Data Structures & Algorithms

Finite State Machines-FSMs




Abstract model for coin operated telephone system

(&

State

Transition
Input/output
€ void

Set of symbols
{e, 10, 20, 50}

I:]h" 0 5070 @
lﬂurl.']l

E-:}HIII
5£I
3&

?
10/10
1074 llZL'EI/ m"k

20720

(W'



Finite State Machines-FSMs

* FSM is a 4-tuple (Q, q, Next, Out)

* Qis a finite state of possible states

* g,is the initial state

* Next is a function mapping the <state, input symbols> to states

e Out is a function mapping the <state, input symbols> to output symbols

There are Finite State Recognizers (FSRs) that get a limited number of input
sentences and we call the input set as alphabet

There are also the Finite State Generators (FSGs) that produce certain output
strings (a string/sentence = a set of output symbols, produced one-symbol/stage)



Non Deterministic FSM

o r ry
O— )=~

1> N 1-> ) 1>
OO0
q

0 d; a, ds
1->




Non Deterministic FSM

.
0 ry ry
1-> 1->
”——_»—(O\K =Q—>
S ,
0 1_> /// 1_>

‘ O ____________
\ } |
1

1>

i N T
------------ —Q=- OO
q

0 d; a, ds
1>




Non Deterministic FSM

* NDFSM is a 4-tuple (Q, q, Next, F)
* Qis a finite state of states

* g,is the initial state

* Fis a set of final states FC Q

* Next is a function defined on certain pairs (q, a) of states and input
symbols (a can be €) and yields sets of possible next states (subsets of
Q). If Next is defined for (q, €) then it is undefined for (g, b), b another
input symbol.



V NDFSM 3 DFSM

Proof by construction: Let NDFSM (Q, q, Next, F). Construct (Q), q,”. Next’, F’) so
that:

° Q’:ZQ
* q,'={q,}

* Next’({q,, ..., 9,}, @) = Next(q,, a) U ... U Next(q, a) . The Next’({q,, ..., 9,}, a)
provides a transition to the state that represents the set {q,, ..., q,}-

* F={q' € Q' | g’ n F=#{}}. Final state is any state that contains a final state of the
original NDFSM



