ;
A 0 Al A0

Fig. 113 Craph of ihe funciion ¢ fer reals,

t This 8 the only place where the ceiaplex case differs frem the real cane. The greater
complexity of the real case 15 duc w0 the fact that the field R 15 Mot a) g e braxaBy doed,
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,@‘
A

vig. 114 Phase and iinegeal curves of the equaton 2+ ix loe purcly vnagpary 4.

S

Fig, 119 Phase and integral curves of the xquation 2 — i2ford “ o vy xna <0, >0,

and multiplication by ¢*' is the product o fmuhiplication by ¢" and multipk-
cation by ¢'*' (sce Sec. 15.5):

de r{q+]’u]|

e —_ E" ’iml_ (4)

The transformation g' of the phasc flow of equation (3) is then an ¢"'-fold
expansion togethcr with a simuhaneous rotation through the angle (.

We now consider the phasc curves in the generai case. For example, sup-
posca < 0, w > 0 (Fig. 113). Thenas ¢ increascs, thephase point £z 2 p-
proaches the origin, winding around the origin '‘in the counterclockwise
dircction,” 1.c., from | to:. In polar coordinates, with a suitable choice of
initial angle, the phase curve has equation

r=23% r =alw
or

|

0=Elnr.

A curve of this kind is called a logarithmic spirel. The phase curves are ako
logarithmic spirals for other combina tions of the signs of @ and & {Figs. 116,
117). In cvery case (cxcept A = 0), the pointz = Qs the unique fixed point
of the phase flew (and 1thc uniquc singular point of the cocresponding equa-
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247, x<0 a0 os >0
A

w>? _§ ._.t\w‘o >0 a<f

Fig. 116 A atable facys. Fig. 117  An unstable focus

O

tig. 118 A center.

T a<@

f‘!’ﬂt

Fig. 119 The ccal part el ¢*' as a fluncuaon of sime.

tion (3) of the vector field). This singular point is called a focas (we assume
that « # 0, w # 0). If @ < O, then ¢(¢) =+ 0as? —+ + v, and the focus s
said to be stadle, while if ¢ > @, the focus is said t0 be anstadle. W x = 0,
w # 0, the phase curves are circles with the singular point as their ceazer
(Fig. 118).

Choosingthccoordinate z = x 4+ #yin G', wenow investigate the change
of 1he real and imaginary parts x(¢f) and »(¢) asthe phase point moves. b
loltows -otn (4) that

x(t) = re® cos(wt + @), (1) = re* sin(wt + 0),

wherc the constants » and & are determined by the ininal ¢condinons (Fig.
119). Thus the coordinates x(¢} and y(t) execute ““harmonic osallatioas of
[requency @ with cxponentially increasing amplitude re**” il 2 > 0, and
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dunipeil oscillations f & € Q. The change of x or ¥ with time ¢an aho be
writlen in the form

A cos wi + 86 sin w!,
where the constants 4 and B are determined by the initial conditions.

Remark {. By studying equation (3) in thls way, we have sicnuliancosly
investigated all one-parameter groups of C-lincar transformations of the
complex line.

Remark 2, At the same ume, we have investigated the sysiem

X = X — W),
)= wx + @y

of linear equations in the real plane obtained by decomplexifying equation

(3).

Theorems |9.2 and 19.3, together with 1he above caleulations, immedi-
atelyimply an cxplicit formula for the solutionsofequation (1).

19.5. Corollary. Suppose the n rools A, . . ., 7, 0f the charactenistic equation {2)
are distinct. Then every selution ¢ of equation (1) 2 of the form

eft) = :‘Z cye™'8a, (3)

do |

where the T, are constant veclors tndependent of the inihial conditions and the ¢y are
complex constants depending on the imitial conditioncFor every choiceof these copraomts,
formula (5) gives a solution of equation (1).

Pro¢f. We need only expand the initial condition with respeet to the cigen-
basis:

@)= 3§, + -+ &, 8§

Ifz,..., z,is alinear system of coordinates in C}, then the real par x,
and the imaginary part y, of every component of the solution ¢{t) changes
with time like a lincar combination of the functions ¢*' o= ey and
rsin wyl, 1.e.,

xp = Y nue(oos wul + By)
=1

- 2 Atﬁm. CO3 WQ! 4 Bt]““ Siﬂ w&‘) (61
e=1



Sec. 20  Complexification of a Real Lineae Equation 129

where 2, m o, + 1w, and the various s, 8, A, 8 ace real constants depending

on the intial conclitions.

20. Complexification of a Real Linear Equation

We now use the results ol our study ol the complex equation to investigate
the real case.

20.1. The eomplexified equation. Let A4: R* — R” be alincar operator,
specifying a linear equation

x = Ax, x €R". (1)
‘T'"he complexification of equation (1) is the equation

=%z, z2eC" =F°R (2)
with a complcx phase space.

LEMMA 1. The solulions of equation (2) witk complex compugale initial comditions are
themselves complex conjugales.

Proaf. Il ¢ is the solution with initial conditien @(4) = ¢, (Fig. 120}, then
$(lo) = T4. Once we show that @is a solution, the lerr ma will be proved
(because of the uniqueness). But

0% Tp s = - ~
— T — - A - C/‘ .
. == v P e B

Reomnark. Instead of equation (2), we might have chosen the more gencral
equation

t = Fls,t), ze°R"

it/

L g
iﬂ‘\

wiz)

Fig. 120 Cemplex eonjugale solutions,
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Fig. 121 A sulutkon witli a reul initinl coidition cannot have somplex valwes

whose right-hand side lakes complex conjugate values at complex conjugate
poins:

!“(i, {) - F(?}j.

For example, this condition is satislicd by any polynomial in the coordinates
2, of the vector z in a real basis whose coefficients are real funciions of ¢

conoLLarY. The solution of equation () with a real inilial condition ts real and
satesfies equation (1).
Proof. { @ 3¢ o (Fig. 121), the uniqueness theorem would be violated

In the nextlemma, the linearity of the cquation is essential.

remwma 2. The functionz = @(t) is a solution of the complexified eqpotiom (2) if and
only tf ils real ond tmaginary parts satisfy the original equation (1).

Proof. Since
CA(x + 1y) = Ax + Ay,
the decomplexified equation (2) decomposes into a direct product

{i:Ax, x €R",
y =4y, vyeR. 1

It i3 clear from [.emmas | and 2 that from a knowledge of the complex
solutions ef equation (2) we can find 1he real solutions of equation (1), and
conversely. In particular, fermufa (6) o Sec. 19.5 gives the explicit form of the
solutton in the case where the choracteri'stic equation kas no multiple rosis.

20.2. Invariant subspaces of areal operator.Lct 4: R®* —+ R"be arcal
linear operator, and let A Le one of the reats (in general complex) of the
characteristic cquationdet{A — 1£) = 0.

LENMA 3. If £ € € = CR" is an cigenveclor of the aperalor ©A with cipeacalw i,
then € f's an exgenvector with eigenvatue A. Aforesver, ) and J have the same mulli-
plicity
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e
¢
-vt‘bﬁw{—-—-—h —a=
U' [
-
y.l

Iig 122 lageavalues of a real vperator.

/
-..,UJE

Fig. 123 The rcal partof an eigenvector belorgs 0 an invariant real plane,

Progf. Since T2 = €A, the cquation €A = i§ is equivalent 0 €ad = ¢
and the characteristic cquation hasrealcoefhcients |

Suppose now that the cigenvalues 4,,..., 2, € C of 1he opcrator
A:R" = R" are distinct (Fig. 122). Among these cigenvalues we have a
certain number 1+ of real eigeavalues and a certain number g of complex
conjugate pairs (where v + 2 = n,sothatthe parity of thenumberof real
cigenvalues equals the parity of n).

THEOREM. The space R" decompeses inlo a direct sum of v one-dimemsasmal sub spases
tnuariant under A and i two-dimensional subspaces invor.ant under A.

Progf. To cvery real eigenvalue there corresponds a real eigenvector and
hence a one.dimensional invariant subspace in R*. Let 4, 2 be a pair of
complex conjugate eigenvectors Thento J there corresponds an eigenvecioe
£ € C" = CR" d the complexified operator €A, By Lemma 3, the complex
conjugate vector ¢ is also an cigenvector. witheigenvalue . The complex
plane C? spanned by the cigenvectors §, £ is invariant under the operator
€A, and the rea! subspace R” = €R" is also invariant under€A4. Hence their
intersection s also invariant under €A. We now show that this insersection
is a two-dimensional real plane R? (Fig. 123).

"To this end, consider the real and imaginary parts of the eigenvector §:

l = L3 = I L]
!—§(§+05R, ?—EH ) eR"
Being C-linear combinations of the vectors & and &, the vectois x and y
belong to0 the inteisection G? A R". The vectors x and y are C lineasly
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independent, since the C-independeni vectors ¢ and § are linear combina-
tionsol'xand y:

& = x +1y, $ m x — iy,

Hence every vector g of the plune €2 has a unique represcneation as a com-
plex linear comhi nation of the real vertors = and y:

n = ax + by, a, 0eC.

Sucha vectorisreal (y = g} ifandonly ifax + by = ax + by,i.e., if and
only if aand & arcreal. ‘I'hus the intersection C A R® is the (wo.dimensiznal res!
plane spanned by the veclors x and y which are the real and imaginary parts of the
eigenvecter § . Morcover, 4 and 1 are the cigenvalues of the 1estriction of the
operator A 10 the plane R2 [nfact, complexification does notchangc eigen-
values. Alter complexilying the restriction of Ato R?, we get the resuriction
of €A to C2. But the plane C? isspanned by the eigenvectors of the operator
€4 witheigenvaluesdand 1. Hence A and are the eigenvalues of the reseric-
tion of 4 te R2.

We musi still show that the one-dimensional and two .dimemional sub.
spaces of R" Just constructed ar¢ R-linearly independent. But this follows at
once frown the [act that the n cigenvectors of 1he operator €4 are C-lincarly
independent and can be expressed linearly in terms of the vectors

G=1....vands, y(h=1,....0. 1

Thus in the case whereall the a genvalues of the operator A: R* — R" are sisple,
the finear differential equatton

x = /Ax, xeR"

decomposes inlo @ direct product of equations with one-cimensional and ta~domo-
sional phase spaces

We note that a polynomial with “‘general™ cocfiicients has no muluple
roots Hence, to investigate linear differential equations, we must fiest of all
consider linear differential equations on the line (as we have alicady done)
and in the plane.

20.3. Linear equations in the plane.

THEOREM, Let A: R? — R? be a linear operator with complex cipemvolues i, Z.
Then A 15 the decomplexification of the operator A: G' — C? of maltrplisatica by the
complex number A. More exactly, the plane R can be equipped wiith the structure of the
line C*, 50 that R? = *C' and 4 = ®A,
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Proof. The prool consists of a rather mysterious calculation.t Le
x + iy € “R? e a complex cigenvector of the operator €4 with cigenvalue
A = ¢ + iw. The vertors x and y form a basis in R, (n the onc hand, we
have

CAlx +1y) m (x + iw)(x + iy) wox — wy 4 (wx + TY),
while on the ather,

Cilx + iy) = Ax + idy,

and hence

Ax = ax — wy, Ay = wz + ay,

i.c., thcoperator4: R? — R?inthe basisx, y has the samc matrix

[

as thc operator ®*A of muhiplicationby 4 = 2 + /winthe basis 1, —i. Thus
the desired complex structure in R? is obtained by taking x foc 1 and y for

- 3
CORULIARY |, fet A: R? = R? e a linear lraniformatron of the Euclidaan plane

with complex eigenvalues A, 3. Then the traniformation A i1 affindy equizalent so a
14)-fotd expansion together with simultaneou; rotation through the angle arg J.

COROLLARY 2. The phase flow; of the lincar equation (1) in the Exclideas plane R2
with comPlex eigenvalues )., 1 = a 1 iw isaffinely equitalent to a family of ¢**-fold
expanstons with simultaneous rotation through the angle wi.

In pariicular, the singular point @ is a focus, while the phase curves are
affine images of logarithmic spirals approaching the originas¢ — + 00 In
the case where ihe real pary @ of the cigenvalues 4, Zis negalive and moving
away [rom 1 heorigin in the case where x > 0(Fig. 124).

In the casea = @ (Fig 123), the phase curves are a tamily of concentric
cllipses, with the singular point astheir center. 1n this case, the racsfovorz -
tioas arc called elliptical rotation;.

20.4. Classification of singular points in the plane. Now et
i =dx, xeR’ A:R*R?

t The¢aleulation can b replactd by the lolhiwing argumentl.erd = @ < ik, and deine
an opcrator £ R? — R3 by the conditien { = a€ -~ wi Such an oparatos / exxsts, sce
w # 0 by hypetheis Thea 17 = - £ since the operaver { satiafics its own dharsrerse
¢quation. 'I'aking {10 be multiplication by ¢ we get the nccemary conplex sooctme m R
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big. 124 The allinc inage of a Fig. 125 An cllipiical coration
lagarithinic zpiral.

~— @Z@ )
A S=

AF{A.'{& ;h'ai! "Eﬂ' -lu{ E"‘-a-?-
Fig. 126 An unstablc locus: Fig. 127 A saddle paime.
£ g
/ x<f
e
/)" @
O<A <Ay (_/

Fig- 128 An unstable nedc. Fig 129 Snable foa.

G @

Fig. 130 Centers. Fig. 131 Umstableloa.
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be any lincar equation in the plane, and suppose the roots &,, 4, of the
characuweristic equation are distinct. [f the roots are real and &y < 4,, the
equajion decemposes intotwo one-dimensional equations and we get one of
the cases already studied in Chap. | (Figs. 126, 127, 128).

fHere we ainit theboundary cases where 4, or 4equals 0. These cases are
of much less interest, since they are rarely encountered and are not pre-
served under an arbitrarily small perturbation; they can be invesiigated
with no difficulty whawoever.

If the roots are complex,sothat 1 , = @ % i@, then, depending on the
sign of &, we gt one of the cases shown in Figs. 129, 130, 131. The case of a
center is exceptional, but is eneountered, for example, in conservative sys-
tems (sce Sec, 12). The case of multiple roots is also exceptioral. As an
exercise, the reader should verify that the case shown in Fig. 126 corresponds
to a Jordan block with 4, = 1; < 0(a*degenerate node").

20.5. Example: The pendulum with friction. We now apply everything
said to the equation

¥ = —=x — kx

of smalt oscillations of a pendulum with friction (4 is the coeffiaent of Gic-
tion). The equivalent system

1"] = X,
Xy = —x, — kx,,

has the matrix

0 1
-1 =k )
with determinant | and trace — k. The eorresponding chaiactastic equa-
tion
A+ 4k+1 =0

has complex roots ifJA| < 2, i.¢., ifthe friction is not too large. +
The real part ot each of the complex roots

A!-l — rziiw

cquals —4/2. Hence if the coefficient of friction is positive and mnt toe lorpe
(0 < & < 2), the lower equilibrium position of the pendulum (x, = x, = 0) 152
stable forvs. As k — 0, the locus becomes a eenter. Thesmaller the cocBiciont
of frictivn, the slewer the phase point approaches the equilibrium pasitioa

t The case olreal roots is con<idered in Sec. }7. 2
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A
LA

Fig. 132 Phuse curve of a pendulum with small fnct'on.

Fig. 133 The icansition from dampod oscillations 1o monescilla tory e of the peodo-
lum: Pha:c curves and graphs of sclutions (e three values of the agcfnienr of fraczamn.

Fig. 13¢ Phasc planc of the perwulum with spall &iction Alter 3 exwmid sumba of
revelutiens, the pendulum beging n swing near the lower equilibrium posision.
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ast — + oo (Fig, 132). Explicit'ormulas for the changeof x;, = ¥ with time
can be obtaincd from Corollary 2 of Sec. 20.3 and the (ormulas of Sec. 19.4.
Thus

x(t) m re* cos{wt — 0) = Ae* ens wt + B sin wy,

where the cocfMficicnis r and @ (or Aand 8) can be determined from the ini-
tial conditions.

Hence the oscillations of 1the pendulum are damped, with varnable am-
plitude 7¢*' and period 2afw. The larger the coefficient of ftiction, the
raster the amplitude decreases.t The (equency

%
a (] - —
w=[1-%

decreases as the coeflicient of friction 4 increases, As & —+ 2, the fiequency
approaches 0 and the period approaches oo (Fig 133). Forsmall &, we have
kt

w=zxl — — k- 0.
8

Thus the friction increases the period only very slightly, and its influeace on
the fiequency can be neglected in many calculations.

Prudiem 1, Braw phase curves for the nonlinearized pendulum wilh friction
£ = _sinx - &2

(tig 134).

fim. Calwulate the derivative of the toral eneigy along the pPhase curve

20.6. General solution of the linear equation in the case of simple
roots of the characteristc equation. We already know thatevery solu-
tion ¢ of the complexilied eg uation is a linear combination

o(t) = ‘_Z C&‘A“{&

of exponeniials (see Sec. 19.5), where & is any egenvector with cigenvalue
2x; here we choose real eigenuveciors if the eigenalues are real and armplex comjegate
ergenvectors tf the exgenvalues are complex conugates. Moreover, we also know that
the solutions of the real equation are the solutions of its complexificatnon
with real inital conditions. A necessary and sufficient condinon for the
vector ¢{Q) to be real is that

n

nE ad; = Z 5&&

Kx) k=10

t Nesertheless, the pend vium stiil makes infinively many swings for any valoe & < 2 {f
k > 2 hewever, the Pendulum changes im directon of mouen mo more than coce
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For this to hald, the coefficients of real tiectors must be real andiAose of complax com-

Jugate vectors musi be compPlex conjugates, Note further that the ® compiex con-
stants &y, ..+ ¢p are uniquely deiennined by the solution of the complex
equatinn (for a fixed choice of cigenveciors). Thisproves the following

tugorem. Avery solution of the real equation has a knique represeniation of the form

v vépg

elt) = 2, o' & + Y (™' + &'l (3)

R=v+ |

(for o fixed choice of eigenveciors), where the a, are real constants and the ¢y comples

constanlir.

Farmula (3) is called the general rolution of the equation. We can also wine
(3) in the form

v v+
‘P(‘) — E ﬂkt“'{. + 2 Re z C.(“'{gq
b= Amvw+ |

Note that the general solution dependson v + 2 = n real comstants a,,

Re ¢y, and im ¢,. 'These constants are uniquely determined by the initial
condiuons

COROLLARY |. Letep = (¢@,,. ... ¥,) be asolution of a sytiem of u recl [irmo7
differential equations of the first order wnth matrix A, and suppese all the rvots of the
characteristic equation of the malnix A are 1imple, uhere the real resls ave demoted by
Ay and the complex roots by a, + iw,. Then every function ¢ i1 a lineas sombination
of thefunctions

i ™' cos wyl, ' sin wyl. (4)
Prof let g = €0, + -+ + €,e.betheexpansion of the general solutson
{3) with respect to the coordinate bans e,, . . . , e,, bearing in mind that

‘(cut"wﬂ! — f""(COG wkt t 1sin COgl)r l

To solve linear systems in practice, we can use the method of undeter
mined cocfficients talook for solutions in the form of linear combinations of
the functions (4).

COROLLARY 2. Let A be a real matrix with real agervalues |y, and complexr aigen-
values o, + iy, all of which are simple Then every elzment of the mahix &4 is a
linear combination of the functions ().

Progf. Every column of the matrix ¢ is made up of components of the
image of a basis vector under the action of the phase Hoy of the system aof
differential equations with matrix 4. |
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Remark. Evecydlung said above immcdiately carcies over 10 equations and
systeens of equations of order higher than §, inasmuch as (hese reduce to
systemis of firsl.order equations (see Sec. 9).

Mvodleni 1. Fvnd all res) solutions of the equation
I o= 0, 1w Y4+ cm 0.

21. Classification of Singular Points of Linear Systems

As shown above, the general real linear system (whose characteristic equa-
tion has no wultiple roots) reduces to a direct product of one-dimensional
ancl two-dimensional systems. Since one-dimensional and two.dimensional
systems have already been studied, we are now in a position to investigate
multidimensional systems.

21.1. Example: Singular points in three.dimensiona] space. Here
the characteristic equation is a real cubic equation. Such an equation can
have either three real rootws er one real and (wo complex roots, and many
differentcases can occur, depending on the anzngementol the 10ots 44, 4,,
A; in the plaacof thecomplex variable 2. Examining the oider and signs of
the real partsof the roots, we find that 10" nondcgencrate’” cases {Fig. 133)
arc possible, as well as a number of “‘degencerate’” cases (sec ¢.g., Fig. 136),

D e——— I?—g—l—i—-l—
2)— Se b oo
J/ ! 5 J/ S—s I
q) —e 1 A a7 4 I .
5/ I § o 5ye8 I

Fg. 133 Eigenvalues of a real sperator .4: R? — R, Noadgenersie ey

0 173
5/*%0— 7/—{—(?) J)‘—I' G/

Fg. [36 Some degenerate case.
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Fig. 137 Phase space ofa lincar equation
inthccase Ay <A; <Ay, <. Thephase
fAow iy a coniracion in all three direclions.

Chap. 3 Lincar Systema

Fig. 138 The case 4, < 4, <0 < 4,

Cantraction in two JirtSusn anal cxpan-

2an in the third.

Fig. 139 The case Red, ; <Ay <O:
Coniraciion in the direction of §, and tota-
tion with faster contraction in the plane of

¢y and §,.

Fig. 141 The casc Reld;; < 0 < 1a:
Expansion in the direclion of §, and rota-
tion with conicractien in the plancof §,
and §,.

F@. 140 The case iy < Red, ; < O:
Connacoon in the diecsan ad §y and row -
tion with slower contracton in the glaoce of
$rand &,

ot gynriz

i

F3g. 142 Equivzien: Sows
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where the real part of one of the roots 4, vanishes or equa'a the resl partof a
root not conjugate to 4, (here we do not consider the case of maltiple roots).
‘T'he investigation of the behavior of the phase curves in cach of these cases
presents no difficulty.

Bearing in mind that ¢! approaches0as¢ —+ + il Re 4 < O (the more
rapidly, the smaller Re 1), we get the phase curves

9(r) = Refc et '§ + 36y + ¢3¢¥')

shown in Figs. 137141, Cases 1’')5") are obtained from cases ) )-5) by
changing the direction of the ¢-axis, so that corvespondingly we need only
reverse the direction of all the arrows in Fige. 137- 141,

Prodlem 1. Draw pliase curve for capes 6)-9) in Fig. 136.

2).2. Linear, differentiable, and topological equivalenee. Each of
these classifications is based on some equivalence relation. There exist at
least three reasonable equivalence relations for linear systems, coxvespond-
ing to algebraic, differentiable, and topological mappings.

Definition. Two phase flows { f*}, {g'}: R* — R" are said to be egetoalemt t if
there exists a one-to-one mapping A: R" — R"carrying the flow { "} into the
llow {g'} suchthat h«;f* = g’ ch for every ¢ e R (Fig 142}, (We 1then say
that “the flow {/‘}is transformed into the flow {g‘} by 1the change of coordi
natesh.”’) Under these conditions, the flows are said to be

I} Linearly equivalent if the mapping A:R" -+ R" in question s a /o
automorphism ;

2) Differentiably equivaient if the mapping A: R* — R”" sa diffeosmrphism

3) Topologically equivalent if the mapping A: R" — R" is a Aomeasecipism, je.,

if A s one-to-one and continuous in both directions

Problem {. Prove that linear equivalenceimplies diffeaentiable equivalence,
while differentiable equivalenceimplies topological equivalence.

Remark. Note that the mapping A carries phase curves of the flow { '} inew
phase curves of the flow {¢'}.

Problem 2. Does every linear automorphism &€ GL(R") carrying phase
curves of the flow { /*}into phase curves of the low {g’} esmblish a linear
¢quivalence between the flows ?

Ans. No.

2

Hint. Letn = 1, f'x = 'x, g'x = ¢*'x.

t Tlic te:ms‘“conjugate” and “similac” are sometimes waed as syvonyms for *“ eguivakot™
asdefined here.
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Prodlem 3. Prove that the relations of linear, differentiable, and topologica
oquivalence are actually equivalence relations, i.e., that

S~ Sf~ag=wg~f S~apg~ktemf~k

In particular, ¢verything said is applicable to the phase flows of lincar
systema, For hrevity, we will talk ahout rquivalence of the systenu them-
selves. Thus we have divided all Linear systems in1o equivalence classsin
three ways, corresponding to lincar, differentiable, and topological equiva-
lence. Ve now study these classes in more detail.

2).3. The linear classification.

THEOREM. Let A, B: R" — R" be linear operalors all of whose cxpenvalues are
simple. Theu the systems

x = Ax, xeR",
y =8y, yeR"

are {irearly equtvalent if and only if the eigenvalues of the operators 4 and B cmmade.

Proof. A necessary and sufficient condition for linear equivalence of incar
systems is that B = A4k~ for somc k€ GL{R"),since §y = A& = Adx =
2AR~ 'y (Fig. 143). But the cigenvalues of the operators A and R4k~ con-
cide (here simplici ty of the cigenvalues is unimportant).

Conversely, suppose the cigenvalues of A are simple and ooincide with
the cigenvalues of B. Then, according 10 Sec. 20, A and 8 deceomposc into
direct products of identical (lincarly equivalent) onc-dimensional and two-
dimcnsional systems. Therciore 4 and B arx lincarly equivalent.  §

Modlem {, Shaw that the syslems

i =ux, { 2, =2t Xy,
.'t: jx =

X3, Ny
are not Lincarly equivalent, ¢ven theugh 1heir eigenvalucs comnade.

21.4 The difflerentiable classificatiom. Our next thcorem s almost
obvious:

A

Fig. [43 Linearly equivalent systems.
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TIEOREM, 7 wo linear systems
X = Ax, X = lNx, xeR"

are differentiably equivalent if and vnly if they are tinsarly squivalent.t

Proof. Let i: R" = R” ic a diflecinorphism carrying the phase flow of the
systemn 4 into the phase flow of the system 8. The point x = 0is a fixed
point of the phasc [low of the sysirm 4. Theretere A carrics 0 into one of the
lixed points ¢ d the phase tlow of the sysiem B, so that 8¢ = 0. The difleo-
morphisin 8: R" = R" of shifi by ¢ (x = x — ¢) carries Lhe phase flow of

# into nsell since
i(x—c) - X -Bx:B(x— c},
dt

while the diffeomorphisin
Ay =mdoh:R"= R"

carricsthe flow of 4intothellow of 8 andlcaves O fixed: 4,(0) = O.

Now lct /{: R® = R be the derivative of the diffeomorphisin &, at 0, so
that /f = A,], € GL(R"). 'The dificomorphisms &, ¢ ¢'* and ¢'® ¢ &, cotncide
ter cvery ¢,and henceso do their derivativesat x = 0:

Her = ¢ H. |

22. Topological Classification of Singnlar Points

Consider two lincar systems
* -_ ‘4“ i — Bxs x E R“’

all of whose eigenvalues have nonzero real paris Let m_ denote the nnmber
of eigenvalues with a negative real part and m, the number with a poSieve
real part,so thatm_ + m, = n.

22.1. Theorem. A necetsary and sufficient condition for topolugisel equivolenee of
two Lirear systems, all of whose eigenvalues have nonzese real parts, ts thal the mumber
of eigenvolues with negative (and hence pesitive) real parti be the same in both sysicms :

m_(R) = m_(B), mi(4) = m.(B).

t Ju coust oot be thougbt that evecry diFeomoiphism establishing the cGunakurce of e
systems % linear (for example, let 4 = & = 0).
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Fig. 144 "Tupulogicslly equivslent and nonequivalent systems.

1N O\
~

Fig. 145 Topelegicu! equivalenoe of s sysiem snd of s linearzation.

For exaniple, this thcorem asserts that stable nodes and foci {Fig. 144) arc
topologically equivalent te cach other (m_ = 2) but not topologically
cquivalent o asaddle point (m. = m, = 2).

Just like the index of inertia of a nondegenerate quadiatic fosmn, the
number m_ (orm, )is the unique topologicai invariant of a hinear system.

Remark. A similar result holds locally (in a naighborhood of a imed point) for
rorimear systems whose linear paris have no purely imaginary cigenvalucs.
In particular, in a neighborhood of a fixed point such a system is ropologi-
cally cquivalent to its lincar part (Fig. 145). Here we will not go inw the
proof of this proposition, of great importanee in the study of nonhnear
systems.

22.2. Reduction to the case m_ = @. The topeological equivalence of
linear systems with identical values of m_ and m . is a consequence of the
fellowing three lemmas:

LEMMA 1. Birect products of topologicatly equtoalou $ystems are topalogecally ¢ guvo-
lent. More exactly, vf the systems specified by the operators

A,B,:R" + R, A, By: R™ — R™
areé carried inlo each other by the homeomorphisms
Ay :R™ = R™, hy: R™ — R™,

then there exists @ homeomorphism

A:R™ L R™ - R™ £ R™
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carfving the phase fluw of the product system

X, = Ax,, Ky = A;x,

tnlo the phaseflutw of the praduct system

X, = M x, k; = B,;x,,

Proof. Simply let

h(xi, %) = (hy(x),ha(x2)}. |

The next lemma is lamiliar lrom a coursein linear algebra.

LioaMA 2. If the operator 4: R* — R” has %o purely imaginery cigenvetses, tham the
space R' decompuses into the disect sum R* = R™- + R** of twe mbpus 18
variant under the aperalar A, suck thot all the eigenvaluer of the resiractiomef A te R -
have negative real parts and all the egenvalues of the restriction of A to R™~ Aare
positive real parts (Vig. 146).

Provf. This follows, lor example, lrom the theorem on the Jordan normal
form. ||

Lemmas] and 2 reduce the proof of1opological equivalence to the foliow
ing special case:

LiMmAa 3. Let A: R™ — R" be a {inear operatarall of whose eigenalacs have positice
real parts. T'hen the system

x = 4x, x€R”
ts topologically equivalent to the standard systim (Fig. 147)
X = X, x<R".

Progf- The lemma is almost obvious in the one-dimensional case and in the
casc of a locus in the plane, and hence, by Lernma 1, in any system witbout
multiple roots. The proof of 1emma 3 in the genctral case will be given
later. |

_},

Fig 146 Invariam subspace of an operator with 2o purdly imaginary cgenvalurs
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K

Fig. 147 Al unstable nodes arc topalagically €qQuivalent

e

Fig 148 Level surlace of the Lya punov funciion.

22.3. The Lyapunov function. The proofof Lemma 3is based on the con-
struction of a special quadratic form, called the Lyapanoo funsion

THEOREM. Let A: R® — R" be a lincar aperator all of whose eigovaines bave posi-
twe real paris. Than thare extsts a Lachdean structure in R® swch that the oectov Ax
makes an acuie angle with the radis vector x at every point x # 0.

In other words:

There extsts a positive defnite quadratic form r? in R® such that its dorivetive ix the
direciton of the vector fld Ax is posttive:

Ly >0 Vx #0. (1)

Or alternatively:

There exists an ellipsoid in R® with center O such that the vertor Ax is duerted ox
ward al every point x of Lhe elltpsetd (Fig 148).

The equivalence o all three formulations is casily verified. We will peove
{and subsequently use) the theorem in the sccond formulation. The proof is
most convenient in the complex case:

Suppase all the eigenvalues 3, of the operator A: C* — C® Aave posihive real pasts.
Then there exists a positive deﬁmte quadratic form r?: BC* — R whose deauative
aleng the direction of the vector field B Az isapasitive defintte quadratic form:

Lr,2>0 Va0 {2)

Applying the inequality (2) in the casc where the opciator 4 is the com
plexification of a real opecrator and z belongs to a real subspaec (Fig 149},
we get the real theorem (1).
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FiB. 149 l.evel surface of the Lyapunov funiton in C°.

Fig. 150 Positive definiieneu of the form (4) in Ll case & = L.

22.4. Construction of the Lyapunov faaction. Wc will choosc the
Lyapunov function r? 10 be the sum of the squares of the moduli of the co-
ordinates in a suitable complex basis:

rf =(x 1) = }a: Z§7y-
A=)

In a fixed basis we can identifly the vector 2 with asctof numbers z,, .. -, 2,
and the operator 4: € - € witha matrix {a,,}). A calculation now shows
thai the dertvative ts a guadratic form:

IR, (2, T) = (dz, T) + (2, A2} = 2 Re (Az, 3). {3)

If the basis is an eigenbasis, this function is Positive defwnite (Fig. 150). In fact, we
then have

2Rc (Az, %) = 2 z Re l&|z&|z. (4)
K=

But all the real parts of the cigenvalues d; arc positive, by hypottxos, and
hence the form (4) i1s pesitive dchinite.

