
© 2020 Renesas Electronics Corporation. All rights reserved.

EMBEDDED SYSTEMS
BASED ON CORTEX-M4 AND THE RENESAS

SYNERGY PLATFORM

2020

PROF. DOUGLAS RENAUX, PHD

PROF. ROBSON LINHARES, DR.

UTFPR / ESYSTECH

RENESAS ELECTRONICS CORPORATION

© 2020 Renesas Electronics Corporation. All rights reserved. Page 2

12 WEEK COURSE OUTLINE (1/2)

1) Introduction

 What are embedded systems

 Characteristics

 Sample Market Segments

 The IoT Era

2) Computer Architecture

 RISC vs CISC

3) ARM Cortex-M Architecture

 Block Diagram

 Registers

 Instruction set

 Memory access

 Exception handling

4) Memory

 SRAM

 DRAM (SDRAM, DDR)

 ROM/EEPROM/Flash

5) Timer and GPIO

 Timer

 PWM

 GPIO

 Simple drivers (e.g. LED, Relay)

 Power drivers (motors)

6) Interrupt Controller

© 2020 Renesas Electronics Corporation. All rights reserved. Page 3

12 WEEK COURSE OUTLINE (2/2)

7) Analog Interfacing

 ADC / DAC

8) Serial Communication

 UART

 SPI

 I2C

9) CAN

 Physical interface

 Stack

10) USB

 Physical interface

 Stack

11) Ethernet

 Physical interface

 Stack

12) Software Development

 Software Process

 UML Class Diagram

 UML State Machine Diagram

13) Concurrent Programming

 Tasks / Context Switching, Scheduling

 Semaphores, Signals / Messages

 Common problems to avoid: deadlock, priority inversion

14) RTOS

 Thread Management

 Inter-thread communication and synchronization

 Timing Services

 Memory Management

© 2020 Renesas Electronics Corporation. All rights reserved. Page 4

LIST OF LABS – BASED ON SK-S7G2

 Lab1 – Synergy Installation - try demo program on the S7G2 board. Requirements: none.

 Lab2 – Sample C program - means to access hardware peripherals; memory organization of a C program. Requirements:

Section 5.

 Lab3 – Assembly Programming ATPCS - access from C a function written in assembly. Requirements: Section 5.

 Lab4 – Peripheral Sample device driver. Requirements: Section 6.

 Lab5 – Serial Communication. Requirements: Section 8.

 Lab6 – Display and Touch. Requirements: Section 8.

 Lab7 – RTOS. Requirements: Section 14.

 Lab8 – USB Device. Requirements: Section 14.

 Lab9 – IoT. Requirements: Section 14.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 5

DISCLAIMER

 This course material was developed to contribute to the several forms of training in the area of Embedded Systems, but

particularly with undergraduate courses such as Electrical Engineering, Computer Engineering and Computer Science.

 Contents can be freely copied and distributed to students both for commercial and non-commercial purposes, as long as:

 Credit to original work mentioning authors and Renesas as the distributor of this work.

 The contents can be freely modified to suit the needs of specific courses, all figures made by the authors may be freely

used without modification as long as credited; likewise, all figures authored by Renesas may be freely used without

modification as long as credited. All figures from other sources, if used in derived work or in other works must request

authorization from the original author/copyright holder.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 6

AUTHORS

 The authors: Douglas Renaux and Robson Linhares are faculty at UTFPR in the subjects of Embedded Real-Time

Systems and Computer Architecture and Organization.

UTFPR is the Brazilian Federal University of Technology.

 eSysTech – Embedded Systems Technologies is a company providing engineering and training services in the area of

Embedded Systems. It is a spin-off of the Laboratory of Innovation and Technology in Embedded Systems of UTFPR.

 Renesas is a major player in the semiconductor market. They have been providing significant support for educational

material such as this one. Renesas has worldwide non-exclusive distribution rights for this material.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 7

OVERVIEW AND PREREQUISITES

 This Embedded Systems course is organized into theory and practice parts. There are 12 theory sections and 9 labs. The

labs solutions can be made available to instructors. All labs are conceived to be developed on the Renesas SK-S7G2

board, based on an ARM Cortex-M4F MCU.

 The course assumes that the students have previous knowledge on:

 C programming for embedded systems

 Microcontrollers and assembly programming (on an architecture other than ARM)

 Digital Systems

 Digital communications and networks

© 2020 Renesas Electronics Corporation. All rights reserved. Page 8

1 – INTRODUCTION

1. What are Embedded Systems

2. Characteristics

3. Market Segments

4. The IoT Era

© 2020 Renesas Electronics Corporation. All rights reserved. Page 9

WHAT ARE EMBEDDED SYSTEMS?

An Embedded System (a.k.a. Embedded Computing System) is a computing system that is built-into (i.e. embedded)

a larger device, such as an equipment, a system, or a vehicle.

Embedded Systems (ES) are usually application-specific and have real-time constraints; thus, many ES are also real-time

systems. Often, ES are used in control loops: reading sensors, processing data, and generating outputs that control the

device they are embedded into. Finite State Machines are commonly used to model the behavior of ES.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 10

CHARACTERISTICS OF EMBEDDED SYSTEMS (1/4)

Typical characteristics of an Embedded System are:

1. Microcontroller based system consisting of a processor,

non-volatile memory (Flash), volatile memory (RAM), and a large number of inputs and output interfaces as well as

communication channels.

2. Cost effective implementations as many device architectures are cost-driven.

3. Energy efficient solutions as many devices are battery powered. Current trend is to develop battery-less devices that

harvest energy from the environment.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 11

CHARACTERISTICS OF EMBEDDED SYSTEMS (2/4)

4. Heterogeneous. While desktop computers are based on standard platforms (Windows PC, Apple IOS, ...) there is a

large variety of hardware and software for embedded systems.

5. Variety of restrictions to the design solutions, such as:

a) Physical: Size, Weight, Temperature Range, Vibration, Dust, Spills, Water;

b) Computational resources: processing speed, non-volatile memory, RAM, available I/O;

c) Response time.

6. Interconnected. Embedded devices and systems are ever more interconnected to each other. Trend is to increase the

interconnection rate (IoT).

© 2020 Renesas Electronics Corporation. All rights reserved. Page 12

CHARACTERISTICS OF EMBEDDED SYSTEMS (3/4)

7. Reliability

The ability of a system or component to function under stated conditions for a specified period of time.

8. Availability

The ability of a system or component to function at a specific moment of interval of time.

9. Maintainability

Measures how easily and how fast a system can be restored to operational status after a failure.

10. Testability

The degree to which a system or component facilitates the establishment of test criteria and the performance of tests to

determine whether those criteria have been met.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 13

CHARACTERISTICS OF EMBEDDED SYSTEMS (4/4)

11. Scalability

The ability of a system to handle increased workload by repeatedly and cost-effectively adding components to extend the

system´s capacity.

12. Safety

Concerns the requirement: not to harm people, the environment or other assets.

13. Security

The ability of a system to protect information and system resources with respect to integrity and confidentiality.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 14

CHARACTERISTICS OF EMBEDDED SYSTEMS

Relationship among 22 of the most common ilities:

to read about this graph: Book Chapter about the Ilities: Chapter 4 from "Engineering Systems: Meeting Human Needs in a

Complex Technological World" by de Weck O., Roos D. and Magee C, MIT Press, January 2012 (http://strategic.mit.edu)

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=12746

© 2020 Renesas Electronics Corporation. All rights reserved. Page 15

SAMPLE MARKET SEGMENTS

 Consumer Electronics

 Telecommunications

 Home Automation

 Industrial Automation

 Transportation

 Avionics

 Navigation

 Electric Vehicles

 Defense

 Medical Equipment

 ??? (many new areas to come)

source: Renesas DevCon2015

© 2020 Renesas Electronics Corporation. All rights reserved. Page 16

CONSUMER ELECTRONICS

 Phones

 Videogame consoles

 Printers

 Digital cameras

 Audio/Video:

 Television

 Music Players

 Home Entertainment Systems

 BRD players

source: pixabay.com (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 17

HOUSEHOLD APPLIANCES

 Washing Machines

 Dishwasher

 Air Conditioners

 Microwave Oven

source: pixabay.com (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 18

TELECOMMUNICATIONS

 Routers

 Satellite Phones

 Switches

source: wikimedia.org (CC)

source: pixabay.com (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 19

HOME AUTOMATION

source: pixabay.com (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 20

TRANSPORTATION – AVIONICS

Glass cockpit of the

Airbus A350 XWB

source: flickr (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 21

TRANSPORTATION – NAVIGATION

 Automotive GPS

 Electronic Compass

source: Renesas

© 2020 Renesas Electronics Corporation. All rights reserved. Page 22

TRANSPORTATION – AUTOMOTIVE

source: community.arm.com

© 2020 Renesas Electronics Corporation. All rights reserved. Page 23

TRANSPORTATION – AUTOMOTIVE

source: Renesas

© 2020 Renesas Electronics Corporation. All rights reserved. Page 24

MEDICAL EQUIPMENT

 CT Scanners

 ECG (Electrocardiogram)

 Blood Glucose Monitor

 Blood Pressure Monitor

 Body Composition Analyzer

source: Renesas

© 2020 Renesas Electronics Corporation. All rights reserved. Page 25

THE IOT ERA

source: Renesas

© 2020 Renesas Electronics Corporation. All rights reserved. Page 26

TRENDS

Five-year gap from state of the

art to MCU technology

source: Renesas

© 2020 Renesas Electronics Corporation. All rights reserved. Page 27

EMBEDDED SYSTEMS ARCHITECTURE – GENERIC MODEL

 One of the important characteristics of Embedded Systems (ES) is its diversity. Hence, a truly generic model for an ES

does not exist.

 The model presented here attempts to represent a large set of the existing ES. Hence, it is adequate to understand

Embedded Systems concepts.

suggested reading: (see IEEEXplore.ieee.org)

D. Renaux, F. Pottker, "Applicability of the CMSIS-RTOS Standard to the Internet of Things", 10th Workshop

on Software Technologies for Future Embedded and Ubiquitous Systems - SEUS/ISORC 2014, June 2014.

http://ieeexplore.ieee.org/document/6899161

© 2020 Renesas Electronics Corporation. All rights reserved. Page 28

EMBEDDED SYSTEMS ARCHITECTURE GENERIC MODEL
Embedded Apps

App1 App2 App N

Localization
Services

Navigation
Services

Movement
Services

Security
Services

Storage
Services

Energy
Mngt

Services

Communication Services

TCP/
IP

USB CAN

RTOS – Architecture Independent Layer

HAL

Low-Level Platform API

BLE NFC
...

SoC Processor Memory

Digital I/O Analog I/O Comm. Energy Mng ...

Programmable HW Devices (FPGA,...)

External HW

Sensors Comm InterfacesHMI Storage

GPS
INS
compass
gyroscope
accelerometer
magnetometer
barometer
RFID tag

servo motor
step-motor
solenoid
muscle wire

touch
mouse
microphone
keyboard
LCD/LED
speaker

Flash
SSD
HDD
SD

WiFi
BT
BLE
WiMax
ANT
6LoWPAN
NFC
RFID reader

Eth
USB
CAN
RS-232
RS-422/485
ARINC
MIL-1553

Actuators1. hardwired HW

2. softwired HW

3. HW Abstraction
 Layer

RTOS – Architecture Dependent Layer
5. RTOS – lower layer
(arch dependent)

6. RTOS – upper layer
(arch independent)

HW / HAL Adaptation Layer4. HAL wrapper

RTOS Adaptation Layer7. RTOS wrapper

8. Services

9. Application

...

...

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 29

1. HARDWIRED HW

 This level is composed of hardware devices

(MCU, Memory, I/O, connectors) whose

connection is determined by the copper

traces on a PCB, hence, not changeable after

fabrication.

 Currently, a significant portion of the HW functionality

of an ES is integrated into a SoC (System on Chip).

External HW consists of the remaining HW not in the

SoC and comprises, among others, sensors,

actuators, Human-Machine Interface devices, Storage

devices, and a large variety of communication

interfaces.

Skywire Renesas Synergy PMOD Kit

© 2020 Renesas Electronics Corporation. All rights reserved. Page 30

2. SOFT WIRED HW

 In contrast to Level 1, the soft wired HW level consists

of components whose connection is programmable,

hence, can be modified at any time.

 Currently, the most common programmable devices

are FPGAs, however, a variety of programmable logic

devices (PLD) are available: FPGA, CPLD, GAL, PAL,

PLA, and even ROM.

 The two hardware layers (1 and 2) compose the

physical part of an embedded system. The remaining

layers (3 to 9) are software layers.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 31

SOFTWARE LAYERS

The upper layers (3 to 9) are software layers.

Embedded Systems Software have two distinct characteristics:

1. Typically the development environment (compiler toolchain) generates a single binary file that integrates all software

components: device drivers, libraries (RTOS, Services, ...) and the Application. Hence, avoiding the process of reading

an executable file and loading it on memory.

2. While on desktops applications are changed and upgraded quite frequently, in embedded systems, typically a single

multitasking application is executed along the life of the device. Upgrades may occur but are much less frequent.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 32

3. HARDWARE ABSTRACTION LAYER

 The HAL is comprised of a set of functions that directly access the hardware devices. These functions are also called

device drivers.

 A well-designed HAL provides to the upper levels a standardized interface, providing an easy interchange of devices. For

instance, if all communication devices have the same API then replacing a comm. interface (such as SPI) for another

(such as I2C) is straightforward. The Renesas SSP (Synergy Software Package) is an example of such.

 Developing a device driver for the HAL requires expertise in both hardware and software. Such a development is a

complex and time-consuming task typically performed in C and sometimes mixing with assembly language.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 33

4. ADAPTATION LAYER

 An Adaptation Layer (or Wrapper) is a means of providing a common interface for different device drivers.

 If a HAL is not carefully designed, or if device drivers from different vendors are integrated in the same solution, then the

software interface to the upper level may not be regular, meaning that different devices have access functions with

different signatures. Such a scenario poses severe difficulties for portability and changes.

 The adaptation layer is a simple translation layer aiming at converting the non-standard interface to a standardized one.

Such a translation can often be done at compile time, hence, not imposing any runtime penalty.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 34

5. AND 6. RTOS

 Embedded Operating Systems have significant differences to O.S. used in desktop computers, including a very small

memory footprint and a reduced amount of functionality. Most embedded O.S. have to provide support for real-time

systems, hence, they are termed RTOS (Real-Time Operating System).

 The implementation of a well designed RTOS has at least two layers, so that different software modules implement the

architectural dependent code and the architectural independent code. This approach improves modularity and improves

the portability to other architectures.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 35

7. RTOS ADAPTATION LAYER

This is a wrapper that translates the API of a given RTOS to a standard API, such as CMSIS-RTOS. Once a standard API is

provided to the upper levels, all of the software in the Services and Application layers can be reused in different platforms

without rewriting the calls to the RTOS.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 36

8. SERVICES

 To cope with the large amount of functionality implement by software in current Embedded Systems, code reuse is almost

mandatory. Thus, off-the-shelf software components are integrated to form the final solution. Typically, these components

come in the form of libraries that are linked at compile time.

 A large variety of software components is available providing functionality for: TCP/IP stacks, USB stacks, communication

protocols, georeferencing, navigation, security, storage, among many others.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 37

9. APPLICATION LAYER

 The top layer of the model is the Application Layer. This is the software layer that implements the specific functionality of

each embedded system.

 In this layer, several concurrent tasks cooperate to provide the required functionality. Concurrent programming is the

most common approach to cope with the software complexity of current Embedded Systems.

 The RTOS provides the management of the concurrency, among many other services.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 38

2 – COMPUTER ARCHITECTURE – RISC VS CISC

 Computer Generations

 The RISC Paradigm

© 2020 Renesas Electronics Corporation. All rights reserved. Page 39

DEFINING “COMPUTER”

Computer =

a device, or person, who performs a computation, i.e. a sequence of calculations according to an algorithm.

Hence, we consider Generation 0 of computers the generation that precedes the electronic device currently known as

computer.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 40

COMPUTER GENERATIONS

Generation Description

0 Mechanical and Electromechanical Devices

1
40’s – Vacuum tubes

ENIAC, Zuse

2
50’s – Transistors

Manchester University, IBM 350

3

60’s – SSI Integrated Circuits (logic gates)

Apollo Guidance Computer

IBM System/360, Digital VAX

4 70’s – Microprocessor

5
2010’s? – quantic / organic / optical???

AI

© 2020 Renesas Electronics Corporation. All rights reserved. Page 41

RESEARCH PRECEDING THE RISC PARADIGM SHIFT

 Careful examination of the execution of actual programs concluded that:

 Often, complex instructions were not used and the equivalent effect was obtained by a sequence of simpler

instructions.

 The inclusion of a single complex instruction in the instruction set could impact overall performance by imposing a lower

clock rate.

 Since the instructions did not have a regular execution sequence (i.e. each one had its execution determined by its

microcode) the implementation of a pipeline was close to impossible.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 42

RESEARCH PRECEDING THE RISC PARADIGM SHIFT

What is the final goal?

 From the user’s perspective, the goal is performance of the application programs

 RISC thesis: a processor whose instruction set is made of simple instructions with a regular execution, allowing the

implementation

of a pipeline, will have a higher performance than a CISC

(Complex Instruction Set Computer)

recommended reading:

Computer Architecture: A Quantitative Approach 6th Edition

by John L. Hennessy, David A. Patterson

© 2020 Renesas Electronics Corporation. All rights reserved. Page 43

RISC ARCHITECTURAL FEATURES

Features that characterize the RISC paradigm are:

 An instruction set with a reduced number of very simple instructions.

 LD/ST architecture, meaning that only two instructions (and their variants) access memory: LD (load) reads data from

memory, and ST (store) saves data to memory.

 All other instructions operate on registers. There is a large number of general-purpose registers, avoiding access to

memory.

 All instructions follow the same logical execution sequence. Hence, a pipelined architecture can be implemented,

significantly improving performance. Typically 1 instruction is executed every clock cycle.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 44

PIPELINING

Requirements for the implementation of a Pipeline in a processor:

 The instruction set must be designed so that all instructions have the same execution steps

 Instructions must be regular with respect to:

 Size

 Addressing modes

 Decoding

 Operands

© 2020 Renesas Electronics Corporation. All rights reserved. Page 45

PIPELINING

Example of a Pipeline with 5 stages:

1. Fetch

2. Decode and read operands in

registers

3. Use ALU to execute instruction or to

calculate memory address

4. Read or Write to memory

5. Write result back to Register file

Remark: not all instructions use step 4

and 5 source: wikimedia.org (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 46

BENEFITS OF PIPELINING

For the previous example of a 5 stage

pipeline, the

execution over time is presented in this

diagram.

Note that although each instruction

takes 5 clock cycles to execute, due

to pipelining, after filling the pipeline,

on every clock another instruction

finished its execution.

Effectively, the number of instructions

executed per second is the same as

the clock rate.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 47

LIMITATIONS OF PIPELINING

 Data Hazard:

if an instruction requires as input a value produced by the previous instruction,

this value may not be available at stage 2 (decode and fetch operands) since

the previous instruction only saves its results at stage 5.

Solutions: stall the pipeline (instruction must wait for result of previous)

OR use a technique called bypassing to forward the result of the

previous instruction at stage 3 of its execution

OR reorder instructions to avoid this dependency

 Control Hazard:

a change of control flow (e.g. a branch instruction) causes the pipeline to be

flushed, meaning that following instructions that already were fetched and

decoded will be discarded.

Consequence:

the average number of instructions

executed per second is lower than

the clock rate.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 48

COMPARING RISC X CISC

RISC CISC

Instruction set has a reduced number of instructions Instruction set has a large number of instructions

Instructions are very simple Instructions are complex, i.e. have a high semantic content

Large number of general purpose register Small number of registers

Instruction codes have fixed size Instructions are coded in a variable number of bytes

Instruction decoding is very simple and typically performed

by a table in ROM

Instruction decoding is complex

Instruction execution is simple, typically requiring a single

clock cycle

Instruction execution is complex and typically uses

microprogramming, i.e. interpretation by microcode

Regular execution of the instructions Execution steps varies from instruction to instruction

Execution time is regular, typically a single clock cycle Execution time varies significantly among instructions

Architecture is prone to the use of a pipeline in the

implementations, resulting in N times performance

improvement (N is the number of pipeline stages).

Architecture is not prone to the use of Pipeline.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 49

COMPARING RISC X CISC

When the same source program is compiled to a RISC processor and to a CISC processor:

 The number of machine instructions of the compiled program is typically larger on the RISC

 The size of the compiled program (measured in bytes) is typically larger on the RISC

 The performance (inverse of the time to execute the program) is typically better on the RISC

© 2020 Renesas Electronics Corporation. All rights reserved. Page 50

COMPARING RISC X CISC

From a HW perspective, the design of a RISC processor is significantly simpler than that of a CISC:

 Shorter design cycle,

 Lower number of transistors to implement,

 Less area on silicon die.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 51

ECONOMICS OF INTEGRATED CIRCUITS MANUFACTURING

The cost of a chip is determined mainly by:

 Cost of the die (cost of manufacturing a wafer divided by the number of good dies per wafer)

 Testing costs (both for die testing and testing after packaging)

 Packaging costs

 Yield (percentage of functional chips).

© 2020 Renesas Electronics Corporation. All rights reserved. Page 52

ECONOMICS OF INTEGRATED CIRCUITS MANUFACTURING

Curve shows how many transistors

can be purchased with one dollar

for each manufacturing technology

over time.

This graph represents the situation

in 2018. At the time, the most cost-

effective technology was 20 nm.

Over time, as the processes

mature, transistors cost lowers.

Until a given technology enters

obsolescence.

source: economist.com

© 2020 Renesas Electronics Corporation. All rights reserved. Page 53

ECONOMICS OF INTEGRATED CIRCUITS MANUFACTURING

Key design decision:

If currently the “sweet spot” (best value for money) is a given manufacturing technology and a transistor

count of T millions transistors, what is the best use for this asset?

1. CISC core + little Cache/Memory/Peripherals

2. RISC core + large amount of Cache/Memory/Peripherals

Most silicon vendors select the second alternative

© 2020 Renesas Electronics Corporation. All rights reserved. Page 54

RISC VS CISC TODAY

Currently, there is a trend to mix the best features of both paradigms. The convergence of RISC and

CISC has not been named yet, but the characteristics of novel processors are:

 Large instruction set

 Regular instructions, prone to pipelining

 Pipelines from 3 to 20 stages

 No microcode

© 2020 Renesas Electronics Corporation. All rights reserved. Page 55

RISC VS CISC TODAY

Instruction set of Cortex-M

including Cortex-M23 and

Cortex-M33

source: ARM

ARM Cortex-M for Beginners - Yiu

© 2020 Renesas Electronics Corporation. All rights reserved. Page 56

3 – ARM CORTEX-M ARCHITECTURE

 History of ARM

 Cortex-M Features

 Cortex-M Instruction Set Architecture

 Instruction Set

 Memory Access

 Memory-mapped I/O

 Exception Handling

© 2020 Renesas Electronics Corporation. All rights reserved. Page 57

3.1 – ARM HISTORY

 Over time, several ARM

architecture versions were

released. From the seminal ARMv1

to the ARMv8.3-A, released in

2017. The documentation of these

standards is available on the

arm.com website.

