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The Fermi-Pasta-Ulam-Tsingou lattice 

1 nnn FFum  Newton’s 2nd law: 

Force that particle i-1 exerts on particle i 

Consider a nonlinear lattice with the force law: )( 2 GF

where Δ is the displacement between the masses, G is the spring 
constant and κ is the nonlinear coefficient. 
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Lattice dynamics - equations of motion 
Newton’s 2nd law: 

Force  law  nonlinear response : 

Simplifying the difference between the two squares, we obtain:  
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Linear discrete wave equation Nonlinear correction 
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The continuous limit 

We treat  xn = na  as a continuous variable,                          , so that:  

We can then expand the solution in a Taylor series, around x, as: 
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Keeping O(a4) terms, the nonlinear term of the DDE is found as: 

xnaxn 

As in the linear case, we seek for solutions of the nonlinear DDE: 

with a width >> lattice spacing  a   continuum approximation 
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We thus obtain, at O(a4), the following nonlinear dispersive PDE: 

The Boussinesq equation 
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Using the transformation               (where w is analogous to strain  
in continuous mechanics)  we differentiate wrt. to x and obtain:  

xuw 

Boussinesq equation   
(derived by Joseph Boussinesq (1871) in the context of shallow water waves) 
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Boussinesq equation 

 

Korteweg – de Vries equation 
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We rewrite the Boussinesq equation in the general form: 

Structure of the Boussinesq equation 

In the FPUT lattice: 

The Boussinesq equation is a bidirectional model featuring both 
dispersion and (quadratic) nonlinearity: 

2nd-order wave equation nonlinearity dispersion 

Dispersion relation: 

± for right -or left-going waves 



Dispersion relation: 

± for right -or left-going waves 

The long-wavelength approximation (I) 

We focus on right-going waves, and consider long waves 
and weak dispersion, such that:                       .  
Then, use the approximation: 

and express the dispersion relation as: 



The long-wavelength approximation (II) 

Since the dispersion relation reads: 

the phase                          of the plane wave  
 
becomes: 

In compliance with our assumption for long waves, we 
now assume that the wavenumber k is of the order O(εp), 
with 0 < ε ≪ 1 and p > 0.  
 
The choice of p is not important as will be seen below, so 
we can arbitrarily choose p = 1/2.  



Substituting                        in:                                           

we obtain: 

The slow (or “stretched”) variables 

This suggests the introduction of the slow variables: 

Next, express the Boussinesq equation in terms of these slow 
variables by using the chain rule: 



The asymptotic expansion 

In terms of ξ and T, the Boussinesq equation:  
 
 
becomes: 

As a final step, assume a perturbation expansion of u(x,t) 
with respect to ε of the form: 

Substituting into the Boussinesq equation we obtain: 



Balance between dispersion-nonlinearity 
Here, q should not be chosen arbitrarily: to derive the KdV, 
where dispersion and nonlinearity terms are of the same order 
–a fact that gives rise to soliton solutions– the dispersion and 
nonlinearity terms should also be of the same order. 

dispersion terms nonlinearity terms 

 Leading-order dispersion term: 

 Leading-order nonlinearity term: 

Hence: 



The KdV equation 
For q = 1, the equation:  

becomes:    )(2 5
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Thus, after an integration wrt. ξ,  we obtain the KdV equation: 

To conclude, starting from the FPU lattice, we can derive   
– in the continuum limit – the Boussinesq equation; then,  
employing a multiscale expansion method, we can derive  
the “far field” of Boussinesq equation, i.e., the KdV equation 



Some additional comments (I) 
 We have introduced the slow variables 

based on the form of the phase of plane waves in the  
long-wavelength approximation. 

 
33 )2/3(

,Ai
)2/3(

)0(
),(

t

x-ct
zz

t

f
txu




 This choice is consistent with the long-time behavior of the   
    solution of the linearized Boussinesq equation: 

 Thus, the proposed scales are the same along the  
    characteristics z = (x-ct)/t1/3 = const. of the solution as t  



Some additional comments (II) 
 The Boussinesq equation is a bidirectional model, while the  

     KdV equation is a unidirectional one.  

  It can be shown that using the slow variables: 

and the same asymptotic expansion as before, 
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One can derive, to the leading-order in ε, the equation: 

Superposition of a left- and a right-going wave 

where: two KdV equations! 


