27 Sorting Networks

In Part Il, we examined sorting algorithms for serial congpst(random-access
machines, or RAM’s) that allow only one operation to be exedat a time. In this
chapter, we investigate sorting algorithms based on a cosgmanetwork model
of computation, in which many comparison operations candséopmned simulta-
neously.

Comparison networks differ from RAM’s in two important resps. First, they
can only perform comparisons. Thus, an algorithm such astoay sort (see
Section 8.2) cannot be implemented on a comparison netwSdcond, unlike
the RAM model, in which operations occur serially—that inga@fter another—
operations in a comparison network may occur at the same timén parallel.”
As we shall see, this characteristic allows the constranaticcomparison networks
that sortn values in sublinear time.

We begin in Section 27.1 by defining comparison networks arithg) networks.
We also give a natural definition for the “running time” of angparison network
in terms of the depth of the network. Section 27.2 proves #eed-one principle,”
which greatly eases the task of analyzing the correctnessrtihg networks.

The efficient sorting network that we shall design is essaéinta parallel version
of the merge-sort algorithm from Section 2.3.1. Our corgtam will have three
steps. Section 27.3 presents the design of a “bitonic” sttt will be our basic
building block. We modify the bitonic sorter slightly in Sem 27.4 to produce
a merging network that can merge two sorted sequences igtsanted sequence.
Finally, in Section 27.5, we assemble these merging netioto a sorting net-
work that can sorh values inO(Ig? n) time.

27.1 Comparison networks

Sorting networks are comparison networks that always keit inputs, so it makes
sense to begin our discussion with comparison networks lagid ¢haracteristics.

27.1 Comparison networks 705

X ——> > X' = min(x, y) x 1 8 x = min(x, y)

comparator 3 7
y ——> ——> Y = max(X, Yy) y y = max(X,y)

(@) (b)

Figure 27.1 (a)A comparator with inputx andy and outputs<’ andy’. (b) The same comparator,
drawn as a single vertical line. Inputs= 7, y = 3 and outputs’ = 3, y’ = 7 are shown.

A comparison network is composed solely of wires and contpesaA compara-
tor, shown in Figure 27.1(a), is a device with two inpwtsndy, and two outputs,
x" andy’, that performs the following function:

/

= min(x,y),
max(x, y) .

Because the pictorial representation of a comparator inrgi@7.1(a) is too
bulky for our purposes, we shall adopt the convention of dngveomparators as
single vertical lines, as shown in Figure 27.1(b). Inputpesy on the left and
outputs on the right, with the smaller input value appeaonghe top output and
the larger input value appearing on the bottom output. Wethas think of a
comparator as sorting its two inputs.

We shall assume that each comparator operat€3(it) time. In other words,
we assume that the time between the appearance of the inpesxaandy and
the production of the output valugsandy’ is a constant.

A wire transmits a value from place to place. Wires can connect thpud
of one comparator to the input of another, but otherwise #reyeither network
input wires or network output wires. Throughout this chaptee shall assume
that a comparison network containsinput wires a, ay, . .., a,, through which
the values to be sorted enter the network, amditput wiresb,, b,, ..., b,, which
produce the results computed by the network. Also, we sipalak of theinput
sequencegay, ay, ..., &) and theoutput sequenceb,, by, ..., by), referring to
the values on the input and output wires. That is, we use time seame for both a
wire and the value it carries. Our intention will always bearl from the context.

Figure 27.2 shows aomparison networkwhich is a set of comparators inter-
connected by wires. We draw a comparison networkndnputs as a collection
of n horizontallines with comparators stretched vertically. Note that a linedoe
not represent a single wire, but rather a sequence of distinetswionnecting vari-
ous comparators. The top line in Figure 27.2, for exampleregents three wires:
input wire a;, which connects to an input of comparatér a wire connecting the
top output of comparatof to an input of comparatdC; and output wireb,, which
comes from the top output of comparator Each comparator input is connected

/

706

Chapter 27 Sorting Networks

a 9 by a 9 3 b,
A C A C
& 5 b, & 5 2 b,
E E
a3 2 bs a3 2 2 bs
B D B D
ay 6 b, ay 6 6 b,
depth 1 1
(a) (b)
al 9 5 2 bl al 9 5 2 2 bl
A C A C
a, 5 9 6 b, a, 5 9 6 5,
E E
a3 2 2 5 b3 as 2 2 5 6 b3
B D B D
a, 6 6 9 b, a, 6 6 9 9 b,
depth 1 1 2 2 depth 1 1 2 2 3

() (d)

Figure 27.2 (a)A 4-input, 4-output comparison network, which is in fact atsm network. At
time 0, the input values shown appear on the four input wiigsAt time 1, the values shown appear
on the outputs of comparatofsand B, which are at depth 1(c) At time 2, the values shown appear
on the outputs of comparatos and D, at depth 2. Output wireb; andbs now have their final
values, but output wires, andbg do not. (d) At time 3, the values shown appear on the outputs of
comparatorE, at depth 3. Output wirels) andbsz now have their final values.