 For each architectural version there

are several implementations

Cortex-M0 Cortex-M3 Cortex-M23
Cortex-M0+ Cortex-M4 Cortex-M33

Cortex-M7

© 2020 Renesas Electronics Corporation. All rights reserved. Page 58

source: ARM

The Future is in

Your Hands -

Peter Middleton

© 2020 Renesas Electronics Corporation. All rights reserved. Page 59

ARM PROCESSOR FAMILY

source: ARM

ARM Cortex-M for

Beginners - Yiu

© 2020 Renesas Electronics Corporation. All rights reserved. Page 60

THE CORTEX-M FAMILY

source: community.arm.com

© 2020 Renesas Electronics Corporation. All rights reserved. Page 61

THE CORTEX-M FAMILY

source: community.arm.com

In 2016, the Cortex-M33 and Cortex-

M23 were added to the Cortex-M

family.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 62

3.2 – CORTEX-M FEATURES

Among the distinguishing features of the Cortex-M architecture are:

 3-stage pipeline (except for Cortex-M7): Fetch, Decode, Execute,

 Harvard architecture (except for Cortex-M0 and M0+),

 Designed for power efficiency (includes an ultra low-power deep sleep),

 Thumb-2 instruction set, combining ARM performance and Thumb code density,

 Interrupt Controller (NVIC) is defined in the architecture; low latency vectored interrupt servicing,

 Interrupt servicing with tail-chaining and late arrival functionalities,

 Bit-banding to provide faster bit operations in memory and memory mapped I/O,

 MPU = Memory Protection Unit,

 Most instructions can be conditional.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 63

3.2 – CORTEX-M FEATURES

 The ARM7TDMI had two instructions sets:

 ARM - with 32-bit instructions, higher performance and lower code density,

 Thumb - with 16-bit instructions, lower performance and higher code density.

 Cortex-M has a single instruction set: Thumb-2

 It mixes 16-bit and 32-bit instructions. Its code density is similar to Thumb

and its performance is similar to ARM.

source: ARM

The ARM Architecture - Joe Bungo

© 2020 Renesas Electronics Corporation. All rights reserved. Page 64

3.2 – CORTEX-M FEATURES

source: ARM

ARM Cortex-M Processor Family

© 2020 Renesas Electronics Corporation. All rights reserved. Page 65

source: ARM

The ARM

Architecture - Joe

Bungo

© 2020 Renesas Electronics Corporation. All rights reserved. Page 66

3.2 – CORTEX-M FEATURES

source: ARM

The ARM

Architecture - Joe

Bungo

© 2020 Renesas Electronics Corporation. All rights reserved. Page 67

3.2 – CORTEX-M FEATURES

source: ARM

How to Choose Your

ARM Cortex-M Processor

- Tim Menasveta

© 2020 Renesas Electronics Corporation. All rights reserved. Page 68

3.2 – CORTEX-M FEATURES

source: ARM

The ARM Architecture - Joe Bungo

Cortex-M4 Pipeline

© 2020 Renesas Electronics Corporation. All rights reserved. Page 69

3.2 – CORTEX-M FEATURES

Cortex-M4 Pipeline – example for optimal execution

source: ARM

ARM Cortex-M3 Introduction

- ARM University Relations

© 2020 Renesas Electronics Corporation. All rights reserved. Page 70

3.2 – CORTEX-M FEATURES

Cortex-M4 Pipeline – pipeline flush due to indirect branch (no forwarding)

source: ARM

ARM Cortex-M3 Introduction

- ARM University Relations

© 2020 Renesas Electronics Corporation. All rights reserved. Page 71

3.2 – CORTEX-M FEATURES

Cortex-M4 Pipeline – Harvard architecture allows for concurrent access to code and data memory.

source: ARM

ARM Cortex-M3 Introduction

- ARM University Relations

© 2020 Renesas Electronics Corporation. All rights reserved. Page 72

3.3 – CORTEX-M4 INSTRUCTION SET ARCHITECTURE

The Instruction Set Architecture (ISA) presents the Programmer’s View of the processor, including:

 Data types

 Processor Modes

 Processor Registers

 Instruction Set

 Memory Accessing

 Exception Processing

© 2020 Renesas Electronics Corporation. All rights reserved. Page 73

3.3 – CORTEX-M4 ISA

The Cortex-M4 instruction set can operate on the following data types:

 bit: stores a single bit of information (0 or 1).

Bit banding instructions can set or clear bits in specific memory regions.

 byte: 8-bit. Each byte in memory is individually addressable.

 half-word: 16-bit. The address of a half-word in memory is the address of its least significant byte.

 word: 32-bit. The address of a word in memory is the address of its least significant byte.

 double-word: 64-bit. Requires a register pair to be stored, such as R1:R0 (concatenation of R1 and R0 with R1 being

the most significant word). The address of a double-word in memory is the address of its least significant byte.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 74

3.3 – CORTEX-M4 ISA

The Cortex-M4 processor modes are:

 Privileged Thread -

mainly for OS execution

 Unprivileged Thread -

mainly for Application code

 Privileged Handler -

for exception handling code

Remark: there are two stacks: Main and

Process.

The usage of these stacks is related to the

processor mode.

source: ARM

ARM Cortex-M for Beginners - Yiu

© 2020 Renesas Electronics Corporation. All rights reserved. Page 75

3.3 – CORTEX-M4 ISA

The Cortex-M4 has two stacks:

 Main stack - addressed by MSP (Main Stack Pointer)

mainly to be used by the Operating System (OS) and exception handlers.

 Process stack - addressed by PSP (Process Stack Pointer)

mainly to be used by the Application threads.

Only one stack is active at any given time, as selected by the CONTROL register. Register R13 (SP) maps to the active

stack pointer, either MSP or PSP.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 76

3.3 – CORTEX-M4 ISA

source: ARM

ARMv7-M

Architecture

Reference Manual

© 2020 Renesas Electronics Corporation. All rights reserved. Page 77

3.3 – CORTEX-M4 ISA – REGISTERS

The register set of the Cortex-M4 consists of:

 General Purpose Registers (R0-R15)

 Floating Point Registers (S0-S31)

 Special Registers (xPSR, PRIMASK, FAULTMASK, BASEPRI,

CONTROL)

All registers are 32-bit wide. Not all bits of the Special Registers

are implemented.

source: ARM

ARM Cortex-M for Beginners - Yiu

© 2020 Renesas Electronics Corporation. All rights reserved. Page 78

3.3 – CORTEX-M4 ISA – REGISTERS

General Purpose Registers:

 32-bit wide

 Low registers: R0 .. R7

 High registers: R8 .. R15

 Special usage:

R13 or SP is the Stack Pointer - points to the top of the stack

R14 or LR is the Link Register - stores the procedure return address

R15 or PC is the Program Counter - stores the address of the next instruction fetch

© 2020 Renesas Electronics Corporation. All rights reserved. Page 79

3.3 – CORTEX-M4 ISA – REGISTERS

General Purpose Registers:

 the general-purpose registers are accessible by most instructions;

 b0 is the Least Significant Bit (LSb) and b31 is the Most Significant Bit (MSb);

 a register can hold an unsigned integer with values from 0 to 4,294,967,295

or a signed integer with values from -2,147,483,648 to 2,147,483,647;

 when using hexadecimal notation, a 32-bit register holds 8 hex digits. E.g. 0x1234 5678;

 Cortex-M architecture uses 32-bit memory addresses, hence, a single general-purpose register can hold a memory

address.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 80

3.3 – CORTEX-M4 ISA – REGISTERS

Special Purpose Registers - XPSR

 The three registers APSR, IPSR and EPSR can be accessed individually or combined as XPSR.

source: ARM

ARMv7-M Architecture Reference Manual

© 2020 Renesas Electronics Corporation. All rights reserved. Page 81

3.3 – CORTEX-M4 ISA – APSR

source: ARM

ARMv7-M Architecture Reference Manual

APSR = Application Program Status Register

Flag bit Description

N 31 Negative. For two’s complement results this bit is set to indicate that the result is negative.

Z 30 Zero. This bit is set when the result is zero. After a comparison, this bit is set to indicate that the

compared values are equal.

C 29 Carry. Set to indicate that the result of an unsigned addition produced overflow. Also set to

indicate that un unsigned subtraction underflowed.

V 28 Overflow. Set to indicate overflow in a signed arithmetic operation.

Q 27 Saturation bit. For DSP extension instructions.

GE 19:16 Greater than or Equal. For SIMD instructions.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 82

3.3 – CORTEX-M4 ISA – IPSR

source: ARM

ARMv7-M Architecture Reference Manual

IPSR = Interrupt Program Status Register

Field bit Description

Exception

Number

8 : 0 This field identifies the exception that is currently active (being serviced). The value 0 indicates

that no exception is currently active.

If this value is non-zero the processor is in Handler mode.

If this value is zero the processor is in Thread mode.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 83

3.3 – CORTEX-M4 ISA – EPSR

source: ARM

ARMv7-M Architecture Reference Manual

EPSR = Execution Program Status Register

Field bit Description

T 24 Thumb. This bit is set to indicate that the instruction set in use is Thumb.

On Cortex-M this bit must be set all the time or an exception occurs.

On ARM7TDMI, Cortex-R and Cortex-A this bit is 0 when the ARM instruction set is in use.

ICI/IT 26:25

15:10

ICI - used for a interrupted exception-continuable multi-cycle load or store.

IT - provide context information for instructions in an IT block.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 84

3.3 – CORTEX-M4 ISA – XPSR

source: ARM

ARMv7-M Architecture Reference Manual

Mnemonics used to combine the XPSR component registers:

© 2020 Renesas Electronics Corporation. All rights reserved. Page 85

3.3 – CORTEX-M4 ISA – SPECIAL REGISTERS

source: ARM

ARMv7-M Architecture Reference Manual

Field bit Description

PM PRIMASK[0] Set to mask exceptions with configurable priority (priority 0 and lower). Reset to unmask.

FM FAULTMASK[0] Set to mask the HardFault exceptions and the configurable priorities (prio -1 and lower).

BASE

PRI

BASEPRI[7:0] Changes the priority level required for exception preemption. Affects only the currently executing

code with lower priority than BASEPRI.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 86

3.3 – CORTEX-M4 ISA – CONTROL REGISTER

source: ARM

ARMv7-M Architecture Reference Manual

CONTROL Register

Field bit Description

nPRIV 0 When the processor is in Thread mode. 0 = privileged mode; 1 = unprivileged mode.

SPSEL 1 Stack selection. 0 = use MSP (Main Stack); 1 = use PSP (Process Stack).

In Handler mode this bit is always 0.

FPCA 2 Implemented only when floating point is available.

0 = do not save floating point registers on exception;

1 = save floating point context on exception.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 87

3.3 – CORTEX-M4 ISA – REGISTERS

Floating Point Registers:

 The Cortex-M4 with optional floating-point extension, implements 32 32-bit floating point registers named S0 to S31.

 These can be combined two by two forming 16 double precision (64-bit) floating point registers named D0 to D15. D0 is

formed by S1:S0 (the concatenation of the registers S1 and S0 where S1 is the most significant word, i.e. the leftmost

word).

© 2020 Renesas Electronics Corporation. All rights reserved. Page 88

3.4 – INSTRUCTION SET

Before presenting the instruction set, lets examine:

 Assembly syntax

 3-operand instructions

 Conditional instructions

 Instructions that affect the flags

© 2020 Renesas Electronics Corporation. All rights reserved. Page 89

3.4 – INSTRUCTION SET

The most common instruction formats are: (format)

label: MNEMONIC Destination, Operand1, Operand2 ;comment

label: MNEMONIC Destination, Operand2 ;comment

Examples:

fmt1: ADD R2, R4, R5 ;R2 = R4 + R5

fmt2: ADD R2, R4 ;R2 = R2 + R4

© 2020 Renesas Electronics Corporation. All rights reserved. Page 90

3.4 – INSTRUCTION SET

Suggested assembly source file layout:

fmt1: ADD R2, R4, R5 ;R2 = R4 + R5

By setting the TABs to 4 spaces, these positions can be easily obtainable.

Only labels should begin on column 1.

Only mnemonics are compulsory. Labels, operands and comments are optional, although they are all very frequent.

col 1 col 5 col 13 col 21

© 2020 Renesas Electronics Corporation. All rights reserved. Page 91

For an instruction with two operands,

the first operand (Op1) is always a

register. The second operand (Op2)

may be a register, or a register that

had its contents shifted or rotated, or

an immediate value coded in the

instruction.

Register File

ALU

Barrel Shifter

MUX

LSL
LSR
ASR
RR
RRX

Op2 Select

Imm field

Instruction Register

Op1 Op2

A B

R

Rn Rm

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 92

3.4 – INSTRUCTION SET

Examples of Operand 2

ADD R2, R4, R5 ;Operand 2 is a register (R5)

ADD R2, R4, R5,LSL #2 ;Operand 2 is a shifted register

;R5 is shifted left by 2 bits

;this corresponds to multiplying its value by 4

ADD R2, R4, #0xFF ;Operand 2 is an immediate value

;the hexadecimal value 0xFF

© 2020 Renesas Electronics Corporation. All rights reserved. Page 93

3.4 – INSTRUCTION SET

In the Cortex-M4 instruction set, the programmer explicitly controls if the result of an instruction should affect the flags:

N,Z,C,V.

Most instructions have a variant with the letter S appended to the mnemonic. The S variant means: “set the flags”.

ADD R2, R4, R5 ;the result of this addition does

;not affect the flags.

ADDS R2, R4, R5 ;the result of this addition

;affects the N,Z,C and V flags.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 94

3.4 – INSTRUCTION SET

Many Cortex-M4 instruction can be conditional, meaning that the instruction only executes if the flags are in a given state.

Except for branch instructions, an instruction must be in an IT block to be conditional. The condition is specified by two letters

appended after the mnemonic (see condition table on next slide).

ADD R2,R4,R5 ;the result of this addition does

;not affect the flags.

ADDS R2,R4,R5 ;the result of this addition

;affects the N,Z,C and V flags.

ITT EQ ;start of an IT block with 2 instructions

ADDEQ R2,R4,R5 ;if Z is set, execute the ADD

ADDSEQ R2,R4,R5 ;if Z is set, execute the ADD and change

;flags according to result of this instruction

© 2020 Renesas Electronics Corporation. All rights reserved. Page 95

3.4 – INSTRUCTION SET

Condition codes

mnemonics suffixes

Suffix Flags Meaning

EQ Z = 1 Equal

NE Z = 0 Not equal

CS or HS C = 1 Higher or same, unsigned

CC or LO C = 0 Lower, unsigned

MI N = 1 Negative

PL N = 0 Positive or zero

VS V = 1 Overflow

VC V = 0 No overflow

HI C = 1 and Z = 0 Higher, unsigned

LS C = 0 or Z = 1 Lower or same, unsigned

GE N = V Greater than or equal, signed

LT N != V Less than, signed

GT Z = 0 and N = V Greater than, signed

LE Z = 1 and N != V Less than or equal, signed

AL Can have any value Always. This is the default when no suffix is specified.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 96

3.4 – INSTRUCTION SET

Code examples for conditional instructions.

cmp R12,R10 ;compare the unsigned values in R12 and R10, change flags

beq op1 ;branch to op1 if the values of R12 and R10 are equal

ite hi ;two-instruction IT block with HI condition

addhi R12,R12,#1 ;if R12 > R10 then increment R12

addls R10,R10,#1 ;else increment R10

op1:

...

© 2020 Renesas Electronics Corporation. All rights reserved. Page 97

3.4 – INSTRUCTION SET

An immediate value is a constant whose value is encoded in the instruction. Hence, a limited range of values is

allowed.

The notation for immediate values is #value.

The notation for negative values is #-15.

The notation for hexadecimal values is #0xFA0.

Example:

ADD R2,R4,#5 ;R2 = R4 + 5

© 2020 Renesas Electronics Corporation. All rights reserved. Page 98

3.4 – INSTRUCTION SET

 Cortex-M4 instruction codes are either 16-bit or 32-bit.

 16-bit instructions are called narrow and may have a .N suffix.

 32-bit instructions are called wide and may have a .W suffix.

 Some mnemonics may be coded either in narrow or wide format, for example:

0x37a: 0x1840 ADDS.N R0, R0, R1 //16-bit code

0x37c: 0xeb10 0x0001 ADDS.W R0, R0, R1 //32-bit code

 16-bit and 32-bit instruction code can be freely intermixed in a program.

 All instructions must be halfword aligned, i.e. must be stored on an even address.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 99

3.4 – INSTRUCTION SET

 Hence, PC will never hold an odd address => bit 0 of PC is always 0.

 When writing a 32-bit value to PC, bit 0 is ignored => can be used for other purpose.

 In other ARM processors, use bit 0 for interworking (i.e. change of instruction set).

 On Cortex-M, bit 0 must be a 1. This value is stored to the T flag in XPSR.

 Instructions that can be used for interworking (i.e. write to T flag):

 BX

 BLX

 pop {PC}

 Instructions that have as destination register the PC, cause a branch

 MOV PC, LR

 ADD PC, PC,R1

 There are restrictions on which instructions may write to PC.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 100

3.4 – INSTRUCTION SET

Arithmetic instructions

Instruction Description Action

ADD Rd, Rn, Op2 Add a register to Operand2 Rd = Rn + Op2

ADC Rd, Rn, Op2 Add a register to Operand2 and to Carry Rd = Rn + Op2 + CY

SUB Rd, Rn, Op2 Subtract from a register the Operand2 Rd = Rn - Op2

SBC Rd, Rn, Op2
Subtract from a register the Operand2 and the Borrow (negation of

Carry)
Rd = Rn - Op2 - /CY

RSB Rd, Rn, Op2 Subtract from Operand2 a register Rd = Op2 - Rn

RSC Rd, Rn, Op2 Subtract from Operand2 a register and the Borrow Rd = Op2 - Rn - /CY

MOV Rd, Op2 Move to Rd from Operand2 (put a copy of Operand2 into Rd) Rd = Op2

MVN Rd, Op2 Move to Rd /Operand2 Rd = /Op2

MOVT Rd,<imm16> Move to Rd[31:16] from imm16. Lower bits of Rd are unaffected
Rd[31:16] = imm16

Rd[15:0] unchanged

© 2020 Renesas Electronics Corporation. All rights reserved. Page 101

3.4 – INSTRUCTION SET

Compare and Test

Instruction Description

CMP Rn, Op2 Compare: Subtract from Rn the Operand2, discard result, change flags

CMN Rn, Op2 Compare negative: Add Rn to Operand2, discard result, change flags

TST Rn, Op2 Test: Rn AND Operand2, discard result, change flags

TEQ Rn, Op2 Test equivalence: Rn EOR Operand2, discard result, change flags

© 2020 Renesas Electronics Corporation. All rights reserved. Page 102

3.4 – INSTRUCTION SET

Logical

Instruction Description Action

AND Rd, Rn, Op2 AND: bitwise logical AND a register to Operand2 Rd = Rn AND Op2

ORR Rd, Rn, Op2 OR: bitwise logical OR a register to Operand2 Rd = Rn OR Op2

EOR Rd, Rn, Op2 Exclusive OR: bitwise logical XOR a register to Operand2 Rd = Rn XOR Op2

ORN Rd, Rn, Op2 OR NOT: bitwise logical OR a register to NOT(Operand2) Rd = Rn OR /Op2

© 2020 Renesas Electronics Corporation. All rights reserved. Page 103

3.4 – INSTRUCTION SET

Shift Instructions

Instruction Description #imm Sh range

ASR Rd, Rn, Sh Arithmetic Shift Right (preserves signal) 1..32

LSL Rd, Rn, Sh Logical Shift Left 0..31

LSR Rd, Rn, Sh Logical Shift Right 1..32

ROR Rd, Rn, Sh Rotate Right 0..31

RRX Rd, Rn Rotate Right Extended

Remark: Sh is either the lower 8 bits of a register (value from 0..255)

a 5-bit immediate value representing either 1..32 or 0..31

© 2020 Renesas Electronics Corporation. All rights reserved. Page 104

3.4 – INSTRUCTION SET

source: ARM

The ARM Architecture

© 2020 Renesas Electronics Corporation. All rights reserved. Page 105

3.4 – INSTRUCTION SET

Shift Operators to be used in Operand2

Operator Description #imm Sh range

ASR Sh Arithmetic Shift Right (preserves signal) 1..32

LSL Sh Logical Shift Left 0..31

LSR Sh Logical Shift Right 1..32

ROR Sh Rotate Right 0..31

RRX Rotate Right Extended

Remark: Sh is either the lower 8 bits of a register (value from 0..255)

a 5-bit immediate value representing either 1..32 or 0..31

Usage: R4, LSL #3 (Operand2 is R4 << 3)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 106

3.4 – INSTRUCTION SET

Multiply

Instruction Description Action

Instructions that multiply 32-bit by 32-bit resulting 32-bit with wrapping (LSW is preserved and higher bits are

discarded)

MUL Rd, Rm, Rs Multiply Rd = Rm * Rs

MLA Rd, Rm, Rs, Rn Multiply and accumulate Rd = Rm * Rs + Rn

MLS Rd, Rm, Rs, Rn Multiply and subtract Rd = Rm * Rs - Rn

Long multiplication: multiply 32-bit by 32-bit resulting 64-bit

UMULL RdLo, RdHi, Rm, Rs Unsigned long multiply RdHi:RdLo = unsigned(Rm*Rs)

UMLAL RdLo, RdHi, Rm, Rs Unsigned long multiply and accumulate
RdHi:RdLo = unsigned(RdHi:RdLo +

Rm*Rs)

UMAAL RdLo, RdHi, Rm, Rs
Unsigned long multiply and accumulate

double

RdHi:RdLo = unsigned(RdHi+RdLo +

Rm*Rs)

SMULL RdLo, RdHi, Rm, Rs Signed long multiply RdHi:RdLo = signed(Rm*Rs)

SMLAL RdLo, RdHi, Rm, Rs Signed long multiply and accumulate RdHi:RdLo = signed(RdHi:RdLo + Rm*Rs)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 107

3.4 – INSTRUCTION SET

Divide

Instruction Description Action

UDIV Rd, Rn, Rm Unsigned divide Rd = Rn / Rm

SDIV Rd, Rn, Rm Signed divide Rd = Rn / Rm

© 2020 Renesas Electronics Corporation. All rights reserved. Page 108

3.4 – INSTRUCTION SET

Bit field operations

A bit field is a sequence of bits in a register.

A bit field is characterized by two values:

 Width: the number of bits in the bit field (1..32);

 lsb: the position of the least significant bit in the bitfield (0..31).

Instruction Description Action

BFC Rd,#<lsb>,#<width> Bit field clear
clear Rd[(width+lsb-1)..lsb], others

unchanged

BFI Rd, Rn,#<lsb>,#<width>
Bit field insert. Copy the <width> LSb of Rn to

Rd
Rd[(width+lsb-1)..lsb] = Rn[(width-1)..0]

SBFX Rd,

Rn,#<lsb>,#<width>
Signed bit field extract.