If the operator A has no cigenbasis, then it has an *“almost proper™ basis
which can be used with equal success to construct the Lyapunov fanction
More exactly, we have

LEMMA ¢ [et A, C -»> € be a C-linear operator and let ¢ > 0. Them a bass
Eis- .. &, can be chosenm €' in which the matris of Ahas* upper-tnangals™ form
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VA7

Fig. 151 Constiuction of a basis i which the macric of the operaior is tnangwar,

with all elemenis above the main diagonal of modwlus less then s:

;l| < &
(A = | - .
¢ 4

Proof. The cxistence of a basis in which the matrix is upper-triangular
lollows, for exampsle, firom the theorem on the Jordan canonical form.

We can easidy construct such a basis by induction in 5, wing only the fact that every
lincaroperator A: C* — C= has an cigenvecior [2t &, be this vector (Fig. 151), and coo-
sider the lactor space OYCE, = €°-'. Then ibe operator 4 dctaminrs an Opoatoe
A:C*-' — €' on the factor space. lel ¥;, ..., g, bea Basis in C~' m which dhe
matrix of the operator 4 is upper-triangular, aird let §,. . . . . &, be any cepreseniatives of
theclasses g5, ..., B, 1IN C".Then ¢, &y, ..., &, i tbe deired baso.

Now suppose the matrix of the operator A is upper-triangular in the basis
&1s - - -, 8. Then the elements alove the main diagonal can be made arbitrenily small
by replacing the basts vectors &y propertional vectors. In lact, let ¢, be the elemenys
of theoperator Ainthe basis§,, so thata,; = Qifk > {.Then the eferments of
the matrix of A in the basis & = N*§, arc just

o o gy
ﬂtl = FT'E-

But |ay] < efor all > kif Nissufficiently large.

The sum of the squares of the moduliin this ‘“‘c-almast proper’” bass will
bc chosen as the Lyapunov function {fecsufficiently small g)_

Consider the set of all quagdratic lorms in R*. This set kas the natural
structure of a linear space R*™* 2, Qur next result is alniost obvious:

LEMMA S. T he set of positive defonrte quadratic forms in R™ is oper, zu R™=+ 1)/2 ¢
other wesds, if a form

a(x) = }: T el
rlmi
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i positivedafinite, then these existran s > 0 such thet every forma () + Hx) whvre
(bl < & (forall &, b | & k[ & m) 15 also positive definite.

Proof. The lorm a(x) is positive at all pointsof the unitsphere

§ gt

hmi

The sphere is compact, and the form is continuous. Thcrelore the greatest
lower Lound is achicved, so that a(x) 3 @ > 0 everywhere on the sphere.
If |6, < ¢ then

16(x)| £ k,§| byl < m’s

on the sphere. Therelore the form a(x) + 4(x) is positive on the sphere if
s < a/m?, and hence is positive definite |}

Remark. OQur argument also implies that every pasitive defnite quadratic
lorm a(x) satisfies the inequality

alx|’ € a(x) < fix)’, O<a<p (3)
cveryw here.

Problem {. Prove thatthe set of nondegcnerate quadratic forms with a given
signature is open.

Example !. The space of quadratic lorms ax? + 2bxy + ¢y?in two variables
is a three.dimensiona) space with coordinates a, 8, ¢ (Fig 152). The case
b* = acseparatesthis space into three open parts accordingto the signature

22.5.Proofof Theorem 22.3. Consider the denvative along the duection
of the vector field ®4z of the sum of the squares of the moduli of the co-
ordinates in the “‘e.almost proper’’ basis chosen in Lemma 4. Aecording to
(3), this derivativeis a quadratic form in the real and imaginary pares of the
coordinatcs z, = x, + iy. Scparating the terms in (3) eorresponding to the

Fig. 152 Thespace ef Quadratic forms.
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wietienta of tlus matrix (A) on the main diagonal Irom those cocvesponding
to the alements of (4) above the main diagonal, we get

["4-',3 - p + Q-

where

= T
Since the diagonal elements of the triangular matrix (A) are just the cigen-
values 4, of the operator A, the quadratic form

P =2Re ¥ A4lx + )

Aw |
tn the variables x,, y, is positive defnite and independent of the choice of basis ¥ In
fol lows from Lemma 5 that for sufliciently small ¢, the form P + @ (which
is close to P) is also positive definite. In fact, lor sufficiently small & the
coefficients of the variables x,, y, in the lorm @ become arbitrarily small
(since la,,| < & for k < {). But this implics (2} and hence {1}. |}

Remark. Since f.,r?is a positive definite quadratic form, it satishes an
inequality of the type (5):

arl € L0 < fr?, o <a<p (37
The followii g series of problems leads to anocber prool of Thearem 2.3,

Problem 2. Prove that differentiation 1o the dineciion of the vector held Ax @ R® gnes 2
linear operatos £ ,: R+ 172 — R™"*'¥2 (rom the space ol quadratic fovws on R* o
itself.

Problen 3. From a knowiedge of ihe eigenivalues 4, ofthe operator 4, fad 1he cigenvalues
af ithe aperator L,

Ans. 4, 4+ Ay, & {l'.j g R

Hind. Suppose 4 has an cigenbasis, Then the exgenvectons of L, comaz of che Quadrane
forms equal te produds ol pairs of linca r forms which a recige mectors of 1he operacar dual
wAd.

Problemnt 4. Prove that the operator L. is an 1«oMophsm if A has #o paur of cgtmmaloes
2, jusuch thar 4 — 44 In particular, prove tha (il the real pacse of ali the agahalus ol
the operator A are of the same sign. then every quadiatic farm oo Re is the densvative of a
quadauc form in thedirection aof the vectar field Ax.

Froblem 5. Pyove that if the real paris ol all 1he cigenval ues of an aprralar 4 ale pasitve
and if the derivative of a Quadeatic form in thedirection of the fidd .ix & pofadiic debnate,
then the form is isel f pasitive definite { and hence satishes all the 1 eQuircma & V Wworap
22.3).

t 1t shonld be nated thae the mapping RC* — R specified by the frm P does dpond an the
choice aof wass.
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I’qm-f
x, i@_ 7 ‘x,

Fig. 153 Construction ol the honeomorphism 4.

Hint Represent the f>rm as the integral of 11s denivative along the phase curves.

22.6. Construction of the homeomorphism 4. [n order 1o prove Lemma
3, we now construct a homeomorphism #: R* - R carrying the phase flow
{/'} of the equation X = Ax (Red, > 0) into the phase low {g'} of the
cquation X = x. Let§ be the sphere (or ellipsoid)

S = {xeR":r’{x) = l},

where r? s the Lyapunov function of Scc. 22.3, and let 2 besuch that

i) The points of § are invariant under A;

i) If x4 isa pointof S, then & carries the point f'x, of the phase uajectory
of the equation X = Ax into the point g'x, of the phase trajectory of the
equation x = x (Fig. 133):

h(f'my) = g'%p VIER, mpeS, (6
4(0) = 0. )
We tnust now verify the following facts, whose proofs are almost obvious:

1) Formula (6) uniquely defines the value of 2: at every point x € R®;
2) The mapping &: R" —+ R” is one-to-one and continuous i n both diree-

tions;
Nhof = ¢ ok
22.7. Proof of Femma 3, First we psove

1MMA 6. Let #: R° —. R be any solution of e equation Ax — x s oo wve, aad form
the real Sanction

p(t) = Inri(e(h))
¢f the real variable (. Then the mapping g: R — R it « dffesmprphion, end

«e<¥<s ™
Preaf. By t\he uniqueness theorem, we have

() #0 VieR.
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Moccover
L.og?d
-
gatishiet the estimnte (7) because of (&), @

cornotaany 1, Kidy poini = ¥ O can be reprorentad an e form

.~/ ®

ufierempe S, teR and | ) 1 the phase flow of e rgmation & = .ix.

Proof. Convider the solution ¢ withinitial condituon ¢(0) = = By l.conma 6, r3e{y)) = [
forsome 1. The paint mp ~+ o(t) belongs ta Lthe sphere 8. Settin@! = —r, wegaizs = =y, @

COROtIARY 2. The rep ves, wotion (8) is Nnigue
Proof. The phase curve leaving = (Fig. 153) is uruque aid intersects the sphoye an a ginghe
point 2g, by Lemma §. The uniquentss of ! loliows (rom the manolowcity of p(¢), again
by Lemma 6. |
Thus we have construcied a one.10-one mapping of the direct podace of the line
the aphere onto Fuclidean space minus a single point:
R XS RN\G P, xg) = [l
It [otlows from the theorem on the dependence of the wlution on the initial eond s ixws

that %, as well as the inverse mapping F~ ¢, is continuous (and evitn a diffecamerphian).
\Ye now' note (hat

dp
?’.=2

l'or the staidard equation x = =% Hence the mapping

GiR x S — R™0, Clxy) = £°%9

is alko one-to-ene and continuous in both directiors. Accoeding to e definizion (6),
the mapping A coinades with the mapping G - F“1: R*\\0 —- R*\\ 0 vy ywbere except
at ithe point 0. Thus we have proved that 4: R* — R® 5 3 oncto-ont npRIng-

The eontinuity of Aand & ° everywhere except at thepoini 0 (ollows frosu the continuity
of F,F~' and ¢, C-!; actualy & is a difcomorphism everywhere oxcept at the point @
(Fig. 15¢). The continuity of 4 and A~ at & fallows from Louma 6. This lanms even
allows us to obtain an explicit ¢estimate [or 734 x}) in s of r (), =l < I

(r2(x))¥'= < 2 (A(x)) & (r2x))¥5.

In fact, let x = F(, x0), | € 0. Then i < Inrdix) < atand Inr3( b x)) = 2. M arvoves,
for x # 0 we have = = /*=xg, and haice

(A S M) (x) = A(S(S®o)) = A( S *7Xg) = £°* "Ry
= £'(2xp) = g (A(=m)) = (&'~ &)(=),

Fig. 15¢ The homeemorphism 4 i a difeomorphism evesywhere excPt at 0.
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pro"
B L CIEE Sy
Y

Fig. 155 The standard saddle.

while jor = = 0 we alio have (A« /")(z) = (£ - §)(x). Thus the validiny of smertamn
1)-3} of Sec. 22.6 has finally been asablished, and 1he proolof Lemuna 3 = now comnpiese. |

22.8. Proof of Theorem 22.1. 1t iollows from Lemmas |, 2, and 3 that
every linear systrm X = Ax, where the operator A: R* — R* has no purely
imaginary eigrnvalues, 11 topologically equivalent to the standard multi-
dimeasional ‘‘saddle"’

{i, = -x, xeR™,

Xy = %3, x; e R™*

(Fig. 155). Hence two such systems with identical numbers m_ and m, are
topologically equivalent (to cach other). Note that the subspaces R®- and
R"™* are invariant under the phase flow {g'}. As ! increases, every poiat of
R™- approaches 0.

Problem 1. Provethatg'x = 0ast - +owifandonly ifxe R"-.

Therclore R™- is called the incoming strend of the saddle. In just the same
way, R™ is called the outgoing strand, defined by the condition 2'x — 0 as
{ = - Q.

We now prove the second partof Theorem 22.1, namely, twoo tepologacally
equivalent systems have the same number of agenvataes 1exthnegatise real pavts. This
numbecis just the dimension m _ of the incoming strand, and hence we nced
only show that the dimen tions of the incoming strands of two topolegumily equicalent
saddles are identical

First we note that everyhomecomorphism A canying the phase fow of oge
saddle into the phase flow of another must carcy the ineoming stiand of oe
saddle into the incoming strand of the other {since approachtoOast —+ + o
is preserved under a homeomorphism). Hence the homcomorphism 4 akso
establishes a homeomorphic mapping of the inoeming suand of oac saddie
onto the incoming strand of the other.
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N\

SN N
Y/ s\

Fig. 156  Strands of three-dimensional saddles.

The fact that the strands have the same dimension now follows from the
lollowing key proposition of topology :

The dimension of the space R" is a topalogucal inoariant, i.e., o homewurphism
h: R™ — R®can exist only between spaces of the same dimensior.t

Although this proposition seems **obvious,” its proof is not casy and will
not be given here.

Problem 2, Prove that the ¢ saddles with a threedunensional phase space such that
(me—y w4} = (3, 0), (2. 1) (1: 2), (0, 9) are topologically noyiequivaient (winhour \Ging the
unpreved topalogical proposition).

Hiri. A one-dimensional sirzand coisists of three phase curves, while a3 mulodmeraaaml
strand consists of infinitelY many phase curves {Fig 156).

Thus for R', R%, R? we have completely proved the topological dassfi-
cation of linear systems whase eigenvalues have nonzero real pars. How
ever forR®,r > 3 we are compelled to refer to the above unproved proposi-
tion on the topselogical invariance of dimension. [J

Pivblem 3. Cucryout the 0pelogical clamification of lincar operasors A: R* — R* with a0
aigemvalues of modulus |. Show that the uniqie 1opalogical invariant & ithe aumber of
eigenvalues of modulus Jess than |,

23. Ssability of Equilibrium Posisions

The problem of stability of an equilibrium position of a noenlinear system is
solved in the same¢ way as for a lincarized system, provided the latter tas no
eigenvalues on the imaginary axis.

t However there exist onc-to-ene mappings R= — R*, as well as centinmonss mappaogs of
R~ onto R* with mr < 4 (for example R' — R?),
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23.1. Lyapunov stability. Consider the equation
t = vix), xelVcR", {'}

where vis a vector field differentiable r &> 2 timesin the domain U. Suppose
equation (1) hasan rquilibrium position {Fig 157), and choose covdinates
x;such that the equilibrium position iaat the origin: v(0) = 0. The solution
with initial condition ¢(f,) = 0 is just @ = 0, and wr arc interesied in the
behavior of solutions with neighboring initial conditions

Definition. An equilibrium position x = 0 of equation (1) is said (0 be stoble
(in Lyapurov’s sense) ¥ given any £ > 0, there exiss ad > 0 (depending only
on & and not on ¢, about which more latee) such thac for every =, for which
|x5) < 3,t 1he solution ¢ of (1) with initial condition ¢(0) = x4 can be
extended onto the whole hall-linc ¢ > 0 and satisfies the inequality je(2}| <¢
forallt > 0 (Fig. 158).

Problem 1. Investigate the LYapunov stability of the equilibrium positions of the following
equations:

al £ =0;
b) ¥ = x;

£ =x,,

€} e .
'=-i- — _-"1-

j:‘ = Xy, i. = Xy
d) 2y = —ux3i <) {

Fig 157 Da the phase curvesstarting in a sufbcrentily anall neighbtorhaad of 20 equalibn-

U Pe9ition stay near the equilibrium position?

Fig. 158 Difference in behavior of integrol <unes for stable and umabic cquildwiam
POItONS,

t Aswsual, [x|2 =2 + -»- + 2 ifm = (x,...,5).
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wi0) ¢

Fig. 199 [Iniegrul curves for a:1 nsymptotically stable equilibrium potition

PRIV,

(] — O al—

-—
PR /N
Fig. 168 Phas: curves o equitions (1) and {2).

Probiem 2. Prove 1hat the above definiien is correct, i.e.. that (he 31abilty of the equilib-
rium position a indepeirdent of the aysiem of coordinaies Agu ring in the dehartion

Problem 3. Supposc it ‘s knewa that lar any ¥ > 0, ¢ > 0, thelc exists a solution @ of
cquatien {|) such that [¢(0)) < € and |o(r})| > Nle{0)l10r some ¢ > 0. Docs s imply
hit 1he equibbriunm psitienx — 0 is unsiable?

23.2. Asymptotic stahility.
Defurition. An equilibrium position x = 0 of equation ([) is ssid to be

asympiotically stable if it is stable in Lyapunov’s sense and if

lim () =0

f— 4+

for every solution ¢(t) with an initial condition ¢(0) lying in a sufficiendy
small neighbechood of zero (Fig. 159).

Protlem {. Investigate the asympiotic stability of the equlibc um positims of the fidlow-
ing equations:
a)x =0; 2 = x5,

b)2 =x; € £ = —x.

Probdlem 2. Suppose every solutien approaches the cquilibrium posuoa as £ — +co.
Docs this imply Lyapunev stabilicy of the equilibvium pontion?

23.3. Stability in terins of the behavior of the fi1st approximation.
Together with equation (1), we now consider the linearized equation

(Fig. 160)
x = Ax, A:R" 5 R, (2]
Thenv = v, + vy, where

v,{x) = 4x, v, = O(ix|?%.
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®
b ol o A

Fig. 161 Eigenvalues of the operator A,

Fig. 162 lawvel surfaceol the l.yapunov funcdon.

TIEGRFM. Suppose all the elgenvalues 7, of the operator A lic tn the left Aalf-plome
Red < 0 (Vig. 161). Then the equlibrium position x = O of equwonen (1) e
asymplotecaliy stable.

Problen {. Give an example of an mstable equiibzium pasitiou {in the seaar of Lyapraon )
of vquation (1) for which all Re %, € 0.

Coninent. It can be shown that il the real Part of at Icast one cigenvalur is puiare, then
the cquilibriunm pesition is unstable, In the case of 2e70 real parls, 1he ssabiliry depends
on terms of the Taylor serves of ordee higher than t.

Proplon 2. 1s th¢ zevo equilibrium position of the sysiem

jl = X;.
2; = —x}

stble (both ire Lyapuoov's seiase and asympioticall y) *

dus, 16/ b even, it & urstable (in L yapunov's sense), while if a 5 odd, 1 & stable in
Lyapunev’s se:se bui not asymprencally.

23.4. Proof of Theorem 23.3. Accoeding 10 Sec. 223, there exists a
L.yapunov function, i.e., a pesitive definite quadratic lorm r? whose deriva
tive in the direction of the linear field v, & negative definite, so that

1.,,‘rz € -2t
where ¥ is a positive constant (Fig. 162).

LEMMA. The derivative of the Lyapunoy function in the disection of the monlimecr freld v
satisfies the tnequality

Iwr : £ — 772 (3)
in @ sufficiently small netghborhood of the point = = Q.
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Proof. Clearly

L.,l"l - L,..II"] 4 L‘,‘I':.

But

f,”r: = 0('3). (4)

30 that the secand term is much smaller than the fiest if r is small. In fact,

] af
Lyf = ——
'/ ;1 ax‘”{
for any field u and any function f, wherein our case u = v, f = r?, a, =
O(r®}and &/}ox, = O(r) (why?), which implies (4).
Thus there exist constants C > 0, ¢ > 0 such that
12,071 € Clri ()] V2

for all x with x|} < . The right-hand side is no larger than y7? for suff-
ciently small |x|, and hence

L2 & =22 4y = —y?
in a neighborhood of the point x = 0. |

Proof of Theorem 23.3. Let ¢ be a nonzero solution of equation (1)
satisfying the initial condition x = 0 in a sufficiently small neghborhood of
the peint x = 0, and consider the following function of time:

Pty = lnr¥(p(t).  t3 0.

By the uniqueness thearem r?(¢(1)) # 0, so that the finction ¢ is defincd
and differentiable. According 10 the inequality (3), we have

5 ] d 2 Lv’z
= — 1" o = -y
P ?_o pdt e rl S

It follows that r?(e(¢)) decreases monotonically and approactes 0 as
{ = +00:

o)y € p(0) — 1,
ri(p(t)) < (e 0. (5)
Problem {. Find the gap in this proof.

Ans.  We did not prove that the solution ¢ can be extended indefinitely
{forward.
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ek Wil

Fig. 163 The solution can be extended forward indefiniely,

Completion of the proef, Let o > Obesuch that theinequality (3) holds for
Ix| < 6. and consider the sompact set

F=(xt:rlx)€a il £T)

in extended phasce space (Fig. 163). Let ¢ be the solution with initial condi-
tion @(0), wheee r¥(9(0)) < . By the extension theorem, we can extend ¢
lorward up to the boundary of the cylinder #. But the derivative of the
function r2¢(t) is negative as long as the point (¢, ¢(t)) belongs w F. There-
fore the solution cannot leave the lateral surface of the cylinder # (where
72 = g?), and hence it can be extended up to the end face of 1he cylinder
(where t = T). Therefore, since Tis arbitrary (and independentof g), the
solution ¢ can be extended indefinitely lorwasd. Moreover. 7 (@(f)) < a?

and the incquality (3) holdsferall: = 0. f§

Remark 1. Actually we have proved more than the asymptotic stability of
the equilibrium position. In fact, it is clear from the inequality {5) that the
convergence @(f) — 0 is unilerm (with respect to initial conditions x,
sufficiently close to 0). Moreaver, (5)shows the rate of convetgenee (namely
cxponential).

In cssence. Theorem 23.3 asserts that the unilorm eonveigence 10 0of the
solutions of the linear equation (2) is not destioyed by a nonlincar pevtur
bation v,(x) = O(jx|*) of the right-hand side of the equaiion. A sinulas
asscrtion is valid lor various perturbations of a morc general natuie. For
example, we might consider a nonautonomous perturbation v,(x f) such
that lv,(x. t)| € §(Ixl) where ¥(ixl) = o(lxl) asx —+ 0.

Pyoblem 2. Prave that under the: eonditions of the theorem, oquations (1} aad (2) are
topologically equivalent ina nesghberhood of 1he equilibrivsm positon.

Remart 2. ‘Theorem 23.3 leads to the following algebraic problem. kaown
as the Routh-f{urwitz problem: Determine whethey o not all the zeves of a givem
polyromial lic in the tefl kalf-plan-. This problem can be solved by a finite
number ofarithmetic operationson the cocfhicienss of the polynomial. The
appropriate algorithms are described in courses on algebra (Hurwitz's
criterion, Sturin’s method) and complex analysis (the argumaont princple.
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the methads ol Vyshnegradski, Nyquist, and Mikhailov).t We will recurnco
the Routh-llurwite. problrm in Sec. 36.4.

24. The Casc of Purely Imaginary Eigenvalues

Lincar cquitions with no purely imaginary eigenvalues have been invesii-
Rated in delail (Secs. 21 and 22), and their phase curves behave rather
simply, exhibiting a saddle (Sec. 22.8}). We now tuen 0 the case of lincar
equations with purely imaginary eigcnvalues, whose phase cuives ofier
examples of more complicated behavior. Such cquations are encountered,
for example, in the theory of oscillations of conservative sysiems (see Sce.
25.6).

24.1. Topologicalclassification. Suppause all the eigenvalues 4,, .. . .4,
of the linear cquation
T = Ax, xcR' 4:R"- R" (1)

are purely imaginary. Then under whatconditions are two such equations
topologically equivalent? The answer to this question is not known, and
cvidently the problem cannot be solved by presently available mathemati
cal methods

Froblewn {. Prove that in the casc of theplane(n = 2. 4,., Ly # Q). algdwax equiva
lence (i.e., equality of cigenvalues) i a necessary and suffiaen! condition for topdogml
(4% 1Y) EVJ |€(|Ct.

24.2. Example, Consider the cquation

X, = w;x .
.] a'l.l = i'w’ln
X; = —wixy,

Xy = Wax @
] = Wads .
X, = —wix,

in R*, The space R* decomposes into a directsum R* = R, , + R, 4 of

two planes (Fig. 164), and correspondingly the system (2) decomposss into
two independent systems

T Sce e.g+ A. G. Kurosh, A. Course [n Higher Algebra (in Russian), Moscow (1968), @hap 9;
M. A. Lavrentev and B. V. Shabat, Methods of ihe Theory of Fanctioas ¢f o Ce Wi Varuble (s
Russian ), Moscow (1958), Chap. 5; N. C. Chebotacev and N. N. Meimsa. 7Thr Reath-
Hurwrtz Problem for Polynoynials and Entire Functions (in Russian), Tiudy Mar Ina. Sakios,
Moscew (1949), No. XXVI.
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Fig. 105 A teris.

x| = Wyxy
{ , (2, %) €R, 5,

Xy m —wxy,

(3)

¥y = iz’
o en,

Xy = —wxy,
In cach of these planes, the phase curves are circles, say
St = {XGR,'zzxf + x5 = C > 0}

or points (( = 0), and the phasc How consists of rotations (through angles
w, ¢t and w,f respectively).

Every phase curve of equation (2) belongs to the direct product of the
phase curves in the planes R, ; and R; ,. Suppose the two curves ace
circles, with the direct product

T =5 x 8 = {(xeR%xt + x} = C, <} + £ = D},

called a i o dimensional tervi To beutervisualize the torus T2, we can procedd
as follews. Censider the surfacc of the doughnutin R? {Fig 163) obtasmed-by
relaling a circle about an axis which lics in its planc but does not inwersect
it A pointof thissurface is specified by iwoanguiarcoordinates @ .0 . mod 2=,
called the fengitude and the {atitude lor a reason which is appaient from the
figure The coordinates@, and @, give a diffeomorphism of the surfsce of the
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doughnut ind the «lirect product T2 of the iwo circles.

The square 0 € §, € 20, 0 € 0; € 21 in the plane of Lthe coordinates
U,, 0, can be regardrd as a map of the torus 72 (Fig. 166) if we “paste
\ogether™ every pair of points (#,, 0) aad (0,. 2#) as well as every pawr of
points (0, ¥;) and (2r, @,). The whole plane can also be regarded as the
map. but then every point of the torus has infinitely many images on the
map,

The orus 7'? = R*isinvariantunder the phasc lowof equation (2}, and
the phase curves of (2) lic on the surlace T'2. 16, is the polar angle in the
plane R | ; mcasured from the direction of x; to that of x|, then, according
to (3), 0, = w,. Similarly, measuring 8; Irom x, 1o xy, we get §; = @,
Thus the phase trafectories of the flow (2) on the surface T2 satisfy the differential
equalion

8, = m,, 0, = w,, (4)

so that the longitnde and latitude of the phase point both change unifortnly.
This motion corresponds 1o that of a point “winding” around the Lors
(Fig. 167), represented by a straight line on the map of the oeus.

24,3, Phasecurves of equation (4) on the torus. Two numbers w, and
w; are said 18 b e rationally independent if

kw, + kyw, =0 (k,, k2 integral)

T >

R R,

Fig. 166 A mapef the torus

7Y T .
-
f <>
—4—‘{-1_ —— l\h"'-i"_"/
Ty, o

Fig. 167 A point winding arevnd the rorus
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impliex k, = &, = 0. For example, /2 and /B are rationally dependent,
bui not ‘/B and \/8

TUKOREM.  {f 1, and w g are ratonally dependent, them every phase cxarve of equalion
(4) on the torus is closed Hounver, \f (1, and wy are ratonally iadipradent, thm
every phase curve of equation () s everywhere denset on the torus T2 (Fig. 168).
In 0ther wordls, suppose that every square of an irfinitc chewmboard B occupéad by a
single (identically placed) rabbit, and suppose a huniex shoots in a direcuoco whonse angle
of inclin atian with the kiney of the chessboard has an irratonal tangend. TOen the e
witl hit ot least one rabbit. (It is claar that if the targent of the angie of inclinamon
r:tional, then we can place sufficiently small rabbits on the chetshoard in mach 2 wdy that
the hunter will mis.)
LEMMA. Suppose thecircle ' (5 roloted through an aagle 2 which is imemmn sy oble
with 2n (¥ig. 189). Then the images

00 0+ o 0+ 2 O0+3a... (mod2x) (5)

of any point on the circle under repeated opplicotion of the rotation ferm & set whack ix
sverpwhere dense an the circle.

Preof. The theorem can be deduced from the sicucture of the closed sub-

A

Fig. 168 An everywhaedens: curve on the torus

G &
&.7a 0o
. o 4
e (2N
9'¢“ 8056

Fig. 169 Imags ofa pant of the ciccle under repcated a pplication of a1 0taiom ttrougd
the angle a.

T Aset A s s2id to be eoempahieye demse in a space B if these i at least ape patnt of 4 in an
arbitrarity asmall neighberhood of every point of B.
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groups of the line {(see Sec. 10), but we will prove it froin scraich, starting
[rom the simple combinatorial lactu thau tf' & + | odjects are placod 1n & cells,
then ot least one cell contdins more than one object ("' Dirichled's cell principle’).
Sujppose we divide the circle into k equal half-open intcrvals of length 22 /4.
I'hen sinong the firsl £ + | points of the sequence (5), there are two points
in the same half-open interval. Let these points be 0 + px and 6 + ¢
(p > ¢), and let s = p — 9. Then the angle of rotation sx differs (rom a
muhiple of 2r by less than 2x/k, and any two consecutive points of the
sequence

0, 06+sa, 0+ 24 @4+ 352,... (mod 2x) {6)

(Fig 170) are the same distance ¢ apart, where ¢ < 2xfk- Hence any ¢-
neighborhood of any point of S' contains points of the sequence (6),
provided only that we choose k large enough 10 make 2x/t < ¢.

Remark. We did not use the fact that x 1s incommensurable with 2&, but it
is obvious that the lemma is false if * ® commensurable with 2x.

Problem I. Find and eliminate the gap in the proofl of the theorem.
Prosf of the theorem. The solution of equation (4) is of the fotmn

0.(t) = 0,(0) + wit, 0,(¢) = 0,(0) + wat. (N
Suppose «, and w, are¢ rationally dependent, <o that

kyjwy, + kyw, = 0, ki 4+ k3 # 0.

Then the equations in 7

o\ T = 2nk, w; = =2k,

are compatible, and their solution gives the period of the clased phase curve
(7). On the other hand, suppose v, and «; are mationally independent.
Then w,fw; is an irrational number. Consider the consecutive points of
interscction ofthe phase curve (7) with the meridian 6, = 0 (mod 2a). The
latitudes of the points are

0, = 8,0 + 2::3_2/: (mod 2n)

1
(Ing. 171}. By the lemma, the set nf points of intersection s everywhere
denseon the mendian. Butifl L is a siraight lineinthe planeand it we draw
straight lines through a set of points everywherc dense in L. in a dircction
diffcrent [rom the direction of £, then the lines jerm a se« which is every-
where dense in the plane It follows thar the imaget

t Here[x] denotes the integral pare of «, i, .. L e latRest tRcger < z.
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Fig. 170 Thepomis @ + mae 4 - 1, 2,..,

6

‘Hﬂﬂﬂ?-.""jfnaaij
8

9& f

E,,?/X

Fig. 171  Reduction of the theurem Lo the lemma

oz X

0,0) = 0,0) - 2m| 2]
0,(¢) = 6,() - 2"[025:)]

of the phase curve (7) on the square @ € #, < 2r, 0 € §; < 2xis eveyy-
where dense. ‘Therelore the phase curve of equation (1), and heace of
cquation (2), is everywhere dense on the 1orus. ||

The following pruvlilems give a aumber of simple implications of Thacarern 23 cusade
the theory of ordinary dificrenual eqitatiens,
Prottewe {. Conader the sequence
L2488 L361,251,248,. ..

of first digits of conseculive powers of 2. Does a 7 ever 2pPRr in thy oDEI=r? More
gencrally, decs 2" begin with an arbitrary eembonanion of digis ?

Problen: 2. Prove \bat
sup (cos? -k sina/21) =2.

[ PR

Peodlem 3. Find all cloced subgroups of the group §' of cosnplex numbevs of moduhs 1.
Aar L, 8 { Y1),

24.4. The multidiraensional case. Suppuosc the eigenvalaes of equation
(1) in R?™ are all simple, of the lorm

jo= +iw), *iwz, . - -, F i
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/

Fig. 172 A phasccurve of the system 6 = {, ¢ = 2. 8 = v} isevaywhere deme an

the three-dimensional torus.

Then, arguing as in Sec. 24.2, we can show that the phase curves lie on the
m-timensional torus

T =8"% ... x 8§ ={(0,,....0,)mod2r} = R"/2"

and satisly the cquations

O = wy, 0;=w,..., o = @,

The numbers w,, . .. , W, are said to be rationally independent i

ke, + -+ + ko = O ki, ... keyintegral)
impliesk; = +++ =k, =0,
*Problem {. Prosc that if the frequencis @y, ..., (aa arc zabonally imdcpoadent, then

cvery phase curve o equation (i) Iying on the torus T™ & ovaywheredemeso—F~.

