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Abstract

The century-old Jeans dispersion relation enjoys the questionable reputation that it
be derived in a mathematically clean manner—as a matter of principle. For that reason Jean
‘derivation’ of his result has become known by the (in)famous sobriquet “the Jeans swindle
present paper rectifies the situation by giving just such a mathematically clean derivation of
dispersion relation, via a static universe with cosmological constant. The derivation not m
vindicates Jeans’ analysis, it also produces proper nonlinear evolution equations which all
to study the evolution beyond the linear regime studied by Jeans.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

Early in the twentieth century J.H. Jeans [8] studied the influence of Newtonian g
on the dynamics of infinitesimal wavelike disturbances of a uniformfluid equilibrium.
As is well known, in the absence of gravity (read: when gravity can be neglected)
disturbances propagate along the direction of their wave vectork as longitudinal sound
waves with angular frequencyω, governed by the simple dispersion relation

ω2 − |k|2c2
s = 0, (1)

wherecs is the speed of sound. By resorting to some formal manipulations that have
become known in the astrophysics and cosmology communities as the “Jeans sw
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0196-8858/03/$ – see front matter 2003 Elsevier Inc. All rights reserved.
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(Binney and Tremaine [1], Börner [2]), Jeans [8] found that Newtonian gravity mod
(1) into

ω2 − |k|2c2
s + k2

Jc2
s = 0, (2)

where

k2
Jc

2
s = 4πGρ0, (3)

which defines theJeans wave number kJ. In (3), ρ0 is the constant mass density
the homogeneous fluid which supports the disturbances, andG is Newton’s constan
of universal gravitation. According to (2), spatially sinusoidal plane density w
disturbances now propagate only when|k| > kJ; when |k| < kJ, one of the roots o
(2) corresponds to a mode whose amplitude grows exponentially with time. This is the
celebratedJeans instability.

Gravitational instabilities in a static homogeneous Newtonian universe are no longe
an important topic of research in cosmology. Yet, modern monographs on astrophys
cosmology (e.g., Fridman and Polyachenko [7], Binney and Tremaine [1], Kippenhah
Weigert [11], Börner [2]), in their section on gravitational instabilities, usually reproduce
Jeans’ ‘impossible derivation’ of (2) together with a disclaimer that (2) cannot be ba
up by a mathematically correct analysis, which is why Jeans’ derivation is called
‘swindle.’ A partial explanation for the curious longevity of Jeans’ argument lies in
robustness of his result, combined with the relative simplicity of its ‘derivation.’ Ind
the linear stability analyses of various inhomogeneous static equilibria, of stationari
rotating equilibria, and of expanding-universe solutions, which all proceed in an or
manner but are also much more demanding, essentially confirm Jeans’ conclusions. Whi
this robustness may seem reassuring, upon closer inspection one finds the mathe
dilemma of Jeans’ original problem unresolved. Evidently this is not a very satisfa
state of affairs to celebrate the centennial of Jeans’ paper [8]. In view of all this it m
not seem unappropriate to take yet another look at the matter.

Since (2) is such a simple dispersion relation, related by a straightforward applica
Laplace and Fourier transforms to a simple system of linear partial differential equ
with constant coefficients, it is clear that any mathematical problems would have to res
in the validity of those linear evolution equations, obtained by linearizing the nonl
fluid-dynamical equations

∂tρ + ∇ · (ρu) = 0, (4)

∂tu + u · ∇u = − 1

ρ
∇p − ∇Φ, (5)

�Φ = 4πGρ (6)

around the static reference state. Indeed, here are Binney and Tremaine [1, p.
emphasis in the original; “DF” stands for ‘distribution function,’ referring to the ste
dynamical setup; equation numbers of the present paper are inserted in[. . .] in the original
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text): “We construct our fictitious infinite homogeneous equilibrium by perpetrating
we shall call theJeans swindle after Sir James Jeans, who studied this problem in 1
(Jeans, 1929). Mathematically, the difficulty we must overcome is that if the densit
pressure of the mediumρ0, p0 are constant, and the mean velocityv0 is zero, it follows
from Euler’s equations (5–8) [(5)] that∇Φ0 = 0. On the other hand, Poisson’s equatio
(5–9) [(6)] requires that∇2Φ0 = 4πGρ0. These two requirements are inconsist
unlessρ0 = 0. Physically, there are no pressure gradients in a homogeneous med
balance gravitational attraction. A similar inconsistency arises in an infinite homogene
stellar system whose DF is independent ofposition. We remove the inconsistency
the ad hoc assumption that Poisson’s equation describes only the relation betwee
perturbed density and the perturbed potential, while the unperturbed potential is zer
assumption constitutes the Jeans swindle; it is a swindle, of course, because in
there is no formal justification for discarding the unperturbed gravitational field.”

