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From the stripes of a zebra and the spots on a leopard’s back to the ripples on
a sandy beach or desert dune, regular patterns arise in nature everywhere The
appearance and evolution of these phenomena have been a focus of recent research
activity across several disciplines.

This book provides an introduction to the range of mathematical theory and
methods used to analyse and explain these often intricate and beautiful patterns.
Bringing together several different approaches, from group theoretic methods to
envelope equations and the theory of patterns in large-aspect-ratio systems, the
book provides insight behind the selection of one pattern over another.

Suitable as an upper-undergraduate textbook for mathematics students or as a
fascinating, engaging, and fully illustrated resource for readers in physics and bi-
ology, Dr Hoyle’s book, using a nonpartisan approach, unifies a multiplicity of
techniques used by active researchers in this growing field.
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Preface

Regular patterns are found in abundance in nature, from the spots on a leopard’s
back to the ripples on a sandy beach or desert dune. There has a been a flurry of
recent research activity seeking to explain their appearance and evolution, and the
selection of one pattern over another has turned out to be an inherently nonlinear
phenomenon. My aim in writing this book has been to provide an introduction to
the range of methods used to analyse natural patterns, at a level suitable for final
year undergraduates and beginning graduate students in UK universities.

The book brings together several different approaches used in describing pattern
formation, from group theoretic methods to envelope equations and the theory of
patterns in large-aspect-ratio systems. The emphasis is on using symmetries to
describe universal classes of pattern rather than restricting attention to physical
systems with well-known governing equations, though connections with particular
systems are also explored. I have taken a wholeheartedly nonpartisan approach,
unifying for perhaps the first time in a textbook a multiplicity of methods used by
active researchers in the field.

It was David Crighton who originally suggested I should write this book. I had
been lecturing a Cambridge Part III course on pattern formation, and David men-
tioned in passing that it might be a nice idea to turn my lecture notes into a book Of
course I had no idea what I was letting myself in for, but David was always persua-
sive and inspirational so naturally I said yes. Several years of sweat and toil later
I have finally produced the book, though it bears little resemblance to my Part IIT
course, which is probably just as well. I am only sad that David is no longer here
to see the result: he inspired and encouraged so many people, particularly those at
the beginning of their careers, and he is sorely missed Like so many others, I owe
him a great debt.

Mike Proctor, my Ph.D supervisor, first introduced me to pattern formation
Later, it was Mike who gave me the opportunity to lecture the course that led to
this book I am very grateful to him for all his support and encouragement over
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the years I particularly enjoy and admire the great enthusiasm with which he ap-
proaches any problem, whether it be a tricky calculation or just a matter of finding
the right pub.

My heartfelt thanks go to Jon Dawes, Paul Matthews, Mike Proctor, James
Robinson and Alastair Rucklidge, who between them read and commented on the
manuscript. Their help has made writing this book a much less lonely task, and
greatly improved the final draft

Much of the book was completed while I was on sabbatical in Cambridge, where
Mike Proctor and Nigel Weiss were my hosts. T would like to express my thanks
to Nigel for his regular reminders to stop working and go home at night.

I would also like to thank the following people who contributed pictures, en-
couragement or useful comments along the way: Tom Berger, Eberhard Boden-
schatz, Steve Cox, Benoit Dionne, Blas Echebarria, Gerhard Extl, Stephan Fauve,
Jay Fineberg, Oliver Harlen (who showed me how to cook hexagons), Dana
Mackey, Paul Matthews, Angus McCarter, Ian Melbourne, Tom Mullin, Sarah
Pollicott, Hermann Riecke, Alastair Rucklidge, Bjomn Sandstede, Mary Silber,
Annette Taylor, Steve Tobias, Dawn Tse, Laurette Tuckerman, Ed Webb and the
editorial team at CUP.

Finally, I am grateful to Nick for cheering me up when it all seemed overwhelm-
ing, for his endless patience while his spare room and kitchen table were buried in
bits of paper, and for cooking the hexagons with turmeric and then frying them up
with potatoes afterwards — delicious!

Guildford, Tuly 2005
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What are natural patterns?

This book is about patterns: stripes on tigers, whorls in your fingerprints, ripples
in sandy deserts, and hexagons you can cook in your own kitchen More precisely
it will be concerned with fairly regular spatial or spatiotemporal patteins that are
seen in natural systems — deserts, fingertips, animal coats, stars — and in labora-
tory o1 kitchen experiments These are structures you can pick out by eye as being
special in some way, typically periodic in space (Figure 1 1), at least locally. The
most common are stripes, squares and hexagons — periodic patterns that tesselate
the plane — and rotating spirals o1 pulsating targets. Quasipatteins with twelvefold
rotational symmetry (Figure 1 2) never repeat in any direction, but they look regu-
lar at a casual glance, while spiral defect chaos (Figure 1 3) is disordered on a large
scale, but locally its constituent moving spirals and patches of stripes are spatially
periodic

Similar patterns are seen in wildly different natural contexts: for example, zebra
stripes, desert sand ripples, granular segregation patterns and convection rolls all
look stripy, and they even share the same dislocation defects, where two stripes
merge into one (Figure 1 4). Rotating spirals appear in a dish of reacting chemicals
and in an arrhythmic human heart. Squares crop up in convection and in a layer of
vibrated sand. It turns out to be common for a given pattern to show up in several
different systems, and for many aspects of its behaviour to be independent of the
small details of its environment. This has led to a symmetry-based approach to the
description of pattern formation: from this point of view, patteirns are universal,
and we can find out nearly everything we need to know about them using only
their symmetries and those of their surroundings.

This book is intended as an introduction to these symmetry-based techniques
and their relationship with more traditional modelling approaches. Before starting
on the universal, however, I am going to talk a bit about the specific, describ-
ing the archetypal pattern-forming systems: convection, reaction-diffusion and the
Faraday wave experiment.
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Fig 1 1. A periodic super triangle pattern that tesselates the plane Super triangles
can be seen in Faraday wave experiments — see Sections 1.3 and 6.1 and also
Silber and Proctor (1998) and Kudrolli, Pier and Gollub (1998) Image courtesy
of and ©Mary Silber, Northwestern University, 2003

Fig 1 2. Quasipatterns in a Faraday wave experiment. The experimenters chose
a container in the shape of France to show that the quasipattern was not caused by
boundary effects Reprinted with permission from W S Edwards and S. Fauve,
Physical Review E, 47, R788, 1993 (©American Physical Society, 1993



1 1 Convection 3

S
N

"y g
W20
Fig 1.3 Spiral defect chaos in a Rayleigh-Bénard convection experiment Image

courtesy of and (©)Nonlinear Phenomena Group, LASSP, Cornell University,
August 2004.

Many of the mathematical techniques and ideas I shall touch upon here are
revisited in greater detail in subsequent chapters, so don’t worry if you don’t fol-
low every step on a first reading. It is enough to get a flavour of the applications
to which the theory of pattern formation is relevant. If you are not familiar with
simple bifurcation theory it may help to read through the basic ideas in Chapter 2
before attempting to follow the details of the calculations. Simple vector calcu-
lus is also needed here, and occasionally in the rest of the book The descrip-
tions of the phenomena themselves, however, require no particular background
knowledge.

Throughout the book I shall use bold italic font for vectors, v, but standard italic
font for vector-valued functions, f(¢) = v, and for matrices, scalars and scalar-
valued functions.

1.1 Convection

A huge proportion of the early work on pattern formation was motivated by
the study of convection, which is the overturning of a fluid that is heated from
below Heat at the bottom of a container causes the fluid there to expand, become
less dense and moze buoyant and so to rise through the colder fluid above. As the
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Fig 14 Stripe patterns showing dislocations, where two stripes merge into one:
(a) segregation in a layer of horizontally shaken sugar and hundreds and thousands
(otherwise known as sprinkles or cake decorations); (b) sand ripples in the Sahara
desert; (c) on zebras (courtesy of and ©Ed Webb, 2004), and (d) in a numerical
simulation of the Swift-Hohenberg convection model Image (a) reprinted with
permission from Mullin, T., Science 295, 1851 (2002). ©AAAS (2002)



1.1 Convection 5
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Fig. 1.5 The rise and fall of fluid in convection creates patterns, such as the rolls
or stripes shown here. Arrows show the direction of fluid movement. The pattern
looks like stripes when observed from the top

Fig. 1 6. Convection cells in the photosphere of the Sun (solar granulation). The
dark region is a sunspot Image courtesy of and ©Dr Tom Berger, Lockheed
Martin Solar and Astrophysics Lab, Palo Alto, California, 2003

fluid rises away from the heat source, it cools, becoming denser than the fluid
below, and so falls back down to the bottom of the container under the influence
of gravity (Figure 1.5) The cycle then 1epeats, so the fluid is constantly overturn-
ing. The 1ising and falling fluid forms spatial patterns, most commonly stripes or
convection rolls (Figure 1 5), though more complicated patterns such as hexagons
and squares are also possible, depending on the details of the physical system and
the fluid properties Convection is often investigated through carefully designed
laboratory experiments, but the reason it is so important and has been studied so
extensively is that convection occurs naturally in the environment: in the Earth’s
mantle, convection leads to the movement of tectonic plates or ‘continental drift’;
in the oceans it drives circulations such as the Gulf Stream that keeps northwest-
ern Europe so much warmer than its northern latitudes would suggest; in the atmo-
sphere, convection creates thunderclouds and in stars, such as the Sun (Figure 1.6),
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convection transports energy efficiently from the core where it is produced to the
surface where it is released

In the laboratory, the pattern or planform is typically visualised using the shad-
owgraph technique In this method, a light is shone down onto the convection cell,
which must have a transparent top plate and a reflective bottom plate. The warm
rising fluid has a lower index of refraction than the cold falling fluid, and so the
light is focused towards the cold regions, which appear bright, while the warmer
regions remain dark The pattern can be seen reflected off the bottom plate. Other
methods of visualisation are possible, as we shall see in the following kitchen
experiment

1.1.1 How to cook hexagons in your own kitchen

I used to think that apart from stripes, which you can clearly see in fingerprints
and on zebras and so on, natural patterns were actually quite exotic — only to be
found on the surface of the Sun, and in labs where long hours had been spent in
perfecting the experimental set-up Then I learned how to cook hexagons using
only a frying pan, some cooking oil and a sprinkling of pepper.

Cooked hexagons
Warning: This recipe involves hot oil, which is potentially quite dangerous.
Only competent adult cooks should attempt to cook hexagons. Do not let any
water get into the oil. If the oil starts to smoke, remove the pan from the heat
immediately.

(i) Put a little cooking oil into a flat-bottomed cooking pan A depth of 0.5-1.00 mm is
adequate. You will be able to see the hexagons more easily if the inside of the bottom
of the pan is a pale colour Copper-bottomed pans make the best hexagons because
they conduct heat well

(if) Mix some very finely ground black peppet or other coloured spice into the oil for visu-
alisation purposes. There should be enough peppet or spice to finely coat the bottom
of the pan.

(iii) Put the pan on a flat even heat source — an old-fashioned oil- or coal-fired stove with
solid flat plates is best. Gas or electric rings will also work, but the hexagons will be
less regular because the heat will be more localised and because the pan is likely to be
tilted a bit

(iv) Heat very gently. Do not let the oil get very hot A few seconds’ heating should be
adequate (Let the hot plate or electric ring heat up first before you put the pan of oil
onit)

(v) Look sideways at the surface of the oil: you should see hexagon-shaped dimples as
the oil heats up and starts to convect. You should also see pepper or spice swept along
the bottom of the pan into little heaps artanged approximately hexagonally Once the
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Fig 1.7 Irregular hexagonal patterns in (a) heated cooking oil, and (b) a giraffe’s
coat markings. Cooked hexagon image courtesy of and ©Nick Safford, 2004

hexagons have formed, the heaps of spice should remain visible if you remove the pan
carefully from the heat. In any case, you should not continue to heat the oil for more
than a few seconds

(vi) If your hexagons go wrong, take the pan off the heat, cool it down and start again. The
hexagons come out best if the oil is cool to start with, and should be seen within a few
seconds of heating

Figure 1.7a shows some hexagons cooked using turmeric for visualisation. You
can just about see the cell boundaries around each central blob of turmeric. The
hexagons are pretty irregular, since this is not a highly controlled experiment. In
fact you are likely to see as many pentagons and heptagons as hexagons; giraffe
markings also show irregular hexagonal patterns like these (Figure 1 7b) It is also
typical to see stripes in the heated oil if the pan is not quite horizontal and the oil
is flowing downhill under gravity in places.

1.1.2 Governing equations for Rayleigh—Bénard convection
in the Oberbeck—Boussinesq approximation

In 1916, Lord Rayleigh published a paper analysing convection experiments
carried out by Henri Bénard and published in 1900. In fact Rayleigh’s theory
described convection in a fluid that completely fills the gap between the top and
bottom plates of a closed cell, whereas Bénard’s experiments had used a container
that was open at the top so that the fluid had a free surface. These two situations are
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Fig. 1.8 Diagram of the convection system described by equations (1.2) and
(1.3). The fluid fills the gap between two horizontal plates at z = 0 and d The
top plate is maintained at a temperature 7 = T, while the temperature at the
bottom is heated to a temperature 7 = Ty + AT, where AT > O

actually quite different, because in a filled closed cell buoyancy changes alone are
responsible for convection, whereas if the top is open, temperature-induced vari-
ations in the surface tension can also drive the motion. Convection between two
horizontal plates is known as Rayleigh—-Bénard or simply Bénard convection,
while the free surface case is called Bénard—Marangoni convection. In his 1958
paper on surface-tension-driven convection Pearson introduced a dimensionless
number that measures the relative effects of surface tension and viscous forces;
this was later named the Marangoni number after a nineteenth-century Italian
scientist, Carlo Marangoni, who noted that fluid flow is coupled to surface
tension

This section will set out the equations used to describe Rayleigh-Bénard con-
vection and show that rolls or stripes are an approximate solution close to onset.

Consider a layer of fluid between two plates at z = 0 and d, heated uniformly
from below, with the top plate held at a temperature 7 = Ip and the bottom
plate at the higher temperature 7 = Ip 4+ AT, where AT is positive, as shown in
Figure 1.8. We assume that the fluid density, p, varies linearly with the tempera-
ture, T', so that

p = poll —a(T — Ip)], an

where pp is the fluid density at 7 = Ty and « is the (constant) coefficient of ther-
mal expansion, and we further assume that the density variation is only significant
in the buoyancy force: this is the Oberbeck—Boussinesq approximation. These
assumptions are incorporated into the Navier-Stokes equation for fluid flow, the
heat equation and the continuity equation, to give

du —~

P0 (*Bt + (u V)u) = —~Vp — pgZ + povV7u, (1.2)
oT ) D)
HB( + @ VYT =«xV T, (13)

V.u=0, 1.4)
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where u(x, ¥, z, ) € R? is the three-dimensional fluid velocity, 7 (x, y, z, 1) is the
temperature, p(x, ¥, z,) is the fluid pressure, g is the (constant) acceleration due
to gravity,’iis a unit vector in the upward vertical direction, v is the kinematic vis-
cosity, a measure of the fluid’s internal resistance to flow, and « is the thermal dif-
fusivity that measures the rate of heat conduction through the fluid (see the discus-
sion of diffusion in the following section) Under the Boussinesq approximation,
both v and « are assumed constant Details of the derivation of the Navier—Stokes,
continuity and heat advection-diffusion equations can be found in any good text-
book on fluid dynamics — you might like to try Acheson (1990) if you’re interested
in finding out more; we will simply accept them as our starting point.

If the heating is not strong enough, the fluid does not convect, but simply con-
ducts heat across the layer. The conduction solution is given by

u=20, (1.5)
7=Tc(z)ETo+AT(1—E), (1.6)
Z
p = pe@) = po— ]0 p(Te())g dz. 17
2z
= po — 8gpoz [1 —aAT (l — EE)]’ 18)

where pg is the pressure at the bottom of the layer, z = 0, and the pressure, p.(z), is
the hydrostatic pressure of fluid in the conducting layer. (The hydrostatic pressure
at a height z is the pressure due to the weight of fluid above z.)

When the fluid starts to convect, there will be departures from this conduction
solution: to study these, we wiite p = p.(z) + pand ' = I.(z) + 6. We also cast
the equations into dimensionless form using the substitutions

(x,y,2) =d(x,y,2), (19)
d>.
t=—1, (110)
K
K.
u="=i (1.11)
VK ~
0= , 1.12
cad® (1.12)
p=-5P (1.13)

The combination of these two sets of substitutions gives

1 /9
- (a—’t‘ + ( V)u) = -Vp+63+ Vi, (114)

EY
¥+(qu)9—RuZ=V29, (1.15)



10 What are natural patterns?

where the tildes (™) have been dropped immediately to simplify the notation, where
u, is the z-component of # and where o = v/k is the Prandtl number that mea-
suzes the relative effects of viscous and thermal diffusion, and

3 A
R— agd’ AT
KV
is the Rayleigh number — the nondimensionalised version of the temperature dif-
ference between the top and bottom plates.
We now eliminate the pressure by taking the curl of equation (1.14) to get the
vorticity equation

(1.16)

1/9 ~
;(a—”;ﬂu V)w—w~Vu)=V9xz+V2w, (1.17)

where w = V x u is the fluid vorticity
To examine the stability of the conduction solution to convection we linearise
equations (1.15) and (1.17) around # = w = 0, = 0 giving

19
% = V8 x T+ Vi, (1.18)
o 0t
96
— — Ru, = V°8 (119)
ot
Now acting on equation (1.18) withZ - V x gives
19
= —V2u, = V6 + Viu,, (1.20)
o dt

where Vi = (3/0x, /3y, 0) is the horizontal gradient operator.

We now need to solve equations (1.19) and (1 20) subject to suitable bound-
ary conditions The top and bottom plates are held at fixed temperatures, so the
temperature perturbation & must be zero there:

=0, atz =0, 1 (121)

Mathematically, the simplest velocity boundary conditions to use are the so-called
stress-free boundary conditions,

2

= 2% 0 arz=0.1, (122)

072
that Rayleigh (1916) used in his calculation We also assume that the convection
cell 1s infinite in horizontal extent so that we do not have to consider any lateral
boundary conditions The solution can now be written as a superposition of Fourier
eigenmodes

ug")(x, V,2,1) = uysinnmwz ekn xntst +cec, (1.23)
6" (x,y,z,1) = 8, sinnmwg e®n st 4 o ¢ (1.24)
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where ¢.c. stands for complex conjugate, and where kp is a horizontal wavevector,
xh = (x.y.0)isa horizontal position vector, s is the growth rate of the eigenmode,
and 1, and 6, are constants Substituting one such eigenmode @™, 6®) into
equations (1. 19) and (1.20) gives

$6, — Ru, = — (k> + n’n)0,, (1.25)
i
—— sk 4 12D uy = —k*0, + (K2 + 7 ) u,, (126)
a
where k = |k | Eliminating the constants 6, and u,, gives a dispersion relation
202+ n2r?) + s+ ) K2+ n*a?)? + o (k2 +n®n?)? —oRK* =0, (127)
which shows that the growth rate, s, is zero at
(k2 + n27r2)3
k2
In other words, there is a stationary bifurcation at R = R, (k), (see Chapter 2 for
more on bifurcations) The growth rate becomes positive for R > R, (k) and the
nth eigenmode starts to grow This means that the conduction solution will be

unstable to the nth eigenmode (@, 6®) if R > R,(k) This happens first for
n =1, as R, (k) is smallest for n = 1 The value of & that gives the minimum of

Ry(k) = (128)

(k?. + 72'2)3
Ry(k) = T (1.29)
is k = ke = 7/+/2, and this gives the convection instability threshold
27
Re = Ritke) = 77:4,. (130)

We expect convection to set in for Rayleigh numbers above this threshold — in
other words for a large enough temperature difference between the top and bottom
plates

No-slip velocity boundary conditions, z = (), are more realistic than stress-free;
they simply say that the fluid must be motionless at the boundaries. The analysis
is more complicated in this case, but it is possible to work out a new threshold
for convection at R; =~ 1708 (see Manneville (1990) for further details) Lateral
boundary conditions can also be accommodated.

Above threshold, any modes that satisfy R. < R, (k) < R can grow It is
straightforward to check that

Rn(k) — Ry(k) = Ry =37*(15 4+ 2/63), (1.31)

for n > 2. So, close to threshold, where the wavenumber deviation, 8k = k — ke,
and reduced Rayleigh number, r = (R — Rc)/R., are small and R < R. + Ry,
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only the n = 1 mode can grow. The growth rate is given by

o 3, 2
= — — 8k 1.32
' o+1 (27[ ’ ) (1-32)

Only wavenumbers in the band 8k% < 3727 /2 have positive growth rates and the
critical wavenumber mode, k = k. (6k = 0), grows fastest Close to the onset of
convection we therefore expect to see patterns made up of a superposition of 7 = 1
modes with wavenumbers close to k.. The wavevectors of the contributing modes
can point in any direction, and the linear analysis doesn’t tell us anything about
which combinations are preferred: the nonlinear terms in the governing equations
pick out a small number of modes, as we shall discuss in Chapter 7

The common convection roll or stripe solution corresponds to the selection of
a single pair of wavevectors =k, Wavevectors must occur in equal and opposite
pairs, since the velocity and temperature eigenmodes 1. and 6™ defined in equa-
tions (1.23) and (1.24) must be real If we choose the x axis to be aligned with ky,
then right at onset we have ky, = (r/ /2,0) and

U, = u] sin 71'zez"”"/‘/§ +cec., (1.33)
9:915innzei”‘/‘/§+c c., (1.34)

where one of 1 and ) is arbitrary at linear order, and the other is then fixed by
equation (1.25) Contours of the vertical velocity, u,, and the temperature peertur-
bation, 6, in the (x, y) plane look like stripes. A regular stripe pattern is shown in
Figure 5 1 of Chapter 5. This is what you would see looking down on the convec-
tion cell using the shadowgraph technique. Looking from the side, the fluid motion
carves out rolls as shown in Figure 1 5

1.2 Reaction-diffusion systems

Spatial patterns can be seen in systems of reacting and diffusing chemicals The
standard example is the Belousov—Zhabotinsky reaction, where malonic acid is
oxidised by bromate ions in the presence of a ferroin catalyst. The reduced state of
the catalyst appears red and the oxidised state is blue. Oscillating spiral and target
patterns are seen with alternating red and blue arms or 1ings (Figure 1.9). In fact
Belousov (1958) originally used citric acid and a cerium catalyst, where the colout
oscillates between yellow and colourless, and Zhabotinsky and his coworkers (see,
for example, Zaikin & Zhabotinsky, 1970) extended the work using a variety of
other acids and catalysts.

Diffusion is the mechanism by which particles in a fluid are transported from an
area of higher concentration to an area of lower concentration through the jostling
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Fig 1.9 Spirals in the Belousov—Zhabotinsky reaction Image courtesy of and
©Annette Taylor, University of Leeds, August 2004

and bumping of the liquid or gas molecules around them, each of which is in
constant random thermal motion Thermal motion takes place on very tiny length-
scales and is not apparent to the naked eye, nor are the random movements of any
two molecules correlated, so thermal motion does not lead to bulk movement of
the fluid Diffusion can therefore take place in either still or moving fluids An indi-
vidual particle is said to be in Brownian motion; diffusion refers to the behaviour
of an ensemble of particles. For example, a small amount of smoke released in the
corner of a still room will disperse by diffusion. By analogy, heat is said to diffuse
through a conductor: if you pick up an ice cube, it is (mostly) diffusion of heat into
the ice from your hand that makes your fingers cold

It might seem paradoxical that diffusion, which tends to smear out high con-
centrations of a substance and make the distribution of particles more uniform,
could possibly lead to pattern formation, where by definition particles of the same
type must clump together so that coherent spatial structures can be seen. In the
Belousov—Zhabotinsky reaction, and others like it, such as the oxidation of car-
bon monoxide on the surface of a platinum catalyst (see, for example, Nettesheim
et al, 1993), the oscillations are caused by the excitability of the system, and
diffusion simply serves to introduce some local spatial coherence so that neigh-
bouring molecules or parts of the surface oscillate nearly in phase We will discuss
excitable systems in Section 1.2. 1. Diffusion can also create patterns more directly:
in a famous 1952 paper Turing predicted that two reacting and diffusing chemicals,
an activator and an inhibitor, can produce a pattern if the inhibitor diffuses much
taster than the activator An activator causes growth in the concentration of reac-
tants, whereas an inhibitor causes depletion. It was a very compelling theory, but
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it proved very difficult to demonstrate in the laboratory, and it was not until nearly
forty years later in 1990 that Castets et al. produced the first convincing evidence
of an experimental Turing pattern. Turing invoked his reaction-diffusion mecha-
nism to explain morphogenesis, the development of shape or form in plants and
animals, and it has since been suggested that animal coat markings are created
this way, though many biologists strongly dispute it. Classical Turing patterns are
steady in time, but oscillatory analogues are possible (see Yang ez al , 2002).
Model systems of two reacting and diffusing chemicals, with concentrations
u(x, r) and v(x, r), are commonly studied, and are typically written in the form

& = 100+ DV, (1.35)
v ’
3 = g(u,v) + D,V-u (1 36)

The position vector x can be two- or three-dimensional depending on whether the
pattern formation is going on in a thin layer or a large volume. The terms f(u, v)
and g(u, v) describe the chemical 1eactions, while diffusion of # and v is modelled
by the terms D, V2u and D,V?v, respectively, with D, and D, being (positive)
diffusion coefficients. We are assuming here that the system is isotropic (invariant
under rotations) so that the derivatives in the Laplacian all have the same scaling,
We have further assumed homogeneity (invariance under translations) and that Dy,
and D, are constants. These equations can describe excitable behaviour or the
growth of Turing patterns depending on the form of the reaction terms f (, v) and
g(u, v), and on the values of the diffusion coefficients.

The next two sections will use this basic framework to describe excitability
in the FitzHugh-Nagumo equations and the development of Turing patterns
respectively.

1.2.1 The FitzHugh-Nagumo model: excitable systems

The FitzHugh-Nagumo equations (FitzZHugh, 1961; Nagumo, Arimoto &
Yoshizawa, 1962) were originally developed as a model of nerve impulse prop-
agation and are now usually written in the form

Z_i‘_ —u(l =) +a) —v+1, (137)
v B b
5—{ =¢e(u — bv), (138)

where [ is an external forcing and @, b and 0 < € < 1 are constants. These are a
slight modification of FitzHugh’s original equations for a spatially uniform excita-
tion of a nerve axon. Nagumo, Arimoto and Yoshizawa introduced diffusion into
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the first equation to describe the movement of the excitation wave along the axon.
variants that include diffusion are now often used as models of general excitable
reaction-diffusion systems. We shall consider the modification

du
g_v u+ f(u,v), (139)
ov
rm = g(u, v), (1.40)
where
fu,v) = 1u(] —u) (u — ﬂ), (1.41)
€ a
glu,v) =u—v, (1.42)

which Barkley has used extensively to describe spiral waves in excitable media
(see, for example, Barkley, 1995, whom we follow in this section) Since € is small,
the reaction dynamics of the excitation variable, #, are much faster than those of
the recovery variable, v.

The excitable dynamics comes from the reaction terms: an individual oscillator
governed by the same equations without the V2u would also behave excitably, so
we will ignore the diffusion term for the time being The origin u = v =0 is a
fixed point, du/df = dv/dt = 0, of equations (I 39) and (1.40) If 0 <a < | and
b > (it is the only stable fixed point, and has excitable dynamics. To see why, we
consider the nuliclines f (u, v) = 0 or g(u, v) = 0, plotted in Figure 1 10, which
divide the (#, v) phase space into 1egions according to the signs of du/dr and
dv/dr. We are interested in the region 0 < u < 1 A tiajectory starting to the left
of the line v = au — b decays rapidly towards the origin, since du /d¢ is large and
negative there; v may initially increase, but will decay as soon as the trajectory has
crossed the line v = . On the other hand if the initial conditions lie to the right of
v = au — b then u will at first grow rapidly away from the origin. However duv /d
is also positive, so v will grow, bringing the trajectory back into the region where
du/d¢ is negative and eventually to the origin This threshold effect is the defining
characteristic of an excitable system: small perturbations near to an excitable sta-
ble fixed point decay quickly to zero, but disturbances greater than some threshold
value lead to large excursions in the dynamics before the stable state is reached. An
excitable system is said to be quiescent close to the fixed point, excited close to
the righthand nullcline, here # = 1, and recovering close to the lefthand nullcline,
but far from the fixed point — in this case where u ~ 0, but v is large. It is impor-
tant that recovering states are much further from the threshold, v = au — b, than
quiescent states, since this means that an excited state must pass through recov-
ery to quiescence before it can be excited again; this is a good model for many
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Fig. 1 10. Excitable dynamics in the FitzHugh—Nagumo-type equations (1 39)
and (1 40), witha < 1 and b > 0, in the absence of spatial variation. The u null-
clines are given by dashed lines, while the v nullcline is solid. In the light grey
region both du/dt and dv/dt are negative; in the medium grey region du/dt is
negative and dv/d¢ is positive, while in the dark grey region both time derivatives
are positive. A trajectory starting to the left of the threshold line, v = au — b,
decays quickly to the stable fixed point at the origin, while a trajectory starting
to the right first grows away from the origin, making a large excursion before
returning to the fixed point

biological processes that require the slow build-up and rapid discharge of some
quantity, such as the action potential in a neuron that FitzHugh and Nagumo,
Arimoto and Yoslizawa were originally concerned with

Diffusion couples together the dynamics of neighbouring points in space. In an
excitable system this can lead to the propagation of excitation waves. If an excited
region, where u ~ 1, is next to a quiescent region where u and v are small, the
diffusive coupling increases the value of u in the quiescent region (and decreases
it in the excited region) Since quiescent points are close in phase space to the
excitation threshold, v = au — b, this can be sufficient to bring them across the
threshold, whereupon the local dynamics take them into excitation The newly
excited region can now excite neighbouring quiescent areas in its turn and a wave
of excitation spreads outwards from the initial excited patch. An excited area does
not remain excited forever, but goes into the recovery phase, eventually becoming
quiescent and ready to be excited again: thus the excitation waves can be periodic
like the spiral and target patterns we will discuss in Chapter 10.

The form (1.41) of the reaction term f (u, v) is actually somewhat patholog-
ical in that the u nullclines, being three nonparallel straight lines, cross each
other Outside the region 0 <y <1 the dynamics are not those of a simple
excitable system The advantage of the piecewise linear form (1.41) of f(u,v)
is that it allows the implementation of a fast numerical scheme for simulating the
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Fig. 1.11 Excitable dynamics in the FitzZHugh-Nagumo equations (1 37) and
(1.38), for a, b and I all positive and for the case where there is only one stable
fixed point at the intersection of the u and v nullclines. The u nullcline is shown
as a dashed curve, while the v nullcline is a solid straight line Two trajectories
are shown, one starting in the quiescent region to the left of the middle branch of
the «# nullcline, and quickly decaying to the fixed point, and one starting to the
right of the threshold, and becoming excited before reaching the fixed point

reaction-diffusion equations (Barkley, 1995) It is also a nice instructive example
because it is easy to diaw the nuliclines, work out where the stable fixed point
is, and where the the time derivatives of u and v change sign. The u nulicline of
the original FitzHugh-Nagumo equations (1.37) and (1 38) is cubic, and behaves
well over the whole range of u, but the fixed points can’t be found analytically. In
Figure 1.11 the excitable behaviour is sketched in the case where there is only one
stable fixed point (at the crossing of the # and v nuliclines).

1.2.2 Turing patterns

We now move away from excitability to analyse steady (non-oscillatory) patterns
that can arise in reaction-diffusion systems, as predicted by Turing (1952). We start
with equations (1.35) and (1.36), and assume that there is a spatially homogeneous
solution, 1 = ug, v = vg, with g and vg constants. We now set u = ug + 4, v =
v + ¥, where 4], |9 < 1 and linearise in # and v to get

ou

5 =i~ by + D, Vi, (1.43)
v L ~
%Y W —dv+ DV, (1.44)

ot
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where
0
= —1 , = —g , (1.45)
du (10,v0) v (ug-v9)
a 0
c=% . d=-2 | (1 46)
ou (uo. vo) v (ug,v0)

The signs in front of the coefficients are chosen so that for positive a, b, ¢ and
d, the chemical corresponding to # is an activator, while that corresponding to
v is an inhibitor In this context an activator is a chemical that stimulates the
growth in concentration of both chemicals, while an inhibitor leads to a decrease
in the concentrations. With the signs we have chosen here, positive @ (an increase
in the concentration, u, of the activator over the steady-state value ug) gives a
positive contribution to the growth of both activator and inhibitor, while positive
U, an increase in the concentration of inhibitor, leads to a negative contribution to
both growth rates.

Turing patterns appear in a diffusion-driven instability wherethe inhibitor dif-
fuses much faster than the activator, often referred to as local activation with
lateralinhibitionAn initial random perturbation from the steady homogeneous
solution is necessary to seed the instability Any locally high concentration of
activator in the perturbation causes both activator and inhibitor concentrations to
increase. The inhibitor diffuses away from the area more quickly than the activa-
tor, and so the relative concentration of inhibitor becomes high in a region outside
the original patch. Neither the activator nor the inhibitor are being produced in
this border region, so the activator becomes depleted there The inhibitor is con-
stantly replenished by diffusion from the central activator-rich patch, but beyond
the border region levels start to drop off because there is no local supply This
allows activator to build up again if there is another localised patch of activator
in the initial random perturbation, so the pattern can repeat periodically in space
(Figure 1.12).

The conditions for a Turing instability to occur can be derived from equations
(1.43) and (1.44) We want the instability to be diffusion-driven, so the system
should be stable in the absence of diffusion If we set & = %e’? and v = ve?’,
where % and 7 are constants, the growth rate eigenvalues are given by

1 1
o= E(a_d)ii (a + d)? — 4bc. (1.47)

The solution u = ug, v = vp, is stable if both eigenvalues are negative, which
requires a < d and ad < bc.
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Flg 1.12. Inhibitor diffuses out of patches of high activator concentration where
it is produced, and creates an inhibitory border, resulting in a Turing pattern
Regions of higher activator concentration are shown in black while areas of higher
inhibitor concentration are coloured white The arrows indicate the diffusion of
inhibitor. The area pictured can be considered as part of an array of patches placed
approximately at the vertices of an infinite hexagonal lattice in this example.

Any spatially varying solution (#(x, t), ¥(x, t)) can be expressed as a Fourier
series in space, so we need to know which Fourier modes

U = netk xtot +ecc (1.48)
T = AzkH—or +ec , (149)

will grow, where k is a constant wavevector and % and U are comﬁlex constants. We
shall assume for the moment that the system is unbounded in space so that we don’t
have to worry about spatial boundary conditions. The necessary modifications to
take account of them can be made quite easily later on if required.

Substituting (1.48) and (1 49) into the linearised equations (1.43) and (1.44)
leads to the dispersion relation for o'

02 4+ 0(Dyk* + Dyk* — a + d) + (Duk* — a)(Dyk? +d) + bc =0, (1.50)

where k = [k|. For instability, at least one of the roots of this equation must have
positive real part. The sum of the roots is

—(Dyk* + Dk —a+ d), (151

which is negative since a < d and both diffusion coefficients are positive. The only
possibility for an instability is therefore to have one negative and one positive real
root, which will be the case as long as the product of the roots is negative:

h(k?) = (Dyk* — a)(Dyk* 4 d) + bc < 0 1 52)

If the minimum, Ay, of the function & (k?) is negative then a range of modes k2
K < k2 will grow (Figure 1.13). The values of the coefficients in the mequahty
(1 52) are fixed by the chemistry, and as a result so are Amin, k1 and ky
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Fig 1.13. Modes with wavenumbers lying between the zetos, k12 and k%, of h(k?)
grow in the Turing instability.

It is easy to check that the minimum of /(k?) is

hain = =55 (@D = aD,)? —ad + bc (1.53)
and occurs at
1 d
K== (_“— _ ﬂ). (1.54)
2\ D, D,

So the Turing instability occurs as long as a/D, > d /D, (so that k2 is positive)
and hpin < O The lengthscales I, = /Dy /a and I, = /D, /d give a measure of
the distance over which u and v, respectively, will decay to low values from peak
concentrations. The requirement that k2 be positive can be rewritten as I, > I,
which says that the inhibitor must penetrate further than the activator. This is the
local activation with lateral inhibition that was discussed earlier

1.3 Faraday waves

In 1831, Faraday published observations of ‘crispations’ in vertically vibrated
layers of fluid, in other words standing-wave deformations of the fluid surface
These parametrically excited surface waves form a variety of striking patterns:
Faraday himself saw square or rectangular grids of wavecrests, or circular pat-
terns, depending on the strength of the vibration. Subsequent experiments have
revealed more exotic patterns, such as the one with twelvefold rotational sym-
metry in Figure 1.2 Faraday used an array of different household fluids — milk,
egg white, alcohol, ink and turpentine — to produce his patterns. He also found
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Fig 1.14 A container of fluid is vibrated up and down sinusoidally Surface
waves form in the Faraday instability

crispations of ‘extreme beauty’ in mercury Recently patterns including stripes,
squares and hexagons have been seen in vibrated layers of granular material (see,
for example, Melo, Umbanhowar & Swinney, 1995), though in this case the insta-
bility mechanism is different from Faraday’s Faraday observed his patterns by eye
using reflections from the fluid surface or, particularly in the case of milk, by shin-
ing a light through the fluid from below He also sprinkled sand over the container
and saw that it was arranged into patterns under the water. In modern experiments
the patterns are typically imaged by reflection from a light placed near a camera
Flat regions of the surface reflect light directly back to the camera, and so they
appear bright, while inclined surfaces appear darker. Usually the images are aver-
aged over a whole cycle of oscillation

In a typical experiment the fluid layer is vibrated vertically (Figure 1 14) with
acceleration acos wt, for constant @ and w, so that the effective gravitational
acceleration felt by the layer is

geff(t) = —g + acoswt, (1.55)

where g is the acceleration due to gravity on a still layer. At low forcing amplitude,
a, the surface of the layer remains flat, but standing waves or crispations form
once the amplitude increases beyond a threshold value, g, at which the forced
acceleration is strong enough to overcome viscous dissipation, the loss of energy
as heat through fluid friction For deep enough layers the response is subharmonic,
the surface waves oscillating at half the driving frequency, as observed by Faraday
who wrote that ‘each heap. . recurs or is re-formed in two complete vibrations of
the sustaining surface’

The driving does not have to be sinusoidal: the pattern shown in Figure 1.2 was
produced using two-frequency forcing of the form

geff = —g + a[cos 8 cosdwt + sin 8 cos(Swt + ¢)] (1 56)

for constant @, 8, @ and ¢. This type of forcing can produce a variety of interesting
planforms including examples of so-called superlattices and quasipatterns, which
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will be described in detail in Chapter 6. The effective gravity, gesf, is periodic with
period 27 /w; for appropriate choices of the parameters this forcing can lead to
patterns that are harmonic, oscillating with this same period.

The calculation of the instability threshold is complicated, even for the simple
forcing (1 55), (see, for example, Kumar, 1996), so I will not present it here How-
ever the starting points are the Navier—Stokes equation, with time-varying effective
gravity, and the continuity equation,

a -~
L (-a—l; + (u- V)u) = —-Vp— p(g —acoswt)z + pquu, (1.57)
V u=0, (158)

together with suitable boundary conditions that prescribe, among other things, how
the fluid responds to surface tension at the free surface.

1.4 Outline of the rest of the book

Convection, reaction-diffusion and Faraday waves comprise the three most com-
monly studied pattern-forming systems, and much of the theory of pattern forma-
tion has been developed in an attempt to explain experimental results in one or
other of them Of course, there are others: spatial patterns can be seen in flame
fronts, lasers and solidifying metal alloys, for example The theory set out in the
rest of this book will start from the symmetries and observable features of the
patterns themselves, rather than the specifics of any one experiment

Chapters 2 and 3 set out some introductory material on bifurcation theory and
group theory, respectively, that will be needed for the analysis of patterns If you
have a strong background in either or both of these areas you can simply skip
the relevant chapter(s) and refer back to them if you need to. The bulk of the
book from Chapter 4 onwards describes theoretical approaches to understanding
pattern formation. Roughly speaking we start with the most regular patterns in
Chapters 4 and 5 and work towards the most irregular in Chapters 10 and 11.
There is a corresponding transition from the theory of bifurcations with symmetry
at the beginning of the book to asymptotic methods at the end.

At the end of each chapter from Chapter 2 onwards there is a set of exer-
cises. A set of partial solutions to the exercises can be found on the web page
www cambridge org/9780521817509. T will also post any errata at the same
address from time to time.
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A bit of bifurcation theory

The patterns we are going to study in this book arise at bifurcations, so to under-
stand patterns we first need to know something about bifurcations. This chapter
is a very brief review of local bifurcation theory, together with a few other use-
ful results from the theory of nonlinear systems I explain the main ideas that are
needed to understand symmetric bifurcations in later chapters, presenting the mate-
rial informally, without proofs. For readers who are new to all this and would like
to read about the material presented here in more depth I recommend the books by
Glendinning (1994) and Guckenheimer and Holmes (1983) This chapter follows
Glendinning quite closely in places, and his book would be an excellent place to
look for further details on any of the topics outlined here.

2.1 Flows, stationary points and periodic orbits

Just as at a fork in the road you suddenly have two paths ahead of you instead of
one, so at a bifurcation in a nonlinear system there are sudden changes in flows,
stationary points and periodic orbits Before we go any further we need to define
al] these things

Let us start with the ordinary differential equation

3—: = f(x), xeR" 2.1)

where ¢ is time and x is a position vector in R”, the phase space of the differential
equation Throughout this book we shall assume that f is sufficiently smooth that
the techniques we use, such as Taylor series expansions, are valid The solutions
of equation (2 1) define a flow, ¢ (x, t), such that x () = @(xq, t), where xg is
the initial value of the solution at ¢ = 0 and so labels all the different possible
solutions according to their starting position In other words ¢ (xg, 0) = xo. The

23
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0

X

Fig 21 An example of a flow in the (x, y) plane. The starting point (at ¢ = 0)
of one of the trajectories in the flow is labelled xo Each trajectory has a different
starting point, and so a different value of xq.

flow is defined for all 7, positive and negative, such that the solution through xg
exists.

In the case of a two-dimensional vector x = (x, y) € R? we can make a two-
dimensional picture, or phase portrait, of a flow like the one in Figure 2.1. Each
line on the diagram is a trajectory, a solution of the differential equation labelled
by a particular starting point xo and patameterised by time. The arrows represent
the direction of increasing time. The ¢ < O sections of each trajectory are drawn
by running time backwards The figure makes clear why we say that the solutions
define a flow: they look like a snapshot of water flowing over the page, or lines of
marching ants

A stationary point (or fixed point o1 equilibrium solution) of equation (2 1)
is a point x such that

dx

— = f(x)=0. 22

& fx) (22)
The flow in Figure 2.2 has a fixed point at x = x.

Example 2.1 The one-dimensional differential equation

dx 3
— =X — 2.3
ik (2.3)

has fixed points at x = 0, £1.

A differential equation may also have periodic orbits A point, x, is periodic
undet equation (2.1) with period T if and only if ¢(x,f + I') = ¢ (x, ) for all ¢
and ¢(x, ¢+ s) # ¢(x,t) for all 0 < s < I . This says that the trajectory statting
at x at time ¢ first returns to the point x after an additional time 7 The closed curve
C={yly =¢(,1),0 <t < I'|is a periodic orbit, and consists of the trajectory
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X

Fig 2.2 Anexample of a flow with a fixed point at x = x;.

0 Ean

X

Fig. 2.3 This flow has a periodic orbit passing through the periodic point x. Only
the trajectory making up the periodic orbit is shown

joining the periodic point x back to itself in phase space. A flow containing a
periodic orbit is shown in Figure 2.3.

Example 2.2 The equations

& =2 =) -y, @4
dr '

d

E% = y(1 = x> — y?) +1, 25)

have a periodic orbit of the form x = cost, y = sint. Every point x = (x, y) on
the orbit is periodic with period I = 2n

A stationary point is categorised according to the phase portrait, the picture of
the flow in phase space, immediately around it. This is partly determined by the
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Jacobian matrix, Df (x), defined by

Y (2.6)
ax;
evaluated at the stationary point, and in particular by its eigenvalues and eigen-
vectors.

Eigendirections corresponding to eigenvalues with negative real part are direc-
tions in which the stationary point is stable, and those corresponding to eigen-
values with positive real part are unstable directions. To see this we will investi-
gate the stability of the stationary point x = xo by perturbing it slightly so that
x =x0+ (), with0 < |n| < 1 Substituting for x in equation (2.1) gives

dn
— = , 2
& fxo+mn) @7
Now Taylor-expanding f (xo + n7) in powers of i we get
d
S= f0) + Df |, _yn+ Ol 28)

Since x is a stationary point of equation (2 1) we know that f(xo) =0 If
is an eigenvector of D}‘|x=x0 with eigenvalue A, then Df|x=.x0'7 = A7, so the
evolution equation for 17 becomes

dn

3 =t odnh). (2.9)

Solving this equation we find that to leading order 1 = nge*, where ng is the
value of n at 1 = 0 Now, if the real part of A is negative, we find that || — 0 as
t — +00 and so the perturbation dies away: in other words the stationary point is
stable in this direction. Conversely if the real part of A is positive, we find that the
size of the perturbation, {n{, grows with time and the stationary point is unstable
in the direction of

A stationary point is only linearly stable if all its eigenvalues have negative real
part: if any eigenvalue has zero real part and none has positive real part the point
is linearly neutrally stable, and if any eigenvalue has positive real part the point is
linearly unstable

When we are consideling motion in the plane (x € R?) there are two eigen-
values A; and Ay and the different types of stationary point are given names as
follows:

(i) A1 < A2 < 0: a stable node;

(i) A} = Az < 0 and all vectors are eigenvectors: a stable star;
(iii) A1 = A2 < 0 and there is only one eigenvector: a stable improper node;
(iv) Ay > Az > 0: an unstable node;
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(V) M =22 > 0 and all vectors are eigenvectors: an unstable star;

i) M1 =22 > 0 and there is only one eigenvector: an unstable improper node;
(vil) A1 < 0 < Ay: a saddle point;
(viii) A1 = +iw, My = —liw: acentre;

(ix) m=p+ iw, Ay = p —iw, p < 0: a stable focus;

(x) =P +iw, 3 = p—iw, p > 0: an unstable focus;

(xi) degenerate cases where an eigenvalue is exactly zero

All but the degenerate cases are shown in Figure 2.4

Example 2.3 Consider the equations

dx
a = 3.X + .Xz, (2 ]O)
Doy @11)
— =y+x .
dr ) Y
There is a stationary point at x =y = 0 The Jacobian is given by
3+ 2x 0
Df.-( y 1+x)‘ (212)

Evaluating the matrix at the stationary point x =y = 0 gives
30
Df|\myeo = (0 1)- @ 13)

é) and xo = 1, with

The eigenvalues are ).y = 3, with corresponding eigenvec tor (
0 . .
eigenvector (1) Perturbing around x =y = 0 by setting x = n, and y = 1y,

where || < 1 and |n,| < 1 and linearising, we find the following equations for
the growth of the perturbations:

dny

dr Nx (214)
dny

RELRAA 2
TR (2 15)

Integrating these we find n, = Te¥ and 1y = fye', where 7, and 7, are the
values of the perturbations at time t = 0. The perturbations grow as time
increases, so the stationary point at x = y = 0 is unstable. According to the clas-
sification above, the fixed point is in fact an unstable node. The phase portrait in a
neighbourhood of the origin is shown in Figure 2.5, since the full nonlinear equa-
tions were used to produce it, the picture looks slightly different from the linearised
version presented in Figure 2.4.
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Fig 2 4. Phase portraits in the vicinity of (a) a stable node, (b) an unstable node,
(c) a stable star, (d) an unstable stai, (e) a stable improper node, (f) an unsta- p
ble improper node, (g) a saddle point, (h) a centie, (i) a stable focus and (j) an

unstable focus. Where matked, ey and e3 are the eigendiiections corresponding to
eigenvalues A7 and Az, respectively.
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Fig 25 Phase portiait in a neighbourhood of the fixed point at the oiigin in
Example 2.3

A stationary point, xg, is said to be hyperbolic if and only if the Jacobian,

i - has no zero or purely imaginary eigenvalues The point xq is called
a sink if all the eigenvalues have strictly negative real pait, a source if all the
eigenvalues have strictly positive real part, and a saddle otherwise.

Hyperbolic stationary points have the nice property that they persist under small
perturbations of the governing differential equation This means that if equation
(2.1) is changed slightly to

dax; = f(x)+eplx), xeR" (2.16)

where p(x) is a smooth vector field in R”, and 0 < € « 1 is sufficiently small,
then for each hyperbolic stationary point of equation (2.1) there is a hyperbolic
stationary point of equation (2 16) that lies very close to the original one in phase
space and is of the same stability type (sink, source or saddle)

We can see how this works by considering a hyperbolic fixed point atx = xg of
equation (2.1) Fixed points of equation (2.16) satisfy

f(x)+ep(x) =0 2.17)

Now expanding this equation in a Taylor series around the original fixed point xq
gives

+eDp| ) (x — x0) + O(Jx — x0%) = 0.

(218)

f(x0) + ep(xo) + (Df |

X=xp x=xg
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We know that f (xp) = 0 because xq is a fixed point of the original equation, and
so from equation (2 18) we can deduce that

-1
X =Xx0—€ (Df ‘x:x(} + er|x=x0) p(xo) + 0@ =x1(e), (2.19)

and we have found a fixed point of the perturbed equation (2 16) at an O(¢) dis-
tance from the original fixed point of equation (2.1). Of course, for this to work
the matrix (Df |]r —x0 +e€Dp ‘x =xo) must have an inverse, and for that to be true it
must have no zero eigenvalues We know that Df |x -y, Das no zero eigenvalues,
because the original fixed point x¢ of equation (2 1) is hyperbolic. By continu-
ity in ¢, if we take ¢ small enough the eigenvalues of (Df |x ex T GD])lx =xu)
will be bounded away from zero too, so the matrix will be invertible and our equa-
tion (2.19) for the perturbed fixed point will hold.

To show that the perturbed fixed point is of the same type as the original one, we
have to show that none of the eigenvalues of (Df + €Dp) can cross the imaginary
axis as we move from x = xo when € = 0 (the original fixed point) to x = x| with
0 < € « 1 (the perturbed fixed point). The original fixed point is hyperbolic, and
so the real parts of its eigenvalues are bounded away from zero. By continuity in
¢ the real parts of the eigenvalues of (Df |x=.x1(e) + er|x=xl(€)) will also be
bounded away from zero for small enough ¢, and so cannot cross the imaginary
axis This means that the perturbed fixed point is also hyperbolic and of the same
type as the original

2.2 Local bifurcations from stationary points

At a bifurcation there is a sudden qualitative change in the flow in response to
changes in one or more parameters in equation (2 [) There will be obvious dif-
ferences in the phase portrait, and typically the number and stability properties
of fixed points or periodic orbits will change The parameters that lead to these
changes are called bifurcation parameters and the point in parameter space at
which the changes occur is called the bifurcation point If we let ¢ be a vector of
bifurcation parameters, then p = g for example, is the bifurcation point Local
bifurcation theory is concerned with changes in the flow in the neighbourhood of
a fixed point o1 periodic orbit There are also global bifurcations which affect the
large-scale properties of the flow: we shall not consider them here, but if you are
interested you will find a nice intioductory account in Glendinning (1994).

In the remainder of this chapter we will look exclusively at local bifurcations
from stationary points. The first thing to point out is that these bifurcations can only
happen at parameter values for which the stationary point is nonhyperbolic Chang-
ing parameter values a little bit is equivalent to making a small perturbation to the
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governing ordinary differential equation, and we know that hyperbolic stationary
points persist under those circumstances: the perturbed equation has a hyperbolic
stationary point of the same stability type. So changes in the number or stability-
type of fixed points can only happen when stationary points are nonhyperbolic.
Typically the eigenvalues of the Jacobian, Df |x — x,. at the stationary point xo will
depend upon the vector of bifurcation parameters, u: to identify the bifurcation
point you simply find the value or values of g for which one or more of the eigen-
values is zero or purely imaginary.

Example 2.4 Consider the equations

dx 2

— = —x7, 2.20

il i (2.20)

dy

= — _y 221

ar ¥, (221)
where i, x, y € R For i < Qthere are no fixed points, but for . > Q there are sta-

q:26/ﬁ _01), respec-

tively The eigenvalues are thus —1 and F2,/it at (/i 0), respectively. So the
fixed point (\/1t, 0) is a stable node and (—./1t,0) is a saddle Both these fixed
points are hyperbolic, except at . = 0 As p passes through zero from negative
to positive, there is a change in the flow, from there being no fixed points to there
being two fixed points, one stable and one unstable: there is a qualitative change in
the phase portrait Aty = O the points (£,/1x, 0) coalesce into one nonhyperbolic
fixed point at the origin. This is a saddle-node bifurcation: the phase portraits
shown in Figure 2 6 illustrate the birth of a saddle and a node at v = 0, whence
the name.

tionary points at (/11 0), where the Jacobian matrix is (

2.2.1 Reduction to a centre manifold

To understand local bifurcations of stationary points we need a method of
analysing the flow near a nonhyperbolic stationary point In general we will want
to investigate the case when a stable stationary point first Joses stability, so the
Jacobian will have eigenvalues with negative real part, corresponding to stable
directions, and one or more eigenvalues with zero real part corresponding to the
directions in which the the stationary point is just losing stability We will not allow
any eigenvalues to have positive real part as this would mean the stationary point
already had unstable directions
Let us write the system as

dx n m
E:f(,x,u), x e R", peR”, (222)
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Fig 2 6. Phase portraits for the cases (a) # < 0, (b) £ =0 and (¢) p > 0 of
Example 2 4
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where the nonhyperbolic stationary point is at x = 0 [t is helpful to separate out
the linear and nonlinear patts of the equation so that

d
d—': = Ax + g(x), (223)

where |g(x)| = O(|x|?) as [x] — 0. The matiix A is the Jacobian, Df|(0-u)’ and
its eigenvalues will depend on g¢ The nonlinear function g(x) may also depend
on it

Now we separate out the linearly stable directions, corresponding to eigenvalues
with negative real part, from the directions corresponding to eigenvalues with zero
real part by rewriting the system in the form

dy

o By + gy(y. 2), (2.24)
dz
@ Cz + g:(y.2), (2.25)

where all the eigenvalues of the matrix B have zero rea] part and all the eigenvalues
of the matrix C have negative real part, and where gy (y, z) and g.(y, z) are the y
and z components of g(x) respectively. Sufficently close to x = 0, the dynamics
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Fig 27. Tiajectories are rapidly attracted towards the centie manifold (bold
curve), where the subsequent dynamics unfold Airows show the direction in
which the tiajectories are followed as time progresses

is dominated by the linear terms and [z| decays towards zero exponentially fast,
because the eigenvalues in the z directions have negative real part. If the dz/dr
equation were purely linear (g;(y, z) = 0), we would have |z| — 0, but in fact the
Cz term that causes [z| to decay will eventually be balanced by the nonlinear term
2:(v, 2), and z ends up on some manifold, z = % (y), where |2(y)| is no bigger than
O(ly|? as |y| — O After the transients have died down, the dynamics is driven
by y, which evolves much more slowly than z, because the eigenvalues in the y
directions have zero real part, and so the growth or decay of |y| is determined
by terms no bigger than O (|y|?) in equation (2.24) This evolution takes place on
the centre manifold, z = A (y), illustrated in Figure 2.7, which can be determined
from equations (2 24) and (2 25)

The centre manifold theorem guarantees that there exists a centre manifold
passing through the origin and tangential toz = ¢ at y = 0 Itis invariant: in other
words a trajectory that starts on the centre manifold stays on it The centre manifold
is not necessarily unique, however. We shall move on to look at the use of the
centre manifold theorem; if you are interested in details of its statement and proof
you can find them in Carr (1981) One important comment is that systems that
have some ejgenvalues with positive real past can still have a centre manifold,
even though we have chosen not to pursue that possibility. The centre manifold is
still locally tangent to the eigenspace corresponding to eigenvalues with zero real
part

Locally, the centre manifold can be written

z = h(y), (226)
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where 2(0) = 0, since it passes through the origin, and where Dh |y=0 = (), since
it is tangential to the space z = Qaty = 0
The centre manifold is invariant, so it must satisfy the equation

dz dy
— = Dh— 227
dr dr’ @27
which after substituting from equations (2.24), (2 25) and (2.26) becomes
Ch(y) + g:(y, h(y)) = Dh[By + gy(y, h(y))] (2.28)

To find the centre manifold, we need to solve equation (2 28) for #(y). According
to the centre manifold theorem there must be a solution near y == ¢ We assume
there is a polynomial approximation to z(y) near y = 0: it is in general straight-
forward to find by expanding %(y) in powers of y and equating the coefficients of
powers of y on either side of equation (2.28)

After the transients have died away, the evolution of the flow on the centre
manifold is governed by the equation

d
% = By + gy(y. h(y)), 229)

where we have simply substituted z = A (y) into equation (2.24).

This procedure has teduced the original system of n equations to one of much
lower order, for example m equations if y € R”. (Note that m is the dimen-
sion of the centie manifold.) This is a very good thing, as the smaller the num-
ber of equations we have to deal with, the more likely we are to understand the
system.

The centre manifold reduction can be carried out even as 7 —> 00, provided that
the eigenvalues, A;, of C satisfy

Re(};) < —6 <0, (2 30)

where § > 0 does not depend on n. In many of the situations we will examine in
this book the centre manifold reduction will leave us with only one or a handful of
equations to analyse in a system that started with an infinite number: this is very
useful indeed.

2.2.2 The extended centre manifold

The centre manifold 1eduction is all very well, but what we would really like to be
able to do is to analyse the behaviour near the stationary point as we vary the vector
of bifurcation parameters u through the bifurcation point That means that the real
part of one or more eigenvalues of A will pass from negative to positive as we pass
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through the bifurcation point g = pe., where the real parts are zero At first sight
it looks as if we can’t use a centre manifold reduction, because the fact that the
eigenvalues change sign as p varies means we can’t separate them into those with
negative and those with zero real part We use a trick to solve this problem. First
the vector of bifurcation parameters, p, is chosen so that the bifurcation point is at
p = pte = 0. Then we declare that p is now a variable vector just like y and z, and
tack the equation

d

K _y @2.31)
dr

onto to our system So p is a variable vector — it’s just that it doesn’t evolve in a

very interesting way. This might seem rather pointless, but magically the full set

of governing equations

dup

_ 2.3
dr 0 (232)
dy ) ,
Fri By +g (v.z, 1) = By +g,(¥.2), (233)
dz , ,
4 = €180,z =Cy+8:0.2), (234)

now satisfies the conditions for a centre manifold reduction: there is a nonhyper-
bolic stationary point at the origin, g = y = z = 0, and all the linear eigenvalues
of B" and C’ have either zero o1 negative real part Note that because g is on an
equal footing with y and z in this formulation, the entries in B and C that depend
on p now give rise to nonlinear terms that must be included in g}, and g; respec-
tively, while the new matrices B’ and C’ must be independent of ¢ The primes
() indicate that the linear and nonlinear terms have been redefined to account for
this shifting of the p-dependent terms out of the matrices and into the nonlinear
functions What we have done is extended the system into parameter space: we
will now be able to find an extended centre manifold on which we will be able
to examine the flow near the stationary point for parameter values close to the
bifurcation point on either side.
We find the extended centre manifold, z = A(y, ), by expanding in powers
of y and p. Eliminating z from equation (2 33) then gives
dy

Fri By + gy(y, h(y, p)), (2 35)

and we know that g is a constant from integration of equation (2 32). Equa-
tion (2 35) describes the evolution on the extended centre manifold close to the
bifurcation point
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Example 2.5 Consider the system

dx

_df = MUX — XV, (2 36)
d

—df = -y + xz, (237)

where w, x, y € R There is a stationary point at the origin, x = y = 0, for all
values of u, and the Jacobian there has eigenvalues p and —1. At p = O the sta-
tionary point is nonhyperbolic and there is a bifurcation

1o analyse behaviour near the stationary point for values of p close to zero, we
add the equation

g

dt
and look for the extended centre manifold Clearly p. has a growth rate eigenvalue
of zero Now that i is a variable, the linear part of equation (2.36) is zero, so x
also has a zero eigenvalue The linear part of equation (2.37) gives an eigenvalue
of —1 for y. Since y is the linearly decaying variable, and . and x are linearly
stationary, we look for the extended centre manifold in the form y = h(x, u) The
invariance of the centre manifold gives us the equation

dy ohdx 9dhdu

dt  dxdr o dr
Substituting from equations (2 36) and (2 38), along with y = h(x, 1), leads to

(2 38)

(2.39)

oh
—h(x, p) +x% = 5 (x = xh(x, ). (2.40)

Now we expand h(x, i) as a polynomial in x and p, with h at least as small
as quadratic near x = . = O (so that the centre manifold is tangent fo the space
vy = 0 at the origin) to get

h=ax®+bxpu+cu?+ (2.41)

where a, b and ¢ are constants and the dots remind us that there will be higher-
order terms as well Substituting this into equation (2 40), gives

w2 —ax? —bxp—cu® — = Qax +buyx(u —ax* —bxpu —cp - ).

(242)

This equation must hold for all values of x and u, so the coefficients of each term
xtul, for i, j € Z, on the left- and righthand sides must be equal Fquating the
coefficients of x> on either side of equation (2 42) gives 1 —a =0, or a = 1.
Equating the coefficients of x . gives b = 0 and equating the coefficients of >
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gives ¢ =0 Soto leading order the extended centre manifold is
y=x%, (2 43)

and the flow on the extended manifold evolves according to the equation

d
-d; = px — x5, (2.44)

where L is a constant.

We can also derive equation (2.44) using the method of adiabatic elimination:
assume that ;¢ is small, for example & ~ € with |e| < 1. Now, we know that on
the extended centre manifold, the evolution is driven by x, so we must balance all
the terms in the equation for dx /df, namely

dx
5 = M (2.45)
to ensure that they are all of the same order in ¢: we find ¢ ~ ¢~2, so that d/dr ~
€2, and y ~ €2 Now turning to equation (2 37), we see that the dy/dr term is of
order €%, but the —y term is of order €2 In order to balance this last term, we must
have x ~ € The term dy/dr will later be balanced by terms coming from a higher-
order expansion of y in terms of x and ji: the fact that this term is small reflects
the fact that the y coordinate changes only slowly once the trajectory has reached
the centre manifold. The equations look like this

% = ux —xy, (2 46)
0 0 0¥

dy 2

A~ 2.47

” y+x (2.47)

0" 0 0D

Equating terms at 0(@€?) in equation (2.47), we find y = x2, as before. The y
coordinate is determined directly from the x coordinate: we say that it is slaved to
the x coordinate Now we can substitute the expiession for y into equation (2 46)
to get the equation

d
5 = nx - (2.48)

which describes the dynamics on the extended centre manifold This simple
method only gives the leading-order approximation to the centre manifold.
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2.3 Normal forms for bifurcations

Let us retuin to the equation

dx
o =f(x,u) xeR" pueR”, (249)

where f is nonlinear, w4 is a vector of bifurcation parameters and there is a sta-
tionary point at x = 0 Poincaré’s linearization theorem says that under certain
conditions on the eigenvalues of Df |(0 " there is a nonlinear near-identity trans-
formation

y=x+gk), yeR" (2 50)

in the neighbourhood of the origin, which is invertible for sufficiently small {x/,
such that the evolution equation for y is linear and takes the form

dy

dr
For further details of this theorem look in Glendinning (1994) or Arnol’d (1983).
If we could make this transformation for every nonlinear system for every value
of p, then lots of problems would be much easier to solve. However, it doesn’t
always work, because the conditions for Poincaré’s linearization theorem to hold
are quite strong In particular, the result does not hold at a local bifurcation point. If
we attempt to Jinearise the system there, we find that we cannot get rid of some of
the nonlinear terms. The transformed system now consists of the nonlinear terms
we are stuck with. If we add back in the linear terms that vanish exactly at the
bifurcation point — a process known as unfolding ~ the result is known as the
normal form of the bifurcation; it contains all the essential information about
the character of the bifurcation. Normal forms are usually written down using sim-
pler, less formal methods

= Df | Y (251)

2.4 Codimension-one bifurcations

The codimension of a bifurcation is the difference between the dimension of the
bifurcation-parameter space and the dimension of the object (for example sui-
face, line or point) that gives the location of the bifurcation in that space For
example, if a bifurcation occurs on the (one-dimensional) line 121 = 0 in a two-
dimensional parameter space, ¢ = (141, 12), then the codimension of the bifurca-
tion 1s 2 — 1 = 1. Another way of Jooking at this is that the codimension is equal
to the number of bifurcation parameters that you need to vary in order to reach the
locus of the bifurcation from a typical point in parameter space. Starting from a
typical point (z1, (t2) in the example just given, you only need to vary ;2| in order
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to reach p1 = 0, so the bifurcation has codimension one Of course, if you start
at a special point where p) = 0 there is no need to vary any parameters to reach
the bifurcation, because you are there already. The mention of ‘typical points’ is
intended to exclude this situation.

We are going to take a quick look at codimension-one bifurcations in this section
as they are the simplest examples to understand, and turn out to be important in
pattern formation For these bifurcations there is only one bifurcation parametei,
w € R, to vary in order to find the bifurcation point. We will assume that when
w = 0, there is a nonhyperbolic stationary point at x = 0, in other words that there
is a bifurcation at & = 0, and we will look at the local behaviour close to (x, i) =

(0,0)

2.4.1 Stationary bifurcations

We will fuist consider bifurcations that correspond to a real eigenvalue passing
through zero This type of bifurcation is known as steady or stationary

Saddle-node bifurcation

We have already met the saddle-node bifurcation in Example 2.4; its noimal foim
is given by the equation
dx 2

— =pu—ax , 2.52
5 = ¢ + (2.52)
where x, u € R and «a is a real constant. The bifurcation parameter is . As we
saw in Example 2 4 for ¢ = 1, there are fixed points at x = £./u/a for u/a > 0,
and no fixed points for ;/a < 0, with the bifurcation point at ;£ = 0. The growth
rate eigenvalue for perturbations to the fixed point at +./p./a is

df

= —2ax} _ = F2a/n/a, (2.53)
dx \—+ AT =%/ 1/a

respectively, where f(x) = p —ax? is the righthand side of the normal form
equation. So for a > 0 the fixed point at x = +./u/a is stable and the one at
X = —y/p/a is unstable, while for a < 0 the stabilities are interchanged. Note
that at the bifurcation point the growth rate eigenvalue is zero, as expected, and
there is a nonhypeibolic fixed point at the origin We can summarise this informa-
tion in the bifurcation diagram shown in Figure 2 8, which plots the amplitude x
of the fixed points as a function of the bifurcation parameter ;o The figure shows
the case @ > 0. Stable fixed points are shown as solid lines and unstable ones as
dotted lines
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Fig 2 8. Bifuication diagram for the saddle-node bifurcation. Stable fixed points
ate shown as bold lines, and unstable fixed points as dotted lines

The saddle-node bifurcation is the generic codimension-one stationary bifurca-
tion: it is the bifurcation you would expect to find when no special conditions have
been imposed on the system.

To make the notion of the genericity of a bifurcation a bit clearer we can say
that the bifurcation problem

dx
FrR AL 254)

is generic for its class, characterised by constiaints on f (x, w), if for sufficiently
small € > 0 the perturbed problem

¥ )+ e ) (255)
has the same type of bifurcation at a nearby value of i for all perturbations v(x, )
such that it remains in the same class. This is a bit of a hand-waving definition of
genericity, but it is adequate for our purposes

In the case of the saddle-node bifurcation the only constraint on f (x, ) is that
it be a smooth function of x, i € R Consider the smooth perturbation

dx 2

n = —ax”+ev(x, pn) + - (2.56)
of the original bifurcation problem, where without loss of generality, we consider
the case @ > 0 Looking close to the fixed point at # = 0, x = 0, the perturbation

takes the form

dx
m = (1l +evy +evyp) + €(v3 + vap)x — (a + evs)x2 + (257)
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up to quadratic order in x and w, for some constants v;, i = 1,...,5 The station-

ary solutions to this equation,

1
x = m{e(vg + vat)

4/ €2(v3 + vap)? + 4ula + cvs)(1 + vy +6u2p,)}, (2.58)

exist only for
€2(v3 + vap)? 4+ 4pla + €vs)(1 + evy + evap) > 0, (2 59)

or equivalently,
e’v3 3
> e = ——=+ O(€”) (2.60)
4a
There is a saddle-node bifurcation at ;& = p¢. Since pe ~ €2, the bifurcation point
is close to that of the original system at % = 0 Thus the saddle-node bifurcation
is generic for one-dimensional steady-state bifurcation problems
We will now go on to look at stationary bifurcations that occur when the system

is special in some way, so that there are further constraints on f (x, p).

Transcritical bifurcation
The simplest codimension-one stationary bifurcation with a fixed poiut that per-
sists for all values of the bifurcation parameter is the transcritical bifurcation. Its
normal form is

dx 2
—=ux+ax"+ -, (261)
dt
where x, 0 € R and a is a real constant This has fixed points at x = 0 and
x = —u/a for all values of u. Linearising around the fixed point at x = 0 by
setting x = 0 + #(¢), where [n| < 1 we see that
dn
— = un, 2.62
a5 M (2.62)
so the growth rate eigenvalue is p and the point x = 0 is stable for u < 0 and
unstable for y > 0. Linearising around the second fixed point at x = —u/a by
setting x = —u/a + n(r) with |n| <« |1/al gives
dn
uad P 263
5 un (2 63)
The eigenvalue is —x and so the point x = — g /a is unstable for ¢ < 0 and stable

for ;# > O The fixed points and their stability are shown in the bifurcation diagram
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X
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Fig 2 9. Bifurcation diagram for the transcritical bifurcation Stable fixed points
are shown as bold lines, and unstable fixed points as dotted lines.

in Figure 2 9. At u = 0, there is a bifurcation point, where the stability of the two
fixed points is exchanged.

The additional constraint on f(x, p) for a transcritical bifurcation beyond that
for a saddle-node is

£0,) =0, YueR, (2 64)

which forces x =0 to be a fixed point of equation (2.54) for all u It is easy
to check that within the class of stationary bifurcation problems satisfying equa-
tion (2.64) transcritical bifurcations are generic. On the other hand they are not
generic within the wider class of stationary bifurcation problems in one dimen-
sion. Choosing the following smooth perturbation that does not satisfy (2.64)

dx
iU +ax*+ ., (2.65)

we find stationary solutions at

.x=%(—ui1/u2~4eu1a), (2 66)

as long as u” > 4evya. If av; < O there are stationary solutions for all values of
i, and there is no bifurcation. On the other hand if av; > O stationary solutions
only exist in the regions x < —2,/€v(a and x > 2,/evja, and the transcritical
bifurcation breaks up into two saddle-nodes The two situations are illustrated in
Figure 2.10. It is easy to check that the stabilities of the various solution branches
are as given in the diagrams. It is no surprise that if we see bifurcations in the per-
turbed case they are saddle-nodes, because these aie generic when the constraint
7(0, ) = 0 1s broken
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Fig 2.10. Bifurcation diagrams for the perturbed transcritical bifurcation
described by equation (2.65) witha > 0 and (a) v; < 0 or (b) v; > O Stable fixed
points are marked with bold lines and unstable fixed points with dotted lines

Pitchfork bifurcation

If we require both that x = 01is a fixed point for all values of the bifurcation param-
eter, and also that the system is symmetric under the transformation x — —x, then
we end up with a pitchfork bifurcation There are two possible normal forms The
first case is known as the subcritical pitchfork bifurcation:

d

L tad+ (2.67)
dr

where x, 4 € Rand a > 0 is a real constant. The fixed points are x = 0 for all &
and x = +./—pu/a for p < 0 Linearising around x = 0 by setting x = 0 4 n(z)
with [n] < 1 we see that

dn
— = un, 2.68
a =k (2.68)

just as for the transcritical bifurcation, so again x = 0 is stable for u <0
and unstable for u > 0. Now linearising around the other fixed points by setting
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(@) (b)

Fig 2.11. Bifurcation diagrams for the (a) supeicritical and (b) subcritical pitch-
fork bifurcations Stable fixed points are marked with bold lines and unstable fixed
points with dotted lines.

x = d/—pfa+ (), with [n| € /—u/a gives

dn
— = =2un, 269
dl n (269)
so the solutions x = &=./— 1 /a are unstable for ;. < 0 (and do not exist for & > 0).
The second case is known as the supercritical pitchfork bifurcation:
dx

Ef—:ux——a.x3+ - (270)

where x, i € R and @ > 0 is a real constant. The fixed points are x = 0 for all
p and x = £4/p/a for > 0. Again the point x = 0 is stable for & < 0 and
unstable for i > 0 Setting x = +./z/a + n(t), with || < /1t/a and linearising
in 5 gives
%:Z = —2un, (2.71)

so the solutions x = =,/ /a ate stable for ;. > 0 (and do not exist for 1 < 0)

In both cases there is a bifurcation at & = 0 where the zero solution loses sta-
bility The pitchfork bifurcations are illustrated in Figure 2 11

The defining characteristic of the subcritical bifurcation is that the fixed point
solution branches bifurcating away from the zero solution exist in the region where
the zero solution is stable, before the critical point at which the zero solution loses
stability, whereas for a supercritical bifurcation the bifurcating branches exist in
the region where the zero solution is unstable, in other words after the bifurca-
tion point For a given value of the bifurcation parameter, supercritical solution
branches have more stable eigenvalues than the solution from which they have just
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Fig 2 12. Bifurcation diagiam showing the tuinaround of a subcritical solution
branch. There is a subcritical pitchfork bifurcation at ;2 = 0 and a saddle-node
bifurcation at ;& = pgn The hysteresis loop is followed in the direction of the
artows as i 1s increased and decreased

bifurcated, wheteas subcritical branches have fewer stable eigenvalues. In a one-
dimensional system this means that subcritical branches are unstable and supercrit-
ical branches are stable At a supercritical bifurcation there is a smooth transition
from the stable zero solution to the stable bifurcating branch as the bifurcation
parameter y increases through zero and the zero solution loses stability This is
not the case for a subcritical bifurcation: as you increase the bifurcation parame-
ter through zero the zero solution loses stability, but there is no small amplitude
stable solution for x > 0 and so the amplitude x must jump from zero to some
other stable solution at Jarge amplitude not predicted by our local analysis. In
general, one would expect a situation like the one illustrated in Figure 2.12: the
unstable bifurcating branch gains stability in a saddle-node bifurcation at x = xg,
i = sy, There would be a discontinuous jump from the zero solution to the high-
amplitude stable solution at x = 0, and even in the region pue, < @ < 0 if the
system were subjected to a large enough perturbation. On subsequently decreas-
ing p through zero, the high-amplitude solution would be stable until p = gy, at
which point there would be a discontinuous jump down to the zero solution In
the absence of large perturbations, the system would follow the hysteresis loop
shown in Figure 2.12 as wu is first increased and then decreased We say that
there is hysteresis in the region ug, < p < 0, because the solution adopted by
the system for a value of w in the hysteretic range depends on the history of its
evolution,
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Pitchfork bifurcations are generic for the class of one-dimensional stationary
bifurcation problems satisfying

f0, 1) =0, 2.72)
flex ) =—f (x, ), (273)

in other words those that not only have a stationary solution x = 0 forall x, but are
also symmetric under the reflection symmetry x — —x. The reflection symmetry
requires f to be odd in x so that

dx
Frin flx, 1) (274)

is preserved under the transformation Letting x — —x gives

dx
-3 = fl—x, ) = —f(x, 1), (2.75)

which reduces to equation (2 74) on cancellation of the minus sign on both sides.
Genericity of the pitchfork bifurcation under the constraints (2 72) and (2 73) is
straightforward to check.

Pitchforks are not generic in the wider class of one-dimensional stationary bifur-
cation problems that satisfy only f (0, #) = 0 (and hence neither are they generic
for the even wider class wheie f need only be smooth) It is easy to see this by
perturbing the normal form to

dx
Fri X +evxl—axd+ . -, (276)

where v is a constant, and where we shall consider the supercritical pitchfork with
a > 0 (though a similar analysis is possible in the subcritical case) The stationary
solutions are x = () and

X = %(evl + ,/ezv% + 4au) 277

The nonzero solutions only exist for

ezv%

H>He=——=, (278)
A

and there is a saddle-node bifurcation at . = pt. where this pair of solutions is
formed There is also a transcritical bifurcation at p = (. The bifurcation dia-
gram is shown in Figure 2 13 As a result of the perturbation, the bifurcation
problem (2.76) breaks the x — —x symmetry, but it still lies in the class where
f (0, ;) = 0, for which transcritical bifurcations are generic It is natural then that
there is a transcritical, rather than a pitchfork bifurcation at the origin in the per-
turbed case.
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Fig. 2 13 Bifurcation diagiam for the perturbed pitchfork described by equation
(2.76) witha > O and v; > O Stable solutions are shown by bold lines and unsta-
ble solutions by dotted lines

2.4.2 Hopf or oscillatory bifurcation

All the bifurcations we have looked at so far have been stationary, with a real
eigenvalue passing through zero We can also have a codimension-one bifurcation
where the 1eal part of a complex conjugate pair of eigenvalues passes through zero,
the imaginary part remaining nonzero: this is a Hopf or oscillatory bifurcation.
The normal form is given by

dx

—=ar—oy+ a(x® +y%)x — b(x* + yhy, (2.79)
dy 2 2 2 2
5=M+wx+a(x + )y + b(x* + yH)x, (2 80)

where x, y, u € R and w, a, b are real constants The origin x = y = 0 s a fixed
point of the equations for all parameter values If we consider equations (2.79) and
(2 80) to be of the form

dx
pria Sl (2 81)

where x = ();) then the Jacobian at the origin is given by

Dfly = (“ _‘"), (2.82)

O NY)

and its eigenvalues are p &+ iw. We expect a Hopf bifurcation when = 0 and
w # 0. (If w = 0 there is still a bifurcation, but it is not oscillatory.)

The easiest way to see what is going on is to go into polar coordinates setting
x =rcos@and y =rsinf, wheter > Oand 0 < @ < 27 The equations for » and
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6 are given by

= = ur +ar”, (2.83)
de
T=ot br? (2 84)

The evolution of both » and 8 depends only on the value of r, and not on 8, so
we can determine the stability of the whole system by looking at the stability of
solutions to perturbations in » Equation (2.83) is the normal form for a pitch-
fork bifurcation in r, subcritical if @ > O and supercritical if @ < 0. So a Hopf
bifurcation is a pitchfork in the r direction with some rotation in the 6 direction
thrown in: since w is nonzero, 8 is not steady close to the origin at the bifurcation
point.

The stationary solutions for » are 7 = O for all y, and » = /—u/a for ufa < 0
Note that r is a radius, and so is non-negative The point » = 0 is the fixed point
at the origin, while at » = \/—u/a there is a periodic orbit, as long as dg/dr is
nonzero, which requires that w — bu/a # 0, so that the trajectory traces out the
circle r = /—u/a over and over again. Linearising around the solution r = 0 by
setting ¥ = 0 + (), with || « 1, we find that

dn

o 285
= (2 85)

showing that » = 0 is stable for 4 < 0 and unstable for x > 0 Now setting » =
J—ufa + n(r), with || « /—/a, and linearising in 5 gives

dn

i —2un. (2 86)
In the case a > 0, the solution » = /—pu/a exists for u < 0, and we see from
equation (2 86) that it is then unstable. This is a subcritical Hopf bifurcation since
the bifurcating solution, in this case a periodic orbit, exists in the region where
the zero solution is stable. However, if a < 0 then the solution 7 = /—/a exists
for 1 > 0 and from equation (2.86) is stable. This is a supercritical Hopf bifurca-
tion since the bifurcating solution exists where the zero solution is unstable This
is directly analogous to case of the pitchfork bifurcation, because we do indeed
have a pitchfork bifurcation in the 7 variable. The bifurcation point is at u = 0
where the zero solution, = 0, loses stability. The bifurcation diagrams for sub-
and supercritical Hopf bifurcations are illustrated in Figure 2 14

For the case w > wb/a, where the periodic orbit is followed in an anticlockwise

direction, the phase plane portiaits for the sub- and supercritical Hopf bifurcations
are shown in Figures 2 15 and 2 16 respectively.
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Fig 2 14 Biturcation diagrams for the (a) supercritical and (b) subcritical Hopf
bifurcations Stable solutions aie shown as bold lines, and unstable solutions as
dotted lines. (The axes are drawn with the origin shifted.)

(a) (b)

Fig 215 Phase plane diagrams for the subcritical Hopf biturcation when
(@) u <0and (b) 0 < p < aw/b, for >0, b > 0and a > 0 The limit cycle
is shown as a dotted line because it is unstable
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DT

(2) (b)

Fig 2.16 Phase plane diagrams for the supercritical Hopf bifurcation when (a)
aw/b < p <0and (b) u > 0, forw > 0,0 > 0anda < 0.

Exercises

2.1 Identify the following bifurcations, put them in normal form, and sketch the bifurcation

diagram:
dx 2
(a) a=3,u,+27+,u.x+]2x+x,
dx
(b) 5=—u—98—20.x—x2,
dx
(c) E:—3p,+24—,ux+]1x+.x2,
dx
d — =pu—16—6x—x*
(@ il X=X

2.2 Reduce the following systems to the equation on the extended centre manifold (up to
cubic order), identify the bifurcation there and sketch the bifuication diagram:

(a) z—fz (= 6)x + ( + 4y + 2xy +2)%,
i—); =(u+dHx+ (u—6)y — 2x* — 2xy.
®) %=—%u(x+y)+)’+%xz+éxy—f—évz,
%%’ = —%u(x +y)+x+ ]—36-x2 - %xv - 15—6)12-
(c) i—j :y—x—xz.
% =px—y—y?

2 3 By writing dx /dt = y and finding dy/dt, or otherwise, sketch in the (x, A) plane the
lines giving the locations of the stationary bifurcation and the oscillatory bifurcation
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from the trivial solution x == dx /d¢ = 0 for the equation

d2x dx 3
- — +Arx—x"=0
dr? JrMdr HAx
2 4 Consider the following equations in polar coordinates (7, 6):
dr 3
a =pr =i,
dé
— =]
dr

What kind of bifurcation takes place at 4 = 07 Where is the limit cycle in this system,
and is it stable or unstable? Draw the phase plane diagrams for the cases u < 0 and
uw = 0.



3
A bit of group theory

This book is about patterns that have some kind of symmetry The natural way
to describe symmetry is using group theory, so we had better know something
about groups before we start to investigate patterns This chapter gives you a quick
introduction to the concept of a group and some relevant bits of algebra. If you
would like a bit more background reading you might like to try Cornwell (1984)
for an introduction to group theory in physics, James and Liebeck (1993) for more
depth on representations and characters, Steeb (1996) for Lie groups and continu-
ous symmetries, and Johnston and Richman (1997) or Cohn (1982) for a general
introductory algebra text.

3.1 Groups

A group, I', consists of a set of elements {y;, y2,. 1}, together with an opera-
tion (known generically as multiplication or composition), that satisfy the group
axioms below

Composition associates with every pair of elements y; and y, of I another
element y3 of T" according to

V3 = Y172, 3N

so any group must be closed under the group operation. Sometimes the symbol o
or isused for composition, for example y; o y» o1 1 ¥2 Composition is ‘on the
left’: in other words y;y» means ‘do y» first, followed by y;’
The group axioms are:
(1) Closure

The group must be closed under composition
(1) Associativity

Any three elements y;, 2 and y3 of I' must satisfy

vy = vi(2vs) (3.2)

52
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(ili) Identity
There must be an identity element, e € I', such that

ye=ey =y, VYyel 3.3)

(iv) Inverses
Fot each element y € T there must be an inverse element, y ~! < T, such that

vy l=yly =e (34)

Example 3.1 (The multiplicative group of nonzero real numbers) Consider the
nonzero real numbers under multiplication. Checking the group axioms in turin we
see that

(i) The group is closed since real numbers r; multiply together according to 13 = rr2,
and r3 will be nonzero and real if r1 and ry are.
(ii) Ordinary multiplication is associative, since (r1r2)rs = r1(rars) = rir273
(iii) The identity element is simply 1, since 1 xr =r x 1 =r for any real number r, and
1 is a nonzero real number.
(vi) The inverse of a nonzero real number v is 1/1 (also a nonzero real number) since
rx (I/ny=>0/r)yxr =1

The group axioms hold and so the nonzero real numbers under multiplication form
a group.

Example 3.2 (The additive group of real numbers) 7his time we take the group
operation to be addition Clearly the group is closed, and addition is associa-
tive The identity element is 0, since r +0=0+r =r for any real number,
r, and the inverse of a number r is —r, since r + (—r) =—r +1r =0 Again
the group axioms hold, and thus the real numbers also form a group under
addition

Example 3.3 (The general linear group, GL(n)) The set of all real invertible
n X n matrices forms the general linear group of degree n, GL(n), under matrix
multiplication. The group is closed since AB is a real n X n matiix if A and B are
Matrix multiplication is associative, there is an identity matrix 1, and each matrix
has an inverse, so G L(n) satisfies the group axioms

Strictly speaking we should write G L(n, R) for the group we have just defined,
and call it the general linear group of degree n over R, since we can also define
the general linear group G L (n, F )of degree n over any other field F. In particular
you may come across GL(n, C), which is the group of invertible complex n X n
matrices under matrix multiplication. However, we shall use G L(n) as shorthand
for GL(n, R) throughout this book
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An Abelian group is one where all the group elements commute:

viva=yvi, Yy, €L (3.5)
For example, the group of real numbers under addition is abelian, since we have
a+b=b+a, Va,beR (36)

The group operation of Abelian groups is sometimes written as addition (+) to
stress the commutativity, even though it may actually be multiplication or compo-
sition of symmetries We won’t use this notation in this book, but you might come
across it in research papers

Many groups are not Abelian, and for these groups the order of composition
of the elements is important. For example, GL(n) is not Abelian, because matrix
multiplication does not commute, as the following calculation shows:

GOE D€ D006 o

Most of the groups we shall be concerned with in this book are not Abelian. Since
the order of composition of group elements matters, it is important to remember
that the inverse of a group element y; 2 is v ! yl" , because

nvvs v = ey me=v e = vy ive, Yy, m el (3.8)

Products of a group element with itself are written as powers of that element.
For example:

y yv=yv% (3.9)

y: yi=y, (3.10)
yl oy =y G11)
yW=e¢ (312)

A group is said to be generated by a subset of its elements, the generators, if
all group elements can be written as products of powers of the generators.

Example 3.4 (The cyclic group, C,, of order n) Consider the group gen-
erated by a = e”'" ¢ C under multiplication The group elements are
{e,a,a?,. ,a”"'}, where the identity element is given by e = 1, and a" = e.
The group is closed since a? € {e,a,a®, .. ,a" '} for any integer, p, and there
are inverses (@)™ =a"" P, for p=0, . ,n—1 Finally multiplication is
associative, so all the group axioms hold This is C,, the c¢yclic group of order n.
The generator a does not have to be ¢*™/™ any group with elements

{e,a,a®, .,a""'}, where a" = e, is cyclic of order n. In fact, stricily speaking,
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Table 3 1 A group table

e 4| Y2 Yn
e e Y1 V2 . Va
1 Y1 ),12 Y172 : Y1Vn
v | n  nn Vs - Y2Vn
Vn Vn YnY1 Va2 - yl;z

Cy should be defined in this abstract way We will often come across these groups
when a is the rotation through 27 /n.

The order, n, of a group element y € I' is the smallest integer such that " = e.
For example, the order of the generator a of the cyclic group Cy is 4, and the order
of a? € Cyis 2

If a group has a finite number of elements it is called a finite group. The order,
||, of a finite group T is the number of elements of I' For example, the additive
and multiplicative groups of real numbers are both infinite groups, while the cyclic
group, C,,, is finite, with n elements, so its order is n

The composition of group elements of a finite group is sometimes displayed in
a group table, like Table 3.1. Each entry in the body of a group table is the com-
position, y1y» of the element y; in the corresponding row of the lefthand column
of the table with the element y» in the corresponding column of the top row.

Example 3.5 (The symmetry group of an equilateral triangle) Ds, the symme-
try group of an equilateral triangle is generated by p, a rotation through an angle
of 2t /3, andm, a reflection in a line joining a vertex to the midpoint of the opposite
side.

The group elements are e, p, p>, m, mp, mp?, corresponding to the identity,
rotations through 2m /3 and 4 /3, and three reflections respectively. The symme-
tries are shown in Figure 3 1. The group table (lable 3.2) shows that performing
any two of these symmeitries one after the other gives another symmetry in the
group, so the group is closed. For example p mp = m, where represents com-
position of symmetries. Recall that in composition the symmeiry on the righthand
side Is performed before the symmetry on the lefthand side. You can also see from
the group table that Ds is not Abelian, for example m - p # p m = mp’

Composition of symmetries is associative The identity element is e (the sym-
metry of doing nothing!), and all symmetries have inverses that are also group
elements For example p- p* = p? - p =e,so p~ ' = p2



56 A bit of group theory

Table 3 2 The group table for D3, the symmetry group of an
equilateral triangle

e i) 0? m mp mp?
e e 0 0* m mp mp?
p 0 02 e mp? m mp
p2 02 e P mp m,o2 m
m m mp mp? e p 0°
mp mp mp? m p? e P
mp? mp? m mp p p? e

Fig. 3 1. The elements of D3

Example 3.6 (The dihedral group, D,,, of order 2n) The symmetry group of a
regular polygon with n sides is known as D, the dihedral group of order 2n, and
can be treated in a similar way to the symmetry group of the equilateral triangle
in the previous example. The group is generated by a rotation, p, through 27 [n,
and a reflection, m, with an axis that passes through the centre of the polygon and
a corner or the midpoint of a side. The 2n group elements are the identity, the
rotations {p, .., p"~'} and the reflections {m, mp, . ., mp"~'}.

