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Preface

IN THE SPRING OF 1990 I received an invitation from the
University of Washington to deliver a set of lectures, as part of the
series that had been inaugurated a generation earlier through the
benevolence and farsightedness of Jessie and John Danz. The
lectures were to be delivered before a general audience, and I was
free to choose a subject.

Some thirty years previously, while conducting an extensive
experiment in the theory of weather forecasting, I had come across
a phenomenon that later came to be called “chaos”—seemingly
random and unpredictable behavior that nevertheless proceeds
according to precise and often easily expressed rules. Earlier
investigators had occasionally encountered behavior of this sort,
but usually under rather different circumstances. Often they failed
to recognize what they had seen, and simply became aware that
something was blocking them from solving their equations or
otherwise completing their studies. My situation was unique in that,
as I eventually came to realize, my experiment was doomed to
failure unless I could construct a system of equations whose
solutions behaved chaotically. Chaos suddenly became something
to be welcomed, at least under some conditions, and in the ensuing
years I found myself turning more and more toward chaos as a
phenomenon worthy of study for its own sake.

It was easy to decide what topic the lectures should cover. I
accepted the invitation, and chose as a title “The Essence of Chaos.”
Eventually a set of three lectures took shape. The first one defined
chaos and illustrated its basic properties with some simple
examples, and ended by describing some related phenomena—
nonlinearity, complexity, and fractality—that had also come to be
called “chaos.” The second lecture dealt with the global weather as
a complicated example of a chaotic system. The final one presented



an account of our growing awareness of chaos, offered a
prescription via which one could design one’s own chaotic systems,
and ended with some philosophical speculations. In keeping with
the anticipated make-up of the audience, I displayed no
mathematical formulas, and avoided technical terms except for
some that I defined as I went along.

The present volume, with the same title, is written in the spirit of
the Danz Lectures. It contains the same material, together with
additions written to fill in the many gaps that were inevitably
present in a limited oral presentation. The leading lecture has been
expanded to become Chapters 1, 2, and 5, while the second one has
been made into Chapter 3. The final lecture, with its historical
account that begins with the discovery of Neptune, proceeds
through the work of Henri Poincaré and his successors, and pauses
to tell of my own involvement with chaos, has become Chapter 4.

My decision to convert the lectures into a book has been
influenced by my conviction that chaos, along with its many
associated concepts—strange attractors, basin boundaries, period-
doubling bifurcations, and the like—can readily be understood and
relished by readers who have no special mathematical or other
scientific background, despite the occasionally encountered
references to chaos as a branch of mathematics or a new science.
As in the lectures, I have presented the chaos story in nontechnical
language, except where, to avoid excessive repetition of lengthy
phrases, I have introduced and defined a number of standard terms.
I have placed the relevant mathematical equations and their
derivations in an appendix, which need not be read for an
understanding of the main text, but which may increase the
volume’s appeal to the mathematically minded reader.

Of course one cannot maintain that there is no mathematics at
all in the main text, except by adopting a rather narrow view of
what constitutes mathematics. For example, merely noting that one
illustration shows two boards sliding thirty meters down a slope,
starting ten centimeters apart and ending up ten meters apart, can
be looked upon as a mathematical observation; a verbal description
of what the illustration depicts is then a mathematical statement.
In any event, a good deal of less simple mathematics has gone into
the production of the illustrations; most of them are end products
of mathematical developments, subsequently converted into
computer programs. The reader nevertheless need not confront the



formulas, nor the programs, to be able to absorb the messages that
the illustrations contain.

For their aid during the preparation of this work I am indebted
to many persons. First of all I must thank the Danz Foundation,
without whose sponsorship of my lectures I would never have taken
the first step. I must likewise thank the University of Washington
for choosing me as a lecturer. I am deeply indebted to the Climate
Dynamics Program of the Atmospheric Sciences Section of the
National Science Foundation, and to the program’s current
director, Jay Fein, for supporting my research in chaos and its
applications to the atmosphere over many years, and, most
immediately, for making it possible for me to write the numerous
computer programs and to perform the subsequent computations
that have resulted in the illustrations in this volume. I wish to thank
Joel Sloman for typing and otherwise assisting with not only the
final manuscript but also the innumerable intermediate versions,
Diana Spiegel for her ever-present aid in dealing with the vagaries
of our computer system, and Jane McNabb for bearing the bulk of
the administrative burden that otherwise would have fallen on me.

Thanks go to Dave Fultz of the University of Chicago for
supplying the photographs of his dishpan experiments, and to him
and the American Meteorological Society for permission to
reproduce them. Thanks also go to Robert Dattore and Wilbur
Spangler of the National Center for Atmospheric Research for
preparing and making available the lengthy tape containing the
many years of recorded upper-level weather data at Singapore.

I must give special recognition to Merry Caston, who has gone
over the manuscript page by page, and whose pertinent comments
have led me to incorporate a good many clarifying additions and
other amendments. There are many other persons with whom I have
had brief or in some cases extensive conversations, which have
exerted their influence on the words that I have written or the ideas
that I have expressed. In this connection I must particularly mention
Robert Cornett, James Curry, Robert Devaney, Alan Faller, Robert
Hilborn, Philip Merilees, Tim Palmer, Bruce Street, Yoshisuke
Ueda, J.Michael Wallace, and James Yorke. To still others who may
have similarly influenced me without my being aware of it, and also
to some anonymous reviewers, I can only say that their names ought
to have been included.

Finally, I am most grateful to my wife, Jane, who has supplied
moral support throughout the preparation of this volume and has



accompanied me on numerous travels in search of chaotic material,
and to my children Nancy, Edward, and Cheryl—lawyer,
economist, and psychologist—who have perfectly filled the role of
the intelligent layperson and have subjected the manuscript in
various stages of completion to their closest scrutiny.



CHAPTER 1
Glimpses of Chaos

It Only Looks Random

WORDS are not living creatures; they cannot breathe, nor walk,
nor become fond of one another. Yet, like the human beings whom
they are destined to serve, they can lead unique lives. A word may
be born into a language with just one meaning, but, as it grows up,
it may acquire new meanings that are related but nevertheless
distinct. Often these meanings are rather natural extensions of older
ones. Early in our own lives we learn what “hot” and “cold” mean,
but as we mature we discover that hot pursuit and cold comfort, or
hot denials and cold receptions, are not substances or objects whose
temperatures can be measured or estimated. In other instances the
more recent meanings are specializations. We learn at an equally
early age what “drink” means, but if later in life someone says to
us, “You’ve been drinking,” we know that he is not suggesting that
we have just downed a glass of orange juice. Indeed, if he tells
someone else that we drink, he is probably implying not simply that
we often consume alcoholic beverages, but that we drink enough
to affect our health or behavior.

So it is with “chaos”—an ancient word originally denoting a
complete lack of form or systematic arrangement, but now often
used to imply the absence of some kind of order that ought to be
present. Notwithstanding its age, this familiar word is not close to
its deathbed, and it has recently outdone many other common
words by acquiring several related but distinct technical meanings.

It is not surprising that, over the years, the term has often been
used by various scientists to denote randomness of one sort or
another. A recent example is provided by the penetrating book
Order Out of Chaos, written by the Nobel Prize-winning physical



chemist Ilya Prigogine and his colleague Isabelle Stengers. These
authors deal with the manner in which many disorganized systems
can spontaneously acquire organization, just as a shapeless liquid
mass can, upon cooling, solidify into an exquisite crystal. A
generation or two earlier, the mathematician Norbert Wiener
would sometimes even pluralize the word, and would write about
a chaos or several chaoses when referring to systems like the host
of randomly located molecules that form a gas, or the haphazardly
arranged collection of water droplets that make up a cloud.

This usage persists, but, since the middle 1970s, the term has also
appeared more and more frequently in the scientific literature in
one or another of its recently acquired senses; one might well say
that there are several newly named kinds of chaos. In this volume
we shall be looking closely at one of them. There are numerous
processes, such as the swinging of a pendulum in a clock, the
tumbling of a rock down a mountainside, or the breaking of waves
on an ocean shore, in which variations of some sort take place as
time advances. Among these processes are some, perhaps including
the rock and the waves but omitting the pendulum, whose
variations are not random but look random. I shall use the term
chaos to refer collectively to processes of this sort—ones that appear
to proceed according to chance even though their behavior is in fact
determined by precise laws. This usage is arguably the one most
often encountered in technical works today, and scientists writing
about chaos in this sense no longer feel the need to say so explicitly.

In reading present-day accounts, we must keep in mind that one
of the other new usages may be intended. Sometimes the phenomena
being described are things that appear to have random
arrangements in space rather than random progressions in time, like
wildflowers dotting a field. On other occasions, the arrangements
or progressions are simply very intricate rather than seemingly
random, like the pattern woven into an oriental rug. The situation
is further complicated because several other terms, notably
nonlinearity, complexity, and fractality, are often used more or less
synonymously with chaos in one or several of its senses. In a later
chapter I shall have a bit to say about these related expressions.

In his best-selling book Chaos: Making a New Science, which
deals with chaos in several of its newer senses, James Gleick suggests
that chaos theory may in time rival relativity and quantum
mechanics in its influence on scientific thought. Whether or not such
a prophecy comes true, the “new science” has without question
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jumped into the race with certain advantages. Systems that
presumably qualify as examples of chaos can very often be seen and
appreciated without telescopes or microscopes, and they can be
recorded without time-lapse or high-speed cameras. Phenomena
that are supposedly chaotic include simple everyday occurrences,
like the falling of a leaf or the flapping of a flag, as well as much
more involved processes, like the fluctuations of climate or even the
course of life itself.

I have said “presumably” and “supposedly” because there is
something about these phenomena that is not quite compatible with
my description of chaos as something that is random in appearance
only. Tangible physical systems generally possess at least a small
amount of true randomness. Even the seemingly regular swinging
of the pendulum in a cuckoo clock may in reality be slightly
disturbed by currents in the air or vibrations in the wall; these may
in turn be produced by people moving about in a room or traffic
passing down a nearby street. If chaos consists of things that are
actually not random and only seem to be, must it exclude familiar
everyday phenomena that have a bit of randomness, and be
confined to mathematical abstractions? Might not such a restriction
severely diminish its universal significance?

An acceptable way to render the restriction unnecessary would
be to stretch the definition of chaos to include phenomena that are
slightly random, provided that their much greater apparent
randomness is not a by-product of their slight true randomness.
That is, real-world processes that appear to be behaving randomly
—perhaps the falling leaf or the flapping flag—should be allowed
to qualify as chaos, as long as they would continue to appear
random even if any true randomness could somehow be eliminated.

In practice, it may be impossible to purge a real system of its
actual randomness and observe the consequences, but often we can
guess what these would be by turning to theory. Most theoretical
studies of real phenomena are studies of approximations. A scientist
attempting to explain the motion of a simple swinging pendulum,
which incidentally is not a chaotic system, is likely to neglect any
extraneous random vibrations and air currents, leaving such
considerations to the more practical engineer. Often he or she will
even disregard the clockwork that keeps the pendulum swinging,
and the internal friction that makes the clockwork necessary, along
with anything else that is inconvenient. The resulting pencil-and-
paper system will be only a model, but one that is completely
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manageable. It seems appropriate to call a real physical system
chaotic if a fairly realistic model, but one with the system’s inherent
randomness suppressed, still appears to behave randomly.

Pinballs and Butterflies

My somewhat colloquial definition may capture the essence of
chaos, but it would cause many mathematicians to shudder.
Probably most people in other walks of life are unaware of the
extent to which mathematics is dependent on definitions. Whether
or not a proposition as stated is true often depends upon just how
the words contained in it have been defined. Certainly, before one
can develop a rigorous theory dealing with some phenomenon, one
needs an unambiguous definition of the phenomenon.

In the present instance the colloquial definition is ambiguous
because “randomness” itself has two rather different definitions,
although, as we shall presently see, this flaw can easily be removed
by specifying the one that is intended. More serious is the simple
expression “looks random,” which does not belong in a rigorous
discussion, since things that look alike to one person often do not
look alike to another. Let us try to arrive at a working definition of
chaos while retaining the spirit of the colloquial one.

According to the narrower definition of randomness, a random
sequence of events is one in which anything that can ever happen
can happen next. Usually it is also understood that the probability
that a given event will happen next is the same as the probability
that a like event will happen at any later time. A familiar example,
often serving as a paradigm for randomness, is the toss of a coin.
Here either heads or tails, the only two things that can ever happen,
can happen next. If the process is indeed random, the probability
of throwing heads on the next toss of any particular coin, whether
50 percent or something else, is precisely the same as that of
throwing heads on any other toss of the same coin, and it will
remain the same unless we toss the coin so violently that it is bent
or worn out of shape. If we already know the probability, knowing
in addition the outcome of the last toss cannot improve our chances
of guessing the outcome of the next one correctly. 

It is true that knowing the results of enough tosses of the same
coin can suggest to us what the probability of heads is, for that coin,
if we do not know it already. If after many tosses of the coin we
become aware that heads has come up 55 percent of the time, we
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may suspect that the coin is biased, and that the probability has
been, is, and will be 55 percent, rather than the 50 percent that we
might have presupposed.

The coin is an example of complete randomness. It is the sort of
randomness that one commonly has in mind when thinking of
random numbers, or deciding to use a random-number generator.
According to the broader definition of randomness, a random
sequence is simply one in which any one of several things can
happen next, even though not necessarily anything that can ever
happen can happen next. What actually is possible next will then
depend upon what has just happened. An example, which, like
tossing a coin, is intimately associated with games of chance, is the
shuffling of a deck of cards. The process is presumably random,
because even if the shuffler should wish otherwise—for example, if
on each riffle he planned to cut the deck exactly in the middle, and
then allow a single card to fall on the table from one pile, followed
by a single card from the other pile, etc.—he probably could not
control the muscles in his fingers with sufficient precision to do so,
unless he happened to be a virtuoso shuffler from a gaming
establishment. Yet the process is not completely random, if by what
happens next we mean the outcome of the next single riffle, since
one riffle cannot change any given order of the cards in the deck to
any other given order. In particular, a single riffle cannot completely
reverse the order of the cards, although a sufficient number of
successive riffles, of course, can produce any order.

A deterministic sequence is one in which only one thing can
happen next; that is, its evolution is governed by precise laws.
Randomness in the broader sense is therefore identical with the
absence of determinism. It is this sort of randomness that I have
intended in my description of chaos as something that looks
random.

Tossing a coin and shuffling a deck are processes that take place
in dis crete steps—successive tosses or riffles. For quantities that
vary continuously, such as the speed of a car on a highway, the
concept of a next event appears to lose its meaning. Nevertheless,
one can still define randomness in the broader sense, and say that
it is present when more than one thing, such as more than one
prespecified speed of a car, is possible at any specified future time.
Here we may anticipate that the closer the future time is to the
present, the narrower the range of possibilities—a car momentarily
stopped in heavy traffic may be exceeding the speed limit ten
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seconds later, but not one second later. Mathematicians have found
it advantageous to introduce the concept of a completely random
continuous process, but it is hard to picture what such a process in
nature might look like.

Systems that vary deterministically as time progresses, such as
mathematical models of the swinging pendulum, the rolling rock,
and the breaking wave, and also systems that vary with an
inconsequential amount of randomness—possibly a real pendulum,
rock, or wave—are technically known as dynamical systems. At
least in the case of the models, the state of the system may be
specified by the numerical values of one or more variables. For the
model pendulum, two variables—the position and speed of the bob
—will suffice; the speed is to be considered positive or negative,
according to the direction in which the bob is currently moving. For
the model rock, the position and velocity are again required, but, if
the model is to be more realistic, additional variables that specify
the orientation and spin are needed. A breaking wave is so intricate
that a fairly realistic model would have to possess dozens, or more
likely hundreds, of variables.

Returning to chaos, we may describe it as behavior that is
deterministic, or is nearly so if it occurs in a tangible system that
possesses a slight amount of randomness, but does not look
deterministic. This means that the present state completely or
almost completely determines the future, but does not appear to do
so. How can deterministic behavior look random? If truly identical
states do occur on two or more occasions, it is unlikely that the
identical states that will necessarily follow will be perceived as being
appreciably different. What can readily happen instead is that
almost, but not quite, identical states occurring on two occasions
will appear to be just alike, while the states that follow, which need
not be even nearly alike, will be observably different. In fact, in
some dynamical systems it is normal for two almost identical states
to be followed, after a sufficient time lapse, by two states bearing
no more resemblance than two states chosen at random from a long
sequence. Systems in which this is the case are said to be sensitively
dependent on initial conditions. With a few more qualifications, to
be considered presently, sensitive dependence can serve as an
acceptable definition of chaos, and it is the one that I shall choose. 

“Initial conditions” need not be the ones that existed when a
system was created. Often they are the conditions at the beginning
of an experiment or a computation, but they may also be the ones
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at the beginning of any stretch of time that interests an investigator,
so that one person’s initial conditions may be another’s midstream
or final conditions.

Sensitive dependence implies more than a mere increase in the
difference between two states as each evolves with time. For
example, there are deterministic systems in which an initial
difference of one unit between two states will eventually increase
to a hundred units, while an initial difference of a hundredth of a
unit, or even a millionth of a unit, will eventually increase to a
hundred units also, even though the latter increase will inevitably
consume more time. There are other deterministic systems in which
an initial difference of one unit will increase to a hundred units, but
an initial difference of a hundredth of a unit will increase only to
one unit. Systems of the former sort are regarded as chaotic, while
those of the latter sort are not considered to constitute chaos, even
though they share some of its properties.

Because chaos is deterministic, or nearly so, games of chance
should not be expected to provide us with simple examples, but
games that appear to involve chance ought to be able to take their
place. Among the devices that can produce chaos, the one that is
nearest of kin to the coin or the deck of cards may well be the pinball
machine. It should be an old-fashioned one, with no flippers or
flashing lights, and with nothing but simple pins to disturb the free
roll of the ball until it scores or becomes dead.

One spring in the thirties, during my undergraduate years at
Dartmouth, a few pinball machines suddenly appeared in the local
drugstores and eating places. Soon many students were occasionally
winning, but more often losing, considerable numbers of nickels.
Before long the town authorities decided that the machines violated
the gambling laws and would have to be removed, but they were
eventually persuaded, temporarily at least, that the machines were
contests of skill rather than games of chance, and were therefore
perfectly legal.

If this was indeed so, why didn’t the students perfect their skill
and become regular winners? The reason was chaos. As
counterparts of successive tosses of a coin or riffles of a deck, let
the “events” be successive strikes on a pin. Let the outcome of an
event consist of the particular pin that is struck, together with the
direction from the pin to the center of the ball, and the velocity of
the ball as it leaves the pin. Note that I am using velocity in the
technical sense, to denote speed together with direction of motion,
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just as position with respect to some reference point implies distance
together with direction of displacement.

Suppose that two balls depart one after the other from the same
pin in slightly different directions. When the balls arrive at the next
pin, their positions will be close together, compared to the distance
between the pins, but not necessarily close, compared to the
diameter of a ball. Thus, if one ball hits the pin squarely and
rebounds in the direction from which it came, the other can strike
it obliquely and rebound at right angles. This is approximately what
happens in Figure 1, which shows the paths of the centers of two
balls that have left the plunger of a pinball machine at nearly equal
speeds. We see that the angle between two paths can easily increase
tenfold whenever a pin is struck, until soon one ball will completely
miss a pin that the other one hits. Thus a player will need to increase
his or her control tenfold in order to strike one more pin along an
intended pathway.

Of course, the pinball machine in Figure 1 is really a
mathematical model, and the paths of the balls have been computed.
The model has incorporated the decelerating effect of friction, along
with a further loss of energy whenever a ball bounces from a pin or
a side wall, but, in a real machine, a ball will generally acquire some
side spin as it hits a pin, and this will alter the manner in which it
will rebound from the next pin. It should not alter the conclusion
that the behavior is chaotic—that the path is sensitively dependent
on the initial speed.

Even so, the model as it stands fails in one respect to provide a
perfect example of chaos, since the chaotic behavior ceases after the
last pin is struck. If, for example, a particular ball hits only seven
pins on its downward journey, a change of a millionth of a degree
in its initial direction would amplify to ten degrees, but a change of
a ten-millionth of a degree would reach only one degree. To satisfy
all of the requirements for chaos, the machine would have to be
infinitely long—a possibility in a model if not in reality—or else
there would have to be some other means of keeping the ball in play
forever. Any change in direction, even a millionth of a millionth of
a degree, would then have the opportunity to amplify beyond ten
degrees.

An immediate consequence of sensitive dependence in any system
is the impossibility of making perfect predictions, or even mediocre
predictions sufficiently far into the future. This assertion
presupposes that we cannot make measurements that are
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Figure 1. The pinball machine. The jagged curves are the paths of the centers
of two balls that have begun their journeys at nearly equal speeds. The
radius of a ball is indicated by the distance between a pin and an abrupt
change in the direction of a path.



completely free of uncertainty. We cannot estimate by eye, to the
nearest tenth of a degree nor probably to the nearest degree, the
direction in which a pinball is moving. This means that we cannot
predict, to the nearest ten degrees, the ball’s direction after one or
two strikes on a pin, so that we cannot even predict which pin will
be the third or fourth to be struck. Sophisticated electronic
equipment might measure the direction to the nearest thousandth
of a degree, but this would merely increase the range of
predictability by two or three pins. As we shall see in a later chapter,
sensitive dependence is also the chief cause of our well-known
failure to make nearly perfect weather forecasts.

I have mentioned two types of processes—those that advance step
by step, like the arrangements of cards in a deck, and those that
vary continuously, like the positions or speeds of cars on a highway.
As dynamical systems, these types are by no means unrelated. The
pinball game can serve to illustrate a fundamental connection
between them.

Suppose that we observe 300 balls as they travel one by one
through the machine. Let us construct a diagram containing 300
points. Each point will indicate the position of the center of one ball
when that ball strikes its first pin. Let us subsequently construct a
similar diagram for the second strike. The latter diagram may then
be treated as a full-scale map of the former, although certainly a
rather distorted map. A very closely spaced cluster of points in the
first diagram may appear as a recognizable cluster in the second.
Dynamical systems that vary in discrete steps, like the pinball
machine whose “events” are strikes on a pin, are technically known
as mappings. The mathematical tool for handling a mapping is the
difference equation. A system of difference equations amounts to a
set of formulas that together express the values of all of the variables
at the next step in terms of the values at the current step.

I have been treating the pinball game as a sequence of events, but
of course the motion of a ball between strikes is as precisely
governed by physical laws as are the rebounds when the strikes
occur. So, for that matter, is the motion of a coin while it is in the
air. Why should the latter process be randomness, while the former
one is chaos? Between any two coin tosses there is human
intervention, so that the outcome of one toss fails to determine the
outcome of the next. As for the ball, the only human influence on
its path occurs before the first pin is struck, unless the player has
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mastered the art of jiggling the machine without activating the tilt
sign.

Since we can observe a ball between strikes, we have the option
of plotting diagrams that show the positions of the centers of the
300 balls at a sequence of closely spaced times, say every fiftieth of
a second, instead of only at moments of impact. Again each diagram
will be a full-scale map of the preceding one. Now, however, the
prominent features will be only slightly changed from one diagram
to the next, and will appear to flow through the sequence.
Dynamical systems that vary continuously, like the pendulum and
the rolling rock, and evidently the pinball machine when a ball’s
complete motion is considered, are technically known as flows. The
mathematical tool for handling a flow is the differential equation.
A system of differential equations amounts to a set of formulas that
together express the rates at which all of the variables are currently
changing, in terms of the current values of the variables.

When the pinball game is treated as a flow instead of a mapping,
and a simple enough system of differential equations is used as a
model, it may be possible to solve the equations. A complete
solution will contain expressions that give the values of the variables
at any given time in terms of the values at any previous time. When
the times are those of consecutive strikes on a pin, the expressions
will amount to nothing more than a system of difference equations,
which in this case will have been derived by solving the differential
equations. Thus a mapping will have been derived from a flow.

Indeed, we can create a mapping from any flow simply by
observing the flow only at selected times. If there are no special
events, like strikes on a pin, we can select the times as we wish—for
instance, every hour on the hour. Very often, when the flow is
defined by a set of differential equations, we lack a suitable means
for solving them—some differential equations are intrinsically
unsolvable. In this event, even though the difference equations of
the associated mapping must exist as relationships, we cannot find
out what they look like. For some real-world systems we even lack
the knowledge needed to formulate the differential equations; can
we honestly expect to write any equations that realistically describe
surging waves, with all their bubbles and spray, being driven by a
gusty wind against a rocky shore?

If the pinball game is to chaos what the coin toss is to complete
randomness, it has certainly not gained the popularity as a symbol
for chaos that the coin has enjoyed as a symbol for randomness.
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That distinction at present seems to be going to the butterfly, which
has easily outdistanced any potential competitors since the
appearance of James Gleick’s book, whose leading chapter is
entitled “The Butterfly Effect.”

The expression has a somewhat cloudy history. It appears to have
arisen following a paper that I presented at a meeting in Washington
in 1972, entitled “Does the Flap of a Butterfly’s Wings in Brazil Set
Off a Tornado in Texas?” I avoided answering the question, but
noted that if a single flap could lead to a tornado that would not
otherwise have formed, it could equally well prevent a tornado that
would otherwise have formed. I noted also that a single flap would
have no more effect on the weather than any flap of any other

Figure 2. The butterfly.
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butterfly’s wings, not to mention the activities of other species,
including our own. The paper is reproduced in its original form as
Appendix 1.

The thing that has made the origin of the phrase a bit uncertain
is a peculiarity of the first chaotic system that I studied in detail.
Here an abbreviated graphical representation of a special collection
of states known as a “strange attractor” was subsequently found
to resemble a butterfly, and soon became known as the butterfly.
In Figure 2 we see one butterfly; a representative of a closely related
species appears on the inside cover of Gleick’s book. A number of
people with whom I have talked have assumed that the butterfly
effect was named after this attractor. Perhaps it was.

Some correspondents have also called my attention to Ray
Bradbury’s intriguing short story “A Sound of Thunder,” written
long before the Washington meeting. Here the death of a prehistoric
butterfly, and its consequent failure to reproduce, change the
outcome of a present-day presidential election.

Before the Washington meeting I had sometimes used a sea gull
as a symbol for sensitive dependence. The switch to a butterfly was
actually made by the session convenor, the meteorologist Philip
Merilees, who was unable to check with me when he had to submit
the program titles. Phil has recently assured me that he was not
familiar with Bradbury’s story. Perhaps the butterfly, with its
seeming frailty and lack of power, is a natural choice for a symbol
of the small that can produce the great.

Other symbols have preceded the sea gull. In George R.Stewart’s
novel Storm, a copy of which my sister gave me for Christmas when
she first learned that I was to become a meteorology student, a
meteorologist recalls his professor’s remark that a man sneezing in
China may set people to shoveling snow in New York. Stewart’s
professor was simply echoing what some real-world meteorologists
had been saying for many years, sometimes facetiously, sometimes
seriously.

It Ain’t Got Rhythm

There are a number of heart conditions known as arrhythmias;
some of them can be fatal. The heart will proceed to beat at irregular
intervals and sometimes with varying intensity, instead of ticking
like a metronome. It has been conjectured that arrhythmias are
manifestations of chaos. Clearly they entail an absence of some
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order that ought to be present, but let us see how they, or any
processes that lack rhythm, may be related to sensitive dependence.

Precise definitions are not always convenient ones. Having
defined chaos in terms of sensitive dependence, we may discover
that it is difficult to determine whether certain phenomena are
chaotic.

The pinball machine should present no problem. If we have
watched a ball as it rolls, and have noted its position and velocity
at some “initial” time, it should be fairly easy for us to set a new
ball rolling from about the same position with about the same speed
and direction, and then see whether it follows almost the same path;
presumably it will not, if my analysis has been correct. If instead
our system is a flag flapping in the wind, we do not have this option.
We might record the flag’s behavior for a while by taking high-speed
photographs, but it would be difficult to bend the flag into the shape
appearing on a selected exposure, especially with a good wind
blowing, and even harder to set each point of the flag moving with
the appropriate velocity.

Perhaps on two occasions we might hold the flag taut with some
stout string, and let the initial moments be the times when the strings
are cut. If we then worry that subsequent differences in behavior
may result from fluctuations in the wind instead of from intrinsic
properties of the flag, we can circumvent the problem by
substituting an electric fan. Nevertheless, we shall have introduced
highly unusual initial states—flags in a breeze do not ordinarily
become taut—and these states may proceed to evolve in a highly
unusual manner, thereby invalidating our experiment as a test for
chaos.

Fortunately there is a simpler approach to systems like the
flapping flag, and it involves looking for rhythm. Before we can
justify it, we must examine a special property of certain dynamical
systems, which is known as compactness.

Suppose that on a round of golf you reach the tee of your favorite
par-three hole and drive your ball onto the green. If you should
decide to drive a second ball, can you make it come to rest within
a foot of the first one, if this is what you wish? Presumably not;
even without any wind the needed muscular control is too great,
and the balls might not be equally resilient. If instead you have
several buckets of balls and continue to drive, you will eventually
place a ball within a foot of one that you have already driven,
although perhaps not close to the first one. This will not be because
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your game will have improved during the day, but simply because
the green, or even the green plus a few sand traps and a pond, cannot
hold an unlimited number of balls, each one of which is at least a
foot from any other. The argument still holds if the critical distance
between the centers of two balls is one centimeter, or something
still smaller, as long as your caddy removes each ball and marks the
spot before the next drive. Of course you may need many more
buckets of balls.

The surface of the green is two-dimensional—a point on it may
be specified by its distance and direction from the cup—and its area
is bounded. Many dynamical systems are like the ball on the green,
in that their states may be specified by the values of a finite number
of quantities, each of which varies within strict bounds. If in
observing one of these systems we wait long enough, we shall
eventually see a state that nearly duplicates an earlier one, simply
because the number of possible states, no one of which closely
resembles any other one, is limited. Systems in which arbitrarily
close repetitions—closer than any prespecified degree—must
eventually occur are called compact.

For practical purposes the flag is a compact system. The bends in
the flag as it flaps often resemble smooth waves. Let us define the
state of the flag by the position and velocity of each point of a well-
chosen grid, perhaps including the centers of the stars if it is an
American flag, instead of using every point on the flag. Two states
that, by this definition, are nearly alike must then eventually occur,
and any reasonable interpolation will indicate that the positions and
velocities of any other points on the flag will also be nearly alike in
the two instances.

Our pinball machine is not a compact system. Not only do near
repetitions not have to occur while a single ball is in play, but they
cannot, since friction is continually tending to slow the ball, and
the only way that the ball can regain or maintain its speed is to roll
closer to the base of the machine. However, we can easily visualize
a modified system where near repetitions are inevitable.

Imagine a very long pinball machine; it might stand on a gently
sloping sidewalk outside a local drugstore, and extend for a city
block. Let the playing surface be marked off into sections, say one
meter long, and let the arrangement of the pins in each section be
identical with that in any other. Except for being displaced from
each other by one or more sections, the complete paths of two balls,
occupying similar positions in different sections, and moving with
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identical velocities—speeds and directions—will be identical also.
Thus for practical purposes the state of the system may be defined
by the ball’s velocity, together with its position with respect to a
key point in its section, such as the uppermost pin. These quantities
all vary within limited ranges. It follows that if the city block is long
enough, a near repetition of a previous state must eventually occur.

In Figure 3 we see the computed path of the center of a single ball
as it works its way past eighty pins, in a machine that is not only
elongated but very narrow; the playing space is only twice as wide
as the ball. Each pin is set one-quarter of the way in from one side
wall or the other. The long machine is displayed as four columns;
the right-hand column contains the first twenty pins, and each
remaining column is an extension of the one to its right. The vertical
scale has been compressed, as if we were looking from a distance
with our eye just above the playing surface, so that the circular
upper end appears elliptical, as would an area directly below the
ball, if it were shown. You may find the figure easier to study if you
give it a quarter turn counterclockwise and look at the path as a
graph. Evidently the ball completely misses about a third of the pins,
but the rebounds from pins somewhat outnumber those from side
walls.

We see that the path from above the first to below the seventh
pin in the third column nearly duplicates the path in the same part
of the second column. With the initial speed used in the
computation, the expected close repetition of an earlier state has set
in only forty pins from the start. If the width of the playing space
had not been so drastically restricted, thus limiting the possible
positions of the ball, we could have expected a much longer wait,
but not an eternal one.

Suppose now that some compact system, perhaps an elongated
pinball machine or perhaps a flag, is not chaotic; that is, it does not
exhibit sensitive dependence. Assume that the inevitable very near
repetition of an “initial” state occurs after ten seconds, although it
could be after an hour or longer. From that time onward, the
behavior of the system will nearly repeat the behavior that occurred
ten seconds earlier, until, after ten more seconds, another near
repetition of the initial state will occur. After another ten seconds
there will be still another near repetition, and so on, and ultimately
the behavior may become periodic; that is, a particular pattern of
behavior may be repeated over and over again, in this case at ten-
second intervals. It is also possible that a true ten-second periodicity
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will fail to become established, because even if, say, the tenth
occurrence nearly repeats the ninth, and the ninth nearly repeats
the eighth, etc., the tenth need not be particularly close to the first.
In a case like this, the system is called almost periodic. If, then, some
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Figure 3. The elongated pinball machine, with the path of the center of a
single ball. For display the machine has been divided into four columns,
with columns to the left following those to the right. The vertical scale has
been compressed; hence a ball striking a pin from above appears to be closer
than one striking from the side.



other compact system fails to exhibit periodicity or almost-
periodicity, it presumably is chaotic.

In the case of Figure 3, we see that, if the behavior were not
chaotic, the small differences between the early parts of the third
and second columns would not amplify, and the remainder of the
third column would look almost like the remainder of the second,
while the fourth column would look almost like the third. Actually,
however, the ball strikes the first pin in the fourth column and
misses the second, while just the opposite happens in the third
column. The fact that the fourth column does not repeat the third,
or more generally that the path proves to be neither periodic nor
almost periodic, is therefore sufficient evidence that the ball is
behaving chaotically.

Returning to the flapping flag, we see that we may not need to
photograph it, or go through other involved procedures that might
reveal chaotic behavior. If near repetitions really do tend to occur
after about ten seconds rather than an hour or longer, our simplest
procedure may be just to listen to the continual puffs and plops,
and to note whether they have a regular rhythm or whether they
seem to occur “at random.” I suspect, in fact, that the popular
conception of something acting randomly is something varying with
no discernible pattern, rather than something bearing the less easily
detected property of sensitive dependence. Indeed, absence of
periodicity has sometimes been used instead of sensitive dependence
as a definition of chaos. Note, however, that if a system is not
compact, so that close repetitions need never occur, lack of
periodicity does not guarantee that sensitive dependence is present.

Zeroing In on Chaos

“Chaos,” as a standard term for nonperiodic behavior, seems to
have received its big boost in 1975 with the appearance of a now
widely quoted paper by Tien Yien Li and James Yorke of the
University of Maryland, bearing the terse title “Period Three Implies
Chaos.” In a mapping, a sequence of period three is one in which
each state is identical with the state that occurred three steps earlier,
but not with the state that occurred one step or two steps earlier;
sequences with other periods are defined analogously. The authors
showed that, for a certain class of difference equations, the existence
of a single solution of period three implies the existence of an infinite
collection of periodic solutions, in which every possible period—
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periods 1, 2, 3, 4,… —is represented, and also an infinite collection
of nonperiodic solutions. This situation, in which virtually any type
of behavior may develop, seems to fit the nontechnical definition
of chaos, and it is not obvious that Li and Yorke intended to
introduce a new technical term.

They might as well have done so. In the ensuing years the term
has appeared with increasing frequency, and when, in 1987, it
became the key word in the title of James Gleick’s popular book,
its permanence was virtually assured.

In the process of establishing itself as a scientific term, “chaos”
also picked up a somewhat different meaning. Li and Yorke had
used the term when referring to systems of equations that possess
at least a few nonperiodic solutions, even when most solutions may
be periodic. In systems that are now called chaotic, most initial
states are followed by nonperiodic behavior, and only a special few
lead to periodicity. I shall refer to chaos in the sense of Li and Yorke
as limited chaos, calling chaos full chaos when it is necessary to
distinguish it from the limited type.

You may wonder in what sense “most” solutions can behave in
one manner when the “few” that behave otherwise are clearly
infinite in number. Actually, occurrences of this sort are rather
common. Consider, for example, a square and one of its diagonals.
The number of distinct points on the diagonal is infinite, but, in an
obvious sense, most points within the square lie off the diagonal.

Suppose that you decide to use the square as a dartboard, and
that you have a dart whose point is infinitely sharp, so that there
are an infinite number of different points that you might hit. If your
aim is merely good enough to make it unlikely that you will miss
the square altogether, your chances of striking a rather narrow band
surrounding the diagonal are rather low, while your chances of
striking a much narrower band are much lower, and the probability
that you will hit a point exactly on the diagonal is smaller than any
positive number that you can name. Mathematicians would say that
the probability is zero. Clearly, however, a zero probability is not
the same thing as an impossibility; you are just as likely to hit any
particular point on the diagonal as any particular point elsewhere.

In limited chaos, encountering nonperiodic behavior is analogous
to striking a point on the diagonal of the square; although it is
possible, its probability is zero. In full chaos, the probability of
encountering periodic behavior is zero.
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There is a related phenomenon that, unlike full chaos or limited
chaos, has long been familiar to almost everyone, even if not by its
technical name, unstable equilibrium. If you have ever tried to make
a well-sharpened pencil stand on its point, you will in all likelihood
have found that less than a second will elapse between the moment
when you let go of the pencil and the time when it strikes the table.
Simple calculations indicate that a pencil is several million times less
likely to stand up for two seconds than for one, and several million
million times less likely to stand up for three seconds than for one,
and that, in fact, if every human being who ever lived had devoted
his or her entire life to attempting to make sharpened pencils stand
on end, it would be highly unlikely that even one pencil would have
stood up for six seconds. Of course, you may have somewhat better
luck if the points of your pencils become slightly worn.