Cersllary. Suppose a horse makes jumPs (472, +/3) 0o 2 Aidd where com & planked io the
paltern of a sQuare grid (Fig. 172). Then the hofe is ¢ceriain 1o knock down at lean one
plant,

24.5. Uniform distribation. Thec everywhere dense curves considered
above have the remarkable property of being “‘uniformly distributed” o
the suriace of a torus. We now formulate the appropriaic theorem in the
simplest casc. & sequence of points 8;, 83, - - - on thecircle §' = {@enod 22}
is said o be watformly distnbuied i given any arc A c $?. the number
N{A, k) of points of the ““initial section” @, . . . , 6 of the sequence which
beiong to A is asymptotically proporiional to the length of 4, 1¢ ,if

lim N(A. k) _tAl

k- A 2n

* Prople 7. Preve that the soQuence ¢, @ + a, @ + 2a i unformly dotnboted o 5°
the angle @ is iIncommensurable with 2.

Cerollazy. The numbezs 2° bexin more often with 7 than with 8 Suppoe N, () of (be
numberns 1, 2,4, ..., 2* begin with 7, while Ni) begin with 8. Then thee banat

. N4
N

exists
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Problem &, Find 1his iimit and show that il js geeatee than (.

Conriment. 'Uhe initinl section of the seqQuence (Sec, 24,3, Prob. 1) indicales \han thete aev
fewer neveiss Uhin in due to the fact 1that the ierational Aumber (og,,2 = 0.3010. ... »
very clowe 10 the rationni ndtmber $/10,

25. The Case of Multiple Eigenvalues

The solution of a linear equation with constant coefficiems veduces ta
calculation of the matrix ¢ = ¢"'. The explicit form of ¢*' is given in Secs.
19.5and 20.Glor the case where the eigenvaluesof the matrix ave all distinct,
We now usc the Jordan normal form to find ¢*' in the case of muliple
cigenvalues,

25.1. Calculation of ¢/' where 4 is a Jordan block. One¢ way of cal-
culating ¢!, where 4 isa Jordan block

)
P

+

‘R — R",
’
was indicated in Sec. 14.9 (it will be recalled that the difleventiation
opcrator in thespace of quasi-polynomialset'p . (¢) has the matrix 4 in the
basis ¢, = '[!, 0 € k < &). In lact, accordingto Taylor’s fornula, the

matrix /{7 = ¢4% is \he matrix of the shift operator f1t) —~ f{s + ) in the
indicated Dhasis. Thus

l +
eMres j) 2_\ ’*u 'u

where the clements 4,,(s) o the matrix 4* are found by using the biaomial
thcorem and turn out to be quasi-polynomials in ¢ wilth exponents 2 of

degree less than 7.
Anether way of calculating e** is based en ihe lollowing

LEMMA, [f the linear operctors A, B: R* — R® commute, 50 that A8 = BA,
then 412 = %68,

Proof. C(Campare the lormal series
AZ B2
eﬂe8=(E+A +T+ -‘-)(E+B+§E+ )
=E£+ (A+ B) + HA° + 24B + B?) + ---,
P E+ {4+ 8 +A+ 8+ -
= E(A+ 8)+ YHA*+ AB + BA + B + ---,
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T'he series coincide if A% = KA, since ¢**7 & ¢%” for », y ¢ R. But then
e?¢® m ¢** 9 since the series are absolutely convergent. )

Suppose we represent A4 in the lorm
/l - ),!": + Ao

where

A=

isa niipotent Jorclan block. Since Af commutes with any oPraioe, we have

At AE #+ A)

P - Ar_&ir

= r

TIROREM.  The malrices ¢ and ¢ are given by

1t 2. (e = )
U Y .
A = i 2z ,2.;2 ,
] vt
|
' Wt e~ 1))
As - k
e — . L. : ) (1
. T !ell
l d 81'

Prouf. Since A operates on the basis ey, ..., e, like a shilt 0 «<e|

£, v - ¢y, A'acts like ashift hy & places and has the matrix
¢ .. |
N
0
But ¢*" = ¢¢*". where
2,2 nogga-
= F 4 At+£§!—+“'+%-———-—-u_”|); (4" = 0).

The calculations go through without change in the complex e
{(2eC A:C" - C)
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25.2. Implcations. Fornnula (1) immediately implies

COROLLARY |, let A: €' — C" bea linearoperator witheigenoalwms 4, - - - £y
of multiplicil v, . .., vy respectively. Then oy element of the marrix of the
ofierator ¢*', t & R (in any Axed basis) is a sum of guasi-polynomials i &, where the
Uth guasi-polynomiol has exponent Xy and is of dagree less than v,,

Proaf. Consider the matrix of the opcrator ¢! in the basisin which the
mairix of A has Jordan [orm. The 1heorem then follows from (1), since the
elements of the matrix of ¢*' inany other basisarclinear combinations (with
constant cocfficients) of the clements o the matrix of ¢*' in the indicated

basis. |
COROLLARY 2. Let 4 de a solution of the differentiol equation
X = Ax, x e C", A:C" - C°

Then every component @; of the veclor @ (in sty fixed basis) ic @ nom of guesi
polynomials in t, where the lth quasi-polynontial p ., has exponent A, and is of digree

fess than v, :
oty = X " pi(0).
=y

Progf. Merely note that ¢(t) = ¢*¢(0). }

coxoLLakY 3. Let A: R" — R"bea lineor operator with real cigeavalunres 1, of
multiplicity v, (I < { < &) and complex eigenvatues 2, + i, of saltidlecity u,
(1 £ < m). Then every element of the nualrix of e*' gand cvery ggmeproncat of the
solution of the equation X = Ax, x € R"is a sum of complex quasi-polyncumals writh
exPonexts )y, &, L iw,, where the degree of the quasi-polynomial with exponont ), ¢1
less than v, and that of the quaripolynomial with exponent &, £+ 103, & less Om p1y.

Proof. An immediate consequence of Corollaries | and 2. ]
The sum liguring in Corollary 3 can also be writien in the less convenient
form
[] m
o{t) = Y M pule) + ‘2.. (g (1) cos @y + 7;(t) sin o),
i= a
where p;. ¢, 74, are polynomials with real coefficients ol degree less than
Vi fae b vespectively. This representation lollows from the Eact that
Re ze'" = Re e”'(x + iy){cos wt + isin wt) = €'(x cos &X — ¥ sin )

iflz=x + 1y, L = 2 + i®.Moreover, itis clear from thesc fosmulas that if
the rcal parts of all the cigenvalucs are negative, then all the soluuons
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approath 0 as¢ — + co (3s must be the case, according 10 Seca, 22 and 23).

25.3. Appiications to aystems of higher-order equations. Writinga
systetn of higher.order equations as a system of first.order equations, we
reduce the problem 1o the problem coniidered above, which in tuen can be
s0lved by reducing the matrix to Jordan lorm. In praciice, however, it i3
often more convesient 1@ proceed dilferently. First of all, we note thar the
eigenvalues of the cquivalent first-ordce sysitem can be found without
writing down the mairix of the system. In €acy, for every cigenvalue & we
have an cigenvector and hence a solution @{¢) = ¢1/¢(0) of the equivalent
firseorder systermn, Bul then the original system has a solution of the form
(1) = ¢'§{0). Thus, substituting ¢ = ¢*'$ into the original system, we
see that the system hasa (nonzero) selution of the given lorm if and onlyif 2
satisfiesa certain algebraic equation, from which the cigenvalues i, can be
detertained. We can then losk for the solutions themseives in the form of

swias of quasi-polynomials with exponents 4; and undetexmined cocfh-
cicnlts.

ExamPle . Let
3‘"’ ' [2)

Subdtituling z = ¢4'f inlo (2). we el A% = "¢ At = |, A 230= 1, — 1, i —L
Thus eveey solution of (2) is of the form

x = C.e‘ + C;!" +C) cos ! 4 C;sin {.

Example 2. Ler
,f. = &3,

Substituting x = ¢*'{ into (3), we get A2&, = &, A% ; = £,. This syrcw of lincar equa-
ionsin &,, §; has a nentrivial selution if and only if .1* = 1. Hence evesy sobulion of (3)
i ol the form

Xy =C.¢‘ + G~ +Ci 058 + Cesn g,
X2 =‘.|£' +D;l"+0;¢ﬁf+onsinf.

which gives

Dyw=GC, Dy=C, »=-C, bD,=-C.

aller substuution invo (3).

Ezanple 3. Let

Al 28+ =0, (4
Substituung = = ¢2<C i nto (4), we gr:t

A — 28 4+ | =0, 2 = |, A,95.am=01 1, ), —L

Thus every selution of (4) s of the form

X = ([Cyt 4 C;)et + (Cat+ Calert.
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Problem {, ¥ind the Jordan normul form of the fourth-order mattia ¢ avespomding 10
equntion (¢4).

25.4. The case of a single equation of order n. In general, the
multiplicity ol the eigenvalues does not deterniine the sizes of the Jordan
blocks. ‘I'he situation becomes simpler f we are dealing with the linear
operator A corresponding to a single differential equation of order n:

™ =gyt oy e o, a, € C &)
‘Then Corollary 2 implies

GOROLLARY 4. Bver) solution of equation (5) is of the form

x
olt) =,X, e*hpi(e), (6)
where X, . .., A, arethe roots of the characteristic eguatron

AM=ad o 4, M

of mulliplicety' v, . . . , v respectively, and eack p, is a polynomial of degree less than
V;n

Proaf. Equation {5) has asolution of the form ¢*'¢{if and onlyif d is a root of
equation {7}. |

'Turning to the equivalent system of fisst-order equations

‘0 1

x =A%, A 1'-I . (8)

we get

COROLLARY 5. [f the operator A: C" — C* has a matrix of the form (8), thm to
eotry ergerwalue 1 of A there corresponds precisely one fordan block of size equal to the
multiplicity of A.

Proof-  According to (6), thereis a single eigendirection eovvesponding to
every A. In fact, let § be an eigenvector of the operator A. Then the first
compencent e*é , of the vector e*'§ & one of Lhe solutiors of (6). But then the
remaining components arc derivatives: & = A'&,. Hence 4 uniqudy
determines the direction of § To complete the proof, we noie ihat each
Jordan block has its own eigendirecuon. {§

Probdlem /. Is ¢very linear combination of quasi-Polyncxnials (6} a solution of eauation (5) ?
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25.5. Recurrent sequences. QOur study of the exponential ¢*' with a
continuous srgumeni { can easily be carricd over 1o the case of the expo-
nential A% with the discrele arguinent w, In pariicular, we can investigate
any recurren scquence drfined by a relation of the form

Xy = @ Xeey + "+ ¥ (9)
(lor example, thesequence 0, 1, 2, 5, 12, 29, . . . specified by the relation
x, = 2x,_, 4 x.. and the initial conditionxg = 0. x, = ).

COROLLARY 8,  Thenth term of the recurrent sequence defored by (9) depemis oo m 1ike
a sum

x = 3 itpn)

of quasi-polynomials in n, where A,, ..., }, are the eigenvalues of the matrix
torresponding to the sequence, of muliplicily vy, . . ., v, respectionly, and cack P, is a
polynomial of degree less than v,.

Pregf. Tirstwe nete that the marrix in question is the matrix of the operator

A:R* - Rtcarryingthe section,_ | = (x,_y, - - -, xa_ ¢} ol length & of our
sequence into the nextsection §, = {x,_,, 3 ..., x,) of length &:
ro 1 } rxlrl rxu-lvl
0 1
A{n-l - L'. . ={l°
0o 1
kag i az a' I "X‘_ 1, X‘

Itisimportant to note that the operator 4 does not depend on a. Hence x,
isone of the compenentsolthe vecter A&, where §is a constamt vector and
the matrix of A is of the form (5}). We now apply Corollary 5, icducing the
matrix of 4 to Jordan lorm.

In making the calculations, there s nO need either to write down the
matrix or reduce it to normal form. In lzct. any cigenvailue of the oparatoc
A correspends to a solution of equation (9) of the form x, = 4% Substituting
x, = 2" into (9), we find that 1 satisfies the equation

Ab=a, 2+ g,
which, asiseasilyverified, is just the char acteristic equation of thcoparator A.

Example 1. Fer the sequence 0, 1, 2, 5, 12, 29, . __ sscrespondin g w0 the rdation

Xq =bn-1 'i'xag}p tlo’
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we have 4t = 21 4+ 1, %,., = | £ /2. llence the sequences

g w1+ /Y a= () = Y

both unidy (10), nnd o do sll linear vunbjnaléona

= all + VU Fa(l - VY

of these secduences (and only s h linear comhinatios). Among heae combinasom, it =
emy 10 find the vine fur which xp = D, x4 = |. In facy, swlving the eQuators

q ber =0, Ve e =,

we find thal

L R4 L T o

Comment. Av 8§ — o0, 1he finit 1emm increases caponentially, while (he wramnd My de-
creasey exponentially. Therelore

L. V-

for large s, and in particular x,, ) fxe = | + +/3! This gives us very good appeuimnstiem
to v2:

Xael — Xy
V1 ataet = b,

Choosing xa = 0,1, 2,5,12,29. ..., we get
VIxlz2.1 127 Zogs
29 — 12

¢a_=_'2_5:_5 N, R L

These ure the same approsimations used 1o calculate 2 in ancient Uimes, aad «an be
nbained by expanding v2 in a continuasit fracijon Mortoner (1._ | — =) 34 B the bt
of all rational appreximaiions 10 ¥/27 with denoipination nal exceeding x,.

25.6. Small oscillations. In Scc. 254 we considered the case where to
cach roet ofthe charactenstic equation, regardless of it: muitiplicity, theve
correspends a single eigenvecior, namely the case of a single equation of
erder = We new censider the case (which,ina cenainsensc, is the opposite
of the on¢ jusi cited) where each root has a number of ¢igenvectors equal 1o
its muliiplicity. This is the case of small oscillanons of a corservatine
mechanical system.

Let U hea quadratic form in the Euclidean space R” given by a symmetiic
eperatar 4, i.c., la

U(x) = {(Ax, =), xeR* A:R*R*' 4 =4

where A’ denetesthetranspose of A, and consider the differential equation?
X = —grad U, (11)
t The vecior ficld grad U ks defiaed By 1the condition thar 41/{Z) = (grad U, §) for evaxy

vectar § e TR, wheee (-, -) deasics the Eudlidean sealar product. In (ocdwrownzal)
reciangular coordinaics, the lield grad U has coinpasienis <Uféx,, ..., cUlcxe
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thinking of {/ as the potential cnergy. In investigating (11}, it is useful 10
imagine a bead sliding down the graph afthe potcatial encrgy (sec Sce. 12).
Equanon (11} can also be writien in the lorm

” | -'4"

or as a syslem of 4 linear second-order equationa in the coordinstes of =
Following our general rule, we lock for a solution of the form @ = ¢''§.
'T'his gives

AehE = —AME, (A + ATE)¢E = O, det(d + 1*E) = 0.

It follows that A? has & rea) values (why ?), and corrapondingly thad 2 has
2n real or purely imaginary values. 1f these values are all diffevent, then
every solution of (1)) is a linear combination of exponentials If there are
muhiple roats, we encounter the problem of Jordan blocks.

THEORRM. If the quadratic form U i3 nondegenerate, ther cach eigemvaine A has &
nember of linearly \ndependent eigenvectors equal o its mulisplicity. Correspomdinply,
enery solution of equation (11) can be written as a sum of expomentietls:t

in

e(t) = Y &4, S eCn (12)
=1

Proof. The form U can be reduced 10 preincipal axes by making an orthogo-

nal wransiormation, i.c., there exists an orthonormal basis e,, .. ., e, in

which U becomes

l R
U(x)=-2a§xf, X =x8 + "' + xe.
A=
Since Uis nondegenceraite, none of the numbers a, vanishes. In theindicated
coordinates, equation (i1) becomes

'El = —ﬂl.l.'“ E! = —EIIIJ o f. = -d'xm

whether or not there are multiple roots.$ Thus our system decomgpases into
the direct preduct of n “pendulum equations.” Each of 1hese equations
(¥ = —ax) canbesolved at once. Infact,ifa > 0, thena = w? and

¥ = (C,c08 wt + Cysin wi,

! Lt s inwee:ingto note that Lagrange, who firstinvestiga d the equation of anall escilts-
tiong (11), initially made a mistake, thinking that "secular” eeems of the Corm a2 (or Isin ax
in the real case) wexe required in the case of muliipie roots, as in the carlier part ol thn
section.

1 Notethat we havemade emeniial use of the orthonormalily ol the baswe,, . .. . ¢ [Eche
hatis weze notorthonormal, the cormponenis of the vecioe grad § T aux? xumid mat egual coxy.
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Fig. 173  Level curve of 1he purential energy and directions of the charactoresisc oagil-
lations.

4T
If
——
N &
Fig. | 7¢  One of the Lissajous figure) with (6, = |, ey = 3.

while ifa < 0, thena = =« and
X = CICOSh W + CzSinh a = le’. + ’2¢—“.

1n particular, these lormulas immediately imply (i2). |

11 the l[erm Uis positive delinite, then the g, are all positive and the point x
cxecutes # independent oscillations (called ““normal modes™) along the »
mutually perpendicular directions e,, . . . , e, (Fig. 1 73). The numbers m,,
which satisfy the equation det{d — w?£) = 0, are callcd the davatistic
(or naturat) frequencies. The trajectory of the point x = ¢(¢) in R", where @
15 a selution of (11), lies in the parallelepiped ix,| € X,.1 £ & £ =, where
X, is the amplitude of the £&th characleristic oscillation. The parallclcpiped
reduces to a rectangle il n = 2.

Il the frequencies w, and w; are commensurable, the trajectory is a
closed curve, called a Lissajous figure (Fig. 173). However, if @, and &; are
incommensurable, the trajectory fills the whole rectangle demsely.

Problem I. Wraw Lisajous hgures lor w; =1, w; =3 and @, = 3,
w, =1L

Problem 2. Prove that one of the Lissajous figures with &, = 2e; is the
graph of the pelynomial

T,(x) = ces{narccos x)

of degrec a. called a Chebyshev polynomral

Problem 3. What de the trajectoriesx = @ () look like if & = x5 — 232
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Prodlem 4. For which Uis the equilibrium position x = 2 = 0 ofequation

(11) stable
(a) 1a Lyapunov’s sise; (b) asymplotically ?

26. More on Quasi-Polynomials

In solving lincar equations with constant coefficients, we have repearedly
encountered quasi-polyncmials We now explain the reason for this
phenomenon, and give some further applications of quasi-polynomials.

26.1. The apace of infinitely differentiable functions. I.e( £ be the
set of all complex-valued inlinitely differentiable functions defined on the
real line R. ‘I’he set # has the natural structure of a complex linear space,
smce

fhfzepv f.,L':E'E

obviously implies ¢, f, + ¢, /, € ¥

PDeimition.  The lunctions f, . . . ,f, € F ace said © be lincarly adpadsr if
they are linearly independent regarded as veciors ol the linear space £, i.c.,
ir

clfl+"‘+‘qj;:0 (C.,--.,C.GC)

implies¢;, = -~ =¢, =0.

Probles {. For what val ues of g and ff are the funcizons sin at and s n M lincady dependem ?
FPridlem 2. Prove 1hat the functions edst, .. . , eAd are lincarly independant if the numbers
J¢ are disumc,

lint. This [ollews from the existence of a linear equalion of ader s wath sabutions
ediey ., . edat (see Sec. 26.2).

The space F contains all quasi-polynomials

fly) =& E' et
t=0o

with exponent 4 and, more generally, all finite sums

£ ve— |

f{‘) =:2 et 2 Ctmt®) Ay # j'j (1)

=1 =0
of quasi-polynomials with different ¢exponents
Prodlen 3. Prove thar evary lunction which can be repsoented by a siem of the fosm (1)

has a unique representation of this isim. In otber words prove that & the sm= (1) 2araba
wdenticatly, ther every cogfficiont ¢, equals (0.

Mint For one pessible solution see the corollary below.
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26.2. The space of solulions of a linear equation,

THROREM,  The set X of all solutions of ihe lincar equation

DA R TE AL SR R SN (2)
15 un n-dimensional linear subspace of I

Proaf. Consider the operator B: ' — £ canying every function into its
derivative. The operator D is linear:

Doy +c1/7) = Ofy + c2Df,.
Let
Ama(D) m D" + a, D" + --- + a,E

be a polynomial it the operator D. Then 4 is a lincar operaior A: F — F.
The selutiens of equation (2) are just the elemenis of the kernel of 4, T so
that A" = Ker A. But the kernel ofa linear operator is a linear spaec, and
hence X is a linear space.

Nextwe show that X'is isomerphic to C*. Given any ¢ € X, we asmaate
with ¢ a sei of # numbers, namely the values of the hunciion @ and its first
n — 1 derivativesat the point ¢ = 0:

wo = (0(0), (D)), ..., (D" p){0)).
This gives a mapping
B: X - C", B(p:wo,

which is clearly linear. The image of B is the whole spase C*, since by the
existena theorem, there exists a solution ¢ € Xwith any giveninitial cond;-
wons @,. Mercever, the kernel of the mapping B consists of 1he single elc-
ment 0, since by the uniqueness thecerem, the initial conditions po = 0
uniquely determine the selution (@ = 0). Theretore Bisan oomarph ., ]

COROLLARY. Lel ji(, ..., ) de the roots of the characteristic egmatoom a(i) = O
of the differential equation (2), of maltiplicigy vy, - - ., v, 12spectinely Then every
solution of equation (2) has a unique representation of the fom {|) end every sem of
guasi-polynomials of the fam (1) sahisfies equation(2).

Proof.  ormula (1) gives a mapping ®: C* — F, associating a function f
with every sel of n ceefcients ¢,x. The mapping @ is lincar. Moicover the
image of ® contains the space X of all solutions of equation (2), ance
according to Sec. 25.4, every sslution of equation (?) can be writien in the

t \We already knew that all the solulions of equatien (2) are infinildy diffioennatie, e
bDelong 10 F (see Sec. 25.4)



178 Chap. 3 Linear Systetns

form (1). By the above theorem, the dimenaion of X equals 5. Bul a linear
mapping of the space C" onto a space X of she same ditnenson is an o-
morphisi. ‘I'licrelore @ esiablixhes an isomorphism between € andd X. 8

26.3. Invariance under shifts.

ynronks,  The space X of solutions of the diffevential equation (2) iz inverieat
ander shifls corrying the function ({) 1nlo p{t + 3).

Proof.  The shift ofa solutionisa solution, asin the casc of any autanomon
equation (Sec. 10,1).

The following are all examples of shilt.invariant subsPaces of (he space F:
Example i. The vne.dimensional space (ce?'},
Exanple 2, The space of Guasipolynommals (e*'p . (t)} of dimergion a.
Exanple 3. The plane |, cos wt + ¢, sinwt}.
Exanple 4. The space [Po(t) tos @t 4 ¢ 4(¢) un wat] of dincosion Za.

1t can be shown thal every finitedimensional shift-invariant subspace of
the space F is the space of solutions of some diflerential equation (2)_In
other words, such a subspace always decompaes into a direct sum of spaccs
of quasi-polynomials This explains the significance of quasi-polynomials
in the theory of linear diflerential equations with constant coethcients.

ITan cquation is invariant under some group of translonnations, then the
space of functions invariant uader the group will play an impotiantrole in
solving the equation. This is how various special functions arise in mathe-
matics. For example, there is a connection hetween the group of 1onations
of the sphere and the finite-dimensional spaces of lunctions an the sphere
(*‘spherical functions’') which are invariant under rotations.

¢ Problem . Find all liaiee.dionensional subspaces ol e space of sMond {uoxte=n o Abe
ciecle which are invaniant under retations of Lthe circle.

26.4. Historical remark. The theory of linear diflerential equations
with constant coefficients was created by Euler and Lagrange before the
discovery of thc Jordan normal form ofa matrix. They reasoned as follows :
Lct 1, and %, be two roots of the characteristic equation. The solutions
¢! and e** corresponding 1o these roots span a two-dimosional plane
e’ + c264¥} inthe space £ (Fig. 173). Suppose the equation changes (n
such away that 1, approaches 4,. Then £%** approaches * and the plane
degcnerates into alinelor 3, = 3. The quesiion now arises of whether the
Plane has a limiting position as 4, — A,. IlT 4, # 4,, we can choase ¢!,
¥ — ¢! rather than ¢**, &2 as the basis Buu

e‘)f _ eAu ~ (‘ll — l.)“’",
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oht

fe o™ c,te™)

Fig. 175 Limising pesition of the plane shanned bY ¢ 4 aiad ¢*¢ in 1he ypaat £,

and hence, as i;-+4,, the plane spanned by ¢4 and ¢4 - ¢, or equiva
lently the plane spanned by ¢* and (** — ¢¥)/{1; = 1,), goes into e
limiting plane spanned by ' and &’ *. Therefore it is nawural 10 expect
that the solutions of the limiting equation {with the double root 2; = 2,)
will lie in the limiting plane {c, ¢ + ¢¢*'}, where the fact that ¢ e™ +
c 4" is a solution of the orginal differential equation can be verified by
direct subsuitution. The same reasoning explains the appearance of the
sohwions #¢* (k < v) inthe case of a v-fold root.

The above argument can casily be made perfectly rigorous {for example,
with the help of the 1heorem on differentiable dependence of the solutions
on a parameler).

26.5. Nonhomogeneous equations. Givenalinearoperaior A:L, —L;,
by a sefution of the nonhomogeneous equation

Ax = f

with right-hand side f & meant any preimage x € L, ol the¢lement f € L,
(Fig. 176). Every solution of the nonhomogeneous equation is the sum of a
particularsolution x, and the general solution of the homogonooas equation
Ax - 0:

A =z + Ker A

The nonhomogeneous equation is solvable if and only if f bddongs 10 the
linear space Im A = A(L,) e L;.
I n particular, consider the differential squation

A 4o g g o = fO) 9
(a norhomogeneous linear equation of order n with cons\att coefficients).

THEOREM. If the ripht-hand side f(1) of egmatiom (3) i a sait of quapulymmals,
then 5015 every solution of eQuation (3).
Let

Q= {‘“p«'(‘)}
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ner 4 4

et —e =i

¢ a%

I-"-g-r'r—r'r'-
gy

iy

Fig. 176 Kevoel and image of an nperator A,

be the space of ail quasi-polynomials of degree less than m and exponent 4,
I'he lincar operator f3 (carrying every [unction into its derivative) carries
Q" into itsell, and hence the operator

A =0(D) =I)"+a|D"_1 4+ - +a.EZQ-—¢ Q'

is also a lincar operator from Q™ intoitself. YWe can now write cquation (3)
in theformAx = f,and 10 investigale the solvability of (3), we must find the
image Im A = A(Q¥) ol the mapping 4.

LEMMA 1. Suppose A is not a 700t of the characteristic equation, se thot (1) # 0.
Then A:- QM — Q™ 15 ar isormorphism.

Preof. The matrix of the operator 2: Q™ — QT in a svitable basts is the
Jordan block with 4 on the maindiagonal. Inthe same basis, the operatoe A
has a tnangular matrix with a(2) on the main diagonal. Hence

dee 4 = [a(A))™ # 0,
and 4isanisomorphism J

CGOROLLARY 1. Suppose 2 is not a root of the cAaracteristic equatmm, and sappose
egnation (3) has a yuasi-polyromial o) degree less than m and exponemt ). as its sig ki
hand side. Then equation (3) has a particular solution whichisalso a guasi-polyermol
of degree less than m and exporent J.

Progf. An immediate consequence of [.emma I.
LeMMA 2. Suppese ) is a rwot of the characteristic equaltion of nultiplicity v, so thal
a(z) = (z — 2)8(2), &(1) # 0.

Then
AQ’" —3 Q' -
Preef. Here

A =alD) = (D = JE)'S(D),
where (D) : Q7 — Q™is an isomorphism, by Lemma |. It cenmaims 10 show
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that () — AK)Q* = Q""" But the matrix of the operator ) — 2Ein the
l:asis

o,‘-*-e. Ok <m

is a nilpoieni Jordan block, 1e., £ — AF acts on the bavis like a shift:
[lHl“ el TR IR S

Hcace the operator (1) — JE)" actslike ashiftby v places and maps @~ onto
Q"

COROLLARY 2. Let } be a oot of multiplacily v of tAe chareckerista equotion
a(l) = 8, andlet f¢ QO be a quasi-polynomial of degree less thar k end cxponent A.
Then equation (3) has a selution ¢ € Q%" whick is a quasi-polynowial of degree less
than k + v and exponent A.

Proof. We necd onlysetm = & + vin Lemma2. |

Proof of the theorem. Lot T be the sci of all possible sums of quasi-poly-
nomials. Then I is an 1infinitc-dimcnsional subspace of the space F. By
Corollary 2, the itmage A(Z) of the opcrator

A=alD):E~Z

contains all quasi-polynomials. Hence A(Y) coincides with E, beinga linear
space. 'T'herelore equation (3) has a particular solution which is a sum of
quasi-polynomials. It remains only 16 add the gencral solution of the
homogenceus cquation, which, according to Sec. 25.4, is iself a sum of
quasi-pelynomials. ||

Remark 1. [f f = e'p (1), then equation (3) Aas a particular solution of the
Jorm e = t'¢*'g (1), In fact, there exists a particular solutiea in 1the form of
a quasi-polynomial of degree less than & + v. But the terms of degree les
than v satisly the homegeneous equation (set Sec 25.4) and henee can be
dropped.

Remark 2. Suppose equation (3) is real. Then we can look for a solutioo in
the lorm ofa real quasi-polynomial if 2 is real, and in the fotm

Ap(t)cos we + g8 )sin wi]
il 7 = & + ta» Here the solution can contain a sine lunction even in the
case where the right-hand side of (3) consists only of a cosine.

Prodlem {. Find \he form of the pacticulae solution of each of the following equatoas:
a) I + v =143 b 3£ x =3 Qxta=u-" BEitaxmidsmy;
)fF tz=0cEmt; flxtlxmit'unng ) A F 4 = 3" cost
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26.6. The method of complex mmplitudes. In the case of complex
roots, it i5 usually simpler to carry out the calculations as follows. Let
equation (3) be real, and represent f(t) as the rcal partof a complex func-
tion;

J{t) = Re F{t).

Let ®(t) be a complex solution of the cquation

a(D)O(t) = F(¢).

Then, taking real parw, we see that

a(D)p(t) = fe),
where @ = Re @ (since 0 = Re a). Thus to solve o nonkemogowoes linear
equation with yight-hand side f{t), we need only regard f(t) as the rml pot of a
complex function F(t), solve the equation with nght-hand side F(t), and take the real
partof the solution,

Example . Ler
J{t) = cos wt = Re ™.

The quasi-polynomial F{t) = ¢" is of degree 0, and hence we can look for a
solution ® of the form Cite™‘, where Cis a complex eonsiant (called the
complex amphitude) and v is the multiplicity of the root i, Therefoce

olt) = Re (Cre™").

1IfC = 7¢®®, then (i) = rt’cos{(wt + @). Thus the eomplex amplitude C
contains inlormation about both the amplitude rand the phase 6 of the real
solution.

Example 2. Consider the behaviorofa pendulum (or of any other oxalla-
tory linear system, for example a weight on a spring or an oscillaioy
electric circuit) under the action ofan external periodic force:

¥+ wic=M1), fU4) =cosvt = Ree'™

(Fig. 177). The characteristic equation J? + w? = O hasroots 2 = +ie
[fv? # ¢, we must look lor a particular solution of the form & = C'.
Substituting @ into the diflerential equation, we get the quanuty

b
C =
w? — v

P (4)

which can e writtep in trigonometric form as

C = r{v)e®", (3)
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Y

L. d
x

I'g. 177 A oscillatory gysiem under the action of an exiernal force /1) = cos vt

~

| 4
jk__ ” ‘
w v ! v

(77 v

Fig. 178 The amphiude and phase of forced omcillations of a friciiondess peadulum as
a Runction of the firequencyof the external for ce

According to (4}, the amplitude r and the phase & have the valucs shown i n
Fig. 178.1 The real part of ® equals r cos{y¢ + ). Hence the general sole
tion of the nonhomogeneous equation is of the form

x = rcos(vt + 8) + C,cos{wt + 0,),

where (', and @, are arbitrary constants.

‘Thus the oscitlations of a pendulum wnder the action of an externel foree comsist of
*forced oscillations” 1 cos(vt + B) with the frcquency of the extermel force and *'free
oscitlations’ with the natural frequency w. The dependence of theamplitude 5 of
the 1orced oscillations on the frequency of the external foroc has the
characteristic resenance shape: The nearer the fiequency of the external
Jorce to the natural (equency w, the more the cxternal force “rocks™ the
system. Tlis phenomenon of resonance, observed when the fiequency of the
external lorce coincides with the natural frequency of the oscillatory system,
is very important in the applications. For example, in all kinds of calcula-
tions involving engineering structures, care must be taken 10 see that the
natural (requencies of the structure arc not close to the frequencies of the
external forces which will be experienced by the structure. Odheresse even
a sinall force, acting over a long time interval, will be able to rock the
structure and destroy it.

t The choice 8 = —x (1ather than + g) for ¥y > & i8 justibod by Example S bdow
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Fig. 179 The sum of two harmoilcs with acighboring frequencics (beat) and s lwsut
in the case of rcsonanc¢e {'racking’™).

