
Quasi-linear PDEs (III)

Conservation laws, shock dynamics 
and weak solutions



Conservation  laws
A conservation law has the general form: 
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where T(x,t) is the density of the conserved quantity and 
X(x,t) is the associated flux. 

Integrating with respect to x, the conservation law can be 
expressed in the following integral form:
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i.e., the rate of change of the density over an interval 
depends only on the flux through its end points

If X(x2,t)=X(x1,t) then                                     conserved quantityconst.),(  dxtxT
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Examples
1) Linearized KdV equation: )1(0 xxxt uu

This equation is already in the form of conservation law: 
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Also, from Parseval’s theorem, linear dispersive equations 
with real ω(k) conserve the energy [Can you show this?] 

Indeed, multiplying (1) by u we find: 
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2) Schrödinger equation: )2(0)(
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Multiplying (2) by     , its c.c. by    , and adding, we find:  

Examples – cont.

3) Hopf equation: )3(,0 xt uuu
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Additional comments on the Hopf equation 
Consider the Hopf equation: 

and assume that u(x,t) represents a density; then: 
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Using the conservation law and its integral form we obtain:

rate of change of mass net mass / flux 
through the endpoints

E.g., in the traffic flow problem: u(x,t) = traffic density; 
Rate of change of # of vehicles in [x1,x2]= 

{# of vehicles entering x1} - {# of vehicles leaving at x2}



Additional comments on the Hopf equation 

Assume that the initial data, f(x), has a finite mass:
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i.e.,  f(x)  0 rapidly as x . Then,

const.)()0,(),(  











dxxfdxxudxtxu

i.e., mass remains constant - and is equal to its initial value

What happens in the case of a shock,  
where u(x,t) displays a discontinuity?

Equal Area Rule: it ensures that the 

total mass of the shock wave solution
remains constant 



Shock waves and conservation laws
We wish to take the solution further in time, beyond t = tB, but 
do not want multi-valued solutions for both physical and  
mathematical reasons
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Discontinuities, i.e., shocks, can be introduced by considering 
the Hopf equation as coming from the above mentioned 
conservation law and its corresponding integral form:

This equation can support a shock 
wave since it is an integral relation. 

Assume that between two points 
x1 and x2 we have a discontinuity
that can change in time, x = s(t)
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Rankine-Hugoniot (RH) condition (I)
Then, we rewrite the integral form of the conservation law as: 

  0),(),(
2

1
),(),( 1

2

2

2

)(

)( 2

1






  txutxudxtxudxtxu

dt

d x

ts

ts

x

Next, using Leibnitz integral rule we obtain:
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Rankine-Hugoniot (RH) condition (II)

Thus:
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speed of the shock in terms of the jump discontinuities



Generalization of the RH condition
0)(  xt uucuConsider the Hopf equation: 

and assume that F is the antiderivative of c(u), i.e.,

Then, the Hopf equation can be written as the conservation law: 
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In this case, the Rankine-Hugoniot condition take the form: 










uu

tuFtuF

dt

ds ),(),(

where [g] denotes the jump of g along a discontinuity
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Rankine-Hugoniot condition - history 
They are named in recognition of work 

carried out by William Rankine (Scottish) 
in 1870 and Pierre Henri Hugoniot (French) 
in 1887

They were originally found by 
Sir George Stokes (Irish) in 1848 and 
Bernhard Riemann (German) in 1860

Lord Kelvin (Irish) and Lord Rayleigh 
(English) criticized Stokes’ work. 

Stokes thought that he was wrong and deleted that part when his 
collected works were published. The missing part was restored in 1966

W.Rankine P. Hugoniot

G. Stokes B. RiemannKelvin Rayleigh



RH condition and weak solutions (I)
The RH condition (also referred to as shock condition or jump 
condition), are used to avoid multi-valued behavior in the 
solution, which would otherwise occur after characteristics cross

We are interested in finding weak (or generalized) solutions  
featuring only essential discontinuities: the discontinuity curve   
x = s(t) is essential if characteristics from each side of x = s(t)  

intersect on s(t) as t grows.
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RH condition and weak solutions (II)
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To be more specific, consider the Hopf equation:   0)(  xt uFu

Then, a weak solution of the Hopf equation, valid for t  tb, is:
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Revisiting a previous example  
R),()0,(,0  xxfxuuuu xtConsider the IVP: 

Recall that  tb = 1 (and xb = 2) and the solution reads: 

Hence, at t = tb = 1 the solution becomes discontinuous 
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Revisiting a previous example – cont.  
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In particular, the solution has the form:

and for t = tb = 1 the solution reads:

Hence, for t > tb = 1, no classical solution exists

Nevertheless, we can construct a weak solution as follows



Constructing the weak solution

Observe that:
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The xt-plane and the weak solution
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The generalized solution
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Concluding, a generalized solution of the considered IVP is:

The classical solution for t < 1 reads:
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The weak solution for t  1 reads:
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Riemann problems
A Riemann problem is an initial value problem for a hyperbolic   
PDE (or a system thereof) in which the initial data is piecewise  
constant with a discontinuity

Examples
Consider the IVP:

with the following sets of discontinuous initial data:
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Riemann problem (I)
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In this case, the initial data is already 
the form of a shock wave. Indeed:
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Riemann problem (I) – cont.
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Riemann problem (II)
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However, we still have a problem: 
there exists a region on which 
there is not enough information! 

How should we define the 
solution in this region?
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Riemann problem (II) – cont.
One possibility:
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curve of discontinuity s(t)=t/2. Furthermore, this solution 

satisfies the RH condition along the curve of discontinuity.
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Riemann problem (II) – cont.
Another possibility:

Another possible weak solution of the problem can be found upon
filling the wedge 0 < x < t with another, similarity solution, of the 
Hopf equation. Such a similarity solution is of the form:
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Observing that the Hopf equation                         is invariant under 
the transformations                               , a simple calculation leads to:
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Riemann problem (II) – cont.

xt-plane and characteristics
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The Lax entropy condition
There exist at least two solutions of the Riemann problem (II), 
with the same initial data and hence the solution is not unique. 

Question: which one of these solutions is physically meaningful?

For our initial data, the wave is higher to the right. Consequently,
we expect the part of the wave to the right to move faster. Hence, 
physically, we do not want to allow for the 1st solution. Instead, 
we accept the 2nd one as a physically more realistic solution.

It can be proved that there exists a unique weak discontinuous 
solution of the Cauchy problem which satisfies the following 
inequality on the curve of discontinuity:
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Lax entropy condition

Criterion for a unique 
weak discontinuous solution



The Lax entropy condition – cont.

This condition states that the wave speed just behind the shock 
is greater than the wave speed just ahead of it. In other words, 
the wave behind the shock catches up to the wave ahead of it.
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This entropy criterion is a special case of the second law of 
thermodynamics: entropy increases across a shock. 

Geometrically, Lax entropy condition can be stated as follows:
The characteristics originating on either side of the discontinuity  
curve, when continued in the direction of increasing t, intersect 
the curve of discontinuity.

For every nonlinear IVP there exists a unique weak solution  
defined t  ≥  0 with only shock as a discontinuity. The proof 
is fairly difficult  and was provided by Lax (1973).