As we will see in this paper, however, such a “formal justification for discarding
unperturbed gravitational field” is readily supplied. In a nutshell, the difficulty is overc
by realizing that dynamically, and thus for defining an equilibrium, what counts are t
forces, not the potentials. As we will show, one can set up some sensible limit
well-defined Newtonian gravitationalforces which vanish when the mass density is
constant,ρ0. These vanishing equilibrium forces donot derive from a Newtonian potentia
satisfying the familiar Poisson equation forρ0. Yet, in that same limit, Poisson’s equati
does describe the relation between the perturbed density and the perturbed New
potential, making obsolete any need for postulating this in anad hoc manner.

There are actually several equivalent ways for setting up such a limit. The pe
simplest, and at the same time physically appealing one will be presented in this
More precisely, we recall that Einstein [5], to pave the way for the introduction o
cosmological constant into general relativity, in fact first showed how the cosmolo
constant solves the simpler nonrelativisticproblem faced by Jeans. Hence, all that ne
to be done to vindicate Jeans’ ‘swindle’ is to discuss such a nonrelativistic universe
cosmological constant and subsequently make it purely Newtonian by taking the li
vanishing cosmological constant. As we will show in this note, the limit of vanis
cosmological constant exists in a proper sense, relegating the “Jeans swindle” in
realm of myth.

In the next section we briefly summarize the main features of nonrelativistic gravity
a cosmological constant; a brief appendix shows how it emerges from general rel
with cosmological constant. In Section 3 we consider the fluid-dynamical setup, pres
Euler’s nonlinear equations of fluid motion with cosmological constant and their lim
vanishing cosmological constant; the derivation of (2) after linearization is then sta
(Chandrasekhar [3]). We actually show that it does not matter whether one first com
the dispersion relations and then takes the limit of vanishing cosmological con
or the other way round. In Section 4 we present the encounterless stellar dyn
version (a.k.a. Vlasov theory for self-gravitating systems) and validate the analogous
dispersion relation which can be found, for instance, in the monographs by Fridma
Polyachenko [7] and Binney and Tremaine [1]. In Section 5 we briefly explain why
reappearance of the Jeans criterion in different equilibrium geometries, in statio
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rotating configurations, and in homogeneously expanding solutions cannot be invo
justify the “Jeans swindle.” The conclusionsof the paper are presented in Section 6.

2. Nonrelativistic gravity with cosmological constant and its Newtonian limit

To accommodate astatic homogeneous universe, Einstein [5], first discussing a non
tivistic setting, replaced the familiar Poisson equation (6) for the Newtonian potentΦ

by the inhomogeneous Helmholtz equation

�Ψ − κ2Ψ = 4πGρ (7)

for what we will refer to as the Einsteinian potentialΨ . In (7), κ2 is the cosmologica
constant. Since Einstein was ultimately interested in applying general relativity to
cosmology, he remarked (Einstein [5]) that (7) should not be taken too seriou
itself; yet (7) does obtain from Einstein’s general relativistic equations with cosmolo
constant in the nonrelativistic limit, as we will briefly show in the appendix.

If the mass densityρ is locally sufficiently well behaved (for the sake of concreten
let ρ be bounded), then (7) is solved by

Ψ (x) = −G

∫
R3

e−κ|x−y|

|x − y| ρ(y)d3y. (8)

We take (8) to define the behavior ofΨ at infinity. Note that the effect of a cosmologic
constant is toscreen the gravitational interactions with an attenuation rateκ . In the limit of
vanishing cosmological constant, (8)formally reduces to

Φ(x) = −G

∫
R3

1

|x − y|ρ(y)d3y. (9)

However, integral (9) makes sense only when the mass density functionρ(x) is globally
sufficiently integrable; for instance, finite mass

∫
R3 ρ(x)d3x = M will do. Whenever the

solutionΨ to Helmholtz’s equation (7) given in (8) converges to a properΦ given by (9),
the Helmholtz equation (7) forΨ goes over into Poisson’s (6) forΦ. Of course, our interes
is precisely in those situations where (9) doesnot make sense.

In this vein, consider now a monotone sequence of densitiesρ, having finite mass, which
converges (pointwise, say) to a constant mass densityρ0 > 0. Then (8) converges (likewis
pointwise) to a constant limit as well, given by

Ψ0 = −Gρ0

∫
R3

e−κ|x−y|

|x − y| d3y = −4πGρ0
1

κ2 , (10)

while the Newtonian potential diverges,Φ → −∞, asρ → ρ0. Notice that we also hav
Ψ0 → −∞ whenκ → 0, as is obvious from (10).
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The divergences ofΦ asρ → ρ0, and ofΨ0 asκ → 0, are not yet bad news, for we kno
what counts are not the potentials but the forces derived from them, viz. their grad
We will be in an acceptable Newtonian gravityconfiguration if we can guarantee that,
ρ → ρ0, the force field∇Φ converges to a gravitational force field that depends only oρ0
but not on the limiting procedureρ → ρ0. Alternatively, we will also be in an acceptab
Newtonian gravity configuration if we can guarantee that∇Ψ0 converges to a gravitation
force field that depends only onρ0 but not on the limiting procedureκ → 0.