The phase 0ol the forced escillations undergoes a jump of — & as v paswes
through the resenance Mequency w. When vis near w, **beats’ are observed
(Fig. 179),1.c., the amplitude ofthe pendulum aliecnately waxes (when the
rclation of the phases of the pendulum and 1l extermnal force issuch that the
external force rocks the pendulutn, cotnmunicating energy (o it) and wancs
(when the relation beiween the phases changes in such a way that the
external force “‘brakes’ the pendulum). The claser the (‘equencics ¥ and w,
the more slowly the phase relauon changes and the larger the period of the
heats, As v = tw, the period of the beats approaches infinity, At resonance
(v = w) the phase relation is constantand the forced oscillations ¢can grow
indefinitely. Intact, lor v = @ we look for a paiticular solution of Ux form

x = Re(Cte'™"), (6)
in accordance witlh the general rule. Substwtng (6) into the difleiential
equation, we get (' = 1/2iw and hence

.
X = — 351N N
2w ’

s0 that the lorced oscillations grow: without limit (Fig. 179).
Example 3. Consider 1he pendulum with [riction:

X4 &+ wix = f10).

The correspending characiceristic equation

ekl 0t=0

has roots

i k k
Ay = —x t i = =g n = mz-—T

(Fig. 180). Suppose the coefficient of [riction &k 15 posiiive and small

(£* < 4w?), and let the external force be asollawony:

F) = cos vt = Re ™,
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Ilg‘w

Fg. 180 Ligenvalucs of the equaiion af the pend ulum with fnciion

- -6
¢ (.

(73] v w v

Fig. 181 ‘The amplitude and Phase of forced osciilations of a pendulum with Gction a3
a function af the freqquency of the exterual [o rce.

Il the coeflicient of Aicuion is differentfrom O, then tv cannot be a 100t of the
characternistic equation (since 4, , has a nonzero real part}. Hence we
should look lor a solution of the (orm

x = ReCe'™". (7)
Substitution of (7) into the difierential equation gives
€ = g (8)

w* — V¢ + oy
Suppuse we wiite Cin the tiigonometric form (3). Then, accordiag 10 {7),
the graphs of the amplitude 7 and phase 8 of the ferced ascillatioas, as
funcuons of the frequency v of the external lorce, have the appearance
shown in Fig. 181.
Adding 1he general soluton e *cos(S¥ + 6,} of the homogencours
cquation 1o the parucular solution, we get the general solution

x = rcos{vt + 0) + Ce” "'cos(SAU + 8))

ofthe nonhomogencous equation The second tenin on the rightapproachs
®as? —+ + o9, lcaving only the Iorced oscillavons x = rcaos(vr + ).
Comparing the behavior of the frictionless pendulum (Fig. [78) with its
behavior for pesitive values of the coefhicient of fricuon (Fig. [81), we find
that the effect ¢f small friction en the resonance & sweh thot the amplitde of the
osctllations at resonance do not become infinite, but rather tnerease to a defonie fouite
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vatve which is inversely praportconal to the coelficimt of friction. Ln fact, the func-
tion r{y) expressing the dependence of the amplicude of the steady.state
oscillations on the frequency of the external force has a shatply defined
maximurm near v = w(Fig. 181), and itiscleartrom (8) that the height of
this maximum increases like l/Aw as 4 decreases.

From a “physical” point of view, it is casy to predict the fact that the
amplitude of the steady-state lorced oscillations is finite, by ssmply calcu-
lating the encrgy balance. At large amplitudes, the encrgy loss due to fric-
tion is greater than the energy cummunicated to the pendulum by the
external lorce, and hence the amplitude will decrease until a regime 1s
cstablished in which the energy loss due tolriction equals the work done by
theexternal ferce. The size of the amplitude of the steadystate oscillavons
increcases in inverse proportion to the cocfhicient of [riction £ as £ — 0. The
phase shift & is always negative, i.c., lhr forced oscillotions almdys (ap the
external furce,

Prodlem {, Preve that evary salutien of a nonhemogeneous linear syiem of equatiosn
with censtant ceelficients and a right.hand side

= $t‘*‘§;ct-".

cqual 10 a sum of quasi-polynomials with vectar cocfficients, i itsedf a som of quao
poiYnomials with vector coefhcienis,

Probleni 2. Show thai every solution of a nonbhemogeneous linear recorrence relarion
Xg — (BiYa—g + *** + dava_e) =f(n)

with a right-hand side equal 10 a sum of Quas.Ppolynomials 1s itsell 2 sam of quEs-mdy-
nemials. Find a lormula lor the Beneral term of the sequonce 0, 2, 7, 18 41,88, ...
(x. = 2".- ] + ")-

26.7. Application to the calculation of weakly nonlinear oscilla-
tions. 1n studying the dependence of the solution of an equation on
parameters, we have to selve a nonhomogencous linear equation, namedly
the ‘‘equation of variations” (sce Sec. 9.3). In particular, if the ““unper
turbed’” system is lincar, the problem olten reduces to the soludon of a
linear equation with a right-hand side which is a sum of exponenaalks (or
trigonoinetric functions) or quasipolynomials

Problem 7. Find the d®endence of the paiod of oxillations of a penduhan doaibed by
the equation ¥ = —sinx on the amplitude 4. 2ssuming that 4 is spad

Ans. T = 2:t[1 + (4%16} + G(A*}] For example, if the angle of deviadon & 30°, the
period cxceeds the period of small escillations by 2 pacent

Solution, Consider the solution of the pendulum equation with initial candition (0} = A,
£(0) =0 as a hunction of 4. This finction is soootb, by the theoram on differentiable
depcndence on the inmal conditions. Expard mg the furction in Taslor so»s m 4 nexe



Sec. 26 More on Quasi- Polynomials 187

A =0, we gvt
xw Any(t) b A'xz(2) + Axy(1) + O(4%),
so that

2w A%, + A%, o Aok, + O(4%),
2 - A'| + Alf. + A““ + O(A‘}I
by = A A%y 4 A (x5 = jed) + O(4%).

The equation % sin x halds for every A, and hewce 2, 1,, £y satsfy che cQuations
4 = —x, 2, = ~m, By = —u; + 4"! (9)

The initial condition x{(0) = A4, 2(0) = 0 also hodds for every 4, and hence the CQuaticas
(9) satisty the Drllowing initial condilios st

xy(0) =1, %3(0) = x5(0) = 2,(0) = £;(0) = #,(0) = 0. (10)
Solving the first 1two equations (9) subject to the conditions (10), we pet

N, = codl, 2y =0,

so that x, satisfies the equation

By + xy = | cos¥y, x3(0) = 2,(0) = 0. (1)
Solving (11) by the miethed of coinplex amplitudes, say, we get

xy = a(oest — ¢o1 31) + Prsin,

where @ = 1192, # = If16.
T hus the clfect of the nonlincarity (sin ¥ # x) on the oscilla ions of the pendulum
reduces ¥ to the praience of an extra term A3z, + O(A4%):

x = A cost+ A a(cest — cos3t) + Brsinrt] 4+ O(A4*)

The period 7 of the cacillations is just the poinf at which x(s) bas i aarEbum, 3ad o
ncar 2r for small A. To find thia point, we use the condition 2(T) = 0:

A{-sin T+ A(B ~ a)sinT + 3asin 3T + BT ¢os T) + 0O(4%)] = 0. (12)
To solve (12) approximauly for small 4, let T = 2x 4+ a. This Eives dwe cquaton

sin w = A [2xf + Ols)] + O(42)

for ». By the implicit function theorem,

u = 2nf42 + O(A3),

i.e.,
_ A’ 2
T — 2n[| + 15 + oy,
where o(A?) — O(A?) since T{A) is even.

t Here it is useful to recall the bucket with the hole in ins boraom (soe the warning in Sec.
9.5). From the presenceolthe “secular™ term ¢ sin fin the Govrula for x;, we can d;aw oo
cond wusions whatsoever about the behavior ofthe pendulum as § —= o, O apyranan oo
is va lid only fer a finite time interval, and Lhe term O( A4) becomes large &or barge £ Towsous
selution of the cquatien for oscillationsofa pcadulurm acrually remains bonaded (by A) bor
allz, as is apparent from the law of conservation of encrgy.
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Problen 2, ! zvestiRate the detrendence of the penod T ol the sscallations on the amplitnde
A (ur the equation

X4 ordx 4-0xd | dx? =g,

’ in Hal 1
A T - ';I';[] | {n;;; S = | B -tI!.-'I‘P].
Probleat 3, 1Jeduce the mme result fram the explicit formule for the pevind (Sec. 12.7).

27. Nonautonomous Linear Equations

That part of the thoery of linear equations which does not depend on shili
invariance can easily be carried over 10 linear equations and sysiens with
variable coefficients.

27.1. Definition. By a (homogeneous) lirear equation with veriable coefh-
ctentst B meant an equation of the form

X = A()x, xeR", AQ):R" = R", (1)
where { belongs 10 anopen interval [ of thereal axis (possibly the whotc real
axis),

Geometrically the solutions of equation {1) are represented by imegral

curves in the strip / X R”®of exiended phase space (Fig. 182). As wsual, we
will assume that the function A(¢) is smooih.]

Example I. Consider the pendulum equation ¥ = —w?x. The licquency
w is determined by the lengih of the pendulum, and the oxdllauons of a

ﬂ'"i \j

=
P 1

Fig. 182 Imegral cusves ofa lincar equation.

t Here we assume that the cocfficien are real. The coenplex caxt is amnplcaly amabogares.
2 Ttis actually encugh 16 assume that A(¢) is continvos (22¢ Sec. 3261
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petidulum of variable length ane: described by the analogous equaiion
¥ o= —wd{f)x,

“I'his eqquation can be writien in the form {]):

i, m x;, 1 ¢ |
{.ez- -wi(n, '( —wl(t) o)

The swing (Fig. 183) is an example of a pendulum of vatiable kength. [n
lact, by varying the position of her cenier of gravity, the girl on the swing
can perindically vary the value ol 1he parameter w.

27.2. Existence of solutiens. One solution of equalion (I} s obviously
the null solution. IFor an arbitrary inival condition ({,, x5} €  x R*, the
exisicnce of a xolution defined in a neighborhood of 1the point 14 follows
lrom the general theorems of Chap. 2. For a nonlincar equatinn it may not
Le possibli to cxtend 1his solutien onto the whole interval £ (Fig. 184).
Elowever, lincar equations have the special featuce that none of their solu-
tions can hecome infinile in a Rnite time interval.

THEOREM.  firer) sofufion of equation (1) can be extended onto the wwhele intarol §.

The idea of the proofis thai |x! € Clx] lor a linear equation, and hence
the solution can grow no fasterthan £,

To give a rigorous prool, we Proceed as fibllows, say; noung hrst Lhal if |, b is a eom-
pact interval in J, then the nnrmt of the operator .1{¢} is bounded o [a, b):

L2 = C - Clab). (2)

o,

/ T
Fig. 183 The swing.

o |

g

e ey i iy i - -

4

“~

zd
Fig. 184 A yonextendable solutioriof the ¢quzazion £ = x2.

t W\ assume that soine Euclidean mietric has bec cbosenin R,
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¥ /
e G——— 4l il

a & ¢ & t

Yig. 185 A brion cttimauiof the growth afthe solution oa the inierval|e. s

kg, 186 F.ciension aofa solution up to ¢ = &,

LEMMA, Lef o(t) de a sofution §f equation (1) defined or tA¢ interoal (g, 2), here a € Lo € ¢t < B
(Fig. 1B5). Then »(1) satisfies the @ priori estimate

lo(e)| & ¢ ‘ool (9

Pro¢f. The estimnate is vbvious foc the null solution. Il e(tg) # 0, 1hen @(1) # ¢ by 1be
untqueacss theorem. let r(z) = |@(¢)|. Then the funcion L(z) = in 13 s dehmd for

1y € r € L Bur
20
L’F‘ 2C

beeause of (2), and heace

Lit) < Liy) + 20t — 1),

which tmplics (3). §

FPreof of the theorens | ct |xg|? = g 0. and cansider the comnpact set
Fa{,xia< 1< bixlt< 2830240

in extended phase space (Fig. 18G). By the extension theeven, the soloriom with dnial
condilien @ (f) = xe ¢an be extended forward u@ 10 the boundary of the cybader £
The beunla,y of F censists of tmo end faces (¢ ~ &, = §) and a larnal swixe #x/?
2Beict-2 The solution cannot leave F£' on the lateral surface, dnce

|@(t}| & Be2Ctt =

by the lemma. Hence 1he soluiion ean be extovdedic the right up 102 = &, Simila,ly,
it con be shown thai the solution can be extended 10 thelelt w2 10! — a Seotec ¢ and &
are arbitrary, the proof is now compicte. i

27.3. The space of solutions of equation (1). Let X be the set of all
solutions of equation (1), defincd on the wholc interval 1. Since solutions ate
just mappings ¢ : f — R? with vaiues in the inear phase space R®, theycan
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be added and muhiplied by numbees:

(cowy + capa)(t) = cow (1) + ca0,(8).

TgoRkm . Theset Xof afl solutions of equation (1) defned om an inievoal f is a
{tnear space.

Preaf. Qbvious, since

d . .
J;{cm. +09)) mo @ + ;0 =A@ + 49, = A9, + @aes)- B

THEOREM 2.  Thie lenear space X of solutions of a linear equation is isemevphic W
the phase space R" of the equation.

Froof. Leutel, and consider the mapping
8, X - R B9 = @lt)

assuciaung with every solution its value atime . The mapping B, is linear,
since the value of a sum of solutions equals the sum of their valuss. The
image of B, is the whole phase space R", since by the cxistcrwe theorem, for
every xo € R" there exists a solution ¢ with initial eondition 9{ly) = x¢
Finally, the kernel of 8, equals {0}, since the solution with initial eonditon
¢ (%) = 01sidenucally zero, by the uniqueness theorem- |j

Thus the mopping B, isanisomorphism of X onto R*. This & the basic resuluof
the theory of linear equations.

Definetion. By a fundamental sysiem of solutions of equation (1} meant any
basis of the linear solution space X.

Prodlem {. Find a fundamental sysiem of soluticns of equation (1) with

o |
A= (_l 0)'
Theorem 2 has a number of iminediate conrsequences:
COROLLARY 1. Fuery equation (1) has a fundamenta! system of = solutroms
L A FICIEICIF 22
COROLLARY 2.  Every solution of equation (1) is a Linsar combinatiom of shietaoms of
a fundamental system .

COROLLARY 3.  Any n + | solutions of equatian (§) are lincarly dipemdend.

COROLLARY 4. TRhe (fy. £1 ) -advanc emapPing
g =8,8""R 4 R"

o
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ﬂ” "_ﬂ

KR, 187 The lincar trarsf>rmation of phase space produced by adyaanag the solutans
ofa Yinear cquatiin froinig 10 ¢,.

{5 e tinear isomorphism (Fig. 187).

27.4. The Wronskian. lete, .. ., e, bea bawsin the phase space R°.
The choice of a basis fixes a unit of volume and an ozientation in R®, thereby
assigning a definite volume 10 every parallelepiped in phase space.

Definition. By the Wronskian (determirant) of a system of vector functions
() 7 - R®, k=1,...,n

ismeatnt the numerical function W: I — R whosc value at the point { equaks
the {orietted) volume of the parallelepiped spanned by the vecioes
o (8, . ..,0,()eR" Thus

@ t{t) .. @ (4)
wi) =| - = |

©r.(¢) i @anlt)
where

0:(t) = @ {Der + - + @0 ea

In particular, let the ¢, be solutions of equation (I). Their images under
the isomorphism 8, constructed above are vectors ¢,(t) € R® in phase
space. These veciots are lincarly dependent if and only if the Wionskian
vanishes at the point £ This implies

COROLLAKY 5. A system af solutions e, . . -, @, of equation (1} &1 fumdameato] if
and onty if its Wrenskian is nont 2210 at some poind.

COROLLARY 6.  [f the Wronskian of ¢ iystem of solutions of equaion (|) oamisho
al even one point, ther 1t vanishes identically for all ¢.

Problem 1. Can the Wronskiaa of a system of lioearly independent wecior [vachan o,
vanish dentically?

Problem 2. Prove that the Wronskian of a flundamental system of so utices i Proportaxn)
to the deicemninant of the (fa. ¢)-adv2nce mapping:

Wie) = det (g1) Wity).
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flinl. See Sec, 27.6.

27.5. The case of a single equation of order n. (lonuder the homo-
gencons linear ccjuation of order n
“"nl' + a’xh! 1) 4 v + (X = 0' {‘)

with voelficienis a;, = o0,(¢), ! € { which arein general variable.

Some sceond-order diflerential equations with variable coefficients are
encountered so often in the applicationsthat they have special names, and
their solutions have been studied and 1abulatedin noless detail than the sine
and cosine unclions. t

Example 1. Bessel's equution
1 I —_ V‘) ' -
? + tj + { 7 ) 0,
Example 2. Gauss® hypergeometric equation

(@ + B 410 —y @
S -1 ‘*W—Lﬁ' ®.

Lxample 3 Mathine's equstion
X+ (4 beost)® = 0.

W e coeuld wrilc cquation (4) as asystemofr first- order equations and then
apply the preceding consderations. However, we prefer 10 coneider the
space X of solutionsof cquation (4) directly. The space A'is a lincar space of
funciions @: / — R which is naturally isomorphic to the space of solutions
ol the equivalent system of » equations To specify the isomocphiem, we
assign each @ the vector functions

9 = (‘ﬂ,‘ﬁ';.--,q""_”)

made up ol the derivatives of ¢ :

COR®LULARY 7. The space X of solutions of equation (4} is tsomorphic do the phase
space R” of equafton (3}, where the isomorphasm can be sPaified &y acigring eack
@ € X the vecior

(0{to), P(f o) - .- > 0" o))

made up of the derivatives of ¢ at some point i q.

Dyfnttion. By a fundamental system of solutions of equation () B meant any
basis of thesolution space X.

t See e.g.. E. jabnke and F. Emde. Tables of Mipher Fancdoes. sixth editoa, revesed by
F. Wechs McGraw-Hill, New Yark (1360).
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Prableny 2. Firl o fimdamental system ol 10lutions of eQuauon (4) loc whe case where the
cocfReints & re constant, eg., for # + ox = Q.

Ans, (1"}, 0 € r < v, where A i a root of multipheuy v of 1he characicrnac tquata,
la the cani of complex rosn 4 = g £ kv, we Must change ' 10 ¢* cos e, ¢* w0 .
Ly barticular, for 2 4 ex = 0 we have

coa®wl,sinad il awm >0,

cosh al, sinh af :
ar "', ;"' i a a 0,
(N} il a=0

Definition. By (he Wranskian of a system of numerical functions
e(t): IR, k=1,...,n

is meant the uutnerical function W: I — R whose value atthe poini/equaks

o)) elh)
wiy =| 9@ @

Ui O ISR i (4

In other words, W is just the Wronskian of the system of vector functions
@.(t): 1 = R" obuained from the g, in the usual way:

wi(t) = (@), @u(t), .. ., @i" V1)), k=1L...,n

Everything said abeut the Wronskian of a system of vector solutions of
cquation (1) carries over without change to the Wronskian of a system of
solutions of equation (4). In particular, we have

COROLLARY B. [ the Wronskian of asystem of solutwons of equanoa (4) pamiskes at
even are point, then it vanishes identically.

Probiem 2. Suppese the \Wronskian of two {unctions vanihes at the point £y. Docs it follow
that the Wrenskian vanishes identically?

COROLLARY Q. {/the Wranskian of a system of solutioni of equation {4) ammsho at
exen one poinl, then the solutione are lincarly dependent,

Problem 3. Suppecc the Wranskian 6f two functions vanishes idenacally Does it Glfow
that the functions are lincarly dependent?

COROLLARY |@. A stem of solutions @, . - . , @, of equation (1) is_famdconeral
if and only tf its Wronskian is Ronzere at same Poind.

Exantple 4. Consider the system of functious €', ... , &*~. These func-
tions form 2 lundamental system of solutions of 2 lincar equaton of 1be
jerm (4) (which one?). Therelore they are linearly independesu, so bhat
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their Wronskian is nonzero. Bud this determinant equals

'.hf D ",J I ¥ i & I_
wa | A0 A | B A
’:T-l‘hl - )':-ltld A"-’ e ).:-l

COROLLARY 11, The Vandermonde determinant

- I 5 EE -
Al ¥
is nonzero tf the mumbers )y are distinct.

fixample 5. The pendulum equation £ + w3 = 0 has cos ¥, sin e as a
fundamental system of solutions. The Wronskian
cns ol sin axX

W a . = (W
—wsn a¥ w cos wl

is constant. This is hardly surprising, since the phase flow of the pendulum
equation preserves area (sce Sec. 16.4).

27.6. Liouville’s theorem. We now examinec how the volume of fgures
in phase space changes in the general case under the action of the L1ansfor
mation g;, during the time from £, to ¢

THEOREM (Liouville). The Wrorskian of a system of solutioas of equation (1)
satiSfies the differsntial equation

W = alv,  a(t) = Tr A(D), 3)
inpolving the trace of the operator A(t).

It follows from the theorem, which we will prove ina mooent, that

-

W(e) = exp {j’;a(t) dr}wu.,), da g, = cxp { J“.m a}. (6)

Inlact, we cancasilysolve equation (3), obtaining

’ 2
ol = adt, In W —In W’ozj a(t) dt.
o
Incidentally, lormula (6) again shows that the Wronskian of a sysicm of

selutiens either vanishes identically er else dees not vanish at all.

Prodlern I. Find the volume of the image of the unit cube 0 5 x4, 5 8.1 = 1, 2, 3, aoder the
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Fig 188 Action of the phase flow on the baratlelepiped |, spanned by a fisvdasewal

syitem of salutions,

actiop of the transformatie:t during time ¢ of the phase Aow of the system

f.—le—X3—a-X’.
Ry = 2. + x2 + £y,
b 3 X4 Xa K.

Ans, W(t) = ' W(0) = ¢, since Tr 4 = 2,

The idea of the prool of Liouville’s theorem is (e following. 8 the cocf
cients are constant, the theoretn reduces (o Liouville's formula proved in
Sec. 16:4. “Freezing" the coefficients A(t), i.e_, equating them to their valucs
atsome fixed instant of ume r, wecan conviace ouisclves of the validity of
equation (5) for arbitrary t.

Proef of Lisueille's thavrem. Let
;: +4, B . R=
be the (r, v + A).advan cc mapping (Fig. 188), where A is small. Tlus bncar vamfaoa-

tiea of phase snace carries the valie of any solution e of equauon (1) at the tane ¥ mio
its value aL the sime v + A Accerding o (1),

oir + ) = olv) + A(Ve(1)d + 6(3),
i,
g¢*s = E + 3A(x) + o(A).

Therdore, accarding 10 Sec. 16.}, the coeflicient of volume expansicn andet the Fans
formaven g * ¢ equals

det 27°* = | + Ae + o(8),

where a = Tr 4. But W(¢) is h e volume ol the parailclepiped [k spatncd by the valoes
of our system of solutions & the ume t, and Ure Uansiormation g;° * earsies these values
into the values of the same <ystem of solutions 3t the time 74 4. Tde parallclepipexd
IT,.a spamed by the new value: has volume W(t 3+ A). Therelore

W(e+8) = det (278 W(e) = [1 + a{n)d + o(3)]1M(2),

which implics (5). J

It follows om Liouville’s theerem that the Wronskian of the sysiem of
solutions of equation (4) equals
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a 4

I(t) = exp {— j’ a{r) dr} BV (ty)-

Here the appearance of the minus sign stems irom the fact that in writing
(4) in the form ol a systeen (1), we tnust transpose a,x1'* ' to the right-hand
side. ‘I'he matrix of the resulting system is

o 1
. o
=f, " =y
with —=ga, as the only nongero element on its main diagonal.

Example 1. In the case of the swing, with equatinn

the equilibrium posttion x = X = O canriot be asympiotically stable for aly ehsize of
S(8). In 1act, consider any basis §, # in the plane R? of the iniual conditinns
(Fig. 189). Suability meansthatg, § — 0,g ¢ — O, in which case }¥ () — 0
for the onrresponding fundamental system. But (7) is equivalent w0 the
system

{i’. = X),
% = =f{)x,,

with matrix

(1)

Since It .4 = 0.1t follows that () = const,conuary o V¥ — 0.

Problem 2. Cenaider the swing with friciion

X 4+ aln)g + wilt)x = 0.

Shew that asymptoiic stability is impoasible i the coeffwcieni of friction is organve. i c.,
R?

[
g
e

£, ¢

Fig. 1839 Tlie phasc flow of an asymptetically stable linear system.
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il ale) .- ORr it s, Isit true that the cquilibrium pontion (0, 9) is always stable o the
voeflicient of friction in pesitive?
Definition.  lly the diverence of a vecior field v in the Fuclidean space R®
with reclangular ¢noordinates x, 3s meant the lunction

\ Ou;

divv e g‘l %

L4

In particular, for a finear vector field v(x) = Az, the divergence 15 Just she trace of
the operator A

div /Ix = Tr A,

The divergence of a vertor field determines the rate of volume expansion
due 10 the corresponding phase low.

Leu/) be a domainin the Euclidean phase space of the (not necessarily
linear) equation x = v(x), let £)(¢) denote the image of D undertheaction
of the phase flow, and let ¥{¢) denote the volume of the domain D(t).

2Problem 3. Prove the lollowing strenger version of Liouville's thorrem:

av

—_— =J div vdx
dt Dit)

(Fig. 196).

CoROLLARY |. If div v = 0, then the phase flow preserves the oobume of awy

demacn.
Such a phase flow can be thought of as the Ilow of an incompeessible

“phase Nuid”’ in phase space.

COROLLARY 2.  The phase flow of Hamilton's equations
¢4l . d44

Fig. 190 The phase flew ol a vector ficld of divergence zero pseserves area.
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Preof.  Merely note that
ALY Q4
- w 0.

(3?13/’1 0P ‘th) ’
This fact plays a key role in statistical physics.

di\'v - ‘
dm )

28. Linear Equations with Periodic Caeficients

The theory ol lincar equations with periodic coeflicients shows how to
‘“‘pump up’ a swing and explains why the upper equilibrium position of a
pcadulum, which is usually unstable, becomes siable if the point of sispen-
sion of the pendulutn executes sufficiently rapid oscillations in the vertical
direction.

28.1. The period-advance mapping. Consider the differential equa-
QoD

% = vi(x, 1), vix, 4+ 1) = v(x, 1), x € R", (1)
whose right-hand side depends periodically on ume (Fig. 191).

Example /. The motion of a pendulum with periodically varyung para-
tmeters (for ¢xample, the motion of a swing) is described by a system of
equations of the:orm (]):

#, = xs
{ x: _ —z-m’{!}xi. w(t + T) = w(t)- (2)
We will assume that all the :oluions of equation (l) ean be extended
indclinitely. Thisis certainly true ler the linecar equations in which we are
paniicularly interested.
The periodicity of the right-hand side of (1) leads to a numbser of special
properties of the corresponding phase flow-

=
=
L
putia
=
==

—
-
—=
-
—

LA R

"v||

g J or
12 191 The extended phase space of an cquauon with panodic coefficients.
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LeMMA | The (1, 13)-advonce mapping £): R® = R* of phase space does nei
change when botht [ andty are increased by the period T of the right-hand sede of (1).

Preof. We m -l show that the shift ¢ (t) = @(t + T) of a solution of ¢{s)
Ly the time T isitself a solution. Buta shifiol the extended phase space by T
along the time axis carvies the direction &eld of eQuation (1) into itseil (Fig.
191). ‘Thercfore an integral curve of (1) shified by T is siill everywhere
tangential to the direction Hield, and heace remains an integral curve It
follows that

3+ 7

7]
&giir =g, 1

In pariicular, consider the transformation gj produced by the phase
Aow during one period T. This “period-advance’”’ mapping, which we
denote by

A=gl, R R"
(Fig. 192), will play an important role in the considerations 1hat follow.

Example 2. For the systems

{ X, = Xj, { X, = Xx,,

Xy = —x,, Ay = —=x,,

which can be regarded as periodic with any period T, the mapping 4 « a
rotation and a hyperbslic rotation respectively.

LEMMA 2. The transformations g% form a gyowp

&7 = A,

and moreover

&' " = &gy

Proof. By Lcemma |,

T45 _ L%
Lt " = %o

tig. 192 T'he pcciod-advance mapping.
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and henee

PO R L .V 3
Settings = 7, we gel

a0y

)
and henee g7 = A" by induction. |

Aght

‘I'o every property of the solutions of cquation (1) there corresponds an
analegous property of the peried-advance mapping A.

TIHEGREM.

1) Apoint xg & afixed point of the mapping A(Axg = x;) if and enly if the 1elutren
weth inttral condition %(0) = % 5 periodic w:elh pesiod T.

2) A periodic solution x{t) ir stable in { japuree's sowse (arympletically s1able) if
and only tf the fixed potn t g af the mapping Aus stable tn Lyapunov's sense (asymptots
cally siadle) ¢

3)  4fthe system (1) is linear, i.a., Yy v(%,t) = v(€Ix isaitnear function of %, then
the mapping A is linear.

1) {f, moreover, the trace of the linear operator V(1) vanishes, i hen the mappiag A
conserves volume: det A m 1,

Prosf.  Asscrtiens |) and 2) fellew [rom the conditiongg ** = g4 and fiom
the centinuous dependence of the sclution on the inilial conditions in the
interval [0, 7). Assertion 3) follows om the fact thai a sum of solutions of a
linear system is itsell a solution, while assertion ) follows Irom L.iouville’s

theerem. |

28.2. Stability conditions. We now apply the above thecorem to the
mapping 4 of the phase plane (x,, x;) onto itsell corresponding to the )=
tern (2). Since the system (2) is linear and the trace of the matrix of i
right-hand side vanishes, we have the lollowing

COROLLARY, The mapping A is linear and preserves arma {(det A = 1). The xull
solution of the sysiem of equations (2) is stable tf andonly if the mappeng A is stable.

Problem {. Prove that a ietation of the planc & a stable niapping, whide a bhyperbuolac
1olation is unstable.

W e now make a more detailed study of linear mappings of the planc ocato
iseil which preserve area.

t A fixcd peint x5 of the mapping .4 is said 10 be dable i Lyeprwog’s sne dY ¢ > 0385 > 0
such that |x — xg| < & implies l4*x — {*xp) <2 iorallz = 1,2,.._ and aspugiatioally
stebleif A"s — drxy —Casn — co.
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frd,»2

Fig. 193 Eigenvalues of the period-advance mapping.

TILLOREM. Lot A bde a linear area-presevving mopping of the planc omiv tisdf
{det A =1). Then the mapping Ais siable if |Tr A < 2 and unstableif |Tr Al >2.

Progf. Let 4, and 4, be the cigenvalues of A, satisfying the characteristic
equation

32 —ATrd4 4+ 1 =0
with real coefhcients
Ay + 4, = Ir A, £14, = det A = |I.

Theroots 4, and 4, of the characteristic equation are real if [Tr A| > 2and
complex conjugates if [Tr A] < 2 (Fig. 193). In the fust case, onc of the
cigenvalues has absolute value greater than | and the other absolute value
less than 1, so that .4 is a hyperbolic rotation and hence unstable. In the
second case, the eigenvalues lie an the unit circle:

Aa:(z e i;z. -_— IJ'[I - l.