to a wire that is either one of the networkisinput wiresa,, ay, .. ., a, Or is con-
nected to the output of another comparator. Similarly, eamhparator output is
connected to a wire that is either one of the netwonk®itput wiresby, by, . .., by,
or is connected to the input of another comparator. The nmegjnirement for in-
terconnecting comparators is that the graph of intercatimes must be acyclic: if
we trace a path from the output of a given comparator to thatiop another to
an output to an input, etc., the path we trace must never &ad& on itself and
go through the same comparator twice. Thus, as in Figure 2#f2Zan draw a
comparison network with network inputs on the left and nekwautputs on the
right; data move through the network from left to right.

Each comparator produces its output values only when botits afput val-
ues are available to it. In Figure 27.2(a), for example, sgpphat the sequence
(9, 5, 2, 6) appears on the input wires at time 0. At time 0, then, only caraiors
A and B have all their input values available. Assuming that eachparator re-
quires one time unit to compute its output values, compesatoand B produce
their outputs at time 1; the resulting values are shown iufe27.2(b). Note

27.1 Comparison networks 707

that comparatorsA and B produce their values at the same time, or “in paral-
lel.” Now, at time 1, comparator€ and D, but notE, have all their input values
available. One time unit later, at time 2, they produce toeitputs, as shown in
Figure 27.2(c). Comparatos and D operate in parallel as well. The top output
of comparatorC and the bottom output of comparatbr connect to output wires
b, andb,, respectively, of the comparison network, and these nétwotput wires
therefore carry their final values at time 2. Meanwhile, mgi2, comparatoE has

its inputs available, and Figure 27.2(d) shows that it poeduits output values at
time 3. These values are carried on network output wiseendbs, and the output
sequenc€2, 5, 6, 9) is now complete.

Under the assumption that each comparator takes unit timezan define the
“running time” of a comparison network, that is, the timeakes for all the output
wires to receive their values once the input wires receiairsh Informally, this
time is the largest number of comparators that any input eféroan pass through
as it travels from an input wire to an output wire. More forigalve define the
depthof a wire as follows. An input wire of a comparison network tBepth 0.
Now, if a comparator has two input wires with depthsanddy, then its output
wires have depth md#,, dy) + 1. Because there are no cycles of comparators in
a comparison network, the depth of a wire is well defined, aadlefine the depth
of a comparator to be the depth of its output wires. Figur@ 8hows comparator
depths. The depth of a comparison network is the maximumhdefpan output
wire or, equivalently, the maximum depth of a comparatore Thmparison net-
work of Figure 27.2, for example, has depth 3 because congratahas depth 3.

If each comparator takes one time unit to produce its outplutey and if network
inputs appear at time 0, a comparator at depgitoduces its outputs at tinte the
depth of the network therefore equals the time for the ndti@produce values at
all of its output wires.

A sorting networkis a comparison network for which the output sequence is
monotonically increasing (that is; < b, < --- < by,) for everyinput sequence.
Of course, not every comparison network is a sorting netwoui the network of
Figure 27.2 is. To see why, observe that after time 1, the mum of the four
input values has been produced by either the top output opacetorA or the top
output of comparatoB. After time 2, therefore, it must be on the top output of
comparatorC. A symmetrical argument shows that after time 2, the maxinoefim
the four input values has been produced by the bottom oufmaroparatorD. All
that remains is for comparat@ to ensure that the middle two values occupy their
correct output positions, which happens at time 3.

A comparison network is like a procedure in that it specifies/ltomparisons
are to occur, but it is unlike a procedure in thatsize—the number of comparators
that it contains—depends on the number of inputs and outphisrefore, we shall
actually be describing “families” of comparison networksr example, the goal

708

Chapter 27 Sorting Networks

of this chapter is to develop a familydRTER of efficient sorting networks. We
specify a given network within a family by the family name ah& number of
inputs (which equals the number of outputs). For examplentmput, n-output
sorting network in the family S8RTERis named ®RTERN].

Exercises

27.1-1
Show the values that appear on all the wires of the networkgfrE 27.2 when it
is given the input sequencs, 6, 5, 2).

27.1-2

Letn be an exact power of 2. Show how to construchanput, n-output compari-
son network of depth Ig in which the top output wire always carries the minimum
input value and the bottom output wire always carries theimam input value.

27.1-3

It is possible to take a sorting network and add a comparatdt; tesulting in a

comparison network that is not a sorting network. Show hoadd a comparator
to the network of Figure 27.2 in such a way that the resultisigvork does not sort
every input permutation.

27.1-4
Prove that any sorting network aninputs has depth at leastrig

27.1-5
Prove that the number of comparators in any sorting netwak(n Ig n).