Copy bitfield from Rn to LSb of Rd and sign

extend.

UBFX Rd,

Rn,#<lsb>,#<width>
Unsigned bit field extract.

Copy bitfield from Rn to LSb of Rd and zero

extend.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 109

3.4 – INSTRUCTION SET

Memory access instructions

Instruction type Description

LDRB Load byte. Read a byte from memory and store in the LSB of a register.

LDRH
Load half word. Read a half-word from memory and store in the lower half-word of a

register.

LDR Load register. Read a word from memory and store in a register.

LDRD Load double. Read a double word form memory and store in two registers.

STRB Store byte. Store the LSB of a register into memory.

STRH Store half-word. Store the lower half of a register into memory.

STR Store register. Store a register into memory.

STRD Store double. Store the two registers into memory.

LDM Load multiple. Read several (up to 16) registers from memory.

STM Store multiple. Store several (up to 16) registers into memory.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 110

3.4 – INSTRUCTION SET

Memory access instructions – addressing

For the purposes of addressing, memory is just a very large vector of bytes. For Cortex-M, it

is a vector with 4G entries.

The four data types that can be accesses with LDR/STR instructions are shown here. In a

little-endian memory system, when a data type occupies more than 1 byte in memory, its

address is the address of the LSB (Least Significant Byte).

shown: byte at 0x0, half-word at 0x2, word at 0x4, and double-word at 0x8

0x0000 0000

0x0000 0001

0x0000 0002

0x0000 0003

0x0000 0004

0x0000 0005

0x0000 0006

0x0000 0007

0x0000 0008

0x0000 000F

0x0000 0010

0xFFFF FFFF

...

byte

half-word

word

double
word

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 111

3.4 – INSTRUCTION SET

source: DDI0403E.B ARMv7-M Architecture Reference Manual

© 2020 Renesas Electronics Corporation. All rights reserved. Page 112

3.4 – INSTRUCTION SET

source: DDI0403E.B ARMv7-M Architecture Reference Manual

© 2020 Renesas Electronics Corporation. All rights reserved. Page 113

3.4 – INSTRUCTION SET

Memory access instructions – addressing modes

Indexing

Mode

Example Action Change in base

register

Pre-index with

writeback (!)
LDR R0,[R1,#4] !

R0 = [R1 + 4] (R0 gets the contents of

memory location at address R1+4)
R1 = R1 + 4

LDR R0,[R1,R2] ! R0 = [R1+R2] R1 = R1 + R2

LDR R0,[R1,R2,LSL #2] ! R0 = [R1 + (R2 << 2)] R1 = R1 + R2 << 2

Pre-index LDR R0,[R1,#4] R0 = [R1 + 4] no change

LDR R0,[R1,R2] R0 = [R1+R2] no change

LDR R0,[R1,R2,LSL #2] R0 = [R1 + (R2 << 2)] no change

Pre-index LDR R0,[R1],#4 R0 = [R1] R1 = R1 + 4

LDR R0,[R1],R2 R0 = [R1] R1 = R1 + R2

LDR R0,[R1],R2,LSL #2 R0 = [R1] R1 = R1 + R2 << 2

© 2020 Renesas Electronics Corporation. All rights reserved. Page 114

3.4 – INSTRUCTION SET

Execution flow control instructions

Instruction Usage Branch Range

B.N <label> 16-bit Branch to target address. -256 to 254 bytes

B.W <label> 32-bit Branch to target address. +/–1 MB

CBNZ <label>

CBZ <label>

Compare and Branch on Nonzero.

Compare and Branch on Zero.
0-126 B

BL <label> Call a subroutine. +/–16 MB

BLX <register> Call a subroutine, optionally change instruction set. Any

BX <register> Branch to target address, optionally change instruction set. Any

TBB TBB: Table Branch, byte offsets. 0-510 B

TBH TBH: Table Branch, halfword offsets. 0-131070 B

© 2020 Renesas Electronics Corporation. All rights reserved. Page 115

3.4 – INSTRUCTION SET

Miscellaneous instructions

Instruction Usage

CPSID Change Processor State, Disable Interrupts.

CPSIE Change Processor State, Enable Interrupts.

DMB Data Memory Barrier.

DSB Data Synchronization Barrier.

ISB Instruction Synchronization Barrier.

MRS Move to Register from Special Register.

MSR Move to Special Register from Register.

NOP No Operation.

SVC Supervisor Call.

WFI Wait for Interrupt.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 116

3.5 – EXCEPTIONS

The normal flow of execution of a program is to execute the next instruction in memory, unless a Branch, Subroutine Call or

Return is executed. Hence, a human processor could execute the same program in the same order.

An exception if a break in this normal flow of execution. Such a break can be caused by:

 Hardware interrupt,

 Fault (e.g. memory access error, divide by 0, invalid instruction code),

 Software generate exception.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 117

3.5 – EXCEPTIONS

Exceptions occur asynchronously, this is, at any point of the execution. They may occur many time and on successive

executions of the program they usually occur at different places of this program.

When an exception occurs it must be serviced. Meaning that a software routine must either respond to the interrupt request

or take steps to resolve or mitigate the fault.

This routine is called: exception handler routine, interrupt service routine, or interrupt handler.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 118

3.5 – EXCEPTIONS – INTERRUPTS

Hardware Interrupts are one of the kind of exceptions.

Interrupts are an efficient way for a peripheral to inform the processor that it requires servicing. If interrupts were not

available, the processor would have to periodically poll the peripherals (thus termed polling) to check if service is required.

Polling is an inefficient technique.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 119

3.5 – EXCEPTIONS – INTERRUPTS

Basic concepts of interrupts:

1. Peripheral sends an

Interrupt Request (IRQ) to

an Interrupt Controller

2. Interrupt Controller selects the

highest priority non-masked

interrupt request and informs

the core.

3. If the priority of the IRQ is sufficiently

high, when the instruction currently in

execution finishes then the

IRQ is serviced.
source: ARM

ARM Cortex-M for Beginners - Yiu

© 2020 Renesas Electronics Corporation. All rights reserved. Page 120

3.5 – EXCEPTIONS – INTERRUPTS – DETAILED PROCESS

1- An external device, such as a peripheral, requests an interrupt (IRQ) by signaling to the interrupt controller.

The input lines of the interrupt controller (240 in the NVIC of a Cortex-M4) can be either level sensitive of edge sensitive.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 121

3.5 – EXCEPTIONS – INTERRUPTS – DETAILED PROCESS

2- Upon receiving an IRQi (hardware signal on input i of the interrupt controller - IC) then the IC performs two checks:

a) if input i is masked or not;

b) if there is another request (IRQj on input j) already being sent to the processor.

If IRQi is not masked and if its priority is higher than IRQj’s priority (or no request is currently being sent to the processor)

then IRQi is forwarded to the processor.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 122

3.5 – EXCEPTIONS – INTERRUPTS – DETAILED PROCESS

3- The processor, upon receiving an IRQ verifies if its priority is sufficiently high:

a) PRIMASK and FAULTMASK,

when set, impose a priority

level of 0 or -1 respectively.

Hence, when FAULTMASK

is set, all exceptions from

3 on are masked.

b) If an exception is active

(being serviced) then only a

higher priority exception may

preempt its handler.

If both these conditions are met,

servicing starts at the end of the

current instruction.

source: ARM

Cortex™-M4 Devices Generic User Guide

© 2020 Renesas Electronics Corporation. All rights reserved. Page 123

3.5 – EXCEPTIONS – INTERRUPTS – DETAILED PROCESS

4- Eight registers are pushed onto the Stack

The Interrupt changes state to

Active.

Since R0-R3 and R12 are stacked,

any C procedure following ATPCS

can be registered as a handler.

source: ARM

Cortex™-M4 Devices Generic User Guide

© 2020 Renesas Electronics Corporation. All rights reserved. Page 124

3.5 – EXCEPTIONS – INTERRUPTS – DETAILED PROCESS

5- Register LR is loaded with one of the

EXC_RETURN values, depending on the

current state of the processor.

Note that EXC_RETURN

represents memory addresses

in a region where code is not

allowed.

source: ARM

Cortex™-M4 Devices Generic User Guide

© 2020 Renesas Electronics Corporation. All rights reserved. Page 125

3.5 – EXCEPTIONS – INTERRUPTS –
DETAILED PROCESS

6- The processor reads from the vector table

the initial address of the handler for the

Interrupt. This value is loaded to PC and the

execution of the handler starts.

Important: since the handler is Thumb-2 code

the addresses in the vector table must have

its LSb set to 1.

source: ARM

Cortex™-M4 Devices Generic User Guide

© 2020 Renesas Electronics Corporation. All rights reserved. Page 126

3.5 – EXCEPTIONS – SERVICING

Exception Servicing

The handler must service the interrupt request, in this process at least three actions must be taken:

1. The interrupt request signal must be deactivated, otherwise the processor would continuously be servicing this interrupt.

2. Any volatile data (such as a byte that arrived on the UART and is available in the Receiving Register) must be saved.

3. Apart from the registers saved in Step 4 of the entry process, any other register must be saved by the handler before

modifying it and these registers must be restored before returning to the interrupted code.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 127

3.5 – EXCEPTIONS – RETURN

Exception Return

The instruction that causes the return from the handler to the interrupted code is either:

BX LR or

POP {...,PC} // if this instruction is used the the entry of the handler must be PUSH {...,LR}

© 2020 Renesas Electronics Corporation. All rights reserved. Page 128

3.5 – EXCEPTIONS – RETURN

Exception Return

What happens when a value such as 0xFFFF FFF1 is loaded to the PC?

Being an invalid code address, the processor detects that this is an EXC_RETURN code and proceeds with the actions

described in the table in the slide Step 5 of the Interrupt Entry.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 129

3.5 – EXCEPTION HANDLING

Tail Chaining: optimization that avoids registers pop followed by registers push when one exception is handled right after

another.

source: ARM

An Introduction to the ARM Cortex-M3 Processor - Shyam Sadasivan

© 2020 Renesas Electronics Corporation. All rights reserved. Page 130

3.5 – EXCEPTION HANDLING

Late arrival: optimization where a higher priority interrupt is serviced first even if it arrives while a prior lower priority interrupt

is already in the stage of pushing registers.

source: ARM

An Introduction to the ARM Cortex-M3 Processor - Shyam Sadasivan

© 2020 Renesas Electronics Corporation. All rights reserved. Page 131

4 – MEMORY

 Introduction

 Non-Volatile Memory

 Static RAM

 Dynamic RAM

© 2020 Renesas Electronics Corporation. All rights reserved. Page 132

MEMORY – INTRODUCTION

Semiconductor Memory

 Electronic components that store information.

 Memory is an essential part of a microprocessor-based system.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 133

MEMORY – INTRODUCTION

Types of Memory devices:

 Volatile: memory devices that do not retain information when power is removed.

Example: PC main memory

 Non-volatile: memory devices that retain information even when not powered.

Example: flash drive

© 2020 Renesas Electronics Corporation. All rights reserved. Page 134

MEMORY – INTRODUCTION

Types of Volatile Memory:

 Static: retain information as long as the device is powered.

 Dynamic: do not retain information, even when powered. Hence, dynamic memories do need to be constantly

“remembered” of the information they store. This process is called refresh. It must occur every few milliseconds in order not

to loose information.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 135

TYPES OF NON-VOLATILE MEMORY

Some of the types of non-volatile memory are:

 ROM: (or masked ROM) - Read Only Memory,

 EPROM: Erasable Programmable Read Only Memory,

 EEPROM: Electrically Erasable Programmable Read Only Memory,

 NOR Flash,

 NAND Flash,

 FeRAM: Ferro Electric Random Access Memory.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 136

TYPES OF VOLATILE MEMORY

Some of the types of volatile memory are:

 SRAM: Static Random Access Memory

 DRAM: Dynamic Random Access Memory

 DDR: Double Data Rate

© 2020 Renesas Electronics Corporation. All rights reserved. Page 137

MEMORY – CONCEPT

A memory device behaves like an array in C.

The memory device that is pictured here has size 220 and every addressable location can store 8 bits. The three control lines

indicate when the memory is being addressed, if it is being read or written.

A – address bus. Input. With N address lines it is possible

to index 2N unique locations.

D – data bus. Bidirectional. Width corresponds to the number of

bits stored in each addressable location.

/CS – active low chip select. When active, this device is selected.

/OE – active low output enable. When active, indicates the

device is being read.

/WR – active low write. When active, indicates the device is being written to.

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 138

MEMORY – CONCEPT

A memory device behaves like an array in C

source: Authors

1 MByte

Addressing

Space

Byte 0 0x0

Byte 0xFFFFF 0xFFFFF

Byte 0xFFFFE

Byte 0xFFFFD

Byte 1

220 = 1,048,576

= 1 Mega

addressable locations

each location holds 8 bits

hence, total storage is 1 Mbyte

corresponding to a vector of

1,048,576 8-bit cells

Physical view

Logical view

© 2020 Renesas Electronics Corporation. All rights reserved. Page 139

MEMORY – CONCEPT

From an external perspective, e.g. the perspective of the

processor. This device is an array of 220 locations of 8

bits each.

Hence, the size of the memory is 1 MByte (1,048,576)

and the width is 8 bits. Or, 1 M x 8 bits resulting in 8

Mbits of total storage capacity.

Internally the organization is different. Possibly this

memory is organized as a matrix of 1024 line and 1024

columns with 8 bits in each position. Resulting in the

capacity of 1024 x 1024 x 8 = 8 Mbits.

source: Authors

1 MByte

Addressing

Space

Byte 0 0x0

Byte 0xFFFFF 0xFFFFF

Byte 0xFFFFE

Byte 0xFFFFD

Byte 1

© 2020 Renesas Electronics Corporation. All rights reserved. Page 140

SAMPLE PROBLEM

Assume the only memory chip available is 1 M x 8 bits. How to implement 2M x 32bits = 8 MBytes of memory to a Cortex-M4

with data bus width of 32-bits?

Memory should be located from address 0x1000 0000 on.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 141

SAMPLE PROBLEM

The addressing space of a Cortex-M is 4 GBytes, i.e. 232 = 4,294,967,296.

If physical memory is 32-bit wide (4 bytes) then there are 1 G lines

(1,073,741,824). Each of these lines is addressable by its LSByte address.

Hence, 30 address lines are required to select a single

memory line (as 230 = 1 G)

The address lines A31-A2 are used to select on of the

1G lines while address lines A1 and A0 are used to

select a byte in the memory line

Memory address lines have their A1-A0 addresses set to 0.

Hence, the first memory line is at address 0x0000 0000, the second at

address 0x0000 0004 and so on.

4 GBytes

addressing space

Byte 0Byte 1Byte 2Byte 3 0x0

0xFFFF FFFC

Byte at address

0xFFFF FFFF

Memory lines

addresses

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 142

SAMPLE PROBLEM

Since the capacity of each chips is 1 Mbit and 8 Mbits are required, 8 chips

must be used.

Since the processor data bus is 32-bit wide and the memory is 8-bit wide, 4

chips are put side-by-side to complete one 32-bit wide memory line.

The first set of 4 chips have a combined capacity of 8 MWords and are

mapped from address 0x1000 0000 to 0x103F FFFF.

The second set of 4 chips are mapped from 0x1040 0000 to 0x107F FFFF.

Byte 0Byte 1Byte 2Byte 3 0x0

0xFFFF FFFC

A:1 MWord

B:1 MWord

0x1000 0000

0x1040 0000

0x103F FFFC

0x107F FFFC

Byte at address

0x107F FFFF

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 143

SAMPLE PROBLEM

Selecting the

address lines for

CS (Chip Select)

and for memory

line addressing.

These are the 32-

bit addresses from

the Cortex-M

processor:

A31 A30 A29 A28 A27 A26 A25 A24 A23 A22 A21 A4 A3 A2 A1 A0
...

these address lines select

the byte in the memory line

these 20 lines select

one of the 1 G

memory lines

these 10 address lines identify

each of the 1 MWord regions.

In region A these address lines

must be at 0001 0000 00 b

(0x100)

While for region B:

0001 0000 01 b (0x104)

(these addresses are constant

inside each of the 1MWord

regions)

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 144

/CS1 must be active

in the range

0x1000 0000 to

0x103F FFFF

/CS2 must be active

in the range

0x1040 0000 to

0x107F FFFF

Core
Cortex-M4

D31..D0

A31..A0

/CS
/OE

/WR

/BS3
/BS2
/BS1
/BS0

Core
Cortex-M4

D31..D0

A31..A0

/CS
/OE

/WR

/BS3
/BS2
/BS1
/BS0

CS
Generator

CS
Generator

MCU ARM Cortex-M4

A23..A0

A31..A20
D7..D0
A19..A0

/CS
/OE
/WR

D7..D0
A19..A0

/CS
/OE
/WR

D31..D0

A21..A2

D31..D24

D7..D0
A19..A0

/CS
/OE
/WR

D7..D0
A19..A0

/CS
/OE
/WR

A21..A2

D23..D16

D7..D0
A19..A0

/CS
/OE
/WR

D7..D0
A19..A0

/CS
/OE
/WR

A21..A2

D15..D8

D7..D0
A19..A0

/CS
/OE
/WR

D7..D0
A19..A0

/CS
/OE
/WR

A21..A2

D7..D0

/CS13 /CS12 /CS11 /CS10

D7..D0
A19..A0

/CS
/OE
/WR

A21..A2

D31..D24

D7..D0
A19..A0

/CS
/OE
/WR

A21..A2

D23..D16

D7..D0
A19..A0

/CS
/OE
/WR

A21..A2

D15..D8

A21..A2

D7..D0

/CS23 /CS22 /CS21 /CS20

/CS1
/CS2

>=10

0

0

>=10

0

0

>=10

0

0

>=10

0

0

/CS1 /CS13
/CS1

/CS1

/CS1

/CS12

/CS11

/CS10

>=10

0

0

>=10

0

0

>=10

0

0

>=10

0

0

/CS23
/CS2

/CS2

/CS2

/CS22

/CS21

/CS2

/BS1

/BS0

/BS2

/CS20

/BS3

D7..D0
A19..A0

/CS
/OE
/WR

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 145

NOR FLASH MEMORY

NOR Flash memory is frequently used in embedded systems to store non-volatile data, particularly code and constants.

Each bit of a NOR Flash memory is implemented by a single floating gate MOS. The floating gate may be charged and,

since the floating gate is isolated, the charges are trapped into de gate. Hence, the two possible states are: charges

trapped in the floating gate vs no charges trapped in the floating gate.

source: wikimedia.org (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 146

EXAMPLE OF A FLASH MEMORY DEVICE 128K X 16 BITS

© 2020 Renesas Electronics Corporation. All rights reserved. Page 147

EXAMPLE OF A FLASH MEMORY DEVICE 128K X 16 BITS

The operation of a NOR Flash memory is straightforward: the processor sets the address to be read, and activates Chip

Select (CE#) and Output Enable (OE#) after a delay (TCE of TOE) valid data is presented on the data bus.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 148

SRAM EXAMPLE

source: Renesas

© 2020 Renesas Electronics Corporation. All rights reserved. Page 149

INTERNAL ORGANIZATION

© 2020 Renesas Electronics Corporation. All rights reserved. Page 150

READ CYCLE

Read Cycle timing diagram

© 2020 Renesas Electronics Corporation. All rights reserved. Page 151

WRITE CYCLE

Write Cycle timing diagram

© 2020 Renesas Electronics Corporation. All rights reserved. Page 152

DYNAMIC RAM

In a dynamic RAM, each bit is implemented by a circuit

consisting of a capacitor and a transistor.

The capacitor stores de information (charged vs

discharged) and the transistor acts as a switch that

connects the capacitor to the Bit Line when that particular

bit is accessed.

Because the capacitance is very small and because of

leakage, the charge of the capacitor only holds reliably for a

few milliseconds, hence, this memory bit must be constantly

refreshed.

Also, every read of a memory cell is destructive, hence,

after a read the value must be rewritten.

source: wikimedia.org (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 153

DDR – DOUBLE DATA RATE

© 2020 Renesas Electronics Corporation. All rights reserved. Page 154

5 – TIMER AND GPIO

1. Introduction - Peripherals

2. Timer

3. PWM – Pulse Width Modulations

4. GPIO

5. Low-power Drivers (LED, Relay)

6. Power Drivers (DC Motor)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 155

5.1 – PERIPHERALS

A Microprocessor-based system consists of three types of components:

1. Microprocessor (the core of the MCU) - executes the instructions of a program;

2. Memory - store code and data;

3. Peripherals - perform specific functions particularly related to I/O. Peripherals provide the means for the system to

sense, actuate and communicate with the world.

A microprocessor-based system without peripherals would be unable to interact with the rest of the world!

© 2020 Renesas Electronics Corporation. All rights reserved. Page 156

PERIPHERALS

Classes of peripherals in a microprocessor-based system:

 Digital I/O: input/output of digital signals,

 Analog I/O: input/output of analog signals,

 Timing: pulse generation, pulse measurement, PWM, ...

 Storage: non-volatile memory, file system, ...

 Communications: RS-232, SPI, I2C, CAN, USB, Ethernet, ...

 HMI: touch-screen, keyboard, ...

 Imaging: camera interface, ...

 System management: clock generation, watchdog, power management, ...

© 2020 Renesas Electronics Corporation. All rights reserved. Page 157

5.2 – TIMERS/COUNTERS

Timers/Counters are essential components of a Microcontroller Unit (MCU). They consists of a digital counter circuit that

counts pulses on their input. Timers count clock pulses and Counters count pulses of a signal present on their input pin.

Timers/Counters are used for:

 Measuring time, particularly time intervals,

 Counting events,

 Keeping track of current date and time (Real-Time Clock - RTC),

 Generating digital waveforms (PWM - Pulse-Width Modulation),

 Generating periodic interrupts to the MCU (Operating System Clock),

 Generating periodic signals to other peripheral, such as the command to start an Analog-to-Digital Conversion,

 Restart the MCU if software is unable to periodically restart a WATCHDOG timer.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 158

TIMERS

 Timers/Counters vary in their characteristics, such as:

 edge of the input signal used for counting: positive, negative, or both edges;

 count direction: up, down, or both;

 what is being counted: clock pulses (timers) or other input signal (counters);

 periodic timers vs single-shot;

 a number of actions can be taken at the end of the timing period: change state of GPIO pin, generate IRQ, stop the

timer, reload the timer;

 number of bits of the counter circuit: typically 32 bits for ARM MCUs;

 since the frequency of the input signal and number of bits of the counter determine the maximum timing period, a

prescaler may be used to reduce the input frequency.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 159

TIMING SAMPLE PROBLEM 1

Consider the problem where an LED, connected to a pin on an MCU, must be on during 0.9 second.