Nevertheless, theory indicates that a pencil standing exactly
vertically will continue to stand forever; it is in equilibrium. A state
of equilibrium is one that remains unchanged as time advances. An
equilibrium is unstable if a state that differs slightly from it, such
as one that you might purposely produce by disturbing it a bit, will
presently evolve into a vastly different state—a fallen pencil instead
of a standing one. It is stable if a slight initial disturbance fails to
have a large subsequent effect. The concept of equilibrium, stable
or unstable, can be extended to include periodic behavior.

The vertical pencil is typical of systems in unstable equilibrium.
The reason that in practice a pencil cannot be made to stand on its
point is that neither the hand nor the eye can distinguish between
a pencil that is truly vertical and one that is tilted by perhaps a tenth
of a degree, and the mathematical probability of picking the one
vertical state from among the infinitely many that seem vertical is
zero. Moreover, in the real world, even if unstable equilibrium could
be precisely achieved, something would soon disturb it.

The definition of unstable equilibrium has much in common with
that of sensitive dependence—both involve the amplification of
initially small differences. The distinction between a system that
merely possesses some states of unstable equilibrium and one that
is chaotic is that, in a system of the latter type, the future course of
every state, regardless of whether it is a state of equilibrium, will
differ more and more from the future courses of slightly different
states.

Chaotic systems may possess states of equilibrium, which are
necessarily unstable. In the pinball machine such a state will occur
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if the ball comes to rest against a pin, directly upslope from it. A
slight disturbance will cause the ball to roll away to the left or right.

It may seem that in seeking bigger and better pinball machines I
have overlooked the simplest example of all. Consider an object
moving without friction on a horizontal plane—effectively a pinball
machine with no pins, no slope, and no walls. The object will move
straight ahead, at a constant speed. If we should alter its speed or
direction by even the minutest amount, its position will eventually
be far from where it would have been without the alteration.

Should we call this chaos? Despite the sensitive dependence, there
is no irregularity or seemingly random behavior. All possible paths
are straight lines, expressible by simple mathematical formulas.
Instead of recognizing a form of chaos with radically different
properties, it would seem logical to conclude that our original
definition in terms of sensitive dependence lacks some essential
qualification.

Although there are a number of procedures for making the
definition more acceptable, one approach is particularly simple. The
object sliding without friction is an example of a dynamical system
in which certain quantities may assume any values initially, but will
then retain these values forever; these quantities are really constants
of the system. In the present example, the velocity remains constant.
If two nearby objects have identical velocities—speeds and
directions—and differ in their initial states only by virtue of
differing in their positions, they will not move apart.

Let us therefore amend our definition of chaos. First, for this
particular purpose, let us refer to any quantity whose value remains
unaltered when a system evolves without our interference, but may
be altered if we introduce new initial conditions, as a virtual
constant. For an object sliding without friction on a horizontal
surface, the speed and direction are virtual constants; for one that
slides without friction inside a bowl, the speed and direction vary,
but the total energy is a virtual constant. Next, let us distinguish
between changes in initial conditions that do alter the value of at
least one virtual constant and those that do not, by calling the
former changes exterior and the latter ones interior. 

We may now redefine a chaotic system as one that is sensitively
dependent on interior changes in initial conditions. Sensitivity to
exterior changes will not by itself imply chaos. Concurrently, we
may wish to modify our idea as to what constitutes a single
dynamical system, and decide that, if we have altered the value of
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any virtual constant, we have replaced our system by another
system. In that case chaos, as just redefined, will be equivalent to
sensitive dependence on changes that are made within one and the
same system. For systems without virtual constants, such as the
elongated pinball machine, all changes are necessarily interior
changes, and the modified definition is the same as the previous one.
For many other systems, including various objects that move
without friction, the modified definition—sensitivity to interior
changes—will lead to more acceptable conclusions.

Have we been glimpsing a phenomenon that can arouse enough
interest to become the subject of an extensive scientific theory?
Probably few people care whether a flag flaps chaotically or
rhythmically. Chaos in the pinball game is important, and
frustrating, to anyone who is seriously trying to win. Chaos in the
heartbeat, when it occurs, is of concern to all of us. 
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CHAPTER 2
A Journey into Chaos

Chaos in Action

THE PINBALL MACHINE is one of those rare dynamical systems
whose chaotic nature we can deduce by pure qualitative reasoning,
with fair confidence that we have not wandered astray.
Nevertheless, the angles in the paths of the balls that are introduced
whenever a ball strikes a pin and rebounds—rather prominent
features of Figure 1—render the system somewhat inconvenient for
detailed quantitative study. For an everyday system that will vary
more smoothly, and can more easily serve to illustrate many of the
basic properties of chaotic behavior, even though it may not yield
so readily to descriptive arguments, let us consider one that still
bears some resemblance to the pinball machine. The new system
will again be a slope, with a ball or some other object rolling or
sliding down it, but there will be no pins or other obstacles to block
a smooth descent, and the slope may be of any size.

We should not expect to encounter chaos if our slope is a simple
tilted plane, unless our object is an elliptical billiard ball of The
Mikado fame, so let us consider a slope with a generous scattering
of smoothly rounded humps. These may even be arranged like the
pins in some pinball machine—perhaps the machine appearing in
Figure 1—but they will not have the same effect; even though an
object approaching a hump obliquely may be deflected about as
much as a ball glancing off a pin, an object that encounters a hump
straight ahead can travel smoothly over the top instead of
rebounding. We wish to discover a system of this description that
behaves chaotically, if, indeed, there is one.

At this point we have the usual options. We can make an
excursion to the country, and seek a slope with plenty of humps,



but without any obstacles, such as trees or boulders, that might play
the role of the pins in the machine. We can then let a soccer ball roll
down and observe its motion, but an irregularly meandering path
may not indicate sensitive dependence, since the humps, and hence
the deflections that they produce, may not be regularly spaced.
Instead of detecting chaos by its lack of rhythm, we would have to
look for sensitive dependence directly. To do this, we could release
another or preferably several other balls from the same point to see
whether they follow different paths, hoping that any observed
divergence will not be the product of an unobserved gust of wind.
We could virtually remove the wind problem by using bowling balls,
but we might be disinclined to carry several of them up the slope.

We may therefore prefer to turn to the laboratory and build our
own slope, making every hump just like every other one and spacing
them uniformly. The slope can sit on a table top, and the rolling
object can be a marble. Like the soccer ball, the marble will be
deflected by the humps, but now there will be nothing to prevent
its motion from varying periodically. If it follows an irregular path
anyway, we should suspect the presence of chaos. Again, we might
choose to compare the paths of several marbles.

If we are mathematically inclined, we may wish to move from the
laboratory to the computer. Instead of physically building a slope,
we can choose a mathematical formula for its topography. Instead
of watching an object as it moves down the slope, we can solve the
equations that describe the manner in which its motion will vary.
Let us examine in detail what can happen if our envisioned slope
resembles the one pictured in Figure 4, which shows an oblique view
of a cut-out section. The humps may remind some of us of moguls
on a ski slope, and, although a computer program can handle slopes
of any size with equal ease, I shall choose dimensions that are fairly
typical of ski slopes. Since some of you may live far from ski
territory, I should add that these moguls are not eastern rulers nor
industrial giants who have ventured onto the snow. Compare
Figure 5, where you can perhaps just detect a lone skier tackling the
ubiquitous moguls on the Cat’s Meow, a challenging slope at
Loveland Basin ski area in Colorado. The moguls seem rather
regularly spaced, though not enough so to fit a simple mathematical
formula.

Since our object will travel continuously rather than in jumps,
our equations will be differential equations. They will be
statements, in mathematical symbols, of one of Isaac Newton’s laws
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of motion, which simply equates the acceleration of any particle of
matter—the rate at which its velocity is changing—to the sum of
the forces acting on the particle, divided by the mass of the particle.
A complicated object can be treated as an aggregation of particles.
The equations appear in a mathematical excursion in Appendix 2.

A ball or some other object rolling down a slope would acquire
considerable spin, and to avoid the resulting mathematical
complications I shall assume that our object is one that will slide.
It might be a flat candy bar that has fallen from a skier’s pocket, or
even a loose snowboard, but not an animate skier, and I shall simply
call it a board. Its motion will be controlled by the combined action
of three forces. One of these is the pull of gravity, directed vertically
downward. Another is the resistance of friction, directed against
the velocity. Finally there is the force that the slope exerts against
the board, directed at right angles to the slope, and opposing the
effect of gravity to just the extent needed to keep the board sliding
instead of sinking into the slope or taking off into the air.

Laboratory models are of necessity real physical systems, even
though they need not be like any encountered in nature, but

Figure 4. An oblique view of a section of the model ski slope.
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mathematical models seldom duplicate any concrete systems
exactly. Real boards may be flexible, and their orientations may
vary, but in our ski-slope model we shall disregard these
possibilities, and treat the board as if it were a single particle. It will
be convenient to choose an oversimplified law of friction, letting
the resistance be directly proportional to the speed of the board—
doubling the speed will double the resistance. Stated otherwise, if
the damping time is defined as the ratio of the speed to the rate at
which friction is lowering the speed, it will be convenient to let the
damping time be constant. Its reciprocal, the coefficient of friction,
will therefore be constant. It will then be easy to formulate a system
of differential equations whose solutions will reveal how the board
will move.

Our model would be more realistic if the resistance of friction
were made to vary also with the force of the slope against the board,
so that, for example, when the board is nearly taking off,
presumably because it is shooting over a mogul, the frictional effect
will be greatly reduced. Wind resistance should also be modeled,
but these refinements are unlikely to have much qualitative effect.

There are different rules for laboratory and computer studies. We
tend to associate laboratory experiments with high precision, but
in some instances it is possible to omit some measurements
altogether and still obtain an answer. In a computer experiment
there is no way to begin until numerical values have been assigned
to every relevant quantity.

Our model contains a number of constants. We therefore have
the option of working with any one of an infinite number of
dynamical systems, since, as we have noted, whenever we alter the
value of any constant we produce a new system, perhaps with a new
typical behavior—observe how oiling an aging machine, and
thereby lowering its coefficient of friction, can pep up its
performance. Systems that are formally alike except for the values
of one or more constants are said to be members of a family of
dynamical systems. Often we refer to a whole family as simply a
dynamical system, when we can do so without causing confusion.

We should anticipate the possibility that only certain
combinations, if any, of values of our constants—the average pitch
of the slope, the height and spacing of the moguls, and the
coefficient of friction—will lead to chaos. Gravity is also an essential
constant, but its magnitude has already been determined for us as
long as we keep our experiment earthbound. In contrast to the
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pinball model, where chaos is virtually assured, there is no rule for
determining in advance of our computations, in the new model,
what combinations of values for the constants will work. We must
discover them by trial and error, possibly obtaining suitable values
on the first try, possibly encountering them only after many tries,
and possibly not finding them at all and concluding, perhaps
incorrectly, that the model will never produce chaos.

Since I have introduced the ski slope for the purpose of illustrating
the fundamental properties of chaos, I shall choose values from a
successful try. For convenience, let the slope face toward the south.
Let its average vertical drop be 1 meter for every 4 meters
southward. Imagine a huge checkerboard drawn on the slope, with
“squares” 2 meters wide and 5 meters long, and let the centers of
the moguls be located at the centers of the dark squares, as
illustrated in Figure 6, which also shows a possible path of a board
down the slope. Let the damping time be 2 seconds. As detailed in
Appendix 2, the formula selected for the topography of the slope
will place pits in the light squares of the checkerboard, as if snow
had been dug from them to build the moguls. Let each mogul rise
1 meter above the pits directly to its west and east. Like the pinball
machine, the ski slope would have to be infinitely long to afford a
perfect example of chaos.

We shall be encountering references to the four variables of the
model so often that I shall give them concise names. These might
as well consist of single letters, and they might as well be letters that
have served as mathematical symbols in the differential equations,
or in the computer programs for solving them. Let the southward
and eastward distances of the board from some reference point, say
the center of a particular pit, be called X and Y, respectively, and
let the southward and eastward components of the velocity—the
rates at which X and Y are currently increasing—be called U and
V. Note that when we view the slope directly from the west side, as
we nearly do in Figure 4, or as we can do by giving Figure 6 a quarter
turn counterclockwise, X and Y become conventional rectangular
coordinates. Alternatively, but with some loss of mathematical
convenience, we could have chosen the board's distance and
direction from the reference point, and its speed and direction of
motion, as the four variables.

What I have been calling the centers of the moguls or the pits are
actually the points where the slope extends farthest above or below
a simple tilted plane. These are the centers of the checkerboard
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squares. The actual highest point in a dark square is about 1.5
meters north of the center of the mogul, while the lowest point in

Figure 5. Moguls on a real-world ski slope.
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a light square is a like distance south of the center of the pit, and I
shall call these points the high points and low points. They may be
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Figure 6. A top view of a section of the model ski slope, with the path of a
single board sliding down it. The shaded rectangular areas of the slope
project above a simple inclined plane, while the unshaded areas project
below.



detected on the forward edge of the section of the slope in Figure 4.
To begin a computation, we can give the computer four numbers,

which specify numerical values of X and Y, say in meters, and U
and V, say in meters per second. In due time the computer will
present us with more numbers, which specify the values of the same
variables at any desired later times. As our first example, let X, Y,
U, and V be 0.0, −0.5, 4.0, and 2.0, implying that the board starts
half a meter due west of the center of a pit, and heads approximately
south-southeastward. The board will then follow the sample path
shown in Figure 6.

To see whether the board descends chaotically, let us turn to
Figure 7, which shows the paths of seven boards, including the one
appearing in Figure 6, as they travel 30 meters southward. All start
from the same west-east starting line with the same speed and
direction, but at points at 10-centimeter intervals, from 0.8 to 0.2
meters west of a pit. A tendency to be deflected away from the
moguls is evident. The paths soon intersect, but the states are not
alike, since now the boards are heading in different directions, and
soon afterward the paths become farther apart than at first. By 10
meters from the starting line, the original 0.6-meter spread has more
than doubled, and by 25 meters it has increased more than tenfold.
Clearly the paths are sensitively dependent on their starting points,
and the motion is chaotic.

As already noted, an essential property of chaotic behavior is that
nearby states will eventually diverge no matter how small the initial
differences may be. In Figure 8, we let the seven boards travel 60
meters down the slope, starting from points spaced only a millimeter
apart, from 0.503 to 0.497 meters west of the pit. At first the
separation cannot be resolved by the picture, but by 30 meters it is
easily detectable, and subsequently it grows as rapidly as in Figure 7.
The ski slope has passed another critical test. The initial separation
can be as small as we wish, provided that the slope is long enough.

Lest the paths remind some of you of ski tracks, I should hasten
to add that they do not follow routes that you, as knowledgeable
skiers, would ordinarily choose. They might approximate paths that
you would take if you fell and continued to slide. 

The reader who looks at things as they are in nature need not be
perplexed by what is meant by displacing a snowboard, not to
mention a fallen skier, by 1 millimeter. We have been looking at a
mathematical model, which, like most models, ignores something.
In this case it ignores the size of the sliding object, which,
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presumably quite unrealistically, is assumed to slide just as it would
if it were no larger than a pinhead, and if the slope were so smooth
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Figure 7. The paths of seven boards starting with identical velocities from
points spaced at 10-centimeter intervals along a west-east line. The small
diamonds indicate the locations of the centers of the moguls.



that a pinhead could continue to slide. It would be quite possible
to write a new computer program, which could deal with sliding

Figure 8. The paths of seven boards, starting with identical velocities from
points spaced at 1-millimeter intervals along a west-east line.
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objects of various sizes and shapes, but which would have to be
based on a more involved mathematical analysis.

For the alternative means of detecting chaos—directly observing
a lack of periodicity—let us turn to Figure 9, which extends the
original path to 600 meters down the slope. The board shows a
noticeable tendency to wiggle about lines that pass either
southeastward or south-westward between the moguls, but the
switches from one direction to the other show no sign of occurring
at regular intervals. Let us see what we can infer from this behavior.

First, we are interested in periodicity, or the lack of it, as time
increases, but Figure 9 shows only what happens as downslope
distance, i.e., X, increases. We should note, then, that since the
board always moves down the slope and its speed does not vary too
greatly, distance can serve as an approximate measure of time, with
3.5 meters equaling about 1 second. Measuring time in this manner
is like using a clock that sometimes runs a bit too fast or too slow,
but always runs forward.

If the whole system varied periodically with time, the speed of
the clock, which is certainly a feature of the system, would have to
vary periodically, with the same period, and the variations of the
system, as measured by this clock, would likewise be periodic.
Failure to vary periodically with downslope distance therefore
implies absence of periodicity in real time.

Next, like the pinball machine, the slope with the board coasting
down it is not a compact system, since X must increase without
limit, and Y may do likewise. A simple change of variables,
however, will produce a system that is mathematically compact.
Note that it is possible to change the variables of a tangible system
without altering the system itself. We would do this, for example,
if we decided to express a velocity in terms of speed and direction
instead of southward and eastward components.

In the present case, we first partition the slope into 5-meter by 4-
meter rectangles. Each rectangle contains an entire light square of
the checkerboard and extends halfway through the dark squares to
the west and east, so that the center of a pit lies at the center of each
rectangle, and centers of moguls lie at the midpoints of the west and
east sides. Then, using lower-case instead of upper-case names, we
let x and y, the new variables, be the southward and eastward
distances of the board from the center of the rectangle that it
currently occupies. Most of the time x will increase continuously,
just as X does, but x will jump from 2.5 back to –2.5 whenever the
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board enters the next rectangle down the slope, at which time y will
abruptly increase or decrease by 2 meters, according to whether the
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Figure 9. The path of a single board traveling 600 meters down the model
slope. Note that the north-south scale has been compressed, as if we were
looking at the slope from beyond the base.



board has left the previous rectangle nearer to its southwest or its
southeast corner. Also, y will jump from 2.0 to −2.0, or from −2.0
to 2.0, when the board crosses one side of a rectangle or the other,
but U and V will retain their original meanings as components of
velocity. Since the slope has the same shape in each rectangle, the
values of x, y, U, and V at any future time can be determined from
the present values without knowing X and Y, i.e., without knowing
which pit the board is near. Since, like U and V, x and y vary only
over limited ranges, the new system is compact.

We have therefore identified a compact mathematical system in
which U and V can vary exactly as they do in Figure 9. In this figure,
positive and negative values of V show up respectively as
southeastward and southwestward progressions. Since these do not
appear to alternate in any regular sequence, at least one variable,
V, is patently not varying periodically, and we can conclude fairly
safely, even without reference to Figure 7 or 8, that the behavior of
the board is chaotic. The only alternative would be the unlikely one
that it is periodic with a period exceeding 600 meters in X, or about
three minutes—too long to be revealed by the figure.

The path down the slope in Figure 9 is actually a graph of Y
against X; with a quarter turn it will look like a conventional graph.
In effect the board draws its own graph as it slides down the slope.
Many of the fundamental concepts in dynamical-systems theory can
be represented by graphs, but these graphs are not always plots of
values of a single variable against values of one other. Often we are
interested in the simultaneous values of several variables, and we
may wish that we could have graphs in more than two dimensions,
or even in as many dimensions as the number of variables in our
system. If this number is large, it will be utterly impossible to
construct some of the desired graphs, but, if it is fairly small,
constructions in two or three dimensions can sometimes fulfill our
needs.

As dynamical systems go, the ski slope is fairly simple, having
only four variables; compare even a crude model of the flapping
flag. Nevertheless, most persons do not find a curve or any other
kind of graph in four-dimensional space particularly easy to
visualize.

For example, consider a length of cord, perhaps a clothesline,
with an overhand knot in it, and with its ends fastened to opposite
walls of a room. In the three-dimensional world in which we live,
we cannot remove the knot without detaching one end or mutilating
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the cord. Knot theorists have shown that in four dimensions a
similar knot can be readily removed while the ends remain fastened;
effectively it is not a knot at all. This finding does not seem
unreasonable, but visually I do not find it at all obvious.

It would be convenient to work with a system with fewer than
four variables. We can produce such a system by doctoring up our
ski-slope model.

Physical complexity and mathematical complexity are not the
same thing. It is quite possible to replace one system by another that
is physically more complicated but mathematically simpler. In our
new model we shall retain the original ski slope while replacing the
board by a sled. The sled will be equipped with brakes but no
steering mechanism. The driver is supposed to apply the brakes to
just the extent needed to hold the downslope speed, U, constant,
while the cross-slope speed, V, may continue to vary. If the moguls
are rather high, a sled sliding over a mogul will slow down even if
the brake is completely released, so in this case the sled must also
be equipped with a motor, and the driver must use the accelerator
when the need arises.

The driver, who is unlikely to appreciate his lack of control over
the sled's direction and may not find much comfort in the
knowledge that his ride may be chaotic, will probably need
considerable practice before he can hold the southward speed even
approximately constant. He may well opt for some special
electronic equipment, which will observe the slope just ahead and
apply the brakes or accelerator accordingly. Certainly a properly
working sled of this sort would be physically much more
complicated than a simple board. Designing a laboratory model of
the sled would involve similar complications, and might require
similar electronic equipment. In contrast, a computer program for
the new system will be simpler than the original program, but the
big advantage will not be the modest saving in computer time but
the fact that one original variable, the southward speed U, has
become a constant, still called U, so that the new system has only
three variables. These may be chosen as X, Y, and V, or instead as
x, y, and V. Moreover, X, the downslope distance, now increases
uniformly with time, and the clock that used to run too fast or too
slow now works perfectly

As with the original system, we can expect that not all
combinations of values of the constants will lead to chaos. Although
our constants now include U, the downslope speed, they no longer
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include the coefficient of friction, whose value is controlled by the
driver when he brakes, and hence mathematically is determined by
X, Y, and V. Use of the accelerator will appear in the program as
negative friction.

For our example we shall let U be 3.5 meters per second—a value
close to the average value of U in the original example—while the
remaining constants will retain their former values. Figure 10 shows
what happens when seven sleds, spaced at 10-centimeter intervals
along the same west-east starting line, start with equal velocities.
Although the details differ from those in Figure 7, the message is
the same; the system is chaotic.

The Heart of Chaos

An expression that has joined “chaos” in working its way into the
scientific vocabulary, and that has aroused a fair amount of popular
interest as well, is “strange attractor.” Let us see what is meant by
an attractor, and what one must be like to be considered strange.

If we take a look at some real-world phenomenon that has caught
our attention, we are likely to find that certain conceivable modes
of behavior simply do not occur. A pendulum in a clock in good
working order will not swing gently at times and violently at others;
every swing will look like every other one. A flag in a steady breeze
will never hang limp, nor will it extend itself directly into the breeze,
no matter how long we wait. Subfreezing temperatures will not
occur in Honolulu, nor will relative humidities of 15 percent. The
states of any system that do occur again and again, or are
approximated again and again, more and more closely, therefore
belong to a rather restricted set. This is the set of attractors.

When we perform a numerical experiment with a mathematical
model, the same situation arises. We are free to choose any
meaningful numbers as initial values of the variables, but after a
while certain numbers or combinations of numbers may fail to
appear. For the sled on the slope, with the value of U, the downslope
speed, fixed at 3.5 meters per second, we can choose any initial
value for V, the cross-slope speed, and any values for x and y within
restricted ranges. Computations show that V will soon become
restricted also, remaining between −5.0 and +5.0 meters per second.

Moreover, even the values of V that continue to occur will not
do so in combination with certain values of the other variables. The
sled will frequently slide almost directly over a mogul, and it will
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often move almost directly from the northwest or northeast, but
whenever it is crossing a mogul it will be moving only from almost
due north. To the computer, this means that, if x is close to 0.0 and
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Figure 10. The paths of seven sleds, starting with identical velocities from
points spaced at 10-centimeter intervals along a west-east line.



y is close to −2.0 or +2.0, V will prove to be close to 0.0. Again, the
states that do manage to occur, after the disappearance of any
transient effects that may have been introduced by the choice of
initial conditions, will form the set of attractors.

The interest in attractors that has accompanied and perhaps
stimulated the recent surge of interest in chaos has been partly due
to the striking appearance of certain ones—the “strange” ones. Can
a set of attractors, which is simply a collection of states, have any
appearance at all, let alone a strange one, particularly if the
variables happen to be invisible quantities, like atmospheric
temperature and pressure? It can indeed, if by an attractor we mean
a graphical representation of an attractor.

As we saw earlier, we may sometimes wish that we could draw
graphs or other diagrams in a space that has as many dimensions
as the number of variables in our system. Often such a task is
impossible, but even then the concept of these diagrams can be
useful. The hypothetical multidimensional space in which such a
diagram would have to be drawn is known as phase space.

In phase space, each point represents a particular state of a
dynamical system. The coordinates of the point—distances in
mutually perpendicular directions from some reference point, called
the origin—are numerically equal to the values that the variables
assume when the state occurs. A particular solution of the equations
of a system—that is, the set of states following and perhaps
preceding a particular initial state—is represented by a curve, often
called an orbit, if the system is a flow. It is represented by a chain
of points, also called an orbit, if the system is a mapping. An
attractor may be represented by a simple or complicated
geometrical structure.

In the minds of many investigators, an attractor and its pictorial
representation in phase space are one and the same thing. In their
terminology, a point means a state, and an orbit means a
chronological sequence of states, so that a set of attractors can be
a collection of points. When this collection consists of a single
agglomeration, it is also the attractor. When it is composed of
several unconnected pieces, and when no orbit passes from one
piece to another, each piece is a separate attractor.

An attractor can sometimes be a single point. A pendulum in a
clock that is not wound up will eventually come to rest, hanging
vertically, regardless of how it has initially been set in motion. Since
the state of the pendulum, before it comes to rest, can be described
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by two variables, the phase space of the pendulum must be two-
dimensional; it must be a plane. On this plane, we may choose the
horizontal distance of a point from the origin to equal the horizontal
displacement of the bob from the low point of the swing. The
vertical distance from the origin will not represent the bob’s vertical
distance from anywhere; instead we may choose it to have the same
numerical value as the speed of the bob—positive when the bob is
moving to the right and negative when it moves to the left. The
attractor of the unwound clock will then be a single point on the
plane—the origin—representing the state of rest.

The attractor of a pendulum in a clock that is always kept wound
will be a closed curve, resembling an ellipse. In fact, if we measure
the speed of the bob in suitable units, perhaps miles per hour or
perhaps centimeters per second, it can resemble a circle, with its
center at the origin. Regardless of how rapidly we start the
pendulum swinging, it will soon acquire its normal behavior, and
then, as it swings toward the right, the point representing its state
will move to the right along the upper or positive half of the circle,
crossing the top when the bob attains its greatest speed. As the
pendulum swings back toward the left, the point will move back
along the lower or negative half of the circle, after which it will
continue its clockwise circuits.

Because, in this and many other systems, extremely large values
of the variables cannot occur, except as transient conditions, points
in the set of attractors cannot be too far removed from the origin.
This means that they will occupy a rather restricted central region.
They will indeed form the heart of the dynamical system.

For the sled on the slope, it is convenient to use x, y, and V as
coordinates in the three-dimensional phase space. The central
region, containing the attractor, will then fit into a rectangular box
—a box within which x extends only from −2.5 to +2.5 and y
extends only from −2.0 to +2.0, since by definition x and y are
limited to these ranges, while V extends only from −5.0 to +5.0,
since larger cross-slope speeds do not occur, except transiently.

There are numerous sophisticated computer programs for
constructing pictures of three-dimensional objects, although some
of them may not work very well when the object is a complicated
attractor. For our system, let us adopt the simple procedure of
displaying cross sections of the box. The simplest of these sections
are rectangles, parallel to one face or another. Mathematically, it is
easiest to work with rectangles on which x is constant, and on which
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V is plotted against y. Horizontal and vertical distances from a
central point of a rectangle can then equal values of eastward
distance and eastward speed, respectively, just as they do in the
phase space of the pendulum when the clock faces south. We may
then draw a picture of the cross section of the attractor by
determining, and marking on a chosen rectangle, the locations of a
large number of points that lie not only on the rectangle but also
on the attractor. By looking at several parallel cross sections of the
attractor we may get a good idea of its three-dimensional structure.

To determine the desired points, we may begin by taking any
large collection of points on one of the rectangles. Each point will
represent the initial state of one sled. Let us choose the rectangle on
which x equals 2.5, so that the sleds all start from a west-east line
that passes midway between a pit and the mogul directly to its
south. The upper left panel in Figure 11, which, unlike the previous
figures, is a picture of phase space instead of something tangible,
contains five thousand points chosen at random. These are
supposed to be a sampling of all points on the rectangle,
representing the initial states of all sleds starting with any east ward
speed between −5.0 and +5.0 meters per second, from any point on
the starting line. The pattern has no recognizable form; it is true
chaos in the nontechnical sense of the word.

We next allow each sled to descend 5 meters, so that x equals 2.
5 again. In the lower left panel we have plotted the five thousand
points representing the newly acquired cross-slope positions and
velocities. We find that the points have gathered themselves into a
more or less elliptical region with two thin arms extending from it.
There are large empty areas, representing states that cannot occur
except transiently. Points on the left and right edges are confined
to narrow bands near the midpoints of these edges, where V is close
to zero; this implies that the sleds represented by these points are
moving from nearly due north. Note that a horizontal line across
the panel midway between the top and the bottom would have two
stretches with no points at all.

The right-hand panels show what happens when the sleds have
descended 10 and then 15 meters from the starting line. The points
become attracted to regions that are more and more elongated and
distorted; it is as if someone were continually twisting the central
portion of the cross section clockwise, like the key in a wind-up toy,
while holding the left and right extremities fixed. Each new set of
points fits inside the preceding one. At 10 meters a line midway
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between the top and bottom of the panel has four empty stretches;
at 15 meters it has eight.

The set to which these points will ultimately be attracted, if we
continue the process, will be the cross section of the attractor. We
can more or less see what it will look like by extrapolating from the
panels in Figure 11. The assemblage of points will become infinitely
elongated, infinitesimally thin, and infinitely distorted. Virtually
any line crossing the region will have an infinite number of empty
stretches, and between any two empty stretches there will be points,
separated by still more empty stretches.

44 A JOURNEY INTO CHAOS

Figure 11. The upper left panel contains randomly chosen points
representing the cross-slope positions and speeds of five-thousand sleds, all
located on the same west-east line. The lower left and then the upper right
and lower right panels represent the positions and speeds of the same sleds
after they have traveled 5 and then 10 and 15 meters down the slope.



A more conventional way to determine a collection of points on
the cross section of an attractor is to take a single initial point and
plot a long chronological sequence, often omitting the first few
points, which may represent transient conditions. In Figure 12 we
see a plot of ten thousand consecutive values of eastward speed V
against eastward distance y, occurring at 5-meter intervals of
southward distance X, all with x, the southward distance from the
nearest pit, equal to 2.5. Taking advantage of the symmetry of the
attractor—compare Figure 11—I have added another ten thousand
points by also plotting V against −y. Never mind that a ski slope
50 kilometers long, with its assumed pitch, would have to descend
from higher than the summit of Mt. Everest, and would
undoubtedly have more slippery snow at some elevations than at
others; as usual we are working with a mathematical idealization.
The figure is the cross section of the attractor—the one that is being
approached by the successive panels in Figure 11. It clearly appears
to be composed of many nearly parallel curves. The more heavily
shaded curves represent sets of states that occur more frequently,
while those that show up as open chains of points represent less
common events. 

Like Figure 11, Figure 12 is not a picture of something spread
out on the slope; it is a graph. Even though horizontal distance on
the graph represents distance across the slope, vertical distance has
little to do with distance up or down the slope. Alternative
representations of the attractor would seem to be equally legitimate.

Since the points on the right-hand edge of the figure represent the
same states as the points on the left-hand edge—they represent sleds
directly south of a mogul—it would be logical to join them
somehow, and we could do this by wrapping the figure around a
cylinder, like the label on a soup can. Alternatively, we could take
the paper on which the figure is drawn and roll it into a tube, with
the figure on the inside, and then peer into the tube. What we would
then see would look more or  less like Figure 13—another picture
of the same cross section of the attractor. The new form is more
convenient for some purposes, and less so for others.

The system whose attractor we have been seeking is a flow, with
a three-dimensional phase space; the sleds slide continuously along
their paths, which have been determined by solving a system of
differential equations. When we observe a sled only at 5-meter
intervals down the slope, as we did in Figure 11, we are observing
it only at special times, and so, just as when we decided to look at
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the pinball only when it was striking a pin, we are replacing a flow
by a mapping derived from the flow. The mapping has a two-
dimensional phase space, and the values of y and V at one of the
special times completely determine the values at the next. We cannot
write down the system of difference equations that relates the
successive values of y and V, but we do not need to, since we have
already obtained a numerical solution by solving the differential
equations.

It follows that what we have been treating as a cross section of
an attractor, and have displayed in Figures 12 and 13, is also a
complete attractor—the attractor of the mapping. The process of
converting a flow into a mapping with a lower-dimensional phase
space was introduced by the French mathematician Henri Poincaré
as a part of his novel approach to the problems of celestial
mechanics. The cross sections, which he referred to as surfaces of

Figure 12. A cross section of the attractor of the sled model.
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section, are now called Poincaré sections, and the mappings
produced by taking cross sections are called Poincaré mappings.

For a perspective view of the attractor in three dimensions, we
turn to Figure 14, which shows nine cross sections, with x ranging
from −2.5 to +2.5 at intervals of five-eighths of a meter. We can
easily trace a number of features as they flow downward from one
section to the next; a curve connecting similar features would
represent a path taken by a sled. The complete attractor is seen to
be composed of groups of nearly parallel surfaces, generally
oriented more or less vertically; these are what appear as nearly
parallel curves on each cross section. The continual stretching,
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Figure 13. The cross section of Figure 12, viewed in an alternative
coordinate system. The inner and outer circles correspond to the upper and
lower boundaries of Figure 12. A line extending upward from the inner to
the outer circle, not shown, would correspond to both side boundaries.



compression, and twisting of the upper patterns to produce the
lower ones is evident. The bottom cross section is of necessity the
same as the top one, with the left and right halves interchanged. It
is also the cross section shown in Figure 12.

An attractor that consists of an infinite number of curves,
surfaces, or higher-dimensional manifolds—generalizations of
surfaces to multidimensional space—often occurring in parallel
sets, with a gap between any two members of the set, is called a
strange attractor. The name was introduced in the early 1970s by
David Ruelle and Floris Takens in a paper in which they proposed
that fluid turbulence is an example of what we now call chaos.
There have been some objections to the term, and the Russian
mathematicians Boris Chirikov and Felix Izrailev have even stated
that a strange attractor seems strange only to a stranger. Their point
is that these infinite complexes of manifolds are precisely what
anyone should have expected, notwithstanding the fact that rather
few  people did expect them. The name has nevertheless been too
picturesque for most scientists to resist, and it seems to be firmly
established. John Guckenheimer, one of the pioneers in the field,
has even titled one of his papers “A Strange, Strange Attractor.” 

A strange attractor, when it exists, is truly the heart of a chaotic
system. If a concrete system has been in existence for some time,
states other than those extremely close to the attractor might as well
not exist; they will never occur. For one special complicated chaotic
system—the global weather—the attractor is simply the climate,
that is, the set of weather patterns that have at least some chance
of occasionally occurring.

Still, there is something counterintuitive about having possible
states that are almost the same separated by impossible states, as
they are in any strange attractor. It is almost like stating that the
maximum temperature next Thursday, or a year from next
Thursday, can be 25 or 27 degrees but cannot possibly be 26, and,
if measured to the nearest tenth of a degree, can be 25.1 or 25.3, or
26.9 or 27.2, but cannot be 25.2, or 27.0 or 27.1. Such a
pronouncement is unlikely to come from a weather forecaster or
climatologist who is interested in continued employment.

The strange set of points in which a line can intersect a strange
attractor is a simple example of a Cantor set. The German
mathematician Georg Cantor, who pioneered the study of these and
many other sets, presented the mathematical world with a famous
example. Take a horizontal line segment, discard the middle third
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while retaining the end points, then discard the middle third of each
of the two resulting segments while again retaining the end points,
and continue the process to infinity. It might seem that in the limit
nothing would be left but end points, but this is not the case. The
point one-fourth of the way in from the left end of the original
segment, for example, will, after the first step, be one-fourth of the
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Figure 14. A three-dimensional perspective view of the attractor of the sled
model, as pictured by nine parallel cross sections. The lowest section is the
one appearing in Figures 12 and 13.



way in from the right end of the left segment, and, after each
succeeding step, will be one-fourth of the way in from one end or
the other of the segment in which it lies. Thus it will never be an
end point, yet it will never be discarded.

An essential feature of our model is revealed by the successive
panels in Figure 11. Since each set of points is mapped by the
Poincaré mapping into a portion of itself, it is ipso facto mapped
into a set occupying a smaller area in phase space. Sets of points
that occupy small areas to begin with are mapped into sets
occupying even smaller areas. If an initial set of points fills a small
circle, its successive maps, for a while at least, will fill a succession
of approximate ellipses. Since nearby points tend to be mapped to
points that are farther apart, i.e., since the system exhibits sensitive
dependence, the long axes of the ellipses must eventually, if not
immediately, become longer and longer. At the same time, the short
axes will become shorter so rapidly that the areas enclosed by the
ellipses will become smaller and smaller.

In Figure 15, which, like the pictures of the attractors, is a
diagram of a cross section of phase space, the points enclosed by
the circle near the upper left corner represent the initial positions
and speeds of a collection of sleds; all of them are slightly east of a
mogul and are moving a few degrees east of southward. The points
enclosed by the curves that resemble ellipses, and that lie
successively farther from the circle, represent the positions and
speeds of the same sleds after they have descended 1, 2, 3, 4, and
then 5 meters. The continual stretching of one axis and compression
of the other is apparent. The final “ellipse,” which is visibly
distorted, looks almost like a segment of a curve. Its long axis has
stretched about fivefold, but its short axis has been compressed
more than twentyfold, so that it encloses less than a fourth of the
area enclosed by the circle.

A two-variable system in which areas continue to decrease, or a
more general system in which multidimensional volumes in phase
space continue to decrease, whether or not there is stretching in one
or perhaps several directions, is called a dissipative system. Tangible
dissipative systems generally involve some physically damping
process, like friction. Most familiar physical systems are dissipative,
although some of them behave almost like systems without
dissipation, and can even be advantageously studied with
nondissipative mathematical models, provided that one is not
interested in finding their attractors. For example, a pendulum
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whose motion is maintained against the damping effects of friction
by the works of a clock is often treated as an unforced undamped
system, and hence as if it were nondissipative.