Hence the mapping 4 & cquivalentto arotation through the angle x (where
Ay ; = e*®),1.c., 4 isa rotation for a suitable choice of a Euclidean ¢ truc
ture in the plane {why ?) and hence stable, ]

Thus 1the whole question of thce stability of the null solution of the system
{2) reduces e calculating the trace of the matr x 4. Unforwnately, the
tracccan be calculated explicitly only inspecial cases The trace can always
be eund appioximately by numerical integration of the equation in the
interval 8 < ¢ < 7. In the important case where w({t) is alewosa constant,
some simple general censiderations arc useful.
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28.3. Strongly stable systems. Consider a linear sysiem (1) with a
two-dimensinnal phase space (i.c., with a = 2), Then (1) is said 10 be a
Hamaltunian system if the divergence of v vanishes. Asnoted above, the phase
flow of a i lamiltonian system conscivesarea; det A = |,

Definition. 'I'he null selution of a linear Hamilionian systemn is said to be
strongly stable ifit is stalleand if the null solution ofevery neighborning linear
Hamiltenian systern is also stable,

The preceding two theoremns now imply the (ollowing
COROLLARY,  The null solution is strongly stable if | Tr A < 2,

Progf. 1£1'Tr Al < 2, then|1'r Al < 2for the mapping)i corresponding 1o
any system “sufficiently near” the original system. ||

We now apply this result to a system with almost constant coefficients.
Censider, lsr example, the equation

¥ = o'l + (), &l (3)

where a(t +2n) = at), say a(!) = cost (a pendulum whose frequency oscil-
lates about w with small amplitude and period 2x).1 Every system (3) can
be represented by a point in the plane of the pasameteis @2 and ¢ (Fig. E94).
Obviously the stable systerns with |17 4l < 2 form an open set in the plane
(w, €) and the same is true of the unstable systems with |Tr A] > 2, while
the ‘““beundary of instability” is the set with equation [TrA| = 2.
THEORFM.  Fuery point of the w-ax's, except the points

A

— =~ k — 0, I, 2, o

Y2
withntegral and half<integral coordinates, corresponds lo a strongly stable systrm (3) .

AL

Fig. 194 Theregion of instability (or palametric resonanee,

t In the case a(2) = ees s, equatien (3) is called Mathien's sguation.
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Thus the sct of unstable systerns can appreach the w-axis only at the
points @ = /2. In other words, aswingcan bc* pumpced vp’’ by making a
small pcriodic change in its length only in the case where the penod of
change of the length is near anintegral numberofhalf-periods of the natusal
frcquency, aresult evetybody knows from experiment.

The proof of the theoremis based on the fact that for& = 0, equation (3}
has constant cocfficients and can easily be solved.

Preblene i, Find the matrix of the peried-advance mapping A for the systan (I} with
¢ = Q0 in the basis x, £.

Solution The general solution i3
z=0C, cos et ¥+ C; sin !,

so 1hat

x = O8% N, = —wsin «f

is the particular solution satisfying rhe initial cendition x = 1, & = 0, while
1l 3
X = -Q;smm, X = cos g

13 the particular sokurion satisfYing the initial condition xr = 0, £ — 1.
Ars

( cos 2ney - sin 2
A= w
— ¢ sen 2w cet 2nw

Proof ef the theorem. Note that |Tr A| = |2 cos 2rw] < 2 if w # &f2,
k=01,... B

A more carcful analysist shows that quite genesally (and, in particular,
‘or a{¢) = cost), the region of instability (the shaded region in Fig 194)
appreaches the w-axis ncar the points w = &2, k =1, 2, ... Thus for
certain ratios of the frequency of the change of parametess to the natural
frequency of the swing (w = &2, £ = 1, 2,...), the lower equilibrium
position of the idealized swingisunstable,anditcan be* pumped up” by an
arbitrarily small periodic change of length. This phenomenon s known as
“paramectric rcsonance.” The characteristic feature of paramernc
resenance is that it becerncs strongest when thefrequency v of change of the
paramctars (v = linequation {3})istwice as large as the natural frequency
w.

Remark.  1n theory, parametric resonance is obscrved for infinitdy many
ratios w/v ~ &2, £k = 1, 2,..., but the only cases usually obsaved in
practice are thosc where k issmall (§ = 1, 2, less often 3). The pointis that

* For example, sac Problens 2 solved bdow,
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a ) For large & the region of inslability approaches the w-axis witha narrow
tlongue, and for the resonance frequency w we have very narrow limia
(~¢&" for a smooth Runction aff) in (3)).
b) The instability itsclf is weak for large &, since the quantity |Tr A) = 2
issmall and the ¢igenvalues are near | for large &.
¢) Even a slight amonnt of friction leads to the presence of 8 minimum
value ¢, of the amplitude necessary for the occurrence of kth-order
parametric resonance, with the oscillations being damped out for smaller
values of ¢, Moreover, ¢, grows rapidly with & (Fig, 195).

ltshould also be noled that x becomes arbitrarily large for equadion (3) in
the casc of instability. [n actual systenss, the oscillations atiains only a inite
amplitude, since the lincarized cquation (3) itscl(becomea meaningless for
large s and we rnust 1ake account of nonlinear eRects.

Problem 2. Find he form of the eegion of instability in the plane (ea §) foc the sysiem
deacribed by the equation

R = —fl)x, (4)
where

wte 0K <n,
ﬂ')=1w £, ®N!<2m ¢« Ly

fit + 2n) = fie).
Sefution. It BHllows fim the salution of Problem | that 4 ~ 4, 4;, whar

" |
i —
A, =( ¥ ] 6 " CORMON, Sy = SnEen, 0, =& te.

=ttty
Hente the boundary of the zene of instability has the equation
|TrA| = [2(.(1 (:'sz + ::,—’f) :ml 2, {3

Since € € I, we have

W w+s |
W9 w— ¢

I

A b

Fig. 193  Inllucnce of slight friction on the region of instability.
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Let A be such that

Y+ % w200 4 9).
[TTH W,

'I'ben an emay calculatiom gives

5_;; + 00 € I ()

Using the formulas

A=

2¢)¢y = con 2ns + @08 2rw,

255, = C082%¢ — cos 2Rw,

we rewrile equation (5) in the form

—A80c0a2t + (2 + Alcon 2ney = $2

or

cot 2nw = %C%a_@ . {72

0ot T = =24 2ERINE, )

In the firat case cos 28w = |, and hencewe wnite co w= & + 2. ol € |,
cos 27w = cos2ma = | — 2mte? + O(s4).
Thus, rewciting (7) as
A
=] — —

003 27w m (' cos 2’!3),
we have
2r30% + O(e*) = An3ad + O(s*). (8)
Substituting (6) inte (8), we finally get
a = d;‘_z + o(6?),

w
ie,
wmk 4 ‘{- + ofe?)
(Fig 196). Solving (7) in the same way, we get

w=k+yt aEy o

€|

_

¥ig. 196 The cegion of instability éor cquaden (4).
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fvoblom 3 Can the upser tusually umatable) eQuilibriurn paitvn of a peadubum becane
stable (f the jroirn of nuspension cacillnies in the sertical direction?

Ans, ‘The upper equilibrium position becomes siable for sufficiently raped oscillatyorm
of the o of mmpension.

Solutian, Lt { be the lengih of the pendulum and ¢ € { the samplitude of U oacdlahons
of the poiiit of auspension, Let the period of the oscillations of 1he pofoe of uspeason be
2r, where the acceleration of the point of suspencon s constant and equal © +¢ during
every half-peeiod (then ¢ 80/23). The equation of molion can be wrilien o the form
o (w 4 a'lx

whete the sign change afier tu! tme ¢ and w? = g}, &t = ¢fl. Il the amcllaboos of the
point of susperoion are sufficiently rapid. then a? > ¢, where ot = Baffx?. As i the
preceding problenh we have A = A, 41, where

oo by At isinhif
A, = ) A =ad + w?
Asinh it cosh 4t

and

cos fAr ‘%sinﬂf
Ax - . "i = g2 w.!.
—flsinr cos {2

Henee the stability cendition [Te A < 2 1akes the foro

2 cosh kT cos {dr + (& - ?) sinh 41 sinﬁr[ < 2. (9

\Ye new shaw that this candiion holds for sufRdently rapid osciliatons of the poim
of suspension, ic., lor ¢ > £ (2 € 1). Introduang dimeasiones vaziables ¢ and ¢ soch
that

T.agl, fauran,
{ €

we. have

kt = 20/ T 4, 1 =240evT — 4,

£ 0 B | — p*
G- = = 1+#1=2p‘+ﬂfﬂ']‘-

‘Therefore the exparsions

coshkt = 1 + 4201 + u?) + 2 + -7,
cos Ot = | — de3{l — pd) 4 34 + -,

%
(ﬁ —g) siah kv sin Qv = 16633 + .-

arc valid for small ¢ and ¢ with accuiacy O(s* + o®). Thus the siabstity conditon (9)
becomes

E{I —1ﬁp+‘Tﬁr+sﬁg=+ } + 16ety? < 2.
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MNeglecting stnall quantities of higher order, we find that

" Jg'

1r

¢ . 2e

¢ Y

This ¢ondition can be weitten in whe forn
! -~ {

N La'a S:O.?lll.-;.

wheee A o 127 is the frequencey of oscillation of the pomi of suspevaamn. For cxamplr,
if the lengih of the pendulutn isd - 20 ¢ and the point of suspension awtiies aaila-
tinns of ansplitudeas | cmn. then & 02165 v BN .20 cps, [ n particalay, the wppey
cquilibriuen pousition b sable il the focquency o carillation of 1he point of Anproes
exrevds 37, say.

29. Variation of Constants

The following mcihad is oflen uscful in investigaling cquatois near
“unperturbed’’ cquations that have alrcady been studied. Let ¢ be a first
integral of thc unperturbed cquation. Then ¢ is no longer a first inskcgral of
the neighboring *perturbed” cquations. Hnwever, it is oftem passible to
recognize (cxactly or approximately) how the values c{¢(¢)) vary with time,
where @ is the solution of the unperturbed equation. In particular, suppnse
the original equation is linear and homogeneous, while the perturbed
equation is nonhomogeneous. Then this meihod Ieads 10 an explicit fosmula
{or the solution, where, because of the lincarity, the perturlativon need not
satisly any *“smallness’™ requirement.

We Legin by noting that the particularly simple nonhotmogencos lincar
equation

x = f(1), x e R", tel, (1)
corresponding to the “simplcst’” homogeneowus equation
x =9 2)

can be solved by quadratures:

@(t) = () + [ f(x) or. (3)
to

29.1. The general case. More gencially, consider the nonbamogeneons

lincar equation

x = A()x + h(), xeR", (e, (4)
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Fig. 197 The ccordinatea of the paint € are fint integraks of 1bhe horaggemmma oqus 1o .

corresponding to the homogeneous equation

Suppose we know how to solve (5) and x = ¢(?) isitssolution. Then in the
extended phase space we use coordinates rectifying the integral curves of
(5),0.e., the point (¢(¢), 13 ts assigned the coordinates c = @{tg) and 7 (Fig
197). Equatien (5) takes the particularly simple form (2) in thc new
coordinates, and we can go over L the reciifying coordinates by making a
transiormation lincar in x. Hencethe nonhomogeneous equation (4) takes
the particularly simple ferm (1) in the new coordinates, and can casily be
solved.

29.2. Solution of equation (4), Suppose we look for a solution of the
nonhemegenesus equation (4) of the form

o(f) = g'c(t)y, iR, (6)

where g": R" -+ R" is the linear (t5, t }advanee mapping for the homo
gencous vquation (5). Diflerentiating (6) with respect 10 ¢, we get

$=8'c +g'c=Ag'c +g'¢ = Ap + g'c,

which gives

g'c =h()

after substitution into (4). This proves the following

THEOREM. Formula(6) gives the solution of equation (4) if end only if ¢ sz ShS the
egualion

¢ = £(0), (7
where £{2) = (g") ~'h(1).
COROLLARY. The solution of the nonlinesr equation (4) with mubel ecmdtion
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¢(lo) = € is given by

’
pt) = x'(c + I (27" "hs) dt)-

o
Praof. Apply fortnula (3) 10 equatian {?), which i of the particularly
simple form (1), |

Remark. In coordinate form the thecorem gocs as follows: Ginew g funda-

mental system of solutions of the homogencows equation (5), the momhomogencoas
¢equation {4} can be solved by substituting a linear sambination of solutions of the

Jundamental sysiem inbo the ronhomogencous equation and regarding the cogficinals of
the lincar eombination as unknown funclions of time. The resulGug egaction for
determining the caeffictents is then of the particvlarly simple form ().

Problem 1. Salve the equation & 4+ x = f{¢).

Solution, Form the corraponding homaog encoin systemo

Ry = 23,
2, = —xy,

with the known system of fundamental solutians x, €05 ¢, =3 —sntand a, = cm I,
Xy = 008 {. In astordanee with the general rule, we Jook for 2 solulwoo of 1he Ffoum

% ma(l) cest + o(r)sin g, xg = —g, (1) sint + eg(t) con .

To detennine ¢, and ¢;, we have the systemn

¢ cest + ¢zain t= 0, —¢éy 3in ¢ + ¢ cost = £(¢).
Therefare
& = =fiL)sint, ¢» = f{¢) cosd,

se that finally

x(t) = [x(O) - J:ﬂd sint dt] cast + [x(OJ + L/(r) cos ¥ dr] uae



Proofs of the Basic Theorems

In this chapter we will prove the theorems on exillence, uniqueness,
continuity,and diflerentiability of ordinary differential equations, as well as
the theorems on reciliabilityofia vecior fieldand of a ficld of dicections. The
prools also cuntain a technique for cunsiructing approximate solutions of
differential equaniom.

30. Contraction Mappings

We now give a method for finding a fixed point of a mapping of 2 metric
space into itscll. ‘I'his method will be used later to consiruct solutions of
differential equations.

30.1. Definition. Lect A: M — A be a mapping of a metnic space A
(with metric p) into itself Then M is said to be a contrartion mapping il there
existsa constant 4.0 < 4 < | such ihat

p{Ax, Ay) £ Ap{x,y) Vxoye M. ()

Example 1. Let A: R — R be a real luaction ofa real varzable ( Fig. 198). Il tbe denivative
of Aiseverywhere of absolute value less thaw |, then A need Bot be a conracetd mappng.
However A 8 a conuaction mapping if

i<\

Exemple 2. 10t A: R" — R* be 2 lincar operaton. If all the cigenvalues of A e sticily
inside the unit dik, tlien there exists a Euclidean meuic (a Lyapumovr Acauxmo in the
sens: of Sec, 22.3) wch that A is a contraction mappiog

Problesi 1. Which of the Dllowing mappings of the ine (with ihe. ordicacy @eene) int0
itslf are conuiaction mappings:

a) p= $in z; b)y= o/p_-f.:T; )y = actanx?
Problem 2. Can & be 1eplaced by < in the inequalisy (1) ?

30.2, The contraction mapping thearem. A point x€ M i called a
JSixed poirt of the mapping 4: M = MiflAx = x

Fig 198 Fixed point of a contraction mapping.
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A Ax =

Fig. 199 Sequence of images of a point » undec a mapping 4

THEOReM. Let A M — M be a conlraction mapping of a complete metyic space A
ento stself. Then A has a unigue fixed poins. Groen amy potnt x € M, the seqeence

x, Ax, A%x, A%x, ...
of images of x undey application of the operator A (Fig 199) convurges is the fixed
poinl.
Progf. Il p(x, Ax) = d. then
p(A®s, A"V 1x) < A%
The serics
Y, A"
a=

cenverges, and hence the sequence A%, v = 0, |, 2,... 1 a Cauchy
sequence. But thespace A is complete, and hence the limi

X = lim A"
exists. The peimt X is a fixed point of A. In facy, since every eontiaciion
mapping 1s continuous (choosc & = ¢), we have

AY = A limA™ = im A"*'x = Y.

L Rl ] | Rl ]

Moreover every lixed point ¥ coincides with X, since
p(X. Y)=p(dX. AY) € 1p(X, Y}, A <1 = p(X, YY) =0. |}
Remark. The points x, Ax, A%x, . . . are called saxessve appraximations (o X.
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Ar 2%

a
x AMa¥NL
® X
Fig. 200 Fatimate of the accuracy of an approsimation » 1o the fixed point X,

iet xbean approximation to the fixed point X o (acontraction mapping 4.
Then the accuracy of the approximation is casily estimated in tenns of the
distance ¢ between the poinis x and Ax. [n lact

d

P(xs X} % |T))

since
d+Ad+ d 4=
"_:

{(Fig. 200).

31. The Existence, Uniqueness, and Continuity Theorems

We now censtruct acontraction mapping of acomplete metiic space whose
fixed point determines the selutien of a @ven differential equation.

31.1. Successive Picard approximations. Consider the difforental
cquatien X = v(x,¢) determined by a vecter ficld v in a demain of the ex-
tended phase space R°*! (Fig. 201). Then by the Picard mapping we ™can
the fellewing mapping of the fiinctien @: ¢ — x intothefunction Ag: ¢ e x
defined by

(A@)(t) = xp + J v(ep(z), 7)ds.

'

Ccometrically the transition from ¢ to A¢ (Fig. 202) mears using one
cCurve ¥ to construct a new curve A¢ whose tangent at every poant £ 15
parallel 1o the direction ficld determined by g 1ather than 1o theficld on the
new curve Ao itself. Note that ¢ is asolution satsfying the initial condition
©(to} = xo ifandonly if@ = Aep.

Inspired by the contraction mapping theorem, we now consider the
successive Picard approximations @, A@, A°e, . - _ , beginning, say, with @ = %,
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—

Fig. 201 An integral cuzve of the equatioo % v t).

x A
Ty ¥
ty ¢ T

big. 202 The Picard mapping.

¥

L L (il

_—

¢

Fig. 203 Picard approximations for the eQuation 3 = £{¢).

x| el 14 /A
1111 f/!/ffa'/r"/!
e

1114 (1117117

L T ™

¢

Fig. 204 Picard approximations far the equance x — =,
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Egerple £, Loy 2 = 1(1),
(Aw){t) = s + j: K¢) dr
(Fig. 208). Then the lirutrte]s leads at once so an exact solution.

Exempls 2. et R = =, t « 15 = 0 {Fig. 204). n 1his casc the sonvergence of the ap-
proximations can written down immediately. En fact, at tle poinl : we have

[ “l'.
Aw = =2, +j; zgdr = x(l 4 1),

Ale — =2, 4 j;xo(t+r)d:-xa[l +!+‘;).

Ae ..s.,(l +:+’;.+ +‘,-:!],

lim A% = #'n,.

Remark {. Thus the two delinilions

1) e = him (1 +‘~) ,
Basa &

r]
! R

ol the exponential correspend te lwe ways of solving the paiticularly smple
diflcrcnual equation ¥ = x approximately, namely the method of Euler
lines and the method of sucessive Picard approximations. Historically the
original definition of the exponential was simply

3) ¢ is the solution of the differeniial equation £ = x satisfying the
intiia} condition x{0) = |I.

Remark 2. The convergence of the approximatons for the equation
X = kx can be shown similarly. The reason for the convergence of the
successive appreximations in the general case is just that the equation
X = Axis ‘‘the worst,” i_e., the successive approximations lor any equation
converge no more slowly than those jor some equation of the foim x = &=
To prove the convergence of the successive approximations, we comstiuct
a complete metric space in which the Picard mapping is a contraction
mapping We begin by recalling some facts fiom a couise on analyss.

31.2. Preliminary estimates.

1) The norm. The rorm of a vector x in the Euclidean space R*® with
scalar product { -, -} will be denoted by jx| = /{x, x). The space R" with
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the metric p(x, ¥) = |x — Y| i3 a complete meiric space. We note two key
inequalities, t namely the rriangle inequality

|x +y| < |xl + |yl

and the Sclavarz inegualily

(%, y)| < |%| |yl

2) The vector integral, Let £:[a, &] — R" be a vecior function with
values in R"whichis continuouson [a, 8]. Then the vector integial

I-Jvf{t) deR"

is dcfined in the usual way (with the help of Riecmann sums).

LEMMA.

> 8
j £:) &) € J’ 16(r)] d!‘. (1)
Proof. Using 1he wriangle inequality 1o compare Riemann sums, we get

12X K8l < LI 1440 1

3)  Thenorm of ar operatar. Let A: R™ — R" bea {incar opecrator from one
Luclidean space into ancther. Then we denote the norm of 4 by

x|
Al = sup =—-.
AN Q le

Wethen have
4 + B| < |4 + |8, 48] < |4] |8l (2)

'The set of linear opcrators from R*® into R® becomes a complete metric
spaccil we setp(4, 8) = |4 — 8.

t Let us recall the proof of these incg wlitics. Diaw 1he two-dimersional plane thiough the
veclors x and ¥ of the Euclideanspace.. This plane inbes its th e Euclid ean strartore from Re_
But in 1h¢ Fuciidean plane %eth inequalities ase known from daacen lary gaamrtry. This
prev'cs the incqualities in any Euclidean space, for example in R°. In parxular, we have
proved withoul anY ralculations at all thae

[] b4 n L]
= Xr)'-‘ & ‘?t x| ‘_‘: Yo

-l Ja |

and similarly

o] <[ afer
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x Az
al L. %
& Ay

Fig. 205 ‘The Lipschitz condition p, € Lp,.

o)

== 1]

Sas > LN

< Rm kn

Fig 206 ‘The dcrivative ol a mapping f.

31.3. The Lipschitz condition. Let A: A, - A, be a mapping of a
metvic space A, (with meiric p,) inlo a meiric spacc Af, (with metric g;),
and let /. e a paositive real number.

Definition. The mapping A is said to saitsfya Lipickitz condition with somslont
L (and wewrite 4 € Lip L) ilit increasesthe distance between two arbitrary
points of Af, no more than /. times (Fig 203):

p(Ax, Ay) € Lp (x,y) Vx,ye M,.

A mapping Aissaid to satisfy @ Lipschitz sondition if thrre cxasts a eonstant L
such that 4 € Lip L.

Problemt 1. Which of the ol lowing mappings satisfy Lipschiu: conditimes (1he menic is
Euclidean in cach case):

a)y=s,xeR,  B)r=Jox>0 o= VA ¥l (%,,25) « R?;

xlogx 0< < I, >
o e £) = 2cC. o € 12

Predlem 2. Prove thatevery contraction mapping satishes a Lipschiu; candbbon, and that
every mapping satisfying a l.ipschitz condition is catitin uous.

31.4. Differentiability and Lipschitz conditions. Letf: L' - R*bea
smooth mapping (of class C*, 7 2 1) of adomain U ef the Euclidean space
R™into the Euclidean space R" (Fig 206). The tangent spacetoa Euclidean
space has the natural Euclidean structure at every point, and hence the
derivative

d)y = vxi xf,xf}xi; )y =

fo]x =fﬁx: TR: - TRR:]

of fatthe point x € & < R™is a linear operator from onc Euclidean space
into another.
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”m

Fig. 207  Continuous differvntiability imprlies validity of'a EaP5hitz condinon.

THEOREM. 1fet V be anty subset of the doman U which is both somiex end compect.
Then a continuously differentiable mapping £ 1atisfies a {1pschil z condriroa ome V wunth
constant L equal to the least upper dowund of f£on V:

L = Sup lf..l.

xed

Proof. Let &(t) = x + t{y — x), 0 £ { € | be the line segment poining
the points x, ¥ € I (Fig. 207). By the findamental theorem of calculus,

f(y) — flx} = jlg f(x(1)) dr =J £, (1) dr,
o dl ®
and hence

' L
I. fretn2(T) de £ .[0 Iy = X dr = lly - x|,

by formulas (1) and (2),since & =y — x. |

Remark The least upper bound of the aorm of the derivauve |f,fon ¥V is
actually achieved. !n fact, £€C’ by hypothesis, and hence the derivative f,
i continuous. {tfollows that |f,] achieves its maximum L on the compact
sct V.

In undertaking the proof of the convesgence of the Picard approxine
tions, we will examine the approximatinns in a small neighbarbhood of a
given point. The following four numbess will be used 0 docnibe this
ncighborhood.

31.5. The quantities (, {, a’, & Suppasc thc right-hand sde v of the
diflerential <quation

x = v(x,t) \3)

is defined and diffcrentiable (of class &7, r = 1) in adomain U ¢ R* x R!
of extended phase space. We {ix a Euclidean structure in R* and hence in
TR;. Consider an arbitrary pnint {x,, ¢} € L7 (Fig- 208). The cylinder

F={x.t:0t — tol <a, |x — xql < 6}
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Fig. 208 The ylinder I’ and the cone K.

]

Ax.t)

4 i

G, ¢

L ]

Fig.209 Dehiaition of W e, 7).

lies in the domain &' lor sufficiently small # and 6. Let Cand L denate the
least upper bounds ofthe Quantities lv|and |v,| on thiscylinder, where here
and subscquently the asterisk denotes the derivative (with respect 10 x) for
fixed ¢. Since the cylinderis compact, these least upper boundsare achieved :
]'Vl €. |V:| 5 L

Now et A o be the cone with vertex ((g. 2g), “‘opening’ €, and altitude ¢,
so that

Kog={xtilt —tol <a'.lx — =o| < Clt — tol}.

[fthe number &’ is small enough, the cone K lies inside the cylinder £
Moreover, il the numbers a’, 6 > 0 are small enough, evay cone A,
obtained from Ay by parallel dsplacement of the veriex to the point (1. x),
where |x — 25| € 4, also liesinside I'. The numbersa’and & are assumed
t® be small enough so that K, < T, and we will look for a solution ¢ of
cquation (2" ofthe form ¢(¢) = x + h(=x, ¢) subject 10 the initial condition
¥(tq) = x (Fig. 209). The corresponding integral curve then liesinside the
cone X,.

31.6 The metrie space M, Consider ali pessible continvous mappingsh
of the cylinder |x — x| € &', |t = ¢,] € ¢" into the Euclidean space R®,
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wnd lev M denote the se of such ma ppings which satisfy the extra condition
lb{x, ¢)| € Clt = tol )
{in particulac, b(x, {y) = 0). Weintraduce a metric pin AL, by sctiing

plhyby) = | — b, = fpax b, (z, &) — by{z, 1))
a=ng| €V
le-tol €&

THEOREM. The set AL, equipped with the melric p, vs a compPlete metvic space.

Proof. A uniformly convergent sequence of eontinuous functions converges
o a continuous function. If the funcuiens satisfy the inequality (4) before
passing to the limiy, then the limit funclion also satisfies (4) witb the same
constant ¢, |

Nete that the space M depends on three positive numbers ', §°, and C.

31.7. The contraction mapping A: M - M. Next we introduce a
mapping A: M — Mdelined by?

r

(Ab){x. ) =[ vix + b(x, 1), 1) dt. (5)
10

Because of the incquality {4), the point {x + b(x, z), T) bclongs to the cone
K,, and hence to the domain of definition of the ficld v.

TheOREM. [If @' 5 sufficiently small, formula (5) defiaes a controction moppeng of
the space M into itself.

Proof, 1) First we show that A carries M into ttielf. The function .ib is
continuous, since the integral of a continunus linction decpending soatin-
ueusly en a paramecler is continuously dependent both on the paraincter
and on the upper limit. Morcever, Absatisfies the incquality {4), sincc

[{4b)(x, {}| < £

f v(x + b(x, 1), v) dr

f Cd:l < Clt — tgl.

to
Therefore AM = M.
2) Next we show that 4 is a cortraction mapping, 1.¢., that

|Ah, — Ab;|| € Ab, —b,ll, 0<d <]
To this end, we cstimate Aby — /ib; atthe point {x,t). We bave (Fig. 210)

(Ab, — 4b)(x, 1) =[ (v, — va) dr,

t 1n comparing(3) with thcPi#8ed mapping of Sec 31.1, it should be becoe m mind that we
a7c now Jooking for a solutionofthe larmx ¢ k.
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£ M
P
x
tp | v

Fg. 210 Camparison of v, and v,,

where
vi(T) = vix + hy(x 1), T), i =1,2

According 10 Theorem 31.4, lor fixed t the function v.x, ) satisfics a
Lipschitz condition {in the hst argument) with constant Z, and hence

Jvi{t) — vy(o)l € Lihyix, v) — hyix, 7)| € LIk, — h,|.

Morvover, according to Lemma 31.2,

r Lph, — hy| rkl £lah —h,

!

(A, — 4h,)ix.¢)| <

Therefore A isa contcaciion mapping il fa” < 1. [

31.8. The existence and uniqueness theorems.

COROLIARY. Suppose the right-hand side v of the differential eqmation (3) s
continuousty differentiable in a neighborhood of a peint {1y, %) of extended phase
space. Theu, guen any point x sufficient{y close to xg, there is a neighborkond af 1, in
which a sufution of  3) satisfiing the initial condition @{ly) = %13 defimed. Moveorey,
thts selution depetrds continuousty on the initial point x.

Proaf. Accocding to I heacen 30.2, the contraciion mapping -1 has a hxcd
pointhe AL Letgix, () = x + hix, (). Then

Bx. () =x +J vig(x, 1), 1) 41,

{o
‘.SE:T’(} = V(g(x. f}1 ').

I lollows 1that g saudslics cquaiion (3) for lixed x and the imual condition
g(x, lg) = X loct = | Moreover (4 gs Conlinuous. since h .44 [ |

Thus we have proved the exisionee: the orernlor cquanon (3 and exhib-
ied asobution whicle depends continuously on 1he inniak condinoas.

Diabirae P, 1oy e e uagecne thegrom.
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Sotution 4o liet 8’ = 0 in thedehinitivn of A1, 'Then the unique new af the fxed poini of the
colpraction mapping At A — Af iiplics the uniquenen of 1he saluion (saindy,"g be
Initial conditivn w(ig) = =¢). B

Solution 2, 141 @, and »; be iwo salutions satisfying the same initial condition o, (4}
wa(la) = %g and defined for 11 = | < a. Mareover ler

lloll = nax |wlo)l.
t=t,|<e'

whae0 <a’ < a. Then

]
011y = walt) = J! [vterte). 0 — viesle). )] &

tor sulficien IIY small o’ the pﬂinll ‘f‘.(f). f) and ':Ol(!), f) lic ini che qm where
ve LipL. Thetefure |wy — o:ll € Lo'lle, — @;ll. which impliaa |[es = o]l = 0 if
L < |. Thus the solutioss @, and ®; «vincide in sonae 1veighborhood of the paint &y. B

The local uni9uencs thcorem 12 now proved.

31.9. Other applications of contraction mappings.
Prodlem |, Prove the inverse function theorem.

Flind, 1o is suflicionnt 10 ivern a Ch-mapping with a umit linearpariy = = + olx), e bore
' (0) = 0 in a ncighborhood vfthe Puint Oe R (alinear change ol vaimbles iedooes the
geacral case to this case). Suppe:c we look for a solution of the fsm x =~ y 4+ ¢ly).
Then we ger the ¢quation

o(y) = —o(¥ + oly)
for ». Therelate the desited function ¢ is a ficed poini of the mapping 4 defined by the

formula
(Aw)(y) = —wiy + $ly)).

Morccover .1 B acontraction mapping (in a wiltable metrie), since she doivatine of the
func'tion ¢ i small in a neighborhood of the point 0 ( bec ause of ihe conditoc o’ (0 « 0.

Preblens 2. Prove that the Euler line approaches a solution as its 31cp approRchrs xva
Solxtion. Let g, - x + b, be the Euler line with step A ased initial condition 8, /X, (g1 — =
(Fig. 2L1). In ether wards. |1

Egalx.t) ~ vigalm st s(1)),

where ${¢) = 2y F £3 and 4 isihe imogral pari of (7 - fg) . The difktsrnce besween she

Zyizt)

4 |4 .
t, & st t

Fig. 2l) The Euler lincg,'x.1).
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Fig. 212 Strandsof the approximation £ and 118 hincar part A, ,,

Eulcr nc and the solulmn 8 can be estimated by using the lormula m Sec. 30.8:

sy ~ BIl = Iy — Bl < ;= l14hs — b, 1}
Bui
(Aby)(x, ¢) = ]: Y{8a%. 1), 1) dr,

hy(x. () ]:. v(ga'® 3(r)), 1(r)) dr,

and as A — 0 the diference belween the int@rand: appeoacha z2¢v0 wdmenly an 3,
|r] € & {becausc of the equicomtinuity of v). Thercfore [|4h, — h,|| —0as A —0,and
the Euler kine aparoachies a solution. A

®Problem 3. {ct A be a diffeomorphism of a weighborhood of the point 0« R* ooto a
neighborhood of the @amc point canrying ®inw O, and suppox the liocar pazt of A a1 0
(i.c., the lincar opcrator Aee: R*—R®) has no cigenvalues of medulus |. Letar_ be the
number of eigenvalues with |;] < | and m. th¢ number of cigenvalues with |2] > I.
Then A4y has an invaniant subspace R™ (the incoming stiand) and 2m myvanant sub-
space R*¢ (the outgoirg strand), whosc points appraach 0 under applicason of Ay,
where ¥ — 400 brR™ and N — —oo for R™- (Fig. 212}.