27.1-6

Consider the comparison network shown in Figure 27.3. Ptoatit is in fact a
sorting network, and describe how its structure is relatethat of insertion sort
(Section 2.1).

27.1-7

We can represent aminput comparison network with comparators as a list af
pairs of integers in the range from 1rolf two pairs contain an integer in common,
the order of the corresponding comparators in the netwoudetermined by the
order of the pairs in the list. Given this representatiorsadde anO(n + ¢)-time
(serial) algorithm for determining the depth of a compamis@twork.

27.1-8 x
Suppose that in addition to the standard kind of comparater,introduce an
“upside-down” comparator that produces its minimum ouiputhe bottom wire

27.2 The zero-one principle 709

a by
) b,
a3 b3
3y by
8 bs
8 bg
a7 oo b,
8g l bg

Figure 27.3 A sorting network based on insertion sort for use in Exer2igd.-6.

and its maximum output on the top wire. Show how to convertsaming network
that uses a total of standard and upside-down comparators to one that aises
standard ones. Prove that your conversion method is correct

27.2 The zero-one principle

The zero-one principlesays that if a sorting network works correctly when each
input is drawn from the s€f0, 1}, then it works correctly on arbitrary input num-
bers. (The numbers can be integers, reals, or, in genenalsetrof values from
any linearly ordered set.) As we construct sorting netwankd other comparison
networks, the zero-one principle will allow us to focus orittoperation for input
sequences consisting solely of 0's and 1's. Once we haverootesd a sorting
network and proved that it can sort all zero-one sequenceshall appeal to the
zero-one principle to show that it properly sorts sequeéesbitrary values.

The proof of the zero-one principle relies on the notion of @nwtonically in-
creasing function (Section 3.2).

Lemma27.1

If a comparison network transforms the input sequeace (a;, a, ..., a,) into
the output sequende = (by, by, ..., by), then for any monotonically increasing
function f, the network transforms the input sequenc@) = (f(a;), f(a),
..., T(ap)) into the output sequenci(b) = (f (by), f(by),..., f(by)).

Proof We shall first prove the claim that if is a monotonically increasing
function, then a single comparator with input$x) and f (y) produces outputs
f (min(x, y)) and f (max(x, y)). We then use induction to prove the lemma.

710

Chapter 27 Sorting Networks

f(x) min(f(x), f(y)) = f(min(x, y))
f(y) max(f (x), f(y)) = f(max(x,y))

Figure 27.4 The operation of the comparator in the proof of Lemma 27.1e Tunction f is
monotonically increasing.

To prove the claim, consider a comparator whose input vadoes andy. The
upper output of the comparator is nfiy y) and the lower output is max, y).
Suppose we now applf(x) and f (y) to the inputs of the comparator, as is shown
in Figure 27.4. The operation of the comparator yields tHaevanin(f (x), f (y))
on the upper output and the value niéxx), f (y)) on the lower output. Sincé
is monotonically increasings < y implies f (x) < f(y). Consequently, we have
the identities

min(f(x), f(y)) = f(min(x,y)),
max(f(x), f(y)) = f(maxx,y)).

Thus, the comparator produces the valdémin(x, y)) and f (max(x, y)) when
f (x) and f (y) are its inputs, which completes the proof of the claim.

We can use induction on the depth of each wire in a general aosgm network
to prove a stronger result than the statement of the lemmeawifre assumes the
valuea when the input sequenaeis applied to the network, then it assumes the
value f (&) when the input sequendg(a) is applied. Because the output wires are
included in this statement, proving it will prove the lemma.

For the basis, consider a wire at depth 0, that is, an input sir The result
follows trivially: when f (a) is applied to the network, the input wire carriésg;).
For the inductive step, consider a wire at dedttwhered > 1. The wire is the
output of a comparator at depth and the input wires to this comparator are at a
depth strictly less thad. By the inductive hypothesis, therefore, if the input wires
to the comparator carry valugs anda; when the input sequenceis applied,
then they carryf () and f (a;) when the input sequencé(a) is applied. By
our earlier claim, the output wires of this comparator thamy f (min(a;, a;))
and f (max(a, a;)). Since they carry mi@;, a;) and maxa;, a;) when the input
sequence ig, the lemma is proved. [

As an example of the application of Lemma 27.1, Figure 27.8lfows the sort-
ing network from Figure 27.2 (repeated in Figure 27.5(a)hvtlhe monotonically
increasing functionf (x) = [x/2] applied to the inputs. The value on every wire
is f applied to the value on the same wire in Figure 27.2.

When a comparison network is a sorting network, Lemma 27dwal us to
prove the following remarkable result.