Although the successive panels in Figure 11 are clearly converging
toward a strange attractor, we may be left wondering whether this
behavior is only a quirk of the system that we have been studying.
A simple analysis will show that strange attractors are really rather
general features of chaotic dissipative systems as long as the
variables have restricted ranges. As we shall see later, a system that
is not dissipative may have no attractor at all.

For definiteness, consider a two-variable system. Recall first that,
in any chaotic system, two states that are almost alike will
eventually evolve into states that are no more alike than two states
selected at random from a long sequence. This implies that a small
local region in phase space, such as the one enclosed by the circle
in Figure 15, will, after some time, be deformed into a region that
extends most of the way across the attractor. If the system is
dissipative, the new region will have a smaller area than the original
one, and, being long, will have to be narrow, and will look like a
segment of a curve.

Next note that the original small region can be subdivided into
many very small regions. It follows as before that each very small
region will also, after enough time, be deformed into an elongated
region that nearly spans the attractor, and resembles a piece of a
curve. Recombining the pieces, we see that the original region will,
by this time, have been deformed into a region that resembles a
much longer segment of a curve. In the limit the segment will
become infinitely long. Since, in being continually deformed, the
region will resemble the attractor more and more closely, the
attractor must resemble a curve of infinite length.

Because the variables have limited ranges, the infinitely long
attractor, like the attractor pictured in Figure 12 or 13, must fit into
a restricted region. It can do this most readily by doubling back on
itself an infinite number of times. Its appearance will indeed be
“strange.”

It is evident that a straight line will intersect this attractor in
infinitely many points, but it would require a more detailed
investigation to show that these points must form a Cantor set—
one in which gaps separate every pair of points. Pending such an
investigation, one should not rule out the possibility of exceptions.
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Nevertheless, this brief analysis should suffice to liberate us from
Chirikov’s and Izrailev’s company of strangers.

It is time to return to the sliding board with its four variables.
Here the attractor is contained in a four-dimensional “box.” A cross
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Figure 15. The points of the circle represent initial cross-slope positions
and speeds of a collection of sleds. The elongated structures, in order of
increasing distance from the circle, represent the positions and speeds of
the same sleds at 1-meter intervals down the slope. Note that the figure
covers only a small portion of the area covered by Figure 12.



section of the box, say a section on which x is constant, will be three-
dimensional; it will be a conventional box, and will contain the
attractor of the Poincaré mapping.

In three dimensions, a strange attractor may be an infinite
complex of curves, but it may also be an infinite complex of
surfaces. To determine graphically which form an attractor
assumes, we can draw its projection on one face of the box. In the
former case we shall see curves, but in the latter the separate surfaces
will project on top of each other and completely fill an area on the
face. 

In the present instance, we can find the projection of the cross
section by simply repeating the computational procedure that we
used in producing the attractor in Figure 12, ignoring the fact that

A JOURNEY INTO CHAOS 53

Figure 16. A two-dimensional projection of a three-dimensional Poincaré
section of the attractor of the board model. The projection is obtained by
plotting values of V against y and disregarding U.



u actually varies on the attractor. We obtain Figure 16, which bears
a striking resemblance to Figure 12. We conclude that, as with the
sled model, the board model has an attractor whose cross section
consists of curves. If, in phase space, the direction in which LI varies
is assumed to be perpendicular to the page, we can produce the
three-dimensional cross section by pushing certain parts of
Figure 16 behind the page and pulling other parts forward. Where
two curves in the figure cross, one of them may have to be pushed
while the other is pulled. 

The long-term average rates of stretching or shrinking of the axes
of an infinitesimally small ellipsoid serve as distinguishing features
of individual dynamical systems. For both the sled and the board,
only the longest axis continues to stretch. In the board model, if
two axes had stretched, or even if the second axis had shrunk less
rapidly than the first one stretched, the attractor of the Poincaré
mapping would have been composed of surfaces instead of curves.
In systems with many variables, many axes can stretch. If the system
is chaotic, at least one axis must stretch, but, if the system is also
dissipative, some of the axes must shrink so rapidly that the volume
of the ellipsoid continually diminishes.

Broken Hearts

Unlike the sled model, the board model has a second attractor. A
board that starts moving very slowly near the low point of a pit, or
one that is given an initial upward push and just manages to enter
a pit, can become trapped, in which case it will eventually come to
rest at the low point. The state of stable equilibrium that it attains
is an attractor, represented in four-dimensional phase space by a
single point. The model therefore does not always behave
chaotically. It appears, in fact, that if a set of attractors is the heart
of a system, the board model has a broken heart.

In Figure 17 we see portions of a few of the dark and light
checkerboard squares that cover the ski slope. We also see a
specially constructed closed curve. A board starting from rest at any
point enclosed by the curve will eventually come to rest again at the
low point, indicated by the central dot. Boards starting from rest at
points outside the curve, but still within the realm of Figure 17, will
travel down the slope. On a more extensive picture of the slope, a
similar closed curve would surround each pit.
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When a system has more than one attractor, the points in phase
space that are attracted to a particular attractor form the basin of
attraction for that attractor. Each basin contains its attractor, but
consists mostly of points that represent transient states. Two
contiguous basins of attraction will be separated by a basin
boundary.

Since the basins in our model are fully four-dimensional,
visualizing one of them may prove awkward. Taking a cross section
of phase space  by fixing the value of one variable, as we did in
constructing Figure 16, still leaves us with three-dimensional
objects, which may also be difficult to depict. We can partially solve
our problem by taking a double cross section. That is, we fix the
values of two of the variables, which may be any two, and we allow
the other two to vary. The double cross sections of the basins will
be two-dimensional, and they will be separated by a one-
dimensional boundary—a curve.

For definiteness let U and V, the velocity components, be the
variables whose values we fix, and let both values be zero. Let the
values of X and Y equal the distances, vertically downward and
horizontally to the right, from a reference point on the section. Since
X and Y are also, by definition, equal to the southward and
eastward distances from a pit on the slope, the double cross section
of phase space must for all practical purposes be a picture of the
slope. The double cross section of the basin boundary is then
identical with the closed curve in Figure 17.

One might have supposed that this curve would be an ellipse or
some other smooth curve, but evidently it looks more like a leaf,
and possesses six distinct cusps. These may be readily accounted for.

Consider a board that starts from rest, at a point on the curve.
In phase space, the point that represents its state is on a basin
boundary; not being inside a basin, it will not approach an attractor.
Instead it will do the only remaining thing possible—it will stay on
the boundary. As long as the board continues to move, friction will
continue to deplete its energy, and, since it could never regain this
energy without continually moving down the slope, and
abandoning the boundary, it must ultimately come to rest again.

Within a dark checkerboard square and the light square just to
its north, there are four points at which a board can remain at rest.
One of these is the low point of a pit, where the equilibrium is stable.
The other three points are all on the closed curve shown in
Figure 17, and the equilibria are all unstable. Only one of these

A JOURNEY INTO CHAOS 55



points is also a cusp; it is the high point of a mogul and the
southernmost point of the “leaf”—call it the south point. The other
two points are located where the edge of the leaf crosses from a light
square to a dark one, and are shown by dots in Figure 17. They are
both saddle points—points where the slope is shaped like a
mountain pass. If you move along the edge of the leaf in either
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Figure 17. A section of the ski slope. The jagged curve separates the points
on the slope from which a board starting from rest will become trapped in
a pit from those from which it will continue down the slope. The central
dot indicates the lowest point in the pit, and the other two dots indicate
the saddle points.



direction from one of these points, you will move upward, but if
you move directly across the edge, you will move downward—into
the pit or down the slope.

A board placed at rest near but not exactly at the south point will
begin to move in the direction of steepest descent. If it is placed due
north of the south point it will slide directly over the pit and then
back again, eventually coming to rest at the low point. However,
because the south point lies on a ridge that is elongated in the north-
south direction, so that the slope falls off more rapidly to the west
and east, a board placed a short distance from the south point in
any direction other than almost due north will curve around and
slide off one side or the other. It will then plummet down the slope.
If a board is to move neither down the slope nor into the pit—that
is, if it is to be on the boundary—it must be placed almost but not
exactly due north of the south point; the closer to the south point
it is placed, the more nearly due north the displacement will have
to be. The allowable points thus form a cusp at the south point,
which is thereby accounted for.

The north point—the northernmost point of the boundary—is
the point from which a board starting from rest will slide due
southward, cross the pit, and just come to rest at the south point.
Boards starting near the north point will therefore come nearly to
rest, nearly at the south point, after which they will behave more
or less as if they had been given a slight shove from the south point.
Most of them will continue down the slope, but a few, starting
almost due south of the north point, will be trapped, and the shape
of the boundary near the north point will mimic that near the south
point—hence the northern cusp.

Boards starting from rest on either side of the leaf will generally
come to rest at the closer saddle point, but each side evidently has
a short central segment from which a board will cross over to the
opposite saddle point. These segments must be separated from the
remaining portions of the sides by points from which a board will
not reach either saddle point, and will therefore do the only thing
that is left—come to rest at the south point. Again, the boundary
close to any of these points will mimic the boundary near the south
point; thus the cusps at these points are explained.

Recall now that the complete basins of attraction are four-
dimensional, while the separating boundary is a three-dimensional
manifold embedded in the four-dimensional phase space. States
confined to this manifold effectively comprise a new, three-variable
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dynamical system, embedded in the larger system. Dynamical
systems of this sort can possess their own attractors, as well as their
own basins and basin boundaries if they have more than one
attractor. In the present case, the new system has two attractors—
states of rest at the saddle points. Their basins are three-dimensional
manifolds whose double cross sections are the smooth segments of
the sides of the leaf, while their basin boundary is a two-dimensional
manifold whose double cross section consists of the tips of the six
cusps. In a simple rather than a double cross section the cusps would
appear as knife edges. To see their complete structure would require
four-dimensional vision.

Since the new system has its own basin boundary, states confined
to this boundary form a still smaller dynamical system, embedded
in the embedded system. It has a single attractor—a state of rest at
the south point—and here the embedding process ends.

Basin boundaries of more general dynamical systems can have
very complicated structures, and even in the present example they
may be more complicated than they appear to be. As boundaries or
as new dynamical systems, they constitute another aspect of
dynamical-systems theory that has appealed to many scientists.

Systems can have multiple attractors without being chaotic. In
both the board model and the sled model, if the height of the moguls
above the neighboring pits is considerably reduced, there will be
two attractors, each corresponding to a periodically wiggling path,
one progressing southeastward and one southwestward. Each
attractor will consist of a single curve, and each will appear as a
single point in a Poincaré cross-section.

Attractors are examples of invariant sets—sets that will consist
of precisely the same points if each point is replaced by the point to
which it is mapped, When there is more than one attractor, each
basin of attraction is an invariant set, as is the basin boundary,
sometimes called a separatrix. There is still another invariant set,
which connects the attractors when there are more than one, and
which by analogy ought to be called a “connectrix,” but generally,
together with the attractors that it connects, is called the attracting
set. Despite its name, the attracting set should not be confused with
the set of attractors, which is sometimes only a portion of it. To
construct an attracting set we can proceed as we did in constructing
Figure 11; we start with a large collection of points, supposedly
representing an infinite collection, and determine what happens
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when these points are continually replaced by their images. The
limiting set will be the attracting set.

The attractor being approached in Figure 11 is therefore the
attracting set also. Figure 18 has been constructed similarly, except
that the moguls rise 50 instead of 100 centimeters above the pits,
and the sleds have been allowed to descend 10 meters instead of 5
between successive panels. By  30 meters, most of the points have
moved to one or the other of two small dark patches. The original
five thousand points were selected randomly, and it is probable that
if the mapping were to be continued indefinitely, every one of them

A JOURNEY INTO CHAOS 59

Figure 18. The upper left panel contains randomly chosen points
representing the cross-slope positions and speeds of five-thousand sleds.
The height of a mogul above a pit to its west or east has been reduced to
50 centimeters. The lower left and then the right-hand panels represent the
positions of the same sleds after they have traveled 10 and then 20 and 30
meters down the slope.



would end up at one or the other of two points—the attractors—
one in each dark patch. However, if we could have started with
every point in the rectangle, there would at each iteration have been
some points remaining on the infinitely long, infinitely twisted
thread—the remainder of the attracting set—that connects the two
attractors. 

Chaos of Another Species

Let us take another look at that paradigm for well-behaved
dynamical systems—the pendulum in the clock. Friction is
removing energy, quite slowly but quite surely, and the clockwork
is replacing the lost energy, perhaps by giving the pendulum a slight
tug at the extremity of each swing. If we plot the speed of the bob
against its displacement from the vertical, we obtain a simple closed
loop resembling an ellipse—a phase-space representation of all of
the states that the pendulum assumes during its swing.

As we saw earlier, the loop also represents the attractor. If we
give the pendulum a push, it will respond with a wider swing, but
within perhaps a minute it will be swinging as before; the new states
will have been attracted to the original loop.

Now imagine that, while the pendulum is swinging normally, we
can somehow turn off the force of friction. Let us simultaneously
remove the clockwork, which will no longer be needed. The
pendulum will then continue to swing almost as if nothing had
happened, and its state will trace out nearly the same loop. It is
therefore not surprising that an unforced, undamped pendulum has
often served as a model of what takes place in a well-behaved clock.
Nevertheless, as dynamical systems the model and the real-world
pendulum do not have much in common. For the frictionless
pendulum, the closed loop is not an attractor; states that are not
already on the loop are never attracted toward it. If we give the
pendulum a push, the resulting wider swings will persist, and the
loop will be replaced by a larger loop, until such time as we disturb
the pendulum again. It will be useless to wait for transient effects
to die out; no states are transient. The collection of points in phase
space occupying the area between any two concentric loops will
continue to occupy this area, and hence will never be squeezed into
a smaller area.

Systems in which volumes in phase space, or areas if the system
has only two variables, neither decrease nor increase as time
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progresses are called volume-preserving. Systems in which some
quantity, such as total energy, retains a fixed value as time advances
are called conservative. Conservatism and volume preservation
frequently go hand in hand, and systems possessing both properties
are often called Hamiltonian, although the systems that conform to
the equations formulated by the Irish mathematician William
Rowan Hamilton are somewhat more spe cialized. Models of
familiar real physical systems that simply disregard all dissipative
processes and all energy sources are generally Hamiltonian.
Probably the most familiar real-world, or real-universe,
Hamiltonian system consists of the sun with its planets orbiting
about it. As with the frictionless pendulum, widespread sets of
points in phase space will not converge upon smaller sets, and there
will be no attractors.

Hamiltonian systems may be chaotic; note that the qualitative
reasoning indicating that a pinball machine should behave
chaotically does not invoke any dissipation. Chaotic systems
therefore do not always possess strange attractors, although most
of the generally encountered compact dissipative chaotic systems
do have them. Despite the absence of these intriguing features, many
scientists have chosen Hamiltonian systems as the ones that they
prefer to study.

To discover why this should be so, let us convert the board on
the ski slope into a Hamiltonian system. We can do this,
mathematically, by removing the friction, and also removing the
general southward drop in elevation, which plays a similar role to
the clockwork that drives the pendulum. The moguls and pits will
then project from a horizontal surface. We may even suppose that
we have changed the old system to the new one suddenly, after the
board has followed its path long enough to shed any transient
effects. We may then be tempted to conclude that, if we make no
further changes, our action will have an inconsequential effect on
the ensuing motion, just as with the pendulum, but a visit to the
computer will show us that this is not the case at all.

The energy of a board consists of kinetic energy, represented by
its speed, and potential energy, represented by its elevation above
the bottom of a pit, and it is the sum of these two forms of energy
that remains fixed as time advances. The total energy is therefore a
constant of the model, and one could logically think of the system
as consisting of a family of dynamical systems—one system for each
value of the energy. Let us consider in detail the possible behavior

A JOURNEY INTO CHAOS 61



of a collection of boards, all having the same total energy, and
hence, in the present sense, all belonging to the same system. If the
boards have very little energy, they will be trapped in light-colored
squares of the checkerboard—the ones displayed in Figure 6—that
surround the pits. If they have somewhat more energy, they can
escape through corners to other light squares, but cannot penetrate
far into the dark squares. If they have still more energy, they can go
anywhere. For definiteness let us examine an intermediate  case, in
which the energy is nine-tenths of the minimum amount needed to
reach the top of a mogul.

In working with the dissipative ski-slope model, we first detected
chaos by looking at the paths of seven boards that started with
rather similar conditions, and noting that they rapidly diverged. We
may study the new model similarly. Figure 19 shows what can
happen; here the starting points are 1 centimeter apart, and appear
in the figure to be all the same. Before 50 meters the paths have
visibly diverged, confirming the presence of chaos, but thereafter
they proceed so erratically that when they are displayed together it
is not easy to see which ending follows from which beginning. Two
of the boards even turn around and  slide back across the starting
line—something that could not possibly happen in the dissipative
model. Even though the new system is conservative, in that it
preserves the total energy of each board, there is nothing in it to
preserve the original southward progression, as there was in the
dissipative model.

There are various ways to display the long-term properties of
these and other paths, but it is particularly simple to do just as we
did with the dissipative model. We choose an initial point, and then
plot the cross-slope speed against the cross-slope position , this time
whenever the board crosses a west-east line through a pit and a
mogul, i.e., whenever x equals 0. For the dissipative system the
procedure produced a cross section of a strange attractor; we have
already seen that for any Hamiltonian system it must do something
else, since there will not be an attractor.

Figure 20 shows what happens when the initial point is the start
of one of the paths in Figure 19. Not surprisingly, the points appear
to fill an area, sometimes called a chaotic sea, instead of lying on
separate curves with gaps between them. What may surprise us is
the four prominent holes. It seems rather unlikely that such large
areas would be missed if they were to be eventually occupied.
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If it is true that the sequences of points—representations of states
at a succession of key locations along a path on the slope—will
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Figure 19. The paths of seven boards starting with identical total energies
and identical velocities from points spaced at 1-centimeter intervals, on the
Hamiltonian ski “slope” with no friction and no continual southward drop.



never enter a hole, it must be equally true that other sequences
beginning in a hole will never enter the sea. This follows, because
a possible path remains a possible path if the direction of motion
along it is reversed—note what happens near the southwest corner
of Figure 19—so that a possible sequence of points remains a
possible sequence if the order is reversed. Let us therefore repeat
our procedure a number of times, choosing in each instance an
initial state in one of the holes.

We obtain the composite picture in Figure 21, containing four
patches that would fit into the holes in Figure 20. Each new
sequence produces a closed loop, or else a chain of small loops
surrounding a larger loop. The points of a sequence do not progress
continuously along a loop; they jump from one location to another,

64 A JOURNEY INTO CHAOS

Figure 20. A Poincaré section of a chaotic sea produced by the Hamiltonian
ski-slope model, when the total energy is nine-tenths of that needed to reach
the top of a mogul.



generally in jumps of more or less equal length, and, having
completed a circuit, they proceed to fill in the gaps.

Figure 22 is a blow-up of the uppermost patch, with additional
horizontal stretching. The loops shown have been produced by six
sequences of points. One sequence produces the chain of seven loops
that was barely visible before, while another produces the seven
smaller loops inside them. Outside the outermost large loop shown
is another chain of small loops—this time nineteen of them. They
have been produced by a single sequence of points, which visits all
nineteen loops before returning to the first. The boundary of the
chaotic sea, not shown, lies very shortly beyond these loops, but
before it is reached the pattern that we have seen—more large loops
surrounding the chains of small loops and more chains of small
loops surrounding the large loops—repeats itself an infinite number
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Figure 21. Some of the periodic islands and a periodic shoreline of the
chaotic sea of Figure 20.



of times. There are also chains of very small loops surrounding each
small loop. This sort of structure, which  can be as fascinating to
study as that of a strange attractor, appears rather generally in
Hamiltonian systems, with individual variations. Note that in the
larger patches in Figure 21 the first chains consist of nine loops
instead of seven.

Suitably chosen initial states will produce single points at the
centers of concentric loops. These represent periodic paths, while
the loops themselves represent almost-periodic paths. The large
loop in Figure 21 that would surround the sea was not added for
aesthetic purposes; it corresponds to another almost-periodic path,
along which a board will shuttle across a pit between the sides of
two moguls. Dissipative systems are often entirely chaotic, with
strange attractors, or entirely periodic, like the pendulum with its
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Figure 22. Detail of the uppermost periodic island in Figure 21. Note the
additional horizontal stretching.



simple attractor. In Hamiltonian sys terns, even for a single value
of total energy, it is common for some initial states to lead to almost-
periodic variations while others lead to chaos.

For other choices of total energy, periodic paths like those
corresponding to centers of loops can be unstable, in which case
initial states chosen close to them will lead to chaotic paths, and
prominent holes like those in Figure 20 will not appear. Still other
choices of total energy can produce still more holes; this is especially
likely when the energy is just about sufficient for a board to reach
the top of a mogul, and the gentle slope that it encounters when it
is hardly moving tends to favor regularity. Figure 23 is constructed
in the same manner as Figure 20, but now the total energy is 99
percent of that needed to cross a mogul. The detectable holes are
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Figure 23. A Poincaré section of a chaotic sea like the one in Figure 20,
when the total energy is 99 percent of that needed to reach the top of a
mogul.



far more abundant, and the big ones have become bigger, although
the upper and lower ones seem to have disappeared. 

In and Out of Chaos

At a symposium that I attended some time ago, when chaos was
already drawing considerable attention but its ubiquity was yet to
be recognized, a session chair invited the audience to suggest some
timely topics requiring additional study. Someone volunteered
“routes to chaos.” I found myself in disagreement, not with the
topic, which was undeniably important, but with what it had been
called. I sensed an implication that, in order to account for chaos,
we would need to know how it could arise out of some more
“normal” behavior—regular behavior—if some feature of a family
of dynamical systems were to be progressively altered. I felt that it
was inappropriate to regard regular behavior as the more
fundamental type, and that it would be just as logical to maintain
that in order to understand regularity we would need to know how
it could evolve from chaos. I suggested that we might equally well
call the topic “routes from chaos.”

It is true that in many families of forced dissipative dynamical
systems which possess only states of rest when the forcing is absent,
regular behavior will be the first to develop when the forcing is
raised step by step to higher values, while chaos will not appear
until later, if it appears at all. Yet in some real systems, such as the
global circulation of the atmosphere, the forcing is and always has
been strong; there is no reason to believe that the weather once
behaved like clockwork before it became chaotic, and there is no
need to postulate the existence of a route from some form of
regularity to the chaos that now prevails.

Nevertheless, there is no question but that the chains of events
through which chaos can develop out of regularity, or regularity
out of chaos, are essential aspects of families of dynamical systems.
A common response to a slight alteration in some constant is a slight
modification of the attractor and slight changes in other properties.
Sometimes, however, a nearly imperceptible change in a constant
will produce a qualitative change in the system's behavior: from
steady to periodic, from steady or periodic to almost periodic, or
from steady, periodic, or almost periodic to chaotic. Even chaos can
change abruptly to more complicated chaos, and, of course, each
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of these changes can proceed in the opposite direction. Such changes
are called bifurcations.

Bifurcations can occur in various ways. A state of stable
equilibrium may be rendered unstable when some constant is
increased. If originally the state was an attractor, it will cease to be
one; small disturbances will amplify and produce a new mode of
behavior. Changes from instability to stability are equally possible.
A hypothetical frictionless top—a Hamiltonian system, incidentally
—that is spun slowly will be in equilibrium if it is standing vertically,
but it will nevertheless soon fall over because the equilibrium is
unstable, while a top that is spun rapidly will continue to stand, and
will merely wobble if it is slightly disturbed.

Alternatively, a mode of behavior may cease to exist altogether.
A board that has come to rest at the low point of a pit on the ski
slope illustrates this type of bifurcation. If the height of the moguls
above the neighboring pits—call it h—is reduced while the other
constants remain the same, the high points on the moguls and the
low points in the pits will disappear, evidently when h falls just
below 80 centimeters, and there will no longer be positions of
equilibrium, stable or unstable. A bifurcation where a mode of
behavior suddenly goes out of existence, rather than simply
becoming unstable, is called a saddle-node bifurcation.

To examine sequences of bifurcations that can occur when a
constant is varied over a considerable range, let us turn again to the
board on the slope, this time when it is moving too rapidly to
become trapped in a pit, and see how its behavior changes as h
varies. Figures 24 and 25 are bifurcation diagrams. The vertical
coordinate is h, expressed in centimeters, while the horizontal
coordinate shows the temporary maxima of V, that is, the highest
eastward or lowest westward speeds that the board acquires on its
successive oscillations—successive excursions from a low value to
a high value and back to a low one. Note that the constant being
altered is not the driving force; it simply modifies a downslope
progression that would occur in any case.

Where the figures show smooth curves the behavior is periodic.
Each oscillation is just like the last one, or some previous one, so
that only one or only a few distinct maxima of V can correspond
to any chosen value of h. Where a region appears shaded, such as
near the top of either figure, there is chaos, and on successive
oscillations V can reach a peak at virtually any value within an
extensive range.
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Figure 24 was constructed by varying h in very small increments
from zero, when the moguls and pits are absent, to 120, when they
are a bit larger than in our original example. Figure 25 was
produced similarly, except that h was successively decreased from
120 to zero. A glance at either figure reveals extensive ranges of h
within which the behavior of the board undergoes no qualitative
and often only minor quantitative changes, but there are a few
values at which the behavior changes abruptly; these are the
bifurcation points. By and large the two figures are the same, but
there is a notable discrepancy in the range from 22 to 44
centimeters. This and other features of the figures are readily
accounted for, once observed, although numerical computations
are needed to determine where, and in some cases whether, they
will occur.

Turn first to the very center of Figure 24. The curves on either
side that are indistinguishable from slightly tilted straight lines, and
are also present in Figure 25, represent different but symmetrically
related periodic paths; on one of them the board wiggles
southwestward between the moguls while on the other it wobbles
southeastward. When h reaches 73, the periodic behavior becomes
unstable. The board will overshoot, only to undershoot on the next
wobble, until a new stable pattern of behavior becomes established,
with alternate weak and strong oscillations. Even though the
oscillations may retain their original period, the interval between
repetitions will have doubled. The system has undergone a period-
doubling bifurcation.

As h is increased still more, the new form of oscillation becomes
unstable, and again the period doubles; this is apparent when h
reaches 88. Although the present figure lacks sufficient resolution
to show what happens next, the period actually continues to double
infinitely many times, after successively smaller increments of h,
until, at the culmination point, chaos sets in.

Sequences of period-doubling bifurcations, ending in chaos, are
ubiquitous features of dynamical systems. They are not confined to
mathematical models, and have been accidentally encountered or
intentionally sought in a wide variety of laboratory experiments. A
would-be equestrian on a trotting horse, who has just learned to
post, rising up from the saddle on one step and settling back on the
next, instead of bouncing up and down on each step, will be
thankful for period doubling. In the present instance, but not in
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general, the chaos that supersedes the period doubling soon gives
way to another form of periodic behavior, at 91 centimeters.

Next, turn to the base of Figure 24, where the only indicated
maximum value of V, the cross-slope speed, is zero; this implies that
the board is sliding due southward, along a line passing through the
centers of the moguls and the pits. Near a mogul the board is riding
a ridge, and, if it becomes displaced slightly westward or eastward,
it will tend to slide off. Before the board can slide very far it will be
nearing the next pit, so that it will slide back again, and, aided by
the damping effect of friction, it will regain its straight path.
However, it will necessarily move more slowly over the moguls than
through the pits, and will therefore spend more time near the
moguls than near the pits, and the difference in speeds will become
greater as the moguls are made higher and the pits are made deeper.
When h reaches 33, the board will stay near the moguls too long
for their destabilizing effect to be offset by the stabilizing effect of
friction, and the straight-line path will become unstable. The board
must do something new, and evidently, as seen in the figure, it will
undergo a three-phase oscillation, with no net progression toward
the west or east.

It appears that this oscillation also undergoes period doubling,
barely detectable in the figure, and then chaos sets in. The board
continues to oscillate irregularly back and forth across the north-
south line, but when h reaches 44, it will swing so wide on one
oscillation that it will fail to return, becoming trapped in a south
westward or southeastward route between the moguls. Chaotic
behavior will no longer exist, except as transient behavior; it will
have bifurcated to periodicity.

Turning to Figure 25, we find that the periodic oscillation at 44
centimeters is stable, and persists as h is lowered. Not until h reaches
22 do the oscillations disappear, not because they become unstable,
but because the board can no longer move rapidly enough eastward
or westward when leaving a pit to catch the next pit to the southeast
or southwest; i.e., there is a saddle-node bifurcation. There is thus
a considerable range of h for which the corresponding dynamical
system has two possible modes of behavior, with two attractors—
three, if we distinguish between southwestward and southeastward
progression—each with its own basin of attraction.

Returning to 92 centimeters, we see that the three-phase
oscillation is stable there also, so that, if h is decreased, the chaos
that appeared when h was increased will not redevelop. Again, in
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a narrow range of h, the dynamical system has distinct attractors
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Figure 24. The possible maximum values, indicated by the scale at the base,
that V, the eastward speed of a board, can assume on individual oscillations
as the board slides down the slope, when the height h of the moguls above
the adjacent pits assumes the value indicated by the scale at the left. The
values of V have been found by increasing h in small steps.



with distinct basins. If instead h is increased, period doubling occurs
again, and the chaos that soon sets in tends to persist.

Actually even this chaotic range is filled with periodic
“windows.” They are not well resolved by the figures, and the

Figure 25. The same as Figure 24, except that h has been decreased in small
steps.
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narrower ones were in   all likelihood jumped over as h was
increased or decreased in steps, but two of them are quite evident
in Figure 26, produced by increasing h in smaller steps, and
stretching the vertical scale fifteenfold. Period doubling is detectable
in the vertical segments that traverse the upper window, between
105 and 106 centimeters. The segment farthest to the left   has been

Figure 26. A vertical enlargement of a horizontal strip in the upper portion
of Figure 24, revealing two periodic windows not originally resolved.
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stretched an additional ten times vertically and fifty times
horizontally in Figure 27, and three successive doublings are
resolved. Passing in and out of chaos again and again is yet another
ubiquitous feature of families of dynamical systems. 
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Figure 27. A further horizontal and vertical enlargement of a narrow
section of the upper periodic window in Figure 26, revealing three
successive doublings in a period-doubling bifurcation sequence.



CHAPTER 3
Our Chaotic Weather

Prediction: A Tale of Two Fluids

AN OLD JOKE about the supposedly inept weather forecaster
never ceases making the rounds in one form or another. I recall one
version that appeared shortly after Harry Truman, against all
predictions except his own, had defeated Thomas Dewey for the
presidency of the United States in 1948. It was a cartoon showing
an applicant at a Weather Bureau employment office, and the
interviewer was saying to him, “You worked for a public-opinion
poll? I think we could use you.”

Joking aside, however, the weather-forecasting community and
the general public are both acutely aware that official forecasts,
including those for later in the same day, are sometimes just plain
wrong. To the often-heard question, “Why can’t we make better
weather forecasts?” I have been tempted to reply, “Well, why
should we be able to make any forecasts at all?”

Why indeed should we expect to see the future, or at least a little
part of it? First of all, we may believe that there is a set of physical
laws governing the changes in the weather from one moment to the
next, and that the very existence of these laws, whether or not we
know them, ought to make prediction possible. Our faith may be
fortified by the realization that other natural phenomena, governed
by somewhat similar laws, have been regularly predicted with
considerable success; consider the tides in the ocean, which we can
predict rather accurately a few days ahead and almost as accurately
many years ahead. Finally, our weather forecasts are correct far
more often than they would be if they were pure guesses.

I must admit that my first encounter with the question of tidal
prediction left me with an uneasy feeling. Apparently I had always



looked at announcements of the times of coming high and low tides
as statements of fact, as firmly established as the times of yesterday’s
tides, and not to be doubted. Yet it is apparent that they are
predictions, and so, for that matter, are such “facts” as the times
of sunrise and sunset that appear in almanacs. That the latter times
are simply predictions with a high probability of being almost
exactly right, rather than facts, becomes evident when we realize
that an unforeseen cosmic catastrophe—perhaps a collision with an
asteroid—could render them completely wrong. Even without a
catastrophe they can be slightly in error; increases or decreases in
the strength of the globe-encircling westerly-wind currents, which
occur at irregular intervals, are compensated by small but
measurable decreases or increases in the speed of rotation of the
underlying earth, and the times of coming sunrises and sunsets may
be delayed or advanced by a millisecond or so.

Returning to the ocean, let us for purposes of comparison with
the atmosphere define the height of the tide as the height of the
ocean surface above some fixed reference level, after individual
waves have been averaged out. Let us compare the predictability of
the tides, so defined, with the predictability of the temperature of
the air—possibly the weather element whose prediction interests us
most, although sometimes we may be more concerned with whether
or not it is going to rain.

Both the atmosphere and the ocean are large fluid masses, and
each envelops all or most of the earth. They obey rather similar sets
of physical laws. They both possess fields of motion that tend to be
damped or attenuated by internal processes, and both fields of
motion are driven, at least indirectly, by periodically varying
external influences. In short, each is a very complicated forced
dissipative dynamical system. Perhaps it would be more appropriate
to call them two components of a larger dynamical system, since
each exerts a considerable influence on the other at the surface
where they come into contact. The winds, which vary with the state
of the system, produce most of the ocean’s waves, and help to drive
the great currents like the Gulf Stream. Evaporation from the ocean,
which also varies with the state of the system, supplies the
atmosphere with most of the moisture that subsequently condenses
and still later falls as rain or snow. Why, with so many similarities,
should we have had so much more success in tidal than in weather
prediction? Are oceanographers more capable than meteorologists?
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As a meteorologist whose close friends include a number of
oceanographers, I would dispute any such hypothesis.

Take a look at the periodic external driving forces—primarily the
heat emitted by the sun and the gravitational pull of the sun and
the moon. The atmosphere and the ocean will respond to these
forces by undergoing periodic oscillations, but, as with many
dynamical systems, these oscillations will be accompanied by
additional irregular behavior. Near the coast, the regular response
of the ocean includes most of the tidal oscillations, while the
irregular response includes the occasional anomalously high tides
produced by unanticipated strong winds. The regular response of
the atmosphere includes the normal excursions of temperature
between summer and winter, or day and night, while the irregular
response includes extended hot spells and cold spells, as well as the
sudden temperature changes that often accompany the progression
of large storms across the oceans and continents,

It appears, then, that in attempting to forecast the tides we are
for the most part trying to predict the highly predictable regular
response. We may also wish to predict the smaller irregular
response, but even when we fail to do so we have usually made a
fairly good forecast. In forecasting the weather, or, for definiteness,
the temperature, we usually take the attitude that the regular
response is already known—we know in advance that summer will
be warmer than winter—and we regard our problem as that of
predicting those things that we do not already know simply by
virtue of knowing the climate. In short, when we compare tidal
forecasting and weather forecasting, we are comparing prediction
of predictable regularities and some lesser irregularities with
prediction of irregularities alone. If oceanographers are smarter
than meteorologists, it is in knowing enough to pick a readily
solvable problem. I should hasten to add that most oceanographers
are not tidal forecasters anyway, nor, for that matter, are most
meteorologists weather forecasters. In most respects the oceans
present just as many challenges as the atmosphere.

In the following pages I shall introduce the atmosphere as an
example of an intricate dynamical system, and present the case for
believing that its irregularities are manifestations of chaos. After a
brief overview I shall enumerate various procedures through which
the presence of chaos might be confirmed. Finally, I shall examine
some of the consequences of the atmosphere’s chaotic behavior. 
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Meteorology: Two Tales of One Fluid

Chaotic dynamical systems come in many sizes. Our mathematical
model of the sled on the ski slope has only three variables, yet it
serves to illustrate many of the basic properties of chaos. It is by no
means the simplest system with this capability; that honor, together
with the honor of being the most intensively studied of all chaotic
dynamical systems, goes to one with only one variable, which varies
in accordance with a single quadratic difference equation—the kind
of equation that defines a mapping.

The system is so simple that with a pocket calculator you can
convince yourself in a few minutes that it can behave chaotically.
Choose a fixed number; call it c. Choose a number between -c and
c as the leading member of a sequence, and construct the remainder
of the sequence by always squaring the most recent number and
then subtracting c to obtain the next number. Some but not all
choices of c between 1.4 and 2.0 will furnish you with sequences
that lack periodicity. With one of these choices for c you can also
observe sensitive dependence directly, by repeating your
calculations with a slightly different initial number. In a slightly
altered form this system is known as the logistic equation, and it
has been used in studies of population dynamics.

At the other extreme are systems with a large or even infinite
number of variables. Among these we may expect to find the one
whose states are simply the global weather patterns. Let us call it
the global weather system.

Meteorologists have kept pace fairly well with their
contemporaries in the art of creating esoteric terminology to
describe esoteric concepts. They talk freely about potential pseudo-
equivalent temperature, moist semigeostrophy, and dynamic
anticyclogenesis, and they have even devised triple acronyms:
GOCC stands for GATE Operations Control Center, GATE in turn
stands for GARP Atlantic Tropical Experiment, and GARP is the
Global Atmospheric Research Program, a multinational effort
conceived in the 1960s and flourishing in the seventies and eighties.
Nevertheless, the variables of the global weather system include no
mysterious quantities. They are the familiar weather elements that
we have always known—the ones that make us acutely aware of
their presence, and whose values we can often estimate with fair
accuracy, whenever we step outdoors. They are the temperature,
the wind, the humidity, and some representation of the clouds that

80 OUR CHAOTIC WEATHER



may be enveloping us and the rain or snow that may be falling on
us. To these we must add pressure—a familiar item in many weather
reports even though it bears less directly on our comfort. We can
easily detect the rise in pressure that we experience as we drive down
a long steep hill, but most of us would find it difficult, on waking
in the morning, to say whether the pressure was higher or lower
than it had been when we fell asleep. The humidity can be expressed
as relative humidity, wet-bulb temperature, dew point, or water-
vapor concentration; any one of these, in combination with
temperature and pressure, determines the others.