However, as is well known,∇Φ, whenever it converges, does not just depend on
limit density ρ0 but on the particular limiting sequenceρ → ρ0. (Simply consider a
sequence of balls of radiusR and centerx0 in which ρ = ρ0, while ρ vanishes outside
the balls. AsR → ∞, ρ → ρ0 everywhere, but the gravitational field will always po
towardx0. Sincex0 is arbitrary, the point is made.) Such a limiting procedure is there
not a viable possibility to define Newtonian self-gravity in a homogeneous infinite sy
In particular,∇Φ never converges to zero identically, no matter which sequenceρ → ρ0 is
considered.

The existence of the constant Einsteinian potentialΨ0 for ρ = ρ0 on the other hand
implies that∇Ψ0 = 0 identically. The important point, for us, is that gravitational forc
with cosmological constant cancel themselves out in a homogeneous universe, no
with an appropriately chosen cosmological constant” (Börner [2, p. 320]), but forall values
of κ . Hence, Newtonian gravitational forces in such an infinite, homogeneous and iso
medium can now beproperly defined by simply taking the limitκ → 0 of the (vanishing)
Einsteinian gravitational forces with cosmological constant.

Totally self-balanced gravitational forces in an infinite, homogeneous and iso
system guarantee that such a system is automatically in equilibrium. This of cours
Einstein’s main motivation for introducing the cosmological constant (Einstein [5])
fact that equilibrium obtains also in the limit of vanishing cosmological constant is a si
corollary, albeit not contemplated by Einstein.

Our real interest, however, is not in the infinite homogeneous self-gravitating eq
rium itself, but in the Newtonian evolution of initial configurations which deviate so
what from such an equilibrium state, say by the displacement of only a finite amount
mass from the uniformly distributed state. We could be more general, but this is certa
reasonably interesting class of mass densities to study. We now show that our defin
Newtonian forces extends unproblematically to such nonuniform mass density func

Writing ρ(x) = ρ0 + σ(x), the density disturbanceσ(x) must be sufficiently integrable
satisfy ∫

R3

σ(x)d3x = 0, (11)

and be bounded below by−ρ0, for ρ0 + σ(x) is a mass density and, therefore, must
be negative. For technical convenience, we actually demand thatσ be smooth and deca
rapidly to zero at spatial infinity. The Einsteinian potentialΨ for such a mass densit
ρ(x) = ρ0 +σ(x) is readily computed. By the linearity of the integral formula (8), we h

Ψ (x) = Ψ0 + ψ(x), (12)
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2 as before, and where

ψ(x) = −G

∫
R3

e−κ|x−y|

|x − y| σ(y)d3y, (13)

which solves the inhomogeneous Helmholtz equation

�ψ − κ2ψ = 4πGσ. (14)

The forces are proportional to the gradient ofΨ ; but∇Ψ0 vanishes, hence

∇Ψ (x) = ∇ψ(x). (15)

Sinceσ �= constant, it follows that∇ψ(x) �= 0 in general. The important point now is th
because of the finite amount of mass involved in the density disturbanceσ , the Newtonian
limit κ → 0 of ∇ψ exists and is given by

lim
κ→0

∇ψ(x) = ∇φ(x), (16)

where

φ(x) = −G

∫
R3

1

|x − y|σ(y)d3y (17)

is the Newtonian potential of the density disturbanceσ . Clearly, (17) solves the Poisso
equation

�φ = 4πGσ. (18)

Thus we have extended our definition of Newtonian forces unproblematically t
nonuniform mass density functionsρ0 + σ declared above.

Since all the problems with the notion of Newtonian gravitational forces in a spa
asymptotically homogeneous and isotropic nonrelativistic universe, which were at the
of the “Jeans swindle,” have evaporated in a mathematically clean way, we may
proceed to the dynamical implementation of our scheme.

3. Fluid dynamics

3.1. The nonlinear evolution equations

In this section we consider the Euler evolution of an inviscid fluid with nonrelativ
Einsteinian self-gravitation. The dynamical variables of the model are the fluid
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densityρ and fluid velocityu. The evolution equations for these dynamical variab
comprise the continuity equation

∂tρ + ∇ · (ρu) = 0 (19)

and Euler’s force balance equation

∂t u + u · ∇u = − 1

ρ
∇p − ∇Ψ. (20)

The Einsteinian gravitational potentialΨ is coupled toρ by the inhomogeneous Helmhol
equation