Example 3.7 (The Euclidean group, £(2)) T'he Euclidean group, E(2), is the
group of translations, reflections and rotations of the plane. For a transformation
(p.t), consisting of p, a reflection in an axis containing the origin, or a rotation
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about the origin, followed by t, a translation, the vector x € R? is transformed to
X = (p,)x = px +t¢ (313)

Performing transformation (py,t1) after transformation (3, t2) gives
"= ppax + pita + 1y, (3.14)

which is equivalent to a transformation (p,t) with p = p1py and t = p\ty + £,
so the group is closed Composition of transformations is also associative

(o1, £1)((p2,22) (03, 23)) = (p1, 1) (0203, P23 + 12)
= (0102p3, p1(p2t3 +12) +11)
= (P10203, P1P2t3 + P12 +11)
= (p1p2, prt2 + 1) (p3, 83)
= ((p1,£1)(p2,22))(p3,13). (3 15)

There is an identity element (e,0), and an element (p,t) has inverse
(o), —p~'t) All the group axioms are satisfied and so E(2) is a group.

The dihedral groups and the Euclidean group are important in pattern formation,
as we shall see in later chapters

3.2 Subgroups, quotient groups and conjugacy

A subgroup, H, of a group, I', is a subset of the group elements that forms a group
under the same group operation as I”

To show that a subset of group elements, # < T, is a subgroup you need only
check that it is closed under composition and contains the identity element and the
inverses of all its elements. Associativity under composition must hold, since T is
a group

H is a normal subgroup of a group, I, if

yhy™ € H, Vyel,Vhe H (3.16)

So for a normal subgroup we have yHy"l C H,Vy €I’ However we also
have

vy lhy e H VyeTl, VheH, (3.17)

and so i € yHy ™' In other woids we have H C yHy ', ¥y € I'. Since the
inclusion holds both ways round we must have

yHy ' =H (3 18)
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If I" is Abelian then all subgroups are normal since yhy ~! = yy~lh = h
The complement, ['\H or I' — H, of asubgroup H in I' is the set of all group

elements that do not belong to H:
[ —H={yel :y#H]} 3 19)

The complement of a subgroup is not a subgroup since it cannot contain the iden-
tity element

Example 3.8 C3, the group of rotations of an equilateral triangle, consisting of
the elements {e, p, p*} under composition, is a subgroup of D3 Looking at the
group table, Table 3.2, you can see that these elements when composed with each
other always give another element in the subgroup Cs contains the identity e, and
all the inverses are contained in the subgroup since p~' = p* and p~> = p The
complement D3 — Cz consists of the reflections {m, mp, mp?}

More generally, the cyclic group Cy, of rotations generated by rotation through
2/ n is always a subgroup of the dihedral group D,

Example 3.9 1t is straightforward to check that the pure translations, (e, t), form

a subgroup of the Euclidean group E(2), as do the reflections and rotations, (p, 0).

The point of this example is to see whether these are normal subgroups of E(2).
For any two group elements, (p1,t1) and (p2,t7), in E(2) we have

(o1 602, 02)(P1.£1)™" = (p1. 1) (2. 2) (07 —p7 ' 81)
= (0102, prt2 + 1)o7, —p7't1)
= (,01,02/01", —p12p7 1+ pita +21) (320

If (p2, t2) is a pure translation, then py = e and we have

(01, 11) (P2, 12) (01, 81) ™! = (o1, 11) (e, 12) (o1, 11)
= (prep; . —prepy 't + pitz + 1)
= (e, —t1 +pit2+11)
= (e, pit2), (321

so (p1,t1) (e, t2)(p1, £1)~ is also a pure transiation for all (p1,t1) € E(2) This
means the group of translations is a normal subgroup of E(2). However, if (p2,t2)
is a pure reflection or rotation, then t, = 0, and we have

(o1, 11)(P2. )1, 1)1 = (p1, 1) (02, 0)(p1, £1) "
= (e —pipapy 1) (322)
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In general pipap; 'ty # 1 and so (o1, 1) (o2, 0) (1. t1)~" is not a pure reflection
or rotation, and the group of reflections and rotations is not a normal subgroup of

E(2).
The normalizer, N (H), of a subgroup H of T is given by

NH)={y el :y 'Hy = H} (3 23)

Clearly H € N(H),and H is normal in N(H ). In fact the normalizer is the largest
subgroup of I' that has H as a normal subgroup. To show that N(H) is a subgroup.
we check for closure, the identity and inverses N (H) is closed under composition,
since

0y ' Hyva=v, 'y "Hyiya =y, 'Hya=H, Yy.ynel, (324)

and so y1y2 € N(H) if y; and y» are in N(H). We also have an identity ele-
ment, since e € N(H), and inverses since y~' € N(H) if y € N(H) because
y’lHy = H implies H = yHy~'. So N(H) is indeed a subgroup. It must be
the largest subgroup within which H is normal, since any element y € I' — N(H)
must satisfy y"'Hy # H, and so H cannot be normal within a subgroup that
includes any elements outside N (H)

Example 3.10 7he reflection subgroup {e, m} of Dz is its own normalizer, while
the normalizer of the subgroup of rotations Cz = {e, p, 02} C Ds is the whole of
Ds.

If H is a subgioup of a group I', then the left coset containing y € I is defined
by

yH = {yhlh € H}. (3 25)
The right coset is defined similarly to be
Hy = {hy|h € H} (3 26)

(Note that some authors call the left coset, as defined here, the right coset and vice
versa As long as you stick to one convention, it doesn’t matter ) For a normal
subgroup we have y Hy ! = H or

yH=Hy, Vyel, 327

which says that the left and right cosets are the same if H is a normal subgroup In
this case we can call them simply cosets.
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Cosets are disjoint Consider the left cosets y1 H and y» H If they have an ele-
ment in common then there exist /11, 7y € H such that

Yih = yaha, (3.28)
and so
v vy =hhy' € H (3.29)
Thus
yh =y (yl—]yz)h e H, VYheH, (3.30)

and we have y»H C y; H. But using an identical argument we also have y1 H C
yaH, and so y1 H = »» H So the left cosets are disjoint and we have

viH=y»wH o ywHNyH=0 (3.31)

Similarly the right cosets are disjoint. The cosets therefore partition the group I'.
If H is a normal subgroup of a group, I', the quotient group, I'/H, has group
elements given by the set of distinct cosets, and a group operation defined by

nH)(nH) =nrnH, VYy.pnel (332)
Composition is well-défined since
nH)(H) =y (yz)/z_')HyzH. (since yzyz_l =e) (3 33)
=y 'Hp)H, (3 34)
=yiy»HH, (since yz_lHyg = H) (3.35)
=nrH (3 36)

I'/H is closed under composition and associative because I" is The identity is
eH = H and the inverse of y H is y =1 H

Example 3.11 (Z/n, the integers under addition modulo n) Let I be the group
of integers, 7, under addition, and let H be nZ, the subgroup of integers divisi-
ble by n. nZ is normal in 7, since the group is Abelian. The distinct cosets are
{i + H, 0 <i <n— 1}, and the group operation on the quotient group Z/nZ is

i+H+j+H=0(4+] modn)+ H. (3.37)

The group Z./nZ is often written Z/n or Zy It is a cyclic group of order n, gen-
erated by the element 1, giving vise to the common alternative notation Z.,, for C,.
The notation Zy is very frequently used for the cyclic group of order 2

The quotient group is useful in this example because it ‘factors out’ the repet-
itive behaviour of the larger group, leaving only the essential structure If we are
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looking at addition modulo 10 then the numbers n, 10 +n, 20 +n and so on,
for integers n between 0 and 9, all behave in the same way, so we might as well
restrict our attention to the integers 0,1, .., 9 and forget about the rest. The quo-
tient group does this for us. Quotient groups are similarly useful in describing
periodic patterns, by allowing us to focus on the basic unit of the pattern rather
than having to worry about all the repeats

Two group elements, 1} and %, in [ are conjugate, or equivalently are said to
be in the same class or conjugacy class if there is a group element, y € [", such
that

hi = yhay ! (3.38)

Any two group elements in the same conjugacy class have the same order, since
if ho is of order n, and hy = yhyy~! for some y € I then

Iy = (yhay ™" (3.39)
=yhyy lyhoy”' . yhyy”! (3.40)
=yhiy ' =yey™ =e, (3.41)

using A = e, and so A is also of order n.
Two subgroups H; and H of I" are conjugate if there is a group element y € "
such that

Hy =yHy " (3.42)

Example 3.12 In D, the elements p and p* are conjugate since p2 =mpm~L.

Both p and p* have order three Similarly the reflection elements m, mp and mp*
are all conjugate since pmp~) = mp and p*m(p?)~' = mp®. Ihe reflections are
all order two

Ihe subgroups {e,m} and {e,mp} are conjugate since pmp~
pep‘l =e

V' mp and

The symmetry groups of patterns that are similar, in a sense to be made precise
in Chapter 4, turn out to be conjugate.

3.3 Mappings of groups

It is possible to map one group to another. This will be useful later for characteris-
ing the action of the group on the space of pattern solutions
A homomorphism is amap 6 : ' — A between groups I and A such that

0(y1y2) =0(v1)6(n), Yyiymel (3 43)
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In other words homomorphisms are maps that respect the group structure A
homomorphism always maps the identity element er € I to the identity element
ep € A, since

Oler)f(y) =6blery) =6(y), VyeTl (3.44)

Multiplying on the righthand side by (8(y))~"' (since the group element 8(y) € A
must have an inverse) we find

O(er) = en (3 45)
Inverses are also mapped in the obvious way since
6By~ =6(8(y) =6(er) =es, VyeT, (3.46)
andso (0(y))~' =0y ).

Example 3.13 Let T be the positive real numbers under multiplication, and let T/
be 1, the group consisting solely of the identity element Then 8 : RT™ — 1 defined
by 8(x) = e, Yx € R is a homomorphism since

O(xy) =e=e*> =6(x)8(y), Vx,yeR*t (3.47)

T'his point of this rather boring example is to show that homomorphisms need not
be one-to-one. We will come to some more interesting homomorphisnis in a minute.

An isomorphism, 9, between groups I" and A is a homomorphism that is bijec-

tive. If such an isomorphism exists, we then say that I and A are isomorphic,
written ' = A,
Example 3.14 The cyclic group of order n generated by ¢*™'/" under multipli-
cation, with group elements {1,e1/7  2T=0/ny js isomorphic to the
symmetry group generated by a rotation, p, through 27 /n under composition of
symmetries, with group elements {e, p,. ., p"~'} The map, 6, defined by

™™y =" meZ 0<m<n—1 (3.48)
is clearly bijective and it respects the group structure since
g(eFTimIn 2mip/ny — ponkp) — pniop g g2min/nyg (2ip/ny
VYVm,peZ: 0<m,p=<n-—1 (3.49)
So 8 is an isomorphism, and the two groups are isomorphic as claimed.

Example 3.15 (The orthogonal groups, O(n), and special orthogonal groups,
SO(n)) The n-dimensional orthogonal group, O(n), consists of all n x n
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matrices, M, that satisfy
MM = I, (3 50)

where M is the transpose of M O(n) is isomorphic to the group of all rota-
rions and reflections in R" that fix the origin, with a mapping between each matrix
and the transformation that it represents in coordinate geometry Similarly, the
n-dimensional special orthogonal group, SO(n), consists of matrices M € O (n)
that satisfy detM =1 SO(n) is isomorphic to the group of all rotations in R"
that fix the origin, and is often called the n-dimensional rotation group The group
of rotations in the plane is often called the cirele group, S', and is isomorphic to
S0O2).

Isomorphic groups have the same abstract form, so their names are sometimes
used interchangeably, for example we might say that O(2) is the group of reflec-
tions and rotations of the plane that keep the otigin fixed, and SO (2) is the group of
rotations of the plane that keep the origin fixed When it comes to describing how
isomorphic groups act on a space, though, we may have to distinguish between
them. For example, the group generated by a reflection and the group generated by
a rotation through 7 are both isomorphic to the cyclic group Z,, but they act on
the plane in different ways We will go into this in more depth when we consider
representations of groups later on

An isomorphism from a group I" to itself is called an automorphism of I".

Example 3.16 Let ' be the real numbers under addition. Then 6 :R — R
defined by 0(x) = 2x is an automorphism. The map, 0, is a homomorphism since
we have

O(x +y) =2 +y) = 2x +2y =0(x)0(y), Vx,yekR (3.51)

It is an automorphism because it is bijective (the inverse exists and is given by
61 (x) = x/2, Vx € R), and maps the group of real numbers under addition onto
itself.

Aut(I") is the set of all automorphisms of I and forms a group under compo-
sition of functions The group is closed since the composition of two automor-
phisms is also an automorphism Composition of functions is associative There is
an identity automorphism, /d : ' — T", defined by /d(y) = y,Yy € I', and every
automorphism has an inverse, since automorphisms are bijective. Thus the group
axioms hold and Aut(I") under composition of functions does form a group
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3.4 Products of groups

The direct product, I' x A, of two groups I" and A has gioup elements (y, ),
where y € I"and § € A The group operation is defined by

(y1, 8012, 82) = (V1y2, 6182). (3.52)

I" x A is closed, since I" and A are. The group operation on I x A is associative
since the group operations on I and A are. The identity element is (er, e ), where
er is the identity element in I and e, is the identity element in A, and an element
(v, 8) has inverse (y~!, 67"} So all the group axioms are satisfied and " x Aisa
group

The direct product of Abelian groups is often written as a direct sum, I § A
The use of the plus sign here mirrors its use to represent the group operation of an
Abelian group Again we will not use this notation, but you may see it in research
papers.

The group I x A has normal subgroups (I", ex) and (er, A) isomorphic to '
and A, respectively, since

(¥ (T, ea)y, 8 = (yTy~ !, deas™

=T, ep), Y(y.8)elxA, (3.53)
(v, 8)er, Ay, )~ = (yery ™, 8467
=(er,A), Y, 8elxA. (3.54)

The direct product generalises to products of more than two groups in the natural
way. For example, we would define I'y x 'y x '3 by

(Y1, 2. V3L v3, v3) = (Miv]s 1213, V3Ya),
Yy, v €1 Vo, v €T, Vs, v € 13 (3.55)

Example 3.17 The symmetry group of a rectangle, Ds, is isomorphic to Zy x Zo.
Dy is generated by two commuting reflections, my and my, shown in Figure 3.2.
The group elements are {e, my, my, mym}, where mymy(= mymy) is the rota-
tion through an angle w. Since the reflections commute, the group is Abelian The
reflection group Zy has elements {e, m}, where m is any reflection, and m?=e
If we have two copies of Zy, one generated by my and one by my, then the direct
product group 7o x Zy has elements {(e, €), (ny, €), (e, my), (m,, m,)}. We can
define the isomorphism 9 : Dy — Zy x Zy by

B(e) = (e, e), (3.56)
9(”21) = (mx > e)a (357)
O(my) = (e, my), (3.58)

O(mymy)y = (my, m,), 3.59)
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Fig 3.2 The generators of D,

so we have Dy = Zy x 7y The group Zo x Zy is often denoted Z% Similarly we
write 75 = 7y x o X . X Z for a direct product of n copies of Z

The semidirect product, I' X A, of two groups I and A has gioup elements
(y,8), where y € I and § € A If 6 : I" — Aut(A) is a group homomorphism,
then the semidirect product of I and A with respect to @ is defined by the group
operation

(71, 61)(r2, 62) = (172,610 (1)(82)) (3 60)

The semidirect product is not unique as it depends on the choice of homomo-
phism ¢ It is often written as a semidirect sum, I'+A, when A is Abelian and
the group operation on A can be written as addition Lattice groups, relevant to the
description of periodic patterns, have a semidirect product structure.

To show that " X A is a group, we check that it satisfies the group axioms.
I" X A is closed since yyy, € ', for all vy, 2 € T, and by the definition of § we
have 8(y1)(82) € A, and s0 §10(y1)(82) € A, forall yy e "and §y,52 € A

There is an identity element, (er, ea), satisfying

(er,ea)(y,8) = (ery.eabler)d) = (y,8), Vy eI,Vée A, (3.61)
since @(er) = Id, because 8 is a homomorphism, and
(v, 8)(er,ea) = (yer,d80(y)ea) = (y,98), Vy el VieA, (3.62)

since 8(y)epn = ea, because 6(y) is an automorphism of A
An element (y, 8) has inverse (y !, 9(;/‘1)(6'1)), since

., O e ™HE™Y =y 80O HE))
= (er,8 1d 87") = (er, en). (3.63)
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using @(y)0(y 1) = Id, and we also have

Lo HE N8 = ¢y, 06 HETHIG THE)
= (er, ea), (3 64)
using ¢y~ = (@~ ")(8)) L, since 6(y ) is an automorphism of A.
To show that the semidirect product, I' x A, is indeed a group it just iemains to
check associativity We have

(v1, 81 ((y2, 82)(¥3. 83)) = (¥1, 81) (1213, 6260 (311)(83)))
= (111273, 810(1)(620 (12)(83)))
= (Y123, 610 (1) (82)0 (1) (0 (12)(83))), (3.65)

and

(71, 8)(y2, 82)(¥3, 83) = (V1¥2. 810(31)(82)) (3, 83)
= (y17273, 810(¥1)(62)0 (y1y2)(83))
= (117213, 610 (y1) (82)0 (1) (€ (12)(83))),  (3.66)
$0 associativity holds and I x A satisfies all the group axioms

I' X A has a normal subgroup (er, A) = A since for arbitrary (y,8) € I' x A
we have

(. O)er, M)y, 8) ' = (v, 8)er, My~ L oG Hs™h)
=y, 8 (ery™", Abler) @y (E™h))
=, L A HEY))  (using Oer) = Id)
= (yy 1,800 A0
= (er, 80(y)(A)) (using 0y (™Y € A)
= (er,8A) = (er, A). (3.67)

I x A also has a subgroup (', ea) = I', but this is not normal in general since for
arbitrary (y, 8) € I' X A we have

(7. T ea)y. )7 = ., )T, ey~ ", 0™
=y, )Ty~ eadM)OG HE ),
= (v, ST, 0Ty~ N1y,
= (y, §)(I, (I} 1)),
= (T, 80 ()0 ()(E ),
= (I, 80 (y ') (™)),
= (I, 86(I') (1)), (3.68)

and in general @(I)(8~1) # 871, so (y, 8)(I', ea)(, 81 £ (T, ep)
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(T, ep) could only be normal in I" x A, if 8(y)(3~1) =871, Vy € ', V8 € A,
in which case we would have 8(y) = 1d,Vy €I',and I' x A would actually be
the direct product I' x A.

Example 3.18 The Euclidean group E(2) is a semidirect product of the group
0(2) of rotations and reflections in the plane that fix the origin and the group
of translations in the plane (= R? under addition) A general transformation in
EQ2) is given by (p,t), where p € O(2) is a rotation or reflection andt & R2isa
rranslation. We saw in Example 3.7 that the product of the transformations (p1,t1)
and (p, t7) is given by

(p1,t1)(p2.t2) = (p1p2, prE2 +11). (3.69)

Equation (3.69) shows that E(2) has a semidirect product structure with
EQ) = 0Q) xR> The homomorphism 6 : O2) — Aut(R?) is defined by
6(p)(t) = pt, and the group operation on R? is addition.

We saw in Example 39 that R? is a normal subgroup of E(2) and O(2)
is not

3.5 Lie groups

A Lie group is a differentiable manifold (something like a smooth sutface in an
arbitrary number of dimensions), where the group operation is an analytic map, as
is the inversion operation that gives the inverse of a group element Group elements
can be varied continuously, so a Lie gioup is a way of describing a continuous
symmetry

Example 3.19 The group of rotations in the plane, SO (2), is a Lie group A group
element is described by an angle of rotation, 6. Since 8 also describes a position on
the unit circle, the group also has the structure of a manifold - a circle in this case.
The angle of rotation, and hence the group elements, can be varied continuously.
Composition of rotations is given by the map f :S0O@2) x SOQ2) = SOQ),
defined by

FO.0) =60+, Y0,¢cSOQ), (3.70)

which is clearly analytic Similarly inversion is given by the map i : SO(2) —
SO(2) defined by

i0)=—-0, VoeS0Q), (3.71)

which again is analytic
SO(2) is a one-parameter Lie group, where the rotation, 8, is the parameter.
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Example 3.20 The general linear group, G L(na), is also a Lie group. The space
of all n x n matrices can be identified with R"", the space in which the n* real
enfries of the matrices are coordinates GL(n), the space of all n x n invertible
matrices, is an open submanifold of this n?-dimensional space

A Lie group is compact if its manifold is compact, in other words if it can be
realised as a closed and bounded submanifold of R” for some 2. Equivalently, a
Lie group is compact if its parameters vary over a closed interval. So, for example,
SO (2) is acompact Lie group because its elements are given by a parameter & that
describes a ciicle and lies in the range 0 < 0 < 27, which is bounded below by 0
and above by 27

A closed subgroup of G L(n) is a closed subset of the manifold of G L (n) that is
also a subgroup of GL(n) An open subgroup of G L(n) is one that is not closed.
It can be shown that every compact Lie group is isomorphic to a closed subgroup
of GL(n), the group of all invertible n x n matrices over R (See Brocker and tom
Dieck, 1985 )

Every finite group, I, is also isomorphic to a closed subgroup of G L (n), since
applying any element ¥ € I" to I" permutes the order of the group elements If the
permutation matrix corresponding to this permutation is Py, and I'p is the group
of permutation matrices obtained in this way, then the isomorphism 6 : I' — I'p
is givenby 6(y) = P,

Many of the results we shall use in Chapters 4, 5 and 6 only hold for finite
groups and compact Lie groups, so we shall mostly be dealing with groups that are
isomorphic to closed subgroups of invertible real matrices

3.6 Representations of groups

A representation (strictly a linear representation) of a finite group or compact
Lie group, I', over a field, F, is a homomorphism # from I" to the group of matrices
G L(n, F). The degree o1 dimension of the representation is 7.

The representation gives the action of I' on the vector space V = F’. We shall
only consider the cases where F is R or C, and the representations map to groups
of real or complex matrices. The words representation and action are often used
fairly interchangeably, and 1 shall follow suit

More loosely we say that an n-dimensional representation of a group, I', is
a set of invertible n x n matrices that conform to the group structure of I under
matrix multiplication. If the representation associates a matrix, M, , with the group
element y, according to 6(y) = M,, then the set of matrices must satisfy

My,My = My,y,, Yy, y2€l (3.72)
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A group can have many different representations of various different dimensions
Every representation has M, = I,,, where e is the identity element.

Example 3.21 The group D3 has the representation

1 0 -1 0
M, = Mm = s

1 3 % V3
— 2 2
Mp"‘ J§ 1 ’Mmp— ﬁ 21 5
2 T2 2 T2
_% V3 1 _Q
_ 3 2
Mp=\"pp ) M=\ _i ) 373)
2 2 2 2

which is the set of matrices you would write down to describe the corresponding
transformations of the plane in coordinate geometry This is sometimes referred
to as the natural representation D3 also has other representations such as the
identity representation that we will describe in the next example.

Example 3.22 (The identity representation) Every group 1" has a one-
dimensional identity or trivial representation The identity representation is
given by My, =1, Yy € T Clearly this conforms to the group structure since
My My, =1 x1=1= My, Yy, el

A representation 1s said to be faithful if the mapping from the group elements
to the matrices of the representation is an isomorphism The representation of D3
in Example 3.21 is faithful as it is clearly bijective, but the identity representation
is unfaithful since it maps every group element to 1

If two groups I' and A are isomorphic, with the isomorphism ¢ : I' — A, and
if the homomorphism & : A — GL(n, F) is a representation of A, then the homo-
morphism 8¢ : I' — GL(n, F) is a representation of I". So every representation &
of A gives rise to a unique representation ¢ of I" that maps to the same group of
matrices. Similarly every representation v of I' gives rise to a unique representa-
tion ¥ ¢~ of A that maps to the same group of matrices. Thus isomorphic groups
have the same set of matrix representations.

Two representations are said to be equivalent or isomorphic if there is an
invertible matrix § which maps between the matiices A; of one representation
and the matrices B; of the other representation according to

A =ST'B;S, Vi (374)

Equivalent representations have the same dimension This tiansformation by § is
equivalent to changing the basis of the set of matrices, that is, making a cooxdi-
nate transformation, so equivalent representations are just the same representation
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in different coordinates. More abstractly, if I" is a compact Lie group acting on
two n-dimensional vector spaces V and W, the actions on V and W are said to
be isomorphic, or equivalently V and W are I -isomorphic, if there is a linear
isomorphism (a bijective lineat map between vector spaces) ¢ : V — W that com-
mutes with the action of T':

O(yv)=y(@Qw)), YveV, Vyel (3.75)

Here y v is shorthand for ¢ (y)v, where ¢; is the representation of I on V. Simi-
larly ¥ (6(v)) is shorthand for ¢2(y )(6(v)), where ¢ is the representation of I" on
W We shall use this kind of shorthand a lot in subsequent chapters for simplicity
of notation.

Example 3.23 Consider the representation of Dy given by p : z — ze*™/3 and
m :z — —z, where z € C and where 7 is the complex conjugate of z It is straight-
forward to work out the action of the other group elements by combining powers
of the generators p and m, since the representation is a homomorphism and there-
fore must respect the group structure We will now show that this representation is
isomorphic to the natural representation. The isomorphism 6 : C — R? is defined
by

O(x +iy) = (;) Vi,y € R (3.76)

We can check that the isomorphism commutes with D3 by considering the genera-
tors in turn. Take the action of p first. We have

A2 _x _ 3y
pO(x +iy) = (f f)(,) =< \/2§x : ) (3.77)
> —3/ 0V -

(¥

and

0(p(x +iv)) = 0™ P (x +iy))

1 V3 .
=0 ((_E_HT) (x—i—zy))

. £23>;
= ( & ) (3.78)
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and so pO(x +iy) = 0(p(x +iy)) Similarly we have

mo(x + iy) = (_01 ?) (;‘) - (‘)x) (3.79)

O0n(x +iy)) = 0(—x +iy) = (—y’”) (3 80)

and

and somB(x +1iy) = 0(m(x +iy)) Thus the two representations are isomorphic

A unitary representation is one that is made up entirely of unitary matrices. A
unitary matrix is a matrix M such that

M =M, (3.81)

where { represents the Hermitian conjugate, namely the complex conjugate of the
transpose A unitary matrix has determinant £1 or =i, since

1 =det/ = det(M M) = det MT det M = | det M|? (3 82)

A real matrix satisfying equation (3.81) is said to be orthogonal (see Exam-
ple 3 15). For exammple, the natural representation of D3 given in equation (3.73) is
orthogonal

It can be shown that if I" is a finite group or a compact Lie group then every
representation of I' over C is equivalent to a unitary representation The proof can
be found in Cornwell (1984). In general we shall assume that our representations
are unitary (or orthogonal if they are real).

Within the collection of all representations of a group, I', there are two classes
of special ones: irreducible and absolutely irreducible representations. Absolutely
irreducible real representations are particularly important in the theory of steady
bifurcations in symmeitric systems that is developed in Chapter 4.

A subspace W of V is I'-invariant under the representation 6 of a group I' if

Oyyw eW, VYyvel, VYweW (3.83)

A representation or action of I' is said to be irreducible if the only I'-invarniant
subspaces are the origin, {0}, and the whole space, V.

The shorthand ir rep is often used to refer to irreducible representations

An action or 1epresentation of I' is said to be absolutely irreducible if the only
linear mappings that commute with the action of I" on V are scalar multiples of
the identity

For representations over C, there is no distinction between irreducibility and
absolute irreducibility, but real representations can be irreducible without being
absolutely irreducible as is shown in Example 3 26 (see Golubitsky, Stewart &
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Schaeffer, 1988, for further discussion of this point). Nonabsolutely ineducible
real representations are important in the theory of Hopf bifurcations in symmetric
systems (see Section 4 4).

Representations that are not irreducible are said to be reducible.

Example 3.24 All one-dimensional representations are absolutely irreducible, as
is the natural representation of D3 (equation 3 73).

Example 3.25 The representation on R" given by My, = I,, Yy €T, is reducible
for n > 1, since every subspace is I -invariant and if n > 1 it is possible to choose
a subspace that is neither the origin nor the whole of R".

If a representation is reducible, then there is a I"-invariant subspace W C V that
is neither {0} nor V. Its orthogonal complement, U, is defined by

U=f{u:u'w=0Yw c W} (3.84)

If M, is unitary (or orthogonal for a real representation) it is nonsingular, and so
for all w € W there exists aw’ € W such that w = M, w’, namely w' = M;'w
Thus

(Myw)'w = (Myw)' Myw' =u'MIMw' =u'w' =0, YweW, (389

and so the orthogonal complement U is also I'-invariant In what follows we shall
use yw and yu as shorthand for M, w and M, u respectively. We can represent a
general vector v € V as the sum of a vector w in W and a vector u in the comple-
ment, UU. Now the linear projection p : V — W defined by

piw+u)=w, VYwe W, Yuecl, (3.86)
commutes with I" since

plyw +u)) = plyw +yu) = p(yw) = yw = yp(w +u),
Yw e W, Yue U, (387)

since yw € W and yu € U Thus no reducible action can be absolutely irre-
ducible, and so absolute irreducibility implies irreducibility.
Each mawix My, in a reducible representation can be decomposed into the form

_(Ai B

where the matrix A; acts on the nontrivial ['-invariant subspace If the represen-
tation is unitary (ot orthogonal) then B; = 0 for all i, since the complement of
the I'-invariant subspace is also I'-invariant The groups of matiices A; and C;
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themselves form separate representations of I', since

Ai B A; B;j\ (AiA; AiB;+ BiC;
(0 Cz‘)(O C,-)”( 0 C:C; : (3.89)

so the A; and C; will conform to the group structure because the M,, do If these
lower-dimensional representations are themselves reducible the process can be
repeated, and so on until we are left with ineducible representations along the
diagonal Irreducible representations thus form the basic building blocks of the
reducible representations.

Example 3.26 In the standard action of SO(2) on R?, a rotation through an
angle, 0, is represented by the rotation matrix

Ry = (cos@ —sin 6) (3.90)

sinf  cosd

The only SO Q2)-invariant subspaces are the origin and the whole of R2, so this
action is irreducible. However, it is not absolutely irreducible since each matrix
Ro commutes with every other rotation matrix Ry € SO (2).

R9R¢ = R¢R9 = R9+¢ (3.91)

This gives an idea of why irreducibility and absolute irreducibility are the same
thing for complex representations, but not for real ones. Only complex multiples
of the identity, Ae'?l,, where A € R, commute with an (absolutely) irreducible
complex action Jf we consider the linear isomorphism o : C — R? defined by

ax +iy) = (:}),Vx, y € R, (392)
then
i0 . fcos8 —sinf\ (x
ae'’(x +iy)) = (sinQ cos ) (y) (3.93)

So commuting with a complex multiple of the identity in C is like commuting with
a real multiple of Ry in R2
On the other hand, if we consider Ry to act on C? then the matrix has eigenval-

: ' . 1 o
ues, 9 and corresponding eigenvectors (:F' The eigenvectors do not depend
i

on 0, so the spaces (a,ia) and (a, —ia), a € R, are each invariant under the
action of SO) on C? defined by Ry, which is therefore reducible In a basis
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given by the eigenvectors, the matrices of the complex representation take the form

i¢ 0
(‘30 e—"f’)’ (3 94)

showing clearly that this reducible representation is formed from two one-

dimensional irreducible complex representations where the action of the rotation

is given by e*1?

Now consider the standard action of O(2) on R?, generated by the rotations,
represented by the matrices Rg, given above, and a reflection, m, represented by

the matrix
-1 0
M = ( 0 1), (3.95)

Again the only §O(2)-invariant subspaces are (0} and R?, so the representation
is irreducible. However if we now look for matrices

a b
(c d) (3 96)
that commute with M then

—~1 0\ {a b —a —b
(G Ea=C )
a b -1 0 —a b
(c d)(o 1):(—6 d)’ (3.98)

and so we must have b = ¢ = 0 If the matvix is also to commute with Ry for all
rotation angles, 0, then it must satisfy

acos) —dsin@\ fcosf —sinf\ fa O
asinf dcos® /  \sinf cosf 0 d
_(a 0\ [cosf —sin@
“\0 d/\sin@ coso
_ (a cosf —asin 9), (399)

dsin® dcosé

and so we must have a = d Thus the only matrices that commute with this repre-
sentation of O(2) are scalar multiples of the identity, and so the standard action
of 02) on R? is absolutely irreducible

The theory of steady bifurcation with symmetry uses the absolutely irreducible
real representations. We shall see shortly that it is possible to work out the set of
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itreducible representations over C, so it would be useful to know how to deduce
the absolutely irreducible real representations from these

If the only complex matrices that commute with all the matrices, M, of a rep-
resentation are complex multiples of the identity, (a¢ + ib) [, where a, b € R, then
the only real matrices that commute with all the M,, are real multiples of the iden-
tity, al,, for ¢ € R This means that if an n-dimensional irreducible representation
of a group, T, over C turns out to have real matiices, M,, for all y €T, then
this real representation is an n-dimensional absolutely irreducible representation
over R

Conversely, if all the M,, are real and the only matrices that commute with them
are real multiples of the identity, then if a complex matrix, C, commutes with all
the M,,, it must satisfy

CMy, =M,C, VyeTl (3.100)
Now we can write C = A 4+ i B, where A and B are real matiices, sO
(A+iB)M, =M,(A+iB), VyeTl (3 101)

Taking real and imaginary parts gives AM, = M, A and BM, = M, B, for all
y € I' Thus A and B must be real multiples of the identity, so A =al, and
B =bl, for some a, b € R, and so C' = (a + ib)1, is a complex multiple of the
identity This shows that an n-dimensional absolutely irreducible representation
over R is also an n-dimensjonal irreducible representation over C

What all this tells us is that each absolutely irreducible real representation of
a group, I, is equivalent to an irreducible representation of the same dimension
over C Thus, once we have found all the irreps of T" over C, we can deduce
the absolutely irreducible real representations by working out which ones can be
realised over R, in other words, which ones can be written as a set of real matrices
(by a change of basis if necessary) There is a systematic method for working out
which complex representations can be realised over R, involving something called
the Frobenius—Schur count of involutions (see James and Liebeck, 1993) For the
groups that we shall come across in our study of pattern formation it will usually
be straightforward to write down the real matrices of any such representation.

Theorem 3.1 (Orthogonality theorem for matrix representations) Ler the sets
of matrices M{,’ and M; belong to two unitary representations of a finite group T,
where p and q label the representations, so that the representations are identical
if p = q and inequivalentif p # q Then

1 —5 1
ﬁ Z (Mf)jk(Mg)v = E‘Spq‘sjsakr, (3.102)
yel

where n, is the dimension of M7.
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A version of this theorem also holds for compact Lie groups, with the sum being
replaced by an integral. The proofs can be found in Cornwell (1984).

The theorem says that if you make a vector out of corresponding matrix entries
of one representation for each group element y € I', for example the row 1, col-
umn 1 entries from each M(y),

(My)
(Myg)ll

(My)u | (3103)

(My)n =

(My,,)ll

where n is the dimension of the irrep, then all the possible vectors are orthogonal
to each other, that is, the dot product of one vector with the complex conjugate of
another is zero Furthermore the vectors constructed from one representation are
orthogonal to vectors constructed from an inequivalent representation If you form
the dot product of any one of these vectors with its complex conjugate the result is
IT'|/n, where n, is the dimension of the representation from which the vector is
constructed.

Example 3.27 Let us consider the natural and identity representations of Ds. Both
these representations are real, so there is no need to take the complex conjugate of
a vector when forming the dot product Taking the natural representation first, the
vectors M(T");; are given by

1 [0
1 «/Ti

0 ’“i n “I?"
(M), ~%  (M7),, = 02
] 4

i

: \-%/
(¢ !

3 o

2 2

V3 1

(Mfll)lz (2) , (Mr),, = 12 , (3 104)

£ -}

-4/ -}

where the superscript n denotes the natural representation, and the rows of the
vectors range over the group elements in the order {e, p, p*>,m, mp, mp>} Any
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one of these vectors is orthogonal to any other. The dot product of any of the
vectors with itself is 3, which is equal to |I'|/ny, where the order of the group is
[T'| = 6, and the dimension of the irvep is n, =2 Only one vector can be formed
from the identity representation, and it is

1

1

i 1
) =1, |- 3 105)

1

1

where the superscript i denotes the identity representation. This vector is orthogo-
nal to any of the vectors formed from the natural representation, and when dotted
with itself gives 6, which is equal to |I'|/n;, where nj = 1 is the dimension of the
irrep

3.7 Characters

The character, x (M), of an n x n matrix M is its trace:

X(M) =" M. (3 106)

i=1

The characters of the component matrices are helpful for working out the irre-
ducible representations of a group, as we shall see below and in Chapter 4. The
identity element is always represented by I,,, so has character n

Many results in the theory of characters are derived for the case of representa-
tions over C, so we shall assume that the vector space, V, is C" in this section, and
so the set of matrices of the representation form a subgioup of GL(n, C). Recall
that in this context ineducibility and absolute irreducibility are the same thing As
discussed above, the matrices of the representation can be real, even though we are
working in V = C". If all the matrices of a given representation turn out to be real
then the representation is a real representation

If two group elements /) and /2, in I' are conjugate, satisfying

hy = yhay™", (3 107)
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for some y € I', then for a given representation, the characters of the two corre-
sponding matrices M and M, must be the same, since

X(My) =Y (M) =Y (M, MyM")
i=1 i=1

n n It

=N N (M) (M) (M),

i=1 j=1k=1
= ZZW "My (Ma) i = ZZaL,(Mz),k
j=lk= j=1k=1
= Z(Mz) i = x(Ma), (3.108)

J=1

where M, is the matrix representing y, and n is the dimension of the representa-
tion.

Example 3.28 The characters of the natural representation of D3 are
Xe = 2, Xp = —1, sz - _1, Xm = 0, X,np = 0, anpz = 0 (3109)

The identity has character 2 as this is a two-dimensional irrep. All elements in the
conjugacy class {m, mp, mp?} have character 0, while the two conjugate elements
p and p* have character —1

The characters of a real representation, such as the one in Example 3 28, are
real, but the converse is not necessarily true: in other words, a representation with
all rea) characters need not necessarily be realisable over R For further discussion
of this point, see James and Liebeck (1993).

For finite groups or compact Lie groups the characters of the irreducible rep-
resentations specify the irteps up to equivalence. If M”(y) and M9(y) represent
the group element, y, in two n-dimensional equivalent representations, then by
equivalence there exists a matrix S such that

MP(y)=SMI(y)S~', VyeTl, (3.110)
and so following the argument in equation (3 108) above we have
xP)=x4(y), VyerT, (3111)

where x”(y) and x9(y) are the characters of M?”(y) and M4(y) respectively.
Thus any two equivalent representations of I will have the same character systems,
in other words each group element will have the same character in the two repre-
sentations
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Table 3 3 A character table for a group, T, with
conjugacy classes CS j, irreps i and characters x;;, where

i=1, . ,nandj=1, ,n
Trirep CS) CSy . CSx
] X1 X12 Xin
2 x21 : 4
n Xnl : Xnn

It is also possible to show that for a finite group or compact Lie group, equality
of character systems is sufficient to prove equivalence of representations The proof
of this is given in Comnwell (1984). In principle then, if we can determine the
characters, we should be able to work out the itreps.

The characters of the inequivalent irreps of a finite group I' can be presented
in a character table such as the one given in Table 33 The conjugacy classes
are given across the top, the inequivalent irreps down the side of the table and the
cortesponding entries are the characters, Remember that all elements in a class
have the same character

Theorem 3.2 The number of inequivalent irreducible representations of a finite
group T is equal to the number of conjugacy classes of T".

This means that character tables are always square as shown in Table 3 3.

Theorem 3.3 The sum of the squares of the dimensions d; of the n inequivalent
irreducible representations of a finite group ', is equal to the order, |T |, of T":

Y dF=1r|. (3.112)
i=l

The proofs of Theorems 3 2 and 3 3 can be found in Cornwell (1984).

Theorem 3.4 (Orthogonality theorems for characters) For a finite group, T,
the characters satisfy

1
xP €8x P(CSIN; = IT (5, (3.113)
p=l
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where the sum is taken over all inequivalent irreducible representations of ', and

D xPCSHXICSHN; = U189, (3.114)

i=1

where the sum is over the classes of U'. In both cases, xP(CS;) is the character
of the class CS; in the representation p of T, |T'| is the order of U and N; is the
number of elements in the class CS;.

The proof of equation (3 113) is given in Cornwell (1984), while equation
(3.114) can be obtained from the orthogonality theorem for matrices (Theorem 3 1)
by setting k = j and t = s and summing over j and s

The orthogonality theorems say that the columns of the character table are
orthogonal and so are the rows when weighted by the size of the classes The
weighted sum of the squared moduli of the entries in each row or column adds up
to the order of the group

For finite groups of low order Theorems 3 2, 3 3 and 3 4 are often sufficient to
determine the character table of the group, which we will use to deduce the irreps.

Example 3.29 D3 has three conjugacy classes, so by Theorem 3 2 it must have
three inequivalent irreps. By Theorem 3 3 the sum of the squares of the dimensions
of the irreps must equal the order of the group, which is 6 That means that it must
have two one-dimensional irreps and one two-dimensional irrep, since 1 + 12 +
22 = 6, and there is no other way to add three square numbers to get 6 We already
know about two of the irreps. the identity and natural representations, so we just
need to find one more one-dimensional irvep, which turns out to be
M;’:MzzMgz:l, M¢ =M, =M, =—1, (3.115)

m nmp mp

whete a labels the irrep In this irrep rotations and the identity are represented by
+1 and reflections by —1, values equal to the determinant of the corresponding
matrix in the natural representation. There is always a one-dimensional irvep of
this kind for D,

The classes of Ds are {e), {p, p2} and {m, mp, mp?}, and so we can construct
the character table for Dy (Iable 3.4). You can see that different columns are
orthogonal to each other, as are the rows when weighted by the number of ele-
ments in each class. The dot product of each row or column with itself, weighted
by the number of elements in each class, is 6, the order of the group

Now we need to construct the matrices of the irreps from their characters.
Although the sets of characters are unique, the corresponding sets of matrices are
not, because equivalent representations have the same characters So all we have
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Table 3 4. The character table for Dy The labels i and
n denote the identity and natural representations
respectively, and the label a denotes the irrep defined
in equation (3.115)

Irrep (e} (o, p%) {m, mp, mpz}
i 1 1 1
a 1 1 -1
n 2 —1 0

to do is find one possible irreducible representation that has the given character
system.

In the case of one-dimensional irreps, the matrices are identical to the charac-
ters. For higher-dimensional irreps, we have to construct a set of matrices, with
traces given by the characters, that form a representation that cannot be reduced
into combinations of lower-dimensional irreps. Often, for the groups that we will
look at, one of the higher-dimensional irreps, if there are any, will be the natural
representation, which is easy to write down using coordinate geometry. The natural
representation is not always irreducible, but it is easy to check this once you have
the matrices If the natural representation is not an irrep or if there is more than one
irrep of dimension greater than one, the most practical method of finding the matri-
ces for relatively small groups is by trial and error The orthogonality theorem for
representations (Theorem 3 1) may also be helpful The character table tells you
when you have found all the irreps For finite groups of coordinate transformations
in R3 there is a systematic procedure involving projection operators (see Cornwell
1984)

For finite Abelian groups, finding the set of irreducible representations is easy.
Any two elements, y; and y», of an Abelian group " commute, satisfying y1y» =
¥2y1, and therefore so must the matrices of the representation, so that

My, My, = My,M,,, Ny, p €T (3116)

So each M, commutes with all the matrices of the representation Now if the
representation is irreducible, the only linear mappings that commute with it are
scalar multiples of the identity and so we must have

M, =c(y)I, VyerT (3.117)

for some suitable complex scalars ¢(y) Such a representation can only be irre-
ducible if it is one-dimensional, and further, we can choose it to be unitary. If the
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group has N generators, y;, each of order n;, then we have M (’,i} =1, and so

Y
M}(/l:l) — eQHiplll/llJ’ (3 1 18)
i
for m =0, .. ,n;j—1, where p =1, ,nj labels the n; inequivalent irre-

ducible representations of the cyclic group generated by y; The ]"[jy=1 nj inequiv-
alent irreducible representations of the whole group can be constructed using all
the possible combinations of the irreps of the cyclic groups.

For an Abelian group, I", we have

yhy ' =yy"h=h Vh,yeT, (3119)

so each group element is in a class on its own Theie are ]—[?;, n; group ele-

m .
ments, nj}le y;  form; =0, . na;—1,and sothere must be ]—[?’:, 1 conju-
gacy classes Thus, as expected, the numbes of irreps is the same as the number of
conjugacy classes

3.8 Isotypic decomposition

Under the action of a compact Lie group, I, a vector space, V, can be decomposed
into the sum of a finite number, m, of I"-irreducible subspaces, U;, giving

V=UoU;® LB Uy (3]20)

This decomposition is not unique Some of the U; will be I'-isomorphic to each
other. Recall that two subspaces U; and Uy are I'-isomorphic if there is a linear
isomorphism 6 : U; — Uy that commutes with the action of I":

O(yu;) =y@w;)), VYu; cU; Vyel (3 121)

Summing each set of I -isomorphic subspaces will give a subspace W;, and these
W are the isotypic components of V

Conversely, each isotypic component, W, can be written as the direct sum of a
set of isomorphic I -irreducible subspaces, giving

w=0VgUu?®  @U®, (3122)

where the superscripts label the subspaces, which are not necessarily the same as
any of the Uj to Uy, above, and where U®, .. U™ are all I'-isomorphic to UV

The space V can then be written as the direct sum of the isotypic components
to give

V=W aW, & . &W, k<m (3.123)
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This isotypic decomposition is unique, and is helpful for working out the sta-
bility of solutions to I'-symmetric bifurcation problems on V, as we will see in
Chapter 4 Proofs of the existence and uniqueness of the isotypic decomposition,
can be found in Golubitsky, Stewart and Schaeffer (1988).

Example 3.30 Ler SO(2) act by matrix multiplication on the space, V, of 2 x 2
real matrices, such that a rotation, p, through an angle 9 is given by

a b cos —sind\ (a b
P(c d)_(sine cos@)(c d) (3 124)

Any 2 x 2 real matrix can be expressed as the sum of two other matrices in the

manner
a b a 0 0 b
(c d) - (c 0) + (O d)’ (3125

and so we can write V. = V) @ Vo where V) is the space of all real matrices of the

form
a 0O
(c O) (3 126)
and V3 is the space of all real matrices of the form
0 b
3.127
(O d) (3.127)

Now the action of SO(2) on V and V3 is isomorphic to its standard irreducible
matrix-multiplication action on R? vig the isomorphisms 6, : Vi — R2 and 6 :

Vo — R? defined by
a 0 a
a(* 0= (%) 512

0 b b
) (O d) = (d)’ (3.129)

and hence Vi and V, are SO(2)-isomorphic. The isotypic components are given
by summing the S O (2)-isomorphic subspaces. TThus in this case the single isotypic
component is the sum of Vy and Vy, in other words the whole space, V. Clearly
the isotypic decomposition is unique as it consists of one component. the whole
space On the other hand, the decomposition of V into irreducible subspaces is not
unique SO (2) also acts irreducibly on the subspace V3 consisting of all matrices
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b b
(d d), (3 130)

so we could write V. = V1 ® Va instead of V =V & V

of the form

Exercises

3 1 Show by checking the group axioms directly, that the integers, 0,1, ., n —1,forma
group under addition modulo 7.

3.2 Show, using a group table, that the symmetry group of a square, Dy, satisfies the group
axioms

3.3 Show, using diagrams, that the symmetry group of a rectangle, D2, is Abelian.

3 4 Find the subgtoups of D4 and for each nontrivial subgroup, work out whether it is
normal

3 5 What are the normalizers of the subgroups D, and Z, (where Z, is generated by a
reflection) of Dg?

3.6 Find the conjugacy classes of Ds.

3 7 Find the iireducible 1epresentations of D, over C

38 Find the irreducible representations of C3 over C Deduce a 1eal nonabsolutely
inneducible 1epresentation

3.9 If the action of Z, on R; is given by

1 0 -1 0
w= (D) (2 9)

find the isotypic decomposition
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Bifurcations with symmetry

Group theory turns out to be very useful for analysing bifurcations in systems
with symmetry, including those where patterns are seen The application of group
theory to bifurcations with symmetry is known as equivariant bifurcation theory.
It is a rich and well-developed field and in this chapter we will just skim the
surface, introducing a few of the most useful results A trio of good books that
go into a great deal more depth are those by Golubitsky, Stewart and Schaef-
fer (1988), Chossat and Lauterbach (2000) and Golubitsky and Stewart (2002)
Sections 4 1, 4.2 and 4.4 follow the treatment given in Golubitsky, Stewart and
Schaeffer, though abbreviated.

We are going to look at how the symmetry of observed patterns is affected or
determined by the symmetry of the experimental set-up or governing equations that
produce them. Before we can see how this works in practice, we need to spend the
next two sections defining some useful concepts associated with symmetric equa-
tions and solutions, and introducing the equivariant branching lemma, the main
result that relates the symmetry of steady solutions to the symmetry of the pattern-
forming system in which they are seen

Throughout this and subsequent chaptersif y € I' isa group elementandx € V
is a vector, then yx is shorthand for #(y )x where € is the representation or action
of"onV.

4.1 Ordinary differential equations with spatial symmetry

Consider the equation

dx
T = fx, p), 4.1)

where 7 is time, 1 € R is a bifurcation parameter and x € V is the position in phase
space. We will work with real vector spaces, V, but it will often be convenient to

85
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use complex notation to describe them, in which case we make the identification
R?" = C" We are interested in the situation where there is a group, I, of spatial
symmetries with a (linear) matrix representation If we apply one of the symme-
tries, y € I', to x to get y = y X, then since y is a symmetry of the system we want
the equation for y to be the same as the one for x, in other words

dy

i fO,u) = flyx, uw), (42)

but since y is a purely spatial linear action, we also have

dy

dx

-~ = : 43

o =V S rfew (43)
Equating the two exptessions for dy/dr from equations (4.2) and (4.3), we find
that f (x, ;) must satisfy

v, w)y= f(yx.,n), Vyerl, (44)

which implies a restriction on the form of f (x, ) Equation (4 4) is said to express
an equivariance condition on f (x, ). Equivariance is the requirement that the
left- and right-hand sides of equation (4.1) transform in a compatible way under the
symmetries of the group Note that the symmetries y act only on the phase-space
vector, X, and not on the bifurcation parameter, .

We can use the equivariance condition to deduce the most general form of
f (x, w), bearing in mind that the choice of representation will affect the outcome
If the matrix M, represents the group element y, then the equivariance condition
can be written

My f@.u)=f(Myx,p). VyeT @.5)

It is clear from this that the choice of the matrices M, will affect the form taken
by f(x, ) For example if M, is —7 then f must be odd, satisfying — f (x, u) =
fl=x, pn).

Equation (4 1) desciibes a steady-state bifurcation problem if it has a fixed
point xg such that Df | (toutt) has a real eigenvalue passing through zero at the
bifurcation point, 4 = . From now on we shall assume that for any steady-state
bifurcation problem we have chosen the origins of x and w so that the fixed point
is at x = 0 and the bifurcation point is at & = 0. Then the existence of the fixed
point at the bifurcation point requires that f(0, 0) = 0. We shall also assume that
we have reduced the system to the centre manifold so that the Jacobian vanishes at
the bifurcation point, that is D f | 00 = 0. It will be useful for later to note that if
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Df,, defined by

(Df)ii
(Dfwij = (62{)]’ 46)

has nonzero determinant at x = 0, i = 0 then the eigenvalue passes through zero
with nonzero speed

4 1.1 Group orbits

If x is an equilibrium solution of equation (4.1) then so is yx for all symmetiies,
y, in the group because

d(yx)
()i/t =flyrx, W) =yfx,u=0 4.7
The point yx is said to lie in the orbit of the action of " on x € V defined by
Tx={yx:yel) 4.8)

The point x need not be a stationary solution of equation (4 1) in order for its orbit
to be defined. However all stationary solutions on the same orbit have the same
existence properties

Differentiating the equivariance condition (4.4) gives

v Df ’(" ) = Df r(yx /1,))/’ Vy el (4.9)
If v is an eigenvector of Df [ . 1) with eigenvalue A so that
DI |x ¥ = 40, (4 10)
then we also have
Df | 17?0 =¥ Df | 0 = vAv = Ayv, @ 11)

using the linearity of the action of " on V So y v is an eigenvector of Df ](N»#)

with the same eigenvalue A Thus the eigenvalues of Df | and Df|  ~are
the same. If x and yx are fixed points on the same orbit of T" they will have the
same stability properties as well as the same existence properties, so they are the
same type of solution

Equation (4.9) also tells us to expect multiple zero eigenvalues at a bifurca-
tion with symmeuty, because if Df ](o’u)v = 0 then Df ](0_#)yv = 0 too In other
words, if v is an eigenvector with zero eigenvalue then so too is any point y v in
the orbit of v.

If y € T is a continuous symmetry depending smoothly on some parameter, &,
such that y = (@), with y(0) = e, then if x is a stationary point of equation (4 1),
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0 is y (8)x, for all 8, and so we have

flyx,u) =0 (4.12)
Differentiating with respect to 6 and evaluating at 8 = 0 gives

dy
Df I(.x.u)—

= 4.13
9 x =0, (4.13)

6=0
and so Df | ) has a zero eigenvalue with eigenvector

dy
which is tangent to the group orbit, I'x This means that the fixed point x has a

zero growth rate eigenvalue corresponding to perturbations along the group orbit
We will see this sort of thing often with translation symmetries

4 14)

3

4.1.2 Isotropy subgroups

Now we want to know what the symmetry of the bifurcation problem (4.1) can
tell us about the bifurcating solutions. To do this we look at the symmetry of the
stationary solutions themselves.

The symmetry of a stationary solution, x, of (4.1) is specified by its isotropy
subgroup, £, C I', defined by

2y ={oc el :ox =x} (4 15)

So for a subgroup to be an isotropy subgroup it must fix some vector x, and must
contain all the group elements that fix x. Whether a given subgroup of I' is an
isotropy subgroup will depend on the representation or action of I' An isotropy
subgroup is closed as a natural consequence of its definition by equation (4.15)

Lemma 4.1 Points on the same orbit of I have conjugate isotropy subgroups sat-
isfying
Tyox =y Exy ! (4.16)
Proof First we show that all elements of y £yy ™! fix yx We have
voy lyx)=yoylyx =yox =yx, Vyerl, Yo e 3, 4.17)

which shows that yoy~! € X,y Vy €T,0 € Xy, and hence yIxyT C Zyx
Second we show that all elements of y ~! Z,xy fix x We have

y loyx=y lyx=x, Vyel, Yoe Zpx (4.18)
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AN

Fig 4.1 An example of an isotropy lattice. Inclusion is indicated by an arrow

which shows that y"ay € %, Vy €T, Vo € I,4, and hence y_]E,,ty C %

or equivalently X, C vZxy~! Since the inclusion holds both ways round we
must have ¥,, = y2xy_1. ]

The conjugacy class of an isottopy subgroup, T, is the set of all isotropy
subgroups that are conjugate to £, Each class is labelled by, or named after, one of
its members, so we might refer to the conjugacy class X, or Zo, for example. The
isotropy subgroups of all points on one group orbit of I" are in the same conjugacy
class Since all points on the same group orbit have the same existence and stability
properties, we regard conjugate isotropy subgroups as ‘the same’ in some loose
sense.

An orbit type, Wy, of the action of I" on V is the set of all points of V that have
isotropy subgroups conjugate to Z,:

Wy={(yeV:Z,=yE,y ! forsomeyeT} (419)

The isotropy lattice, or lattice of isotropy subgroups, of a particular action of
I" is the set of all conjugacy classes of isotropy subgroups of I', partially ordered
by inclusion. If £ and A are distinct conjugacy classes of isotropy subgroups,
then ¥ is included in A if and only if there are isotropy subgroups %; € £ and
Aj e Asuch that &; € A; Isotropy lattices are generally presented in the form
of a diagram, such as the one in Figure 4.1 Arrows indicate inclusion: the class at
the tail of the arrow is included in the class at the head

The Tacobian matrix, Df, evaluated at a stationary solution, x, of equation (4 1)
commutes with all the elements of the isotropy subgroup, X, of x. You can see
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this by putting y = o € Z; in equation (4.9) to give
oDfly 1 = Df gy 0 = Pf | o0 V0 € Ex, (4.20)

since ox = x, Yo € Ly A consequence of this is that Ker (Df) is Zx-invariant,
silce

Dfoy=0Dfy =0, VYVye Ker(Df), 421

where from now on Df iepresents Df L - Recall that Ker(«) is the set of
all points x € V such that ax = 0, where « is a linear map acting on the vector
space, V

Now we are going to show that the isotypic decomposition of R" with respect
to the action of Xy, introduced in Section 3.8, block diagonalises Df, which is
useful for computing the stability of the solution x. If

w=UDgu?® gu® (422)

is an isotypic component, with the U® all %, -irreducible, and U®,.. ,U®
all isomorphic to UV, then Ker (Df|UW) is T,-invariant for any U®  Since
%, acts irreducibly on U, the only ¥-invariant subspaces can be {0} or the
whole of U™, so Ker (Df|UD) is one of these. If Ker(Df{UD) = UD, then
DfiUY =0, and so Df (UP) ¢ W On the other hand if Ker (Df|U®) = {0},
then Df|U% is a linear isomorphism that commutes with the action of I,
so Df (U= UD =yM, Any Ty-irreducible subspace that is isomorphic to
U is contained in W, by the definition of an isotypic component, so we have
Df(U®)yC W, for all U¥, and since W is a direct sum of the U we have
Df(W) € W. So each isotypic component is invariant undei Df. In other words,
the isotypic decomposition with respect to £ block diagonalises Df .

4.1.3 Fixed-point subspaces
The fixed-point subspace, Fix(T), associated with a subgroup, T, of I" is defined
by
Fix(Z)={x eV .:ox=x,Yo € T}. (4 23)

Since the action of o is linear, we have o0 = 0 and so Fix(Z) will always contain
the origin and canuot be empty As Fix(Z) is not empty, then it is a subspace of
V if it is closed under addition and scalar multiplication. If x and y are in Fix(%),
then so is x + y since

ox+y)=ox+oy=x-+y, VYoeX, (424)
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since the action of ¢ is linear So Fix(X) is closed under addition. Similarly if x is
in Fix(X), then so is ¢x for any constant ¢, because all linear actions, o, commute
with scalar multiples of the identity and so

ocx =cox =c¢x, Yoex. 4.25)

So Fix(X) is also closed under scalar multiplication, and hence it is indeed a sub-
space of V. Remember that for any given group the fixed-point subspaces will
depend upon the choice of representation

Fixed-point subspaces are flow-invariant since

fx.u)= flox,u)=ocf(x, ), VYx e Fx(X) (4.26)

This says that f (Fix(X), 1) C Fix(Z). So if we know we are looking for a solu-
tion to

dx

P fx,w), (427)
with a certain isotropy subgroup, Z,, we can just restrict f to Fix(Xy) and solve
the equation there

The two trivial subgroups of I' are the whole group T, and the identity sub-

group, 1 = {e}, which fixes every point x € V, so that Fix(1) = V. Fix(I") con-
sists of all the points x € V that are fixed by every group element. It will often
be useful to consider the case where only the origin is fixed by the whole group,
so that Fix(I") = {0}. This is not always true, but does hold as long as we use
nontrivial irreducible representations It is easy to see that Fix(I") is I'-invariant
since

yx =x, VYx € Fix(I') (4 28)

By definition if I" acts irreducibly, the only I'-invariant subspaces of V are {0} and
V So either Fix(I") = {0} or Fix(I") = V, but if Fix(I") = V then I" acts trivially,
so we are left with Fix(I") = {0}

If Fix(I") = {0} then equation (4 26) says that there is a trivial solution to equa-
tion (4 1) since then f (0, ) € Fix(I') and so f (0, 1) = 0.

Another useful result is that if Fix(I') = {0} then dim Fix(X) # 0 for any
isotropy subgroup ¥ C I, because either we have Fix(X) = {0}, but then the full
isotropy subgroup must in fact be I" because we have y0 = 0 for any y € I, or we
have some nonzero vector, x, fixed by £ and hence by equation (4.25) any scalar
multiple of x is also fixed, and so we have dim Fix(Z) > 1
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4.1.4 Axial and maximal isotropy subgroups

An isotropy subgroup, X, satistying
dim Fix(¥) =1 (4.29)

is said to be axial
An isotropy subgroup, £y C I', is said to be maximal if there is no isotropy

subgroup X, C T satisfying
Ty G By G, (4.30)

in other words if it is not a subgroup of a bigger isotropy subgroup apart from the
whole group I'.

Lemma 4.2 LetFix(T") = {0}, and let ¥ C T be a subgroup Then X is a maximal
isotropy subgroup of I if and only if

dim Fix(Z) > 0, (4.31)
dim Fix(A) =0 for every closed subgroup A 2 2. (4 32)

The proof of this lemma can be found in section 4.6,

Axial isotropy subgroups must be maximal. To see this, suppose that X is an
axial isotropy subgroup that is not maximal. Since X is not maximal there must be
an isotropy subgroup, A, satisfying I"' 2 A 2 X, and soFix(A) C Fix(Z) Fix(X)
is one-dimensional because X is axial, and so it must be the space spanned by
some nonzero vector, x, since any scalar multiple of a vector, x, in the fixed-point
subspace will also lie in the fixed-point subspace Thus the only possibility is that
Fix(A) = {0}, which is a contradiction since A # T

We can use the trace formula to compute dim Fix(X) and so work out which
isotropy subgroups are axial and/or maximal.

Theorem 4.3 (Trace formula) Let I” be a finite group, and let ¥ C T be a sub-
group Then the dimension of the fixed-point subspace of X is given by

dim Fix(3) = ll?l aezz tr (o), 4 33)

where tr(a) is the trace of the matrix representing o .

The proof of this theorem can be found in section 4.6 There is also a version of
this theorem for compact Lie groups, which is given in Golubitsky, Stewart and
Schaeffer (1988).
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4.2 The equivariant branching lemma

The equivariant branching lemma is a very useful result which makes predictions
about the symmetry of solutions at steady bifurcations, based on the symmetry of
the bifurcation problem. It was proved by Vanderbauwhede (1980) and Cicogna
(1981). We start by stating and proving a more general version of the lemma.

Theorem 4.4 (Generalised equivariant branching lemma) Let T be a finite
group or a compact Lie group acting on a real vector space, V, with Fix(I') = {0}
Let

dx
Pl ACYD) (4 34)

be a T-equivariant bifurcation problem with Df I(o 0= 0and Df, [ 0.0Y # 0 for
nonzero v € Fix(T), where T is an isotropy subgroup of . Then, if ¥ satisfies

dim Fix(¥) = 1, (4 35)
there is a smooth solution branch x = sv, = u(s), to f(x, n) =0.

Proof Since fixed-point subspaces are flow-invariant we have f(x, u) € Fix(%)
for all x € Fix(X). Since dim Fix(X) = 1 we also have x || v for all x € Fix(%)
and so x = sv and

f (v, 1) = h(s, uv, (4.36)

where A (s, ) is a scalar function and s is a scalar that parameterises the solution
branch Now, since Fix(I") = {0}, there is a trivial solution f (0, ) = 0. The vec-
tor v is nonzero, so the trivial solution corresponds to s == 0 and hence we must
have 2(0, u) =0 Expanding h(s, u) in equation (4 36) as a Taylor series in s
gives

Al 1 9%
f(sv, ) = h(0, u)v—l——l sV ——; 2y + 4.37)
85 =0 2 35 s—0
=k(s, u)sv, (4 38)
where
oh 1 8%h
k(s, 0) = — —5— 4.3
(s, 1) oo 20007, (4.39)
Now
k(0,0 = Df [(0 g? =0, (4.40)

dk
5;(0,0)»:0;,1[(00)1;;&0 (4 41)
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hold by assumption. Since v # 0 we have (0, 0) = 0 and (3k/9)(0, 0) # 0, so
by the implicit function theorem (see Glendinning, 1994, if you are not famil-
iar with this), for s and u sufficiently small we can solve k(s, #) = 0 to find the
unique solution for w as a function of s. Since dim Fix(XZ) = 1, v is unique for a
given X, up to scaling Thus, given X, the solution branch is unique. The solution
branch also has x = sv € Fix(X), and so the isotropy subgroup of each solution x
is . O

The standard statement of the equivariant branching lemma characterises the
unique smooth solution branch to f (x, 1) = 0 in terms of the isotropy subgroup,
%, rather than the form (sv, u(s)) of the solution branch, but clearly these two
approaches are equivalent

It we require that I" act absolutely irreducibly and nontrivially on V, then it fol-
lows automatically that Fix(I') = {0}, and in fact the standard equivariant branch-
ing lemma is stated for absolutely irreducible actions, without explicit reference to
Fix(I") The generalised version of the lemma, on the other hand, holds even for
reducible actions as long as Fix(I") = {0}.

It can be shown that for a generic steady-state I -equivariant bifurcation prob-
lem the action of I" on the centre eigenspace is absolutely irreducible. The proof is
rather involved: a sketch is given in Golubitsky, Stewart and Schaeffer (1988).
A very brief outline of the ideas behind it is the following If the representa-
tion of I' were reducible and orthogonal, then in suitable coordinates we could

write
0
Dflx=0 = (g B), (4.42)

where A acts on a I'-invariant subspace, U, and B acts on its ['-invariant comple-
ment, I/, and x = 0 is the fixed point that loses stability at the bifurcation As we
are on the centre eigenspace, the real parts of the eigenvalues of A and B are zero
at the bifurcation point 4 = 0 Now add a small perturbation to give

A0
Df"‘Z":(o B+el)’ (443)

whete 0 < € « 1 The eigenvalues of Df|U are unchanged, but on the subspace
U+ they are no longer zero at i = 0. A centre manifold reduction produces a
new centre manifold, tangent to U at x = 0, which is of lower dimension than the
original, U @ U™, so the unperturbed bifurcation problem cannot be generic A
generic bifurcation must therefore be governed by an irreducible representation.
Now if I' acts irteducibly, but not absolutely irreducibly then there must be matri-
ces other than multiples of the identity that commute with the group elements. It
turns out that the only possibilities are for the matrices to be of complex type ot
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quaternionic type. The space of complex-type mattices is isomorphic to the com-
plex numbers, while the space of quaternionic-type matrices is isomorphic to the
quaternions Since Df commutes with [' it must also take one of these forms or
be a multiple of the identity. An example of a complex-type matrix is

(Z “ab), abeR, (4.44)
which is the form taken by elements of SO(2) in Example 326 If Df|y—
is of complex type, then its eigenvalues come in complex conjugate pairs,
o(u) £iw(p). If the bifurcation at 1 =0 is to be steady then we must have
o (0) = w(0) = 0 In the example given in (4 44), the eigenvalues are a + ib, with
a=>0 = 0aty = 0. Itis then possible to add a small perturbation of complex type
to get new eigenvalues o (1) T i(w () + €), where 0 < € < 1. In the example, we

could set
a —b 0 —¢
Df o = (b a)+(€ 0), (4.45)

and the new eigenvalues would be a@ +i(b + ¢) The bifurcation still occurs at
=0, where the eigenvalues are +ie, but it is no longer steady In fact there is
no longer a steady bifurcation close to p = 0 at all Thus if the bifurcation is to
be generic, Df canuot be of complex type at a steady bifurcation Similarly it is
possible to rule out Df being of quaternionic type, but since such representations
do not arise naturally in real applications, we won’t go into the details here. The
only remaining possibility is that Df must be a multiple of the identity and so
generically the group acts absolutely irreducibly. This explanation has deliberately
swept lots of messy details under the carpet, so look in Golubitsky, Stewart and
Schaeffer (1988) if you want to know more

If T acts absolutely irreducibly, then by definition the only matrices commut-
ing with all y € I" are scalar multiples of the identity, so if we differentiate the
equivariance condition

fx,)y=vyf(x,n), VyeTl (4.46)
to obtain
Dflg ¥ =vDfly,, Vrel 447)

we see that we must have Df I O = ()1 for some scalar ¢(u) This excludes
the possibility of a Hopf bifurcation, where we would have a pait of purely
imaginary eigenvalues, £iA, A € R at the bifurcation point. (Hopf bifurcations
can be associated with nonabsolutely irreducible representations of complex
type, as we shall see in Section 4 4.) Similarly it excludes the possibility that
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equation (4 1) is Hamiltonian. To see this, considet the two-dimensional Hamil-
tonian equation

dx ek
@ fox, )= ( a,fo) (4.48)
Y

where x = (x1, x2) and H = H(xy, x2). The stability of a fixed point, x = xq, is
governed by the eigenvalues of the Jacobian

3 H 3*H
dx;dxy ax2
Dflo=|"" "% , (449)
IEEIRCELEY B P
which are
2
?H 3?H 2H
Ar =+ e 9n — -—-a 3 ———a 5 (4 50)
1OX2 1(xq 1) X1 Txo.m) 9%3 Txg )

The eigenvalues at any fixed point come in pairs &% or =ix, A € R, so the Jacobian
cannot be rewritten in the form Df = ¢(u)!, and T' cannot act irreducibly. The
argument can be extended easily to higher dimensional Hamiltonian systems

In the generalised statement of the equivariant branching lemma the requirement
D fﬂi(o oY # 0 gives a different non-degeneracy condition for each choice of v
and hence for each solution branch. Now we have D fui(o,o)v = ¢/(0)v, so that
requirement is replaced by

' (0) # 0, (4 51)

which holds simultancously for all isotropy subgroups, X, of T".
We can now state the equivariant branching lemma in its standard form.

Theorem 4.5 (Equivariant branching lemma) Let T be a finite group or com-

pact Lie group acting absolutely irreducibly on a real vector space, V, and let

dx
T =G 452)

be a T'-equivariant bifurcation problem with f(0,0) =0 and Df '(0 n= 0 that
satisfies equation (4 51). If 2 is an isotropy subgroup of T, satisfying

dim Fix(¥) = 1, 4 53)

then there exists a unique smooth solution branch to f(x, ;1) = 0 such that the
isotropy subgroup of each solution is %



4 3 Bifurcations in a box 97

What is really going on here? Well, if the flow-invariant subspace Fix(X) is
one-dimensional, then the bifurcation problem is one-dimensional there Since
Fix(I") = {0}, thete is an equilibrium solution f(0, #) =0 The generic one-
dimensional steady-state bifurcation with a fixed point at x = 0 is either tran-
scritical (in the absence of symmetry) or pitchfork (if there is symmetry
under x — —x). So the equivariant branching lemma says that by restricting
to Fix(T") you will end up with a one-dimensional transcritical or pitchfork
bifurcation

There may also be solution branches that bifurcate from the origin with isotropy
subgroup, ¥, such that dim Fix(¥) > 1 The equivariant branching lemma says
nothing about them howevet, and in general they will have to be found directly
from equation (4.1) In fact Cicogna (1981) proved that a solution branch must
exist if dim Fix(X) is odd; in this case the solutions will have isottopy subgroup,
¥, if ¥ is maximal.

All branches that bifurcate from the origin are known as primary branches,
but only those that ate predicted by the equivatiant branching lemma are axial
branches Sometimes nonaxial primary branches are forced to exist for all combi-
nations of coefficients in the normal form equations, and sometimes they are found
only in certain regions of coefficient space.

Equivariance can also give us some information about the stability of the
bifurcating solution branches. It can be shown (see Golubitsky, Stewart and
Schaeffer, 1988, for the proof) that, under the hypotheses of the equivariant branch-
ing lemma, if a guaranteed solution branch is transctitical, ot if certain condi-
tions on the quadratic part of f(x, ) are satisfied in Fix(X), then the branch is
unstable In this book we will investigate stability using the governing equations
directly

The next thing to do is to see how the equivariant branching lemma applies in
practice, so we will move on and consider some worked examples

4.3 Bifurcations in a box

In general, when we think of patterns, we tend to imagine more or less peti-
odic structutes with many repeats of the pattein in some large domain, such
as you might see in animal coat maikings or convection expetiments. In those
cases, the appropriate bifurcation problem usually takes place on a lattice, and
the symmetry group is telated to that of the lattice itself. Those are pretty com-
plex problems to start with, though, so we defer all thoughts of lattices until
the next chapter. It is perfectly possible for solutions with less symmetry to
appear in small domains: this is the kind of thing that might happen in a con-
vection or reaction-diffusion experiment in a small box, such as the one shown
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Fig. 42 A pattein with appioximate D3 symmetry in a {oroidal plasma col-
umn expeiiment The bright blobs in the centre show spatial modulations of
the plasma density and tempersature Photograph courtesy of Dana Mackey and
Angus McCatter, Plasma Research Laboratory, Dublin City University; ©Angus
McCarter, 2003

in Figure 4.2. The symmetry groups here are much smaller and more manageable,
so we will choose this type of problem for our first application of the equivariant
branching lemma.

4.3.1 Steady bifurcation in a square box

Imagine a pattern-forming experiment in a small square box The box has sym-
metry group Dy, the symmetry group of a square, and so the bifurcation problem
will be D4-equivariant as long as no additional symmetries are generated by the
boundary conditions acting at the edges of the box The possibility of such hidden
symmetries will be discussed later, in Section 6.6 Taking D4 as the symmetry
group of the bifurcation problem, and assuming that the bifurcation is steady, we
can go ahead and work out the isotropy subgroups, find out which ones have a
one-dimensional fixed-point subspace, and hence discover the symmetries of the
primary solution branches

There are many different representations of the symmetry group, and the choice
of representation will affect the isotropy subgroups and the dimensions of the
fixed-point subspaces, so we will need to decide which representation to take
before we start. Since a generic steady-state symmetric bifurcation is governed
by an absolutely irreducible 1eal representation, we shall identify all such repre-
sentations of D4 and see what the equivariant branching lemma tells us in each
case. In any given real-life experiment, only one representation will be relevant,
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Fig 4.4 The reflections mp, mp? and mp® of Dy

but if we find out what happens for each of the irreps we will have a better chance
of identifying the right representation for our particular application by comparing
our results with the range of results predicted by theory. Of course, we may be
unlucky: our experiment may have ‘chiosen’ a very strange or unusual represen-
tation of the symmetry group, and we may have to do a bit of detective work to
figure out what it is, but in general nature is relatively helpful in these matters and
the absolutely irreducible representations crop up quite often.

The group Dy is generated by a reflection m in the y axis and p, a rota-
tion by 7/2 as shown in Figure 4.3. The group elements are e, p. p2, p3, m,
mp, mp* and mp> The elements p? and p? are rotations through 7 and 37 /2
respectively, while the elements mp, mp? and mp? are reflections, illustrated in
Figure 4 4.
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Table 4.1 The one-dimensional irreps of Dy

Triep e 0 02 03 mn mp  mp> mp>
R 1 1 1 1 1 1 1 1
Ry 1 1 1 1 -1 —1 -1 -1
R3 1 -1 1 —1 1 -1 1 -1
Ry 1 —1 1 —1 —1 1 —1 1

The natural representation of the group is given by the set of matrices
we(y ) w3
o= (g 5) o= ()
T S |

1 0 0 -1
]‘/Imp2 = (O _l)v 1‘4mp3 = (__1 O )7 (4 54)

which transform the Cartesian plane in the same way as the group elements trans-
form the square. This is the representation we would naturally pick if asked to asso-
ciate some matrices with the group elements We would use coordinate geometry
to figure out the matrices, M, for a rotation of the plane by 7 /2, and M,;, a reflec-
tion in the y axis, and then multiply them together in the appropriate combinations
to find the matrices corresponding to all the other group elements. This gives us
a representation of Dy It is a two-dimensional absolutely irreducible real repre-
sentation. However, this is not the only possibility: there are also one-dimensional
absolutely irreducible real representations, as given in Table 4 1.

You can check that the one-dimensional irreps are indeed representations, by
looking to see whether they obey the group structure For example, since mp =
m - p any representation should satisfy M,,, = M,,M, Considering irrep R, we
see that M,,, = —1 = ~1 x 1 = M;; M, and so these matrices behave according
to the group structure. In fact you can check that any such equation is satisfied
by the matrices of each of the one-dimensional irreps given in Table 4 1 As the
representations are one-dimensional they automatically satisfy the condition for
absolute irreducibility, that the only matrices to commute with all the matrices of
the representation are scalar multiples of the identity

This example suggests a method of finding the absolutely irreducible represen-
tations of a finite group First identify the generators y;, for i = 1,. . n, of the
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group. If the order of the generator y; is p, then yip = ¢ Hence we must have
Mj, = I, and so the matiix M,, must be a p” root of I. Once you have identified
matrices to represent the generators, you can work out all the remaining matrices
using matrix multiplication The combination of all the possible matrices for all
the generators will give you all the irreps, although in general you will find that
some of the choices of matrices do not give representations In addition you might
actually find more representations than you need because some will be equivalent
to combinations of the others, and so not irreducible, and some will be conjugate to
others and so equivalent Of course, some might be complex, and so not relevant
to a steady bifurcation unless they are equivalent to a real absolutely irreducible
representation under a change of basis In Section 4.3.2 we will see how to identify
the inequivalent irreps, but for now we shall take a look at how the method works
for the one-dimensional irreps of Dy The generators are m, of order two, and p,
of order four. Thus for the matrices of the irreps we must have

M} =1, M;=1, (4 55)

and so M, = =1 and M, == +1, &=i Table 4.1 was constructed by taking all four
combinations of My, = =1 and M, = +£1 Why do we not use M, = £i? Well,
in that case we would have M,,, = +i and hence M,%lp = —1, but we know that
(mp)? = e since mp is a reflection, and so we must have M,%,p = 1 Inother words,
the choices M, = 4 do not lead to representations of the group, and so we discard
them We are left with only real one-dimensional irreps in this example, but that
will not always be the case: for example, the group Cy4, with generator g satisfying
a* = e, has an irrep where M, = i

Each irrep leads to a corresponding bifurcation problem with normal form

dx
where f(x, u) satisfies
Mf(x,u) = f(Mx, p), 457)

for each matrix M in the representation If M is an n x n matrix, we have x € R”.
Each component of x is the amplitude of an eigenmode represented by the corre-
sponding basis vector The eigenmode behaves under the symmetries of the group
as the basis vector does under the matrices of the representation The equivatiance
condition (4.57) determines the form of f(x, x), but there will be free parame-
ters that are not fixed by the symmetries For any given experiment or theoietical
application, the values of these parameters can be determined from measurements
or from the governing equations, as we will see in Chapter 7.
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Under itrep Ry, we have x € R and Fix(D4) = R. The representation acts irre-
ducibly, but its fixed-point subspace is the whole space, R, rather than {0}. The
conditions for the equivariant branching lemma to hold are not met in this case,
but since the group action is trivial it is easy to work out what happens. The same
will hold for the identity irrep of any group

Since all the matrices of the representation are + 1 in this case, the equivariance
condition (4.57) reduces to

and so does not restrict the form of f(x, ;) If there is a fixed pointat x =0, u =
0, that undergoes a steady-state bifurcation at £ = 0, then we must have f(0,0) =
O and df/dx(0, 0) = 0. For small x and p, f (x, ) must therefore take the form

%?=M+ax2+bxu+cu2+ , (4 59)
where @, b and ¢ are constants independent of u Generically we expect a # 0
at ;. = 0. Close to the bifurcation, where u is small, the leading-order balance is
then between i and x2, and so we scale x ~ M%, assuming that @ is O(1). Then
the terms xt, 2 and so on only appear at higher order in the expansion, and we
can neglect them at Jeading ordes, giving the equation

& a4 (4.60)
dt

From now on we shall use similar arguments implicitly to write down leading-

order amplitude equations where all the coefficients are assumed independent of p

unless otherwise stated.

Equation (4 60) describes a saddle-node bifurcation Under the identity rep-
1esentation every point x has all the symmetiies of the group, so the branch of
stationary solutions must have full Ds symmetry. In other words the isotropy sub-
group of solutions on this branch is Dy.

For the irreps Ro, R3 and R4 we have x € R Some of the matrices in each irrep
are +1, which when substituted into the equivariance condition (4 57) give

fl, )y = fx, @), @61

and so impose no restriction on the form of f(x, u) The remaining matrices in
each irrep are —1 In these cases the equivariance condition (4.57) becomes

—f(x, 1) = f(—x, 1) (4.62)
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Fig 45 (a) Solution eigenmode for the irrep Ry of D4 and (b) isotropy lattice
for the irrep R of Dy, wheie inclusion is shown by an arrow

This tells us that the function f(x, ©) is odd in x, and so expanding in powess of
x gives us the amplitude equation

dx 3
T =pux +ax”+- - (4.63)

This describes a pitchfork bifurcation, which will be subcritical if a > 0 and super-
critical ifa < 0

In these three cases, the basis vector is just 1, which is unchanged under mul-
tiplication by all the matrices +1 of the irrep and sent to —1 under all the matri-
ces —1 of the irrep. The corresponding solution eigenmode must therefore remain
unchanged under all the symmetiies represented by +1 in the irrep, and must be
sent to its negative under all the symmetries represented by —1 For example, the
solution eigenmode for R; must be unchanged under the group elements e, p,
p? and p?, because they correspond to matrices +1 in the representation, and
it must be transformed into its negative under the group elements m1, mp, mp?
and mp?, because they correspond to matrices —1. An example is shown in Fig-
ure 4 5a: its isotropy subgroup, {e, p, p2, p°} = Z4, consists of all the elements
that leave the solution unchanged, namely those that correspond to matrices +1
The isotropy subgroup has a one-dimensional fixed-point subspace since there is
only one degree of freedom in the solution: the size of the amplitude, x, of the
eigenmode. The lattice of isotropy subgroups for this action of D4 on R is shown
in Figure 4 5b. The origin, x = 0, has isotropy subgroup Dy, and all other points
x € R have isotropy subgroup Z4 .

Now Dy is finite. We also have Fix(D4) = {0} under R;, and we assume
the form of the bifurcation problem specified in the statement of the equivari-
ant branching lemma. So a branch of solutions with isotropy subgroup Z4 =
{e, p, p?, p3}, bifurcating from the origin at i = 0, is guaranteed by the equiv-
ariant branching lemma
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Fig. 4 6. Solution eigenmodes for the irteps (a) R3 and (b) R4 of Dy, and (c) the
isotropy lattice for the irreps R3 and R4 of D4, where inclusion is shown by an
arrow

Using the same procedure it is now easy to woik out that the eigenmode for R3
has isotropy subgroup {e, p2, m, mp*} = Z2, and the one for Ry has isotropy sub-
group {e, p?, mp, mp>} = Z3. Both have a one-dimensional fixed-point subspace,
and so branches of solutions with these symmetries are guaranteed by the equiv-
ariant branching lemma Suitable eigenmodes are shown in Figures 4 6a and 4 6b.
The isotropy lattice is the same for these two actions, and is shown in Figure 4 6¢
The origin, x = 0, has isotropy subgroup Dy, and all other points x € R have
isotropy subgroup Zg

We can check that the trace formula holds. In all four one-dimensional cases,
the isotropy subgroup, £, consists of all those elements with character +1, so we
have

1 1
dim Fix(¥) = — tr(c) = — 1=1, 4.64
n Fix (%) |E|(;zr(g IEI(;E (4.64)

confirming that the fixed-point subspace is one-dimensional.

Finally, consider the natural representation of D4 that we introduced at the
beginning of this section We shall call it Rs The vector of mode amplitudes,
X, is two-dimensional in this case because we are dealing with a two-dimensional
irrep Thus the amplitude equations take the form

dX1/dt> (fl(xi,xz, /L))

=] . 4.65
(dxz/dt falxi, x2, u) 6
The form of fi(x1, x2, u) and f2(x1, x2, 1) can be deduced by expanding them

in powers of x| and x;, and applying the equivariance condition (4.57) using the
matrices corresponding to the generators of the group. Applying the matrix

-1 0
M, = ( 0 1) (4.66)
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for the reflection m shows that

—fi(xy, %2, u)) (h(—.xl, X2, u)) ,
. = 4 67
( fz('xler!/j') fZ(_x[,xz, u_) ( )
must hold, so f; must be odd and f> must be even in x;. Applying the rotation
matrix
0 -1
gives
—falxy, x2, M)) (f] (=x2, X1, /L))
= . 469
( filxi, x2, ) fa(=x2, x1, ) (469

From the second row we have

filxi,xo, ) = fa(=x2, x1, u) = folxo, X1, ) = fi(xy, —x2, ),  (4.70)

since f> is even in the first argument. Hence f; is even in the second argument
Thus up to cubic order, f; must take the form

filxy, x2, 1) = pxp — a1x; — a2xyxy, @71

where a; and ap are real constants, and p is the real bifurcation parameter. Now
using equation (4.69) we can deduce the normal form to be

dxy/dt X1 xf x%xl
e —a —a : 472
(dxz/dt f X2 : xg 2 x%xg “72)
If we now make the substitution x; = |a1|% Xi, @y = ap/|a;| and immediately drop
the hats, the normal form is transformed to

dxy/de X1 x? x%.xl
= o , 473
(dxz/dt) H (xz) i (x; @ .xlz,xz ( )

where the minus sign holds for ¢; > 0 and the plus sign for ¢ < 0 Another way
to describe this procedure is to say that we are setting @; = =1 by rescaling, It is
helpful because it reduces the number of free parameters by one Very often in a
particular application there will be features that fix the sign of a; too. Typically
we choose a; = | because then each amplitude x; independently has a nonzero
stationary solution in & > 0, which is physically reasonable for most applications.
For the rest of this section, though, we will not fix a;, and we will work with
equations (4.72).

There are two eigenmodes, whose amplitudes ate measured by x; and x»,
that behave under the symmetries of the group as the basis vectors (1, 0) and
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mp* $

I
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m

Fig 4 7. Eigenmodes fo1 the natural 1epresentation of Dy

(0,1) do under the matrices of the natural representation They are shown in
Figure 4 7 and their amplitudes are solutions of the normal form equation (4 72).
The isotropy subgroup of the lefthand solution is given by Z = {e, mp?}. It has
a one-dimensional fixed-point subspace, and so is guaranteed by the equivariant
branching lemma, since it coiresponds to a solution (xj, 0) where only the ampli-
tude, x) = ++/u/ay, can be varied (by varying p). The righthand solution has
isotropy subgroup {e, m} and corresponds to a solution (0, x2) It has the same
existence and stability properties as the one on the left because it is on the same
group orbit: you can transform the lefthand picture into the one on the right by
rotating through /2 Equivalently, the isotropy subgroup {e, mp?} of the left-
hand solution is conjugate to that of the one on the right since pmp~! = mp?
and pep~l = e

There are also solutions x; == x3 and x| = —x,, with .xi? = u/(a; + az), which
are shown in Figure 4.8 and have isotropy subgroups {e, mp} and {e, mp3} respec-
tively The fixed-point subspace is one-dimensional in each case, since both ampli-
tudes, xj and xj, vary together as yu is varied These two solutions are on the
same group orbit (again rotate through 7 /2) and so are equivalent. Again the two
isotropy subgroups are conjugate since p (mp)p~! = mp>.

Each of the isotropy subgroups {e, m}, {e, mp}, {e, mp?} and {e, mp?} fixes a
line in the plane (the vertical centre line, bottom left to top right diagonal, hori-
zontal centre line, and top left to bottom right diagonal respectively). These lines
are their fixed-point subspaces and so it is clear that they are one-dimensional
Here the connection is obvious because we are dealing with a two-dimensional
irrep acting on a plane For the one-dimensional irreps it may not appear quite so
obvious because we cannot point to a fixed line in a plane, but we can deduce that
the isotropy subgroups have a one-dimensional fixed-point subspace because the
symmetries do not fix the size of x
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Fig. 4 8. Diagonal modes that liave isotropy subgroups with one-dimensional
fixed-point subspace in the natural representation of Ds

/N
\/

Fig 49 Isotopy lattice for the natuial representation of Dy Inclusion is shown
by an arrow

The isotropy lattice for the natural representation of D4 is shown in Figure 4.9
The origin has isotropy subgroup Dy, all points on an axis of reflection, other than
the origin, have isotropy subgroup Z,, and all other points have isotropy subgroup
1 (consisting solely of the identity)

Again we can check that the trace formula holds. The trace of each matrix rep-
resenting a reflection is zero, while the trace of the identity matrix is two. There
are two elements, the identity and a reflection, in each isotropy subgroup % and so
we have

dim Fix(2) = ﬁ Ztr(a) = -(2+0) =1, 4.74)

showing that the fixed-point subspace must be one-dimensional
The stability of the solution (x|, 0), with xf = w/ay, is governed by the eigen-
values of Df, evaluated at the solution. The Jacobian matrix, D, can be calculated
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from the normal form equation (4 72) and is given by

2 2 .
w—3aix; — azx —2ayx1x2
Df = i 2 475

f ( —2a3x1x n— Balxg - azxf) ( )

Evaluating this at x% = p/ay, x3 = 0, gives the diagonal matrix

(2 0
1 —( 0 u(l—az/al))’ (476)

so the solution is stable to perturbations in x1 if @ > 0 and to perturbations in
x2 if a1 < ay (since we must have p/a; > 0 for the solution to exist at all). The
matrix is diagonal because we are using coordinates that correspond to the isotypic
components with respect to £, = {e, mp?}, the isotropy subgroup of the solution,

which are
a 0 ,
(0) and (b)’ a,beR 477)

The other solution on the group orbit (0, x,), with x% = u/ay, of course has the
same stability properties, but now the nonzero entries in the Jacobian are swapped
so that the eigenvalue —2 . cortesponds to perturbations in the x; direction and
w(l — ay/ay) to perturbations in the x; direction

If we evaluate the Jacobian at the solution x| = x3, with ,xlz = u/(a; + az), we
get

— —2aypf(a1 + ap) —2aypf(ay + az)
br= (“2azﬂ/(01 +ay) —2ayu/(a; + az))’ (478)

which is not diagonal This is because the isotypic components with respect to the
isotropy subgroup in this case, £, = {e, mp}, are different, namely

(‘;) and (_bb) abeR 479)

If we took coordinates along these directions, the matrix would be diagonal
In other words, these should be eigenvectors of the Jacobian given in equation
(4.78) It is easy to check that they are, with eigenvalues —2u and —2u(a; — az2)/
(a1 + az) respectively, so the solution is stable to perturbations in the (1, 1) ditec-
tion if £ > 0, and to perturbations in the (1, —1) direction if a; > a». Again, the
other solution on the group orbit has the same stability propetrties, but with the
roles of the eigenvectors swapped

Completing the stability analysis, the linearisation around the trivial solution,
x1 = x2 = 0, shows that the solution is unstable for ;¢ > 0 and stable for ;& < 0
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Fig. 4.10 Bifurcation diagrams for the bifurcation in a squaie box for vaiious
values of the coefficients ¢; and a; in equation (4 72) Solid lines represent stable
solutions and dashed lines unstable solutions. Branches of solutions of type (x, 0)
and (x, x) are labelled R and S respectively.