&
a3

Ay

27.2 The zero-one principle 711

9 5 2 2 b, a 5 3 1 1 b,
5 9 6 5 b, a, 3 5 3 3 b,
2 2 5 6 p 3 a; 1 1 3 3 p 3
6 6 9 9 b, a, 3 3 5 5 b,

@) (b)

Figure 27.5 (a)The sorting network from Figure 27.2 with input sequer@gs, 2, 6). (b) The
same sorting network with the monotonically increasingction f (x) = [x/2] applied to the in-
puts. Each wire in this network has the value fohpplied to the value on the corresponding wire
in (a).

Theorem 27.2 (Zero-one principle)
If a comparison network with inputs sorts all 2 possible sequences of O’'s and 1's
correctly, then it sorts all sequences of arbitrary numigersectly.

Proof Suppose for the purpose of contradiction that the netwarts sdl zero-one
sequences, but there exists a sequence of arbitrary nuithiaerthe network does
not correctly sort. Thatis, there exists an input sequéagce, . . ., a,) containing
elementsa; anda; such thata; < a;, but the network places; beforea; in the
output sequence. We define a monotonically increasing ifumdt as

_ 0 ifx=<a,
e = [1 itx > a .
Since the network placeg beforea; in the output sequence whéay, ay, . . ., a)
is input, it follows from Lemma 27.1 that it placega;) before f (&) in the output
sequence whexf (a1), f(az), ..., f(a,)) is input. But sincef(a;) = 1 and
f (&) = 0, we obtain the contradiction that the network fails to sbe zero-one
sequencéf (ap), f(ap), ..., f(an)) correctly. []
Exercises

27.2-1
Prove that applying a monotonically increasing functiom teorted sequence pro-
duces a sorted sequence.

27.2-2
Prove that a comparison network withinputs correctly sorts the input sequence
(n,n—1,..., 1) if and only if it correctly sorts then — 1 zero-one sequences

(1,0,0,...,0,0),(1,2,0,...,0,0),...,(1,1,1,...,1,0).

712

Chapter 27 Sorting Networks

Figure 27.6 A sorting network for sorting 4 numbers.

27.2-3
Use the zero-one principle to prove that the comparison ortwhown in Fig-
ure 27.6 is a sorting network.

27.2-4
State and prove an analog of the zero-one principle for astbgciree model.
(Hint: Be sure to handle equality properly.)

27.2-5
Prove that am-input sorting network must contain at least one compaitztbrveen
theith and(i + L)stlinesforalli =1,2,...,n—1.

27.3 A bitonic sorting network

The first step in our construction of an efficient sorting ratwis to construct a
comparison network that can sort anyonic sequencea sequence that monoton-
ically increases and then monotonically decreases, or easirbularly shifted to
become monotonically increasing and then monotonicalbyrefesing. For exam-
ple, the sequenced, 4, 6, 8, 3, 2), (6, 9, 4, 2, 3, 5), and(9, 8, 3, 2, 4, 6) are all
bitonic. As a boundary condition, we say that any sequengesbfl or 2 numbers
is bitonic. The zero-one sequences that are bitonic haveplesistructure. They
have the form QLI 0% or the form 101 1%, for somsi, j, k > 0. Note that a sequence
that is either monotonically increasing or monotonicalgcrbasing is also bitonic.

The bitonic sorter that we shall construct is a comparisawvoek that sorts
bitonic sequences of 0’s and 1's. Exercise 27.3-6 asks yshdw that the bitonic
sorter can sort bitonic sequences of arbitrary numbers.

The half-cleaner

A bitonic sorter is composed of several stages, each of wisiatalled ahalf-
cleaner Each half-cleaner is a comparison network of depth 1 in twhnput
linei is compared with liné +n/2 fori = 1,2,...,n/2. (We assume that is

bitonic

27.3 A bitonic sorting network 713

O—ee———0 O—ee———0

0 0 \ bitonic, 0 0 bitoni

1 0 clean 1 1 itonic
1 0 L 1 0

bitonic

1 1 1 1

0 0 bitoni 1 1 | bitonic,
0 1 itonic 1 1 [clean
0O————e— 1 0O————e— 1

Figure 27.7 The comparison network ALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be diténhalf-cleaner ensures that ev-
ery output element of the top half is at least as small as evetgut element of the bottom half.
Moreover, both halves are bitonic, and at least one haliiarcl

even.) Figure 27.7 showsAilF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.

When a bitonic sequence of 0's and 1's is applied as input w@ifacteaner, the
half-cleaner produces an output sequence in which smeadleles are in the top
half, larger values are in the bottom half, and both halveskéonic. In fact, at
least one of the halves ean—consisting of either all 0’s or all 1's—and it is from
this property that we derive the name “half-cleaner.” (Nibigt all clean sequences
are bitonic.) The next lemma proves these properties ofdlainers.

Lemma 27.3

If the input to a half-cleaner is a bitonic sequence of O’s disd then the output
satisfies the following properties: both the top half andiibtom half are bitonic,
every element in the top half is at least as small as everyesiewf the bottom
half, and at least one half is clean.