If we lived on a planet whose atmosphere consisted of a pure gas
of uniform composition, we would have only temperature, wind,
and pressure to worry about. By the wind I mean the three-
dimensional wind, with the strength of an updraft or downdraft
appearing as one velocity component. Our own atmosphere, not to
mention some other atmospheres in our solar system, is more
complicated, in that one of its most important constituents, in our
case water vapor, occurs in highly variable concentrations,
ordinarily comprising more than two percent of the mass of the
atmosphere in the humid tropics, but less than one-tenth of one
percent in the colder air at high latitudes or high elevations. Water
also occurs as suspended or falling liquid drops and solid particles,
so that in reality the atmosphere is not wholly a gas. The variables
of the system must therefore include the concentrations of water
vapor, which we perceive as humidity, and liquid and solid water,
which we observe as denseness of clouds and intensity of rain or
snow. It should probably also include the concentrations of such
pollutants as dust and smoke.

We could make a case for adding still more quantities, but what
makes the atmosphere so complicated as a dynamical system is not
so much the proliferation of physical variables as the fact that their
values vary from one point to another and not merely from one time
to another. To know a single state of the global weather system, we
must therefore know the value of each variable at every point. Since
there are plainly an infinite number of points in the atmosphere, the
system would seem to have an infinite number of variables.

Actually the situation is not quite so bad. On a fine enough spatial
scale the weather elements vary rather smoothly, and if two states
are nearly alike at each of a sufficiently dense network of well-
spaced points, they will be nearly alike at the intervening locations.
It is therefore legitimate to treat the atmosphere as a system with a
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finite number of variables, and to conclude that it is compact. What
is not so legitimate is to treat it as a system with a small finite
number of variables; the number is truly enormous.

How ought we to approach a system of such complexity? Let me
present two answers that we might have received at the midpoint
of the twentieth century, before the computer had come along and
changed everything. Each point of view had its ardent supporters.

Consider first the methods of a subdiscipline that has been known
for a century or so as dynamic meteorology, although it might more
accurately be called meteorological dynamics. To dynamic
meteorologists, the state of the atmosphere consists of the spatial
distributions of the temperature, wind, and other weather elements.
The dynamicist starts out with the physical laws that govern the
behavior of the atmosphere, and usually expresses these laws as
mathematical equations. Among them is one of Isaac Newton’s laws
of motion, familiar to many as “Force equals mass times
acceleration,” but rearranged for meteorological use as
“Acceleration equals force divided by mass,” or “Rate of change of
velocity equals force per mass.” With a knowledge of the state of
the atmosphere one can in principle evaluate the force at any point,
and thus learn how the velocity of the air passing that point will
change as time progresses. The laws of thermodynamics will tell us
how the temperature will behave, and other laws will allow us to
handle the remaining variables. In short, there is a dynamical basis
for forecasting the weather as it evolves, and more generally for
treating the atmosphere as a dynamical system.

The synoptic meteorologist would tell a far different tale,
regarding the dynamicist’s description as grossly incomplete and
perhaps irrelevant. Synoptic meteorology is the study of the
characteristic structures into which states of the atmosphere can be
analyzed. These include meandering jet streams that may encircle
the globe in middle latitudes; vortices of subcontinental size, also
known as high- and low-pressure systems or simply highs and lows,
that travel across the oceans and continents in middle and higher
latitudes and bring many of our day-to-day weather changes;
smaller and more intense vortices at lower latitudes, known as
hurricanes, typhoons, or cyclones according to the ocean over
which they originate; towering cumulonimbus clouds with their
accompanying thunderstorms and occasional tornados; and small 
innocuous clouds scattered through an otherwise clear sky. Typical
horizontal extents of the structures mentioned are respectively 10,
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000, 1, 000, 100, 10, and 1 kilometers, or a bit more; the list is only
a sample. Structures of each type can be counted on to appear again
and again, but each individual structure will have its own
peculiarities, just as the human race continues, but different people
inevitably have their distinguishing personalities. The synoptician’s
principal tool for identifying and studying the larger structures is
the weather map.

The practicing forecaster in precomputer days was effectively an
applied synoptic meteorologist. Individual forecasters would learn
through their own experience and that of their predecessors how
each structure typically develops and moves. They would find that
certain peculiarities in a structure signal certain unusual
happenings, and they would recognize the telltale signs for the
appearance of new structures and the demise of older ones. They
would discover, for example, that a high and a low, seemingly
heading for the same spot, will retain their identities and simply
deflect each other, rather than annihilating each other. In preparing
a forecast, a forecaster would most likely construct a prognostic
chart, which would be a personal estimate of what the next day’s
weather map would look like, and he or she would use the chart to
infer the coming local weather conditions.

Effectively the forecasting rules are to the synoptician what the
physical laws are to the dynamicist. If they could be formulated in
such a way as to give a unique prediction in any conceivable
situation, they would define an alternative mathematical model,
which would constitute another dynamical system.

Why, aside from tradition, didn't some midcentury practicing
forecasters opt for the methods of dynamic meteorology? The most
likely reason is a practical one; no acceptable weather forecast based
primarily on the dynamic equations had ever been produced.

What, then, did dynamic meteorologists have to show for their
many years of efforts? As scientists rather than technicians, their
interest was directed toward a true understanding of the atmosphere
in terms of the physical laws that govern it. They would have been
happy to discover why a particular weather pattern with its
inevitable peculiarities would evolve as it did, but they were far
more interested in why weather patterns vary at all from day to day,
or why they are inevitably filled with the large-scale vortices that
synoptic meteorologists take for granted. They would seek to learn
what processes would allow these vortices to develop and persist
for a while, in the face of the ubiquitous dissipative processes that
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by themselves would always act to destroy them. By midcentury,
they had found many of the answers.

I am not trying to imply that synoptic meteorologists are
technicians rather than scientists, nor, for that matter, that
technicians are somehow inferior to scientists. It is seldom that a
single approach to a problem proves to be the only fruitful one.
Synopticians have a keen scientific interest in documenting the
properties of the structures that they observe, and in establishing
regular relationships between neighboring structures. They are not
averse to examining their findings for consistency with the physical
laws, but their final conclusions are based more on careful analyses
of extensive sequences of weather patterns.

Neither do I wish to suggest that someone who knows all about
both dynamic and synoptic meteorology knows all about
meteorology. There are numerous other subdisciplines, each with
its own group of experts. To name just a couple, one is cloud
physics, where a fundamental concept is the distribution of the sizes
of the drops in a cloud, and where one studies the processes by
which tiny suspended droplets and ice crystals become converted
into larger drops and particles, which will then fall out as rain or
snow. Another is instrumentation, where one investigates the strong
and weak points of the various instruments via which we have
discovered much of what we believe we know about the weather,
and where one also designs new instruments in the hopes of
gathering hitherto inaccessible information.

Dynamic and synoptic meteorology are not wholly divorced.
There have always been some meteorologists who have been
outstanding in both subdisciplines. In strong academic meteorology
departments, the programs in dynamic and synoptic meteorology
tend to be well coordinated. There appear to be other institutions,
however, where excellent work in dynamic meteorology may take
place in an applied mathematics department, while correspondingly
good work in synoptic meteorology may be found in a geography
department, but where any communication between the
departments is hard to detect. At midcentury, the history of
meteorology was marked by both cooperation and contention
between the two methodologies. 
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The Unperformable Experiment

The most direct way to look for chaos in a concrete system, whether
it is a simple object sliding down a slope or an atmosphere with its
multitude of interdependent structures, is to work with the system
itself. If we have released a board and watched or perhaps
photographed it on its downward trip, we can easily retrieve it and
release it from nearly the same point, to see whether it will follow
nearly the same path. Unfortunately for scientific experimentation,
but perhaps fortunately for humanity as a whole, we cannot stop
the advance of the weather and then reestablish a pattern that has
previously been observed, in order to disturb it slightly and then see
how rapidly the resulting weather will diverge from the weather
that occurred earlier. We can readily disturb the existing weather,
perhaps violently by setting off an explosion or starting a fire, or
more gently by dropping crystals of dry ice into a cloud—or perhaps
even by releasing a butterfly—and we can observe what will happen,
but then we shall never know what would have happened if we had
left things alone.

What about comparing what happens after we disturb the
weather with a forecast of what would have happened if we had
not interfered? The forecast is based upon extrapolation from
incompletely observed conditions; at best, it can tell us what would
have happened if someone had introduced a disturbance similar in
magnitude and structure to the observational error—the error in
estimating the initial state. If the disturbance that we introduce is
to tell us anything in addition, it must be large enough not to be
swamped by the observational error. However, a disturbance of this
magnitude seems hard to produce, when we note that entire
thunderstorms may go undetected between observing sites.

Lacking the ability to change the weather to suit our needs, we
can wait for what meteorologists call an analogue—a weather
pattern that closely resembles one that has previously been observed
—in order to see how closely the behavior following the second
occurrence resembles that following the first. This method also fails;
even though the atmosphere seems to be a compact system—one in
which pairs of analogues must eventually occur—good analogues
on a global scale have not been found within the few decades that
global weather conditions have been recorded. Patterns that are
much alike over regions of continental size are sometimes observed,
but, when these fail to develop similarly, they may do so because
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dissimilar weather structures have moved in from distant regions,
rather than because of any sensitivity to small local differences.

There remains the reasonably well established observation that
weather variations are not periodic. Of course they have periodic
components, the most obvious ones being the warming and cooling
that occur with the passage of the seasons of the year or the hours
of the day. Careful measurements have also detected weak signals
with a lunar period, probably gravitational effects, and there is
virtually no limit to the number of periods that investigators have
claimed to have discovered. Some of these have been stated to
several decimal places. Nevertheless, if we take an extended record
of temperature or some other weather variable and subtract out all
verified or suspected periodic components, we are left with a strong
irregular signal. Migratory storms that cross the oceans and
continents are still present in full force. These are presumably
manifestations of chaos.

Since good analogues of global extent have yet to be discovered,
we cannot with certainty rule out the possibility that, when one
finally does appear, the subsequent weather will repeat the earlier
sequence. That is, the atmosphere may really be behaving
periodically, with a period whose length exceeds that of any weather
records. We are left with the strong impression that the atmosphere
is chaotic, but we would like additional evidence.

Voices from Dishpans

It is fairly easy to construct a scale model of a bumpy slope and
observe the descent of a ball or some other object. Modeling a
planetary atmosphere in the laboratory is another matter. We might
think of letting a fluid fill the space between two concentric spheres.
The inner sphere could represent the planet, while the outer one
could take the place of gravity to the extent of preventing the fluid
from leaving the planet, but how could we then introduce a force
that would simulate gravity within the fluid by always being
directed toward the planet’s surface?

The pioneers in laboratory modeling were already well versed in
dynamics. Dynamic meteorologists have long been accustomed to
simplifying their equations before putting them to use. Sometimes
the simplifications are merely deletions of terms that appear to be
inconsequential, but equally often they consist of omitting or
significantly altering certain physical features or processes. Thus,
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effectively, they replace the atmosphere by a different atmosphere,
which Napier Shaw described in the early twentieth century, in his
four-volume treatise Manual of Meteorology, as a fairy tale, but
which today we would call a model. The dynamicist assumes, or at
least hopes, that the weather in a make-believe atmosphere will be
more or less like the real weather in its gross features, and will differ
mainly in minor details.

The equations expressing the laws that govern evaporation and
condensation of water in the atmosphere are rather awkward, while
those governing the transformation of a cloud composed of tiny
suspended water droplets into a rain cloud are even more
forbidding, and dynamicists often work with model atmospheres
that are devoid of water in any form. Likewise, many of them have
an undisguised aversion to spherical geometry, and their
atmospheres may flow over a flat rotating earth instead of one
whose surface is curved. Any dynamic meteorologist who could
explain the development and persistence of large-scale vortices in
the fairyland of dry atmospheres and flat earths would feel that he
had completed the major part of the work of solving the real-world
problem.

Laboratory modelers found it quite acceptable to build into their
apparatus the same distortions that dynamic meteorologists
traditionally built into their equations. The first experiments to bear
fruit were designed by Dave Fultz at the University of Chicago. After
a number of trials, he settled upon a cylindrical vessel partly filled
with water, placed on a rotating turntable, and subjected to heating
near the periphery and cooling near the center. Figure 28 is a
schematic oblique view of his apparatus. The bottom of the
container is intended to simulate one hemisphere of the earth’s
surface, the water is intended to simulate the air above this
hemisphere, the rotation of the turntable simulates the earth’s
rotation, the heating and cooling simulate the excess external
heating of the atmosphere in low latitudes and the excess cooling
in high latitudes, and gravity simulates itself. Fultz had hoped that
the motions that developed in the water might resemble the large-
scale wind patterns in the atmosphere.

Originally the edge of the container extended beyond the rim of
the turntable, and the heating was accomplished by a fixed Bunsen
burner, while exposure to room temperature was supposed to take
care of the  cooling. This setup was soon supplanted by more easily
controlled heating coils arranged around the periphery of the
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container, while the cooling was sometimes accomplished by an
upward jet of cold water through a hole in the turntable. Flow at
the upper surface, which was intended to simulate atmospheric
motion at high elevations, was made visible by a sprinkling of
aluminum powder. A special camera that effectively rotated with
the turntable took time exposures, so that a moving aluminum
particle would appear as a streak, and sometimes each exposure
ended with a flash, which would add an arrowhead to the forward
end of each streak. Flow deeper within the fluid could be detected
by injecting a dye, and thermometers were often inserted to record
the temperature fluctuations that were expected to accompany the
passage of the simulated weather structures. The turntable generally
rotated counterclockwise, as does the earth when viewed from
above the north pole. The collection of components cost about forty
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Figure 28. A schematic oblique view of the apparatus used by Fultz in the
dishpan experiments. The arrows indicate the direction of rotation of the
turntable. Heating is applied at the rim of the container and cooling is
applied at the center.



thousand dollars—a fair sum for 1950—but the central component
—the container—was an ordinary dishpan purchased for a dollar
or two, and the work became known as the dishpan experiments.

Fultz had assumed that it would make little difference whether
the working fluid was a gas or a liquid, and water was certainly the
simplest choice. The water possessed no impurities to simulate real
atmospheric water vapor and clouds, and the bottom of the dishpan
was essentially flat, with nothing to distinguish between oceans and
continents. Dynamicists who might have been criticized for
omitting the water in the atmosphere and the curvature of the earth
could have claimed that they were really trying to model the dishpan
experiments.

Because everything in the experiments was arranged with perfect
symmetry about the axis of rotation, at least within the limits of
experimental control, one might have anticipated that the resulting
flow patterns would also be symmetric, looking perhaps like the
one shown schematically in Figure 29. Fultz was hoping for
something more like Figure 30, with a meandering jet stream and
an assemblage of vortices typical of the atmosphere.

He got more than he bargained for. Both flow patterns appeared,
the choice depending upon the speed of the turntable’s rotation and
the intensity of the heating. In brief, with fixed heating, a transition
from circular symmetry would take place as the rotation increased
past a critical rate. With fixed, sufficiently rapid rotation, a similar
transition would occur when the heating reached a critical strength,
while another transition back to symmetry would occur when the
heating reached a still higher critical strength. The experiments
proved to be repeatable, producing transitions at the same
combinations of values of rotation and heating when run again.

In the early experiments, the flow that was asymmetric appeared
to be irregular also, changing continuously from one pattern to
another, much as the real atmosphere changes. We now recognize
Fultz’s transitions as classical bifurcations, between a steady system,
whose attractor consists of a single point in phase space, and an
unsteady, apparently chaotic one, whose attractor should be
composed of an infinite complex of multidimensional manifolds.

In England, meanwhile, Raymond Hide was experimenting at
Cambridge University with a somewhat similar apparatus. It
differed mainly  in that the fluid occupied a ring-shaped region
between two concentric cylinders instead of the interior of a single
cylinder. Hide found similar transitions between symmetric and
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asymmetric flow, but, possibly because of the restrictive effect of
the inner cylinder, the asymmetric flow was often regular, and
would consist of a chain of apparently identical waves, which would
travel around the cylinder without changing their shape. Here was
a dynamical system with a one-dimensional attractor—a circle in a
suitably chosen phase space—the separate states being
distinguished only by the longitudes of the waves.

Hide also discovered a remarkable regular phenomenon, which
he called vacillation. Here also a chain of identical waves would
appear, but,  as they traveled along, they would alter their shape in
unison in a regular periodic fashion, and, after many “days”—many
rotations of the turntable—they would regain their original shape
and then repeat the cycle. Here the system had a two-dimensional

Figure 29. A schematic view of symmetric flow at the upper surface of the
water in the dishpan.
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attractor, the two varying quantities being the longitudinal phase
of the waves and the phase of the vacillation cycle.

Hide was not a meteorologist, although he has since become one
of the leading dynamicists in the meteorological community, and
he was actually attempting to model the motions in the earth’s
magnetic core, but as an all-arounder he quickly saw the relevance
of his experiments for the atmosphere, and noted the resemblance
between his vacillation cycles and the frequently seen fluctuations
between intervals of strong and weak westerly winds. He and Fultz
soon traded information. In due time Fultz produced both uniform
wave motion and vacillation in the dishpan, and Hide found that
his own apparatus would support irregular behavior.

Figure 30. A schematic view of asymmetric flow at the upper surface of the
water in the dishpan.
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Other scientists soon took up the laboratory modeling, although
the number remained small compared, for example, with those who
continued to favor equations. By using such components as a
discarded phonograph turntable, Alan Faller managed to reproduce
the essence of Fultz’s early experiments at a cost of four dollars.
Subsequently, at the Woods Hole Oceanographic Institution, he
built a “dishpan” eight feet in diameter, and was able to produce
cold fronts and warm fronts—narrow zones separating extensive
air masses, or, in the experiments, water masses, with contrasting
temperatures. Fronts are ubiquitous features of sea-level weather
maps.

Figure 31 shows a vacillation cycle as captured photographically
by Fultz. The separate pictures were taken at intervals of four
“Zdishpan days.” In the first picture, a meandering circumpolar jet
stream, identifiable by the longest bright streaks, appears to be
made up of five virtually identical waves. The waves proceed to
change their shape, and after eight days they have become
transformed into nearly circular vortices. The vortices subsequently
elongate, and by sixteen days the pattern, not shown, has become
virtually indistinguishable from the initial one.

Figure 32 shows two photographs of the dishpan, one “Zday”
apart, during an irregular and presumably chaotic regime.
Accompanying them are Fultz’s streamline analyses, based on the
photographs. A nearly circular vortex below the center may be seen
to elongate considerably as it propagates “eastward.” The vortex
rotates counterclockwise, and, like its counterparts in the northern
hemisphere of the real atmosphere, it is a true low-pressure center.

In Figure 33 the first streamline analysis has been inverted so as
to simulate southern-hemisphere flow, and it is compared with an
actual upper-level southern-hemisphere weather map, containing
approximate streamlines. The patterns are not superposable, but
qualitatively they are so much alike that they might almost have
been selected from the same attractor.

The implications of the laboratory experiments are profound.
Structures such as jet streams, traveling vortices, and fronts appear
to be basic  features of rotating heated fluids, and are not peculiar
to atmospheres. Efforts in dynamic meteorology had not always
been success stories, and it had been proposed at times that the
failures might result from using the wrong dynamics—possibly
from being unaware of some strange force. The similarities and
differences between the atmosphere and the experiments strongly
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suggest that the principal causes of the gross behaviors are to be
found in forces and processes that influence both systems—gravity,
rotation, and differential heating—while such properties as
compressibility, which air possesses but water does not, are second
ary. If a mysterious force is at work in the atmosphere, it would
have to be at work in the dishpan also.

Finally, it may be a prehistorical accident that our day is about
twenty-four hours long, instead of several times longer. If so, it may
be an accident that our atmosphere behaves like a rapidly rotating
dishpan instead of a slow one, fluctuating chaotically instead of
regularly, and that our weather is rather unpredictable instead of
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Figure 31. Streak photographs of the flow at the upper surface of the
dishpan, at four phases of a vacillation cycle. The upper right, lower left,
and lower right patterns follow the upper left by four, eight, and twelve
rotations. The pattern after four more rotations, not shown, is almost
indistinguishable from the first. Photographs by Dave Fultz.



continually executing a monotonous cycle, or perhaps not changing
at all except for the slow advance of the seasons. 

The Five-Million-Variable Dynamical System

By far the strongest evidence for a chaotic atmosphere has come
from mathematical models. Strictly speaking, these models are what
dynamicists have been using since the dawn of dynamic
meteorology, but more recently a “model” has generally meant a
system of equations arranged for numerical solution on a computer.
The history of the more realistic models of this sort is essentially
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Figure 32. Streak photographs of the upper surface of the dishpan in an
experiment revealing chaotic behavior, accompanied by streamline
analyses based on the photographs. The right-hand patterns follow those
on the left by one rotation. Photographs and analyses by Dave Fultz,
reproduced by permission of the American Meteorological Society.



the history of the use of the dynamic equations for weather
forecasting.

The story opens in Norway in the early twentieth century, when
Vilhelm Bjerknes, considered by some to have been the all-time
great meteorologist, proposed that the weather-forecasting problem
was simply the problem of solving the system of equations
representing the basic laws, using a set of simultaneous weather
observations as the initial state. He maintained that the equations
were known, but recognized that there was no practical method of
solving them. It was Bjerknes who, many years later, championed
the idea that the reason that vortices and other structures of
continental or subcontinental size must be present in the
atmosphere is not the dynamic impossibility of a flow pattern
without them, which would look like symmetric flow in the
dishpan, and would constitute a state of equilibrium. Rather, it is
the instability of such a pattern with respect to inevitable
disturbances of large horizontal extent but small amplitude. These
disturbances would proceed to inten sify and then persist as part of
the complete pattern.

The next chapter begins in England during World War I, when
the versatile scientist Lewis Richardson, who was undaunted by the
formidable nature of the equations, attempted to solve them
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Figure 33. The left-hand streamline analysis from Figure 32, inverted so as
to simulate southern hemisphere flow, compared with a real-world
height-contour analysis of the 500-millibar surface over a portion of the
southern hemisphere. At this surface, whose average height is close to 5.5
kilometers, the height contours closely resemble streamlines.



numerically. In his procedure, he replaced the continuous
distributions of pressure, wind, and other quantities, which in any
event could be estimated only by interpolating between reports at
weather stations, by the values of these quantities at a regular grid
of points. The gradients of these quantities—the rates at which they
varied horizontally—were then approximated by differences
between values at adjacent grid points.

As a Quaker, Richardson objected to armed combat, but he had
no fear of the front, and was happy to serve during the war as an
ambulance driver. He brought with him an extensive set of weather
data for one selected day, and between shifts he would perform the
thousands of additions, subtractions, and multiplications needed to
produce a single six-hour forecast for an area no larger than Europe.
His predicted weather pattern not only turned out to be wrong, but
did not even resemble any pattern that had been seen before.
Richardson correctly attributed his failure to inadequacies in the
initial wind measurements, although subsequent analysis has shown
that his procedure would have produced serious although less
drastic errors even with perfect initial data.

Imagine an enormous creature from outer space that swoops
down close to the earth, reaches out with a giant paddle, and stirs
the atmosphere for a short while before disappearing. Wholly aside
from the possibly disastrous effect upon the living beings of the
earth, what will be the likely effect on the weather?

Air that has simply been moving around a low pressure system,
for example, as it normally does, may be left moving predominantly
into it. The low will rapidly fill, soon becoming a high, after which
the now piled-up air will surge outward, leaving a deep low, into
which air will rush a second time before rushing out again. The
precise chain of events will be further complicated by the ever-
present deflecting effect of the earth’s rotation. Rather similar
events will take place at locations where the creature has left the air
moving out of a low, or into or out of a high. In short, there will
be violent fluctuations of pressure and accompanying fluctuations
in the wind. Theory indicates that the period of an oscillation—a
change from low to high to low again—will be comparable to one
day.

The atmosphere has its own method of getting rid of any such
fluctuations; otherwise they might be a part of our normal weather.
Mechanical and thermal damping play an essential role in their
removal. After a few weeks, the oscillations will be hardly detectable
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and the weather will be back to normal, although the particular
sequence of weather patterns will undoubtedly not be the one that
would have developed without the disturbance. Stated otherwise,
the normal weather patterns that occur day after day belong to the
attractor of the global weather system. The alien creature will
produce a new state—think of it as an initial state—that is well
removed from the attractor, but, as in any dissipative dynamical
system, the transient effects will ultimately damp out, and normal
behavior will resume.

Now imagine that Richardson had wished to use his numerical
procedure to discover what would happen if such a creature should
pay a visit. He could have done no better than to do what he actually
did. Observations of the weather such as those that he used, and
interpolations to standard geographical locations, are fraught with
small errors. The true state of the atmosphere, and the state as
Richardson could best estimate it, differed in much the same way
as the states of an atmosphere before and after being stirred. The
true state belonged to the attractor, and the estimated state did not.
Inevitably Richardson predicted the violent oscillations that his
assumed initial state demanded.

In his monumental book Weather Prediction by Numerical
Process, completed in 1922, Richardson presented his procedure in
full detail, and discussed his forecast. He ended by envisioning a
weather center where sixty-four thousand people working in shifts
could produce a weather forecast more rapidly than the weather
itself could advance. The one feature that he failed to envision was
the device that within half a century would be working as rapidly
as sixty-four thousand people.

Following Richardson’s efforts, the general attitude toward
numerical weather prediction became pessimistic. Many prominent
meteorologists seriously doubted that wind observations could ever
become accurate enough to suppress the spurious oscillations.
Those who felt otherwise tended to be discouraged by the sheer
magnitude of the needed computations. 

Fortunately one of the optimists was the Swedish scientist Carl-
Gustaf Rossby, a dynamic meteorologist in the literal as well as the
technical sense, and certainly another candidate for the title of all-
time great meteorologist. One of his contributions was the
suggestion that the key to understanding the atmosphere was to be
found in the wind instead of the pressure. A low-pressure system is
also a spinning vortex, and, although the barometer provides the
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easiest and most accurate means of detecting and mapping the
structure, the wind pattern may exert the greater influence on its
behavior, with the pressure serving largely as an indicator.

As the middle of the century approached, the renowned
mathematician John von Neumann became interested in designing
automatic computers and applying them to involved problems.
Although not a meteorologist, he recognized the weather-
forecasting problem as ideal for his needs. Soon he went about
assembling a group of meteorologists and other scientists to work
on the numerical forecasting problem, at the Institute for Advanced
Study in Princeton, New Jersey. In addition to the largely
computational matters to be faced, there remained the problem of
the spurious fluctuations.

The states that the atmosphere assumes as the weather progresses
are all supposed to be restricted to the attractor of the global
weather system; any transient effects should have disappeared long
ago. If some system of equations is to be used to produce short-
range forecasts, say one or two days in advance, it must handle the
states that are on the attractor, or the best approximations to these
states that it is able to depict, in approximately the way that the
atmosphere handles them. On the other hand, there is no need for
it to be able to deal properly with states that are not on the attractor,
since these will never arise.

One member of von Neumann’s group who recognized this
situation was the then-young meteorologist Jule Charney, later to
be recognized as still another possible all-time great. Before arriving
in Princeton, Charney had become acquainted with Rossby.
Starting from Rossby’s ideas as to the importance of the wind, he
had managed to construct a system of equations that effectively
failed to distinguish between unrealistic weather patterns in which
strong oscillations would have been expected to develop, and
slightly different but more realistic ones in which they would not,
and, with either type of pattern as an initial state, would predict
that the oscillations would not arise. His system could not have
detected a visit from the creature from outer space. Effectively the
new equations filtered out the oscillations, and later were sometimes
called the filtered equations, while the more nearly exact equations
that Richardson had used became known as the primitive equations.
With various modifications that rendered them more adaptable to
computation, the filtered equations became the basis for the first
experimental series of numerical weather predictions. The story of
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these early efforts has been aptly recounted by both Philip
Thompson and George Platzman, two of the original participants.

By the middle fifties, the moderate success of the forecasts, even
though they did not match up to the ones turned out by experienced
synoptic forecasters, led to the introduction of numerical
forecasting as a part of the operational procedure of various
national weather services. At the very least, synoptic forecasters
now had, in addition to everything that they had formerly used, the
information that “this is what the computer says will happen”. They
could use or reject this information as they saw fit. As the years
advanced, forecasters came to rely more and more on the numerical
product.

As dynamical systems, the new models were rather peculiar. They
did not possess attractors that resembled the attractor of the real
atmospheric system. If they had been used to make long-range
forecasts, say a month in advance, they would have produced
weather patterns quite unlike anything seen in nature. Indeed, in
the earliest forecasts the external forcing and internal dissipation
were completely omitted from the equations, on the grounds that,
no matter how important they might have been in bringing about
an initial state, their added influence during the next day or two
would be minor. Thus, aside from any changes that the numerical
scheme might have introduced, the models conserved total energy,
and, like other Hamiltonian systems, possessed no attractors at all.

An outgrowth of numerical weather prediction that recognized
this shortcoming was global circulation modeling. The equations
used were much like those already used in short-range prediction,
but, as the name suggests, the area to which they were applied
covered the whole globe, or at least most of one hemisphere, rather
than a more restricted region. The purpose of the new models was
to produce simulated weather whose long-term behavior was
realistic in as many respects as possible, rather than to make
forecasts, and the initial conditions were often purposely chosen
not to look like real weather patterns, in the hopes that reasonable
patterns would soon develop. Stated otherwise, it was hoped that
the new models would possess realistic attractors. Needless to say,
external forcing and internal dissipation had to be included.

The prototype global circulation model was constructed by
Norman Phillips, who had been working closely with Charney at
the Institute for Advanced Study. His dynamical system had 450
variables. He extended his solution for one month, and produced a
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meandering jet stream and traveling vortices before he encountered
computational problems. Subsequently he succeeded in diagnosing
the computational difficulty and prescribing a cure, thus paving the
way for the countless models that were to follow.

During the sixties it became apparent that the filtered equations,
which had made numerical forecasting possible with the early
computers, were not going to produce forecasts of the quality that
some had hoped for. With the advent of more powerful computers,
some meteorologists turned their attention back to the primitive
equations. The solution to the problem of the violent oscillations,
which had led to the rejection of the primitive equations a decade
earlier, turned out to be surprisingly simple in concept, although
not so easy to implement.

The initial patterns of wind and perhaps pressure, as interpolated
from observations, are inaccurate in any case; otherwise they would
not give rise to oscillations so much stronger than those observed
in nature. Why then shouldn’t we tamper with these patterns a bit,
at the risk of making them slightly more inaccurate, to produce new
initial states from which oscillations cannot develop, as an
alternative to using equations that will not predict that oscillations
will develop? After extensive research, several methods of making
the needed adjustments were devised; improvements are still being
introduced. The tampering or adjusting process, known as
initialization, is now a standard part of every routine forecasting
procedure that uses the primitive equations. Let us note that
initialization need not produce the correct initial state; it simply
produces one that might be correct instead of one that cannot be.
Ideally, it will move the observed state to some nearby state on the
attractor.

By the seventies, global circulation modelers were also turning to
the primitive equations. As the years advanced and computers
became ever more powerful, the distinction between global
circulation models and numerical forecasting models tended to
disappear. Operational forecasting centers could now afford to use
models that covered the globe, or at least a hemisphere, and, with
increasing interest in predicting several days ahead, during which
time storms could move in from distant areas, there was good
reason to do so.

The big model with which I am personally most familiar is the
operational model of the European Centre for Medium Range
Weather Forecasts in Reading, England. The Centre is a joint
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venture of the weather services of more than a dozen European
nations. As its name implies, its mission is to produce forecasts at
medium range, which in this case has meant up to ten days ahead.
The scientists who have worked there, either directly with the model
or on problems relevant to its construction and performance, have
included not only representatives from the member nations but
visitors from around the world.

The model itself is global, and, like most large models today, is
based on the primitive equations. I should probably not call it the
model, because, during the ten years or so that I have intermittently
worked with it, it has been frequently subjected to modifications
aimed at improving its performance. As of 1985, it possessed three
physical quantities—temperature and two wind components—
defined at each of nineteen elevations, and a fourth quantity—
water-vapor content—defined at all but the high elevations.
Pressure was explicitly defined only at the lowest level, since
pressures at higher levels could be inferred from those at lower levels
when temperatures and humidities at intervening levels were
known. Other auxiliary variables such as soil moisture were defined
where appropriate. Each physical quantity at each level was for
practical purposes specified at a grid of more than 11,000 points,
spanning the globe. This produced a total of some 800,000
variables.

As if these were not enough, as of late 1991 the resolution was
doubled in both the latitudinal and longitudinal directions,
producing effectively 45,000 grid points, while the number of
standard elevations was increased to 31. This produced a model
with five million variables. Of such stuff are modern global
circulation models made.

Lest a system of 5,000, 000 simultaneous equations in as many
variables appear extravagant, let us note that, with a horizontal grid
of less than 50,000 points, each point must account for more than
10,000 square kilometers. Such an area is large enough to hide a
thunderstorm in its interior. I have heard speculations at the Centre
that another enlargement of the model is unlikely to occur soon,
and this evidently means that not all significant weather structures
will soon be resolved.

What about chaos? Almost all global models, aside from the very
earliest, have been used for predictability experiments, in which two
or more solutions originating from slightly different initial states
have been examined for the presence of sensitive dependence.
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Interest has not been so much in chaos itself as in the feasibility of
producing extended-range forecasts, particularly at the two-week
range.

Almost without exception, the models have indicated that small
initial differences will amplify until they are no longer small. There
is even good quantitative agreement as to the rate of amplification.
Unless we wish to maintain that the state-of-the-art model at the
European Centre, and competitive models at the National
Meteorological Center in Washington and other centers, do not
really behave like the atmosphere, in spite of the rather good
forecasts that they produce at short range, we are more or less
forced to conclude that the atmosphere itself is chaotic.

The Consequences

The possibility that an object may slide chaotically down a slope is
largely a matter of academic interest. Chaos in the atmosphere has
farther-reaching consequences.

The most obvious effect is the limitation that it imposes upon our
ability to forecast. Imagine that you are a computer-age weather
forecaster, and that instead of making just one extended-range
forecast you have decided to make a dozen or so. You take a dozen
estimates of the initial state that are more or less alike, differing
from each other by no more than the typical uncertainty in
estimating the true initial state: temperatures at some locations
might differ by a degree or so, while wind speeds might vary by two
or three knots. To fend off anticipated spurious oscillations, you
apply the initialization procedure to each state. When you make a
two-week forecast from each state, using the best approximation
to the true physical laws that your computer can handle, you will
find that, because of sensitive dependence, the dozen predictions
are not much alike. If you have no basis for saying which, if any,
of the dozen initial states is correct, you will have no basis for saying
which of the predictions should become the official forecast. 

The process that you will have carried out is not somebody’s wild
fantasy. It shows signs of becoming the forecasting procedure of the
future, when computers have become still more powerful. It is
known as Monte Carlo forecasting. It takes its name from the
famous gambling resort because the original idea was that, out of
a virtually infinite collection of eligible initial states, a few should
be chosen at random, although it now appears that, if the procedure
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becomes operational, the states may be chosen systematically.
Monte Carlo methods have in fact been used in numerous fields
almost since the advent of computers as a means of generating
statistical distributions.

The Monte Carlo procedure can give some idea of the degree of
confidence to be put in a particular day’s forecast. If the separate
forecasts show little resemblance to each other, the confidence will
be low, whether one of the forecasts is selected arbitrarily as the
official one, or whether some average is used. If the forecasts are
much alike, any one of them is likely to be fairly good.

What is the basis for choosing two weeks as a time after which
the forecasts might differ significantly? That story goes back to the
early 1960s, when preparations were under way for the Global
Atmospheric Research Program, the international effort to obtain
world-wide observations of a higher quality than previously known,
and to extend our knowledge of atmospheric dynamics so that the
new observations might be put to optimum use. Among the original
aims of the program was the production of good two-week
forecasts. Such a vast program obviously would require vast
funding, and “aims” should perhaps be viewed as a euphemism for
“selling points.”

It was just at that time that the possibility of sensitive dependence
in the atmosphere’s behavior was beginning to be recognized by
meteorologists. Jule Charney, who was one of the leaders in
organizing the program, became concerned that two-week
forecasting might be proven impossible even before the first two-
week forecast could be produced, and he managed to replace the
aim of making these forecasts with the more modest aim of
determining whether such forecasts were feasible. In 1964, a special
conference held in Boulder, Colorado, was attended by a wide
assortment of dynamicists, synopticians, and other meteorologists,
including all the then-active global circulation modelers. The
agenda included scientific papers presented by representatives of
ten nations, and Charney talked about the possibility of chaotic
behavior. Between sessions, however, when the real work of such
conferences generally takes place, he managed to persuade all of the
global-circulation modelers to use their models to perform
numerical experiments in which pairs of forecasts originating from
slightly different conditions would be examined for sensitive
dependence. From these experiments, performed in the ensuing
months, Charney's committee concluded that a reasonable estimate
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of the average doubling time for small errors in the temperature or
wind pattern was five days.

The doubling time soon acquired the status of a standard measure
of predictability. If we have a fair idea of the size of typical errors
in estimating the initial state, and if we have decided how great an
error we can tolerate in the forecast, we will know how many
doublings are acceptable, and, if we also know the typical doubling
time, we can calculate the range of acceptable predictability. This
range should then be adjusted upward, since errors typically grow
less rapidly after they have become moderately large. The five-day
doubling time seemed to offer considerable promise for one-week
forecasts, but very little hope for one-month forecasts, while two-
week forecasts seemed to be near the borderline.

What typically happens when a more powerful computer
becomes available to the meteorological community is that larger
mathematical models are built, so that a one-day or a one-week
forecast takes about as long to produce as it did before. The
enlargements generally entail increases in horizontal and vertical
resolution, but they may also involve more realistic formulations of
certain physical processes, such as the absorption and emission of
radiation by the atmosphere, or the flow of air over mountainous
terrain. One specific enlargement in the sixties was the change from
filtered to primitive equations. With the new models came new
predictability experiments, and by 1970 the typical doubling time
seemed to be closer to three days than five. By the early eighties, the
European Centre model and other models had reduced the time to
about two days; this estimate still stood in 1990. Thus, although it
had become fairly well established that two-week forecasts showed
a slight edge over pure guesswork, scenarios in which the locations
and intensities of migratory storms were predicted two weeks ahead
appeared less and less realistic.