�Ψ − κ2Ψ = 4πGρ, (21)

re-displayed here to have the basic equations grouped together. The pressurep is related
to ρ by an equation of state, which we choose (for simplicity) to be Boyle’s law of
classical perfect gas at constant temperatureT0,

p = ρc2
s , (22)

where

cs =
√

kBT0

m
(23)

is the speed of isothermal sound. The dynamical variables need to be suppleme
initial conditions at some initial time, sayt0 = 0. Moreover, these equations have to
supplemented by asymptotic conditions at spatial infinity. We demand that asymptotically
at spatial infinity all the system variables approach the values of the stationary, in
homogeneous and isotropic equilibrium fluid in which the Einsteinian gravitational fo
balance themselves. It is a trivial matter to verify that the set of constant varia
ρ(x) = ρ0, p(x) = p0 = ρ0c

2
s , u(x) = u0 = 0, andΨ (x) = Ψ0 = −4πGρ0/κ

2 for all x,
forms such a stationary solution of (19)–(21).

To inquire into the dynamics in the mathematical neighborhood of this con
equilibrium solution, we writeρ(x, t) = ρ0 + σ(x, t) and demand that the initial deviatio
σ(x,0) is smooth, rapidly decaying to zero at spatial infinity, and satisfies∫

R3

σ(x,0)d3x = 0. (24)

Then
∫

R3 σ(x, t)d3x = 0 for all t ∈ (0, τ ), where τ is the mathematical lifespan o
the solution. Pressure and Einsteinian potential are written accordingly, i.e.,p(x, t) =
p0+σ(x, t)c2

s , andΨ (x, t) = Ψ0+ψ(x, t). We also writeu(x, t) = u0+w(x, t). (Although
for our choice of reference equilibrium we haveu0 = 0 and thereforew(x, t) = u(x, t),
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we prefer to introduce a new symbol for the deviation from the equilibrium velocity field,
simply as a reminder that more general equilibrium velocity fields can be handled for
w(x, t) �= u(x, t).) Inserting the above representation of the system variables into our
dynamical equations, and already implementing our equation of state into the force b
equation, as well as using the fact that derivatives of constant functions vanish and tΨ0
terms cancel versusρ0 terms from the inhomogeneous Helmholtz equation, we obtain
dynamical equations for the unknownsσ andw,

∂tσ + ρ0∇ · w + ∇ · (σw) = 0, (25)

∂t w + w · ∇w = − c2
s

ρ0 + σ
∇σ − ∇ψ, (26)

coupled toψ via

�ψ − κ2ψ = 4πGσ. (27)

All deviation variables are equipped with the asymptotic conditions that they va
asymptotically as|x| → ∞.

At this point already we can letκ → 0 in (25)–(27), thereby obtaining the nonline
dynamical equations for the evolution of the disturbances of an infinitely extended
with Newtonian gravity. The continuity equation remains unchanged,

∂tσ + ρ0∇ · w + ∇ · (σw) = 0, (28)

while Euler’s force balance equation becomes

∂tw + w · ∇w = − c2
s

ρ0 + σ
∇σ − ∇φ (29)

and the inhomogeneous Helmholtz equation turns into Poisson’s equation

�φ = 4πGσ. (30)

The deviation variables continue to be equipped with the asymptotic conditions tha
vanish as|x| → ∞. Notice that no linearization has been invoked so far.

3.2. The linearized evolution equations

To linearize (25)–(27), we write

σ = σ1 + σ2 + · · · , w = w1 + w2 + · · · , ψ = ψ1 + ψ2 + · · · , (31)

where the indexk = 1,2,3, . . . indicates the ‘level of smallness.’ Thus,σ2 is treated as
one level smaller thanσ1; andσ1∇ψ1 is at the same level of smallness asρ0∇ψ2; etc. We
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are only interested in the first level of the hierarchy. Hence, retaining only level 1 terms
(25)–(27), we obtain for the quantities at level 1,

∂tσ1 + ρ0∇ · w1 = 0, (32)

ρ0∂t w1 = −c2
s ∇σ1 − ρ0∇ψ1, (33)

�ψ1 − κ2ψ1 = 4πGσ1, (34)

supplemented by initial conditions forσ1, w1, and the asymptotic vanishing conditions
infinity for σ1, w1, ψ1.

In the same manner we linearize (28)–(30), using the expansions (31) forσ andw as
well as

φ = φ1 + φ2 + · · · . (35)

Retaining only level 1 terms in (28)–(30), we obtain

∂tσ1 + ρ0∇ · w1 = 0, (36)

ρ0∂tw1 = −c2
s ∇σ1 − ρ0∇φ1, (37)

�φ1 = 4πGσ1, (38)

supplemented by initial conditions forσ1, w1, and the asymptotic vanishing conditions
infinity for σ1, w1, andφ1. We remark that the same set of linearized equations ob
if, instead of taking the limitκ → 0 of (25)–(27) first and then linearizing the equatio
(28)–(30), we first linearize the equations (25)–(27) to obtain (32)–(34) and then ta
limit κ → 0 of (32)–(34).