The first solution to be presented is a software-based solution:

1. Turn the LED on by activating the MCU pin connected to it;

2. Execute a loop N times, where N is chosen so that the execution of the loop takes 0.9 second;

3. Turn the LED off by deactivating the MCU pin connected to the LED

© 2020 Renesas Electronics Corporation. All rights reserved. Page 160

SOFTWARE-BASED SOLUTION

void hal_entry(void)

{

// pins 0,1,2 are output, reset pin 0 to 0 to turn green led ON

R_IOPORT6->PCNTR1 = 0x00060007;

__asm(" ldr r4,=72000000-2");

__asm("loop: ");

__asm(" subs r4,r4,#1 ");

__asm(" bne loop ");

// pins 0,1,2 are output, set pin 0 to 1 to turn green led OFF

R_IOPORT6->PCNTR1 = 0x00070007;

}

© 2020 Renesas Electronics Corporation. All rights reserved. Page 161

SOFTWARE-BASED SOLUTION

 This is the Timing Diagram for the

execution of the code of the previous slide.

 Due to branch forwarding at the decode

stage of the BNE instruction, each loop

takes 3 clock cycles.

 At 240 MHz (period of 4.16ns),

it takes 12.5 ns for each

loop; hence, 0.9 second

takes 72,000,000 loops.

 Remark: the loop_count must

be reduced by 2 to compensate

for GPIO and load instructions. source: Authors

clock 1 clock 2 clock 3 clock 4 clock 5 clock 6 clock 7

subs

bne

Fetch Decode Execute

Fetch
Decode and

Branch Forwarding

Fetch Decode Execute

Fetch
Decode and

Branch Forwarding

...

...

© 2020 Renesas Electronics Corporation. All rights reserved. Page 162

SOFTWARE-BASED SOLUTION

 Connecting a scope to the LED allows us

to verify the timing of the software-based

solution.

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 163

SOFTWARE-BASED SOLUTION

Evaluation of the software-based solution:

 100% of the MCU processing capability was used for counting so that the exact timing of 0.9 seconds was obtained.

 No other activities where executed by the processor during this time.

 If interrupts where allowed, there would have been an error in timing.

 This software-based solution is called busy-wait. It should be avoided as it wastes processor cycles and energy.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 164

A VERY SIMPLE TIMER

 To avoid the drawbacks of the software-based solution, a small piece of hardware is added to an MCU: a counter.

 This circuit performs the function of counting clock cycles, freeing the processor to perform other tasks.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 165

A VERY SIMPLE TIMER

Description:

 The counter decrements its value on

every positive edge of the CLK.

 The processor can write an initial

count value by performing a load

followed by a start command.

 When the count reaches 0 the Z

output is activated.

 The Z output may command a

change to the GPIO pin, generate an

Interrupt Request (IRQ), and stop the

counter.
source: Authors

counter

load

processor bus

start
stop

Z

GPIO

pin

IRQ
CLK

© 2020 Renesas Electronics Corporation. All rights reserved. Page 166

A VERY SIMPLE TIMER

 clk 1 - the value 5 is loaded to the counter.

 clk 2 - the processor commands the start of the counting.

 clk 3 to 7 - count value is decremented on every positive edge of the CLK.

 clk 7 - count reaches 0 activating the Z output.

source: AuthorsZ

clock 1 clock 2 clock 3 clock 4 clock 5 clock 6 clock 7

count

value

load

start

5 5 4 3 2 1 0

© 2020 Renesas Electronics Corporation. All rights reserved. Page 167

SOLVING THE TIMING SAMPLE PROBLEM 1 USING THE SIMPLE
TIMER

Solution:

 Load the value 72,000,000 to the timer and start it.

 When the count reaches zero:

 Option 1: timer commands LED pin to turn LED off;

 Option 2: generate an IRQ and its service routine turns the LED off.

 Remark: for option 2, the value loaded to the timer should be lower to compensate for the entry into the interrupt service

routine.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 168

SOLVING THE TIMING SAMPLE PROBLEM 1 USING THE SIMPLE
TIMER

Evaluation:

 The solution using a timer requires significantly less processing power, just a few cycles to configure the timer and to

perform an action when the timing period finishes.

 Processor is free to perform other tasks OR

processor can be put into a low energy sleep state.

 If interrupts are serviced during the timing period, this will not affect the timing precision.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 169

TIMER CASE STUDY 1 – SYSTICK

 The SYSTICK is a timer available in all Cortex-M processors.

 It is a simple 24-bit counter with auto-reload.

 Its main use is to generate periodic interrupts required by most Embedded Operating Systems.

 Since its structure and operation is defined by ARM, its interface is standard, regardless of MCU supplier.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 170

TIMER CASE STUDY 1 – SYSTICK

24-bit down counter

SYST_CVR

(clear-on-write)enable

24

Z SysTick

IRQICLK
240 MHz

&0

0

0

Reload Value Register

SYST_RVR

COUNTFLAG

SYST_CSR[16]

(clear-on-read)

TICKINT

SYST_CSR[1]
ENABLE

SYST_CSR[0]

1

0
LOCO

32.768KHz

CLKSOURCE

SYST_CSR[2]

load

source: Authors

(based on ARM documentation:

DDI0403D ARMv7-M Architecture Reference Manual)

SysTick auto-reload has a period

of SYST_RVR + 1 clock cycles.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 171

TIMER CASE STUDY 1 – SYSTICK

SYST_CSR controls de operation of SysTick. When

this register is read, COUNTFLAG is cleared.

SYST_RVR holds de 24-bit reload value. Writing a 0

to this register disables SysTick.

SYST_CVR is the current count value. By writing any

value to it the register is cleared.

SYST_CALIB values are factory defined. TENMS, if

available, holds the reload value corresponding to 10

ms for the reference clock.

source: DDI0403D ARMv7-M Architecture Reference Manual

© 2020 Renesas Electronics Corporation. All rights reserved. Page 172

TIMER CASE STUDY 1 – SYSTICK

 Timing diagram for the scenario where SYST_RVR holds the value 2.

 As the reload occurs on the next positive edge of the clock, the SysTick period is of 3 clock cycles.

If enabled, every reload generates a SysTick interrupt request (IRQ).

clock 1 clock 2 clock 3 clock 4 clock 5 clock 6 clock 7

SYST_CVR

Z

2 1 0 2 1 0 2

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 173

5.3 – PWM

 Pulse Width Modulation (PWM) is a modulation technique that allows the encoding of analog information in a binary

digital signal.

This is achieved by encoding the information in width of a pulse while maintaining the pulse frequency constant.

 A low pass filter with cut-off frequency way below the PWM frequency restores the analog information.

 PWM has several applications including: control of power electronics including switched power supplies, motor control,

temperature control and light dimmering; audio power-amplifiers; and analog signal generation.

 Often, a low-pass filter is not required as the load itself performs this function.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 174

PWM The effect of 5 different duty cycles after

passing a low-pass filter:

source: commons.wikimedia.org (CC)

low-pass

filter

0 V

1.25 V

2.5 V

3.75 V

5V

© 2020 Renesas Electronics Corporation. All rights reserved. Page 175

PWM

 If the duty cycle of a PWM signal is varied on every

PWM period, an analog signal can be produced (after

a low-pass filter).

 The higher the frequency of the PWM signal when

compared to the frequency of the analog signal, the

better (less noisy) the analog signal will be.

source: commons.wikimedia.org (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 176

A PWM TIMER

Operation:

 at start of period set the GPIO pin.

 counts up from 0.

 when counter matches Match Reg

then reset GPIO pin.

 when counter matches Limit Reg

then:

set GPIO pin;

generate IRQ;

reset counter.

 interrupt service routine may

reprogram the match register.
source: Authors

up counter

IRQ

Match Register

Limit Register

=

= Control

GPIO

pin
set/resetmatch

limit

start/stop

reset

CLK

© 2020 Renesas Electronics Corporation. All rights reserved. Page 177

TIMER CASE STUDY 2 – S7G2 GPT

The Renesas S7G2 MCU has 14 timers of the type GPT (General PWM Timer).

Each one is a complex circuit that provides significant flexibility for a variety of applications.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 178

TIMER CASE STUDY 2 – S7G2 GPT

Diagram shows the hardware modules of the S7G2 MCU.

General PWM Timers (GPT) are identified.

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 179

TIMER CASE STUDY 2 – S7G2 GPT

There are 14 timers, grouped into:

 4x EH - enhanced high resolution

 4x E - enhanced

 6x - conventional

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 180

TIMER CASE STUDY 2 – S7G2 GPT

source: Renesas

S7 Series

Microcontrollers

User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 181

TIMER CASE STUDY 2 – S7G2 GPT

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 182

TIMER CASE STUDY 2 – S7G2 GPT

Simplified view of a GPT

source: Authors

2x ADC start request

GTADTRa..b

8x Compare Regs

GTCCRa..f

=
= IO pin

control

GTIOCA pin

set/reset/toggle

PCLKD

PCLKD/4

PCLKD/16

PCLKD/64

PCLKD/256

PCLKD/1024

32-bit counter

GTCNT

Timer Period

GTPR

GTIOCB pin

set/reset/toggle

8

GPT

Control

to AD converters

IRQ

Events

© 2020 Renesas Electronics Corporation. All rights reserved. Page 183

TIMER CASE STUDY 2 – S7G2 GPT

GPT characteristics and operation:

 The counter (GTCNT) can count up (from 0 to GTPR), count down (from GTPR to 0) or up and down (from 0 to GTPR

and back to 0).

Hence, the period is either GTPR+1 or 2x GTPR;

 Due to a prescaler, the clock source can be selected from PCLKD to PLCKD/1024;

 A GPT can be used to trigger the start of an AD conversion, registers GTADTR are used to determine the timing to

command the start;

 8 compare registers are available. On match, a number of actions can take place: set, reset, toggle an IO pin, generate

an interrupt request, generate an event, ...

© 2020 Renesas Electronics Corporation. All rights reserved. Page 184

5.4 – GPIO

General Purpose Input/Output (GPIO) is possibly the simplest form of I/O in a system.

An input pin can be connected to a key, a push-button, or any other digital signal. By reading the pin the program can

detect if it is on high or low level and take appropriate action.

Input pins can generate interrupt requests (IRQ) when a required transition or level is detected.

An output pin can be connected to an LED, to a switch (transistor, relay) or any other device to be controlled by.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 185

GPIO CASE STUDY – S7G2 I/O PORTS

The MCU used in the lab experiments (kit SK-S7G2) is the

R7FS7G27H3A01CFC. Its packaging is a 176 pins LQFP

(Low-profile Quad Flat Package).

Of its 176 pins, 126 are available either for I/O or to be used

by the integrated peripherals.

The I/O pins are grouped into 12 ports

(P0 to PB) each with up to 16 pins. Port pins Port pins

P0 13 P6 16

P1 16 P7 8

P2 10 P8 7

P3 16 P9 6

P4 16 PA 5

P5 11 PB 2

© 2020 Renesas Electronics Corporation. All rights reserved. Page 186

GPIO CASE STUDY – S7G2 I/O PORTS

I/O pins can be configured in several ways:

 inputs may have an internal pull-up;

 outputs may be open-drain;

 output current capacity may be selectable:

2, 4, 16/20 mA;

 some inputs are 5V tolerant.

Remarks:

 total current provided by the MCU is restricted

to 80 mA;

 configuration capabilities vary from pin to pin,

see table on the right.
rem: not all pins listed above are available on the part number R7FS7G27H3A01CFC

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 187

GPIO CASE STUDY – S7G2 I/O PORTS

Simplified block diagram

of an I/O pin

Reg Description

PODR Port output data

PDR Port direction

PIDR Port input data

PMR Port mode: I/O vs periph.

source: Authors

I/O

Peripheral

PMR

PODR

1

0

output

amp.

GPIO

pin

PDR

input

amp.
PIDR

Read Control

Peripheral

Events

Interrupt

OE

© 2020 Renesas Electronics Corporation. All rights reserved. Page 188

GPIO CASE STUDY – S7G2 I/O PORTS

Block diagram for an I/O pin

Reg Description Reg Description

PCR Pull-up control PODR Port output data

PDR Port direction PSEL Peripheral sel.

DSCR Drive capabil. PIDR Port input data

NCODR open-drain ctr ISEL interrupt enable

EOSR evt output set ASEL analog select

EORR event output

reset

PMR Port mode:

I/O vs periph.

POSR port output set EIDR event input data

PORR port output

reset

EOF/

EOR

event on falling/

rising edge

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 189

5.5 – LOW-POWER DRIVERS

When a device connected to an output pin

has low input current requirements (low

typically means below 1 mA) then it can

be directly connected to the I/O pin.

Example: the Renesas Development Kit

for S7G2 has an audio amplifier and a

speaker connector.

This audio amplifier is controlled

by an output pin:

 P902 is an I/O pin of the S7G2

microcontroller that controls if

the amplifier is enabled or not.
source: Renesas Development Kit S7G2 (DK-S7G2) User’s Manual

© 2020 Renesas Electronics Corporation. All rights reserved. Page 190

LOW-POWER DRIVERS

In the case of a small LED, which typically requires current around 2 to 5 mA

to light up, a limited number can still be connected directly to output pins.

The S7G2 MCU has the same source and sink capability, meaning that an

output pin configured for middle drive capacity can source 4mA when its

output is high and can sink 4mA when its output is low.

This symmetry is not a rule, many digital logic ICs are capable to sink much

higher currents than to source them. Hence, quite often, devices such as

LEDs are turned on by an output pin sinking current, i.e. with a logic level 0.

LED1

R1

470R

VCC (3.3V)

P6.0

P6.0 = 0 (0V) LED is ON

P6.0 = 1 (3.3V) LED is OFF

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 191

5.6 – POWER DRIVERS

Loads that require higher currents than in the previous examples are

controlled by output pins connected to interface circuits, such as:

 Transistor (bipolar, MOS, or BICMOS),

 Relay,

 H-Bridge,

 Other power electronics circuits.

Such interface circuits also allow the use of much higher voltages on the

load.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 192

POWER DRIVERS

Example 1 - Power LED

Consider a Power LED requiring

a forward current of 500mA with a

forward voltage of 3.2V ± 0.15V

(varies with ambient temperature

and component sample).

source: wikimedia.org (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 193

POWER DRIVERS

Example 1 - Power LED

A low-cost solution consists of a transistor,

acting as a power switch, and a series

resistance, to limit the forward current.

When P6.0 is at logic level 1, Q1 is on and LED is on.

When P6.0 is at logic level 0, Q1 and LED are off.

Drawbacks:

R1 dissipates 1W when LED is on.

LED current, and brightness, vary with LED forward voltage.

Advantages:

Load can operate from a power source with different voltage.

(in this example, MCU VDD is 3.3V and LED is powered from 5V)
source: Authors

source: wikimedia.org (CC)

P6.0

LED1

R1

3R6

2.5W

5V

Q1

R2

10K

© 2020 Renesas Electronics Corporation. All rights reserved. Page 194

POWER DRIVERS

Example 2 - Relay

If galvanic isolation between the MCU and the

load is required, a solution is the use of a relay.

When P6.0 is at logic level 1, the transistor is

ON, current flows through the relay coil and the

contact closes, turning the electric motor ON.

When P6.0 is at 0, the motor is off.

Since the relay coil is an inductive load to the

transistor, the diode is required to avoid voltage

spikes when the transistor switches off.

P6.0

5V

Q1

R2

10K

M

Electric Motor

Relay

AC Mains

110V

Q1: n-channel MOS FET

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 195

POWER DRIVERS

Example 3 - H-Bridge

An H-Bridge consists of four switches (in this case

four n-mos). The load is a DC motor. When Q1 and

Q4 are ON, the motor is energized. When Q2 and

Q3 are ON the polarity is reversed.

Q1 and Q2 should never be ON at the same time

as this would short circuit the power supply. For the

same reason, Q3 and Q4 should never be ON at

the same time.

Typically, the four switches are driven by PWM

signals to control the current and the speed of the

motor.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 196

POWER DRIVERS

Example 4 -

Power LED driver using a switching power

supply.

GPIO can turn LED on or OFF.

Alternatively, PWM can dimmer the LED.

When compared to Example 1, this circuit

does not waste energy on a current limiting

resistor, hence, it is energy efficient.

GPIO

or

PWM

R2

Vin

Q2

Q1

R1

LED driver

controller

LED1
C1

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 197

6 – INTERRUPT CONTROLLER

 NVIC

 Structure

 Registers

 CMSIS interface for NVIC operations

© 2020 Renesas Electronics Corporation. All rights reserved. Page 198

NVIC

The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M4 architecture. Hence, all Cortex-M4 have

the same interrupt controller.

Exception handling was examined in Section 3 (link)

Functionality of the NVIC:

 Detect interrupt requests (IRQ) at its inputs and combine them into a single interrupt request to the microprocessor core

 Capability to mask any given input

 Associate inputs to interrupt priority levels

© 2020 Renesas Electronics Corporation. All rights reserved. Page 199

NVIC

The Cortex-M4 NVIC may have up to 240 IRQ

inputs.

Each input is an interrupt request coming from an

integrated peripheral, an external pin, or even

from the core itself to inform of a system

exception.

The operation of the NVIC is configured by the

core via a set of NVIC registers that provide the

functionality of:

 input masking

 IRQ priority assignment

 check status of input

(is there a pending IRQ?)

Peripheral 0

NVIC
Nested

Vectored
Interrupt
Controller

(up to 240 IRQ
inputs in Cortex-

M4)

ARM
Cortex-M4

core

P 1

P 2

P 3
.
.
.

IRQ

AHB/APB buses

n system
exceptions

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 200

NVIC CHARACTERISTICS

The Nested Vectored Interrupt Controller provides support for:

 Nested exceptions – each exception has an associated priority level. Nesting means that when an exception is being

serviced, it can be interrupted by a higher priority exception that was activated. Once the higher priority exception has its

service completed, the lower priority service resumes.

 Vectored exceptions – the starting addresses of the service routines (handlers) are stored in a table (vector table). When

IRQi is detected the processor simply reads entry i of the table and starts servicing, avoiding delays to start the handler.

 Interrupt masking – each IRQi can be individually masked, i.e. ignored.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 201

VECTOR TABLE

By default, its start address is 0x0.

The table has a 31-bit address for each of the possible exceptions (number is implementation dependent).

The 32th bit (the LSb) is used to identify the instruction set (ARM or Thumb) and must be always set in a Cortex-M

processor

The first entry in the table is the initial value of the SP.

The next 15 entries are for the system exceptions

(Reset, NMI, … SysTick).

Then follow up to 240 entries for IRQ0 to IRQ239.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 202

VECTOR TABLE FOR THE RENESAS S7G2

On the S7G2 the interrupt sources are

managed by the ICU – Interrupt Control Unit.

The ICU sits between the peripherals and the

NVIC, preprocessing the interrupt requests

before sending them to the NVIC.

…

© 2020 Renesas Electronics Corporation. All rights reserved. Page 203

EXCEPTION HANDLING STATE MACHINE

Inactive Pending

Active

Active and

Pending

Exception

Request

Exception

Servicing starts
Exception

Servicing finishes

Exception

Request

Exception

Servicing finishes

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 204

FUNCTIONAL MODEL OF THE NVIC

source: Authors

NVIC

Q

Q
SET

CLR

S

R

FCLK

IRQi
&

Q

Q S

R

ISER[n].m (wr)

ICER[n].m (wr)

ISER[n].m (rd)

Pending

ISPR[n].m (wr)

ICPR[n].m (wr) >=1

Q

QS

R

IRQi servicing

started

IRQi servicing

finished

Active
IABR[n].m (rd)

Priority

Arbitration

IPR[k]

interrupt request

interrupt priority

interrupt request and

interrupt priorities

from other IRQ lines

core

PRIMASK

BASEPRI

FAULTMASK

highest

priority

exception

request

NMI

HardFault

faults

...

...

Reset

>=1

&

edge

detector

© 2020 Renesas Electronics Corporation. All rights reserved. Page 205

NVIC – ARM DOCUMENTATION

• ARMv7-M Architecture Reference Manual (2014)

ARM DDI 0403E.b

• ARM® Cortex® -M4 Processor Revision: r0p1 (2015)

Technical Reference Manual

ARM 100166_0001_00_en

• Cortex™-M4 Devices Generic User Guide (2011)

ARM DUI 0553A

https://static.docs.arm.com/ddi0403/e/DDI0403E_B_armv7m_arm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.100166_0001_00_en/arm_cortexm4_processor_trm_100166_0001_00_en.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/DUI0553A_cortex_m4_dgug.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 206

NVIC REGISTERS

source: ARM® Cortex® -M4 Technical Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.100166_0001_00_en/arm_cortexm4_processor_trm_100166_0001_00_en.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 207

NVIC REGISTERS – ICTR

Since the number of input lines

(IRQi) to the NVIC is implementation

dependent, so is the number of registers to

control the NVIC.

ICTR informs how many control registers are

actually implemented in any given NVIC.

For the Renesas S7G2,

ICTR.INTLINESNUM holds the value 2,

meaning that there are 3 registers of each

type (ISER, ICER, ISPR, ICPR, IABR, with

indexes 0..2; and 24 registers IPR, with

indexes 0..23). The number of input lines

IRQi on this processor is limited to 96.
source: ARM® Cortex® -M4 Technical Reference Manual

http://infocenter.arm.com/help/topic/com.arm.doc.100166_0001_00_en/arm_cortexm4_processor_trm_100166_0001_00_en.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 208

NVIC REGISTERS – ISER – S7G2

In a Renesas S7G2, each bit of registers ISER[0] to ISER[2] corresponds to one of the 96 IRQi lines.

on write: 1 enables the interrupt line, 0 has no effect

on read: returns the current state of each IRQi line

0 = disabled, 1 = enabled

IRQ0IRQ1IRQ2...IRQ30IRQ31

IRQ32IRQ33IRQ34...IRQ62IRQ63

IRQ64IRQ65IRQ66...IRQ94IRQ95

bit0bit31

ISER[0]

ISER[1]

ISER[2]

© 2020 Renesas Electronics Corporation. All rights reserved. Page 209

NVIC REGISTERS – ICER/ISPR/ICPR/IABR – S7G2

Same bit assignment as for ISER.

ICER: on write: 1 disables the interrupt line, 0 has no effect

on read: report the current state of each IRQi line, 0 = disabled, 1 = enabled

ISPR: on write: 1 sets the interrupt line to pending, 0 has no effect

on read: report the current state of each IRQi line, 0 = not-pending, 1 = pending

ICPR: on write: 1 clears the pending state of the interrupt line, 0 has no effect

on read: report the current state of each IRQi line, 0 = not-pending, 1 = pending

IABR: read only: report the current state of each IRQi line, 0 = not-active, 1 = active

© 2020 Renesas Electronics Corporation. All rights reserved. Page 210

NVIC PRIORITIES

On the Cortex-M4, each IRQi line has a register that defines its priority level in relation to the other IRQi lines. This register

may have up to 8 bits (implementation defined).

On the S7G2, 4-bit registers are implemented, allowing the definition of up to 16 priority levels. 0 is the highest priority and 15

is the lowest. Since these bits are left aligned, the actual values are 0, 0x10, 0x20, 0x30, … 0xF0.

A higher priority interrupt preempts a lower priority interrupt whose handler is being executed.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 211

NVIC PRIORITIES

The bits of the priority register are divided into:

 Priority Group

 Priority Subgroup

The bits in the Priority Group define the number of priority levels for the purpose of preemption.