Prove that the nonlinear mapping A also hasinvarnian t submanifolds A= and M®- n
a ncighberhood of the psint @ (incoming and outgoing strands), tangent a1 0 1© e
subspaces R™- and R™¢, where A"® ~ O ler 2 ¢ M2 a3 N — 400 and A= — 0 for
¢ M* as N= — o0,

AHin. Take any submanifold [gof dimension s, (tangent 1o R®+ 210, say), and apply a
power of A 10 I7g. Usc the method of conitaction mappings w prove the comvageaace of
the resulting approximations Iy = A"y, ¥ — 400 t0 M=s,

® Probien 4. Prove the cxistence of incoming :ind cVtgoIng stands al a2 noalincas ddle
peint 2 = viz), v(§) =9 (it s asumed that nanc of 1he cigenvalua of the oyyafrx
A = v4(0) lics on the imaginary axis).

32. The Differentiability Theorem

I n this seciion we will eventually prove therectification theosein.

32.1. The equation of variatiens. With any differentiable mappeng
f: U - V we can associate a linear mapping of tangent spacss at every
point:

f#x: TU: o TV‘(:)'
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L -

[

Fig. 213 Salution of the equation of variations with initial condition (1, y).

In just the same way, we can associate with the differeniial cquation

X = vix (), xéeEl'cR" (N

a systemn of differential equatiens
X = v(x, ), xel R,
po vl o 2)
Y= vu(x, (), yeTU,

linear in the tangent vector y (Fig. 213). We call (2) the sritem of eqmations of
vortations lor equation (1). The asterisk in (2), and in subsequent formulas,
denotes the derivative with respect (o x for Aixed?. Thus veix. ¢) isa lincar
operator from R"intoR".

Together with the system (2),1tis convenient Lo consider the system

{i:v(x.t), xeUcR",

i = va(x, f)z, z: R" - R",

(3}

obtained fiom (2) by replacing the unknown vector ¥ bv an unknown linear
traasioriation 2. We will apply the term equstion of variatioms 10 the system
(3) aswell.

Remark.  In general, given a linear equation
y = A{t)y, yeR" (27
it is useful 1o consider the associated equation
2= A(t)z, z:R" - R", (3°)

involving the linear epcrater z. From a knowledge of one of the equations
(2’) and (3’), we can easily find the solution of the other (how?).

32,2, The difierentiability theorem.,

THEOREM, Suppose theright-hand side v of ¢quation (1) is tutee comtianensly dbff -
entiable in a neighborhood of the point (x4, 1,). TAen the solution € x. 1) of rqualion
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(1) satixfying the initial candition g %, 1o} m x 15 a contrnwcusly drfferentiable fum-
tion of the initial condition %, a3 x and | vary v some { Pogsidly smoller) arighborhoed

of the point (xq, to):
ve(lwgal
{ef class &' withrepect o x).

Proof. Since ve G = v, e (', the system of equations of variations (2]
salislivs tlie conditions of Ser. 31, and the sequence of Picard appraxima-
tions converges unilormly to a solution of (3) in a sufficiently small aeigh-
harhood of the point {. !'ntroducing the initial conditions @g = x (suffi-
ciently near xg) and ¢g = A, we denote the Picard approximations by ¢,
{Iorx) and ¢, (fon' z), s0 that

PBpy 1(" ‘) =%+ r "f’-(*. r}s f) dt: (“)
ol

Vor (X () m £ + Ir Ve(@a{X: ), 1)Ya(x, 1) dv. (5)
to

Noting that ¢,, = Yq, we deduce from (3) and (3) by induction in = that
Dn+ 19 = P4 . Therelore the sequence {¢§_} is the sequcnce of derivatives
of the scquence {¢,). Both sequences {4) and (3) are uniformly convergent
for sufficicntly small |1 — ¢4, being scquences of Picard approximations of
the sysieni (3). Then the sequence {¢,} is uniformly convergent together
withits derivatives with respect to x. Hence the limit functron

g(x:¢) = lim @,(x, )

L Rl &

is uniformly differentiable in x. ||

32.3. Remark. At the same time, we havejust proved the following

vy v, v

THEOREM. Thederivative B, of the solution of equation { |) nith respect to the istial
condition X salisfies the equation of variations {3) wtth the initral condition (1) = E:

J
58("’ t) = V(g(x, t):¢),

¢ .

Salx 1) = va{glx: 1), figalx. 0,
B(X to) =%, gl ix 1) = &

This theerem explains the meaningof the equations o variatioes. namely
they descriloe the action ofthe (g, t)-advance transformation on the tassgent
vecters 1o the phase space (Fig.214).
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y 9. /%)y
gixr

:ﬂ/ f./ -

Fg.214 Action of the (lg, 1)-advance (ransformation ona curfve in plase space and on
tls \angent veelor,

32.4. Higher derivatives with respect to xand /. Lel s 2 2 be an
integer.

THEOREN T,. Suppose the right-hand side v of equation (1} s comtinsonsly dffer-
entable r times n a neighborhood of g point (xq, t). Then the solution §(x. t) ¢ egua.
tion (1) satisfytug the initial condition g(x, ty) = xtran (r — 1)-fold compmmonsiy
differentioble function of the initial condition x, a1 x and t oary im some (posnibly
smoller) neighborhood of the point (xg, tg) :

vel' = gel,™".

Proof. Since ve €' = vq €771, the system of cquations of vaiiations {(3)
satisfies the conditions of Theorem 7,_,. Hence Theorem 7,_, implics
Theorem 7,,r > 2:

veC' = v, el =g e(r-t -geC. L.
This proves Theorem T, since Theorem 7, isjust Theorem 32.2

32.5. Derivatives with respect to x and /. Againlctr 3 2 bean integer.

THEOREN T,. Under the conditions of Theorem T,, the solution € x 1)  a diffex
entiable function of classC™~ " with respectto both pariables x and ¢ -

vel =>ge(-\.

The theorem is an obvious consequence of the preceding theovem. How-
ever, a formal prool goces as jollows:

LesamA. Let £ be @ function (with values in R difined on the direct Prodact of ¢ dowmrin G of Eatodenn
spoce R™ and an interval { of the t-axis:

£:.6 x =R,
Consnder the insegral

Flx. () = L’. Bx ) dr, x¢C. [tt]C 4L

Them £ CL, £ C -V implies Fe C.
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Frogf of the lemma Any rth partinl derivative of the funciion F with respeve 1o 1he variables
xj and i invalving differentiation with respert 101 can be cxpreved in tevem of £ and the
pactinl derivatives of the funciion £ of order I than r, and bence is contimsma, while
anyrth partial derivative with raapert 10 the varuibla s, i continuows by bypmbaa §
Aodf ¢f the thestem, We have

g(x r) L K.V(‘(‘l t)¢e) dr.

Weinng Z(x, r) = v(a(x, r), r) and applying the lemma, we find thas

BeC ' N HgeO.

According ta Theorem T, g « C2 lor p < r. Thus we get succasively

geC ogeCL D - JgelC-'.

But ge C? by Sec. 31.8 (the solulion depends continuouaiy on =, 1). This somplais 1he
proof ol Theorem T, |

Problem 1. Prove that if the right-hand side of the diffaential oquatian (1) is infaidy
diffenmiiably, sthen the soiution is also an infiniidy difierentiable funcxon of the wnitiat
conditions:

veC® Hgel®

Remork, 1t can also be shiown that ifthe right-hawd side v is amalytic (bas a Taylor seres
converging 10 v in a ncighbecheod of every poni), iben the wlution g abo deponds
analytically an x and ¢, liisnatural to sindy difereniial cqua 6oas with ana lyvar righe-hand
sides o7 both complex values of the unknowns and (of particular icgmnamce) for com-
plex valucs ofthe time &t

32.6. The rectification theorem. This theorem is an obvious corecquence
ol Theorem 77,. Belore proving it, we iccali two simple geometric propos -
tioas. let L, and L, be two lincar subspaces of a third linear space L {Fig.
215). Then L, and L, are said to be transterse i their sum is ihe whole space
L: L, + L, = L. For cxample, a linc in R? is transvetse 10 a plane if in
intersects the plane at a nonzero angle.

PROPOSITION |. Fuery k-dimensional subspace R* in R* bas an (n ~ &) Limenciaml
transverse subspace (in fact, at least one of the C coordinate planes of the pace R*—*
will be tranverse to R}

"l o
7

Fig. 215 Thcline L, & wransverse 10 the plane £ zin the space R

1 Concerning this theary, sec eg.. V. V. Golubev, Lertares ar the Anclytic 7 havy of Difls
ential Eguations {in Russian), Mescow (1950).
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The psroolisgivenin courses on lincar algebra (Lhe thcorem on the rank of
A mairix).

rrRorostion A, If alincar mapping A L — M maps ary two ireasderse subspaces
onto transverse subipaces, then it maps L onto the whole tpace M.

Proof, AL = AL, + /ALy = M. §

Proof of the rectification theorem : Nonautoromous case (sce Sec. 8.1). Consider the
mapping G of a domain of the direct product R* x R into the extended
phase spaceof the eguation

X = V(x, l) (l)

defined by the formula G(x, ) = (g(x, t), t), where g{x. t) is a solution of
(1) sauslying the iniual conditiong(x, l;) = %. Then, as we now show, G is
a rectifying diffeomorpliism in a neighborhood of the paint (=g, tg)-

a) The mapping Gis differentiadle (of classC*~ il v € C7), by Tlweorem 7.

b) The mapping G leaves t anchanged: G(x, t) = (g(x:1),1).

c) The mapping Go carries the standard vector field e (x = 0, t = 1) inte the
given field, ie., Coe = (v, ), siace g(x, t) isa solutionof(1).

d) The mapping G is a diffeomorphism in & neighborkond of the point (x5, tg). In
lact, calculating the restriction of the linear operaior G|, ,, 10 thc rans-
verze planes R* and R' (Fig. 216), we get

ﬂ.IF"H-Iu . E-. ﬂ.ll'!l‘lu-‘ =W 4+ &

The plane R" andthe line with direction v + e are Lransycrse. Therefore
C, s alincarmapping of R** ' onto R* ! and henee an isomorphism (the
Jacobian of Cq at the point {xg, fo) is nonzerv). It [ollows from the inverse
function theorem that G is a local diffeomarphism.

Proof of the rectification theorem: Autoromous case (sec Sec. 7.1). Consider ihe
autonomous equation

X = v(x), x e {/ = R". (6)
2
il H‘"L"_p‘.'{"l
——— __-.I.....-

Fig. 216  Derivative of the mapping G ail the poant (xg, #5)-
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Fig. 217  Construction of the diffcomorphism rectifying a vecior field.

Lot the phase velocity vy at the point x4 be different from 0 (IFig. 217 ). Then
there oxists an {an — 1)-dimensional  hyperplane R*~! « R" passing
through x,, and transversr (0 vg {imore exactly, a corresponding plane in the
tangen L space T4 '_. rrausverse o 1he liue R with diveetion wg). Let G betbe
mapping of the domain R"“' x R where R* ™! = [§}, R = {¢] into the
domnain R" dcfined hy the formula G(§, t) = g(§, 1) where & lics on R*!
ncar x, and g(£, ¢) is the valuc of the solution of equation (6) ausfyving the
initial vondition @(0) = § at the tmce £ Then, as we now show, G~ 'isa
rcctifying diffcomorphisin in a sufficiently small ncighborhood of the point
(& = xp.1 = 0).

a) The mapping C is differentiable (C e (X~ ifv € C), I Theemem T,

b) The mapping G~ is rectifying, since G, carcies the standard vector field
e(l= 0,{ = 1) into Cre = v, because i g, 1) satislies equation (6).

c) The mapping G 15 0 local diffeomorphism. In facy, calculating the lincar
operat®e 5y, oo the transverse planesR® ~ "andR!, wrget

U.l.n-| = E, f:t|n| B = "n.

Thus tlhic opcrator Cqlsoue carries the pair of transverse subspaces R* 1
and R' = R" into a pair of transverse subspac:s Thercfore G, ., is a
lincar tnapping of R® onto R", and hviace anisormorphism. It follows from
the inverse function theorem that G s a local dificomorphisse { f =G~ "m
the notation of Scc. 7).

Remark, Since the differentiation theorem was priwved with the boss of onc
derivative (ve C" = ge "'}, we can only guaranice that the rectifyving
diffcomorphisms belong 10 the smoothness class (7', However, as will Le
shown below, the diffcotnorphism just constructed is actually of class C”.

32.7. The last decivative. In proving Theorem 32.2, the fidd v was as-
sutrkd 10 bDe twice continunusly differentiable, but acwually mere coir
tinuous diffcrentiability is sufficient.
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tKOREM, I the right-hand side w(x, 1) of the differentral equatiom & = v(x, 1) i
continuousty diffeentiable, then the solution §{x, t) setifDing (he tatlial condrtron
B(x) {g) = xisa continuonsly differentiable furetior of the irital conditrom:

ve(' wgal) (N
COROLLARIRS.

Dvel =gel’ forr 2 i.

2) I v e ", the reetifying diffeornorphism constructed in Sw. 32.6 is comtinnoasly
differentia ble v eimes.

The corollaries are deduced Mom (7) by liteeal repetition of the con-
siderations of Secs, 32.4-32.6. However, the proolof the theorem (7] itself
rce Lires sonicingenuity.

Proqf of the thewrer, We begin with the following conaiderations.
LeMMA |, Let

be a lirear equatior) uhise righi-Aand side 13 a con! inuoas function of L T hew tw aainsioe of (8) evists
contiriuoksly, 13 unigquely determined by the iRitinl condition @ itg) = ¥, ond drperudrpmetmmenly
9 yg nnd ¢,

Prof. The proof of the exisience, uniquenes:, and continify theorems (Sec. 31) uscs oaly
the differentiabality with respecy 10 x (e fixed ¢ (aceally only \he exisvenxe of a I ipashirs
condition in x). Therctore the proot remains vadid if the dependence on 1 ia assummed 10
be only continuous. |

Note that the soluion dePends linearly on yo and (s a continuously dsffrroriable func
tion of ¢. “ITxerefore the solution belongs to the class C' with respect so both y, and §.

LemMA 2. If the lincar operater A (R Lemmo | also depands oa a pazamcier a aad f the futitus
AlL, a) iy sontinuons, Vien the solution s o continuous fiowtiom of yo, 1» & a.

Proof. Thersolution con be coustructed as the imit of a sequence of Picard aggoxima wiovs,
where cach appioximation is a continuou’ funcuion of y,, t. and g. The sequence of ap-
proximauons & unifernly conve gent in the variables y,, & and a, 23 che lauier vary in a
sufficimily small ncighborhood of any point {yg, te, a¢)- Hense the hamt 5 a comtauas
function of yo, t, and a. |

W e¢now apply Lemma 2 10 the equation o fvariatioos.
LEMMA 3. The tystent of eqnatiors of wiriations
{ % = vix, ¢},

Yy = velxm )y

has o solution wheeh is wniguely determined by (15 ininial coaditions and depeads contmmmesiy e thee
conditions, procided orly that the field v is ¢f dlass C*,

F04f. By the existen ¢ce theorem of Sec. 31.8, the first cqua ton of the Tymd bas 2 solution,
which is uniquely dereemined by its initial comditions Xe. igand d<pends on bese candb-
tions continuously. Substituting this solution inse the second cquation.-we @ct a2 lmear
equation in y whese right-hand side depends continuomsiy on ¢ and abo on the mital
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condition =, (regarded as a parameter) of whe solulion of the Ayt oQuawon. But, by
Jemma 2, this lincar equetion has a salution which & determined by its wnmal dats yx

and i1 a cuntinuous fundilon of ¢, yo, and the Parameier ag. i
‘Thiue the eguotion §f varialions 2 20fvodle eten in dhe aase va C', Note 1hat in the case v o C?

we proved that the derivative of the solution with zespect 10 the mitin] data uinbes e
equation of variatiotis (3), but this can no loger be asscried, since we sull do act oow

wliether this derivative eXista.
T'o prove the ditferentiabality of the solution with respett to the indtial condiwes, we

first consider a special case,

LEMMA 4. Suppose the vector field v(z,t) of class C' gnd it dmvootioe v, both venish of the poet
n = 0 fir ail t. Then the solution of the equation 2 — vim,!) v Afermbiabls with ropect g the
imtial comfitions at the point = = 0.

Proa/. By hypoihesis,
|w(z, t)| = o|=])

in a neighborhood of the point x = 0. Using the lormula of Sec, 30.3 10 estemane the
error of the approximation 1 = %g (0 the toluiion 3 = ¢{t) saliying 1he il concdi
tion w(ty) = =g, we find that

|o ‘0|:<T'Tz

for sufficiently small |xg| and |¢ — 14|, where the constant K B indepradon of 2, Thes
lw — %| = o(I%ol), which implies 1hat » is dificreniinble with r€psrt to xq at zero

r
j'.v{_x,, ) dt]| « Kt.?::: lv(=mq, )l

We new reduce the gencral ¢ase 18 the special situation of |.omma 4. To do 5o, we ooed
only choose a suitable coordinase system in exttnded phase spa ec. First we note tha the
solution under cansideration can always be regarded as the null solutsan -

TUMMA 5. Let x = (1) &¢ @ solwion of B¢ equation X = w(%, 1) owk ¢ 7ish!. hond fide of dass C*,
defined in ¢ domain of extended Phase space Rt X Ri. Then there axitts ¢ O Sforpuuphion of
extended phaote space which Preserves time, ie., (=, t) — (m,(%, 1), §}, o cwries-thr—siadon @
ins =, = 0.

Proof. Since v e C', we noed only make the shidi 2, = x — »(1). |

in the system of coordinates (x4, ¢}, the right-hand side of our equatioe equals 0 a1 the
point =, = 0. We now show that the derivative of the right-hand side with cespect %0 =,
can a:30 be made (o vanish with the help of a snmble change of coowdmta whch &

linear in =.

LEMMA 6. Under e condttions of Lesns 5, the cordinstes imy, t) san b chworm = 5=k «
iy thal the equation x = v(z, 1) 6 egdrvalent 40 dhe oquotion £, = v, ix,, 1), mhor de hdd v,
ond ile devivatite dv ) Ex; doth uanish af We foint =, = (. Maracer, the firxdias x, x, 1) cax be
chasen Lo be linear {bul not mecessarily hamogrmecxs ) iz x.

According to l.emma 5, we can assume that v, (0,¢2) = 0.

To pecove Lemma 6, we frst comsider the lollowung speial case:

LEMMA 7. The¢ asseition of Lemma 6 &5 oalid for i kneor c@lim % = A(V)'s.
Pret). We need only ¢choese x; to be the value o the soluiion satislying the mital conds-

ton ¢{¢) = x a1 a fixed time ¢,. According to l.emma 1, x; = B(¢g;x where 8(f): R* — R*
132 linear operator of class C? in ¢ But our lincar equation takes the (oo %, = 0 m e

cwordinates (x,,¢).
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Proyf ap Lewnwt 6. liem we liavarize the cquation 4 = wa, §) al 2er0, 1o, we foum Ibhe
(quation o varintkms

x = {1, (1) = vetQ, 1),

By hypithesis v €' and hince A¢C9 Ry Lemma 7, we can choose € woordina les
x 8¢ nus i that the lintatized eequation is of the lorn 4y« O0in the new canedina tes,
v i» 1wy 1o sce thin the right it nivde of the otiginal nonlincar cquation has 3 2ero
lincar puel in this coanhnote systiem. In fact, Jet v = .ty 4 Q, x « Cxjy (%0 that
Q = o(xl), C= B7'). Making these subsiiutiom in the +Quation § = v, we get the
dilferential ecjuntion for x,:

Cx, + Ck, = AC=, + Q.

Buy, by the dehnition of C. the firce terins on thr lefi and right (the lenma lioear in %, ) are
equal, and hence

k% =« C'Q(Caplt) ~olml). ®

Combiping Lemimas 6 and 4, we dedure

LAMNA B, The solution of tAe differentinl egurtion X = w,x, 1) with ¢ righ:band sidr of ehass C°
dependy differentindly an the antinl candition. Yhe deetintive = of the solidion mxsh rv@ver to the
inttind condetion eniiifes he 1)ziom of ogintians ¢f ~wvintsoms

X = Vvix, (). 2 — welm, Iz, lig) = E: R — Re,

Progf. Write the cquation in the canrdiniig syscn of Lemma G and then apply Lexema 4. )
To prove the theorem, we now' nreid only senly the continusty of the devivative of \be

solution with respcct 10 the jnmitial condition. Accordmg to Letnma 8, this doinane

exigts and aatixfirs the system of equations of variationx, (1 (llows [rom Leamrza 3 that the

solutions ol this systen depend ennéinuously un x¢ and ¢, and the theovem i finally
proved. B



Differential Equations on Manifolds

In this ehapicr we define dilferentiable manifolds, proving a iheorem on
exisicnce ol a phase llow delermined by a vector ficdd ona manifold. Lack of
space will not peinitus o go intothe manyinteresting and deep eesulis thag
havehrenobtained inthe theory of diffcrential equations on manifolds. The
present chapier is intended merely as an intreduction 10 this subjeey, which
lies at the juncunn of analysis and 10pology.

33. Difflerentiable Manifolds

The coucept of a differentiable or simanuth manifold plays just as funda-
mental a role in geometry and aualysis as 1the concepts of group and lincar
spave playinalgebra.

33.1. Examples of manifolds. Oncc manifolds are defined (below], we
will find that the lollowing objecisarc all manifolds (Fig. 218):

1) Thw lincar space R® or any domain {open subset) (' of R™.

2) The sphere $® defined by the equation xf + - 4+32 ., =1 inthe
Fuclidvan space R™* !, in pariicular, thecircle S'.

3) Thetorus T2 = §' x §' (cf. Sec.24).

4) I'he projective space

RP" = {{yg:0,: - x50}

It will be recalled that the paints of this space are straight lines passing
througl the origin of coerdinates in R**'. Such alinc is specificd by any of
its peims (other than 0). The coordinates of this point {xg, xy,. - -, X} in
R"*! are called the komogeneous coerdinates of the cotresponding point of
projective space.

Thelawi cxampleis particularly useful. In considering the definitions that
{ellow, it will e useful tothink in terms of affine coordinates in a paojeciive
space (see Sec. 33.3, Lxamplc 3).

Fig. 218 Fxampics of maoifelds.
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33.2. Definitions. A differentiable marifold Af is 2 st M cquipped with a
differentiable structure, Toequip M with a diffrrentiabls strocture o¢ manifeld
Structure, we specily an atlas consisting of maps which are competible.

Definttion 1. By a mep is meant a domain U < R*together with a one.10-0ne
mapping ¢: W — U of a subset W ol the set M onto U (Fig. 219). We call
@ (x) an imape of the pointxe W < M on thc map U/.

Consider two maps

(Fig. 220). 1I'the sets #%;and W, intersect, then their intersection W, N W,
has an image on both maps:

Uy= oW, a W), U,=@e(W,nW).

The transiormmation from onc mdp to another is specified by the following
mapping between subsets of {tnear spaces :

Uy = Uy oylx) = o (x)).
Definttion 2. Two maps
o W, =~ U, cp“:W!—oU;

Fig 220 ComPStible maps,
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arc called compatebleil

1) T'he scts Uy ;and U, arc open (possibly empty)

2) The mappings ¢, and ¢, (delined i W, A W, is nonempty) are diffeo-
motphisinis of doinainso IR®,

Remark. Dependiug on the smoothness class of the mappings @, we gel
different classes of maniflolds. If by a diffcomorphism we mean a diffeo-
morphism of class (., 1 € r € oo, then the manifold (dcfincd by the atlas
giving rise to the mappings ¢,,} will be called a differentiable mantfold of eless
C’. 1y = &, sathatthe g arconly required 1o be homeamoephisms, we get
the delinition of a topological manifoid. Ifwe require the ¢, ta be analytic,t
wec getaralyiic mantfolds.

There are othcer passibilities as well. For example, lixing an odieniation in
R" and requiring that the difeomorphisms ¢,; prescive this odicntation
(i.e., that the p,, have positive Jacobians at every point), we artive at the
deliniuon ofan orieated man, fold.

Deprtior 3. By anatigs on M is meant a sctof maps ¢,: ¥, — U, such that
1) Every pair ofmaps s compatible ;
2) Fvery point x € M hasan imageon atleast one map.

Definitian 4. Twoatlases on M are said to be equatafent il theic unjonisitselfan
atlas (i.c., if every map of the fiist atlas s compatible with every map of the
sccond).

Itiscasy tosee that Delinivion 4actually defines an equivalence relaton.

Depimtion 5. By a differentiable structure on M is mcant a class of cquivalent
at lases.

At this point, we note two conditions olienimposed on manifolds to avoid
pathology:

1) Separebility. Any two peints x, ¥ € Af have noninteisecting naghbor
hoods (Fig. 221), i.e., either there exist two maps

@ W, = U, Py Wy = U,

with nonintcesecting W, and #; containing x and y respecaively, oc there
cxists a map onwhich bath peintsx ang y have images.

I€ separability is not tequired, then the set obtained from 1wo Lines R = s}, R = {7l
by idenufying points with eQual negative cooedinates x and » will ¢ a ma nifokd. The
theorem on uniqu e catension of soluciens of differential equations will £ail 1o bold va soch
maanifelds, although the lemsl uniqueness thcorem will be true.

t A lunction is said to Beanalytic Fitis the sum of its owvn Ta yloe senes m 2 rghbowteood
ol every point.
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@ @

Fig. 221 Scparability.

-

Fig.222 Atlas of a <phere. The family of circles on the spheve 1ange at the posny
# represented on the 10wer map by a Runily of parallel lines and on the PPy map by a
family of 1angent circlcy

2) Ceuntabitity. T'here exists an atlas A with no more than a countable
number efmaps.

llencelorth the term ‘“‘manifold” will mean a differentiable manifold
satisfying the separabllity and countability conditions

e

33.3. Examples of atlases.

1y The sphere §2 withequation x; + x3 + x3 = Lin R?’canbeequipped

with an atlas censisting of two maps, fer example Ly using stercographic
projectien (Fig. 222). Here we have

W, = SI\¥, 7, = Ry,
W, = §3\8 U; =Rj.

Lroblem .\ VTrite Jorniulas for the mappmgs ¢, , and vernily that 1he itwo maps arr com-
paniblc

Similarly, we can usc an atlas censisting of two maps (o define a difier-
emiable 4 ructire in 5™

2) An aulas lor the 18rus can e constructed by using angular coordinates,
namely the latitude 0 and the longitude ¢ (Fig 223). For example, we can
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Fig. 221 Affinc maps of the projectiveplane.

consider theiour maps ocbtained when 0 and ¢ vary inthe intervaks

® < < 2n, -n < < m
0 <§ <2nr, -t < ¢y <

3) An allas fer the prejective plane RP? ean be made up of the Pllowing
three “affine maps’ (Fig. 224):

X X
, '
oo FJ1=— J:=—= if x4 #£0,
/ xO xo
x x
Xp:Xyixz 2,2, =9 =2 il ¢, #0,
\ X, X,
1 Xe *

U, ==, a; = il x3 #0.

These maps are compatiblc. For example, compatibility of g@o and @,
means that the mapping ¢, , of the domain U, |, = {75,,52:7¢ # 0} ol the
plane (3, 3;) ento the demain {J/, o = {z,, z2: 2, # 0} of the plane
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Fig. 225 Compatibility of maps of the projective plane.

M

=

Fig- 226 An open wibazt,

(z,, z;) given by the formulas 2z, = y;', z; = y, 5, | is a dificomor phism
(tig. 225).
Proof. Note that 3, = z; "\y2 = 2;z; . B

Similarly,we can use an atlas consisting of2 + | afhine maps w equip the

projective space RP® with a differentiable structure.

33.4. Compactness.

Définition. A subset Gofa manilold M issaid to be openifits image @( ¥ A C)

on every map ¢: W — Uisanopen subset ol the dormain U of lincar space
(Fig. 226).

Pradlem 1. Prove that the inteisection o fiwo and the union of any numbex of open RIbseG
of a manifeld 15 opem,

Defiritior. A subsct K of a manifold M issaid o becompact if cvery covering
of the sct K by open sex has a finite subeovering.

Prodlem 2. Prove thal the sphere §° is sompact s the peojective pace RP® compact ?
Hut. Use 1he lollowmg theorem.

THEOREM. Skppose a subset F of @ marifold M (Fig. 227) is the oaon of a foite
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& o

Fig. 227 A compact subaet.

Fig. 228 A connccted manifold M and adisconnecied manifod M, U M,

number of sudscls ), each of which hat a compart image on one of the meps F, c W,,
0. W, = U, where p (F,) is acompact set in R*. Then F is compact

Progf. Let {G,} be an epen cevering of the set 7. Then {p, (G, " W)} isan
open cevering of the cempact set ,(F;) for every i. letting ) raage over the
resulting finite sct of values, we geta finitc number ol G, eovaiing -

33.5. Connectedness and dimension.

Definition. A manilold M is said to be connected {Fig 228) if given any two

peints x, y € M, there existsa finite chainol mapsg,: W, - U, suchthat W,

centains.y, W, contains y. W, " W, ¥iis nonempty, and ¥’; sconnected
A discennected manifeld Af decemnposes into connscted sormpoments M.t

Preblern ¢. Are the manilolds defined by

X3y —2t=C, C#O

in R? (in RP?) connacted?

Prodlemt 2. The s: of all matrices of order n with poniero deevminant has dwe nataral
structure of a differentiable manifold (a domain in R*). How many cmmxted com-
ponents docs this mani'old have?

TucoReM. Let M be a connected manifald, andlet
oW, U

t J¢. any two poink of U, can be joined by a polygeasl cunein U,  Re-
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Iig. 229 A dullerenuable mapping.

Fjg- T Frﬂjt’rllﬂ:ﬂ ol a \p]'in"r" anlo the plane gioes a clowed disk,

M
/ N
RS

1ig 231 A curve on 2 nanifald 1,

be 1ts maps. Then all the linear spaces R® containing the domains {'; have the same
dimensinn.

Proyt. Aconsequence of the fact thata diflfeomorphism beiween domains of
lincar spaces is possible only il the spaces have the same dizension and the
fact thai any two domaios W, and W; el a connrcicd manifold M can be
j0incd by afnite chain of pairwisce intersceting domains.

‘the numbcer 2 iguring in the theorem is called thic dimenoew of the
manifeld M. denoted by dim M. Vor example

dmR" =dmS$S"=dim 7° = dm RP" = 7.

A disconnected manifold is said 1o be »-dimcensional if 2ll i s connecied
compencnis have the same dim ensiona.
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frodtrn 3. Fquip e set Qdn) of all » thogunal edaliic ev of orde s a with b structuee of 3
diflescnitnlle mamifuld. Find ite connecied comnponents and (v dimensson.

Ans, O(n) - SO % Zy, dim Oln) 'Lrﬂ

33.6. Diferentiable mappings.

Definition. A wapping 1 M — My ofone Cf-manifold into another 1s said 1o
be differentiable (of class C*) ifitis given by diflerentiable functions (of class
(") m Ihe local coordinates on Af| and .\ ,.

In other wiords, lev w,: ¥, — (7, be a map of M, acting on a ncighbortond of 3 point
xeAfv,and oy : Wi o Uz a map of A, acting on a nrighborhood of a poiot fix! « IV,

(Fig. 229). Then 1he: mapping of dornaine of Euclidean space o, .f - v;' defiord in a
neighlorhood of the point ¢ (¥) must be difierentiable of class C-.

Example 1. T'he projection ofa sphcere onto the plane (Fig. 2301 is a difler

cntiablc mapping. Note that a Jiflcrenuable mapping need not carry a
diflerentiable manifold into a dilleremiable manilold

Lxample 2. By a curtet on a manilold M leaving the pnint x € M attime o s
meant a diffcrentiable mapping f: 7 = Af of aninterval fof 1he teal t-axis
containing the point tginto a manilold A such that fitg) = x.

Example 3. By a diffeomerphisik [+ M| — Mjo0fa manifold M, onto a mani-
fold A1, is meant a diflerentiable mapping f, whose inverse /= 1: M, — M,
exists and i3 diflerentiable. 'I'wo manifolds A, and ), are said to be
diffeomorphic if thete exists a difleomorphism from one onto the other. For
examplc, the spherc and the ellipsoid are difleomorphic.

33.7. Remark. It is easy to sec that every eonnected o ne-diiensional
mapilold is diffeornorphic 1o a circle (if it is compact) or 10 a line (ifit i
noncoimpact).