Some promise for further improvement in forecasting has come
from the observation that, with the European Centre model,
differences between two forecasts that start from different states
regularly amplify more slowly than differences between either
forecast and the weather that actually transpires. If the model
perfectly represented the physical laws, the rates of amplification
should all be the same. Improvements must therefore still be
possible. Computations indicate that, if the present model is
correctly estimating the atmosphere’s doubling time, a perfect
model should produce three-day forecasts as good as today’s one-
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day forecasts, which generally are good; one-week forecasts as good
as today’s three-day forecasts, which occasionally are good; and
two-week forecasts comparable to today’s one-week forecasts,
which, although not very good, may contain some useful
information. This is the optimistic view; one can always take the
alternative view that, since the present models are not perfect, the
appropriate doubling time may be even less than the estimated two
days.

Let us take another look at the calculated doubling times. First
of all, they are properties of the models that have been used to
compute them. As a property of the real-world system, a two-day
doubling time can at most refer to a doubling time for structures
that are resolved by the models—jet streams, temperate latitude
vortices, and perhaps tropical storms. Structures that are not
regularly resolved either by a global observational network or by
the computational grid of a global model have an important
influence on the resolved structures; thunderstorms, and to some
extent less intense showers, are effective in altering the global
temperature and humidity patterns by carrying heat and water from
low to high elevations. Failure to include these effects in a model
leads to inferior forecasts. The larger-scale pattern tends to be
indicative of the presence or absence of significant smaller-scale
structures, and the standard procedure is to estimate, at each point,
the most probable effect of the smaller scales. This procedure, know
as parameterization, has been the subject of entire conferences. It
is still one of the less realistically formulated aspects of large models,
and amendments or alternative schemes are continually being
introduced.

If the models could ever include so many variables that individual
thunderstorms and other smaller-scale structures would be properly
represented, and parameterization would no longer be needed, it
would be totally unreasonable to expect that errors in the details of
these structures would require two days to double. Individual
thunderstorms typically last only a few hours, and, with an assumed
two-day doubling time, the error growth during those hours would
be nearly imperceptible. Since a thunderstorm can in reality easily
double its severity in less than one hour, we should expect that the
difference between two rather similar thunderstorms would double
just as rapidly.

If this is the case, the outcome would be that, after several hours,
forecasts of the details of small-scale structures would be no better
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than guesswork, and subsequent representations of their effects on
the larger scales would be no better than parameterization. In other
words, if we could use such a model with its unbelievably high
resolution for perhaps the first half day, we might as well return to
one of today’s models for the remainder of the forecast. The
implication is that introducing such impossibly high resolution
would increase the range of practical predictability by only a few
hours. As a corollary, it appears that coming improvements in
forecasting may have to come from better numerical representations
of the structures that are supposedly already resolved, or better
formulations of some of the physical processes. The apparent drop
in returns with continued increases in resolution has led some
forecasters to propose that the anticipated additional computer
power in the middle nineties can be more advantageously used to
carry out some Monte Carlo procedure.

With all these obstacles around, it may surprise us to learn that
within our chaotic atmosphere there are certain weather elements
at a few locations that can be rather accurately predicted not just
two weeks but two months or even two years ahead. The most
spectacularly predictable of these are the winds at high levels in
equatorial regions, which are dominated by the so-called quasi-
biennial oscillation, first recognized by Richard Reed of the
University of Washington. Since the cataclysmic eruption of
Krakatau west of Java in 1883, it had been common “knowledge”
that the winds at 20 or 25 kilometers above the equator blew from
the east; a cloud of volcanic dust had even been observed to circle
four times about the globe.

In the 1950s, when sporadic equatorial balloon soundings first
reached high enough elevations, a few meteorologists noted that the
“normal” so-called Krakatoa easterlies were sometimes missing. I
was fortunate enough to be present at the meeting in 1960 when
Reed announced his findings, and I could see members of the
audience shaking their heads as he maintained that at these heights
the equatorial winds would blow continually from the east for
about a year, and then from the  west for a year, and then from the
east again for another year, and that, if Krakatau had blown up a
year earlier or later, the meteorological language would have had
the term “Krakatoa westerlies.”

The subsequent years have fully confirmed his claims. In
Figure 34, the plotted points show daily observed values of the
eastward component of the wind above Singapore, one degree north
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of the equator, at the four standard pressure levels of 70, 50, 30,
and 20 millibars— the pressure is about 1000 millibars at sea level.
Above Singapore, these pressures are reached at elevations that
fluctuate a few hundred meters about averages of 18.6, 20.6, 23.8,
and 26.3 kilometers— roughly twice the height at which commercial
jets typically fly. The sequences extend from the beginning of 1965,
when the sounding balloons released at Singapore first regularly
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Figure 34. The points, some of which are too closely packed to be
individually distinguishable, show daily values of the eastward component
of the wind at the 70-, 50-, 30-, and 20-millibar surfaces over Singapore,
from 1965 through 1985 as indicated by the scale at the base. The solid
lines are zero-lines. Values above zero indicate winds from the west. The
approximate two-year periodicity is evident.



reached the high levels, to the end of 1985, and they cover nine
complete cycles. No smoothing or averaging has been performed,
so that the points represent the values that one would attempt to
forecast when forecasting for particular moments. Although there
are always some day-to-day fluctuations, by far the stronger part
of the signal at the upper three levels consists of the oscillation itself,
and it is apparent that forecasts with reasonably small errors, for
the winds on most of the individual days a cycle or two in advance,
can be produced by subjectively extrapolating the phase, and
predicting conditions that are average for that phase. As with any
other forecasts, these ones will sometimes fail completely,
particularly for the times when the rather sharp transitions between
westerlies and easterlies will be occurring. Note that the phases
propagate downward, taking about a year to descend from 20 to
70 millibars.

The period of oscillation is not exactly two years, as had been
conjectured when fewer cycles had been observed, and the separate
cycles are not of identical length, so that the oscillation is
presumably chaotic, and its phase cannot be predicted decades in
advance. Yet the chaos is characterized by an entirely different time
scale from that of storms of continental size, just as these storms
have a different time scale from thunderstorms. Perhaps the
principal lesson is that we still have much to learn about what can
happen in chaotic dynamical systems with many interconnected
parts.

Other conclusions as to the consequences of chaos in the
atmosphere are more speculative, and result from comparing the
real world with guesses as to what the world would be like if the
weather were not chaotic. In the dishpan we have seen transitions
between regimes of symmetric flow, steadily progressing waves,
vacillation, and chaos, but I know of no cases in which the flow has
assumed an extremely wide variety of patterns during an extended
interval before regularly repeating itself. This strongly suggests,
although it provides no proof, that if the atmosphere were not in a
chaotic regime it would undergo rather simple periodic oscillations
not appreciably more complicated than vacillation, with a period
of perhaps a few weeks, although the quasi-biennial oscillation, if
it could still exist in a nonchaotic regime, could upset things. Any
simple behavior would also have to be modulated by the advance
of the seasons, so that true repetition would occur only after a year,
but each year could be a repetition of all of the previous ones.
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Large migratory storms, which are features of both the dishpan
and the atmosphere, would undoubtedly be found in our make-
believe periodic atmosphere, and, because of the seasonal
modulation, successive storms would travel on somewhat different
paths. In the course of a year, a considerable portion of the earth’s
surface might then receive abundant rain, sufficient for agriculture,
falling at each location on a particular set of dates. Without the
seasons, rainfall would perhaps be confined to a few narrow belts.

At the other extreme in scale, thunderstorms and showers should
be abundant enough to strike much of the earth in the course of a
year. Hurricanes would be another matter, if they still occurred with
a frequency characteristic of the real atmosphere. This could well
be the case if the ocean-surface temperatures were comparable to
those of the real oceans, since the formation and maintenance of
hurricanes is strongly influenced by the temperature of the oceans
beneath them. World-wide, a few dozen hurricanes might form
during any year. Each might acquire a name, and the same name
might be given to the identical hurricane arriving a year later, since
the storm would be perceived as an annual event, just as El Nino,
the sporadic warm current off the South American coast, is called
El Niño whenever it returns. Thus there might have been a
Hurricane Amy 1964, or a Hurricane Ben 1977.

Since every named hurricane would be following a track that
hurricanes had been following for countless years, there would be
little reason to expect much damage. Builders could avoid the paths
of the stronger hurricanes, which together would not occupy too
much real estate, but it would not be surprising if they built there
anyway, presumably taking into account the known maximum
wind speeds and the depths of any flash floods. In many respects,
planning ahead without the vicissitudes of chaotic behavior would
be a much simpler process. The greater difficulty in planning things
in the real world, and the occasional disastrous effects of hurricanes
and other storms, must therefore be attributed to chaos.

Weather forecasters using twentieth-century methods would not
be needed, since this year’s weather would be last year’s.
Meteorologists would still be active, just as tidal theorists are active
in the real world, and they would seek explanations for the
phenomena that they would be observing with such monotonous
regularity. With the global circulation models that might be the
fruits of a Global Atmospheric Research Program, modelers might
succeed in simulating the significant weather structures, but it is
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doubtful that such a program would ever be initiated; with no need
to improve the process of weather forecasting, who would supply
the funds? 
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CHAPTER 4
Encounters with Chaos

Prologue

ONE OF THE TRIUMPHS of nineteenth-century computational
mathematics was the discovery of Neptune. If you enjoy watching
the early evening sky as one by one the planets announce their
presence, you know that Neptune never takes part in the
performance. It is far too faint, and, not surprisingly, it was first
spotted in a telescopic search, but you may wonder how
computation entered the picture. It is hard to say where the story
begins, since every occurrence seems to have its antecedent, but a
big event was the publication of Isaac Newton’s Principia
Mathematica in 1686. Once Newton's remarkable findings,
including his laws of motion and his famous law of gravitation, had
become generally recognized and accepted, astronomers found it
fairly easy to write down systems of equations whose solutions
would describe the motions of the planets in their orbits. These
systems were special cases of the mathematicians’ many-body
problem, in which each of a number of objects is acted upon by the
gravitational tug of all of the others. Solving the equations proved
to be another matter.

Mathematicians typically do not feel that they have completely
solved a system of differential equations until they have written
down a general solution—a set of formulas giving the value of each
variable at every time, in terms of the supposedly known values at
some initial time. Consider, for example, a baseball just hit by a
batter. The solution of the equations that govern its motion is easy
to find. The formulas contain a symbol, say t, representing time; to
find the ball’s position and velocity at any moment it is sufficient
to plug the appropriate value of t into the formulas and perform



the indicated arithmetic operations. For the times when the ball is
still in the air, the set of positions will form a parabola. 

A still more general solution will take care of any baseball hit by
any batter, whether fair or foul, whether a home run or an infield
fly. The formulas will contain additional symbols, representing the
position and velocity of the ball just when it leaves the bat.

Of course all this is what would happen if the air offered no
resistance. Any golfer who has sliced a drive into the woods knows
that golf balls do not travel in parabolas, and, to a lesser extent, the
same thing is true of baseballs. Indeed, even the earth’s curvature
and rotation will prevent a path from being exactly parabolic.
Equations are only models, and model baseballs and golf balls can
travel along parabolas.

When we have had no luck in finding the general solution for
some system, we can turn to numerical procedures. We may, for
example, start with initial values of the variables, and, since
differential equations are really formulas that tell us, in terms of the
present values of all of the variables, how rapidly the values are
changing, we can advance the solution forward in small time steps,
until we reach the desired time. The procedure has the great
advantage that it will often yield excellent approximations when
other methods will yield nothing at all. It has the disadvantage that
whenever we want a solution with new initial conditions or new
constants, we must perform the computations all over again. Pure
mathematicians have traditionally tended to hold numerical
methods in scorn, and this attitude extended to the general use of
computers in the days when computers were fairly new.

Eighteenth-century astronomers had little difficulty in finding the
general solution for the two-body problem. The bodies move in
elliptical orbits, which have a common focus at the combined center
of mass. When the two bodies are the sun and a planet, the sun is
so much more massive that the focus lies below the sun’s surface,
and the planet does most of the moving.

When theoretical solutions were compared with observations,
say of Jupiter, there was good agreement, but the discrepancies,
even though small, were too large to be attributed to errors in
observation. An obvious suggestion was that they might be
produced by the gravitational influence of the other planets, notably
Saturn in Jupiter’s case. Thus the three-body problem entered the
picture. Here the early attempts to find a general solution all failed.
In due time astronomers developed the perturbation method, which
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enabled them to use the two-body solution for the sun and one
planet as a first approximation, and then to introduce the
perturbing influence of a second planet as a correction.
Perturbations by several planets could also be handled in this
manner.

For most of the planets the method virtually removed the
difference between observation and theory, but in the case of
Uranus there was still a discrepancy that exceeded the expected
observational error, which by the nineteenth century had become
quite small. Gradually astronomers turned toward the idea that it
could result from the gravitational pull of an as-yet-undiscovered
planet.

Concurrently and independently, John C.Adams in England and
Urbain J.J.LeVerrier in France undertook the formidable task of
inverting the perturbation method; instead of computing the
perturbation produced by a known planet moving in a known orbit,
they asked how large a planet in what orbit could produce the
known perturbation. In 1846, after many months of work and
within a few days of one another, they came up with current
positions only a few degrees apart. At LeVerrier’s instigation a
search was made at the Berlin Observatory, and it revealed the
planet about one degree from his predicted position.

Such computational successes did not prevent mathematicians
and astronomers from continuing to seek a general solution for the
three-body problem. By analogy with the two-body problem it
seemed reasonable that the solution was there, waiting to be
uncovered. Chaotic behavior, which cannot usually be described by
formulas into which values of time can be substituted, was not a
part of the mathematics that they had learned, or in some instances
had created.

What I want to do in this chapter is to present a few scenes from
the drama of our growing awareness of chaos, from the time of the
discovery of Neptune, when there was virtually no awareness at all,
to a time nearly a century and a half later, when it was becoming
apparent that chaos had been lurking almost everywhere. Of course
I am not suggesting that the idea that minuscule events can lead to
major consequences in everyday life or world affairs is something
recent. The familiar bit of verse that begins, “For want of a nail,
the shoe was lost,” and progresses from the shoe to the horse to the
rider to the battle to the kingdom, is not a twentieth-century
creation. What does not seem to have been suspected in the middle
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nineteenth century is that phenomena governed by relatively
uncomplicated laws, often expressible as deterministic
mathematical equations, need not behave in the predictable manner
that the laws or equations might lead one to suppose. 

I shall make no attempt to tell a complete or unbroken story—
neither space nor the extent of my knowledge of some of the
significant events will allow this—nor shall I try to identify all of
the important contributors or their specific contributions. Instead
I shall present a rather personal and partly autobiographical
account, offering my own analysis of some of the earlier
developments, and discussing some of the more recent ones in terms
of how I initially perceived them or how they subsequently
influenced me. I shall devote considerable space—more than would
belong in a balanced account—to the circumstances leading to my
own findings. I hope nevertheless to leave my readers with a
reasonably well balanced view of what took place to transform
chaos from a hardly recognized phenomenon into one regarded as
virtually ubiquitous.

Recognition

About thirty years after Neptune’s discovery, when the three-body
problem still seemed no closer to being solved, the American
astronomer and mathematician George William Hill looked at a
highly specialized case. Hill had already developed new approaches
to the determination of planetary orbits, and he would back these
up with extensive computations, often to fifteen decimal places. He
now introduced three simplifications: first, one of the three bodies
was assumed to have a negligibly small mass, so that the larger two
were not influenced by it, and therefore satisfied the solvable
equations for the two-body problem; second, the larger bodies
moved about a common center in circles rather than more general
ellipses; and third and perhaps most important, all three bodies
moved in a single plane. In this way he reduced the problem to a
system of four equations, with the four variables representing the
small body's position and velocity in the plane. The equations were
quite simple in appearance, but they still defied attempts to find a
general solution.

With today’s computers it is easy to determine particular
solutions. Figure 35 shows a pair of possible orbits for the small
body, which we may call a satellite, starting from nearby points
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with equal velocities. The coordinate system in which they are
displayed rotates with the larger bodies, which we may call planets.
That is, one of the coordinate axes, say the x-axis, is always parallel
to the line joining the planets,  while the other axis is always
perpendicular, so that in the figure the planets occupy fixed
positions, on the x-axis.

In this example, the planet on the left has four times the mass of
the one on the right. The orbits first loop several times about the
smaller planet, remaining rather close together, and then switch
over to the larger one, diverging as they do so. After two years,
when they reach the points indicated by the arrowheads, they are
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Figure 35. Two possible orbits of a satellite, starting with nearly identical
conditions, as given by numerical solutions of Hill’s reduced equations,
extending for two years. The frame of reference from which the satellite is
viewed rotates so as to make the planets, which are located 0.2 units to the
left and 0.8 units to the right of the origin, and which are indicated by the
dots, appear stationary.



widely separated. Here a “year” means the time needed for the
planets to make one revolution about their center of mass, which
is one-fifth of the way from the larger to the smaller planet. A
continuation would show the two orbits shut tling between the
planets, and at distant future times they would be as likely to be
looping around different planets as around the same one. Clearly
the behavior is chaotic, but, as in many other Hamiltonian systems,
other choices of initial states would have led to regular behavior,
with orbits looping periodically about one planet or the other.
Figure 36 is a graph of x, the distance of the satellite to the left or
right of the center of mass, for one of the chaotic orbits, extended
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Figure 36. One of the orbits of Figure 35, extended for twenty years. The
vertical coordinate here is the horizontal coordinate of Figure 35. The upper
curve shows the first ten years, as indicated by the scale at the base, and
the lower curve shows the next ten. The horizontal lines indicate the
positions of the planets.



to twenty years. The irregular shuttling between the planets is
apparent.

It is hard to imagine that Hill, who performed so many orbital
computations, could not have produced something like Figure 35
in a few months or less, if he had wished to. He knew enough about
the equations to have chosen, on his first try, an initial state that
would force the satellite to shuttle between the planets, without
escaping to infinity. What he presumably did not know was that,
in a single orbit, the successive loops made about one planet or the
other would permute their shapes in an irregular sequence. In any
event, he was more interested in real cases, when the three bodies
were the sun, earth, and moon, or Saturn, Titan, and Hyperion, and
he knew that the moon could not shuttle between the earth and the
sun.

Hill’s system of equations has by now been solved many times—
numerically. Evidently the solutions that produce the curves in
Figure 35 are fairly typical; in Does God Play Dice?, lan Stewart
presents a rather similar curve, for a case where the two planets
have equal masses.

The three-body problem, and in particular Hill’s reduced
problem, soon captured the imagination of the great French
mathematician Henri Poincaré, born a few years after Neptune’s
discovery. Like others before him he failed to solve the equations,
but unlike others he solved the problem in a very real sense; he
proved that the equations could not be solved. Of course the
equations do possess a general solution, but not one that will allow
us to find it.

Poincaré did not obtain this amazing result overnight, and, in
fact, he devoted many years to the task. Having found that a
quantitative solution eluded him, he departed from the paths of
previous investigators by turning to qualitative methods. He
considered more general systems of equations than those of the
reduced three-body problem, and in developing their properties he
established the beginnings of a theory of dynamical systems.

To treat a system of n equations—for Hill's reduced problem, n
is 4—he began by introducing phase space. This is the hypothetical
n-dimensional space in which each state of the system is represented
by a point, and particular solutions appear as special curves—
solution curves, today generally called orbits. He then introduced
the concept of a surface of section, today called a Poincaré section
—an (n−1)-dimensional manifold embedded in phase space and
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intersecting the solution curves. A simple example would be the set
of points at which one of the n variables, say the first, assumes a
particular value, say zero.

As we noted in the second chapter, a point where a solution curve
intersects a surface of section completely determines the remainder
of the curve, including the point where the curve next intersects the
surface. Thus, instead of studying the properties of entire curves,
one may concentrate on sequences of intersections. A surface of
section has two sides, which we might think of as being colored red
and blue, and often only those intersections at which a curve crosses
in one direction, say from the red side to the blue, are noted, while
crossings from blue to red are disregarded. A simple periodic orbit,
like a circle or an ellipse, will then cross the section at just one point
—a fixed point—while more complicated periodic orbits may cross
at several points before returning to the first one and repeating the
cycle.

Poincaré next noted the possibility of solutions that he termed
asymptotic; an asymptotic solution curve is one that approaches
some periodic solution curve more and more closely as time
advances, so that its sequence of intersections with a surface of
section converges upon a fixed point. Other solutions can be
asymptotic if the direction of time is reversed, that is, their sequences
of intersections can appear to emanate from fixed points. Finally,
there may be doubly asymptotic solutions, which are asymptotic in
both directions of time. A sequence that emanates from a fixed point
and subsequently converges to the same fixed point is called
homoclinic, as is the fixed point itself. Poincaré demonstrated that
the presence of a homoclinic point implies the existence of an
infinite number of periodic sequences, with different periods, and
also an infinite number of sequences that are not periodic. What he
discovered through qualitative mathematical reasoning was chaos,
at least in the limited sense.

Did he recognize the phenomenon of full chaos, where most
solutions—not just special ones—are sensitively dependent and lack
periodicity? He does not appear to have described his nonperiodic
solutions as being sensitively dependent, but he was quite aware of
the general phenomenon of sensitive dependence, and one of his
most frequently quoted sentences begins, “La prédiction devient
impossible…”

The quotation comes from one of his many philosophical writings
—an essay on chance. Anyone unaware of Poincaré’s work who
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might encounter the essay would at once recognize him as a deep
thinker and a gifted writer, but might not realize that he was a
mathematician, let alone perhaps the greatest mathematician of his
day. In the essay he raises the possibility that what we generally
regard as chance, or randomness, may in many instances be
something that has of necessity followed from some earlier
condition, even though we may be unaware that it has done so. He
notes that in some cases we might be completely unable to detect
the relevant antecedent condition, while in others we might observe
it fairly accurately, but not perfectly. In the latter case the
uncertainty might amplify and eventually become dominant. Is he
not describing chaotic behavior?

The answer is not immediately clear. After some introductory
discussion he analyzes four examples. The first is the general
phenomenon of unstable equilibrium, which he illustrates by
considering a cone standing on its vertex. In theory there is a
position in which the cone can remain standing, but, as with the
standing pencil, or the top that spins too slowly, the minutest
disturbance will cause it to fall. If the disturbance is too small to
observe, we cannot say in advance in which direction the cone will
fall. It is here that he makes his statement that prediction becomes
impossible.

Evidently he is not describing full chaos at this point. During its
fall the cone is in a transient state. After transient effects have died
out, the cone will be lying at rest on its side, in a state of stable
equilibrium, and will exhibit no further seemingly random
behavior. It will logically be predicted to remain in place, and any
new small disturbances will not seriously upset the prediction.

His second example is the weather, and here he states, “We see
that great disturbances are generally produced in regions where the
atmosphere is in unstable equilibrium. Meteorologists know very
well that the equilibrium is unstable, that a cyclone is going to be
born somewhere; but where they are powerless to say.” He does
not seem to have gone deeply enough into meteorological theory to
establish his statement, and presumably he is summarizing the ideas
of the leading meteorologists of his day. Our ideas today are
somewhat different—we recognize plenty of real instability, but few
states of equilibrium except in models—but whether or not his
assumptions were meteorologically correct has no bearing on
whether the phenomenon as he visualized it constituted chaos. It
does have a bearing on how we can go about determining whether
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he was visualizing chaos; if his atmosphere differed from ours, we
cannot be guided by the realization that ours behaves chaotically.

Is the uncertainty that develops as a cyclone breaks out supposed
to persist after the cyclone subsides, so that a prediction made
before an outbreak, for the weather any time after the outbreak,
will tend to fail, or is the uncertainty supposed to die out with the
storm as more settled weather returns, so that predictions will fail
only for the weather occurring while the storm is in progress? He
does not say, and his other two examples—the distribution of the
asteroids along the zodiac and the vicissitudes of roulette—do not
reveal the answer.

However, he is only being deliberate. In a later section he
describes a second phenomenon, which is equivalent to the
persistence of uncertainty, and which he illustrates by considering
the motions of individual molecules in a gas as they impinge on
others. Here he states, “It suffices, we have just seen, to deflect the
molecule before the collision by an infinitesimal, for it to be
deflected after the collision by a finite quantity. If then the molecule
undergoes two successive collisions, it will suffice to deflect it before
the first collision by an infinitesimal of the second order, for it to
be deflected after the first collision by an infinitesimal of the first
order, and after the second collision, by a finite quantity.”

The process is reminiscent of the pinball machine, except that
each molecule strikes another moving molecule instead of a fixed
pin. Poincaré does indeed recognize systems where the uncertainty
will remain after the event that produces it has passed, and it is
reasonable to conclude that he regarded the calm after the storm as
being as unpredictable as the storm.

Nowhere in the essay does he mention the three-body problem,
nor his novel way of treating it. Nevertheless, we are left with the
feeling that he must have recognized the chaos that was inherent in
the equations with which he worked so intimately

In Limbo

It was in 1975 that Li and Yorke published their often-quoted paper
“Period Three Implies Chaos” Whatever they may have intended
to do, they succeeded in establishing a new scientific term, although
one with a somewhat different meaning from what they had had in
mind.
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The same year comes as close as any to marking the onset of an
“explosion” of scientific interest in chaos. The concurrence is
presumably accidental. Like Juliet’s rose, chaos by any other name
would have smelled as sweet to most specialists. Some of them did
not even find the name appropriate. In my own work I avoided it
in favor of “irregularity” as recently as 1983. Soon after the burst
of scientific interest there was a burst of general public interest, and
here it seems highly probable that the catchy name was a decisive
factor.

Since Poincaré had laid the foundations for dynamical-systems
theory back in the nineteenth century, and had demonstrated that
some systems behaved chaotically, at least in the limited sense, we
may wonder why the explosion waited until some sixty years after
his untimely death in 1912. Any explanation that I might offer must
be speculative, but I believe that two factors were involved.

One of these was a general attitude toward irregularity. Poincaré
was not seeking chaos. He sought to understand the orbits of the
heavenly bodies, and he found chaos. To him it was the
phenomenon that rendered the three-body equations too complex
to be solved, rather than the principal subject of a future field of
investigation.

Poincaré’s successor was unequivocally George David Birkhoff,
who wrote a definitive monograph entitled Dynamical Systems
about fifteen years after Poincaré’s death. Birkhoff had the
distinction of being the first outstanding American mathematician
to receive all of his formal education in the United States, and, by
proving by example that it could be done, he gave a great boost to
American mathematics. Even so, some of his colleagues used to say
that his real teacher was Poincaré.

Birkhoff dealt with very general systems of equations. He
produced rigorous proofs of some of Poincaré’s conjectures. He
discussed in detail the concept of a set of central solutions, which
for the Hamiltonian equations of celestial mechanics becomes the
set of all solutions, but which for many familiar dissipative systems
becomes the attractor. By and large he gave the periodic solutions
top billing.

Still, he was not unreceptive to irregularity. Like Poincaré, he had
defined dynamical systems as systems governed by differential
equations—flows—but, as we have seen, flows reduce to mappings
when the whole of phase space is replaced by one of Poincaré’s
surfaces of section. He was thus inevitably led to the study of

ENCOUNTERS WITH CHAOS 121



mappings, and, in a subsequent paper, he looked at a certain class
of two-dimensional mappings in which an attracting set would
contain a closed curve—one that forms a ring about an interior area
and separates it from an exterior area. He noted that some
mappings would continually carry certain points in one direction
around the ring, while carrying other points in the opposite
direction, and from this he deduced that the closed curve must
double back on itself an infinite number of times. For some
mappings the curves  were attractors, and strange ones at that.
Perhaps they should not even be called curves, since in general one
cannot go from one point of one of these curves to another point
by traveling a finite distance along the curve.
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Figure 37. The attracting set for the Poincaré mapping of the sled on the
ski slope, when the moguls extend 1 meter above the pits; the set is also the
attractor. The coordinate system is the one used in Figure 13.



To see one of the curves that Birkhoff knew about but never saw,
we need look no farther than the ski slope. Sleds that move
continually southeastward and those moving continually
southwestward correspond to points in the attracting set that travel
in opposite directions about a ring. Figures 37 and 38 give two
examples. The first curve is the one that is being approached by the
successive panels in Figure 11, where the moguls extend 1 meter
above the pits; graphically it is indistinguishable from the attractor,
shown in different coordinate systems in  Figures 12 and 13. The
second is the one approached by the panels in Figure 18, where the
moguls are only half as high; here the attractor consists of only two
points on the curve, and the chaos is limited.

Birkhoff did not offer specific sets of equations for his curves, but
in 1945, the year following his death, Mary Cartwright and John

 

ENCOUNTERS WITH CHAOS 123

Figure 38. The same as in Figure 37,when the moguls extend only 50
centimeters above the pits;each of the two attractor consists of a single point
of the set.



Littlewood of Cambridge University studied the theoretical
behavior of a periodically forced dissipative system—the so-called
van der Pol oscillator—and they even presented their equation in
their title, “On Non-linear Differential Equations of the Second
Order. I. The Equation  k Large.” They
found that under some conditions the system possessed two stable
periodic solutions with different periods, and on this basis they
stated that one of their invariant curves was like Birkhoff’s “bad
curve.” Such was the attitude that prevailed to ward the curves
whose existence Birkhoff had deduced, even though he himself had
only called them “remarkable.”

Nevertheless, they did not abandon their curve, and they
succeeded in identifying the first differential equation known to lead
to a “bad” attracting set, and hence, except for some Hamiltonian

Figure 39. A Poincaré section of a Cartwright-Littlewood attractor.
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systems without attracting sets, the first to produce at least limited
chaos. The constants of the system are displayed in the title of the
paper, and Figure 39 shows a Poincaré section of the attractor, for
a rather rare choice of values of the constants that leads to full
chaos; thus the figure shows a strange attractor. As such it is not
spectacular; the ubiquitous sets of parallel segments are so closely
packed that even a substantial enlargement will not resolve them.
Only the presence of sensitive dependence reveals that the attractor
must be strange.

One may argue that the absence of an early outburst was not
caused by a prevailing lack of interest; it was the lack of interest.
To some extent this is true, yet it may have been caused by the
priorities of the leaders in the field. One of the quickest ways for a
young scientist to gain recognition, and perhaps a prize, is to solve
a problem that has become well known because the leading
scientists of an earlier generation have tackled it and failed. One
who is seeking such recognition may have little incentive to start
out in a totally new direction, even though history indicates that
the vast unexplored territory surrounding new problems sometimes
holds the key to the solution of older ones. Certainly Poincaré and
Birkhoff and most other leaders did not suggest that the problems
of the future would lie in chaos theory.

Still, chaos could not remain in limbo forever. A decidedly more
positive attitude began to appear as the fifties advanced and gave
way to the sixties. It is clearly evident, for example, in the work of
the American mathematician Stephen Smale, creator of the famed
horseshoe.

The horseshoe is a two-dimensional mapping. To formulate it,
imagine that you take a square in phase space, compress it vertically
and stretch it horizontally, and then bend it into a shape resembling
a horseshoe and lay it over its original position. You may do this in
many ways, but the extremities of the horseshoe should project from
the sides of the square that were compressed, not those that were
stretched. Each point of the original square will then be moved to
a point in the horseshoe, but not necessarily to a point in the square
itself. The points that will remain within the square forever as the
procedure is iterated, forward or backward, form an invariant set,
and Smale showed that within this set, regardless of the particular
shape of the horseshoe, there is chaos; most sequences of iterates
are nonperiodic. Hence, within the whole system, there is at least
limited chaos. Whether or not the invariant set is an attractor, and
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hence whether or not there is full chaos, depends on what happens
to the points after they leave the square, and in particular on
whether they reenter after further iteration.

Sometimes a horseshoe can be discovered within a mapping that
in its totality may not be suggestive of a horseshoe. This is the
situation illustrated in Figure 40. The mapping is accomplished by
taking the square, giving it a quarter turn counterclockwise,
compressing it a bit vertically,  and then squeezing it horizontally
so that it fits into the contorted region inside. This mapping carries
the small interior square shown in Figure 41 into the horseshoe that
intersects it.

Whatever the nature of the chaos, Smale was interested in the
“bad” curves as well as the “good” ones. More generally, what
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Figure 40. A square and the region into which it is carried by a special
mapping. The mapping carries the interior square shown in Figure 41 into
the horseshoe-shaped region that intersects it.



appeared to be emerging was a clear interest in the possibility of
systems with at least some irregular solutions, often without much
concern for whether the general solutions were irregular. To a
mathematician, limited chaos can be as fascinating as full chaos; it
leads to the same peculiarly shaped figures—observe Figure 38—
even though they may not be attractors, and for specific systems its
existence can often be established when a proof of full chaos
remains elusive. Yet to someone interested in tangible systems  there
is a vast difference between limited and full chaos, since the former
will not be observed. If potential chaos in the heartbeat were no
more than limited, we would not have to worry about arrhythmias.
If the global weather system possessed only limited chaos, the
weather would be as predictable as if there were no chaos at all.

Figure 41. A horseshoe mapping; see Figure 40.
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Several years later Smale wrote a paper called “Differentiable
Dynamical Systems,” which has become the acknowledged
successor to Birkhoff’s treatise. He immediately departs from
tradition by defining dynamical systems in terms of difference
equations—mappings—and he notes the greater simplicity that
follows. He includes a discussion of the horseshoe, and presents a
now-familiar three-dimensional mapping often called the solenoid
map. Whether or not the strange set produced by the horseshoe is
part of an attractor, the solenoid unequivocally possesses a strange
attractor. It resembles an infinite wire as it might be coiled inside a
tube, but a cross section is unlike anything that we have seen so far.
No two points are connected, although in the sample in Figure 42
some of them may seem connected, since they are closer together
than the diameters of the printed dots.

Whatever influence the early attitudes toward irregularity may
have had, the bigger factor in the timing of the outburst of interest
in chaos was surely the arrival of the computer. The works of such
people as Birkhoff, in the precomputer age, and Smale, when
computers were commonplace, show clearly that a theory of some
aspects of chaos can be fully developed with pencil and paper.
Demonstrating chaotic solutions of specific systems of equations,
and constructing the accompanying strange attractors, require
something more. Let me cite some of my own work as an illustration.

The first mathematically generated chaos that I encountered was
produced by a very crude model of the global weather system, which
contained not thousands or millions of variables, but just twelve.
Solving a system of this size by hand computation is not an
impossibly long task, as the astronomers of the eighteenth and
nineteenth centuries aptly demonstrated with their calculations of
planetary orbits. If, after formulating the model, I had chosen the
values of the constants that I finally used, I might, by dropping all
other professional activities, have computed a recognizably
nonperiodic solution by hand in a month or two—a time
comparable to what I would have needed afterward to write up the
result for publication. Lack of a computer might have done little
more than double the total effort. The point is that at first I did not
know what values of the constants would lead to chaos, nor
whether any such values even existed, and I had to make many tries
before finding some that worked. Before settling on the twelve-
variable model, I had experimented unsuccessfully with other
systems of equations. Without the computer the needed time for
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computation alone would have been years instead of months, and,
with other problems to occupy much of my time, I would probably
not have continued. Even if I had been lucky on the first try,
determining a large collection of solutions, and producing from
them a set of illustrations like the ones in this volume, would have
been out of the question. I feel certain that anyone else who might
have sought nonperiodic solutions of differential equations by hand
computation would have met with similar obstacles. 

It seems reasonable to conclude that, once computers had been
around for a while, their contribution to the growing awareness of
chaos extended well beyond their application to the hitherto
unsolvable equations that arose in specific problems pursued by
individual scientists. Once a sufficient number of investigators had

Figure 42. A cross section of the attractor of a three-dimensional solenoid
mapping, with a circular cross section of the tube in which it is contained.
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published their solutions in the open literature, other scientists were
able to discern certain common features that had not been
previously recognizable, and it no longer appeared that the study
of similar equations for their own sake would prove fruitless. With
the new incentive came new investigations of equations of all sorts.
Suddenly, the strange attractors that had sometimes shown up in
the earlier problems were joined by a host of others, often produced
by equations that bore no obvious relation to specific physical
problems, and were accepted as their own justification. 

Searching

At this point I want to recount in considerable detail the
circumstances that led to my personal involvement with chaos. I
readily recall the main events, but my attempts to relate them to
earlier and later developments are bound to involve some
speculation. The setting was the Department of Meteorology at the
Massachusetts Institute of Technology, once familiarly known as
Boston Tech, but now almost invariably called M.I.T. I had been
doing postdoctoral work there since 1948, and my main interest
was the dynamics of atmospheric structures of global and
continental size.

As a student I had been taught that the dynamic equations
determine what takes place in the atmosphere. However, as my
thinking became more and more influenced by numerical weather
forecasting, it became evident to me that these equations do not
prohibit any atmospheric state, realistic or unrealistic, from being
an initial state in a solution. It must be, I felt, that the various
solutions of the equations all converge toward a special set of states
—the realistic ones. I had even made a few unsuccessful attempts
to find formulas for this set, and had already abandoned the effort.
In the light of today's knowledge it appears that I was seeking the
attractor, and was right in believing that it existed but wrong in
having supposed that it could be described by a few formulas.