The bits in the Priority Subgroup define the number of sub-levels for the purpose of selecting which IRQi will be serviced first

if two IRQi are simultaneously pending when the core accepts an interrupt.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 212

NVIC PRIORITIES

The PRIGROUP bits of the AIRCR register are used to configure the division of bits among Priority Group and Subgroup.

AIRCR.PRIGROUP may be written with values in the range of 0 .. 7

On the S7G2, programming PRIGROUP with 0, 1, 2 or 3 has the effect of using the four bits for Priority Group and none for

the Subgroup.

For PRIGROUP = 4 the division is 3.1 (3 for Group and 1 for Subgroup)

For PRIGROUP = 5 the division is 2.2, and so on…

© 2020 Renesas Electronics Corporation. All rights reserved. Page 213

CMSIS-CORE INTERRUPT FUNCTIONS

These is a partial list of the

functions available in

CMSIS-CORE that provide

access to the NVIC as well

as to other interrupt

functionality.

Next slides detail these

functions

source: infocenter.arm.com

© 2020 Renesas Electronics Corporation. All rights reserved. Page 214

CMSIS-CORE INTERRUPT FUNCTIONS

typedef enum {

/* ------------------- Cortex-M4 Processor Exceptions Numbers ------------------- */

Reset_IRQn = -15, /*!< 1 Reset Vector, invoked on Power up and warm reset */

NonMaskableInt_IRQn = -14, /*!< 2 Non maskable Interrupt, cannot be stopped or preempted */

HardFault_IRQn = -13, /*!< 3 Hard Fault, all classes of Fault */

MemoryManagement_IRQn = -12, /*!< 4 Memory Management, MPU mismatch, including Access Violation

and No Match */

BusFault_IRQn = -11, /*!< 5 Bus Fault, Pre-Fetch-, Memory Access Fault, other address/memory

related Fault */

UsageFault_IRQn = -10, /*!< 6 Usage Fault, i.e. Undef Instruction, Illegal State Transition */

SVCall_IRQn = -5, /*!< 11 System Service Call via SVC instruction */

DebugMonitor_IRQn = -4, /*!< 12 Debug Monitor */

PendSV_IRQn = -2, /*!< 14 Pendable request for system service */

SysTick_IRQn = -1, /*!< 15 System Tick Timer */

} IRQn_Type;

This is the IRQn_Type enumeration defined in file S7G2.h

© 2020 Renesas Electronics Corporation. All rights reserved. Page 215

CMSIS-CORE INTERRUPT FUNCTIONS

void __enable_irq(void)

Resets PRIMASK in the core, allowing interrupts from NVIC to be serviced.

Example: __enable_irq();

void __disable_irq(void)

Sets PRIMASK in the core, preventing exceptions with configurable priorities (exceptions 4 and up) to be serviced.

Example: __disable_irq();

© 2020 Renesas Electronics Corporation. All rights reserved. Page 216

CMSIS-CORE INTERRUPT FUNCTIONS

void NVIC_EnableIRQ(IRQn_Type)

Enables (unmask) a specific IRQi line

Example: NVIC_Enable(SysTick_IRQn);

void NVIC_DisableIRQ(IRQn_Type)

Disables (mask) a specific IRQi line

Example: NVIC_Disable(SysTick_IRQn);

© 2020 Renesas Electronics Corporation. All rights reserved. Page 217

CMSIS-CORE INTERRUPT FUNCTIONS

uint32_t NVIC_GetPendingIRQ(IRQn_Type)

Reads the Pending status (P_FF) returning 0 (not pending) or 1 (pending)

Example: uint32_t pend = NVIC_GetPendingIRQ(SysTick_IRQn);

void NVIC_SetPendingIRQ(IRQn_Type)

Sets the Pending status (P-FF) of a specific IRQi line

Example: NVIC_SetPendingIRQ(SysTick_IRQn);

void NVIC_ClearPendingIRQ(IRQn_Type)

Clears (resets) the Pending status (P-FF) of a specific IRQi line

Example: NVIC_ClearPendingIRQ(SysTick_IRQn);

© 2020 Renesas Electronics Corporation. All rights reserved. Page 218

CMSIS-CORE INTERRUPT FUNCTIONS

void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)

Sets the priority of a specific IRQi line

Example: NVIC_SetPriority(SysTick_IRQn,4);

uint32_t NVIC_GetPriority(IRQn_Type IRQn)

Get the priority level of a specific IRQi line

Example: uint32_t prio = NVIC_GetPriority(SysTick_IRQn);

Rem: The integer value of the priority must be in the range of 0 .. 2N-1, where

N is the number of priority bits implemented. For S7G2 the range is 0..15.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 219

CMSIS-CORE INTERRUPT FUNCTIONS

uint32_t NVIC_GetActive(IRQn_Type)

Reads the Active status (ACTIVE_FF) returning 0 (not active) or 1 (active)

Example: uint32_t act = NVIC_ GetActive(SysTick_IRQn);

© 2020 Renesas Electronics Corporation. All rights reserved. Page 220

7 – ANALOG INTERFACING

 ADC – Analog to Digital Converter

 DAC – Digital to Analog Converter

recommended readings:

1- http://www.analog.com/en/analog-dialogue/articles/the-right-adc-architecture.html

2- The Data Conversion Handbook, Edited by Walt Kester, Analog Devices Inc.

http://www.analog.com/en/analog-dialogue/articles/the-right-adc-architecture.html
https://www.elsevier.com/books/data-conversion-handbook/analog-devices-inc-engineeri/978-0-7506-7841-4#description

© 2020 Renesas Electronics Corporation. All rights reserved. Page 221

ANALOG VS DIGITAL

 Real world phenomena, such as audio, images, temperature, forces, pressure, and so, can be represented by waveforms

that are continuous both in time and amplitude with an infinite resolution.

 Sensors are able to convert these physical quantities into analog electrical signals that can be processed by analog

circuits. This was the most common case a few decades ago: radio, audio amplifiers, television, ...

 Nowadays, these physical quantities are converted to a sequence of numbers, i.e. they were digitized, so that they can be

processed by a computer (digital processor).

© 2020 Renesas Electronics Corporation. All rights reserved. Page 222

ANALOG VS DIGITAL

Analog Digital

Physical quantities are converted to

electrical signals that are continuous

both in time and amplitude.

Physical quantities are converted into

numeric codes after being discretized

both in the time (sampling) and in

amplitude (quantization).

Analog signal are prone to noise and

distortion during processing and

transmission. Hence, signal quality

decreases as the signal travels through a

system.

Digital signals are much more robust to

noise and distortion. They can be

restored to their original value after a

noisy system stage.

Analog processing is typically done by a

hardwired circuit that performs a

predefined processing function.

Digital signal processing is typically

performed in software, thus, its function

can be changed dynamically.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 223

INTERACTING WITH AN ANALOG WORLD

To interact with the physical quantities in the real world, sensors and actuators are required.

Sensors perceive (“read”) a phenomena and translate it to an electrical signal. The output of a sensor can be an analog

signal or a digital signal.

Analog sensors require an Analog-to-Digital conversion before the information is digitally processed.

Actuators act upon (“write to”) the environment. The input of an actuator may be an analog or digital signal. To connect a

digital processor to an analog actuator a Digital-to-Analog conversion is required.

Sensor
(Digital Output)

Physical
Quantity

Digital
Processing

Actuator Physical
Quantity

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 224

SENSORS

Two alternatives to the implementation to a sensor in

a microprocessed system:

a) Digital Sensor

b) Analog Sensor + ADC

Sensor
(Digital Output)

Physical
Quantity

Digital
Processing

Actuator Physical
Quantity

Digital
Sensor

Physical
Quantity

Digital
output

Analog
Sensor Analog

output

ADC
Analog-to-Digital

Converter

Digital
output

Physical
Quantity

a)

b)

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 225

EXAMPLE OF A DIGITAL SENSOR - ENCODER

A rotary optical encoder is an angular position sensor.

It consists of a disc with transparent and opaque

areas that are detected by a photodetector.

The disc show is of an absolute rotary encoder.

Alternatively, an incremental (or relative) rotary

encoder generates pulses to represent angular

movement of its axis. A set of two pulse stream,

shifted by 90 degrees, allows the detection of the

direction of movement in an incremental rotary

encoder.

source: wikimedia.org (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 226

EXAMPLE OF AN AUDIO PROCESSING SYSTEM

In this example, the microphone is an analog sensor;

the speaker is an analog actuator and its driver is the amplifier.

source: Authors

Sensor
(Microphone)

Sound

Digital
Audio

Processing
ADC DAC

Analog
Power

Amplifier
Speaker Sound

© 2020 Renesas Electronics Corporation. All rights reserved. Page 227

THE ANALOG-TO-DIGITAL CONVERSION PROCESS

The conversion of an analog signal to digital requires several steps:

1. Low-pass filter to guarantee that the input signal spectrum is limited to a given frequency (fsignal)

2. Sampling (time discretization) - at periodic intervals take samples of the analog signal. The signal amplitude is still an

analog value.

3. Quantization (amplitude discretization) - mapping of the continuous amplitude range into a set of discrete values.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 228

SAMPLING

The green curve represents an analog signal S(t).

This signal is sampled periodically, T being the

sampling period, resulting in a discrete sequence

of samples Si (i = 1,2,3,...).

The amplitude of each sample is an analog value.

Sampling is performed by a Sample-and-Hold

(S&H) circuit, represented by a switch and a

capacitor. The switch closes momentarily, the

capacitor is charged with the current value of the

input signal, the switch opens and the value

remains “memorized” by the capacitor.

source: wikimedia.org (CC)

Low-pass
filter

C1

GND1

ADCAnalog
Signal

S&H

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 229

QUANTIZATION

To illustrate de quantization performed by an ADC,

consider the transfer function on the right. The horizontal

axis is the analog input values to the ADC and the vertical

axis are the digital codes produced by the ADC.

In this example the ADC has 3 bits, hence, it is able to

represent 8 binary values, from 0 (000) to 7 (111). The

input range for this example is from 0 to 8 volts.

The bold line in the graph is the transfer function. If the

input voltage is 3.8 volts, the output code will be 4 (100),

representing 4 volts. The difference between the actual

input value (3.8) and the output value (4) is the

quantization error and it is due to the output assuming

only a discrete set of values.
source: Renesas DevCon2015

Mitch Ferguson - ADC Specifications

© 2020 Renesas Electronics Corporation. All rights reserved. Page 230

OUTPUT VALUE CALCULATION

a) Unipolar: the quantization levels are distributed from 0 to Vref.

For an ADC with N-bit resolution, there are 2N quantization levels.

Each quantization level corresponds to an input range q, where

𝑞 =
𝑉𝑟𝑒𝑓

2𝑁

Hence, q corresponds to the input range of the LSb (Least Significant bit) of the output code.

The output code (n) of an unipolar ADC, for Vin in the range of 0..(Vref-q) is given by:

𝑛 = 𝑖𝑛𝑡
𝑉𝑖𝑛

𝑉𝑟𝑒𝑓
∗ 2𝑁 +

1

2

Example: N = 10 bits, Vref = 5V, Vin = 2.5V

q is 4.88 mV and the output code is 512 (10 0000 0000b) int(x) results in the integer part of x by truncation.

Hence, for x ≥ 0, int(x) = floor(x)

and for x < 0, int(x) = ceiling(x)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 231

OUTPUT VALUE CALCULATION

b) Bipolar: the quantization levels are distributed from V-ref to V+ref.

Where typically, V-ref = - V+ref

Each quantization level corresponds to an input range q, where

𝑞 =
𝑉+𝑟𝑒𝑓 − 𝑉−𝑟𝑒𝑓

2𝑁

The output code (n) of a bipolar ADC, for Vin in the range of V-ref .. (V+ref -q) is given by:

𝑛 = 𝑖𝑛𝑡
𝑉𝑖𝑛 − 𝑉−𝑟𝑒𝑓

𝑉+𝑟𝑒𝑓 − 𝑉−𝑟𝑒𝑓
∗ 2𝑁 +

1

2

Example: N = 10 bits, V+ref = 5V, V-ref = -5V, Vin = 0V

q is 9.76 mV and the output code is 512 (10 0000 0000b)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 232

ANALOG-TO-DIGITAL CONVERSION EXAMPLE

On the upper figure, the grey line represents the input

analog signal. The dashed lines indicate the sampling

times. The red line is the output of the sample-and-hold. It

changes value exactly at the sampling times.

In the lower figure, the red dots represent the output of the

ADC. The effect of the quantization error is noticeable as

the distance between the red dot and the input signal.

The output of the ADC is the following numeric sequence:

4,5,4,3,4,6,7,5,3,3,4,4,3.

source: wikimedia.org (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 233

SIMPLE ADC (3-BIT FLASH)

This circuit implements a 3-bit Flash ADC. It is the fastest ADC topology. Vin is in

the range 0..Vref and Vref is 8V.

For an ADC with 2N possible output values, 2N -1 comparators are required.

Thus, Flash ADCs are usually implemented for a small number of bits.

The resistor ladder provides the appropriate reference voltages for each

comparator. In this case: 0.5V, 1.5V, 2.5V, ... 6.5V.

When a comparator detects that the input voltage (Vin) is higher than its

reference voltage, its output changes to level 1.

The priority encoder (I7 is highest priority and I0 is lowest) generates the binary

code corresponding to the highest priority active input.

3R

2R

2R

2R

2R

2R

2R

R

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

Vref (8V)

Vin

I7

I6

I5

I4

I3

I2

I1

I0

Priority
Encoder

D2

D1

D0

1

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 234

ADC CHARACTERISTICS

Resolution: the number of bits (N) of the output code of the ADC. The number of quantization levels is given by 2N. A 10-bit

ADC has 1024 quantization levels. Hence, for a reference voltage of 1V, each quantization level is 0.97mV (1V/1024). The

quantization error is up to ± 0.485mV (.97/2).

Conversion time: how long does it take to the ADC to perform a conversion. Currently, most ADCs integrated in MCUs take

from 0.1µs to 1µs. Flash ADCs may take less than 10 ns. The conversion time determines the maximum sampling

frequency (fsampling). By the Nyquist theorem, the sampling frequency should be larger than twice the highest frequency in

the input signal, i.e. fsampling > 2 * fsignal.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 235

ADC CHARACTERISTICS

DC (and low frequency) errors.

The green line represents the ideal transfer function.

The black line represents the actual transfer function

including offset errors and non-linearity errors.

The red line corrects non-linearities but offset errors are

still present.

source: Renesas DevCon2015

Mitch Ferguson - ADC Specifications

© 2020 Renesas Electronics Corporation. All rights reserved. Page 236

ADC CHARACTERISTICS

Differential non-linearity (DNL)

The ideal transfer function is shown as the dotted line.

Actual transfer function is shown in bold line.

DNL causes wider or narrower code widths. Also,

increases quantization noise.

source: Renesas DevCon2015

Mitch Ferguson - ADC Specifications

© 2020 Renesas Electronics Corporation. All rights reserved. Page 237

ADC IMPLEMENTATIONS

Description

It is the fastest but also the one that requires the most circuitry (2N comparators and resistors).

Two ADCs in sequence, the first resolves the MSb and the second the LSb.

Resolves bit-by-bit, thus, requiring a single comparator. Takes N clock cycles to generate the result.

Based on sigma-delta modulation, it is a 1-bit ADC that tracks the signal. It is based on oversampling, digital

filtering and decimation.

Uses a single comparator whose reference voltage is a ramp. Counts the number of clock pulses to the

ramp to reach the value of the input signal.

Integrates the input signal then integrates -Vref until the result of the integration reaches 0. Measures the

time for the -Vref integration which is proportional to the amplitude of Vin.

The most common ADC architectures (topologies) are:

© 2020 Renesas Electronics Corporation. All rights reserved. Page 238

SAR ADC

A SAR ADC (Successive

Approximation Register Analog-to-

Digital Converter) is based on a SAR,

a Digital-to-Analog Converter and a

Comparator.

The basic operation is to sequentially

compare in input value to half of the

analog range, decide if the input is in

the upper or lower half, store this bit of

information and move to the next

comparison.

+

-

+

-

+

-
SAR

DAC
-q/2

DACout

b2 b1 b0

in

clk EOC

Vin

DACout-q/2 Vref

clock start

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 239

OPERATION OF THE SAR ADC

The same example as in the slide Quantization.

Vin = 3.8V, Vref = 8V, 3-bit ADC.

On the first clock cycle (Clk0):

 The SAR consists of a Shift Register (top) and a register

holding the partial results (bottom).

 The start input of SAR is 1, this sets the first bit of the Shift

Register in the SAR.

 The bit of the shift-register that is set, is used to compose

the current reference value.

 The output 100 of the SAR is converted by the DAC to 4V,

producing a 3.5V reference.

 The 3.8V input is compared to the 3.5V reference

producing a 1 at the output of the comparator.

This is the MSb of the result that is latched in the SAR at the

start of Clk1.

3.8V

3.5V

+

-

+

-

+

-
SAR

DAC
-q/2

DACout

b2 b1 b0

in

clk EOC

Vin

DACout-q/2 Vref

clock start

+

-
SAR

DAC
-q/2

DACout

b2 b1 b0

in

clk EOC

Vin

DACout-q/2 Vref

clock start

1
Clk0

1 0 0

1 0 0

4V

-0.5V

1

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 240

OPERATION OF THE SAR ADC

On the second clock cycle (Clk1):

 The start input of SAR is 0.

 The SARs Shift Register shifted the 1 bit to the

next position.

 The partial result register holds a 1 at b2 that was

latched at the start of the cycle, while b1 holds a 1

from the middle bit of

the shift-register.

 The output 110 of the SAR is converted by

the DAC to 6V, producing a 5.5V reference.

 The 3.8V input is compared to the 5.5V reference

producing a 0 at the output of the comparator.

This is the next bit of the result that is latched in the

SAR at the start of Clk2.

source: Authors

3.8V

5.5V

+

-

+

-

+

-
SAR

DAC
-q/2

DACout

b2 b1 b0

in

clk EOC

Vin

DACout-q/2 Vref

clock start

+

-
SAR

DAC
-q/2

DACout

b2 b1 b0

in

clk EOC

Vin

DACout-q/2 Vref

clock start

0
Clk1

0 1 0

1 1 0

6V

-0.5V

0

© 2020 Renesas Electronics Corporation. All rights reserved. Page 241

OPERATION OF THE SAR ADC

On the third clock cycle (Clk2):

 The start input of SAR is 0.

 The SARs Shift Register shifted the 1 bit to the next

position.

 The partial result register holds a 10 at b2 b1 from

the two previous comparisons,

while b0 holds a 1 from the last bit of the shift-

register.

 The output 101 of the SAR is converted by the DAC

to 5V, producing a 4.5V reference.

 The 3.8V input is compared to the 4.5V reference

producing a 0 at the output of the comparator.

This is the next bit of the result that is latched in the

SAR at the start of the next clock

source: Authors

3.8V

4.5V

+

-

+

-

+

-
SAR

DAC
-q/2

DACout

b2 b1 b0

in

clk EOC

Vin

DACout-q/2 Vref

clock start

+

-
SAR

DAC
-q/2

DACout

b2 b1 b0

in

clk EOC

Vin

DACout-q/2 Vref

clock start

0
Clk2

0 0 1

1 0 1

5V

-0.5V

0

© 2020 Renesas Electronics Corporation. All rights reserved. Page 242

OPERATION OF THE SAR ADC

On the next clock cycle the result is available.

 The last bit of the shift-register is shifted out to EOC

(end-of-conversion).

 The result of the conversion is presented at b2 b1 b0

that hold the results of the three previous

comparisons.

source: Authors

+

-

+

-

+

-
SAR

DAC
-q/2

DACout

b2 b1 b0

in

clk EOC

Vin

DACout-q/2 Vref

clock start

+

-
SAR

DAC
-q/2

DACout

b2 b1 b0

in

clk EOC

Vin

DACout-q/2 Vref

clock start

0

0 0 0

1 0 0

1

© 2020 Renesas Electronics Corporation. All rights reserved. Page 243

DIGITAL TO ANALOG CONVERSION

The Digital to Analog Converter (DAC) performs the opposite conversion of the ADC, i.e. it converts a digital value into the

corresponding analog value according to the formula:

for an N-bit DAC whose input value is Digital Value and its analog reference voltage is Vref

𝐴𝑛𝑎𝑙𝑜𝑔 𝑜𝑢𝑡𝑝𝑢𝑡 𝑉 =
𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑉𝑎𝑙𝑢𝑒

2𝑁
𝑉𝑟𝑒𝑓

© 2020 Renesas Electronics Corporation. All rights reserved. Page 244

DIGITAL TO ANALOG CONVERSION

The schematics symbol for a DAC is:

The number of digital input lines is N for an N-bit DAC.

DAC.
.
.

Digital
Inputs

VDD Vref

digital
ground

analog
ground

analog
output

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 245

SINGLE-BIT DIGITAL TO ANALOG CONVERTER

A single-bit DAC is the simplest form of a

DAC. A single switch, which is controlled by

the digital input, either connects the input of

the analog amplifier to Vref or to ground.

Hence, the possible analog output values

are either 0 or Vref.

source: Authors

1

0

Vref

single-bit
digital input

analog
output

© 2020 Renesas Electronics Corporation. All rights reserved. Page 246

USING A PWM AS A DAC

The effect of 5 different duty cycles after passing a

low-pass filter whose cutoff frequency is much lower

than the PWM frequency.

source: commons.wikimedia.org (CC)

low-pass

filter

0 V

1.25 V

2.5 V

3.75 V

5V

© 2020 Renesas Electronics Corporation. All rights reserved. Page 247

USING A PWM AS A DAC

The topology presented is a Kelvin Divider DAC, also

called a string DAC. Among its advantages are its

monotonicity and low-glitch.

It requires 2N resistors and switches for an N-bit DAC,

which makes it impractical for a larger number of bits.

R

R

R

R

R

R

R

R

Vref

analog
output

O7
O6
O5
O4
O3
O2
O1
O0

3-to-8
Decoder

D2

D1

D0

switches
controls

Digital
Inputs

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 248

OPERATION OF THE 3-BIT DAC

In this example, Vref is 8V and the digital input has the

value 4 (100b).

Output O4 of the decoder is active and commands the

corresponding switch. The resistor string has values 1V

apart

at each of its taps.