The bifurcation diagrams for the various regions of (aj, @) space are shown in
Figure 4 10, where R denotes a solution of the first type, such as (x,0), and S
denotes a solution of the second type, such as (x, x)

We have now catalogued all the solutions, characterised by their symmetries,
that are guaranteed to appear as primary branches at a steady bifurcation with Dy
symmetry under one or other of the absolutely irreducible actions of the group.
(It turns out that there are no absolutely irreducible real representations other than
R to Rs, as we shall see in the next section ) For any given bifurcation prob-
lem, only one representation of the group will apply, and only the corresponding
solution branches will be piesent For example, Figure 4 11 shows a schematic
representation of Bénard—Marangoni convection patterns that were observed by
Ondarguhu ez al. (1993) in a square vessel As the temperature of the bottom plate
was increased, the D4-symmetric pattern in Figure 4 11a lost stability to one or
other of the patterns in Figures 4.11b or ¢. The new patterns are symmetiic under
reflection in both diagonals, so the bifurcation is governed by irrep Ry.
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| | | |
T

(a) (b) (c)

Fig 4 11. Ondarguhu et al (1993) observed that a Bénard—Marangoni convection
pattern of the form shown in (a) lost stability to one or other of the patterns (b)
and (c) as the heating was increased The narrow lines show the edges of the
convection vessel, while the thick lines show nartow regions wheie the fluid is
moving downwards.

4.3.2 Finding the irreps

In order to discover all the possible primary branches for a generic steady I'-
equivariant bifurcation problem we first need to identify all the absolutely irre-
ducible representations of I’ As we saw above, we can try to identify the matrices
M,, corresponding to generators y; of a finite group by solving

MP =1, (4.80)

where p is the order of the generator. However, not all of the roots of equation
(4.80) lead to representations of the group, and in any case, how do we know when
to stop? We could solve this equation for representations of any dimension, so
when do we know that we have found all the inequivalent itreps?

For finite groups we can use Theorems 3.2, 3.3 and 3.4 to check whether we
have all the irreps over C Since we are looking for the absolutely irreducible real
representations, we will then need to check which of these are realisable over R
Using D4 as an example once more, we first need to find its order and conjugacy
classes. Dy has eight elements, so the order of the group is 8 To find the conjugacy
classes, recall that two elements, i) and hj, of D4 are conjugate if there exists
¥ € D4 such that

hy = yhyy ™, (4.81)

and that conjugate elements have the same order The identity element is in a class
on its own because

vey L =e, Vye Dy, (4 82)

or equivalently because it is the only group element of order one. This is true for
any group.
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The 10tations p and p?, through 47 /2 respectively, are the only group elements
of order four, the remaining elements, other than the identity, having order two.
This precludes any other elements being in the same class as p and p°, so it remains
to show that they are in the same class as each other. Checking that

(mp)p3(mp)_1 = r7zpp3p'1m = mp_lm = pmm = p (4.83)

does it, so {p, p>} is one conjugacy class.
To work out the remaining classes we will use

p'm=mp™", forn=1273 (4 84)
Thus we find
pimptp 4 =mp~9p* ™9 = mp* (4.85)
forg,s =0,1,2,3,and

(mpDymp* (mp?)~" = mpmp’ p~4m = mmp~9 p* mp?
=mp? ™ p? = mp*~* (4.86)

for g, s = 0,1,2.3 Recall that p* = ¢ Choosing s = 0 shows that m and mp?
form a class, and choosing s = 1 shows that mp and mp> form another class
While it is easy to show, for example, that i and mp? are in the same class since

1 1 2

pmp~ =mp ' p~' =mp~? = mp?, 4 87)

we need to check all the other possibilities given in equations (4 85) and (4.86) to
make sure that there are no other membeis of the class.
Similaily we have

plp’p~? = p (4 88)
forg,s =0,1,2,3,and

(mp®)p* (mp?) ' =mp?p* p~Im = mp*m

=mmp~ =p~° (4.89)

for ¢, s = 0,1, 2,3, and so ,02 is in a class on its own, and as we deduced ear-
lier, p and p° form another. Hence the conjugacy classes of D are {e}, {m, mp?},
{mp, mp}, {p. p*}, {p?}, namely the identity, the reflections in axes joining mid-
points of opposite sides, the diagonal reflections, the rotations through &7 /2 and
the rotation through 7 respectively. Note that each class contains elements whose
actions are similar in a natural sense

There are five conjugacy classes, so by Theorem 3.2 the number, n, of inequiv-
alent irreducible repiesentations over C, is five
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Table 4.2

e {m, mpz} {mp, m,o3} {p. ,03} p-

R 1 I 1 1 1
Ry 1 1 -1 -1 1
R3 I -1 -1 1 1
R4 1 -1 1 —1 1
Rs 2
Table 4.3
e {m.mp*)  {mp.mp’}  {p,p% p?
R 1 1 1
Ry 1 — — 1
R3 1 -1 -1 1
Ry 1 -1 1 -1 1
Rs 2 0 0 0 )
By Theorem 3 3, we also know that
5
Y d? =3, (4.90)
i=]

which has the unique solution di = dy = d3 = d4 = 1 and ds = 2, since no d; can
be zero

We know that the one-dimensional iiteps can be constructed by setting M,, =
+1 and M, = =1 as discussed in Section 43 1 above In the two-dimensional
irrep, the identity element will be repiesented by the identity matrix, M, == I, and
so its character will be 2, the dimension of the irrep. Already we have the entries
in the Table 4 2.

Now we can use the orthogonality theorems (Theorem 3 4) to complete the
table. The first and last columns of the table must be orthogonal by equation
(3.113), so p* must have character —2 Now the sum of the squares of the char-
acters in the two-dimensional irrep, weighted by the number of elements in each
class, must be 8, so the characters of all the remaining classes must be zero, and
the completed character table is as given in Table 4.3.

Now we need to deduce the matiices of the irreps from their characters. The
matrices of the one-dimensional irreps are identical to the characters. In this case
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constructing the higher-dimensional itrep is easy, since we know that we have only
one two-dimensional irrep, hence that it must be the natural representation and
consequently straightforward to write down. Of course this only works because the
natural representation turns out to be absolutely irreducible: it is easy to check that
only multiples of the identity commute with all the matrices given in (4.54). Any
irrep equivalent to the natural representation would also give the correct characters
in the two-dimensional case In this example, all the irreducible representations
over € turn out to be real, so we know we have found all the absolutely irreducible
ieal representations.

The whole procedure of finding the absolutely irreducible representations and
the axial and maximal isotropy subgroups can be automated using a computer
algebra package (see Matthews, 2004, for further details)

4.3.3 Weak symmetry breaking

Suppose that we find our experimental box is not perfectly square after all, but very
slightly rectangular We could go back and start the analysis all over again using the
symmetry group, Da, of a rectangle. This turns out to have only one-dimensional
irreps. What if, though, we think that in a truly square box the experiment is gov-
erned by the natural representation of D4 and we want to find out what effect the
slight deviation from squaieness has on the solutions? An easy way to do this is to
break the square symmetry slightly in the two-dimensional D4 normal form equa-
tions (4.72) We don’t have symmetry under rotation through 7 /2 any more, so the
equations take the foim

dx;/dt KHix] anxj anxyx
= = (O = (2737, (491)

dxp/dt U2X2 apx; anxyxy
satisfying only the reflections m and mp? This corresponds to using a two-
dimensional reducible representation of D, The symmetry bieaking is weak, so
we must have 1 ~ uy & u, aj] ® ajp & ap and ap) & azy X ay. Now to sim-
plify things we will assume that ¢; > 0, and we can then rescale x1 and x, to set
aj) = ayjp = 1. It turns out that unless a; = 1, there is no new behaviour gained

by having ay; and ap; different, so we will set them both to a, and we can analyse
the bifurcation using the equations

dxp/de  (uix X3 x2x1
(dX2/df) N (um) - (-x‘g “\rin @22

The stationary solutions and their stabilities can be determined as functions of 11,
12 and a In a real experiment, we would vary a control (bifurcation) paiameter
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related to both 1; and 2, so we would follow a curve in jej—pup space as the
bifurcation parameter increased

Other types of symmetry can also be broken Suppose the system had a preferred
direction of rotation We would retain symmetry under rotation through /2, but
there would no longer be any reflection symmetries. New cubic terms ate allowed
in the normal form which now corresponds to a two-dimensional representation of
Z4 and looks like this:

dxj/dery X x]3 x%.x] xlzxz xg
(dxz/dt>_#(x2 % xg % Axlzxz @ —x22.x1 a4 —x?

(493)

If the symmetry breaking were weak, we would expect a3 and a4 to be small.
Again these equations can be analysed to find fixed points and their stabilities.

The advantage of investigating weak symmetry breaking, if it is appropriate for
the situation you are looking at, is that you are just considering small deviations
from a simple symmetric system that you have already analysed and understand
well Of course, if the symmetry breaking is really a large effect in the experiment
you are trying to describe, then you must start again from the beginning using the
appropriate reduced symmetry group

4.3.4 Bifurcation on the surface of a sphere

The equivariant branching lemma is also useful for symmetiy groups that con-
tain continuous symmetries, such as the orthogonal group, O(3), the symmetry
group of a sphere. This group is the direct product of the special orthogonal group,
SO(3), of rotations of the sphere, and Z§, the group generated by the inversion,
x — —x, for x € R", sometimes called the reflection through the origin, so we
have

0(3) = S03) x Z. (4 94)

The rreducible representations of SO(3) can be described in terms of surface
(spherical) harmonics, and from them the irreducible representations of O(3) can
be constructed by considering the two cases where Z5 acts as plus or minus the
identity This is all quite tractable (see Golubitsky, Stewart & Schaeffer, 1988, for
the details), but a little long-winded, so we will investigate only one representation
here.
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(a) (b)

Fig 412 (a) The geneiators of the symmety group of a sphere, and (b) a solu-
tion with isotropy subgroup O(2)~, where the size of the solution amplitude is
represented by the intensity of the grey shading

Coordinate geometry suggests the following three-dimensional representation,
constructed from the matrices

cosd —sing O

Mg = | sin@ cos6 0], (495)
0 0 1
/ cosp 0 —sing
M¢ = 0 | 0 s (4.96)
sing O cos¢
(—l 0 0
M,=|0 1 0}. 4.97)
0 0 1

which cortespond to a rotation of 0 < @ < 2z about the z axis, a rotation of
0 < ¢ < 7 about the y axis and a reflection in the yz plane respectively, where
x = (x, y,z) These symmetries are shown in Figure 4.12a. Now, clearly O(3) 1s
a compact Lie group and Fix(O(3)) = {0} in this representation, which is in fact
absolutely irreducible as you can verify by trying to find matrices that commute
with all the generators and deciding that the only ones that do are multiples of the
identity Imagine that we have a steady bifurcation problem with spherical sym-
metry that is governed by this representation of O(3) We will assume that the
form of the bifurcation problem satisfies the hypotheses of the equivaiiant branch-
ing lemma (Theorem 4 5), and so to determine the guaranteed primary solution
branches at the bifurcation point we need to identify the isotropy subgroups with
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one-dimensional fixed-point subspace We are working in the natural coordinate-
geometry representation, so this amounts to identifying the largest subgroups that
fix a line in the sphere. It is clear that each of these consists of rotations about a
fixed axis and reflections in any plane that passes through this axis This is a group
with O(2)”~ symmetry The minus sign of the O(2)™ subgroup indicates that the
order two generator is a true reflection, such as m, and does not lie in SO(3) The
existence of a primary branch of solutions with such symmetry is guaranteed by
the generalised equivariant branching lemma A solution with this symmetry is
illustrated in Figure 4 12b. The group O(2) can also be generated by a circle of
rotations about one axis and a rotation through s about a perpendicular axis, but
this does not correspond to a guaranteed solution branch Note that the solution
shown in Figure 4 12b has no such peipendicular z-1otation symmetry since the
shading representing the solution amplitude varies from most to least intense along
the axis of rotation.

The coordinate-geometry representation is associated with spherical harmon-
ics of degree one, because the expressions for the Cartesian coordinates x =
rcosfsing, y =rsinfsin¢, z = r cos ¢ are exactly those spherical harmonics.
At a general bifurcation from spherical symmetry, the eigenfunctions from which
the bifurcating solutions are constructed are spherical harmonics of some degree
Implicit in the analysis we have just been through is the assumption that the bifur-
cating solutions can be constructed from first order spherical harmonics In reality,
we may see structures with much more complicated symmetry, and we would need
to use higher-order spherical harmonics to describe them. There is no problem
with this: we simply have to use a higher-dimensional representation to analyse
the bifurcation problem. There are two irreducible representations of O(3) associ-
ated with the sphetical harmonics of degree ! for every [. The equivariant branch-
ing lemma can be applied in each case: the predicted solution branches include
those with icosahedral or octahedral symimetry, alongside axisymmetric solutions
such as the one we have already found, and a whole host of other symmetry types
besides (Matthews, 2003) Some of the patterns predicted are shown in Figure 4 13.

4.4 Hopf bifurcations with symmetry

Up to this point we have been discussing the effect of symmetry on steady bifur-
cations. Symmetric systems can also undergo Hopf bifurcations when complex
conjugate eigenvalues cross the imaginary axis. In the standard Hopf bifurcation
only one pair of complex conjugate eigenvalues crosses the imaginary axis at
the bifurcation point, but in a symmettic system fixed points on the same orbit
have the same stability properties, and so at a Hopf bifurcation with symmetry
there are expected to be multiple pairs of complex conjugate eigenvalues crossing
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(c) (d)

Fig 4.13 Some of the patterns predicted at a bifurcation with spherical sym-
metry for representations associated with spherical harmonics of degree I: (a) a
state with cubic symmetry (Oy) for I = 4, (b) an icosahedral solution (symmetry
group fy) for 7 = 6, (c) a solution with hexagonal (Dg x Z5) symmetry for! = 14
and (d) a solution with Dys x Z5 symmetry for / = 30 Pictures courtesy of and
(©Paul Matthews, University of Nottingham, 2003

the imaginary axis at once. In this section we will discuss some of the main results
and show how they can be applied in practice: if you would like to see the proofs
they can be found in Golubitsky, Stewart and Schaeffer (1988)

As usual let us start with the equation

d_ 4.98
T = 1w, “98)

where x € R”, 4 € R and f is smooth, and which is equivariant under the action
of a symmetry group, I, so that we have

vie, )= flyx,u), Vyel (4.99)
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We want a I -invariant equilibrium solution, x = 0, so we must have
fO, =0, Vu (4 100)

So far this is all the same as for the symmetric steady bifurcations we have just been
looking at, but the difference is that for a Hopf bifurcation we want the Jacobian
Df 00y to have purely imaginary eigenvalues. Just as the generic action of I"
on the centre eigenspace is absolutely irreducible for a steady-state I'-equivariant
bifurcation, which foices the eigenvalues of the Jacobian to be real, it turns out that
the imaginary eigenspace must be I'-simple if D f |(0.0) is to have purely imaginary
eigenvalues and a Hopf bifurcation is to be possible

A representation, W, of I is defined to be I'-simple either if it is composed
of two copies of an absolutely irreducible representation V sothat W =V @ V,
or if W is irreducible, but not absolutely irreducible In either case, in suitable
coordinates at the bifurcation point the Jacobian generically takes the form

_y=( 9 I
Dflpo =7= (“—Ip 0), 4 101)

where p = n/2, and the eigenvalues of Df |9 ., are
i = o(u) Liw(u), (4.102)

each of multiplicity p, where o and w are smooth functions of u satisfying o (0) =
0 and w(0) = 1. Note that since this implies that the eigenvalues at the bifurcation
point are i, you might have to rescale time to put the Jacobian in this form.

There is an equivalent of the equivariant branching lemma that we can use to
predict the generic bifurcating solutions for Hopf bifurcations with symmetry, but
before we can use it we need to introduce the idea of a spatiotemporal symmetry.

At Hopf bifurcations, we expect to see branches of periodic solutions, 1ather
than the stationary solution branches that occur at steady-state bifurcations. Peri-
odic solutions can have purely spatial symmetries just as stationary solutions do:
if for some y € I' a periodic solution, x (), satisfies

yx(t) = x(t), Vi, (4.103)

then y is a spatial symmetry of the solution. In addition, though, periodic solutions
can have spatiotemporal symmetries: if x(¢) has period 27 in 7 and satisfies

(. 0) x(t)=yx(1+6) =x@1), Vi, (4.104)

where (y,0) € I’ x S! and S! is the circle group of phase shifts acting on the space
of 2m-periodic functions, then (y, €) is a spatiotemporal symmetry Equation
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(4.104) says that performing a spatial action y on x(¢) followed by a shift in time
(phase shift) of @ leaves the solution unchanged The symmetry consists of both
spatial and temporal elements, hence its name Of course, if & is zero then the
symmetry is purely spatial, so the set of all spatiotemporal symmetries includes
the purely spatial ones, and we can write the isotropy subgroup of x(¢) as

ey = (.0 €T x 8" yx(t +6) =x(@®)} cT x S (4.105)

The action of the phase-shift symmetry can be deduced from the linearisation
of equation (4 98) on the imaginary eigenspace, namely

— = Jx. 4106
py X ( )

The general solution to this equation is x(7) = e’ /x(0) Now the action of the
phase shift is

(e’ 9) x([) — x([ +0) — e(f+9)1x,(0) — e(@-{'—f) IX(O) — ee.]ellx(()) — e@]x(r)
(4 107)

In the case where the imaginary eigenspace is of the form V & V, with V abso-
lutely irreducible, we can use the definition of ./ given in equation (4.101) to find

I, 0 0 oI
8] _ r p
=0 5) (o )
1 (=021, 0 Lo -6%
+i( o —e21,) T3\err, o )7 (4.108)

cosbl, sinQI,,)
= . . 9
(—sm@l,, cos6 1, (4 109)

We can deduce that the action of the phase shift on V @ V is given by
(e,8) (x1,x2) = [x1]x2]Rs, (4.110)

where (x1,x7) € V @ V, [x;|x2] isthe p x 2 matrix formed by writing the x; and
x7 column vectors next to each other, and

cost —sin6
= 1
Re (sinG cos ) @11

is the matrix for 10tation through an angle ¢

It turns out that generically I' x S' acts nonabsolutely irreducibly on the T -
simple imaginary eigenspace, and so there is an analogy between the role of the
symmetry gtoup I' x S' in the Hopf case and that of the symmetry group I' in the
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steady-state case. The equivariant Hopf theorem is the analogue of the equivariant
branching lemma

Theorem 4.6 (Equivariant Hopf theorem) Let
dx
-(g:f(x,u), xeR", nelR 4.112)
be a I'-equivariant Hopf bifurcation problem satisfying equations (4 99), (4 101)
and (4 102) and also
d
1 %o 4 113)
du u=0

IfT acts T-simply on R" and ¥ C T x S is an isotropy subgroup satisfying
dim Fix(X) = 2, (4 114)

then there exists a unique branch of periodic solutions, with period close to 2z,
bifurcating from the origin such that the isotropy subgroup of each solution is £

We can use the theorem to predict the symmetry of bifurcating solution
branches, just as we did the equivariant branching lemma, the main difference
being that now we need to identify the isotropy subgroups that have a two-
dimensional fixed-point subspace. To see how this works, we will look at a Hopf
bifurcation with O(2) symmetry, which is common in pattern-forming systems.

4.4.1 Hopf bifurcation with O(2) symmetry

0(2) is the group of reflections and rotations of the plane: its standard action on
R2 22 C is generated by arotation, 0 < p < 27, and a reflection, 2, given by

ow = e'Pw, (4115)
mw = w, (4.116)

where w is the complex conjugate of w. This action is irreducible, so to get a Hopf
bifurcation we will need to have two copies of it If we take a point (w1, w2) €
C @ C, and apply the standard action of O(2) we find

pwy, wy) = (e wy, ePwo), (4.117)
m{wy, wy) = (W, wa). (4 118)

We know from equation (4.110) that the phase shift acts according to

O(w1, wo) = [w|wz]Ry, (4 119)
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where
cosf —siné
Ro = (sine cos @ ) (4.120)
and so
O(w, wa) = (w; cos@ + wo sin B, —w; sin @ + wy cos ) 4.121)
Changing coordinates to
1 . -
z1 = E(w' — {w2), (4.122)
]
72 = E(wl —iwy) 4.123)
makes the action look neater:
plz1,22) = (€721, e 22), (4 124)
m(zy, z2) = (22, 21), (4 125)
0(z1,22) = (21, ¢"22) (4 126)

The spatiotemporal symmetries belong to the group 0(2) x S', and gioup ele-
ments take the form (y, 8), where y € O(2) is geneiated by p and m If y is a
pure rotation, this notation is potentially confusing, so just to emphasize, the ele-
ment (7 /2, 7/3), for example, represents a rotation through 7 /2 followed by a
time shift of /3.

Now we need to identify the isotropy subgroups and find out which ones have
a two-dimensional fixed-point subspace. The symmetries (0, 0) and (7, ) leave
all points (z;, z2) unchanged, so they are trivial symmetries of all solutions: the
first is the identity element, the second is a rotation through 7 together with a half-
period phase shift. They generate the isotropy subgroup Z5 that fixes the whole
four-dimensional space Czx R4 spanned by (zi1,z2) The whole group O(2) x
S! leaves only the origin (0, 0) fixed, and so has zero-dimensional fixed-point
subspace The two remaining orbit types are the interesting ones:

(i) Solutions (z, z) are invariant under the 1eflection . The solution maintains this purely
spatial symmetry at all times, while oscillating periodically The axis of reflection is
z € R and does not vary, so the solution can’t rotate, only oscillate in place: since it
can’t travel, this type of solution is often 1eferred to as a standing wave The isouopy
subgroup is Z» x Z5 = {(0,0), (7, 7), (m,0), (n, 0) (7w, 7)}

There is a whole family of standing-wave solutions given by (z, ze~*) with reflec-
tion symmetiy mp for 0 < p < 27 The axis of reflection, z = Re™"?/2, R € R, is
rotated relative to the real axis, and each solution has an isotropy subgroup conjugate
to the one given above for the special case p = 0.



122 Bifurcations with symmetry

Table 4 4. The solution branches ar a Hopf bifurcation with O(2) symmetry

Orbit Isotropy Fixed-point
Branch representative subgroup X subspace dim Fix(Z)
Tiivial solution (0,0 0(2) x §! {0} 0
Rotating waves (a,0),a >0 S0Q2) {(z1,0)} 2
Standing waves (a,a),a >0 Zr ® 75 {(z1,21)} 2
General points (a,b),a>b>0 Z; {(z1, 22)} 4
o@)x S’
—_— ¢
S0(2) Z, X I,

N,

Fig. 4 14. Lattice of isotropy subgroups for the group I' = O(2) x S!. Inclusion
is shown by an anrow

(ii) Solutions (z, 0) have isotiopy subgroup S/‘-O\(/Z) =1{(6,0): 0 <6 < 27} (where this
serves as a definition of ST-O\(-Z/)) For these solutions, a phase shift of 6 in time is
the same as a rotation through —@, so they 1otate with time, and aie known as rotating
waves Waves that rotate in the opposite direction have the conjugate isotiopy subgroup
S% = {(—8, 6)} with fixed-point subspace (0, z)

In both these cases the fixed-point subspace is two-dimensional as z € C so the
solutions are specified by two independent coordinates, Re(z) and Im(z) The
equivariant Hopf theorem says that generically a branch of periodic solutions with
each of these isotropy subgroups will bifurcate from the origin at the Hopf bifur-
cation. The solution branches at a Hopf bifurcation with O (2) symmetry are sum-
marised in Table 4 4, and Figure 4 14 shows the isotiopy lattice.

4.5 Heteroclinic cycles

Another way in which cyclic behaviour can occur after a bifurcation is through
the formation of heteroclinic cycles A heteroclinic cycle consists of a set of fixed
points, each solution being connected to the next by a forward-running trajectory in
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X,

ss()

Fig 4.15 A schematic diagram of a heteroclinic cycle with tiajectories s; () to
s5(f) 1unning between fixed points x; to x5

phase space to form a closed cycle. In other words if the equilibrium solutions are
x;fori =1, . ,n,then there is a trajectory that leaves x; and runs to x; ., where
we identify x,4; with x;. The trajectory between one fixed point and the next is
known as a heteroclinic connection and can be written s;(z), where s;(z) — x;
as t — —oo and s;(t) — x;4 as t — +oo. Figure 4.15 shows an example of a
heteroclinic cycle.

Guckenheimer and Holmes (1988) showed that heteroclinic cycles in symmet-
ric systems can be structurally stable. They took as their example the Busse—
Heikes cycle (Busse & Heikes, 1980), which models the Kiippers—Lortz insta-
bility (Kiippers & Lortz, 1969) in 1otating convection, desctibed in more detail in
Section 5 6 Busse and Heikes’ equations are in fact identical to those derived by
May and Leonard (1975) who described a cycle between thiee competing species
in a population model

Guckenheimer and Holmes' treatment of the Busse—Heikes cycle is very
famous, so we shall follow it now to explain the notion of structuial stability.
Consider the group I" acting on R* and generated by a cyclic permutation of the
coordinate axes given by

010
r=10 0 1], 4.127)
1 00
and a reflection in the yz plane given by
-1 0 0
m={10 1 0 4 128)
0 0 1
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In fact T = 7 x Z,, where 7 is the symmetry group of rotations of a regular
tetrahedron. To cubic order the T -equivariant amplitude equations for (x., y,z) €
R3 are

dx
o = ax? —by? — %), (4 129)
dy
T =y —ayt = b =, (4 130)
dz
Ej_ =z(u — az® — bx? - (}’2), (4 131)

where p is a 1eal bifurcation parameter, and «, b and ¢ are real constants It i3
clear from these equations that the coordinate planes x =0, y =0 and z = 0 are
flow-invariant, as are the coordinate axes and the lines x = =y = £z.

The fixed points of this system are:

HDrx=y=z=0
(i) x% = u/a, y = z = 0, and cyclic permutations of {x, v, z};
(i) x =0, y2 = ula — ¢)/(a* — be), 22 = pu(a — b)/(@® — bc), and cyclic permutations
of {x,y,z};
(V) 2=y ==p/la+b+0)

We will assume that p is positive, so that the fixed point at the origin has
undergone a steady bifurcation and lost stability We will also assume that a > 0
and a + b + ¢ > 0, so that the fixed points on the coordinate axes and the lines
x = £y = £z exist, that (a — ¢) > 0 and (a — b) < 0, so that the fixed points off
the coordinate axes in the coordinate planes do not exist, and that b + ¢ — 2a > 0.

Taking the time derivative of 7 (x, y, z) = x> + y? + z? we find

%%: (x%%+yda)t—7+zj—f), (4.132)
=u(x*+ v+ —att +y* ¢ ) (4.133)

— b+ Oy + v + 225D, (4.134)
=pu?+y* 4+ —a(x® + y* + 222 (4.135)
—(b+c —2a) (%Y + y2 22+ 22x%) (4.136)

So we have dr /dt < O0if r > pu/a and ¥ (x, y, z) decreases along tiajectories while
they lie outside or on the surface of the sphere r = p/a. Note the inequality

1
hx,y.2) = X2y +y22% + 2807 — ,—5(x2 +y2 +25)? =0, (4.137)

which you can check by finding the maximum of Z(x, y,z) and seeing that
it is zero. The equality holds if and only if x =y =z=0 or x*> = y> =72



4.5 Heteroclinic cycles 125

Substituting into equation (4.136) gives

1 dr
S5 2 uEE ) D) a3 4 ) (4 138)
1
~3b+c- 2a)(x? + y? + 222, (4.139)
1(a+b+c) ( S - ) (4.140)
= —— ryr — -
3 (@a+b+c))

with the equality only for x =y =2z =0 or x> = y?> =z> This tells us that
dr/dt > 0 for 0 <7 < 3uu/(a+ b+ ¢), sor increases along all nonzero trajec-
tories inside the sphere, S, defined by r < 3u/(a + b + ¢), and that apart from
the fixed points x = £y = +z = +./u/(a + b + ¢) all rajectories starting on the
surface of S leave S transveisely

Thus all nonzero trajectories eventually enter the closed spherical shell, A, given
by

3 2, .2, 2_M

ey < = 4 141

(a+b+c)‘ley +Z_a ( )

Now taking the time derivative of g(x, y, z) = x2y%z% we find that

dg dx dy dz

L = oxyz( Zyz x4 ay— |, 4.142

p” xyz(dtvz xdtz+x}dt) ( )

=2x2y*22GBu — (@ + b + O)r), (4 143)

so we have dg/dr <0 for r > 3u/(a + b+ ¢), with equality if and only if
(x, y, z) lies on one of the coordinate planes, where g(x, y, z) = 0, o1 the surface
of the sphere, S, where r = 3u/(a + b + ¢). This means that g(x, y, z) decreases
along trajectories outside the sphere, S, and hence decreases along trajectories
inside the spherical shell, A

Taken together the behaviour of » and g on trajectories tell us that all trajecto-
ries other than those on the invariant lines x = +y = +z are attracted towards the
coordinate planes

Let us consider the coordinate plane z = 0, where the amplitude equations take
the form

d
(- ax® - by, (4.144)
dr
d
Ey = y(u — ay* — cx?), (4 145)

The fixed points in this plane for the range of parameter values we have chosen
are (0, 0, 0) which is an unstable node, (£+/14/a,0,0) and (0, ./w/a,0). The
Poincaré-Bendixson theorem implies that any bounded trajectory in an invariant
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plane must approach either a fixed point or a petiodic orbit The statement and
proof of this theorem can be found in Glendinning (1994) Using the Poincaré
index (details of which can once again be found in Glendinning’s book) it can be
shown that any periodic orbit must enclose a fixed point, but here the only fixed
points lie on the coordinate axes, and since the coordinate axes are invariant no
trajectory can cross them, so no periodic orbit can exist. The trajectories must end
up at fixed points then, so we need to work out which ones are stable and which
unstable

Perturbing the fixed points (&+/u/a, 0, 0) in the invariant plane z = 0 by set-
ting x = /p/a + & and y = 7, where |£|, || < 1, and linearising gives

dg

T =218, (4 146)
dnp  n

T —;(a — o, (4.147)

so they are saddle points since i+ > 0 and (a — ¢) > 0. Now perturbing the fixed

points (0, £./u/a, 0) by setting x = & and y = /u/a + n, where |&], |n| < 1,
and linearising gives

= %(a — b)E, (4.148)

g
dr
dn
T = =2un, (4 149)
so they are stable nodes in the plane z = 0 since > 0 and (¢ — b) < 0 This
means that there must be a trajectory joining the saddle point (i/u/a, 0,0) to
the stable node (0, /z¢/a, 0) in the quarter-plane x > 0, y > 0, z = 0 However
since the equations are equivariant under cyclic permutations of the coordinate
axes, if we now look at the plane x = 0, the point (0, /i/a, 0) becomes a saddle
point in the new invariant plane, while the point (0, 0, \/u./a) is a stable node, and
there is a trajectory joining them in the quarter plane y > 0, z > 0, x = 0. The
cycle is completed by a trajectory in z > 0, x > 0, y = 0 joining (0, 0, \/;2/a) to
(v/1t/a, 0,0). This heteroclinic cycle is shown in Figure 4 16. Each fixed point in
the cycle is unstable in a direction towards the next point on the cycle, but stable
in the tiansverse directions Trajectories are attracted to the coordinate planes, so
they will approach each fixed point in the stable transverse directions and then
head off in the unstable direction of the heteroclinic orbit The heteroclinic orbit
thus attracts trajectories, and is said to be stable

[here are seven other heteroclinic cycles related to this one by reflection in the
coordinate planes: they lie on the group orbit of the first cycle. All the trajectories
that do not lie on the invariant lines x = 2y = 4z or on the cooidinate planes are



4 5 Heteroclinic cycles 127
}1

0, (wa) 0)

((wa)'3,0,0)

X

(0,0, (u/a)' ")
z

Fig 4.16. The Busse-Heikes heteroclinic cycle in the system of equations
(4 129)-(4.131)

attiacted towards the union of these heteroclinic cycles. A genetic trajectory comes
close to each of the fixed points in the cycle in turn, always moving closer to the
coordinate planes, but never crossing them, so any one trajectory is attracted to
only one cycle As you get closer to a fixed point, the movement along the tra-
jectory gets slower because |(dx/dz, dy/dz, dz/dr)| is close to zero, so as the tra-
jectory approaches the heteroclinic cycle it spends longer near each fixed point in
turn.

If the system is perturbed, then as long as the ['-equivariance is not broken,
it will still have to take the form given in equations (4.129)—(4 130), though the
parameters i, a, b and ¢ will change a bit The properties that lead to the existence
of the heteroclinic cycle hold in an open region of parameter space however, so the
cycle will persist under small perturbations of the governing equations, though the
equilibria on the coordinates axes will shift a bit, and the heteroclinic connections
will be slightly deformed In patticular the coordinate planes will remain invariant,
and the saddle-sink connections in these planes will not break under small pertur-
bations. We say that the cycle is structurally stable The idea of structural stabil-
ity and its precise technical definition are discussed in more depth in Glendinning
{1994) and Hirsch and Smale (1974).

The fixed points of the heteroclinic cycle have isotropy subgroups Z% with one-
dimensional fixed-point subspaces, the coordinate axes, while the heteroclinic con-
nections lie in two-dimensional fixed-point subspaces corresponding to isotiopy
subgroups Z,, in other words the flow-invariant coordinate planes The relevant
part of the isotropy lattice is shown in Figure 4 17 Melbourne, Chossat and
Golubitsky (1989) pointed out that for a given action of a group, I, a characteristic
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T x 7,

) @ 3

(1) B ®
ZZ ZZ ZZ

Fig. 4 17. The relevant part of the isotropy lattice for the Busse-Heikes cycle
example The isotiopy subgroups of the three fixed points in the heteroclinic cycle

are Zi(l), Z;(z) and ng, while the isotropy subgroups of the three heteroclinic
connections are ZE]), Zéz) and Z?). Inclasion is shown by an arrow

r

NS NN

Fig 4 18 Pattern in the isotropy lattice of a group, I', suggesting the existence
of a stiucturally stable heteroclinic cycle The isotropy subgroups, Z;, of the
fixed points of the possible heteroclinic cycle have a one-dimensional fixed-point
subspace, while the isotropy subgroups, A ;, of the possible heteroclinic connec-
tions have a two-dimensional fixed-point subspace After Melboune, Chossat and
Golabitsky (1989)

pattern in the isotropy lattice, of the form shown in Figure 4.18, a generalisation
of the pattern seen in the Busse—Heikes cycle example, suggests the existence of
a structurally stable heteroclinic cycle In both Figure 4.17 and Figure 4.18 con-
jugate isotropy subgroups appeat independently in the isotropy lattice, contrary to
convention, to clarify the possible heteroclinic connections
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(a) (d)

Fig 4.19. (a) A homoclinic cycle consists of fixed points on the same gioup orbit,
linked by trajectorjes, while (b) a homoclinic orbit consists of a trajectory linking
a single fixed point back to itself.

A heteroclinic cycle consisting of fixed points that all lie on the same group
orbit, as in the Busse—Heikes cycle, is often known as a homoclinic cycle. This is
quite a common situation, but there are many other systems where the heteroclinic
cycles connect fixed points of different types, lying on different group orbits A
homoclinic cycle is not to be confused with a homoclinic orbit, where a single
trajectory loops round to connect a fixed point back to itself (see Figure 4.19).

For any given heteroclinic cycle in a ["-equivariant system consisting of fixed
points, x;, and connections, s;(r),fori = 1,. | n, there is a grtoup orbit of related
heteroclinic cycles with fixed points yx; and connections ys;(z), Vy € I'. It is
conventional to identify cycles on the same group orbit, and hence to refer to the
whole group orbit of cycles as one cycle If a system contains more than one
such cycle, in other words if there are cycles that are not related by symmetry,
then if the unrelated cycles intersect they form a heteroclinic network. A hetero-
clinic network is a union of heteroclinic cycles that cannot be broken down into
smaller disjoint netwoiks o1 cycles. Two cycles intersect if they have in common
at least two fixed points joined by a heteroclinic connection At the point where
the cycles diverge any trajectory close to the cycles has a ‘choice’ over which
cycle to follow, so it is not clear that cyclic behaviour will result. For example,
the trajectory could follow cycle A twice and then choose cycle B once, followed
by cycle A eleven times and then cycle B eight times, or it could follow cycle
A every time: the possible dynamics are very complicated and will depend on
the details of the particular system under study Kirk and Silber (1994) give an
example of a heteroclinic network consisting of two cycles in a system with Zé‘
symmetry

The definition of a heteroclinic cycle can be extended to include cycles between
periodic orbits (Melbourne, Chossat & Golubitsky 1989) or chaotic sets, where the
phenomenon is known as eyeling chaos (Dellnitz et al. 1995)
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Exercises

4 1 Consider the system

dx

P f(x,y).
dy )
T = g{x,y),

under the symmetries

(6)-C) 0-0)

Show that these symmetries imply that f is odd in x and even in y, while g is odd in
y and even in x
4 2 Consider the system

dx

—— x’ 3,Z,

P ACIR LY

dy )

—_— .x, !’Z’

a —8v )

dz

_:h X,¥%,2)s

a -y )

under the symmetries

X ¥ X X X —x
b Bl A B Yyl — |z y|—= |-y
F4 be z y z 4

Show that these symmetiies imply

h(y,z,x) = gz, x, y) = f(x, v, 2),
f(x» )’,Z) = f(xe 25 )’)5
f(xa v, Z) - _f(’_xu -Y _Z)’

and hence write down the series expansion for f(x,y, z), g(x, v, z) and i(x, ¥, z) for
small |x|, |y| and |z| to quadratic order.

4.3 Find all the absolutely irreducible real representations of Ds, the symmetry group of an
equilateral triangle, and hence woik out all the possible solutions that are guaianteed
at a steady bifurcation with D3 symmetry under one or other of these representations
Draw examples of the eigenmodes in an appropiiate triangular box, and work out the
relevant notmal form equations.

4.4 Repeat the previous exercise for Dg, the symmetty group of a regular hexagon, this
time drawing the eigenmodes in a hexagonal box.

45 Analyse the Hopf bifurcation with Z, symmetry wheie the action of the group Za x S 1
is given by

(e.0)z=¢"%2, (m,0)z=—z,
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for z € C = R2, where (e, 8) is the phase shift and (m, 0) 1s the reflection What is the
spatiotemporal synunety of the guaranteed solutions?

4.6 Repeat the previous exercise for Zs symmetry where the action of the group Zg x S!
is given by

e,z =¢e"%2, (p,0)z=—z,

for z € C = R2, whete (e. 8) is the phase shift and (p, 0) is the rotation through /2
What is the putely spatial symmetry of the guaranteed solutions? How do they evolve
over time?

4.7 Repeat the previous exercise for Zg symmetry where the action of the group Zg x §!
is given by

(e,0)z = €%z, (p 0)z = ¥i/3y,

for z € C = R?, whete (e, 8) is the phase shift and (p, 0) is the rotation thiough 27 /9
In what important respect does the representation of the group differ in this case from
those used in the previous two exercises? What is the purely spatial symmetry of the
guaranteed solutions in this case? How do they evolve over time?

Extension deduce the behaviour for the general case of Hopf bifurcation with Z,
symimetry.

4.6 Appendix: Proofs

This section contains the proofs of Lemma 4 2 and Theorem 4.3 (the trace
formula).

Lemmad.2 LetFix(I') = {0}, and let £ C T be a subgroup Then T is a maximal
isotropy subgroup of I if and only if

dim Fix(¥) > 0, (Ad1)
dim Fix(A) =0 for every closed subgroup A 2 E (A4 2)

Proof To prove the forwards implication, assume that ¥ is a maximal isotropy
subgroup. Then ¥ must fix some vector x by the definition of an isotiopy sub-
group, and since Fix(I') = {0} and ¥ C I' we must have x nonzero, and hence
equation (A4 1) holds. Suppose A fixes a vector x, where ¥ ¢ A. Then we have
Y C A C X4, where %y is the isotropy subgroup of x. Now since ¥ is maxi-
mal, we must have £, = I', and since Fix(I") = {0} we must also have x = 0.
So the only vector fixed by A is zero, and we have proved equation (A4.2)
dim Fix(A) =0

To prove the reverse implication, assume that X satisfies equation (A4 1) Then
¥ must fix some nonzero vector x, and the isottopy subgroup X, of that point x
contains X, so that £y O ¥. Now X, is closed because it is an isotropy subgroup,
so if we had ¥, # ¥ then by equation (A4.2) we would have dim Fix(X;) = 0,
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and hence X, = I", but then we would also have x = 0, which is a contradiction.
Hence we must have X, = X and so X is an isotropy subgroup If X is not maxi-
mal, then there exists an isotropy subgroup A such that ¥ C A C I'. Now A must
fix some nonzero vector y, and so using the same argument as before we find
that dim Fix(A) = 0 and so y = 0, which is a contradiction. Therefore ¥ must be
maximal O

Theorem 4.3 (Trace formula) Let I he a finite group, and let ¥ C T be a sub-
group. Then the dimension of the ﬁxed—point subspace of ¥ is given by

dim(Fix(%)) = IEI PIRACH (A4.3)
gexn

Proof Define alineat map A : V — V by

Ax = ox, Vx e V (A4 4
mZ; )

Now square A to get

IEIQZ oY o I > oo (A4 5)

cEX o'ex cex,0’exr
=—| | o=A (A4 6)
TR 20 = m%

using o X = X, Vo € ¥ We can use this result to see that
Allm A = 1d, (A4.7)
where 74 is the identity mapping, and
ImA={xeV.x=Ay, yeV} (A4.8)
is the image of A, by taking x = Ay € Im A and applying A to find
Ax = A%y = Ay =x (A49)

We know that dim(kerA) + dim(ImA) = dimV by the rank-nullity theorem for
linear mappings (for details, see Cohn, 1982, who calls it the rank formula), and
we also know thatker A NIm A = {0} sinceif x € Im A, then Ax = x by equation
(A47), and if x € ker A then Ax = 0 and so we have x = 0. Thus we must have

V=kerA®dImA (A4 10)
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Equations (A4.7) and (A4 10) together tell us that
tr(A) = dim(ImA). (A4.11)

Now we will show that Fix(X) = Im A, which will complete the proof. Fiist we
have
1 1 1

Ax = — oX = — x=—|Zx=x, VxeFx(¥) (A412)
B4 T s IS

which shows that x € Im A, Vx € Fix (¥) Conversely if x = Ay € Im A, then

o'x =0'Ay =o' — = ooy (A4 13
|>:|(,;S y= lEla; )
=5 Z(ry_Ay_x Yo' e ® (A4 14)

gEXL

since o'c € X, for all ¢’ and o in ¥, and so x € Fix(¥), Yx € Im A. Thus
Fix(2Z) = Im A and so the final result

dim(Fix(¥)) = Z tr (o). (A4.15)

lzl oEX
follows from equations (A4.4) and (A4 11). O
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Simple lattice patterns

Lattice patterns crop up quite regulatly in nature and experiments: they are struc-
tures that repeat more or less regularly in space many times over In convection,
the archetypal pattern-forming scenario, just about any lattice pattern you can think
of can be produced by choosing the experimental set-up carefully Typically you
will see periodic stripes (known in convection as rolls) or hexagons, but squares,
tiiangles and other more exotic varieties are also possible A huge amount of
research on pattern formation has been driven by the desire to understand convec-
tion patterns, so there has been a great emphasis on methods for analysing spatially
periodic patterns. In the next two chapters we will apply the ideas of bifurcation
with symmetry to lattice patterns, and in Chapter 7 we will follow up by exploring
the methods we can use when the spatial periodicity is broken slightly

5.1 Lattices and lattice patterns

This whole chapter is about lattice patterns, so it is important to keep in mind what
they look like. The common lattice patterns of stripes, squares and hexagons are
shown in Figure 5 1.

A planar lattice, L, is generated by two linearly independent vectors /; and
I> € R? and is defined by

L={nly+ndy: ni,ny €} (CR))

The notation £ is also used for the group of disciete translations that preserve the
lattice. We will often want to characterise a lattice in terms of the dual lattice,
L*, generated by two linearly independent wavevectors k1 and k» € R? satisfying
ki 1; =2né;;fori =1,2, j=1,2 The dual lattice is defined by

L* = {mki +nky: ny,ny € Z} 52)
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Fig 5.1 Examples of some of the common lattice patterns: (a) stripes o1 rolis,
(b) squares and (c) hexagons. These are filled contou1 plots of u = Z/.- (e +
e ¥y for (@) ky = (1,0), b)Yk, = (1,0), k> = (0, 1), and (c) ky = (1, 0), ky =
(—1/2,/3/2), k3 = (—1/2, —/3/2), and so are puiely linear supeipositions of
stiipe patteins at various angles to each other For the stripes and squares, u > 0
regions are shown in white and ¥ < 0 in black For the hexagons the central white
1egion is u > 0, the black region is —1 95 < 1 < 0, and the oute1 white region
isu < —195 In experiments theie are usually some higher harmonics present,
leading the patterns to look a little different even when the symmetries are the
same
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Fig 52 Dual lattices in one and two dimensions: (a) one-dimensional lattice,
(b) thombi (k1| = k2| =k, k1 kp #0, k2 cos(m/3), k% cos(27/3)), (c) hexa-
gons (k1| = k3| =k, ki ky = k?cos(2m/3)) and (d) squates (k| = lka2|, k; -
ko = 0).

A planar lattice pattern is a function u(x, f) of a spatial variable x € R? and time
t € R that is periodic on £ so that

ulx +1,ty=u(x.t) viel (5.3)

In general an £-periodic real function u(x, 7) can be expressed as a sum of Fourier
modes that lie on the dual lattice in the form
ux. )=y _ u®e**+cc, (54)
kel*
where ¢.¢ stands for the complex conjugate.
The two-dimensional peiiodic dual lattices that are most common in pattern
formation have |k;| = |ky|. These are the square, thombic and hexagonal lattices
shown in Figure 5.2 alongside the one-dimensional periodic lattice

5.2 Bifurcations on a lattice

Pattern-forming systems are generally goveined by a set of partial differential
equations, so let us start by considering the equation
du(x, 1)

FYRR fulx, 1), 1), (55
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where f is a smooth nonlinear operator, u € R is a bifurcation parameter, and u
is a function of a spatial variable x € R? and time 7 € R. For simplicity we will
assume u(x, ) € R, but it is possible to extend the method to u(x, 1) € R", so
we can deal with a system that has several dependent variables and is described
by more than one partial differential equation. The solution, u(x, 1), represents
a ‘marker’ quantity in the pattern-forming system, for example the vertical fluid
velocity, the fluid density or temperature in convection, o1 the concentration of a
product in a chemical reaction

Patterns often occur in systems that have approximate Euclidean symmetry,
namely symmetry under all rotations, reflections and translations of the plane For
example, if convection takes place in a uniform thin layer that is heated uniformly
from below, then far enough away from the sidewalls of the container the exper-
imental set-up has Euclidean symmetry, more or less, because it is the same in
all directions (isotropic) and in all places (homogeneous) To have true Euclidean
symmet1y the experiment should take place on an infinite plane otherwise trans-
lations would move out of the experimental box at the boundaries Of course the
experimenters could decide to break the Euclidean symmetry by tilting the layer,
so that the direction of tilt is different from all others and the isotropy is broken, o1
by heating the layer moie intensely in one spot, so that the homogeneity is broken
The techniques we will use can be adapted to deal with these situations, but for
now we will assume that equation (5 5) has Euclidean symmetry and that the solu-
tion evolves on the infinite plane In this case f is equivariant with respect to E(2),
the Euclidean group, and we have

v, u)= f(yu, ), Vy €E®) (5.6)

We will also assume that for all values of y there is a time-independent solution to
(5.5), invariant under the symmetries of the plane This will be a spatially uniform
stationary solution u(x, 1) = up where ug is a real constant. We can set g = 0
using the transformation # — u — ug In the convection example, where u 1ep-
resents the vertical velocity of the fluid, the trivial solution, ¥ = 0, would be the
conduction state, where the fluid is at rest and there is no convection going on
We now assume that the trivial solution, # = 0, undergoes a stationary symmetry-
breaking bifuication at x4 = 0, being stable for 4 < 0 and unstable for « > 0 The
bifurcation parameter p is an external forcing that can be varied by the exper-
imenter As u is increased through p = 0 the forcing becomes large enough to
destabilise the uniform solution and any small perturbations or fluctuations result-
ing from noise in the experiment start to grow. In convection, u would typically
represent the temperature difference across the layer, with the origin shifted so that
the critical temperature difference at which convection begins is set to u = 0. The
system can now evolve in many different ways There is no guarantee that it will
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Fig. 53 Ciitical modes on doubly periodic dual lattices: (a) square lattice,
(b) hexagonal lattice and (c) thombic lattice

ever reach a stable end state, or that coherent spatial stiuctures will develop, but
we will focus on one possibility: the emergence of a lattice pattern.

Consider Fourier mode perturbations e’ * to u = 0. We assume that at the bifur-
cation point, u = 0, the zero solution is neutrally stable to a circle of modes with
|k| = k. # 0 and stable to all other modes, so that if a lattice pattern is selected
from among that circle of modes it will be exactly periodic in space with a well-
defined period at onset. For simplicity we assume that there is only one neutral
circle

At this point, what we want to do is to apply the centre manifold theorem to
reduce the problem to something more tractable Unfortunately we have two prob-
lems: first there is an infinite number of neutral modes lying on the circle k| = ke,
so even if we could apply the theorem we would still have an infinite number of
modes to deal with, and second there are decaying modes |k| # k. as close to the
unit circle as you like, with growth rates as close to zero as you like, so the set of
decaying modes does not have growth rates bounded away from zero As things
stand, equation (2.30) is not satisfied and we cannot apply the centre manifold
theorem Happily, if we insist that the solutions are doubly periodic with respect
to a planar lattice, then all wavevectors k contributing to the pattern must lie at the
vertices of a dual lattice, and our troubles are immediately resolved. As we can
see from Figure 5.3, the critical circle intersects a finite numbet of vertices of the
dual lattice, and all other lattice points are a finite distance away from it, ensuring
that the growth 1ates of the corresponding modes are negative and bounded away
from zero It is worth pointing out now that in insisting the solutions be periodic
on a lattice, we have made two choices: the choice to restrict our analysis to lat-
tice patterns, and the choice of lattice ~ square over hexagonal, for example. These
are quite 1easonable choices: we know from observation that lattice patteins are
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common, we have decided to carry out our analysis in a framework that accom-
modates them and we know that square lattice patterns are seen, so if we want to
study them it is sensible to choose a square lattice However they are restrictive
choices: using this foimalism we can’t investigate why a system ‘chooses’ a lattice
pattern over some other less regular structure, and in fact we can’t even work out
whether squares are preferred over hexagons, for example, because they don’t fit
on the same lattice Nonetheless, the restriction to a lattice is a good start in the
analysis of spatially periodic patterns, so let’s see where we get with it.

We can now apply the centre manifold theorem, because the decaying modes
all have negative growth rate bounded away from zero This projects the dynamics
onto a finite number of critical (neutral) modes, namely the equilibrium solutions
¢'%i * of the linearised problem at the bifurcation point We can now write

n
ux,t) = z;(e* ¥ tce (57)
j=1

at leading order, where z;(t) € C, |k;| = k.. Note that n is half the number of
modes lying on dual lattice vertices that are intersected by the neutral circle — we
only need half the modes, because the amplitude of the mode ¢~ * must be Z j
since u(x, t) is real. As the bifurcation parameter y increases past zero, the growth
rate of the critical modes will become positive, and the amplitudes z;(¢) will start
to evolve according to a system of ordinary differential equations

dz

P s ] 5 8

P gz, 1) (58)
where 7 = (21, . ,zn) € C" These are known as amplitude equations. The

zero solution is now z =0, and the requirement that it be stationary gives
g(0, 1) =0 If we temporarily consider equation (58) to be real, with z =
Gy - &, ) €RY whetez; =& +in; for j=1, . ,n,thenthe Jaco-
bian is zero at the bifmcation point, Dg| 0.0 = 0, since Dg| o = 0T with
c(0) = 0, for a generic steady bifurcation at w == 0. Beyond the bifurcation point
other modes on the lattice, higher harmonics of the critical modes, will also
become unstable and contribute to u#(x, t), so we should write

n
u(x,t) = sz(t)eikf Y+ce +hor, (5.9)
j=1
where h.0 t denotes these higher order terms.
The ordinary differential equations (5.8) inherit some symmetry fiom the
Euclidean symmetry of the original paitial differential equation The symmetries
that are retained are those in the finite group of rotations and reflections that
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preserve the lattice, known as the holohedry, H, of the lattice, together with trans-
lations ‘factored out by the lattice’. We are assuming periodicity on the lattice, so
we can generate the full pattern from the solution in one cell of the lattice. If we
have a translation out of the unit cell and into a neighbouring cell, then because the
two cells are identical we can consider the translation to be out of the unit cell and
then back in again on the other side. This is illustrated in Figure 5 4 for the square
lattice, but the same thing holds for hexagonal or rthombic lattices The transla-
tions effectively glue the opposite sides of the unit cell together to make a torus:
this is factoring-out the translations by the lattice We call the group of translations
on the lattice, 72 = R? /L, the torus of translations, where here £ is the group of
translations that preserve the lattice and 72 is a quotient group So the symmetry
group I' of the bifurcation problem (5.8) is given by I == H x T2 Another way
of explaining the need to restrict the problem to a lattice is to say that the infinite
plane is not a compact domain, but by restricting to a lattice we end up with a
torus, which is compact You might remember from Chapters 3 and 4 that many of
the results we use to analyse bifurcations with symmetry depend on compactness
For the square and hexagonal lattices, we have H = D4 and H = Dg respectively
Equations (5 8) satisfy the equivariance condition

vg(z, u) = glyz, u), Vyel, (5.10)

which allows us to write down the general form of the amplitude equations (5.8),
in other words the normal foim of the bifurcation. To see how this works, we
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will work through the calculations for the two most common lattices: square and
hexagonal.

5.3 Steady bifurcation on a square lattice

Conside: a stationary bifurcation problem with Euclidean symmetry, 1estricted to a
square lattice. The 1elevant symmetry group is D4 x 72 By rescaling space appro-
priately we can set k. = 1 to make the calculations look neater Often when people
rescale their equations it looks as if they simply invoke the magic word ‘rescal-
ing’ and set various parameters to convenient values, but it is more legitimate than
it might at first appear. To do the rescaling, set x; = X;/kc for j = 1,2, where
x = (x], x2), so that e'*¥i = ¢'%/, and then work in the new variables %;. In prac-
tice we immediately drop the tildes over the x;, so it looks as if we have simply
set ke = 1. We will use the fundamental representation of Dy x T2 on the square
lattice in which there are two orthogonal critical wavevectors (1, 0) and (0, 1) and
to leading order a real scalar solution takes the form

u(x, 1) = 21 + z2(0e™ +c.c, z1,22€C. (5.11)

The fundamental representation gives an accurate description of most experimen-
tally observed lattice patterns, but in certain scenarios other choices of representa-
tion are required — this is discussed further in Section 6.1 We want to consider the
action of Dy x 72 on C? (= R*). The group is generated by:

(i) a1otation through 7 /2, p, with M, = (0 - 1) for the action on x;

I 0
|

0 1

(iii) translations p € 72 whose action is given by p : x — x + p

.. .. . -1 0 .
(ii) areflection in xy, m, with M,,, = ( for the action on x;

The actions of the generators on the amplitudes z; and zp can be deduced
from the requirement that the general form of the solution for u(x, ) given in
equation (5 11) should be unchanged unde1 the symmetries

The natural or scalar action of the Euclidean group on a function v(x) is given
by

yo(x) = vy 'x), Vy e EQ),Vx € R (512)

The inverse is needed so that the action of the group on the space of functions is a
homomorphism Writing the action of a group element ¥ more formally as 6(y),
where 0 is a homomorphism, we need to satisfy

O(yo) =0(y)8(o), Vo,y € EQ2). (5.13)
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Now the action 8(y) on the space of functions f(Rz), of which v is a member, is
defined by

Oy vx) = v(y~'x), Vy e E2), Yve f(R?, Vx € R?, (5.14)

which is just a more formal way of wiiting equation (5.12) If we define a function
w = 0(c)v € f(R?), then we have

0(1) (00 (x) = 6(y)wk) = w(y 'x) = vy %) =v((yo) 'x)
=0(yoyv(x),Yo,y € E(2), (5.15)

since w(x) = 0(c)v(x) = v(o~'x). The inverses ensure that the group elements
act in the correct order on the righthand side

So, in the example of Dyix T % the rotation acts according to pu(x,t) =
u(p~'x, ) In this representation we have

X1 0 1\ /x X2
— = = s N
Mo (n) (*1 0) (xz) (—XI) 616
and so applying the rotation, p, to to equation (5 11) gives

pu(x, 1) = 21 (1) + z2()e ™ + 71 (1)e ™2 4+ Za(1)e' M. 517

The general form of the solution on the righthand side has remained
unchanged, but we have sent (z, z2) — (22, z1). Thus we have p : (z),22) —
(z2.z1) Similarly we find the actions m : (21, 22) — (21, 22) and p : (z1,22) —
(e7'P1z), e P2z5), where p = (pi1, p2). This information will be useful when
we come to derive the amplitude equations for z; and zp. Considered as a
real four-dimensional representation, the actions correspond to the following
matrices

001 0 1 0 00
00 0 -1 0 -1 0 0O
Mo=11 00 o] M=lo o 1 of .18)
01 0 O 0 0 01
cos p;  sin p; 0 0
| —sinp; cosp 0 0
Mp = 0 0 cospy  sinpy |’ (519
\ 0 0 —sinpy  cos pp

that act on the real vector, z = (&1, 11, &2, m), whete 21 = § +injand z2 = & +
iny It is straightforward to check that the only matrices that commute with all
three matrices are multiples of the identity, and so this is an absolutely irreducible
representation
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Table 5.1 The isotropy subgroups (up to conjugacy) for the steady
bifurcation on a square lattice, using the fundamental representation,
where &1 = Re(z1) and & = Re(z22)

Orbit representative Isotropy subgroup X2
Branch (z1, 22) (generatoi s) dim Fix(%)
Trivial solution (0,0) Dy T2 0
Squares (&. &), Dy 1
(p.m)
Rolls (¢1,0), Dy §! 1
(pze "7’ (O’ PZ))
Bimodal &, &), Ds 2
§1 # & (m, p?)

The isotropy subgroups and their fixed-point subspaces are given in Table 5 1.
The dimension of the fixed-point subspace is the same as the number of indepen-
dent real amplitudes that we can vary in the orbit representative. We see that the
two branches with one-dimensional fixed-point subspace are rolls and squares
The equivariant branching lemma guarantees that they will be primary branches
The isotropy subgroup of rolls, D, x S' is often given as O(2) x Zp Wiiting
D, x S emphasizes that rolls have rectangular symmetry plus translations in one
direction.

You might have imagined that there would be further isotropy subgroups,
such as Z : (21, 22) — (Z1. z2), with orbit representative (£1, & + in2), where
72 = Im(z3), butin fact a point of this form has a second symmetry, a combination
of a reflection and a translation in the x; direction, and is conjugate (by the trans-
lation) to the bimodal solution. Similaily, any other possibilities are conjugate by
a translation in 72 to one of the solutions in Table 5 1. This depends upon there
being a lattice, so that we can have translations

We shall now use the equivariance condition given by equation (5.10) to deduce
the amplitude equations governing z;(¢) and z2(z) To linear order, the equations
can be expanded in the following form:

dz) _ -
' = g1(z1,22) = w121 + 121 + 222 + 322, (5 20)
dz» _ -
ar = g2(z1, 22) = upzo +d1z2 + dbz1 + d3z1, (5.21)

where the s ; are bifurcation parameters, and the ¢; and d; are constants. In fact
it is pretty clear that we musthave w1 = pur =pand ¢y =y =3 =d) =dp =
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d3 = 0 or there wouldn’t be a simple steady bifurcation at u = 0, but forget this
for a minute while we take a look at the equivariance conditions

If we insist that equations (5 20) and (5.21) be equivariant under translations
p:(z1,22) = (e P17y, e P2z,), then we must have

e~ P iz + 171 + 022+ 372) =

(e Pz +c1eP17) + cpe P27y + c3€P27y), (522)
e P2 (Lrzy + diZa + dozy +da7)) =
(2e~'P2zo + die'P27) + dhe P17y + dze'P1 Zy) (523)

for all py, p2, zi and z», and so the coefficients ¢; and d; must be zero for j =
1,2,3

Applying rotation equivariance p : (z1, 22) — (22, 1) in a similar way leads to
the equations

222 = {4122, (524)
121 = 1271, (5 25)

which tell us that u; = o = w, where u is real. Thus, just as we suspected, our
linear equations are

dz;

I 2
= pai, (5 26)
d

=2z (527)
ds

The trick is to apply this procedure to a higher order expansion of the amplitude
equations. The equivariance condition (5.10) implies that we can do this order by
order Usually expanding to cubic order is enough, but even then the most gen-
eral form of the amplitude equations would be very messy to write down Luckily
the requirement of equivariance under translations eliminates most of the terms
straightaway For example the possible quadratic terms that could appear in the
dz;/dr equation, together with their transformations under a geueral tianslation

(p1, p2), are

P ¥ - - i
23— e i 72 s 2Rt
2 2 2 22 =22
25— 23e 1]72, Zz_)z%ei).lpz,

2120 = z1z0¢ " PITPD | 7izs 5 7 Zae PP

2170 = leze—l(l’l—ﬂz), 7120 — 212261(171"192). (5.28)

We know that the lefthand side of the equation for dz;/d¢ is multiplied by e~
under a general translation. Noue of the quadratic terms transforms in the same
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way, so none can appear on the righthand side. It is straightfoiward to check
that of all the possible cubic terms only |z1]%z; (— |z1]%z1€¢7P") and 122121
(— 1221221~ 'P") ransform in the appropriate way, and so these are the only cubic
terms that can be included on the righthand side of the dz;/dr equation. Similarly
the nonlineat terms that can appear in the dzs/dr equation can be deduced from
the requirement that they be multiplied by e "7 under a general translation. After
a little thought it is easy to see that to cubic order the amplitude equations must
take the form

dzy 2 2

o =M alz11°z1 — az|z2|" 21, (529)
dzs

T S M- bylz1l%z2 — balzal*z2, (5.30)

whete a1, ap, by and b, are constants
Now using reflection equivariance m : (z1,22) — (Z1.22) gives

dz; - 2- 2-
_— = — Z Z1 —a2|z
3 =KD arlzi1°z1 — azlzz1"z
dz;
= uz1 —arlzi)?z1 — a2lzal?z) = o (531)
dzp
E = 772 — b] IZI |222 - bZiZZ‘ZZZa (5 32)

which leads to the requirement that a; and a; be real
Finally rotation equivariance p : (z1, z2) — (22, 71) gives the equations

dzp

— =R a11z2(%22 — aslz1 %22, (533)
dz)
Frintaiie bilz21’z1 — balz1 %21, (5.34)

which agree with the originals (5 29) and (5 30) as long as b; = a3 and by = a;
So in the end, the Dy x I 2-equivariant amplitude equations truncated at cubic
order turn out to be

dzi

7 allz 21 — azlzal?ay, (5.35)
dz2
5 =ha-a 22%22 — azlz1 722, (5 36)

where 1, a; and as are real.

We can use these equations to look at the existence and stability of periodic pat-
terns on a square lattice. First we set dzj /dr = dzp/dr = 0 and find the following
stationary solutions:
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(i) the trivial solution z; =z = 0;
@it) xp~rolls |z;[> = u/ai, 22 = 0;
(i) xz-r0lls 21 = 0, 22| = p/ay;
(iv) squates |21|* = |2,)* = /(a1 + a2)

It is always possible to set the imaginary parts of any solution (z;, z2) to zero, by
moving the origin. If, for example, we have x-rolls with z; = /it/a;e'™, where
x0 is some real constant, then reconstructing the marker quantity u(x, 1) according
to

u(x, 1) = 21O + () +cc +hot. (537)
gives
u(x, 1) = Jpjaie™@e™ +cc.+hot (538)

Clearly if we move the origin by a distance xg in the negative x| direction, so that
x] — %] — xo where ¥ is the new x, variable, we recover

u(x,t):\/u/alei}' +cc. +hot, (5 39)

and z; = /u/a) in the new variables with the shifted origin. Since by construc-
tion the amplitude equations are equivariant with respect to translations, they are
unchanged by this manoeuvre. If the solution (z1, z2) is real, then the righthand
sides of equations (5 35) and (5.36) are real, so if (z1, z2) starts out real then the
imaginary parts never grow, and (z;, z2) stays real for all time This is very handy
because it means that we can set (z1, z2) real initially by shifting the origin appro-
priately, and then assume that it is real ever after.

The zero growth rates of the imaginary parts are a consequence of equivari-
ance under translations in the x| and x; directions We saw in Chapter 3 that a
continuous symmetry leads to a zero eigenvalue with eigenvector tangent to the
group orbit If we take any real solution (ry, 72), 71, 72 € R, and apply a translation
(p1.0), we get (r1e~P1, ry). Differentiating this with respect to p; and evaluat-
ing the result at p; = 0 gives an eigenvector (—iry,0), r; € R, in the imaginary
71 direction, that has zero growth rate eigenvalue according to equation (4.13)
We can do the same thing for translations in the x, direction to find an eigen-
vector in the imaginary z; direction with zero growth rate eigenvalue. Another
way of saying all this is that the zero giowth rates are related to the freedom to
choose the origins of x) and x;. The system has no preference for any one posi-
tion over another, so it is linearly neutrally stable to transformations that shift the
origin
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If we choose (z1, z2) to be real, the amplitude equations become
dz;

o =M -z — @z, (5 40)
dzp
— = puz — a1y — wia, (5.41)

t

where all the variables and constants are real These equations are just a restate-
ment of equation (4.72) that we found for the bifurcation with D4 symmetry under
the natural representation, because by setting the imaginary parts of the amplitudes
to zero we have effectively ‘removed’ the translations on the lattice

Exactly the same stability analysis that we used in that case applies here,
because the equations are the same The possible bifurcation diagrams can be read
from Figure 4 10, where now the labels R and § refer to rolls and squares respec-
tively.

Notice that the bimodal solution does not turn up as a solution of the amplitude
equations truncated at cubic order. The truncation loses some information, and if
we wanted to find the bimodal solution we would have to expand the amplitude
equations to higher order, in fact fifth order in this case So to summarise, con-
sidering the isotropy subgroups will tell you all the possible solutions categorised
accoiding to their symmetries, but gives limited information about their stability,
whereas the amplitude equations will give you detailed information on the shape
of the branches and their stability, but may miss some solutions if you don’t go to
high enough order

Having looked at the square lattice, we will now move on and consider a lattice
of hexagons

5.4 Steady bifurcation on a hexagonal lattice

Once again we are considering the stationary bifurcation with Euclidean sym-
metry, this fime restricted to a hexagonal lattice, so the symmetry group is
D x T2 We use the fundamental represention, writing a scalar solution to leading
order as
3
u(x, )= z;00e® +cc. z;eC (5.42)
j=1

and we consider the action of Dg x 72on C>. Fora hexagomnal lattice, the wavevec-
tors are at angles of 27/3 to each other and must therefore satisty k) + ko + k3 =
0 (see Figure 5.5) We call this 1elationship between the wavevectors a resonance
Resonances occur when any one wavevector that appears in a representation can
be written as a linear combination of the others,
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Fig 55 The airangement of the basic wavevectots for the hexagonal lattice The

wavevectors ky and k3 aie shifted copies of k3 and k3, showing that k| + /&y +
ks =0

We will use the following symmetiies to characterise the solutions:

(i) a1otation through 27/3, p : (z1, 22, z3) = (23, 21, 22);
(ii) a reflection through the origin (or rotation through 7), x — —x, my : (25, 22, 23) =
(Z1, 22, 23);
(iii) a1eflection in a veitical plane m., : (21, 22, 23) — (21, 23, 22);
(iv) translations p € 72 whose action is given by p-(z1,22,23) = (e‘”“ Pz,
e k2 Py, o=ik3 Pz

In fact the first two could be replaced by a single generator, rotation through 7 /3,
but this symmetry doesn’t take quite such a nice form, so we shall work with
the set above to ensure neatness in the calculations In working out the ampli-
tude equations later on it will be important to note that z2z3 transforms under
translations p to ZoZze' ®2Ha) P = 7,73, 1 P o 7,73 transforms in the same
way as z; and can appear in the equation for dz;/d¢ This also means that we
can’t play our trick of making all the amplitudes real by shifting the origin,
because if we start with z1, z2 and z3 all complex and shift the origin by p so
that z; and zp, for example, are real, then the phase of z3 will have changed by
¢'kitk2) P which will not in general be the right amount of phase shift to make z3
real.

Considered as a representation over R® the action of the group is, once
again, absolutely irreducible, so we can use the equivariant branching lemma
The isotropy subgroups of D x 12, with fixed-point subspaces of dimension no
greater than two are given in Table 52 We see that there are two isotropy sub-
groups with one-dimensional fixed-point subspace, Dy x S'(= 0(2) x Z,) cor-
responding to rolls and Dg corresponding to hexagons So according to the equiv-
ariant branching lemma there must be two primary branches at the bifurcation
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Table 5.2 The isotropy subgroups with fixed-point subspace of dimension no
greater than two, for the steady bifurcation on a hexagonal lattice, using the
fundamental representation, where z; = & +in; for j = 1,2, 3. After

Golubitsky, Swift and Knobloch (1984)

Orbit representative Isotropy subgroup X
Bianch (z1,22,23) (generatoss) dim Fix(X)
Tiivial solution (0,0, 0) Dgx T2 0
Rolls (£1,0,0) Dyx S 1
(s Mg, (0, p2) € T?)
Hexagons &1, 6,81 Ds ]
(my, mop)
Up-hexagons &1 >0
Down-hexagons &) <0
Rectangles (&1,8, &) D, 2
(imy, nig)
Up-rectangles £ >0
Down-rectangles &) <0
Patchwork quilt & =0
Triangles G +inL & Finn & Fin) D 2
(n1y., )
Regular triangles &y =0
(P T2
“h Sl/
D, Ds

Fig 56 Part of the isotiopy lattice for the bifurcation on the hexagonal lattice
using the fundamental representation of the lattice. Inclusion is indicated by an

artow.

point, one of rolls and one of hexagons. The top part of the isotropy lattice
is shown in Figure 5.6 The solutions described in Table 5.2 are illustrated in

Figure 57

Now we want to use equivariance to tell us what the amplitude equations should
be. As we saw eatlier, the combination z2z3 will transform like z; under transla-
tions. So using translation equivariance alone, it is easy to conclude that up to cubic
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Fig 57 Greyscale plots of some solutions on the hexagonal lattice: (a) rolls,
(b) up hexagons, (¢) down hexagous, (d) up 1ectangles, (e) down rectangles,
(f) patchwork quilt, (g) triangles and (h) regular tiiangles

order the amplitude equations ought to look something like this:

dz; -
- =matahi - bilz1*21 — ailz2)?a — dilz3lPz1, (5.43)
dzz _
— =Mt + %k - bylzal?z2 — calz3lPza — dalziPza, (544)
dzs _ -
o = e + a37172 — b3)23|%23 — 3l P23 — d3lz2 )Pz, (5 45)

where the p;, for i =1, 2, 3, aie bifurcation parameters, and the a;, b;, ¢; and
d;, for i =1,2,3, are complex constants Applying equivariance under the
rotation p : (21, 22, 23) — (23,21, 22) we see that we must have p) =y =
MmEga=ac=a=ah=bh=h=bg=g=g=candd) =d, =
dy=d

Equivariance under reflection through the origin m, : (z;, z2, 23) = (21, 22, 23)
shows that ., a, b, ¢ and d must all be real

Equivariance under reflection in the vertical plane m,, : (21,22, 23) =
(z1, 23, 72) leads to the requirement that d = ¢
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The final equations to cubic order then are

dz1

= hantaih — bz 1Pz — c(lz2)* + 231Dz, (5.46)
dzo -

< = M t+aisti - bizsl?z2 — ezl + 211922, (547)
dz3 . 2 2 2

5 =M +az122 — blz3|“z3 — c(z11” + 1221923 (5.48)

Before we use these to look at the existence and stability of solution branches,
let’s take a quick diversion to see how the most general form for the amplitude
equations could be obtained The four polynomials

S1 = Uy + uz + uz, (5.49)
$2 = ujuy + uau3 + usuj, (550)
§3 = U UQU3Z, (5.51)
q = 212223 + 212223, (552)
where u; = |z;12, are invariant under all elements of the group, and hence so is any

real function of them h(sy, s2, 53, ¢). It can be shown (see Buzano & Golubitsky,
1983) that all smooth functions invariant under Dg x I 2 take this form, and that
the equivariance condition (5 10) implies that the amplitude equation for z; must
take the form

dz -
d—tl =z (/11 +uihy + u%hs) + 2223(&’2 +uigs+ “%gﬁ)» (5.53)

where the /2; and g; are functions of sy, s, 53, ¢ and the bifurcation parameter x

Equations for dz;/d¢, dz3/dr are obtained by cyclic permutation of {z1, z2, z3} and
{ur, us, uz} according to rotation equivariance Higher order terms are not required
inside the brackets, since

w3 =53 — spup + sjud. (5.54)

Getting back to the cubic truncation of the amplitude equations, we can look
directly at the existence and stability of the roll and hexagon solution branches
We can choose @ > 0 in equations (5.46)—(5 48) without loss of generality since
the equations are invariant under the transformation (¢ — —a, z — —z) So if
the coefficient @ were actually negative in a given situation, we could simply
define a new set of amplitudes Z = —z and they would evolve according to the
same amplitude equations, but with @ = —a > 0. Henceforth we assume a > 0.
The equilibrium solutions to the cubic truncation of the amplitude equations
are
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(i) the trivial solution z; = z7 = z3 = 0;
(ii) rolls, for example z; = /u/b, 70 = 23 = 0;
(iii) hexagons Re(z)) = Re(z2) = Re(z3) = Ry, where
p+aRy—(b+20)R =0,
Im(zy) = Im(z2) = Im(z3) =0, (555

(iv) rectangles
a

G-

Re(z)) = —

1 a’b
Re(z2) = Re(z3) = i\/b+c (”‘“ ® _C)z)'
Im(z)) = Im(zp) = Im(z3) =0 (5 56)

Clearly not all of the solutions given in Table 5.2 are equilibrium solutions
of the equations truncated at third order: some require higher-order terms. The
roll and hexagon branches are primary, bifurcating from the zero solution at
p = 0, just as predicted by the equivariant branching lemma, since both have
one-dimensional fixed-point subspaces. However the rectangle branch is sec-
ondary; it connects the roll branch, at ;= azb/(b —¢)?, to the hexagon branch,
at = (2b + ¢)a®/(b — ¢)?, as shown in Figure 58 This is consistent with the
isotropy subgroup corresponding to rectangles having a two-dimensional fixed-
point subspace.

We can work out the stability of each of the equilibrium solutions using the
cubic truncation of the amplitude equations. Clearly the zero solution is stable
to small pettuibations if x4 < O and unstable if x > 0, just as it is on a square
lattice Let us look at perturbations to rolls by setting z; = Ro(l + 8z1), z2 = 8z2,
73 = 823, where Ry = /;1/b and where all the perturbations are complex with
16z1|, |8z2], 16z3] « 1. Linearising we find

d — _
5(511 +38z1) = —21(8z1 + 6z1), (5.57)
d ) $71)=0 (5 58)
d(éz _
©z2) = u(l —¢/b)dzz +a‘/ﬁ823, (5.59)
dr b
d(é —
0z3) _ - c/bYsz3 +a |5z (5 60)
dr b
The first two growth rate eigenvalues are clearly oy = —2p and o3 = 0. To find

the remaining four fiom the last two complex equations, we set §z2 = 5z2¢°" and
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823 = c‘%em , wWhere 6?2 and 8?3 are arbitrary complex constants, and solve the
resulting eigenvalue problem to find

03456 = b —c)/b+ay/u/b (twice each) (5.61)
So rolls are (neutrally) linearly stable if x>0, (b—¢) <0 and /uu/b >

—a/(b—c)

Perturbing a hexagonal solution so that z; = Ro(1 + 8z1), 22 = Ro(1 + 8z2),
23 = Ro(1 + 8z3), where Ry satisfies equation (5.55) and 18z1], 1622/, 6z3] < 1.
and linearising gives

d(8z1)
dt

= aRy(—8z2) + 823 + 823) — bRE (521 + 821)
—CR3(827 + 822 + 823 + 823), (5.62)

together with similar equations for d(8z»)/dz and d(8z3)/df obtained by cyclically
permuting the indices {1, 2, 3}. From these we deduce

d — — _
d_t((SZ’,] + 821 + 822 + 822 + 873 + 8z23)

= (aRy — 2(b + 2c)R3)(8z1 + 821 + 822 + 822 + 823+ 823),  (5.63)
Gl 82; — 8z; — 8z;)

(—2aRo— 2(b — ¢)R)(5z; + 821 — 82; —82;), i # ] (5.64)

d — — _
5(521 —~ 87148z — 870 + 823 — 623)

= —3aRo(87) — 821 + 822 — 872 + 823 — 823), (5.65)
T6u =35 = 452 =0, i # ] (5 66)
and so the growth rate eigenvalues are
o) = —3aRy, (567)
o73=0 (twice), (5 68)
o4 = aRy — 2(b + 2¢)RZ. (5.69)
056 = —2aRg —2(b — ¢)R}  (twice). (5.70)

So hexagons are stable if Ry >0, aRy—2(b+ 2c)Rg <0 and —2aRy—
2(b— )R} <0

Similarly rectangles can be shown always to be unstable. The bifurcation
diagram is shown in Figure 5 8.
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Z
2l

Fig. 58 Bifucation diagram for hexagons in the case (b — ¢) < 0. The ampli-
tude |z} is plotted against w for the roll-solution branch (labelled R) with z =
z3 = 0, fo1 the rectangle (mixed-mode) branch (Jabelled M) with |z1| constant
and |z} = |z3|, and for the two hexagon-solution branches with |z} = |z2] =
|z3]. The curves labelled Hy and Hj correspond to the hexagon solutions with
Arg(z3z2z3) = 0 (up-hexagons) and Arg(z)z2z3) = m (down-hexagons) respec-
tively. Branches where all three components of the solution aie stable are indi-
cated by solid curves, and bianches where one or more components ate unstable
ale indicated by dashed cuives Consequently, the behaviowr of three growth rate
eigenvalues is projected onto the bifurcation diagram for one component Both
up-hexagons and the trivial solution are stable in the range a = —a?/4(b + 2¢) <
i < 0, and both rolls and up-hexagons are stable in the range f = a®b/(b —
)% < < a*2b + )/ (b — =y

There is hysteresis in the system: both hexagons and the trivial solution are sta-
ble in the range —a?/4(b + 2¢) < 1 < 0, and both rolls and hexagons are stable
in the range a*b/(b — ¢)* < u < a*(2b+¢)/(b — ¢)?, as shown in Figure 5.8
The lower branch of hexagons is unstable, because aRy — 2(b + 2c)R§ > 0 holds
there; the instability takes the form of a growing hexagonal amplitude disturbance,
where 821 + 8z1 + 822 + 822 + 8z3 + 823 grows, but 8z; +8z; — 8z; — 8z; for
i # j does not. The system is attracted to the stable uppei solution branch
There is a saddle-node bifurcation at Ry = a/2(b + 2¢) (1 = —a?/4(b + 2¢))
at which the unstable hexagons gain stability, moving from the lower to the
upper branch There is also a bifurcation to rectangles at Ro = —a/(b — ¢)
(1 = a*(2b + ¢)/(b — ¢)*), because —2aRg — 2(b — ¢)R} > 0 holds there. Here
821 + 871 + 822 + 822 + 823 + 8z3 does not grow, but 8z; + 8z; — 8z — Sz_] for
i # j does. This will happen at positive Rg only if » < ¢, which is the situation
that ensures that rolls are the stable solution for large w, as is observed in prac-
tice (Busse, 1967). In fact, here we see the hysteretic transition to rolls This was
observed experimentally by Dubois, Bergé and Wesfreid (1978) during convection
in water near 4 °C
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5.4 1 Additional Z, symmetry (midplane reflection)

There is a symmetry between the regions of negative and positive u for rolls in
Figuie 5.1: they are the same size and shape and arranged periodically next to
each other. On the other hand hexagons are asymmetric: the negative and positive
regions are different in shape, with positive being in the middle of the hexagons
and negative around the outside. This difference is associated with the presence or
absence of an additional symmetty my, : z — —z, where z = (21, 22, 23) In this
section we shall examine what happens when this reflection symmetry is imposed
on the bifurcation on the hexagonal lattice Two things follow immediately: first
the symmetry group of the bifurcation problem is now (Dg x Z) X 72, and sec-
ond no even terms are permitted in the amplitude equations. Now the reflec-
tion symmetry acts on u(x, ¢) through the amplitudes z, and so we also have
u(x,1) = —u(x,t) In convection u(x,?) typically represents the vertical fluid
velocity, so the reflection symmetry expresses the constraint that there should be
symmetry between the up and down directions, in other words there is a reflec-
tion symmety in the midplane of the convection layer. If the reflection sym-
metry is broken it implies that the up and down directions are not equivalent:
there is some fundamental difference between the top of the convection layer
and the bottom. One example of this is when convection takes place in an open
container so that the fluid is open to the air at the top, but not at the bottom
Surface tension coines into play at the free top surface, but not at the bottom
This is known as Bénard—Marangoni convection: hexagons are favoured over rolls
because hexagons display up-down asymmetry, while rolls do not On the other
hand in Rayleigh-Bénard convection the container is closed at the top and the
convecting fluid fills the entire layer between the top and bottom of the con-
tainer, so there is no suiface tension acting and in the absence of other symmetry-
breaking there is up-down symmetry and rolls are preferred. You might argue that
there is always an obvious up-down asymmetry because after all you are heat-
ing the layer from below and not from above. This is quite true, but in formulat-
ing the bifurcation problem we are only interested in the perturbation from the
asymmetric temperature profile of the conduction state, and this perturbation is
zero at both the top and bottom of the layer: more detail can be found in Chap-
ter 1. The up-down symmetry breaking explains the ‘up-hexagons’ and ‘down-
hexagons’ nomenclature of Table 5 2: up-hexagons have fluid flowing up (z > 0)
in the middle and down (« < 0) around the edges, while for down-hexagons it is
the other way round. Systems that lack the z — —z symmetry will tend to prefer
one of up-hexagons or down-hexagons over the other, whereas a symmetric system
will not distinguish between them and initial conditions will determine which is
seen
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Table 5.3. The axial patterns for the steady bifurcation on a hexagonal
lattice with additional Zy symmetry, using the fundamental representation of
the lattice, and writing z; = §; +in; for j = 1,2,3.

The notation {y, (p1, p2)} denotes the composition of a ieflection or rotation, y, with
a translation (pi. p2) € 72 The notation Z2_ denotes a twisted version of Z; that

is generated by reflection composed with a translation After Golubitsky, Swift and
Knobloch (1984).

Orbit representative Isotropy subgroup X
Bianch (z1, 22, 23) (generators)
Rolls (£1,0,0) (D2 x Zy) x §!
(my, mo, (0, p2), (my, G, /3D
Hexagons 1,61, 8) 2
(my, MppP)
Patchwork quilt 0,8, 86) Dy x Z,
(1, mo, my, (0,270 //3)})
Regular triangles Gnyying,ing) D3 x 7y

(my, p, momp)

The only rectangular or triangular solutions permitted by the additional reflec-
tion symmetry are the patchwork quilt and regular triangles respectively. These
solutions have only one independent amplitude. Since each one is now the most
geneial solution having its given isotropy subgroup, the isotropy subgroup has one-
dimensional fixed-point subspace and a branch of these solutions is guaranteed by
the equivariant branching lemma alongside rolls and hexagons The axial patterns,
their isotropy subgroups and generators are given in Table 5 3.

To cubic order the amplitude equations can be derived from those for the case
without midplane reflection (equations (5 46)—(5.48)), by setting a = 0. However
it turns out that we need to go to quintic order to distinguish between hexagons
and regular triangles, so the amplitude equations we need are

dz;
- = Ha - blzi*z1 — c(lz2? + [z3)21 — dylzil*zy
—dr(122)* + 1z3Mz1 — izl + 13Dz
~ falzalP 23121 — 8217373, (571
dz»
- = M- blzal*z2 — c(z3* + 121 1D)z2 — dilzal*z2

~do(jz3l* + 21122 = flzs)* + 121Dzl 2

~ flzal*lz1*22 — 8727377, (572)
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dz3 2 2 2 4
PPl i blz3|"z3 — c(|z1|” + |z2]")z3 — d1]z3]"z3
—da(lz1|* + 122123 — iz * + |22/7)]23]*z3
— faolz1 Plzal?zs — gz37323, (5.73)
where dy, do, f1, f» and g are real constants The solutions to these equations are:
(i) the trivial solution z; = 7o = z3 = 0
(ii) rolls, e.g Re(z)) = Ro, Im(zy) =0, z2 = z3 = 0, with
0=pu—bRE — d\Rg; (574)
(iii) patchwork quilt, for example, Re(z1) = Re(z2) = Rg, Im(zy) = Im(z) =0, z3
=0, with
O=u—(b+o)R5—(d +dr+ f1)RG =0; (5.75)

(iv) hexagous, 71 = Roe'®!, 2o = Rge'?2, z3 = Rge'?3, with

p—(b+20RE—(di +2d2+ 2 /1 + fa+ g)Ry =0, (576)
b1+ ¢+ 3 =0; (577)

(v) regular triangles, 7| = Roe'?', 25 = Roe'??, z3 = Roe'?, with
p—(b+20RE—(d1 + 2o+ 2f1 + [ — g)R; =0, (578)
7
¢'+¢2+¢3=E (579)

The stability of these solutions can be determined from the amplitude equations
(5 71)+(5.73) Any one of rolls, hexagons and regular triangles can be stable close
to the bifuication point, though no more than one solution can be stable at onset
simultaneously. Full details of the stability calculations can be found in Golubitsky,
Swift and Knobloch (1984).

5.5 Roll/stripe solutions

Roll (stripe) solutions fit onto either of the square or hexagonal lattices. By set-
ting z; = z and all other amplitudes to zero, we can see that in either case, the
amplitude equation for rolls takes the general form

dz

3 M alz|z, (5.80)

where « is a real constant However, the stability properties of the rolls depend on
the lattice, because this determines which other patterns they are in competition
with. On the other hand we could choose to investigate a system in only one space
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(b)

Fig. 59. Bifurcation diagrams for the (a) superciitical and (b) subcritical pitch-
forks of revolution

dimension, where only rolls can arise. The lattice would consist of an array of
equally spaced points along a line as shown in Figure 5.2a, and to leading order
we could write the solution

u(x,t) =z +cc, (5 81)

where now x € R and z € C. The relevant Euclidean symimetries would be trans-
lations and reflections in x. Restricting these to the lattice we end up with the
reflection x — —x and the circle of translations modulo 27, which together gen-
erate the group O(2), the group of rotations and reflections of the circle, where the
translations are playing the role of the rotations Applying the equivariance condi-
tion would lead directly to equation (5 80) This looks something like the normal
form for a pitchfork bifurcation In fact, since z is complex, we call it a pitchfork
of revolution, the idea being that the equation holds for z with any phase between
0 and 27, so we have a whole circle of pitchforks The bifurcation diagrams are
shown in Figure 5.9

The only solutions to equation (5.80) are the trivial solution z = 0 and the roll
solution |z|? = w/a A simple calculation shows that rolls are stable in the super-
critical case a > 0, and unstable in the subcritical case a < 0 The trivial solution
is stable for ;. < 0 and unstable for & > 0

It is easy to adapt the methods we have just been looking at to deal with
more unusual situations, such as a lack of reflection symmetry, or other type of
anisotropy (where not all directions are equivalent): the symmetry group will no
longer be E(2), so you simply apply equivariance under the new symmetry group
and see what you get In the next section we shall consider a situation where there
is no reflection symmetry, and thete are further examples in the exercises at the
end of the chapter.

