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Abstract

The century-old Jeans dispersion relation enjoys the questionable reputation that it cannot
be derived in a mathematically clean mannas-a matter of principle. For that reason Jeans’
‘derivation’ of his result has become known by the (in)famous sobriquet “the Jeans swindle.” The
present paper rectifies the situation by giving just such a mathematically clean derivation of Jeans’
dispersion relation, via a static universe with cosmological constant. The derivation not merely
vindicates Jeans’ analysis, it also produces proper nonlinear evolution equations which allow one
to study the evolution beyond the linear regime studied by Jeans.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

Early in the twentieth century J.H. Jeans [8] studied the influence of Newtonian gravity
on the dynamics of infinitesimal wavelike tisbances of a unifornfluid equilibrium.
As is well known, in the absence of gravity (read: when gravity can be neglected) such
disturbances propagate along the direction of their wave vécts longitudinal sound
waves with angular frequeney, governed by the simple dispersion relation

w? — k%2 =0, 1)

wherec; is the speed of sound. By resorting to some formal manipulations that have since
become known in the astrophysics and cosmology communities as the “Jeans swindle”
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(Binney and Tremaine [1], Bérner [2]), Jeans [8] found that Newtonian gravity modifies
(1) into

w? — |k|?c? + k22 =0, (2)
where

k3c? = 4 Gpo, (3)
which defines theleans wave number kj. In (3), po is the constant mass density of

the homogeneous fluid which supports the disturbances,Gansl Newton’s constant

of universal gravitation. According to (2), spatially sinusoidal plane density wave
disturbances now propagate only whia > kj; when |k| < k3, one of the roots of

(2) corresponds to a mode whose amplitudewgr exponentity with time. This is the
celebratedeansinstability.

Gravitational instabilities in a static hageneous Newtonian wérse are no longer
an important topic of research in cosmology. Yet, modern monographs on astrophysics and
cosmology (e.g., Fridman and Polyachenko [7], Binney and Tremaine [1], Kippenhahn and
Weigert [11], Borner [2]), in their section orrgyitational installities, usually reproduce
Jeans’ ‘impossible derivation’ of (2) together with a disclaimer that (2) cannot be backed
up by a mathematically correct analysishieh is why Jeans’ derivation is called a
‘swindle.” A partial explanation for the curious longevity of Jeans’ argument lies in the
robustness of his result, combined with the relative simplicity of its ‘derivation.’ Indeed,
the linear stability analyses of various inhomogeus static equilibria, of stationarily
rotating equilibria, and of expanding-universe solutions, which all proceed in an orderly
manner but are also much more demanding,rgigdly confirm Jeans’ conclusions. While
this robustness may seem reassuring, upon closer inspection one finds the mathematical
dilemma of Jeans’ original problem unresolved. Evidently this is not a very satisfactory
state of affairs to celebrate the centennial of Jeans’ paper [8]. In view of all this it might
not seem unappropriate to take yet another look at the matter.

Since (2) is such a simple dispersion relation, related by a straightforward application of
Laplace and Fourier transforms to a simple system of linear partial differential equations
with constant coefficients, it is clear thatyamathematical problems would have to reside
in the validity of those linear evolution equations, obtained by linearizing the nonlinear
fluid-dynamical equations

a[)O‘FV‘(IOU):Ov (4)
1
dU+U-Vu=——Vp -V, (5)
1Y
AP =47Gp (6)

around the static reference state. Indeed, here are Binney and Tremaine [1, p. 287ff];
emphasis in the original; “DF” stands for ‘distribution function,’ referring to the stellar-
dynamical setup; equation numbers of the present paper are insefted in the original
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text): “We construct our fictitious infinite homogeneous equilibrium by perpetrating what
we shall call theJeans swindle after Sir James Jeans, who studied this problem in 1902
(Jeans, 1929). Mathematically, the difficulty we must overcome is that if the density and
pressure of the mediumy, po are constant, and the mean veloaityis zero, it follows

from Euler’s equations (5-8) [(5)] that®y = 0. On the other hand, Poisson’s equations
(5-9) [(6)] requires thatV2®dg = 47 Gpo. These two requirements are inconsistent
unlesspg = 0. Physically, there are no pressure gradients in a homogeneous medium to
balance gravitational attraction. A similardonsistency arises in an infinite homogeneous
stellar system whose DF is independentpaisition. We remove the inconsistency by
the ad hoc assumption that Poisson’s equation describes only the relation between the
perturbed density and the perturbed potential, while the unperturbed potential is zero. This
assumption constitutes the Jeans swindle; it is a swindle, of course, because in general
there is no formal justification for discarding the unperturbed gravitational field.”

As we will see in this paper, however, such a “formal justification for discarding the
unperturbed gravitational field” is readily supplied. In a nutshell, the difficulty is overcome
by realizing that dynamically, and thus foefihing an equilibrium, what counts are the
forces, not the potentials. As we will show, one can set up some sensible limit with
well-defined Newtonian gravitationdbrces which vanish when the mass density is a
constantpg. These vanishing equilibrium forces dot derive from a Newtonian potential
satisfying the familiar Poisson equation fay. Yet, in that same limit, Poisson’s equation
does describe the relation between the perturbed density and the perturbed Newtonian
potential, making obsolete any need for postulating this iadinoc manner.