The opening scene took place in 1955, when Thomas Malone
resigned from our faculty in order to establish and head a new
weather research center at the Travelers Insurance Company in
Hartford, Connecticut. Tom had been directing a project in
statistical weather forecasting, a field that had gained a fair number
of adherents in the early days of computers.
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Philosophically, statistical forecasting is more like synoptic than
dynamic forecasting, in that it is based on observations of what has
happened in the past, rather than on physical principles. It is like
dynamic forecasting in that it makes use of values of the weather
elements at particular locations, rather than identifiable synoptic
structures. The type of statistical forecasting that had received most
attention was “linear” forecasting, where, for example, tomorrow’s
temperature at New York might be predicted to be a constant a,
plus another constant b times today’s temperature at Chicago, plus
another constant c times yesterday’s relative humidity at St. Louis,
plus other similar terms. There were long-established mathematical
procedures for estimating the optimum values of the constants a, b,
c, etc., and, in fact, about the only opportunity for the meteorologist
to use any knowledge of the atmosphere was in selecting the
predictors—the weather elements to be multiplied by the constants.
The computational effort that goes into establishing a formula
increases rapidly with the number of predictors, and, as with
numerical weather prediction, the work proliferated only after
computers became reasonably accessible. The method was regarded
by many dynamic meteorologists, particularly those who were
championing numerical weather prediction, as a pedestrian
approach that yielded no new understanding of why the atmosphere
behaved as it did.

I was appointed to fill the vacancy that Tom’s departure had
created, and with his job I also acquired his project. During the next
year I examined numerous statistically derived formulas, and finally
convinced myself that what the statistical method was actually
doing was attempting to duplicate, by numerical means, what the
synoptic forecasters had been doing for many years—displacing
each structure at a speed somewhere between its previous speed and
its normal speed. One-day prognostic charts were decidedly
mediocre, although the method was and still is useful for deciding
what local weather conditions to predict, once a prognostic chart
is available.

Needless to say, many of the devotees of statistical forecasting
disagreed with my findings. Possibly they looked upon me as an
infiltrator from the numerical weather prediction camp. In
particular, some of them pointed to a recent paper by the eminent
mathematician Norbert Wiener, which appeared to show that linear
procedures could perform as well as any others, and so necessarily
as well as numerical weather prediction or synoptic forecasting. I
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found this conclusion hard to accept, and convinced myself,
although not some of the others, that Wiener's statements, which
were certainly correct but were not written in the most easily
understandable language, were being misinterpreted. At a meeting
in Madison, Wisconsin, in 1956, attended by a large share of the
statistical forecasting community, I proposed to test the hypothesis
by selecting a system of equations that was decidedly not of the
linear type. I would use a computer to generate an extended
numerical solution, and then, treating the solution as if it had been
a collection of real weather data, I would use standard procedures
to determine a set of optimum linear prediction formulas. If these
formulas could really match up to any other forecasting scheme,
they would have to perform perfectly, since one could easily
“predict” the “data” perfectly simply by running the computer
program a second time.

My first task was to select a suitable system of equations. I
proceeded in the manner of a professional meteorologist and an
amateur mathematician. Although in principle a wide variety of
systems would have worked, I was hoping to realize some side
benefits by choosing a set of equations resembling the ones that
describe the behavior of the atmosphere. After some
experimentation I decided to work with a drastically simplified
form of the filtered equations of numerical weather forecasting,
which would reduce the number of variables from the many
thousands generally used to a mere handful.

One day Robert White, a postdoctoral scientist in our department
who later went on to become Chief of the United States Weather
Bureau, and still later headed the organizations that superseded it,
suggested that I acquire a small computer to use in my office. If you
wonder why I had not already done so, recall that this was more
than twenty years before personal computers first appeared on the
market. In fact, computers for personal use were almost unheard
of, and the idea had certainly not occurred to me. We spent several
months considering various competing models and finally settled
upon a Royal-McBee LGP-30, which was about the size of a large
desk and made a continual noise. It had an internal memory of 4096
32-bit words, of which about a third had to be reserved for standard
input and output programs. It performed a multiplication in 17
milliseconds and printed a full line of numbers in about 10 seconds.
Even so, when programmed in optimized machine language it was
about a thousand times as fast as a desk calculator—pocket
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calculators had not yet appeared—and was ideal for solving small
systems of equations.

It should not surprise us that in a day when computers were far
from ubiquitous, most scientists, myself included, had not learned
to write computer programs. I spent the next few months getting
acquainted with the computer. Upon returning to the simplified
meteorological equations, I settled on a form with fourteen
variables. Later I cut the number to thirteen and then to twelve by
suppressing the variations of one and then two of the variables. 

The equations contained several constants that specified the
intensity and distribution of the external heating needed to drive
the miniature atmosphere. Thus, if one set of constants failed to
produce a useful solution, there were always others to try. My early
attempts to generate “data” invariably produced “weather” that
settled down to a steady state and was therefore useless for my
purposes. After many experiments, I at last found a solution that
unmistakably simulated the vacillation observed in the dishpan. I
eagerly turned to the procedure for determining the best linear
formula, only to realize that perfect linear prediction was possible
simply by predicting that each variable would assume the value that
it had assumed one vacillation cycle earlier. It was then that I
recognized that for my test I would need a set of equations whose
solutions were not periodic. What I did not even suspect at the time
was that any such set would have to exhibit sensitive dependence.

By this time it was 1959. Although by now I had become a part
of the statistical forecasting community, I managed to retain my
status as a dynamicist, and I planned to attend a symposium in
numerical weather prediction to be held the following year in
Tokyo. Titles for the talks were due well in advance. I gambled on
finding a suitable system of equations and completing my test, and
submitted the title “The Statistical Prediction of Solutions of
Dynamic Equations.”

If I had been familiar then with Poincaré’s work in celestial
mechanics, it might have made sense for me to abandon the twelve
equations and turn to the four equations of Hill’s reduced problem,
which, besides already being known to possess some nonperiodic
solutions, were a good deal simpler. My guess, though, is that such
a switch would not have appealed to me; the mere knowledge that
simple systems with nonperiodic solutions did exist might have
given me additional encouragement to continue my own search, and
in any case I still had my eye on the possible side benefits. These, I
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felt, demanded that I work with a dissipative system. As it was, I
kept trying new combinations of constants, and finally encountered
the long-sought nonperiodic behavior after making the external
heating vary with longitude as well as latitude. This is of course
what happens in the real atmosphere, which, instead of receiving
most of its heat directly from the sun, gets it from the underlying
oceans and continents after they have been heated by the sun.
Continents and oceans differ considerably in their capacity to
absorb solar energy, and in the manner in which they subsequently
transfer it to the atmosphere. When I applied the standard
procedure to the new “data” the resulting linear forecasts were far
from perfect, and I felt that my suspicions had been confirmed.

The solutions proved to be interesting in their own right. The
numerical procedure advanced the weather in six-hour increments,
and I had programmed the computer to print the time, plus the
values of the twelve, thirteen, or fourteen variables, once a day, or
every fourth step. Simulating a day required about one minute. To
squeeze the numbers onto a single line I rounded them off to three
decimal places, and did not print the decimal points. After
accumulating many pages of numbers, I wrote an alternative output
program that made the computer print one or two symbols on each
line, their distances from the margin indicating the values of one or
two chosen variables, and I would often draw a continuous curve
through successive symbols to produce a graph. It was interesting
to watch the graph extend itself, and we would sometimes gather
around the computer and place small bets on what would happen
next, just as meteorologists often bet on the next day’s real weather.
We soon learned some of the telltale signs for peculiar behavior; in
effect, we were learning to be synoptic forecasters for the make-
believe atmosphere.

In Figure 43 we see a copy of fifteen months of the somewhat
faded original output, divided for display purposes into three five-
month segments. The chosen variable is an approximate measure
of the latitude of the strongest westerly winds; a high value indicates
a low latitude. There is a succession of “episodes,” in each of which
the value rises abruptly, remains rather high for a month or so, and
then drops equally abruptly, but the episodes are not identical and
are not even equal in length, and the behavior is patently
nonperiodic.

At one point I decided to repeat some of the computations in
order to examine what was happening in greater detail. I stopped
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the computer, typed in a line of numbers that it had printed out a
while earlier, and set it running again. I went down the hall for a
cup of coffee and returned after about an hour, during which time
the computer had simulated about two months of weather. The
numbers being printed were nothing like the old ones. I immediately
suspected a weak vacuum tube or some other computer trouble,
which was not uncommon, but before calling for service I decided
to see just where the mistake had occurred, know ing that this could
speed up the servicing process. Instead of a sudden break, I found
that the new values at first repeated the old ones, but soon afterward
differed by one and then several units in the last decimal place, and
then began to differ in the next to the last place and then in the place
before that. In fact, the differences more or less steadily doubled in
size every four days or so, until all resemblance with the original
output disappeared somewhere in the second month. This was
enough to tell me what had happened: the numbers that I had typed
in were not the exact original numbers, but were the rounded-off
values that had appeared in the original printout. The initial round-
off errors were the culprits; they were steadily amplifying until they
dominated the solution. In today’s terminology, there was chaos.

It soon struck me that, if the real atmosphere behaved like the
simple model, long-range forecasting would be impossible. The
temperatures, winds, and other quantities that enter our estimate
of today’s weather are certainly not measured accurately to three
decimal places, and, even if they could be, the interpolations
between observing sites would not have similar accuracy. I became
rather excited, and lost little time in spreading the word to some of
my colleagues.

In due time I convinced myself that the amplification of small
differences was the cause of the lack of periodicity. Later, when I
presented my results at the Tokyo meeting, I added a brief
description of the unexpected response of the equations to the
round-off errors.

The Strange Attractor

In 1971 I attended a turbulence meeting in La Jolla, California.
Some of the same old turbulence people were there, and I more or
less expected to hear some of the same old ideas, but there was a
newcomer—the French mathematical physicist David Ruelle—
whose scheduled talk was entitled “Strange Attractors as a
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Mathematical Explanation of Turbulence.” The title seemed
strange to me, and I even asked a colleague if it might be a
mistranslation from the original French. He assured me that it was
not, and when Ruelle spoke, in English at least as fluent as mine, I
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Figure 43. A fifteen-month section of the original print-out of symbols
representing two variables of the twelve-variable model. A solid curve has
been drawn through the symbols for one variable, while the symbols for
the other are faintly visible. The section has been broken into three
five-month segments, shown on consecutive rows.



realized that even though I had not heard of a strange attractor, I
had seen one. Let me describe the circumstances.

Ruelle’s talk was a summary of a paper that he and Floris Takens
had just published under the title “On the Nature of Turbulence,”
which first contained the expression “strange attractor,” and
which, like Smale’s treatise on dynamical systems, became one of
the most frequently cited papers in the field of chaos. In the paper
they used the solenoid mapping—the one that produces Figure 42
—as an illustrative example, and they described turbulent motion
as being “chaotic.” 

At the Tokyo meeting more than a decade earlier I had briefly
mentioned the unexpected behavior of the twelve-variable model,
but I felt that a full discussion of the relationship between lack of
periodicity and growth of small differences, and its implications for
long-range weather forecasting, belonged in a separate paper. For
that paper I was anxious to use an even simpler system of equations
as a principal illustrative example, in the hopes of being able to
demonstrate exactly what was happening. I tried to simplify the
model still more without losing the sensitive dependence, but with
no luck. Actually there was a way to reduce it to three variables,
but I never discovered it until 1983.

My search came to an abrupt end one afternoon in 1961 when I
was visiting Barry Saltzman at the Travelers Weather Center; this
was the center that Tom Malone had established several years
earlier. Barry showed me a system of seven equations that he had
been solving numerically. The equations were a bit like mine, but
they modeled convective fluid motion driven by heating from
below, such as might occur locally over warm terrain, instead of
the global atmospheric circulation, which is driven mainly by
horizontal differences in heating. He was interested in periodic
solutions and had obtained a number of them, but he showed me
one solution that refused to settle down.

I looked at it eagerly, and noted that four of the seven variables
soon became very small. This suggested that the other three were
keeping each other going, so that a system with only these three
variables might exhibit the same behavior. Barry gave me the go-
ahead signal, and back at M.I.T. the next morning I put the three
equations on the computer, and, sure enough, there was the same
lack of periodicity that Barry had discovered. Here was the long-
sought system whose existence I had begun to doubt.
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I was lucky in more ways than one. An essential constant of the
model is the Prandtl number—the ratio of the viscosity of the fluid
to the thermal conductivity. Barry had chosen the value 10.0 as
having the order of magnitude of the Prandtl number of water. As
a meteorologist, he might well have chosen to model convection in
air instead of water, in which case he would probably have used the
value 1.0. With this value the solutions of the three equations would
have been periodic, and I prdbably would never have seen any
reason for extracting them from the original seven.

The three equations do not describe real convective motions very
 well, but for my purposes they did not need to. Treated together
as a mathematical abstraction, they demonstrate one of the simplest
ways in which a deterministic system can behave if it is not going
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Figure 44. A time series for the variable x of the three-variable convective
system. The series, extending for fifty time units, has been broken into two
segments, shown on consecutive rows.



to behave periodically. Figure 44 is a graph of one of the variables
against time. Evidently the system undergoes amplifying oscillations
about one state, which is actually a state of unstable equilibrium,
until the oscillations become too strong. It then proceeds to oscillate
about another unstable state, until these oscillations become too
strong, after which it continually alternates between its two modes
of behavior. The important feature, clearly revealed in the figure,
is that the successive numbers of oscillations about one state or the
other occur in an irregular sequence. Indeed, the behavior has
something in common with the shuttling of the satellite between
two planets that we saw in Figure 36, and, even though one can no
more write a set of formulas for the general solution here than in
the case of the satellite, the graphical solution reveals, for the chosen
values of the constants, virtually everything that can happen. It is a
nearly complete substitute for a general solution.

I decided to use the system as the illustrative example in the write-
up. I felt at that time that the really important finding was the fact
that under fairly general conditions a lack of periodicity implied
limited predictability, rather than the discovery of a specific system
of equations with nonperiodic solutions. I also felt, and still feel,
that of the total systematic quantitative effort that has been put into
predicting various phenomena, the biggest share has gone into
weather forecasting; witness the world-wide network of observing
stations and the development of five-million-variable models. In any
event I addressed the paper primarily to meteorologists, and
submitted it to the Journal of the Atmospheric Sciences, originally
with the title “Deterministic Turbulence” Soon I changed it to
“Deterministic Nonperiodic Flow,” after the editor, whom I knew
well—it was Norman Phillips, creator of the first global circulation
model—persuaded me that the equations lacked some of the
properties that we generally associate with turbulence.

I also managed to fulfill a long-standing wish to look at an
attractor. I simply chose two of the variables as coordinates on a
plane, and plotted numerical values of the third variable beside the
points that I plotted, just as I had so often worked with longitude
and latitude as coordinates on a weather map, and plotted values
of pressure. I then drew contours of the third variable, just as I had
often drawn isobars, except that the procedure was slightly more
complicated, because there turned out to be two distinct sets of
contours over part of the plane, implying that the attractor was
composed of two distinct surfaces, one above the other. These
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appeared to merge as one followed an orbit in either surface toward
the base of the figure.

Figure 45 is the complete map of the attractor, with its two
merging sets of contours, while Figure 46 shows the outline of the
attractor and an extended solution curve that lies within it. Viewed
from a different angle, the curve would become the butterfly. One
can see how, in three dimensions, the curve can pass continually
from one surface to the other, without ever intersecting itself. I
decided to include a description of the attractor in the write-up. 

I have always told my students, when they are writing up some
of their work, to allow much more time than they think they can
possibly need—at least a month in the case of a thesis. In trying to
write a clear explanation of some point that you think you
understand, you may discover that you do not understand it well
enough to explain it, and you may need to spend quite a while to

140 ENCOUNTERS WITH CHAOS

Figure 45. The original picture of the attractor of the three-variable
convective system. With the variables y and z as coordinates, contours of
the variable x have been drawn. Where there are two resolvably different
values of x, the contours for the lower value are dotted. Figure reproduced
by permission of the American Meteorological Society.



think it through, perhaps performing some more pencil-and-paper
research or even some computations. This advice applies to teachers
as well as to students. In my case, in trying to understand and then
explain to the reader how the two surfaces could merge, even
though theory indicated that two solution curves—in this case one
in each surface—could never merge, I realized that the surfaces—
not just the curves—must fail to merge; if they did merge, there 
would be one particular curve on one surface that would merge with
any prechosen curve on the other, violating the theory. The only
remaining possibility was that the surfaces merely appeared to
merge, and actually maintained their identities as one followed a
solution curve. Where a surface appeared to pass under another,
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Figure 46. The outline of the attractor in Figure 45, with an extended
segment of an orbit contained in the attractor. The orbit alternates
irregularly between clockwise circuits about the left hole and
counterclockwise circuits about the right.



then, there were two surfaces passing under two others, making a
total of four, but these all had to maintain their identities, so that
there would have to be four surfaces passing under four others, etc.
My final conclusion, now thoroughly substantiated, was that the
surfaces were really infinite in number; as we say now, the attractor
was strange. I never guessed at the time that this attractor would
for a while, much later, become the feature of the paper that would
draw the most attention. 

In preparing the paper I had been guided by Birkhoff’s treatment
of dynamical systems. When I submitted the paper, the reviewer,
who proved to be quite conscientious and competent, noted that
some of my results overlapped some of the works that had
postdated Birkhoff’s monograph, and he specifically mentioned the
recently translated textbook The Qualitative Theory of Differential
Equations by the mathematicians V.V.Nemytskii and
V.V.Stepanov, originally published in Russian in 1946. Part II of
the book is a complete treatment of dynamical systems, which, as
one might guess from the title, are defined in terms of differential
equations. In it the authors define a solution as being “stable in the
sense of Lyapunov”—the Russian mathematician Aleksandr
Lyapunov was a contemporary of Poincaré’s and a pioneer in
stability theory—if any other solution originating sufficiently close
to it remains close to it as time progresses. This is simply the absence
of sensitive dependence. They demonstrate that, under certain
conditions, which the equations with which I was working evidently
satisfied, a solution possessing Lyapunov stability must be periodic
or almost periodic. They trace proofs of various forms of the result
to Philip Franklin in 1929 and to A. A.Markov, son of the
A.A.Markov of “Markov process” fame, in 1933.

It follows immediately that a nonperiodic solution is unstable in
the sense of Lyapunov, or sensitively dependent, and one more step
shows that if the general solution of a system is nonperiodic, the
general behavior is chaotic. What I had thought was my principal
result suddenly lost much of its perceived newness. Ironically, in the
early fifties I sometimes played chess with Franklin in our faculty
club after lunch, where he would generally win as surely as he had
beaten me in establishing his result. We never discussed dynamical
systems.

Still, the significance that I attached to the result does not show
through in the textbook. Nowhere does the expression “unstable
in the sense of Lyapunov” appear. As with Poincaré and Birkhoff,
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everything centers around periodic solutions. The idea of studying
irregular solutions of differential equations for their own sake had
not really caught on.

Thanks to the interest of Jule Charney, who by then had become
a colleague of mine at M.I.T., my paper soon gained considerable
attention among meteorologists. Unlike some who saw the paper,
Jule believed the results; moreover, he recognized their potential
importance for the Global Atmospheric Research Program. One
outcome was the predictability experiments performed with the
available state-of-the-art global circulation models.

Soon afterward it began to appear that the three equations with
their strange attractor, far from being only an abstract device for
demonstrating simple chaotic behavior, might yield a fair
description of some real-world phenomenon. As a model of
ordinary convection, the system is deficient because it places
excessive restrictions on the motion. If you set a pan of water on
the stove and turn on the burner, the water will not rise everywhere
on the left side and sink everywhere on the right, or rise only on the
right and sink only on the left, in one big roll, as the equations would
require it to do; numerous smaller rolls will develop. If these could
somehow be suppressed, the remaining motion might conform
more closely to the equations.

One way to suppress the smaller rolls would be to abandon the
pan altogether, and let the water fill a tube, arranged in the form
of a closed loop, attached to a wall or otherwise held vertical. In a
computer simulation, the oceanographer Pierre Welander, then at
the Woods Hole Oceanographic Institution, discovered that when
such a loop is heated at the low point, at a suitable rate, the water
can indeed circulate first in one direction and then in the other,
switching at irregular intervals.

The physical reality of the irregularly alternating circulation was
substantiated a few years later when the versatile applied
mathematicians Willem Malkus and Louis Howard, both at M.I.T.
at the time, and Ruby Krishnamurti of Florida State University,
temporarily abandoned their pencils and papers, and built water
wheels that were specifically intended to execute the behavior
predicted by the three equations, spinning clockwise for a while and
then counterclockwise for a while, Malkus’s wheel was a precision
instrument, suitable for controlled laboratory experiments. If you
are interested in building your own wheel, you will probably have
better luck following Howard or Krishnamurti. The basic
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ingredients are a turntable—perhaps a plastic lazy Susan—and
some paper cups.

Simply make a small hole in the bottom of each cup, near the
edge, and then stand the cups up around the periphery of the
turntable, with the holes projecting beyond the rim, and glue the
cups in place. Figure 47 shows a schematic top view. The smallest
circles are the holes, the intermediate ones are the bases and upper
rims of the cups, and the large one, shown dotted where it passes
under the cups, is the rim of the turntable. 

To operate the wheel, tilt it from the horizontal, perhaps by
twenty degrees, and clamp the stationary part of the turntable to
something firm. Then let water run at a steady rate from a faucet
or a hose into the uppermost cup. As the cup fills, the wheel will

Figure 47. A schematic top view of the water wheel, showing the bases and
upper rims of twelve cups, with small holes in the bases.
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become top-heavy and turn, allowing the next cup to move to the
top and receive the water, while the first one will slowly lose its
supply through the hole. With the wheel tilted at a suitable angle,
with the water flowing at a suitable rate, and with a bit of luck, you
should see the wheel spin one way, and then the other.

Leaving the laboratory and turning to the library, if you happen
to come across a scientific paper that arouses your interest, you may
want to look into some related studies, and you can locate some of
the earlier ones through the list of references. Unless you are
preparing a historical review, you may really be more interested in
the later studies, and you may wish that the paper could have looked
into the future and listed the papers that would refer to it. Such lists
actually appear, after the future is no longer the future, in the
Science Citation Index, a much-consulted reference journal
published by the Institute for Scientific Information, in
Philadelphia. It is updated every two months, and the lists are
subsequently combined into annual and then five-year cumulative
lists.

Scientists in other fields do not routinely read meteorological
journals; it is difficult enough to keep up with the literature in one’s
own specialty. Before 1970, it seems that my paper was cited almost
exclusively by other meteorologists. The lone exception, a 1965
paper by the applied mathematician Lee Segel, dealt with thermal
convection, a problem not too far removed from meteorology, and
Segel’s paper would have been accepted for publication by many
meteorological journals. From 1970– 1974 my paper was cited only
two more times by nonmeteorologists.

If I had published the paper in a mathematical journal it might
have caught the attention of the chaos community a good deal
sooner, but might not have been noticed by many meteorologists.
In spite of quips that some scientists take credit for having written
two papers when they have really written the same paper twice, that
is evidently what I would have had to do to reach a wider audience.

An event that was crucial, for me if not for the development of
chaos theory, took place a few years afterward. James Yorke, the
mathematician at the University of Maryland whose joint paper
“Period Three Implies Chaos” with Tien Yien Li was only the
beginning of a long string of innovations, was talking with Alan
Faller, who had left Woods Hole and his eight-foot dishpan and
had joined the Department of Meteorology at the University of
Maryland. Yorke mentioned some work that he was doing, and

ENCOUNTERS WITH CHAOS 145



Faller said that it sounded like my paper on nonperiodicity. He
supplied Yorke with a copy, and also made a fair quantity of copies
which he sent to various mathematicians and other scientists on the
Maryland campus. Shortly afterward, when Yorke was visiting
Smale in Berkeley, he showed him his copy, and Smale evidently
proceeded to make a number of copies and send them to his
acquaintances who were active in dynamical systems—the field was
still relatively small. Some, I am sure, saw for the first time a strange
attractor in flesh and blood.

In retrospect, it seems to me that what may have distinguished
my paper from those that preceded it, other than a picture of a
specific strange attractor produced by differential equations, was
the idea that chaos was something to be sought rather than avoided.
In any event, the “explosion” occurred soon afterward, and my
paper was cited on numerous occasions. I would like to think that
everyone who referred to it also read it and was influenced by it,
but perhaps this is too much to expect. I shall probably never know
to what extent it was responsible for setting off the activity that
followed, and to what extent I was simply lucky that it became
known shortly before an outburst of activity that was due to occur
in any case.

The Ubiquity of Chaos

A few years after chaos had burst into prominence, I received a
reprint bearing the curious title “Lorenz Knots are Prime.” I had
not realized that I had any knots, let alone prime ones, which I had
never heard of. It was by the topologist Robert F.Williams of
Northwestern University, whom I had first met a few years earlier
when we were both visiting Steve Smale at the University of
California in Berkeley. Topology is a thriving branch of
mathematics—one that began as another of Poincaré’s creations.
Knot theory is in turn a branch of topology.

Topology deals with those properties of curves, surfaces, and
more general aggregates of points that are not changed by
continuous stretching, squeezing, or bending. To a topologist, a
circle and a square are the same, because either one can easily be
bent into the shape of the other. In three dimensions, a circle and a
closed curve with an overhand knot in it are topologically different,
because no amount of bending, squeezing, or stretching will remove
the knot. Bob was referring to the butterfly-shaped attractor, and

146 ENCOUNTERS WITH CHAOS



he had shown that some of the closed solution curves that lay in it
were knotted.

One of these curves appears in Figure 48 in schematic form;
where two branches of the curve cross, the one underneath has been
broken. Looking at the figure, I would have guessed that it would
unfold into a circle, but, when I duplicated it with a length of cord,
joined the ends, and tried to stretch it out, there was the familiar
overhand knot, known to knot theorists as the trefoil.

The work was quite specialized, but it typifies the efforts of many
topologists who found that they could not resist the lure of strange
 attractors. They had encountered new aggregates of points, and
they would look into such problems as how the innumerable sheets
in an attractor are joined together.

Other mathematicians became enamored with bifurcations—the
abrupt changes that can take place in the behavior, and often in the
complexity, of a system when the value of a constant is altered
slightly. We have seen examples in the ski-slope model and the
dishpan. Still others turned to chaotic seas with their intricate islands
—Hamiltonian counterparts of strange attractors.

Perhaps the more distinguishing feature of the outburst was its
spread from one field of endeavor to another. From mathematics,
astronomy, and the earth sciences, a general awareness of chaos
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Figure 48. A schematic view of a closed curve contained in the attractor of
the three-variable convective model. The curve is in three-dimensional
space; where two lines appear to cross, the broken line lies below the solid
line. The curve contains a not-so-easily-seen knot.



soon invaded physics, chemistry, and the life sciences, and
ultimately the social sciences and the arts. Among the papers that
appeared just ahead of the explosion, and served to light the fuse,
were a handful that were of special interest to me for one reason or
another.

Leading this list is the pioneering work in population dynamics,
initiated at Princeton University, by the mathematical biologist
Robert May. His dynamical system consisted of a single difference
equation in a single variable, closely related to the logistic equation.
The population of a particular species, say an insect, often varies
greatly from one year to another, and sometimes the total number
present during one year is a fairly good predictor for the number
during the next. Unlike the pendulum and the sliding board, an
insect population has no “Newton’s law,” and the equations that
one formulates generally express what appears reasonable. The
conventional assumption is that if the population is very small, it
will multiply freely, producing a much larger but still fairly small
population the next year. If it is very large, it will produce far more
offspring, but food enough to keep them alive will not be available,
and again next year’s population will be small. The largest
population should therefore follow a year with a medium-sized
population. May found that for suitable rates of multiplication and
starvation, the size would fluctuate chaotically.

A while earlier I had looked into an equation that was somewhat
like May’s, regarding it as a pure mathematical abstraction. Like
the applied mathematicians’ water wheels, May’s work served as
notification that the equation could refer to something tangible.

Also among the early works were a study by Kay Robbins, then
a graduate student at M.I.T., dealing with disk dynamos and their
role in the reversals of the earth's magnetic field, and one by
Hermann Haken at the University of Stuttgart, dealing with lasers.
The feature of interest was that in both studies the equations turned
out to look very much like mine, and their solutions were much the
same. It’s not that disk dynamos and lasers are nearly alike, nor that
either is much like thermal convection; all three systems had been
simplified so much that what was left in one looked much like what
was left in either of the others. It is indeed not unusual for
simplifications of this sort to lead to the recognition of partial
similarities in physically rather different systems, when these
likenesses might otherwise go undetected.
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One other study left me with mixed feelings. Otto Rössler of the
University of Tübingen had formulated a system of three differential
equations as a model of a chemical reaction. By this time a number
of systems of differential equations with chaotic solutions had been
discovered, but I felt that I still had the distinction of having found
the simplest. Rössler changed things by coming along with an even
simpler one. His record still stands.

Turning to more recent developments, let me again begin by
briefly mentioning the life sciences. Outbreaks of various diseases,
which to some extent are phenomena in the population dynamics
of microorganisms and their victims, have been studied with
equations somewhat like those assumed to govern the populations
of single species. Often there are two difference equations, one for
the predator and one for the host. The heartbeat, with its occasional
arrhythmias, has also received considerable attention, which is not
surprising in view of its crucial role in our lives. What seems to
concern many people as much as the well-being of their hearts, and
what might not be expected to be amenable to a similar analysis, is
the strength of the local, national, or world economy.

In the past many economists have assumed that the economy has
an equilibrium state, and that it would settle down to this state,
without any annoying business cycles, if only we would stop
meddling with it—in short, if it were not subjected to variable
forcing. What some chaos-minded economists are now proposing
is that, as a dynamical system, the economy is chaotic, and business
cycles, at irregular intervals, are inevitable. Meddling might even
suppress rather than produce the cycles, but more likely it would
simply shorten some recessions and lengthen others.

Just as the nearly exact equations of meteorology are based on
Newton’s laws of motion and other laws that refer to the minutest
elements of the weather—“parcels” of air small enough to be
treated as particles—so any nearly exact equations of economics
would have to be based on the far more complicated laws governing
the basic economic elements—human beings and some of their
creations. Just as synoptic meteorologists have learned from
experience how large aggregates of parcels—storms and other
structures—typically behave, so economists have learned from
experience how various aggregates of people can influence the
economy. They have formulated simple systems of equations that
incorporate some of the assumed interactions, and in some instances
have encountered chaotic solutions.
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Turning now to the arts, let us first consider music. Here chaos
can enter in two quite different ways. First, there are the tones of
musical instruments. A string or a column of air, or to a lesser extent
a membrane, usually vibrates with a strong periodic component,
corresponding to a fundamental pitch. Typically there are
overtones, which contribute to the instrument's characteristic
sound, but there is often an irregular component that further
modifies the tone, and that in some instances seems to be chaotic
rather than truly random. While recently visiting Douglas Keefe of
the Department of Music at the University of Washington, I was
rather surprised to learn that the normal tone of the saxophone is
not chaotic. Chaos seems to be abundant, however, in a multiphonic
tone, produced when the saxophone is played so that two distinct
pitches are perceived simultaneously.

Quite a different form of chaos in music is something that has
not been detected; it has been introduced during the process of
composing. Unless a piece has intentionally been made devoid of
structure, there are likely to be some reappearances of earlier
themes. These are often more appealing if they are not exact
repetitions, but contain a few unanticipated elements. Listen to
almost any major work of Brahms—the third movement of his First
Symphony, for example—and you will hear him say something and
then say it a bit differently the second time, and still differently the
third time.

Chaotic solutions of simple systems of equations are noted for
their frequent approximate but not exact repetitions. Sometimes
more than one “theme” will be repeated; witness Figure 36,
produced by an equation of celestial mechanics. Earlier composers
had to design their variations, but some of today’s composers have,
in one way or another, translated the fluctuations of the solutions
of simple equations into sequences of notes. Similar steps have been
taken in the visual arts.

A short while ago I received an unexpected but welcome package
from Carolyn Lockett, then a student in fine arts at the University
of Oregon. It contained a video cassette that she had produced. The
piece opened with three small bright vertical bars standing against
a darker background. The bars soon went into a dance, and for the
next four minutes they danced along paths formed by the curves in
the butterfly attractor, meeting at times and parting at others.
Appropriately enough, she had called the piece Dance in the Wind.
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Make Your Own Chaos

In the years immediately after my original encounter with the
strange attractor, my interest in chaos became centered about its
effect upon weather forecasting. When, after ten years or so, I began
to receive invitations to speak about the attractor, and learned of
some of the things that my hosts were doing, my interest spread to
more general aspects. Some of those who were fascinated by the
existence of chaos nevertheless felt that it was the exception while
regularity was the rule, at least in systems defined by simple sets of
equations. Feeling otherwise, I was anxious to disprove the idea.
For this purpose I tried to construct other simple systems with
nonperiodic behavior. I had little luck in finding anything new. Even
as late as 1980, in a paper whose main purpose was to demonstrate
the significance of attractors to the meteorological community, I
found it easiest to choose a system of equations that could be
reduced to the one that I had encountered nearly twenty years
earlier.

Soon afterward my luck changed. One system after another that
I examined proved to have chaotic solutions. At times it seemed that
I could hardly avoid chaos. Equations do not suddenly change their
properties, so I must intuitively have changed my method of
searching. Chaos was becoming recognized as being ubiquitous,
apparently showing up in such diverse phenomena as business
cycles and musical tones, but now it appeared to be ubiquitous in
another way; systems of equations written down in a rather casual
manner had a fair likelihood of behaving chaotically. It is easy now
for me to write a prescription according to which you can create
your own chaos.

Mappings are easier to design than flows. To avoid having most
points go off to infinity, imagine a bounded region, say a square.
Determine the result of stretching the square in one direction, say
horizontally, compressing it in another, say vertically, and then
bending it and fitting it inside the square region that it initially
occupied, thereby establishing a mapping of each point of the
original square into the point to which it is carried by the stretching,
compression, bending, and overlaying. If you are working with
more than two variables—presumably on a computer—take a cube
or a multidimensional box, and stretch it in at least one direction
and compress it in at least one before otherwise deforming it.
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As an alternative to bending, you may break the compressed,
stretched square into two or more pieces and fit them inside the
original square. You will then have a discontinuous mapping.
Likewise, you may omit or diminish the compression and fit two or
more parts of the bent or broken stretched square over the same
part of the original square. You will then have a noninvertible
mapping—one in which you cannot always deduce the past state
from the present. Of course, you can omit both the compression
and the bending, but if you omit the stretching you will not have
chaos, since nearby points will not move apart. 
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Figure 49. Construction of a chaotic mapping of a square region, showing
the square, and the two curves that together with segments of two sides
bound the region into which the square is mapped. Points a, b, and c are
obtained from A, B, and C by giving the square a quarter turn
counterclockwise. Points B, C, and D, obtained from a, b, and c by vertical
compression, are the first, second, and third images of A.



The mappings that produced the strange attractors in Figures 12
and 16, derived by taking Poincaré sections of the ski-slope models
with y as one of the coordinates, are discontinuous, since they are
restricted to a fundamental rectangle; when a board or a sled moves
out through one side it effectively jumps to the opposite side. A real
board sliding on a horizontal plane is a noninvertible system, since,
unlike some mathematical boards for which frictional damping is
proportional to velocity, it does not move ever and ever more
slowly; it comes to an abrupt stop. If we observe the board while it
is still moving, we can predict when and  where it will stop, and
hence where it will be a minute later, but, if we observe it after it
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Figure 50. The sequenc of Figure 49, with eighth-degree polynomial
approximations to the curves, and the attractor of the mapping, contained
between the curves



has stopped, there is no way to tell when it stopped, and hence
where it was a minute ago.

To construct a special continuous invertible mapping in two
dimensions, take a square and draw two curves extending from one
side to the other, as illustrated in Figure 49. The curves should not
cross each other, nor should they cross the top or bottom of the
square, and neither curve should intersect any vertical line more
than once.

To produce the sequence of points into which a given point, say
point A in the figure, is successively mapped, first give the square a
quarter turn counterclockwise. This will carry point A to point a.
Alternatively,  and with a different result, you could have turned it

Figure 51. Construction of a chaotic mapping of a square region, showing
three sections of the square separated by dotted vertical lines and the three
trapezoids into which these sections are mapped.
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clockwise, or flipped it over one diagonal or the other. Second,
compress each vertical line in the square so that it fits between the
two curves. For example, if a is three-fourths of the way from the
bottom to the top of the square, replace it by point B, on the same
vertical line and three-fourths of the way from the lower to the
upper curve. Point B is the point to which A is mapped. Repeating
the two steps will produce points b and C, c and D, etc. Note that
this is somewhat like the process that produced the horseshoe in
Figure 41.

The procedure is not guaranteed to produce chaos. You are more
likely to succeed if your curves have some rather steep slopes. Note
that  both the stretching and the shrinking take place in the second
step. Points originally separated horizontally, and hence separated
vertically after the rotation or flipping, will move closer together,

Figure 52. The attractor of the mapping of Figure 51.
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but points originally separated vertically will move farther apart.
Chaos can result if moving apart prevails over moving together.

Unless you work with a high-quality drafting set, you are likely
to misplace a point, after which the succeeding points will be even
more badly misplaced, and, in any case, you may find the procedure
rather tedious after locating twenty points or so. These might be
enough to suggest sensitive dependence, if you compared them with
a second sequence of twenty points, similarly found. However, they
will probably be insufficient to establish any lack of periodicity, and
they will be totally inadequate for revealing the strangeness of the
attractor, for which  hundreds and probably thousands of points
will be needed. Abandoning the drafting set and turning to a
computer is therefore strongly recommended. For the curves, you
will need formulas that express height above the base in terms of
distance from one side.

The curves in Figure 49 were drawn by hand. In Figure 50 the
same curves have been approximated, apparently not too closely in
some spots, by formulas that the computer can easily handle. Point
A has again been chosen as a starting point, and a sequence of 10,
100 points has been generated. The first 100 points have been
discarded as possibly representing transient conditions, and the
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Figure 53. Flying objects: three pieces of an eight-piece attractor of a
two-dimensional noninvertible mapping.



remaining ones, plotted in the figure, clearly reveal a strange
attractor, which of necessity lies between the two curves.

If you prefer straight lines, you can turn to a variant of Smale’s
horseshoe, which avoids the question of what happens to points
whose images leave the square, by keeping all the images inside. Let
the dotted vertical lines in Figure 51 divide the square into three
strips, while the solid lines divide a portion of it into three
trapezoids. Compress the left-hand strip vertically, and then stretch
it horizontally, more at the bottom than at the top, so that it just
fits into the lower trapezoid. After compressing the middle strip
similarly, give it a quarter turn counterclockwise before stretching
it vertically to fit into the right-hand trapezoid. Give the compressed
right-hand strip a half turn before making it fit into the upper
trapezoid. The widths of the strips and the trapezoids can be
anything desired. On the computer you will need three pairs of
equations—one for each strip.