5.6 The Kiippers—Lortz instability

Consider the competition between two sets of rolls in a rotating system We will
write the solution in the form

u(x, 1) = 71(0)e' + zg(t)e"3F +cc+hot, (5 82)
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where x, X € R are such that the X direction is rotated anticlockwise through an
angle, 0, relative to the x direction and the two variables have the same scaling.
The solutions lie on a thombic dual lattice defined by the unit vectors in the x
and X directions Using translation symmetry in two orthogonal directions we can
deduce that the amplitude equations for z) and zp must take the form

- = ma =yl - ezl (5 83)

dzp

v
Let us assume that the system is isotropic so that the linear growth rate of the two
modes is the same, 1 = v, and the coefficients of the self-interaction terms |z1]%z,
and |z2|%z> are the same y = § We will be interested in the case where rolls are
a stable solution of the equations, so the coefficient of the self-interaction term
must be negative, and we can set y = § = 1 by rescaling z; and zo. Since the sys-
tem is rotating, however, there is no reflection symmetry in the system, so the
cross-interaction terms |z3|%z; and |z;]%z> need not have the same coefficient.
The amplitude equations thus reduce to

dz;

= vz — 8|z2%22 — Blz1 %22 (5 84)

— =K lz11%z1 — alz2fz), (5.85)
dz
d—f = pnz2 — 2222 — Blz1Pza. (5 86)

The solutions to these equations are the trivial solution, z; = zo = 0, x-rolls
(211> = p, z2 = 0), T-10lls (21 = 0, [22]> = p) and rectangles (|z1]%/(1 —a) =
1z212/(1 — B) = u/(1 —apB)). Consider the case p > 0, (1 —a)(1—B) <0,
where rectangles cannot occur The trivial solution is unstable since & > 0 The
stability of the x-rolls can be investigated by setting z1 = /u(l +a), 22 =0
where ja] < 1and [b] €/t Linearising in the perturbations a and b we have

———d(“d;“ D _ opa+a), (5.87)

da—a)

— =0 (5.88)
b _ - 589
o = ma- B) (5 89)

So x-rolls will be stable if 8 > 1 (since we require u > 0 already for their exis-
tence) Similatly ¥-rolls will be stable if ¢ > 1

If we pick @ > 1 and 8 < 1, then x-rolls will lose stability to X-rolls So the
original 10lls are unstable to new rolls rotated through some angle, 8, anticlockwise
from the originals. Once established, these rolls can themselves become unstable
to yet more 1olls, rotated through a further angle, 8, and so on. Rolls grow, then
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disappear and are replaced by rolls rotated anticlockwise through the angle, 6,
indefinitely The third set of rolls do not fit on the original thombic lattice, but if
the original rolls have entirely died away by the time the third set start to grow,
then perhaps it is not too bad an approximation to consider a new rhombic lattice
on which only the second and third sets fit.

If @ < 1and B > 1, then X-rolls will lose stability to x-rolls, and the rotating
sets of rolls will proceed in the clockwise direction

The possibility of this cyclic loss of stability of rolls to rotated rolls was noted
by Kiippers and Lortz (1969) in their stability calculations for rolls in rotating
convection The angle between each successive set of rolls was about 58°. The
rolls turn about the veitical axis in the same direction as the applied rotation. The
Busse-Heikes heteroclinic cycle discussed in Section 4 5 was originally devised as
a model for the Kiippers—Lortz instability: each fixed point in the cycle represents
a set of rolls at an angle of 25t /3 to the previous one.

Figure 5.10 shows a numerical simulation of a Kiippers—Lortz instability in
rotating convection modelled by the equation

3 2
_a% — uw — (1 + V32w — ww? + [Vul?) + SV Vw? + [Vul?)

+VZ V x ([Vw|*Vw), (5 90)

where w(x, 1) is the vertical velocity of the convecting fluid, Z is a vertical unit
vector, V measures the strength of the rotation about a vertical axis, and u is the
reduced Rayleigh number measuring the distance from onset of the convection
(introduced in Chapter 1). This is a simplification of a model derived by Ponty,
Passot and Sulem (1997), and has been studied by Pollicott, Matthews and Cox
(2003).

We consider a solution to equation (5.90) of the form

wx, ) =z1(0)e'" + zz(r)e’; +cc.thort, (591D

where x = (cosfp, sinfp) x and X = (cos(fp + 6), sin(fy + 8)) x, so that the
x and x directions lie at angles 6y and 6y + 6 to the x; axis tespectively, where
x = (x1, x2). If this is substituted into equation (5 90), the amplitude equations for
z1 and z3 turn out to be

d 2
% = uz) — 47122 — 2 (4+ Vsin20 — < (1 - cos26)) 221221,
(5.92)
d22 2 . 2 2
- nzy — 4zl =214 — Vsin26 — g(l —¢0820) ) 1211722,

(5.93)
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to leading order close to the onset of convection. The method for deriving ampli-
tude equations such as these from governing partial differential equations will be
discussed in Chapter 7; for now we will simply accept that it can be done After
rescaling both z; and z; by afactor of two these are just equations (5.85) and (5.86)
with

a=%(4+Vsin29—§(l—cos29)), (594)

/3=%(4——Vsin29—§~(1 —c0329))4 (595)
Considering perturbations to the zj-10lls, the growth rate of z perturbations is

o:,u,(—-l+%Vsin29-|-%(] ——cos29)), (596)

from equation (5 89). This is maximised when tan 260 = —5V /2, and the condition
for instability, o > 0, then becomes

w(—8 +v4+25V23) >0 (5.97)

This is achieved for x> 0if V2 > 60/25: in other words if the rotation speed is
high enough. The progress of the instability is shown in Figure 5.10.

5.7 Hopf bifurcation on a one-dimensional lattice

In this section we will introduce oscillatory behaviour, looking at the simplest
oscillating lattice patterns: one-dimensional waves

Imagine we want to describe a one-dimensional oscillatory pattern that sets in
at the bifurcation point with clearly defined spatial and temporal periods One way
of writing such a pattern close to onset is

u(x,t) = zl(t)e’(*_') +220)e D f e +hot, (5.98)

where z1, z2 € C, and where the spatial and temporal periods at onset have been
set to 27, by scaling x and ¢ if necessary

We are using the same one-dimensional spatial lattice as we did for the periodic
stripe solution, but now we have added in some oscillatory behaviour. We need
both the ¢/*~" and ¢="*~") terms in our general solution in order to account for
all the possible combinations of spatial and temporal behaviour.

When z; is nonzero and zo = 0, the solution u«(x, ¢) represents a plane wave
travelling to the 1ight (towards positive x), whereas when z; is nonzero and z; = 0
we have a plane wave travelling to the left. If z; = £z, we have a standing wave
Examples of standing and travelling waves are shown in Figure 5.11



162 Simple lattice patteins

Fig 5.10 Simulation of a Kiippers-Lortz instability in rotating convection mod-
elled by equation (5 90) with 4 = 0 2 and V = 2 The domain has sides of length
107. (a) At t = 0, the roll wavevector is at & = —53° to the x;-axis (b) The rolls
ale unstable, and perturbations grow (pictured at ¢ = 672) (¢) By ¢ = 1550, the
original 10lls have lost stability to new rolls with wavevector at § = —101 31° to
the xy-axis The process repeats, and rolls emerge at (d) & = —143 12° (+ = 3875)
and then (e) 8 = —191 31° (+ = 10075) (f) Ats = 15000 the original roll pat-
tein reappears Since the rolls must fit exactly into the finite integration domain,
their wavelength varies slightly through the cycle, as does the angle of rotation
between successive patterns Pictures couttesy of and (©)Sarah Pollicott, Univer-
sity of Nottingham, 2003.

Now let us assume that the system we are working in has symmetry under the
reflection
m:x = —x, (z1,z2) = (22, 21) (599)
and translations in x
pix = x+p, (21, 22) — (2177, 72€'P). (5.100)

As we saw in the case of the steady bifurcation on a one-dimensional lattice, this
system has O(2) symmetry. We have already looked at the Hopf bifurcation with



5.7 Hopf bifurcation on a one-dimensional laitice 163

—_— =0
T 1 =0+
—
[0 0 L
//AVIAVEAVIAVEE
(a)
—_— =0
SN e t=0+
SAVIAVY; /\ NAVY
LIAN VAR VAS VAN VAr
{b)
— =0
_____ =0+

u

AN A
SAYAACCRTALVAS

(©)

Fig. 5.11. Examples of travelling and standing waves, as desciibed by equation
(5 98): (a) z; constant, zo = 0, (b) z; = 0, z2 constant and (c) z; = z2 =constant.
In each case the solid line shows the solution at time 7 = 0 and the dotted line
shows the solution at a slightly latet time r = 0+

0O(2) symmetry in Section 4 4 1 The representation is the same here: we have two
copies of C, one corresponding to z; and the other to zp — it is the time dependence
(the oscillatory nature of the bifurcation) that makes them ‘different” Comparing
the symmetries we have here with those given in equations (4.124)-(4 126) we
see that the translation p takes the rdle of the rotation in equation (4 124), and
that so far we are missing a phase-shift symmetry. In fact our system should be
unchanged under a shift of the origin in time if we assume the usual case where
there are no special instants of time — in other words, all things being equal, the
hypothetical experiment you are performing doesn’t particularly care whether it
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is Tuesday lunchtime or Saturday night. So there should be symmetry under ¢ —
148 or (z1,20) = (21€'%, 20¢'?), which is just the phase-shift symmetry from
equation (4 126).

The travelling waves we have described are exactly the 1otating waves from
Section 4.4 1 The right-travelling wave, z;¢'* =" + ¢ c., has isotropy subgroup
%, generated by (6,6) : (x,f) = (x + 8, + 6), and the left-travelling wave,
72¢7 1D ¢ ¢ | has the conjugate isotropy subgroup generated by (=8, 6) The
standing waves, z)(e!* ") 4 ¢ ")) + ¢ ¢ | have isotropy subgroup Zp x Z§
just as in Section 4.4 1

We will now derive the amplitude equations for z; and z; to see how the travel-
ling and standing waves evolve over time Equivariance under the tianslations in x
and 7 lead to the equation

dz;

=t iva = @+l 2z = (v +i8)22/%21, (5 101)

up to cubic oider, where u, v, o, 8, ¥ and § are real constants We can now
deduce the equation for z; using the reflection symmetry m : (21, 22) — (22, 21) to
find

dzp

= = tiva - @+if)ala - @ +idll’z (5.102)

The parameter v is the frequency detuning, and will in general depend on p
The requirement that the solutions have period 27 at the bifurcation point p =
0 means that we must set v = O there Away from the bifurcation point v will
typically be nonzero, but it can be removed from the amplitude equations using
the transformation z; — z ,-ei Y for j = 1,2, which is equivalent to changing the
carrier wave frequency to —1 + v. To cubic order, then, the amplitude equations
become

dz;

= — (@ +if)lzi P21 — (v + i8)|z2/%21, (5 103)
dz . .
d—f = pzr— (@ + iB)|zalP22 — (v + 8|21 P22, (5 104)

We can put these equations into amplitude and phase form by writing z; = Re'?
and 7o = Se’¥, where R, S > 0 and 0 < ¢, v/ < 27, and separating out the real
and imaginary parts of the equations to get

dR
5 kR aR? — yS’R, (5 105)
d

—¢=—6R2—682, (5 106)

dr
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ds
~d-t-=,u$——a'S‘3-—yRZS, (5.107)
d

d_‘tp = —BS? —§R?. (5.108)

Looking for solutions of constant amplitude, so that dR/dr = dS/dr = 0, we
find

(i) the trivial solutionz; =z =0 (R = S = 0);
(i1) right-travelling waves

d
R 109
(iii) left-travelling waves
d
el = k=0 6110

(iv) standing waves

podp_dy _ p(B+)

RI=52= , — = =
(¢ +y) dr dr (a+y)

(5.111)

Both travelling and standing waves bifurcate from the trivial solution at 2 =0
as predicted by the equivariant Hopf theorem. Note that there are no constant
amplitude solutions with unequal, but nonzero, values of R? and $2 (referred to
as ‘general points’ in Table 4.4) that appear as solutions of the truncated amplitude
equations

We can investigate the stability of the travelling wave and standing wave solu-
tions using the truncated amplitude equations (5.103) and (5 104) First note that
the equations for d¢/df and dyr/dz depend only on R and S, so that if R and S are
stable to perturbations, then so will ¢ and i be That means we only need to look
at the stability of the amplitudes R and S to perturbations

Clearly the trivial solution R = S = 0 is stable for u < 0 and unstable for
w > 0.

We pertwb the right-travelling wave R?=pu/a >0, §=0 by setting
R =./pja(l+7r), S=s, where |r|,|s| € 1 Linearising in the perturbations
gives

d,

= = —2ur, 5112
dr

fil-#(l—z)s (5.113)
ar al’ o

So we have stability if 1 > 0 (which implies & > 0) and y > « Left-tiavelling
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waves have the same stability conditions, as can be seen by interchanging R and
S. In fact left- and 1ight-travelling waves must have the same existence and stability
properties, because they lie on the same group orbit and have conjugate isotropy
subgroups

The standing wave solution is given by R? = 5% = /(o + y) > 0. We perturb
it by setting R = /u/{a +y)(1 +71), S = /@ + y)(1 +5), with |r], |s] <€

1. Now linearising in 7 and s gives

dr 20 ur 2
o s ves (5.114)
dt @+y) (a+7vy)
2 2
ds __ 2oms  2yw (5 115)
dt @+y) (a+vy)
Adding and subtracting the equations gives
d
5(7 +5) = 2u(r +5), (5.116)
d 2ula — y)
So—n=-EET g 5117
dz(' 5) @) (r—s) (¢ 117)

So we have stability for 4 > Oand o > y

You have probably noticed that apart from a few changes of notation this is
exactly the same calculation as we did for the bifurcations in a square box and on a
square lattice, where now travelling waves are the equivalent of rolls, and standing
waves are the equivalent of squares, and we can identify « and y with ) and a; of
equations (5 40) and (5 41) respectively. The various possible bifurcation diagrams
for this system can now be read from Figure 4 10

Exercises

5.1 Show that the action of Dy x 72 given by the matiices in lines (5 18) and (5 19) is
absolutely irreducible.
Extension Show that the fundamental representation of Dgix T 2 is also absolutely
irreducible, using a similar method

5 2 Determine the criteria for stability of the patchwork quilt solution of the quintic order
amplitude equations (5 71)—(5 73) for the steady bifurcation on a hexagonal lattice in
the presence of midplane reflection symmetry
Extension Do the same for the regular triangle, roll and hexagon solutions

53 Work out the amplitude equations for the steady bifurcation on a square lattice when
the system is weakly anisotropic so that the x; and x; directions are not equivalent
What happens to the square solutions?
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5.4 What happens to the steady bifurcation on a hexagonal lattice if the reflection m, is
weakly broken? Are rectangles still a solution? What about hexagons?

55 Work out the amplitude equations for a Hopf bifurcation on a square lattice, where the
pattern takes the form

u(x, 1) = 216/ 4 771D L gai =D 24”1024 oo

where z; € Cfor j = 1,2, 3, 4, to leading ordet
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Superlattices, hidden symmetries and
other complications

There are many more symmetric spatially extended patterns than we have seen
so far, for example superlattice patterns related to new representations of the lat-
tice, patterns that involve modes of different spatial periods or that change theit
spatial period at bifurcation, and quasipatterns that look highly symmetrical, but
don’t fit on any lattice. There are also ‘hidden’ symmetries lurking in seemingly
straightforward bifurcation problems.

6.1 Superlattice patterns

Up to this point we have always used the fundamental representation of the sym-
metry group for the lattice under consideration. However this is not the only
choice Consider the square dual lattice generated by the wavevectors k; = (1, 0)
and ky = (0, 1) shown in Figure 6.1. If the critical wavenumber is k. = 1 then
we have the fundamental representation of Dy x I2 that we used before. On the
other hand if k. = /3, the critical circle intersects eight lattice points and we have
another absolutely irreducible representation
u(x, v, 1) = 2100/ P 4 25 (0)e! T 4 23 (1) CHPY
+za(t)e! BN e ¢ (6.1)
to leading order, where (x, y) € R? are Cartesian coordinates and the ampli-
tudes z; are complex, so the representation acts on C* There are also higher-
dimensional reducible representations such as the one for k. = 5 that intersects
twelve lattice points
In fact Crawford (1994) and Dionne, Silber and Skeldon (1997) point out that
there is a countable infinity of absolutely irreducible representations of Dy x I2
that take the form
u(x, y, 1) = 21 (@' Y 4 23(0)e TIE) 23 (1)e! Pr )
+24()e! T e (62)

168
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Fig 6 1. Intersections of the ciitical circle with the squate dual Jattice L£* gener-
ated by k; = (1,0) and ky = (0, 1) for k¢ = 1, ke = /S and k. = 5. Filled and
empty dots on the critical circle k. = 5 belong to different irreps making up the
1educible representation After Dionne, Silber and Skeldon (1997)

where « and § are positive integers These representations ate translation-free
if & and B are relatively prime and not both odd: that is, there are no nontrivial
translations that act trivially on equation (6.2), so the neutral modes cannot be
supported on a finer lattice. It is helpful to note for later that exactly one of o and
B must be odd.

For a steady bifurcation, we can work out the action of Dy x 72 on C* given
by equation (6 2) by considering the generators:

(i) rotation thiough 7/2: p : (21, 22, 23, 24) = (22, 21, 24, 23);
(i) reflection: my : (21, 22, 23, 24) —> (24, 23, 22, 21 )3
(ili) wanslations: p : (21, 22, 23, 24) —> (zre @1 +Bp2) | zoel (Brr—ap)
zze~iBrrtap) 7 pilepr—Fp2)y

The isotropy subgroups with one-dimensional fixed-point subspace are given in
Table 6.1, and the corresponding solutions are illustrated in Figure 6.2 There are
new branches in addition to the simple square and roll branches found under the
fundamental representation, and furthermore the squares and rolls do not appeat to
have the same isotropy subgroups that they had previously — some of the expected
symmetries are missing, which is rather surprising So what is going on here? It
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Table 6 1 The axial isotropy subgroups of Dy x 12 under the representation
(6.2), their generators and fixed-point subspaces Adapted from Dionne,
Silber and Skeldon (1997)

Branch > Generators Fix(Z)

Super squares 24 P, Ny ===z €R
Anti-squaies Dy o, (my, (T, 7)) n=p=—n3=—u€eR
Rolls ZEIX S]l p?‘, (e, (fﬁ,%&g)), 21€e€ERz=23=24=0

(e, (Bs,—as)), seR

Simple squares  ZgX S;2  p, (e, (éi%z , azzigz)), =R z3=24=0

o (5 )
. a2+}32' a2+ﬁ2
Rhombs 1 Dyx S13 ,02, m_‘p3, 1=l z0=24=0

(e ( dne =278
*\a?—p? a?—p?

Rhombs 2 Dy S14  plomy, (e, (g, % , =24 €R z0=23=0

turns out that the ‘missing” symmetries are just hidden. In this context a hidden
symmetry is one that is not present in the holohedry of the lattice, so does not
preserve the lattice, but which leaves invariant some fixed-point subspace of the
bifurcation problem restricted to the lattice Hidden symmetries will be discussed
in more detail in Section 6 6. Dionne and Golubitsky (1992) showed that patterns
that have isotropy subgroups containing nontrivial translations actually fit onto a
finer lattice (coarser dual lattice), and within the context of the finer lattice the
isotropy subgroup contains all the symmetries of the patterns, so there are no hid-
den symmetries Itcan be seen in Figure 6.2 that rolls, simple squares and rhombs
are all periodic on the short scale 27/k; = 27 (a® + ﬁz)’%, while super squares
and anti-squares have the longer spatial period 27 in both x and y directions, since
the basic wavevectors of the dual lattice have unit length. However, both super
square and anti-square planforms show features on the short scale 1/ k. within each
basic period: patterns like these have come to be known as superlattice patterns

Rolls with z; € R, z7 = z3 = z4 = 0 fit onto the finer one-dimensional lattice
defined by the wavevector k = («, 8) The nontranslational part of the isotropy
subgroup on the original lattice was 75, generated by p> On the finer lattice the
isotropy subgroup is D> x S!, where D, is generated by p? and a reflection with
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Fig. 62 Solutions of the form wu(x,y) =71/ 7!+
236" 2 L740f (=255 L ¢ shown in greyscale on the square domain
x, y € [0, 107) with amplitudes as given in Table 6 [ (all nonzero z; are setto 1):
(a) super squares, (b) anti-squares, (c) rolls, (d) simple squares, (¢) thombs [ and
(f) rhombs 2
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axis (—p8, «) given by

x 1 B> —a? —2ap X
()‘) T2 ( —2ep o’ —/32) ()’)’ (©3)
(z1,22,0,0) > (21, 22,0,0), (6.4)

that was previously hidden as it is not a symmetry of the original lattice Similarly,
simple squares with z; = z» € R, z3 = z4 = 0 fit onto the finer lattice defined by
the wavevectors k1 = (&, B) and ko = (—B, &), where their isotropy subgroup is
Dy, generated by p and the reflection with axis (—f, «) described above Before,
the nontranslational part of the isotropy subgroup was just Zg, as the reflection
was hidden. The whole subspace, (z1,22,0,0): z1, z2 € C, of the bifurcation
problem is invaiiant under this hidden reflection, and z) and z> rolls also fit on
the finer square lattice. Rhombs 1 (z7 = z3 € R, 7o = z4 = 0) fit onto the finer
rhombic lattice defined by wavevectors k; = (&, ) and k2 = (8, «), and thombs
2(z1 = za € R, z3 = z3 = 0) onto the finer rhombic lattice defined by k; = (&, B)
and k» = (—«, B). Both have symmetry group D, on the finer lattice, and no hid-
den symmetries are involved Calculating the amplitude equations and the stability
criteria for each of the patteins is rather a long job, so we won’t go into the details
here, but they can be found in Dionne, Silber and Skeldon (1997). The equation
for z; turns out to be
dd—i' = pz1 + 2@z’ + @zl + aslzl® +alzl®) + 002, (65)
where the a; are real and y is the real bifurcation parameter The equations for
the remaining z; can be found from equation (6 5) using equivariance It turns
out that the hidden symmetries do not restrict the form of the evolution equations
in this case, though we will see in Section 6.6 that hidden symmetries can often
have that effect The stability criteria for all of the planforms would take rather a
long time to summarise, but there are some general statements that can be made
subject to certain nondegeneracy conditions on the a; In particular, any one of
the axial planforms can be stable, and if all the axial solution branches bifurcate
supercritically then at least one of them will be stable.
There is also a countable infinity of twelve-dimensional representations of
Dg x T2 of the form

6
(e, y,0)=» z;0e™*+cc, z;€C (6.6)
j=1

where the dual lattice is generated by the wavevectors k) = (0,1) and kp =
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Fig. 6.3 Intersections of the critical circle with the hexagonal dual lattice £*

generated by k; = (0, 1) and ky = (v/3/2, —1/2), foi ke = 1 and k. = /7 After
Dionne, Silber and Skeldon (1997)

(+/3/2, —1/2), and the critical circle intersects the dual lattice at

K| = ak| + Bka, 67)
Ko = (—a + Bk — aka, (6.8)
K3 = =Bk + (o — Blk2, 69)
K4 = ak| + (@ — Bk, (6 10)
ks = — Bk — ko, 6.11)
K = (—a + Bk + pka. (6.12)

where e and $ are integers satisfying « > 8 > /2 > 0 If @ and B are relatively
prime and o + B is not a multiple of 3 then these representations ate translation-
free. Figure 6 3 shows how the twelve-dimensional representation withw = 3, B =
2 and k. = 7 relates to the six-dimensional fundamental representation

There are new axial solution branches in the twelve-dimensional representa-
tions, including super hexagons (z; = z2 = z3 = 74 = 25 = 26 € R) and, when
the z — —z reflection symmetry is present so that the symmetiy group is
(Dg x Zp) x T2, super triangles (z) = 22 = 73 = 24 = 75 = 76 € iR). Examples
of super hexagons and super triangles are plotted in Figure 6 4. Again there are
hidden symmetries in the problem, and this time they do restiict the form of the
evolution equations fo1 the z;. Full details can be found in Dionne, Silber and
Skeldon (1997).
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(a) (b}
Fig 6.4. Greyscale plots of u(x, y, 1) as given in equation (6 6) for (a) super
hexagons (7] = z2 = z3 = 24 = 75 = 26 = 1) and (b) super triangles (z) =z, =
23 =24 =25 = 26 = 1)

6.2 Mode interactions

Up to this point we have assumed that there is only one critical wavenumber .
What happens if that is not true? There is a multitude of possible alternative scenar-
ios, but we want to stick to situations where the patterns will look regular and peri-
odic, so let us look at resonant mode interactions. The simplest example is when
we have modes e’** and ¢**<* contributing to a pattern in one spatial dimension
(x € R), both arising at steady bifurcations from the zero solution under the influ-
ence of external stresses described by bifurcation parameters (1 and o respec-
tively. Both modes fit on the same one-dimensional lattice whose basic period is
27/ k. As usual we will set k; = 1 by scaling the x variable. The solution can then
be written in the form

u(x,t) = 2.1(1')2” + Zg(t)eZi‘ +cc.+hot, z1,22¢€C (6.13)

We will assume that the system has O (2) symmetry, and so we must have equiv-
ariance under

(i) translations: (z1, z2) — (z1¢7P, z2e7 %Py,
(ii) reflection: (z1, z2) = (&1 Z2)

The ¢'* and ¢** modes individually correspond to different representations of
0O(2). Mode interactions in general involve the interplay of different representa-
tions of the relevant symmetry group.

This problem has been investigated in detail by Proctor and Jones (1988) who
were studying convection in two layers of fluid, one on top of the othe1 with a thin
heat-conducting plate between them If the top layer is approximately half as thick
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as the bottom layer then 2 : 1 resonance is seen We will look briefly here at some
of the phenomena they found

Using translation equivariance we can deduce the form of the equations up to
cubic order to be

dz _

?171 = a1 +aiiza — bilzi Pz — balza 2, (6.14)
dzo

5 =M+ c? — dy|22l?z2 — dalz1 )%z, (6.15)

and using reflection equivariance we see that all coefficients must be real. If we
rescale the amplitudes z; aud z2 we can set ¢ = 1 and ¢ = 1. Now we will
rewtite the equations by setting z; = Re'?, 75 = Se'? and separate out the real
and imaginary parts of the equations to get

dR

o = 1R + RS cos(yy — 2¢) — b1 R® — by S*R, (6 16)
d
Rd—? = RSsin(ty — 2¢), 6.17)
ds 2 3 2
pr M2S = Rcos(y — 2¢) —d1 S° — dr R*S, (6.18)
d
s-d% = TR%sin(Y — 2¢) (6 19)
Combining the second and fourth equations gives
d R?
f = (:}:? - 2S) sin y, (6 20)

where x = ¢ — 2¢, and so this system is in fact only three-dimensional, with
dependent variables R, S and x. The redundancy of the fourth equation is related
to the freedom to choose the origin of x If we now write X = Scos x, Y = Ssin x
and Z = R?, the equations can be made to look neater:

dX

5 = X £ Z+2Y2 i X (X2 + YY) —dhXZ. 6.21)
dy
= = oY —2XY —diY(X? + Y% —dhY Z, 6 22)
dz
< =2Z(u1 + X — b1 Z — by (X*+Y?)) (623)

The nontrivial fixed points are

(1) pute modes

K,

Y=2Z=0, X*= (6 24)
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(i1} mixed modes

Y =0, (6.25)
O0=ju1+ X =1 Z — bpX?, (6.26)
0= X+Z—-di X’ —dhXZ; 6.27)
(iii) (in the case ¢ = —1 only) travelling waves
2
Z=2X247Y) = 2@m + p2) (6.28)

T @by +2by + 2ds + dy)’
¥ — w2(ba +2b1) — i (dy + 2dy)

6.29
{4b, —{—2b2+2d2+d1) ( )

Finding travelling waves at a steady bifurcation is quite surprising! They
exist when (2u) + p2)(dby + 262 + 2dr +dy) > 0 and |«| < 1, where « = X/
VXTE+ Y2 The phases are then ¢ = ¢g + wt and ¢ = vy + 2wt, where ¢g, Yo
and w = Y are constant The solution for u(x, z) is

u(x,t) = VZe P O L \[x2 4 20210400 4 (6.30)

so you can see that this is indeed a travelling wave. The phase speed w can be either
negative, giving right-travelling waves, or positive, giving left-travelling waves
The phase speed is zeroat Y = 0, when |[«| = 1 or

[ia(by + 2b1) — i (dy + 2d2) 1 = Quy + pa)(dby + 2by + 2dy + dy).
(6.31)

The travelling waves are identical to the mixed modes at this point (the solution
branches cross there) and bifurcate from them for |« | < 1 Since the phase speed is
zero at the point where the travelling waves bifurcate from the mixed modes, this is
not a Hopf bifurcation It is a particularly unusual feature of this mode interaction
that travelling waves bifurcate from a steady solution at a steady bifurcation This
is a drift instability and is related to the fact that the phases ¢ and v of the mixed
modes are arbitrary — only the combination y = v — 2¢ is fixed The drifting
motion breaks the x — —x reflection symmetry of the mixed modes The mixed
modes bifurcate in turn from the pure modes at

oy boun
—+ /"2 , 632
1 a + a (632)

where the two solution branches cross.
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Fig 6.5 Heteroclinic otbit in the 2: 1 mode interaction problem Point A is the

pure mode (—~/p2/d;, 0, 0) and point B is (£/1t2/d,0,0) The black dot repie-
sents the mixed mode solution in the ¥ = O plane.

You can also find heteroclinic orbits in this system. For 1, 22 and 4 all positive
and b, such that the inequalities

[ baua
A ) 633
i d[ dl o ( )

2 bapn
— (e 0, 634
41 1 ] < ( )

hold, the trivial solution X = ¥ = Z = 0 is an unstable node, the pure mode, X =
Vi /dy, Y = Z =0, is stable in the X and ¥ directions and unstable in the Z
direction, while the pure mode at X = —/us/d1, Y = Z =0, is stable in the X
and Z directions and unstable in the Y direction In the invariant plane, Z = 0,
these are the only fixed points, and we also have

d , |
a;(XZ + Y2y = up(X2 4+ Y2 — di (X + 72, (6 35)

so the circle X2 4+ Y2 = 1, /d, is invariant. In fact the circle consists of two tra-
jectories from (—/u2/dy, 0, 0) to (/i2/dy, 0, 0) as shown in Figure 6.5

Now the pure mode (4/112/d,, 0, 0) is unstable to perturbations in the Z direc-
tion, so we will now look in the invariant plane Y = 0 to see what happens to
tiajectories leaving the fixed point The evolution equations are

dx ,
-~ =wX+Z—d X —dXZ, (6 36)
dz

- = 22+ X — by Z — b X?). (6 37)

The nontrivial fixed points in this plane are the pure modes, Z =0, X =
+4/u2/d, and the mixed modes satisfying equations (6.26) and (6 27). We expect
a trajectory joining (+/m2/dq, 0, 0), which is a saddle in the plane ¥ =0, to
(—/12/d1,0,0), which is a stable node, as long as the mixed mode solutions
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are unstable nodes or foci. The mixed modes will be unstable in the full (X, Y, Z)
space if the following inequalities hold:

Z

2d,xz+2b12i3{- <0, (6 38)
Z

bl(:}:—}z +2d1 X5 + (1 — 26, X)(F1 + o X) > 0, (6 39)

pr—2X —drZ —di1 X% > 0. (6.40)

In fact the mixed mode undergoes a Hopf bifurcation when the inequality is
replaced by equality in (6.38) For small 1 and w2, the location of the Hopf bifur-
cation is given by

X~ —p1, Z~ =2dipi, o ~ 3dip]. (6.41)

Inequality (6.39) must also hold for the Hopf bifurcation Again for small ;2 and
12 close to onset of the Hopf bifurcation, Z/ X will be O( [.L%), and so we can see
that (6.39) will hold if we take the second plus sign It turns out, though it is diffi-
cult to show analytically, that the mixed modes can indeed be unstable in a region
where 11, 7 and d; are all positive and b, satisfies inequalities (6 33) and (6.34).
This means that there are heteroclinic orbits consisting of one of the half-circles
shown in Figure 6.5, and a trajectory in the plane ¥ = 0 from (/u2/d;, 0, 0) to
(—/12/d1, 0, 0) Trajectories spiral out from the mixed-mode fixed point towards
the heteroclinic orbit The pure-mode fixed points are only unstable in the direction
out along the heteroclinic orbit, so we expect the orbit to be stable. It also exists
for a range of values of 14; and w2, so it is structurally stable too

Of course, there is a huge number of possible mode interactions that we could
investigate The example we have just worked through is a steady-steady mode
interaction, in that both modes were undergoing a steady bifurcation, but we could
also have Hopf—Hopf or steady-Hopf interactions, interactions between more than
two different modes, mode interactions on square, rthombic or hexagonal lattices,
interactions between spatially varying and spatially uniform modes, and so ou The
idea is always the same: write down the form of the solution u#(x, ¢) in terms of the
contributing modes, and use equivariance to deduce the amplitude equations that
you can use to investigate the system

6.3 Spatial-period-multiplying bifurcations

What happens if, instead of starting with a spatially uniform solution, such as
1 = 0, we have a lattice pattern as the initial condition and want to look at bifur-
cations from that? This situation is actually quite easy to analyse if we assume
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(b)
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Fig. 6 6 Examples of superimposed lattices for spatial-peiiod-multiplying bifui-
cations: {a) coarse and fine hexagonal lattices, (b) a coarse rectangular lattice over
a fine square lattice and (c) coaise (filled circles) and fine (empty circles) one-
dimensional lattices with periods in the ratio 3 : 1.

that the bifurcating solutions lie on a coarser lattice that fits on top of the original
one: some examples are shown in Figure 6 6. Having set up the two lattices, it is
straightforward to work out the symmetry gioup of the initial state on the coarse
lattice, and apply equivariance as usual The choice of coarse lattice will depend on
the results you are trying to interpret with your analysis For example, the coarse
hexagonal lattice shown in Figure 6 6a was chosen by Tse er al. (2000) to interpret
a Faraday experiment showing hexagons becoming unstable to a stripy modulation
that was periodic on the coarse lattice. The basic hexagons and the modulated pat-
tern are shown in Figure 6.7 The choice of lattice is not unique, and in the Faraday
experiment example we could have chosen a rectangular lattice with sides in the
ratio /3 : 1, however it seemed natural to choose a larger hexagon as the basic unit
of the lattice In general it is good to choose the finest coarse lattice that the bifui-
cating pattern will fit onto in order to keep the calculations as simple as possible,
but you could pick any coarse lattice that fits. When the ratio of the spatial periods
of the coarse and fine lattices becomes very large, it is more appropriate to use the
modulation formalism introduced in the next chapter to describe the evolution of
the underlying fine-scale pattern
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(a) ®

Fig. 6.7. Computer-generated images of the initial (a) and final (b) patterns for
a spatial-period-multiplying bifuication on the hexagonal lattice shown in Fig-
ure 6 6a. Reproduced from Physica D 146, Tse, D P, Rucklidge, A M., Hoyle,
R B. and Silber, M., Spatial period-multiplying instabilities of hexagonal Faraday
waves, 367-387, copyright (2000), with permission fiom Elsevier.

Consider the simple example given by the two one-dimensional lattices in the
ratio 3 : 1 shown in Figure 6.6¢c. We will analyse a bifurcation from a stripe pattern
to stripes modulated with a spatial peiiod 3 times as long as the original Let us
wiite the solution in the form

u(x,t) =ug(x) +z()e'* +cc. +hot, zeC (6 42)

where ug(x) is the initial stripe pattern, and z(f)e'* represents the bifurcating mode
at 3 times the initial wavelength The initial pattern has spatial period 27/3, one-
third that of the bifurcating mode, so it has symmetry under discrete translations
generated by 7 : x — x 4 27 /3 If we assume that #g{(x) has a reflection symme-
try my : x — —x, then a possible iuitial state is ug(x) = e fce Though it is
useful to have a particular form of #o(x) in mind for illustrative purposes, it is not
necessary for the analysis that follows: in fact any u#o(x) with the same symme-
tries would do, and in a real experiment we would expect the initial state to be
fully nonlinear The symmetries of the original stripe pattern act on the amplitude
of the bifurcating mode according to

Tz ze T3, (6.43)
m, 17— 7. (6.44)
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The evolution equation for z must be equivariant under these operations, so to

cubic order it takes the form

dz _
i uz +az® — Blzl?z, (645)

Writing z = Re'® (R > 0,0 < ¢ < 27) and separating out the real and imaginary
parts of the equation gives

dR
= = uR +aR>cos 3¢ — AR, (6 46)
d

Rf = —aR%sin3¢ (6 47)

The coefficient & can be chosen to be positive without loss of generality, by chang-
ing the sign of z if necessary. We also choose $ to be positive so that the cubic term
is negative in the region p2 > O where the linear term is positive In this case the
cubic term is said to saturate or quench the linear instability, and acts to stabilise
finite-amplitude solutions. This is typically more interesting than the case 8 < 0
when the cubic term is destabilising The possible stationary solutions for positive
« and 8 are:

(i) the tiivial solution, R = 0;
(i) modulated stripes (M)

u+aR*—BR3=0, (6.48)

¢ =0,21/3,47/3; (6 49)
(iii) modulated stripes (M_)

w—aR*—BR*=0 (6.50)

¢=mn/3. 7 57/3 (6.51)

For u > 0, the trivial solution and M_ solutions are unstable, while the M. solu-
tion is stable for R > «/28. The bifurcation diagram is plotted in Figure 6 8. A
modulated stripe solution is shown in Figure 6 9

Maybe this has reminded you of the bifurcation on the hexagonal lattice The
similarity comes from the fact that the discrete translations generated by 7, when
factored out by the coarse lattice, form the group Z3z. The reflection m, gener-
ates the group Z,, and together the translations and reflections generate D3, the
symmetry group of an equilateral triangle By writing the bifurcating mode in the
form ze'*, with z € C we are using the two-dimensional natural representation of
D3. The isotropy subgroups with one-dimensional fixed-point subspace are those
generated by a reflection in the complex z plane, namely Zy = {e, m}, where m
is any one of m, 7" for n =0, 1,2 The fixed-point subspace of m,z" is Re!k*/3
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Fig. 6.8. Bifurcation diagram for the one-dimensional 3 : 1 spatial-period-
multiplying bifurcation described by equation (6.45). The parameters o and 8
are both positive The modulated stripe solutions M4 and M_ are defined in
equations (6 48)—(6 51) Solid lines 1epresent stable solutions and dashed lines
unstable solutions
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Fig 6.9. (a) The initial stripe pattein and (b) the modulated stripe pattern
My with ¢ = 2x/3 for the 3 : 1 spatial-period-multiplying bifurcation in one
dimension

withk =0or3whenn =0, k=201 5forn=1andk =1 or4forn = 2,sothe
modulated stripe patterns that we found above are exactly the solutions predicted
by the equivariant branching lemma

6.4 Quasipatterns

Quasipatterns have local rotation and reflection symmetries, but lack spatial peri-
odicity and so never repeat exactly in any direction They look quite regular, as if
they are generated by wavevectors spaced equally around the circle |k| = k., but
not lying on a lattice. A dodecagonal (twelvefold) quasipattern seen in a Faraday
wave experiment with two-frequency forcing by Arbell and Fineberg (2002) is
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Fig. 6.10. (a) A twelvefold quasipattern seen in a Faraday wave experiment with
two-frequency forcing, and (b) the corresponding spatial Fourier specium (c) A
greyscale 1mage of the twelvefold quasipattern defined by equation (6 52) with
z, = 1 for all » and (d) the twelve wavevectors that generate it Figwes (a) and
(b) are reproduced with permission from Arbell and Finebeig, Physical Review E,
65, 036224 (2002) © The Ametican Physical Society (2002)

shown in Figure 6.10, together with a pattein generated from twelve wavevectors
spaced equally around a circle according to

6
u(x) = Zz,,e”‘" Y+eec, (6.52)
n=1

where the k,, are given in Figure 6 10d, and in this case z,, = | for alt n There are
two exact resonances in this set of wavevectors: k; + k3 +ks = 0 and k» + kg +

ke = 0, corresponding to two hexagonal sublattices.
If x =(x1,x3) € R? then the spatial frequency of modes n = 4, 6 in the x
direction is +/3/2, which is not commensurate with the frequencies of modes
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n =1,3,5, which are either 1 or 1/2 The set of spatial frequencies in the x;
direction is the same, but taken in a different order, so the pattern is quasiperiodic
in both the x; and x; directions A quasipattern can be constructed from any set of
wavevectors with incommensurate spatial frequencies in two directions The more
symmetric the set of wavevectors, the more regular the quasipattern will appear
to be. The quasipatterns that are seen in experiments appear to be pretty regular.
Edwards and Fauve (1993) found regular twelvefold quasipatterns in a Faraday
wave experiment using a containet the shape of France (Figure 1.2), demonstrat-
ing both an admirable appreciation of national geography, and the unimportance
of boundary conditions for quasipattern formation So the regularity seems to be
intrinsic While twelvefold quasipatterns seem to be the most common in planar
systems, others, such as eight- and tenfold structures do occur (see, for exam-
ple, Arbell and Fineberg, 2002). In fact, Arbell and Fineberg can tune their Fara-
day wave experiment to make 2n-fold quasipatterns for any n Three-dimensional
quasicrystals are also possible: the first ones observed had icosahedral symmetry
(Shechtman et al. 1984)

One immediate consequence of having incommensusate wavenumbers is that
quasipatterns do not fit on a lattice. If you remember, the advantage of restricting
bifurcation problems to a lattice was twofold: first only a finite (and small) number
of wavevectors could lie on the critical circle so we could project the dynamics
onto a small number of modes, reducing the complexity of the problem, and sec-
ond, more importantly, the remaining modes were bounded away from the criti-
cal circle so we could apply the centre manifold theorem Now the problem with
quasipatterns is that by adding sufficiently many of the incommensurate wavevec-
tors together in suitable combinations you can get as close to the ciitical circle
as you want to (see Figure 6.11), so that even if there are still only a few crifti-
cal modes, there is no guarantee that we can project the dynamics onto them The
combinations of modes coming close to the critical circle represent high-order
near-resonances A true resonance, such as occurs in the hexagonal lattice where
we have ki = —k — k3, so that the sum of k, and k3 lies on the critical circle,
leads to the appearance of additional terms in the amplitude equations — in the
hexagonal case the z,z3 in the dz;/df equation If the near-resonance is very close
to being exact then perhaps it makes no sense to ignore these extra texrms. Another
way of looking at the problem when amplitude equations are derived directly from
the governing partial differential equations, as in the next chapter, is to say that
these near-resonances produce small divisors in some coefficients in the ampli-
tude equations, so these terms are much larger than expected and the expansion in
z| <« 1 breaks down.

Despite concerns over their validity you can still write down amplitude equa-
tions for quasipatterns that are equivariant with respect to the symmetries of the set
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Fig. 6.11 Combinations of up to N of the twelve critical wavevectors of the
dodecagonal quasipattern, defined by equation (6 52) approach the critical ci1-
cle as N increases The figutes show the positions of all such combinations for
(@) N =11, (b) N = 15; (c¢) detail of (b). The critical circle is shown as a solid
line, and the original twelve modes as large dots The positions of integer combi-
nations of the critical modes are shown as small dots As N increases, the density
of points increases and points get closer to the critical circle Reproduced from
Figure 5 of Rucklidge, A. M., Pattern formation in large domains, Phil Trans R
Soc Lond A 361, 2649-64 (2003) with the permission of the Royal Society

of contributing wavevectors and to translations in two orthogonal directions The
problem, of course, is that these don’t form a compact group. Using our twelvefold
quasipattern, defined in equation (6.52), as an example, the relevant symmetries are
translations p : z, — z,,e""‘"'” , and the symmetries of Dy, genelated by a rotation
through 7/6 (p : 21 — 26,22 — 25,23 —> 22,24 —> 21,25 — 24,26 — Z3) and a
reflection (m : z; — 71,23 <> Z5, 24 <> z6) If we now allow the pattern to vary in
time, so that z, = z,(f), then to cubic order the amplitude equations that satisfy
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these symmetries are

dz; o

d—t’ = uzi + @Zis2Zi4a — 2lBlzil” + 8zial® + lzisal®)
+yzic1l? + 1zizsl®) + vizgr 1P}, i=1,3,5, (6.53)

dz; o

E’- = puzi + aZig2Ziva — zi1Blzi)> + 8(zis2l® + |zi+al?)

+yzial® + sl +vlzic 3, i =2,4,6, (6.54)

where the indices cycle with period 6, and where u is the real bifurcation parameter
and «, 8, 8, y and v are real constants Various authors have studied these equa-
tions or their equivalents (see, for example, Pismen, 1981, and Malomed, Nepom-
nyashchii and Tribelskii, 1989. More recently Echebarria and Riecke (2001)
extended them to consider modulational phase instabilities, as we shall see in
Chapter 9 The possible solutions are

() rolls,eg Re(z)) #0,Im(z1) =0, 2=03=24=25=26=0;
(i) rectangles, e g Re(z1) = Re(ze) # 0, Im(z1) = Im(z6) =0, =03 = =25 =
0;
(iii) squares,e g Re(z)) = Re(z2) #0, Im(z1) =Im(z2) =0, 3 =24 =25 =26 = 0;
(iv) hexagons, e g Re(z1) = Re(z3) = Re(zs) £ 0, Im(z)) = Im(z3) = Im(zs) =0,
n=u=2=0
(v) mixed modes, eg 03# Re(z1) = Re(z3) # Re(zs) #0, Im(z1) = Im(z3) =
Im(zs5) =0,20 =24 = 26 = 0;
(vi) one-dimensional quasipatterns, e g Re(z1)Re(z3)Re(zs)Re(zs) #0, Im(z)) =
Tm(z3) = Im(zs) = Im(zg) = 0,20 =24 = 0;
(vii) twelvefold quasipatterns, Re(z1) = Re(z2) = Re(z3) = Re(z4) = Re(z5) = Re(zg)
#0, Im(z)) = Im(z2) = Im(zz) = Im(zs) = Im(zs) = Im(zg) = 0.

The stability of the solutions can be determined using the amplitude equations.
Typically there is hysteresis in the system, for example between the hexagon and
dodecagonal (twelvefold) solutions (see Echebarria & Riecke, 2001, for further
details)

If you write z, = R,e!®, forn =1,. ., 6, then the two global phases, ®; =
$1 + @3 + ¢ds and Oy = ¢y + P4 + P, satisty

4 WR.R.aR ( Ly Ly )s'ncb i =1,2  (655)
—= = —OR;Rj R | 5+ 5+ 5 |sin®;, j=1, :
d Ri  Rjy  Riy
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The two phase modes

1 1 3 1 3
Pu =5 (¢1 — b - §¢4 — 3¢5+ %%), 6 56)
3 3
x2 <¢2 f¢3 — —¢4 - JT_¢5 - —¢6), (6.57)

corresponding to translations in the x) and x; directions respectively, are undeter-
mined as usual because there is freedom to choose the position of the origin How-
ever, this still leaves undetermined two independent phase combinations, named
phason modes,

2
Y = 3 (¢1 - -¢3 + £¢4 - -¢s - £¢6), (6 58)
3
Vo= —2 (cbz - £¢3 - —¢4 + ‘Zf¢5 - %%), 659)

that correspond to translations of the two component hexagonal lattices relative
to each other This indeterminacy persists to all orders in the expansion of the
amplitude equations, and reflects the fact that the twelve critical wavevectors do
not form a lattice, and the symmetry group is noncompact Strictly speaking the
global phases are phason modes (oo, as this term is used for any phase modes that
are not related to translations

The upshot of all this is that you can write down amplitude equations for quasi-
patterns, and do some interesting analysis with them, but you can’t be sure that the
equations are valid or that your solutions approximate the quasipatterns that are
observed in experiments What is not in doubt is that quasipatterns are seen in the
real world, and need explaining

6.5 Pseudoscalar actions of E(2)

So far we have used the scalar action of the Euclidean group, E(2), intrtoduced in
the previous chapter However, E(2) also has a pseudoscalar action defined by

u(¢~'x), ¢ € E(2) atianslation or a rotation,

pu(x) = {—u(d)—l»x): ¢ € E(2) areflection ©0

Most physically relevant Euclidean-invariant systems of partial differential equa-
tions reduce to a single equation that is equivariant with respect to the usual scala
action of E(2), but there are some that reduce to a pseudoscalar partial differen-
tial equation, namely one that is equivariant under the pseudoscalar action defined
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above (Melbourne, 1999) Notably, the two-dimensional Navier—Stokes equations
for incompressible fluid flow in the plane reduce to a single pseudoscalar equation
for the evolution of a streamfunction.

The pseudoscalar action leads to new planforms (Bosch Vivancos, Chossat &
Melbourne, 1995; Bressloff er al, 2001a), and though it turns out that physical
fluid flows cannot exhibit them, it appears that they may be relevant to geometric
visual hallucinations (see, for example, Bressloff ez al., 2001b) To see how the
new planforms arise, consider the bifurcation on the hexagonal lattice, where to
leading order the solutions are given by

3
u(x,y,0) =y z;(0e** +cc, z;€C, (661)

=1

with k1 = (1,0), ko = (=1/2, ﬁ/2) and k3 = (—1/2, —\/§/2) As before, the
relevant symmetry group is Dg x T2 The translations and rotations act just as in
the scalar case:

(1) the rotaton through 27/3, {p : (21, 22, 23) — (23,21, 22)};
(ii) the rotation through 7, x — —x, {mg : (21. 22, 23) — (Z1, 22.23)};
(iii) translations p € 72 whose action is given by p - (z1,22,23) = (e tkipgy,
e kP, ik Pz3).

The difference comes with the 1eflections: the generating reflection in the vertical
plane now acts as {m., : (z1, 22, z23) — (—2z1. —23, —22)}, where the minus signs
show that we are using the pseudoscalar action.

If we now try to deduce the amplitude equations, as we did in Section 5.4, we
find that m,, leaves the term aZz;z3 invariant, but transforms dz; /dt to —dz, /dt,
so the quadratic terms in the amplitude equations are forbidden under the pseu-
doscalar action of E(2). The new equations are

3;=wu1—bnn%l—cumﬁ+wuﬂnh (6 62)
dzo
E;=um—ﬂuﬂm—cmﬂ?+mﬂnb (6.63)
dzz
o M blz31%z3 — c(|z1|* + 22123, (6.64)

which are the same as the cubic truncation of the amplitude equations for the bifur-
cation with midplane reflection in Section 5 4 [.

The most important differences with the scalar case are in the predicted plan-
forms. Consider the solution

(X1, x2) = a(@ ™ +e ), (6 65)
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where a is a real nonzero constant. In the scalar case this was a roll solution
with isotropy subgroup D, x S!, whose elements are translations (0, ¢) € T Zin
the x»-direction, a rotation m, through 7, the reflection m,, (x — —x2), and the
reflection mym,, (x; — —x1) Now, the reflections are no longer symmetries, since
Myl = MoMy,lar = —Uy However the combination of each of the reflections
with a translation x| — x; + 7 are symmetries instead The isotropy subgroup of
Uar is Dy x S! where Dy isa twisted version of D;. The new planform u,, is
called anti-rolls The leading order expression given in equation (6 65) is no dif-
ferent from that of a standard 10l solution, but its interpretation in physical space
leads to a planform with different symmetries. For example, if u#(x;, x2) represents
a streamfunction, then a two-dimensional fluid flow is derived from it according to
v = —V x ux3, where X3 is a unit vector in the x3 direction. For u,, this gives

v =(0,ai(e™ —e 1)) (6.66)

Clearly the flow has the symmetries of D x § !, while uy does not A flow with
the symmetries of anti-rolls is illustrated in Figure 6.12a.

Similarly at leading order the standard hexagonal solution is replaced by the
planform simple oriented hexagons Both have the same leading-order expansion

uon = a(@® ¥ 4 ef2¥ L ok3xXy L o0 g eR, a#0, (6 67)

but simple oriented hexagons have isotropy subgroup Zg generated by mg,p, a
rotation through /3. In this case the reflections cannot combine with other trans-
formations to give symmetiies of the pattern The flow derived from this eigen-
function has the symmetries of the flow shown in Figure 6.12b.

Both anti-rolls and simple oriented hexagons are axial, as might be expected
since they are the replacements for the axial roll and hexagonal patterns in the
scalar case. In the pseudoscalar case there are two further axial planforms, namely
anti-triangles, and anti-rectangles Again this is perhaps not surprising, as the
cubic truncation of the equations is the same as that for the bifurcation with mid-
plane symmetry and scalar action, where similar solutions, regular triangles and
the patchwork quilt are axial (see Table 5.3) The amplitude equations will how-
ever differ at higher order The anti-triangles are given by

uy = ia@® ¥ ¥ LMy Lo aeR, a#0, (6.68)

which is the same form as regular triangles take in the midplane scalar case,
but now the isotropy subgroup is D3 generated by p and mom,, @ (21, 22, 23) =
(—2z1, —Z3, —Z2). The anti-rectangle solution is

Upa = a(e”‘2 X _ oiks N +ce, a€eR, a#0, (6 69)
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Fig 6 12. Examples of planforms with the symmetry of (a) anti-rolls (b) simple
oriented hexagons, (c) anti-triangles and (d) anti-rectangles. The arrows indicate
the direction of flow.

which has isotropy subgroup Ds, generated by my and m, as before. Examples
of flows with the symmetries of anti-triangles and anti-rectangles are shown in
Figures 6.12c and d.

The corresponding analysis on a square lattice shows that the pseudoscalar
action Jeads to a new planform simple anti-squares, and on the rhombic lattice
we find anti-rhombs

For the rest of this book we will be using the scalar action of E (2) unless othez-
wise stated.

6.6 Hidden symmetries

It can happen that we choose to study a symmetric system in a context that restricts
its symmetsy in some way This might sound strange, but it can arise quite natu-
rally: for example, we often want to consider systems whese the governing equa-
tions are homogeneous and isotropic, and so have full Euclidean, £(2), symmetry,
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Fig 6.13 The wavevectors k) and k; define athombic (dual) lattice If the system
is rotating, there is no 1eflection symmetry, and so there is no symmetry that maps
either of the wavevectors to the other or its negative.

but where the pattern-forming experiment we want to analyse is being carried out
in a finite domain with reduced symmetry, such as the square box we considered
in Section 4 3 1. We expect then that the symmetry group of the bifurcation will be
the symmetry group of the domain on which the boundary conditions are defined,
in this case Di, but the Euclidean symmetry of the governing equations and the
form of the boundary conditions can sometimes give rise to additional hidden sym-
metries that we must take into account These hidden symmetries are reflected in
unexpected degeneracies of the amplitude equations in the restricted situation.

Hidden symmeltries can also crop up if we restrict the bifurcation problem to
a lattice in order to analyse periodic solutions Some of the Euclidean symme-
tries that we ‘ignore’ in order to fit the problem onto a lattice turn out to lead to
unexpected additional symmetries in the normal form equations

Example 6.1 (Rotating convection on a rhombic lattice) As a simple example,
consider a two-dimensional system that is symmetric under all votations and trans-
lations, a situation that arises naturally in convection in a rotating fluid layer (see
Goldstein, Knobloch & Silber, 1990). The relevant symmetry group is S O (2) x R?
Now we will restrict the problem to a rhombic lattice, so that

u(x, y,t) = z210)e ¥ + 10 ¥ +cc +hot., (6 70)

where the angle, 8, between ki and k; lies in the range 0 < 8 < w/2 and is not
equal to /3 (to ensure that the lattice is neither square nor hexagonal) The
wavevectors are shown in Figure 6 13 Using translation equivariance, the linear
order amplitude equations are

d

<5 =, ©71)
dza

— = 22, 6.72
o e (6.72)

where j1 and jup are complex constants. Now since there is no reflection symmetry
in the problem, and the only rotation that preserves the lattice is through m, there
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is no symmetry that relates the equation for z to that for 72, so it would seem
that we can have (11 # 142 But this is nonsense! We know full well that the linear
growth rates of the two modes must be equal, because the original system has full
rotational symmetry, so the linear growth rate of a mode e'** cannot depend on
the direction of the wavevector, k. From the point of view of the restricted problem
on the rhombic lattice, the rotation symmetry is hidden, but it leads to the require-
ment that | = (. This constraint is unexpected in the restricted context of the
bifurcation on the rhombic lattice, and requires knowledge of the full system.

To formalise these ideas, imagine that we are once more dealing with a I'"-
equivariant bifurcation problem

% =f(x,n), xeV, pelR" (6.73)
where
v, = fyx, ), Vyerl (674)

Now we reduce the symmetry of the problem by looking for fixed points of equa-
tion (6.73) that are invariant under a subgroup, X C I', of the original symmetry
group Any such fixed point, x, lies in Fix(Z), since ox = x for all 0 € £ Fixed-
point subspaces are flow-invariant, so we can restiict the bifurcation problem to
Fix(¥) and look for solutions there. Any restriction of the original problem that
corresponds to a real experiment, such as conducting the experiment in a finite
box, would lead natually to the definition of a suitable flow-invariant subspace,
since the dynamics of the equation cannot ignore the physical constraints imposed.

In the rotating convection example (Example 6 1), I" would be SO(2) x R?,
while ¥ would be £, where £ is the group of translations that preserve the thombic
lattice By restricting to functions that are periodic on the rhombic lattice, we are
restricting to Fix(L).

6.6.1 Naive symmetries in the normalizer

Fix(X) is invariant under the normalizer N(X), since
N(E)={yel:y 'Sy =3}, (6 75)

and so if y € N(Z) and x € Fix(X) then

1

oyx =yy oyx=yx, Yo eX (6.76)

since y "oy € & Hence yx € Fix(Z) for all x € Fix(X) and y € N(Z). Thus
yFix(¥) C Fix(¥) Similarly y‘lx € Fix(2) for all x € Fix(X) since y'l €
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N(Z), so Fix(¥) € yFix(X) and so we must have yFix(Z) = Fix(X) Fuither-
more if X is an isotropy subgroup Zy of a point x, then the normalizer is the largest
group to leave Fix(%, ) invariant, since if there is a larger such group A 2 N(Z,)
then yx € Fix(Z,),Vy € A, and so

ocyx =yx, VYoe€Z,VyeA (6.77)
Hence we have
y loyx =x, 6.78)

and so y‘lay € Xy forallo € £, and y € A, and thus y ' Z,y € Z,. Now if
¥ 'Zyy € I, then there must be some o7 € ¥y such that o; #* y_lagy, for any
0 € Iy, but 07 = y " lyoyy~ly and yo,y ! € Iy, since y ! € A, so there is
a contradiction Hence we must have y‘l 2y = Zy,and so y € N(Zx) So any
element that maps Fix(Z,) into itself must lie in the normalizer

The elements of the normalizer N(X) map the restricted space of the problem,
Fix(X), to itself and so are known as the apparent or naive symmetries in Fix(X)
(Golubitsky, Marsden and Schaeffer, 1984). The group that we expect to govern the
bifurcation in Fix(X) is N(X)/ X, where we factor out ¥ because it acts trivially
on Fix(X).

Example 6.2 (Restriction to a planar lattice) Now we can look at the restriction
of a Euclidean-symmetric system to a planar lattice, L, in a different way Solutions
that are periodic on the lattice lie in its fixed-point subspace, Fix(L) It is easy to
check that the group of apparent symmetries, N(L), is H x R2, where H is the
holohedry of the lattice, and R? is the group of two-dimensional translations. The
group, L, of discrete translations that preserve the lattice acts trivially on Fix(L),
so we factor it out This is equivalent to saying that we are only interested in
what happens in one cell of the lattice, because we can reconstruct the others
using periodicity. The resulting symmetry group is H x T? = (H x R*)/L, and
this governs the steady bifurcation on the lattice We analysed the cases H = Dy
and H = Dy in Sections 5.3 and 5 4

6.6.2 Hidden symmetries in the complement of the normalizer

Having decided what the ‘obvious’ symmetries are, we can now define the hidden
symmetries. Naturally, these will be the ones that do not lie in the normalizer, but
that nonetheless have the potential to affect the form of f |fix(x). One definition of
a hidden symmetry is an element, y € I', that does not leave Fix(X) invariant,
and so does not look like a symmetry of the restricted problem, but that satisfies

yFix(2) NFix(2) # {0} (679)
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Fix(Z) -~ Fix(Z) )
(a) (b)

Fig 6 14. Hidden syminetries map a subspace W C Fix(Z) (a) to itself or (b) to
another subspace y W C Fix(X) Case (b) is that of a subtle symmetry

(Manoel & Stewart, 2000). There are other possible definitions, as we shall see
shortly Equation (6.79) can be satisfied either by mapping a subspace of Fix(X)
to itself, or by mapping a subspace W C Fix(X) to a different subspace y W C
Fix(Z¥) Golubitsky, Marsden and Schaeffer (1984) referred to ¢ as a subtle sym-
metry in the latter case. This term is not used any more, but it is worth bearing
in mind that there need not necessarily be a subspace of Fix(X) on which y acts
as a symmetry in order for ¥ to be a hidden symmetry of the problem. The dif-
ference between the two situations is illustrated in Figure 6.14. In example 6 1
above, the rotation through # that maps one wavevector of the rthombic lattice to
the other would be a subtle symmetry, as it maps the subspace (z1, 0) € Fix(£) to
the subspace (0, z2) € Fix(£) that overlaps only at (0, 0).

Condition (6.79) says that there is a nonzero x € Fix(Z) such that yx also lies
in Fix(X). Since Fix(X) is flow-invariant we will also have f(x, p) € Fix(X)
and f(yx,p) € Fix(XZ), so that f(x,pu) = flpixs)(x, ) and f(yx, p) =
f lrixcs)(yx, ) Then from the equivariance condition (6.74) on f we must have

Y lEixes) (6, 1) = frixes) (v x, @) (6 80)

for all x € yFix(Z) NFix(X) Unexpectedly then, the hidden symmetry, y, has
the potential to restrict the form of f|gix(x). Not every hidden symmetry imposes
a restriction in practice, since for a given y, it may turn out that equation (6.80)
is automatically satisfied for all f that are equivariant under the group of apparent
symmetries, N(X)

Even if there are no hidden symmetries satisfying condition (6 79), equivariance
of f on the full space V may still impose restrictions on the form of f |Fix(x), since
for x € Fix(X) we have

Yflrxemy (. ) =y f(x, ) = f(yx,p), Vyel (6.81)

To work out exactly what these restrictions are, we can no longer work only in
the space Fix(X), because now f(yx, u) does not lie there, so we must consider
the whole space V Since any group element in I — N(X), the complement of the
normalizer, might restrict the form of f |gix(x) according to equation (6 81), there is
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acase for defining all y € I' — N(X) to be hidden symmetries, while emphasising
that not every hidden symmetry leads to unexpected effects In this philosophy
there are four types of hidden symmetry, y € I' — N(X):

(i) y satisfies equation (6 79) and maps W C Fix(X) to itself;
(ii) y satisfies equation (6 79) and maps W C Fix(X) to a different subspace y W C
Fix(X);
(iii) y does not satisfy equation (6 79), but restricts the form of f [Fix(z):
(iv) y neither satisfies equation (6 79) nor restricts the form of £ |rix(s)

Hidden symmetries that map a subspace of Fix(X) to itself can often be detected
from within the restricted problem, even if we are ignorant of the extended group,
' We may simply notice that there are additional symmetries in certain subspaces,
which should alert us to the possibility that hidden symmetries are at work. How-
ever to find any remaining hidden symmetries we must know what I' is Now if we
have a problem with a hidden symmetry, then it may well be because we started
out working in the restricted space, and had no idea that our problem was embed-
ded in a bigger space with a bigger group acting on it until we came across some
unexpected degeneracies in the equations or extra symmetries in the solutions. So
having to know the right extended group in advance is very inconvenient! On the
other hand, undeistanding that such hidden symmetries can exist can allow experi-
menters to modify their apparatus so as to eliminate them. We shall see this shortly
in Section 6.7 on Neumann boundary conditions

Example 6.3 (2 : 1 mode interaction with O(2) symmetry) [magine we have a
bifurcation problem with O (2) symmetry on the domain —n < x < 7w with peri-
odic boundary conditions, where O(2) is generated by a translation p : x —
x + xo and a reflectionr : x — —x Iypically we can write solutions to a problem
like this in the form

u(x,1) = Y a@e™ +cc +hot, (6 82)
k

where the wavenumbers k are integers and the amplitudes ay(t) are complex In
general, solutions involving only one wavenumber k will bifurcate from the zero
solution at the critical value of the bifurcation parameter, but under certain cir-
cumstances two different modes can bifurcate at once Consider the case where
the k = 1 and k = 2 modes become unstable simultaneously We can write the

solution as
u(x,1) = are’* + me** +aje v+ @me ¥ v hot (6 83)

Now in many applications we would only be interested in solutions that satisfy
some further restriction, such as reflection symmetry. In this case the solutions
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of interest would lie in Fix(Zy), where Zy is the reflection group generated by
r:(ar, @) — (ay, ay) The fixed-point subspace, Fix(Zy), is given by (a), a2) =
(A, B), where A(t) and B(t) are real The naive symmeiries in this problem are
the elements of N(Zy), which are generated by the reflection r and the transla-
tion by half a period, p\j - x — x + 7, which maps (A, B) to (—A, B), so that
Fix(N(Z>)) = (0, B) All the remaining trauslations are hidden symmetries in the
problem.

The expected symmetry group of the bifurcation in Fix(Za) is N(Zp)/Zy, which
is generated by p) 2. The evolution equations for (A, B) € Fix(Zy) must therefore
be equivariant with respect to p\2, and so to cubic order we expect them to be

dA

E:u1A+a1AB+ﬁ1A3+ﬁ232A, (6 84)
dB
5 =B+t @y A2 + a3 B? + B3 A’B + B4 B3, (6.85)

where all the coefficients 1, o and B; are real
However, if we take the full problem and impose equivariance under the reflec-
tion, r, and all translations, p, then to cubic order we find

da;

o = A +G1@az + Bila a1 + Balaol?an, (6.86)
daz o~ o~ o~ —~
o = Faa + @i + filar*az + Palarla, (6 87)

where all the coefficients [i;, @; and B; arve real Restricting to Fix(Zy), where the
amplitudes are real, produces the equations

dA

- = A +@AB + BiAY + PaB%A, (6 88)
dB _ . o~ 2. Zalp . 7R3
o = BB +®A” + BA%B + BB (6 89)

Comparing these with equations (6 84) and (6 85) that we found by working
naively in Fix(Z,), we see that the hidden translation terms have forbidden the
appearance of the B* term in the equation for dB /dt.

It turns out that one of the hidden translations is a symmetry on a subspace
of Fix(Zy) The translation by a quarter period, pyj4:x — x +7/2, (0, B) —
(0, —B), maps Fix(N(Z»)) to itself, but does not leave Fix(Zy) invariant (since
P14 € N(Zy)), and so condition (6 79) is satisfied with y = pij4 and T = Zp.
Even if we hadn’t known that all translations were hidden symmetiies, we might
have guessed that py;4 was one if we had noticed that it mapped the subspace
(0, B) to itself
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Now, on Fix(N (Z3)) = (0, B) eguations (6.84) and (6 85) reduce to the single
equation

dB
5 =B+ a3B? + B4B°, (6.90)

that must be equivariant with respect to py4 in order to satisfy equation (6 80)
This is enough to show that a3 must be zero

Golubitsky, Marsden and Schaeffer used this example in their 1984 paper where
they coined the term ‘hidden symmertry’.

Example 6.4 An example where condition (6.79) is not satisfied, and yet the form
of the evolution equation on the fixed-point subspace is more degenerate than
would be expected, is given by the action of Ds on Cy. The generators of the group
are p, a rotation through 21 /5, 7 — ze~2*/5, and m, a reflection in the real axis
z — z. Under these symmetries |z|* and Re(z’) are invariant, so we expect an
evolution equation of the form

dz -
5= gz, Re(z°))z + h()z|*, Re(z))7*, 691)

where g and h are real, smooth functions Now consider restricting to Fix(Zp) =
R, where Zp = {e, m}. The normaliser N(Zy) is just Z itself, and so acts trivially
on Fix(Zy) There is no symmetry y € Ds — 7y that satisfies the condition (6.79),
because p"Fix(Zy) NFix(Zp) = {0} for n = 1, 2, 3, 4 Working naively in Fix(Z,)
there would appear to be no restriction on the evolution equation for x € R, and
so using a Iaylor expansion about x = 0 we would write down the equation

dx
T =ax+bx>+ (6.92)

where a and b are real constants and where we assume that there is a fixed-point at
x = 0 so that there is no constant term on the righthand side. However, restricting
equation (6.91) to the real line gives

dx
T e g(xz, x‘s).x + h(xz, .x5)x4, (6.93)

which has no term in x2 on the righthand side The symmetry that forces b on the

righthand side of equation (6.92) to be zero is the hidden rotation, p. There is no
quadratic term in z, g(z), that is equivariant under p, so as to satisfy equation

(6 81),
e ME(x) = Zxe™?MI3), (694)

Thus b must be zero



198 Superlattices, hidden symmetries and other complications

An alternative perspective on this example, stressing the importance of smooth-
ness for the extension of equivariants on Fix(Z) to V can be found in Manoel and
Stewart (2000).

6.6.3 Hidden symmetries and maximal isotropy subgroups

It is straightforward to show that yFix(Z) is the fixed-point subspace of the sub-

group y £y ~! of T, since if y = yx, withx € Fix(Z), then
yoy ly=yoy lyx =yox =yx=y, Voecg, (695)
and hence y € Fix(y £y~ !). Conversely, suppose y € Fix(y £y 1), then we have
yoy ly=y, Voex, (6.96)

and hence

oy ly=y"ly, Voex, (6 97)

so that y~'y € Fix(X), and hence y € yFix(Z). Putting the forwards and back-
wards implications together we have Fix(y £y 1) = yFix(X)
Now if x € yFix(Z) NFix(X), then

Sx=x, Ve UyZy !, (6 98)

and so x lies in the fixed-point subspace of the subgroup A, the smallest subgroup
containing all the elements of & and y £y ~! The converse is also true, so

yEix(Z) NFix(Z) = Fix(A). (6.99)

If y is a hidden symmetry satisfying condition (6.79), there must be some nonzero
x € Fix(A), with isotropy subgroup A, 2> A We also have x € Fix(X) and hence
% € A, If ¥ isitself a maximal isotropy subgroup, we must have £ = Ay, and
therefore £ 2 A and Fix(¥) < Fix(A). Now from equation (6 99) it is clear that
Fix(A) € Fix(Z), but since y ¢ N(X) we cannot have Fix(A) = Fix(Z), and so
there is a contradiction From this we conclude that when T is a maximal isotropy
subgroup of I there are no hidden symmetries satisfying condition (6.79).

6.7 Hidden symmetries and reflecting boundary conditions

The idea of hidden symmetries will become clearer if we look at some more
examples. We will start with a partial differential equation, equivariant under the
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Euclidean group, E(2):

du(x, y, )

51 = fux, y.0), ), (6 100)

where x, y, r, © € R and where f is a nonlinear opeiator that may include spatial
derivatives and that satisfies the equivariance condition

v, pn) = f(yu,u), VyeEQ) (6.101)

In Chapter 7 we will look in more detail at the way group elements act on a spatial
operator, but for now it is enough to know that the equivariance condition takes the
form we have been using throughout this chapter for ordinary differential equa-
tions

We will assume that equation (6.100) has a solution « = 0, and that this zero
solution undergoes a bifurcation as yu is increased through zero. The solution
u = 0 has full Euclidean symmetry, because it is the same everywhere and in
every direction. If we were to study this bifurcation problem in the infinite plane,
its symmetry group would be £(2), but suppose that we are doing a real experi-
ment and the experimental domain is the rectangle 0 < x <a,0 <y <b Atfirst
glance we would assume that the symmetry group of the problem is the symme-
try group of the rectangular domain, generated by the reflections m, : x —> a — x
and m, : b — b — vy in the lines x = a/2 and y = b/2 respectively, but theie is
something we have forgotten until now, namely the effect of the boundary con-
ditions acting along the edges of the domain Suppose our problem has reflecting
boundary conditions such that

97

5%:0’ onx=0and x =a, forpodd (6 102)
X

0%u

8_‘1:0’ ony=0and y =b, forgqgodd. (6.103)
y

Reflecting boundary conditions are often natural: for example, if ¥ measures the
concentration of some chemical in a reaction-diffusion system, then the Neumann
boundary conditions

du

5-::0, onx =0andx = a, (6 104)
X
du
8_))-:0’ ony=0and y = b, (6.105)

express the requirement that there is no flux of the chemical across the boundaries.
Typically, for a reaction-diffusion system, the governing equation (6 100) will take
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the foom

; 2 2
%:Dx%+D\g)—;+g(u,u), (6 106)
where D, and D, are real constants, and g(u, ) is a nonlinear function of u that
does not involve spatial derivatives. Differentiating equation (6 106) with respect
to x and applying the Neumann boundary conditions shows that 33u/9x3 = 0 on
x =0 and x = a. Differentiating twice more shows that 8°u/9x> = 0 there too,
and so on The odd y-derivatives can be shown to vanish on the appropriate bound-
aries in a similar manner. The connection between Neumann boundary conditions
and hidden symmetries in reaction-diffusion systems has been studied by Crawford
et al (1991) and Gomes, Labouriau and Pinho (1999). In the rest of this section
we will investigate some of their results in detail

Any stationary solution, u#(x, y), of equation (6.100), satisfying the boundary
conditions (6 102) and (6 103) can be extended to the region —a < x <a, —b <
y < b by reflecting in the boundaries such that

u(—x’ ))) = u(xv ,)’); (6 107)
ux, —y) = u(x, y). (6 108)

The new solution satisfies the reflecting boundary conditions on the original
boundaries, and periodic boundary conditions on the extended domain.
Conversely, any solution u#(x, y) that satisfies periodic boundary conditions
on the extended domain, and also the reflection conditions (6 107) and (6 108),
will satisfy reflecting boundary conditions on the original domain, since dif-
ferentiating the reflection conditions with respect to x and y respectively

gives
o’u a’u
~ 3P (—x,y) = m(x, y), for podd, (6.109)
%u 09u _
—W(x’ —y) = 5)71("“ y), for ¢ odd, (6 110)
(6111
and so we immediately have
’u 8fu ,
327 0, y) = anp (0,y) =0, for podd, (6.112)
09u 99u
——W(x, 0) = W(X’ 0) =0, forg odd. (6.113)
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Fig 6 15 The original domain 0 < x < ¢, 0 < y < b (shaded black) is extended
to the domain shaded grey (—a¢ < x < a,—b < y < b) by reflection in the bound-
aries x = 0 and y = 0. This larger domain is then extended periodically to the
lattice with vertices at (a(1 &= 2m), b(1 £ 2n)), marked by dotted lines.

Using periodicity we also have

0%u 0’u afu
m('_av )’) = m(as )’) = m(_a, V) = 0) P Odd) (61 14)

09u 9%u 99y

We can now use periodicity to extend the solution to the whole of the plane
R? by translation of the cell ~a < x < a, —b < y < b The governing equation is
equivariant under reflections and translations, so that

du _ d(yu)

frwpy =yfu,p =y = IR (6.116)

where y is the reflection or translation, and this means that the new solution is also
a solution of the governing equation

This extension procedure embeds the original bifurcation problem within the
bifurcation problem on a periodic lattice, £, with vertices at (a(1 4+ 2m), b(1 £
2n)), form =0,1,2,.. ,andn=0,1,2, .., asshown in Figure 6 15 In order
for £ to be a lattice group we have to use translated coordinates x’ = x —a and
vy =y —b so that (0,0) € £: in the new coordinates £ is the lattice generated
by the translations (2a,0) and (0, 2b). From now on we shall use the original
coordinates x and y, but when we refer to £ as a group we must bear in mind this
implicit shift of the origin. The symmetry group relevant to the bifurcation on the
lattice is D, x 12, where D; is the symmetry group of the rectangle —a < x < a,
—b <y < b, and T2 is the torus of tuanslations
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If we work with solutions that are periodic on the lattice, we can pick out those
that satisty the original reflecting boundary conditions by restricting our attention
to Fix(D,), where D; is the group generated by the reflections 7, : x — —x and
ry : y — —Y. Solutions that are invatiant under these reflections satisfy equations
(6 107) and (6.108), and lie in Fix(D3).

Solutions that are periodic on the extended lattice lie in Fix(£). The simplest
such functions are

Ny XTT 1y y7
u(,,\.,n))(x, y) = cos ( Aa +¢X) cos ( )Z — ¢;.), (6117)

where ny and n, are integers and ¢, and ¢, are real constants We assume at least
one of i, and ny is nonzero so that we are considering periodic rather than constant
solutions Any such soltution will lie in Fix(D;), and hence satisfy the reflecting
boundary conditions on the original domain, if and only if n,¢y =n,¢, =0

The apparent symmetries of the restricted problem in Fix(D,) are those in
N (D), which are generated by the reflections 7, 7y, m, and m,. The hidden sym-
metries then are the remaining reflections and translations of Dy x 72 The effec-
tive symmetry group in the restricted space Fix(D3) is N(D;)/ D2 = D,, with gen-
erators m, and m, This is exactly the symmetry group that we naively expected
would govern the bifurcation in the original domain.

If an experimenter did not want hidden symmetries in his or her system, the
reflections at the boundaries could be destroyed by putting a slight bend in the
boundaries This could be done in such a way as to preserve the reflections in
the lines x = a/2 and y = b/2, and hence the D, symmetry of the original domain.

6.7.1 Hidden translations

Let us assume that only one mode u(,, »,) is present, in other words that ny
and n, are fixed up to a change of sign and that this mode is the only one to
lie on the critical circle. The translations x — x +a/n, and y — y + b/ny are
elements of the symmetry group, D ix T2, of the lattice bifurcation problem
that are hidden symmetries in Fix(D,) if ny > 1 and ny, > 1 Applying either
of them in the flow-invaiiant subspace Fix(Dz) we find ug,, o) = —(, ny)
So equivariance under these translations implies that a mode u(x,y,t) =
A(t) cos(nyxm /a) cos(nyym /b) will atise at a pitchfork bifurcation where the real
amplitude, A(t), evolves according to the equation

da 3
5 SHATAT (6.118)

with ¢ a real constant. If either n, or n, is odd, this result does not come as a
surprise, because the symmetry of the original domainx - a —xory - b—y
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Fig 6.16. (a) There are no hidden symmetries when the original rectangular
domain (outlined by a thick line on the contour plots) contains an odd number
of half-wavelengths of the pattern in one or both directions (b) In contrast if a
whole number of wavelengths fit into the domain in both directions, there are
hidden translation symmetries

respectively leads to u,, n,) = —#(,.n,)> and so the requirement for equivari-
ance under these reflections would lead to an equation of the form (6.118). If both
ny and ny are even, however, then ug, ) is invariant under both the reflection
symmetries of the original domain, and so in the first instance one would assume
that the equivariance requirements were trivially satisfied, and that the mode would
arise at a transcritical bifurcation So in the case where n, and n, are both even,
the hidden translation symmetries x — x +a/ny and y — y+ b/n, alter the
expected form of the amplitude equation

Figure 6 16 shows that the half-wavelength translation x — x + a/n, (y —
y + b/ny) has the same effect as the reflection symmetry x — a — x (y — b — y)
if ny (ny) is odd, but is not equivalent to either reflection symmetry if both n, and
ny are even.

6.7.2 Hidden rotational symmetries

If there is more than one mode u,, n,) ON the critical circle, there may be hidden
rotational symmetries too. Let a = 1 and b = /3, and let the critical wavenumber
be k = 2/«/5, where k% = (n,c/a)2 + (ny/b)2 Now there are two sets of values
(ny, ny) that lie on the critical circle n, =n, =1, and n, =0, n, = 2, corre-
sponding to the eigenfunctions

u(1.1) = cos(mx + Pix) cos (%+¢n), (6.119)

2wy
U 2) = COS f + &2y (6 120)
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ky

Fig 6.17 Dual lattice showing rotational hidden symmetry The rectangular lat-
tice defined by Neumann boundary conditions on adomain0 < x <g,0<y <b
gives rise to the rectangular dual lattice drawn in solid lines Peimitted wavevec-

tois (ky, k, ) lie at the vertices of the lattice, where ky = 7, ky = n)Jr/\/i and
ny and ny ae integers. The black dots pick out a hexagonal dual lattice hidden in
the 1ectangular airay

respectively, where ¢, ¢1y and ¢y, are phases that can take any real value. These
modes correspond to combinations of the six equally spaced modes of the dual
lattice lying on the critical circle, as shown in Figure 6.17. The figure shows that
there is a hidden hexagonal dual sublattice, corresponding to a hexagonal lattice,
L', with a symmetry of rotation through 27 /3. This hidden symmetry crops up any
time we restrict a Euclidean-invariant problem to a rectangular lattice with aspect
ratio 1 : +/3 — it is not unique to the case of a rectangular domain with reflecting
boundary conditions In fact the possibility of hidden rotations should be borne in
mind whenever you restrict a problem to a lattice

Solutions periodic on the rectangular lattice, £, can be written as a combination
of the two critical modes as follows:

u(x,y, 1) =4A@{)cos(mx + ¢y) cos (% + ¢1y)
+2B(r) cos (2”7;’ + ¢2‘,) 6 121)

= 2A(t) cos (sz + % + dix +¢l>)

+ 2A(t) cos (er - % + 1 — ¢l)‘)
27

+2B(1) cos (7’: + ¢2>=), (6 122)
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where A(r) and B(t) are real and their scaling is chosen to be convenient in what
follows This is a restricted set of the solutions periodic on the hexagonal lattice,
L, that take the form

u(x, y, 1) = 21 TOHND 4 JdT VI 2TV L (6.123)

where z; () € C, so in this case it is appropriate to take the symmetry group of the
bifurcation on the hexagonal lattice, Dg i T2, as the large group. The 1ectangular
solutions are given by z; = Ae! @ t9n) 75 = Ae!@n—91)) and 73 = Be'¥»

Solutions that satisfy the reflecting boundary conditions on the original domain
lie in Fix(D,) and are invariant under x — —x and y — —vy, so they must have
d1x = @1y = ¢y =0, giving

p 2m
u(x,y,t) =4Acosmx cosﬂ+2Bcos—y (6 124)

V3 V3

In Fix(D;), the effective symmetries are once more those of the original domain,
which act on A and B according to

my:x - 1—x,(A, By = (—A, B), (6.125)
my 1y > /3 —y,(A, B) = (A, B), (6 126)

and so to cubic order we would expect the following equations for the evolution of
A and B:

dA
E=u|A+a1AB+ﬁ1A3+,BszA, (6.127)
dB

- = M2B + A% + a3 B% + B3AB + ByB3, (6 128)

where the constants u;, «; and B; are all real

However, the hidden translation y — y + +/3/2 acts on the subspace (0, B)
according to (0, B) — (0, —B), and so we must have o3 = 0 The hidden rotation
through 27 /3,

(6.129)

V3y x _y
272 2 )

X
p:u(x-y,z)—>u(——+——,— >

acts trivially on the subspace A = B, but since this is Fix(p) it is flow-invariant,
and so equations (6.127) and (6 128) must be identical for A = B. Consequently
we must have ) = u2 =, a1 =ar =« and g1 + B2 = B3 + fa.
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The resulting amplitude equations are

dA

o = A+ aAB + B1A® + B B?A, (6.130)
dB
5 = MB+ @A? + (B1 + Po ~ Bs)A’B + BaB>. (6.131)

These equations should be the restriction to Fix(D;) of the evolution equations
for the amplitudes, z;, on the hexagonal lattice, which take the form we derived in
Section 5.4, namely

dz; o

— =l ekl - vilzilPz1 — wallz2 + 1231721, (6 132)
dza _

— = ma+odsl - vilzaf?22 — va(lz3l® + 211722, (6.133)
dz3 = = 2 2 2

ke + az122 — vilz3l°z3 — va(jz1]” + |22]9)z3, (6 134)

where «, v; and v, are real constants The restriction to Fix(D;) is achieved by
setting (21, z2, 23) = (A, A, B), where A(r) and B(z) are real, to get

dA
5 = HAFaAB— (v + w)A® — vy B2A, (6 135)
dB 2 3 2

o = HB A’ - B’ —21mA’E (6.136)

However equations (6.130) and (6 131) have one more coefficient at cubic order
than equations (6 135) and (6 136) so there must be further hidden symmetries
restricting the equations in Fix(7;) that we have not used yet

If we combine a reflection in the line x = +/3y,

3y V3x oy

x, ¥y _y 6137
Tyt YT T3 6 137)

with the translation y — y 4 +/3/2 and call this combined opezation ¢, then using
the scalar action of the Euclidean group we transform

- V3y 3 V3x oy V3
YR 1 5 — Y-y D Y7
u(x, y, 1) = u(@d™ '(x, y), 1) u(2+ > 5 S+ ),

(6 138)

which induces the transformation

(z1,22,23) = (—iz1, —z3, —iz2). (6.139)
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Fig 6 18. Filled contour plot of the solution u(x, y) = 4cosmzx cosmy/v/3 +
2cos 2y /+/3. The rectangle marked with solid lines is the original domain 0 <
x<1,0<y<+3

For (21,22, 23) = (A, A, B) € Fix(D,) we have
¢(z1.22,23) = (—iA, =B, —iA), (6 140)
and so
Fix(D,) N ¢pFix(Ds) = {0} (6.141)

To discover what effect this symmetry has in Fix(D;) we must therefore work
in the space, Fix(L’), of functions periodic on the hexagonal lattice, £’ In this
extended space the symmetry ¢ shows that the coefficients of the two terms |z; |z j
with i # j in the evolution equation for z; must be the same for i, j = 1,2, 3.
Combining this with symmetry under rotation through 27 /3 shows that the coeffi-
cients must also be the same in all three equations, as in equations (6 132)-(6.134)
Restriction to Fix(D,) then shows that the coefficient of A%B in the dB/df equa-
tion must be twice that of B2A in the dA/d¢ equation This removes the extra
degree of freedom in the restricted equations (6.130) and (6 131)

This is another example of a hidden symmetry that does not act on a subspace
of the restricted problem, but that none the less affects the evolution there

Recall that solutions with A = B have a hidden symmetry of rotation through
27/3 You can actually see this in the solutions: for example, if weset A = B = 1
then we have the solution

u(x, y) =4cos Tx cos Ty/v/3 + 2cos 2my//3, (6 142)

which is plotted in Figure 6 18. The hexagonal symmetry is clearly visible.
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Exercises

6 1 What are the isotropy subgroups and their generators for super hexagons and rolls
on the hexagonal superlattice defined by the wavevectors k; = (0,1) and &y =
(+/3/2, —1/2)? Are there any hidden symmetries of eithet of these planforms? What
ate the other axial planforms on the hexagonal superlattice (in the absence of midplane
reflection symmetry)?

62 Derive the amplitude equations for a 1:3 mode interaction problem in a one-
dimensional system with O (2) symmetry.

6 3 Derive the amplitude equations relevant to a steady spatial-petiod-doubling bifurca-
tion.

6 4 Work out the amplitude equations for eightfold quasipatterns, and find the stationary
solutions and the phase and phason modes

6 5 Work out the amplitude equations for the steady bifurcation on a square lattice under
the pseudoscalar action of £(2). Find the simple anti-square solution and determine
its isotropy subgroup.

6 6 Consider the steady bifurcation on the thombic lattice, using the fundamental repre-
sentation

u(x 1) = z1(ne'k1* -l"Zz(I.‘)e‘ikz‘x +cc t+hot

Work out the equivalent of Table 5 1 and discuss the role of hidden symmetries
67 Show that N(£) = H x R>.
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Spatial modulation and envelope equations

In Chapter 2 we saw that a system with discrete eigenmodes can be reduced
to its evolution on a centre manifold. By requiring patterns to be periodic with
respect to a lattice in Chapter 5 we could distinguish between critical and decay-
ing modes and apply the centre manifold theorem to extract amplitude equations
for the critical modes However, if the pattern is not exactly periodic our analysis
must allow for the possibility that modes arbitrarily close to the critical modes in
Fourier space contribute to the pattern Then the distinction between stable and
unstable modes becomes a little blurred: a mode with growth rate infinitesimally
greater than zero will grow, but infinitely slowly, whereas a mode with growth
rate infinitesimally less than zero will decay, but again infinitely slowly In this
case, we cannot perform a centre manifold reduction, since we cannot separate the
growing and decaying modes well enough. Specifically, we cannot find an appro-
priate § in equation (2.30) of Chapter 2. In cases such as these we must use an
alternative method of analysis This chapter describes how envelope equations can
be used to describe the evolution of patterns that fit almost, but not exactly, onto a
lattice.

7.1 Envelope equations for specific models

As explained in Chapter 5 pattern-forming systems can often be described ade-
quately by a set of partial differential equations for a marker quantity, such
as the density or temperature perturbation in a convecting fluid, together with
appropriate boundary conditions. In this form, the problem is amenable to anal-
ysis using envelope equations To explain the method, we will look at a specific
example

The Swift-Hohenberg equation (Swift & Hohenberg, 1977) was originally pro-
posed as a simplified model of convective instability in a one-dimensional system.