There are actually several equivalent ways for setting up such a limit. The perhaps
simplest, and at the same time physically appealing one will be presented in this paper.
More precisely, we recall that Einstein [5], to pave the way for the introduction of the
cosmological constant into general relativity, in fact first showed how the cosmological
constant solves the simpler nonrelativigtimblem faced by Jeans. Hence, all that needs
to be done to vindicate Jeans’ ‘swindle’ is to discuss such a nonrelativistic universe with
cosmological constant and subsequently make it purely Newtonian by taking the limit of
vanishing cosmological constant. As we will show in this note, the limit of vanishing
cosmological constant exists in a proper sense, relegating the “Jeans swindle” into the
realm of myth.

In the next section we briefly summarize the main features of nonrelativistic gravity with
a cosmological constant; a brief appendix shows how it emerges from general relativity
with cosmological constant. In Section 3 we consider the fluid-dynamical setup, presenting
Euler’'s nonlinear equations of fluid motion with cosmological constant and their limit for
vanishing cosmological constant; the derivation of (2) after linearization is then standard
(Chandrasekhar [3]). We actually show that it does not matter whether one first computes
the dispersion relations and then takes the limit of vanishing cosmological constant,
or the other way round. In Section 4 we present the encounterless stellar dynamical
version (a.k.a. Vlasov theory for self-gravitating systems) and validate the analogous Jeans’
dispersion relation which can be found, for instance, in the monographs by Fridman and
Polyachenko [7] and Binney and Tremaine [1]. In Section 5 we briefly explain why the
reappearance of the Jeans criterion in different equilibrium geometries, in stationarily
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rotating configurations, and in homogeneously expanding solutions cannot be invoked to
justify the “Jeans swindle.” The conclusiookthe paper are presented in Section 6.

2. Nonrelativistic gravity with cosmological constant and its Newtonian limit

To accommodatesiatic homogeneous universe, Einstein [5], first discussing a nonrela-
tivistic setting, replaced the familiar Poisson equation (6) for the Newtonian poténtial
by the inhomogeneous Helmholtz equation

AW — K?0 =47 Gp 7)

for what we will refer to as the Einsteinian potenti#il In (7), 2 is the cosmological
constant. Since Einstein was ultimately interested in applying general relativity to static
cosmology, he remarked (Einstein [5]) that (7) should not be taken too seriously in
itself; yet (7) does obtain from Einstein’s general relativistic equations with cosmological
constant in the nonrelativistic limit, as we will briefly show in the appendix.

If the mass density is locally sufficiently well behaved (for the sake of concreteness,
let p be bounded), then (7) is solved by

e K|X=y|
U(X)=—-G d3y. 8
®) R{ e ®)

We take (8) to define the behavior &f at infinity. Note that the effect of a cosmological
constant is t@creen the gravitational interactions with an attenuation ratén the limit of
vanishing cosmological constant, {8ymally reduces to

1
P(x)=-G dy. 9
0 Igm_wmw y ©

However, integral (9) makes sense only when the mass density funadoris globally
sufficiently integrable; for instance, finite magss o (X) d3x = M will do. Whenever the
solution¥ to Helmholtz’s equation (7) given in (8) converges to a prapagiven by (9),
the Helmholtz equation (7) fab goes over into Poisson'’s (6) fdr. Of course, our interest
is precisely in those situations where (9) doesmake sense.

In this vein, consider now a monotone sequence of dengitieaving finite mass, which
converges (pointwise, say) to a constant mass depgity0. Then (8) converges (likewise
pointwise) to a constant limit as well, given by

e*’(‘x*y|

Yo=—-Gpo
X =yl

R3

1
a3y = —47Gpo—, (10)

while the Newtonian potential diverge®, — —o0, asp — pg. Notice that we also have
Yo — —oo whenk — 0, as is obvious from (10).
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The divergences ab asp — pp, and of¥g ask — 0, are not yet bad news, for we know
what counts are not the potentials but the forces derived from them, viz. their gradients.
We will be in an acceptable Newtonian gravignfiguration if we can guarantee that, as
o0 — po, the force fieldv® converges to a gravitational force field that depends onlygon
but not on the limiting procedure — pp. Alternatively, we will also be in an acceptable
Newtonian gravity configuration if we can guarantee g4 converges to a gravitational
force field that depends only gy but not on the limiting procedure — 0.

However, as is well knowny @, whenever it converges, does not just depend on the
limit density po but on the particular limiting sequenge— po. (Simply consider a
sequence of balls of radiug and centerg in which p = pg, while p vanishes outside
the balls. AsR — oo, p — po everywhere, but the gravitational field will always point
towardxp. Sincexg is arbitrary, the point is made.) Such a limiting procedure is therefore
not a viable possibility to define Newtonian self-gravity in a homogeneous infinite system.
In particular,vV® never converges to zero identically, no matter which sequeneeog is
considered.