Again, chaos is not guaranteed. I was unsuccessful on my first
few tries. The trick seems to be to make the right-hand trapezoid
very narrow—perhaps one-tenth as wide as the square. Figure 52
shows the strange attractor produced by a successful try, and even
here there are some surprises; short dark streaks with virtually all
possible orientations pop up in one place or another.

I cannot give you a prescription for using the computer to make
the most interesting attractors, but by now you should be able to
proceed on your own. You will undoubtedly find mappings easier
to work with than flows. You can produce some new effects by
choosing noninvertible mappings. Here is one of my favorite
examples, in Figure 53. The three flying objects, though strange,
are by no means unidentified; for identification, see the leading
section of Appendix 2.

Is Randomness Chaos?

The collection of phenomena that we recognize as behaving
chaotically has become so great that it would be hard to compile a
comprehensive list. I have only sampled it. There are basically two
sets of circumstances under which it can become still larger. We
may believe that some phenomenon is governed by deterministic
laws and that it responds in a regular manner, only to discover at
some point that its behavior is more irregular than we suspected.
The motions of some of the heavenly bodies, considered to be quite
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regular before Poincaré’s discoveries, constitute a classical example.
We may, on the other hand, be quite aware of the irregular behavior
of a phenomenon, but we may think that this behavior results from
some inherent randomness, and discover only later that the
phenomenon obeys regular laws. Some people would place
breaking ocean waves in this category. Here I am adopting the more
liberal concept of chaos, and am including processes with some true
randomness, provided that the processes would exhibit similar
behavior if the randomness could be removed. 

The question that I wish to address now is whether chaos is so
ubiquitous that all or most of the processes that we still regard as
behaving randomly should become recognized as being chaotic
instead. Basically, this is the question that Poincaré asked in his
essay on chance. Perhaps there is little to add to what he said, but
the question may be worth revisiting in the light of our knowledge
that chaotic phenomena are so abundant.

Before proceeding further, we need to consider the question of
the free will of human beings, and perhaps of other animate
creatures. Most of us presumably believe that the manner in which
we will respond to a given set of circumstances has not been
predetermined, and that we are free to make a choice. For the sake
of argument, let us assume that such an opinion is correct. Our
behavior is then a form of randomness in the broader sense; more
than one thing is possible next.

Are all irregularities, except those produced by intelligent
behavior, chaotic rather than random? A simple example suggests
the possibility. Suppose that we have paused to admire a maple tree
whose leaves have assumed a brilliant golden hue. Every once in a
while we may see a leaf floating irregularly from the branches of
the tree down to the ground. Are we looking at randomness or
chaos?

Very likely a gust of wind will first detach the leaf from the tree.
The branches may also be swaying, so that the wind will determine
the position of the branch when the leaf begins to fall. Even if the
leaf becomes detached for some other reason, the wind will guide
it in its journey to the ground, presumably according to the laws of
aerodynamics.

The wind that blows past the tree during the quarter of a minute
or so that the leaf is falling is a part, albeit a very small part, of the
global weather system. If we admit that the weather is an instance
of chaos, we are more or less forced to say the same thing about the
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wind and then the leaf. A while before the leaf fell, perhaps only a
minute but perhaps a day or more, some human activity, which is
certainly more powerful than butterfly activity, presumably altered
the course of the ensuing weather, including the wind that carried
the leaf. We have agreed, however, that as long as the weather
would have behaved equally irregularly without our interference,
we are looking at chaos. Note that our past activity, by changing
the wind, will change the path of the leaf, but it will change it for
another path that might equally well have been anticipated. I
suspect that many other seemingly random phenomena that do not
depend primarily on animate activity for their apparent randomness
can be analyzed in a similar way.

Of course I have left out a gigantic class of random phenomena
—the ones that occur on subatomic scales and are governed by the
laws of quantum mechanics. Here it is a fundamental premise that
events occur at randomly spaced discrete times. Since all matter is
ultimately divisible into subatomic particles, does this mean that all
matter behaves randomly, and determinism is only an abstraction?

Perhaps so, but chaos should remain if we again adopt the liberal
interpretation. I suspect that the general behavior of the swinging
pendulum, the rolling rock, the breaking wave, and most other
macroscopic phenomena would not be noticeably altered if
quantum events occurred at regular predictable instants, or at
chaotically determined instants, instead of randomly.

Let us turn to the alternative possibility—that the future course
of the universe, including the animate activity within it, has already
been determined, and that our apparent free will is an illusion. It
may surprise us to learn that anyone could take such a suggestion
seriously, but the idea has been proposed time and again over the
centuries by various philosophers. It is probably most often
associated with the French mathematician Pierre Simon de Laplace,
who lived a century before Poincaré.

I have encountered the suggestion that, if things are completely
deterministic, we should alter our view of our fellow beings, and
should not, for example, punish a murderer or some other criminal,
because it was already determined that he was going to commit the
act and there was nothing that he could do about it. Such a proposal
fails to capture all of the implications of determinism. If it has
already been determined that someone will commit a murder, then,
by the same token, it has already been determined whether or not
we shall punish him, and there is nothing that we can do about it.
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Indeed, it has even been predetermined that some of us will not
believe in predeterminism and will think that we can do something
about it.

What, then, should we choose to believe—that everything has
been determined, or that we are free to make decisions? I believe
that the appropriate answer is obvious if, like mathematicians, we
introduce certain premises before attempting to reach conclusions.
Let our premise be that we should believe what is true even if it
hurts, rather than what is false, even if it makes us happy. 

We must then wholeheartedly believe in free will. If free will is a
reality, we shall have made the correct choice. If it is not, we shall
still not have made an incorrect choice, because we shall not have
made any choice at all, not having a free will to do so. 
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CHAPTER 5
What Else Is Chaos?

Nonlinearity

AT ABOUT THE TIME that investigations of chaos were becoming
fairly common, the well-established journal Physica, which had
already acquired some of the aspects of three separate journals,
inaugurated a fourth series, Physica D, to be devoted to nonlinear
phenomena. This move took place a few years after the founding
of another journal, Nonlinear Analysis: Theory, Methods and
Applications. Several years later volume 1, number 1 of
Nonlinearity appeared. Contributors to these journals represented
many disciplines, and came from many institutions, including the
Center for Nonlinear Studies at the Los Alamos National
Laboratories, the Center for Nonlinear Dynamics at the University
of Texas, and the Institute for Nonlinear Science at the University
of California. What did their contributions deal with? In many
instances it was chaos.

Are “nonlinearity” and “chaos” synonyms? Not at all. First of
all, the words differ in that the former has a single meaning. A linear
process is one in which, if a change in any variable at some initial
time produces a change in the same or some other variable at some
later time, twice as large a change at the same initial time will
produce twice as large a change at the same later time. You can
substitute “half” or “five times” or “a hundred times” for “twice,”
and the description will remain valid. It follows that if the later
values of any variable are plotted against the associated initial
values of any variable on graph paper, the points will lie on a
straight line—hence the name. A nonlinear process is simply one
that is not completely linear.



Perhaps the most familiar truly linear processes are those that we
ourselves have created. A simple example is the purchase of food
or other items, provided that no discount is offered for buying in
large quantities. If we buy a dozen eggs and leave the store with one
dollar less than we would have if we had not bought the eggs,
someone else buying two dozen eggs of the same size and quality
will leave with two dollars less.

Just as few concrete physical systems are strictly deterministic in
their behavior, so very few are strictly linear. The great importance
of linearity lies in a combination of two circumstances. First, many
tangible phenomena behave approximately linearly over restricted
periods of time or restricted ranges of the variables, so that useful
linear mathematical models can simulate their behavior. A
pendulum swinging through a small angle is a nearly linear system.
Second, linear equations can be handled by a wide variety of
techniques that do not work with nonlinear equations.

It is easy to see, without resorting to extensive mathematical
analysis, that the ski-slope model is nonlinear. Consider a board
that starts from rest at a point 1 meter due east of a mogul. It will
begin to slide in the direction of steepest descent, and so will move
more or less southeastward. Consider a second board 5 meters east
of the same mogul. It will behave just as the first, since it is 1 meter
east of the next mogul.

If the system were linear, a third board starting midway between
the first two would have to remain midway between them and
would also move southeastward. However, since it would be
starting 1 meter west of the second mogul, it would actually move
more or less southwestward.

The same sort of reasoning shows that any chaotic system must
be nonlinear, provided that each variable of the system is confined
within certain limits. Such a variable might be the temperature at
Phoenix, which, regardless of the way some residents may feel,
cannot approach the boiling point of water, nor can it drop to the
depths often encountered in central Alaska. If the global weather
pattern is really sensitive to the flap of a butterfly’s wings, so that
a time will finally arrive when the temperature at Phoenix will be
10 degrees higher than it would have been without the butterfly’s
aid, a disturbance 100 times as great, which could easily be
produced by the flap of a sea gull’s wings, would, if the weather
behaved linearly, have to produce a temperature at Phoenix 1000
degrees higher—a clear impossibility. Even if the weather is not
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sensitive to butterflies, the argument is still valid; a chaotic system
is one in which small differences in the present state will lead in due
time to the largest differences that can occur. If such a system were
not nonlinear, moderate-sized differences of a suitable form would
have to be followed by differences too large to occur.

Even though chaos demands nonlinearity, nonlinearity does not
ensure chaos. A single example constitutes sufficient evidence, and
one example is the now familiar ski slope, with the height of the
moguls above the adjacent pits reduced to 50 centimeters. Here we
have seen that a board, after perhaps weaving back and forth for a
short time, will continue to progress southeastward forever, or else
southwestward forever, in a regular periodic manner. A slight
disturbance in the state will produce a new path, which, however,
will soon converge upon the original one.

It may not seem particularly surprising that the qualitative
behavior of a system can change when the intensity of some
disturbing influence passes a critical level. In looking at bifurcations
in more detail, however, we saw that chaos on the ski slope could
return again with 43-centimeter moguls, and would disappear again
at 40 centimeters. Behavior of this sort is but one example of the
surprises that may be waiting for us when we enter the realm of
nonlinearity.

Complexity

On the following pages we see three figures, two produced by the
computer and one a photograph. Which one strikes you as being
the most complex?

If you and a friend compare answers and do not agree, this is no
cause for concern. The term “complexity” has almost as many
definitions as “chaos.”

It would seem hard for anything to be much more complex, in
the nontechnical sense of being made up of numerous parts, than
the system of which Figure 54 shows but a tiny portion. This
fascinating system is the Mandelbrot set; in the figure it is
accompanied by enough surrounding points to render it visible.
Augmented by still more surrounding points, it is familiar to many
in its spectacular multicolored form, where it shows up as an
intricately woven assemblage of ripples, stars, jewels, and sea horses.

The Mandelbrot set is a fairly simple mathematical concept. To
draw a picture of it, we let one location on a plane be the “origin,”
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and choose  another location for a “key point.” We then let a point
start at the origin, and “jump” about on the plane, in accordance
with a special rule that specifies the spot to which the point will
jump in terms of the key point and the spot from which the point
has jumped; the rule appears in the discussion o ̇f the logistic
equation in Appendix 2. The first jump, incidentally, takes the point
to the key point. If the point remains within a restricted region
surrounding the origin, the key point lies in the Mandelbrot set, and
we plot it. We then repeat the procedure for each of a large
collection of key points, without changing the origin or the rule.

One might imagine that a point whose key point is just outside
the set would jump in a manner much like one with a nearby key
point just in side, for a while at least. This is indeed the case; points

Figure 54. A small portion of the Mandelbrot set, with enough surrounding
points to render it visible. The region extends horizontally from −0.664 to
−0.634 and vertically from −0.498 to −0.468.
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whose key points are just outside require many jumps to exit from
the restricted region. To construct the figure I took two million key
points, chosen randomly from the region covered by the figure, and
I plotted those key points, 83, 423 in all, whose associated jumping
points had not exited after sixty-eight jumps.

What might be even more complex than the Mandelbrot set?
Perhaps the entire global weather pattern—perhaps the anatomy of
a single human being.

Just as there are centers dedicated to studying nonlinearity, so
there are the Center for Complex Systems Analysis at the University
of Illinois and the Complex Systems Theory Branch of the Naval
Research Laboratory in Washington. Just as there are journals
devoted to nonlinearity, so there has been since 1978 the journal
Complex Systems. Just as studies in nonlinearity often deal with
chaos, so studies in complexity often deal with chaos. Indeed,
complexity is sometimes used to indicate sensitive dependence and
everything that goes with it.

Figure 55. A variant of the Japanese attractor.
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By this definition Figure 55 is the most complex. It is one of a
family of strange attractors discovered by Yoshisuke Ueda of Kyoto
University. Like the Cartwright-Littlewood attractor of Figure 32,
it is a Poincaré section of the attractor of a periodically forced
dissipative system—this time the so-called Duffing oscillator—but

Figure 56. Some wind streaks in a field of packed snow.
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here the visible resemblance ends. Ueda had found evidence of
strange behavior as early as 1961, but a high-resolution picture had
to await a more powerful computer. He has recently presented a
vivid description of the difficulties that he encountered in getting
his ideas accepted. In a summary article, David Ruelle described
Ueda’s original attractor as the most aesthetically pleasing strange
attractor so far produced—Figure 55 is somewhat grotesque by
comparison—and he referred to it as a Japanese attractor, but, on
a recent visit to Ueda’s laboratory in Kyoto I learned that it was
being called the Japanese attractor.

By contrast, the Mandelbrot set is not a consequence of
complexity, in the sense of chaotic behavior. Most of the jumping
points whose key points are in the set show no sensitive dependence
in their jumping, and they soon jump about in periodic sequences.
The only exceptions are the points whose key points are on the
boundary of the set.

Sometimes a distinction is made between “chaos” and
“complexity,” with the former term referring to irregularity in time,
and the latter implying irregularity in space. The two types of
irregularity are often found together, as, for example, in turbulent
fluids.

Complexity is frequently used in a rather different sense, to
indicate the length of a set of instructions that one would have to
follow to depict or construct a system. By this measure, Figure 56
is the most complex. It looks somewhat like part of a strange
attractor—the dark sinuous curves are separated by wider light
spaces, and some apparent curves may be seen on closer inspection
to be pairs of curves. However, we are actually looking at wind
streaks in the packed snow that blanketed the well-frozen Sudbury
River in eastern Massachusetts one morning in 1977.

Figures 54 and 55 can be readily reproduced by following short
sets of instructions or executing short computer programs, but the
streaks do not conform to any known simple mathematical formula.
To reproduce them numerically we would have to specify the
locations of so many points on each streak that everything else could
be filled in by interpolation. If we were looking at striations in a
ledge, we might think of letting the instructions specify the precise
latitude and longitude to which a camera should be taken, but
streaks in the snow soon disappear, and these particular ones were
nowhere to be seen when my wife and I made our next ski journey
along the river a few days later.
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Fractality

There are some quantities that can be measured only in whole
numbers—the number of children in a family, even though a mother
expecting her third may say that she has two and a half, the number
of runs scored in a baseball game, the number of letters in a word.
Most people would also include the number of dimensions of an
object or figure; a three-dimensional ball can have a two-
dimensional shadow with a one-dimensional outline. Near the end
of the nineteenth century, however, mathematicians appeared to
discover that some sets of points had fractional dimensionality.
What really happened, of course, was that some pioneers
investigated certain structures that the majority had regarded as
weird, and they found that these weird structures lacked some of
the properties generally associated with simple geometrical objects
of one, two, or more dimensions. They then redefined
dimensionality in such a way that curves, surfaces, and solids
remained one-, two-, and three-dimensional, while precise values
of dimension could be assigned to the less familiar structures. In
many cases these values proved to be fractions. Subsequently other
seemingly logical definitions were introduced; the different
definitions have not always agreed.

A frequently quoted definition is the one introduced in 1919 by
the German mathematician Felix Hausdorff. A modified definition,
which I find easier to comprehend, and which is equal to the
Hausdorff dimension for many sets of points but larger for others,
is the capacity, introduced by the Russian mathematician Andrei
Kolmogorov. I shall be referring to it as the dimension. It is most
easily illustrated when the points of the set lie on a plane, and are
bounded by a square, say one meter on a side.

We divide the square into four squares, each half a meter on a
side. We then divide each of the new squares into four squares, one-
quarter of a meter on a side, etc. At each step we note the number
of newly obtained squares needed to cover all the points of the set.
We are interested in how this number increases from one step to
the next after many steps.

If the set of points whose dimension is being evaluated is the
whole interior of the square, or one or more filled-in areas, the
number of squares immediately or eventually quadruples at each
step; it increases by a factor of 22. If it is a curve or a finite number
of curves of finite length, the number in due time simply doubles,
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because most of the new small squares will lie between curves; it
increases by 21. Finally, if it is a single point or a finite set of points,
the number eventually ceases growing altogether; it increases by 20.
In each case, the exponent of the factor, 2, by which the diameter
of a square is reduced at each step, is the dimension of the set.

We now ask whether there are sets for which the number of
squares ultimately goes up as 2d, where d is not a whole number. If
so, the dimension of the set, defined in any case to be d, is fractional.

Such sets are not hard to create. Consider, for example, the result
of starting with a single square, and then successively dividing every
square into four smaller squares and discarding each upper-right
new square as it is produced. The first step will produce a fat letter
“L,” the second will produce a staircase with four steps and a square
hole, and the end result, seen in Figure 57, will be a set of line
segments forming nested isosceles right triangles. To cover these
segments with squares we would have to triple the number of
squares at each step. It follows that if d is the dimension, 2d=3, so
that d=1.586.

If mathematicians nearly a century ago dealt with fractional
dimensions, it remained for Benoit Mandelbrot to recognize in the
middle twentieth century that sets with fractional dimensions need
not be weird, and that in fact many of the familiar systems found
in nature or in everyday life, or at least simple mathematical models
of these systems, have fractional dimensions. Such systems include
trees with their trunks and limbs and branches and twigs, and
mountains where smaller and smaller features can be rougher and
rougher. Indeed, one of his best-known earlier papers is entitled
“How Long Is the Coast of Britain?” What he noted was that, if
one measures the length on successively larger maps that resolve
successively smaller features, the answer becomes larger and larger.
This is equivalent to covering the coastline with smaller and smaller
squares, and deducing that its dimension is somewhere between 1.
0 and 2.0; Mandelbrot has suggested 1.25. 

Mandelbrot coined the term, fractal to describe systems with
fractional dimensionality. The coastline of Britain and the
triangular structure in Figure 57 are fractals. Unlike many coined
words, the term immediately became widely used, and, unlike
“chaos” and “complexity,” it still appears to have essentially one
meaning.

A property of many fractals that Mandelbrot has repeatedly
discussed in his papers is self-similarity: in many fractal systems,
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several suitably chosen pieces, when suitably magnified, will each
become identical to the whole system. This implies, of course, that
several subpieces of each piece, when magnified, become equivalent
to that piece, and hence to  the whole system. In Figure 57 each
small triangle is clearly identical in structure to the large one. Other
fractals are only statistically self-similar; small pieces, when
magnified, will not superpose on the entire system, but they will
have the same general type of appearance. Such a fractal appears in
Figure 58, constructed in the manner of Figure 57, except that,
instead of the upper right corner, a randomly chosen corner of each
square has been removed.
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Figure 57. A fractal triangle, formed by dividing a square into four smaller
squares and discarding the upper right square so produced, then dividing
each remaining square into four still smaller squares and discarding each
upper right square so produced, and repeating the process indefinitely.



By using the concept of self-similarity you can construct your own
fractal tree. If you have a drafting set or if you are satisfied with a
rough sketch, you don’t even need a computer. Begin with a vertical
line segment; this is the trunk. From the top of the trunk, draw line
segments extending horizontally to either side, each six-tenths as
long as the trunk;  these are the limbs. From the end of each limb,
draw a segment extending upward and one extending downward,
each six-tenths as long as a limb. Continue, alternating between
horizontal and vertical segments, until the lines are as close together
as the width of the pencil marks. You will obtain something like
Figure 59. If you could carry out the process for an infinite number
of steps, you would have a fractal, with dimension 1.356. The
leaves, that is, the points to which the branches eventually converge,
also form a fractal with dimension 1.356.
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Figure 58. A fractal formed as in Figure 57, except that in each retained
square the corner to be discarded has been chosen randomly.



The ratio of limb length to trunk length need not be six-tenths.
If you reduce it below one-half, the leaves will form a fractal with
a dimension smaller than 1.0, even though the tree will look much
like the one in Figure 59. If you increase the ratio to 0.707, i.e., 
 the dimension will reach 2.0 and the tree and also the leaves alone
will fill in a rectangle. There is no way that a drawing on a plane
can have a dimension greater than 2.0, and if you make the ratio
greater than 0.707, the shorter branches will simply fall on top of
the longer ones infinitely many times.

What if you make the ratio exactly one-half? The dimension will
be exactly 1.0, but the tree will still look much like Figure 59. It
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Figure 59. A fractal tree, produced by first drawing a vertical segment, and
then, after this segment or any other one has been drawn, treating it as a
“parent” segment and drawing two “offspring” segments, each six-tenths
as long as the parent, and each extending at right angles from the end of
the parent.



seems reasonable to include sets like this in the family of fractals,
even though their dimensions “happen to be” whole numbers.

You may object that the figure looks more like an overloaded
telephone pole than a tree. There are other options. At each
branching the two smaller branches can leave the parent branch at
different angles, not necessarily right angles, and their lengths can
bear different ratios to the length of the parent branch. It would
also be possible to have three or more limbs leaving the trunk at
different heights. The more variations you include, the better chance
you will have of getting something that looks like a tree.

Figures 60 and 61 show two attempts. They were produced by
the same computer program that produced Figure 59. The only
differences were the choices of the two angles and the two ratios;
you can see what these are by comparing the leading limbs with the
trunk. Interesting structures, not always leaflike, can also be created
by plotting only the leaves, as in figures 62 and 63. The pictures
would seem to support Mandelbrot’s claim that fractals, or at least
fractals as seen with finite resolution, are abundant in nature.

What do fractals have to do with chaos? Very little, when the
fractal is the triangle produced by removing upper right corners
from squares. There is nothing in Figure 57 that looks like
randomness. The most that can be said is that a simple routine has
produced a figure that would look rather strange to anyone who
had viewed only the figures that appear in mid-twentieth-century
geometry books.

The triangle might even be called chaos in reverse, in view of an
alternative procedure for constructing it, which I first heard about
in a lecture presented by Michael Barnsley of the Georgia Institute
of Technology. Locate the three corners and plot a point anywhere
on one side. Choose one corner at random, and plot the point
midway between the first point and this corner. Again choose a
corner at random, and plot the point midway between the new point
and this corner. After enough repeti tions you will reproduce the
triangle in Figure 57. The remarkable thing is that if you choose the
corners in a regular sequence, instead of randomly, you will end up
with just a few points. Thus, in a real sense, the triangle is something
that is random but does not look random.

While I am talking about the triangle, let me mention another
way to produce it. Take a large piece of paper marked off into small
squares. Place an “x” or some other mark in one square in the top
row. In the next row and then in subsequent rows, place a mark in
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a square if the square just above it or the square just to the left of
the one just above it has a mark, but not if both have marks. After
continuing for a great many rows, and then looking at the paper
from a distance so that the marks appear to merge, you will see the
triangle.

The process by which each row will have evolved from the one
above it is actually a dynamical system—a mapping—rather unlike
any others that we have seen. It has an infinite number of variables,
represented by the squares that form a row, but there are only a
finite number of values  that any variable can assume—only two in
this case, symbolized by an “x” and a blank square. Progression
from row to row represents advancement in time. Such systems are
called cellular automata, and they first entered mathematics as
another product of John von Neumann’s fertile imagination.
Interest in them has flourished partly because multidimensional
automata appear to afford an especially economical means of
simulating fluid motion. 
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Figure 60. A fractal tree drawn as in Figure 59, except that the ratios,
instead of both being 0.6, are 0.7 and 0.65, and the angles, instead of being
−90° and +90°, are −60° and +40°.



Some fractals come close to qualifying as chaos by being
produced by uncomplicated rules while appearing highly intricate
and not just unfamiliar in structure. There is, however, one very
close liaison between fractality and chaos; strange attractors are
fractals.

For attractors like those in figures 12 and 16, with their
complexes of nearly parallel curves, the number of small squares
needed to cover every point will more than double as the side of a
square is cut in half, since each square will extend across fewer

Figure 61. Another fractal tree, where the ratios are 0.75 and 0.55 and the
angles are −30° and −10°
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curves. It will not quadruple, however, since a larger and larger
fraction of the squares will fall between the curves. The dimension
therefore lies between 1.0 and 2.0.

Figure 64 has been constructed so that every vertical line drawn
through it intersects it in a Cantor set whose dimension, between 0.
0 and 1.0, is indicated at the base of the figure. It may therefore be
used as a scale for estimating the fractional part of the dimension
of certain struc tures like those in figures 12 and 16, whose
intersections with straight lines are Cantor sets. One can observe
whether these sets are rather sparse, as on the left side of the scale,
or rather dense, as on the right. For dimensions of 0.1 or even a bit
higher, only two intersections with a vertical line will be resolved
by a drawing; this would also be true of a line intersecting the
butterfly attractor, which looks as if it consisted of just two merging
surfaces. Lines cutting across Figures 12 and 16 would look more
like the central portion of the scale, and the attractors can be

Figure 62. The leaves of a fractal tree, where the ratios are 0.7 and 0.65
and the angles are −80° and +20°.
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estimated to have dimensions near 1.5; compare, however, the
discussion of Lyapunov exponents and dimensionality in
Appendix 2.

A rather similar figure, composed of continous curves instead of
randomly selected points on these curves, appears in Mandelbrot’s
comprehensive book The Fractal Geometry of Nature; it is actually
these curves whose intersections with vertical lines are Cantor sets.
The use of dots in Figure 64 is supposed to facilitate comparison
with other figures constructed with dots, such as figures 12 and 16.

It was near the close of the seventies that “chaos” was rapidly
becoming established as a standard term for phenomena exhibiting
sensitive dependence. It was also at just about this time that new
strange attractors were rapidly being encountered, and these
attractors with  their fractal structure, rather than the absence of
periodicity or the presence of sensitive dependence, were the
features that some specialists were finding most appealing.
Temporarily, at least, they were becoming the principal subject of
a chaos theory. It was but a short step for “chaos” to extend its
domain to fractals of all kinds, and even to more general shapes
that had not become familiar objects of study before the advent of
computers. In retrospect, it would be hard to maintain that the
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Figure 63. Another assemblage of leaves, where the ratios are both 0.71
and the angles are −70° and +70°.



original meaning of “chaos” could more appropriately have been
extended to one of these categories of shapes than another. 

There is little question but that “chaos,” like “strange attractor,”
is an appealing term—the kind that tends to establish itself. I have
often speculated as to how well James Gleick’s best-seller would
have fared at the bookstores if it had borne a title like Sensitive
Dependence: Making a New Science. 
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Figure 64. A fractional-dimension scale. Any vertical line drawn through
the figure will intersect it in a Cantor set having the dimension, between
0.0 and 1.0, indicated at the base.



APPENDIX 1
The Butterfly Effect

THE FOLLOWING is the text of a talk that I presented in a session
I devoted to the Global Atmospheric Research Program, at the
139th meeting of the American Association for the Advancement
of Science, in Washington, D.C., on December 29, 1972, as
prepared for press release. It was never published, and it is presented
here in its original form.

Predictability: Does the Flap of a Butterfly’s Wings
in Brazil Set off a Tornado in Texas?

Lest I appear frivolous in even posing the title question, let alone
suggesting that it might have an affirmative answer, let me try to
place it in proper perspective by offering two propositions.

1. If a single flap of a butterfly’s wings can be instrumental in
generating a tornado, so also can all the previous and
subsequent flaps of its wings, as can the flaps of the wings of
millions of other butterflies, not to mention the activities of
innumerable more powerful creatures, including our own
species.

2. If the flap of a butterfly’s wings can be instrumental in
generating a tornado, it can equally well be instrumental in
preventing a tornado.

More generally, I am proposing that over the years minuscule
disturbances neither increase nor decrease the frequency of
occurrence of various weather events such as tornados; the most
that they may do is to modify the sequence in which these events
occur. The question which really interests us is whether they can do
even this—whether, for example, two particular weather situations



differing by as little as the immediate influence of a single butterfly
will generally after sufficient time evolve into two situations
differing by as much as the presence of a tornado. In more technical
language, is the behavior of the atmosphere unstable with respect
to perturbations of small amplitude?

The connection between this question and our ability to predict
the weather is evident. Since we do not know exactly how many
butterflies there are, nor where they are all located, let alone which
ones are flapping their wings at any instant, we cannot, if the answer
to our question is affirmative, accurately predict the occurrence of
tornados at a sufficiently distant future time. More significantly,
our general failure to detect systems even as large as thunderstorms
when they slip between weather stations may impair our ability to
predict the general weather pattern even in the near future.

How can we determine whether the atmosphere is unstable? The
atmosphere is not a controlled laboratory experiment; if we disturb
it and then observe what happens, we shall never know what would
have happened if we had not disturbed it. Any claim that we can
learn what would have happened by referring to the weather
forecast would imply that the question whose answer we seek has
already been answered in the negative.

The bulk of our conclusions are based upon computer simulation
of the atmosphere. The equations to be solved represent our best
attempts to approximate the equations actually governing the
atmosphere by equations which are compatible with present
computer capabilities. Generally two numerical solutions are
compared. One of these is taken to simulate the actual weather,
while the other simulates the weather which would have evolved
from slightly different initial conditions, i.e., the weather which
would have been predicted with a perfect forecasting technique but
imperfect observations. The difference between the solutions
therefore simulates the error in forecasting. New simulations are
continually being performed as more powerful computers and
improved knowledge of atmospheric dynamics become available.

Although we cannot claim to have proven that the atmosphere is
unstable, the evidence that it is so is overwhelming. The most
significant results are the following.

1. Small errors in the coarser structure of the weather pattern—
those features which are readily resolved by conventional
observing networks—tend to double in about three days. As
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the errors become larger the growth rate subsides. This
limitation alone would allow us to extend the range of
acceptable prediction by three days every time we cut the
observation error in half, and would offer the hope of
eventually making good forecasts several weeks in advance.

2. Small errors in the finer structure—e.g., the positions of
individual clouds—tend to grow much more rapidly, doubling
in hours or less. This limitation alone would not seriously
reduce our hopes for extended-range forecasting, since
ordinarily we do not forecast the finer structure at all.

3. Errors in the finer structure, having attained appreciable size,
tend to induce errors in the coarser structure. This result, which
is less firmly established than the previous ones, implies that
after a day or so there will be appreciable errors in the coarser
structure, which will thereafter grow just as if they had been
present initially. Cutting the observation error in the finer
structure in half—a formidable task—would extend the range
of acceptable prediction of even the coarser structure only by
hours or less. The hopes for predicting two weeks or more in
advance are thus greatly diminished.

4. Certain special quantities such as weekly average temperatures
and weekly total rainfall may be predictable at a range at which
entire weather patterns are not.

Regardless of what any theoretical study may imply, conclusive
proof that good day-to-day forecasts can be made at a range of two
weeks or more would be afforded by any valid demonstration that
any particular forecasting scheme generally yields good results at
that range. To the best of our knowledge, no such demonstration
has ever been offered. Of course, even pure guesses will be correct
a certain percentage of the time.

Returning now to the question as originally posed, we notice
some additional points not yet considered. First of all, the influence
of a single butterfly is not only a fine detail—it is confined to a small
volume. Some of the numerical methods which seem to be well
adapted for examining the intensification of errors are not suitable
for studying the dispersion of errors from restricted to unrestricted
regions. One hypothesis, unconfirmed, is that the influence of a
butterfly’s wings will spread in turbulent air, but not in calm air.

A second point is that Brazil and Texas lie in opposite
hemispheres. The dynamical properties of the tropical atmosphere
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differ considerably from those of the atmosphere in temperate and
polar latitudes. It is almost as if the tropical atmosphere were a
different fluid. It seems entirely possible that an error might be able
to spread many thousands of miles within the temperate latitudes
of either hemisphere, while yet being unable to cross the equator.

We must therefore leave our original question unanswered for a
few more years, even while affirming our faith in the instability of
the atmosphere. Meanwhile, today’s errors in weather forecasting
cannot be blamed entirely nor even primarily upon the finer
structure of weather patterns. They arise mainly from our failure
to observe even the coarser structure with near completeness, our
somewhat incomplete knowledge of the governing physical
principles, and the inevitable approximations which must be
introduced in formulating these principles as procedures which the
human brain or the computer can carry out. These shortcomings
cannot be entirely eliminated, but they can be greatly reduced by
an expanded observing system and intensive research. It is to the
ultimate purpose of making not exact forecasts but the best
forecasts which the atmosphere is willing to have us make that the
Global Atmospheric Research Program is dedicated. 
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APPENDIX 2
Mathematical Excursions

Numerical Integration

MOST OF THE FIGURES in this volume have been produced by
a computer-graphics program, which simply plots sets of points and
sometimes connects consecutive points with straight-line segments.
The smooth curves that frequently appear have been formed by
joining points that are very close together, or in some instances by
plotting the points so closely that no connectors are needed. Except
in schematic drawings, like the oblique view of the ski slope, the
points to be plotted have been determined from appropriate systems
of equations.

For mappings, the difference equations directly express future
states in terms of present ones, and obtaining chronological
sequences of points poses no problems. For flows, the differential
equations must first be solved. General solutions of equations
whose particular solutions are chaotic cannot ordinarily be found,
and approximations to the latter are usually determined by
numerical methods.

There are numerous procedures for numerical integration, but
the “classical” fourth-order Runge-Kutta scheme—one of a family
of schemes first devised at the end of the nineteenth century by the
German mathematician Carl Runge, and brought to its present form
a few years later by another German mathematician, Wilhelm Kutta
—is especially popular, and when properly used can give excellent
results. Except for the pinball system, all of the differential
equations used as illustrative examples in this volume were
integrated by this scheme.

To solve a typical system, say



choose a time increment ∆t, and then, to find X(t +∆t) and Y(t+∆t)
when X(t) and Y(t) are known at some time t, let
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Figure 65. Approximations to the circular attractor of a system of two
differential equations obtained when the equations are solved by the
fourth-order Runge-Kutta scheme. The outer circle is the attractor with
∆t=0.5, and the inner structure is the attractor with ∆t=1.65.



and finally,

Analogous expressions hold for Y; note that both Xi-1 and Yi-1 must
be found before either Xi or Yi can be evaluated. The procedure may
be iterated as many times as desired, with the old value of t+∆t used
as the new value of t in each iteration.

The method gives highly accurate results when ∆t is small enough,
but bizarre things can happen if it is chosen too large. For example,
the attractor of the system defined by the differential equations

is a circle. With ∆t=0.5, the computed attractor, forming the
periphery of Figure 65, is hard to distinguish from the correct circle,
but, with ∆t=1.65, the circle gives way to the enclosed strange
attractor. Incidentally, the strange attractor in Figure 53 was
produced by applying a second-order Runge-Kutta scheme to the
same set of equations; in this simpler scheme, X0 and X1 are defined
as before, and

You may enjoy experimenting with different values of `t.
Often we wish to interpolate between iterations; for example, to

construct a Poincaré cross section we may need to know the value
of Y at the time when X=0. For 0<c<1, a suitable formula is the
fourth-degree polynomial approximation

again with an analogous expression for Y. If we have observed that
X has a zero crossing between t and t + ∆t, we can set the expression
for X(t+c∆t) equal to zero, solve the resulting fourth-degree
equation for c, and then evaluate Y(t+c∆t). The equation for c is
easily solved by Newton’s method; let
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and then, for n=0, 1, …, let 

where

is the derivative of the expression for X(t+c∆t). When cn+1 becomes
very close to cn, stop, and let c=cn+1. For some purposes c0 may be
a good enough approximation to c.

The Butterfly

The equations that produced the butterfly-shaped figure in
Chapter 1, and that I used as the illustrative example of chaotic
behavior in the paper “Deterministic Nonperiodic Flow,” are

The three constants b, σ, and r determine the behavior of the system.
The equations have been studied intensively, and Colin Sparrow of
Cambridge University has even written an entire book about them.

The structure that has often been called the attractor is actually
an extensive segment of a particular solution contained in the
attractor. To obtain a butterfly like the one in the first chapter, let

, σ=10, and r= 28. Choose a suitable time step ∆t, suitable
initial values of x, y, and z, and solve the equations by some
numerical procedure, such as the fourth-order Runge-Kutta
scheme. Stop after a few thousand steps and plot the values of z
against the corresponding values of x, omitting the first few points
if they appear to represent transient conditions.

The butterfly has often been drawn with the successive points
connected by line segments, so that it appears as a long continuous
curve. The same effect can be obtained by choosing a very small
time step. I originally encountered the new species of butterfly when
I intended to let ∆t=0.002, but typed the decimal point in the wrong
place. Mutations like this can sometimes produce superior
creatures, but more often they produce garbage, and on occasions
they can be disastrous. 
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Rössler’s equations,

have only one instead of two nonlinear terms. The values used by
Rössler, α=0.2 and µ=5.7, will produce chaos.

The Ski Slope

The equations for the motion of a board or a sled on a ski slope are
simply expressions of Newton’s law, and they equate acceleration
to force per unit mass. If X, Y, Z are distances and U, V, W are
velocity components in the southward, eastward, and upward
directions, respectively, and if H(X, Y) is the height of the slope
above some horizontal reference plane, the equations are

where g is the acceleration of gravity, F is the vertical component
of the force of the slope against the board or the sled, c is a
coefficient of friction, and subscripts denote partial differentiation.

Since

on the slope, it follows that

and

Eliminating Wand dW/dt, we find that

and, with this value of F, the equations for X, Y, U, and V describe
the motion. 