209
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It takes the form

%?:hp-wz+@fp—u{ (71)
where u(x, y, t) represents a linear combination of the vertical fluid velocity and
the temperatute perturbation, p is a bifurcation parameter, and % is a constant
Variations in the vertical direction have been averaged out in this model We will
assume here that the Laplacian includes both horizontal dimensions, and that the
system is so large in the two horizontal directions that it is effectively infinite in
horizontal extent The latter point is particularly important, since it means that
modes of all wavelengths are permitted, whereas if we were to consider a finite
domain, typical boundary conditions such as ‘no-slip’ (¢ = 0 at x = 0 and L and
y = 0 and L, where L is the length of the box in the two horizontal dimensions),
periodic (#(0, y) = u(L,y), u(x,0) = u(x, L)) or ‘stress-free’ (du/dx at x =0
and I and du/dy at y = 0 and L) would select an infinite set of discrete eigen-
modes that fit in the box

The solution # = 0 will become unstable as p passes through zero. If we con-
sider a mode of the form u(x, y, 1) = we® k¥ 4 ¢ ¢ where [#] < 1isa constant
and x = (x, y), then linearising equation (7.1) around u = 0, gives the following
expression for the growth rate o';

o =u— (K -K)? (1.2)
where k? = [k|> The most unstable modes, which are the ones with the largest
growth rate, have k> = k2 When g is negative, all modes have negative growth
rate and will decay. At 2 = 0 any mode with wavenumber k¢, or any superposition
of such modes, regardless of the orientation of the wavevector, can appear and
contribute to the pattern since such modes have zero growth rate and will neither
grow nor decay. No particular configuration is preferred over any other according
to linear theory. Assuming a finite number of modes is present, as is typical for
pattern-forming systems, we have

u(x,y) =y A ¥4 cc, (73)
j

where ijl2 ::kf, and the amplitudes A; are constants. There is no time-
dependence in the solution u(x, y) since the contributing modes are stationary
at u = 0. If in fact a continuum of modes were present we would write

u(x,y) = / Akye* *dk +c.c , (74)
J|k|=ke
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where A (k) is the Fourier transform of the amplitude, but as we typically want to
look at patteins that at onset are made up of a small number of modes we won’t
pursue the continuum foimulation here

As p increases, the growth rate ¢ will become positive for a range of wavenum-
bers k, and |u| will grow. The observable pattern will be made up of stationary and
growing modes with o > 0. As |u| increases, the nonlinear terms become impoi-
tant, and these eventually select the pattern, stabilising some Fourier modes and
causing others to decay.

We will start by analysing the simplest possible pattern, namely rolls or stripes,
so we assume here that only one pair of wavevectors arises in the system and we
have

u(x) = Ae'he¥ 4 Ae~ikex (75)

at the bifurcation u = 0. Both the k = (44, 0) and &k = (—k.. 0) modes are
present, since the solution #(x) must be real. We shall see later on that the approach
can be extended to more complicated patterns such as squares and hexagons, made
up of several superposed Fourier modes

Close to the bifurcation point, j is small, and we can write

n =€, (7.6)

where |e| « 1 From equation (7.2), we expect that a band of wavenumbers of
width O(¢), centred on k = k., will now be unstable For a wavevector k = (k; +
kyJ¥ + k,¥, where ¥ and ¥ are unit vectors in the x and y directions respectively,
the growth rate is given by

o = — (ke + K2 +k2)° &)

If k. is O(1), then for all terms in the equation to contribute at the same order in
€, consistent scalings are k, ~ €, ky, ~ Je and o ~ €2; this confirms the size of
the unstable band, illustrated in Figure 7 1. Since there is a continuous spectrum
of permitted wavenumbers — and hence growth rates — right up to the stability
boundary, we cannot sepatate the growing and the decaying modes well enough
to petform a centre manifold reduction We must find an alternative method of
analysis to reduce our infinite-dimensional system of modes to something more
manageable. In fact we turn to a multiple scales analysis.

The effect of the small band of unstable wavenumbers around |k| = kg, is to
modulate the envelope of the cartier wave, ¢'**, so that the amplitude A varies
slowly in time and space (Figure 7 2) The appropriate modulation scales can be
deduced from the scalings for o, k, and k,: we introduce the slow time variable
T = €t and the slow space variables, X = ex and Y = Veéy, where 0 < € « 1,
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Fig 71 (a) The neutral (or maiginal) stability curve p = (k2 — kg)z. The curve
shows the locus in (u, k) space of Fourier modes with zero growth 1ate (o = )
The area above the curve represents growing modes (o > 0) that contribute to the
observed pattern, and the area below represents decaying modes (o < 0) Close
to the onset of instability, when the order parameter p has size 0 (), the band
of growing modes has width O(¢) (b) The corresponding growth 1ate, o, as a
function of the wavenumber, &, for a fixed value of 1. Once again the O (€) band
of growing modes with positive growth rates is apparent (c) The growing modes
lie in an annulus (shaded giey) in Fourier space, where k = (k;, k2). The circle
k = k. is shown as a solid line. The region of growing modes around k = (k., 0)
has width O (¢) in the k| direction and width O (,/€) in the k) direction

together with the fast scales7 =7, ¥ = x and ¥ = y We then write
u@ 5.7 X, Y, 1) = AKX, Y, )e'*F + ¢ ¢, (7.8)

and a formal multiple scales expansion determines the evolution equation for
AX, Y, T).
To perform the multiple scales analysis, we make the substitutions

5 d d d d a 0 d d , 8
- = =<t€4, —=—=+tVeE 5, —==+€_—,
dx  0x aX dy dy aY ot ot oT
(79)
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u carrier wave

envelope

Fig 7.2. The modulated stripe pattern u(x, y, 1) = A(X, Y, T)e'* ¥ + A(X, Y,
T)e~<¥ plotted against x for a fixed value of Y and 7. The carrier wave e'%c* has
wavelength 27/ k., wheie k. is the critical wavenumber for the system. The mod-
ulation occurs because a band of wavenumbers of width O(¢) centred around
the ciitical wavenumber k. also contribute to the pattern, leading the envelope,
A(X,Y, T),to vary ona long O(e~!) lengthscale in x.

so that equation (7.1) becomes
2
du a2 32 32 32
2 2 2 2
Se = — 3 = k& 2¢ | —= +k 2— -
Car M {(8x2+ )+€(a’f2+°)(axax+ay2)

4—2232(82+1~2+2282+82 2+ }
— | == + k¢ € = — Cu— U,
Coaxz\om e a¥ox © ar?

(710)

noting that  has no dependence on y or 7 At this point we drop the tilde from ¥
since ¥ is just x.
We now expand the solution, u, in powers of € as follows:

u:eu1+62u2+63u3+-- (711)

where u1, u2 and u3 are O(J) functions of x, X, Y and 7 Often the multiple scales
technique will work even if the correct scaling for u can’t be guessed in advance:
the solution can be expanded in multiples of the lowest power of ¢ appearing in
the linear analysis, in this case e%, and the appropriate scaling will eventuaily
emerge from the requirement that we end up with a nonlinear evolution equation
for A. It will, however, take longer to do the calculations and incorrect scalings
will probably lead you up a few blind alleys along the way.
At O(€), we have

2 2

ad
L(ul)E(a—x—z +k§) uy =0 (7.12)
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If we consider only solutions which are bounded as x — =+ o0, then we must have
wy(x, y, 1) = AX, Y, T)e'** +c.c, (7.13)

where we have rescaled A — € A compared with equation (7 8) At 0(€?), we
have

P, 92 3?
L) =-2(— +k2) (2 —u, 714
(2) (ax2 * C) ( xax ayz) “ 714)

but the righthand side is zero by equation (7.13), so equation (7.14) has the solu-
tionuy(x, y, 1) = B(X.Y, T)e'*<* 4 ¢ ¢ We can absorb u into u (in other words
u] + €uy — uy) since the new ) will still be O (1) at leading order This is equiv-
alent to setting B = 0. The O(e*) equation is then

2
dup 2 (9> 9” 92 3
I = —_—— — 2 — k= Y I O o o,
(u3) = =57+ 8X2(3x2+ )= \%5pax tayz) M
(7.15)

If there ate to be no resonant terms in the equation for u3, so that u3 is bounded
as x —> + oo and the expansion is uniformly valid in time and space, then the
coefficients of e on the righthand side of equation (7.15) must be zero.

There is another way of looking at this requirement that involves solutions of
the adjoint equation to (7 12). The adjoint operator L' is defined by the equation

<ulLT@w) > =< Lw)|v >, (7 16)

where < | > is a suitable scalar product. In this case the scalar product is the
integral f02 7/ ke dx, and we have LT = L under suitable boundaty conditions, so L
is self-adjoint The Fredholm alternative says that either the equation

L{u)y =20 (717)
has no nontrivial solutions or the adjoint homogeneous equation
L) =0 (7.18)

has a nontrivial solution v # 0 In the second case, the Fredholm alternative theo-
rem states that

Lu)=f (7 19)
has a solution if and only if

< flv >=0, (7.20)
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for all nonzero v satisfying equation (7 18). Cleaily if equation (7 19) has a solu-
tion then

< flos=<LlW>=<ulLi(®) >= 0, (7.21)

for v # 0 such that Z7(v) =0 The proof that equation (7 19) has a solution if
equation (7.20) holds is more involved and involves the use of integral equations
(see Porter & Stirling, 1990, for further details) In the current calculation, the
operator is self-adjoint (LT = L), so e¥** are nonwivial solutions of equation
(7.18), and we must have

2/ ke _
/ Tk f2(x; X, ¥, Tdx =0, (722)
4]

in order for equation (7.15) to have a solution for u3, where f3(x; X,Y,T) is
defined by the righthand side of equation (7.15)

FG: X, Y, T) =
duyp 92 [ 2) 22 97\’ 5
_ou 22 (L k2 - (2 ) u—id
R T'e) (3x2+ ¢ ) 8.x3X+8Y2) “rei

Since f3 can be expressed as the sum of Fourier modes e/"*<*, where n is an inte-

ger and since joz’-[/ ke piiDker dy is zero for n # =1 respectively, the only terms
that will contribute to the integrals in equation (7 22) are the coefficients of eTikx
In order for equation (7.22) to hold, both these coefficients must be zero indepen-
dently. The coefficient of e~**<* is in fact the complex conjugate of the coefficient
of ¢'**, because equation (7. 1) is real, and so there is only one condition to satisfy
Substituting equation (7.13) into equation (7.15) we see that the coefficient of
eikcx is
2
DA G i 82
e +RA-3JAPA+ M — - ——) 4 7.24
8T+M Al°A 4 C(BX 2kCaY2) (7.24)
and we must set this equal to zero In other words, the following envelope equa-
tion must be obeyed
2
dA 3 i 92
—— =0A-3lAPA+ M| ————) A 725
a7 — kAT NATAS C(ax 2k£8Y2) (725
Envelope equations are often referred to simply as amplitude equations, and we
shall use both terms interchangeably from now on. The coefficients in the ampli-
tude equation are not free, as we will see that they would be if we had detived the
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equation using symmetry methods, but are determined directly from the original
governing Swift—-Hohenberg equation.
In summary, the velocity, # can be written

u(x, v, t) = eAX, Y, T)e** +cc. +. -, (7 26)

where the omitted terms are higher harmonics in the Fourier expansion, and where
the amplitude, A, of the carrier wave, e/**, will evolve according to the amplitude
equation (7.25) to leading order. This is a good approximation to the behaviour of
the original system close to the onset of instability, as long as the amplitude does
not vary rapidly in time or space

We can set the critical wavenumber to unity, k. = 1, by rescaling the x variable,
and the amplitude equation may be renormalised using the transformations, A=
V34, X = X /2k. and Y = Y/\/i to give

A o i 92
%:MAr|A|2A+(-ri—) A, (727)

where all the hats, including the one on y, have been dropped. This is the Newell—-
Whitehead-Segel equation (Newell & Whitehead, 1969; Segel, 1969), which we
will use to investigate the stability of roll patteins in the next chapter. In fact we
could also have set u = | by rescaling the time variable 7, but it is usual to leave
the bifurcation parameter in the equation explicitly for the sake of clarity For neat-
ness, some authors also remove the factor of 1/2 in front of the term —i32/aY?2,
by scaling Y differently. Retention of the factor of 1/2 is in some sense ‘natural’
because it corresponds to scaling x such that k. = 1 and then choosing the scale
factor for X to be the square of that for Y in any case this is the scaling we shall
adopt in this book.

Another way of thinking of the dropping of the hat on w is that we have reab-
sorbed the scalings with respect to € into the variables, so that we have p ~ €2,
A~e€, 0/0T ~ €2, 9/0X ~€eand 9/9Y ~ e% This approach is very common in
the literature, and equation (7 26) would often be written without the € in front of
the amplitude. In much of the rest of this book the scalings will be implicit in this
manner

7.2 Envelope equations and symmetries

Frequently, a particula: pattern occurs in more than one physical context: for exam-
ple, stripes are seen in convection, in reaction-diffusion systems, and on a zebra’s
back In this case, it might be preferable to deduce the amplitude equations directly
from the observable features and symmetries of the pattern and its environment,
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rather than dealing with one particular physical, chemical or biological system
that exhibits the pattern. This symmetry-based approach will be described next It
shows explicitly that the set of allowed patterns depends on the symmetries of the
system, and hence that qualitatively similar behaviour may arise in very different
systems Consideration of the symmetries of a system is a very powerful tool for
understanding the evolution of patterns that arise in real situations, as we have seen
in previous chapters.

In the case of rolls or stripes, we first assume that the pattern can be modelled
as a carrier wave with a slowly varying amplitude. Then choosing the x direction
to be perpendicular to the roll axis, and scaling x so that the most unstable mode
has wavenumber k. = 1 we have

u(x,y, 1) =AX,Y, e +c.c. (7 28)

to leading order, where u(x, y, f) measures some physical marker quantity, such
as a temperature perturbation in convection or the concentration of a chemical
reactant in a reaction-diffusion system, through which the pattern can be observed
The amplitude, A, will turn out to be small, but we make no explicit assumptions
about its scaling at this point.

In order to write down the growth rate for a Fourier mode proportional to
¢ T kX we must consider certain properties of the rolls and their environment
We assume, based on observation of the pattern we want to model that:

(1) the system vaiies under the influence of an exteinal control patameter u, for example
the Rayleigh number, o1 amount of heating, in convection;

(ii) the most unstable Foutier mode has |k|> = 1, and becomes unstable at ;& = 0;

(iii) the environment is isotropic, so the growth rate o does not depend on the direction of
the wavevector k and hence must be a function of k% = |k|? (We expect o to depend
on k? 1ather than k since physically reasonable goveming equations will give rise to
growth 1ates that are differentiable in Fouier space.) Close to the bifutcation we can
therefore expand o in powers of (k? — 1).

(iv) the 10lls are steady, so there is no oscillatory behaviow and o must be 1eal

With all these requirements in mind, we find that ¢ must be written
o =p—&E 17+ Ok ~ 17%), (7.29)
where &p is a real constant, that may depend smoothly on u, andis O(1) at u = 0

As before the growth rate has a quadratic maximum in (k% — 1); there can be no
linear term since if there were the maximum would be displaced from k% = 1.
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If we look at Fourier modes close to the critical mode ¢'*, we can write k =
(1 + k., k,) and so the growth rate is given by

o =p—E (ke + K2+ 1)+ Ok — 1P (7 30)

Close to the bifurcation at pu =0, yx is small and we write u = €2fi, where
0 < € « 1 and consistent scalings are ky = e7<\x, ky = «/EE) and o = 623, just
as we found for the Swift—-Hohenberg model above. Since & is O(1) at u =0,
we can neglect at leading order any dependence it may have on . Again we have
discovered long space and time scales, suggesting that we may indeed interpret the
solution, u(x, y, t), as a catrie1r wave in a modulated envelope We introduce slow
variables X = ex, ¥ = /ey and I = €2t, the scalings being given by those for
ki, ky and o, and fast variables ¥ = x, ¥ = y and 7 = ¢ as before. The quantity u
is written as

@50 X, Y, Y =AX, Y, T)e* +cc +hot, (731)

and we can immediately drop the tilde from X as before.
To leading order, equation (7 30) becomes

] 2
o = — 48 (kx - §k§> (7.32)

We invert the implied Fourier transform by considering a Fourier mode

el T ex ik 112
u(x; X, Y, I)= aoeoe t4ixtikyex+ikye' /%y +cc.,

— a0607+1x+1kxX+rk,Y ‘e,

=Ap(X,Y, )" +cc., (7 33)

where ag is a constant, and Ap(X, Y, I') is a function defined by equation (7 33)
Equation (7.32) could clearly have been derived by substituting (7.33) into the
linear equation

du o i 9t
— =+ 4 — — =) u, 734
oT et é&0<ax 2ay2) “ (734
and multiplying by the growth rate scaling €2 Since there is no x dependence
in the equation, it also holds for Ag(X, Y, I'), and since the amplitude equation
should hold for all A, not just the special case A = Ag, we conclude that the linear
part of the amplitude equation for A must be

2
3A (8 i3\
22 — -} A :
3T A+4EO(3X 2ay2) (7.35)
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The above procedure is equivalent to returning from Fourier space in equation
(7.32) to real space via ik, — 9/dX, iky — 9/3Y and o — 9/97T. (In order to
maintain a consistent scaling we must send . — i at the same time.)

We can also get to this point using a formulation that is continuous in wavenum-
ber space, namely

u(x, v, 1) = / Alky, ky, ) ) gp dies 4 ¢ ¢ (7.36)

The dispersion relation (7.29) implies that to linear order the Fourier transform,
A(ky, ka, t), must satisfy

aA ~ ~
5 = A= g2 k* —1)%A, (737)
Setting (k1, k2) = (1 + EE,, 6%75),) gives

a7 = BA =& (2K + k) "A (7 38)

to leading order, where & = €¢2f and T = €2¢ as before, and we also have
e 1 o~ o~
u(x, y, 1) = / A(l + ek, e%k},, T)el* el ety e gie e%dk): +c.c

_ Ege,x/ A1+ ek, ek, T)e' @XHON Gl dk, + ¢ ¢

(7 39)
We now identify the amplitude or envelope as
AX,Y, T) /Z(l + ke, ek, T E&XARN 4T dT (7.40)
which satisfies the linear envelope equation
2
dA 3 i d?
— =fA+4 | ——-— ) A 741
a7 — KAt (ax 28Y2) (741

We do not fix the constant of proportionality in the definition of A at this stage,
because the nonlinear terms determine the correct scaling with e.

The nonlinear parts of the amplitude equation are found by considering the sym-
metries of the system We assume that the governing equations and boundary con-
ditions have Euclidean symmetry, as does the Swift-Hohenberg equation on an
infinite horizontal plane The zero solution clearly also has Euclidean symmetry.
The carrier wave lies on a one-dimensional lattice that inherits some symmetries
from the Euclidean group, E (2), namely translation in x and reflection in x Since
we are looking at stiipes in a two-dimensional domain we also 1etain translation
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and reflection symmetries in y. (In a one-dimensional domain we simply drop
all mention of y and use symmetries in x only to determine the amplitude equa-
tion.) If the general form of the solution given in equation (7.31) is to remain valid
under these symmetries, the amplitude equation must be equivariant with respect to
them.

Translation in x corresponds to

x> x+¢, X > X+ep, AX,Y,T) > AX —€¢, Y, T)e™?, (7.42)

where ¢ is a constant. At this point we apply the symmetiies A(X,Y,7T) —
AX,Y,T)e™® and A(X,Y.T) - A(X —d,, Y, T) separately, where both ¢
and d, are atbitrary constants The former, a phase-shift symmetry, is the nor-
mal form symmetry: in a one-dimensional system, where there is no depen-
dence on Y, it can be shown that the normal form symmetry holds to arbitrar-
ily high order in the expansion of the amplitude equation (Melbouine, 1998).
Generically, the two sepatated patts of the translation symmetry will be broken
eventually by terms of the form AP A9¢'(P=9-D% = AP A901P—9- DX/ for p 4 ¢4
Jarge, and others that involve derivatives of A. The overall translation symmetry
AX,Y, T) > A(X — €, Y, T)e™? will however hold to all orders. We usually
consider low-order truncations of the amplitude equations, so we do not see the
terms that break the normal form symmetry Since we are working close to onset
where |A| is small, the symmetry-breaking terms will be tiny For most purposes
we expect that they will be negligible, but they may become important if we want
to use the amplitude equation to examine other small effects, such as the influence
of distant boundaries

A heuristic explanation for splitting the translation symmetry in this way is
that we want the amplitude equation to hold for arbitrary small € = X/x As
we vary €, the translation in X, d, = €¢, varies for a fixed translation, ¢, in
x. This means that we have to apply the x and X translations independent]y:
invariance under translation in x gives the noimal form symmetry, while invari-
ance under translation in X gives the symmetrty A(X, Y, 7) > A(X —d,, Y, T)
that mimics the translation symmetry, u(x, y,t) = u(x — ¢, y, t), of the solu-
tion Of course, in reality the x-dependence of u(x, y, ) cannot be split neatly
into exactly two scales corresponding to the variables x and X, and this is
reflected in the appearance of terms that break the normal form symmetry at high
order

Iranslation in y simply gives

AX, Y, T) > AX,Y —d,,T), (7.43)
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where d, is a constant Reflection in x corresponds to
X— —X, A— A, (7 44)
whereas reflection in y simply corresponds to
Y - —Y (7 45)

The freedom to choose the origin of time is captured by the time-translation sym-
metty A(X,Y,I) - A(X,Y, T — 1) for constant 7 Any nonlinear tetms which
appear in the amplitude equations must be consistent with all the equivariance
conditions

Close to the bifurcation point, A will be small, as will its spatial derivatives, so
among the possible nonlinear terms, we must look for the one which is of lowest
order. The quadratic terms A, [A|?, A2 are not allowed because they do not trans-
form in the same way as dA/97 under the normal form symmetry. The same is
true of the cubic terms A3, |A|2A and A® The only cubic term which conforms
to this symmetry is |A|A. This is the lowest order nonlinear term permitted in
the amplitude equation; its coefficient is forced to be real by equivariance under
reflection in x, and to be independent of X, ¥ and 7 by equivariance under space
and time translations For details of the enforcement of normal form (o1 x transla-
tion) and reflection symmetry equivariance, look back at Section 5 3, where a very
similar procedure is set out step by step.

The Jowest order amplitude equation thus turns out to be

8 i
aX 2072

A )

2

) A— glAPPA, (7.46)
where g is a real constant The linear growth rate has a scaling O(e?), so for the
nonlinear term to come in at the same order, the amplitude must scale as O(¢)
and g as O(1) True to form we set A = €A and immediately drop the hat If the
nonlinearity is to saturate or counteract the linear instability, then g must also
be positive Otherwise, higher order nonlinear terms will have to be introduced
until one of them is capable of saturating the instability. Alternatively, the zero
solution would be nonlinearly unstable at all orders, which would mean that no
ordered pattern would be observed over long times, and we know this is not the
case in a system whete r0lls are observed to form spontaneously. In contrast to the
case of the explicit reduction from the Swift-Hohenberg equation, the coefficients
in the amplitude equation are not determined in the symmetry-based derivation
Depending on your perspective, this is either an advantage, because it makes clear
what the general case is, or a disadvantage, because you can’t immediately use the
equation to describe a particular application.
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Again we can renormalise A to set g = 1, rescale the space variables to remove
the factor of 4£2, and drop the hat from the 1 to produce

2
dA a i 8
— = A —|APA -—= ] A, 7.47
a7~ HA 1Al '+(ax 28Y2) (747
which is the Newell-Whitehead—Segel equation (7 27) as found above. In the case
where we have no Y dependence the equation reduces further to

2

A _ i iapas A
Y ax2’

T'his is the Ginzburg-Landau equation (Ginzburg & Landau, 1950), which is
very well known and has applications in many areas of physics and beyond.
Ginzburg—Landau theory stems originally from a phenomenological model for
superconductivity introduced by Ginzburg and Landau in 1950 (As I write
Ginzburg has just been awarded a Nobel prize for his work on the theory of super-
conductors.) Equation (7.48) is sometimes called the real Ginzburg-Landau equa-
tion, because its coefficients ate real, to distinguish it from the complex Ginzburg—
Landau equation, which has complex coefficients (see Section 7 5) In both cases
the amplitude, A, is complex in general.

The linear terms in the amplitude equation must also satisfy the equivariance
conditions, and it is easy to check that they do. This is no accident — we required
the growth rate given in equation (7.29) to respect Euclidean symmetry by insisting
that there should be no dependence on the direction of the wavevector Then when
we expanded around the catrier wave mode to get equation (7.30) we inherited its
reflection and translation symmetries In fact we could have used equivariance to
write down the linear terms of the amplitude equation too If we had done this we
would have found that the linear terms should be

(7.48)

A A i aA_+ 824 ta 9%A 83A.+, 334
— =da iar—— — 1ag————=
ar ! 25x T Bz T Mgy T xs T yays
%A 9t A 3% A
. - 749
TOTgxs T B yxaay: T Mgya T (749)

where reflection symmetry prohibits the appearance of odd Y -derivatives of A, and
forces the coefficients a; to be real The rotation symmetry forces the derivatives to
appear in the combination (3/8X — (i /2)8%/3Y?2), or in other words imposes the
scaling X ~ Y2 The requirement for the most unstable mode to be k = (1, 0) then
forces ap = a4 = 0 and a3 > 0, so the leading order linear terms are exactly those
that appear in the Newell-Whitehead—-Segel equation (7.47).

Generically, the Ginzburg—Landau equation in one spatial dimension is valid
to describe the evolution of the critical mode envelope, A, close to a stationary
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bifurcation in a system with Euclidean symmetry, where the growth rate of Fourier
modes has a quadratic maximum at some nonzero wavenumber, k = k. # 0, and
all other modes are damped at onset

Imagine that now we have an anisotropic system, so that there is no symme-
try under rotations, but that £ = (1, 0) is still the fastest growing mode. Then the
leading order growth 1ate is

o =p—E; — £k, (7.50)

where &, and &, are real constants, which translates to

dA LA ,9%A
— = P £ 5
a7 HA + & ax2 +§, 972 (7 51)

The requirement for & = (1, 0) to be fastest growing means that there can be no
linear term in &, in the growth rate, so that forces az = 0, but the X and ¥ deriva-
tives need no longer appear in any particular combination, so a4 is no longer forced
to be zero By rescaling X and ¥ we can set Sf = Sf. =1, and if we then add in
the nonlinear term we have, to leading order,

oA = uA — |APPA + V?A, (752)

aT
the two-dimensional version of the Ginzburg-Landau equation It might seem
somewhat paradoxical that in an anisotiopic environment the evolution of rolls is
governed by the isotropic equation (7 52), while in an isotropic system rolls obey
the anisotropic Newell-Whitehead—Segel equation, but by picking a direction for
the carrier wave we break the symmetry in the isotropic case, forcing the along-
and across-roll derivatives to scale differently In the anisotiopic case on the other
hand we can scale each direction independently and so bring the equation into
isotropic form at leading order.

Equations (7.47), (7.48) and (7.52) all admit roll solutions of the form A =
Re'?* where R* = ;1 — ¢? and g is a constant The roll wavenumber differs from
the critical wavenumber 4. = 1 by an amount eg. We shall see in the next chapter
how the nonlinear stability of rolls depends on their deviation from the critical
preferred wavelength

There is a caveat to the use of envelope equations that I should point out
now Neither multiple scales analysis nor the use of symmetry provides a ig-
orous derivation of an envelope equation The use of the Ginzburg-Landau
equation to model the evolution of the amplitude A(X,7) in the solution
u(x,t) = A(X, T)e'* +cc. in a one-dimensional Euclidean-symmetric system
with nonzero preferred wavenumber, & = k¢ # 0, can be justified rigorously (see
Melbourne, 1998; 1999) However, in two or more dimensions, the 1otational
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symmetry of a Euclidean-symmetric system means that the choice of direction
for the preferred wavevector is arbitrary. Furthermore, the envelope around the
arbitrarily selected preferred mode, or carrier wave, contains othelr wavevectors on
the critical ciicle that would be expected to grow at the same rate as the carrier
wave, and so to be equally important. Though a finite number of isolated critical
modes tends to be selected at the nonlinear stage, so that we see lattice patterns,
their appearance destroys the original Euclidean symmetry of the problem. Tlus
the Newell-Whitehead—Segel equation, for example, cannot be derived rigorously.
What this means in practice is that we cannot be sure that the solutions of higher-
dimensjonal modulation equations approximate the behaviour of the systems they
are intended to model We can look on them as phenomenological models, bearing
in mind that they may fail to capture some aspects of the behaviour that we are
interested in On the other hand, the Newell-Whitehead—Segel equation in partic-
ular has been used for many years to describe the evolution of convection rolls in
high Prandtl number fluids, and successfully reproduces, close to onset, the stabil-
ity criteria that are found directly from the governing Boussinesq equations (see,
for example, Decker & Pesch, 1994). (At low Prandtl numbers, convection is influ-
enced by the presence of large-scale mean drift flows, and the Newell-Whitehead—
Segel equation alone no longer captures all the instabilities of rolls — a measure of
the mean flow must be included as an additional dependent variable as we shall see
in Chapter 8. In this case the assumption that only modes with wavenumber k. # 0
arise at the onset of the instability is violated, because the large-scale mean flow
is present with k£ = 0. Similar phenomena are possible in other pattern-forming
systems.)

7.3 Free energies or Lyapunov functionals

The real Ginzburg-Landau equation has a free energy, or Lyapunov functional,
given by
2

.

. X+ 1
F(A,A)=/ ~,u,[A|2+§|AI4+ dx, (753)
X_

ax

where the domain of the pattern-forming systemis X_ < X < X4, and where we

can let X_ — —o0 and/or X+ — +o00 as necessary. The integrand is known as
the free energy density and in this case it is given by

- I A

A, A) = —plAP + DAY + | =

f(A, A) = —plAl” + 1A+ 3%

Loosely speaking, a functional is a function of functions In this case .F is a

function of A and A, which themselves are functions of X and 7 Differentiating

2

(7.54)
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equation (7.53) with respect to 7 gives

dF X+ 5 A _ 5 - 3A
_—=— A—|AIA)— — Al A)—=dX
o WA AP+ - 1P
X+ 9A %A QA 3%A
/ 94 9 -+ (7 55)
x. 0X0T3dX 0XaTaX
We now assume that A satisfies boundary conditions such that
Xy
dJAJAT T
— =0 7.56
[3X 8T:[X (7.56)

For example, this will hold if the pattern amplitude is zero outside some central
region of the domain Then integrating the second integral in equation (7 55) by
parts gives

dF Xt 924\ 9A
———/ (uA—lAle-i-——) —dX
Ix_ aT

dr ax?
Xe 7 _ - 9%A\ 0A
- A—APA+ ) —dx, 757
,/_ (“ Al +ax2) aT (757
X+ 194
=2 -—| dx <0 758
/X_ 3T < (7 58)

The free energy is always decreasing unless A(X) is a stationary solution of equa-
tion (7 48), so the real Ginzburg-Landau equation does not admit time-periodic
solutions. If we define the average free energy to be
P
F>= ——n, 759
< i (759)
taking the limit as X — —oo and/or X4 — -oo if necessary, then < F > is
always decreasing, and is bounded below, since

1 X+ 1 dA|?
<F>=—— —nlAPR + A + | =] dx,
o /X_ RIAP + 5 1A ‘ax
1 Xy 1
> ———/ “ulAR + [AlfdX
Xy —X_ Jx. 2
1 X+ 2 2
> / Py =B (7 60)
X, —X_Jy "2 2
where we have used
1 2 /1—2 .
- e B 761
g2(2) uz+2<, == (761)
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Since < .F > is decreasing and bounded below it must tend to a stationary value,
Fo, for example, and this corresponds to a stationary solution for A. Thus solutions
of the real Ginzburg—Landau equation must be steady at long times.

The solution with the lowest possible free energy, < F >= —u?/2,is A=
Jme'®, whete 6 is a constant, and cortesponds to rolls at critical wavenumber.
This solution must be stable to all small-amplitude perturbations, because any dis-
turbance would raise the free energy of the system

If a Lyapunov functional exists, the amplitude equation can be written in the
variational or gradient form

9A _ o (1.62)
oT SA
where 8. F /8 A is a Fréchet, or variational, derivative, defined such that
X+ 8F _ 1 . .
—=7dX = lim — [F(A, A +€'n) — F(A, A}, (763)
. SA e—0 €’

for arbitrary n(X, 7 ) such that A + €’y satisfies the boundary conditions. Now if
F(A, A) is as defined in equation (7.53) then we have

X+ 8F . X+ _ 9A 37

/ X =/X — AT+ AP AR + 55('51}’? dx, (764)

X4 82A
- —{ A —1APA + —= } 7 dX, 765
L_ (u [A] +3X2)" (7 65)

X+ 9A

= — ——7dX, 7 66
]_ Vi (7 66)

integrating by parts under suitable boundary conditions as before, and using equa-
tion (7 48). Since 7 is arbitrary we must have
SF dA
—_—_=——, 7.67
A oT (7.67)
so we have verified equation (7 62) for the real Ginzburg-Landau equation
With the amplitude equation in variational form it is an immediate deduction
that (A, A) decreases according to

2

% da, (7.68)

dT ~ Jp8AST ' SAOT

where D is the system domain, and da is the line or area element in one or two
dimensions respectively
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The Newell-Whitehead—Segel equation also has a free energy, given by

9 i 32)/12
X 2912

where D is the system domain The average free energy < F > is decreasing, and
is bounded below by —u?/2 as before, so at long times the Newell-Whitchead—
Segel equation also has steady roll solutions at critical wavenumber, and does not
admit time-periodic solutions.

1
—p| A+ §|A|4 + dxdy,  (7.69)

F(A,A) = /

D

7.4 Conservation of ‘angular momentum’
Stationary solutions of the real Ginzburg-Landau equation,

A .. 0°A

— = uA ~ |AI'A + —, 770

o= uA = APA+ o (770)
can be characterised in terms of an ‘angular momentum’. Writing 4 = Re'%, can-

celling a factor of ¢! and separating the real and imaginary parts of the equation

leads to
o0R _ R3+82R R 2 771
ar X 3X2 ax )
96 R 36 926
R—=2——"— 4+ R— (7.72)

oT X X ax?
Setting d/d7 = 0, and multiplying the second equation by R gives

d , dé
— — =0, 73
ix (i) =0 a7
and so the ‘angular momentum’
de
h=R— 774
i ax (774)

is constant throughout the domain This conservation law is a consequence of
equivariance of the amplitude equation under translations in x. It means that there
can be no smooth changes of wavenumber from one part of the domain to another
without accompanying changes in the amplitude. It also indicates that if R = 0 at
any point in the domain, then at any other point where the amplitude is nonzero,
the phase gradient, d9/dX, must be zero This is perfect wavenumber selection:
only one wavenumber is permitted throughout the entire domain This situation
can arise on a subcritical ramp in the control parameter, where w(X) varies in
space from negative to positive. In the region where (X)) is negative, only the zero
solution is stable, so we have R = 0 and hence 2z = 0 The angular momentum 7%
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is conserved in space, so we must have d9/dX = 0 even in the region u(X) > 0,
where rolls are stable. The critical wavenumber is therefore selected throughout
the region of pattern formation. For a more detailed analysis of rolls on a ramp,
see Kiame ef al. (1982) and Pomeau and Zaleski (1983)

We can see more by substituting equation (7.74) into equation (7.71) in the form

d’R dv
- 775
dXx?2 dR 775)
for stationary solutions, where
VR = Lure = Lge s I (776)
oM TR TR
Multiplying equation (7.75) by dR/dX and integrating with respect to X gives
L (4R 2+V(R)—E 777
2 \dXx -

where E is a constant

The behaviour of solutions can be captured in phase-space diagrams of dR/dX
against R, and depends on the values of ;4 and 4.

Let us consider the case p > O first Stationary roll solutions of the form
A = Roe'%, with R} = pu — ¢?, are fixed points in phase space, since R = Ro
and dR/dX = 0. For such a solution to exist we must have 0 < q2 < 1, and then
equation (7 74) gives

ng) =q(u—q” (7.78)

As shown in Figure 7 3, there are two solutions g and g, for a given value of / in
the range 0 < || < Amax, Where

3
hmax = 2 (%)i s (779)
is the maximum of 7 in the region g2 < u For || > hpyay there ate no solutions,
g, corresponding to stationary roll solutions, and for || = Ay, there is exactly
one solution, g, The case 2 = 0 is special and we shall investigate it sepatately
below.

The phase-space diagrams in Figures 7 4a and b show that for 0 < || < hmax
there are space-periodic solutions for R, corresponding to periodic or quasi-
periodic solutions for u = Ae’*, while for |h| > hmax thete ate none The bold
contours in Figure 7.4a each include a homoclinic orbit that corresponds to a
compression-dilatation wave that we will discuss further in Chapter 8 in the con-
text of the Eckhaus instability According to equation (7 74) all solutions where
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hg)
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Fig. 73 The equation i(g) = g(p — qz) = hy has two solutions g and g3 for a

. . 3.
given constant value, /g, in the range 0 < |ig| < /imax, Where fipax = 2(14/3)2 is
the maximum of /2(g) in the region g% < 1 For [h] > hyax there are no solutions,
and for |h| = hmax there is only one solution, g

R vaties in space gain or lose phase with tespect to the carrier wave ¢'* as X
increases The compression-dilatation wave is special in that it tends to the same
stationary roll solution R = Ry = /i — g2, as X — £ oo All contours outside
the bold contout in Figure 7.4a and all contouts in Figure 7 4b correspond to solu-
tions that are unbounded in space, since they have R — £ oo as X — £ oo Orbits
with R < 0 cortespond to patterns phase-shifted by half a spatial period of the cai-
rier wave with respect to those with R > 0.
When p < 0 and 2 # 0, the phase-space diagrtam looks similar to Figure 7 4b,
and there are no stationary bounded solutions
In the special case i = 0, either R is zeto everywhere, and there is no pattern or
we have
@ _,
dX
throughout the region of pattern formation In the latter case, the phase, 0, is con-
stant, and we can set it to zero by choosing the origin of x appropriately So without
loss of generality we can choose A to be real, A = R, with R satisfying
, d°R
0=puR—-R +dX2' (7.81)
In the case u > 0, solutions include the spatially uniform steady states A = R =
+./7% and the defect solutions A = R = £, /fi tanh(v/u/2X) Each defect solu-
tion cotresponds to a heteroclinic orbit joining the two uniform states in phase

(7 80)
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Fig 74 Sketched phase space diagrams fo1 stationary solutions of the Ginzbuig--
Landau equation (7 70) in the cases (a) i > 0, 0 < |} < higax, (B) 0 > 0, |2} >
Bmax, (©) 0> 0, A =0and (d) 4 < 0, A =0 The bold contour in (a) includes
a homoclinic orbit corresponding to a compression/dilatation solitary wave The

fixed points at R = & Rg = %/ — g2 correspond to 1oll/stripe solutions. The
bold contour in (c) includes a heteroclinic o1bit connecting the two uniform-state
fixed points, R = =%, /i, and corresponding to a defect solution

space (see Figure 7.4c). There is a gain or loss of & in the phase between
X — — oo and X — + oo. This is equivalent to a defect in the pattern, as shown
in Figure 7.5 We can also look for small-amplitude solutions to equation (7.81),
linearising around A = O to get
d’R

O-;LR-i-m, (7.82)
which has the solution R = asin(,/uX) + bcos(,/iX), where a and b are 1eal
constants, corresponding to a spatially periodic or quasiperiodic leading-order
solution for u(x)
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Fig 75 A defect solution A = /i tanh(y/pt/2X) to the real Ginzburg-Landau
equation, with 2 = 1 The plots show the solution including cartier wave, u(x) =
2A cos(x), as (a) a two-dimensional greyscale plot, and (b) a graph of #(x) against
x, where X = ex and € = [/27. The solution gains 7 in phase 4s x passes

through zero
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When 7 = 0 and i < 0 there are no bounded solutions, as shown in Figure 7. 4d

Note that trajectories can cross the R = 0 axis in the case # = 0, which cannot
happen for % £ 0. The system is symmettic under R — —R, the transformation
corresponding to a change of 7 in the phase, 0, so for 4 # 0 we need only consider
R > 0. The phase space diagrams are shown for both positive and negative values
of R to allow comparison with the & = 0 case.

7.5 Hopf bifurcations and the complex Ginzburg-Landau equation

So far in this chapter we have focused on spatially modulated roll or stripe patterns
that arise at stationary bifurcations from a uniform steady state Spatially modu-
lated structures can also result from Hopf bifurcations, in which case they will be
oscillatory More complicated spatially modulated patterns, such as squares and
hexagons, are also possible. In the remainder of the chapter we will look at some
such examples.

In certain systems, such as the Belousov—Zhabotinsky chemical reaction (see
Chapter 1), a spatially homogeneous oscillation arises at a Hopf bifurcation from
the trivial solution This oscillation can be modulated on long scales just as in
the case of rolls, and we can then write the marker quantity u(x, y,f) in the
form

w(x,y, 1) =AX, Y, T)e " +ce +hot, (7 83)

where X, Y and T are slow scales as before, and where we assume that time has
been scaled so that the critical frequency of oscillation, @, is equal to unity. In the
case of a chemical 1eaction # might be a measure of a chemical concentration. We
will assume that the system is isotropic and homogeneous, so we have symmetry
under reflections and rotations and under translations of the origin in space and
time. Under these conditions, the growth rate for a Fourier mode ¢ ** with
k| <« 1 and x = (x, y), must take the form

0 = — &K +i(— 1+ wg + w1 k) + O, (7.84)

where p is a real bifurcation parameter and where &), wp and w; are real con-
stants that may depend on p. The expansion in terms of k2 = |k|2 is forced by
the isotropy, and the form of the expansion ensures that the most unstable mode
has critical wavenumber zero (k = 0). We must have wp = 0 at i = 0 so that the
critical frequency is unity (o = —i at the onset & = 0) The remaining parameters
&o and w; are assumed to be O(1) at i = 0, so to leading order we can neglect any
i-dependence they might have
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The linear parts of the amplitude equation are found by inverting the Fourier
transform as for rolls and rescaling, giving
A , . oD
3T =(u+iwgA+(l+ix)V-A, (7.85)

where « is a real constant. Here we have used the inversion (o -+ i) — d/d1 for
the long time scale 7, where the +i in the bracket takes account of the basic
oscillation e~' in the solution (7.83).

The nonlinear terms must satisfy the requirement that the equation is equiv-
ariant under the symmetries of the system. In this case the reflection symme-
try (x, y) — (—x, y), rotation symmetry x — Rgx for some rotation matrix Rg,
and translation in space x — x + ¢ (where ¢ is a constant vector) transform
X = (X, Y) in the corresponding ways, but imply no further transformation of
A From these symmetries we simply find that the coefficients of the amplitude
equation should be independent of X. We must also satisfy the time translation
symmetry r — ¢ + 1,1 — I + €2t, where 7 is a constant, I = €’f and |e| < 1.
This symmetry is split into a phase-shift part, corresponding to translation in ¢,
that gives A — Ae'T, and a symmetry A(X,Y, T) — (X, Y, T — ¢27) that cor-
responds to translations in 7. This splitting is analogous to that used for the x
translations in the real Ginzburg—Landau equation The lowest-order term satisfy-
ing the phase-shift symmetry is |A|>A. The coefficient must be independent of X
and 7 to satisfy space and time translation equivariance. We choose its real part
to be —1, by rescaling A as necessary, so that the instability is saturated by the
nonlinear term Hence, to leading order, the amplitude equation is

gi;: = (U +iw)A — (1 +iB)APPA + (1 + ia) V2 A, (7 86)

where « and B are real constants The term iwgA can be removed by the trans-
formation A — Ae!®T This is equivalent to changing the fiequency of the basic
oscillation to 1 — €?wy The amplitude therefore evolves according to the complex
Ginzburg—Landau equation

94 - 2 o2

37 = A —- (1 +iB)AI"A+ (1 +ix)V7A, (7.87)
to leading order Consistent scalings close to the onset of instability are given by
w, d/3T ~ €*>and 3/3X, 3/3Y, A ~ €, with @ and B both O(1)

In contrast to the real Ginzburg-Landau and Newell-Whitehead—Segel equa-
tions, the complex Ginzburg-Landau equation has no Lyapunov functional This
means that time-periodic solutions are not forbidden. Given that we have derived
the equation in order to model Hopf bifurcations in a spatially extended system,
this should come as no surprise! Among the solutions of the equation are travelling
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plane waves given by

A = qe'1 X—ioT (7.88)
a2=u,-—q2>0, (7 89)
w=up + (@ — B)q*, (790)

where ¢ is a constant vector and ¢> = |g|> These plane waves crop up again in
Chapter 10 when we consider spiral and target patterns.

7.6 Travelling waves and the nonlinear Schriodinger equation

Travelling and standing waves are commonly found in natural systems, for exam-
ple in rivers and the sea, in beams of light and in chains of sand dunes moving
through the desert. We can model waves in one spatial dimension with a slowly
varying envelope by considering the quantity

u(x,t) = AKX, e "™ 4 BX, D™ ycc +hort., (791)

where X and I are slow scales and where x and ¢ have been scaled so that the wave
has critical wavenumber k., = 1 and critical frequency w¢ = 1. We include both
left- and right-travelling waves in order to exploit all the symmetries of the system,
as will be seen below. For simplicity we will not consider the two-dimensional case
where A and B could depend on an additional long-scale variable Y, though the
calculation can be extended to account for this possibility if desired.

Assuming a homogeneous, isotropic environment, the growth rate of a Fourier
mode e?"t7¥* at close to critical wavenumber, k> — 1| < 1, is given by

o=p—E0 -k +i{l +wo+ w11 = k%) + o (1 — kD2 + O (1L — K1),
(7.92)

where w is the real bifurcation parameter describing the external forcing associated
with the instability mechanism, and &g and the w; for j = 0, 1, 2, are real constants
that can depend on p. As before, we have wg = 0 at u = 0 so that w, == 1, while
the remaining parameters &, w; and w; are assumed to be O(1) at u = 0 so their
u~dependence, if any, can be neglected to leading order

Equation (7 92) is a dispersion relation: it relates the growth rate of a Fourier
mode to its wavenumber The imaginary part of the growth rate gives the frequency
of oscillation

wk) = Im(ok)) =1+ wp + w1(1 = k2) + wp(1 — k)% +- (793)

In more traditional applications only equation (7 93) would be referred to as
the dispersion relation — the real part of o would be considered separately. The
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frequency w(k) is related to the speed of propagation of the mode, since if
w(k) = kep(k) is real then ¥~ is a wave travelling to the right with phase
velocity ¢, Often ¢(k) is not a constant, and so different Fourier modes travel
at different speeds. If a wave is made up of different Fourier components, and
they travel at different speeds, the original wave will disperse — in other words, it
will break up. This is where the name ‘dispersion relation’ comes from. Physical
waves will often disperse as a result of some property of the material that they are
travelling through, which is then referred to as a dispersive medium. The phase
velocity is the speed of propagation of a fixed phase of the wave, for example the
peak or the trough, and is given by cp(k) = w(k)/k The group velocity, defined
as cg(k) = dw(k)/dk, measures the speed of propagation of a wavepacket made
up of a range of different wavenumbers, in other words the speed of propagation
of the envelope of the wave To see that the propagation speed of the envelope is
dw(k)/dk, consider a wave made up of two Fourier modes with wavenumbers and
frequencies that are very close together,

u(x,t) = Ao(ei(kx—a)r) +ei{(k+6k)x—(w+5w)t} +cc), (7 94)
= Apg(cos(kx — wt) + cos{(k + §k)x — (w + dw)t}), (795)
8k 8 Sk )
= 4Aq cos {(k =+ 7) X — (w + 70)) t] cos (—z—x - %Ut),
(7.96)

where |§k| < 1 and |[w| < 1 and where Ag is a real constant The wave packet
is made up of a carsier wave cos{(k+ %) x — (0 +2) ¢} and an envelope
4Aq cos (%x - %@t) The speed of the envelope, the group velocity, is Sw/8k ~
dw/dk If there is no dispersion, so that ¢, (k) is a constant, then the phase and
group velocities are equal, but this is not normally the case If you are not familiar
with the basic concepts of wave propagation and would like some further back-
ground information you might find the book by Billingham and King (2000) help-
ful.

For a right-travelling wave (7" =1U~@x where |g| <« 1, the dispeision
relation (7 92) gives

N = p— 4827 + ifwo + 2w19 — (w1 ~ dw)g?} + O(g°) (7.97)

Inverting the Fourier transform gives the linear part of the amplitude equation
for A:

dA QA 9%A
— = (u+iwp)A+ 2w — + [46¢ + i(w1 ~ 4w2)}5pv

798
aT 0X (798)
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Following a similai procedure for the left-travelling wave l+07 1+ we
recover the linear part of the amplitude equation for B:

3B 3B 3%B
3T = (u+iwp)B — 20)18 + {485 +i(w) — 4602)}8—}(7

Rescaling X and renaming the coefficients, we can rewrite the linear parts of the
equations in the form

(799

A 3A 32A
3T = (u+iwp)A —ca—X+(l +za)aX2, (7.100)
3B ‘ 9B . _9°B
a—T=(,u,+la)0)B +c—8X+(1+l(¥)—“—aX2, (7.101)

where 1 is a real bifurcation parameter and wy, ¢ and « are real constants
The nonlinear terms are found from symmetry requitements: the set of ampli-
tude equations must be equivariant under

(i) reflectioninx: X — —X, A < B;
(i) tianslationin x: x = x + ¢, A — Ae'®, B — Be™'?, ¢ constant;
(iii) translation in X: X - X+ &, AX,I) > AX -, T), B(X,I)— B(X -
®, I'), ® constant;
(iv) translationint:t — t + ¥, A — Ae ¥, B — Be 'V 1 constant;
(v) translationin 7: 7T — I + W, A(X,T)— A(X,T —V¥), B(X,T) > B(X, T —
W), U constant.

The lowest-orde1 nonlinear terms that satisfy these conditions are |A|?>A and | B|2A
in the 3A /37T equation and |A|?2B and |B|*B in the 3B /8T equation. The coeffi-
cients must be independent of X and 7 owing to space and time translation equiv-
ariance requirements The coefficients of |A|* A and | B|*> B must be the same owing
to reflection equivariance and we set the real parts to — 1 to saturate the linear insta-
bility Likewise reflection equivariance forces the coefficients of |B|*A and |A|*B
to be the same. Finally, the form of the nonlinear terms allows the removal of the
iwgA and i wyB linear terms using the transformation A — Ae'“? | B — Bel0T
which is equivalent to changing the frequency of the carrier wave to 1 4 €%wyp.
The full evolution equations to leading oider are then a pair of coupled complex
Ginzburg-Landau equations,

A A 92A ,
o7 =HA - ca—X+<1+:a>——<1+zﬁ>|A|2 — (v, +iv)IBPA,
(7.102)
3B aB 323
— (» + iv)IA”B,
3T = e (v + iy A|

(7.103)
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where p is a real bifurcation parametet and ¢, «, 8, ¥, and y; are real constants

These equations aie in fact somewhat unsatisfactory, because there is no consis-
tent scaling that retains all the terms for O(1) values of the group velocity, ¢ If we
scale s, 3/07 ~ €% and 3/dX, A, B, ~ ¢ as usual, then for consistency we must
have ¢ ~ € and «, B, y, and y; must be O(1). Strictly, therefore, this analysis is
only valid for small group velocities. For amplitude equations derived from gov-
erning partial differential equations, the requirement that ¢ be small will usually
correspond to a restiiction on the spatial wavenumber and temporal frequency of
the carrier wave, typically forcing the wavenumber, k., to be small. If, on the other
hand, ¢ is permitted to be O(1) then we can rescale so that 3/3X ~ €2, but then
the terms (1 4 ia)32A/8X? and (1 +i)d?B/dX?, which describe dissipation
and dispersion, do not appear at leading order Neglecting these effects entirely
is undesirable, as it is unlikely to be realistic for applications, so we could mod-
ify the equations, retaining the small second-derivative terms and including all the
nonlinear terms up to the same order, O (€°). In any case the effects of dissipation
and dispersion would still be unrealistically small. Each scaling can be relevant
in the right circumstances, but there is no one scaling that captures all the effects
This is a setious shortcoming The problem can be avoided if we consider waves
travelling in one direction only: if we restrict attention to a single right-travelling
wave, by setting B = 0, and transform to a frame moving with the group velocity,
¢, (wiiting X=X —cT and immediately dropping the tilde) then the amplitude,
A, evolves according to the equation

2
g-;— = uA+(1 +ia)~g—3§~(1 +iB)|AI*A (7.104)
The transformation to the moving frame removes any difficulty with scaling the
equation consistently, since now if u, 3/8T ~ €2, then we can scale 3/3X, A ~ e,
with & and 8 both O(1).

Equations (7.102) and (7.103) have right-travelling wave solutions A =
Re'“T=14X B = 0 with R? = . — g% and w = —qc — ag”> — BR?, where ¢ is
a real constant. The solution for left-travelling waves is similar Standing waves
are given by A = Re!®? 719X B = Re'®T+14X with R? = (1 — ¢*)/(1 +y,) and
w=—qc—ag’ — (B+y) R

In the special case of nonlinear waves that propagate in dispersive media, but do
not grow or decay owing to exteinal forcing (the A and p B terms in equations
(7 102) and (7 103)) or to dissipation (the real part of the terms in 82A/8X? and
3°B/3X?), the growth rate of Fourier modes can have no real part, and equation
(7 92) takes the foim

o =i{l +w1() — k3 4+ wr(l — kD2 + o1 — k1) (7.105)
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We also then have time-teversal symmetry (f - —¢, 7 — -1, A — B, B —
A) since the waves neither grow nor decay and can propagate in either direction.
Applying these changes to the amplitude equations gives

dA dA 82A 5 )
— = —— +ia—— —iBlAI*A — iyi|BI*A, 7106
3T CSX +la8X2 iBlA| iyi|Bj ( )
9B 9B 92B

Cc—— +ia— — iB|B*B ~ iyi|A]*B. (7.107)

For a right-travelling wave (B = (), in a frame moving with the group velocity, c,
the evolution equation for A reduces to the nonlinear Schrodinger equation

0A A,

8_T :laa_}?i“lﬁlAl A, (7 108)
a variant of the famous Schrodinger equation for the evolution of wavefunctions
in quantum mechanics (Schrédinger, 1926a,b,c,d) More genetally, the nonlinear
Schrédinger equation describes the propagation of nonlinear waves in dispersive
media, for example light propagation in optical fibres. It can be used to analyse the
Benjamin—Feir instability of travelling waves, as we shall see in Chapter 8.

7.7 Modulated hexagons

The symmetry methods developed above are easily applied to more complicated
patterns in two or more spatial dimensions In fact they are of particular benefit
in this situation, eliminating the need to perform a complicated multiple scales
analysis. We shal] take modulated hexagons as an example, since hexagons are the
most frequently observed experimental pattern after rolls

We can consider a modulated steady hexagonal pattern to consist of three
modulated roll patterns superposed at angles of 277 /3 to one another Choosing
the x direction appropriately and scaling the space variables so that the critical
wavenumber is given by k. = 1, the measured physical quantity «(x, y, t) can be
written in the form

u(x, y,0) = AX, Y, 1)e'" + B(X, Y, T)e' V32
+CX, Y, De 02 Lo Lhor (7.109)

The envelopes A, B and C are assumed to vary on Jong modulation scales X, ¥
and 7 as for rolls above. It is useful to adopt the notation X1 = X, X5 = (=X +
\/§Y)/2 and X3 = —(X + +/3Y)/2, and to denote the directions perpendicular to
the X; the Y; in the obvious manner. We now regard A, B and C as functions of
Xi,Yiand T, fori = 1,2, 3 respectively
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Once again we assume that the pattern-forming system has Euclidean symmetry.
The linear patts of the equations for 34 /07, 9B /87 and 9C /9T can be recovered
from the dispersion relation (7 29) which we rewrite here for convenience:

o=p—EU| — 12+ 00" 11 (7.110)

Considering the Fourier modes e?" (A% +il3) for j =1,2,3, where the x;
and the y; are the short scales cortesponding to the X; and the ¥; and where k;
and /; are real constants, we see that the growth rate o in each case is given by

o =p—E (2 +K2+ 12 + ok - 17) (7.111)

Close to the bifurcation at u = 0, we must find a consistent scaling for all three
dispersion relations simultaneously. Writing ;. = €7i, we see that we must scale
kj ~e€,l; ~eando ~ € Interpreting the Fourier modes as carrier waves in mod-
ulated envelopes, and introducing slow variables X; = ex;,¥; = €y;and T = €
we then deduce the linear parts of the amplitude equations to be

A +4§282A (7112)
— =/“‘ 0__2’

a7 dX;

9B ,3*B

— =B +48]—, (7 113)
aT 3X3

ac 82C

— = pC + 45— (7.114)
aT 3X3

to leading order, where we have immediately dropped the hat fiont ¢

The permitted nonlinear terms are found using symmetry arguments As usual,
there is symmetry under translations in x and y Having chosen to represent
the solution in hexagonal form, we also inherit the symmetries of the hexagon
from the reflection and rotation symmetries of the system. Consequently the
set of amplitude equations must be equivariant under the following symmetry
operations:

(i) translation in x: {x — x + @, A — Ae™% B — Be'%/2 ¢ — Ce'%/2), for cons-
tant ¢;

(i) tanslation in y: (v = y + ¥, B — Be™Y3¥/2 ¢ - Cei¥3¥/2) for constant

(i) tianslation in X: (X — X + &, AX,V,T) = A(X —®. Y, 7). BX.Y,T) >
B(X—-9,Y, T),C(X,Y, T)— C(X —®,Y, T)}, for constant P;

(v) tianslation m Y: {Y - Y+ VYV AX,Y. 7)) —> AX, Y-V, T), B(X,Y, T}~
B(X, Y-V T),C(X,Y,T)— C(X,Y — ¥, T)}, fo1constant \¥;

(v) translation in 7: {7 -7 +1,AX,Y, T)— AX.Y, T -1}, BX.Y,T)~>
B(X, Y, T —1).C(X,Y.T)— C(X,Y, T — 1)}, fo1 constant t;

(vi) reflectionin x: {X - —X, A —> A, B — C,C — B);
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(vii) reflectionin y: {¥Y - =Y, B < C};
(viil) rotation through 27 /3: {X] — X > X3 > X1, A— C - B —» A}

We have once more applied the normal form symmetries, in this case (i) and (ii),
separately from the X and Y translation symmetries (iii) and (iv).
The leading order nonlinear terms conforming to these symmetries are

_ 9B - 0oC 0B _ac
BC. |A*A. |BI*A, |CP?A,i|{C— + B— (C— -—)
C. 1A”A. 1BI7A, €] ’( o5, T Paxs ) '\ Caxs T Baxs

(7 115)

in the equation for dA/97 and the equivalent terms in the remaining two equa-
tions, deduced using rotational symmetry The symmetries also force the coeffi-
cients of all these terms to be real and independent of time and space The ampli-
tude equations then take the form

‘;—; = uA+aBC —blAPA — c(|BI> +|C1HA
. (-0B -aC 9B -0aC 9% A
+ig (CE)_X; +Bax3) +ih (Can +38X2) + BX%’
(7.116)
dB 2p 2 2
o7 = uB +aCA - b|BI*B — ¢(IC)? + |A»B
+ig (A£ +c~8£) +ih (A ac +C 94 ) + B
0X3 90X 0X 0X3 BXg’
(7.117)
oC 5 2 2 2
a7 = 1C +aAB —bICEC — (AP +|BIA)C
+ig (B—ai +/i£> +ih (E 94 +A 95 ) + 9°C
0X 0X7 90X 00X 8X§’
(7 118)

where w, a, b, ¢, g and h are real and where the coefficients of the two cross
cubic terms are forced to be identical by reflection symmetry just as they were
in the unmodulated case discussed in Section 5.4. In order that all the nonlinear
terms appear at the same order in € as the linear terms in the equations, we must
scale {A, B, C,a} ~ €, with {b, ¢, g, h} all O(1). This means that the coefficient,
a, of the quadiatic terms BC, CA and AB must be small, O(¢), if there is to be
a consistent scaling that includes nonlinear terms capable of quenching the linear
instability, which only appear at cubic order or higher
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If we further introduce the symmetry u — —u into the system, the coefficients
a, g and & are forced to be zero, as in the analogous case of the steady bifurca-
tion on a hexagonal lattice with ¥ — —u symmetry, discussed in Chapter 5 In
Rayleigh-Bénaid convection, this symmetry corresponds to reflection in the hori-
zontal midplane, and is relevant to the case of Boussinesq fluids with identical top
and bottom boundary conditions. If the symmetry is bioken slightly — in this case
if the fluid is slightly non-Boussinesq or the top and bottom boundary conditions
are slightly different, for example because the two plates have slightly different
thermal conductivities — then we would expect a to be small, but nonzero, which
is exactly what is required for the leading order quadiatic terms to appear at the
same order in the amplitude equations as the cubic terms We would normally then
expect the coefficients, g and £, of the itemaining quadratic terms also to be small,
since they would typically arise from the same quadratic terms in the original gov-
erning partial differential equations. If g and h are O(¢) then we can neglect the
corresponding terms in the amplitude equations (7.116)—(7 118) to leading order.
However, it can happen that a vanishes exactly by virtue of some special property
of the governing equations, while g and /4 remain nonzero, and possibly O(1), in
which case the spatial derivative quadratic terms should be retained (see, for exam-
ple, the discussions of hexagons in Rayleigh-Bénard convection in Kuznetsov,
Nepomnyashchy & Pismen, 1995, and Echebarria & Pérez-Gaicia, 2001, for fui-
ther details). There may also be circumstances in which g and / remain O(1) even
though a is small (but nonzero), and then the full equations (7 116)—(7.118) should
be used As expected, the paits of the equations that do not involve spatial modula-
tion are just the same as equations (5 46)—(5 48) derived for the steady bifurcation
on a hexagonal lattice

There ate various possible stationary solutions to the amplitude equations
(7 116)-(7 118), including x-1olls

A =R B=C=0,
R* = %(u—qz), (7119)
and up-hexagons
A = Re'9X1 | B = Re'9%2, € = Rel9%3,

1
0:(b+2c)R2—(a—gq+§hq)R—(/u—q2):0, (7 120)

where in both cases R and g are real constants. The trivial solution and rectangles
are also solutions If g is zero the rolls or hexagons will be at the critical wave-
length, whereas if it is nonzero the patteins will be at a wavelength slightly longer



242 Exercises

or shorter than critical Instabilities of off-critical hexagons will be studied using
equations (7 116)—(7.118) in Chapter 9.

We have considered the case where hexagons can be described by a set of ampli-
tude equations truncated at O (¢3). The inclusion of higher-order nonlinear terms
would allow additional steady states, including off-critical versions of the patch-
work quilt and triangle solutions described in Chapter 5.

This chapter has focused on deriving amplitude equations that describe the evo-
lution of modulated patterns In the following chapters we shall use these equations
to investigate the modulational behaviour of several common patterns including
rolls and spiral waves

Exercises
7 1 Consider modulated stripes
u(x, 1) = AX,T)e* +cc +hot,

where X and I are appropriate long scales for x and ¢. If the system has translation
symmetty, but not reflection symmetry, and if the dispersion relation for the growth
rate o of a Fourier mode proportional to e?'+&* is given by

o =pu— & — * + Ok* = 1), (E7.1)

what is the leading order envelope equation for the amplitude, A? (Note that the disper-
sion relation (E7 1) is reflection-symmetric, but that the reflection symmetry is broken
at nonlinear order )

72 Work out the envelope equations for modulated squares

u(x,y, 1) = AX, Y, 1)e* +B(X,. Y, T)e” +cc +hot.,

where X, Y and 7 are appropriate long scales fo1 x, y and ¢. Assume that the dispersion
relation (7.29) holds, and that the system is jsotropic and homogeneous.

7 3 Consider stationary solutions of the envelope equations derived in the previous ques-
tion that take the form A = Re!?X, B = Se'PY, whete R, S, g and p are real constants.
Work out expressions for R and § in terms of p and ¢ and describe what the various
possible solutions 1epresent

7.4 Consider a one-dimensional translation-invariant system with no reflection symmetry,
where the dispersion relation for a Fourier mode propoitional to e®" ¥ is given by

o =+ ak* — bk* + ik(c + dk?),

where a > 0, b > 0, ¢ and 4 are real constants, and where p is a real bifurcation
parameter Wiite the leading order solution u(x, ¢) in terms of appropriate envelopes
and carrier waves, and derive the evolution equations for the envelopes. (This example
is relevant to the wind-driven propagation of sand tipples in the desert, for example,
wheie the existence of a prevailing wind direction breaks reflection symmetry )
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Instabilities of stripes and travelling plane waves

Patterns that can be modulated on long scales may undergo new instabilities asso-
ciated with the modulation or with changes in the pattern wavelength. These typ-
ically affect the phase of the pattern, and set in when the pattern wavenumber
is not optimal We shall start by studying the so-called universal instabilities of
stripes — the Eckhaus, zigzag and cross-roll instabilities — using the envelope equa-
tions derived in Chapter 7, and then move on to the more complicated situation
where convection rolls at low Prandtl numbers are coupled to a mean flow At the
end of the chapter we discuss the Benjamin-Feir phase instability of travelling
plane waves, which is related to the Eckhaus instability of stripes

8.1 Universal instabilities of stripes

We will consider rolls or stripes, writing the solution in the form
u(x,y,t) = AX, Y, 1)  +cc +hot, @81
where the envelope A evolves according to the Newell-Whitehead—-Segel equation

9A ) 9 i a2\
Except where stated otherwise we assume that the evolution takes place on the
infinite horizontal plane, —00 < x < 00, —00 < y < 00 s0 that we can neglect
any possible effect of lateral boundary conditions on the pattern

In order to understand how a non-optimal pattern wavelength can lead to insta-
bility, we will consider a perfect roll pattern at slightly off-critical wavenumber,
given by

A = Rge'?X, (8.3)

243



244 Instabilities of stripes and tiavelling plane waves

where Ry and g are constants. Substituting this into equation (8 2) gives the
relationship

RY =y —q* (8.4)
This corresponds to a solution
U= Roei(]-i-eq)x, (8 5)

since X = ex, and so the roll wavenumber deviates from critical by an amount 4.
Rolls can only exist for Rg > 0, so there is a band of permitted wavenumbers
around g = () (corresponding to a roll wavenumber & = 1) The marginal, or neu-
tral, stability curve p = ¢* (R2 = 0) at which the rolls bifurcate from the zero
solution is identical at leading order to the neutral stability curve in (u, k) space
shown in Figure 7.1 if we set k. = 1, k = 1 + €q and scale out a factor of 4¢?

To examine the pattern stability, we now add small pertutbations to the roll
amplitude and phase, writing A = Rg(1 + 7)e!YX+) where |r|, |¢| < 1. Substi-
tuting this form for the envelope into equation (8 2), linearising in r and ¢, and
taking the real and imaginary parts of the equation gives

ar 5 ap 9 3 a1 9Y
— = —2R% —2g— 1 —— 8.6
aT 0" ~ 5y Y ax2 Vaxave Vay2 T apya 8.6)
9 2 3 2 1 4

6 _, 0 P9 a3y 2¢  19% )

o7 ~ 9x T ax2 _axov? Yoy s+

Looking for long-wave effects, where the spatial derivatives of the perturbation
variables are small in comparison with the variables themselves, and taking modes
r =TFeO THKXHIY g — o0 THEXFHIY with (]| « 1, k ~ 2, and 7 and ¢ real con-
stants, we find

- . ~ oa ~ P AR
0T = —2R37 — 2igk¢ — k7 — iki*p — qI*F — o (8.8)
op = 2igktr — k>¢ + ikl*F + —gl’¢ — 7% 89)

The relative scalings of k and [ follow from those of X and Y Eliminating the
arbitrary constants 7 and ¢ gives a quadratic equation for the growth rate, o,
namely

A 4
(o 4+ 2R + k% + qi* + Z) (o + k2 +ql* + Z) =k22q +15H?  (810)
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There are two 100ts

o1 = —2R2 + O(k), (8 11)
2g° 4

o=k 12 ) =T 06, 8.12)
R3 4

The first growth rate eigenvalue, o) =~ —ZRS < 0, corresponds to the eigenvec-
tor (7, a) = (1, O(k)), and so describes the relatively rapid relaxation, on an O(1)
timescale, of the amplitude perturbation, 7, to its equilibrium value. Rolls are thus
stable to amplitude modes. At leading order this is the same result as we would
find for rolls on a lattice, since none of the wavenumbers ¢, k or [ appear in the
eigenvalue at leading order. The stability derives from the fact that the nonlinear
term quenches, or acts against, the growth of the roll amplitude and so fixes it fo1
given values of p and g.

In contrast, the second eigenvalue, o3, corresponds to a truly modulational
mode, since it contains ¢, k and / at leading order (and these cannot appear if
the pattern is restricted to a lattice). The eigenvector is

(Ofk)), 8 13)

and so o2 describes the slow evolution, on an O (I~2) = O (k1) timescale, of the
phase perturbation, ¢ If there is no Y-dependence, so that / = 0, the evolution
will be on an O (k~2) timescale. A phase instability will occur when o > 0. Two
different phase instabilities are possible: the Eckhaus, and zigzag instabilities We
shall consider them both in detail shortly.

An alternative method of determining the behaviour of the phase mode is by
slaving the rapidly decaying amplitude perturbation to the slowly varying phase
This is the method of adiabatic elimination that we introduced in Chapter 2, and is
the so-called phase approximation of Haken (1978) and Pomeau and Manneville
(1979) In the long wavelength limit, where spatial derivatives of the perturbation
variables are very small in comparison with the variables themselves, it is clear
from equations (8.6) and (8.7) that the amplitude varies much more rapidly in time
than the phase. We can consider the evolution of the pattern as occurting in two
distinct stages In the first stage, the amplitude evolves rapidly towards an equilib-
rium state, the rate of change only slowing down when the system is very close to
the final steady solution. In the second stage, the phase changes very slowly, and
the amplitude adjusts rapidly to these changes; the net evolution though is on a
slow timescale, since here the phase is driving the motion, with the amplitude fol-
lowing adiabatically. Pomeau and Manneville (1979) showed that an equation for
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the evolution of the phase in this slow 1égime can be found in terms of the phase
gradients.

The phase instabilities take place on a slow timescale In order to capture their
behaviour, and discard the rapid amplitude mode, we rescale

K S RS S (8.14)
X  "ax’ ayY Y  oT aT

where 3| <« 1 From equation (8 6) we have

[T

, .0 9

Operating on both sides with

2 B _a__ 2
+0@ )); _( 28955+ 06 ))¢. (8.15)

2R2-ai+a L (8.16)
07 %7 T yy2 ’
gives
3qg 0¢ 2
= ——— 1+ 0. 8.17
’ R§3X+ 6% 8.17)

Substituting this into the rescaled version of equation (8.7) results in the following
phase-diffusion equation

L) 824 2%\ 8% 8 3% )
e Rty | [ A Pt AR & 818
o7~ Tavr " (I &2 )oxz T i TOOD G

Now considering a mode of the form ¢ = ¢e” T*X+1¥ the orowth rate of
phase disturbances is found to be

2 2 24° a 2
oy = —ql* =6k" |1 = —5 | =8+ 00, (819
R; 4

which is the same as o5 in equation (8 12) above, when the rescaling is taken into
account In the absence of Y-dependence (I = 0) the appropriate time scaling is
8/8T ~ 8%, which would give

(S
oy =—k"{1—-—51+0(@), (8.20)
RO

as expected

For finding the phase behaviour, slaving is often preferable to a full analysis
of both rapidly and slowly varying modes, since it is much simpler to camy out
in practice; it concentrates solely on the slowly varying phase modes, and all the
unnecessary information is discarded early on.
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@) (b)

Fig 8 1. The Eckhaus and zigzag instability boundaries for rolls governed by
the Newell-Whitehead-Segel equation (8.2). (a) The Eckhaus unstable region for
rolls m shaded light grey It is bounded below by the margmal stability cuive,
n= q and above by the Eckhaus stability boundary, 2 = 3g% (b) The zigzag
unstable region for roIIs is shaded light grey It is bounded below by the maiginal
stability curve, u = g, and to the 1ight by the zigzag stability boundary. In both
cases, rolls do not exist in the dark grey region below the maiginal stability curve,
while in the unshaded regions rolls exist and are stable to (a) the Eckhaus insta-
bility o1 (b) the zigzag instability

8.2 The Eckhaus instability

For perturbations that vary in the X (across-axis) direction only, we have / = 0 in
equation (8.12) and the phase perturbation growth rate is

— 32 2¢° 4
9 = —k 1_F + Ok™), (8 21)
0

which is positive for rolls in the region R(z) < 2g% (1 < 3¢°) shown in Figure 8.1a
This is the Eckhaus instability (Eckhaus 1965; Newell & Whitehead 1969; Kramer
& Zimmermann 1985) which acts on the roll phase to change the wavelength,
compressing or dilating the pattern It occurs when the roll wavelength is too long
or too short, and leads eventually to the elimination or creation of rolls at defects
in the pattern, and thereby an adjustment to a more favourable wavelength
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A weakly nonlinear analysis close to the onset of the Eckhaus instability leads
to an equation for the diffusion of the phase. First we redefine ¢ for ease in the
calculations, by writing

A = Re'4(X+9) (8.22)

wheie R is the amplitude of the envelope, A, and where the phase perturbation,
é, has been rescaled by g. Now we set g2 = R(z)/2 +d8?, where |8] <« 1 and d
measures the distance from onset, which corresponds to ;o = 3R2 o/2+ ds?, and
then rescale so that 8/9X — 83/8X,8/dT — 8*3/07 and ¢ — 8¢ We are con-
sidering patterns that vary with X only, so we also set 3/dY = 0 Then from the
real and imaginary parts of equation (8 2) we obtain

54 R _ RIR — R* — (R3/2 +ds%) (252 9% +54(8¢) )R

T X 0X
3R
+8%——, 823
%2 (823)
iloj 2p 32¢ ( 209
S*R—= = §°R + IR () b 824
aT 8X2 X u BX ( )
We expand the amplitude and phase variables in a power series
R=Ro+8Ry+8"Re+ -, (825)
¢=co+0"¢+ 8"+ -, (8.26)

and substitute these expressions into equations (8 23) and (8 24), equating terms at
each order in 82 successively At O(1), both equations are automatically satisfied.
Next at 0(8?), both equations are satisfied if

Ro d¢p

At 0(8%), equation (8.23) gives
_ i 3¢ _RR 9o
05x ~ FoRegy
R
20" _ 000  BRy z,
ax 0X X2

0= —2R§R4 —3RoR;

(8.28)

2

which can be reduced to

d¢a 3 4 (dd0\> L0890 _ Ro 33 ¢o
2 _ 3
Ry (2R“ + R"a_x) = 3% (a_x) B a_x T axy 829
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using equation (8.27). In turn, equation (8.24) gives

o 3% ¢o 9%¢> _9Rs 3R, d¢o
Ro0 = R, 220 L R 2 p 27090 830
057 = M2gxz TR Ty YA ax ax (8.30)

and combining this with equations (8 27) and (8 29) leads to the following nonlin-
ear phase equation for ¢g

20 _ dwo 120 31(%2
aT 28X2  4g2 9x* 23X \ox )’

(8 31)

where qg = Rg /2. The evolution of the phase is therefore diffusive in character.

The nonlinear phase equation may also be determined solely from the linear
growth rate of phase disturbances, using Kuramoto’s method (Kuramoto, 1984a)
We have already determined the appropriate growth rate, oo, which is given by
equation (8 12) with = 0. So to fourth order in k& we have

2 2 4k4
a:—k2<l““€;) 2k (8.32)
Ry Ry
which corresponds to the linear phase equation
9 2¢%\ 3% 24* 3*
_¢= l_i _¢___q__¢ (8.33)
aT R ] aX*  R§ ax*

The phase equation must be i mvanant under the symmetries of the system, namely
translation symmetry ¢ — ¢ + ¢ where¢ is a constant, and reflection in x (X —
—-X, ¢ — —¢). The lowest order nonlinear term permitted by these symmetties is

3 [3p\?
2 (2 .

so if the coefficient of this term is nonzero, the leading-order weakly nonlinea:
phase equation should take the form

A 3% 3 (6¢ 2
— = Dy(q)—5 + — (=) . 8.35
3T 1@ 557 + 1(61)8X4 te@ 3% (8.35)
where
2 2 -3 2
Dyg)=1-L B0 (8 36)
R() H—q
24* 2g*

hg) =~ = ———— (837)
0
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Now we can consider the change of variables ¢ = $+ AgX, where |[Ag| < 1.
This leads to a new phase-diffusion equation

aa 32$ 4$
o7 = [Pi@) + 2@ gl o5 +[h(q)+0(Aq)]aX4
06 |
+[g(g) + O(Aq)]«- (5;{«) (8.38)

The O(Ag) terms in the coefficients of 3%p/dX* and (3/0X)(3p/8X)? come
from the transformation of higher-order nonlinear terms in the phase equation, just
as the O(Ag) term in the coefficient of 3255 /8X? comes from the lowest-order
nonlinear term The change of variables we have made is the same as changing g by
a small amount g Ag Performing this equivalent transformation g — g(1 4+ Ag)
in equation (8.35), gives another phase equation for ;5

3¢ dDy 32p dh ) 3
— =(D —gA h —gAg | —
( 1(q) + dqq 9)ox2 T z(q)+dqq 9} 3xa

oT
dg o (99
—gA — 0(Ag* 8.39
(g(q)+ agd q)ax (ax) + 0(Ag7) (8.39)
Equating the coefficients of 825/ 3X? in equations (8 38) and (8 39), we find that
dDy
28(9)Aq = 9 Aq, (8 40
q
and so
I dDy 2g%1
)= = =— 841)
Near the bifurcation point, we have u = 3¢ — 2d8?, which to leading order
gives g = —3/2, agreeing with the coefficient found by the previous method.

The coefficients of the linear terms close to the bifurcation also agree with those
in equation (8.31) if the rescaling used there is taken into account. The O(Ag)
contributions to the coefficients of 845/ 9X*and 9/9X (85/ 9X)?, unspecified in
equation (8 38), are equal to those in equation (8 39)

The calculation above shows that the nonlinear term introduces a space-varying
part to the effective diffusion coefficient To make this more explicit, we can
rewrite the phase-diffusion equation (8 31) in the form

2 4
0 _(d 090 3% 1 3% 42
oT gt 09X ) ax* 4q2 ax*
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The Eckhaus instability is subcritical for systems govemed by the Newell-
Whitehead—Segel equation (8.2); this may be deduced by considering a solution
of equation (8.42) in the form

do = A(T)sinkX + B(T)sin2kX + - (8 43)

Substituting this into equation (842) and equating coefficients of sinkX and
sin 2k X on either side gives

dA  k?

7= q—z(d —do)A +3ABK, (8 44)
0

dB  4k? 3

= q—g(d—4dc)3+§A2k3, (8 45)

where d, = k* /4 The phase mode is linearly unstable for d > d,, since the con-
tribution A(7)sinkX statts to grow. Looking for stationaty solutions to equa-
tions (8 44) and (8.45) gives

g2 2d —de)d - 4d)

: (8 46)
9g4de

if Ak* # 0. Then A? is positive if d < d, or d > 4d.. If we are close to the bifui-
cation, we must have d ~ d_., and so steady bifurcated solutions exist close to the
bifurcation point only for d < d. Intheranged < d., the system is lineatly stable,
so this is a subcritical pitchfork bifurcation for each k& It is important to bear in
mind that the sub- or supercriticality of the bifurcation depends on the relationship
between the linear and nonlinear terms in the phase equation, which are derived
from the governing equation, in this case the Newell-Whitehead—Segel equation
(8.2) Itis possible to have a supercritical Eckhaus instability in a system governed
by different equations, for example in certain parameter régimes when quintic and
space-derivative cubic terms are included in the envelope equation (see Hoyle,
1998a, for further details)

In the cuirent situation the bifurcation is subcritical, so a roll pattern undeigoing
the Eckhaus instability does not saturate in the bifurcated state Instead, the pattern
breaks down creating defects, eliminating or adding more rolls to alter the wave-
length until it lies in the stable band. In one-dimensional systems where there is no
dependence on Y and the Newell-Whitehead—Segel equation (8 2) is replaced by
the Ginzburg—Landau equation (7 48), the defects exist only for an instant while a
pair of rolls is created or eliminated (Figure 8 2). On the other hand, in the simu-
lation of the Newell-Whitehead—Segel equation shown in Figure 8 3 there is some
variation in the y direction, owing to a small random perturbation of the initial
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Fig. 8 2 The Eckhaus instability in the Ginzburg-Landau equation (7 48) with
periodic boundary conditions The pictures show plots of u(x, 1) = A(X, INe'* +

cc., where e = X/x =0.19 Only a quaiter of the full simulation domain is
shown. (a) The initial state at time 7 = 0 is a uniform roll solution withg =10
and g = 2 0 in the Eckhaus-unstable region wheie the pattein wavelength is too
short A small random perturbation has been added so that the instability will pro-
ceed The sequence of plots attimes (b)) 7 =167,(c)I = 169and(d) T =171
shows the instantaneous formation of a defect (|A| = 0) that removes a 10ll pair
at the righthand edge of the plot domain. By time 7 = 26.7 the pattern, shown in
(e), has settled down to a new uniform roll solution at slightly longer wavelength
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s

——
crtrions

|

Fig. 83 The Eckhaus instability in the Newell-Whitehead—Segel equation
(8 2) with periodic boundary conditions The pictures show greyscale plots of
u(x, v, 1) = AX, Y, e + c.c ,where e = X/x = 019 (a) The initial state at
time T = 0 is once again a uniform roll solution with g = 1.0 and u =20 in
the Eckhaus-unstable 1egion where the pattern wavelength is too short, with an
additional small 1andom pei turbation Defects form and move through the pattein
removing rolls and thus leading to an increase in the wavelength The progress of
the instability is shown at times (b) 7 = 428, (¢) 7 = 855 and (d) T = 1425
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deduce the equation

ok 9 d ok 3 1 3%
= — - = 2K - — (847
aT  8x g2 8x 2 43 8X3
for the evolution of the perturbation wavenumber k = d¢/3X Integrating this
over the whole domain gives

d [+

— dx =0 48
dT,_ookx , (8.48)

with appropriate boundary conditions at + oo, such as the pertutbation being zeio
there. This says that the mean wavenumber is conserved in time, and so the pat-
tern cannot change its wavelength through a continuous, smooth deformation We
know that wavenumber changes do come about during the Eckhaus instability, and
so we expect defects to arise in the pattern, where pairs of rolls are created or anni-
hilated discontinuously, and where rapid spatial variations of the amplitude lead to
the breakdown of the envelope formalism, so that the phase equation (8 42) is no
longer valid

Further information on the properties of the Eckhaus instability can be found in
the article by Kramer and Zimmerman (1985)

8.2.1 Compression-dilatation waves

The Eckhaus instability is a compression and dilatation instability. We can see
what happens when a stationary sttipe pattern is compressed o1 dilated by writing
A = Re'? and looking at the angular momentum equation

, dd

h=R R (8.49)
where /2 is constant in space, which is equation (7.74) from the previous chap-
ter. If the pattern is compressed or dilated, there are changes in the wavenum-
ber, so we expect df/dX # 0 and hence h # 0. The phase portrait in Figure 7.4a
(10 > 0, 1 #0) is relevant here The homoclinic orbits marked in bold corre-
spond to a localised compiession (2 > 0) or dilatation (£ < 0) of the roll pattern
(Figure 8.4). The system is symmetric in R, so we need only consider R > 0
In the compressed or dilated region the amplitude decreases as we move along
the homoclinic orbit to the left of the fixed point in R > 0, and so according to
conservation of angular momentum, /2, the modulus of the perturbation wavenum-
ber |df/dX| must increase. If % is negative then d§/dX becomes more nega-
tive, the overall wavenumber decreases, and so there is dilatation, whereas if 2
is positive, there is compression because df/dX increases. Fauve (1991, 1998)
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Fig 8.4 (a) Sketches of the profiles of R and |d6/dX| for stationary solutions
describing a localised (b) compression (4 > 0,d8/dX > 0) or (c) dilatation (4 <
0, d8/dX < Q) of the 10ll pattern. These compression/dilatation solitaty waves
correspond to the R > 0 homoclinic orbit marked in bold in Figure 7 4a

gives further information on this solitary compression/dilatation wave solution
and its stability. In particular he comments that this wave represents the criti-
cal localised perturbation that gives rise to the finite amplitude Eckhaus instabil-
ity in the subcritical region whete an off-critical uniform roll pattein is linearly
stable

More generally, the conservation of ~ shows that if there is a high degree of
compression or dilatation in a region, then the amplitude R must be very small
there. If the amplitude vanishes then the phase, 8, is undetermined, and so a pair of
rolls can be created or annihilated This defect-forming process cannot accurately
be described by the envelope formalism, however, as it requires the amplitude to
vary over lengthscales comparable with that of the carrier wave

8 2.2 Side bands

The Eckhaus instability is sometimes called a side-band instability, because in a
band of unstable modes centred on the wavenumber ¢, a side mode g + k interacts
with the second harmonic 2g to give the mode ¢ — k on the other side of the
band, since 2g — (¢ + k) =g — k This resonance causes the side modes to be
amplified, leading to the instability. To see this we can analyse the instability in a
slightly different way. We write

A= (u—gH"2 X1 4 a(@)e™ ™ + b(I)e ), (8.50)
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where |al, [b| « 1. This a roll/stripe pattern pertutbed by side modes g + k and
g — k. Substituting into the Ginzburg-L andau equation,

dA ,  3%A

— =pA—AI'A+ —. 8.51

a7 = HA — 1Al oy (851)
linearising in @ and b, and equating the coefficients of e!@+t0X and /@5 op
each side of the equation gives

da
== —2gka — k*a — (u — g*)(a + b), (8.52)
db

i =2gkb —k%h — (u — g2 (a + b). (8 53)

The presence of b in the equation for da/d7T comes from the interaction in the
term [A|?A of the second harmonic, ¢%9%, and the complex conjugate, ¢~/ (40X
of the side mode corresponding to a. The presence of a in the db/dT equation
can be explained analogously These are the resonant terms Ieading to the Eckhaus
instability

If ¢ and b are proportional to €7 | then by using equations (8 52) and (8.53) it
is straightforward to show that the growth rate eigenvalues, o, satisfy

02+ 20> + 1 — g + k* + 2uk? — 6¢°k* = 0. (8 54)

Thete are two solutions for o:

o1 = =2(u — g% + O(k%), (8.55)
a2

o =—HT3 4 paty (8.56)
(u—q°)

The first we recognise from equation (8.11) as the rate of decay of amplitude per-
turbations, and the second from equation (8.21) as the growth rate goveming phase
perturbations — in both cases substituting R = u — g2. In the first case we need
only consider the O (1) terms in the evolution equations for @ and b, which can
then be rearranged to give

d
@+ =20~ g>)(a+b), (8.57)
d

We can now identify (a + b) as representing the amplitude perturbation, while
(a — b) will represent the phase perturbation.
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Substituting o7 into the equations for a and b shows that the phase perturbation
eigenvector satisfies

qk
®—q’
At leading order in k then we have (¢ + ) = 0, and so phase perturbations are
indeed represented by (a — b)

(a+b)=— (a —b)+ 0. (8 59)

8 2.3 The effect of finite domain size

It turns out that in a finite domain the Eckhaus instability does not work quite as
expected This was first pointed out by Tuckerman and Barkley (1990). The growth
rate eigenvalue solutions to equation (8 54), o and o3, can be written in the form

012 =~ =P+ F (1 — 22 + 472 (8.60)

As we have seen, we must have o7 < 0, since & > q2, so the original roll solution
can never be unstable to the corresponding amplitude eigenmode On the other
hand the phase eigenmode can grow if o9 is positive, which happens when

(n—q*) +44°K > (= ¢* + %), 861)
or equivalently
k2
u < 3q* - > (8.62)

Now if the roll solution is to be stable to perturbations at all wavenumbers k, then
we must have

p > 3q%— = (8 63)

for all admissible £ If the domain is infinite, we can have perturbations of any
wavenumber, k, so the stability boundary is given by u = 3¢2, the usual Eckhaus
boundary If, however, the domain is finite then both ¢ and k are quantised so
that the solution #(x, t) fits into the box, so the Eckhaus boundary will be shifted
downwatds by an amount k% /2, where kg is the smallest permitted k”

To see how this works in detail, assume that the solution is periodic on a domain
of length L. Then in order for the roll solution to fit into the domain the wavenum-
ber, 1 + €g, must satisfy

2
1+eq=—’zﬁ, 8 64)
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where n is an integer, and X = ex with |e| < 1 as usual. Similatly, if the pertur-
bation is to fit then the perturbation wavenumber, k, must satisfy

2
1+e(g +/<)=_”L’ﬁ, (8.65)
where m # n is also an integer. We can also express the domain length in the form
L =2x(N +1), (8.66)

where N is an integer, and |{| < 1/2. Now the neutral stability curve and Eckhaus
stability boundaries can be rewritten

2
UN = (2—75) (n— N~1)? (8.67)
el
_(2n 2 5 (m— n)?

respectively. The roll solution cortesponding to a patticular choice of n will be
stable to all Eckhaus perturbations if ug < pun for all integers m, in other words if

(m —n)*
—
holds for all m Recall that N is set by the length, L, of the domain. The lefthand
side will be smallest for n = N, and since m # n, the righthand side is smallest
for [m — n| = 1, so the mode n = N will be stable to the Eckhaus instability if

(n—N-D?< (8 69)

1
2
- 8 70
I“ < ( )

holds. Now [ is defined such that |/| < 1/2. The special cases |/| = 0 and |/| = 1/2,
when the domain length is equal to a whole number of half wavelengths, lead
to the simultaneous bifurcation of the modes £|g| We shall avoid such com-
plications, and consider only the case 0 < |/| < 1/2, for which inequality (8.70)
holds and the roll solution is therefore stable to the Eckhaus instability. This is
a somewhat surprising result! The roll wavenumber is not critical, since g # 0,
so in an infinite domain, we would expect there to be a range of u, given by
g2 < < 3¢?, for which the pattern should be Eckhaus-unstable However the
quantisation of wavenumbers implied by the finite domain has shifted the Eckhaus
stability curve below the neutral stability, or existence, curve in the neighbourhood
of ¢ = 2ml/eL, and the pattern is unexpectedly stable For any other permitted
value of g, corresponding to a value of » other than N, the lefthand side of inequal-
ity (8 69) is greater than 1/4 and so the roll solution is always unstable for some
value of ;¢ The arrangement of the neutral and Eckhaus stability curves is shown
in Figure 8.5
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Fig 8.5 The neutral stability curve, i = g2, (solid line) and Eckhaus instability
boundary, u = 3¢* — 272 /€?L?, (dotted line) for a finite domain of length L and
periodic boundary conditions. The Eckhaus-unstable region is shaded grey The
large black dots represent the points at which the various permitted 10ll modes
gn = 2n(n — N — 1) /e L bifurcate from the zero solution. Rolls at wavenumber
gy are Eckhaus-stable, since the Eckhaus-stability boundary passes below the
neutral stability curve at that point

The full bifurcation analysis of the Eckhaus instability in a finite domain can be
found in Tuckerman and Barkley (1990) Free-slip boundary conditions du/0x =
0atx =0, L are treated along with the periodic case.