The linearized equations (36)–(38) are precisely the linear dynamical equations s
by Jeans, only this time we have derived them without mathematical ‘swindle.’
completes our “formal justification for discarding the unperturbed gravitational field.”

3.3. The dispersion relations

The solution of these linearized equations is found in the standard way using F
transforms in space and Laplacetransforms in time, denoted bŷ and ˜ , respectively.
For the linearized equations with Newtonian gravity this procedure is discussed in v
monographs, in particular also by Chandrasekhar [3], Fridman and Polyachenk
Binney and Tremaine [1], Kippenhahn and Weigert [11], Börner [2]. Of course the
no added difficulty to do the same in the presence of a cosmological constant; howev
final result features an interesting and apparently new aspect that is worth mentionithe
cosmological constant can suppress the Jeans instability.

For the density perturbation we find from (32)–(34),

˜̂σ 1(k,ω) = ωσ̂1(k,0) − ρ0k · ŵ1(k,0)

2 2 2 2 . (39)

cs (|k| + κ ) − 4πGρ0 − ω
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We read off the (modified) Jeans dispersion relation for the isothermal disturbances o
static isothermal fluid universe with cosmological constant as

ω2 − |k|2c2
s + (

k2
J − κ2)c2

s = 0. (40)

In (40), kJ is the Jeans wave number defined in (3), withcs given in (23). Note thatno
(linear) gravitational instability occurs ifκ � kJ. The borderline caseκ = kJ is particularly
curious, for in that case (40) coincides exactly with the classical dispersion relation (
sound waves (here for isothermal wave motion).

Our goal is of course the opposite parameter regime, whereκ → 0. By simply taking
the limit of vanishing cosmological constant in (40) we now obtain the original J
dispersion relation (2) for the disturbances of an infinite, homogeneous static fluid un
with isothermal equation of state and Newtonian gravitational interactions whic
mentioned earlier, coincides with the one obtained directly from (36)–(38).

4. Stellar dynamics

4.1. The nonlinear evolution equations

In a stellar-dynamical setting, the dynamical variable of the model is the density-of-sta
functionf (x,v, t) on the one-‘particle’ phase spaceR

3 × R
3 at timet ∈ R. It satisfies the

encounterless Boltzmann kinetic equation

∂tf + v · ∇f − ∇Ψ · ∂vf = 0, (41)

coupled, in a universe with cosmological constant, to the inhomogeneous Helm
equation for the Einsteinian gravitational potentialΨ (x, t),

�Ψ − κ2Ψ = 4πG

∫
R3

f d3v. (42)

We will refer to the system of Eqs. (41) and (42) as the ‘Vlasov–Helmholtz equation
The static, spatially homogeneous and isotropic universe now corresponds to a

space density functionf0 that is constant in physical space, with mass densityρ0, but
which is a Maxwellian in velocity space, with constant temperatureT0. Thus,f0 is given
by f0(v) = ρ0(2πc2

s )
−3/2 exp(−0.5|v|2/c2

s ), with the Helmholtz potential given as befo
by Ψ = Ψ0 = −4πGρ0/κ

2.
The dynamical equations for the evolution of deviations from the stationary sol

are obtained by writingf (x,v, t) = f0(v) + g(x,v, t) andΨ (x, t) = Ψ0 + ψ(x, t), and
requiringg andψ to vanish at spatial and velocital infinity, andg to integrate to zero ove
phase space. The evolution equations for the unknownsg andψ read
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∂tg + v · ∇g − ∇ψ · ∂vg = ∇ψ · ∂vf0, (43)

�ψ − κ2ψ = 4πG

∫
R3

g d3v. (44)

Taking the limit κ → 0 gives the nonlinear Vlasov–Poisson equations of an infin
extended, asymptotically (in space) uniformencounterless stellar-dynamical system w
Newtonian gravity,

∂tg + v · ∇g − ∇φ · ∂vg = ∇φ · ∂vf0, (45)

�φ = 4πG

∫
R3

g d3v. (46)

4.2. The linearized evolution equations

Expanding with respect to the levels of smallness,

g = g1 + g2 + · · · , ψ = ψ1 + ψ2 + · · · , (47)

and retaining only level 1 terms, we find thelinearized Vlasov–Helmholtz equations,

∂tg1 + v · ∇g1 = ∇ψ1 · ∂vf0, (48)

�ψ1 − κ2ψ1 = 4πG

∫
R3

g1 d3v. (49)

Taking the limitκ → 0, gives the linearized Vlasov–Poisson equations,

∂tg1 + v · ∇g1 = ∇φ1 · ∂vf0, (50)

�φ1 = 4πG

∫
R3

g1 d3v. (51)

Alternately we obtain the linearized Vlasov–Poisson equations by expanding the non
Vlasov–Poisson equations with respect to the levels of smallness ing andφ and retaining
only level 1 terms. Again, we have found the linear evolution equations for Newto
gravity without invoking a ‘swindle,’ or anything illegitimate of that sort.