For the board, c has been a prechosen constant, although, as
noted before, it could have been made proportional to
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 the force of the slope against the board. For the sled,
U has been a prechosen constant, and c has been chosen to make
dU/dt vanish; thus

In all of the examples in the text,

so that, in addition to g, and c or U, values of a, b, p, and q must
be chosen before computations can begin. In each example, 2π/
p=10.0 meters, 2π/q=4.0 meters, and a=0.25 except in the
Hamiltonian system, where a=0. Generally b=0.5 meters, except for
specified cases where b=0.25 meters, and in the discussion of
bifurcation, where b ranges from 0.0 to 0.6 meters. Note that h, the
height of a mogul above a neighboring pit, is simply 2b. For the
board, c−1=2 seconds, while for the sled, U=3.5 meters per second.

For the sled, and for the board when it moves continually down
the slope—this excludes the conservative system and the cases in
which the board can become trapped in a pit—X may be used in
place of t as the independent variable. The expressions for the time
derivatives of Y and V, and U in the case of the board, are simply
divided by U. We are left with a system of two equations for the
sled or three for the board, with periodic dependence on the
independent variable in either case, since cos(pX) and sin(pX)
appear in the equations.

Volume-Preserving Chaos

When a Runge-Kutta scheme or some other scheme is used to solve
a system of differential equations, it often produces a small but
persistent injection or removal of energy, in addition to any
increases or decreases that are actually demanded by the equations.
If the system is dissipative, this effect does little more than slightly
alter the intended rate of dissipation, which may have been chosen
somewhat arbitrarily in any case. If on the other hand the system
is nondissipative, the procedure may convert it into a dissipative
system, with quite different long-term properties. It is therefore
especially important in solving such equations to choose a very
small time step, to cut down on any spurious behavior. This
inevitably adds to the computation time.

If you are interested in exploring in more detail the scores of
periodic islands that can dot a chaotic sea, you are strongly advised
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to use a system of difference equations, for which no special
integration scheme is needed. One of the most popular of these
systems is the so-called standard map, proposed by Boris Chirikov
as a paradigm for Hamiltonian systems, and given in polar
coordinates by

The simplest system of which I am aware, however, is the third-
order difference equation

where, given three successive terms, a single multiplication and a
single subtraction will yield the next term. The equation preserves
the quantity

thus, even though it contains no explicit constants, it effectively
defines a family of dynamical systems—one for each value of Q.
Surfaces of constant Q look much like spheres when Q is near zero,
but become noticeably distorted when Q is larger, and open up and
extend to infinity when Q>4.

To observe the structure of a system, choose a value of Q; an
intermediate value, perhaps between 1.0 and 2.0, should work well.
Next choose values of x1 and x2, which should not be too large,
and, treating the expression for Q with n=3 as a quadratic equation
in x3, solve it; either of the two roots can be used as x3 and the other
one will be X0. The points (xn-1, xn) will occupy the projection of
the Q-surface on a plane, and, to avoid plotting the near side and
the far side on top of each other, you can plot xn against xn−1 only
when xn+1>xn−2. You should be able to collect new points a
thousand times as fast as with the volume-preserving slope model.
With high resolution you may be able to discover chains of loops
and chains of still smaller loops surrounding each of these loops,
and perhaps something unexpected.

Hill’s Reduced Problem

In Hill’s reduced form of the three-body problem, all three bodies
move in the same plane. One of them, the “satellite,” has a
negligibly small mass, and the other two, the “planets,” travel about
the center of the combined mass in circular paths.
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If m1 and m2 are the masses of the planets and (x1, y1) and (x2,
y2) are their positions in a Cartesian coordinate system, and if x12=x2
−x1 and y12=y2−y1 and  the equation governing their
motion are

with analogous equations for y1 and y2. Since the planets move in
circular orbits, r12 is a constant, and the units of mass, distance, and
time may be chosen so that m1+m2=1, r12=1, and c=1. Thus

and, if the initial time is chosen so that y12=0 and x12>0,

whence

If (x, y) is the position of the satellite and if  and
 the equations governing the motion are

again with an analogous equation for y. If new coordinates 

are introduced, so that the satellite is viewed in a coordinate system
that rotates with the revolution of the planets, with the X-axis
always passing through the planets, the equations may be written

with  and  so that, although the
equations have not been shortened by the rotation, t no longer
appears explicitly on the right-hand sides.

The equations preserve the value of the so-called Jacobi integral

so that effectively we have a family of three-variable dynamical
systems, one for each value of J, instead of a single four-variable
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system. In this respect the system is like the conservative ski-slope
model.

In order to preserve J when r1 or r2 becomes very small, U or V
must become large, and a computation procedure like the Runge-
Kutta scheme that will work well most of the time may suddenly
fail when the satellite draws too near to one of the planets. To guard
against this possibility it is advisable to let the length of the time
step vary from step to step, making it very small when either r1 or
r2 is very small.

A negative initial value of J will assure us that the satellite cannot
escape to infinity. With some values of m1, m2, and J the satellite
may be trapped in the vicinity of one planet or the other, while with
others, including the ones used to produce Figures 29 and 30, it can
shuttle between the planets.

A Poincaré section, say one where Y=0 and V >0, will produce
a two-dimensional mapping. With fixed values of m1, m2, and J and
various sets of initial conditions, you should be able to produce a
diagram like Figure 20, with islands in a chaotic sea. 

The Logistic Equation

The logistic equation is most commonly written

the choice of symbols varies. For 0<A<4, it defines a family of
noninvertible mappings of the interval from 0 to 1 into itself. It is
probably the simplest attainable equation for studying period-
doubling bifurcations, with the main sequence beginning with a
bifurcation from period 1 to period 2 when A=3, and from period
2 to period 4 when  It has served as the principal
illustrative example in Robert Devaney’s textbook An Introduction
to Chaotic Dynamical Systems.

The values of A for which the behavior is periodic form an infinite
number of finite intervals, while the values for which it is chaotic
lie between 3.57 and 4.0 and form a Cantor set whose dimension
appears to be 1.0. The Cantor set resembles the one that would be
formed by taking an interval of unit length, removing the middle
fourth, then removing the middle ninth of the two resulting pieces,
then the middle sixteenth of the four pieces, etc. Here the sum of
the lengths of the removed pieces is only 1/2.
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If we substitute  the equation
becomes

another convenient form. The first two period-doubling
bifurcations occur at c=  and . The values c. where bifurcations
from period 2i−1 to period 2ioccur converge to c∞= −1.4012, while
the ratios (c∞−ci−1)/ (c∞−ci) converge to 4.6692, a number
discovered by Mitchell Feigenbaum to be characteristic of
bifurcations occurring in a wide class of mappings and flows.
Solutions of period 3 first appear at a saddle-node bifurcation at c=

. Note that the equation is equivalent to the second-order
conservative system

where no constant enters explicitly but where z–w2 retains its initial
value. 

When c and z are taken to be complex, the first-order equation
becomes

where c=a+ib and z=x+iy. These equations generate the Mandelbrot
set. The point (a, b) is in the set if the sequence (xn, yn) starting at
(0, 0) does not approach infinity. The familiar brilliantly colored
pictures of the set are actually pictures of the region just outside the
set. Different colors are assigned to different numbers of steps
required for x or y to become very large, say x2+y2=106. Any other
large number may be used, provided that it will fit into the
computer, since once x and y have become large they increase very
rapidly. The choice of colors requires an artist’s eye rather than a
mathematician’s.

Lyapunov Exponents and Dimensionality

Take an n-variable dynamical system. Choose a point, and take a
small n-dimensional sphere centered at the point. As time increases,
the sphere will be deformed into an approximate ellipsoid; compare
Figure 15, where n=2. In the limit as the initial diameter of the
sphere approaches zero, the time during which the image will
remain indistinguishable from an ellipsoid will approach infinity.
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The long-term average factors by which the lengths of the axes
of the ellipsoid are multiplied during one iteration, for a mapping,
or one time unit, for a flow, are called Lyapunov numbers, and their
logarithms are called Lyapunov exponents. That is, if in the long
run an axis increases or decreases as rapidly as exp(λt), the
corresponding Lyapunov exponent is λ. Ordinarily the exponents
are numbered in decreasing order, with λ1 ≥…≥λn.

If the exponents are to be characteristics of the system, certain
choices of the original point must be avoided. These include
unstable fixed points and points on unstable periodic solutions. If
there are several attractors, there may be separate sets of exponents
for the separate basins of attraction. If the system is Hamiltonian,
there will be different exponents for the chaotic sea and the periodic
solutions. 

The sum of the exponents indicates the rate at which the volume
of the ellipsoid will increase or decrease, so that it will be zero for
Hamiltonian systems and negative for dissipative systems. If the
attractor of a dissipative system is a fixed point, all of the exponents
will generally be negative. If it is a simple m-dimensional manifold
—a curve or a surface if m=1 or 2—the first ra exponents will be
zero and the remaining ones will be negative. Chaos will occur,
whether or not the system is dissipative, if λ1>0.

Consider an n-dimensional box that encloses the attractor. The
sum λ1+…+ λk of the first k exponents indicates the rate at which
the volume—length or area k=1 if or 2—of the projection of an
infinitesimal ellipsoid on a k-dimensional face of the box will
increase or decrease. Thus, if λ1>0, the projection of a small but
finite ellipsoid on one edge of the box will continue to grow until
such time as several points on the now highly distorted ellipsoid
project onto the same point, i.e., until the projection folds over on
itself. If in addition λ1+λ2<0, the projection on a two-dimensional
face will shrink. The attractor may then be expected to consist of a
complex of curves, with no surfaces present.

If λ1+λ2>0, whether or not λ2>0, and if λ1+λ2+λ3<0, the area of
a projection on a two-dimensional face will continue to grow until
folding occurs, while the volume of the projection on a three-
dimensional face will continue to shrink, and the attractor may be
expected to be composed of a complex of surfaces. More generally,
if λ1+…+λk>0 but λ1+…+λk+1<0, the attractor should consist of a
complex of k-dimensional manifolds.
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A formula giving the fractional dimension of an attractor in terms
of the associated Lyapunov exponents has been proposed by James
Kaplan and James Yorke. Again if 1+…+ k  0 , and 1+…+ k+1<0,
implying that k+l<0, the dimension is

For some simple systems d can be shown to equal the capacity. For
more involved systems where equality cannot be rigorously
established, d may be accepted as an alternative definition of
dimension.

For the Poincaré mapping of the sled model, if the unit of time is
the time required to descend five meters, 1=0.72, so that the longest
axis of the ellipsoid will double in just under five meters’ descent,
and 2= 1.53, making d=1.47. For the full flow the exponents are
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Figure 66. A tenfold enlargement of a section of the attractor of the seld
model, shown in Figure12.



0.72, 0, and −1.53. As is generally the case with flows for which
the attractor is not a fixed point, one exponent is zero.

If all small circles behaved as the one in Figure 15 does initially,
the Lyapunov numbers would be 4.8 and 0.047, so that the
exponents would be 1.57 and −3.06. The chosen circle is therefore
deformed about twice as rapidly as a typical circle, but it still
provides a reasonable estimate, 1.51, of the dimension.

For the Poincaré mapping of the board model, λ1=0.67, so that
again an axis doubles its length in about one time unit, while λ2=
−0.70 and λ3= −1.36 , making d=1.96. This value, almost high
enough for the attractor to be composed of surfaces instead of
curves, may appear sur prising in view of the similarity between
Figures 12 and 16. Recall, then, that dimensionality is defined in
terms of limiting behavior as distances in phase space approach

Figure 67. A tenfold enlargement of a section of the attractor of the board
model, shown in Figure 16.
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zero. It is thus a measure of fine structure rather than coarse
structure. Often the attractor is assumed to be statistically self-
similar, and the fine structure is not even investigated. In the present
case, however, the two figures have similar coarse structures but
noticeably different fine structures; in the sled attractor the points
tend to be concentrated into curves, as in the center of the scale in
Figure 64, while in the board attractor they have more of a tendency
to spread out and fill areas, as on the right side of the scale. This
becomes apparent in Figures 66 and 67, which show tenfold
enlargements of similar sections of the two attractors. 

Homoclinicity and the Horseshoe

Let us return to the sled sliding down the ski slope. Although its
general behavior is chaotic, there are two simple periodic paths that
it can follow, and it will nearly follow one for a while if we wait
long enough. On these paths the sled moves exactly 2 meters
eastward, or westward, for every 5 meters that it moves down the
slope.

In a Poincaré mapping of V against y produced by observing the
sled at 5-meter intervals, these paths show up as fixed points.
Consider a small circle enclosing one of these points. Its successive
images under the mapping will be closed curves also surrounding
the fixed point, and the first few images will resemble ellipses. The
long axes will continually grow, since the fixed point is unstable,
while the enclosed areas, and hence the short axes, will continually
diminish, since the system is dissipative. The infinitely long curve
that the successive images will approximate more and more closely
is called the unstable manifold of the fixed point, and will be
denoted by U. Any one of its points is mapped to a point that is
farther from the fixed point when the distance is measured along
U, although its straight-line distance is often smaller. In this
particular mapping, U is graphically indistinguishable from the
attractor.

We may likewise construct the stable manifold S as the limiting
form of successive inverse images of the circle. Points on S are
mapped to points closer to the fixed point, and ultimately their
forward images converge to the fixed point. Likewise the points on
U emanate from the fixed point; that is, their inverse images
converge to the fixed point. More general systems with more
variables can have multidimensional unstable and stable manifolds.
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Figure 68 shows segments of the two manifolds for one of the
fixed points of the sled model, labeled O. The coordinate system is
the perspective view of the inside of a cylinder, used in Figure 13.
The noteworthy feature is that U and S intersect transversally, at
the point labeled C.

Any sequence of successive images in either manifold is one of
Poincaré’s asymptotic solutions. Since the sequence of which C is a
point lies in both manifolds, it is doubly asymptotic, and O is one
of Poincaré’s homoclinic points. It is evident, if we let D and E be
the first two forward images of C, that U must intersect S again at
D and then at E. Likewise, if B and A are the first two inverse images
of C, S must intersect U again at B and then A. In fact, there is
nothing more special about C than about A, B, D, or E. 

Although the distances between successive forward images of C,
measured along S, continually decrease, the distances between these
same points, measured along U, continually increase. Likewise, the
distances between successive inverse images, measured along S,
continually increase. It follows that both U and S become
continually more distorted as they are extended, and inevitably they
collide in many points besides the images of C.

Note that in our example, and in fact in a great many systems,
consecutive images of a point on either manifold, including points
close to  O, lie on opposite sides of O. Thus in the figure, since the
left-hand extension of U from O passes through C, the right-hand
extension must pass through D, while the left-hand extension passes
through E. Likewise the right-hand extension of S passes through
C and A, while the left-hand extension passes through B. This
situation in no way affects the validity of Poincaré’s arguments.

Extending S for many iterations is not computationally
convenient in this example, since to do it we must integrate the
differential equations backward in time. This effectively replaces
friction by negative friction, and V can increase very rapidly, easily
doubling its magnitude in one second. Since we are interested here
only in the intersections of the manifolds, and since U never
encounters values of V exceeding 5 meters per second, the high
values of V on S are of no direct concern, and we can modify the
equations to suppress the high values while leaving the lower values
unchanged.

Figure 69 shows the two manifolds after the modification has
been introduced and each manifold has been extended for one
additional iteration. In places it may be hard to discern which
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manifold is which, but, since neither one intersects itself, all of the
twenty-two intersections shown are of one manifold with the other.

To analyze the full significance of homoclinicity it is more
convenient to turn to Smale’s horseshoe. Figure 70 shows the
structure in the form that Smale originally proposed, before it
resembled a horseshoe closely enough to have acquired the name.
To construct a particular example, begin with a square, whose sides
lie on the lines x=0 and x=1 and whose bottom and top are on the
lines y=0 and y=1. Divide the square into five sections by drawing
the vertical lines x=0.3, 0.4, 0.6, and 0.7. Compress the square
vertically by a factor of ten, producing the elongated rectangle
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Figure 68. Segments of the unstable and stable manifolds of a fixed point
O of the Poincaré mapping of the sled on the ski slope. The unstable
manifold is shown passing through A and B while the stable manifold is
shown passing through D and E, and the manifolds intersect transversally
at C. The points B, C, D, and E are successive images of A. The coordinate
system is that of Figures 13 and 37.



below the main figure. Then stretch the second and fourth sections,
which by now have become small squares, horizontally by a factor
of ten, stretch the middle section even more, compress the end
sections, bend the stretched middle section, and finally fit the whole
structure over the original square, as shown. What were the second
and fourth vertical sections are now the second and fourth
horizontal strips, and they lie between the lines y=0.3 and 0.4, and
y=0.6 and 0.7. The equations of the mapping, for that part of the
square that remains in the square, which is the only part that will
concern us, are
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Figure 69. The segments of Figure 68, extended for one more iteration.
Each intersection is of one manifold with the other. The dots indicate the
points that have been labeled A, B, C, D, E, and O in Figure 68. The stable
manifold is the one that extends farthest from the center and also closest
to the center. The unstable manifold by itself, if extended for several more
iterations, would be indistinguishable from Figure 37.



The inverse mapping is the same as the forward one, with the roles
of x and y interchanged. 

The mapping possesses two fixed points, at ( , ) and ( ;, ;).
The unstable manifold of each point extends horizontally,
becoming curved when it leaves the square, while the stable
manifolds extend vertically. The figure shows segments of the two
manifolds of point O at ( , ); these are seen to intersect
transversally at point C at ( , ), so that O is homoclinic, whence
the manifolds must intersect many more times— an infinite number,
in fact.

Observe now that if we take any point originally in the second
or fourth vertical section and write its coordinates in decimal form,
its image is obtained by removing the leading digit, which must be
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Figure 70. An early form of the horseshoe mapping. A segment of the
unstable manifold of the fixed point O, extending horizontally through A
and B, and a segment of the stable manifold, extending vertically through
D, intersect transversally at C. The points B, C, and D are successive images
of A.



3 or 6, from x and attaching it to y; thus, for example, the image
of (.3207, .549) is (.207, .3549). Likewise, an inverse image of an
eligible point is obtained by transferring a digit from y to x. This
sort of mapping, which simply transfers a leading digit, and shifts
the positions of the others, is called a Bernoulli shift.

It follows that the points (x, y), all of whose forward and inverse
images are in the square, are those where the decimal expressions
for both x and y contain nothing but 3s and 6s. These points form
an obvious two-dimensional Cantor set. Points on the stable
manifold of O are those where there are only a finite number of 6s
in the expression for x, so that, after a finite number of forward
iterations, all of the digits of x are 3s, i.e., x= , and, after still more
forward iterations, more and more leading digits of y are 3s, i.e., y
approaches . Points on the unstable manifold of O are those where
y contains only a finite number of 6s. The points where both x and
y contain a finite number of 6s are therefore the points where the
manifolds intersect, and there are clearly an infinite number of these.

If the digits for y, preceded by the digits for x arranged in reverse
order, form a periodic sequence, repeating say after n digits, the nth
forward or inverse image of (x, y) will be (x, y) again, and (x, y)
will lie on a periodic solution. Thus the number of periodic solutions
is infinite. Randomly chosen infinite sequences of 3s and 6s will
generally not be periodic, so that the number of nonperiodic
solutions is also infinite. Clearly we are looking at chaos, at least in
the limited sense. We can find solutions with special and perhaps
peculiar properties simply by constructing unusual sequences of 3s
and 6s. A solution with interesting behavior might be produced, for
example, by letting the nth digit of x and also of y be 6 when n is a
perfect square, and 3 otherwise.

It is because the mapping has been made linear in a part of the
square that we can write explicit expressions for points on the
unstable and stable manifolds and on periodic solutions. This would
have still been so if we had used a simpler horseshoe, where the
compressed, stretched, and bent square would simply exit from the
original square on the right and then reenter on the right, although
the mapping would involve some interchanging of 3s and 6s as well
as shifts. The qualitative result is nevertheless topological; it would
be unaltered by a continuous deformation of the mapping. If a
horseshoe has the form of the one in Figure 41, or something
considerably more distorted, it still follows that the number of
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intersections of the manifolds and the number of distinct periodic
and also nonperiodic solutions will be infinite. 
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APPENDIX 3
A Brief Dynamical-Systems Glossary

THIS GLOSSARY presents some of the terminology of dynamical-
systems theory that commonly appears in discussions of chaos. It
is addressed primarily to the nonspecialist. It is intended to give the
reader a feeling for what each concept is all about, and on this
account the definitions appear in descriptive and sometimes
colloquial form rather than in standard mathematical language.
Some of the definitions lack mathematical precision, but the
specialist should encounter little difficulty in converting them to
rigorous statements.

As the only alternative to excessive repetition, most of the
definitions contain terms that also appear as entries. Where one of
these terms first enters a definition, it is shown in boldface type. It
is anticipated that readers will use the glossary mainly to check the
meanings of a few terms that they encounter in the course of reading
the main text. The list is nevertheless intended to be self-contained,
and the reader who wishes to start from scratch can, by rearranging
or rereading the entries in a suitable nonalphabetic order, beginning
with system and proceeding through variable, constant, and state,
avoid encountering any terms not already defined. The reader who
chooses to browse through the list in alphabetical order is warned
that the concepts whose names begin with A tend to be the least
simple.

The bulk of the definitions are presented in phase-space
terminology. That is, point will generally be used to denote a state
of a system, and orbit will denote a chronological sequence of states,
or equivalently, if the system is defined by equations, a particular
solution. Note that a fixed point is conventionally treated as a
special case of an orbit.



The reader should be aware that many of the terms have
additional meanings, including other technical meanings, when
used in other contexts.

Almost-periodic orbit. An orbit that comes closer and closer to
repeating its complete past history, after the passage of longer and
longer fixed intervals of time. Compare periodic orbit.

Approach (a point or a set). To come near to and, ultimately,
remain near to, within any prechosen degree of closeness.
Colloquially, to draw nearer and nearer.

Approach infinity. To become larger and, ultimately, remain
larger than any prechosen quantity.

asymptotic orbit. A transient orbit that approaches a fixed point
or a periodic or almost-periodic orbit.

Attracting set. In a dissipative system, the set consisting of the
limit sets of all orbits, together with all points on orbits that emanate
from this set.

Attractor. In a dissipative system, a limit set that is not contained
in any larger limit set, and from which no orbits emanate.

Axis. Any one of a particular set of mutually perpendicular lines
passing through the origin, used as reference lines.

Basin of attraction. The set consisting of all points lying on orbits
that approach a given attractor.

Bifurcation. In a family of dynamical systems, an abrupt change
in the long-term behavior of a system, when the value of a constant
is changed from below to above some critical value.

Butterfly effect. The phenomenon that a small alteration in the
state of a dynamical system will cause subsequent states to differ
greatly from the states that would have followed without the
alteration; sensitive dependence. 

Cantor set. 1. A set of points on a line or a curve such that,
between any two points, there are other points of the set and also
gaps of finite width.

2. A generalization of a Cantor set, as defined above, to more
than one dimension.

Capacity. A particular measure of the dimension of a set, based
upon the rate at which the number of cubes or spheres needed to
cover the set increases, as the diameter of each cube or sphere
decreases.

Chaos. 1. The property that characterizes a dynamical system in
which most orbits exhibit sensitive dependence; full chaos.
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2. Limited chaos; the property that characterizes a dynamical
system in which some special orbits are nonperiodic but most are
periodic or almost periodic.

Chaotic sea. The set approached by a chaotic orbit in a
Hamiltonian system.

Compact system. A dynamical system in which every orbit
possesses a limit set.

Completely random. See random.
Conservative system. A dynamical system in which some

ostensibly variable quantity actually remains constant as time
progresses.

Constant (of a system). A feature that does not vary as time
progresses.

Coordinate (of a point). The distance from the origin to the
closest point, on a particular axis, to the given point.

Deterministic system. A system in which later states evolve from
earlier ones according to a fixed law.

Difference equation. An equation that expresses the value of a
variable of a system, at a time following a given time, in terms of
the values of all of the variables at the given time.

Differential equation. An equation that expresses the rate at
which a variable of a system is changing at a given time, in terms
of the values of all of the variables at that time.

Dimension. Any one of a number of measures of a set of points
that agrees with the classical concept of dimension when the set is
a point, curve, surface, or other manifold, but is also defined, often
as a fraction, for more general sets.

Dissipative system. A dynamical system in which the image of
any set of points of finite volume in phase space is a set of smaller
volume.

Doubly asymptotic orbit. An orbit that is asymptotic to a fixed
point or a periodic orbit and also emanates from a fixed point or a
periodic orbit.

Dynamical system. A deterministic system. Also, liberally, a
system with a slight amount of randomness, provided that the
qualitative behavior would not be appreciably changed if the
randomness were somehow removed.

Emanate from. To approach, if one travels in the reverse direction
along an orbit.

Equilibrium. A fixed point, or, sometimes, a periodic orbit.
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Family. A set of dynamical systems that are alike except for the
values of one or more constants.

Fixed point. A point that is identical with its own image.
Flow. A dynamical system whose variables are defined for

continuously varying values of time. A flow is often governed by a
set of differential equations.

Fractal. A set of points whose dimension is not a whole number.
Also, a set of similar structure whose dimension “happens to be” a
whole number. 

Full chaos. See chaos.
Hamiltonian system. A certain type of conservative volume-

preserving system.
Homoclinic point. The fixed point from which a homoclinic orbit

emanates and which it subsequently approaches.
Homoclinic orbit. An orbit that is asymptotic to a fixed point or

a periodic orbit and emanates from the same point or orbit.
Horseshoe. A particular type of two-dimensional mapping, in

which a square or some other area is mapped into a distorted area
that intersects the original area in two disjoint pieces.

Image. The set of points that follows a given set by a specified
number of iterations, one iteration unless otherwise stated, for a
mapping, or by a specified amount of time, for a flow.

Initial conditions. The state of a system, at the beginning of any
stretch of time that may be of interest to an investigator.

Invariant set. A set of points that is identical with its own image.
Inverse image. The set of points whose image consists of a given

set.
Invertible system. A dynamical system in which each point has

one and only one inverse image.
Limit set (of an orbit). A set that is approached by an orbit, and

does not contain a smaller set approached by the orbit. Colloquially,
the set consisting of every point that the orbit passes very close to,
again and again.

Limited chaos. See chaos.
Linear system. A system in which alterations in an initial state

will result in proportional alterations in any subsequent state. 
Logistic equation. A particular quadratic difference equation in

one variable.
Lyapunov exponents. The logarithms of the Lyapunov numbers.
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Lyapunov numbers. The long-term average factors by which the
lengths of the axes of an infinitesimal ellipsoid in phase space are
multiplied, when the ellipsoid is replaced by its successive images.

Manifold. A point, curve, surface, or volume, or its generalization
in multidimensional space.

Mapping. A dynamical system whose variables are defined only
for discrete values of time. A mapping is often governed by a set of
difference equations.

Model. A system designed to possess some of the properties of
another, generally more complicated, system.

Noninvertible system. A dynamical system in which some points
have several or no inverse images; a system that is not invertible.

Nonlinear system. A system in which alterations in an initial state
need not produce proportional alterations in subsequent states; one
that is not linear.

Nonperiodic orbit. An orbit where any sufficiently close
repetition of a past state is of temporary duration; an orbit that is
neither periodic nor almost periodic.

Orbit. The representation in phase space of a continuous or
discrete chronological sequence of states.

Origin. A particular point in phase space or ordinary space, used
as a reference point.

Parameter. A constant whose value can differ from one member
of a family of dynamical systems to another. 

Period. The number of iterations or the interval of time between
successive repetitions in a periodic orbit.

Period-doubling bifurcation. 1. A bifurcation from a system in
which typical orbits are periodic to one in which typical orbits are
also periodic, but with a period twice as long.

2. An infinite sequence of period-doubling bifurcations, as
defined above, culminating in chaotic behavior.

Periodic orbit. An orbit that exactly repeats its past behavior after
the passage of a fixed interval of time.

Periodic system. A system in which all but a few exceptional
orbits are periodic or almost periodic, or are asymptotic to periodic
or almost-periodic orbits.

Periodic window. In a family of dynamical systems, a continuous
set of values of a parameter for which the corresponding system is
not chaotic, separating values for which the system is chaotic.

Phase space. A hypothetical space having as many dimensions as
the number of variables needed to specify a state of a given
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dynamical system. The coordinates of a point in phase space are a
set of simultaneous values of the variables.

Poincaré mapping. A mapping whose phase space is a Poincaré
section of the phase space of a flow, and where successive images
of a point are successive intersections of an orbit in the flow with
the Poincaré section.

Poincaré section. A cross section of the phase space of a flow that
is intersected by many or most orbits.

Point. The representation in phase space of a state of a dynamical
system.

Random system. 1. A system in which the progression from
earlier to later states is not completely determined by any law; a
system that is not deterministic. 

2. A system in which later states occur completely independently
of earlier states; a completely random system.

Self-similar set. A set of which a portion, if magnified, becomes
identical to the original set.

Sensitive dependence. The property characterizing an orbit if
most other orbits that pass close to it at some point do not remain
close to it as time advances.

Separatrix. A boundary separating two basins of attraction.
Set (of points). Any collection of points; often, a curve, surface,

or some other structure, treated as an aggregation of points.
Stable equilibrium. A fixed point or a periodic orbit from which

no orbits emanate.
Stable manifold. A manifold formed by the set of orbits that

approach a given fixed point or periodic orbit.
State. The condition of a system at one instant; a set of

simultaneous values of the variables of a system.
Statistically self-similar set. A set of which a portion, if magnified,

has the same typical structure as the original set.
Strange attractor. An attractor with a fractal structure; one whose

intersection with a suitable manifold is a Cantor set.
Surface of section. A Poincaré section.
System. Any entity that can undergo variations of some sort as

time progresses.
Transient orbit. An orbit that has no points in common with its

limit set. 
Unstable equilibrium. A fixed point or a periodic orbit from

which at least one orbit emanates; an equilibrium that is not stable.
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Unstable manifold. A manifold consisting of all points on orbits
that emanate from a given fixed point or periodic orbit.

Variable (of a system). A feature that can vary as time progresses.
Volume-preserving system. A dynamical system in which the

image of any set of points in phase space is a set having the same
volume. 
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THE VOLUME of literature devoted to chaos has grown to the
point I where it would be difficult for anyone to become familiar
with all or even most of it. It continues to expand. Hao Bai-lin has
supplemented his extensive collection of reprinted articles in Chaos
and Chaos II with a selected bibliography of more than two
thousand entries, while Zhang Shu-yu, a protégée of Hao’s, has
subsequently listed 7,460 items, including 303 books, in her
Bibliography on Chaos, published in 1991.

In assembling the present list, I have rejected any thought of
undertaking the arduous and perhaps impractical task of picking a
small but representative sample, or of trying to identify the
“important” items. The inevitable result has been that the selection,
like the text, is somewhat slanted toward the works with which I
am more familiar. The items finally chosen, presented as a single
list, have been restricted to three categories. Some items in the first
or second category fit into the third as well.

The first category consists of a few wholly or largely nontechnical
works, which should provide many of you with some enjoyable
recreational reading. These works extend from Henri Poincaré’s
famous set of essays, Science and Method, to the recent rather
tersely titled books by John Casti, Ivar Ekeland, James Gleick,
Benoit Mandelbrot, Heinz-Otto Peitgen and Peter Richter, Ivars
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Holden, Lichtenberg and Lieberman, Moon, Nemytskii and
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extended exposition by Smale. Ruelle’s Chance and Chaos falls into



the first category, while his Chaotic Evolution and Strange
Attractors belongs in the second.

Finally there is the largest category, consisting of the works that
I have specifically referred to, or often merely alluded to, in the text
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Page numbers are shown in boldface type when the reference is to
a figure.
Adams, John Couch (1819–1892),

113
Almost-periodicity:

meaning of, 17;
absence of, and chaos, 18, 142;
in Hamiltonian systems, 62, 66,
66

Analogues, 84
Arrhythmias, 14, 127, 149
Asymptotic solutions, 118, 196
Atmosphere, as dynamical system,

78, 79.
See also Global weather system

Attracting sets:
meaning of, 58;
determination of points on, 58,
59.
See also Birkhoff’s “bad”curves;
Cartwright-Littlewood
attractor

Attractors:
meaning of, 38;
graphical representation of, 39;
determination of points on, 42,
43, 51;
of sled model, 43, 45, 45, 48,
194, 195;
of global weather system, 48,
96, 97, 98, 130;

of board model, 51, 53, 194,
195;
multiple, 54;
absence of, in Hamiltonian
systems, 60;
in dishpan experiments, 88;
of specially designed systems,
153, 155, 155, 156, 157, 184,
185.
See also Attracting sets;
Strange attractors

Barnsley, Michael Fielding, 172
Baseballs, 110
Basin boundaries:

meaning of, 54;
in board model, 54, 55

Basins of attraction:
meaning of, 54;
in board model, 54, 71

Bernoulli shifts, 201
Bifurcations:

meaning of, 68;
resulting from stability changes,
68;
saddle-node, 69;
in board model, 69, 71, 71, 74,
74, 147;
period-doubling, 70, 71, 71, 71,
74;
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in dishpan experiments, 88, 147;
in logistic equation, 191

Birkhoff, George David (1884–
1944), 121, 122, 123, 124, 125,
127, 128, 142

Birkhoff’s “bad” curves, 121, 122,
123

Bjerknes, Vilhelm Friman Koren
(1862– 1950), 94

Board model:
formulation of, 26;
detection of chaos in, 30, 32,
32, 32, 35;
determination of attractor of,
51;
attractor of, 53, 176, 194, 195;
basin boundaries in, 54, 55;
bifurcations in, 69, 71, 71, 74,
74

Bradbury, Ray, 14
Brahms, Johannes (1833–1897),

150
Business cycles, 149, 151
Butterflies:

as symbols of chaos, 12;
as weather modifiers, 84, 153,
178

Butterfly attractor, 13, 14, 139,
140, 141, 145, 146, 150, 176,
186

Butterfly effect, 13,178

Cantor, Georg (1845–1918), 48
Cantor sets, 48, 51, 174, 177, 191,

201
Capacity, 167, 193
Card shuffling, 6, 8
Cartwright, Dame Mary Lucy, 123
Cartwright-Littlewood attractor,

124, 124, 165
Cellular automata, 173
Chaos:

meanings of, 1;

technical meaning of, in this
volume, 4;
refinements of technical
meanings, 4, 6, 7, 22;
symbols of, 12;
detection of, 15, 20, 24;
acquisition of technical
meaning, 20, 120;
routes to and from, 68;
in the atmosphere, 79, 85, 93,
107;
in dishpan experiments, 88, 91;
in global circulation models, 94,
101;
and atmospheric predictability,
101, 102, 142;
awareness of, 113, 120, 125,
128, 146;
recognition of, by Poincaré, 118;
perceived as randomness, 118,
157;
“make your own,” 151, 152,
153, 154, 155.
See also Butterfly effect;
Full chaos;
Limited chaos;
Sensitive dependence

Chaotic seas, 62, 62, 67, 147
Charney, Jule Gregory (1917–

1981), 97, 99, 102, 103, 142
Chirikov, Boris, 46, 51, 188
Climate, 4, 48, 79
Cloud physics, 83.

See also Clouds;
Rain;
Snow

Clouds, 80 passim
Coefficient of friction, 28, 38, 186
Coin tossing, 5, 8, 10, 13
Compactness:

meaning of, 15;
significance of, 17;
of board model, 32, 35;
of global weather system, 81, 84
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Complete randomness, 6
Complexity, 4, 163, 164, 164, 165,

165, 165, 169
Computation, manual, 114, 117,

128
Computer graphics, 42, 182
Computers:

as equation solvers, 26, 28, 30,
114, 131, 156, 157, 170;
and weather forecasting, 81, 94,
97 passim;
and awareness of chaos, 128.
See also LGP-30 computer

Conservative systems, 60.
See also Hamiltonian systems

Convection, 137, 143, 145, 148
Cross sections, 42 passim.

See also Double cross sections;
Poincaré sections

Cusps, 55, 55, 58

Damping time, 28, 29
Day, length of, 78, 93
Determinism, 6, 7, 8, 139, 157, 159
Devaney, Robert, 191
Dewey, Thomas Edmund (1902–

1971), 75
Difference equations:

meaning of, 10;
derived from differential
equations, 12, 45, 121;
as basis for dynamical systems,
127.
See also Logisticequation;
Mappings;
Population dynamics

Differential equations:
meaning of, 12;
in sled model, 45;
general solutions, 110, 117,
139;
solution curves, 117 17;
as basis for dynamical systems,
121, 142.

See also Filtered equations;
Flows;
Hill’s reduced problem;
Numerical integration;
Primitive equations;
Rössler’s equations;
Three-variable model;
Twelve-variable model

Dimensionality, 167 passim, 177,
193

Discontinuous mappings, 151
Dishpan experiments:

apparatus for, 86, 87, 89, 91;
flow patterns in, 88, 89, 90, 92,
93, 94;
implications of, 91 93

Disk dynamos, 148
Dissipative systems:

meaning of, 50;
versus Hamiltonian systems,
62, 66;
atmosphere and ocean as, 78

Double cross sections, 55, 57
Doubling times, 103, 180
Doubly asymptotic solutions, 118,

196
Duffing oscillator, 165
Dynamical systems:

meaning of, 7;
families of, 28.
See also Equations;
Flows;
Mappings;
Models

Dynamic meteorology, 81 passim,
94, 130

Economy, 149
Ellipses:

as attractors, 41, 60;
as images of circles, 48, 51;
as planetary orbits, 112, 114

Ellipsoids, as images of spheres, 54,
192
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Energy, 55, 61, 67, 98
Equations:

of dynamical systems, 10;
of global weather system, 94,
97.
See also Difference equations;
Differential equations.

Equilibrium, 21.
See also Stable equilibrium;
Unstable equilibrium

Errors:
in weather observations, 84, 95
passim, 135, 180;
in weather forecasting, 103,
104, 105, 180

European Centre for Medium
Range Weather Forecasts, 100

European Centre model, 100, 103

Faller, Alan Judson, 91, 145
Families of systems, 28, 61, 68
Feigenbaum, Mitchell Jay, 191
Filtered equations, 98, 99, 103, 132
Flags, flapping, as chaotic systems,
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