The output analog amplifier simply provides isolation,

avoiding that the impedance of the load affects the

analog value at the taps of the resistor string.

source: Authors

R

R

R

R

R

R

R

R

Vref

analog
output

O7
O6
O5
O4
O3
O2
O1
O0

3-to-8
Decoder

D2

D1

D0

switches
controls

Digital
Inputs

1

0

0

8V

7V

6V

5V

4V

4V

3V

2V

1V

0V

© 2020 Renesas Electronics Corporation. All rights reserved. Page 249

R2R LADDER DAC

The R2R resistor ladder topology has the

advantages of requiring only 2N resistors

in the ladder and the values of these

resistors are either R or 2R, avoiding

components with a significant difference in

value, as would be the case for the binary-

weighted DAC that requires values of R,

2R, 4R, 8R, 16R, ...

source:

The Data Conversion Handbook, Edited by Walt Kester, Analog Devices Inc.

https://www.elsevier.com/books/data-conversion-handbook/analog-devices-inc-engineeri/978-0-7506-7841-4#description

© 2020 Renesas Electronics Corporation. All rights reserved. Page 250

DAC CASE STUDY THE S7G2 DAC

Characteristics:

 Two 12-bit DACs available: DAC0 and DAC1,

 The 12-bit value present at the DADRi register is converted to an analog value of 𝑉_(𝑟𝑒𝑓) 𝐷𝐴𝐷𝑅𝑖/4096,

 Output amplifier is available, may be enabled under SW control,

 DAC operation may be synchronized to ADC1,

 DAC conversion may be started by an ELC event.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 251

DAC CASE STUDY THE S7G2 DAC

DAC0 and DAC1

block diagram

source: Renesas S7G2 user’s manual

© 2020 Renesas Electronics Corporation. All rights reserved. Page 252

DAC CASE STUDY THE S7G2 DAC

Renesas S7G2 DAC characteristics:

source: Renesas S7G2 datasheet

© 2020 Renesas Electronics Corporation. All rights reserved. Page 253

8 – SERIAL COMMUNICATIONS

 Serial Communications - Introduction

 UART

 Concepts, Block Diagram, Registers

 SPI

 Concepts, Block Diagram, Registers

 I2C

 Concepts, Block Diagram, Registers

© 2020 Renesas Electronics Corporation. All rights reserved. Page 254

8.1 – INTRODUCTION TO SERIAL COMMUNICATIONS

Concept:

 In serial communications ONE bit is transmitted at a time, from the transmitter device (TX) to the receiver device (RX). As

opposed to parallel communications where several bits, e.g. 8 bits or 1 byte, are transmitted concurrently.

 In serial communications a reduced number of wires are required.

 Long distance wired communications typically use serial communication.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 255

EXAMPLES OF SERIAL COMMUNICATIONS STANDARDS

 UART: Universal Asynchronous Receiver Transmitter

 SPI: Serial Peripheral Interface

 I2C: Inter-Integrated Circuit

 USB: Universal Serial Bus

 Ethernet

© 2020 Renesas Electronics Corporation. All rights reserved. Page 256

DIRECTION OF COMMUNICATION

 Simplex: the communication occurs in a single direction –

one device transmits and the other receives.

 Half-Duplex: the communication occurs in both directions

but not simultaneously. Both communicating devices

(DevA and DevB) have transmitters and receivers. At a

given time, either DevA transmits and DevB receives or

vice-versa. A single wire is needed to carry the

communication.

 Full-Duplex: the communications occurs in both

directions and can be simultaneous. Usually two wires are

used: one to transmit from DevA to DevB and another to

transmit from DevB to DevA.

rem: a transceiver consists of a transmitter and a receiver.
source: Renesas

© 2020 Renesas Electronics Corporation. All rights reserved. Page 257

SYNCHRONOUS VS ASYNCHRONOUS COMMUNICATIONS

 Synchronous: there is clock signal that identifies the time instances when a data bit is valid. Thus, the receiver uses the

clock signal to recover the transmitted information. SPI and I2C are examples of synchronous communication protocols.

 Asynchronous: there is no common clock signal, thus, the two communicating devices must previously agree on a

mechanism to identify each bit in the data stream. Therefore, the synchronization information must be embedded in the

data signal. Quite often there are transitions in the data signal to identify the time slot of each bit in the data stream. RS-

232 is an example of asynchronous communication.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 258

BIT RATE VS BAUD RATE

 Symbols: when transmitting signals over a wire, each possible combination of amplitude, phase and frequency is called a

symbol. Simple schemes use only two symbols: for instance 0V and 3.3V to

represent 0 and 1, or the coding used by

RS-232 where amplitudes from -3 to -15

represent a 1 while +3 to +15 represent a 0.

source: commons.wikimedia.org (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 259

BIT RATE VS BAUD RATE

 Symbols(cont): a much larger set of symbols is also possible, for instance, 256QAM, one of the many

encodings used for high speed ethernet, has 256 possible symbols, hence, each symbol encodes 8 bits.

 Bit rate: is the number of bits that are transmitted

per time unit. Expressed in bits/s.

 Baud rate: is the number of symbols that are

transmitted per time unit. Expressed in baud/s.

 If a symbol encodes a single bit, such as the

case for RS-232, then the baud rate and the

bit rate are the same.

Yet, for 256QAM, the bit rate is 8 times higher

than the baud rate.

source: commons.wikimedia.org (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 260

8.2 – UART

A UART is a peripheral present in most MCUs. Typically it receives data from the processor over the bus, hence, in parallel

format, and handles the serialization and frame formatting.

A UART (Universal Asynchronous Receiver Transmitter) is capable of transmitting asynchronous data frames to another

device as well as receiving. Both devices must be configured for the same speed and frame format.

Typical speeds used for asynchronous serial communication are: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200,

38400, 57600, 115200 bits per second. Higher speeds may also be used as long as agreed among transmitter and receiver.

Typically, the bit encoding defined by the RS-232 standard is used.

RS-232 defines separate lines for transmission and reception, thus, it is full duplex communication.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 261

UART

Asynchronous frame format – consists of a start bit, data bits, an optional parity bit and stop bits.

The frame format is configurable:

 number of data bits: 5 to 8,

 number of stop bits: 1, 1.5 or 2,

 parity: none, odd, even.

source: commons.wikimedia.org (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 262

UART

How does the receiver synchronize with the transmitter?

1. Both the transmitter and the receiver are configured in the same way: speed and frame format.

2. Maximum clock skew allowed between the two sides is typically lower than 2%.

3. Receiver samples at a higher rate (e.g. 16 times de baud rate) for the start-bit transition. A delay of half-bit period

determines the mid-bit position. From then on, sample every one-bit time.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 263

UART

How does the receiver synchronize with the transmitter?

source: Renesas

© 2020 Renesas Electronics Corporation. All rights reserved. Page 264

UART

Example of the transmission of the character G

(ASCII code 0x47) over an asynchronous line. Note

that the LSb is transmitted first.

Upper figure shows UART levels while lower figure

shows RS-232 levels.

Configuration: 8O1.5 (eight bits, odd parity, 1.5 stop

bits).

For a 9600 bps, the duration of each bit is 104.16 us.

source: commons.wikimedia.org (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 265

UART

A frequently used connector for RS-232 is the DB-9. Shown here are the signals on each pin. TxD carries the transmitted

data and RxD carries incoming data to the receiver.

source: commons.wikimedia.org (CC)

male female

© 2020 Renesas Electronics Corporation. All rights reserved. Page 266

8.3 – SPI: SERIAL PERIPHERAL INTERFACE

SPI = Serial Peripheral Interface

 Is a synchronous serial communication intended to be used to connect an MCU to external memory devices and

peripherals such as: Flash EEPROM, ADC, DAC, temperature sensor, digital potentiometer, Real-Time Clock, …

 The topology is based in master and slave devices. There can be a single master, but multiple slaves are allowed.

 It uses 4 wires: data from master to slave, data from slave to master, clock and slave select. It is full duplex

communication.

 There are many possible configurations; it has been reported that not all SPI devices are compatible, i.e. have a common

configuration.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 267

SPI

Single-slave connection:

 SCLK: Serial Clock. Generated by the master;

 MOSI: Master Out Slave In;

 MISO: Master In Slave Out;

 SS: Slave Select (active low).

source: commons.wikimedia.org (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 268

SPI – OPERATION

 The Master selects a Slave by

activating the /SS line.

 On every clock cycle, one bit is

transferred from the master to

the slave and another bit is transferred

from the slave to the master.

Not every transfer is significant.

 Typically the transfers occur in multiples

of 8 bits.

source: commons.wikimedia.org (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 269

SPI – CONFIGURATION

 CPOL:

clock polarity selection

 CPHA:

clock phase selection

Observe that bits change on one clock

edge and they are sampled on the other.

source: commons.wikimedia.org (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 270

SPI – MULTI-SLAVE

 MISO lines must be tri-state to be

interconnected. They must go to

high-impedance when the /SS line

is not active.

 The Master selects one of the

slaves to exchange data with it.

Hence, separate Slave Select lines

are required.

source: commons.wikimedia.org (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 271

8.4 – I2C: INTER-INTEGRATED CIRCUIT

 Synchronous half-duplex communications among multiple devices on a bus.

 Developed by a division of Philips in the 80’s. This division is now NXP.

 Needs only two wires: data and clock.

 Bus drivers are open-drain with pull-up resistors, allows for multiple transmitters connected to the same line.

 Multiple masters are allowed on a bus. A master is the one that initiates a data transfer. Addressing modes use 7-bit and

10-bit addressing.

 Data rates: 100kbps, 400 kbps, 1 Mbps, 3.4 Mbps. (version 4 added a 5 Mbps data rate using push-pull drivers on a

unidirectional bus).

 Recommended reading: UM10204 – I2C-bus specification and user manual. Rev 6 – 4-April-2014. NXP.

https://www.nxp.com/docs/en/user-guide/UM10204.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 272

I2C – OPERATION

 The SCL line (Serial Clock) is driven by the bus master. When SCL is high the data line (SDA) is stable and can be read.

When SCL is low then the data line can change.

 The exception of this rule is the signaling of the start-bit (negative edge of SDA while SCL is high) and stop-bit (positive

edge of SDA while SCL is high).

source: commons.wikimedia.org (CC)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 273

I2C – OPERATION (7-BIT ADDRESSING MODE, MASTER WRITE)

1. Master: sends the start bit.

2. Master: sends 7-bit slave address.

3. Master: sends the direction bit (0 = write).

4. Addressed slave: sends an ACK bit (0 = acknowledge).

5. Master: sends 8-bit data.

6. Addressed slave: sends ACK bit.

7. repeat steps 5 and 6 while there is data to transmit.

8. Master: sends stop bit.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 274

I2C – OPERATION (7-BIT ADDRESSING MODE, MASTER WRITE)

 I2C peripheral of Renesas S7G2 MCU

Timing diagram of a master sending data to a slave:

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 275

I2C – OPERATION (7-BIT ADDRESSING MODE, MASTER READ)

1. Master: sends the start bit.

2. Master: sends 7-bit slave address.

3. Master: sends the direction bit (1 = read).

4. Addressed slave: sends an ACK bit (0 = acknowledge).

5. Addressed slave: sends 8-bit data.

6. Master: sends ACK bit.

7. repeat steps 5 and 6 while there is data to transmit.

8. Master: sends stop bit.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 276

I2C – OPERATION (7-BIT ADDRESSING MODE, MASTER READ)

 I2C peripheral of Renesas S7G2 MCU

Timing diagram of a slave sending data to a master:

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 277

I2C CASE STUDY – S7G2 IIC

source: Renesas S7 Series Microcontrollers User’s Manual

Register Name

ICCRx I2C Control Register 1,2

ICMRx I2C Mode Register 1,2,3

ICFER I2C Function Enable Register

ICSER I2C Status Enable Register

ICIER I2C Interrupt Enable Register

ICSRx I2C Status Register 1,2

ICWUR I2C Wakeup Unit Register

SARLx Slave Address Register L 0,1,2

SARUx Slave Address Register U 0,1,2

ICBRL I2C Bit Rate Low-Level Register

ICBRH I2C Bit Rate High-Level Register

ICDRT I2C Transmit Data Register

ICDRR I2C Receive Data Register

ICDRS I2C Shift Register

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 278

I2C CASE STUDY – S7G2 IIC

 Characteristics of the I2C Bus Interface of the Renesas S7G2 MCU:

 May operate as master or as slave of an I2C bus with data rates up to 1 Mbps.

 Up to 3 different slave addresses may be configured, 7-bit or 10-bit.

 Digital noise filters for SCL and SDA signals.

 Four interrupt sources: Receive data full, Transmit data empty, Transmit end, Error (NACK, timeout, …).

© 2020 Renesas Electronics Corporation. All rights reserved. Page 279

I2C CASE STUDY – S7G2 IIC

Connection of multiple

devices on the I2C bus.

Notice open-drain outputs

and pull-up resistors

forming a wired AND.

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 280

9 – CAN

 Introduction

 Block Diagram

 Registers

 SW Stack

© 2020 Renesas Electronics Corporation. All rights reserved. Page 281

9.1 – INTRODUCTION

CAN is an acronym for Controller Area Network. It is defined by the ISO-11808: 2003 standard and has been mainly

motivated by the needs of the automotive industry, such as the ever increasing use of embedded sensors into the vehicles

and the need to optimize the internal space and reduce costs with cabling.

Characteristics of CAN:

 Two-wire multi-master serial bus

 Message-based protocol

 Contention resolution via decentralized arbitration

 All messages are broadcast and processed by the nodes only if needed

 Speeds up to 1 Mbps

© 2020 Renesas Electronics Corporation. All rights reserved. Page 282

CAN TOPOLOGY

CAN nodes are interconnected in a bus topology.

CAN physical layer is implemented with two wires (CANH

and CANL).

A logical 0 (called “dominant”) is obtained when CANH is

approx. 3.5V and CANL is approx. 1.5V.

A logical 1 (called “recessive”) is obtained when both CANH

and CANL are at approx. 2.5V.

Node Node

Node Node Node

Bus

CANL

CANH

RL RL

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 283

CAN BUS FRAME

The standard CAN frame is defined as follows:

 Arbitration field (Identifier)  defines the message identifier and its priority;

 Data  data to be transmitted (0 to 64 bits);

 SOF, CRC, ACK and End of Frame  error checking and synchronization;

 IFS (Interframe Space)  idle time used to process buffers.

Source: CAN Bus (https://en.wikipedia.org/wiki/CAN_bus)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 284

CAN BUS FRAME (CONT.)

Control  define the following sub-fields:

 Data length (0 to 8 bytes),

 Requ. Request (RTR)  used to identify a Remote Frame  see following slides,

 ID Ext. (IDE)  used to identify a Standard or Extended Frame:

 Standard Frame  IDE is dominant “0”, 11-bit identifier as shown in picture,

 Extended Frame  IDE is recessive “1”, 29-bit identifier. The remaining 18 bits of the identifier are placed right after the

IDE bit, followed by an extra RTR bit. The original RTR is called SRR (Substitute Remote Request) and acts as a

placeholder.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 285

CAN MESSAGE TYPES

 Data Frame  carries data sent by a Node:

 The RTR bit is dominant “0” to identify a Data Frame;

 It is always preceded by an Interframe Space.

 Remote Frame  carries a request for a transmission of data from another Node:

 The Arbitration/Identifier field carries the Identifier of the requested Node;

 The RTR bit is recessive “1” to identify a Remote Frame;

 The Data field is empty and the Data Length part of Control field determines the length of the requested message;

 It is always preceded by an Interframe Space.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 286

CAN MESSAGE TYPES

 Error frame  special format used to signal an error;

 Not preceded by an Interframe Space.

 Overload frame  special format used to provide an extra delay between messages (receiver too busy);

 Not preceded by an Interframe Space.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 287

CAN ARBITRATION PROCESS

 Every message has a priority level corresponding to its identifier (arbitration field)  the lower the value, the higher the

priority.

 When two or more nodes try to transmit at the same frame time:

 Identifier bits 0 are “dominant” over identifier bits 1 “recessive”;

 The node that sends a 1 and reads back a 0 stops transmitting on that frame  retries on the next frame;

 The node that sends a 0 and reads back a 0 retains control and goes on to send the next identifier bit;

 After all the identifier bits are tested, the node that keeps on retaining control (i. e. the node whose message identifier

has the highest priority) sends the message contents.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 288

9.2 – BLOCK DIAGRAM

Implementation for the CAN Module of the

S7G2 MCU.

Message reception and transmission

organized in mailboxes  configurable as

single or FIFOs for different types of

messages.

Source: Renesas Synergy MCUs User’s Manual: Hardware

© 2020 Renesas Electronics Corporation. All rights reserved. Page 289

9.3 – REGISTERS – CASE STUDY

Implementation for the CAN Module of the R7FS7G27H3A01CFC Renesas ARM Cortex-M4 MCU:

 CTLR  mailbox mode, bus operation and/or reset, timestamp configuration;

 BCR  data transfer rate configuration;

 MKR[0…7]  define masks for reception of specific messages (IDs) into specific mailboxes (depending on MKR index);

 FIDCR[0..1]  similar to MKR but for FIFO mailboxes;

 MKIVLR  enables or disables masking (via MKR) for message acceptance;

 MIER  enable/disable mailbox interrupts;

 MCTL_TX[0..31]  transmission control for each mailbox;

 MCTL_RX[0..31]  reception control for each mailbox;

© 2020 Renesas Electronics Corporation. All rights reserved. Page 290

9.3 – REGISTERS – CASE STUDY

 MB[0..31]  register groups for each mailbox:

 MB[0..31].ID  received or transmitted message identifiers;

 MB[0..31].DL  data length;

 MB[0..31].D[0..7]  received or transmitted data;

 MB[0..31].TS  timestamp for received messages.

 RFCR, TFCR  receive and transmit FIFO control;

 RFPCR, TFPCR  increment of the CPU-controlled pointer for receive and transmit FIFOs;

 STR  global CAN status register (new data received, receive and transmit FIFO status, CAN mode status and error

status);

 EIER  enable / disable error interrupts;

 EIFR  status of error detection.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 291

9.3 – REGISTERS – CASE STUDY

 RECR, TECR  receive / transmit error count;

 ECSR  status of CAN bus errors;

 TSR  stores the timestamp;

 TCR  test control.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 292

9.4 – SOFTWARE STACK – CASE STUDY

Example of CAN stack for Renesas Synergy

microcontroller hardware.

(https://www.renesas.com/en-

us/software/D6001427.html)

Source: Renesas Synergy CAN HAL Driver Module Guide

r11an0065eu0101-synergy-can-hal-mod-guide

https://www.renesas.com/en-us/doc/products/renesas-synergy/apn/r11an0065eu0101-synergy-can-hal-mod-guide.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 293

9.4 – SOFTWARE STACK – CASE STUDY

Example of CAN API for Renesas Synergy microcontroller hardware

Source: Renesas Synergy CAN HAL

Driver Module Guide

r11an0065eu0101-synergy-can-hal-mod-

guide

Basic API

functions

https://www.renesas.com/us/en/doc/products/renesas-synergy/apn/r11an0065eu0101-synergy-can-hal-mod-guide.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 294

10 – USB

 Introduction

 Block Diagram

 Registers

 SW Stack

© 2020 Renesas Electronics Corporation. All rights reserved. Page 295

10.1 – INTRODUCTION

USB is an acronym for Universal Serial Bus. It has been proposed by a consortium of companies, such as Microsoft, Intel,

IBM, Compaq and NEC and is designed to support a wide range of applications that require communication with distinct

characteristics (real-time, high or low bandwidth, with or without message delivery guarantee etc.).

Current specification is 3.2 (Sep, 2017).

© 2020 Renesas Electronics Corporation. All rights reserved. Page 296

10.1 – INTRODUCTION

Examples of devices that make use of USB:

 Printers

 Cameras  interface for photo and video upload

 Smartphones  interface for battery charging and file transfer

 Human Interface Devices  keyboard, mouse etc.

 Development electronic boards  debug interface (JTAG emulation)

 Game joysticks

 …

© 2020 Renesas Electronics Corporation. All rights reserved. Page 297

10.1 – INTRODUCTION

Characteristics of USB:

 Four (or five)-wire serial bus with single master (host) and up to 127 slaves (devices);

 Exception  USB On-The-Go (OTG)  allows negotiation between two devices (point to point) to be a temporary host;

 Example of OTG use: a camera device connected to a printer device to print photos;

 Defines low speed (1.5 Mbps), full speed (12 Mbps) and high speed (up to 5 Gbps at version 3.0) bandwidth

 Rem: USB 3.0 uses a 9-pin connector (USB-A 3.0 connector) or a 24-pin USB-C connector.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 298

10.1 – INTRODUCTION

 Four types of data transfers  meet the requirements of different communication types

 Device class identification by the host via enumeration protocol  allows plug-and-play and hot swap capabilities, as well

as instantiation of the proper class driver software by the host

 Bus power capabilities  some USB devices do not need an extra power source

 USB host is able to detect overcurrent conditions, so that power can be removed from the device causing the problem

without affecting the other devices already connected

© 2020 Renesas Electronics Corporation. All rights reserved. Page 299

USB TOPOLOGY

 USB Host Controller is the master and generates

transactions (via Root Hub).

 Each Hub is physically connected (by wire) to a Node or

another Hub.

 Nodes are slaves which perform the functions  also

known as Devices.

 Each level defines a tier  maximum of 7 as USB 2.0

Specification.

 Nodes can be inserted or removed when necessary 

upon insertion, the enumeration process is executed to

identify the device class and configure it.

USB Host

Controller

Root Hub

Node

Node Node

Node Node

Hub

Hub

Tier 1

Tier 2

Tier 3

Tier 4

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 300

USB PHYSICAL INTERFACE

USB 1.1 and 2.0  4 shielded wires.

 2 wires for data  differential

 2 wires for power (5 Vdc and GND)

Type A  host.

Type B  device.

Mini and Micro variations use the same electrical interface in

smaller form factors.

OTG  extra pin to identify the role of the device (A or B).

The receptacle is called Micro-AB and accepts both Micro-A

and Micro-B connectors.

USB 3.0  5 extra wires.

Source: By Milos.bmx (Own work) [CC BY-SA 3.0

(https://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

https://commons.wikimedia.org/wiki/File%3AUSB3.0_connectors.svg

USB-C

CC0

https://commons.wikimedia.org/wiki/File:USB_Type-C_icon.svg

https://commons.wikimedia.org/wiki/File:USB_Type-C_icon.svg
https://commons.wikimedia.org/wiki/File:USB_Type-C_icon.svg
https://commons.wikimedia.org/wiki/File:USB_Type-C_icon.svg
https://commons.wikimedia.org/wiki/File:USB_Type-C_icon.svg
https://commons.wikimedia.org/wiki/File:USB_Type-C_icon.svg

© 2020 Renesas Electronics Corporation. All rights reserved. Page 301

USB LOGICAL VIEW

Communication flows are performed

via pipes  composed of endpoints

 unidirectional data paths.

Endpoint / pipe bundles form an

interface  a view to the function /

device behavior as it is exposed to

the host.

The host side instantiates a class

driver during device enumeration 

manages the interfaces and provides

an API to the app level.

Default pipe is bidirectional (endpoint

0 in both directions) and is used for

device configuration.

App software

Class driver

USB driver

USB Host Ctrl

driver (HCD)

USB

Host

Ctrl

SIE

USB

System

SW

Class driver API

USB transfers

USB

HW Transactions

(USB frames)

Buffers

Function SW

(Device)

USB Device Ctrl

Driver (DCD)

USB

Dev

Ctrl

SIE

USB

System

SW

USB transfers

USB

HW
Transactions

(USB frames)

Buffers

Interface 1 (pipe bundle)

Interface N (pipe bundle)

Default pipe (endpoint 0)

USB wire

Host side Device (function) side

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 302

USB HOST CONTROLLER

 The USB Host Controller hardware layer offers an HCI (Host Controller Interface) to the Host Controller Driver in software

 standardizes the register access and allows interoperability between the host OS and different hardware

implementations.