4.3. The dispersion relations

The solution of the linearized Vlasov–Poisson equations (50), (51) in terms of Fo
and Laplace transformation is again standard, though one has to be somewhat
with analytic continuations to derive the stellar dynamical Jeans dispersion relation
the linearized Vlasov–Poisson equations, see,e.g., Fridman and Polyachenko [7], Binn
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and Tremaine [1]. In complete analogy one finds the solution of the linearized Vla
Helmholtz equations (48), (49), which converge to solutions of (50), (51) in the limitκ → 0
and therefore provide a slightly different means of deriving the Jeans dispersion relatio
As in the fluid-dynamical setting, it turns out that a cosmological constant can suppress
Jeans instability. It suffices to summarize the main steps.

The Fourier–Laplace transformed expression for the phase space density pertu
reads, for�(ω) < 0,

˜̂g1(k,v,ω) = −iĝ1(k,v,0)

DI(k,ω)DII (k,ω)
(52)

with

DI(k,ω) = ω + k · v (53)

and

DII (k,ω) = 1− k2
J

|k|2 + κ2

1√
2π

∫
R

ξe−ξ2/2 dξ

ξ + ω
|k|cs

, (54)

wherekJ is the Jeans wave number defined in (3), withcs given in (23). Apart from the
ballistic termDI , absent in fluid theory, we immediately read off the (modified) ste
dynamical Jeans dispersion relation for�(ω) < 0,

DII (k,ω) = 0, (55)

which has to be analytically continued to�(ω) � 0. In particular, if there is a transitio
from stable to unstable behavior, the stability boundary occurs when�(ω) = 0. Using
Plemilj’s formula, we find that for�(ω) = 0 the dispersion relation can be fulfilled on
if �(ω) = 0 as well, in which case theξ -integral in (54) equals

√
2π . Hence, the critica

wave number satisfies

|k|2crit = k2
J − κ2. (56)

Once again we find thatno (linear) gravitational instability occurs ifκ � kJ. However, if
κ < kJ, (56) can be fulfilled for real|k|crit so that a linear gravitational instability exists f
wave vectors satisfying

|k| <
√

k2
J − κ2. (57)

In the limit κ → 0 we recover the celebrated Jeans criterion|k| < kJ for gravitational
instability in a static, homogeneous, Newtonian stellar-dynamical universe.
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5. The deceptive robustness of the Jeans criterion

The linear stability analyses of a variety of conventional solutions of (4)–(6), from s
inhomogeneous over stationarily rotating to expanding-universe solutions, all reprodu
the essence of the original Jeans criterion. This robustness of the Jeans criterion, co
with the fact that the treatment of these more sophisticated stability problems does
suffer from the peculiarities unique to the analysis of the static homogeneous univer
sparked the notion that the “Jeans swindle” is somehow justified. However, robu
of the result and orderly conduct of the analysis are only necessary but not sufficie
ingredients for a proper vindication of the “Jeans swindle.” We re-emphasize th
addition to those two criteria we must also be able to pass to the limit of the genuine ‘
swindle-situation’ in the sequence of ‘no-Jeans-swindle-situations,’ as we did in this
In this section we will briefly peruse various proposals based on static inhomogen
stationarily rotating, or expanding-universe solutions and see that none passes a
‘vindication criteria.’ For the sake of the continuity of the discussion, we address on
isothermal systems.

We begin with the stability analysis of static inhomogeneous equilibria, which have t
symmetry of a plane, a cylinder, or a sphere. Explicit formulas for the plane- and cyli
symmetric isothermal self-gravitating equilibria are long known (e.g., Walker [18]).
mass density of plane-symmetric equilibria varies as

ρ(z) = c2
s

2πG

κ2⊥
cosh2(κ⊥z)

, (58)

wherez is a Cartesian coordinate with origin in the plane of symmetry, while the m
density of cylinder-symmetric equilibria varies as

ρ(r) = 2c2
s

πG

κ2⊥
(1+ κ2⊥r2)2

, (59)

wherer is the radial cylindrical coordinate; in both formulas,κ⊥ is an arbitrary reciproca
length scale. The stability of the plane-symmetric equilibria is discussed by S
[16], and those of the cylinder-symmetric ones by Nagasawa [14]. In both instanc
equilibria are unstable with respect to perturbations whose wave vectork points along the
invariant direction(s) when|k| < gkJ(0), wherekJ(0) is the central Jeans wave numb
defined by

k2
J(0)c2

s = 4πGρ(0), (60)

and whereg is a geometrical factor, withg = 1/
√

2 for the plane-symmetric equilibrium
and g ≈ 0.561 (computed numerically) in the cylinder-symmetric equilibrium. Furth
more, the time-dependence of the instability isexponential in both cases. Hence, the c
teria of robustness of the Jeans result and of orderly analysis are satisfied. Howe
pass to a homogeneous density function,ρ → ρ(0), we need to letκ⊥ → 0 while keep-
ing κ2c2

s fixed, so thatcs → ∞. Clearly,kJ(0) → 0 in that limit. We see that we cann
⊥
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pass to the limit of the genuine ‘Jeans-swindle-situation’ in these sequences of ‘no-
swindle-situations.’ For the same reason we cannot take spherical isothermal equilibria, f
which no simple analytic expression is known (with the exception of the singular sol
of Zöllner [20]), but which have been computed, tabulated and extensively discussed
Emden [6].