8.3 The zigzag instability

The zigzag instability arises from perturbations that vary only along the Y direc-
tion, parallel to the roll axes. Setting &k = 0 in equation (8.12) gives the growth
rate

oy = —gl* — —, (8.71)

for phase perturbations Rolls are therefore unstable to phase modes that vary along
the roll axes when g < 0, for small enough |/| (/> < —4g). This is the zigzag insta-
bility (Busse, 1962; Schliiter, Lortz & Busse, 1965; Newell & Whitehead, 1969;
Busse & Whitehead, 1971), which creates undulations along the roll axes when
the wavelength is too large, thereby reducing it. The unstable region is shown in
Figure 8.1b.

The nonlinear phase-diffusion equation relevant to the zigzag instability is
found using a weakly nonlinear analysis close to onset. The linear part of the
equation is given in equation (8 18) with 3/0X = 0, and the leading order nonlin-
ear term can be discovered using symimetry constraints. The phase equation must
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obey equivariance under translation in x

¢~ ¢+, (8.72)
where 5 is a constant, x-reflection
X— X ¢——9, (8.73)
and y-reflection
Y - —Y (8.74)

The leading order nonlinear term consistent with these symmetries is

3 [9¢\>
W(%) , (8.75)

so to fourth order in the Y-derivative, the phase equation can be written

3 9% 19* 9 (09>
—¢= —d;———d;+g— —d) (8 76)
oT oY 49Y oY \9Y
Close to onset, we can rescale ¢ — 82g In order that all terms in equation (8 76)
contiibute at the same order, we then scale
i — Si, i > 541
oY oYy oT oT
We do not rescale ¢ since it must be O (1) if all terms in equation (8.76) are to be
of the same order In contrast to the case of the Eckhaus instability, where ¢ ~ 8,
the phase here is not small. For this analysis we define ¢ such that A = Re@¥+¢),
so the phase differs from that used in the previous section by a factor of g; this is
because we are interested in the behaviour in the vicinity of the zigzag instability
boundary ¢ = 0 and we do not want to restrict attention to small ¢
If we expand the amplitude and phase variables so that

@&77)

R=Ry+8*Ry+6*Rs+ (8.78)
b =¢o+8p+ b+, (8.79)

and perform a weakly nonlinear analysis in the same manner as we did for the
Eckhaus instability, we arrive at the nonlinear phase-diffusion equation

0o 8% m%+laa%3
oT — Tayr " a9y T2y \av )

The zigzag instability differs from the Eckhaus in that it is supercritical rather

than subcritical for systems governed by the Newell-Whitehead—Segel equation

(8.80)
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We can see this by rewriting equation (8 80) in the form

3¢ 3 /0p\?\ % 19%
aT (‘H 2 (5}7) ) 3Y2  43Y2 (8.81)

The nonlinear term can be thought of as contributing a positive space-varying
component to the diffusion coefficient. In the region of linear instability, we have
g < 0, while the nonlinear term in the diffusion coefficient is positive, and there-
fore stabilising, and so quenches the instability. The bifurcation is supercriti-
cal, and the roll pattern saturates in the bifuicated state (Again, the relationship
between the linear and nonlinear terms in the phase equation determines whether
or not the instability is supetcritical, and for different choices of governing equa-
tions it can be subctitical — see Hoyle, 1998a). The rolls become wavy owing to
nonlinear effects, as shown in Figure 8.6. The zigzag instability occurs when rolls
have too long a wavelength; bending them produces a shorter wavelength, as illus-
trated in Figure 8.7, and therefore stabilises the pattern The new pattern grows
to fill the available space, and eventually the 10lls reconnect at the bends to form
patches of oblique rolls that meet at grain boundaries Point defects are not, how-
ever, created during the zigzag instability, and grain boundaries form only at a late
stage in the the nonlinear evolution.

The coefficient of the nonlinear term in the zigzag phase equation can also
be determined from the linear diffusion coefficients using a calculation similar
to Kuramoto’s for the Eckhaus instability. Starting from equation (8.76) we write

3 a%p 18 8 (3p\°
% = Dl(q)—-(/i —2iey 85y <—¢> ;

882
aY? 49v4 aY (882)

where D (g) = g The solution ¢ = pY, corresponds to tilted rolls given by

u(x, y,t) = Ae'CTXHEPY Lo Lpor, (8 83)
= Aei(”+€q"+€%""') +cc +hot, (8 84)
— Ae! Ve DT 4 o (8 85)
= A Hea+ep /20T L L poy (8.86)
~ AdCHEPD0 Lo Loy (8 87)

where the X direction is perpendiculat to the axes of the tilted rolls (see Figure 8 8),
and X = eX. So these tilted rolls have perturbation wavenumber g’, given by

, P
=9+ (8.38)
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Fig. 86 The zigzag instability in the Newell-Whitehead—Segel equation (8 2)
with periodic boundary conditions. The pictures show greyscale plots of
u(x, y, 1) = AX, Y, T)e'" + ¢ ¢., where € = X/x =020 (a) The initial state
at time 7' = 0 is a uniform roll solution with ¢ = —1 0 and j« = 4.0 in the zigzag
unstable region where the pattern wavelength is too long A small random per-
turbation has been added to seed the instability. (b) At time 7" = 16, the rolls
have become wavy (c) Attime 7 = 32 the rolls have 1econnected at the bends to
form rolls oblique to the original pattern and at shoiter wavelength (d) At time
T = 158 the pattern consists of patches of oblique rolls that meet at lines called
grain boundaries
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Fig 8 7. Bending a roll pattein produces a shoiter wavelength The new wave-
length, b, must be less than the original wavelength, /, by Pythagoras’ theorem.
The zigzag instability uses this mechanism to evolve from an unstable pattern at
too long a wavelength into a pattern with a shorter wavelength in the stable band

———
X

Fig. 8 8. Vaiiables associated with the tilted roll solution ¢ = pY to equation
(8 82). The wavevector of the tilted rolls is k.

where the O (p?) terms in the coefficients of 845/3 Y* and ((‘)/E)Y)(B(?/&Y)3 come
from higher-order nonlinear terms in the phase equation,

The new phase, $must also satisfy the phase-diffusion equation for tilted rolls at
wavenumber ¢’ = ¢ + p?/2. We want to compare the coefficient of the diffusion
term 825/ 9Y?2 with that in equation (8.89), but since the rolls are tilted we will
have to retain both the terms in 32$/ 3X? and 82$/ 9Y2 in onder to compute the
coefficient Thus we have

06 P\ 9’6 P*\ 3’
—— =D ) ——+ D — ) —=-+hot,
3 1|(q+2)aX2+ _L(q+2)ayz+10 . (8 90)
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where Dy(g) =1~ 2¢%/(u — g*) as before This is the truncation of equation
(8 18) at leading order
The tilde variables are related to the plain variables according to

z_{x(1+eq)+e%py}{(1+eq)2+ep} 3 891)
1
>’—{y(1+€q)—€5m}{(l+eq) +ep?) 2 (892)
Since X = ¥ and ¥ = ¢!/25, we have
X=X+ 0, (893)
Y=Y - pX+ 0@, (8 94)
and
) 3 ) -
— = —+ p— + 0 895
Py 8X+paY+ (e, (8 95)
a9
e = — + 0(? 8 96
Py 8Y+ (€77). (8 96)

Now setting 3/3X = 0 to match the conditions for the derivation of equation (8 89)
and substituting into equation (8.90) gives

2 dg ) ay?

L p*dD.\ 3%
aT

= (Dﬂ @p*+Dig)+5=—=)—=+hot (897
At the zigzag instability boundary, ¢ = 0, the diffusion coefficient in equation
(8 97) must be the same as that in equation (8 89), so the coefficient g(0) of the
nonlinear term is given by

1 1dD; 1 1 1
8(0) = 3Dy + = i =3+:=5 (8.98)
This agrees with the value given in equation (8 80), derived using a formal asymp-
totic expansion in powers of §.

Manneville (1990) and Fauve (1991) both go through a calculation similar
to the one just presented, but they neglect the pd/0Y component of 8/8)? ,
and so they come up with a different answer for g that does not agree with
equation (8.80)

8.4 A general theory of phase dynamics

Phase dynamics can be studied directly using an appropriate formalism. This ele-
gant approach was introduced by Pomeau and Manneville (1979), and has been
widely used since (see, for example, Manneville 1990, Fauve 1991 and 1998,
Chossat and Iooss, 1994) Unlike the methods that we have used so far it can be
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applied to finite amplitude patterns, far from onset of the primary, pattern-forming
instability.

Imagine that we have a stationary space-periodic solution #o(x) of the partial
differential equation

du(x, y,t)
ot
where x, y € R, and £ is a smooth nonlinear operator that includes spatial deriva-
tives, but no time-dependence or explicit dependence on x or y We shall assume
that equation (8 99) holds on the infinite plane, and has Euclidean symmetry Since
there is symmetry under translation in x, ug(x + ¢) is also a stationary solution of
the equation for all constant ¢, so we have

= fu(x,y, 1), w), (8.99)

flo(x +¢), n) =0. (8 100)
If now ¢ is time-dependent, so that
u(x, y, t) = uglx + ¢ (1)), (8.101)

then since f is independent of time and does not depend explicitly on x or y, we
also have

fuo(x + (), pu) =0 (8.102)
Substituting the solution (8.101) into equation (8 99) gives
dug d
S0 fluo(x + @), n) =0, (8.103)
dx dt

so the translation, or phase, mode is neutral, and perturbations along the gioup
orbit of translations, namely phase perturbations, take the form

dug
——® (8 104)
dx
This is as expected from the general result at the end of Section 4 1.1 relating
continuous symmetries, such as translations, to zero eigenvalues
Differentiating equation (8 100) with respect to ¢ gives the useful result

3f dug(x)\
Euwo( u )_o, (8.105)

where §f /6u is the Fréchet, or variational, derivative of f with respect to u, defined
by

1] (L2 8
lim — [ / (f(u(x) +eh(x), u) — fux), u) — e's—gh(.x)) dx} =0,

-0 €’ —1/2

(8.106)
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for arbitiary /(x) where L is the spatial period of ug(x).

Now assume the phase takes the more general form ¢ (X, Y, 7), where X, Y
and 7 are long scales in space and time, givenby X = e€x, Y =e¢Pyand I =¢€'t,
where |e¢| « 1 So far all the phase equations we have looked at are diffusive, so
that » = 2, but since we could have different behaviour we allow the power r to
remain unspecified here. The exponent p is also left unspecified at this point. The
solution is now

u(x, v.1) = ug(x + (X, Y, I))y+€'ur(x, X, Y, T) + S ur(x, X, Y, T) + s
(8 107)

where the higher order corrections, u, 42 and so on, are necessary because ug(x +
¢ (X, Y, T)) is not an exact solution of equation (8.99) when ¢ is not constant in
space Again we allow the power, s, of € multiplying #; to temain unspecified at
present Substituting the solution (8.107) into equation (8 99) and solving at every
order in € eventually leads to an evolution equation for the phase ¢(X,Y,7) In
this approach, although the phase gradients are small, because X and Y are long
scales, neither the phase itself nor the stationary solution u#o(x) need be, so the
phase equation is valid for a wider range of solutions and perturbations than those
we have detived so far,

If we want to consider only long wave perturbations of the original stationary
solution g (x) then we can simplify the form of the solution to

u(x,y,t) =ugx + (X, Y, 1))+ u (X, Y, T), (8.108)

whete i) (X, Y, T) represents perturbations transveise to the group orbit of trans-
lations, namely amplitude perturbations. We have just seen that constant phase
perturbations have zero eigenvalue, so we can expect the phase ¢(X,Y,7) to
evolve slowly. In contrast, amplitude perturbations decay quickly if #((x) is stable,
so we can eliminate # (X, Y, T) adiabatically to produce the phase equation for
¢ (X, Y, I) Since the equation must be equivariant under translations ¢ — ¢ + 5
for constant 5 , it can only contain derivatives of ¢ and so takes the form

9 _ (.a_‘f’__a_?i i’ ¢ %9
or 4 \Gx 8y ax2 axay av2 )

(8.109)

One approach is simply to write down the leading order phase equation using the
equivariance conditions If on the other hand we want to derive the phase equation
directly from the governing equation, we will have to start from equation (8.107)
and perform an asymptotic expansion as outlined above To see how this works,
it will be helpful to use an example, so we will re-examine the zigzag instability
using this approach
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8.4.1 The zigzag instability for finite amplitude rolls in
the Swift-Hohenberg equation

We need a governing partial differential equation to start from: as an example, we
will use the Swift-Hohenberg equation, but the same methods can be applied to
other governing equations The Swift-Hohenberg equation (7 1) is

z—f = (V2 D — (8.110)

where the critical wavenumber k. has been set to I We now look for solutions of
the form

ul, v, 1) =uox + o ¥, 1)+ 2u;(x, Y. Y+ efua(x, Y. T+ -, (8.111)

where uo(x) is a fully nonlinear stripe (roll) solution, in other words a spatially
periodic stationary solution of equation (8.110), and where 7 = ¢?f and ¥ = €y
The phase, ¢ (¥, 7 ), depends only on ¥ and not on X because the zigzag instability
is characterised by perturbations along the roll axes. The scalings in € of uy, up, T
and Y are chosen to give a phase-diffusion equation at leading order Note that the
scaling for ¥ is different from that used close to onset (¥ = €'/2y) in the Newell-
Whitehead-Segel equation If we didn’t know the appropriate scalings we could
allow the powers of € to remain unspecified initially, and we would fix them during
the course of the calculation to bring in the temporal and spatial derivatives in the
phase equation at the same order.
The spatial derivatives are given by

vie S 8.112
ax2 | < 3y2 8.112)

while the time derivative is given by 8/8f = €29/41 , and so the Swift-Hohenberg
equation becomes

2
du 32 3t [ 9? 3*u
2 2 4 3
€—=pu—|—5+1) u—-26—|=5+1u—€—-—

o M (ax2'F ) e aY2(3x2 )” T
(8 113)
Note that & is not small here, in conti ast to the close to onset case. Now substituting
for u from equation (8. 11 1) and equating powers of € on both sides we find at O (1)

82 ?

puo(x + @) — (ﬁ + 1) uo(x + ¢) — uo(x + ¢y’ =0. (8.114)

This equation does indeed hold, since ug(x) is a stationary solution of equation
(8 110) and ¢ (Y, I') has no x-dependence
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At 0(62) we have

d 3 2 2 4 3 2
£%2£0u1_2<%+du0)8¢ z(du0+du0)(_¢) ’

dx 9T dy  dx3 ) ay? “\dx? " odxt J \ay

(8.115)

where
2 2
Lo = (2 1) —3u? (8.116)
0= H 8.x2+ o ‘
Now
d §fd
Lo=0 8f duo _ (8.117)

dx  Su dx

from equation (8 105), and so Lg is a singular operator with dug/dx in its kernel
Ly is also self-adjoint under periodic boundary conditions. Thus according to the
Fredholm alternative theorem (see equation 7.20), equation (8 115) can only have
a solution if

9 L/2 s4 2 2 L2 g d 43
A duo\" g, . 9@ [77 yduo (duo | Guo) o
aT . —1/2 dx 8Y2 —1/2 dx dx dx3

ag 2 ,1)2 dug d2u0 d4u0
~\ay 2 — ) dx, 11
(3Y) -/—L/Z dx (dx2 + g4 )9 @118)

where I is the spatial period of ug(x) The last integral vanishes, since

- L/2
L2 duod? dun \2
[ aSet (_) -0, 8 119)
J—172 dx dx i dx -1)2

_ L/2
L2 gy dt dug d° Puo\?
/ padiu,, z_u_o_uf_(_‘g)) ~0, (8120)
12 dx dx i dx dx dx Yy

where the boundary terms vanish because ug(x) is periodic with period 7. This
leaves us with

L/2 dug d?
0 _ L[, i d@addx | o @120
aT L2 (M)de aY? '
—L/2 \ dx
2 (L) a2
—1.7/2 2
DY ( 079 (8.122)
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The zigzag instability sets in when

2
L/2 (du .
—L/Z(dxzo) dx
2
Lj2 (d .
J-ip (Fuxg) dx

For a roll solution of form u,(x) = R cos(l + d¢)x, where R and ¢ are constant
and 0 < § « 1, this instability criterion reduces to

<1 (8.123)

(1+89)* < 1, (8 124)
g+ 0(@©) <0 (8.125)

This agrees with the zigzag instability boundary found in Section 8.3 for rolls
with wavenumbers close to critical, even though the rolls here are fully nonlineai,
whereas in Section 8 3 they have small amplitude since the analysis is carried out
close to onset of the initial pattern-forming instability

In the zigzag unstable region equation (8.122) is ill-posed, so higher order terms
are needed to regularise it To do this we work close to the instability boundary,
setting

L2 [ dug\? ;.
—~L/2 (dJZ) dx =] +62£, (8126)

172 {dug\> 2
~L/2 (%) dx

where D is a constant that is negative in the zigzag-unstable regime We also
tescale 7 = e*t to ensure that the leading order phase equation contains higher
order linear and nonlinear terms Again if the appropriate scalings were not known
in advance it would be possible to work them out through trial and error

At O(1) in the rescaled expansion we find, as before, that equation (8 114) must
be satisfied. Now the O(€?) terms give

dug  dPug\ 8%¢ (d2u0 ) a¢)
Louy =2 —2) 2 o —2 . 8.127
01 (dx BT ) a2 T\ e (8Y . 8129)

which according to the Fredholm alternative theorem will have a solution if

L2 dug (d 3% dug (dPug d* 99\
2/ 1‘9(“0+ ) 99 Qo (Luo  dHo —¢) dr =0
Jo1s2 dx \ dx dx3 / ay?2  dx \dx? = dx* Y

(8 128)
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at O(1) Using equations (8 119) and (8.120) and integrating by parts, this reduces
to the requirement that

L2 dug 2 L)2 d2u0 82d>
2 —— ) dx — =0 8.129
(/—l/Z(dx) ; /—L/2(dx2) )y = (6.129)

at O(1). By equation (8.126) we have

: . 2
5 /l/2 %)2dx_/L/2 d2u(]) i 82¢ 2D/L/2 (dZuO dr
J—Ly2 dx J—L]2 dx2 3y2 —L/2 dx2

(8.130)

and so the solvability condition is satisfied However there will be a contribution
from the righthand side of equation (8.127) to the solvability condition at the next
order in the expansion. We can write the solution of equation (8 127) in the form

2 P 2
uy(x, Y, I)-—A(x) d) 5 + B(x) (3?) , (8131)
where A(x) and B(x) satisfy
dug  dug
LoA=2 132
0 ( it + — 03 ) (8.132)
dzuo d g

Since ug(x) is a roll solution it has reflection symmetry about some axis, which we

shall take to be x = 0, without loss of generality Consequently #o(x) and all its

even x derivatives are even in x, while all its odd x derivatives are odd in x. Since

Lo is even in x, we can deduce from equations (8.132) and (8 133) that A(x) is odd

and B(x) is even These observations are useful at the next stage of the expansion.

At 0(64) we find
dug 3¢

— —— = LU — 3u0u% —2e? (

._.___+_

dx dx3 W
32 2 d4 4
21+ 07wy d'uo (3¢
8x2) ay2  dx* \aY
(Luo (3¢ 292¢  dug \ 92 2+4a¢ 93¢
dx3 \dYy /) ay2 dx% \"\ayr2 gy ay3
dug 3%
dx ay4’

(8 134)
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whete we retain the term with the factor of €2 to account for the 0(62) con-
tribution from equation (8 130). After some calculation, the Fredholm solvability
condition gives

P L2 r4 2 /2 4
% (_2) dr = / 3940, 1245
aT —1,2 dx —1/2 dx

32 34 L/2 d 2
(o538 [ ()
ay Y —LJ2 dx
L2 Qug 92\ 8%u;

2 —(14+—=)=—4d
* 4/_[,/2 dx ( axz) 3Y2 *

9 232¢ L2 rdy, 2
-6 — | — dx.
aY 3Y2 —1/2 dx2

We now substitute for u; from equation (8.131) and evaluate all the integrals. The
following integrals vanish because their integrands are odd,

(8.135)

L2 du() 32
20014 ) B(oydx = 0, 8 136
/—L/Z & ( + 8.x2) (x)dx ( )
L2
/ 10390 A (x)2dx = 0, (8 137)
—L)2 dx
12
/ 1o 30 B (xy2dx = 0, (8 138)
—-L/2 dx

and the phase equation reduces to

b9 39 84¢+g(%)282¢

0 _poe_ o0 99 8 139
aT _ Coay? vt Y ) ar? (8 139)

where « and g are real constants that can be evaluated in terms of combinations of
the integrals in equation (8 135). In applicatious « is typically positive, while g 1s
also usually positive in convection problems The phase equation takes the same
form as equation (8 80), derived for small-amplitude solutions using the Newell-
Whitehead—Segel equation, since the terms that are permitted to appear are deter-
mined by symmetry. However the coefficients may be different.

A similar method can be used to calculate the Eckhaus instability boundary for
finite amplitude rolls Writing

u(, 1) = ug(x + (X, 1)) +euy(x, X, I+ us(x, X, )+ -, (8.140)
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where X = ex and T = €21, substituting into equation (8.110) and equating terms
at each order in € gives the leading order phase-diffusion equation

3 92
5; =Da—}£, (8 141)

where

12 (& ag\?  gdug (SF , dF
; _{/26(??20) —2(%0) —4%0 (L + L) dx
12 (a4 '
-1/2 (_x) *
(8.142)
d2u0 d4u0

LoF =4 8.143
0 (d 3 dx4) ( )

The Eckhaus instability sets in for D < 0.

8.5 The cross-roll instability

In contrast to the Eckhaus and zigzag instabilities, which are associated with the
phase of the 10lls, the cross-roll instability (Busse, 1962; Schiliiter, Lortz & Busse,
1965; Newell & Whitehead, 1969; Busse & Whitehead, 1971) is an amplitude
instability It consists of a set of rolls growing at an angle to the original pattern, as
shown in Figure 8.9. Strictly the instability is only called cross-1oll if the new set of
rolls is at right angles to the original pattern Otherwise, it is called an oblique-roll
instability. In this case we can write the leading order solution in the form

u(x, y,t) = AKX, Y, Ie'* + B(X, Y, T)e'™ +c.c, (8.144)

where the X direction is at some angle, @, to the x direction and the two variables
have the same scaling Here and below all the tilde variables bear the same relation
to ¥ as the plain variables do to x. In a Euclidean-symmetric system we have

04 _ A —|APA — a|B)*A + a4 (8 145)
ar " ¢ 9x2’
8B 9°B
-= =uB —|B’B —a|A’B + —~. 8.146
57 — WB — 1B «|AI"B + Yo (8.146)

The coupling @ between the two sets of rolls will be dependent both upon the angle

between them and upon the details of the particular system under consideration.
Iuitially, we have a set of rolls, A = Rpe'X, where Rg =1 —q* We allow a

small cross-roll perturbation, so that B = b(T )e'?X where |b| <« Ry Linearising
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Fig 8.9 The cross-roll instability in equations (8.145) and (8 146), with peliodic
boundary conditions and an angle of 7 /2 between the two sets of rolls The pic-
tures show greyscale plots of u(x, y,7) = A(X, Y, I'Ne'* + B(X, Y. T)e" 4+ cc.,
wheiee = X/x = Y/y = 0.20 (a) The initial state at time I = 01is a uniform roll
solution with¢ = 1 O and p# = 3 5in the cross-1011 unstable region whete the pat-
tern wavelength is too shoit. A small random perturbation has been added to the
original rolls, and a small randomn real cross-roll perturbation, B, has also been
added. (b) At 7' = 4 cross-rolls have started to grow (c) By 7 == 16, the origi-
nal rolls are dying away in patches (d) Finally at 7 = 39, the cross-rolls have
invaded almost the entire domain. Though it is hard to see fiom the pictures, the
final wavelength is in fact longe1 than the original
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Fig 89 (cont)

in b, we find that

db
a7 = W= p*—a(u—g*)w. (8 147)

For a fixed g, the fastest growing mode has P =0, and it is unstable when
n(l —a) > ~ag?
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If o < 1, then theie is instability for

2
PR — (8.148)
| Y

Now jic < g2, so rolls aie always unstable to cross-rolls However, in this case
rolls are not the preferred solution at the primary bifurcation from the conduction
solution When the angle between the two sets of rolls is 7/2, as seen in convec-
tion (Busse & Whitehead 1971), and the system has square symmetry, the ampli-
tude equations (8.145) and (8 146) show that squares |A|? = |B|? are the stable,
preferred solution. If the angle is not 7r/2, then again the pattern |A|* = [B|? is
preferred, but these are now rectangles.
If @ > 1, then rolls are unstable to cross-rolls for
—ag?

H< e = (8.149)
-«

In this case . > g2, and so for any p there is a band of stable wavenumbers
around g = 0. As for the Eckhaus mode, instability occurs when the roll wave-
length is too short or too long. The instability boundary is parabolic in (i, g)
space Its position in relation to the Eckhaus instability boundary depends upon
the value of «; if @ < 3/2, the cross-roll instability comes in at a smaller value of
g? than the Eckhaus instability, whereas if & > 3/2, the Eckhaus instability comes
in first. The cross-roll unstable region looks like the Eckhaus unstable region in
Figure 8.1a, except that now the upper stability boundary is & = —ag? /(1 — )

In Rayleigh-Bénard convection at high Prandtl number, the cross-roll instability
comes in first, while for low Prandtl number fluids the Eckhaus instability is the
more dangerous (see the discussion of the Busse stability balloon at the end of
the next section) The calculation of the cross-1oll instability boundary when the
governing equation is the Swift~-Hohenberg equation is set as an exercise at the
end of the chapter

8.6 Prandtl-number-dependent instabilities of convection rolls

As well as the universal instabilities — Eckhaus, zigzag and cross-roll — that can be
understood in the context of a single vertical velocity or density perturbation,

Wy, )= AX, Y. D" X +cc +hot, (8.150)

]
with amplitudes A; evolving according to equations determined by symmetry,
convection r1olls in systems with appropriate fluid properties can also be subject
to instabilities that arise from the presence of a mean fluid flow. This diift flow
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is damped for no-slip boundary conditions (# = 0 on the top and bottom plates of
the convection cell, where # is the fluid velocity), with stronger damping for higher
Prandtl numbers. With stress-free boundaries (u, = 8%u,/9z> = 0 on the top and
bottom plates, where u, is the vertical component of the fluid velocity and z is the
vertical coordinate) a uniform drift flow is neutral, since the Boussinesq equations
and the boundary conditions are Galilean-invariant, in other words unchanged
under the transformation # - u +v,, where v, is a constant horizontal velocity
Stress-free boundaries can’t be achieved in real experiments, but for low Prandtl
number fluids, such as liquid metals, the drift flow is only weakly damped (owing
to the development of viscous boundary layers close to the plates of the convection
cell), and mean flows are observed for Prandtl numbers smaller than O(1). In the
limit of infinite Prandtl number, the generation of vertical vorticity, corresponding
to a nonuniform mean drift flow, is suppressed even in the stress-free case. We con-
sider a neutral mean drift mode to be present for low Prandtl number fluids with
experimentally realisable boundaries The coupling of the horizontal mean drift to
the temperature and vertical velocity perturbations gives 1ise to the skew-varicose
and oscillatory instabilities of rolls

Horizontal drift flows are associated with nonzero vertical vorticity A straight
roll solution

u(x, y, 1) = Ae'* + ¢ c., (8 151)

where A is a constant, does not generate vertical vorticity, as can be seen from the
vertical component of the vorticity equation (1 17), so the mean drift flow can only
arise from long-scale modulations of A, when A = A(X, Y, T), and must therefore
be a large-scale (k = 0) mode itself. Since there is a neutral k = 0 mode present,
the Ginzburg~Landau and Newell-Whitehead--Segel equations do not hold.

As stated in Chapter 1, an incompressible fluid flow with velocity U(x, y, f)
satisfies

V U=0 (8 152)

A two-dimensional incompressible flow such as the mean drift can therefore be
written

U=V x3v, (8.153)

where ¥ (x, y, t) is a so-called streamfunction associated with the mean drift flow,
and 7 is a unit vector in the z direction. At linear order, the vorticity, w = V x U,
satisfies the equation

dw

- = V2w, (8.154)
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Fig 8.10 Rolls undergoing the skew-varicose instability

where v is the kinematic viscosity of the fluid For a two-dimensional incompress-
ible flow, we have

w = —ZV2y, (8.155)
and so the vorticity equation can be written
a
Ev%/f = vy, (8.156)

This equation will be coupled to the evolution equation for the roll amplitude,
A(X,Y,T) The nonlinear coupling terms will involve the derivatives of ¥, cor-
responding to the mean drift flow and its derivatives, along with the amplitude, A,
and its derivatives

8.6.1 The skew-varicose instability

The skew-varicose instability looks like an Eckhaus instability that takes place
at an angle to the original roll axes, as shown in Figure 8.10; for experimental
observations, see Busse and Clever (1979) The analysis below reveals that there
are both stationary and oscillatory skew-varicose modes. The relevant symmetries
are

(i) translationin x: {x = x + x9, A = Ae 0 x( constant};

(i) 1eflection in x: {X = —X, A — A, ¥ — —¥};

(iii) reflection in y: {Y — =Y, ¥ — —};

(iv) translation in X: {X — X + X, A(X, Y, T) - A(X — Xo. V. T), ¥(X,Y, T) —
Ww(X — Xo, Y, T), Xo constant};

(v) ttanslation in Y: {¥Y = Y + Yo, AX,Y, 7)) > AX, Y —=Yp. T), ¥(X,V,T) —
v(X,Y — Yy, T), Yo constant};

(vi) translation in T: {I - T + 15, AX.Y,T) > AX, Y, T - TIy), ¥(X,Y, 1) —
w(X, Y, I —Ty), Iy constant}

The system must also be insensitive to changing the streamfunction by a constant
value, as the mean drift depends only on its derivatives, so we must have equivari-
ance under ¥ — ¥ + g, where g is a constant
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Attempts to describe the skew-varicose instabilities using amplitude equations
are not completely satisfactory. It appears that two different calculations with dif-
ferent scalings for X and Y are needed to capture all the behaviour Zippelius and
Siggia (1983) used scalings

X =€x, Y =¢€2y (8 157)

just as for the analysis of the Eckhaus and zigzag instabilities. The self-consistent
scalings

A~e, Y~et, u~ed, T=¢ék, (8.158)

lead to the governing equations

2

9A a i 92 Y

S =pA—APA4 = — 2 ) A—iA—, 8 159

oy A4l +(ax 2ay2) ey ®159)
3w i

0=v 2 A 8.160
8Y2 { ( % 28Y2) +cec., } ( )
3%y

0= (8.161)

where w = |w|. Zippelius and Siggia (1983) derived equivalent equations, except
that they retained small X-derivative terms in VZw. Equations (8.159)+8 161)
have a further symmetry in addition to those mentioned above: they ate equiv-
ariant under transformation to a frame moving with constant velocity,

x—>x—vl, A— A7V Y -y +0Y, (8.162)

where v is areal constant This Galilean symmetry will be discussed in more detail
in Section 9 3 Its presence here reflects the invariance of the governing Oberbeck—
Boussinesq equations and stress-free boundary conditions under transformation
to a frame moving in any horizontal direction with constant speed, as mentioned
above.

For disturbances with no Y dependence, the amplitude equation (8 159) decou-
ples from the vorticity equation (8.161), so the Eckhaus instability is not affected
by the presence of the mean flow. It remains to investigate the zigzag instability
(where there is no X dependence in the perturbation) and the skew-varicose insta-
bilities where there is variation in both directions.

Stationary roll solutions, A = Roe'?* with Rg = . — g give rise to no large
scale flow, so ¢ = 0 Perturbing around this solution, such that A = Ro(1 +r)
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' @X+9), where |r|, 1], [¥] < 1 gives

dr R+ 3%r N 3?1 99 30
aT 0" Tax2 T95y2 T 35v* T “5x T axar?
(8.163)
a6 ar 337 8% 3% 13% oy
— =2g— — _———— 8.164
o7~ 5x “axave Vax2 T95y: Tasyd sy 8199
aty 8%r 1 8%
0=—v—+20R | —— + ——= ] . 165
Vayr T °(axay+2ay3) (8.165)

Now setgng r= ',’:eoT+1kX+llY, 0 = Bt T HkX+ilY and ¥ = I)0er77—l—rk)(+11)’,
where 7, 6 and ¥ are real constants leads to a dispersion relation

R2
o’ +o (2R§ +2k% 4+ 217 + %14 + %)

1 1
+ (2R§ + K +ql*+ 214) (%Rg + &> +ql%+ Zz“)

X2 2 ( 2 Z(xRS)
—k“Qq+1°) |29 +1" + =0 (8 166)
We are assuming that the perturbation has some Y -dependence, so [ # 0 and the
final term is not singular We have to take the long-wave limit carefully here,
because there is a term proportional to k2//? in the dispersion relation, and its
behaviour in the limit determines the order at which it contributes to the growth
rate eigenvalues If we take k ~ /2 — 0, appropriate to the relative scalings of X
and Y in equation (8.157), then the growth rate eigenvalues are

o) = —2R}, (8 167)
RZ

oy = — 0 (8 168)
vV

at leading order The first eigenvalue, oy, is associated with the decay of amplitude
perturbations, while oy shows that the phase modes are stable at leading order for
a > 0 (as is the case for Rayleigh-Bénard convection — see Zippelius & Siggia,
1983) In particular, the zigzag instability is strongly damped for small Prandt]
number (cotresponding here to small v) Physically, this is because the large scale
flow is generated in the opposite direction to the bends of the zigzags, and so
tends to push them back in, as shown in Figure 8. 11 To see why this is so, con-
sider Fourier mode phase and streamfunction perturbations as above. According to
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Fig 8 11 The zigzag instability is suppressed by the laige scale flow generated
by the bends in the 10lls The direction of the mean flow is shown by the dashed
lines

equation (8.165) the mean flow U = (U,, Uy) satisfies

oy aRge
== 20
If the phase, 6, is positive the rolls are shifted left, but the velocity Uy, in the
x-direction, is also positive and pushes the rolls to the right Conversely if the
phase shift is to the right (6 < 0) the mean flow pushes left. So the mean flow
resists bends in the rolls

In contrast if k ~ [ — O then at leading otder the dispersion relation becomes

U, (8 169)

2
0% + o R} (2 n %) + 2R§% (Rg - 2q'l‘—2) =0, (8.170)
so theie is instability if
k2
o (Rg — 2q[—2) <0 (8.171)

For « > 0 all rolls with g > 0 will be unstable to modes with large enough k?/ 1>
For & < 0, all rolls with ¢ < 0 will be unstable for all k%/12, and rolls with g > 0
will be unstable to modes with k2//2 small enough.

The fact that the predicted behaviour in the « > 0 case changes from stability to
instability as the ratio x>/ 12 increases, and that 0> — 00 as [ — 0, suggests that
the skew-varicose instability is not fully captured using the scalings (8.157) and
(8.158).

An alternative scaling that is appropriate when k ~ [ is

X =ex,Y =€y (8172)
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We can add the standard scalings
A~e, p~er, T =¢é%, (8.173)

but there is now no consistent scaling for ¥ The leading order governing equations
are

dA , %A 3y

= =pA— |APA+ — —iA—, 174

oy~ MATIANAT 5 —idGy ®.174)

dw 8% A

— =V? , 17

oT Y YT Yoxay ®175)
w= -V (8.176)

The amplitude equation suggests the scaling ¥ ~ ¢, but this means that the cou-
pling term in the vorticity equation comes in at O(e?), while the remaining terms
come in at O(e?) These scalings were none the less adopted by Busse and Bolton
(1984) and Bernoff (1994) Bernoff includes higher order terms in the governing
equations in an attempt to reconcile the Zippelius and Siggia (1983) and Busse and
Bolton (1984) results

If we analyse the stability of rolls using the new governing equations we find
the dispersion relation

o3 + 62 QRS + vk + 1%) + 2k%)
+0 QU(RE + K22 + 12) + 23 (R — 2¢°) + k%)

Fuk P 4 12) + 20(RE — 2¢2)KP (0% +17) — qug% =0
(8.177)
In the long-wave limit k ~ [ — O there are three roots
o1 = —2R} + O(K?), (8 178)

q(k2+l2)% _2R5 20-95) 2 R_g
1O, (8.179)

kl 1 2
02‘3=:l:\/2a——~—+k2( X g Y —+q)

where § = [?/(k* +1?) and hence 0 < § < 1. The first eigenvalue, as always,
is associated with the rapid relaxation of the amplitude mode to its equilibrium
value The remaining two phase mode eigenvalues are either real, one positive
and one negative at O(k), if g > 0, or a complex conjugate pair if ag < 0,
with growth rate determined at O (k%) If ag > 0, the rolls are therefore unstable
to the monotone skew-varicose instability If —vR3 < ag < 0 the O(k?) growth
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rate has a maximum

2 |d® 1
=k -5 —=-(1+ 8.180
g, [ 2( v) ( )
at S = 0, and so will be positive if
1
g% > 5(u + DR} (8.181)

Ifag < —ng the maximum growth rate is

k2 —VvR2
— = 12ag|1-2 O L 2(R2 -2}, (8.182)
4R8‘ 9 ogq 0 1

Oy =

at(l —S)> = —uR% /g, and is positive for sufficiently large |g|. In either g < 0
case, if the growth rate is positive, there is an oscillatory skew-varicose instability

A wide range of different scalings has been used to investigate the skew-varicose
instability, though there is still no real agreement on which is most appropriate.
For example, Bemnoff (1994) set g ~ k% ~ [% to get monotonic and oscillatory
skew-varicose stability boundaries of the form p¢ o< g. Mielke (1997) presented an
analysis specific to Rayleigh-Bénard convection, and concluded that combining
results from both scalings was necessary to describe the skew-varicose instability
fully.

8.6.2 The oscillatory instability of rolls

The oscillatory instability takes the form of transverse wiggles or zigzags that
propagate along the roll axes, as shown in Figure 8.12; for experimental obser-
vations, see Krishnamurti (1970) and Willis and Deardorff (1970) and for early
theoretical work Busse (1972). The oscillatory instability can be understood in the
context of a system with Galilean, translation and reflection symmetries. The lin-
ear analysis is simpler than that for the skew-vaticose instability since the rolls are
modulated only in the Y direction, so there are no complications over the relative
scalings of X and Y.

For steady rolls, we have a solution ug(x) for the fluid velocity perpendicular to
the roll axes. A perturbation of this solution in the phase and velocity gives

u(x, y,t) =uoplx +o(Y, 1)+ V(, 1), (8 183)

where the phase perturbation, ¢, and the velocity perturbation, V, depend on long
scales Y and T in agreement with what is observed in the oscillatory instability.
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/

Fig 812 Rolls undergoing the oscillatory instability. The arrow indicates the
direction of travel of the wiggles

This and the following analysis is a simplification of the work of Fauve, Boulton
and Brachet (1987) We can derive evolution equations for ¢ and V using equiv-
ariance under the symmetries

(i) translationin x: {x — x -+ xg, ¢ — ¢ — xg, X0 constant};

(i) vansformation to a moving fiame: {x > x +vl, ¢ > —vI,V >V +uv,v
constant};

(iii) reflectionin x: {x - —x,¢ &> —¢, V —> —V};

(iv) reflectionin y: {¥ — =Y}

(v) translation in Y: (Y Y +Y,o(Y,T)—= (Y =Yy, 1), V. IT)—>
V(Y — Yo, T), Yo constant};

(vi) translation in 7: {IT -7 +Tp,0(Y, I)—> oY, T - 1), V¥, I)—> V¥, T —
10), To constant}.

We can deduce the amplitude equations

¢ 3¢

— = —V+4+a— i 8184
aT tag Tt ( )
v 8%¢ 3tV

LM Nodh AP AT 8185
aT ayz T T (8185)

to the first two orders in €, where we scale I = ¢¢, Y = ¢y, V/¢ ~ ¢ and where
a, b and c are real O(1) constants Setting ¢ = (/)e":r'“” and V = Ve"”"”

where ¢ and V are constants, leads in the long-wave limit (k¢ — 0) to the growth
rate eigenvalues

o = +iv/bk L;C)kz L 0U. (8 186)
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If a + ¢ is negative and b is positive then the roll solution is unstable to an oscilla-
tory mode If b is negative on the other hand, then there is a growing steady zigzag
mode at small [k]. Busse (1972) showed by direct calculation from the governing
equations that conditions for an oscillatory instability are satisfied in Rayleigh—
Bénard convection. Fauve, Bolton and Brachet (1987) make a phenomenological
extension of the analysis to the case of no-slip boundary conditions, and show that
this implies a finite wavenumber and frequency at onset Whether the oscillatory
mode corresponds to a propagating wave or a standing wave is only determined
at nonlinear order: Fauve , Bolton and Brachet show that a propagating wave is
selected, corresponding to bends that travel along the roll axis; an exercise at the
end of this chapter takes you through some of their analysis

8.6.3 The Busse balloon

The region in (R,k,o) space corresponding to stable rolls in Boussinesq
Rayleigh—-Bénard convection is known as the Busse balloon, where here R is the
Rayleigh number and o is the Prandtl number, both introduced in Chapter 1, while
k = ke + €q is the roll wavenumber Its boundaries were established by Busse and
his coworkers in a series of calculations and experiments published over many
years (see, for example, Busse and Whitehead, 1971). The bifurcation parameter,
M, is related to the Rayleigh number by

R — R;
€2R,

u= (8.187)
where R is the critical Rayleigh number for the onset of convection, so a section
through the Busse balloon at fixed Prandtl number defines the region of stable rolls
in (g, u) space By analogy the region of stable stripes in (g, 1) space in a general
pattern-forming system is often referred to as the Busse balloon or stability bal-
loon. The Eckhaus, zigzag, cross-roll, skew-varicose and oscillatory instabilities,
among others, can all define part of the boundary of the balloon. Sketches of typi-
cal] Busse balloons for high and low Prandtl numbers are shown in Figure 8 13 In
the high Prandtl number case a bimodal instability, where initial cross rolls lead to
bimodal convection, forms part of the boundary

8.7 The Benjamin-Feir instability

The Benjamin—Feir instability is an instability of travelling plane waves, analogous
to the Eckhaus instability of rolls In Chapter 7 we saw that slowly modulated
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R R A

(b)

Fig 813 Sketches of a typical section through the Busse balloon at (a) high
Prandtl number and (b) low Prandtl number The curve marked M is the marginal
stability curve E, C, Z, B, S and O are the Eckhaus, c1oss-10ll, zigzag, bimodal,
skew-varicose and oscillatory instability boundaries respectively The 1egion of
stable rolls is shaded grey After Busse and Whitehead (1971) and Manneville
(1990)

right-travelling waves in one spatial dimension can be written in the form
u(x, ) = A(Z, 1) +cc +hot., (8 188)

where Z = X — ¢T is a coordinate moving with the group velocity, ¢, and where
the envelope, A(Z, I ), evolves according to the equation
A A+ )32A (1-+iB)IAI*A (8 189)
—= i) — — i .
o " Y7
where y is the bifurcation parameter and o and § are real constants Now, a plane
right-travelling wave with wavenumber slightly different from critical takes the
form

A = Rye! @T—9%) = Rye!((0—90T—42} (8 190)
R} =(u—g?, (8.191)
a)=cq—aq2—/3R§ (8 192)

Perturbing this solution so that

A = Ro(1 + r)e'llo—997 ~9 249} (8 193)
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where r and ¢ are real and |7 |, |@¢| < 1, substituting into equation (8.189), separat-
ing real and imaginary parts and linearising in 7 and ¢ gives

ar 0% ap ar 32¢
8—7: 322 +2q32 +2(1qaz 322 2R0r 8 194)
[ 8% 1) ar 9%
3T ~—015?+201qa—z—2(18—Z+ 272 ZBROr (8 195)

Setting 7 = 7e?T+*Z and ¢ = ge®T +*Z where 7 and ¢ are real constants, and
where |k| < |g|, it is possible to deduce, after some calculation that in the long-
wave limit, |k| — O, the two growth rate eigenvalues are

oy = —2R} 4+ O(k), (8 196)
) 2 2¢°k* 2 3
=2igla — Pk — (L+ ap)k” + =——(1 + ) + 0 (k).
0

(8 197)

The first, as ever, represents the rapid relaxation of the amplitude to its equilibrium
value, while the second corresponds to a phase mode. There will be instability for
Re(op) > 0, in other words fol

2 2
~(1+ap) + 7‘%(1 +89>0 (8.198)
0
This will hold for all ¢, including the preferred mode ¢ = 0 corresponding to
waves at the critical wavelength, if

l+af <0. (8 199)

The Benjamin—Feir instability sets in if this criterion is satisfied, and then uni-
form travelling waves of all wavelengths are unstable. It is a long-wave side-band
instability, originally identified in wave trains on the free surface of a liquid: a wave
of approximately constant wavelength and frequency breaks up, becoming highly
irregular far from its source (Benjamin & Feir, 1967) In the original context the
envelope equation takes the conservative form

A, (8.200)

which is the nonlinear Schrodinger equation, derived in Chapter 7, and the criterion
for instability reduces to @ < 0

Figure 814 shows a numerical simulation of the Benjamin-Feir instability,
where a uniform wavetrain breaks up into a number of unequal pulses
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o

Fig. 8 14 The Benjamin~Feir instability in equation (8.189) with periodic
boundary conditions, and ¢ =0, « = 1, § =—2 The plots ate of u(x,) =
A(X, T)e' ") 4 c.c, where ¢ = X/x = 02 (a) The initial state at time 7 = 0
is a uniform travelling wave with ¢ = 0.0 and p = 1.0 in the Benjamin-Feir
unstable region A small random perturbation has been added. The wavetiain
breaks up into a series of uneven pulses as seen in (b) at time 7 = 617.

Returning to the g = 0 case of the full equations, we can expand the growth rate
of the instability to fourth order in k to get

2.4
oy = —(1 + af)k* — %(1 + B3 + 0(k% (8.201)
0

So to quartic order the linear parts of the phase equation are

3¢ 7 o , ¢
— =1 — T (1 —
a7 =~ Pz T o )5z

(8.202)
Now the leading order nonlinear term in the phase gradient is (3¢ /0 7Z)? The
analogous term, (3¢/3X)?, is forbidden in the phase equation for the Eckhaus
instability as it does not satisfy x-reflection symmetry (X — —X, ¢ — —¢), but
here there is no such symmetry as we are using a moving frame, and permitting
only right-travelling waves. We can therefore include the term (3¢/8Z)?, giving
the leading order phase equation

99 3?¢ o 2 3 \?
5?_(14—(15)572__2_[305(1_}_'3)324 +3(B—Z) s (8203)

which is the Kuramoto-Sivashinksy equation (Kuramoto & Tsuzuki, 1976;
Sivashinsky, 1977). The much-studied Kuramoto-Sivashinksy equation has
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chaotic solutions, showing a transition from low-dimensional temporal chaos to
phase turbulence, a chaotic regime characterised by spatiotemporal disorder.

Exercises

8 1 Assume you have a stripe solution with wavenumber 1 + €g, and that small phase
perturbations, ¢, to this solution satisfy the equation

3o %9 3% 3o 9%
3T Dll(fl)m + DL(Q)a—Yi + f(q);‘;)??ﬁ(_z
Ap 3% o 9%
teDay v T % axer

where T = €2t is a slow timescale, X = ex is a long scale in the across-axis direction
and ¥ =¢!/2yisa long scale in the along-axis direction as usual, and where D) (¢),
D1(g), f(g), g(g) and h(g) ate 1eal functions of ¢. Use Kuramoto’s method to work
out f(g), g(g) and h(g) in terms of D (g) and D, (g)

8 2 Work out the cross-roll instability boundary for rolls governed by the Swift-Hohenberg
equation Does the cross-roll o1 the Eckhaus instability come in first?

8 3 Whatare the consequences of using free-slip boundary conditions, rather than periodic,
for the Eckhaus instability in a finite domain?

8 4 If the phenomenological extension to no-slip boundaries of the analysis of the oscilla-
tory instability of rolls gives a dispersion 1elation

o2 + (@ + (a + Ok® + Bk*Yo + bk* + yk* = 0(K),

where @ > 0, B > 0 and y are 1eal constants, show that there will be an oscilla-
tory instability if « + ¢ is sufficiently negative Work out a condition on y for the
instability to have wavenumber, k. # 0, and frequency w, # O at the critical value
ofa+c¢

Now assume that the phase can be written in the form

(¥, T) = [A(g, 1)e' @I Hd) o pg, gyl thel) ¢ ¢ ]
+C(g,t)yt+hot

in the nonlinear 1égime, where ¢ and 7 are Jong scales in the ¥ and 7 directions
respectively and the functions A(¢, 7), B(¢, ) and C (¢, 7) evolve accoiding to the
equations

A IA %A

— = A — Co— —1 —_—

9 M C°a¢ + (a1 102)8;2
—(b1 —ib) (1A +2IB)* + C*)A +
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3B 3B - 8%B
3 = uB +cg§ + (a) _MZ)EE
—(by — ib){|B)? +2|A? +C3B +
ac  8c
ar a2

wheile u, g, a1 > 0, a2, by, by and s > 0 are 1eal. Considering spatially uniform solu-
tions A = Pe'¥, B = Q¢'%", € =0, where P and Q are complex constants, show
that only propagating waves can be amplitude-stabie.

Further details can be found in Fauve, Bolton and Brachet (1987)
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More instabilities of patterns

Patterns such as hexagons and squares can also become unstable to phase and
cross-pattern modes, while stripes in systems with additional symmetries, such
as Galilean invariance, can undergo new types of instability, leading to drift, for
example This chapter looks at some of these new situations, starting with two
examples of more complicated planforms — hexagons and quasipatterns — and
some of their instabilities After that we study drift instabilities where stationary or
standing-wave patterns start to travel, and finally we look at the effect of Galilean
invariance and conservation laws on the instabilities of stripes.

9.1 Instabilities of two-dimensional steady patterns

There are many possible extensions of the work on roll instabilities to more com-
plicated situations. An obvious starting point is to consider what happens when
the pattern that emerges at the primary pattern-forming instability is more com-
plicated — a steady square pattern, for example, or oscillating hexagons, or maybe
even a quasipattern There is an extensive literature dealing with the phase insta-
bilities of steady and oscillatory patteins of all sorts. We shall concentrate on two
examples — steady hexagons and steady twelvefold quasipatterns — that illustrate
how to extend the methods used in the previous chapter to these harder problems
and lead to some interesting new results. At the end of this chapter you will find
exercises on the instabilities of steady and oscillating squares as further examples.

9.1.1 Instabilities of hexagons

In this section we will adapt the methods used for rolls to investigate the instabil-
ities of hexagons. Many researchers have worked on this problem; further details
can be found in Hoyle (1994a, 1995, 1998b), where the exposition is similar to the
one I shall present here, and in Echebarria and Pérez-Garcia (1998), Kuske and

292
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Milewski (1999) and many other papers, several of which are referenced in these
five.
Consider a hexagonal pattern written

w(x,y, 1) = AX, Y. T)e'* + B(X. Y, T)el¥+V30/2
FOX, Y, De G324 0 L hot ©.1)

For simplicity we will consider the case where there are no spatial derivatives in
the quadratic terms in the amplitude equations; as discussed in Section 7 7, this is
often reasonable Close to the onset of the instability, the evolution of the pattern
can then be described to leading order by the three coupled nonlinear equations

A - - %A
a7 — # +aB blA| c(IBI*+IC9) +3X]2 92
dB - 2 ) 2 3’B
22— uB C —b|BI*B —c(IC AP)B + —, 93
3T — X +aA (Bl c(ICI + A7) +ax§ (93)
aC _ 82C
— =uC +aAB = b|CI*C — c(|AP + [BHC + —, 94
a7 =1 +a (C] c(lA" + |BIY) +3X§ ©4)

where X1 = X, X» = (=X + /3Y)/2and X3 = —(X + +/3Y)/2.and u, a, b and
¢ are real constants These are equations (7 116)—(7.118), derived in Section 7.7,
with ¢ = 7 = 0 If you are interested in what happens if g and /4 are nonzero, so
that spatial-derivative quadiatic terms are included, you can find the relevant cal-
culations in Echebarria and Pérez-Gaicia (1998) and Kuske and Milewski (1999)

A perfect hexagonal pattern at slightly off-critical wavenumber is given by
A = Rpe'?%1, B = Rpe'?%2, C = Rype'?%3, where Ry > 0 and g are real constants.
Substituting into equations (9.2)-(9 4) gives

RE(b+2¢) —aRy — (u—g*) =0 (95)

In this case the hexagon phase, ® = A1g(ABC), is zero, and so these are up-
hexagons. We could also choose ® = 7 to give down-hexagons, for example by
setting A = — Roe'9X1, B = Rpe'9%2 and € = Rpe'?*?, where

RYb+20)+aRy— (u—g?) =0 (9.6)
Allowing small amplitude and phase perturbations to up-hexagons of the form

A= Roe!@X1H0 (1 41, 97)
B = Roe' XM (1 4 1y), 98)
C = Roe' X5t (1 4 43), 99)
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where [r; (X1, X2, X3, T)l <« 1 and |¢; (X1, X2, X3, T« 1fori =1,2,3, and
linearising in the r; and ¢; results in the equations

d
8—;,1- =aRo(—r) + 13 +713) — ZbR(z)l‘] — ZCRS(Tz +7r3)
ap1 9%,
_pg 8L, N 9.10
qax, + axf (9.10)

a9 ar1 3%
— = —aR +$3) + 2 A —r, 9.11
3T aRo($1 + ¢2 + ¢3) anI axf 9.11)

with four other equations obtained by permuting the subscripts {1, 2, 3} cyclically.
In the absence of spatial modulations (3/0X; = 9/9X, = 9/9 X3 = 0) the pertur-
bations evolve according to

d
ﬁ("l +r2413) = —v(i) + 72+ 13), (9.12)
%(n —r) =2 —r)), i#] ©.13)
d

E(¢] +¢2+ ¢3) = —3aRo(P1 + ¢2 + ¢3), © 14)

d o,
ﬁ(¢i—¢j)=0’ i # O 15)

where

u= Ri(b ~ )+ aRy, (9.16)
v =2R3(b + 2c) — aRy. (9.17)

These equations are in agreement with those found in Section 5.4 for the stabil-
ity of hexagons on a hexagonal lattice The amplitude and phase perturbations
correspond to the real and imaginary parts respectively of the perturbations 4z;
used there. Without loss of generality we can take a > 0, since if @ < 0 we can
apply the transformation ¢ — —a, ® — ® + 7, and recover the equations (9.10)—
(9.15) The hexagons are therefore stable to perturbations in the hexagon phase
P = ¢ + ¢2 + ¢3. The remaining two phase modes, which are associated with
translations in two horizontal directions, are neutral in the absence of spatial mod-
ulation; these are the true phase modes If we also choose ., a, b and ¢ such
that # > 0 and v > 0, then the pattern is stable at leading order to disturbances
in the amplitudes The inequalities # > 0 and v > 0 require that b + ¢ > 0, and
we also have b 4 2¢ > 0 from v > 0 and a > 0. Consequently, if b — ¢ < 0, the
relevant parameter 1egime is —¢ < b < ¢, with ¢ > 0, whereas if b — ¢ > 0, it is
—b/2 < ¢ < b,withb > 0
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When spatial modulation is allowed, the two phase modes are no longer neutral,
but evolve on long space and time scales Using the phase approximation, where
the stable amplitude modes are slaved adiabatically to the unstable phase modes
in the long-wave limit 3/3X, 3/3X3, 3/3X3 ~ &, |8] <« 1, the following phase
equations can be derived at leading order:

) 2 1/ 8% 92 2g* 3%
ﬁ(¢z+¢3)={—q—vz+—(3 + ) d }(¢2+¢3)

2u 4\Uax2 T a2 ) v ax?
‘;1/‘3 (1—%’—2) a;z},(¢2—¢3)= (9.18)
587(452 —¢3) = {-gv% }1 (ag;_ﬁ 55’},2—2) - 2%283—},22} (f2 — ¢3)
~?(1 -%’-2) 8)?2}’(4)2 + ¢3) ©19)

Setting ¢y = goe® T FAXHIY and g3 = dye?T HAXHIY e find the growth rate
eigenvalues

_1/72¢* 2 2 3
o =g —— — 1) (k" +17) + OK&), (9.20)
U
1 (2¢*  84° 2.2 3
or=-—+—=3)*k"+1°)+ Ok 921)
4\ u v
The phase mode corresponding to o satisfies
l
k(g2 + ¢3) = ﬁ@z — ¢3). 9.22)

Since the hexagon phase perturbation is zero to leading order (¢ + ¢2 + ¢3 = 0),
because it is slaved to the two true phase modes, equation (9 22) is equivalent to

9. _ 09,
ax ~  ay’

(9.23)

where ¢ = ¢y is the x phase, and ¢y = (¢2 — ¢3) /«,/'37 is the y phase (Note
that the translation x — x + x0, y = y + Yo, gives ¢; = ¢ — xo, ¢2 — ¢3 —
¢ — @3 — /30, so we can identify the x and y phases as claimed.) This rep-
resents stretching along one Cartesian axis in wavevector space and contiaction
along the other, and so we call this the rectangular Eckhaus instability of hexagons.
If we write ¢ = (¢, ¢, ), equation (9.23) takes the form V¢ = 0, so the phase
perturbation is divergence-free Some tilting of the Cartesian grid may also occur,
since 3¢, /0Y and 3¢, /dX are not restricted The evolution of the instability is
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shown in Figuie 9.1: an initial pattern with a short wavelength (large ¢) in the
rectangular Eckhaus unstable band evolves towards a Jonger wavelength

Close to the phase stability boundary, we can set g2 = g7 + dé2, with [§] < 1
and d measuring the distance from threshold, and perform a weakly nonlinear
analysis The critical wavenumber, gg, is defined by qu Ju = 1. After a lengthy
calculation, the leading order phase equation for the rectangular instability turns
out to be

8 2 v 6 2°¢1
— V2 = Vo — 8—rd
TV =T 642( P XX
L 6a3—aR) 3> (D a) 3¢2)2 (a¢3)
6g;  8X28X3 \9X; 9X» 9X> 3X3
(695 —aRo) (3 B )2{ 3 (a¢1 )2
1845 aX; 9X») |ax, \8Xx,

3 [og\* 9 a¢3)2}
%, (aTrz) +rx3(m | ©249

This equation describes the evolution of the Laplacian of the phase; the evolution
of the phase itself will depend upon the conditions at the lateral boundaries, so the
problem is nonlocal The bifurcation can be shown to be subcritical (Hoyle, 1994a,
1995), leading to the breakdown of the pattern through the creation of penta-hepta
defects, where two hexagons are replaced by a pentagon and a heptagon, as can be
seen in Figure 9 1

The phase mode corresponding to o2, defined in equation (9 21), satisfies

k
2+ ¢3) = ‘ﬁ(ﬁbz — ¢3) (925)
at leading order, which can be rewritten
agy 9y
aY ax’ (926)

or V x ¢ = 0, so the phase perturbation is irrotational. If the original hexagons
were drawn on a sheet of rubber, this phase mode has the effect of rotating Carte-
sian axes in the rubber towards or away from each other We call this mode rhom-
bic, because it would turn a square grid aligned along the Cartesian axes into a
thombic lattice. The pattern may also expand or contract along the coordinate axes
because 3¢, /90X and 3¢y, /Y are not restricted,

Close to the rhombic Eckhaus instability boundary we can set g2 = qg +ds?,
where |§] <« 1 and d measures the distance from threshold, and where the criti-
cal wavenumber, gy, is now defined by 2g; 2/u + Sq /v = 3, and once more carry
out a weakly nonlinear analysis. After an extremely long and somewhat painful
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3 3 3o \>  [og\2 [ 3¢\
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- Fye T X, 84X, + X2 + 8 X3
8% [ o¢ 82 (a¢2 82 (34)3 )
O )+ Q)+ —|—=-0
ax? (ax, ) 3x3 \9X2 ) 3X3 \8X3
3¢ 0O . 3 (3¢ a@)+ 3 (a¢3 ae)}
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P ¢y | 8793
= -+ =, 9.28
aX? 38X  8x: ©28
_ %1 3y | B8¢s
0X1  3X>  3X3

and where A — G are functions of gg, u, @ and Ry, the exact forms being given in
Hoyle (1994a, 1995)

Again the equation is for the Laplacian of the phase, so the evolution of the
phase itself depends on the lateral boundary conditions Once more it can be shown
that the bifurcation is subcritical, leading to the formation of defects, as seen in
Figure 9 2. The figure also shows that the wavelength remains almost constant
throughout the course of the thombic instability. This is not surprising, since the
rhombic phase relation involves neither d¢, /3 X nor 3¢,/3dY, and so no stretching
or compression is required However, the pattern is tilted, and shows bands of up-
hexagons (where the hexagon phase, W, is zero), down-hexagons (¥ = 7) and
triangles (W = 7/2) It appears that the thombic instability stabilises the pattern
by introducing local variations in the hexagon phase, rather than by changing its
wavelength

In the most commonly observed situation (see Busse, 1967) where hexagons are
the stable solution at small g and rolls are stable at large u, the coefficients of the
amplitude equations satisfy & — ¢ < 0 and b > 0. In this case the region of stabil-
ity to amplitude and phase modes is closed, as shown in Figure 9.3, in agreement
with numerical calculations of the stability balloon (see for example, Iveitereid &
Palm, 1976; Bestehorn, 1994) This contrasts with the 1oll case, where the region
of stability to phase modes is open in the weakly nonlinear approximation where
the envelope equation framework is valid In Figure 9.3 the thombic instability sets
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Fig 92 Greyscale plots of u = A(X, Y. T)el* + B(X, Y, T)e!-+V31)/2 4

C(X, Y, T)e i3V3)/2 4 ¢ for a hexagonal pattern undergoing the rhombic
Eckhaus instability during numerical integration of the amplitude equations
(92-94). The parameter values are ¢ = 120, 4 = 224.0, ¢ =0.125, a =20,
b =3 0and ¢ = —1.0 The plots are shown at times (a) ' = 0.00, (b) T = 0.14
and (¢) 7 = 020. The bottom-left one-hundredth of the original integtation
domain is shown in each case From Hoyle (1994a)

in first for ;< a2(3b - c)/Scz, while for po > a*(3b + c)/Sc2 it is the rectangulai
mode that defines the edge of the stable region. In fact, the two instability bound-
aries always cross except in the parameter regime » — ¢ > 0 and ¢ < 0, when the
rhombic instability is the more dangerous for all values of i

Numerical simulations (Sushchik & Tsimring, 1994; Bestehorn, 1993) show
that the Eckhaus instabilities can trigger the hexagon-1oll transition when p is
close to the value, ug, at which a front between rolls and hexagons would be sta-
tionary. When p = pg, both rolls and hexagons at critical wavelength are stable,
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Fig 93 Hexagon phase stability boundaries for b —¢ <0, b > 0. The
dotted and dashed cuives are the rhombic and rectangular Eckhaus stabil-
ity boundaties respectively The two curves cross at ¢ = =(a/2c)/(b + ©)/2,
w=a*Bb+c)/8* (Ry=a/2). The aea of stable hexagons is shaded
grey The curves u =g? —a?/4(b +2¢) (lower curve) and pu = g2 + a2
(2b+¢)/(b — ¢)? (upper curve) are shown as solid lines These correspond to
Ro=a/2(b+2¢) and Ry = —a/(b — ¢) respectively. For u < g% — a®/4(b +
2¢) no hexagons exist, while for u > g% +a*(2b + ¢)/(b — ¢)? hexagons are
unstable to rolls (see Section 5 4 and Figute 5 8 for further details)
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and their free energies are equal, as we will see in Chapter 10 In fact, Sushchik and
Isimring (1994) observe that the hexagon to roll tiansition is initiated by pieces
of roll in the cores of penta-hepta defects There is also evidence that the Eckhaus,
cross-roll and zigzag instabilities of 1olls can trigger the transition to hexagons
(Lauzeral, Metens & Walgraef, 1993; Bestehorn, 1993; Sushchik & Tsimring,
1994).

There is no zigzag o1 two-dimensional Eckhaus instability of hexagons. By
analogy with rolls, a zigzag phase disturbance to the hexagonal pattern would
take the form ¢; = ¢;(¥;, I), i = 1,2,3, whete ¥} = Y, Yo = —/3X/2 - Y/2,
Y3 = +/3X/2 — ¥ /2. To leading order, the phase-locking equation

G1(Y1, T)+ ¢o(Y2, T + ¢3(¥3,7) =0 (9 30)
holds Differentiating twice with respect to ¥ = ¥ gives
3? 1 (9 32
LAY (T 2 ©31)
ayy 4\ ay; 0y,

Two further equations obtained by cyclically permuting the subscripts {1, 2, 3} also
hold. Combining all three gives

92 92 92
"’21 = ¢22 = ¢23 =0 9 32)
Y2 v} aY;

So each phase disturbance ¢; can be at most a linear function of the corresponding
Y; It can be seen from equations (9.18) and (9.19) that such perturbations do not
grow, and so there is no zigzag instability of hexagons. This has also been demon-
strated numerically (Sushchik & Tsimring 1994). Similarly, a two-dimensional
Eckhaus phase disturbance would take the form ¢p; = ¢;(X;, 7),1 = 1, 2, 3, where

32 32 3?
b _Th _Yh_y 9 33)
X2 ax}  9X]

Again these perturbations do not grow and so there is no two-dimensional Eckhaus
instability of hexagons
We can also generalise the cross-1oll instability to the hexagon case. A cross-
hexagon perturbation would take the form of a hexagonal pattern growing at an
angle, 6, to the original hexagons. Symmetry considerations suggest that the six
component roll amplitudes satisfy the equations
OA _ A +aBC — bARA — (1B +ICP)A

aT
2

—di|APA — |BPA — d3|CIPA + —. (9.34)
94X
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3B e 2 2 2

3T =uB+aAC —b|B|*"B — c(|AI"+ |C|")B
22 =12 ~op, O°B

~d&|B’B — d|CI*B — d3 A*B + —5, (9.35)
axX5

aC TR 2 2 2

o7 = uC +aAB —b|CIC — (AP +|BP)C
=02 2 S, 8°C

~d1|C1*C — d| AC — d31BI*C + —, (9 36)
2X3
2% 25 1o %A

~d1|AI°A = B|CI°A — d3|BI"A + —=5, (9.37)
89X
o7 = uB +aAC — bIBB — c(AP +IC")B
25 25 25, 0°B

—di|B|"B — dy|A|*B — d3|C|*B + —==, (9.38)
2X2
3T =uC+aAB - b|C|°C —c(|A]" +|B|")C
25 25 2n, 0°C

—di|C|°C — dr|B|*C — d3|A| C+87, (9.39)

3

where fl, 5?2 and 5(\3 are related in the same way as X, X7 and X3, and where
there is an angle, €, between the X and X axes. If all the constituent rolls were
at critical wavelength then the general solution

u= Ae'* + Bei(—.1+«/§)-)/2+ Ce—i(x+~/§)’)/2
+Ae 4 B! TRV 4 Cori G2 4 (9.40)

where the ¥ and 7 variables are related to X and ¥ in the obvious manner, would
be doubly periodic on a superlattice for a countably infinite set of values of the
angle € (Dionne, Silber & Skeldon, 1997), (see Chapter 6) For other values of &,
the system describes quasipatterns, and the use of the amplitude equations cannot
be justified rigorously, even for patterns at critical wavelength, much less when
modulation is present

Assuming that the amplitude equations hold, we start with a hexagonal
pattern A = Roe"fxf, B = Roe’qx7 C= Roe’qx‘, and make a pelturbatlon

o~

A=A, B=B(I)e 2, C(I)=Ce™ where |4, |Bl, |C] < Ro
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Linearising, we have

dA ) 5~
T ={n—r°—(d1 +dy + d3)R§}A, (9.41)
dB . )~
Fra {w —s* = (d1 +dy +d3)R;) B, (9 42)
dc ) .
a7 — -t A+ + B)RIC (9.43)

The maximum growth rate of the perturbation occurs at the critical wavenumber
r=s=t=0,andis givenby 0 = u — (d; +d> + d3)R§ The distutbances are
linearly uncoupled, and so it is not until the nonlinear stage that a hexagonal pattern
would emerge amongst them.

The cross-hexagon boundary is given by

w=(d; +d +d3)R3. (9.44)
or equivalently,
q> = aRo+(di +dy + d3 — b — 2) R} (9 45)

Sushchik and Tsimring (1994) considered the case di = d» = d3 = ¢ where the
coupling between different sets of rolls is independent of the angle between them,
and found that in this case the cross-hexagon mode was never the ptimary means of
breakdown of the pattern For other choices of the parameters, the cross-hexagon
mode can be the dominant one, marking the boundary of the region of stable
hexagons fot a range of st

White (1988) performed experiments on hexagonal cells in convecting Lyle’s
Golden Syrup He found three types of instability that alter the pattern wavelength:
mosaic, where small hexagons grow at the corners of the original cells, cell fusion
and cell splitting The initial number of cells was relatively small, however, so
these are unlikely to be long-wave phase modes: cell fusion, for example, is prob-
ably a period-multiplying bifurcation of the type discussed in Chapter 6 and the
mosaic instability looks a bit like a cross-hexagon mode. White also found similar
instabilities of squares

9.1.2 Phase and phason instabilities of quasipatterns

Similar methods can be used to study the phase instabilities of quasipatterns,
though in the eyes of the purist using a set of two-dimensional modulation equa-~
tions to describe the instabilities of patterns that can’t be described properly by
amplitude equations in the first place must surely be adding insult to injury. So
much for purity! Let’s press on undeterred, and see what happens
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Echebarria and Riecke (2001) have worked out the phase equations for octag-
onal (eightfold), decagonal (tenfold) and dodecagonal (twelvefold) quasipatterns
In the twelvefold case, the pattern is written

6
u(x, y,t) = Z A X, Y, De** 4 cc. (9.46)

n=1

to leading order, where the k; are given in Figure 6 10d and satisfy |k;| = 1, and
where X —ex, Y =eyand T = €%t for 0 < € < 1 To cubic order the A, evolve
according to the equations

dA; _ _
3T = pA; + ki V)?A; + aAi i Ais — A{BlAI1R + 8(Airal* + | Aival?)

+y (AP + 1A F AP, i =1,3,5, (9 47)
dA; _ _
o7 = A+ i V2A; + aAiy2Aira — AlBlAIR + 8( A 2* + 1Airal®)
+y (A1 2+ A + v]Ai1]?), i =2,4.6, (9.48)

where the indices cycle with petiod 6, where V = (9/dX, 0/3Y), and where p is
the bifurcation parameter and «, 8, 8, ¥ and v are real constants. These equations
are just the same as (6 53) and (6.54) with the addition of the modulation terms
ki V)2A;.

A perfect dodecagonal quasipattein at slightly off-critical wavenumber is given
by A; = Roe'?%i X where Rg and ¢ are real constants that satisfy

#—g*+aRy— (B+25+2y +v)RZ =0, (9.49)

This solution is then perturbed so that

Aj(X, Y, T) = Ro(1 +1;(X, Y, T))e' ki X+, X1 1)) (950)

foo j =1,. .,6 The amplitude perturbations, r j, and the two global phases
D) =¢1 +¢3 + ¢s, (9 51)
Dy = ¢2 + ¢4 + s, (952)

are determined adiabatically by the two phase modes

1 1 3 1 3
Pr = 3 (051 - §¢3 - %454 — 5(155 + %(%) , (9.53)

V3 V3 1

| 1
by = 3 (¢2 + —2—¢3 - 5!754 - 7055 - §¢6) , (9 54)
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conesponding to translations in the x and y directions respectively, and the two
phason modes

2 ] 3 ] V3
Yy = 3 (¢1 - §¢3 + \/7—¢4 - §¢5 - 74)6) , (9.55)
2 3 | 3 1
Yy = —3 (¢2 - —\2C¢3 - 5454 + %qﬁs - '2'¢6) , (9.56)

which coirespond to relative translations of the two hexagonal lattices that make
up the quasipattern These are slightly different from the definitions of the phase
and phason modes used by Echebartia and Riecke, but they are equivalent, and
are chosen such that the translation x — x + xg implies ¢ — ¢, — xp and so on
To woik out the phason modes, the translation is applied to just one of the two
component lattices This leads to a difference in sign between ¥, here and v, of
Echebarria and Riecke (2001]).

It can be shown that to linear order in the long-wave approximation the phase
and phason modes satisfy the equations

d
22 = DIV + (D2~ DYV &), ©.57)
0y 2 d (Y 0Yy
= D1V, Dy — — — =~ |, 9.58
3T 3V 4+ (Dy D3)8Y(8Y 8X> 9.58)
Wy o DV, — (D — Dy)— [ 22 _ Ty 959
a7 = D3V~ (D D3)ax(ax %% ©39)
where ¢ = (¢y, ¢y) is the phase field, and where
1 2
Di=--1 9 60)
4 U\
2 2
D2=é_gg__q_‘ (961)
4 V) 78}
2
Dy=i 9 9 62)
4  up
2 2 2
D4=§_L_i, (9.63)
4 ) 753
with
u; = 2Ro[a + Ro(B +y — v —19)], 9.64)
uy = 2Rola + Ro(B +v —y — 8)], (9 65)
v = —Rola — 2Ro(v + 28 + 2y + B)], (9 66)

vy = —Ro[ae + 2Ro(v + 2y — 26 — B)]. (9.67)
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The fact that the phase and phason modes decouple is a special feature of the
dodecagonal case, and does not hold for octagonal or decagonal quasipatterns
In the case y = v = 0, when the two constituent hexagonal lattices decouple, the
phase-diffusion coefficients, D) and D, take the same values as for a single hexag-
onal lattice (see equations (9.20) and (9.21)).

Substituting ¢ aeaT+ik¥+ilY Y, = 1[/ eaT+th+tlY and I/Iy —
I’ﬁ\) eI FIkXHIY - yhere ¢v is a constant vector, and % and 1,0} are constants,
into equations (9 57)—(9.59) reveals four growth rate eigenvalues, namely

o1 = —Di(k* + 1%, (9.68)
0y = =Dy (k* + 1%, (9 69)
o3 = —Ds(k* + %), (9 70)
o4 = —Dy(k* +1%). 9.71)

An instability occurs when any one of the diffusion coefficients changes sign from
positive to negative The instabilities associated with D) and D> changing sign
are the usual divergence-free V- ¢ = 0 and irrotational V x ¢ = 0 phase modes
respectively The phason modes associated with Dz and D4 have eigenvectors that
satisfy

Y 3Yy
Py aiars oy 972)
8y | Y,y
X422, 73
ax oy ©73)

respectively In large regions of parameter space, the band of stable dodecagonal
quasipatterns is limited by the phason instability boundaries Examples of the sta-
bility regions are given in Figure 9.4 Echebarria and Riecke (2001) simulated the
evolution of the phason instabilities numerically using equations (9.47) and (9 48),
and found that both are subcritical, creating defects in the pattern The mode corre-
sponding to o3 > 0 leads to a distorted quasipattern composed of Fourier modes of
different wavenumbers (Figure 9 5). The simulation of the instability correspond-
ing to o4 > 0 uses parameter values at which a square pattern is preferred, and
patches of squares are seen to nucleate around the defects created by the instabil-
ity and eventually to invade the whole cell (Figure 9.6) This is reminiscent of the
triggering of the hexagon-roll transition by the Eckhaus instabilities of hexagons,
discussed in the previous section.

9.2 Drift instabilities
The 2 : 1 mode interaction problem discussed in Section 6.2 exhibits a drift insta-
bility where travelling waves bifurcate from a stationary pattern Drift instabilities
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Fig. 9.4. Stability diagrams for dodecagonal quasipatterns with @ = 8 =1 and
()8§=07,y=03andv=1,(b)d =09,y =08andv =0.8and(c)§ = 0.9,
y =0.9 and v = 0 4 in equations (9 47) and (9 48) The lower solid line is the
neutral stability cuive, below which the quasipattern does not exist In all these
cases, even a quasipattern at the preferred wavelength (¢ = 0) is unstable at onset,
while hexagons are stable Hexagons lose stability to the quasipattern above the
dotted line In cases (a) and (c) the quasipattern then loses stability to rectangles
or squares respectively at the upper solid line The phase and phason instability
boundaries are marked by dashed and dotted—dashed lines respectively. In cases
(b) and (c) the region of stability is limited by the phason modes exclusively
The diamond and square in (c) mark the initial conditions for the simulations in
Figures 9 5 and 9.6 respectively. Reproduced from Echebairia, B and Riecke, H
(2001) Sideband instabilities and defects of quasipatteins Physica D, 158, 45-68,
(©(2001), with permission from Elsevier.

are in fact a more general feature of patterns where there is coupling between a
reflection-symmetry-breaking amplitude mode and the neutral phase mode associ-
ated with translation invariance A minimal, but general, way to investigate this is
to write the solution as

u(x,t) = up(x + (X, T)) + V(X, Tuy(x), (9 74)

where ug(x) is the basic reflection-symmetric pattern, ¢(X, 7) is its slowly vary-
ing phase, u;(x) is a reflection-symmetry-breaking eigenmode and V (X, T) its
slowly varying amplitude (Fauve, 1998). For example, we might have ug(x)
cos(x) and uy(x) o sin(x)
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s also (normal form) symmetry under transla-

where x is constant, and symmetry under translations in

X, X — X — ®, where ® is constant, and in T

The evolution equations for the amplitude,

under the

V, and phase, ¢, must be equivariant

>

(©

Fig. 9.5. Simulation of the instability cortesponding to o3 > 0, where o3 is

‘_r \_

09 and v = 0 4. The initial wavelength is given

\_’r

09,y
0 4, cortesponding to the diamond in Figure 9 4c The instability is

seeded by adding a pertwibation of the foim (¥, ¥, ) o (1, D4 X+N/L where

s Using appropriate scalings

—¢. There i

I,§

B

se symmetrie

S5«

L =50 is the length of each side of the simulation domain, thus satisfying equa-

tion (9 72) The pattern is shown at times (a) T’
instabilities and defects of quasipatteins 45-68, (© (2001), with peimission from

Reproduced from Physica D, 158, Echebartia, B and Riecke, H. (2001) Sideband
Elsevier

defined in equation (9 70). The parameters in equations (9 47) and (9 48) are

by ¢

"
Now we have u1(—x) = —u;(x), and so under the reflection symmetry x —

—x the transformation V — —V is induced

tion X - —X, ¢ —
tions in x, ¢ — ¢ — xo,
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exand V = ¢V, with ¢ and V being O(1),
aT
T _

209

(2001) Sideband instabilities and defects of quastpatterns, Physica D, 158, 45—
€

where L = 25 is the length of each side of the simulation domain, thus satis-
68, © (2001), with permission from Elsevier.

is seeded by adding a perturbation of the form (v, ¥,) oc (1, —1)e T X+1/L,
fying equation (9.73). The pattern is shown at times (a) 7 =0, (b) T

Fig 96. Simulation of the instability corresponding to o4 > 0, wheie o4 is
defined in equation (9 71). The parameters in equations (9 47) and (9.48) are

"
©T

X
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To ensure a consistent scaling the constants @, d and g must be O(¢) and the
constants b, ¢, f, h and s must be O(1), while the bifurcation pmameter o is
0(62) The coefﬁ01ent of V? has been scaled to —1. If we set a = €a,d = ed
h = eh and u = €21 and immediately drop all the tildes, including the one on v,
we get the following equations

3¢ 3%¢ 3¢
—— =qV +b— +cV—, 977
o~ ¢ ””baxfr ox’ S
av 8%¢ a¢ V. 8¢ 8%¢
=uV -V 4rd—0{ V— +hV—
ar M + ax2+f 2+g ax T"ax Tisxax?
978)

to leading order, where now all the coefficients are O(1). These equations are
slightly modified from those found in Fauve, Douady and Thual (1991).

The stationary solution V =0, ¢ = ¢, where ¢g is constant, loses stability
when 4 > 0. The growth 1ate eigenvalue, o, of perturbations proportional to ¢tkX
satisfies

02+ o{—p+ (b+ P} +(ad — bu)k* +bfk* = 0. 979)

Under the assumption that perturbations are on long scales, so that [k| < 1,
we can approximate o & u, and so the bifurcation occurs at ;o = 0, as stated,
The amplitude perturbation V now grows, and so the phase becomes time-
dependent, according to equation (9 77). In other words, the pattern staits to
drift.

The solution V = Vg = £, /i1, ¢ = aVpT , 1epresenting a pattern drifting at a
constant 1ate, bifurcates supercritically from the stationary solution. However the
term gV d¢ /3 X destabilises the homogeneous drifting solution to spatially varying
perturbations of the form ¢7 +*X  The growth rate eigenvalues of the perturbation
are

= =2+ 0k). (9.80)
ik V, Viag(ag — h d

oy = L0982 _9_5’(_*’;’_2_1)_“_ + 0 (9 81)
2u 8 20

For large enough ag, the real part of o7 is positive for i > 0, so the homogeneous
solution is unstable. In this case localised travelling solutions of equations (9 77)
and (9 78) are seen when the stationary pattern loses stability; further details can
be found in Fauve (1991, 1998)
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9 2.1 Drift instability of parametrically driven standing waves

Oscillatory patterns can also undergo drift instabilities. Consider a one-
dimensional oscillatory pattern

u(x, 1) = AX, T)e'" ™ + B(X, e’ + ¢ ¢, (9 82)

governed by the amplitude equations

aA 9A a2A

—(n + i) |BIA, (9.83)
9B 8B a’B
ﬁ;‘,u,B'i'ca—i'i'(l‘*'ld)—’_‘(ﬂx‘f'l,Bl IBI B

—( +iv)|APB, (9.84)

where ¢, «, B, fi, ¥ and y; are real constants, and where p is a bifurcation param-
eter representing an external forcing that is constant in space and time. These equa-
tions are the same as equations (7 102) and (7 103), derived in Chapter 7 for coun-
terpropagating waves in one spatial dimension, except that §; is not set to 1 here
The scalings used in the derivation are 7 = €2, X = ex, o~ 62, ¢ ~ €, where
0 <e <« 1witha, 8, yr and y all O(1). Recall from Chapter 7 that these equa-
tions are only valid in the case of small group velocity, c.

Waves of the form (9.82) can also be generated by a time-periodic external
forcing — usually there is an oscillating system parameter, and so this is known as
parametric forcing For example, in the Faraday wave experiment, described in
Chapter 1, a horizontal layer of fluid is vibrated up and down, effectively modu-
lating the acceleration due to gravity in the layer. This parametric forcing causes
standing waves to appear on the fluid surface; typically these standing waves are
subharmonic, oscillating with half the driving frequency We shall assume here
that we have an external forcing, fe?’! + c.c., where f is a constant, so that the
excited waves have unit frequency, as in equation (9.82). This forcing must enter
the amplitude equatiouts in a way that respects equivariance under the following
symmetries:

(1) reflectionin x: X — —X, A < B;
(i) tanslationin x: x —> x + ¢, A — Ae'®, B — Be '?, ¢ constant;
(iii) tanslation in X: X - X +®, AX,7)—> AX—-®,1), BX,I)— B(X -
®, T), ® constant;
(iv) wanslationins:t — t+ 19, A = Ae™ ¥, B — Be 'V, f — fe %V, constant;
(v) ttanslation in 7: 7 — 7 + ¥, A(X,7T) = AX,I — V), B(X,I)—> B(X,T —
W), W constant
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Only the translation in ¢ transforms the parametric forcing The leading order terms
arising from the forcing are fB and fA in the 3A/37 and dB/3T equations
respectively. The imaginary part of f can be set to zero by choosing the origin of
time appropriately If we assume that f ~ € then no further forcing terms arise
to cubic order in the amplitude equations We also allow for the standing wave
frequency to be slightly different from half the driving frequency by including
terms iwA and iwB, where w is a real constant representing the detuning Since
the frequency of the oscillation is determined by the driving frequency, and the
wavenumber k is related to the frequency by a dispersion relation, this wavenumber
is also fixed by the parametric forcing. We scale it to unity so that the solution can
be written in the form (9.82). In the absence of the parametric forcing the real part
of the dispersion relation had to take the form

o=pu—~1=kH*+0(1 - P, (9.85)

so that the most unstable wavenumber would be k. = 1 and the zero solution would
be unstable for « > 0. Now the wavenumber is fixed by the forcing, so a term
linear in k can appear on the righthand side of equation (9 85), which is equivalent
to allowing an imaginary part to ¢. From now on we shall write ¢ = ¢, + ic;, where
¢, and ¢; are real Furthermore since the pattern is forced parametrically, p need
no longer force the growth of waves: in fact waves will appear even when p is
negative as we shall see. The leading order amplitude equations are now

A , _ . DA o092
3T =(u+iw)A+ )‘B—(cl+zci)5-}-(-+(l+za)m
—(Be +iB)IAPA — (r +in)|BI*A, (9.86)
9B ' - . OB - 3’B
3T (L+iw)B+ fA+ (¢ +lCi)5'}'(“ + 1+ la’)m
—(B: +iB)|BI*B — (5 +in)|AI*B, © 87

where the coefficient of the parametric forcing terms is set to one by scaling f.
If f is nonzero then there can be no solutions where one of A or B is zero and
the other is nonzero, because the parametric forcing term would cause the zero
amplitude to grow: left-travelling waves force the growth of right-travelling waves
and vice versa. This means we do not expect to see simple travelling waves. Para-
metrically driven standing waves are possible, however, and they are subject to a
drift instability at high values of the forcing, f. We will use the method of Fauve,
Douady and Thual (1991) to analyse this situation.

