Quasi-linear PDEs (Il)

Shock waves emerging from
localized initial data



Localized initial condition - Example |

Consider the IVP: U, +uu, =0, u(x,0)= @
X=Ut+¢

We have found: 0= (&) }:>x=z§+ f(E)t
and thus: {x:.§+ 21 t]
E°+1

B t =0: identical map

E Ast7 the region of the plot X(&)
corresponding to points ¢ where
f’<0 flattens

E Att =1, the graph acquires a point
with a horizontal tangent line

E Fort>t, there exists a region x. < x <x,
where each x corresponds to 3 &-values
and thus to three (&) = u(x,t) values!




Example | (cont.) — the shock wave

u(x, t)

t3
."}-.-. L




Example | (cont.) — the notion of the envelope

The boundary between multi- and single-valued regions in
the xt-plane can be found by noticing that, at the relevant
points, the plot of x(&¢) has a horizontal tangent line:

X =&+ f(g)t:{dx —14 f'(g)tzo]

dé
" The boundary can be determined by the elimination

of & in the equations: :1+ f'(E)t=0, x=f(E)t+ .f]

\_

J

The resulting curve(s) in the xt-plane is the envelope® of the
characteristics, i.e., here,

X*=&-1(5) /1 1'(6), 1+f(Ht=0

* Envelope is a curve that touches and is tangent to a family of curves



Example | (cont.) — characteristics and envelope

{




Example | (cont.) — characteristics




Example | (cont.) — breaking time

Breaking time: [tb =min,_, {t(£) =1/ (&) | £'(£) <0 }J

Here:
T 26 1 (& +1)
F(&) = FI(E) = — _ -
e e = | L SR

. dt(S) (&°+1)°
min : 0 =0= d.f( 2 j {b \@}

N GEE :Eb:@]
2& s L 9

N

_f(gb)t +6, = +§b [ \@]




Example | (cont.) — wave breaking points

The value of &, is equal to the inflection point X, of f(x), i.e., f”(&,) =0

u(x,t) [
I NE R

g 9 i&':ﬁ‘{Jr+{




A more detailed look at the envelope

As noted above, the envelope can generally be determined
by the elimination of & in the equations:

x=Ff(E)t+<&, 1+ 1t'(Et=0 & 2
Indeed, from a geometry point of view, we have:

Characteristics are given by x = f (&)t + &
or [G(x,t, E) = O] and, thus, for the envelope & = £(X,1)

dG =\GM+ G.d& =0 alongthe envelope

|
O (because the envelope is tangent to the family)

{G(x,t,.f)zo {{x—g‘—f(é)tzO}
Hence: —
G,(xt,&) =0 1+ f'(E)t=0




The envelope and a tractable example

Alternatively, from an analysis point of view, we have:

Consider two characteristics, £ and & + 8¢, that intersect at (x,t).
Then: x=¢+ (5t and x=&+0E+ T(E+ 04

and in the limit 66 — 0 we obtain: [X =f(EN+&, 1+ f'(E)t = OJ

In some cases the envelope can be found analytically

Example: Consider the IVP:

u +uu, =0, u(x0)="f(x)

-

v T (X)
1-x°, |x|<1 S
f (%) =+ A 7\

0, [x|>1

—1 1

\



The envelope and a tractable example — cont.

We will use the equations: x=¢&+ (&)t and 1+ f'(&)t=0

to determine the breaking time and the envelope.

Breaking time

f<1: £(&)=1-& = (&) =—-2£ and /(&) <0 for &< (0,1)

FortB:1"‘f’(f)tB:O:tB:mink&l{_ 1 }:[tB:l]

'(S) 2
Envelope
, 11 —F = \
1+ f'(6)t=0=1-2t=0= & =— 1 1
——————————————— 2t>:>X: 1— Z_t t+2_t
x=f(Et+Ex=1-&Nt+¢ | UL . y



The envelope and a tractable example — cont.

r \
. o 1
To this end, the envelope is given by: | X(1) =t + —
N at
t
A
i T =1+ ﬁ
Envelope
t, :% 5
I H
£ 1