We next comment on the following suggestions of Binney and Tremaine [1, p.
“. . . there are circumstances in which the swindle is justified. For example,

(i) . . . [if] . . . the wavelength . . . is muchsmaller than the scale over which t
equilibrium density and pressure vary . . .the Jeans swindle should be valid for t
analysis of small-scale instabilities.

(ii) . . . a uniformly rotating, homogeneous system . . . can be in static equilibrium i
rotating frame and no Jeans swindle is necessary (although the stability properti
are somewhat modified from those of the nonrotating medium because of Co
forces . . . )”

Unfortunately, suggestion (i) is not viablebecause the effective scale of nonuniform
of such a self-gravitating equilibrium is precisely the effective Jeans length, a
emphasized also by Kulsrud and Mark [12] and by Fridman and Polyachenko [7]. Th
is manifestly evident for the case of the plane- and cylinder-symmetric equilibria
which it follows from (58)–(60) thatkJ = √

2κ⊥, respectivelykJ = 2
√

2κ⊥. Hence, any
hypothetical “small scale instability” would have to be small in scale compared to t
effective Jeans length, viz. wouldnot be analyzable by (2). Obviously such a stabi
result would not satisfy the criterion of robustness of Jeans’ result.

In the situation depicted in suggestion (ii) the criteria of robustness of the result a
orderly analysis are satisfied: the introduction of uniform rotation with angular frequ
vectorΩ does regularize the homogeneous gravitational problem in such a way th
analysis in the spirit of Jeans can be carried out without any ‘swindle’ (Chandras
[3,4]), and the resulting instability criterion for wave vectorsk‖Ω is precisely|k|2c2

s −
4πGρ0 < 0, in agreement with (2). (For wave vectorsk ⊥ Ω the dispersion relation i
different from (2) due to the presence of Coriolis forces (Chandrasekhar [3]).) How
the angular frequency of a uniformly rotating equilibrium and the equilibrium mas
densityρ0 are related by|Ω |2 = 2πGρ0. Hence, because the mass densityρ0 vanishes
in the nonrotating limit of a uniformly rotating system, the dispersion relation of
rotating system does not go over into the dispersion relation discovered by Jeans
his ‘swindle.’

We finally address the suggestion, made elsewhere, that the correct man
defining (2) is via the ‘static limit’ of an expanding-universe solution with Newton
gravity. Such a nonrelativistic analog of the expanding flat Friedman–Lemaître unive
found by solving the system of Eqs. (4)–(6) under the assumption that at any point i
t > 0 the density and temperature are constant while the magnitude of the density
varies with time, diverging ast ↓ 0. Note however that one also has to pick an arbitr
center of symmetry forΦ, while a true expanding universe solution does not have a ce
Assuming for continuity of the discussion that the temperature is constant also duri
evolution, such a solution describing a ‘big bang’ is easily found to be given by
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ρ0(t) = 1

6πG

1

t2 , (61)

u0(x, t) = 2

3

x
t
, (62)

Φ0(t) = 1

9

|x|2
t2 . (63)

Incidentally, these formulas coincide with those of the Einstein–De Sitter univers
Börner [2, p. 334]. The analysis of the linearized nonrelativistic evolution of infinites
disturbances of this homogeneous, isotropic, expanding Einstein–De Sitter un
solution “does not suffer from the “Jeans swindle,” i.e., the use of a backgroun
obeying the dynamics” (Börner [2, p. 346]). Settingρ1(x, t) = ρ0(t)α(t)eiq·x/t2/3

(and
similarly for the other perturbed variables), the linearized nonrelativistic equations a
the Einstein–De Sitter universe can be reduced to the following ordinary differe
equation forα(t):

α̈ + 4

3

1

t
α̇ +

(
c2
s |q|2
t4/3

− 2

3

1

t2

)
α = 0, (64)

which is identical to Eq. (11.21a) in Börner [2], though here we used isothermal r
than adiabatic perturbations. Note that the sign of the coefficient in front ofα determines
whether the amplitude of a density disturbance grows relative toρ0(t). Defining the no-
tion of comoving wave vectors byk(t) = qt−2/3, we find that enhancement of a dens
disturbance relative to the background evolution occurs if

