
Thread(s)
• A Thread is the smallest sequence of instructions that can be handled as an independent

control program by the OS low level scheduler. States as the processes.

• Advantages:
• Parallelize calculations within the same address space

• Easier to create/complete

• Exploit any surplus of computing and I/O resources by overlapping.

Models to construct a Server

Model Characteristics/Features

• Threads Parallelism, blocking system calls

• Single-Thread No parallelism , blocking system calls

• Finite-State Machine Parallelism, non blocking system calls, interrupts

• A process can have: an input thread, a processing thread, and an output thread

• The input thread reads data into an input buffer.

• The processing thread takes data out of the input buffer, processes them, and puts the
results in an output buffer.

• The output buffer writes these results back to disk.

• Result: input, output, and processing can all be going on at the same time.

• This model works only if a system call blocks only the calling thread, not the entire
process

Processes and Threads
Multithreading: multiple threads in a single process

Process Items Thread Items

• Address space Program Counter

• Global Variables Registers

• Open Files Stack

• Child processes State

• Signals & Signal Handlers

• Accounting Information

Threads and their Stacks

IEEE standard 1003.1c (Posix Threads) The threads package is called Pthreads

Pthreads function calls (most common)

Process Items Thread Items

• Pthread_create Create a new thread

• Pthread_exit Ter minate the calling thread

• Pthread_join Wait for a specific thread to exit

• Pthread_yield Release the CPU to let another thread run

• Pthread_attr_init Create and initialize a thread’s attribute structure

• Pthread_attr_destroy Remove a thread’s attribute structure

Threads in User Space
• The kernel manages the processes (as single-threaded)

• OS without Threads -> Threads by a Library

• Threads are call by a run-time system procedure

• Faster tread-switching (no trap, no context switching)

• Process: custom tread mgt algrorithm

• Disadvantages
• Blocking system calls, e.g. reading from

the keyboard (if nothing, then it blocks)
• Select: check if it is safe

• Read: following a safe select.

Additional code:

Jacket or Wrapper

Threads in the Kernel Space
• No run-time system needed

• New threads: by kernel call

• Threads are implemented as system calls (costly)

• Threads switch: different processes

• Threads destroy: not runnable to keep

their data structure for another

of the same type

• Upon blocked system call another of the

same process will run

• Signals directed to processes:

associate each thread with signals

Hybrid Implementations
• The programmer optimizes the combination

• Flexibility

Pop-up Threads
• Distributed Systems

• Creation of a new thread when message arrives
• Before message arrives

• After message arrives

• Most cases in Kernel space