Equations (9 86) and (9.87) are quite complicated so we will only consider spa-
tially homogeneous solutions in what follows. Linearising around the zero solution
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gives
dA
B,
ir =(u+iv)A+f (9 88)
dB
— = A 9.8
T =(u+iw)B+ f (9.89)

Substituting A = Ae°” and B = Be®, where A and B are complex constants,
gives the growth rate eigenvalues

o=ptf2 -0 (9 90)

so the zero solution is always unstable if ;> O and is unstable for u < 0 if
2> 1 + @ To investigate nonzero solutions we set A = ¢R+S+if+d ang
B = eR=3+i0=1¢ qiving

j—§=u+cosh25(fcos29—(ﬁ. +me*f), ©91)
% = —sinh 28(f cos 20 + (B — 1)e*R), (9.92)
% = w — cosh28(f sin20 + (B + yi)e*X), 993)
j—"; = sinh25(f sin26 — (8 — 1)) (9.94)

The equation for ¢ decouples from the others: ¢ is the spatial phase associated
with a translation of the origin in x, and so gives rise to a neutral mode A standing
wave solution, where dA/d7 = dB/dI = Oand [A| = |B|is given by § = 0, with
¢ any real constant, and R and @ satisfying
1+ fcos20 — (B +y)eR =0, (9.95)
w— fsin20 — (B + e’ =0 (9 96)

Eliminating € between these two equations gives

RIB + 77 + B+ w7
+ 0B+ y) +rBi+ W+ +0*— 7 =0, 997
which has one positive solution for ¢2® in the regime
4<0 998)
12> 1 + o’ (9.99)

that we shall consider fromnow on There are corresponding solutlons R =Ry and
0 = 6y Perturbing around this solution such that R = Ry + R, S = 5,0 =60y + 6
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and ¢ = ¢o + @, where R, |S| < Ro, 10| < 60, 1] < ¢y, we find

dR =~
5= —2(u + f cos209)R — 2180sin 26, (9 100)
do . =
= —2(w — £ sin26p)R — 2 6 cos 26, (9 101)
ds -

= 21 — 28,6280 102
T (1 —2Be7)S, (9.102)
d -~
d(;i = 2w — 2ﬁ1e2RO)S (9.103)

The growth rate eigenvalues, o, corresponding to the perturbations in R and 6
satisfy

0% 420 (u + 2f cos26p) + 4 £ (f — wsin26y) = 0. (9 104)
Both roots will be negative, and so perturbations in R and 6 will be damped if

1+ 2f cos26y > 0, (9.105)
F(f 4 pcos 20y — wsin20g) > 0 (9.106)

hold. Using equations (9 95) and (9 96) these inequalities can be rewritten as

202808, + ) — >0, (9107)
e ROYB 4+ )2 + (Bi + v)H — LB + ) + 0B +m)] >0 (9108)

We have assumed that ¢ < 0, so B; + % > 0 is a sufficient condition for the first
inequality to hold Then the second will be satisfied if the detuning, w, is small
enough — a sufficient condition is |w| < [u(B; + 1)/ (Bi + ¥i)|. Looking at per-
turbations in S and ¢ now, we see that close to onset, where the standing wave
amplitude, e2Ro_ is small, perturbations in S, and hence in ¢, will be damped iu
the regime u < 0, and the standing wave solution will be stable. As the driving,
f. increases, so does the amplitude ¢*®°, since eliminating @ between equations
(9 95) and (9 96) we find

2= p?+0® = 2nB + 1) + o B+ W1+ B+ 1) + (Bi+ ) 1e,
(9.109)
where the coefficient of 280 is positive under the assumptions we have made If
B < 0, then as the amplitude, eRo, grows equation (9.102) shows that eventually
the growth rate of perturbations in S will become positive, and so | S| will grow
from zero, breaking the x-reflection symmetry; this causes the spatial phase, ¢, to
grow, and so the pattern starts to drift
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9.3 Galilean invariance and flat modes

In Section 8.6 we saw that Galilean symmetry plays a role in the skew-varicose
and oscillatory instabilities of rolls We will now look in more detail at systems
that are Galilean-invariant, in other words invariant under the transformation to a
frame moving at constant velocity. When the quantity, u(x, 7), in the governing
partial differential equation

ou(x,t)
ot

is itself a component of velocity, Galilean-invaiiance is sometimes natural This is
the case, for example, in Rayleigh-Bénard convection with stress-free boundary
conditions (see, for example, Coullet and Fauve, 1985). This situation has been
studied by Matthews and Cox (2000a), among others, and we will mostly follow
their approach here

In one space dimension, with x € R, the variables « and x transform as

= fu(x, 0, 1, (9.110)

X —> x —vt, 9.111)
u— u+v, 9.112)

where v is the constant speed of translation. Introducing the transformed
variables

x'=x —vt, (9 113)
=1 ©.114)
we find that
0 0
_ =, 9115
dx ax’ ( )
0 a
9 ©116)

—=—v—+ POYE)
ot ax’ ot
and so the Galilean transformation can be summarised as

0 3 0
_ - e 1
{u—>u+v, P — Y Uax} 9.117)

[tis straightforward to check that the terms du /3¢ and u are not Galilean-invariant,
but (du /0t + udu/dx) and du/dx are, so a Galilean-invariant governing equation
must take the form

ou ou du 9%u
_ _,0u gu otu -y 9118
ot “ox t8 (ax’ 9x2 ) ( )
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where g(du/9x, 8%u/9x2, . ) contains only x-derivatives of # and their products.
If the system also has x-reflection symmetry,

X - —X, (9.119)
U — —U, (9.120)

then the leading order linear term is the second derivative, and so we have

du 9%u ou

_— = — Y —
at dx? dx
where D is a positive constant diffusion coefficient.
Linearising around the zero solution, # = 0, the growth rate of long-wave dis-
turbances is found to be

+ (9.121)

o = —Dk> + 0(k*) (9 122)

The zero wavenumber, flat or Goldstone, mode is neutrally stable, and long-wave
modes are very nearly so. This means we can’t neglect them even if modes at
nonzero wavenumber are growing, as is the case when the linear part of the gov-

erning equation is
du 92 92 \*
F e ["‘” -(1+50) ] | o

where p is a constant, and the dispersion relation for disturbances to the zero
solution is

o=k u—-(1-kH2. (9.124)

When ;¢ = 0, modes k? = 1 are neutial (as is the k = 0 mode), and when . = ji€?
is nonzero, with & being O (1) and |e¢| < 1, a small band of wavenumbers around
k? = 1 will grow as shown in Figure 9.7 Although there is a stationary bifurcation
at ;& = 0 for modes with k% = 1, the Ginzburg-I andau equation does not describe
this situation because the k = 0 mode is not damped.

To study a situation where both a spatially uniform, or flat, mode and a one-
dimensional finite-wavenumber mode contribute to the pattern we write

ulx,t) = AX, TYe* + AX. T)e ™ + B(XX,T)+hot., (9 125)

where the dependence of the amplitudes on the long scales X and T allows for
modulation. The observable, u(x, r), must be real, so although A(X, 7') can be
complex, B(X, ') has to be real We can write down amplitude equations for A
and B using equivariance conditions in the usual way. For a Galilean-invariant
Euclidean-symmetric system, the symmetries that must be respected are reflection
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O

u

Fig 9.7 The growth 1ate, o, of Fourier mode solutions, et%*, to equa-
tion (9 123) for small u ~ €2, where |¢| < 1 The growth 1ate is positive for
wavenumbers in a band of size O(¢) around k¥ = 1, and zero for the flat mode
k=0

in x, given by
X—>—-X, A— —A, B— —B, (9.126)
and translation into a frame moving with constant velocity, given by
x—x+vl, A—> Ae™T, B > B+, 9 127)
where v is constant, along with the usual symmetries under translation in x,
X = X +xp, A—> Ae '™ B - B, (9 128)
where xq is a constant, translation in X

X - X+Xg, AX,T) > AX—Xo, 1), B(X,T) = B(X —Xo, 1),
9.129)
where Xg is a constant, and translation in 7T,

I - T+T0y, AX,T) > AX, T —Tp), B(X,T) — B(X, T —Tp), (9.130)

where I is a constant. The leading order amplitude equations equivariant undei
these symmetries are

A 92A
D pA+ =2 —iAB, 9131
or M T ! @BL

98 _ P8 9.

ar = axz T ax ©132)
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where all coefficients but £ € R and v > 0 (€ R) have been set to = 1 by scaling
A and X. The sign of the diffusion terms is chosen so that short wavelength modes
decay The sign of the linear growth term A can be either positive or negative, but
we choose here to look at the situation where it is positive and the zero solution
is linearly unstable, so that we can investigate pattern formation The coefficient
of i AB in equation (9 131) is set by the Galilean symmetry (9 127), and cannot
be zero The sign of the term —3d|A|?/dX in equation (9.132) can be changed
by setting X =—X and immediately dropping the hat: this means we need only
consider one choice of sign here The coefficient of this term will, however, only be
nonzero if the governing partial differential equation for # has quadratic nonlinear
terms, so this coupling term is not guaranteed to appear. Consistent scalings are £,
3/07 ~€2,3/0X ~ €, A~ €/* and B ~ €2, with v being O(1).

Since u(x, 1) is a velocity, the amplitude B represents a large-scale flow that is
generated by spatial inhomnogeneities in the amplitude, A, of the periodic pattern,
which in turn is advected by the large-scale flow If we write A = Re'? then the
coupling term —i A B contributes to the phase equation according to

¢ ‘

T B, (9.133)
so the advective flow leads to a drift in the phase of the periodic pattern as seen
in the fixed frame. This is to be expected since the phase seen at a fixed point of
reference will vary as the pattern moves past The coupling term does not affect
the evolution of R

A cubic term, |A|?A, appears at higher order in the equation for dA/81 If

its coefficient is negative it is stabilising, but since it does not occur at leading
order it cannot quench the linear instability given by the A term for u > 0, so
there are no stationary stripe solutions. Instead equations (9 131) and (9.132) have
exponentially growing stripe solutions of the form

A= Age"’, B =0, (9.134)

where Agisaconstant Perturbing this solution by setting A = Age”” (1 + a; + ia;)
and B = b, where |a;]|, |ail, || « 1, and linearising we find

by _ 8, ©135)
aT ~ 9x?’ '
da; 824

a4 _T4 136
T = % b (9 136)
ab a%b da

— — v —2A%ePH L 9137
aT | ax2 0" Bx ©137)
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If the perturbations have no space dependence, then both @, and b are neutral
modes, arising from the translation and Galilean symmetries respectively For a
mode of wavenumber k, ¢, satisfies

ar _ g (9138)

aT - I
and so a, = aoe‘k27, where ag is a constant. As a 1esult 35/97, and hence b,
has a component proportional to ¢@NT (hag grows faster than the basic stripe
solution for long-wave (small k) perturbations. We can conclude that the expo-
nentially growing stripe solution is unstable to modes with spatially modulated
amplitudes. In fact numerical simulations of the amplitude equations (9.131) and
(9.132) (Matthews & Cox, 2000a) show that solutions do not grow exponentially,

but remain bounded

9.4 Conservative systems and flat modes

Flat modes are also important in systems with a conservation law of the form
— = —F(u), (9.139)
X

where F is a nonlinear operator that can involve spatial detivatives. The marker
quantity, u, is conserved in the sense that

d (
— dx = 0
df./pu x=20 (9 140)

holds under suitable boundary conditions, where D is the whole spatial domain
We shall analyse conservative systems with a reflection symmetry, following
Matthews and Cox (2000b)

There are two possibilities for the reflection symmetry: either the quantity z can
remain unchanged under reflection, so that

X — —x, 9 141)

U — u, (9.142)
o1 it can change sign, so that

X — —x, (9.143)

u— —u. (9 144)

We shall first consider the case where u is unchanged, which is relevant to situa-
tions where u represents something like a density, rather than a velocity For exam-
ple, in the Faraday wave problem the marker quantity is 2 (x, y, t), the deviation
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of the height of the free surface of the fluid from its position at rest, which must
satisfy

/ hdx =0 (9 145)
D

for an incompiessible fluid, since the amount of fluid in the container is fixed.
Clearly the height of the free surface is not changed under a horizontal reflec-
tion, so we have a reflection symmetry of the required type. There are many other
examples of such systems, among them thermosolutal convection and magneto-
convection (Matthews & Cox, 2000b) and the formation of sand banks and sand
waves offshore (Komarova & Newell, 2000).

In a system with a conservation law of the form (9.139) all the linear terms must
be derivatives of u, and since we have the reflection symmetry, the leading order
term must be a multiple of 9%1/3x2%, so we will have a zero wavenumber mode
as before (Figure 9 7) Assuming we also have a finite wavenumber mode we can
once again wirite the pattern in the form

u(x,t) = AX, T)e'’* + A(X, I)e ™" + B(X, 1)+ hot (9.146)
The reflection symmetry gives the transformation
x— ~x, A—> A, B— B. (9.147)

The remaining symmetries are the t1anslations given by equations (9 128)—(9 130).
In addition we know that all terms in the 9B /97 equation must be spatial deriva-
tives, since B is conserved over all space. Taking all this into consideration the
new amplitude equations must be

dA a2A 5

— =uA+-— —|AI*A - AB, 9 148
o7 = HAT o — Al (9 148)
B 3’B 2

B _ 9’8 +Ki-|A]2 (9.149)

aT ax?2 X2

at leading order. The scalings used in this case are u, 3/971 ~ €2, /03X ~€, A~
€ and B ~ €%, where 0 < ¢ « 1, with v and « 1eal O(1) constants. Three of the
coefficients have been scaled to £ 1 by scaling A, B and X Again the sign of the
diffusion terms is chosen to ensure that short-scale modes decay, so we must have
v > 0 The sign of the term —|A|*>A has been chosen to ensure that stripes exist in
i > 0when B = 0 The sign of the term —A B can be changed by setting B = -B
and ¥ = —«k and immediately dropping the hats, so we need only consider one
choice. Now both coupling terms will vanish if there are no quadratic nonlinear
terms in the governing partial differential equation for u, and higher order coupling
terms will need to be included.
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The stripe solution of equations (9.148) and (9 149) is given by

A= (u—g>)'%e9% = Ay, (9.150)
B=0 (9 151)
Perturbing it by setting
A = Ag(l + a(T)e'*™ + c(T)e™kX), (9 152)
B = b(I)e** + b(T)e *X, (9.153)

where |al, |b], lc| < 1 and substituting into the amplitude equations gives

db
— = —vk’b — k| APk’ (a + ¢), (9.154)
dT

da 2 2

57—_=—~|A0| (a+c¢)—k“a—2gka — b, (9 155)
d

d—CT- = —|Ag)*(a + ¢) — K*c + 2gkc — b, (9.156)

Ifa, b, c e’ then the growth rate eigenvalues, o, satisfy

o3 + a2 [(2+ k2 + 2| Ag)P] + o [(1 + v)k* — 4vg?k?
+2621 A0 (1 + v — k)] + k4 [vk? — 4ug? — 2|Ao)*(k — 1)] = 0.
9.157)

If the product of the roots of this equation is positive,
—k*vk? — 4vg? — 2] Aol (k — 1v)] > 0, (9 158)

then at least one growth rate eigenvalue has positive real part, and the origi-
nal stripe pattern is unstable Since v is positive, the inequality (9.158) is most
likely to hold for perturbation modes with k> — 0, and the instability criterion
becomes

4vg* + 2| APk —v) > 0. (9 159)

Stripes at all values of g are unstable if « > v. This means that even patterns at the
critical wavelength, which have ¢ = 0 ate unstable If « < v then small-amplitude
stripes, with

2vg?

1Al < , (9 160)
V—K

are unstable.
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Fig 98 Sketch of a strongly modulated localised nonlinear pulse solution to
equation (9 164).

For stripes at the critical wavenumber (¢ = 0) equations (9 154)—(9.156) can be
rearranged to give

gé-::—vkzb——KlAOszaz%—cL 9 161)
dr
d
Fata= —(2|Aol* + k*)(a + ) — 2b, (9.162)
d 2
L= _ 16
T (a —c) k“(a —c¢) (9.163)

so the phase perturbation, (a — ¢), is governed by a growth rate eigenvalue —k?
and does not grow. The unstable mode in the case x > v arises through an inter-
action of the amplitude perturbation, (a + ¢), and the zero-wavenumber mode, b
The mechanism of this instability for ¢ = 0 is therefore different from the stan-
dard Eckbaus instability of stripes, which is a phase mode. Matthews and Cox
(2000a) go on to show that the bifurcation is supercritical for ¢ = 0, while Proctor
(2001) points out that the inclusion of higher-order terms in the amplitude equa-
tions shows that in wide domains the bifurcation will be subcritical for arbitrary g,
and that for ¢ # 0 the standard Eckhaus phase diffusion equation can be derived
using the Pomeau-Manneville (1979) phase approximation

For the particular example of a system governed by the variant Swift—
Hohenberg model

w9 92 \*
E:—ﬁ[uu—(l—k-a—;i) u—suz—u3i|, (9 164)

where p is a real bifurcation parameter and s is a real constant, Matthews and Cox
(2000a) find strzongly modulated localised solutions in the nonlinear régime, such
as the one shown in Figure 9 8. Norbury, Wei and Winter (2002) present existence
and stability results for some classes of such solutions

For conservative systems where u changes sign under reflection {x —
—x, ¥ — —u} it turns out that the amplitude equations for A and B are the same
as those derived for the case of Galilean symmetry, namely equations (9 131) and
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(9 132) The reflection symmetry acts exactly as in equation (9 126) and the trans-
lation symmetiies in x (9 128), X (9 129) and T (9 130) also apply. In the Galilean-
invariant case a term proportional to B in the 3 B/37T equation is forbidden by the
Galilean symmetry (9.127), while in the conservative case it is forbidden because
all terms in the 8 B/31 equation must be spatial derivatives, since B is conserved
over all space, as shown by equation (9 140). The amplitude equations take the
same form in both cases, even though their derivation is slightly different A fur-
ther difference is that now the existence of the coupling term —i AB in equation
(9.131) depends on there being quadratic terms in the governing equation for « as
it is no longer guaranteed by the Galilean invariance. If the term is present, then to
set its coefficient to —i we must scale B

Exercises

9 1 Analyse the phase instabilities of a squaie pattern
u(x,y,t) =AX,Y, 1)’ + B(X,Y, I)e" +cc +hot,

where A(X,Y,T) = Rge'?X and B(X, Y, T) = Rge'9Y, for real constants Ry and ¢
such that the pattern is amplitude-stable, using methods similar to those shown for
hexagons in Section 9.1 1.
(The full analysis can be found in Hoyle, 1993 )
9 2 Analyse the phase instabilities of oscillatory standing squares

w(x, y, ) = AKX, ¥, 1)e'™® + B(X, ¥, T)e! )
+C(X, Y, e + DX, ¥, T)e! Y
+cec +hot,

where A = Rge! @1 9% B = Rye! T +4%) | € = Roe! ¥ =4V) | P = Rpe! @ +4¥),
for 1eal constants Rp, ¢ and 2 such that the pattern is amplitude-stable, using similar
methods to those used in the previous exercise
(The full analysis can be found in Hoyle, 1994b )
9 3 Analyse the phase and phason instabilities of octagonal quasipatterns

4
u(x,y, 1) =Y AX, Y. T)e** fcc+hot,

n=1

whete k&, = (cos{(n — 1)z /4), sin{(n — 1) /4}) and A, = Roe'? X for p =
1,2, 3,4 for real constants Ry and ¢ such that the pattern is amplitude-stable, using
methods similar to those used for dodecagonal quasipatterns in Section 9.1 2

If you are feeling particulaily keen, do the same for decagonal quasipatterns (which
have tenfold rotational symmetry).

(Both of these analyses can be found in Echebairia & Riecke, 2001 )
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9.4 Starting from the conservative variant Swift-Hohenberg equation

2
du 32 32 s 3
FrRmrl R S of B

where p is a real bifurcation parameter and s is a real constant, and writing

u(x,r) = (€AX, Ie'* +cc)+€*B(X, T)
+ €2C(X, TYe™ 4 cc) + O,

derive the amplitude equations (9.148) and (9.149), identifying the coefficients v and
k interms of s

What happeus if s = 0?7 Will every system with a conservation law of the form
(9 139) and a reflection symmetry {x — —x, u — u} give rise to equations (9.148)
and (9.149)?

(The answers to this exercise can be found in Matthews & Cox, 2000b)
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Spirals, defects and spiral defect chaos

In real systems, pattetns are rarely perfect: they usually contain some defects —
places whete the pattern is irregular in some way. This chapter will focus on the
shape and movement of defects in natural patterns Spirals are a special kind of
defect, so common and regulat that they are often thought of as patterns in their
own right. In the form of spiral defect chaos they compete with rolls in large aspect
ratio systems.

There are very many ways in which a pattern can be imperfect, and a multitude
of interesting localised structures that can be seen in pattern-forming systems We
will only look at a few of the most common defects, such as spirals and the closely
related target patterns, dislocations, where two stripes merge into one, and grain
boundaries, which join patches of pattern at different orientations For those who
want to know more about defects and coherent structures, the review article by
Cross and Hohenberg (1993) has further information, and mote recently Sandstede
and Scheel (2004) have attempted a systematic classification of defects in oscilla-
tory media

We will start with isolated defects in otherwise regular patterns close to onset.

10.1 Types of isolated defect

A roll pattern modulated on long space and time scales can be written in the form
u(x, v, 1) = AX, Y, T)e'™ +¢ ¢ (10.1)

at leading order, as discussed in Chapter 7, where X, Y, 7 are long scales in the
x, v, ditections 1espectively. The function A(X, Y, T') is the envelope, and the
carrier wave is given by ¢'*. At a defect in the pattern, the distinction between
the envelope and the cartier wave breaks down because the shoit lengthscale
behaviour is no longer just a simple wave Altematively you can say that the

325



326 Spirals, defects and spiral defect chaos

Fig 10.1. Examples of defects: (a) dislocations in a roll pattern duiing a numeri-
cal simulation of the Ginzburg—Landau equation, (b) spirals in a simulation of the
FitzHugh-Nagumo equations, (c) a numerical simulation of a Swift—Hohenberg
model, showing several grain boundaries between patches of rolls at different
orientations, (d) penta-hepta defects (circled) of a hexagonal pattern in a numer-
ical simulation of a Swift~Hohenbeig model, (e) diagiam of a focus singularity,
(f) diagram of a convex disclination (several convex disclinations can also be seen
in (c)), (g) a concave disclination and (h) a wall focus. Spiral picture courtesy of
and (©Steve Tobias, University of Leeds, 2003

envelope varies on a short spatial scale, and of course the point of envelopes is
that they should only vary on long scales and leave all the short scale variation in
the carrier wave.

Defects can be associated with jumps in the phase, that is with singularities of
the phase gradient. At the same time, the amplitude of the pattern must be zero
so that u(x, y, t) remains defined at every point The dislocation defect of rolls,
and the core of spirals in oscillatory or excitable systems shown in Figures 10.1a
and b are examples of this kind of defect. There are also defects that are joins
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©

(h)
Fig 101 (cont)

between sections of pattern with different orientations, for example grain bound-
aries, illustrated in Figure 10 lc The penta-hepta pair in a hexagonal pattern is a
more exotic example of a defect. The amplitudes of two of the three rolls making
up the hexagonal pattern are zero at the heart of this defect, and instead of two
hexagons, a pentagon and a heptagon are seen (Figure 10.1d).

Roll patterns in large domains with sides that are many roll wavelengths long,
or in irregular geometries, tend to have many defects. Along with grain bound-
aries and dislocations, focus singularities, and convex and concave disclinations
are common (Figure 10 le—g). Wall foci (Figure 10.1h), which can be thought
of either as partial focus singularities or convex disclinations at the wall, are often
forced by the geometry in convection because it is energetically preferable for rolls
to align perpendicular to the boundary (see Section 10 5 below)

10.2 Dislocation of a roll pattern

A dislocation is a defect of a roll pattern where two rolls merge into one, thus
increasing the local wavelength. As usual, we write the 1oll pattern as the product
of a modulated envelope and a carrier wave

u(x,y,1) = AX, Y. T)e"" + ¢ c. (102)



328 Spirals, defects and spiial defect chaos

-4 3w 2% -« T 2nm 3m 4rm

0

climb

!
! !
! |
4 1
i i
I !
} !
! i
1 l
I I
I I
I !
! I

glide

Fig. 102 Diagram of a dislocation, showing contours of constant phase The
phase loses 27 in one complete circuit of the closed path around the core The
directions of climb (along roll} and glide (across roll) motions are shown by
arrows

at leading order, where the envelope evolves according to the Newell-Whitehead—
Segel equation

Y
a—A=,u4—|/ix|2/4+(—8——5a—) A (10 3)
oT

Figure 10.2 is a diagram of a dislocation As you can see, the phase of the
envelope is undefined at the core of the defect If we follow a path enclosing
the core of the dislocation at a distance, as shown on the diagram, we see that
the phase has a discontinuity of 27, corresponding to the loss of a pair of rolls.
In other words, the phase has decieased by 27 by the time the circuit is complete.
Since the phase is undefined at the core of the dislocation, the amplitude must
be zero there, so that u(x, y, ¢) is defined everywhere. Dislocations are associated
with the discrete translational symmetry, x — x + 27, of the carrier wave ¢'*: a
dislocation locally breaks this symmetry, but interpolates between two solutions
that respect it to leading order

The penta-hepta defect of hexagons (Figute 10 1d) is equivalent to coincident
dislocations on two of three component sets of rolls The pair form a bound state
and have opposite jumps in the phase around a path enclosing the core. The
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amplitude of both sets of rolls with dislocations is zero at the coie, while the
amplitude of the third set increases there (see Ciliberto et al., 1990, for further
details).

10.2.1 Dislocation motion

Dislocations are not usually stationary: they tend to move through the pattern.
Motion along the roll axes is called elimb: the dislocation moves through states
that are 1elated by the continuous translation symmetry along the roll axes. In
other words, the relative arrangement of the defect and basic roll pattern is always
the same: it is only the position of the defect along the roll axis that varies. Motion
across the 10l] axes, or glide, moves through states that are not related by symme-
try because the roll structure is periodic in the direction perpendicular to the axes:
the translation symmetry in the across-roll direction is discrete, x — x + 27, As
a result we expect glide to be resisted by the small scale structure, and the dislo-
cation to be pinned in position in the across-roll direction (Cross & Hohenberg,
1993) A large perturbation or ‘kick’ in the energy would be needed to get the
dislocation moving across the roll axes. However, if there are spatial variations in
roll curvature or local wavenumber so that left and right in the across-roll direction
are distinguished, we might expect gliding not to be damped because left- or right-
ward movement might be energetically preferred If gliding does occur we would
not expect the velocity to be constant, but to vary according to the position of the
dislocation relative to the roll axes.

10.2.2 Climb

Climbing motion leads to wavelength selection, since as the dislocation climbs
upwards the region above the defect shrinks, and the region below, which has a
longer wavelength, grows (Figure 10.2). If the dislocation climbs downwards, on
the other hand, the region with the shorter wavelength grows
Energetics can tell us which way the dislocation will climb. The amplitude equa-
tion for rolls close to threshold is variational, there being a free energy density
associated with rolls at each wavenumber g, as discussed in Chapter 7. In other
words, we can write
o4 = —ﬁ, (10.4)
T SA

where the free energy F is given by

.F(A,A):f f(A, A)dX dY, (10.5)
D
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and where D is the spatial domain of pattern formation. The free energy density
f (A, A) for the Newell-Whitehead—Segel equation is

2

fA A = AP+ Sar (L - " Va (10 6)
A= 2 ax 2ar2) |
and the rate of change of the free energy is given by
& 2/ o4 2dXdY<0 (10.7)
ar = T Jpl|ar - '

under suitable boundary conditions, as discussed in Section 7.3. This tells us that
the free energy must always be decreasing, unless the pattern has stopped evolving,
when we have dF/d7 = 0A/dI = 0. The difference in the free energies of the
two sets of rolls will drive the climbing motion of the dislocation, since the pattern
with the lower free energy density will be preferred A 1ol solution A = Re'9%,
where R? = i — g2, has free energy density

1
f=—5m-g"" (10.8)

If we have rolls at two different wavenumbers, ¢; and ¢», with corresponding
amplitudes, R; and R, and free energy densities, f| and f>, the difference in
the energy densities turns out to be

fi = f2 = (g7 — 93) (R} + R3) (10.9)

The pattern with lower energy is favoured, and this can now be seen to be the pat-
tern with the lower value of g2 So the rolls that are closer to critical wavenumber
win, and invade the region occupied by the rolls farther from critical The disloca-
tion climbs towards the rolls with the larger deviation from the critical wavenum-
ber, thereby replacing them with the lower energy pattern

We can investigate the details of the motion by linearising around a perfect
roll pattern at the average wavenumber g = (g— + g+)/2, where g — g_ as
Y - —ooc and ¢ — g4+ as Y — + oo, and where |¢ —g_|, |g —g+]| < g. We
shall assume that both g_ and g4+ are positive so that the rolls are stable to
the zigzag instability, and that g+ > g— so that the dislocation moves upwards,
In this calculation we shall largely follow the work of Siggia and Zippelius
(1981) and Cross and Hohenberg (1993) We set A = Ro(1 + R)e!@X+9) where
R% =p—g% 0< R« 1 and |[V$| « 1. Now assuming the solution takes the
form R =R(X,Y —vl) and ¢ =¢(X,Y — vI), where v > 0 is the climbing
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velocity of the dislocation, we find

dR 3 2R 3% 2R 10°R
—yp— = 2R?R -2 ———
VoY of =y Y oaxz Taxar: Ty davs
(10.10)
] aR 92 3R 92 194
¢ 2 ¢ ¢ ¢ (1011)

Vo T ax Yaxz T axar? T 9av2 T 3ave
which are easily derived from equations (8 6) and (8.7) The standard scalings
1, 38T ~ €2, 3/9X ~ ¢ and 3/8Y ~ €7 have been used, where 0 < € < 1, 50
for consistency we must have v ~ €7 and therefore the climbing motion of the
dislocation is a slow phase-dynamics process

Following Siggia and Zippelius (1981), we now take the limit ¢ — 0, and for
consistency assume that 9/0X ~ ¢, 9/9Y ~ q% and v ~ q% To leading order we
have R = 0 and

ap 9* ?¢  19*
_”'a% axﬁ +qayd; - Zan: (1012)

We need to add something to this equation to take account of the discontinuity of
the phase around the dislocation If we add

IS(X — X
—zn%@(y — ¥y, (10.13)

where (Xg, Yq) is the position of the dislocation, § is the Dirac § function and ® is
the Heaviside step function, then the phase equation becomes

9p 9% 2 13% AS(X — Xq))
Yoy Tax2 T9av2 TFavd T ax
Note that the Heaviside step function ®(Y — Yy) is equal to 1 when ¥ > ¥y and
zero when Y < Yy Integrating equation (10 14) twice with respect to X and rear-
ranging a bit we find

X+ _ _, %9 _
[¢]X_—'/X_ (/ 3y 8Y2+4ay4dX)dX+2ﬂ®(Y Ya).
(10.15)

O —Yy) (1014)

where [¢] is the difference in phase between one side of the region containing
the dislocation and the other For ¥ > ¥j this total phase winding is 27 bigger
than for ¥ < ¥y In other woids we have enforced the phase jump of 27 around
the dislocation

The far field structure of a dislocation at rest or moving with constant velocity
in the ¥ direction can be found by solving equation (10.14). Obviously the details
of the core will not be captured using this method as we detived this equation by



332 Spirals, defects and spiral defect chaos

perturbing around a perfect roll pattern, while at the defect core the pattern is far
from perfect and cannot be considered to be a small perturbation to straight rolis.
Far away from the defect core where ¥ > q_% and X > ¢~ ', the fourth deriva-
1
tive in Y is negligible because d/3Y « g2 and so equation (10.14) reduces to
3¢ %9 3%¢ d(8(X — Xq))
—_— = — — 27— Y, 10.16
oy ~ax2 "9y T ax (F=ro (10.16)
(Note that we assumed g > O earlier so that the pattern would be stable to the
zigzag instability, so q_% is real ) For a stationary dislocation (v = 0) at the origin
(Xq = Y4 = 0) this is solved by

d>=tan“( .Y ) (10.17)
q’.!

and for a moving defect, assuming that v ~ g/ Y as implied by equation (10.16),
the solution is given by

1

99 = ﬂje—vwﬂq}(z%—ﬂ)%}/?f{_ (10 18)

W 2(gx2+y2)s
This last equation tells us that the dislocation solution will decay exponentially
ahead in the direction it is moving (¥ > 0) and as a powe1 law behind So two
dislocations moving towards each other have a short-range interaction determined
by the speed of motion (Siggia and Zippelius, 1981)

Closer to the defect core, we have ¥ « q“% and X < q‘l, and now the second

derivative in Y is negligible because q% & 0/3Y. In the case of a stationary defect
we must now solve

2 10% (3 (X — Xq))
= - -2
0X2 44 X

and the phase turns out to be

O - Yy), (10 19)

T Y
= —sgn(X) |erf{ —=— )+ 1 1020
¢ 2g()['(2|X|) ] (1020
The particular solutions (10.17), (10 18) and (10 20) can be found using Fouriet
transforms (see Siggia & Zippelius, 1981).
The analysis is slightly more tiactable for anisotropic systems where the phase
equation can generally be reduced to the form

09  ~,
V— + V=0, 10 21
37 ¢ (1021)
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because the spatial derivatives in the original amplitude equation no longer need
appear in the special combination 3/9X — (i/2)3%/9Y?, and so the X and Y
derivatives have the same scaling behaviour. We have dealt with the situation
before, when deriving the two-dimensional real Ginzburg-Landau equation (7.52)
for rolls in an anisotropic system. Here V is the scaled velocity and X and ¥ are
scaled coordinates Then ifr = (% 24 )72)114, the solution is

Y
-1
= tan -~ |, 10 22
— -
for Vr « 1 and
l v -~
9 _ L”)jﬁe—wm 2 (10.23)
aY 2r2

for Vr >> 1. Clearly these are essentially the same solutions as found in the far-
field régime of the isotropic case, since there the phase equation takes a simi-
lar form. Further details of the analysis for the anisotropic case can be found in
Bodenschatz, Pesch and Kramer (1988)

Starting with the solution A4(X, Y) for a stationary dislocation, the velocity of
an isolated defect in an infinite System can be calculated using a method due to
Siggia and Zippelius (1981) We follow the Cross and Hohenberg (1993) expo-
sition here. First note that the rate of change of the free energy F owing to the
motion of the dislocation will be given by

dF
—_ = Vy F. 10 24
7 =Y a Fd, ( )

where v is the velocity of the dislocation, Vi = (9/9X4, 0/9Yy) is the gradient
with respect to the position (Xg4, Y4) of the dislocation, and Fq = F(Aq). We also
have an expression for the rate of change of the free energy in terms of the moving
dislocation solution A, (X, Y, I') from equation (10 7), which is

dF
b ]
i),

=2 / v VA,PdX dY (10.26)
JD

2
%’*7" dx dv, (10 25)

Equating the expressions (10 24) and (10.26) we find that the speed v = [v| of the
dislocation is given by

v VaFq4

— 1027
2[p0 VA,2dX dY’ ( )

v =
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Fig 10 3. The net effect of moving a dislocation along the roll axes by an amount
8Y4 is to change the wavenumbel in a slice of width §Yy from its value at the top
of the domain, g, to the wavenumber, g_, at the bottom, or vice versa, depending
on the direction of movement. The solid boxes show a fixed small area around the
defect core The rolls extend outside the box

where © = v/v is a unit vector in the direction of defect motion This is often
interpreted as the ratio of the so-called Peach—Kdhler force to a drag that depends
on the amplitude and the direction of motion
In principle it is straightforward to use this method to find the climb velocity
of an isolated dislocation in a system close to threshold In this case movement
is along the roll axes. Now by symmetry in the Y direction we expect the defect
solution to remain the same as it moves, apart from a translation in the Y direction,
so to leading order the moving defect solution will take the form A, (X, Y, T) =
Aq(X,Y — vI), where v is the constant climb speed. Equation (10.27) then gives
us the value of v:
aFy
- 3Yd (10.28)
2 /D 4 “ax ay

To evaluate this expression we need to know the rate of change of the free energy
with the position of the defect The net effect of changing the position of the dis-
location in the Y direction is to change the wavenumber in a slice of the pat-
tern perpendicular to the roll axes, as can be seen in Figure 10 3. If ¢ — g4 as
Y - +ooandg — g_ as Y — —oo then as the dislocation moves from (Xg, Yg)
to (Xq, Yq + 8Yq) the overall free energy of the pattern changes by an amount § 7
given by

8F = (frons(g—) — frons(g+))L8Yq, (10.29)



10.2 Dislocation of a roll pattern 335

where fions(g) is the free energy density for 10lls of perturbation wavenumber g
(corresponding to A = Rge'?X), and where L is the length of the pattern-forming
region in the X direction If (g+ —g-) is small, we can approximate equation
(10.29) by

_ dfrolls

S F =
F ”

(g+ — g-)L3Yy (10.30)

Now (g4 — g-)L is the same as A¢4 — A¢p_, where A¢, is the total phase dif-
ference between the right- and lefthand sides of the pattern above the defect, and
A¢_ is the equivalent phase difference below the defect Looking at Figure 10.2
you can see that this must be equal to the phase-winding around the defect, which
is 2,7, assuming that g > g_ as in the diagram So we have

dfrolls

§F = —2n Y4 (10 31)

The free energy density for straight rolls, fions, 1S given by substituting the roll
solution A = Rpe'9X, where Rg = 11 — g* into equation (10.6) to find

]
frons(qg) = _E(M —-g%? (10 32)

Taking the derivative with respect to g gives

df. ”
fd;ons = 2q(,u/ "' qb), (10 33)
q
so we have
aF 2
Ty, = 4t —a?) 1034)

In the first approximation the obvious thing to do is to use the stationary dislocation
solution to work out
A

in order to substitute into equation (10 28) and find the speed of propagation, v.
Unfortunately, however, this integral diverges for ¢ given by equations (10.17) and
(10.20), and it turns out that we need to solve the full nonlinear phase equation for
finite velocity to do the calculation properly Remember that we started this whole
analysis by linearising around a perfect roll solution, and we have not yet added
back in any nonlinear terms.

2

A
941" 4x ay (10.35)

ay
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Assuming that the integral is dominated by the contribution from the far field,

we have
Axfp— g2t @Xt), (10.36)

dAa _ . ¢ ;
_87d ~iyfp— ng‘e'(q“m’ (10.37)

which together with equations (10.28) and (10 34) gives
2rq

—_—

o |3%] ax a

~

(10 38)

Nondimensionalising equations (10 12) and (10 38), the explicit dependence on g
is removed by setting X= qX, Y = q 3Y and ¥ = vq_% The nondimensionalised
speed, v, is therefore a constant, independent of ¢, that we determine by evalu-
ating the righthand side of the nondimensionalised version of equation (10 38).
This means that v is proportional to q% Siggia and Zippelius (1981) used Fourier
transforms to approximate the integral using the linear phase equation (10.16) and
found a value for the transformed speed, v, nearly twice that deduced from their
numerical simulations of the Newell-Whitehead—Segel equation. This is not bad
agreement between theory and numerical experiment, given that they completely
neglected the nonlinear terms in the phase equation The theory of defect climb
has been refined by inclusion of higher order corrections (Pomeau, Zaleski &
Manneville, 1983) and the generation of vertical vorticity by the dislocation, which
leads to advection (Tesauro & Cross, 1986). Recently, Walter, Pesch and Boden-
schatz (2004) have shown that a balance between the Peach-Kohler force and
advection leads naturally to bound dislocation pairs such as are observed exper-
imentally.

The calculations we have carried out so far assume that the system is close to
threshold, so that we can use the envelope and carrier wave formalism. In this case
we have seen that v o q% and so we expect a stationary dislocation in the limit
g — 0. The existence of the free energy is crucial in the argument we have used.
However away from threshold most pattern-forming systems are not variational
and there is no free energy. In this case, the velocity can be calculated perturba-
tively if a stationary dislocation solution is known. There is some experimental
and numerical evidence that there is a unique background wavenumber, g4, or a
discrete set of wavenumbers, such that an isolated dislocation will be stationary
(see, for example, Pocheau & Croquette, 1984, and Tesauro & Cross, 1986) The
corresponding defect solution can be used to woik out the speed of dislocations
at nearby background wavenumbers (Kawasaki, 1984; Tesauro & Cross, 1986) It
turns out that the speed depends linearly on ¢ — g4, and there is a cut-off at large
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(b)

Fig. 104 Diagrams of (a) an amplitude giain boundary and (b) a phase grain
boundary

Rl
\
/

»

distances, owing either to the finite system size or to the velocity itself (Tesauro &
Cross, 1986) For further details of the far from threshold case, see Cross and
Hohenberg (1993)

10.2.3 Glide

Dislocation glide acioss roll axes is more complicated. A gliding defect in a back-
ground of straight or uniformly curved rolls does not change the overall free
energy, and so no movement is expected For a Swift—~Hohenberg model, Kawasaki
(1984) shows that in addition to the climbing motion along the roll axes generated
by the difference in wavenumbers as ¥ — = o0, the dislocation velocity also has
a component proportional to

TXV(V k) =2 x V(k Vk+kV -, (10.39)

where k is the local wavevector, k = [k| is its modulus andk = k/k is a unit vector
in the direction of the wavevector This gives rise to both climb and glide motions.
The first term on the righthand side comes from local compression or dilatation of
the rolls, and the second from changes in the local 101l curvature So glide is driven
by variations in local curvature or second derivatives of the local wavenumbel.
Glide can also be driven by global anisotiopy, for example during convection in an
inclined layer (Daniels & Bodenschatz, 2003)

10.3 Amplitude grain boundaries

Grain boundaries occur at the interface between patterns at different orientations.
There are two types: amplitnde and phase grain boundaries. A phase grain
boundary is a line along which the roll pattern appears to bend sharply, while at an
amplitude grain boundary two sets of rolls aligned in different directions meet and
overlap for a very short distance; the difference is shown in Figure 10 4, and exam-
pies of both types can be seen in Figure 10.1c In this section we will concentrate
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‘I’A‘, -
0 X

Fig 10 5. Diagiam of an amplitude grain boundary between two roll patterns and
the envelopes A and B that describe it. After Manneville (1990).

on amplitude grain boundaries, while phase grain boundaries will be discussed in
Chapter 11.

The simplest amplitude grain boundary to analyse is between two roll pattetns
at right angles, as shown in Figure 10.5 We will investigate this situation following
Manneville (1990)

Each set of rolls has its own envelope, so we let A be the envelope corre-
sponding to the rolls with wavevector parallel to the X axis and B be the enve-
lope corresponding to the rolls with wavevector perpendicular to the X axis, and
the overall solution is written

u(x,y, 1) = €AX, Y, T)e* + eB(X, Y, I)e +cc. +hor, (10.40)

where 0 < € < 1 is a measure of the distance fiom the onset of the pattern. From
the symmetry of the situation, we assume that there is no Y dependence, so that
A= A(X,T)and B = B(X, 7). The solution (10.40) is the general form for mod-
ulated square patterns, so the amplitude equations are those for bifurcation on a
square lattice, with additional spatial derivative terms Given that there is no Y
dependence, the only question is how to introduce the X derivatives. Assuming as
usual that the linear growth rate of a Fourier mode e°7 & * where x = (x, y), is
given by

o =pu -0 -1+ ok —11%), (10.41)
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where & is a real constant and substituting £ = (1 + 7, 0), where |/| <« 1, todeter-
mine the linear part of the equation for A, we find

o =pn—4 + 0% (1042)
On the other hand, substituting & = (I, 1) to look for the behaviour of B gives
o =pn—E+ 035 (1043)

Inverting the Fourier transform via 2&yil — 9/0X, the factor of 2&y introducing
a convenient 1escaling of X, we deduce that the leading order spatial derivatives
are 92A /8 X2 and —(1 /4g§)a43/ax4 However if, as usual, X = ex, there will be
an additional factor of €2 in front of the term —(1 /485 29 B /8X* The envelopes
therefore evolve according to the equations

0A 2 92A 2

= uA — |A]2A — a|B?A 0 10.44
a7 = HA 1Al «|B| +8X + 0(€7), ( )
9B e 3*B
— = uB — |B’B — a|A|*B — 2 45
o7 =R |B| «|A|*B 452 334 + 0(e?), (10.45)

where p and « are real constants, and where the usual scaling 7 = €2, X = ex,
has been adopted, with €2 measuring the distance from onset The small term
—(€%2/4)9*B/3X* is retained in equation (10 45), while others of the same order
are discarded, because it is the leading order spatial derivative term, and can there-
fore become significant if the amplitude, B, varies in space more rapidly than
expected The scaling with € is included explicitly here, and correspondingly in
equation (10.40), to emphasize that the fourth order spatial derivative term appears
at a higher order in the expansion. There are also O (€2) corrections to the equation
for 0A /01, but they are unimportant for our puiposes

The grain boundary could not exist if the rolls were unstable to squares, since
then a square pattern would form at the interface and spread throughout the system
Consequently, we must have rolls stable against squares, and hence o > 1. We will
also assume that the rolls are at critical wavenumber, so that we can take A and B
to be real, and that the grain boundary is stationary, so that /97 = 0.

We shall now follow Manneville (1990) to work out the approximate solutions
for the amplitudes A and B. If the position of the grain boundary is X = 0, then A
is close to zero in X < 0 and B is close to zero in X > 0, except in a small region
very close to the grain boundary So we can consider there to be two outer regions
away from the grain boundary, where one set of rolls dominates the other, and an
inner region near the boundary, where the two envelopes are comparable in size.
We match the outer solutions at the grain boundary, and check for consistency in
the inner region
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In the outer regions, B varies slowly, and so we can neglect the fourth order
derivative in equation (10.45). Thus B is slaved to A in space, and either B = 0 or

B?=pu—-aA?>0 (10.46)

Equation (10 46) can only hold for A% < ufa. As X — oo we expect A to tend
to the critical wavenumber roll solution, so A2 — u > u/a (since a > 1). Equa-
tion (10 46) can therefore only hold in the lefthand (X < 0) outer region Then
substituting into equation (10.44) gives

3 d%A
O=—(¢—-DuAd—(1-a")A -I—a—F, (1047)
which for the boundary condition A — 0 as X — —oo has the solution
2L 1
AL = , 1048
" TV T S e cosh(Jila = (X — X)) (1048)

where X’ is a real constant.

On the righthand side of Figure 10 5, where A rolls dominate, the only possible
solution of equation (10.45) is B = 0. Substituting this into equation (10 44) we
find

d’A

0=pA— A%+ —, 10.49
m -+ ix2 ( )

which has the solution
AR = /ptanh(y/p/2(X — X)), (10 50)

where X" is a real constant

Equations (10 47) and (10 49) are second order in space, so we must match the
two expressions for both A and dA/dX in the vicinity of the grain boundary. The
matching occurs at the point X = X™ at which

A} = A} = u/a, (10.51)

because there both solutions of equation (10.45) give B = 0 Equations (10.51)
comprise two conditions: the first gives the value of X* — X’ and the other fixes
X" — X' The two expressions for dA/dX now match without determining X',
which is a free parameter that fixes the position of the grain boundary relative to
the chosen coordinate system: in particular we can choose X’ such that the grain
boundary is at X = 0. The outer solution is then given by A = A, B? = pu — aA%
in the left outer region, and A = AR, B = 0 in the right outer region

We must check that this solution does not generate singularities in the internal
region around the grain boundary, where B varies rapidly and we can no longer
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neglect the term —(e2/482)d*B/dX* in equation (1045). Close to X = X*, A
and dA/dX are continuous, so we can form the Taylor expansion A = /u/a +
(X — Xy)ew + - for some constant ¢, and substitute into equation (1045) to
find

B _ ot 2(X — X,)cB — B> (10.52)
—_—— = =2 — ¢ —_ . .
452 ax* H g
Now if we scale (X — X*) ~ € and B ~ €”, we find that all the terms are of the
same order in € if

2+b—-4a=a+b=3b, (10.53)

which gives a = 2/5 and b = 1/5. Now the coirections to the amplitude ate of
order e%, and therefore smaller than the outer solution, while lengths in the inner
region scale as e%, so the corrections are only significant in a narrow strip con-
taining the grain boundary. Consequently there are no inconsistencies in the inner
region, and the outer solution is a good approximation to the true one.

Earlier we assumed that the 1olls on either side of the grain boundary were
at critical wavenumber. In fact, the grain boundary provides a mechanism for
wavenumber selection. We can see this by writing A = Re'? and B = Se'V, sub-
stituting into equations (1044) and (10.45) with 9/07 = 0 and neglecting the
fourth derivative to give

B 2 o o4 d2R
0= R(u— R*—a$?) R(dX) + T (10.54)
0= S(y, — §%? - aRY, (10.55)
5 dop
=% ( dX) (10 56)

According to equation (10.56), the angular momentum R?d¢/dX is constant in
space, but we also have R —> 0 as X — —o0, so we must have R2d¢/dX = 0
everywhere. In other words since R is positive where the A rolls are seen, we must
have d¢/dX = 0 there and hence ¢ must be constant throughout the region of A
rolls. Thus the rolls parallel to the y axis must be at the critical wavenumber This
is very similar to wavenumber selection for rolls on a subcritical ramp, discussed
in Chapter 7. It can also be shown that the cross-rolls are at critical wavenumber
(see Tesauro & Cross, 1987).
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10.4 Domain boundaries between different patterns in
systems with a free energy

We will now consider fronts, or domain boundaries, between two different types
of pattern that are locally stable, for example rolls and hexagons. When the system
is variational, we can use energetics to look at the movement of the front.

First consider the model problem

du 82y dv

where the potential, V, is a function of u# only This instructive example, and a
great deal more on fronts besides, can be found in Cross and Hohenberg (1993),
whom we shall follow here
Looking for uniformly translating solutions u(x, t) = u(§), where § = x — vt

with v constant we have

d’u du dV

—+v—+-—=0 10.58

a2 TV T du (10.58)
Considering £ to be a time-like variable, this is the equation of motion of a particle
of unit mass in a potential V (u )., with damping constant v, which in this case can
be either positive or negative. Multiplying by du/d§ and integrating with respect

to &, we get
1 /du\? du\?
2 (HE) wof (&) “Hvw=0 (1039

We make the analogy that (1/2)(du/d§)? is the kinetic energy of the particle and
V (u) its potential energy. Then writing its total energy E, we find

dE du)?
B e (10 60)
dg d§

So the total energy may increase (v < (), decrease (v > 0) or remain constant
(v=0)

The stationary solutions of equation (10 58) are u = ug for constant ug, and
50 du/d& |y—y, = d°u/d&?| =y, = 0. Hence we must have dV /du|y—,, = O, so the
fixed points are the maxima and minima of V(u#). Looking at stability, we set
u = ug + u, where || < |ug|, and substitute into equation (10 57) to get

ow  9%m  d*V

-, =" ~ ~2
= gatgz| 0@ (1061)

u=uq
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V()

i, U, iy u

Fig. 106 The potential V() Theie are stationary solutions of equation (10 57)
at u = uy, up and us The arrows show the direction of increase of the cooidi-
nate £ = x — vt, and each path comresponds to a front between two stationary
solutions.

The solution u = up will therefore be stable if &>V /du?| =, < 0and 3%u/dx? is
small enough. Consequently, the stable equilibria are the maxima of V (), while
the minima are unstable

The potential shown in Figure 10 6 has two stable maxima and one unstable
minimum A front between two stationary solutions is represented by an orbit in
phase space that starts at one maximum o1 minimum and ends at another We can
join the righthand maximum at u# = u3 to the minimum at u = u» for a range
of values of v. For large v > 0, the particle starting from the maximum will be
heavily damped, and will 1oll down to the minimum and stop with no overshoot
(dotted path in Figure 10.6) For damping below some threshold value, v > 0,
the particle will overshoot and then return to the minimum Below some critical
damping, v.« > 0, the particle approaches the minimum through an infinite series
of oscillations of decreasing amplitude; the profile, u(£), of the leading edge of
the front shows a corresponding series of decaying wiggles with increasing &
For one particular value of the damping, v = vnin < vs, the particle will have
just enough energy to reach the other maximum at # = u«; and come to rest there
(dashed path in Figure 10.6) The value vp, can be greater or less than v,; if
Vmin > vy the oscillatory fronts will not be seen. Clearly there is a one-parameter
family of {ronts between the stable state #3 and the unstable state #, with velocities
Umin < U < 00, and a unique front between the two stable states u; and u3 with
velocity Ymin-

It would be interesting to know which front is selected out of the whole family
of permitted solutions in the stable-to-unstable case Foi a potential of the form
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shown in Figure 10.6, Aronson and Weinberger (1978) proved that, subject to suit-
able initial conditions, the system selects the front with lowest speed among those
that have no overshoot. For a more general evolution equation the matter is very
complicated — Cross and Hohenberg (1993) give an overview, and van Saarloos
(2003) a comprehensive review Here we will restrict attention to fronts between
locally stable patterns and to energetic results that tell us about the direction of
propagation, rather than front speed

For a front between two constant solutions u(&;) = u;, u(§;) = u; with §; < §;,
we see from equation (10.59) that

v — EG) —EG) _ V) - V)
(%) s (%) e

So we have a rightward moving front v > 0if V(u«;) < V(u;), and in this case the
u; solution supplants the « ; solution. Conversely we have a leftward moving front
v < 0if V(u;) > V(u;), and in this case the «; solution supplants the «; solution.
In other words, the solution corresponding to the greater value of the potential
wins This is not surprising, since we see that

d L/2 1 2 L/2 3 2
- V() — = (Eﬁ) dx = / (—“) dx > 0, (10 63)
dr —L/2 2 \ Jx J—L2 at

under suitable boundary conditions, where the domain is —L/2 < x < L /2, and
s0 we expect the system to try to maximise the potential.

In the example shown in Figure 10.6, we see from equation (10.62) that in the
special case V(u1) = V(u3), we have vy, = 0, in other words there is a station-
ary front between the two stable states This corresponds to conserving energy in
equation (10.58)

(10.62)

10.4.1 Domain boundary between hexagons and rolls

Now we can apply these ideas to the problem of fronts between stable and
metastable patterns. We define a metastable state in this context to be a solution
that is locally stable to small perturbations, but that has a higher energy than the
most stable, lowest energy pattern for a given value of the external stress, p. If we
have a free energy, this will do the job of the potential V (i), and we will easily
be able to work out the condition for a stationary domain boundary between two
locally stable patterns, by requiring the free energy density to take the same value
for both patterns. We require the two patterns to be simultaneously stable to small
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perturbations for some value of u — in other words there must be hysteresis in
the system — so we consider hexagons. The hexagonal solution is written in the
form

u(x, y,1) = A(X, Y, ) + B(X, Y, T)e! C¥+V30/2
FCX, Y, De i OH2 e Lhor,  (1064)

and we shall assume that A, B and C evolve according to

08 _ 1A +aBC blAI2A —c(|BI* + |C1P)A + (i (10.65)
- = aBC — - —, ,
ar ax2

9B - 9’B

= —uB+aCA—b|BI’B - 2 B+ —, 10
ar ~ M +a |B] c(ICI° + |AI")B + aX% (10.66)
ac - 32C

"= = uC +aAB — b|C]2C — c(|A? 2 — . 1

o7 =HC+a IC| c(JA1* +|B] )C+3X2 (10 67)

3

where X; = X, Xo = (—X + +/3Y)/2 and X3 = —(X + +/3Y)/2, and where p,
a, b and ¢ are real constants. These are the amplitude equations for modulated
hexagons derived in Chapter 7, but with the coefficients g and / set to zero so
that there are no spatial derivatives in the quadratic terms. If ¢ and / are nonzero
there is no free energy for the system, so we cannot use energetic arguments to
determine the direction of movement of fronts, and we will not consider this case
here

In the parameter régime a > 0, ¢ > b > 0, there is hysteresis in the system:
both hexagons at critical wavenumber and the trivial solution are stable in the
range —a’/4(b +2¢) < p < 0, and both rolls and hexagons at critical wavenum-
ber are stable in the range a%h/(b — ¢)? < p < a®(2b +¢)/(b — ¢)?, as discussed
in Section 5.4 The regions of hysteresis are shown on the bifurcation diagram for
patterns on a hexagonal lattice (Figure 5 8)

We will consider the case when all patterns are at critical wavenumber fat from
the domain boundary, and look for stationary fronts first between up-hexagons,
A = B = C = Ry, and the trivial solution, and then between up-hexagons and
rolls The free energy functional is given by

F(A,A,B,B,C,C) :—’2/ f(A, A, B, B, C,C)dX dy, (10.68)
D
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where D is the domain of pattern formation and f is the free energy density,
defined by

f(A,A B, B,C,C)=—n(AP + B +|CP) —a(ABC + ABC)
+ /2 (A + 1B +|ClY
+c(APBI 4+ |BRICP + IC AP

9A > |aB > |acC |?
: 10.69
+ (‘8X1 ‘8}(2 + ’8X3 ( )
Under suitable boundary conditions, we have
9A|*  |9B|? :
4z = —2/ — —| + a¢ dx dY < 0. (10.70)
dr Jp|oT aT aT

The free energy is always decreasing, so if there is a front between two different
stable patterns, then in the absence of boundary effects the front will move so that
the pattern with lower free energy density displaces the pattern with higher free
energy density. Only if the two patterns have the same energy density will the
front remain stationary. For hexagons at the critical wavenumber, the free energy
density is

3
fo = —3uR3 —2aR} + 5+ 2¢)Rg, (10.71)

where Ry satisfies
(b+20)RE —aRy—j1 =0 (10.72)

An up-hexagon/trivial solution front would be stationary if f;, = 0, whichisequiva-
lent to requiring

2&2

M 3
9b +2¢) (1073)

I_,L —
This is in the 1ange —a?/4(b + 2¢) < . < 0, as required for both hexagons and
the trivial solution to be stable.

For rolls at the critical wavenumber the free energy density is

b
fi = —uR>+ §R14, (10 74)
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where R, = /ut/b is the roll amplitude. It is easy to show that the free energy
densities are equal, fy, = f;, when

a2(b? + 3bc + V2b(b + ¢)F)
2(b +20)(b — ¢)?

= g = , (10.75)
which lies in the range a?b/(b — ¢)? < p < a*(2b + ¢)/(b — ¢), where both
rolls and hexagons are stable. This is the value of x at which a roll-hexagon front
would be stationary in an infinite layer.

Now consider a moving domain boundary, where to leading order we assume
that the speed of propagation, v, is constant. We will consider the symmetric situa-
tion in which the direction of propagation is along the x axis, and look for solutions
of the form

A=AX—-vI), B=BX-vl), C=CX—-vT). (10.76)

The amplitude equations now become

2

dA ) 5 X d?A ,
v = pA+aBC - blAPA - c(IBI* +[C|HA+ — T (1077)
dB - . 1d?B
—v— = puB +aCA — b|BI*’B — <«(|IC)* + |A|))B + 1 (10.78)
dé 4 d&
dc 5 5 1d*C .
—vE = uC +aAB — b|C|*C - c(|A]* + |B1H)C + - y d&z’ (10.79)
where § = X — v7, whence we find
dA?> |dB|*> |dC|*\ dE
) a )= 10 80
v( l ‘ ) i ( )
where
dA|> 11]dB|? dC L
E(g)_z{‘ Z = } — f(A.A,B,B,C.C). (1081)

From this we can see that E is conserved in space actoss the front for a station-
ary domain boundary. For patterns at critical wavenumber on either side of the
front, the spatial derivatives are zero as § — - 0o and so the stationary front must
connect two states with the same value of the free energy density, f, as discussed
above. The two states on either side of a stationary domain boundary are local
minima of the free energy density, and hence are locally stable.
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Fig 10.7 The front moves with velocity, v, so that the pattern with fower free
energy density, f, invades the other The free energy density as § — &+ oo is
foo TESpECtively
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Integrating equation (10 80) with respect to & gives

+00 A 2
oy / dd
oo | dE

Again, if the patterns are at critical wavelength far from the domain boundary, then
the spatial derivative terms in E vanish, and we have

+00
2v /
J—0

This says that if the free energy density is greater as § — + oo thanas § — — oo,
the front speed will be positive, and so the pattern at § — — oo will invade the
higher energy pattern at & — + oo, lowering the overall free energy as expected.
Conversely, if the free energy density is lower for the pattern at § — + oo, then
the front speed v will be negative, and again the lower energy pattein invades
the other In other words, the solution corresponding to the lower value of the
free energy density always wins (Figure 10.7). This not surprising, since we know
that

2 2
‘ﬁ + ‘£ de = [E]T2 (10.82)

dal®* |dB|* |dc|?
=+ = + =] =112 (10.83)

ac |?
aT

3B |?
aT

9A|?
aT

drF

ar - dXxdY <0 (10.84)

i

holds, and so the system seeks to minimise the free energy.
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In principle we could solve equations (10 77)-(10.79) for A, B and C, and then
use equation (10.83) to calculate the speed of propagation, v

This whole analysis relies on our assumption of the existence of a front moving
with constant speed between the two stable patterns. In fact this is hard to prove
analytically, but can be verified numerically (see Doelman er al, 2003) for fui-
ther details and also for proofs of the existence of fronts between stable hexagons
and unstable rolls, hexagons or trivial solution in a modified Swift—Hohenberg
equation,

The form of the solution (10.76) restricts the patterns to have critical wavenum-
ber in the Y direction, but the theory can be modified to allow off-critical pat-
terns, by setting A = /T(E)eiq X and so on, to recover equation (10 80) with the
amplitudes replaced by their modified versions Z, B and 5, and p replaced by
© — q* wherever it appears Thus if a front between stable off-critical patterns
exists, which is not guaranteed, the two states must have the same free energy
density

We could change the orientation of the domain boundary with respect to the
underlying hexagonal carrier wave pattern, which would change the diffusion coef-
ficients in the amplitude equations, and hence the value of v. It has been shown
numerically that the dependence of the front velocity on orientation is very small,
only about 0.3% (Malomed, Nepomnyashchy & Tribelsky, 1990).

10.5 Energetic considerations for rolls in finite domains

Here we will use the free energy to make some educated guesses about the
behaviour of roll patterns close to threshold in finite domains. We want to look
at complex geometries and/or large aspect ratio systems where the domain length-
scale is much longer than the roll wavelength. Patterns in domains such as these
tend to be complicated: the rolls change orientation significantly over the domain
and there are lots of defects. Such planforms are often referred to as textures: the
name comes from the study of liquid crystals, and in our context serves to empha-
size the complexity of the patterns.

The free energy is always decreasing, so we expect the pattern to settle down
to some local minimum of the free energy. Whether the final state observed
corresponds in fact to the global minimum will depend on the size of random
fluctuations — thermal noise — in the experimental system. If noise levels are
low, the pattern may become ‘stuck’ in a local minimum or metastable state —
in other words a configuration that has higher energy than the global minimum,
but that is stable to small perturbations None the less, we will probably get some
idea what kinds of patterns are preferred by working out the contribution to the
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free energy from each feature of a general texture, such as grain boundaries,
dislocations, curved rolls and so on According to this approach, due to Cross
(1982), the pattern with lowest energy is most likely to be seen In this section
we will follow both Cross (1982) and Manneville (1990) to suggest energetically
favourable roll textures

The orientation of the rolls will vary slowly in space, but we will assume that
locally they are described approximately by an envelope and carrier wave formal-
ism, u(x, vy, 1) = €A(X, Y, T)e'* + c.c. atleading order, with the envelope evolv-
ing accoiding to the Newell-Whitehead—Segel equation,

. 2
8 82
a—:ﬂA—|A|2A+<———i—) A, (10.85)

where X =¢x, Y = e%y and T = €%, with ezu measuring the distance from
threshold, and where the x and y directions are defined relative to the local ori-
entation of the rolls The free energy density for rolls described by this equation
1S

2

ax 2972 )4 (1086)

n 1 9 92
f(A,A>=—u|A|2+§|A|4+‘( : )A

and in dimensional variables, each term contributes at order ¢*. In Chapter 7 we
saw that the minimum of the free energy density is fpin = — w?/2, corresponding
to straight rolls at critical wavenumber In a finite domain the boundary conditions
usually frustrate the development of a uniform pattern of parallel straight rolls, as
we shall see, and so defects and bend are introduced, leading to an increase in the
overall free energy of the pattein, given by

F(A, A) = / f(A, A)dX dY, (10 87)
D

where D is the domain.

The roll orientation typically varies significantly over the domain Strictly
speaking, the Newell-Whitehead—Segel equation is not adequate to describe this
situation, and we should use a definition of the free energy that captures the
large-angled bends of the rolls (see Cross, 1982) In fact we can make reason-
able progress within the current framework (Manneville, 1990) and this serves as
a simple introduction to the method, which can be adapted straightforwardly to use
the more accurate description of the texture

Contributions to the free energy from the boundary layer close to the walls and
from defects will turn out to be important and we will want to distinguish them
from contributions made by the bulk of the pattern in the interior of the domain
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This is possible as long as
L»el, (10 88)

where L is a typical lengthscale of the domain, for example the length of a side of a
square domain, and € ! is the typical lengthscale of modulations. For convection
rolls, the no-slip condition u(x, y, ) = 0 at a lateral boundary enforces A =
there, so there will be a boundary layer over which the amplitude, A, decays to
zero from its bulk value. For rolls parallel to the boundary, the relevant spatial
derivative in the amplitude equation is 82A/8X2, so the modulation is in X and
the boundary layer will have width of order ¢ ~!. Each term in the free energy, f,
contributes at O(e*) and so the increase in the free energy owing to the bound-
ary layer along a length [ of wall, will be of order €* x ¢! x I = €/ Rolls at
an oblique angle to the wall will also contribute an amount of 0(e3]) because
the dominant modulation will be in X However, if the rolls ate perpendiculai
to the boundary, then the relevant spatial derivative is 3?4 /8Y*, the modulation
is in ¥ and so the boundaty layer is of width O(e‘%) and the increase in free
energy is 0(6%1) Close to threshold we have 0 < € « 1, so rolls perpendicular
to the boundary are much less costly in energetic terms than parallel rolls, and we
might expect the perpendicular alignment to dominate. This preference is partic-
ular to convection and othe1 systems where boundaiy conditions enforce a signif-
icant modulation of the amplitude close to the walls. The energetic implications
of grain boundaries, curvature and defects, that we are about to discuss, are more
general.

Consider a grain boundary between parallel and perpendicular rolls. As we saw
in Section 10.3, the width of the grain boundary is O(¢~') and so we expect a
grain boundary of length / to contribute O (€*]) to the free energy. One possibility
for ensuring that rolls are everywhere perpendicular to the boundaries is to intro-
duce a giain boundary in the interior, but since this increases the free energy by the
same order of magnitude as would rolls parallel or oblique to the domain bound-
ary, the details of the various alternative configurations will determine which is
energetically preferred Manneville (1990) suggests that since the decaying ampli-
tude does not quite drop off to zero within the inner region of the grain boundary,
the overall contribution from a grain boundary will be lower than that from rolls
parallel to a boundary, and so a configuration with a grain boundary would be
slightly preferable. In practice, the numerical prefactors in front of the €3/ would
need to be wotked out for each individual case Krishnamurti (1973) obseirved
convection rolls everywhere parallel to the short side of a rectangular box, with
cross-roll modulations at each end, suggesting that the grain boundary solution can
be selected in experiments with very regular geometry However, natural patterns
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(a) (b

Fig 108 Two types of roll curvature: (a) splay and (b) bend The names describe
the behaviour of the wavevector, shown in black After Manneville (1990).
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Fig. 109. (a) Dislocations nucleate to avoid large wavelength variations in
regions of global bend. (b) Each dislocation turns the pattern through an angle,
6 ~ i /1, where A is the critical wavelength of the 1olls, and / is the characteris-
tic lengthscale of the dislocation After Manneville (1990)

usually resolve the problem by introducing large-scale curvature and a range of
defects.

Consider the two types of curvature shown in Figure 10.8 In splay rolls are
curved at constant wavelength, whereas in bend the rolls themselves appear almost
straight, but there are large variations in wavelength across the bent region Now
rolls are only stable with respect to the trivial solution, # = 0, if their wavenumber
lies within a band of size O(e) around the critical wavenumber, so the length of
the wavevector can vary by no more than O (€) across the domain. This means that
bend, with its large wavelength variations is forbidden Splay, on the other hand,
does not change the wavelength to lowest ordei, and so is a likely configuration.

The system avoids bend by creating dislocations to increase the number of roll
pairs in the outer region of the fan (see Figure 10 9a). As bend develops it com-
presses the inner part of the fan and dilates the rolls in the outer part, in both
cases increasing g2, the square of the deviation in wavenumber, and reducing
the amplitude, |A| = v/ — g2 In order to nucleate a dislocation the amplitude
must be zero at the core, so the compression or dilatation leads naturally to the
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Fig 10 10 Spirals in the Belousov—Zhabotinsky reaction. Image courtesy of and
(©Annette Taylor, University of Leeds, August 2004

suppression o1 creation of a pair of rolls. A single dislocation changes the direction
of the pattern by an angle of order A/, where A, is the critical wavelength of rolls
and / is the length of the 1egion distorted by the dislocation (see Figure 10.9b). So
if Ad is the total change in angle over the fan, the number of dislocations needed
to achieve this is approximately A6 /(A./1). Each dislocation contributes O(e%) to
the free energy, given by the size of terms in the free energy density, O (e*), mul-
tiplied by the core area O ! x e‘%)A The critical wavelength is assumed to be
O(1) and if A is also of order unity, then the total free energy contribution from
the dislocations will be O(egl). So a fan of bend and dislocations is less costly
than a grain boundary or rolls parallel to a wall, but leads to a higher free energy
than either splay, which contributes zero at lowest order, or rolls perpendicular to a
boundary

The free energy analysis suggests then that we should expect a texture with
splay curvature allowing rolls to come in perpendicular to the boundaries. Indeed
this, with a sprinkling of dislocations, disclinations and grain boundaries, is what
is commonly observed (see, for example, Figure 10.17)

10.6 Spirals

Rotating spiral waves and their zero-armed counterparts, targets, are common in
oscillatory and excitable systems, classically in the Belousov—Zhabotinsky chem-
ical reaction (Belousov, 1959; Zaikin & Zhabotinsky, 1970; Figure 10.10) and
during the oxidation of carbon monoxide on the surface of a platinum catalyst (see,
for example, Nettesheim et al., 1993; Figure 10.12), sometimes described using
the FitzHugh—Nagumo model inttoduced in Chapter 1. They are also seen in the
slime mould Dictyostelium discoideum when cells aggregate under the influence
of the signalling chemical cAMP (Lee, Cox & Goldstein, 1996; Vasiev, Siegert
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(a) (b) (c)

Fig 10.11 Diagiams of (a) a target o1 zero-armed spiial, (b) a one-armed spiral
and (c) a three-armed spiral

& Weijer, 1997). Spirals and scroll waves, the three-dimensional analogues of
spirals, also appear in heart muscle during cardiac arrhythmias (see, for example,
Winfree, 1998; Panfilov, 1998; Kim er al., 1998) Individually, or in groups, spirals
usually fill a Jarge spatial domain, so it is natural to think of them as patterns in
their own right, though they can also be regarded as defects in the sense that the
phase of the pattern is undefined at the spiral tip Targets, or zero-armed spirals,
are also frequently observed (Figure 10 11a) Spirals and targets in oscillatory or
excitable systems emit periodic waves from their core

In non-oscillatory systems, such as Rayleigh—-Bénard convection, spiral and tar-
get structures can also be seen; they rotate slowly, but are formed essentially from
coiled-up rolls and the evolution is typically slow, controlled by phase diffusion.
The waves emanating from the spiral core in this case are annihilated towards the
spiral edge by the movement of dislocations on the spiral arms; these structures
will be discussed in Section 10.9 on spiral defect chaos

10.7 Spirals in oscillatory and excitable systems

There are two common types of system in which pulsating spirals and targets are
expected to occui: oscillatory, close to an initial Hopf bifurcation from a uni-
form state, and excitable, where small perturbations to a stable state die away
quickly, but larger perturbations persist for a long time, even growing, before the
stable state is finally re-established (see the discussion of the FitzHugh—Nagumo
model in Chapter 1). In the Belousov—Zhabotinsky reaction, surface catalysis and
Dictyostelium, spirals and targets are typically a feature of excitable dynamics.
However, the complex Ginzburg-Landau equation can support spirals and targets
in the oscillatory regime, and it has also been shown that in certain régimes, slime
mould patterns are adequately desciibed by the dynamics in the vicinity of a Hopf
bifurcation (Hagan & Cohen, 1981) We will start with the complex Ginburg—
Landau equation since the analysis here is a bit more tractable
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As shown in Chapter 7, a spatially modulated oscillation in an isotropic, homo-
geneous system can be written

ux,y.0)=AX, Y, I)e " +cc +hot., (10 89)

where the amplitude evolves to leading order according to the complex Ginzburg—
Landau equation

0A . 2 . 2
= wA = (L +IBIAPA+ (1 +i) V24, (10.90)

where « and B are real constants. Travelling plane wave solutions are given by

A = ge'd Xl | (1091)
a’=p—q*>0. (10.92)
w = up + (@ — g%, (1093)

where X = (X, Y) We define an m-armed rotating spiral to be a solution of the
form

A(X, Y. T) = a(r)e! o7 =mo+7 ) (10 94)

where (7, ¢) are polar coordinates for X and the functions « () and 1/7(r) can
in principle be determined by substituting equation (10.94) into the complex
Ginzburg-L andau equation and solving the resulting equations Single-armed and
three-armed spirals are shown in Figures 10.11b and ¢ respectively. A target is a
zero-armed spiral, so takes the form of equation (1094) with m = 0. Far away
from the centre, the spiral or target looks locally like a plane wave, so we have
a(r) — (u —¢?%) and 8%/81’ — g as r — oo At the tip of the spiral, r = 0,
the coordinate ¢ is not defined and so neither is the phase of the envelope A We
therefore expect a(0) — 0 as r — 0, so that the envelope remains defined there.

We shall write A(X, Y, T) = a(X, Y, !PT HX YT where a(X,¥, 1)
and ¥ (X, Y, T) are real, and look for deviations from the uniformly oscillating
state a = /1, Y = O following Kuramoto (1984b) We expect spirals and targets
to be driven by phase dynamics, so we suppress any time-dependence in the ampli-
tude, a(X, Y), which is therefore assumed to be slaved to the phase, ¥ (X, Y, 7)
Substituting for A in the complex Ginzburg-L andau equation and separating real
and imaginary parts then gives

0=pa—a +Via—alVy|?—a@Va V¢ +aViy),  (10.95)

a?)_ujzf = Bupa — Ba’ +2Va Vi +aV?y +a(Via —a|Vy|?). (10 96)
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Eliminating za — a> between these two equations gives the phase equation

"% = (1+ap)2Va VY +aV§)+ (@~ B)(V2a—alVy[?)  (1097)

If the spatial modulation is slow, so that |Va|/a < 1, then from equation (10.95)
we see that

a? ~p — |y |2 —aViy, (10.98)

and so the phase equation (10 96) becomes

‘;—f— = (1 +af)V¥y — (@ — B)IVY [ (10 99)

to leading order, where a (nonzero) factor of /it has been cancelled This can also
be obtained by setting @ ~ /it in equation (10.97)

We now use equations (10 97) and (10.99) to investigate spiral and target pat-
terns following Kuramoto (1984b) and Cross and Hohenberg (1993).

10.7.1 Externally seeded targets

Targets are often thought to be triggered by the presence of imperfections in the
oscillatory medium, so we will first consider these externally seeded target patterns
by adding a perturbation to equation (10 99) so that it reads
= L ap)VPy — @ - DIV — g0), (10.100)

where g(r) is an external inhomogeneity We must have (1 + «8) > 0 for stability
to Benjamin—Feir modes (see Chapter 8), and for now we assume that (o — §) is
also positive We have assumed that the seeding perturbation, g(r), is rotationally
symmetric and centred at the origin; we shall further assume that it is localised, so
that g(r) = 0 for » > rp, and also positive, with g(r) > Oforr < rg

Applying the so-called Cole—Hopf transformation ¥ = e~ @ A/ (d+aB) gives
the linear equation

o _ {(1+a,8)v2+ o« P

1 +af

3T g X (10 101)

which for solutions of the form ¥(r, T) = e~ x (+) reduces further to the time-
independent Schrodinger equation

—(14+af)V2x + V)x = Ay, (10.102)

where the potential, Vi) = —(a — B)g(r)/(1+aB), is both attractive and
bounded in space, since V =0 for r >rg and V < 0 for r < rp. We need a
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solution with x > 0, since X is positive by definition For potential wells of this
sort in two dimensions, there is at least one bound state (A < ) with a positive
solution for x. The value of 2 corresponding to this bound state is determined by
the shape of the potential well, in other words by the form of g(r)

For r > rg the potential is zero, since g(r) = 0 there, and so the Schiédinger
equation becomes

—(14+aB)V?x = rx. (10.103)
Forr > rgand g > 0,
X & ()T (10.104)

is an approximate solution of equation (10.103), where 7% = —x/(1+ aB) Sofar
away from the spiral core we expect

e~ @=BV/+aP) = 5 o =M ()1 2= (10 105)

and taking logaiithms

(@ — By 1 ~ b~
S PR | — I —gr =~ 2T —gr 10.106
i L e a1 (10.106)

So the asymptotic form of the phase function ¢ as r — oo is
w(X, Y, I)=—-al +qr, (10 107)

M1 +af)
2= _—— — 50, 10.108
B2 ( )
&= _M, (10 109)
a—p

which is an approximate plane wave solution with ¢ > 0, as required. Adding
back in the uniform oscillation ¢ ~"##7 gives the usual dispersion relation (10.93)
for travelling plane waves

w=pup+&=pup+ (@— B> (10 110)

In the absence of perturbations, plane waves are permitted for all values of ¢
The effect of the seeding g(7) is to select a particular wavenumber, g2 = —i(1 +
aB)/(a — B)?, thus setting the wavelength and frequency of the target pattern.
The target oscillates more rapidly than the background, since @ is positive, and so
the target waves are at higher frequency, as is typical in experiments (Kuramoto,
1984b).

A couple of things about the seeding perturbation are worth mentioning First,
if there are several such perturbations in a domain, seeding several targets, there
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is no requirement for the form of g(r) to be the same in each case. Typically the
perturbations will all be different, and therefore so will the selected wavenum-
bers and frequencies. Coexistence of targets at different wavenumbers is observed
in surface catalysis, where surface imperfections are thought to seed the patterns
(Nettesheim et al . 1993), though there the dynamics are typically in the excitable
regime In fact it is typical of excitable systems that targets are initiated by spatial
inhomogeneities known as pacemakers, and so exist fo1 a 1ange of frequencies,
while spirals are intrinsic and select a unique period of oscillation (Lee, 1997)
Secondly, if g(r) were negative, so that there was a hill in the potential of the
Schrédinger equation, rather than a well, there would be no bound states for x and
hence no target patterns.

Target patterns are typically localised with diameters much less than the length-
scale of the domain in which they form. It is likely that many different targets
will coexist, and that some of them will meet and influence each other Each tat-
get also interacts with the uniformly oscillating backgiound at its rim, meeting
the backgiound state in a shock We assume the front is at r = r5(7) > rg, with
the uniformly oscillating solution w = Su, g = 0 in the region outside the target,
r > rg(T). If the front were straight rather than curved, the equation for the phase

would be
%_ iﬁl_ — (a_d)z
3 —(1+01,6)a 5 oa—pf) 3 s (10.111)

with bounday conditions dv/9X — ¢ as X — —oc and 9¢//dX — 0 as X —
o<. The shock solution would then be

2(01—[3)% =v<1 +tanh{—2—(l-i—(w—)-(X—vT)}) (10.112)

with v = (o — B)¢g If the radius of the target pattern is large, then locally the 11m
will appear straight and this solution will hold approximately, so the rim will move
outwards at speed vs = (@ — B)g = (—(1 + af)2)'/?. Within the target itself, but
outside the region where the external seeding perturbation is present (rg <r <
(7)), waves propagate outwards with phase velocity

ve = (€2 + up +a)/q, (10 113)
=2+ up+@—Pgd/q. (10 114)

where the contribution to the frequency from the carrier wave has been included,
and where €? measures the distance from onset as usual The phase velocity
is greater than the rim speed, v, so wavefronts disappear when they arrive at
the 1im.
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200 um

Fig. 10.12. A high fiequency and wavenumber spiral consumes another at lowet
fiequency and wavenumber during the oxidation of carbon monoxide on the
surface of a platinum catalyst The time sequence runs top left to bottom right
Reproduced fiom Nettesheim, S, von Oertzen, A , Rotermund, H H. and Ertl, G
(1993). Reaction diffusion patterns in the catalytic CO-oxidation on Pt(110): fiont
propagation and spiral waves, / Chem Phys 98, 9977-85, with the permission
of the American Institute of Physics.

The outer rims of two target patterns can collide In general the wavenumbers
and frequencies of the two targets will be different as they will be seeded by dif-
ferent random inhomogeneities There will be a shock between the two targets:
the pattern with the higher frequency has the larger wavenumber, ¢, and hence
the higher rim speed, (o — B)g, so it overruns or consumes the other. This is
observed in experiments, as shown in Figure 10.12 reproduced from Nettesheim
et al. (1993)

Although we assumed that (o — 8) was positive, we can go through the whole
analysis again with (& — 8) < 0. In this case we get targets only for g(r) < 0,
and now @ is negative, so that the frequency of oscillation is lower for the targets
than for the background state. The wavenumber ¢, and hence the phase speed, are
now also negative, so the phase waves are born at the rim and travel in towaids
the centre However the pattern is still a target initiated at the centre by the exter-
nal inhomogeneity, since the rim and other information-bearing signals still travel
outwards at the group velocity vs = vy = (@ — 8)g > 0



360 Spirals, defects and spiral defect chaos

Hendry ef al. (2000) also find that targets are stabilised by a localised pertur-
bation, but their approach is different: they allow a radial variation in the external
stress, j¢(r ), in the complex Ginzburg-Landau equation.

10.7.2 Intrinsic targets

When there are no seeding inhomogeneities, there are no target solutions of the
constant amplitude phase equation (10.99). The existence of intrinsic target pat-
terns is controversial, but if we are to find them at all we must look in the phase
equation (10 97) that includes spatial variations in the amplitude of the pattern:
W _ 2 O

asr = (I +aB)2Va Vi +aVy) + (@ — B)(Via —alVy|")  (10115)
This allows for the possibility that the centre of the target is a defect, where a
varies comparatively rapidly in space. We generalise the transformation we used
last time to

e x(r) =30, T) = a(p)e™ @ AV/Uteh), (10.116)
and find that x now satisfies the Schrodinger equation with the modified potential
_ a2
—(cx P) ) lv2a.
(1+ap)?) a

Now, the amplitude, a, should be bounded both as r — 0 and asr — oo Assum-
ing a power series expansion, plausible asymptotic behaviour might be

V(i) = +af) (l+ (10.117)

a(r) — ap+ap® asr — 0, for some k > 0, (10118)

a(r) = as +a_|r" asr — 00, (10119)

which corresponds to

k2 k=2

Vi) = k2= asr -0, (10.120)
apg + axr”

V() — ka(a—i/aco)r ™ asr — oo, (10.121)

where «| and «, are positive constants Now, if ap = 0, so that the centre of the
target is a defect, as seems likely, then the potential V(r) — K|k2}’ “2asr — 0,
so it is strongly repelling at the origin for all & However as long as a_|/aq is
negative, the potential will be attiactive (V < 0) in the far field. As 7 — oo, the
amplitude tends to the value /i, corresponding to the uniform oscillating state,
so we have axo = /it > 0. The coefficient a;, on the other hand, will be negative
if the amplitude approaches its asymptotic value from below, which is expected
since a = \/u — g2 is less than ,/x for a plane wave with wavenumber g. It is
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therefore possible, though by no means guaranteed, that spatial modulation of the
amplitude could give rise to a potential that has a bound state, and hence a target
pattern solution

10.7.3 Spirals

We now turn to spirals. As stated above, an m-armed spiral is a solution of the
phase equation (10.97) of the form

VX, Y, T)=—wl —m¢+ @), (10.122)
a(X,Y, I)=a(r). (10 123)

We shall assume there is no external seeding. If we make the transformation
v(X,Y,T) — ¢(r, T) — m¢ followed by (10.116) there is an additional term in
the potential

B (o — ﬂ)zm2

Vm(’): (1+C(ﬂ)l'2l

(10 124)
If the amplitude a is not allowed to vary in space, the total potential is there-
fore infinitely attracting as r — 0, and so the bound state solution for {/; is highly
localised, with |1| — oo With J changing so rapidly in the vicinity of the origin,
the amplitude « also changes over very short distances, which violates the assump-
tion that the amplitude is spatially uniform Therefore there are no spiral solutions
with constant uniform amplitude If we now introduce spatial dependence of the
form

a(r) — % asr — 0, (10.125)

there is an additional contribution to the potential of the form

(@ — B)>\ m?
m) }—2 asr —» O, (10 ]26)

Vo) = (1 4+ apf) (1 +
that cancels the singularity in V;, leaving a repulsive r ~2 potential at the origin
as in the case of intrinsic targets. If, as before, we assume that the amplitude is
bounded as » — oo, then the leading order contribution to the potential from the
space-varying amplitude is O(1/73), and so

(@ — B)’m?

V) — Vm(’)=_ﬁ‘+a—ﬁ)’2‘ <

0, (10 127)
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Fig 10 13. Sketches of involute spirals: (a) a one-atmed spiral with phase ¥ =
r —¢ — T and (b) a three-armed spiral with phase ¥ =+ —3¢ —T" The con-
tour ¥ = 0 is shown at time 7 = 0 (bold cuive) and at a later time 7 = 7 > 0
(dashed curve).

as 1 — oo. Thus the potential is attracting in the far field, and the existence of a
bound state, and hence a spiral solution, is plausible, perhaps more so than for an
intrinsic target as the far-field attraction is stronger

Since the potential is very small in the far field, the r-dependent part of the
phase, 1, once more takes the approximate form (10.107) there, and the asymptotic
form of the whole phase function is

(X, Y, T)=—-wl —m¢ + gr, (10.128)

for w and ¢ constants. Contours of constant phase at a given time, I, take the
form of involute spirals (Figure 10.13). The spirals are lefthanded if ¢ > 0 and
righthanded if ¢ < 0. For w/q positive they rotate clockwise and for @ /g negative
the rotation is anticlockwise

Hagan (1982) has shown that one-armed spirals are probably stable and mul-
tiarmed spirals probably unstable in this system for |8| small enough, while no
spirals are stable if |B] is large

10.8 Drifting and meandering spirals

Spirals are often observed to meander or drift (Agladze, Panfilov & Rudenko,
1988; Jahnke, Skaggs & Winfiree, 1989; Plesser, Miiller & Hess, 1990; Perez-
Muiiuzuri ez al.,, 1991; Skinner & Swinney, 1991; Nagy-Ungvarai, Ungvarai &
Miiller, 1993; Nettesheim et al., 1993; Li et al., 1996). The tip of a rigidly rotat-
ing spiral traces out a circle, as shown in Figure 10.14a In a frame rotating at the
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(2) (®)
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Fig 10 14 Tip paths of spirals: (a) a rigidly rotating spiral with a circular tip
path, (b) a meandering spiral with outward petals, (c) a drifting spiral and (d) a
meandeting spiral with inward petals Pictures courtesy of and ©Bjoérn Sandst-
ede, University of Susrey, July 2004.

same rate as the spiral, the tip position is fixed. In contrast, the tip of a meandering
spiral moves in a flower pattern with either inward or outward petals depending
on parameter values (Figure 10 14d and b respectively); the tip motion is time-
periodic in a corotating frame, and quasiperiodic in the original frame Winfree
(1973) noticed drift and writhing of the spiral tip in the Belousov—Zhabotinsky
reaction and used the term meander to describe it At the crossover between inward
and outward petal meanders, there are spirals that drift off to infinity along a line,
about which the tip draws little loops as it goes (Figure 10.14c); in a frame that
moves with the drift velocity, the tip motion is once more time-periodic.

Meander and drift are associated with the Euclidean symmetry of the system
in which the spirals appear Euclidean symmetry in the plane, £(2), consists of
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rotations, reflections and translations We will only need the rotations and transla-
tions to describe spiral motion, so we will use the special Euclidean group, SE(2),
that excludes reflections Both E(2) and SE(2) are noncompact Lie groups,
because they include unbounded translations This causes some technical diffi-
culties, as equivariant bifurcation theory for noncompact groups is not well devel-
oped In Chapter 5 we avoided the problem by restricting solutions to lie on a
lattice, reducing the Euclidean symmetry to H x 72, which is compact. Spirals,
however, are not globally periodic in space, so we are stuck with this inconve-
nient noncompactness. We will look at some simple results, and leave out most of
the rigorous justification. If you would like to study the issues in more depth, the
article by Sandstede, Scheel and Wulff (1999a) is a good place to start

We consider a system described by the S E(2)-equivariant reaction-diffusion
equation

a—”: = V2 + fu, ). (10.129)
where u(x, t) € R" is the observable solution, with x € R? and ¢ € R, where ne
R is a vector of bifurcation parameters and where f is typically nonlinear To
identify the types of solution relevant to spiral dynamics, it is helpful to rewrite
this as an ordinary differeutial equation on a function space. In Chapter 5 we did
something similar by restricting to a periodic lattice, and projecting the dynamics
onto the critical Fourier modes Here we shall simply assume that it can be done,
and that the procedure leads to an S E(2)-equivariant mapping, ®;, for the time
evolution, such that

u(t + to) = ®ulty) VvVt >0, Vig > 0, (10 130)
O, (yu) = yd(u), Vy e SEQ2), Vi >0, (10.131)

where now u(x, t) = u(t)(x), so that u(r) is a time-dependent function that acts
on the plane For further details see, for example, Sandstede, Scheel and Wulff
(1999b), Wulff (2000) and Wulff (2002).

A rigidly rotating spiral is an example of a relative equilibrium, namely a
solution, u, such that u(z) € Tu(0) for all 1 € R, for some Lie group, I, that
may be noncompact. So for a relative equilibrium, evolution in time is the same
as evolution along the group orbit, or alternatively, the relative equilibrium is
fixed apart from evolution along the group orbit. In a corotating frame, the solu-
tion is an equilibrium. Strictly speaking it is the whole group orbit, I'u, that
is the relative equilibrium, though it is typical shorthand to refer only to u# In
this case u(¢) = p,u(0), at a given time, ¢, for some rotation, p; € SO2) C
SE(2), that depends on ¢. So time evolution is the same as rotation, as expected.



10 8 Drifting and meandering spirals 365

0"

——

a %
—
(a) (b)

Fig. 10.15 (a) A rotation thiough an angle ¢* maps between consecutive loops
in the flower pattetn of a meandering spiral tip. (b) For a drifting spiral, the trans-
lation @ * is the distance between consecutive loops After Wulff (2002)

Formally, the relative equilibrium is the group orbit of the rigidly rotating spiral
solution under SE(2), and so includes all combinations of translations and rota-
tions of the spiral All these solutions are essentially the same, in that they behave
similarly

Meandering and drifting spirals are examples of relative periodic orbits, which
are solutions that satisfy u(7) € T'u(0) for some time 7 > 0 The minimum 7
such that this holds is called the relative period This says that after some time, 7,
the solution returns to a position that is on the group orbit of the initial condition,
u(0). The behaviour is periodic because the time-evolution mapping is SE(2)-
equivariant, and so if u(7) = ®7u(0) = y*u(0) for some y* € ' C SE(2) then

u2T) = ®ru(l) = &7y u(0) = y*7u(0) = y*u(1), (10.132)

using the equivariance condition (10 [31) So after each relative period, 7, the
solution has moved along the group orbit by an amount given by y*. Strictly speak-
ing, the refative periodic orbit is the time orbit of the group orbit of #(0), namely

O={ydu):y el,t e R}, (10 133)

in other words, all the solutions that can be obtained fiom u(0Q) by any combination
of time evolution, translation and rotation. This identifies spirals at all points
on the flower tip path, and any combination of translations or rotations of these
spirals The solution, #(0), is just a point on the relative periodic orbit, as are the
solutions that are obtained from it by time evolution.