 Some HCI standards have been historically defined:

 OHCI (Open Host Controller Interface)  defined for USB 1.1, manages the USB bus mainly in hardware (internal FIFO

descriptors management)

 UHCI (Universal Host Controller Interface)  proprietary interface by Intel, defined for USB 1.1, manages most of the

USB bus operation in software (HCD level)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 303

USB HOST CONTROLLER

 EHCI (Enhanced Host Controller Interface)  defined for USB 2.0, manages high-speed communication on a USB bus.

EHCI controllers have been usually implemented in PC motherboards in conjunction with UHCI or OHCI drivers (that

managed the low and full-speed devices).

 xHCI (Extensible Host Controller Interface)  defined for USB 3.0, manages all the USB bus speeds. It is meant to

replace the previous UHCI/OHCI/EHCI standards.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 304

USB PACKETS

USB Transfers are performed by a sequence of

transactions, which are composed of:

 A Token packet, carrying addressing, direction and

packet type information (IN, OUT or SETUP). The

token can be of PID type Start-Of-Frame (SOF),

issued every 1 ms (full-speed) or 125 us (high-

speed) and used for synchronization.

 Frame  interval during which a sequence of

transactions is performed for the endpoints

controlled by the host..

Field PID ADDR ENDP CRC5

Bits 8 7 4 5

Desc Type of

packet

Device

address

Endpoint

address

CRC of ADDR and

ENDP

Field PID Frame number CRC5

Bits 8 11 5

Desc Type of

packet

Current frame CRC of Frame

Number

Token packet

SOF packet

© 2020 Renesas Electronics Corporation. All rights reserved. Page 305

USB PACKETS

 A Data packet, carrying the effective data being

transferred. Data packets are issued either by the

host or the device, depending on the endpoint

direction (identified by the previous Token packet).

PID indicates type DATA0 or DATA1 (toggling for

full-speed transfers) or DATA2 (high-speed

transfers).

 A Handshake packet, used to report the status of a

data transaction. Handshake packets are issued by

the receiver of the Data packet. PID indicates ACK,

NACK, a halt condition (STALL) or no response yet

(NYET).

Field PID DATA CRC16

Bits 8 0-8192 16

Desc Type of

packet

Data CRC of

DATA

Field PID

Bits 8

Desc Type of

packet

Data packet

Handshake packet

© 2020 Renesas Electronics Corporation. All rights reserved. Page 306

USB TRANSFERS

USB defines four types of data transfers:

 Control  control commands to configure device, delivery guaranteed, low bandwidth required.

 Control transfers are performed in three stages:

 A Setup stage, starting with a token packet of type SETUP and a data packet containing a USB device request  see

following slides.

 An optional Data stage, starting with a token packet of type IN or OUT (depending on direction) and a data packet

containing the data pertaining to the USB device request.

 A Status stage, starting with a token packet of type IN or OUT (inverse of Data direction) and containing request status

information.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 307

USB TRANSFERS

 Bulk  large amounts of data, non real-time, delivery guaranteed, variable use of bandwidth  used for reliable data

transfers, such as mass storage data.

 Token packets for bulk transfers are of type IN or OUT, depending on transfer direction.

 Interrupt  real-time, small and periodic amounts of data  used for event notification (e.g. key typed on a keyboard).

 Token packets for interrupt transfers are of type IN or OUT, depending on transfer direction.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 308

USB TRANSFERS

 Isochronous  large amounts of data, delivery not guaranteed, steady rate of transmission and reception, bandwidth

depending on sampling characteristics  used for streaming data, such as voice or video.

 Token packets for isochronous transfers are of type IN or OUT, depending on transfer direction.

 Isochronous transfers do not use Handshake packets.

Individual endpoints are configured to a specific type of data transfer, depending on the class driver loaded by the host during

the enumeration process  see following slides.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 309

USB TRANSFERS SCHEDULING

Rules for transfer scheduling:

 Periodic transfers (isochronous and interrupt)  limited to 90% of the bandwidth of a frame.

 Control  use as much as necessary of the remaining 10% (plus the remaining amount in the 90% of the bandwidth that is

not used for periodic transfers).

 Bulk  use the bandwidth that is left.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 310

USB ENUMERATION

The USB enumeration protocol is executed whenever a new device is inserted into the bus. This protocol comprises the

following steps:

 USB root hub detects when a device is connected (D- or D+ are pulled up with resistors).

 USB host powers and resets the device.

 USB host issues device requests through the Default Control Pipe (default address 0) to get the Device Descriptor  see

following slides.

 USB host assigns a unique address to the device.

 USB host issues device requests through the Default Control Pipe to get the Configuration Descriptors  see following

slides.

 USB host enables a valid configuration  all corresponding interfaces and endpoints are configured, and the device may

draw the current described in the descriptor for the selected configuration.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 311

USB ENUMERATION

Some steps of the enumeration protocol require issuing USB device requests to the device being enumerated.

The USB device requests are issued during the Setup stage of a Control transfer. A device request is 8 bytes long and

contains the following fields:

 bmRequestType (1 byte)  request direction, type (standard, class, vendor, reserved) and recipient (device, interface,

endpoint, other).

 bRequest (1 byte)  specific request (set address, get and set configuration, get and set descriptor, get and set interface

etc.).

 wValue (2 bytes), wIndex (2 bytes)  value and index that depend on request.

 wLength (2 bytes)  number of bytes to transfer if there is a data stage.

Refer to USB 2.0 Specification, Section 9.3 for more detailed information.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 312

USB ENUMERATION

Descriptors sent by the device during enumeration process

(in response to GET_DESCRIPTOR requests):

 Device descriptor  defines the device class, device

subclass, device protocol, max packet size for default

endpoint, vendor, product, release number, indices for

manufacturer, product and serial number strings, and the

number of configurations.

Source: USB 2.0 Specification, Table 9-8

Field Size

(bytes)

Descr

bLength 1 Size of descriptor

bDescriptorType 1 DEVICE descriptor type

bcdUSB 2 USB Spec Relase Number in BCD

bDeviceClass 1 Class code

bDeviceSubClass 1 Subclass code

bDeviceProtocol 1 Protocol code

bMaxPacketSize0 1 Max packet size for endp 0

idVendor 2 Vendor ID

idProduct 2 Product ID

bcdDevice 2 Device release number in BCD

iManufacturer 1 Index of string desc for manufacturer

iProduct 1 Index of string desc for product

iSerialNumber 1 Index of string desc for serial

bNumConfigurations 1 Number of possible configurations

Device Descriptor

© 2020 Renesas Electronics Corporation. All rights reserved. Page 313

USB ENUMERATION

 Configuration descriptor  defines the number of

interfaces for this configuration, the configuration value

and an index for this configuration’s string, if the device is

self-powered when running that configuration and the max

power consumption (in case it is bus powered).

 A GET_DESCRIPTOR request to a Configuration

Descriptor returns also the Interface and Endpoint

descriptors pertaining to the given Configuration, in

sequential order  see next slides.

Source: USB 2.0 Specification, Table 9-10

Field Size

(bytes)

Descr

bLength 1 Size of descriptor

bDescriptorType 1 CONFIGURATION descriptor type

wTotalLength 2 Total length of configuration data

(includes Interface and Endpoint

descriptor sizes)

bNumInterfaces 1 Number of interfaces

bConfigurationValue 1 Configuration ID

iConfiguration 1 Index of string desc for this config

bmAttributes 1 Configuration characteristics

bMaxPower 1 Max power consumption in mA when

operating on this configuration

Configuration Descriptor

© 2020 Renesas Electronics Corporation. All rights reserved. Page 314

USB ENUMERATION

 Interface descriptor  defines the

interface number, the number of endpoints,

the interface class, subclass and protocol,

and an index to a string describing this

interface.

Source: USB 2.0 Specification, Table 9-12

Field Size

(bytes)

Descr

bLength 1 Size of descriptor

bDescriptorType 1 INTERFACE descriptor type

bInterfaceNumber 1 Zero-based number of this interface

bAlternateSetting 1 Value to select this alternate setting

bNumEndpoints 1 Number of endpoints used by this

interface

bInterfaceClass 1 Class code for this interface

bInterfaceSubClass 1 Subclass code for this interface

bInterfaceProtocol 1 Protocol code for this interface

iInterface 1 Index of string desc for this interface

Interface Descriptor

© 2020 Renesas Electronics Corporation. All rights reserved. Page 315

USB ENUMERATION

 Endpoint descriptor  defines the

endpoint address and direction, the endpoint

type (control, isochronous, bulk or interrupt),

the max packet size and the polling interval

for periodic endpoints (isochronous and

interrupt).

 Refer to USB 2.0 Specification, Section 9.6

for more detailed information.

Source: USB 2.0 Specification, Table 9-13

Field Size

(bytes)

Descr

bLength 1 Size of descriptor

bDescriptorType 1 ENDPOINT descriptor type

bEndpointAddress 1 Address for this endpoint

bmAttributes 1 Endpoint attributes (type etc.)

wMaxPacketSize 2 Max packet size for this endpoint

bInterval 1 Polling interval in frames

Endpoint Descriptor

© 2020 Renesas Electronics Corporation. All rights reserved. Page 316

USB ENUMERATION

USB Descriptor hierarchy

Device

Descriptor

Endpoint

Descriptor

Endpoint

Descriptor

Interface

Descriptor

Configuration

Descriptor

bNumEndpoints

Endpoint

Descriptor

Endpoint

Descriptor

Interface

Descriptor

bNumEndpoints

Endpoint

Descriptor

Endpoint

Descriptor

Interface

Descriptor

bNumEndpoints

Endpoint

Descriptor

Endpoint

Descriptor

Interface

Descriptor

bNumEndpoints

Configuration

Descriptor

Interface and endpoint descriptors are sequentially

retrieved, right after their corresponding configuration

descriptor, during the same GET_DESCRIPTOR request

Source: Authors

bNumInterfaces

bNumInterfaces

bNumConfigurations

© 2020 Renesas Electronics Corporation. All rights reserved. Page 317

10.2 – BLOCK DIAGRAM – CASE STUDY

The R7FS7G27H3A01CFC Renesas

ARM Cortex-M4 MCU implements two

USB modules:

 USB 2.0 FS  operates only on low

and full speed modes. Based on

registers and a FIFO controller to

manage buffers to be received /

transmitted.

Source: Renesas Synergy MCUs User’s Manual: Hardware

© 2020 Renesas Electronics Corporation. All rights reserved. Page 318

10.2 – BLOCK DIAGRAM – CASE STUDY

 USB 2.0 HS  operates in high

speed mode (480 Mbps). Uses

DMA FIFOs to maximize memory

transfer speed.

Source: Renesas Synergy MCUs User’s Manual: Hardware

© 2020 Renesas Electronics Corporation. All rights reserved. Page 319

10.3 – REGISTERS – CASE STUDY

Implementation for the USB 2.0 FS Module of the R7FS7G27H3A01CFC Renesas ARM Cortex-M4 MCU:

 SYSCFG  enabling/disabling USB, pull up / pull down resistor config

 SYSSTS0  line status, overcurrent status (from an external overcurrent detector), status bits for entering / exiting the

“suspended” mode

 DVSTCTR0  connection status (reset, low-speed or full-speed), wakeup detection, enable / resume / reset control

 CFIFO, D0FIFO and D1FIFO  read/write from/to FIFOs associated to control pipe and to other communication pipes

 CFIFOSEL  configure control pipe and associate to CFIFO

 D0FIFOSEL, D1FIFOSEL  associate pipes to D0FIFO and D1FIFO, configure DMA

© 2020 Renesas Electronics Corporation. All rights reserved. Page 320

10.3 – REGISTERS – CASE STUDY

 CFIFOCTR, D0FIFOCTR, D1FICOCTR  received data length, status of FIFO read

 INTENB0, INTENB1  enable / disable USB interrupts

 BRDYENB  enable / disable BRDY (data transfer successful) interrupt for each USB pipe

 NRDYENB  enable / disable NRDY (data transfer not successful) interrupt for each USB pipe

 BEMPENB  enable / disable BEMP (buffer empty or incorrect packet size) interrupt for each USB pipe

 SOFCFG  configuration for SOF (start-of-frame) and frame timing (LS and FS)

 INTSTS0, INTSTS1  status of several interrupt sources (SOF, resume, BRDY, NRDY, overcurrent, disconnection etc.)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 321

10.3 – REGISTERS – CASE STUDY

 BRDYSTS  status of BRDY interrupt for each USB pipe

 NRDYSTS  status of NRDY interrupt for each USB pipe

 BEMPSTS  status of BEMP interrupt for each USB pipe

 FRNUM  frame number, status of CRC error and overrun/underrun in isochronous transfers

 DVCHGR  used when device recovers from deep software standby mode due to USB events

 USBADDR  USB device address, configuration for recovery from deep software standby mode

 USBREQ  fields of setup requests used for control transfers.

 USBVAL  stores the wValue field of setup transactions (received and for transmitting)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 322

10.3 – REGISTERS – CASE STUDY

 USBLENG  stores the wLengths field of setup transactions (received and for transmitting)

 DCPCFG  enabling and direction of the Default Control Pipe

 DCPMAXP  maximum packet size for the Default Control Pipe

 DCPCTR  controls transfers for the Default Control Pipe

 PIPESEL  select pipe to be configured by PIPECFG, PIPEMAXP etc.

 PIPECFG  configures selected pipe (endp number, direction, transfer type etc.)

 PIPEMAXP  configures maximum packet size for selected pipe

 PIPEPERI  configures error detection interval for isochronous pipes

 PIPECTR[1..9]  controls transfers for the corresponding pipe

 PIPETRE[1..5]  enables / disables transaction counter

© 2020 Renesas Electronics Corporation. All rights reserved. Page 323

10.3 – REGISTERS – CASE STUDY

 PIPETRN[1..5]  transaction counters for the corresponding pipes

 DEVADD[0..5]  configures the transfer speed for the device to which the corresponding pipe is communicating

 PHYSLEW  adjust the physical driver to host or function operation

 DPUSR0R  configures pull-up / pull-down resistors, reads status of overcurrent and VBUS inputs

 DPUSR1R  configures and reads status concerning deep software standby mode

 USBMC  enables / disables battery charging mode and regulator circuit

 USBBCCTRL0  configures parameters for battery charging mode

© 2020 Renesas Electronics Corporation. All rights reserved. Page 324

10.4 – SOFTWARE STACK – CASE STUDY

 Example of USB Host stack for

Renesas microcontroller hardware

(part of SSP – Synergy Sofware

Package):

 Uses a Mass Storage Module on

top as class driver.

 Uses Thread X RTOS to manage

the threads concerning USB

components.

 (https://www.renesas.com/en-

us/software/D6001255.html)
Source: Renesas Synergy USBX Host Class Mass Storage Module Guide

r11an0173eu0100-synergy-ux-host-class-mass-storage-mod-guide

© 2020 Renesas Electronics Corporation. All rights reserved. Page 325

10.4 – SOFTWARE STACK – CASE STUDY

 The application for the shown

example uses the top-level API

provided by the USBX Host Class

Mass Storage component:

 This component instantiates a file

manager (FileX) when a mass

storage device (e. g. an USB

memory) is inserted.

 The application uses the API

provided by FileX to access the

mass storage device contents 

file open, close, read, write etc.
Source: FileX Services

(https://rtos.com/wp-content/uploads/2017/10/EL-filex-programmers-guide.pdf)

Basic API

functions

https://rtos.com/wp-content/uploads/2017/10/EL-filex-programmers-guide.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 326

11 – ETHERNET

 Introduction

 Block Diagram

 Registers

 SW Stack

© 2020 Renesas Electronics Corporation. All rights reserved. Page 327

11.1 – INTRODUCTION

Ethernet is a wired network technology used to interconnect devices in a Local Area Network (LAN). It has been

standardized as IEEE802.3, comprising the physical and data link layers of the OSI model.

Main characteristics:

 Packet-based protocol,

 All messages are broadcast and processed by the nodes only if needed,

 Nodes can transmit at any time  Ethernet provides for automatic collision management (electrical or logical),

 Up to 10 Gbps (10GBASE-SR and further).

© 2020 Renesas Electronics Corporation. All rights reserved. Page 328

11.1 – INTRODUCTION

Ethernet standard has evolved across different versions:

 Ethernet (IEEE 802.3) standard  makes use of coaxial connections (named 10BASE2 and 10BASE5) to achieve

bandwidths up to 10 Mbps;

 Fast Ethernet (IEEE 802.3u)  evolved from 10BASE-T (4-pair unshielded twisted pair) to 100BASE-TX and 100BASE-FX

(fiber-optic cable) to achieve bandwidths up to 100 Mbps;

 Gigabit Ethernet (IEEE 802.3z)  variation of Fast Ethernet (1000BASE-T); that supports full duplex operation to provide

higher data rates (up to 1 Gbps);

 10 Gigabit Ethernet (IEEE 802.3ae)  entirely based on optical fiber (10GBASE-SR), up to 10 Gbps.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 329

ETHERNET TOPOLOGY

Earlier Ethernet versions (10BASE2 and 10BASE5) used

coaxial cables to interconnect nodes in a physical and logical

bus topology.

Later versions (10BASE-T) rely on a physical star topology

based on hubs  connected to nodes with twisted pair cabling.

Current versions (100BASE-TX and further) rely on a physical

star topology based on switches  physically isolate the nodes

so that a packet is delivered solely to its destination node 

minimizes the network congestion due to packet collision.

Ethernet is always a bus topology from the logical point-of-view.

Node

Node Node

Hub /

Switch

Node

Node Node

Node Node Node

Bus

Star

source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 330

ETHERNET CONNECTION INFRASTRUCTURE

A Hub acts as a repeater:

 Data received by the hub from an Ethernet node is sent to all other Ethernet nodes connected to the hub.

 Therefore, multiple simultaneous transmissions are mixed and equally propagated to all connected nodes  possibility of

collisions.

A Switch acts as a filtered repeater:

Destination address of every transmitted Ethernet packet (frame) is checked by the switch.

 The frame is forwarded only to the corresponding Ethernet node.

 This allows multiple simultaneous transmissions to succeed, provided that the pair of source-destination nodes for each of

the transmissions is different.

 Packet collisions are avoided, as the switch is able to enqueue and serialize multiple frames addressed to the same

destination node.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 331

ETHERNET COLLISION MANAGEMENT

Because multiple Ethernet nodes share a logical bus,

it is possible that more than one node try to transmit

at the same time  collision.

To manage collisions, Ethernet uses the Carrier

Sense Multiple Access / Collision Detection

(CSMA/CD) protocol.

 The sender node starts transmitting a packet

(frame) and uses carrier-sensing to detect if other

nodes are trying to transmit at the same time.

 While no collision is detected, the sender node

keeps on sending the frame bits until the end.

 If a collision is detected, a jam signal is sent to

warn the other nodes about the collision, a

retransmission counter is incremented, and the

frame transmission is restarted after a random

amount of time.

 If the retransmission counter reaches the maximum

number of attempts, the transmission is aborted.
Source: https://upload.wikimedia.org/wikipedia/commons/3/37/CSMACD-

Algorithm.svg

© 2020 Renesas Electronics Corporation. All rights reserved. Page 332

ETHERNET PACKET

An Ethernet frame encapsulates the data packet.

The frame includes addressing information (MAC) and error detection features.

 CRC checking is performed over all fields (except Preamble and SFD) and compared to FCS.

Dest addr defines special values for broadcast (all nodes receive and process the packet) and multicast (a group of nodes

receives and processes the packet).

Field Preamble Start of

Frame

Delimiter

Dest

MAC

addr

Src

MAC

addr

Length

/ type

Data Frame

Check Seq

Bytes 8 1 6 6 2 46 to 1500 4

802.3 packet

© 2020 Renesas Electronics Corporation. All rights reserved. Page 333

11.2 – BLOCK DIAGRAM – CASE STUDY

Implementation for the Ethernet Controller Module of

the R7FS7G27H3A01CFC Renesas ARM Cortex-M4

MCU.

 Two-channel controller  can operate two

independent ETH interfaces.

 Depends on a DMA controller (EDMAC) to handle

the TX and RX buffers without CPU intervention.

MII (Media Independent Interface) and RMII

(Reduced MMI) are used to connect the ETH

controller to the PHY hardware that implements the

electrical interface.

Source: Renesas Synergy MCUs User’s Manual: Hardware

© 2020 Renesas Electronics Corporation. All rights reserved. Page 334

11.3 – REGISTERS – CASE STUDY

Implementation for the Ethernet Controller Module of the R7FS7G27H3A01CFC Renesas ARM Cortex-M4 MCU:

 ECMR  enable / disable, operation mode configuration

 RFLR  maximum frame length (between 1518 and 2048 bytes)

 ECSR  detection of line events (e. g. false carrier)

 ECSIPR  enable/disable line events interrupt

 PIR  access PHY registers

 PSR  status of PHY

 RDMLR  upper limit for random number generation

 IPGR  sets the interpacket gap (in bit times)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 335

11.3 – REGISTERS – CASE STUDY

 APR  set pause time for an automatic PAUSE frame (used for flow control)

 MPR  set pause time for a manual PAUSE frame (used for flow control)

 RFCF  number of received PAUSE frames

 TPAUSER  max number of PAUSE frame retransmission

 TPAUSECR  PAUSE retransmit counter

 BCFRR  max number of received broadcast frames

 MAHR  upper bits of MAC address

 MALR  lower bits of MAC address

 TROCR  number of frames that failed to be retransmitted

© 2020 Renesas Electronics Corporation. All rights reserved. Page 336

11.3 – REGISTERS – CASE STUDY

 CDCR  number of late collisions detected

 LCCR  number of losses of carrier detected

 CNDCR  number of times a carrier is not detected

 CEFCR  number of received frames with CRC error

 FRECR  number of times a frame receive error has occurred

 TSFRCR  number of short frames received

 TLFRCR  number of long frames (longer than RFLR value) received

 RFCR  number of frames received with alignment error (not integral number of octets)

 MAFCR  number of multicast frames received

© 2020 Renesas Electronics Corporation. All rights reserved. Page 337

11.4 – SOFTWARE STACK – CASE STUDY

 Example of Ethernet stack for Renesas

microcontroller hardware (part of the SSP 

Synergy Software Package).

 The Ethernet layer depends on upper layers

to manage the network protocols that

generate or consume the data encapsulated

into Ethernet packets  the “Application”

layer.

 (https://www.renesas.com/en-

us/software/D6001601.html)

Source: Renesas Synergy NetX Port Module Guide

r11an0218eu0101-synergy-sf-el-nx-mod-guide

https://www.renesas.com/en-eu/doc/products/renesas-synergy/apn/r11an0218eu0101-synergy-sf-el-nx-mod-guide.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 338

11.4 – SOFTWARE STACK – CASE STUDY

 Example of Ethernet API for Renesas microcontroller hardware part of NetX Framework for Renesas Synergy Software

Package (SSP).