The existence of the constant Einsteinian potenkglifor o = po on the other hand
implies thatVyg = 0 identically. The important point, for us, is that gravitational forces
with cosmological constant cancel themselves out in a homogeneous universe, not “only
with an appropriately chosen cosmological constant” (Borner [2, p. 320]), balifeslues
of k. Hence, Newtonian gravitational forces in such an infinite, homogeneous and isotropic
medium can now beroperly defined by simply taking the limit — O of the (vanishing)
Einsteinian gravitational forces with cosmological constant.

Totally self-balanced gravitational forces in an infinite, homogeneous and isotropic
system guarantee that such a system is automatically in equilibrium. This of course was
Einstein’s main motivation for introducing the cosmological constant (Einstein [5]); the
fact that equilibrium obtains also in the limit of vanishing cosmological constant is a simple
corollary, albeit not contemplated by Einstein.

Our real interest, however, is not in the infinite homogeneous self-gravitating equilib-
rium itself, but in the Newtonian evolution of initial configurations which deviate some-
what from such an equilibrium state, say the displacement of only a finite amount of
mass from the uniformly distributed state. We could be more general, but this is certainly a
reasonably interesting class of mass densities to study. We now show that our definition of
Newtonian forces extends unproblematically to such nonuniform mass density functions.

Writing p(X) = po + o (X), the density disturbanee(x) must be sufficiently integrable,
satisfy

/ o(x)d®x =0, (11)

R3
and be bounded below by g, for pg + o (X) is a mass density and, therefore, must not
be negative. For technical convenience, we actually demand-thatsmooth and decay

rapidly to zero at spatial infinity. The Einsteinian potentalfor such a mass density
p(X) = po+ o (X) is readily computed. By the linearity of the integral formula (8), we have

Y (X) =¥ + ¥ (X), (12)
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where¥y = —47 Gpo/«? as before, and where

voo=-G [
R3

which solves the inhomogeneous Helmholtz equation

e kIx=yl
Xy °Y d’y, (13)

AY — k%Y = 47 Go. (14)
The forces are proportional to the gradientafbut V¥ vanishes, hence
V& (X) = Vi (X). (15)
Sinceo # constant, it follows thaV (x) # 0 in general. The important point now is that

because of the finite amount of mass ilveal in the density disturbanee the Newtonian
limit « — 0 of V¢ exists and is given by

|imOVI//(X) =Vo¢p(X), (16)

where

1
=-G d? 17
90 R[D(_y'o(y) y 17)

is the Newtonian potential of the density disturbanaceClearly, (17) solves the Poisson
equation

A¢ =4nGo. (18)

Thus we have extended our definition of Newtonian forces unproblematically to the
nonuniform mass density functiops + o declared above.

Since all the problems with the notion of Newtonian gravitational forces in a spatially
asymptotically homogeneous and isotropic nonrelativistic universe, which were at the heart
of the “Jeans swindle,” have evaporated in a mathematically clean way, we may now
proceed to the dynamical implementation of our scheme.

3. Fluid dynamics
3.1. Thenonlinear evolution equations

In this section we consider the Euler evolution of an inviscid fluid with nonrelativistic
Einsteinian self-gravitation. The dynamical variables of the model are the fluid mass
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density p and fluid velocityu. The evolution equations for these dynamical variables
comprise the continuity equation

dp+V-(puy=0 (19)

and Euler’s force balance equation
1
hU4+U-Vu=——Vp — VY. (20)
P

The Einsteinian gravitational potenti&lis coupled tq by the inhomogeneous Helmholtz
equation

AY — k%W =47 Gp, (21)
re-displayed here to have the basic equations grouped together. The pressuetated

to p by an equation of state, which we choose (for simplicity) to be Boyle’s law of the
classical perfect gas at constant temperalgre

p=pc?, (22)
where
kT
¢y =/ B0 (23)
m

is the speed of isothermal sound. The dynamical variables need to be supplemented by
initial conditions at some initial time, say = 0. Moreover, these equations have to be
supplemented by asymptotic conditions atteganfinity. We demaud that asymptotically
at spatial infinity all the system variables approach the values of the stationary, infinite,
homogeneous and isotropic equilibrium fluid in which the Einsteinian gravitational forces
balance themselves. It is a trivial matter to verify that the set of constant variables,
p(X) = po, p(X) = po = poc?, U(X) = Ug = 0, and ¥ (x) = ¥y = —4r Gpo/«? for all x,
forms such a stationary solution of (19)—(21).