Localized initial condition - Example Il

Consider the IVP: U, +uu, =0, u(x,0) =[f (X) = exp(—xz)]
Breaking time:( t, = min ., {t(£) = -1/ f'(¢) | £/(£) <0 ||

1 e¢

f/(&) 28

e ) o d () T
min : 0 _Ojdg[zgj_o{éb_ﬁ]
e* \f
Thus: T = ~1.16
255
"2

Xp = T (&)t + &, =€ tb+§b [b:\/i]

Here: f(&)=e* = f'(&)=-2&° = -




Example Il (cont.) — wave breaking points

The value of &, is equal to the inflection point X, of f(x), i.e., f”(&,) =0

" (a) [ (b)




The role of dissipation - Example |
Consider the IVP: U, +UU, : u(x,0) =|f (x) = u, exp(—x°)

Here, the Hopf equation incorporates a linear dissipative term:
indeed, in the absence of nonlinearity, the solution is oc exp(-t)

[guestion: Which values of u, give rise to wave breaking? ]

On I x=Xx(t) we have{d—x = u} x(0) = ¢&; [d_u — _UJ u(0) = er_(:z

dt dt
du_ —U=u=Ae"
EThe 29 eq. leads to: dt >
u(0) =u,e )

¥ Thus, the 1st eq. leads to:

dx [ R L, R —t é
E_u—uoe e :>de—uoe joe dt =>x(t)=u,e™ (1-e7)+




The role of dissipation - Example | (cont.)

For the breaking time we use: CC:—X =0, x(t) = uoe‘52 (1- e‘t) + &

Here: X
3_2 =0=ue (-28)(1-e ") +1=0= t(é:) - In[l_ éofj

\.
[Wave breaking occurs if: t, = min,_, {t(.f)}> O]

M oo L (e‘f (2£)(2u,8) —e” (2uo)j 0mg - L

S 1 € 4U0§ \/E
2U¢

Hence: t, Zt(gb)‘gb:% >0 = 0< 2ueol<1 :{u0 >\/§ ]




The role of dissipation - Example Il
Consider the IVP: U, +UU, : u(x,0) = f(x)

Again, the Hopf equation incorporates a dissipative term

\

"Show that, for a > 0, the breaking time t,(a) is greater than
the corresponding one, t,(0), for a=0, i.e., t,(a) > t,(0)

\. .

Here: Cdl_)t(:u’ Xx(0)=¢ (D; :j—l::—au, u(0)=f(&) (2)

FEq. (2) leads to: [u = (&) exp(—at)] and, thus, Eq. (1) gives:
dx

U= f(e™ = L dx = f (&) jo eldt =

[x(t) = @(1— e )+ & ]




The role of dissipation - Example Il (cont.)

For the breaking time we use: 3_2 =0, x(t) = E(l— e—at)+ £
d
Here:

d—X:O:>1+f('f)(l—eat):O:at:—ln[1+ 4 j:>

dé a (<)
&(5) = —iln(lJr f'?f)]] and breaking time: [’[b =min,_, {t(f)}]
4 ) )
: 1 a
t, =min, ——In[1+ , j}
. a '(S)
- /

This equation is valid in both cases,a=0anda >0



The role of dissipation - Example Il (cont.)

We have: t, =t (a)= min§>o i _éln[1+ f'?cf)j}
Casel:a=0:
t,(0) =lim, . t,(a) :”mfﬁO{ _%In(H f’?é)j}

1

14+ 2 jf'(g)
1 f'(£)

where we used L'Hopital’s rule Well-known result from
the dissipationless case




The role of dissipation - Example Il (cont.)

Casell:a>0: 3—;:03 1 d( 1 j:O:>

y 2 deltle)
solution independent of a )
We now compare: t,(a) = —%In[1+ f’?f)j’ t, (0) = — f%é:)

It remains to show that t,(a) > t,(0). If this holds, then:

1 ( a j 1 ( a ) a
——In| 1+ > — = In| 1+ <
a (<) (<) t'()) 1)

This inequality is valid because: In(1+x)< x, x<0

Note: f (X) = In(1+ X) is concave and g(X) = X is its tangent