Proof The comparison network ALF-CLEANER[N] compares inputs and
i+n/2fori = 1,2,...,n/2. Without loss of generality, suppose that the in-
put is of the form 00..011...100...0. (The situation in which the input is of
the form 11..100...011...1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1's in which thdpaint n/2 falls,

and one of these cases (the one in which the midpoint occting iblock of 1's) is
further split into two cases. The four cases are shown inreigi.8. In each case
shown, the lemma holds. [

714 Chapter 27 Sorting Networks

bitonic

bitonic

bitonic

bitonic

{
{
{

divide

bottom

top

o
Hin

bottom

top
0]

bottom

top

bottom

compare

@

(b)

(©)

(d)

bottom

combine

top top
Y T e - n TS
o

top
I ‘""""E“I.
0]

bottom

top
0]

top

bottom

bottom

B

EEIE

o] o]

—_ —_ —_ —_

0

H
0

bitonic,
clean

bitonic

bitonic

bitonic,
clean

bitonic,
clean

bitonic

bitonic,

clean

bitonic

Figure 27.8 The possible comparisons inAdF-CLEANER[N]. The input sequence is assumed
to be a bitonic sequence of 0's and 1's, and without loss oeg#ity, we assume that it is of the
form 00...011...100...0. Subsequences of O’s are white, and subsequences of HsagreWe

can think of then inputs as being divided into two halves such thatifet 1, 2,...,n/2, inputsi

andi + n/2 are compared(a)—(b) Cases in which the division occurs in the middle subsequence
of 1's. (c)—(d) Cases in which the division occurs in a subsequence of 0’s.afF@ases, every
element in the top half of the output is at least as small asyeslement in the bottom half, both
halves are bitonic, and at least one half is clean.

27.3 A bitonic sorting network 715

L 0 0 0 T 0

BiToNic- — 0 0 0 o 0

SorTERIN/2] | 1 0 0 o o

HALF- — o 1 0 0 l 0

__| CLEANER[N] - bitonic 1 1 1T 0 sorted

BiToNic- — 0 0 0 o 1

SorTER[N/2] | 0 1 1 4 1

N X N

@

—
O
~

Figure 27.9 The comparison network IBoONIC-SORTERN], shown here fon = 8. (a) The re-
cursive construction: KHLF-CLEANER[N] followed by two copies of BroNic-SORTERN/2] that
operate in parallel(b) The network after unrolling the recursion. Each half-cleais shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in FigRve9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The fiegjest
of BITONIC-SORTERN] consists of HhLF-CLEANER[N], which, by Lemma 27.3,
produces two bitonic sequences of half the size such thay etement in the
top half is at least as small as every element in the bottorh FAdius, we can
complete the sort by using two copies offBNIC-SORTERN/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion hantsthown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to shevpthgressively smaller
half-cleaners that make up the remainder of the bitonieesoithe depthD (n) of
BITONIC-SORTERN] is given by the recurrence

0 fn=1,

D(n): D(n/2)+1 ifn:zk andel,

whose solution i (n) = Ign.

Thus, a zero-one bitonic sequence can be sortediitpMCc-SORTER, which
has a depth of Ig. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary remsilsan be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of lengtre there?

716 Chapter 27 Sorting Networks

27.3-2
Show that BToNIC-SORTERN], where n is an exact power of 2, contains
@ (nlgn) comparators.

27.3-3
Describe how arO(lg n)-depth bitonic sorter can be constructed when the num-
bern of inputs is not an exact power of 2.

27.3-4

If the input to a half-cleaner is a bitonic sequence of aslbjtmumbers, prove that
the output satisfies the following properties: both the talf &ind the bottom half
are bitonic, and every element in the top half is at least aallsam every element
in the bottom half.

27.3-5

Consider two sequences of 0’s and 1's. Prove that if everpehd in one sequence
is at least as small as every element in the other sequers®,otie of the two
sequences is clean.

27.3-6

Prove the following analog of the zero-one principle foiobit sorting networks:
a comparison network that can sort any bitonic sequencesafriil 1's can sort any
bitonic sequence of arbitrary numbers.

27.4 A merging network

Our sorting network will be constructed fromerging networks which are net-
works that can merge two sorted input sequences into onedsottput sequence.
We modify BITONIC-SORTERN] to create the merging network BRGERN]. As
with the bitonic sorter, we shall prove the correctness efrtierging network only
for inputs that are zero-one sequences. Exercise 27.4slyaskto show how the
proof can be extended to arbitrary input values.