To inquire into the dynamics in the mathematical neighborhood of this constant
equilibrium solution, we writep (X, 1) = po + o (X, t) and demand that the initial deviation
o (X, 0) is smooth, rapidly decaying to zero at spatial infinity, and satisfies

/O’(X, 0) dx =0. (24)

R3

Then nga(X, nd3x =0 for all r € (0,7), wheret is the mathematical lifespan of
the solution. Pressure and Einsteinian potential are written accordinglyp>ez) =
po+o (X, t)csz, andv (x, 1) = Yo+ ¥ (X, t). We also writeu(x, ) = ug+Ww(Xx, 7). (Although
for our choice of reference equilibrium we haug = 0 and thereforav(x, ) = u(x, t),
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we prefer to introduce a new symbol for the deion from the equilidum velocity field,

simply as a reminder that more general equilibrium velocity fields can be handled for which
W(X, 1) # u(X, t).) Inserting the above representation of the system variables into our fluid-
dynamical equations, and already implementing our equation of state into the force balance
equation, as well as using the fact that derivatives of constant functions vanish awg that
terms cancel versys terms from the inhomogeneous Helmholtz equation, we obtain the
dynamical equations for the unknowsmsandw,

0r0 + poV -W+V - (ow) =0, (25)
2
FWEW-VW=——S Vo - Vy, (26)
po+o
coupled toy via
AY — k%Y =47 Go. (27)

All deviation variables are equipped with the asymptotic conditions that they vanish
asymptotically asx| — oco.

At this point already we can let — 0 in (25)—(27), thereby obtaining the nonlinear
dynamical equations for the evolution of the disturbances of an infinitely extended fluid
with Newtonian gravity. The continuity equation remains unchanged,

0r0 + poV-W+ V- (ow) =0, (28)
while Euler’s force balance equation becomes

2
Cs

oW+ W-Vw = —
po+o

Vo — V¢ (29)
and the inhomogeneous Helmholtz equation turns into Poisson’s equation

A¢ = 4n Go. (30)

The deviation variables continue to be equipped with the asymptotic conditions that they
vanish agx| — oo. Notice that no linearization has been invoked so far.

3.2. Thelinearized evolution equations
To linearize (25)—(27), we write
o=o01+02+-,  W=Wi+Wa+---, V=v1+v2+---, (31)

where the index = 1, 2, 3, ... indicates the ‘level of smallness.” Thus; is treated as
one level smaller thaay; ando1 V1 is at the same level of smallness@¥ v»; etc. We
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are only interested in the first level of the Fdecrhy. Hence, retaining only level 1 terms in
(25)—(27), we obtain for the quantities at level 1,

9,01+ poV -w1 =0, (32)
P0OW1 = —CSZVGl — poVya, (33)
Ay — I{Zlﬁl =41 Goy, (34)

supplemented by initial conditions fet;, w1, and the asymptotic vanishing conditions at
infinity for o1, w1, ¥1.

In the same manner we linearize (28)—(30), using the expansions (34)dodw as
well as

dp=¢1+d2+---. (35)

Retaining only level 1 terms in (28)—(30), we obtain

9,01+ poV - w1 =0, (36)
Pod W1 = —c2Vo1 — poVeu, (37)
Ap1 =4nGoy, (38)

supplemented by initial conditions fet;, w1, and the asymptotic vanishing conditions at
infinity for o1, w1, and¢;. We remark that the same set of linearized equations obtains
if, instead of taking the limitc — 0 of (25)—(27) first and then linearizing the equations
(28)—(30), we first linearize the equations (25)—(27) to obtain (32)—(34) and then take the
limit « — 0 of (32)—(34).

The linearized equations (36)—(38) are precisely the linear dynamical equations studied
by Jeans, only this time we have derived them without mathematical ‘swindle.” This
completes our “formal justification for discarding the unperturbed gravitational field.”

3.3. Thedispersion relations

The solution of these linearized equations is found in the standard way using Fourier
transforms in space and Laplatansforms in time, denoted by and ™, respectively.
For the linearized equations with Newtonian gravity this procedure is discussed in various
monographs, in particular also by Chandrasekhar [3], Fridman and Polyachenko [7],
Binney and Tremaine [1], Kippenhahn and Weigert [11], Boérner [2]. Of course there is
no added difficulty to do the same in the presence of a cosmological constant; however, the
final result features an interesting and apparently new aspect that is worth mentibaing:
cosmological constant can suppress the Jeans instability.

For the density perturbation we find from (32)—(34),

K, w) = . 39
10 = K7 17 — 4n Gpo — (39)
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We read off the (modified) Jeans dispersioratiein for the isothermal disturbances of a
static isothermal fluid universe with cosmological constant as

w? — |k|%c? + (k§ - /cz)cf =0. (40)

In (40), k3 is the Jeans wave number defined in (3), withgiven in (23). Note thaho
(linear) gravitational instability occurs i > k3. The borderline case = kj is particularly
curious, for in that case (40) coincides exactly with the classical dispersion relation (1) for
sound waves (here for isothermal wave motion).

Our goal is of course the opposite parameter regime, whese0. By simply taking
the limit of vanishing cosmological constant in (40) we now obtain the original Jeans
dispersion relation (2) for the disturbances of an infinite, homogeneous static fluid universe
with isothermal equation of state and Newtonian gravitational interactions which, as
mentioned earlier, coincides with the one obtained directly from (36)—(38).

