
Data Structures & Algorithms
Finite State Machines-FSMs

Abstract model for coin operated telephone system

ε

State

Transition
Input/output

ε void

Set of symbols
{ε, 10, 20, 50}

Si

Finite State Machines-FSMs
• FSM is a 4-tuple (Q, q0, Next, Out)

• Q is a finite state of possible states

• q0 is the initial state

• Next is a function mapping the <state, input symbols> to states

• Out is a function mapping the <state, input symbols> to output symbols

There are Finite State Recognizers (FSRs) that get a limited number of input
sentences and we call the input set as alphabet

There are also the Finite State Generators (FSGs) that produce certain output
strings (a string/sentence = a set of output symbols, produced one-symbol/stage)

Non Deterministic FSM

r1

q1

r2
r0

q0 q2
q3

1->1->

1->

1-> 1-> 1->

1->

Non Deterministic FSM

r1

q1

r2
r0

q0 q2
q3

1->1->

1->

1-> 1-> 1->

1->

S0

1->

1->

Non Deterministic FSM

• NDFSM is a 4-tuple (Q, q0, Next, F)

• Q is a finite state of states

• q0 is the initial state

• F is a set of final states F ⊆ Q

• Next is a function defined on certain pairs (q, a) of states and input
symbols (a can be ε) and yields sets of possible next states (subsets of
Q). If Next is defined for (q, ε) then it is undefined for (q, b), b another
input symbol.

∀ NDFSM ∃ DFSM
Proof by construction: Let NDFSM (Q, q0, Next, F). Construct (Q’, qo’’ Next’, F’) so
that:

• Q’=2Q

• q0’={q0}

• Next’({q1, …, qr}, a) = Next(q1, a) ∪ … ∪ Next(qr, a) . The Next’({q1, …, qr}, a)
provides a transition to the state that represents the set {q1, …, qr}.

• F’={q’ ⊆ Q’ | q’ ∩ F ≠{} }. Final state is any state that contains a final state of the
original NDFSM