The merging network is based on the following intuition. &ivtwo sorted se-
guences, if we reverse the order of the second sequence emddhcatenate the
two sequences, the resulting sequence is bitonic. For deamgpen the sorted
zero-one sequence$ = 00000111 andr = 00001111, we revers¥ to get
YR =11110000. Concatenating and YR yields 0000011111110000, which is
bitonic. Thus, to merge the two input sequengeandy, it suffices to perform a
bitonic sort onX concatenated with R,

sorted

sorted

27.4 A merging network 717

al 40070 bl al 40070 bl
0 0 0 0
=) b, o v b, L
3 1 0 by bitonic 3 1 0 by bitonic
a, 1 IO b, vitonic | % 1 0 p,
itonic
a5 O -l b5 as 1 1 b8
0 L b bitoni a; -0 O b, bitoni
itonic itonic
; 0 0 b, ag 0 1 be
3g Lte— 1 by a; -0 oL b
(@) (b)

Figure 27.10 Comparing the first stage of BRGERN] with HALF-CLEANER[N], for n = 8.
(a) The first stage of MRGER] transforms the two monotonic input sequen¢as &, . . . , @n/2)

and(an;241, @/2+2; - - - » an) into two bitonic sequencedy, by, ..., bn/2) and(bn 241, bn/242,
..., bn). (b) The equivalent operation for ALF-CLEANER[N]. The bitonic input sequence

(a1, @, .-, 8n/2-1, 82, @, 81, - - - » 8n/242, 8n/2+1) IS transformed into the two bitonic se-
quencesbla b25 ey bn/2) and <bn, bnfla ey bn/2+1)

We can construct MRGERN] by modifying the first half-cleaner of BoNic-
SoRTERN]. The key is to perform the reversal of the second half of tiyguts
implicitly. Given two sorted sequencesy, a, ..., an2) and (an/24+1, @242,

.., an) to be merged, we want the effect of bitonically sorting theusace
(@1, @, ..., 82, 8n, Bn_1, ..., 8n/2+1). Since the first half-cleaner ofiBONIC-
SORTERN] compares inputs andn/2 + i, fori = 1,2,...,n/2, we make the
first stage of the merging network compare inpuendn — i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the ofdbe outputs from
the bottom of the first stage of BRGERN] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reves$a bitonic sequence
is bitonic, however, the top and bottom outputs of the firagstof the merging
network satisfy the properties in Lemma 27.3, and thus theatal bottom can be
bitonically sorted in parallel to produce the sorted outpfithe merging network.

The resulting merging network is shown in Figure 27.11. Qhbyfirst stage of
MERGERN] is different from BTONIC-SORTERN]. Consequently, the depth of
MERGERN] is Ig n, the same as that ofiBoNIC-SORTERN].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging netaogpecifically, show
that a comparison network that can merge any two monotdyigaireasing se-

718 Chapter 27 Sorting Networks

— 0 0 0 i 0

BiTonic- — ; 0 0 O &0

SorTERN/2] | sortedy 1 14 o

. — 1 o O 3
I I - sorted

. L 0 o 1 1 T 1

BiTonic- — ; 1 1 1o 1

SorTERN/2] | sortedy 1 14 4

- 1 1 '

(@) (b)

Figure 27.11 A network that merges two sorted input sequences into ortedsoutput sequence.
The network MERGERn] can be viewed as BoNIc-SoORTERNn]with the first half-cleaner altered to
compare inputsandn—i+1fori =1,2,...,n/2. Heren = 8. (a) The network decomposed into
the first stage followed by two parallel copies aff®Nic-SORTERN/2]. (b) The same network with

the recursion unrolled. Sample zero-one values are showheowires, and the stages are shaded.

guences of 0's and 1's can merge any two monotonically irsingasequences of
arbitrary numbers.

27.4-2
How many different zero-one input sequences must be appmid¢de input of a
comparison network to verify that it is a merging network?

27.4-3
Show that any network that can merge 1 item with 1 sorted items to produce a
sorted sequence of lengtihmust have depth at leastrig

27.4-4 x

Consider a merging network with inpuds, ay, . . ., a,, for n an exact power of 2,

in which the two monotonic sequences to be merged(@reas, ..., a,_1) and
(ap, &y, ..., &,). Prove that the number of comparators in this kind of merging
network isQ(nlgn). Why is this an interesting lower boundRlifit: Partition the
comparators into three sets.)

27.4-5
Prove that any merging network, regardless of the order plts requires
Q(nlg n) comparators.

27.5 A sorting network 719

27.5 A sorting network

We now have all the necessary tools to construct a netwotlkctrasort any input
sequence. The sorting network 8TER n] uses the merging network to implement
a parallel version of merge sort from Section 2.3.1. The tanson and operation
of the sorting network are illustrated in Figure 27.12.

