Fibonacci Heap: Functions

MAKE-HEAP() creates and retums a new heap containing no elements.
INSERT(H. x) inserts element x, whose key has already been filled in, into heap H.
MINIMUM(H) retumns a pointer to the element in heap H whose key is minimum.

EXTRACT-MIN(H) deletes the element from heap H whose key is minimum, re-
turning a pointer to the element.

UNION(H,, H,) creates and returns a new heap that contains all the elements of
heaps H, and H,. Heaps H, and H, are “destroyed” by this operation.

In addition to the mergeable-heap operations above, Fibonacci heaps also support
the following two operations:

DECREASE-KEY (H.x.k) assigns to element x within heap H the new key
value k, which we assume to be no greater than its current key value.'

DELETE(H, x) deletes element x from heap H.

Fibonacci Heap: Complexity

Binary heap Fibonacci heap

Procedure (worst-case) (amortized)
MAKE-HEAP G(1) O(1)
INSERT G(lgn) e(1)
MINIMUM O(1) (1)
EXTRACT-MIN O(lgn) O(lgn)
UNION B (n) G(1)
DECREASE-KEY O(lgn) (1)

DELETE O(lgn) O(lg n)

Fibonacci Heap: Structure

H .min

Figure 19.2 (a) A Fibonacci heap consisting of five min-heap-ordered trees and 14 nodes. The
dashed line indicates the root list. The mimmum node of the heap is the node containing the key 3.
Black nodes are marked. The potential of this particular Fibonacci heapis 5+ 2-3 = 11. (b) A more
complete representation showing pointers p (up arrows), child (down arrows), and left and right
(sideways arrows). The remaining figures in this chapter omit these details, since all the information
shown here can be determined from what appears in part (a).

Fa-HEAP-INSERT (H. x)

x.degree = ()

x.p = NIL

x.child = NIL

x.mark = FALSE

if H.min== NIL
create aroot list for H contaning just x
H.min = x

else msert x nto H s root hist
if x.key < H_min key

H.min = x
Hn=Hn+1

-0 0 NN E W

Figure 19.3 Inserting a node into a Fibonacci heap. (a) A Fibonacci heap H. (b) Fibonacci heap H
after inserting the node with key 21. The node becomes its own min-heap-ordered tree and is then
added to the root list, becoming the left sibling of the root.

FIB-HEAP-UNION (H,. H,)

H = MAKE-FIB-HEAP()

H.min = H,.min

concatenate the root list of H, with the root list of H

if (H,.min==NIL)or (H,.min # NIL and H,.min.key < H,.min.key)
H.min = H,.min

Hn= H,.n+ H,.n

return H

~ N BN -

FIB-HEAP-EXTRACT-MIN(H)

z = H.min
if Z # NIL
for each child x of z
add x to the root list of H
xX.p = NIL
remove Z from the root list of H
if 2 == Z.right
H.min = NIL
else H.min = Z.right
CONSOLIDATE(H)
Hn=H.n-1
retum -

IO i & O 00 ~d O\ WA i 1D e

(b)

01 23

(d)

(h)

Figure 19.4 The actiom of FIB-HEAF-EXTRACT-MIN. (a) A Fibomaca heap M. ¢b) The simm-
ton after moving the minrmum aode 7 fom e root list and adding its children © the oot hat.
{chde) Thearmay Aand thetmes after exch of e fist drec itentions of the for loop of Ines 4 14 of
e procedure CONSOLIDATE. The procedux processes the root list by starting at ghe node pointed
o by H aminand following right pomters. Fach pant shows the valoes of w and x atthe end of an
fteraton. (f)-¢h) The next Reration of the for loop, with he valoes of wand x shown 2 the end of
exch iteration of the while loop of lines 7-13. Pazt) shows the stmation after he first tme dwough
Gewhilleloop. The node with key 23 has been linked w0 the node with key 7, which x now points to.
Inpxt (g) the node with key 17 has been linked ®0 the node with key 7, which x sall points 0. In
part (h), the node with key 24 has been linkad 10 the node with key 7. Since no node was previously
painted © by A[3], at the end of the for boop itemtion, A[3] 15 set to point 0 ghe root of the resalting
Tee.

G 7 i
Dl : a)

O

Figure 194, continued (i){1) The senxion afier cach of $e next Hor terations of &e for loop.
tm) Rbonacci heap H afier recconstrocting e root list fom the amay A and determining the new
H .mun pointer.

CONSOLIDATE(H)

I let AlO.. D(H . n)] be a new amay

2 fori = Oto D(H.n)

3 Ali] = NIL

4 for cach node w in the root list of H
5 X=w

6 d = x.degree

7 while A[d] # ~N1L

8 y = Ald] // another node with the same degree as x
9 if x.key > y.key

10 exchange x with ¥

11 Fig-HEAP-LINK(H, y.x)
12 Ald] = NIL

13 d=d+1

14 Ald] = x

15 H.min = NIL

16 fori = Oto D(H.n)
17 ¥ Alf] # N

18 if H.min==NIL

19 create a root list for H containing just A[i]
20 H.min = Ali]

21 ese insert Afi] ino H s root list

2 if Alil.key < H.min.key

23 H.min = Ali]

FIB-HEAP-LINK(H . y.x)

I remove y from the root list of H

2 make yachild of x, incrementing x_degres
3 y.mark = FALSE

FIB-HEAP-DECREASE-KEY (H . x k)

k> x.key
error “new key is greater than current key”
x.key = k
y=Xx.p
Ky #NLandx. key < y.key
Cut(H,x,y)
CASCADING-CUT(H. y)
i x.key < H.min key
H.min = x

Cur(H.x.y)

I remove x from the child list of y, decrementing y.degree
2 add x to the root istof /f

3 x.p = NIL

4 Xx.mark = FALSE

I E& W9 —-

CASCADING-CUT(H. ¥)

(a)