4. Stellar dynamics
4.1. The nonlinear evolution equations

In a stellar-dynamical setting, the dynamicatliahle of the model is the density-of-stars
function £ (x, v, ) on the one-‘particle’ phase spaké x R3 at timer € R. It satisfies the
encounterless Boltzmann kinetic equation

Hf+V-Vf—V¥ .3 f=0, (41)

coupled, in a universe with cosmological constant, to the inhomogeneous Helmholtz
equation for the Einsteinian gravitational potentiglx, ¢),

Allf—/cle/=47tG/fd3v. (42)

R3

We will refer to the system of Egs. (41) and (42) as the ‘Vlasov—Helmholtz equations.

The static, spatially homogeneous and isotropic universe now corresponds to a phase
space density functiorfy that is constant in physical space, with mass dengitybut
which is a Maxwellian in velocity space, with constant temperafgrelhus, fp is given
by fo(v) = po(2mc?)~¥2exp(—0.5v|?/c2), with the Helmholtz potential given as before
by ¥ = Wy = —47 Gpo/k2.

The dynamical equations for the evolution of deviations from the stationary solution
are obtained by writingf (X, v, t) = fo(V) + g(X,Vv,t) and¥ (X, t) = ¥ + ¥ (X, 1), and
requiringg andy to vanish at spatial and velocital infinity, agdo integrate to zero over
phase space. The evolution equations for the unkngwared, read
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dg+V-Vg—Vy-dg=Vy-dfo, (43)
AY — kY =47tG/gd3v. (44)
R3

Taking the limitk — O gives the nonlinear Vlasov—Poisson equations of an infinitely
extended, asymptotically (in space) unifoemcounterless stellar-dynamical system with
Newtonian gravity,

A¢ =47G / g dv. (46)
R3

4.2. Thelinearized evolution equations
Expanding with respect to the levels of smallness,

g=81+g+ -, Y=v1+v2+---, (47)

and retaining only level 1 terms, we find theearized Vlasov—Helmholtz equations,

9g1+V-Vgr= Vi1 -0 fo, (48)
A¢1—K2W1=4TL’G/g1d3U. (49)
R3

Taking the limit« — 0, gives the linearized Vlasov—Poisson equations,

9g1+V-Vg1=Vo1-dfo. (50)
Ap1= 471G/g1 dv. (51)
R3

Alternately we obtain the linearized Vlasov—Poisson equations by expanding the nonlinear
Vlasov—Poisson equations with respect to the levels of smallnesatini¢ and retaining

only level 1 terms. Again, we have found the linear evolution equations for Newtonian
gravity without invoking a ‘swindle,” or anything illegitimate of that sort.

4.3. Thedispersion relations

The solution of the linearized Vlasov—Poisson equations (50), (51) in terms of Fourier
and Laplace transformation is again standard, though one has to be somewhat careful
with analytic continuations to derive the stellar dynamical Jeans dispersion relation from
the linearized Vlasov—Poisson equations, geg.,, Fridman and Polyachenko [7], Binney
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and Tremaine [1]. In complete analogy one finds the solution of the linearized Vlasov—
Helmholtz equations (48), (49), which converge to solutions of (50), (51) in thexdimitO
and therefore provide a slightly different meaof deriving the Jeans dispersion relation.
As in the fluid-dynamical setting, it turns outta cosmological constant can suppress the
Jeans instability. It suffices to summarize the main steps.

The Fourier-Laplace transformed expression for the phase space density perturbation
reads, fors(w) <0,

k - 52
sk V) = o) Dy k. @) (52)
with
DiK.w)=w+k-v (53)
and
x2 —£2/2
Dy(k.w) =1 ;3 L [Eemd (54)

BTN

wherek; is the Jeans wave number defined in (3), withgiven in (23). Apart from the
ballistic term D), absent in fluid theory, we immediately read off the (modified) stellar-
dynamical Jeans dispersion relation faw) < 0,

Dy (k, w) =0, (55)
which has to be analytically continued ¥qw) > 0. In particular, if there is a transition
from stable to unstable behavjdhe stability boundary occurs wheiw) = 0. Using
Plemilj's formula, we find that fos(w) = 0 the dispersion relation can be fulfilled only

if N(w) =0 as well, in which case thg-integral in (54) equals/2r. Hence, the critical
wave number satisfies

K5 = k5 — 2. (56)

Once again we find thato (linear) gravitational instability occurs if > k3. However, if
K < k3, (56) can be fulfilled for regk|cit SO that a linear gravitational instability exists for

wave vectors satisfying
K| < \/kZ — k2. (57)

In the limit « — O we recover the celebrated Jeans criteffloh< k3 for gravitational
instability in a static, homogeneous, Newtonian stellar-dynamical universe.
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5. Thedeceptiverobustness of the Jeanscriterion