Figure 27.12(a) shows the recursive construction oREHRN]. The n input
elements are sorted by using two copies @RSERN/2] recursively to sort (in
parallel) two subsequences of lengtf2 each. The two resulting sequences are
then merged by MRGERN]. The boundary case for the recursion is wireg 1,
in which case we can use a wire to sort the 1-element sequeince,a 1-element
sequence is already sorted. Figure 27.12(b) shows thet @fsuhrolling the re-
cursion, and Figure 27.12(c) shows the actual network nbthby replacing the
MERGERDboxes in Figure 27.12(b) with the actual merging networks.

Data pass through g stages in the network GRTERn]. Each of the indi-
vidual inputs to the network is already a sorted 1-elemequeece. The first
stage of ®RTERN] consists ofn/2 copies of MERGER2] that work in parallel to
merge pairs of 1-element sequences to produce sorted sexguehlength 2. The
second stage consists 0f4 copies of MMRGER4] that merge pairs of these 2-
element sorted sequences to produce sorted sequencegttf4erin general, for
k=12, ...,lgn, stagek consists oh/2X copies of MERGER2X] that merge pairs
of the X~1-element sorted sequences to produce sorted sequencegibf £ At
the final stage, one sorted sequence consisting of all tha irgtues is produced.
This sorting network can be shown by induction to sort zame-eequences, and
consequently, by the zero-one principle (Theorem 27.2antsort arbitrary values.

We can analyze the depth of the sorting network recursiv&lye depthD (n)
of SORTERN] is the depthD(n/2) of SORTERN/2] (there are two copies of
SOoRTERN/2], but they operate in parallel) plus the deptmlgf MERGERN].
Consequently, the depth ob®TERN] is given by the recurrence

D(n) = 0 ifn=1,
~|D(/2)+Ign ifn=2Xandk > 1,

whose solution iD(n) = O(Ig?n). (Use the version of the master method given
in Exercise 4.4-2.) Thus, we can sarhumbers in parallel ifD(Ig? n) time.
Exercises

27.5-1
How many comparators are there inSTERN]?

720 Chapter 27 Sorting Networks
o B 7MERGEI{2]7] B
7 SorTER[N/2] B o " |Merced4]| | B
o B 7MERGEI{2]7] B
o MERGERN] B o o] MERGEHR8]
o B 7MERGEI{2]7]
7 SorTER[N/2] B o " |Merced4]| | B
o B 7MERGEI{2]7] B
@) (b)
o 0 o 0 S
1 0
0 l 1 - l 0 l 0
g0l + o
0 l 1 l 1 . l 0
I 4 0 gy L. . o
0 l 1 - l 0 l 1
oy0ld,0 .1
0 l 0 l 1 l 1
depth 1 2 2 3 4 4 4 4 55 6

©

Figure 27.12 The sorting network SRTERN] constructed by recursively combining merging net-
works. (&) The recursive constructioifb) Unrolling the recursion(c) Replacing the MRGERboxes
with the actual merging networks. The depth of each comparaindicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of &RTERN] is exactly(lgn)(Ilgn + 1)/2.

27.5-3

Suppose that we hava2lementsay, ay, . . . , @,) and wish to partition them into
then smallest and tha largest. Prove that we can do this in constant additional
depth after separately sortiffg;, a, . .., a,) and{ani1, a2, ..., an).

27.5-4

Let S(k) be the depth of a sorting network withinputs, and letM (k) be the
depth of a merging network withkAnputs. Suppose that we have a sequenag of
numbers to be sorted and we know that every number is wikhpnsitions of its
correct position in the sorted order. Show that we can serhthumbers in depth
S(k) + 2M (k).

Problems for Chapter 27 721

27.5-5 %
We can sort the entries of an x m matrix by repeating the following proceduke
times:

1. Sort each odd-numbered row into monotonically incregasirder.
2. Sort each even-numbered row into monotonically deangasider.

3. Sort each column into monotonically increasing order.

How many iterationk are required for this procedure to sort, and in what order
should we read the matrix entries after thiterations to obtain the sorted output?

Problems

27-1 Transposition sorting networks
A comparison network is &ansposition networkif each comparator connects
adjacent lines, as in the network in Figure 27.3.

a. Show that any transposition sorting network witinputs has (n?) compara-
tors.

b. Prove that a transposition network withnputs is a sorting network if and only
if it sorts the sequencén, n — 1, ..., 1). (Hint: Use an induction argument
analogous to the one in the proof of Lemma 27.1.)

An odd-even sorting networknn inputs(ay, ay, . . . , a,) is a transposition sorting
network withn levels of comparators connected in the “brick-like” pattdtus-
trated in Figure 27.13. As can be seen in the figurejfer1,2,...,n andd =
1,2,...,n,linei is connected by a depthcomparator to ling =i + (—1)'*9 if
1<j<n.

c. Prove that odd-even sorting networks actually sort.