∣∣k(t)
∣∣ < kJ(t), (65)

where

k2
J(t)c

2
s = 4πGρ0(t) (66)

defines the ‘dynamical’ Jeans wave number ofour nonrelativistic Einstein–De Sitter un
verse. (We remark that in a general relativistic Friedman–Lemaître universe the dyn
Jeans wave number is given by

K2
J (t)c2

s = 4πG(ρ0 + p0)(t), (67)

see Weinberg [19], Börner [2].) Once again, the Jeans criterion proves its robus
However, the unstable disturbances do not grow exponentially in time but li
power law.1 In particular, at early times the pressure term is overpowered by the

1 The exponential time-dependence on p. 336 in Börner [2] is obtained under the explicit assumption th
R(t) ≈ const., whereR is the cosmic distance scale which dependson the universe model under consideratio
This assumption can be justified in an expanding flat universe solution with cosmological constant, an Eddingto
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density term, and (64) reduces to an Euler differential equation (cf., Eq. (11.2
Börner [2]),

α̈ + 4

3

1

t
α̇ − 2

3

1

t2 α = 0, (68)

which has one growing and one decaying mode, evolving liket2/3 andt−1, respectively.
Since the disturbances and the expanding homogeneous background evolve both a
laws, there is no separating time scale between them. Hence, to take a ‘static limit’
expanding universe at the same time removes the dynamics of the perturbations a
and with it the possibility to vindicate the Jeans swindle.

6. Concluding remarks

To summarize, in this paper we have given the first clean mathematical vindicat
the “Jeans swindle.” We also explained why various other suggestions fail to do so.

Our vindication of Jeans’ result (2) is based on a simple limiting process
a ‘cosmologically appealing’ model of a nonrelativistic flat universe with cosmolog
constant for which the limit of vanishing cosmological constant is well-defined. How
as indicated in the introduction, other vindications are possible. For instance, we
study the universe not in three-dimensional flat spaceR

3 but in the Einstein spaceS3
R ,

which is the three-dimensional analog of the surface of a conventional sphere of radR,
having constant positive curvature. The Einstein space is finite but without bounda
the general relativistic setting one needs again the cosmological constant to obtain
universe, but in our pre-relativistic setting we have no problem in defining a homoge
and isotropic static universe for Newtonian gravity onS

3
R with fixed R, and also not in

studying the dynamics in its neighborhood. Letting the radiusR → ∞ subsequently (a
a parameter) and subtracting a dynamically mute constant from the potential, we
at our dynamical equations inR3, obtaining the Jeans dispersion relation again in
orderly manner. Another possibility, pointed out to me by Sheldon Goldstein, is to
a weaker definition of the integral for the total Newtonian force on a mass eleme
an infinite, asymptotically homogeneous medium, which basically amounts to a
dimensional analog of Cauchy’s principal value integral. This procedure has the adv
that it works without modifying Newtonian gravity by a cosmological constant, or with
going into a curved space; however, the use ofa principal value type integral itself nee
some justification. In any event, it producesthe same results as those reported here.

Our mathematical vindication of the “Jeans swindle” does not touch upon the qu
of applicability of the Jeans criterion in astrophysical and cosmological theories of s
and galaxy formations. This is a different question altogether, see, e.g., Kippenha
Weigert [11] and Weinberg [19] for a discussion of some perplexingly unreaso
numbers predicted by the Jeans criterion. In this context it is interesting to registe

Lemaître universe, which can stay near to Einstein’s static universe for arbitrarily long periods. It is not ju
in the nonrelativistic expanding Einstein–De Sitter universe solution.
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the Jeans criterion has a natural place in the statistical mechanics of gravitating s
by defining a spinodal line associated with the meta-stability region around a gravitation
phase transition, see Kiessling [9]. We close with the remark that the phase transitio
give considerably more reasonable numbers than the spinodal (Jeans) data (Stahl et
Kiessling [10]).
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Appendix A

While Einstein [5] remarked that (7) should not be taken too seriously in itself, (7)
obtain from Einstein’s general relativistic equations with cosmological constant

Rµν − 1

2
Rgµν + κ2gµν = 8πG

c4 Tµν (69)

in the nonrelativistic limit. In this limit, we have

R00 − 1

2
Rg00 ∼ �g00 (70)

and

T00 ∼ ρc2, (71)

so that

−�g00 + κ2g00 = 8πG

c2 ρ. (72)

Settingg00 = 2Ψ/c2 we obtain (7).
We remark that Lemaître [13], setting

g00 ∼ −1− 2
1

c2
φ, (73)

and making the further tacit assumption thatφ andκ2 are of the same level of smallnes
rather than the inhomogeneous Helmholtz equation, obtained a Poisson equation fφ in
which an effectivenegative background mass density features. This type of equation, w
leads to gravitational screening oftest particle masses, has been discussed by Spiegel [1
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