The linear stability analyses of a variety of conventional solutions of (4)—(6), from static
inhomogeneous over stationarily rotating tgpanding-universe solutions, all reproduce
the essence of the original Jeans criterion. This robustness of the Jeans criterion, combined
with the fact that the treatment of thesem sophisticated stability problems does not
suffer from the peculiarities unique to the analysis of the static homogeneous universe, has
sparked the notion that the “Jeans swindle” is somehow justified. However, robustness
of the result and orderly conduct of the ays$ are only necessary but not sufficient
ingredients for a proper vindication of the “Jeans swindle.” We re-emphasize that in
addition to those two criteria we must also be able to pass to the limit of the genuine ‘Jeans-
swindle-situation’ in the sequence of ‘no-Jeans-swindle-situations,’ as we did in this paper.
In this section we will briefly peruse various proposals based on static inhomogeneous,
stationarily rotating, or expanding-universe solutions and see that none passes all three
‘vindication criteria.” For the sake of the continuity of the discussion, we address only the
isothermal systems.

We begin with the stability analysis of $iminhomogeneous equilibria, which have the
symmetry of a plane, a cylinder, or a sphere. Explicit formulas for the plane- and cylinder-
symmetric isothermal self-gravitating equilibria are long known (e.g., Walker [18]). The
mass density of plane-symmetric equilibria varies as

2 2

LS KJ_
- 58
pE) 2nG cosﬁ(uz)’ (58)

wherez is a Cartesian coordinate with origin in the plane of symmetry, while the mass
density of cylinder-symmetric equilibria varies as

2 2
2cs K

7G (1+ KJZ_,,Z)Z’

p(r)= (59)

wherer is the radial cylindrical coordinate; in both formulasg, is an arbitrary reciprocal
length scale. The stability of the plane-symmetric equilibria is discussed by Spitzer
[16], and those of the cylinder-symmetric ones by Nagasawa [14]. In both instances the
equilibria are unstable with respect to perturbations whose wave \leginints along the
invariant direction(s) whetk| < gk3(0), wherekj(0) is the central Jeans wave number,
defined by

k3(0)c? = 4 Gp(0), (60)

and whereg is a geometrical factor, witlg = 1/+/2 for the plane-symmetric equilibrium
and g ~ 0.561 (computed numerically) in the cylinder-symmetric equilibrium. Further-
more, the time-dependence of the instabilitigponential in both cases. Hence, the cri-
teria of robustness of the Jeans result and of orderly analysis are satisfied. However, to
pass to a homogeneous density functior;> p(0), we need to lek; — 0 while keep-

ing k2 ¢2 fixed, so that, — oco. Clearly,k3(0) — 0 in that limit. We see that we cannot
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pass to the limit of the genuine ‘Jeans-swindle-situation’ in these sequences of ‘no-Jeans-
swindle-situations.’ For the same reason werga take spherical isothermal equilibria, for
which no simple analytic expression is known (with the exception of the singular solution
of Zdllner [20]), but which have been computddbulated and extensively discussed by
Emden [6].

We next comment on the following suggestions of Binney and Tremaine [1, p. 288]:
“... there are circumstances in whidietswindle is justified. For example,

@i) ... [if] ... the wavelength ... is muclsmaller than the scale over which the
equilibrium density and pressure vary .the Jeans swindle should be valid for the
analysis of small-scale instabilities.

(i) ... a uniformly rotating, homogeneous system ... can be in static equilibrium in the
rotating frame and no Jeans swindle is reseaey (although the stability properties
are somewhat modified from those of the nonrotating medium because of Coriolis
forces...)”

Unfortunately, suggestion (i) is not viahibecause the effective scale of nonuniformity
of such a self-gravitating equilibrium is precisely the effective Jeans length, a point
emphasized also by Kulsrud and Mark [12]daloy Fridman and Polyachenko [7]. This
is manifestly evident for the case of the plane- and cylinder-symmetric equilibria, for
which it follows from (58)—(60) thaky = /2« , respectivelyky = 2/2«, . Hence, any
hypothetical “small scale instability” wouldave to be small in scale compared to the
effective Jeans length, viz. woulibt be analyzable by (2). Obviously such a stability
result would not satisfy the criterion of robustness of Jeans’ result.

In the situation depicted in suggestion (ii) the criteria of robustness of the result and of
orderly analysis are satisfied: the introduction of uniform rotation with angular frequency
vector 2 does regularize the homogeneous gravitational problem in such a way that an
analysis in the spirit of Jeans can be carried out without any ‘swindle’ (Chandrasekhar
[3,4]), and the resulting instability criterion for wave vectdg? is precisely|k|?c? —
4w Gpg < 0, in agreement with (2). (For wave vectdesL 2 the dispersion relation is
different from (2) due to the presence of Coriolis forces (Chandrasekhar [3]).) However,
the angular frequency of a uniformly rotagirequilibrium and the equilibrium mass
density pg are related by 2|2 = 27 Gpo. Hence, because the mass dengigyvanishes
in the nonrotating limit of a uniformly rotating system, the dispersion relation of the
rotating system does not go over into the dispersion relation discovered by Jeans using
his ‘swindle.