27-2 Batcher’'s odd-even merging network

In Section 27.4, we saw how to construct a merging networkdas bitonic sort-
ing. In this problem, we shall construct add-even merging networkNe assume
thatn is an exact power of 2, and we wish to merge the sorted sequéetements
on lines(ay, ay, ..., a,) with those on linesa, 1, @2, ..., an). If n =1, we
put a comparator between linasanda,. Otherwise, we recursively construct two
odd-even merging networks that operate in parallel. Therfierges the sequence
onlines{ay, as, ..., a,_1) with the sequence on linég, 1, a3, ..., an_1) (the
odd elements). The second mergas ay, . .., &) With (a2, an4, ..., an) (the

722

Chapter 27 Sorting Networks

] by
& b,
£ bs
3y b,
as bs
3 bg
ay b,
ag bg

Figure 27.13 An odd-even sorting network on 8 inputs.

even elements). To combine the two sorted subsequencesytveeqomparator
betweeray anday ., fori =1,2,...,n—1.

a. Draw a d-input merging network fon = 4.

b. Professor Corrigan suggests that to combine the two souieskesjuences pro-
duced by the recursive merging, instead of putting a conpaleetweenay;

anday 1 fori = 1,2,...,n— 1, one should put a comparator betwegn ;
anday fori = 1,2,...,n. Draw such a g-input network forn = 4, and

give a counterexample to show that the professor is mistakdémnking that
the network produced is a merging network. Show that ténput merging
network from part (a) works properly on your example.

c. Use the zero-one principle to prove that anyi@put odd-even merging net-
work is indeed a merging network.

d. What is the depth of arRinput odd-even merging network? What is its size?

27-3 Permutation networks

A permutation networkon n inputs andn outputs has switches that allow it to
connect its inputs to its outputs according to any ofth@ossible permutations.
Figure 27.14(a) shows the 2-input, 2-output permutatiomoek P,, which con-
sists of a single switch that can be set either to feed itstingtnaight through to its
outputs or to cross them.

a. Argue that if we replace each comparator in a sorting netwatk the switch
of Figure 27.14(a), the resulting network is a permutatietwork. That is, for

Problems for Chapter 27 723

Pg
1-H P, a1
2 || —— 2
3 >< 3
4 4

(| 7
—PoN— 8 1 8

@) (b)

Figure 27.14 Permutation networks(a) The permutation networlP,, which consists of a sin-
gle switch that can be set in either of the two ways shows). The recursive construction d?g
from 8 switches and twd?4’'s. The switches andP’s are set to realize the permutatian =
(4,7,3,5,1,6,8,2).

any permutationz, there is a way to set the switches in the network so that
inputi is connected to output(i).

Figure 27.14(b) shows the recursive construction of anpBHin8-output permuta-
tion network Pg that uses two copies &, and 8 switches. The switches have been
set to realize the permutation= (z (1), 7 (2),...,7(8)) = (4,7,3,5,1, 6, 8, 2),
which requires (recursively) that the tdp realize (4, 2, 3, 1) and the bottonP,
realize(2, 3,1, 4).

b. Show how to realize the permutatid®, 3,4, 6, 1, 8, 2, 7) on Pg by drawing the
switch settings and the permutations performed by theRym

Let n be an exact power of 2. Defing, recursively in terms of twdP,2’s in a
manner similar to the way we defindl.

c. Describe anO(n)-time (ordinary random-access machine) algorithm tha set
the n switches connected to the inputs and output®pénd specifies the per-
mutations that must be realized by edéh, in order to accomplish any given
n-element permutation. Prove that your algorithm is correct

724

Chapter 27 Sorting Networks

d. What are the depth and size 8? How long does it take on an ordinary
random-access machine to compute all switch settinggydiray those within
the Py/2's?

e. Argue that forn > 2, any permutation network—not ju$,—must realize
some permutation by two distinct combinations of switcliisgs.

Chapter notes

Knuth [185] contains a discussion of sorting networks andrtshtheir history.
They apparently were first explored in 1954 by P. N. Armst;oRg J. Nelson,
and D. J. O’Connor. In the early 1960’s, K. E. Batcher discesid¢he first network
capable of merging two sequencesiafumbers inO(Ig n) time. He used odd-even
merging (see Problem 27-2), and he also showed how thisitpehoould be used
to sortn numbers inO(lg2 n) time. Shortly afterward, he discovered @{lg n)-
depth bitonic sorter similar to the one presented in Se@ibB. Knuth attributes
the zero-one principle to W. G. Bouricius (1954), who proveid the context of
decision trees.

For a long time, the question remained open as to whethertmgaretwork
with depthO(Ig n) exists. In 1983, the answer was shown to be a somewhat unsat-
isfying yes. The AKS sorting network (named after its depels, Ajtai, Komlés,
and Szemerédi [11]) can sarhumbers in depti® (Ig n) usingO(nlg n) compara-
tors. Unfortunately, the constants hidden by Menotation are quite large (many
thousands), and thus it cannot be considered practical.

