Thread(s)

A Thread is the smallest sequence of instructions that can be handled as an independent
control program by the OS low level scheduler. States as the processes.

* Advantages:
* Parallelize calculations within the same address space

* Easier to create/complete
* Exploit any surplus of computing and 1/O resources by overlapping.

Thread Usage - Word

Processor
T
|"f/|:’-|| -Hl.'l
SRR
| N
R, -~ LT:]
[ik

A word processor program with three threads.

LLL- A -l T e

.+ =1
Dispatcher thraad
whorker thresd T
} LHLTHY
Wb page cachs
—
L Karnal
Ferne ::' RiIALGE
Matwork
Qonnechign

Fizure 2-H. A malisthreaded Web =erver.

Models to construct a Server

Model Characteristics/Features
* Threads Parallelism, blocking system calls
* Single-Thread No parallelism, blocking system calls
* Finite-State Machine Parallelism, non blocking system calls, interrupts

e A process can have: an input thread, a processing thread, and an output thread
* The input thread reads data into an input buffer.

* The processing thread takes data out of the input buffer, processes them, and puts the
results in an output buffer.

* The output buffer writes these results back to disk.
e Result: input, output, and processing can all be going on at the same time.

* This model works only if a system call blocks only the calling thread, not the entire
process

Processes and Threads
Multithreading: multiple threads in a single process

e Fissass O oot 3 Ao s

MEcess 1
Lignr |
HeIn

o |

- ! Kmmrm Kzl

ol (o]

Figure 2-11. (a) Thres processes cach wich Cne theesd. (b Oné progess with
three throsds,

Process Items

e Address space

* Global Variables

* Open Files

* Child processes

* Signals & Signal Handlers
* Accounting Information

Thread Items
Program Counter
Registers

Stack

State

Threads and their Stacks

Thresd 2

Threed 1 H Thraad 3
ﬁF‘:‘ﬂﬂE‘EE

Thread 35 stack

Thraad 1's
[

|IEEE standard 1003.1c (Posix Threads) The threads package is called Pthreads

Pthreads function calls (most common)

Process Items

* Pt
* Pt
* Pt
* Pt
* Pt
* Pt

nread_create
nread_exit
nread_join
nread_vyield
hread_attr_init

nread_attr_destroy

Thread Items

Create a new thread

Ter minate the calling thread

Wait for a specific thread to exit

Release the CPU to let another thread run

Create and initialize a thread’s attribute structure
Remove a thread’s attribute structure

Threads in User Space

* The kernel manages the processes (as single-threaded)
* OS without Threads -> Threads by a Library
* Threads are call by a run-time system procedure

* Faster tread-switching (no trap, no context switching)
Process Thigad

* Process: custom tread mgt algrorithm \ f

* Disadvantages o
* Blocking system calls, e.g. reading from e

the keyboard (if nothing, then it blocks)
Select: check if it is safe

Read: following a safe select. Kamssl | o
Additional code: S j:IH_ N
Jacket or Wrapper \

For v Thread Froass
sysiam =k Iaklo

Threads in the Kernel Space
* No run-time system needed

* New threads: by kernel call
* Threads are implemented as system calls (costly)
* Threads switch: different processes

* Threads destroy: not runnable to keep

Thread

their data structure for another \E
of the same type
* Upon blocked system call another of the

same process will run

e Signals directed to processes:

associate each thread with signals

Kernel

Pruces::/
table

+
Thread
table

Hybrid Implementations

* The programmer optimizes the combination
* Flexibility

Multipla usar thraads
on a kerngl thread

rermnel <— Kemal thread

Pop-up Threads

* Distributed Systems

* Creation of a new thread when
e Before message arrives
» After message arrives

* Most cases in Kernel space

message arrives

P i Teoad
Froonax e 0 T T] -
_ IESINIRINE IR e
=EFIng ol
FreodTi 1] T3 Z=1d J
I
M O Dl

L&