We finally address the suggestion, made elsewhere, that the correct manner of
defining (2) is via the ‘static limit' of an expanding-universe solution with Newtonian
gravity. Such a nonrelativistic analog of the expanding flat Friedman—Lemaitre universe is
found by solving the system of Egs. (4)—(6) under the assumption that at any point in time
t > 0 the density and temperature are constant while the magnitude of the density alone
varies with time, diverging as| 0. Note however that one also has to pick an arbitrary
center of symmetry fo®, while a true expanding universe solution does not have a center.
Assuming for continuity of the discussion that the temperature is constant also during the
evolution, such a solution describing a ‘big bang’ is easily found to be given by
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1
po(t) = 672G 12 (61)
ug(X,t) = %; (62)
1|x?

Incidentally, these formulas coincide with those of the Einstein—De Sitter universe, cf.
Bdrner [2, p. 334]. The analysis of the linearized nonrelativistic evolution of infinitesimal
disturbances of this homogeneous, isotropic, expanding Einstein—De Sitter universe
solution “does not suffer from the “Jeans swindle,” i.e., the use of a background not
obeying the dynamics” (Borner [2, p. 346]). Settipg(x, ) = ,oo(t)oz(t)eiq"‘/’z/3 (and
similarly for the other perturbed variables), the linearized nonrelativistic equations around
the Einstein—De Sitter universe can be reduced to the following ordinary differential
equation forx(z):

. 41 (cPgP? 21
°‘+§?“+< 473 _ét_Z)“:O’ (64)

which is identical to Eq. (11.21a) in Borner [2], though here we used isothermal rather
than adiabatic perturbations. Note that the sign of the coefficient in framtdaftermines
whether the amplitude of a density disturbance grows relatiyv@ . Defining the no-

tion of comoving wave vectors bk () = qr—%/3, we find that enhancement of a density
disturbance relative to the background evolution occurs if

k()| < kat), (65)
where
k51 = 4 Gpo(1) (66)
defines the ‘dynamical’ Jeans wave numbepof nonrelativistic Einstein—De Sitter uni-

verse. (We remark that in a general relativistic Friedman—Lemaitre universe the dynamical
Jeans wave number is given by

K3(t)c? = 47 G(po + po) (1), 67)

see Weinberg [19], Borner [2].) Once again, the Jeans criterion proves its robustness.
However, the unstable disturbances do not grow exponentially in time but like a
power law! In particular, at early times the pressure term is overpowered by the mass

1 The exponential time-dependence on p. 336 in Borngis[®dbtained under the explicit assumption that
R(t) =~ const, whereR is the cosmic distance scale which depeadshe universe model under consideration.
This assumption can be justified in an expanding flatense solution with cosmological constant, an Eddington—
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density term, and (64) reduces to an Euler differential equation (cf., Eg. (11.22) in
Borner [2]),

..+41. 2
“T37973

t%a =0, (68)

which has one growing and one decaying mode, evolving:fk&ands—1, respectively.

Since the disturbances and the expanding homogeneous background evolve both as power
laws, there is no separating time scale between them. Hence, to take a ‘static limit’ for the
expanding universe at the same time removes the dynamics of the perturbations as well,
and with it the possibility to vindicate the Jeans swindle.

6. Concluding remarks

To summarize, in this paper we have given the first clean mathematical vindication of
the “Jeans swindle.” We also explained why various other suggestions fail to do so.

Our vindication of Jeans’ result (2) is based on a simple limiting process for
a ‘cosmologically appealing’ model of a nonrelativistic flat universe with cosmological
constant for which the limit of vanishing cosmological constant is well-defined. However,
as indicated in the introduction, other vindications are possible. For instance, we could
study the universe not in three-dimensional flat spRéebut in the Einstein spacg3,
which is the three-dimensional analog of the surface of a conventional sphere of Radius
having constant positive curvature. The Einstein space is finite but without boundary. In
the general relativistic setting one needs again the cosmological constant to obtain a static
universe, but in our pre-relativistic setting we have no problem in defining a homogeneous
and isotropic static universe for Newtonian gravityﬁrb with fixed R, and also not in
studying the dynamics in its ighborhood. Letting the radiuR — oo subsequently (as
a parameter) and subtracting a dynamically mute constant from the potential, we arrive
at our dynamical equations iR3, obtaining the Jeans dispersion relation again in an
orderly manner. Another possibility, pointed out to me by Sheldon Goldstein, is to use
a weaker definition of the integral for the total Newtonian force on a mass element of
an infinite, asymptotically homogeneous medium, which basically amounts to a three-
dimensional analog of Cauchy'’s principal value integral. This procedure has the advantage
that it works without modifying Newtonian gravity by a cosmological constant, or without
going into a curved space; however, the usa gfincipal value type integral itself needs
some justification. In any event, it produdbe same results as those reported here.