Examples oftwodiinensional man:folds are the sphere, the 10rus (difeo-
morphic t0 a “‘sphere with one handle™) and the “sphere with & bandles’

(Fig. 232).
(3

l'ig. 232 Nowndiflcomorphic twe.dimensional manifolkds.

t Synenymously, a ponirietrized curre, since one-dimensiona) submaatfodds (defiard in
Sec 33.8) of thie inaniflold A are semcuimes al30 calied curves o0 A A Pargaxe@xd cmve
can have points of self.intersection, cusps, erc. (Fig 281).
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In coutses on topilogy it (o proved thut every iwo-dimensional compece covevexted
orlented manifisld s dilfeoinorphlc to a sphere withe o 0 handles. Livike » known abowt
three.ditnensdynni manifolds. For example, it is not known whether every compact umply
connectedt thrre.dimeisionsl manifuld s diffeamorphic @ the sphere 5? (Pswe™s
Aypoithesis) or even hoincomorphie to §7.

I'he differeaulnble and ¢opoloflcal clamlfications of manifolds do not caex~e 0
highet dlirmensiona, I'or exanple, there exist precisely 20 smooth nianukobds, catied Alibner
spAeres, homecunorbhic 1o the sphere §?; but not diffcomorpbuc 10 cach othes.

A Milnor sphere fn C* with coordinates =y, ..., z; 8 defined by the wo Quacoas
v b2l b g4+ =0,

2]} 4 oo 4 l2g|* = .

York = 1,2 ..., 28 we get 28 Milnor spheres.? One of ihoe 28 manfolds B b
morphic to the sphere 7.

33.8. Submanifolds. The sphere in R? with equation x? + »* + d=1
is an exatple of a subset of Eucliclean spaceinheriting the natural structure
of a differentiable manifold from R}, namely thestructare of a submeasifold
of R3 The general dellnition of a submanifold goes as follows :

Defirition. A subset V of a manifold M (Fig. 233) is said to be a swbasanifedd if
every point x € ¥ has a neighborhood #Vin M anda map @ W — U such
that (W n ¥)is a demain of an afhine subspace ofthe affine space R® con
taining {. ‘I'he submanilold Fitsclf has the natural structure of a manifold
(W= WAV U = @(W)),

The following fundamenital fact is given without proof and will not be
used subsequently:

THROREM. Every mantfold M is diffeemorphic 1o 6 submanifold of Exslidean shace
R" of sufficiently large dimersior (for example N > 2n, where n = Jim M®),

Fig 233 A submanifold

t A inanifiold Af issaid to be sivply connected if every closed curve in A can be scotinaoudy
shrunk to a point.

1 See €. Brieskorn, Berspiele 2ur Differentinliopologie voxg Smgularititen, [nvent. Math. 2(1966),
I~14.
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Myt 1.5 1 )
"M
v

Fig. 23  Examples of three-dimensional manifolds,

'Thus thc abstract concept of a2 manifold does not actually eomproe a
largerclass of objects than''k-dimensional surfaces in N.dimensionalspace.
The ailvantage ofthe abstract approachisthat it includes 1those cases where
no wmbe-dding in Luclidean space. is specified in advance, and wheve such a
specification would only lead o spurious complications (as in the case of the
projective space RP*). "I'he situation here i3 the same as for finite-dimen-
sienal lincarspaces(they are all 3somorphic to the coordinate space of points
(% - .1 %), butspecifying coordinates often merely complicates matters),
33.9. Example. Finally we censider the follewing five interesting maakdds (Fig. 234):
1) The growp M = SO(8) of orthoganal matrices of order 3 and desermimant + ). Sinece every
maieix of A, has 9 clemenis. M, it a subseq of cthe space R®. [t i ey 00 wre thae shis
subset is aclually a subenznifo'd.

2) The set M T\ 82 of all vectors of (eI | langesd o dhr iPpberr ST in threcdsmaind)
Euclidcan space. As an exetcise, the reader should introduce the staucture of a differ.
entiabl e manifold into AMf; (ef. Sec. 34).

3) The il-rec-dimemsional projeciere spame Afy — RPI.

4) The configumisin space M, 8f a rigad body fastened i a fixed point O.

5) The subset My o/ the spoce RO = BC2 determimed by e equations

42 +ie,

[z 3 4 123l + 125)2 = 2

*Problem 7, \Which of the nunilolds A, ..., My are difleovooephic ?

34. The Tangent Bundle. Vector Fields on a Manifold

With every smooth manifold M there is associaled another manifold (of
twice thc dimension), called the tangent burdle of M and denoled by THM
‘The whole theory of ordinary differenual equations can immeadiately be
carried over (o manifolds, with the helpof the tangent bundle

34.1. The tangent space. Given a smooth manifold M, by the zecior &
tangent to M at the point x is meant the equivalence class of curves leaving s,
two curves (l'ig. 235)

‘y.;!—'ﬂf., )‘zif—)z‘ff

* Atangemd bumdle is 2 speCial Case of 2 wector bundle; a sizl] rore Benera) commerpd is that of a
bundic spoce. All these notions are hasie in tepalegy and analyss, bul wecafine ow xdves
here 10 1angent bundles, which ate particularly impertantin the theory of ey hficr-
cnoal cquatiens.
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Fig.235 'I'hetangunt vec'tor,

Fig. 230 A tangent «pace.

being equivalentiftheir images
0 - U, oy d = U

on any map arc cquivaleni.

Notc ihat the concept of cquivalence of curves docs not depend on the
choicc ol the wup of the atlas (scc Sec. 6) : Equivalcnce on a map @; implies
equivalence on any other map ¢;, sincc the transformation @;; fmom one
mapto anotheris a diffeomorphism.

The set of vectors langent to A{ at x has the structurc of a linear space, a
structure independent of the choice of map (see Sec. 6). Thislinear spaccis
called the tangent space fo Af af x and is denoted by 7M. The dimension of
T M, isthe samcas the d mensionofl M.

Example . Let Af" be a submanifold of thcaffine space R* (Fig. 236). Then
T M can be thought of as an #-dimcnsional plane in RY going through x.
Herc, however.i tmust be kept in mind that tAe targen! spaces te Al at distimet
poinis x and y do not intersect: TM; N T M, = .

34.2, The tangent bundle. (onsidcr the union

TM=|) TM,
xe M

of the tangem spacestoa manifold M atall points x € M. Then theset 7.M
hasthc natural structure of a smooth nanifold.
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&y

Fig. 27 Concdinates of the tangent veclor,

by
I

|
r
~ ¥
- "

Fig. 238 A tangent bundle.

ln faict, consider any map on the nanifold M. and let (x), ..., g): W - U C R*
(Fig. 237) he local comdinate: in a neighborhood ¥ of the poin t x specifytag this map.
Eaery vecior § langent (8 Af at a poial x ¢ k¥ it deteemined by 1 compooens &y, ..., &,
in the indicated courdinate system In fac, if y: £/ — Afis 2 curve leavang = m the digce

tion ol { at lime ¢4, then

& =3 aixa.

twee

Thus evety vector € tangent to M at a point of the dna.n W i specied by 2e numbas
Xpeooo0 Xy &py ooy &as the 2 coordinates of the “poant of tangoucy” © and U a “com

ponenis” §,. Thisgives a map of part of the sev TAfL:

e THW — Rin () = (1'1...‘,;..{,,...,{.).

Differtnt maps of TAf cortspoiding o different maps of the ailas of M a1x com-
patible (af class C*= ' if M is of class C*). In facl, let y,,. . . . ¥, be ansther bocal cawdina e
systemy on M, and let iy, . .., . Le the components of a vevtor in ths sysacm. Then

n
e “_yl(.‘j,s--),"), R = z %6, {t = ',‘...,I:J

Jal

are saoeih functons f x, and {» Thustheselt T3 ol all angeni veciors to M aCQunes a
smooth manifold structure of dimension 2x,
Definition. 'The manilold T.M is called the targent bundle (3pace) of the mani
{old .M.

There exist natural mappingsi : M- TM (the mull section) and p: TM - M
(projection) such that i(x) is the zero vector of 7T.Af, and p(&) is ithe point x
atwhich ¢is tangent 10 M (Fig. 238).
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Fig. 239 Purunlichziible and novparaliclizabl: manifolda

Iig, 240 A bundle which is noi a direct product

Problem i, Prove thai the mappings i and p are differentiable. chac i is a diffcoavn pham
of M onto i{M), and tharp . i: M — A s 1he identity mapping.

The preimages of the points x€ M under the mapping p: T — M are
called fibres of the bundle TA{. Every fibre has the structure of a lincar space.
Theset Mis called the base ol the bundle 7M.

34.3. Remarks on parallelizability. The tangent bundle of ihe attne
space R" or of a domain & < R" has the structuce of a direet product:
TU = U x R® In lact, the tangenl veclor o U can be specified by a pair
(x, §), where x € Uand § is a vector of Lhe lincar space R*, for which therc
exists a linear isomorphism with TU, (Fig. 239). This can be expremaed
diflerently by saying that afine space is parailelizable, i c., equality isdefined
for tangent vectors to the domain U « R*® at diflerent points xand .

The tangent bundle to 2 manifold M need not be a direct product, andi n
general we cannot give a reasonable definition of equality for vectas
“attached” to different peintsof M(Fig.239). The situation hereis the same
as lor a Mabiusstrip (Fig. 240), which is a 1angent bundle with aarele asis
base and straightlines asits fibres, but whichis not the direct product of the
circle and a line.

Definition. A manifold M issaid o be parallelized il its 1angent bundle &5 ex-
pressed as a direct product, i.e., il a diflecomorphism of TAf* = A{* x R*
cartying TAf_linearlyinto x x R"isgven. A manijoldis said to be paral-
lelizable il it can be parallelized.

Example !. Any domain in Eucldéan space is natorally paralldized.

Problem f. Preve that the torus 7° is parallehzable. bt not the Mébs s,
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Fig. 241 T'be hedgelivyg theotein.

Fig 242 I'he derivative of the mapping f atihe paint 4.

*TIEOREM. Only three of the sphetes 8™ are parallel zable,namely S, S3, and 7. In
partieular, the two-dimensional sphere is nonparallely 2able:

TS # §2 x R

This implies, for example, that a hedgehog cannot be combed : At least
one quill will be perpendicular to the surface (Fig.241).

The veader who hassolved the problemattheend ofSec.33 9 will find it
easy to prove the nonparallelizability of $2 (Hint: RP? £ §2 x §'). The
parallelizaiion of §' is obvious, while that of $* is an instiuctive cmercise
(Hint: $* is a group, namely the group of quaternions of modulus ). A
complete proof of the above theorem requires a rather deep penetration
into the subject oftopology; in fact, the theorem was proved only relatively
recently.

Analysts arc inclined to regard all bundles as direct products and all
manilolds as parallelized. This mistake should beavoided.

34.4. The tangent mapping. Lct /2 Af + N be a smooth nmmappiog of a
maniiold .M into a manifeld V (Fig. 242), and lct f_ denote the induced
mapping of the tangent spaces. The mapping fq, (= f,l.) 15 dcbsed as in
Sec. 6.3, and is a linear mapping of one linear space into anothex:

Sau: TM, —« TN\ (1)
Letx vary over .M. Then (1) defines a mapping

Je: TM 4 TN, Solrser =Sux
of the tangent bundie of .M into the tangen bundle of N. This mapping s
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¥ig 243 The langent mapping.
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Fig. 244 A veawr ficld,

differentiable (why?) and maps the ibres of 7. f linearly into the fibres of
TN (Fig 243).
The mapping /,, is called the tangent mapping of f (the notation
Tf. TM — TN isalso used).
Problem 1 Lt 1 = N and 2: .V — 4 he sowvnlh mappeogs, with composimon
g-fi M- K.Provethat (8- f)¢  feo-Sfo.i.c. that
T RY

,/ N o\

-/,

Congnent an tereninalog r. In aislvxis this fermula = called the sule foe diffecentannn of a
compocite tunction, while i algedia it i called 1he (eaenniont) funcloriality of the transitoa
tn the 1zngent mapping.

34.5. Vector fields. Lct Af be a stnoonth manifold (nf class € ° "), with
tangent bundle TAf (Fig. 244).

Defintiton. By a zeclor fretdt v (of class () an 1J is meant a sieooth mapping
v: M — TA7 (of class ) such hat the mapping pov: A — A 1s the

1 The term secteon of the tanpent bundle . also used.
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S
K1g. 245 A vilecity feld.

identity inapping £or equivalently such that the diagram

TAL
/s
4‘{ _Tﬁ‘ J‘f

is cormmutative, i.c., p(v(rx)) = x.

Remark. If \f is a domain of thespace R® with coordinates z, . . ., x,. this
definition coincides wi th the old one (Sec. 1.4). However, the present definm.
tion involves no special system of coordinates,

Example. Clonsider the family of rotations g' of the sphere S through the
angle ¢ abnol the axis §A (Fig. 245). Every poini of the sphere x € $* de-
scribes a curve (a parallel of latitude) under the rotatien, with velocity

v(x) = ‘% uog'x € TSL
'This gives the mapping v: §* - T5?, wherc obviouslyp - v = £,ie., visa
vector held on $2.

In general, a one-parameter group of difieomorphisms g': M — Afof the
manifold A gives rise to a vector field of'the phase velocity on M, in precndy
the same way asin Sec. |.4. The wholelocal theory of (nonlicear) ordinary
differential equations can immediately be carried over to manifolds, since
we were careful at the time (in Sec. 6) to keep our basic concepts 1ade-
pendent ofthe coordinate system. 1n particular, the basic local theorem on
rcctifiability ofa vector field and the local thesrems on exasience, unique
ness, continuity, and differentiability with respect to initial conditions carry
over to manifolds. "U'he specific characterof the manifold comes to the fore
only in considering nonlocal problems. The simplest of tirese problams
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concerns the existence of solutiom or the existence of a phase Aow with a
given phase velocity lield.

35. The Phase Flow Determined by a Vector Field

‘F'he thcorem o be proved below is the simplest theorem of the qualitative
theory of differential equations, giving conditions under which it makes
sense (o ask abeut the behavior of solutions of a differential equation on an
infinite Umecinterval. In particular, the theorem implies the continuity and
differentiability of the solution with respect to the initial data in the large
(i.c.,on any finite time interval). Thetheoremis also nselul as a model of the
lechnigue of construcling diffeomorphisms. For example, we can we the
theorcin to prove thatevery closed manifold having a smooth lunction with
only two critical points is homeomorphic to asphere.

35.1. Theorem. fel M be a smooth mantfold (of class C*, 5 > 2), and it
vt M TA bea vector field (Fig. 246). Moreover, {rt the vector v(x) be differemt
Jvom the zero vector of TM, only in a compact subset K of the manifold M. Then there
exists a onc-parameter group of diffeomorphisms e’ M — M for whick v is the phase
velocily field

;,g'x = v(g's). "
COROCLIARY 1. Every vector field v on a compact mamifold M is the phase velocily
field of a one-parameter group of diffeomorphisms.

Inparticular. under the conditions of the theorem or those of Corollary |,
we have

cOR@®LLARY 2. Every solution of the differential equation

= vix), xeM (2)

ix)

e
F: P

= -
..-.—:—._-_J_..._”
<

Fg. 246 A vecter ficld vanishing ouside a campact set X.
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con be extended \udefinitaly forward and backward, wrth the valua of the solution g'x ot
time ¢ depending smoothly ant and the initial sondition x,

Remark, ‘The compactness conditinn cannot be dropped.

Example . 1TAM = R, £ = 22 (sce Sec, 3,.5), the solutians cannol be culended indehninely.
Exainple 2. Af » (10 <y < V], 2 = |,

We now piroceed to prove the theorem.

35.2. Construction of the diffeomorphisms ¢’ for small /. For covny
point x € M there exivts an open nerghborhood U < M and a numberx > O sack that
gwvenany point y € U andany ¢ with | < e, the solution g'y of squalign (2) satts
[ying the instial condition y (att = Q) exists, isunique, depends differentiably oa t end
», and salisfies Lhe candition

7 = g'ey
flel<elsl<elt+4 <e

|n Jace, the point x has an image o some map, and our asserton has been
proved lor equations in a domain of affine space (see Chaps.2and 4)_t

‘Thus the compact 3¢t A is covered by neighborhoods U fiom which we
cansclcct a flinite covering { ;). l.etg be the coircsponding numbars ¢, and
choose g9 = min ¢, > 0. Then flor || < g¢ we can define difficoasor phisms
g': M —v Minthe large such that g'x = x lor x outside K and ¢'*” = g'Zif
¢l. 151, |t + 5| < 4. In fact, although the solutions of equation (2) with the
initial condition x (for { = Q) defined by wsing differentmags are dificient
a priort, they coincide for |t| < gg because of the choice of §¢ and the local
uniqueness theorem. Morcover, by the local theorem on diflerentiability,
the puint g'x depends differentiably on ¢ and x, and since g’ =" = £, the
mapping g': M — Alisadiffcomorphism. Notc also that

d
~ g'x - v(x). (3)
dt],-o

35.3. Construction of ¢’ for arhitrary (. Lett be represented in the lorm
(neof2) + 1, where n is an integer and 0 € ¢ < g¢2 (this representation

t I'he preolof the uniqueness requires aslight additional aigurnent: It rowss be vesified than
uniquencss ol thesolution with gve initial conditions on ecey fixed map ampdirs unique-
hess o the manifold. Uniquueriess may well fail @0 a noixeparable mamidold (coasder. for
example, the cqquation £ = 1, 7 = | on the manilold ebuained froce the lines |51 and {7) by
identifying points with equal negative coondinates). However, if the ammikdd A s separa-
wle, then Uie vniqueness prool of See. 7.7 goes throngh. (The separabi'aty & used wo pyore
\hie coincidence of the values of the solutions ¢, { T} 2nd e z( T) atthe st point 7 aher
which thev no leger coincide.)
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exists and 18 unique), ‘The diffcomorphisms ¥? and £ have alicady been
delined. Writingg' = (2%')*¢’, we ger a difleomor|shism of M onto M. For
ltl < ep/2 the new derinition agrees with that of Sec, 35.2, and hence (3)
holds. Moreover, it iseasy to seethat

g m gy (4)
for arbitravy sand ¢,

In focy, Iy
) -m-'f A R A R = R

Then thie 1eft and righi-hund sides of (4) hecome (2°/* 8¢ and (g* /%" ' /*}°g4. Two
Cases are Pesible:
wdn =k, Pt -1

Nmdn ~h=i, ptog rlff.

B the diffcvinophisms 2%/2, g2, and ¢ commule, anre Bl <= ¢0'2 |¢) - 0/ Tho

wiphes {(4) in botlt the tirst and sccond caet (g5 g = 7% since |91, lol, bl - %,
‘o
P+ 3 + 1}

We must still verify thau the point ¢'x depends diflercniiably on ¢ and x.
This follows, for example, from the fact that g = (£'™\¥. while g/*x de-
pends diflere ntiably on ¢ and x for sufficiently large .V, by Sec. 35.2

Thus {g'} is a enc-paramcier group of di lcomorphisms of the manifold
M. and v is the corresponding ficld of the phase velocity. The powf of
Theoretm 35.1 is now compleie.  |]

35.4. Remark, It is a simple oonscquence of Theoremn 35.1 1that awy s ek-
tiow of the nanautanomous equation

L= viy ), xell, teR

défined by a time-dependent rectsr field v ov a compert manifold M cam be extendnd
indgfnitely .

In parurular, this cxplains why we can extend solutions of e lincar
cquation

x = vix, (). w(x, ()= Altix, ieR, xeR" (3)

indefinitcly. In fact, we will regard R® as the affin part of the peojcciive
spave RP", where the latter is obtained fromisaffine part by adjoining the
planc atinfinity :RP" = R° U RP"’_ Letv be alinear vector heldin R®,
so that v(x} = sx. Then we can casily prove the following
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!

Fg.247 Exwnsionof alincar vecter held onto projeteive space.

\ Vg
Sultrz

Y [l
\ |~

Eig. 218  Behaviur of 1he exkmsion of the field acar 1he plane at infiniy.

LEMMA. T he nector field v on R can be uniguely extended 10 @ smooth freld v on RP"
The freld v’ on the plane at infiity RP* ™! {5 tangenttoe RP* 7.

I n particular, suppose that (for every f) we extend the field (¢ | sprafving
(5) walield v'(t) on RP". Consider the equation

X = V‘{X,!), xeRP”, teR, {6;

Since projective space is compact, every solution of (6) can be exiended
indefinitely (Fig. 247). A velution initially belonging to RP* ™! always stays
in RP*~ !, since the field v is tangent 10 RP* ™ By the uniqueness themem,
the solutions of the equation with iniial conditions in R® iemain in R” for
aii t. Buteguation (6) is of the 1orm (5) in R®. Thus every solutoan of {3} can

beextended indefinitely.
Problem. Prove the lemma.

Solutien . larx,, ..., x, be athne ceordinatesin RPaady,, . . . , 5, other
a:Tine coordinates such that

Jy =X, Py =Xy, k=2,....,n

Then the equation of RP*~ ' is just 3, = 0 in the new coordinates The
diffeerensialequation (5)
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takes the form

d
-:—"'-' -)u(ﬂuu + tn""")'

d = ~
-‘l'-- ay; + )_. aun ")’s(ﬂu + L dn)'l): k>
d! > Ty

in the new coordinates (Fig, 248). From these formulas, valid fory, # 0,8
clear how to comnplete the definition of the ficld at y, = 0. Fory, = O we
get dy,/dt = O, thereby proving the lemma.

Solution 2, An alline transiormation can beregatded as a projective transfor-
mation, leaving the plancatinfinity (butnotits points) fixed. In particular,
the lincar transformations ¢*‘ can be extended o diffcomor phisms of projec-
tive space leaving the plane atinfinity ixed. These diffecmoephisms form a
one-parameter group, with ¥ as its phase velocity field.

36. The Index of a Singular Point of a Vector Field

We now consider a few simple applications of topology to the study of
differential equations.

36.1. The index of a eurve. We begin with some intuitive considerations
which will be backed up later by exact definitions and proofs (sce Sec. 36.6).

Considera vectorfieldspecified in an oriented Euclidean piane. Suppose
we are given an oricnted cloted curve in the plane, which dos oot go
through any singular points of the field (Fig 249), and suppa=e a point
inakes vne circuit around the curve in the positive direction Then the held
vector at the point in question will rotate continucusly as the point moves
around the curve.t When the peint retuens w its original position, kaving

Fig. 249 A cyurve of sndex .

* Tokeeptrackefthcrevalutionsof the vector, it is convenient 1o refer all verwws o a ange
point @. [Gllo wing the natural parallclization of the plane
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'z !S Y i i l::
Fig. 250 Cuives with various indices.

gonc around the curve, the vector also returns to its original position, but in
doing so, it may make several revolutions in onc direction or the other, The
number of revolutions made by the feld vector in traversing the curve once
is called the tndex of the curve. Here the number of revolutions is taken with
the plussign if the vector rotates in the direction specified by the orientation
of the plane ({rom the first basis vector to the second), and with the minus
sign otherwise.

Example {. The indicesofl the curves «, 8, 7, and 6 in Fig.250 ate 1,0, 2, and
— 1 respectively.

Example 2. Let O be a nonsingular pointof the field. Then the index of every
curve lyingin asufficiently small neighborhood ofQ cquals ae10. In fact, the
directionof the feld at O iscontinuous and hence changes by less than /2,
say, ina suthciently small neighborhood of O.

Problem 1. Suppose we specily a vector fieldin the plane R? = ®C without
the peint O by the formula v(z) = 2", where ris an integer which is not
necessarily positive. Calculate the indexof the circle z = ¢, oriented in the
direction of increasing ¢ (the piane is oriented by the frame 1, 1).

Anrs. n.

36.2. Properties of the index and their implications.

PROPERTY 1. The index of a closed curve daes not change under cvmtiemegs deforma-
tien, as long as the curve does not go throngh afy singuler points.

In fact, the direction of the Reld vector changes continuously away from
the singular points. Therefore the number of revolutions also depends
centinuously on the curve, and hence must be eonstant, being an tnteger. |

PROPERTY 2. The index of a curve does notc hange under continaows defirmnatne of the
veclor field, provided only that there are no singular points of the field om Lhe cooe haing
the whole course of the defor mation.



256 Chap, 5 Differential Equatiors on Manifolds

‘These two properties, which are quite obvious intuitively,t have a
num ber ofdecp nuplications:

TineenrM L. Given a vector field tn the plane, let D be a circular disk and S tts band:
ary, 3 It the index of the curve S is nonzero, then there is ai least ome singalor point
tuside 1),

Progf. I{ there arc no singular points in D, then § can be deformicd con-
tinuously inside O without going through any singular points, so that after
the delermaiinn we get a curve arbitrarily clase to a point O in D (we can
cven deform S into the point 0). The index of the resulting small curve
equals zere. Bui the index does not change under deformation, and hence
it imust originally have been equal 10 zero, conirary to hypothesis. |

Problem 1. Prove thil the syviem of differential equations

t=x+ P2y =2+,

where Pand Q ure¢ funclioms bounded n 1he whole plane, has a1 least oae cquwhbrium
Pwitien,

THROREM 2 (Fundamental theorem of algebra). Every cquasion

2 +a,2 '+ - +a, =0 1);

has at least one complex rool.
First we prove the lellowing

LEMMA, let v be the vector field in the plane of the complex variable z grzen by the
Jormuia

viz) = 2"+ a, 27" + -+ +n,,

0 that the singular peints of v are just the voots of squotion (1). Thes the mdex ia the
feeld v of acircle of sufficiently large radtus equals a. §

Progf- In lact, the formula
vi(z) = 22+ t{a,2" "' + -+ + a,), 0t <|

defines a continuous deformation of the original field into the field 2. If
r>1 4 ladl + - + lay, then#* > |a,|*~"' + - + |ad. Hence thaie
arc no singular points on a circle of radius r dwing the whole couise of the
delermaiion. 1t follows from Properiy 2 that theindex of this circle is ihe

! The accurele formuta tion and proof of these assevions requins some Dymkgxal (ecb-
nique, namely (he use of homotopies, homolegies, or something imilar (w this end, we will
use Green’s loimula below). $ee e.g.. W. C. Chinn and N. E Sicenrod, Fa Cammgpts of
Tepology, New Yerk (1966).

1 We can also consider the more ganecal case where B i any plane dooxain boaaaded by a
simple cdlosed curve S.

§ Hare we use the :ame orientation as in Sec 36.1, Problem L.
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Fig. 251 Mapping of a disk into itsell,

same in theoriginal ficld as in the ficld 2% But the index equals win the fReld
28
Proof of Theorem 2. Let r be the same as in the proof of the lemma. Then, by

Theorem | and the lemina, there is at least one singular point of the vecior
ficld, i.e., at least one root of equation (1), inside the disk of radiusr. |

1HE0REM 3 (Fixed poini theorem). Ewry smootht mapping f: D — D of a
clesed disk tnto itself has al least one fxed poent

Proof. We take the plane of the disk D to be a linear spase having its origin at
the center of the disk (Fig. 251). The fixed points of the mapping f arc just
the singular peints of the vector field vix) = fix) — x. If there are no
singular paintsin D, then there are none on the circle bounding D. This
circlc has index | in the ficld v. L n fact, there exists a continuous defortmation
of the ficld vinto the ield —x such that there arenosingular points on the
circle during the whele course of the defoimation (for example, we need
onlysetv,(x) = {f(x) — x.0 £ ¢t £ |). Heaccethecircle has the mme index
in both felds v¢ = —xand v, = v. But asimple direct calculation shows
that the index of the circle x| = rin thefield —x equals 1. To complcte the
proef, weagain use Theorem | t» deduce that thereis at least one singular
point of the field v, i.e., at least one fixed point of the mappiag/, inside the
disk. |

36.3.The indexofa singular point. Let O be anisolated singular point of
a vector ficld in theplane, i c., suppose there are no other singular pointsin
some neighbochood of 0. Consider 2 circle of sufficiently small radius
centered at 0. Suppose the planc is oriented and let the orientaton of the
circle be positive (asin Sec. 36.1).

THEGREM. T he index of a circle of sufficiently smoll radius centesed at an isolated

t The theorem isvalid ler any centinuous mapping, but bere we peore she dreocem anly
vnder the assumpien of smoochness (see Sec. 36 6).
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A\

Fig. 52 The indices of simple sngular pomta equal + |,

singuiay point @ doss not depend on the radvus of the civele, provided omly that the radens
is sufficienty small.

Proof. Any two such circles can be conlinuously deliormed into each other
without going through singular points. i

Note also that instead of a circle, we can choose any other curve going
around O once in the positive direction.

Defimition. The index of any (and hence every) sufficiently small positively
oriented circle centered at anisolated singular point ofa vector ficld is called
the index of the singular poent.

Examples. Suppose the singular point is a node, saddle point, or focus {or
center). Then the index of the singular pointis 41, — 1, or + I repectively
(Fig. 252).

A singular point of a vector field is said to be simple if the opecrator of the
lincar part of the field at the point is nondegenerate The class of singular
points in the plane consists of nodes, saddle poink, foci, and centers Thus
the index of such asingular point is always + L.

Prodlem f, Construct a vecwe Reld with a singular poeintof index 2.
fHint. See, foc example, the problem in Sec. 36.1.

Problewe 2, Prove that ihe index of asingular point isindependent of the chaier of arien ¢ &
won of the plane.

Hint Changing the ericntation simultanecwa)y changes both the pusitive directioo of
iravecsing the ciccle and the psiive direction of counung the numier of revoluagen

36.4. Indexof a curveinterms of indices of singular points. Let D be
a compact domain bounded by a simple curve § in the onented planec.
Suppose 5 has thestandard or:eniation ofthe boundary of D, i.e., suppose
D lics to the left of an observer traversing § in the posilive direction, This
mecans that the positive orientation of the plane is given by the dihedsal
made up of the velocity vector along § and the normal vector directed
inside D.
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Now xuppose we are given a vector ficld in the plane, with no singular
poinis on the curve §and only a linite number of singular points mude the
domain D,

1NRORY-M. The index of the curte S equals the sum of the indices of the nngular poimty
of the field {ying mside D.

First we prove thai the index ol a cutve has the following additivity
properiy:

LEMMA. Gioen lwo orented curies y | and y, going tArough rthe rame point. ety 4 v,
be the new oriented curte oblained by tranersing fiest y, and aftersaneds y,. Then the
index of y; + y; equals the sum of the indices of y, andy,.

Proof. ‘I'he lield vector makes n, turnsin goingaround y, and ¢, more wens
in going around y,,and hence vy, + ny turns in all.

Proof of the theosem. We |;)artition Dinto parts D; such that there is no more
than one singular point of the field inside each part (Fig. 253), and no
singutar poinis at all on the boundaries of the parts Morocover, we assign
cach of the curves y, beunding the parts D; the orientation appropiiatc to
the boundary (Fig. 253). Then, by the lemma,

ind}Y y;, = indS + ¥ ind §,,
t 5

where the closed curve §; is made up of a part of the boundary of D; lying
inside D and is traversed twice in opposite direcuons. The index of each
curve 3, equals 0, since §; can be conuacted into a point without passing
through singular points (see Sec. 36.2). The index of the curve 7; ¢quals the
index of the singular point surrounded by y; (or O il the domain D, sur-
rounded by y; contains no singular points).

Probdlem f. 1<t p(2) we a polynomial of degree = in a eomplex variable z, and ket D be a
domain n the z-planc bounded by a curve §. Suppase there are no rros of 1be poly-
womial en 3. Preve (hat the number of accos ol the polynomial iwnde D (wath muisipls.
cities taken inle acceunt) equals the index of the cutve S in the Scld v — p(2),ic the

5

Fig. 253 The index of the curve $ equalsthe sum of the indies of the cunes 2, and 7.
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number of rvolutionm (winding number) of Ihe curve §($) apund the ongia.

Comownl. This givea a way of miving the Routh. Hurwila problem of Sec, 23.4: Find thr
naniber n_ of teros of agrun polgnomial i (e fef) hall-plame. To this end, we conmdey a ha
disk of wulficiently large raclius in the et hall.plane with its center al the pasnt £ = 0
and {1 diaineler olong the insginary axis. The number of 2eron tn 1he lefR half-plane
clunls he index of the boundary S of 1he hall.disk (il the radius u large enongh and f
the polynom iul has no purtly imaginary zeros). To calculate 1the inden of thecurve S,
we need only lind the number of revdulions v around the ongin of (he xmage of 1he
imaginary axis (orlented from —i to +1). Tn fact, it s easily verihed shar

n_ —indSuv-f%,

since the image under the mapping p of a semicizcle of sufficienily large radnn makes
approximately af2 revoiutions aiouivd the oiigin (a number closer 10 nfZ, the laiger the
radius).

In particudar, atl the 20701 of o polymamial of degree m iz in the ioft Aalf-Plame of and aaly f the
pomt p(st) gots mrvund the origin nf2 times (inthe directson fyom | & 3) as ¢ varies frem ~ oo & + 0.

