Data Structures & Algorithms

Finite State Machines-FSMs




Abstract model for coin operated telephone system
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Finite State Machines-FSMs

* FSM is a 4-tuple (Q, q, Next, Out)

* Qis a finite state of possible states

* g,is the initial state

* Next is a function mapping the <state, input symbols> to states

e Out is a function mapping the <state, input symbols> to output symbols

There are Finite State Recognizers (FSRs) that get a limited number of input
sentences and we call the input set as alphabet

There are also the Finite State Generators (FSGs) that produce certain output
strings (a string/sentence = a set of output symbols, produced one-symbol/stage)



Non Deterministic FSM
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Non Deterministic FSM
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Non Deterministic FSM

* NDFSM is a 4-tuple (Q, q, Next, F)
* Qis a finite state of states

* g,is the initial state

* Fis a set of final states FC Q

* Next is a function defined on certain pairs (q, a) of states and input
symbols (a can be €) and yields sets of possible next states (subsets of
Q). If Next is defined for (q, €) then it is undefined for (g, b), b another
input symbol.
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Proof by construction: Let NDFSM (Q, q, Next, F). Construct (Q), q,”. Next’, F’) so
that:

° Q’:ZQ
* q,'={q,}

* Next’({q,, ..., 9,}, @) = Next(q,, a) U ... U Next(q, a) . The Next’({q,, ..., 9,}, a)
provides a transition to the state that represents the set {q,, ..., q,}-

* F={q' € Q' | g’ n F=#{}}. Final state is any state that contains a final state of the
original NDFSM