Our mathematical vindication of the “Jeans swindle” does not touch upon the question
of applicability of the Jeans criterion in agphysical and cosmological theories of star
and galaxy formations. This is a different question altogether, see, e.g., Kippenhahn and
Weigert [11] and Weinberg [19] for a discussion of some perplexingly unreasonable
numbers predicted by the Jeans criterion. In this context it is interesting to register that

Lemaitre universe, which can stay near to Einstein’s static universe for arbitrarily long periods. It is not justified
in the nonrelativistic expanding Einstein—De Sitter universe solution.
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the Jeans criterion has a natural place in the statistical mechanics of gravitating systems
by defining a spinodal line associated witle tmeta-stability region around a gravitational
phase transition, see Kiessling [9]. We close with the remark that the phase transition data
give considerably more reasonable numbers than the spinodal (Jeans) data (Stahl et al. [17],
Kiessling [10]).
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Appendix A

While Einstein [5] remarked that (7) should not be taken too seriously in itself, (7) does
obtain from Einstein’s general relativistic equations with cosmological constant

1 87 G
Rp,v - ERng + Kzgp.v = 7Tp,v (69)
in the nonrelativistic limit. In this limit, we have
1
Roo — ERgoo ~ Agoo (70)
and
Too~ pc?, (71)
so that
871G
—Agoo+ kgoo = —2 P (72)
Settinggoo = 2¥/c? we obtain (7).
We remark that Lemaitre [13], setting
1
goo~ —1-2—¢, (73)
C

and making the further tacit assumption thaandx? are of the same level of smallness,
rather than the inhomogeneous Helmholtz equation, obtained a Poisson equatidn for
which an effectivanegativebackground mass density features. This type of equation, which
leads to gravitational screeningtebt particle masses, has been discussed by Spiegel [15].



M.K.-H. Kiessling / Advances in Applied Mathematics 31 (2003) 132-149 149

References

[1] J. Binney, S. Tremaine, Galactic Dynasj Princeton Univ. Press, Princeton, NJ, 1987.

[2] G. Borner, The Early Universe, Springer-Verlag, New York, 1992.

[3] S. Chandrasekhar, The gravitational indigb of an infinite homogeneous medium when a Coriolis
acceleration is acting, Vistas Astron. 1 (1954) 344-347.

[4] S. Chandrasekhar, Hydrodynamic and Hydrgmetic Stability, Oxford Univ. Press, Oxford, 1961.

[5] A. Einstein, Kosmologische Betrachtungen zur allgamen Relativitatstheorie, Sitzungsber. Preuss. Akad.
Wiss. 1 (1917) 142-152.

[6] R. Emden, Gaskugeln, Teubner, Leipzig, 1907.

[7] A.M. Fridman, V.L. Polyachenko, Physics of Gitating Systems, Vols. | and Il, Springer-Verlag, New
York, 1984.

[8] J.H. Jeans, The stability of a spherical nebula, Philos. Trans. Roy. Soc. London 199 (1902) 1-53.

[9] M.K.-H. Kiessling, Statistical Mechanics of is@hmal classical gravitating matter, J. Stat. Phys. 55 (1989)
203-257.

[10] M.K.-H. Kiessling, Statistical mechanics of giational condensation and the formation of galaxies, in:
D. Merritt, J.A. Sellwood, M. Valluri (Eds.), Galaxy Dynamics, in: Astr. Soc. Pac. Conf. Ser., Vol. 182,
1999, pp. 545-546.

[11] R. Kippenhahn, A. Weigert, Stellar Struoctuand Evolution, Springer-Verlag, Berlin, 1990.

[12] R.M. Kulsrud, J.W.K. Mark, The hose pipe instability in stellar systems, Astrophys. Space Sci. 14 (1971)
52-55.

[13] G.E. Lemaitre, The cosmological constant, in: P.A.ilpph(Ed.), Albert Einstein: Philosopher—scientist, in:
The Library of Living Philosophers, Vol. 7, 1949, pt87-456, 1st printing 1949; 7th printing, Open Court,
La Salle, lllinois, 1997.

[14] M. Nagasawa, Gravitational instability of the isothermal gas cylinder with axial magnetic field, Prog. Theor.
Phys. 77 (1987) 635-652.

[15] E.A. Spiegel, Gravitational screening, in: A. Harv&d(), A Festschrifft for Engbert Schucking, Springer-
Verlag, Heidelberg, 1998, p. 9, to appear, astro-ph/9801014.

[16] L. Spitzer Jr., Diffuse Matter in Space, Wiley, New York, 1968.

[17] B. Stahl, M. Kiessling, K. Schindler, Gravitational phase transition and the formation of small objects,
Planet. Space Sci. 43 (1995) 271-282.

[18] G.W. Walker, Some problems illustrating the forms of nebulae, Proc. Roy. Soc. A 91 (1915) 410-420.

[19] S. Weinberg, Gravitation and Cosmology, New York, Wiley, 1972.

[20] J.C.F. Zoliner, Uber die Natur der Cometen,itBge zur Geschichte und Theorie der Erkenntnis,
Engelmann, Leipzig, 1871, 2nd edition 1872, 3rd edition 1882.



