
Quasi-linear PDEs (II)

Shock waves emerging from 
localized initial data
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Localized initial condition - Example I
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t =0: identical map

As t the region of the plot x(ξ)

corresponding to points ξ where  
f ’<0 flattens

At t = tb the graph acquires a point 
with a horizontal tangent line

For t > tb there exists a region x- < x < x+

where each x corresponds to 3 ξ-values
and thus to three f(ξ)  u(x,t) values!



Example I (cont.) – the shock wave
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Example I (cont.) – the notion of the envelope
The boundary between multi- and single-valued regions in 
the xt-plane can be found by noticing that, at the relevant 
points, the plot of x(ξ) has a horizontal tangent line:
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The boundary can be determined by the elimination 

of ξ in the equations:   tfxtf )(,0)(1

The resulting curve(s) in the xt-plane is the envelope* of the 
characteristics, i.e., here,

* Envelope is a curve that touches and is tangent to a family of curves
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Example I (cont.) – characteristics and envelope
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Example I (cont.) – characteristics
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Breaking time:  0)()(/1)(min 0    ffttb

Here:

Example I (cont.) – breaking time
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Example I (cont.) – wave breaking points

The value of ξb is equal to the inflection point  xI of  f(x),  i.e.,  f ”(ξb ) = 0
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A more detailed look at the envelope
As noted above, the envelope can generally be determined 
by the elimination of ξ in the equations:
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Characteristics are given by

or                              and, thus, for the envelope

  tfx )(
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0 dGdtGdxGdG tx
along the envelope

0 (because the envelope is tangent to the family)

Indeed, from a geometry point of view, we have:
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Hence:



The envelope and a tractable example
Alternatively, from an analysis point of view, we have:

Consider two characteristics,                           , that intersect at           .   and

tfxtfx )(and)(  

),( tx

Then: 

and in the limit                   we obtain: 0 0)(1,)(  tftfx 

Example:

In some cases the envelope can be found analytically
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Consider the IVP: 
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The envelope and a tractable example – cont.

0)(1and)(  tftfx We will use the equations: 

to determine the breaking time and the envelope.
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Breaking time

Envelope



The envelope and a tractable example – cont.

To this end, the envelope is given by: 
t
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)exp()()0,(,0 2xxfxuuuu xt Consider the IVP: 

Localized initial condition - Example II
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Breaking time:  0)()(/1)(min 0    ffttb

Here:
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Thus: 



Example II (cont.) – wave breaking points

The value of ξb is equal to the inflection point  xI of  f(x),  i.e.,  f ”(ξb ) = 0

2/etB 

2bx
2

1
 bIx 

2

1
 bIx 



The role of dissipation - Example I

)exp()()0,(, 2

0 xuxfxuuuuu xt Consider the IVP: 

Here, the Hopf equation incorporates a linear dissipative term:
indeed, in the absence of nonlinearity, the solution is )exp( t

Question: Which values of u0 give rise to wave breaking? 
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On Γ: x=x(t) we have:

Thus, the 1st eq. leads to:
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The role of dissipation - Example I (cont.)
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Wave breaking occurs if:   0)(min 0    ttb

Here:

For the breaking time we use:
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Hence:



The role of dissipation - Example II

)()0,(, xfxuauuuu xt Consider the IVP: 

Again, the Hopf equation incorporates a dissipative term

)exp()( atfu  

Show that, for a > 0, the breaking time tb(a) is greater than 
the corresponding one, tb(0), for a=0, i.e., tb(a) > tb(0)
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Eq. (2) leads to:                                   and, thus,  Eq. (1) gives: 
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The role of dissipation - Example II (cont.)
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This equation is valid in both cases, a = 0 and a > 0
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Here:

For the breaking time we use:
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The role of dissipation - Example II (cont.)

We have:

Case I: a = 0:
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where we used L'Hôpital's rule Well-known result from 
the dissipationless case



The role of dissipation - Example II (cont.)

Case II: a > 0: 
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solution independent of a

We now compare:

It remains to show that tb(a) > tb(0). If this holds, then:
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This inequality is valid because:   0,1ln  xxx

Note:                             is concave and                 is its tangent  xxf  1ln)( xxg )(