In the case of meandering spirals, the group element that provides the period
T mapping is a rotation, p* € SO(2) C SE(2), through an angle, ¢*, that maps
one loop of the flower pattern to the next (Figure 10.15a). For drifting spirals, the
relevant group element is the translation, * € R? C SE(2), that takes one loop
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to the next (Figure 10.15b) In a corotating or comoving frame, the meandering
or drifting spiral solutions are periodic orbits, hence the name relative periodic
orbit

A rigidly 10tating spiral is a rotating wave, a solution where a phase shift, ¢, in
time is the same as a rotation through —6 (see Chapter 4) Meandering spirals are
sometimes called modulated rotating waves, because there are two frequencies
of rotation, one corresponding to the basic rotation of the spiral and the other
approximately equal to the frequency of rotation in the corotating frame Similarly,
drifting spirals are sometimes called modulated travelling waves, because there is
drift superimposed upon the basic spiral rotation

Clearly Euclidean symmetry is key to an understanding of spiral dynamics, so
the natural thing to do is to use S E (2)-equivaiiance to write down equations that
describe the spiral evolution. Barkley (1994) was the first to do this, using a heuris-
tic method Subsequently, the mathematical foundation of his ideas has been put
on a more 1igorous footing by, for example, Sandstede, Scheel and Wulff (1999a,b)
and Wulff (2002), whose articles we shall follow here

First we shall write an element of SE(2) in the form (¢, @), where ¢ is an angle
of rotation about x = 0, and @ € R? is a ianslation. We define the action of SE (2)
on solutions, #(x, t). of equation (10 129) by

(@, )ulx, 1) = u(e P(x —a), 1), (10.134)

where the rotation is performed before the translation and where we have identified
R? with C so that now x, @ € C. This comes from the standard action of SE (2) on
the complex plane and makes the notation particularly neat

A spiral solution that rotates rigidly about the origin, its tip drawing a circle cen-
tred on the origin, can be written u(x, 1) = (¢ (t), Muy (x) = us(e"?Dx), where
uy(x) is a fixed function desciibing the shape of the spiral.

Generalising briefly to the case where the fixed spiral is 1otated by ¢ (¢) and then
translated by a(r), we have a solution

ulx, 1) = (p(1), a())us(x) = u (e O (x —a(r))). (10 135)

The rotation and translation will obey the ordinary differential equations

d
d—‘f = 01 (1), a), (10.136)
d
= = 2@ M.a0), (10137)

where g; and g7 are functions that can in principle be determined from equation
(10 129) If u(x, t) is a solution, then so is (¢, @)u(x, t) for arbitrary fixed (¢, @) €
SE(2), since the governing equation (10.129) is SE(2)-equivariant Therefore
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(5, a) (@ (1), a(t))ux(x) is a solution and so (5, a)(¢(t), a(tr)) must obey the evo-
lution equations (10.136) and (10.137). In Chapter 3 we showed that composition
of rotations and translations obeys

@ D) (p,a) = (G +¢,d+ ) (10.138)
Substituting the righthand side into equations (10.136) and (10 137) gives
d - ~ o~
f =gi1(¢ + ¢(),a+e%ar)), (10.139)
.+d —~ o~
€0 = 2@+ 91,7+ e Pale), (10 140)

and so g7 and g» must satisfy

gi(¢,a) =g1(5+¢,5+6i$a), (10.141)
(¢, a) = g2(§ + ¢, d + e'%a) (10 142)

Now 5 and @ are arbitrary, and by varying them appropriately the arguments of g;
and g, on the righthand side can take any values, hence the value of g; must be
independent of its arguments, and so g1(¢, a) = wy, for some constant w, Setting
5 = 0 and varying @, a similar argument shows that g>(¢, a) must be independent
of a, and so0 g2(¢, a) = g2(¢) = e_i¢g2($+ ¢). Thus g2(¢, a) = a.e'? for some
complex constant a, So ¢ and a satisfy

d
g‘i_’ ~ o, (10.143)
Etti = a.e'?, (10 144)
and integrating gives
@(t) = wst, (10.145)
a(t) = i:)l—*(l — '), (10 146)

using initial conditions ¢ (0) = 0, a(0) = 0. The equation for a(¢) says that the tip
of the spiral traces out a circle centred at ia, /w, In coordinates centred at i@y /w.
the solution takes the form

u(x, 1) = (wst, Mg (x) = e " u,(x), (10 147)

showing that the spiral rotates rigidly at constant angular velocity w, In this coor-
dinate system, we have a(¢) = 0 for all ¢, since there is no translation of the tip,
only rigid rotation.



368 Spirals, defects and spiral defect chaos

It can be shown (Sandstede, Scheel & Wulff, 1997) that as long as u.(x)
is not a stationary solution of equation (10.129) and the eigenvalue spectrum
of the operator obtained by linearising the governing equation around u. satis-
fies certain conditions, then X, the isotropy subgroup of u., is Z,, for some
m € N. A spiral with isotropy subgroup Z,, is m-armed, and has m-fold rotational
symmetry

Now we want to look for transitions from a rigidly rotating spiral to meandering
or drifting. If we change coordinates to a frame rotating with angular velocity w,
the governing equation (10.129) becomes

ou au

Fraal v + VU + fu, ), (10 148)
where ¢ is the angulair coordinate in the corotating frame The rigidly rotating
spiral, u(x, t) = u,(e ' x), is fixed in this frame, so we have

w*%* + V2u, + f (s, 1) = 0. (10.149)

Now writing # = u. + %, where % is small, and linearising gives
ou ou )
- - u+ 3

. 10.150
ot ¢ du . ( )

u=u,

In oider to work out what is happening at the meandering transition, we need
to know about the eigenvalue spectrum of £* First note that as a result of the
Euclidean symmetry £* has eigenvalues 0 and &£ iw,. The zero eigenvalue is a
result of rotational symmetry, since

Bt 8%u dus  Sf du
il * 2 Y *
= wx v = —, 10 151
69~ g7 T 39 dul,_,, 09 (10151)
d Ot
= SE (a)* 7% + V2u, + f (s, u)), (10.152)
= 0. (10.153)

The eigenvector comnresponding to the zero eigenvalue is therefore duy /3¢ This
is exactly what we would expect, since u. is a fixed point in the corotating
frame, and the symmetry of rotation about the origin carries over from the station-
ary to the rotating frame, so this is just the zero eigenvalue associated with the
continuous rotation symmetry. The translation symmetries, however, are bro-
ken in the rotating frame where the spiral solution is an equilibrium, so we
don’t have zero eigenvalues associated with these. Instead we find a pair of
imaginaty eigenvalues that come fiom the transformation into the rotating frame.
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Let x = x1 4+ ix2, and consider

o (i i,-i) v — L (i iii)
8x1 3.)62 3¢ 3X1 axz
ad

( 9 + zi) Ui, (10 154)

8_x1 axo

9 /a8 8 )
=we— | — Fi— | Uy
36 \9x;  axo

+ (i iz’i) (V2u*+ )‘(u*,u)), (10 155)

9x; 9x2
9 ( R )
= Ws— —_—t i — U 5
d¢ \ dx dx
3 3\ 8
o[ Y S 10,156
O (an ’ax2> 3¢ ( )
' 9
ot (i (10 157)
3X1 3X2

where we have used equation (10 149) to eliminate Vuy + fus, ) and then
d/0¢ = x1,3/dx3 — x2 3/3x; The eigenvectors corresponding to the eigenvalues
=+ iw, are therefore (alx] +i airz) u, respectively

We will assume that the meandering transition happens at & = 0 and that close
to this point, solutions that are close to a rotation and translation of u..(x) take the
form

u(x, 1) = (@), a(t)) (us + v(t))(x), (10.158)
=u (O —a@®)N 4+ v(e D —a®), ), (10.159)
where
i—f:w*+hI(u,u), (10 160)
‘:1—‘: =ePhy(v, p), (10 161)
dv
i ha(v, p), (10 162)
and where

h1(0, ) = h2(0, p) = h3(0, p) = 0. (10.163)
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The coordinate ¢ is the phase of the spiral wave, while a gives its tip position and v
describes changes in its shape. Equation (10.163) says that for the rigidly rotating
spiral, u = u., where v = 0, the rotation is at constant velocity and the tip does not
translate, as we deduced earlier from equation (10.147) The nonlineat functions
h1, hy and h3 inherit the isotropy of the rigidly rotating spiral according to

(@, 0)v, p) = hy (v, ), (10.164)
ha (@, 0)v, ) = e ha(u, p), (10.165)
h3((@, 0)v, ) = (B, O3 (v, p), (10 166)

for all rotations (3, 0) in the isotropy subgroup of the spiral, X, = Z;. In other
words, under a rotation through a multiple of 27/I, the 1ate of rotation is
unchanged, the direction of translation is rotated, and the shape-change equation
is equivariant This can all be justified rigorously (see, for example, Sandstede,
Scheel & Wulff, 1999b)

Batkley (1994) originally proposed that the meandering transition would occur
at a Hopf bifurcation from the rigidly rotating spiral We know that the eigenvalues
associated with the ¢ and a variables ate zero and =+ iw, respectively, and that
the shape-change equation decouples from the others so that the equations have
skew product structure We expect that the transition will be driven by a Hopf
bifurcation in the shape-change equation, and so we restrict to the case where v
is two-dimensional. This gives a five-dimensional centre manifold, just as Batkley
had, but the equations are more general

For a one-armed spiral, the isotropy subgroup consists only of the identity ele-
ment, so the equivariance condition (10.166) does not restrict the form of 3 and
we can assume that the shape change equation takes Hopf normal form,

d
H’Ii = (u+iop)v - alvfv + O(vl), (10167)

where we now have u € R because we only need one bifurcation parameter for a
generic Hopf bifurcation. For u close to zero there is a small-amplitude periodic
solution, v(¢), with frequency close to wy Substituting this into the equation for
d¢/dr we find

d
Ez‘f = oy (), 1) (10 168)
Linearising in v and integrating gives
¢ (1) = wut + ¢(0), (10 169)

where 5 is a small-amplitude, periodic function with frequency close to wy, and
where in the absence of shape changing we have ¢ (0) = 0 Now substituting both
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0, <o. W, =o. Wy > -

Fig. 10 16. As the resonance wy = w, is approached from either side the 1adius
of the average flower tip path diverges until the average path is a straight line, and
the meandering spiral staits to drift instead. The petals on the flower switch from
inward at wy < w, to outward at wy > w.

v(t) and 5 () into the equation for da/dt gives

r o ~
a(t) =ap + / &' @ T py (u(T), p)dr. (10 170)
J0
Using the Fourier series expansion
PO nyuity, p) = 3 beken, (10171)
kelZ

we find
ei(w;—f—kwﬂ)f ~1

_ 10.172
(s + kon) (10.172)

a(ty=ao+ Y b
kel
as long as there is no resonance such that w, + kwy = 0 for any k € Z. This solu-
tion describes a quasiperiodic meandering motion of the spiral tip.
In the resonant case, where w,, + nwy = 0 for n ¢ Z the solution is

ei(w} +kwy)t __ 1

—_— 10173
(n + ko) (10173)

a(t)y = ap + byt + Z by,
kel k#n

which describes a spiral diifting off in the direction of b,, making loops about
the line of drift as it goes. Drift is therefore a consequence of resonance between
the spiral rotation frequency, w, and the Hopf frequency, wy This was first
shown by Barkley (1994) who predicted drift at the resonance wy = w. that
maiks the switchover from flowers with inward petals (wg < w.) to those with
outward petals (wg > w4) As the resonance is approached, the radius of the
aveiage path of the tip diverges so that the flowers open up and approach a
drifting pattern (Figure 10.16), as observed by Barkley (1994) in his numerical
simulations of a FitzHugh-Nagumo-type model. This is also clear from equation
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(10.172) since there is a diveigence of the form (ws + kwg)~! in the tip position
as (ws + kawy) — 0

Now consider multiarmed spirals with nontrivial isotropy subgroups Z,, for
m > 2 We know from equation (10.165) that the isotropy is inherited in the
equation

d .
= eha(v, 1) (10.174)
dr
according to
ho(($, O)v, 1) = eiahz(v, ), (10.175)

for all 1otations ($, 0) € Zy,,. If there exists a rotation (5, 0) € Zyy,, with $ # 0,
that is also a symmetry of the Hopf eigenfunctions, v(x), in other words a rotation
such that

@, 0)v(x) = v(e Px) = v(x), (10.176)
then equation (10.175) tells us that
ha(v, 1) = e Pha (v, ), (10.177)

and so f2(v, 1) = 0 and da/dt = 0. In this case there can be no drifting or mean-
dering This says thatif the rigidly rotating spiral and the Hopf eigenfunctions have
a common symmetry then drifting and meandering do not occur For example, if
the spiral is three-armed it cannot drift if the Hopf eigenfunctions have threefold
symmetry

The theory of meander and drift can be extended to the case of parametric forc-
ing, and to scroll waves, the three-dimensional analogues of spirals (see Sandstede,
Scheel & Wulff, 1999a or Wulff, 2002 for an overview)

10.8.1 Superspirals

One can think of a spiral as being created by the emission of waves from its
core. Drifting or meandering of the spiral tip should then lead to a Doppler effect,
where the wavelength, namely the spacing between consecutive arms, is shortened
ahead of the motion and lengthened behind. The overall effect is to introduce a
modulation of the spiral wave: this is what the shape-change variable, v, measures.
The resultant structures have been named superspirals, and have been observed in
the Belousov-Zhabotinsky reaction (Perez-Muiiuzuri et al., 1991; Li et al., 1996;
Zhou & Ouyang, 2000) and during the oxidation of carbon monoxide on a plat-
inum catalyst (Nettesheim er al, 1993). It can be shown (Sandstede & Scheel,
2001) that in the laboratory frame far from the core the meandering and drifting
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spirals take the form
U=kl + ¢ — @it + Jicos[—ywe! + yr + ¢), (10 178)
U= Uoo(kr + ¢ — wt — Jicr cos[¢ + al/wg), (10 179)
respectively, where u.(r, ¢) — uoo(kr + @) asr — 00, so the 2w -periodic func-
tion uq, i the asymptotic shape of the spiral far from the core, and where
WH = Wi — Y wgr, With we, being the group velocity of waves in the far field of
meandering spirals, as is clear from equation (10.178), and y measuring the dis-
tance from resonance It can also be shown (Sandstede & Scheel, 2000) that the
group velocity, wg, is positive, so that information propagates from the core of the
spiral outwards, as expected In the solution for drifting spirals, the constant angle
« is defined such that the direction of drift is towards ¢ = 7 — «.

To see the structure of the modulation, we look for level curves of the meander-
ing or drifting spiral Taking meandering first, we set

Kr + ¢ — wyt + JjLcos[—ywgt + yr +¢] = 8 mod 2, (10.180)

for constant 8. It is the distance between consecutive arms that is modulated, so we
examine the quantity A (r, 7} that measures the expansion or contraction and satisfies

¢(r —2—I:T—-I-A(r,f)t)—¢(r,t)=27r, (10 181)

where ¢ (7, t) is given by the solution of equation (10 180), namely

G, 1) =8 —kr +wyt — Jpcos[(@s — ywg)t + (y —k)r + 8] + O(u),
(10.182)

for small 1+ The superspiral structure is most obvious when the compression or
contraction is largest, so we shall track the maxima and minima of A(r, f) From
equations (10 181) and (10.182) we find

Ji

AG, 1) =¥ =10 = 21/k,1) = 10.1) + O (), (10 183)

where
$10, 1) = —cos[(wx — ywg)t + (y —«)r + 6], (10.184)

and so dA/dr =0 at

ap1(r — 21 /x, t) 31 (r, 1)
ar At

(10 185)

For small y /« this gives

cos[(wy — ngr)t +(y—k)yr +8]1=0, (10.186)
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and so
T
D+ yr —yogt X (we — ywg)t + (y — k)1 +6 = :EE. (10.187)

This says that the superspiral is itself rotating rigidly with frequency ywg The
direction of rotation is correlated with the inward or outward arrangement of petals
on the tip path. The meandering spiral solution given in equation (10 178) has
motion within each petal with angular velocity w., and motion along the average
path, or envelope, with angular velocity ywg. Remember that wg is positive, so
the direction of rotation along the envelope is given by the sign of y. If w, > 0, so
that the basic spital rotates anticlockwise, then the rotation of the tip within each
petal is also anticlockwise Now if y is positive (wy < wy) then the tip also rotates
around the envelope anticlockwise, and the petals face inwards The superspiral
rotates anticlockwise too, following its tip. Conversely if y is negative (wyg > wy)
then the tip rotates clockwise around the envelope and the flower has outward
petals. In this case the superspiral rotates clockwise. If the basic spiral is rotat-
ing clockwise, w, < 0, then the inward/outward configurations of the petals is
revetsed. The crossover between inward- and outward-facing petals agrees with
that observed by Baikley (1994), and with experiments (Li ef al , 1996) that also
show the modulational supersrtucture Sandstede and Scheel (2001) found agree-
ment between their predictions and direct numerical simulations of the FitzHugh—
Nagumo equations.
For drifting spirals, the transformation

2
r—>r+ﬂ(1+ﬁcos(¢+a)), (10 188)
x| Wer

leads to ¢ — ¢ F 27n + O(u) for k > 0 and xk < O respectively, and hence
8 mod 27 — (8 + 2an+0(u)) mod 27 =8 mod 27 + O (). (10.189)

To quadratic order in /jx the level curves of the spiral are unchanged, so we can
identify

AGy= (1 + ‘/Hcos(¢+a)), (10 190)
I | Wgr

and so the distance between consecutive arms is compressed by a factor of

(1 = /1t/wg) in the direction of drift ¢ =7 — «, and expanded by a factor

of (1+ ./it/wg) in the opposite direction ¢ = —a This constant compression

of wavelength ahead and expansion behind is what we would expect of a Dopplet

effect generated by a source moving at uniform velocity
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[t is also possible to generate superspirals and supertargets in the absence of drift
when nw, = wy for some n € Z (Sandstede & Scheel, 2001). These resonances
are different from those at which drifting occurs, where w.. = nwp.

10.8.2 Spiral break-up and transition to defect-mediated turbulence

When the Doppler effect caused by meandering spirals is large, neighbowing
wavefionts can interfere with each other, leading to break-up of the spiral wave
The Doppler instability (Bir ez al., 1994; Ouyang, Swinney & Li, 2000) starts
near the spiral core where wavefronts break, creating defects — new spiral tips. The
process cascades until the whole system is in defect-mediated turbulence, a state
of spatiotemporal chaos characterised by the creation, annihilation and movement
of topological defects (Coullet, Gil & Lega, 1989). It is also possible for spirals to
become unstable to a Benjamin—Feir instability (see Chapter 8); the perturbations
grow as they propagate outwards from the core, and the spiral breaks up in the
far field, forming many defects (Ouyang & Flesselles, 1996). For a mathematical
analysis of both core and far-field break-up, see Sandstede and Scheel (2000). Peii-
odic forcing can also destablise spirals to a turbulent state (Belmonte, Flesselles &
Ouyang, 1996).

10.9 Spiral defect chaos

In large-aspect-1atio Rayleigh-Bénard convection, at small Prandtl numbers,
straight rolls are observed to compete with a state known as spiral defect chaos
(Cakmur et al , 1997; Melnikov et al , 2000). A large-aspect-ratio domain is one
where the sides are many roll wavelengths long: the terminology comes from con-
vection, where the wavelength is determined by the depth of fluid, and so a system
that is extended horizontally for a large number of wavelengths will have a large
aspect ratio, in other words the horizontal lengthscale of the system will be much
greater than the vertical lengthscale Highly disoidered patterns are more likely in
such a system, because most of the domain lies many roll wavelengths away from
the walls, so that boundary effects, which tend to impose order (see Section 10.5
above), are weak.

Spiral defect chaos, shown in Figure 10.17, was first observed by Morris er al
(1993), and is characterised by the complex dynamics of a disordered collection
of rotating spirals and targets, travelling dislocations, disclinations, grain bound-
aries and patches of straight rolls. For an overview of its properties and behaviouw,
see Bodenschatz, Pesch and Ahlers (2000). The spirals in this case are not oscil-
latory structures: they usually rotate slowly and are essentially coiled-up convec-
tion rolls. Spirals of this type are typical of systems where steady stripes or rolls
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Fig. 10 I8 Spiral defect chaos invading a pattern of straight rolls during a
numerical simulation of Rayleigh-Bénard convection. Image courtesy of and
©Nonlinear Phenomena Group, LASSP, Coinell University, August 2004

are the expected solution close to threshold Giant steady spirals can also occur in
Rayleigh—-Bénard convection The waves that propagate from the core as a result of
their rotation are removed by dislocations travelling along the spiral arms (Plapp
et al, 1998); this is a slow phase-diffusion process. Targets can also be seen in
these systems, and in this context they are often called foci Again they are essen-
tially steady rather than oscillatory, though roll rings can be added or removed
though the nucleation and movement of dislocations, and targets can be desta-
bilised in the focus instability (Newell, Passot & Souli, 1990)

Close to the onset of convection, stable steady straight rolls are predicted theo-
retically In fact, for large-aspect-ratio, small-Prandtl-number convection, straight
1olls are only seen if the initial conditions are specially prepared to favour them
(see, for example, Cakmur ez al., 1997); for general initial conditions, a weakly
chaotic time-dependent state emerges close to onset, while above a threshold value,
rs, of the reduced Rayleigh number, spiral defect chaos is seen. The threshold, rs,
decreases with increasing aspect ratio and with decreasing Prandtl number Above
the threshold both rolls and spiral defect chaos are stable over a wide range in 7,
though straight rolls can only be achieved starting from special initial conditions
as before, while random initial conditions lead to spiral defect chaos. Toward the
lower 7 end of the bistable regime, patches of nearly straight rolls grow and com-
pete with regions of spiral defect chaos, while for higher values of the reduced
Rayleigh number, spiral defect chaos typically invades a pre-prepared straight
roll state via an almost straight front moving at approximately constant speed
(Cakmur et al.,, 1997; Melnikov et al., 2000) Figure 10 18 shows spiral defect
chaos invading rolls from the centre of the domain during a numerical simulation
of Rayleigh-Bénard convection

The spiral defect chaos state is coupled to a mean drift generated by the roll
curvature. Numerical simulations (Chiam ez al., 2003) suggest that the mean flow
is essential for the development of spiral defect chaos, and that if that flow is
quenched the pattern collapses into patches of stationary rolls with sharp angu-
lar bends and joins. The average wavenumber of spiral defect chaos lies within
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Fig 10.E1 Diagram of Rayleigh-Bénatd convection cell for Exercise 10 3

the stable Busse balloon for straight rolls, but there is a tail of high wavenum-
bers that lies above the skew-varicose boundary, and defects are observed to form
through the skew-varicose instability described in Chapter 8 An even smaller
tail of wavenumbers is found to lie below the cross-roll instability boundary
(see Chapter 8), but cross-roll events are rarely observed (Egolf, Melnikov &
Bodenschatz, 1998).

Exercises

10 1 Find the direction of movement of a fiont between locally stable off-critical up-
hexagons and locally stable off-critical 1olls if both patterns have the same pertur-
bation wavenumber, ¢, and the system is described by equations (10 65)—(10 67) in
the parametet régime a > 0, ¢ > b > 0, and u = pg, where u¢ defined in equation
(10.75) is the value at which a front between critical up-hexagons and critical rolls is
stationary Does your answer depend on the value of g ? {Hint: work out which pattern
has lower free energy on either side of 4 = g by considering a value of u at which
one of the free energies takes a particularly simple form.]

102 Consider rolls, u(x,y,t)=A(X,Y, I)e* +cc +hot, where the amplitude
evolves according to

2
oA _ AlRA + 3A i 3°A i
—_— —-— a — — — —
ar 3X 2872

2
2 i 8%
1 A [——-=—1] 4
+ +al|)(8X 23Y2)
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Exercises 379

If there is an isolated dislocation at the origin and if A — Rje/?9'X as ¥ — —oo and

A = Rye'2X as ¥ — + oo, where ‘712 # q,_f, find a relationship between g, and ¢
such that the dislocation is expected to be stationary on energetic grounds.

Consider the tectangular Rayleigh-Bénard convection cell shown in Figure 10.E1
The sides are of length ., and L, where L, is the shorter side The cell is filled with
10lls at critical wavenumber that are evelywhere parallel to the short sides of the box,
except within a distance € of the short ends, where they come in perpendicular to the
short sides Theie are grain boundaries at a distance € from either short end separating
the regions of rolls parallel and perpendiculat to the short sides. Assume that a grain
boundary contributes 90% as much per unit length to the free energy as rolls parallel
to a wall If the configuration in Figure 10 E1 is to be eneigetically favoured, work
out:

(a) an approximate upper bound for €/Ly in terms of the energetic costs per unit
length of rolls perpendicular and parallel to a watl, and

(b) an approximate upper bound on the cost per unit length of rolls perpendiculat to
a wall as a fraction of the cost of rolls parallel to a wall.

10 4 Work out the form of the tip path, a(¢), for the meandering one-armed spiral described

by equations (10 160), (10.161) and (10 167) with /2| (v, 1) = Oand ha(v, u) = yo +
v, where yg is a complex constant.
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Large-aspect-ratio systems and the
Cross—Newell equation

In Chapter 7 we allowed patterns to deviate slightly from a regular lattice by per-
mitting modulations on long scales However, in a large-aspect-ratio system that
can accommodate a large number of pattern wavelengths in all directions, the size
and otientation of the pattern will typically change slowly in space and time. In
spiral defect chaos, for example, you tend to see patches of rolls that look quite reg-
ular locally, but in fact are curved with a large radius of curvature (Figure 10.17).
Fingerprints, though stationary, also look like stripes that vary slowly in orienta-
tion over a large domain The ridges in fingerprints are believed to form through
the buckling of the lower layer of the skin; recently Kuecken (2004) has derived
roll-hexagon amplitude equations from a buckling model of fingerprint formation,
suggesting that the analysis of fingerprints as a pattern-forming system may be
valid.

Obviously we can’t describe patteins in a large-aspect-ratio system by assuming
that they lie almost on a lattice, since they clearly don’t. However, far from onset
in the fully nonlinear regime, we can use the slowness with which the patterns
evolve in time and space to develop an asymptotic description of them. The full
nonlineatity is a requirement of the theory, so we will lose the small parameter
measuring the distance from onset that we used previously to derive amplitude
equations, but the slow rates of change will give us a new small parameter to work
with.

The theory presented in this chapter was originally developed by Cross and
Newell (1984) and later expanded by Passot and Newell (1994) Here we follow
their treatment of the problem quite closely. Defects as solutions of the Cross—
Newell equations were studied extensively by Newell et al (1996), Ercolani et al
(2000) and Ercolani et al. (2003); their papers consider the issue in much more
detail than this chapter will attempt, and are a natural starting point for those who
wish to study the matter further.

380
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11.1 Fully nonlinear patterns in large-aspect-ratio boxes

We will consider 1oll o1 stripe patterns as this is the simplest case. The plan is to
describe the rolls by their local wavevector. Since the pattern is fully nonlinear
the roll amplitude will be slaved to the wavevectol, and so once we know how the
wavevector wiggles around in space and time, we will have specified the pattern
completely.

We assume that fully developed rolls in a homogeneous isotropic system can be
described by a stationary solution u(x, y, 7} = uo(x, y) of an equation

%u(x,y,t) = Lu(x, vy, 1) + Nux, v, 1)), (11 1)

where £ is a linear differential operator and AV is a nonlinear operator.

As stated above, the rolls are described by their local wavevectol, k, which
is associated with a local phase, 6, according to k = V8 (So for x rolls with
|k|] = 1 the phase is § = x ) For fully nonlinear rolls, the amplitude is deter-
mined adiabatically from the phase 6 except in the vicinity of certain defects,
where the amplitude is small, or when the driving stress parameter of the system
is close to the critical value for pattern formation so that the amplitude is small
everywhere.

Since we are analysing a large-aspect-ratio system, we make the assumption
that the wavevector of the pattern will typically change slowly in space and time.
To describe these changes, we introduce a large-scale phase ® = €6, where 0 < ¢
<« 1 is a small parameter that measures the slowness of the variations In a con-
vection experiment, € would be the inverse aspect ratio of the box; in general € is
the ratio of the basic pattern wavelength to the system size Close to a defect the
pattern orientation varies rapidly, so in the presence of defects € is defined to be
the inverse of the average distance between them. We also define slow space- and
timescales X = €x,Y = ey,and 7T = €2 The x and y scalings are identical since
we want to study patterns that have no preferred direction over the domain as a
whole, and so we must respect rotational symmetry The local wavevector is then
givenby k = V.0 = Vy®, wheie

a9 3 9
V‘ = 3 ’ V = ) 112
; (8.x ay) X (ax ay) (11.2)

The roll solution is now considered to be a function of the phase ¢ and the
slow space- and timescales, such thatu = u(6; X, Y, T ). Hence the space and time
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derivatives of u are given by

)
Vou(0; X,¥,T) = (vxe)a—;’ +(Vxu Vo)X, Y)

9
= (k£+evx) u@; X,Y, T), (11 3)

060 du  dT du

3
PR 3X$ ’T —_— e
WG X Y D) = 2hee + AT

(280 a0 0;X,7,T) (11.4)
=\5790 T <57 ) O 5T |

We now expand the solution # and the linear operator £ in powers of € so
that

U = uo+ euy + €*ua, (11 5)
L=Ly+ el +eLo. (11 6)

Then at leading order in € we have
0 = Loug + N (up) (11.7)

Neither Lo not A depend on time, nor on the long scales X and Y, so we con-
sider up to depend only on 8 and the local wavenumber £ = |k|. Thus equation
(11 7) slaves the amplitude, |ug|, to k, via k = V6. Owing to translation symme-
try, uo(6 + 66) must also be a solution of equation (11 7) for constant §¢ and so
we must have

0 = Loup(® + 86) + N (uo(® + 59)), (11.8)
and hence
SN duyg
0= |L - — 119
( 0t 5 ,,_uo) 30 119
At O(¢) we find
00 dug SN
— =L ) —_ 4 11.
3T 30 ouy + Liug + 5 u=u0u1 (11.10)

Now we know that the operator Lo+ SN /8ul,=y, is singular, since equation
(11 9) tells us that dug /99 is in its null space, that is the operator acts on dug/39
to give zero. Then according to the Fredholm alternative there is a solvability con-
dition on equation (11 10) We make the assumptions that ug is chosen to be 27
periodic in 8, that u; is also required to be so, and that Ly is self-adjoint Under
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these circumstances we have

27 9 by 2 by
/ S Co+ﬂ u1d9=/ uj £0+if
o 039 Sut |y Jo Su

d
9% 46 =0,
U=t

a0
(111
and so from equation (11 10) a necessary and sufficient solvability condition is
30 (27 [ug\? 27 Jug
— ) df = — L ug do i
8T_/0 (ae) /o a9 110 (112)
Owing to rotation and translation symmetty, we know that
2 2
/ (%) " (11 13)
Jo a0
will depend only on k> Now £ will contain powers of
d
Vx=k£+evx‘ (11.14)
The large-scale spatial derivatives Vy of ug are deduced from
3u0 9
Vyug = — Vyk”, 1115
x40 = 23 Vx (11 15)

since all the large-scale variation is to be found in the wavevector, &, and ug can
only depend on the wavevector through k2, owing to rotation symmetry. Thus £ g
will contain terms of the form Vy kandk Vyk? After the 6 dependence on the
righthand side of equation (11 12) is integrated out, the phase equation (11.12) is
therefore left in the form

g = kD (K)V k+ Dyk)(k  V)k, (11.16)
where k = |k|, k= k/k,and V = Vy. The functions D, (k) and Dj(k) are ana-
lytic by construction

Now, we knew from the beginning that the system was homogeneous and
isotropic, and so we could have inferred that the phase equation for 3® /37 would
depend only on k% and space derivatives of & Then clearly equation (11 16) is the
most general form that the phase equation could take at leading order in the space
derivatives

The reason for naming the functions D (k) and Dy (k) can be seen by substi-
tutingk = Vx©® to get

00

o = D1 (k)V*® + (Dy(k) — D, (k))

kik; 9*®©

1117
k2 0X;3X; (2D




384 Large-aspect-ratio systems and the Cross—Newell equation

Now in the case where the rolls are almost parallel, we may define the Cartesian
x direction via k = k¥, where X is a unit vector in the x direction Defining the
Cartesian y direction accordingly, the phase equation reduces to
0 3’0 ENC)
k D,k
3T = Dy( )dX2+ 1 ( )8}’2
We can see now that Dy(k) and D (k) are the diffusion coefficients for distur-

bances patallel and perpendicular to the wavevector respectively
Equation (11 16) can be rewiitten in the form

(11 18)

r(k)g—(;,)+v (kB(k)) =0, (11 19)

subject to certain conditions on Dy (k) and D (k), discussed below, which ensure

that B(k) is single-valued. This is the Cross—Newell equation It will be shown

below that for variational systems 7 (k) is positive for all k, and we shall assume

that for a general system 7 (k) does not change sign for k in the band of interest, so

that we may choose 7(k) > 0 by assigning the sign of B(k) appropriately.
Expanding out the second term in equation (11.19) gives

(B(k) + k%) k- Vik = (1120)
and so comparing with equation (11 16) we have
I
_ __l__d(kB)
D“(k)__r(k)_——dk . (11.22)

The phase equation (11.20) can be rewritten in terms of spatial derivatives of
the phase by setting K = (k,, ky) to arrive at

o2 Sl Al
ROPr kdk ) ax2 T Tk dk axoy K dk ) 9y2
(1123)

20 (B k,%dB)aze) 2kiky dB 9%0 ( kidB)ajg

If cxy is the coefficient of 820 /3X? in the equation for 3@ /87 and so on,
then the equation is defined to be elliptic if C%{y < 4cyycyy and hyperbolic if
‘%{y > 4cxxcyy. The phase equation is therefore elliptic if Bd(kB)/dk > 0 and
hyperbolic if Bd(kB)/dk < 0

Looking at expressions (11.21) and (11.22) for the diffusion coefficients, we
can see that Dy(k) and D, (k) will be positive, and thus the rolls will be sta-
ble if B(k)/t(k) < 0 and (1/7(k))d(kB)/dk < 0. Hence we need B(k) < 0 and
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KBk

Fig 11 1. The typical shape of the function kB(k) The Busse stability balloon
is bounded by k = kg and k = kg, the zigzag and Eckhaus stability boundaiies
respectively The neutral stability boundaries are at k = kj and k = &, Atk = kg
the mode of instability changes from pure zigzag to mixed

d(kB)/dk < 0 for stability If B(k) < O but d(kB)/dk > 0 then distmibances with
spatial variation in the direction parallel to the wavevector can grow, perpendicu-
lar disturbances are suppiessed, and the Eckhaus instability is seen. Conversely if
d(kB)/dk < 0, but B(k) > 0 the growing disturbances are those perpendicular to
the wavevector and the zigzag instability manifests itself When both d(kB)/dk
and B(k) are positive, perturbations with components in both directions will
SIOW.

The typical shape of the function £ B(k) is shown in Figure 11.1 Note that inside
the Busse stability balloon, kg < k < kg, the Cross—Newell equation is elliptic-
stable. As we move outside the Busse balloon the equation becomes hyperbolic and
is ill-posed because either the perpendicular or the parallel diffusion coefficient
is negative In any natural pattern it is likely that the local wavevector will fall
outside the Busse balloon in certain places from time to time, so this ill-posedness
is of some concern For k < kg, rolls are unstable to the zigzag instability, which is
supercritical and so the instability saturates with the local wavenumber close to the
original unstable one. In this case the phase equation (11 20) is easily regularised
by the addition on the lefthand side of a term

dB(kg)
dk

2 1

V3V Kk, 1124
. ( )

€

which is the most important term arising at the next order of the perturbation
expansion. However when the local wavenumber lies in the Eckhaus unstable
region k > kg, a problem arises because the instability is subcritical and so leads
to a large change in the local wavenumber. In fact for the Eckhaus instability the
final local wavenumber may even lie outside the marginal stability curve, so we
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can no longer assume that the pattern is fully nonlinear with an amplitude that is
not close to zero and is slaved to the phase. The regularisation of the phase equa-
tion in this case requires the amplitude to be reincorporated as an active parameter.
Passot and Newell dealt with this issue by introducing an equation for the order
parameter U = Acos®, where A is the local amplitude of the rolls. This order
parameter equation is simpler than the original governing partial differential equa-
tions from which it is derived and reduces to the Cross—Newell equation inside the
Busse balloon, but crucially describes the behaviour of the pattern when the local
wavenumber lies outside We shall not consider this order parameter equation any
further here, but details can be found in Passot and Newell (1994). Amplitude reg-
ularisation is typically also needed in the vicinity of foci, where the high curvature
renders the phase description invalid (see Newell, Passot & Souli, 1990)

At the zigzag stability boundary, X = kg, the perpendicular diffusion coefficient
D (k) is zero, and therefore the function Dy(k)/ kD (k) must have a pole there
Combining equations (11.21) and (11 22) gives

d(nkB(k)) _ Dy(k)
dk kD, (k)

(11.25)

If we integrate this round a closed curve I' in wavevector space enclosing the pole
at k = kp, then since Dyj(k) and D (k) are analytic, we find that the change in the
logarithm around the curve is given by

[In(kB(k)) ]y = 2mir, (1126)

where the residue 7 at the pole k = kg is given by
(k — kp) Dy (k)
n B L —
k—kp kD (k)
— im d((k — k) Dy(k))/dk
ks d(DL(k))/dk
— lim Dy (k) + (k — kp)d(D (k) /dk
" k—ky  kd(Dy (k))/dk + Dy (k)
_ D) (k)

kgd(D 1 (kp))/dk

(by I’Hépital’s rule)

(11.27)

For kB(k) to be single-valued, the change in its logarithm around a closed curve
in wavevector space must be 27i, hence we must have r = 1 if kB(k) is to be
analytic. In that case we can integrate equation (11 25) to get

k
kB(k) = koB(ko) exp/ D—”(k—)—dk, (1128)

Jig kD (k)
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for some constant reference wavenumber, kg. In order to write the Cross—Newell
equation in the form of equation (11 19) we must therefore satisfy 7 = 1 If we can
do this, then we can identify a formal free energy

K
F = / (_1 / B(z)dz) dxdy, (11 29)
Jp 2

where B (k%) = B(k) and where D is the domain of pattern formation, since then
— ]l ~
ST = / (——B(kz)S(kz)) dxdy,
Jp 2
] ~
- ] (——B(k2)a(ve> : ve)) dxdy,
p\ 2
- / (—E(kz)V@ vae) dxdy,
D

- / (~Budk v56)dxdy, (11.30)
D
which upon application of the divergence theorem becomes
8F = —/ Bk §50 ds +] V (kB(k)) §© dXdY, (11.31)
c D

where C is the system boundary, § is the outward normal on the boundary and s is
the arc length along the boundary. Now if we have periodic boundary conditions
and no singularities of the phase field within C then the integral around C vanishes.
This is of course highly unrealistic, as there will almost certainly be singulari-
ties somewhere in the domain Another possibility for getting the first integral to
vanish is to require that k- § is zero everywhere on the boundary This is not so
unrealistic: it just says that rolls are locally normal to the boundary, which is in
fact the energetically preferred configuration in Rayleigh-Bénard convection (see
Chapter 10) Finally, we could also insist that the boundary passes only through
regions where the pattern adopts the critical wavenumber so that B is zero and
again the boundary integral vanishes. If we have succeeded in getting rid of the
first integral then we can observe finally that
8F 00
56 = V. (kB(k)) = —t(k)—avT—_. (11.32)

and

2
d7 _ _/ k) (5’9) dXdy <0 (1133)
D aT
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So F is always decreasing, and hence 7 is indeed a Lyapunov functional or free
energy. This is the case even if the original governing equation (11.1) cannot be
put into gradient form and has no free energy

In fact we have cheated a little bit in our consideration of the boundary inte-
gral The boundary curve, C, must include not only the obvious boundaries of the
system, but also curves around any singularities of the phase variable, such as dis-
locations and foci To deal with these we put a contour of length O (€) around each
singularity. The Cross—-Newell theory no longe1 holds at such short lengthscales,
but if 90 /91 remains O(1) anyway, then provided there are fewer than O (e~1)
singularities, d7 /dT is still negative at leading order and 7 is still decreasing In
their original paper Cross and Newell (1984) argued that the singularities in the
pattern are likely to be isolated foci, and that F will act as a Lyapunov functional
over patches centred on each focus, while a higher order equation is needed to
match between the patches If on the other hand moving dislocations are present,
then 7 may increase, except in special citcumstances.

11.2 Stationary solutions of the Cross—Newell equation

If 7 is in fact always decreasing, and is bounded below, then eventually F will
reach its minimum value and we will have d7/dT = 0. From equation (11.33)
we then see that 3@ /37 must be zero everywhere in the system, since 7 (k) is
always positive. Now since B(k) is analytic by construction if the residue satisfies
y =1, and since we have k; < k < k; and a finite system size, F must indeed
be bounded below This means that if F is indeed acting as a free energy the
pattern will eventually settle down to a stationary solution of the Cross-Newell

equation
Stationary solutions of the phase equation (11.19) must satisfy
Vxk=0, (11.34)
V (kB(k) =0 (11.35)

If we tansform to new coordinates ¢ (X, ¥) = @ and (X, Y) defined by
oo

3% = kcos ¢, (11 36)
da

— = ksi 3
5y ksiny, (11 37)
ap .

X —lsiny, (11.38)
% =lcosy, (11.39)

ayY
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where k = (kcos iy, ksinyr) and / is a measure of local roll curvature, then equa-
tion (11 35) becomes

0B ok v
J*— + Bk— + Bki— =0 11.40
do * do + B ( )
The compatibility condition 928/3X3Y = 828/dY9X gives
0 a
ﬁ(—lsin V) = 87(1(:08 ) (1141
and hence
(ksimp 9 +1lcosy 9 )( Isiny) = (kcosy// 9 [siny 9 )(lcosw
do Y ' N da ap
(1142)
Expanding out all the terms tells us eventually that
d k al
—"l[:—_d—, (11.43)
ap 12 9o
which when substituted into equation (11.40) gives
d [(kB(k
kl— (—(2 =0. (1144)
bolod {
Stationary solutions of the phase equation must therefore satisfy
kB (k
_[( ) = H(B), (11.45)

for some arbitrary function H(8).

Now curves of constant ¢ are the contours of constant phase, and so the o
coordinate measures distance in a direction parallel to the local wavevector and
perpendicular to the roll axes. The curves of constant 8 are orthogonal to the phase
contours, and the B cooidinate measures distance along the roll axes So kB(k)/1
is constant along trajectories perpendicular to the roll axes

In the vicinity of a focus singularity / becomes large, as it is a measure of the
curvature of the rolls, and reaches a magnitude 0(6_1) where the Cross—Newell
equations break down. This fixes H(B) to be O(¢) If we now move away from
the centre of the focus on any line of constant B, we retreat into a region free of
singularities and once again we have O (1) values of / So now we have

kB(k) = c(B)le, (11.46)
where H(B) = ec(f), and hence
k =ko+ Of(e), (1147)
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where B(kp) =0 So in any region that is connected to the immediate neigh-
bourhood of a focus singularity by a trajectory orthogonal to the rolls, we have
wavenumber selection The selected wavenumber kg must lie within the Busse
balloon if the Cross—Newell equation is to hold, but since B(kg) is zero we must
have ki = kg and so it also lies at the zigzag instability boundary

11.3 Defect solutions of the Cross—Newell equation

The Cross—Newell formalism provides a framework for the study of pattern defects
in systems far from equilibrium. Typical defects in a roll pattern close to onset are
dislocations and amplitude grain boundaries, where the pattern amplitude tends to
zero (see Chapter 10) Far from onset a wider variety of defects can be seen and
the amplitude need not be zero at the core.

11.3.1 Phase grain boundaries

In the hyperbolic region, kgz < k < kg, the stationary phase equations (11 34) and
(11 35) have weak or shock solutions which define phase grain boundaries, where
the wavevector changes direction discontinuously, but the amplitude remains
nonzero (Figure 11.2). The biharmonic term (11.24) regularises the shocks, but
in fact the exact form of the regularisation is unimportant as long as it is in flux-
divergence form The standard theory of characteristics can be applied and is given
in detail in Passot and Newell (1994); here we will sketch just one important result
Starting from the stationary regularised phase equation

‘dB(kB)

ViV k=0, 11.48
dk ( )

1
2—_
V. (kB(k)) + ¢ T

we seek solutions with discontinuities along shock lines

dX— = cot (11.49)
dY—s-cogb, .

where s is a constant that defines the slope of the shock, and ¢ is the angie that the
shock makes with the X axis. Solutions of equation (11 48) that depend only on
Z = X — sY, where Z measures distance along a line perpendicular to the shock,
must satisfy

9 I |dB(kg)| 3(V k)
— (kB +eP—
az( Wycosy + e e " |9z )
9 , , 1 |dB(ks)| d(V k))
v —e2— =0, (1150
Y (kB(k) sin ¥r — se T ’ 7 37 ( )
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where k = (kcos i/, ksiny) Integrating this equation with respect to Z between
=+ o0, gives

, 1 |dBkp)|d(V k)T
[kB(k)cosw+e 4—kB a 27 ]_oo
_ 2 1 |dB(kg) 8(V-k)]+°°_
s[kB(k)smgb S€ 4—-—-kB 7 27 -00—05 (11 51)

where [ ]1“2 represents the difference between the value of a quantity as Z — +o0
and its value as Z — —oo In the limit € — 0, this becomes the difference across
the shock at Z = 0, and gives the shock condition

[k cos ¥ BU)1ST — sTksiny BT =0 (1152)

Obviously the exact form of the regularisation is not important as long as it is in
flux-divergence form, V. (F, G), where F and G tend to zero as Z — o0
A second jump or shock condition is imposed by the equation

Vxk=0 (11 53)

For solutions that depend only on Z, this becomes
d
a—Z(ksin10+skcos¢)=O, (11 54)
and hence the jump condition is

[ksiny + skcosylgT = 0. (11 55)

If the wavenumber k is continuous on each side of the shock or phase grain
boundary, the shock conditions reduce to

[siny + s cos 1T = 0, (11.56)
[cos ¥ B(k) — s siny B)IGT = 0 (1157)

If B(k)# 0, then according to these equations we must have [sin x//]gi' =

[cos 1//]8"_' = 0 and so there is no discontinuity in the wavevector across the grain
boundary So we must choose B(k) = 0, which means that the wavenumber must
lie at the zigzag boundary k = kg In this case we must satisfy only

[siny + scos YJoF =0 (11.58)

Choosing ¥ = 7 /2 at Z = 0_, implies that at Z = 0 we must have ¢ = ¥,
where

siny+ +scosyy = 1. (11 59)
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Since sin® ¥, + cos? ¥y = 1, ¥, must satisfy
cos® Yy + (1 —scosry)? = 1, (11 60)
and so
cos ¥ ((1 4 s cosry —25) = 0. (11.61)

Either cos ¥ = 0, and so from equation (11 59) sin ¢ = 1, so that ¥ = x/2
and there is no discontinuity across the shock, or ¥ is given by

2

Cos Yy = —— (11.62)
1+ 52

sin -2 (11 63)

n = . .
T2

Since s = cot ¢, where ¢ is the angle that the characteristic makes with the X axis,
we can write

COs Yy = sin 2¢, (11.64)
sin ¢y = — cos 2¢, (11.65)

and we can deduce that ¢ = 2¢ — /2 Now the contours of the pattern are given
by level lines of the phase, which are locally orthogonal to the wavevector So on
the Z = O_ side of the shock the roll contours lie parallel to the X axis and on
the Z = 04 side of the shock they lie at an angle 2¢ to the X axis The shock
angle is the average of the angles of the roll contours on either side of the shock,
and the shock, or phase grain boundary, bisects the wavevectors, as shown in
Figure 11 2.

11.3.2 Point defects

The charactetistic point defect of a roll pattern close to onset is the dislocation
Far from onset, disclinations are the basic point defects from which all others can
be constructed This fundamental difference arises because the phase is no longer
single-valued far from onset.

To describe rolls close to onset, we write # = Ae'® + ¢.¢ at leading order,
where 8 =k x, and follow the evolution of the complex envelope A using the
Newell-Whitehead-Segel equation, which takes variational form. The phase, 8, is
uniquely defined in this case, and consequently so is the wavevector, k Far from
onset, however, we no longer have a single pair of wavevectors, 4 k, contributing
to the pattern at leading order and we must write # = A cos ¢, where A isreal The
phase, €, is now double-valued, since the transformation § — —6 leaves A and
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Fig. 11.2. Rolls and their associated wavevectors (shown as arrows) on eithel
side of a phase giain boundary. The grain boundary, X = sY, lies at an angle
¢ = cot™!(s) to the X axis, bisecting the wavevectors on either side

u unchanged. (Note that in the complex, close to onset, case this tiansformation
would correspond to A — A ) The wavevector, k = V4, is not unique either, since
k and —k cannot be distinguished. Far from onset, only the director field in which
+ k are regarded as identical can be uniquely defined This allows the development
of disclination defects where the wavevector rotates through an angle + 7 around
the defect core (Figure 11 3).

A whole family of point defects, built from disclinations, are found for patterns
far from equilibrium using the Cross-Newell formalism (Passot & Newell 1994).
We first define a conjugate phase, @(k, ¥r), such that

OX.Y)+Ok, v) =k X, (11 66)

where X = (X, Y) and k = (k cos ¢, k sin /). Now for stationary solutions satis-
fying equations (11.34) and (11 35), X and Y will be functions of £ and ¥ and
vice versa. Differentiating equation (11.66) with respect to £ thus gives

3®8X+8(~)8Y+8@_k 1//8X+ksiu¢ay+Xcosd/+Y iny
aX 9k T 9Y ok ok SV ok S
(11 67)
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(a) ®

Fig. 11 3. Phase contours of the convex and concave disclinations (a) The
wavevector, k (solid ariows), rotates through an angle 7 around the core of this
convex dislocation and so is discontinuous across a line extending out fiom the
defect cote, while the director field, & &k (dashed double-headed arrows), is con-
tinuous there (b) For the concave disclination the rotation is thiough —x

Using k = VO this reduces to

e

1
d5:=Xcos¢/-}-l/sin¢ (= Zk X). (11 68)

Similarly, differentiating equation (11 66) with respect to ¥ gives

—~

00

5 = —Xksiny + Ykcos (11.69)
From equations (11 68) and (11.69) it is straightforward to deduce that

30 siny 00

- - —, 1170

X =cosyor = "% oy (1170)
30 cos e}

Y =si —, 1171

sin ¢ T + PR ( )

and hence it is possible to work out, after a rather long and boring calculation,
that

3 1 3 3

X = DD (a(k, Voo + b, x//)ﬁ), (1172)
3 1 3 3

¥ = Derte. ) (c(k, Yo+, w)w), (1173)

where
320 sin v 3O  cos 1/ 320

ok  k oy ko ay?’ (11.74)

3
alk,¥) = cos t//%—k + sin ¥
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L 320 cosy 80 cosy 320
b(k,z,b)_—smtpakz-l— 2 ﬁ_ K Ak (1175)
) 920  cosy 80  siny %0
c(k,w)_51n1[/—az—cos¢a¢ak+ k w-}— PRETA (11.76)
B 320 siny 00 siny 820
d(k,W)—COSWa—kZ-F k2 E—TW, (1177)
Det(k, y) = alk, ¥)d(k, ) — bk, ¥)clk, ¥) (1178)

Substituting from equations (11 72) and (11 73) into equation (11 35) gives, even-
tually,
3 30 3 320
k— { kB(k)— —(kB(k))— = 0. 11.79
ak( ()ak)+ak< Clfve (11.79)
This equation is linear and separable, so we Jook for solutions of the form
Ok, ) = K(k)¥(¢), and find

(11.80)

k (4K . kB d’K 1dw
—_— = —— =) 5
dk  d/dk(kB(k)) dk? W dy?

where ? is a constant. We choose «? to be real, so that ¥ will be periodic in ¥,
and we also choose w = n, where n is an integer, so that ¥ will be single-valued.
Hence we have

W(y) = W(y) = gucosn(y — ¥y), (1181)

where 7 is a positive integer and where g, and v, are real constants. The general
solution for n = 0 is

V() = Yo(¥) = goo + gn ¥, (11.82)

where goo and go) are real constants.
Now K (k) must satisfy

fTI; + k—;(—kﬁ)%(w(k))%lz- - K%Ba%(w(k)) -0 (11 83)
For n = 0 the solution is
ko dk
K (k) = Kok = hoo + kot / oL (11.84)
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where hop and /g; are real constants. The general solution for @ is therefore

cJ—so+«1¢+—oz+waw)/ o (11.85)

where sg, s1, 52 and s3 ate real constants This corresponds to

iny kodk
(u+n¢ﬂmw——7—(n+n/ ———)

kB(k) kB(k)
(11 86)
| ) cos ¥ kodk
= kB(k)(sz + s3)sinyr + % (s‘l + 53 / W)’
(11 87)
1 ko dk
= —(so+511//)+(52+$31,[/)(8(k) / F(k)) (11 88)

For 51 = s3 == 0, the phase, ©, is purely a function of k, so & is constant on contours
of constant phase. We also have

X2+ y?= 57 (11.89)
sz(k)2 ’
and so X? 4 Y? is constant on the phase contours, which must therefore be circles.
This defect is therefore a target pattern, alternatively known as a focus. For 55 =
s3 = 0, the phase is given by

@z—so—su/f=—so—s1tan_1(X/Y), (11 90)

and so X/Y is constant on contours of constant phase. This is a vortex solution
(Figure 11.4a). A general solution for arbitrary s; combines features of the focus
and the vortex and so is a spiral If we take the particular example where s3 = 0,

we find
Q= —50—snlf+sz( : /ki), (11.91)
B(k) kB (k)
2 5% S12
R® = B0 + o (11.92)
¢ = +tan” (51 B(k)/52), (11 93)

where (R, ¢) are polar coordinates for X and ¥ Equation (11.92) says that & is a
function of R only, and thus the phase can be rewritten

O = —sp — 510 + h(R), (11 94)
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for a function 2(R) that can be determined from equations (11 92) and (11 93).
Comparing this with the definition (10.94), we can see that the solution is an -
armed spiral if s; = m, where m is an integer

For n = 1 we have

dk

BB (11 95)

k
K (k) = Ki(k) = h1ok —I-hl;k/

where 11 and /1 are real constants, and so the genetal solution for ® is

~ ko dk
&= sik | s oS~ i)+ sskeosty — v (1196)

where s4, 55, Y10 and ) are real constants. If we fix the origin of ¢ so that
w10 = 0 we have

ko dk
X = o
54/ k3B(k) 2kZB(k)(1 +cos2y) + sscos gy, (11.97)
- 2k;;(k)“ sin 24 + s5sin ¥y, (11 98)
S4
©= 1B Y (11 99)

To work out the shape of the phase contouss first note that the free energy (11.29)
is minimised when B (k%) = B(k) = 0 everywhere in the pattern. We expect the
wavenumber to lie in the stable region kg < k < kg, and so if B(k) is to be close to
zero, we must have k =~ kg. Thus the energetically preferred pattern has wavenum-
ber k close to kg. Now B(kg) is zero, so if (1 + cos2¢) is not close to zero, in
other words if ¢ is not close to £ /2, the dominant terms in equations (11.97)
and (11 98) will be

1 11 100
X = 2kZB(k)( + cos 2), (11 100)
2y, 11.101
2sz(k) sin 21 (11.101)
which gives
§2 @2
S — 2y = —, 11102
FBOR SV T (11102)
¢o=vory+m (11 103)

Thus R will be constant on the phase contours if ¢ is not close to £7/2 On
the other hand for ¢ &~ 4 /2, the dominant terms in the expressions for X and
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Y will be
k
. dk
X =54 BB’ (11.104)
54 .
= 2B sin 2. (11.105)
Expanding B(k) in a Taylor series around k = kg gives
k dk
X & 54/ , (11 106)
(k — kp)kg, T
and so
3 dB(kg)
Ik—k3|%exp[—mX] (11.107)
54

Recall from Figure 11 1 that dB(kg)/dk is negative, and so k approaches kg expo-
nentially fastas X — +oo0if sy > Qoras X — —ooif s4 < 0. If & & kg then from
equation (11.99) the contours of constant ® are approximately curves of constant
¥, and so from equation (11.105) they are approximately lines of constant ¥ Thus
in the right half-plane (for s¢ > 0) or left half-plane (for s4 < 0) the phase contours
look like straight lines parallel to the X axis, which join smoothly onto semicircles
in the other half-plane, giving a roman arch shape. This is the convex disclination,
sketched in Figure 11.3a for the case 54 < 0.

For n > 1 there may not be an exact solution for K(k), but we can make an
approximation as follows. As above, we expect that the pattern wavenumber is
close to kg Since B(kg) = 0, equation (11.83) has a regular singular point at k =
kg We therefore expand B(k) in a Taylor series around k = kg and K (k) in a
Frobenius expansion of the form

K (k) = hpoIn|kp — k(1 + hn1(k —kB)) + Aotk —kp) +h o1, (11.108)

where h,0, hy and hyo are real constants (see, for example, Arfken, 2001 for
details of the Frobenius method). Substituting into equation (11.83) we find that
hy = nz/ kg It is also possible to determine %,, in terms of the derivatives of
B(k) at k = kg, but it turns out that we don’t need to know the exact form of /i,
here. Thus the solution for © is

2
B = 10 {ln Ik — k| (1 + —kB))
kB

+ sk — kB)} cosn(yr —¥,) +hot., (11 109)
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where sn0, 5,1 and ¥, are real constants. Using the freedom to choose the origin
of ¥y we can set i, to zero, and then we have

1 2
st,,o( +11n;k—k3|)cos¢cosn¢

k—ks km
+s,,0;<—11n Ik — kp|sin ¥ sin 2y, (11.110)
v 1 n?
Y = 5,0 (k . + g In|k — ka) siny cos nr
—sno%ln Ik — kg|cos ¥ sinny, (11 111)
k nk
O X 5,0 +Inlkg — k| — — 1} cosnifr (11.112)
k —kp kg
When cos n is not close to zero, we have
X~ —" cos cosni, (11 113)
k — kg
510 .
Y = sin ¥ cos nir, (11 114)
k — kg
ok
~ ksiokB cos niy (11.115)

to leading order, and so R? = ®2/k? Thus away from cosny = 0 the phase con-
tours are approximately arcs of circles. Close to cosnyr = 0, on the other hand,
the logarithmic terms dominate in X and Y, and we have

Xm,,oglmk-kl;[smwsinnw, (11 116)
Y«N«_s,,o%m[k-kglcos¢sinm/f. (11.117)

From these last two equations we deduce that

k(X sinr — Y cos i) }

; (11 118)
$p0n SN 1Y

|k — k| %exp{

so k approaches kg rapidly as R — oo along lines where cos ny = 0. Thus the
contours of constant phase, ®, are approximately curves of constant ¥ Since we
also have from equations (11.116) and (11.117) that ¢ = o + 7/2 (5,0 < 0) or
¢ = — /2 (sy0 > 0), the phase contours will be lines of constant ¢ The pat-
tern therefore consists of patches of straight lines radiating from the defect core
along directions such that cos nyr = 0, joined together by regions of curved rolls
The special case n = 2, the saddle, is shown in Figure 11.4b, and the concave
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Fig 114. Sketches of the phase contours in the vicinity of (a) the voitex and
(b) the saddle singulaiities of the stationary Cross—Newell equations

(a)

disclination, where n = 3, is shown in Figure 11 3b. Both sketches show idealised
versions of the defects without curved joining regions. Note that for n odd only
half the values of ¥ such that cosniyy = 0 give rise to straight line patches. This
is because the rapid approach to k = kg depends on the signs of X and Y in the
function &(X sin ¥ — Y cos ¥r)/spon sin nyr, which for n odd is unchanged under
the transformation ¢ — ¥ + 7, while for  even it changes sign. Thus for n odd,
the two directions ¥ and ¥ + = give arapid approach for the same signs of X and
Y, thus defining only one straight line, whereas for 7 even the two directions pick
out opposite signs of X and ¥ and hence define two lines.

Further details of all the point defect solutions can be found in Passot and
Newell (1994) and Ercolani ef al (2000)

11.4 Models with variational structure

If the original governing equation has variational structure such that

ou 8F

— = - 11.11

ot Su’ ( 9
where

F(u) =/ f (u)dxdy, (11.120)
Jp

and where D is the domain of pattern formation and « and f (x) are real, then the
analysis takes a particularly simple form
To leading order the following equations hold
ou 00 dug
— = 11.121
ot~ “oT 90 (11.121)
dug

du = —80 (11 122)
00
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If we now rearrange the governing equation (11.119) to give
/ a—usu dxdy = —4.F, (11.123)
Jp 0t

where the integral is needed to take account of the functional derivative in equation
(11.119), and then substitute from equations (11.121) and (11.122), and average
ug and its derivatives ovelr 9 we get

00 ( [ dug —
— =— 11 124
63T (36) 80 dxdy S8F, ( 24)

where () denotes the averaging Now since the system is translationally and rota-
tionally symmetric, the averaged free energy density, f, can only depend on k2.
Thus we also have

8F = / —5k2 dxdy, (11.125)

and so

ELNEIIAD dxdy = — ] —8k2 dxdy (11.126)
aT Ip\ 80

Integrating over the domain, D, and remarking that
k2 =58(Vyf V,0) =2V V.80 =2k V80, (11.127)

the divergence theorem can be used with suitable boundary conditions, to show
that

00 ouQ
— dxd
“or (39) 99 dxdy
df
= 6/ V. {2k— 7 66 dxdy, (11.128)
D dk
where
V=V Vi —ka) (11.129)
= Vy = 30 .

and we have used the fact that neither k nor f has any explicit (shoit-scale) ¢
dependence. Since 86 is arbitrary, we can extract the phase equation

30 [ dug\ > af
Z9Y v (2L 11130
aT ( 90 ) (?‘kde) ( )
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This equation can be written in the form

um%§a+v.@3@»::o

3 2
k) = (%)
df

B(k) = —2—=
k) =275

— 1 1
T = — _—/ B(z)dz | dxav,
62 D 2.

where we identify

Hence we have

(11.131)

(11.132)

(11.133)

(11 134)

where E(kz) = B(k), which is just the same as the formal free energy defined
in equation (11.29) apart from a rescaling by e =2 Recall, however, that in Sec-
tion 11 1 we did not assume the existence of a free energy, F, for the governing

equation, and indeed there need not be one.

To see how this all works in practice we need to take a particular model equation
and find the appropriate form of f(u) Let’s have a go at our usual example, the

Swift-Hohenbeig equation:

ou
—_—= - —V2 1)2u.
oy S HU— U (Vo4 1)%u

In this case the free energy density, f (), takes the form

1 1 5
fu) = —-/Lu +4u +—[(V + Dul?

At leading order the equation for ug is given by
2

ity — ug — (l + kzaa;) iy = 0,
and if we assume that « takes the form
ug=Acost +ho.t.,
where A is a constant, then substituting into equation (11 137) we get
pAcos@ — (1 —kH2A cosh — A3 cos? 0 =
nAcost — (1 — k2)2A cosf — A3(% cos@ + Al, cos360) =0

(11.135)

(11.136)

(11 137)

(11.138)

(11.139)
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Neglecting the higher order term in cos 36 this tells us that
2 _4 2,2
A :g[,u—(l—k)] (11.140)

Now to leading order f is given by

F=ot (-] 2, L 1+k282 2 do
—_ ——— —— - —-— [ u .
7 Jo T gHo Ty 362 ) “° |

: /ZT L2+ Lus 4 ! 1+k282) 2 do, (by parts)
= — —= —ug + =u — )| u , [
27 Jy o T o T 5 Mo 362 ) | O yP

27
- EL (%“g - %ué) df, (using the Swift-Hohenberg equation)
T Jo

1 (=,
= de,
8 /0 "o

2 27
= ———[p—(1—-k»P / cos* 6 d,
Om J0

= _%[,L_(l —H*? (11.141)

From this we can find the form of B(k):

(k— 1 —EHH( - (11.142)

B(k) = —2 a4 %

iz =

We can also easily calculate 7 (k), since

duo\> 1 (¥ , ., A2 2 -~
t(k)_(ag) _271./0 A”sin” 0df = > —3[;/, (1 —=k%7], (11 143)
and so it is possible to write down the phase equation, if desired. Instead we note
that 7 (k) is positive when A # 0, and use the form of B(k) to determine the phase
instability boundaries directly.

If we set B(k) =0 we find that either y& = (1 — k%)2, which gives the neutral
stability curve, or k2 = 1, which is the zigzag instability boundary The pattern is
zigzag-unstable when B(k) > 0. Since we must be in the region above the neutral
stability curve, we must have i > (1 — k2)? and the zigzag instability will set in
if k2 < 1. The critical wavenumber is k = 1; if we allow small departures from
criticality by setting k = 1 + ¢, with |g| <« 1 we can retrieve these boundaries in
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more familiar form: the neutral stability curve becomes . = 4¢2 (note the rescal-
ing of g relative to Chapter 7) and the zigzag instability is found to occur when
g < 0 Strictly speaking the Cross—Newell analysis is not valid close to the neutral
stability boundary, as then the pattern amplitude is small and so we are not in the
fully nonlinear regime None the less it is encouraging that the 1esults agree with
those found in Chapter 8 for patterns close to onset

The pattern is Eckhaus-unstable when d(kB)/dk > 0 It is straightforward to
work out that this critetion takes the form

;;(kB) = %[u(l =3 -0 —-H20 -7 >0 (11.144)

Substituting k = 1 + ¢ with |g| <« 1 we find that the Eckhaus instability sets in
for 1 < 12¢%, which once again agrees reassuringly with the results of Chapter 8,
taking into account the rescaling of g.

11.5 Systems with mean drift

There are some systems for which the Cross-Newell reduction does not result in
a smooth gradient expansion in the phase ®, because variations in the wavevector
lead to a mean drift, which in turn advects the phase The most notable case for
which this is true is that of Boussinesq Rayleigh-Bénard convection at low to
moderate Prandtl numbers (see Section 8.6) Cross and Newell (1984) considered
the effect of mean drift using a phenomenological extension of the Cross-Newell
equation:

%(;_) =1t ')V &BKk) U k, (11.145)
where
(3 _3¥
U‘(ay’ ax)’ (11.146)
and
V2 = yZ V x (kV - (kAY)), (11.147)

where Z is the unit vector normal to the horizontal plane of pattern formation, y is
a coupling constant (the inverse Prandtl number in convection) and A = AK?) is
the pattern amplitude. Note that U is solenoidal (V - U = 0) and depends nonlo-
cally on the phase via the variable ¥ since we must integrate equation (11 147)
over the two horizontal directions to find . This modified form of the phase
equation was inspired by an analysis of the Boussinesq convection equations. The
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flow field U represents the singular component of the drift, while any nonsingular
part is included in the term involving B(k). Deriving the equations directly from
the full Oberbeck—Boussinesq convection equations, Newell, Passot and Souli
(1990) showed that in fact the velocity U in equation (11.145) should be multiplied
by a weighting function p(k) that accounts for the aveiaging of the mean drift over
the depth of the convection layer, and also that the equation for the streamfunction,
¥, is much more complicated than equation (11.147) However, although there are
quantitative differences, the main ideas are captured by the simpler theory, so we
shall describe these briefly.

If we consider perturbations to a straight roll pattern, so that k = (k, 0) + Vo,
where |9] < 1 represents the perturbations, then at leading order in © we find that
¥ and O are linearly related according to

dA? 3%0 30
2 2 2 2
Vi =y (k 77597 +kAZV (ay)) (11.148)

and at leading order in O the phase equation is given by

30 320 320 v
- = Dy(K)— + D (k)= — k—, 11.149
5T ¢ )3X2 + Dy (k) ( )

ay? ay
where the diffusion coefficients are as given in equations (11.21) and (11.22).
Now if ¥ = $ea7'+iqcos¢x+iq SingY and @ = @7 Higcos¢X+ig sinéY where
1,1; and © are constants, so that we are looking at disturbances with wavevec-
tor ¢ at an angle ¢ to the original wavevector k, then we find from equations
(11.148) and (11.149) that the growth rate o of such perturbations is given
by

o = —g*(Df" cos® ¢ + D" sin® ¢), (11 150)
where
d(kA?
= Dy + &%y ) sin?g, (11 151)
DS = Dy + Ky A%sin® ¢. (11 152)

The zigzag instability to modes at rightangles to the original wavevector is
given by sin¢g = 1 and sets in at D =0or D) + k*>y A% = 0 which is equiv-
alent to B(k) — ytk?>A? = 0. The zigzag instability is therefore stabilised by the
presence of mean drift if, as expected, y is positive, since then the effective diffu-
sion coefficient is greater than D |
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The Eckhaus instability to modes parallel to the original wavevector occurs for
sin¢ = 0 and sets in at Dﬁ“ = Dy = 0, the boundary being unaffected by the mean
drift.

At intermediate angles ¢ we find the skew-vaticose instability, which arises
from destabilisation of the Eckhaus mode by the mean drift: in the case
d(kA?)/dk < 0, the effective diffusion coefficient decreases below Dy The skew-
varicose instability can be thought of then as an Eckhaus instability with trans-
verse modulations brought about by the mean drift. There are some changes to
the position of the skew-varicose instability boundary in the more accurate theory
introduced by Newell, Passot and Souli (1990).

It would be helpful to know whether mean drift affects wavenumber selec-
tion In the vicinity of an axisymmetric focus singularity, the pattern has radial
symmetry, and so U = U(+)7, where 7 is a unit vector in the radial direc-
tion Since V U =0, this implies that U(r) oc 1/r which is not possible in
the absence of sources or sinks of fluid at » = 0. So U must be zero and the
wavenumber selection effect that was found in the absence of mean drift still
holds. The selected wavenumber k still satisfies B(kg) = 0, but kg is no longer
equal to the wavenumber &, at which the zigzag instability sets in, which now
satisfies

B(k,) — yt(k)k>A%(k;) = 0. (11.153)

For nonaxisymmetric foci, however, U is nonzero and since U is nonlocal in
the phase gradients the wavevector is no longer determined independently along
each trajectory orthogonal to the 10ll axes Cross and Newell (1984) suggested
that integrating over a closed contour defined by a closed roll loop, there can
be no net contribution from U since the flow is incompressible (V U =0),
and that therefore we can expect the wavenumber averaged around a roll con-
tour to be roughly k¢ at large distances fiom the focus When the weighting
p(k) is included, the depth-averaged mean drift, p(k)U, that advects the phase
contours, is not solenoidal (V  (p(k)U) # 0), although Newell, Passot and Souli
(1990) found p (k) to be almost constant In any case the picture here is less clear
Newell, Passot and Souli (1990) went on to look at the destabilisation of target
patterns by the focus instability, which they predicted to take place well within
the Busse stability balloon and therefore to be impoitant in the onset of time-
dependent, spatially disordered states, such as spiral defect chaos, described in
Chapter 10.

This is the end of the book. If it has piqued your curiosity and you want to find
out more about patterns, there is an extensive research literature to explore — the
references provide a starting point
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Exercises

11 1 Work out the foims of (k) and B(k) for the vaiiational governing equation

]
a—L; = uu — u’ +a(u[Vu|2 + u2V2u) — (V2 + 1)2u,

whete u is a real bifurcation parameter and « is a real constant. Hence find an equa-
tion for the zigzag instability boundary in terms of y and k2.
112 Ifug = A(k)cos8, find A(k) when u is governed by the nonvariational equation

0

% = pu — u® + au|Vul* + bu®V2u — (V2 + 1%,

where  is a 1eal bifurcation patameter and a and b are real constants with a # b
Now find the equation for 9@ /37 interms of A(k) and k, using equation (11 12)
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(Dg xZy x T 2 see lattice, hexagonal with
additional, Zy symmetry

E(2). see group. Euclidean, E(2)

GL(n), see group, general linear, GL(1}

O(2). see group orthogonal O(2)

0(2)~ . 116
O(3). see group, orthogonal O(3) symmetry of
a sphere

Oi1), see group, orthogonal. O(n)

SE(2). see group, special Euclidean SE(2)

SO(3), see group. special orthogonal SO(3).
of rotations of the sphere

SO(n) see group special orthogonal SO(n)

s see gioup, circle 5!

T2 sce tianslations on a Jattice T2

I;ii_nlple 118

S0(2). 122

Z, 156

C3 see group rotations of an equilateral triangle C3

Cp. see group, cyclic of order 1, Cyy

Dy see group. symmetry of a rectangle, D)

D3 see group, symmetry of an equilateral
triangle Ds

Dy x I 2 see lattice, square

Dy see group, symmelry of a square Dy

DgxT ‘2, see lattice, hexagonal

D, see group dihedial of order 2in. Dy,

Z/n see group. of integers under addition
modulo n Z/n

Fix(X). see fixed-point subspace

‘angulai momentum’

conselvation of, 227-32

absolutely irreducible representation, see
representation absolutely irreducible

action of a group, see representation
activator-inhibitor system. 13. 18
adiabatic elimination 37. 245-6 295
adjoint operator, 214
amplitude equation 139

variational or gradient formn, 226
anisotropic systemn 158 223 332 337

anti-rectangles, 189 190

anti-thombs, 190

anti-10lls, 189, 190

anti-squares, 170, 171

anti-triangles, 189 190

apparent symmetries, see naive symmetries

automorphism see mappings of groups
automorphism

Belousov-Zhabotinsky reaction 12. 13. 232 353
372
Benjamin-Feir instability 286-90 356. 375
bifuication, 23
codimension, 38
codimension-onc 3848
equivariant, see bifurcation with symmetry
genericity of 40-1
Hopf, 47-8
Hopf with symmety see Hopf bifurcation
with symmetry
local. 3048
normal forin 38-48
oscillatory, see bifurcation Hopf
pitchfork 43-6
of revolution, 158
subcritical 43-5
supercritical, 44-5
saddle-node, 31, 3941 154
spatial-period-multiplying 178-82
stationary, see bifurcation, steady-state
steady-state 39-46. 86. 137
governed by identity irrep 102
on the surface of a sphere, 114-16
with Dy symmety 98-109
with D4 symnmetiy normal form under natural
itrep. 105
transcritical 41-2
unfolding, 38
with symmety, 85
Hopf see Hopf bifurcation, with symmely
multiple zero eigenvalues at, 87
steady-state and absolute irreducibility, 94-5
bifurcation diagram 39
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bifurcation parameter 30
bifurcation point 30
bimodal solution, 143
Boussinesq approximation see Oberbeck-Boussinesq
approximation
branch
axial, 97
non-axial primary 97
primary, 97
Busse balloon, 277 286. 406
and Cross—Newell equation. 385
for hexagons. 298
Busse-Heikes cycle 123, 160

carrier wave, 211, 213, 325
centre 27
centie manifold 33
extended 34-7
reduction, 31-7
centre manifold theorem 33. 138-9. 184
charactet table. 79
character(s)
of a matrix, 77
of a representation, 77-81
circle group, see group circle, §*
codimension see bifurcation codimension
compression-dilatation wave 228 230 255-6
conjugacy
class, 61
of group elements, 61
of subgroups 61
conjugacy class
elements of have same order. 61
of an isotropy subgroup, 89
consetvative systems and flat modes, see flat mode(s)
in conservative systems
convection. 3-]2, 174. 191
Bénard. see convection, Rayleigh-Bénard
Bénard-Marangoni, 8, 155
boundary conditions
no-slip, i1
stiess-free, 10
conduction solution in. 9
diagram of standard set-up 8
in the Sun. §
instability threshold
no-slip case. |1
stress-free case. 11
Rayleigh-Bénard, 8, 155, 377
goveming equations. 7-12
convection planform. 6
convection rolls, see rolls convection
coset, 59-60
left, 59
right. 59
critical circle, 138
cross-hexagon instability. sec hexagon(s)
instabilities of, cross-hexagon
Cross—Newell equation, 380406
and mean drift. 404-6
cross-roll instability 274-7 378

Index

cycle
homoclinic see homoclinic. cycle
cycling chaos 129

defect(s). 325-53
disclination see disclination
dislocation, see dislocation
during Eckhaus instability, 251
in the Cross—Newell equation, 390-400
of stripes in one dimension 229-30
penta-hepta 296. 326, 327 328
saddle 399-400
vortex. 396, 400
defect-mediated turbulence. 375
detuning. 312
diffusion. 12
diffusion-diiven instability. 18
direct product 64-5
direct sum, 64
disclination, 375, 392-3
concave, 326-7. 394, 400
convex, 326-7, 394, 397-8
dislocation. 1. 4 325-37 350, 352-3. 375 377. 388,
390
motion, 326-37
climb 329-37
glide, 329, 337
pinning 329
pairs 336
dispession. 235
relation, 234
dispeisive medium, 235
domain boundary, 342-9
betwcen hexagons and trivial solution. 346
between rolls and hexagons, 347
Doppler instability. 375
drift flow, 224, 277-9, 377
and Cross—Newell equation 4046
drift instability, 176, 30614
of parametrically diiven standing waves, 311-14
drifting spiral see spiral(s) drifting or meandering

Eckhaus instability. 245. 247-60

for finite amplitade rolls. 273, 3835, 404, 406

in a finite domain. 258-60

side bands 256-8

subcritical, 25)

supercritical 251
energetics 329, 342

for rolls in finite domains 349-53
envelope, 211, 213, 325

equation (see also amplitude equation) 209-24

symmetry method 216-24

equilibrium

relative. see relative equilibrium
equilibrium solution. see stationary point
equivalence

of representations, see representation

equivalence of

equivariance

condition. 86
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equivariant branching lemma. 93-7 143 148 152
156
generalised, 93
equivariant Hopf bifurcation. see Hopf bifurcation,
with symmetry
equivariant Hopf theorem. 120
Euclidean group, see group. Euclidean, E (2)
excitable dynamics, see excitable system
excitable system. 13, 14~17
excitation variable. 15
excited 15
quiescent, 15
recovering, 15
recovery variable. 15

Faraday instability, see Faraday waves
Faraday waves, 2 20-2 179 1824 311 319
harmonic, 22
subharmonic, 21
FitzHugh-Nagumo model. 14~17 326 371
fixed-point see stationary point
fixed-point subspace. 90-1
flow jnvariance of. 91
flat mode(s), 316
and Galilean symmetry. se¢ Galilean symmetry. and
flat modes
in conservative systems 319-23
flow, 23-5
focus
stable, 27
unstable, 27
{ocus instability. 377. 406
focus singularity, 326-7, 377 386 388, 396
and wavenumber selection. 389-90 406
wall focus, 326-7
Fréchet derivative, 226
Fredholm altemative, 214
theorem, 214 270-1
fiee energy, 224-7 329, 333, 344 350
density. 224 329, 335, 344 350
for Cross-Newell equation. 387, 400-2
for hexagons, 345
for Newell-Whitehead-Segel equation. 227
for real Ginzburg-Landau equation, 224
frec eneigy density
for Cross—Newell equation 401
for hexagons, 346
for Swift-Hohenberg equation. 402
fronts see domain boundaies

Galilean symmetry. 278 280
and flat modes, 315-19
Galilean transformation 315
general linear group. see group general linear
GL(n)
Ginzbwg-Landau equation 222 326
complex, 222, 232
conditions for genericity, 222
in anisotropic system. 223
1eal, 222
free energy 224

419

two-dimensional 223
Goldstone mode(s), see flat mode(s)
grain boundary, 325-7, 350-1 375
amplitude. 33741, 390
and wavenumber selection 341
in the zigzag instability 262
phase 337 390-3
group
Abelian, 54, 64
action, see representation
additive of real numbers 53
associativity, 52
axioms, 52-3
circle, $1 63
of phase shifts 118
closure, 52
composition 52
cyclic of order n, C;, 54, 62
definition and elementary properties 52-7
dihedral of order 2n, D, 56
Euclidean, E(2), 56-9, 67, 137 190
pseudoscalar action. 187-90
scalar action, 141
finite, 55
general linear. GL (n) 53 68
generators, 54
identity element S3
inverse element, 53
Lie, see Lie group
multiplicative of nonzero real numbers 53
of integers under addition modulo n Z/n 60
orthogonal O(2), 116 120. 158
orthogonal, O(3)
symmetry of a sphere, 114
orthogonal. O(n) 62
product, 64--7
direct see direct product
direct sum see direct sum
semidirect see semidirect product
semidiiect sum, see semidirect sum
quotient, I'/H 60-]
representation, see representation
rotations of an equilateral niangle. C3 58
special Euclidean, SE(2). 364
special orthogonal, SO(2)
of rotations in the plane 67. 73 83
special orthogonal, SO(3)
of rotations of the sphere 114
special orthogonal. SO(n), 62
symmetry of a rectangle, D5. 64
symmety of a square. Dy 98, 110
conjugacy classes of. 110
irreps of, 100
symmetry of au equilateral triangle D3 55-6. 78,
80 181
natural representation 69
group orbit, 87-8
conjugate isotropy subgroups of points on. 88
existence properties of fixed points on, 87
stability properties of fixed points on, 87
zeio eigenvalue for perturbations along. 88
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group table, 55 maximal, 92
group velocity 235 and hidden symmetry 198
isotypic
Hamiltonian system, 96 components. §2
beteroclinic connection 123 decomposition, §2—4
beteroclinic cycle 122-9 block diagonalises Df 90
structural stability of, 123 127
heteroclinic network 129 Jacobian matrix 26
heteroclinic orbit 177
hexagon(s), 186 Kiippeis-Lortz instability, 123, 158-62
instabilities of, 292-303 Kuramoto—Sivashinksy equation. 289
cell fusion, 303
cell splitting. 303 large-aspect-ratio domain 375. 380406
cross-hexagon 301-3 lattice
mosaic, 303 bifurcations on. 13641
tectangular Eckbaus, 295-6 298-301 dual 134
rhombic Eckbaus 296-301 hexagonal. 136, 148
off-critical. 293 steady bifurcation on. 147-57
phase. 293 with additional Z, symmetry 155-7, 188-9
hexagon-rol] transition, 154 299 holobedry. 140
hexagonal lattice, see lattice, hexagonal of isotropy subgroups, 89
hexagons. 134-5, 150 152 154, 156-7 pattern(s). 13441, 168
cooked . 6-7 planar, 134
modulated, 238-42. 345 restriction to. 138 193
hidden symmetry, 98, 168, 170, 190-207 rhiombic. 136 191
and boundary conditions 198-207 square, 136, 141
rotation 203-7 fundamental representation, 141
translation. 202-3 steady bifurcation on 141-7
holohedry. 140 superlattice iireps 168 169
homoclinic Lie group. 67-8
cycle 129 and continuous symmetry. 67
orbit, 129 compact, 68
homogeneity, 137 noncompact 364
homomorphism, see mappings o groups on¢-parameter 67
llomomoiphism local activation with lateral inbibition 18. 20
Hopf bifurcation long-scale variable, see slow variable
and complex Ginzbuig-1andau equation, Lyapunov functional, see free energy
232
on a one-dimensional lattice, 161-6 mappings of groups, 61-3
with O (2) symmetry 120-2 automorphism, 63
with symmetty 116-22 homomoiphism, 61-2 141
multiple imaginary eigenvalues at 117 isomorphism, 62-3
hystercsis 45, 154, 186 345 margina! stability curve. 212. 244
mean flow see drift flow
improper node meandel. see spiral(s) diifting or meandering
stable, 26 metastable state. 344, 349
unstable, 27 midplane reflection symmetry 155 241
invariant subspace. 71 mode interaction 174-8. 195-7
irreducible representation see representation. 2:1,306
irreducible modulation
tor finite Abelian groups. 81 scale, 211
method of finding, 100-1, 110-13 vaiiable, see slow variable
imep see representation. itreducibic morphogenesis, 14
isomorphism multiple scales, 211-16 223
of groups. see mappings of groups. isomorphism
of representations, see representation. naive symmelries, 192-3
equivalence of Navier-Stokes equation, 8, 188
isotropy 137 neutral stability curve, see marginal stability curve
isotropy lattice. see lattice of isotropy subgroups Newell-Whitehead-Segel equation, 216. 222 243
isotropy subgroup. 88-90 330

axial 92 iree energy 227



no-slip boundary conditions 278
node

stable, 26

unstable 26
nonlinear saturation. 181, 221
nonlinear Schrédinger equation. 238, 288
normal form symmeltry. 220. 233 240
normalizer, 59 192

complement of 193

Oberbeck-Boussinesq approximation 7 8. 9, 405
oblique-roll instability 274
orbit, se¢ group orbit
heteroclinic. see heteroclinic, orbit
homoclinic. see homaclinje. orbit
orbit type 89
order
of a finite group, 55
of a group element. 55
orthogonal group, see group orthogonal. O(n}
orthogonality theorem
for characters 79
for matrix representations, 75
oscillatory instability of rolls. 278. 284-6

pacemakers, 358
paametric forcing, 311
palameuically excited surface waves see¢ Faraday
waves
patchwork quilt, 150 156-7 189
Peach—Kaohler force, 334
penta-hepta defect see defect, penta-hepta
period-multiplying bifurcation, se bifurcation
spatial-period-multiplying
periodic orbit. 24
1elative see relative. periodic orbit
periodic point. 24
phase
-difiusion equation. 246, 261
approximation. 245-6. 295
dynamics 331. 354-5. 377
general theoly 266-74
equation 249
Cross-Newell see Cross—Newell equation
Kuramoto's method 249-51. 262-6
instability, 245
portiait, 24 25
space 23
turbulence, 290
velocity, 235
phasc-shift symmetry. 233
phason, 187 305
Poincaré’s lincarization theorem 38
Prandtl number 10

-dependent instabilities of convection rolls 277-86

pseudoscalal action of E(2) see group Euclidean
E(2) pseudoscalar action

quasipattern(s), 2. 20-21. 182-7, 302
and small divisors o1 near-resonances 184
onc-dimensional 186
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phase and phason instabilities of. 303-6
twelvefold, 1, 182, 185, 186
quenching. se¢ nonlinear saturation

Rayleigh number 10
Rayleigh—Bénard convection see convection
Rayleigh—-Bénard
reaction-diffusion, 12-20
rectangles, 150, 152-3. 186
reducible representation see representation
reducible
relative
equilibiium 364
period, 365
periodic orbit. 365
representation, 68-77
absolutely irreducible, 71-2, 74-5
characters of, see character(s). of a representation
degree or dimension of, 68
equivalence of 69-71
faithful. 69
identity, 69
irreducible, 71-2
isomorphic. see 1epresentation equivalence of
linear. 68
natural. 69
reducible. 72
trivial, 69
unfaithful, 69
unitary, 71
1esonance, 147-8 175 184
near-, 184
rhombs. 170-1
roll curvature. 352-3
bend. 352
splay. 352
rolls see also stiipes
convection 5.8 12
rotating wave 122 164. 366
modujated 366

saddle point see stationary point, saddle
scalar action of the Euclidean group. see group,
Fuclidean. E (2). scalar action

scroll waves, 354, 372

semidirect product, 65

semidirect sum, 65

shadowgraph visualisation technique, 6

side-band instability 256. 288

simple anti-squares 190

simple oriented hexagons 189. 190

simple squares. 170-1

skew product, 370

skew-varicose instability. 278-84 378 406
monotone, 283
oscillatory 284

slaving. see adiabatic ¢limination

slow variable, 211

spatiotemporal symmetry. 118

special orthogonal group, see group special

orthogonal SO(n)
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spiral(s) 12-13,325. 353-6 375 396

break-up, 375

drifting or meandering 362-75

giant steady. 377

in excitable media, 15 326

involute, 362

meandering transition 368-70
spiral defect chaos. 1 3, 375-8. 380 406
squares 134-5 143, 146. 186
square lattice. see lattice, square
stability balloon, see Busse balloon
standing wave(s). 21 121, 161 163 165

parametrically driven 312
star

stable. 26

unstable, 27
stationary bifurcation see bifurcation, steady-state
stationary point, 24

hyperbolic, 29

persistence of, 29-30

phase portraits in two dimensions 28

saddle, 27 29

sink 29

source, 29

stability. 26-7

types in two dimensions 26-7
steady-state bifurcation see bifurcation, steady-state
streamfunction, 188, 278
stress-free boundary conditions 278. 315

stripes 4,5 8 12, 134-5. 143 146 150 152 156-8.

170-1 186
modulated 181-2. 209-32
off-critical, 243
universal instabilities. 243-77
structural stability. see heteroclinic cycle. structural
stability
subcritical ramp. 227. 341
subgroup 57
closed, 68
complement of, 58
isotropy see isotropy subgroup
normal, 57
normalizer of see normalizer
open. 68
subspace
fixed-point. see fixed-point subspace
subtle symmetry, 194
super hexagons. 1734
super squares. 170-1
super triangles 1734

Index

superlattice 302
hexagonal. 172-3
irreps
translation-fiee. 169
pattern. 21, 168-73
square, 168-72
superspirals. 372-5
supertargets 375
surface chemistry pattern. 13
Swift-Hohenberg equation 4 209-10. 326 402
variant, 316, 322 324
symmetry
hidden. see hidden symmetry
naive. see naive symmetries
spatiotemporal. see spatiotemporal symmetry
subtle. see subtle symmetry

target(s) 12. 325. 353-61, 375 377. 396, 406
externally seeded 356-60
intrinsic, 360-1

textures, 349

trace formula, 92, 132

trajectory, 24

translation symmetry 220
and zero cigenvalue, 146

translations on a lattice, 72 140

travelling wave. 161. 163 165. 176 234-8 286
modulated, 366

triangles, 150
regular, 150, 156-7, 189

Turing instability, see Turing pattern

Turing pattern 13 17-20

unfolding see biturcation unfolding
unitary

matrix, 71

representation see representation unitary

variational derivative. see Fréchet derivative
vorticity equation. 279

wavenumber selection. 227. 341
weak symmetry breaking. 113-14

zigzag instability, 245, 260-6
damped by mean drift, 281, 405
Tor finite amplitude rolls. 269-73. 385. 403
405
subcritical, 262
supercritical 261