36.5. The sum of the indices of singular points on a sphere,

*Problem [. Prove that the index of a singular point of a vector field in the
planc is invanant under a difteomorphism.

Thus the index isa geometric concepi which isindependentof the coo =
dinatc system. This lact allows us to define the index of a singular point not
only in the plane but also on any two-dimensional manifold In fact, we
nccd only consider the index of the singularpointon any map, and the index
will then be the same on the other maps.

Example 1. Consider the spherc x2 + 3* + z2 = 1 in Euclidean three-
dimensional space. The vector field of the velocity of rotation aboutt the
z-axis (¥ =y, y = ~x, & = 0) has two singular points, at the north and
south polcs (Fig. 254), each of index + 1.

5

Fig. 25¢ A vecior field en the sphere with two singular points of index ).
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Suppose we are given a veclor ficld on the sphere with only isolated
singular puints. ‘Uhen there are only a Anite number of such pomts, since the
sphere s rompact,

YratkorizM, The sum of the indices of all the singular points of o field o the sphare o5
independent of the chorce of the field.
Itis ¢lear rom the above example that tAws sum eguals 2.

Jea of the progf. Consider a map of the sphere covering the whale sphete
excepl for one point, which we call the pole. Then consider the held of the
basis vector e in the Euclidcan plane of thas map, and carry the fickd over 10
thesphere. This gives a field on the sphere (defined except at the pole) which
we continue (e denote by e, .

Now consider the map of a neighborhood of the pole. [n the planc of this
map wr canalsodraw the vector field e, on thesphere, defined exeept atone
point O. The appearance of this fieldis showni n Fig. 255.

LEMMA. The tndex of a closed curve gaing once around the poins O sn the plana fretd
Jjust corstyucted equals 2.

Proof. We need only carty out cxplicitly the operations described above,
choosing for the two maps, for cxample, maps of the sphere under sicreo-
graphic projection (Fig. 222). Parallel lines on one map then go into the
circles shown in I'ig. 255 on the second map, from whichitis clear that the
indexequals 2. ]

Completion o f the proof. Consider a vector field v on the sphere, choosing a
nonsingular peint of the ficld as the pole. Then all the singular points of the
ficld have images on the map of the complement of the pole. The sum of the
indices of all 1he singular points of the field equals the index of a eircle of
sufficientlylarge 1adiusin the plane of this map (by Theorem 36 4). \Wenow
carry thiscircle over to the sphere. and then firomthe sphere 10 the map ofa
ncighborhood ol the pole. The tesulting circle on the latter mmap has index 0
in the field under considezanion, since the poleisa nonsingular point of the

Fi12.235 The vecior held ¢, parallel on oae mapof thespherz, byt drawn o mathes cxap .
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- aor eo» o S o S e a8 L

Fig. 256 On every island the sun of the nuinber of pcaks and the number of valeyd n
| greater than the aumber ol passes,

lield. Staying on the new map, we caninterpre: the index of acircle on the
firsi map as the “ uumber of revolutions olthe ficld v refotive to the feld e, in
goingonce around the aircle. This nutn ber equals + 2, since as we goaround
the circle surrounding the point O on the new map in the pasitive dicection
for the first map, the image ficld e, on the new map makes —2 revolutions
while the tield vmakes O revolutions. |j

* Prodlen 2. Lot f1 52 — R be a amooth function ou the sphere, all of wdore eritical paints

arc simple {i.c,, wheae seccond differential s nondegeneraie at avcry crecal paing). Prove
that

Mg — m; + my 2,
where m; is the mumber of critical poinis whese Hessian matnix (22f]2a.0x,} bas 1 neganxe

eigenvalues. In other words, the xumder of rainime enmus iAe casber O aoddie puints phuy e
numiber of maxima always equals 2.

For example, the total number of mountain peaks en carth plin the totsl number of
valleys s 2 greater than the numbcr of passes. Il we resirict oz sehves to an slaod or a
continient, i.c., if we censider futictions en 1 disk with no singular points om 1t boundary,
then g — m, + m; =1 (Fig. 256).

Hint Conuder the gradient ol the fitnction £.

¢ Prodlesr 3. Prave Euler's theorem on polyhedra, which asserts tha

@ —a, + a; =2

|'er every Dounded convéx polyhedron with ap votk & o) cdges. and a; Becs
Hint. This problemn can be reduced 19 the preceding problem.

*Problems 4. Prove Wat the swn g of the indices of the singaldy pommts of a vedew foid au auy
comPact rwo- dimensional mamifold & indoPendent of the farlst.

The number X in question is called the Euler chormciaistic of (he marsiodd. For exanple,
we have jus seen that the Euler chatacienatic z(5%) of the sphere equaks 2

Prodlem 5. Find the Euler characteristic of’ the toria, of the pre:zel, and of the sphese wnith
2 handles (Fig.232).

Ans. €, 2,2 — 2,

*Probdlemt 6. Extend the results ol Problems 2 and 8 [rom the spbere to any campact two-
dimensional manifeld, i<, preve that

Mo —m, + My =g — a1 + a; =2(M).
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36.6. A more rigorous approach. We now give an exact definition of the
number ¢of revulutivns or winding number of a vector field. Let v be a smooth
vector licll defined in a domain U of the plane (x,, 1,), with components
v,(\, x1) and #,(x,, ¥,), where the system of coordinaies x;, x; specifies an
oricntation and a Euclidean structure in the plane. Let U’ denote the do-
main oblained lrom U by delcting the singular poinia of the field, and let

v(x)
v(%)

be a mapping of U' onto a circle. This mapping is smooth (since singular
points of the licld have been excluded). Given any poim x € U°, we can
intreduce an angular caordinaie ¢ on a circle in a neighborhood of the
image_f(x) of the point x. This gives a smooth real lunction ¢{x,, x;} defined
in a ncighborheedofx. Calculatingthe tolal differential of ¢, we get

SiU' =S, fix) =

v Ozlbl - U|dU;
dg = darctan= = —— pe
¢ Uy r, + Ui

for v, # 0. The left and right-hand sides of (2) arc also equal fosr 2, = 0O,
v; # 0. Thus although the function ¢ is defined only locally and only to
within an integral multiple ol 2i, the differential of ¢ is a well-defined
smooth differential lorm in the whole domain U’. We denote thin form

by de.

Befinition. By the index of an orienled closed cwrve 7: §' —+ U’ we mean the
integral of thelorm (2) along y divided by 2= :

(2)

. |

indy = 5_ ,dtp (3)
We can now give rigoreus prools of the various theoremrs appeariog

above. Forexample, the proof of Theorem 36.4goes as (ollows:

Proef. Ler B be the domain with boundary § inside which the given field v
has only a finite number of singular poinis, and let & be the domain
obtained from D by deleting small circular neighborhoods of the singular
points. Then the boundary of £, with orientation taken in1o acoount, =
just

¢D'i=S - Y5,
t

where §. 13 a circle going around the ith singular poinr in the posiave diree
tion (Fig. 257). Applying Green’s forrmula to the domain 0¥ and the
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Fig. 257 The domain (o which Green's formu'a is applied,

integral (3), we gel

l,0=4,% - 54, %

The lelt-hand side vanishes, since the form (2) is locally a to1a] differential.
Butthenind § = Y ind §;, because of thedefinition (3). |

® brodlem {. Prove that the index of 2 closed curve u an inegee.
*Prodlemt 2. Give complete proofs of the asseriions in Secs. 36.1-36.3.

36.7. The multidimensional case. The multidimensonal generalization
of the concept of the winding number is the degree of a mappimg, by which is
meant the number of preitnages counted with due cegard for the signs
determined by the orieniations. For example, the degree of the mapping of
an oriented circle ento another oriented circle shown in Fig. 238 equals 2,
since the numbcer of preimages of the point y, with sign taken into account,
equals | + 1 — 1 + 1 =2,

To give a general definition, we proceed as [ollows. [etf: M — MIbea
smoothmapping of one n-dimensional oriented mantfold onto another such
manifold. A point x € M} in the preimagemanifold is called a seqular pont if
thcderivativeof the mapping f at the pointxis a nonsingular lincar opzzator
Sfor: TMY o TM3, ;. For example, the point x in Fig. 258 is regular, but
not the point x’.

Definitioen. By the degree of the mapping f at a regular potnt x is meant the numbex
deg, f®qualto + i or —I dependingon whether £, cairies thcgiven oticn
tation of the space TM}, into the given orientation of the space TAf3, or
into the opposite orientation.

Problem 1. Prenve thyy the degree of a lincar autamasphism A: R* — R® i the ame at
all peints and equals

deg, 4 = sgndet 4 = (= |)=,

where m_ 15 the number of cigenvalues of the operacor 4 with 3 a¢gative real part.
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¢ ¥y

Fig. 25 A mupping of degeee 2.

F246bleri 2.Coiven a lincar automorphiam A: R* — R in Euclidean space, defne a ™3 poing
of the unit sphere onto iwell by the formula fix) = A(x)jjds|. Find e degree of 1he

mapping / al the pejnt .

Ans, deg, [ = deg A,

Problem 3, 1t £ 8! — §*- ! be a mapping catrying every point of the sphor inta 1he
diamerticilly opesite peint. Wha ia the degree of f at the point ¥?

Ars. deg, f = (— )"

froblem 9. Let A: C* — C* be a C:lincar autamarphiam Find the degree of it devon-
plexification P4

Aus, + 1.

Now consider any point y of the image manifold M3. The point y € M} is
said to be a regular value of the mapping f if all the points of its complete
preimage f ~ ‘yare tegular. For example, the point 3 in Fig.258 is a regular
value, but net the peint ',

THEOREM, If the manifolds MY and M} are compact and cornacted, them
L) Regular values exist
2) The number of points in the preimage of a regular value is funite
3) The sumof the degrees of the mapping at all the points of the preimage of a requdar
value does not depend on the particular regular value under corsideranion

The preef of this theorem is quite complicated, and can be found in the
[itcraturc on topology. ¥

Remark /. Actually almost all pointsof the manifold M$ ate regular values,
i.c., the nenregularvalues [orm a set ol measure zera

Remark 2. The compaciness condition is essential not only for the ssond
assertion of the theorem, buu also for the third assertion. (For example,

t See H. §. L.evine, Sinpdarities of Differentiable Mappings, Math. Inst Univ. 8aon (1959),
Sec.8.3.
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consider the embedding of the negative real axisinthe full real axis.)

Remark 3, ‘The number of points in the preimage (without tegard (or sign)
can be different for different regular values {for example, in Fig. 258 the
va|ue_y hay foursuch point, while y" has precisely two),

Definitivn. By 1he degree of the mappiag £ is meant the sum of the degreo of / at
all the peintsof the preimage of a regular valucol /:

d'-‘gf - x¢; .'dchf'

Problem 5, Vind the degree of 1the mapping ol the arcle |z| = | onto il given by the
formula /(i) = 2 n = 0, 1, £2,..

Art. m

Prodlent 6. Find 1he degree of the mapping of the unit sphere i n Euclidean space R* anto

itsell given by the formula f(z) = 44| 4x|, where 4: R* — R® i1 2 nomingwdar Gocar
oberator.

Any, degf = sgnder A.

Prodlem 2. Find the degree of the mapping of the complex progective lime CP* onto inelf
givea by the formula

AN =2 bif(z)=z-"

Ans. a) |al; t) = |al.

Problem 8. Find the de8ree of the mapping of the comnplex line CP! cote roef grven by a
pol Ynomial of degree r.

*ivoblem 9. Ler f: U — 5 be 1he mapping commiructed in Sec. 36.6 with the help of 2
veceer field vin 2 domaia U*, lery: S§t — U beacloscd cunve,and lei & — f» 7: $v — So.
Prove that the index of y as defined in Sec. 36.6 coirxides with the degree of &:

ind 7 = deg A.

Definition. By the index of an tsolated singulay potnt O of a vector field v defnced
in ademain of Euclidean space R" containing Oismeant the degice of the
mapping 4 corrcsponding to the field, i.e., of the mapping

A: S o S0 S = {xeR": x| = 7}
of a small sphereof radius r centered at O onto itself given by the forroula
Ax) = ﬂ

v

Probism 0. Prove ithat i the operator vq, of the linear pari of the bedd v at 2 angdar
point @ has an inverse, then the index of O cquak the degree of v

Probiern 7). Find the index of the singular peint O ol the ficdd in R® casop==xbing 1o the
cQuation 2 = —ux.

Ars. (=1)".
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'T'he cconcept of degree allows us tofarmulate multidimensional analogues
of ithe two.dimensional thworems considered above. The proofs can be
found in books on topology,

Inparticular, the sum y of the indices of the ningular points of a arctor feld defowd
on a compact manifold of arbitrary dimension isindependent of the cAoice of ths firld and
depends anly un the properties of the manifold itself. The number x s called the
Fuler charactenstic of the manifold. To calculate X, we need only investigate
the singular points ofany dilferential equation defined on the manifold

Prodlent 12, Find the Euler characieristic of the spheve $°.0f the projective space RP, and
of Lhe torus 7™,

Awes, 2(S") v 22(RP®) = | b (=1)% 2T =0.

Selution. Theic is a dilferential equation without singular points oo a taws of arbitrasy
dimenden (ser e.gy Nec. 2¢.5), and hence x(T¥) = 0.

It isclear that 2($*) = 2¢/RP?). ln fart, cornider the mapping p: $* — R**! carry.ng
vvery point of the sphece $* C R**! into the line jaining the point 10 1be o of coondi-
nates ‘The mapping p i locally diffeomorphic with the preimage of every pomt of
projedtive space deing two diameitically opposite points of the s ghere, Thvebar avay
vector ficld on RP® determines a field on $° with twice as roany singular poin t, whe r¢ the
index of each of the diametrically oppesite singular painis 08 the sphere it the raswe as the
index of the corresponding point in projeciive spd ce

To calculate x(S°), we define a sphere by the equation x3 + -- + 28 = | n \be
Euclidean space R**! and ¢nnsider 1he field xo: §¢ — R. Ve thett (oom the dificreozal
eqquation
Z = grad xp
on the spherc, ind invesligaie its singular points (Fig. 259). The «¢ veerdiedd grad x4

vanishey at 1wo points, the north pole (2o = 1} arwd the south pole (xg = — I}). Lmena-
ing the diffcrential equation in neghbarhoeds of the north and south pales ecproively,

we gel

6'-’¢1 ¢!R‘= 13
W og, peR* =TS

Fig. 299 Lineari2ation of a differential equation oa a spheze atar its tagulers paings
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Hence the narih pole has index {—1)* and the south pole has index {4 1}*, so that
28 = | 4 (=1)e

In purlicular, it follaws that eurty urctor Aeld em an coon-dimensional 1pbmo Aar ot Lesst one
sunguiar Point,

tvoblem (3, Conslruct a vector ficld withoutl ungular points on the ofd.dencamans|
apheee §3°- 1,

Hint. Consider the second-order differential eQuation £ = —x, 2 a R".



Sample Examination Problems

An eeror of 10-20% ts allowed 1a all numercal probdlems,

1. ‘l'o stop a Loat a1 a dock, a rope is thrown from the boat which is then
wound around a postatlached to thedock. What s the braking force on the
hoatifthe rope makes 3 turns around the posi, il the coeflicient of fisction of
the rope around the post is ¢, and if a dockworker pulls at the firee end of
the rope with a force nfl10 kg?

2. Consider the molion
=14 2sinx

of a pendulum subject 10 a constani lorque. Draw phase curves of the
pendulum on the surlace of a cylinder. Which motions of the pendulum
correspond to the various kinds of curves ?

3. Calculate the matrix ¢*', where A is a given matrix oforder 2 or 3.

4. Draw the image of the square {x,| € ], |x;] € ] and the trajectory of
the phase flow of the system

aflter titne ¢.

5. Find the number of digits required Lo write the hundredth 1exm of the
sequence [,1,6,12,29,59,... (x, = xouy + a2+ 2,1, = 5z = 1).

6. Draw the phase curve ofthe sysiem

3

X =X~y — 1z, »=x+2y, =34z
going through the point (1, 0,0).

7. Find alla, 8, y lor which the three functions sin x¢, sin £, sin ytare linearly
dependent.

8. Draw the trajectory of a paintin the plane (x,, x;) executing small osclia-
tions

oy
- 5

X,

.ii=

U= %(Sxf — 8x\x; + 5a3),

?

subject to the initial conditions
x,:i, .'-'II']=U, ..i'|=.i'1——-D,

9. A horizontal ferce of 100 gm lasting | sec actson an initially stavionary
mathematical pendulum oflength ] m and weight 1 kg. Find the amplitude
(in cm) of the oscillations which resultafter thelorce ceases o act

269
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10, Investigate the Lyapunov stability of the null solution of the system

() o= xg, 04 for2kn € ¢ < (2k + I)x,
{x,- oy, 0 -{O.Gibr{?k- Nr & 1 < 2,
k=0 %1, £2...

| 1. Find all the singular points ol thesystem

£=xy + 12, J =x 4y =2,

Investigate thestability and determince the type of cach singular point, and
draw the vorresponding phase rurves.

12. Find all singular points of the system

V= —=siny, y=sinx+iny

on the torus (¥ mod 2x, y mod 2x). Investigate the stability and determine

the type of cachsingular point, and draw the corresponding phase cue ves,

13. Ltis known f-om expcricnce that when light is refracted at the interface
between twe media, the stnes of the angles lormed by the incident and
velracted rays with the normal to theinterface are inversely propariional to
the indices of rel-action of the mnedia:

sSina,  n,

sina, Ry

Find the :orm of the light rays in the plane (x, y) if the index of cefraction
isa = r(y). Study the case #{y) = Lfy (the half-plane ¥ > 0 with this index
of refraction gives a modcl of Lobachcvskian gcometiy).

I4. Draw the rays emanating in diflcrent dircctions from the ocign in a
planc with indcx of cclractionn = a{y) = 3¢ — 52 + L.

Cemment. The solution of this problem cxplains the phcnomonon of the
mirage. The index of rctraction of airover a desert has a maximum at a
ccrtain height, since the airis more rarcficda thigher and lower (hot) laycrs
and the indcx of refraction is inversely proportional to the veocity of iisht
Thc oscillations of theray ncar the layer with maximum index of iefiaction
is interpreted as a miragc,

Another phenomcnon cxplained by the samc kind of 1ay oscillatians is
that of acoustic channcls in the occan. along whichsound can be pcopagated
lor hundreds of kilometcis. The reason for this phenomenon s the inteTplay
of temperature and pressurc Icading to the formation of a laycr of maxamum
index of refraction (i. e, minimumsoundvelocity) at adcpthof 300- 1000 m.
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An acoustic channel can be used, for example, 0 give wamning of tdal
wavesy.

15. Draw geodesics on a torus, using Clairaut’s theorem which states that
the product of the distance rom (e axis of revolution and the sine of the
angle made lhy (he geodesic with a meridian is conslant along every
geodesic on a surlace of revolulion.
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A

Admissible coordinate system(s), 34
class of, 35

Analytic manifold, 235

Andronov, A. A., 94 n

Asymptotic stability, 156, 201 n

Allas(es), 235

cquivalent, 235

examples ot, 236-238
Auto-oscillations, 92

Auto-oscillatory regine, 92

B

Base of a tangent bundle, 246
Beats, 184

Bessel's equation, 193

Brieskom, E., 242 n
Bundle space, 243 n
C

Cardano's formula, 32

Cauchy sequence, 98 n

Center, 127,133



Charactenistic equation, 116

Charactenstic frequencies, 175
Chebotarev, N. G., 160 n
Chebyshev polynomal, 175
Chinn, W. G, 256 n

Clairaut equation, 67
Clairaut's theorem, 271

Class (7, 6

Commutator, 75

Companison theorem, 17
Complex amplitude, 182

Complex conjugate operator, 122

Complexitication

of an operator, 120

of a space, 120

Complexified equation, 129
Configuration space, 79
Conservative system, with one degree of freedom, 79
Contraction mapping(s), 211, 220
applications of, 222
fixed point of, 212

theorein, 212

Convex domain, 78 n
Coniolis force, 66

Covanant functonality, 248



Critical point, 81 n
Critical value, 81 n

Curve(s)

with complex values, 122
dertvative of, 122

index of, 255

leaving a point, 33, 241
tangent, 34

velocity vector of, 33, 34

components of, 33

D
[Decomplexification

ol an operator, 120

of a space, 11

Degree of a mapping, 266

e

at aregular point, 26

Derivative

of a curve, 122

in the direction of a field, 73

in the direction of a vector, 73

of a mapping, 37
Determinacy, 1

Detenninant

of a complex operator, 122




of the exponential of an operator, 113

of a matrix, 111

of an operator, 111

vs, trace, [12
Diagonal operator, 102, 116

exponential of, 102
Diffeomorphism, 6

of a manifold, 241

==

Difterentiability, 1, 20 r.

and Lipschitz conditions, 217
Differentiability theoremn, 53

for equation of order n, 62

for nonautonomous case, 57
Difterentiable function, 6
Differentiable manifold(s), 6, 234-243

of class(’r, 235

compact subset of, 238

connected, 239

countability condition for, 236

curve on, 241

difteomorphic, 241

diffeomorphism of, 241

differentiable mapping of, 241

differentiable structure on, 235

dimension of, 240



disconnected, 239

connected components of, 239
examples of, 233, 243
fimite-dimensional, 6

open subset of, 238

parallelizable, 246
parallelized, 246

separability condition for, 235
simply connected, 242 n

tangent bundle of (vee¢ Tangent bundle)

tangent space to, 244
vector field on, 248

vector tangent to, 243
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Differentiable mapping, 6, 241
denivative of, 33, 37

Dhfferentiable structure, 35, 234, 235

Differential algebra, 32 n

Differential equation(s)

basic theorem on, 48
determined by a vector field, 1 1
direct product of, 24

direction fieldof, 12



higher-order, systems of, 170
integral curve of, 12, 31

integration of, 32

linear (see Linear differential equations)

on nanifolds, 233-268
nonautonomous, 28-33, 56-59
normal formn of, 67
of ordern, 59,171
solution of, 59
phase curve of, 12
phase space of, 12
extended, 12
with separable variables, 29

solution of {sce Solutions of a differential equation)

solved with respect to the highest derivative, 67
system of, 62, 67
with variable coetficients, 30
Ditterential operator, linear homogeneous, 74
Differentiations as mappings, 74

Direct product

of differential equations, 24
of sets, S

Direction field, 12

Directional derivative, 73

Dirichlet's cell principle, 164



Divergence, 198

E

Eigenbasis, 102

Eigenvalues of alinear differential equation

distinct, 137-139

distinct real, 115-119

mnultiple, 167176

purely unaginary, 160- 167
Elliptical rotations, 133
Ewnde,F., 193 n

Energy

conservation of, 77, 81

kinetic, 80

level curves of, 81
critical, 90
noncritical, 87

potential, 8¢

total, 80

Equation of vanations, 64, 186, 223, 224

Equilibriumn position, 5, 12, 95
asyiptotic stability of 156
Lyapunov stability of, 155

Euler characteristic, 262, 267

Euler line, 110, 222



Euler formula, 108

Euler's theoremn on polyhedra, 262

Everywlere dense set, 163 n

Existence theoremn, S0

for equation of order n, 61

for nonautonomous case, 57

Lxponential

of a complex nurnber, 108
of a complex operator, 122
of a diagonal operator, 102
group property of, 104

of a nilpotent operator, 103

ofan operator, 97, 100, 107, 167

determinant of, 113

Extended phase space, 3, 12

Extension of a solution, 53

F

backward, 53

of equation of order n, 62
forward, 53

for nonautonoinous case, 58

up to a subset, 53

Fibonacci sequence, [ 19

—

Filippov, A. F., 32u



Finitedimensionality, 1
Firstintegral, 75
local, 77
tine-dependent, 78
Fixed point
of a tlow, §
of a mapping, 261, 211
asymptolically stable, 201 n
stable, m Lyapunov's sense, 201 n
theorem, 257
Focus, 127
stable, 127
unstable, 127
I'orced oscillations, |83
Free oscillations, 183
Functors, 121
Fundamental theorem of algebra, 256
G
Galileo's law, 9
Golubev, V. V., 227 n

Graph of a mapping, 5
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H
Hadamard's lemina, 85
Halt-life, 16
Ilamiltonian system, 203

Hamilton's equations, 63,77, 198

Hedgehog theorem, 247
Hessian matrix, 262
Homeomorphism, 141
Ilomogeneous coordinates, 233

[Hypergeometric equation, 193

|
limaginary plane, 121
[ndex

of an oriented closed curve, 255, 263
properties ot, 255-256
of a singular point, 258, 266

[nfinitely differentiable tunctions

linearly independent, 176

space of, 176
Intinitesunal generator, 107
[nitial condition, 12, 30
[ntegral curve, 5, 12, 31
[ntegral part, 164 n

[nvariant subspaces, 131



Inverse tunction theorem, 39

Involutory operator, 121

J

Jacobian malrix, 38
Jacobt's identity, 75
Jahnke, E., 193 n
Jordan block, 167

nilpotent, 168, 181

K

Kamke, E., 32n
Kepler potential, 83
Khaikin, S. E., 94 n

Konstantinov, N. N., 2

Kurosh, A. G, 160 n

L.

Lavrentev, M. A., 160 n
Level set, 76
Levine, H. 1., 265 n
Lie algebra, 75
Limitcycle, 47, 71
stable, 93
unstable, 93

Linear differential equations

basic theorem on, 106



with complex phase space, 124
basic theorem oa, 124
solution of, 124

complexified, 129

definition of, 96, 97

general solution of, 138

homogeneous, with constant coefficients, 97
homogeneous, with variable coeflicients, 188

nonautonomous (s¢¢ Nonautonomous linear equation)

nonhomogeneous, 179

solution of, 179
with periodic coefficients, 199-208
stability of solutions of, 20 |
in the plane, 132
space of solutions of, 177
invariance of, under shifts, 178
l.imear operator(s)

complex conjugate of, 122

detcrmmant of, 111

exponential of, 97, 100

invariant subspaces of, 131

norm of, 98
space of, 98

trace of, 112

Linear systems, 95-210



difterential equivalence of, 143
linear equivalence of, 142
singular points of, classification of, 139-154
topological equivalence of, 143-145
Linearization, 95
invariance of, 95
Linearized equation, 96
Liouville's formula, 114

Liouville's theorem, 195

stronger version of, 198
|.ipschitz condition, 21

with constant /., 217
|.issajous ligures, 175
|.ocal family of transforinations, 57
Local phase flow, 51

Logarithinic spiral, 126

Losch, F., 193 n

Lyapunov function, 146
construction of, 147

Lyapunov stability, 155,201 n

M

Manifold structure (see Differentiable structure)
Map(s), 234

compatible, 235



mage on a, 234

Mathieu's equation, 193203 n

RS N =\~ A

Matrix of a limear system, 97

Meiman, N. N, 160 n

Method of complex amphtudes, 182

Method of Euler lines, 109

Method of small paraineters, 64
Metric, 98 n
Metric space, 98 n
complete, 98 n
convergence in, 98 n
Milnor spheres, 242
Mobius strnp, 246

Morse's lemma, 85

Mulchenko, Z. M., 16 n

N

Nahmov, V. V., 16 n

Natural trequencies, [ 75

Newton's equation(s), 63, 80
extension of solutions of, 86

Nilpotent operator, 102

exponential of, 103
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Node, 25
Nonautonomous linear equation, 188189

fundamental system of solutions of, 191

of order n, 193
fundamental system of solutions of, 193
space of solutions of, 193

space of solutions of, 191

Nonautonomous system, 31

Norm

of an operator, 98,216
of a vector, 215
Normal form, 67
Normal modes, 175
Normed linear space, 99
norm of element of, 99
Null section, 245
Number ol revolutions (s¢¢ Winding number)

O

®ne-parameter group

of diffeomorphisms, 6, 20
of linear transformations, 20, 96, 106
of transfornations, 4

@®riented manifold, 235

®scillations

forced, 183



free, 183

weakly nonlinear, 186

P

Parallelepiped in n-dimensional space, 111 n
Parallelizability, 246

Parametric resonance, 204

Parametnzed curve, 241 n

Pendulun, 10-11, 32, 43-45, 49, 60, 80, 90-92, 186188

under action of external force, 182-186

with friction, 115, 117118, 135-137

with oscillating point of suspension, 207-208

of variable length, 189, 197, 205-206

Period-advance mapping, 200
Phase curve(s), 4,5, 12
closed, 6 9-72
maximal, 69 n
Phase flow(s), 2, 3, 4
associated with a differential equation, 19
determined by a vector field on a manifold, 250
equilibrium position of, 5
equivalent, 141
differentiably, 141

linearly, 141

topologically, 141



fixed point of, §
integral curve of, 5
on the line, 19-24
local, 51
inthe plane, 24-27
Phase points, 3,4
inotion of, 4
Phase space, 1,2, 3,4, 12
cylindrical, 91
extended, 5, 12
Phase velocity, 7
components ol, 7

Picard approximations, successive, 213

Picard mapping, 213

Poincaré's hypothesis, 242
Poisson bracket, 75
Polynommals

space of, 101

Taylor's forinula for, 101
Potential well, bead sliding n, 81-83
Principal axes, 174
Process

deteniministic, 1

differentiable, 1

evolutionary, 1



tfinite-dinensional, 1

local law of evolution of, 8
Projective space, 233

atlas for, 237-238
Projection, 245

Q
Quastpolynomial(s), 103, 176188

degree of, 103
exponent of, 103

space ot, 103
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R

Radioactive decay, 8-9, |16

Rationally independent nuinbers, 162, 166
s-differentiability, 6

Real plane, 12]

Rectitication theorem, 49, 227-229

for nonautonoimous case, 56
Rectifying coordinates, 49
Recurrent sequence(s), 172—-173

ot order &, 119

Regular point, 264

Regular value, 265



Reproduction of bacteria, 9, 16
Resonance, 183

parametric, 204

Routh-Hurwitz problem, [ 59, 260

S

Saddle, 153
incoming strand of, 153

———

outgoing strand of, 153
Saddle point, 25
Schwarz inequality, 216
Secular equation (see¢ Characteristic equation)
Sclf-excited oscillations, 92
Scparatrices, 84
Scries of functions, 100

differentiation of, 100
Set of level (', 76 n
Shabat, B. V., 160 n
Shilov, G. E., 98
Stlverinan, R. A., 98
Singular point(s), 8

index of, 258, 266

in the plane, 133-135

sinple, 258

inspace, 139-140



on a sphere, 260
siun of indices of, 261
Small oscillations, 173-176
Solutions of a differential equation, 12, 30

continuity and differentiability of, 52, 58, 62, 221, 224-225

existence of, 50, 57.61, 221

extension of 53. 58. 62

fundamental systen of, 191

higher derivatives of, 226

stationary, 12

uniqueness of, 50, 57, 61, 221

Sphere, 233
atlas for, 236

Stability
asymptotic, 156, 201 n
Lyapunov, 155,201 n

—_— = .

strong, 203
Steenrod, N. E., 256 n
Strong stability, 203
Submanifold, 242

Successive approxnnations, 212

Swing, 189, 197

—— .

T

t-advance mapping, 3, 19



(1,.f,)-advance mapping, 57

Tangent bundle, 243, 245
base of, 246
fibres of, 246
section of, 248 n
Tangent mapping, 248

Tangent space, 33, 34, 35,244

Tangent vectors, 35, 243
Tune shift, 68
Topological manifold, 235

Torus

ni-dimensional, 100, 267
two-dimnensional, 161, 233

atlas for, 236

longitude and latitude on, 161

phase curves on, 103
phase trajectories of flow on, 162
Trace

of a complex operator, 122

of a matrix, 112

of an operator, 112
Transverse subspaces, 227

Triangle mequality, 99, 216

U



Uniformly distributed points, 166
Uniqueness theorein
for equation of order n, 61
local, 50

for nonautonomous case, 57

A%

Vandermonde determinant, 195
van der Pol equation, 94
Variation of constants, 208-210
Vector bundle, 243 n
Vector field(s)
delinition of, 7
diffcrential equation determined by, 11
divergence of, 198
examples of, 8-11
unage of, under a diffeomnorphisin, 40
on the line, 11-19
linearized, 95
on manifolds, 248
singular point of, 8

winding nwnber of, 263
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Vector integral, 216
Velocity vector, 33
Vertical fall, 9
deflection from, 66

Vitt, A. A, 94 n

W

Weierstrass' test, 10@

Winding number, 263, 264

Wronskian

of a system of numencal functions, 194

ol a system of vector [unctions, 192