Renesas Synergy Software

Package v1.7.5 User’s Manual

r11um0140eu0106-synergy-ssp-

v175

Basic comm API

functions

https://synergygallery.renesas.com/media/products/1/384/en-US/r11um0140eu0106-synergy-ssp-v175.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 339

12 – SOFTWARE DEVELOPMENT PROCESS

 Software Process Overview

 UML Class Diagram

 UML State Machine Diagram

© 2020 Renesas Electronics Corporation. All rights reserved. Page 340

WATERFALL PROCESS

© 2020 Renesas Electronics Corporation. All rights reserved. Page 341

SOFTWARE PROCESS

V-cycle

© 2020 Renesas Electronics Corporation. All rights reserved. Page 342

UML

Unified Modeling Language

 Originally by Grady Booch, James Rumbaugh and Ivar Jacobson

 Based on the integration of several existing modeling languages

 OMG standard (www.omg.org) in 1998

 Language based on visual models

 Current version: 2.5 (March 2015)

 Non-proprietary language

http://www.omg.org/

© 2020 Renesas Electronics Corporation. All rights reserved. Page 343

MODELING

The basic elements of a structural model are:

 THINGS

 Interaction among THINGS

© 2020 Renesas Electronics Corporation. All rights reserved. Page 344

THINGS

Physical things:

 Coffee bean, processor, equipment , vehicle, planet ...

Logical things:

 Bank account, contract, variable stored in memory ...

© 2020 Renesas Electronics Corporation. All rights reserved. Page 345

INTERACTION AMONG THINGS

Examples:

processor is connected to memory

personA and personB are married

personX is responsible for bank_account_12345

© 2020 Renesas Electronics Corporation. All rights reserved. Page 346

CLASS / OBJECT

A cohesive entity that has attributes, behavior and (optionally) state.

Characteristics of a Class / Object:

 Data - attributes

 Behavior - operations, methods, services, functions

 State - memory of its past

 Identity - unique identifier

 Responsibilities

© 2020 Renesas Electronics Corporation. All rights reserved. Page 347

CLASS / OBJECT IN PROGRAMMING LANGUAGES

Class Object

example: a type in C example: a variable in C

Compile time existence runtime existence

Ocupies memory

the design of an object an instance of a class

© 2020 Renesas Electronics Corporation. All rights reserved. Page 348

CLASS REPRESENTATION

Radar

Radar

attributes

methods

© 2020 Renesas Electronics Corporation. All rights reserved. Page 349

STEREOTYPE

An additional (informal) form of classification.

Notation:

 text: <<stereotype_name>>

 icon

 class is represented by an icon

© 2020 Renesas Electronics Corporation. All rights reserved. Page 350

ATTRIBUTES / METHODS – VISIBILITY

A typical class representation has:

 class name (+ stereotype)

 attributes

 methods

The visibility of the methods and attributes is indicated by:

Symbol Meaning Visibility

+ public accessible to all

protected accessible by derived classes

- private accessible only by this class

~ package

scope

accessible to the other classes in this

package

© 2020 Renesas Electronics Corporation. All rights reserved. Page 351

INTERACTION AMONG THINGS

Relationships:

 Association

 Aggregation

 Composition

 Generalization

 Dependency

© 2020 Renesas Electronics Corporation. All rights reserved. Page 352

ASSOCIATION

A and B know of the existence

of each other and may interact:

 access to public methods

 access to public attributes

class ExemplosNotação

A B

© 2020 Renesas Electronics Corporation. All rights reserved. Page 353

NAVIGABILITY

Who has access to whom?

A has access to B, but

B does not have access to A

class ExemplosNotação

A B

class A;
class B;

class A {
B * pB;
int a_attr;

};

class B {
public:

int b_attr;
};

© 2020 Renesas Electronics Corporation. All rights reserved. Page 354

MULTIPLICITY

How many objects of each class participate of this relationship?

1 exactly one

* many (0 or more)

n many (0 or more)

1..* 1 or more

3..20 from 3 to 20

4,6,8 4 or 6 or 8

class ExemplosNotação

A B

1 5..10

class A;
class B;

class A {
B * pB[10];
int a_attr;

};

class B {
public:

int b_attr;
};

© 2020 Renesas Electronics Corporation. All rights reserved. Page 355

AGGREGATION

This relationship represents a weak

part-whole or part-of.

The parts lifetime are different from the

lifetime of the whole.

Read as:

Whole has a Part.

class Whole;

class Part;

class Whole {

Part * pP[10];

int a_attr;

};

class Part {

public:

int b_attr;

};

class ExemplosNot...

Todo

Parte

*

1

Whole

Part

© 2020 Renesas Electronics Corporation. All rights reserved. Page 356

COMPOSITION

 Strong whole-part relationship.

 The whole and the parts form

a single entity.

 Same lifespan for the whole

and the parts.

class Part {

public:

int b_attr;

};

class Whole {

Part obj;

int a_attr;

};

class ExemplosNot...

Todo

Parte

class ExemplosNotação

Todo

Todo::Parte

Whole

Part

Whole

Whole::Part

© 2020 Renesas Electronics Corporation. All rights reserved. Page 357

GENERALIZATION

 Represents inheritance.

 The derived class inherits all

methods and attributes of the

base class.

 Reading:

Derived is-a Base. class Base {

protected:

int base_attr;

void base_meth(int);

};

class Derived : public Base {

int der_attr;

};

class ExemplosNot...

Base

Deriv adaDerived

© 2020 Renesas Electronics Corporation. All rights reserved. Page 358

USING UML TO DESIGN AN EMBEDDED SOLUTION

 Classes may represent: classes (e.g. C++), set of cohesive functions in C, hardware components, ...

 Since classes represent such a variety of things, the use of stereotypes is encouraged to inform the type: «HW», «ISR»,

«device driver»,...

 Associations also have several possible interpretations, from actual physical connections to pointers (e.g. in C). The use

of stereotypes is also encouraged.

 A common mistake is to consider the navigation adornment as an indication of the direction of flow of data. It is not!

© 2020 Renesas Electronics Corporation. All rights reserved. Page 359

This is an example of a class diagram representing the components of a very simple digital scope.

Stereotypes are used to document what type of thing is being represented by each class: HW, Device Driver, ISR, ...

© 2020 Renesas Electronics Corporation. All rights reserved. Page 360

13 – CONCURRENT PROGRAMMING

 Tasks

 Processes vs Threads

 Context Switching

 Scheduling

 Inter-task Communications and Synchronization

 Caveats

© 2020 Renesas Electronics Corporation. All rights reserved. Page 361

UNDERSTANDING CONCURRENCY

 Consider a single-person company. Suppose you could specify his activities by writing a program-like script. Wouldn’t it be

very complex? Full of interleaved chores that would be hard to specify in a single script?

source: pixabay.com

© 2020 Renesas Electronics Corporation. All rights reserved. Page 362

UNDERSTANDING CONCURRENCY

Now, consider a simple embedded system with:

 3 serial ports operating at 115 Kbps (aprox. 1 char every 87us);

 USB, requiring processing every 125 us for packets with about 1KBytes;

 IHM: touch screen plus LCD;

 activities implemented in SW:

 A1: every 2 ms – process data from the touch screen;

 A2: every 7 ms – process USB data;

 A3: every 500 us – manage the USB protocol;

 A4: every 100 ms – manage the menu system.

Wouldn’t it be very hard to program a single sequential code to execute all these tasks, even more if several

possible interleavings could occur?

© 2020 Renesas Electronics Corporation. All rights reserved. Page 363

UNDERSTANDING CONCURRENCY

As embedded systems increase constantly in complexity and code size, this complexity can be better managed if a single

program (responsible for all activities) could be divided into many smaller programs, each one responsible for a single

activity. Each one of these small programs is called a task. The multiple tasks that compose a concurrent program execute

concurrently and cooperate among them to achieve the desired functionality.

It is TEAM WORK!!

© 2020 Renesas Electronics Corporation. All rights reserved. Page 364

UNDERSTANDING CONCURRENCY

How can multiple tasks execute concurrently on a single processor?

Answer: each task will execute on a “virtual processor”. The combined performance of all virtual processors is about the

same as the performance of the actual processor, as the virtual processor share the physical resources: processor, memory

and peripherals.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 365

UNDERSTANDING CONCURRENCY

The sharing of the actual hardware (processor, memory, peripherals) is managed by an embedded operating system (or

RTOS - Real-Time Operating System).

Virtual
Processor 1

VP2 … VPn

RTOS

HW

© 2020 Renesas Electronics Corporation. All rights reserved. Page 366

UNDERSTANDING CONCURRENCY

The storage regions of a single sequential program (e.g a C-program) are:

Flash

CODE
(.text)

(.const)

RAM

HEAP

STACK

DATA
(.data)
(.bss)

CPU

Registers

© 2020 Renesas Electronics Corporation. All rights reserved. Page 367

MULTITHREADING

For simplicity and to reduce the usage of computational resources, RTOS for MCUs typically rely on multithreading to

implement concurrency.

A thread is a program segment that executes concurrently to other threads (program segments). Hence, each thread is

characterized by its own PC (program counter), its own set of processor registers and its own stack, while sharing the other

memory regions with the other threads.

On MCUs, each task (abstract concept) is implement by one thread.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 368

MULTITHREADING

Some sections of RAM (shown in red) are of

exclusive use of a thread. These sections

hold the stacks and a copy of the set of

processor registers.

Other sections of Memory (shown in blue)

are shared among all threads. While this

sharing provides efficient access to shared

data, it does not provide means of protection

among threads.

Flash
CODE
(.text)

(.const)

RAM

HEAP

DATA
(.data)
(.bss)

CPU

Registers

RAM

STACK 1

Regs 1

RAM

STACK n

Regs n
…

Shared

Exclusive

use

notation

© 2020 Renesas Electronics Corporation. All rights reserved. Page 369

MULTITHREADING

Differences between threads and processes:

 On processors with MMUs (Memory Management Units), it is possible to create an exclusive addressing space for each

task. This type of implementation is called process. In a process, it is possible to host several threads, hence, there are

single-threaded processes and multi-threaded processes.

 On processors without MMUs, all tasks share the available memory. This type of implementation is called thread.

 A task is a logical concept that can be implemented by a process or by a thread.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 370

MULTITHREADING – CONCEPTS

Context Switch

How do multiple threads share a single processor?

 An RTOS manages the physical resources (processor, memory, peripherals).

 A context switch consists of saving the state of the processor when one thread is executing and restoring the state of

another thread:

1. Task A is executing;

2. All CPU registers are saved onto the stack of Task A;

3. The RTOS executes and selects another task to execute: Task B. The criteria for selecting another task is defined by

the scheduling policy;

4. The state of task B is restored from Task B stack onto the CPU registers. Execution proceeds on Task B’s code and

using Task B’s stack.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 371

MULTITHREADING – CONCEPTS

Preemptive vs Non-Preemptive RTOS

 A preemptive RTOS has control of the processor during all times. It releases the processor to a thread and at any time

may get back the control of the processor to releases to another thread. This is the case when a higher priority thread

becomes ready to run.

 When a non-preemptive RTOS releases control to a thread, it is unable to regain control of the processor until that thread,

voluntarily, releases the processor back to the RTOS.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 372

MULTITHREADING – CONCEPTS

Task Priority

 Each task is created with a defined

priority level, which typically can be

changed during execution. When a task

of higher priority than the running task

becomes ready, a priority-based

preemptive scheduler will interrupt the

running task and context switch to the

higher priority task. Once this task

releases the processor, the preempted

task can resume its execution.

source: ARM, CMSIS-RTOS specs

http://www.keil.com/pack/doc/CMSIS_Dev/RTOS2/html/theory_of_operation.html

© 2020 Renesas Electronics Corporation. All rights reserved. Page 373

MULTITHREADING – CAVEATS

If all tasks in a concurrent program are independent, then the only control that is needed is the allocation of the processor

to the tasks (scheduling).

However, if tasks share resources (memory regions or peripherals) then an adequate control of resource sharing must be

performed to guarantee exclusive access to shared resources and to avoid deadlocks and priority inversion.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 374

14 – RTOS – REAL-TIME OPERATING SYSTEM

 Introduction

 Thread Management

 Inter-thread communication and synchronization

 Timing Services

 Memory Management

© 2020 Renesas Electronics Corporation. All rights reserved. Page 375

RTOS – INTRODUCTION

 An RTOS is a layer of Software between the hardware and

the application software that allows the implementation of

concurrent tasks implemented by multithreading.

 The RTOS manages the hardware, sharing resources

among multiple “virtual processors”: VP1 to VPn so that

each thread has the illusion of owning a processor and

stack while sharing global data, heap, code area and

peripherals.

 The RTOS implements sharing of the processor via

context switching and provides several important

functionalities for the threads: timing, inter-thread

communication and synchronization, and thread

management.

VP1 VP2 … VPn

RTOS

HW

© 2020 Renesas Electronics Corporation. All rights reserved. Page 376

THREAD EXECUTION – LARGE GRAIN VIEW

Observing at a time scale of seconds, one has the

impression that all threads execute in parallel. Thread 1

Thread 2

Thread 3

Thread 4

t0 t0 +1s t0 +2s t0 +3s

© 2020 Renesas Electronics Corporation. All rights reserved. Page 377

THREAD EXECUTION – FINE GRAIN VIEW

Observing on a fine grain scale (milliseconds) it is possible

to realize that the tasks share the processor as the RTOS

switches among them the utilization of the CPU.

t0 t0 +1ms t0 +2ms t0 +3ms

© 2020 Renesas Electronics Corporation. All rights reserved. Page 378

TASK STATES

A typical state diagram of a task in a

multithreaded environment:

 Ready: tasks that is willing to use the

processor and is expected to be scheduled.

 Running: the state of the task that is using the

processor.

 Waiting: tasks whose execution is blocked

due due to time, synchronization or

communication.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 379

CMSIS (CORTEX MICROCONTROLLER SOFTWARE INTERFACE
STANDARD)

• v 1.0 (2008)
– Drivers API

• v 2.0
– DSP Lib

• v 3.0 (2012)
– API RTOS

– DAP (Debug)

• V 4.0 (2014)
– CMSIS-Driver

– CMSIS-Pack

• V 5.0 (2016)
CMSIS-RTOS v2

As of March,2020, CMSIS is at version 5.6

© 2020 Renesas Electronics Corporation. All rights reserved. Page 380

CMSIS-RTOS DOCUMENTATION

Available online

CMSIS code is available in GITHUB

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/modules.html

© 2020 Renesas Electronics Corporation. All rights reserved. Page 381

PLANNING A MULTITHREADED APPLICATION

© 2020 Renesas Electronics Corporation. All rights reserved. Page 382

CMSIS-RTOS: OVERVIEW 1/4

Kernel Information and Control

• osKernelInitialize : Initialize the RTOS kernel.

• osKernelStart : Start the RTOS kernel.

• osKernelRunning : Query if the RTOS kernel is running.

• osKernelSysTick $: Get RTOS kernel system timer counter.

• osKernelSysTickFrequency $: RTOS kernel system timer frequency in Hz.

• osKernelSysTickMicroSec $: Convert microseconds value to RTOS kernel system timer value.

Thread Management

• osThreadCreate : Start execution of a thread function.

• osThreadTerminate : Stop execution of a thread function.

• osThreadYield : Pass execution to next ready thread function.

• osThreadGetId : Get the thread identifier to reference this thread.

• osThreadSetPriority : Change the execution priority of a thread function.

• osThreadGetPriority : Obtain the current execution priority of a thread function.

http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___kernel_ctrl.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___kernel_ctrl.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___kernel_ctrl.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___kernel_ctrl.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___kernel_ctrl.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___kernel_ctrl.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___kernel_ctrl.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html

© 2020 Renesas Electronics Corporation. All rights reserved. Page 383

CMSIS-RTOS: OVERVIEW 2/4

Generic Wait Functions

• osDelay : Wait for a specified time.

• osWait $: Wait for any event of the type Signal, Message, or Mail.

Timer Management $

• osTimerCreate : Define attributes of the timer callback function.

• osTimerStart : Start or restart the timer with a time value.

• osTimerStop : Stop the timer.

• osTimerDelete : Delete a timer.

http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___wait.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___wait.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___wait.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___timer_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___timer_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___timer_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___timer_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___timer_mgmt.html

© 2020 Renesas Electronics Corporation. All rights reserved. Page 384

CMSIS-RTOS: OVERVIEW 3/4

Signal Management

• osSignalSet : Set signal flags of a thread.

• osSignalClear : Reset signal flags of a thread.

• osSignalWait : Suspend execution until specific signal flags are set.

Mutex Management $

• osMutexCreate : Define and initialize a mutex.

• osMutexWait : Obtain a mutex or Wait until it becomes available.

• osMutexRelease : Release a mutex.

• osMutexDelete : Delete a mutex.

Semaphore Management $

• osSemaphoreCreate : Define and initialize a semaphore.

• osSemaphoreWait : Obtain a semaphore token or Wait until it becomes available.

• osSemaphoreRelease : Release a semaphore token.

• osSemaphoreDelete : Delete a semaphore.

http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___signal_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___signal_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___signal_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___signal_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___mutex_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___mutex_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___mutex_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___mutex_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___mutex_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___semaphore_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___semaphore_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___semaphore_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___semaphore_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___semaphore_mgmt.html

© 2020 Renesas Electronics Corporation. All rights reserved. Page 385

CMSIS-RTOS: OVERVIEW 4/4

Memory Pool Management $

osPoolCreate : Define and initialize a fix-size memory pool.

osPoolAlloc : Allocate a memory block.

osPoolCAlloc : Allocate a memory block and zero-set this block.

osPoolFree : Return a memory block to the memory pool.

Message Queue Management $

• osMessageCreate : Define and initialize a message queue.

• osMessagePut : Put a message into a message queue.

• osMessageGet : Get a message or suspend thread execution until message arrives.

Mail Queue Management $

• osMailCreate : Define and initialize a mail queue with fix-size memory blocks.

• osMailAlloc : Allocate a memory block.

• osMailCAlloc : Allocate a memory block and zero-set this block.

• osMailPut : Put a memory block into a mail queue.

• osMailGet : Get a mail or suspend thread execution until mail arrives.

• osMailFree : Return a memory block to the mail queue.

http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___pool_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___pool_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___pool_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___pool_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___pool_mgmt.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___message.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___message.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___message.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___message.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___mail.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___mail.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___mail.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___mail.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___mail.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___mail.html
http://www.keil.com/pack/doc/cmsis/rtos/html/group___c_m_s_i_s___r_t_o_s___mail.html

© 2020 Renesas Electronics Corporation. All rights reserved. Page 386

CMSIS-RTOS – INTER-TASK COMMUNICATIONS

Source: ARM, CMSIS documentation

© 2020 Renesas Electronics Corporation. All rights reserved. Page 387

CMSIS-RTOS – INTER-TASK COMMUNICATIONS

Source: ARM, CMSIS documentation

© 2020 Renesas Electronics Corporation. All rights reserved. Page 388

LAB1 – SYNERGY PLATFORM

Objectives:

 Execute the e2_studio and SSP installation procedures.

 Setup the development environment for the S7G2 kit.

 Run a sample program to verify the installation.

 Overview of e2_studio.

 Overview of SSP.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 389

LAB1 – SYNERGY PLATFORM

Activities:

1. Create an account on Renesas, Install e2_studio (including SSP and tools);

2. Setup the SK-S7G2 board;

Run a sample program to verify ISDE setup;

3. Overview of the Synergy Platform;

4. Overview of the e2 studio ISDE;

5. Overview of the SSP (Synergy Software Package).

© 2020 Renesas Electronics Corporation. All rights reserved. Page 390

LAB1 – SYNERGY PLATFORM

Activity 1 – Create an account on Renesas, Install e2_studio

(including SSP and tools)

1. Register an account at https://www.renesas.com

2. Sign in

3. Download Platform Installer

4. Execute the installation

5. Execute e2_studio

https://www.renesas.com/

© 2020 Renesas Electronics Corporation. All rights reserved. Page 391

LAB 1 – ACTIVITY 1 – STEP 1

Register

a) create an account with

Renesas

- click on sign in

https://www.renesas.com/

https://www.renesas.com/

© 2020 Renesas Electronics Corporation. All rights reserved. Page 392

LAB 1 – ACTIVITY 1 – STEP 1

Register

a) click on Register now

b) follow the registration process

© 2020 Renesas Electronics Corporation. All rights reserved. Page 393

click on the link sent to your mail address

to activate the account

© 2020 Renesas Electronics Corporation. All rights reserved. Page 394

by clicking on the link sent by mail,

the registration process proceeds

© 2020 Renesas Electronics Corporation. All rights reserved. Page 395

LAB 1 – ACTIVITY 1 – STEP 2

Sign In:

return to renesas.com and sign in with your

mail address and the password you defined

© 2020 Renesas Electronics Corporation. All rights reserved. Page 396

LAB 1 – ACTIVITY 1 – STEP 3

Download platform

installer

(further registration info

may be

requested)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 397

LAB 1 – ACTIVITY 1 – STEP 3

Download platform

installer

(further registration info

may be

requested)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 398

LAB 1 – ACTIVITY 1 – STEP 3

Download platform

installer

(further registration info

may be

requested)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 399

LAB 1 – ACTIVITY 1 – STEP 3

Download platform

installer

(further registration info

may be

requested)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 400

LAB 1 – ACTIVITY 1 – STEP 3

Download platform

installer

(further registration info

may be

requested)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 401

LAB 1 – ACTIVITY 1 – STEP 3

Download platform

installer

(further registration info

may be

requested)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 402

LAB 1 – ACTIVITY 1 – STEP 3

Download platform

installer

(further registration info

may be

requested)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 403

LAB 1 – ACTIVITY 1 – STEP 3

Download platform

installer

(further registration info

may be

requested)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 404

LAB 1 – ACTIVITY 1 – STEP 3

Download platform

installer

(further registration info

may be

requested)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 405

LAB 1 – ACTIVITY 1 – STEP 3

Download these two PDFs:

getting started and release notes

they contain important information about

the tools and their installation.

platform installer download in progress

© 2020 Renesas Electronics Corporation. All rights reserved. Page 406

LAB 1 – ACTIVITY 1 – STEP 4

Installation process

Unzip the downloaded file to obtain the installation executable,

run it.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 407

LAB 1 – ACTIVITY 1 – STEP 4

Installation process

Note in red where the user must make appropriate

selections

© 2020 Renesas Electronics Corporation. All rights reserved. Page 408

LAB 1 – ACTIVITY 1 – STEP 4

© 2020 Renesas Electronics Corporation. All rights reserved. Page 409

LAB 1 – ACTIVITY 1 – STEP 4

© 2020 Renesas Electronics Corporation. All rights reserved. Page 410

LAB 1 – ACTIVITY 1 – STEP 4

© 2020 Renesas Electronics Corporation. All rights reserved. Page 411

LAB 1 – ACTIVITY 1 – STEP 4

© 2020 Renesas Electronics Corporation. All rights reserved. Page 412

LAB 1 – ACTIVITY 1 – STEP 4

© 2020 Renesas Electronics Corporation. All rights reserved. Page 413

LAB 1 – ACTIVITY 1 – STEP 4

© 2020 Renesas Electronics Corporation. All rights reserved. Page 414

LAB 1 – ACTIVITY 1 – STEP 5

execute e2studio: C:\Renesas\Synergy\e2studio_v7.5.1_ssp_v1.7.5\eclipse\e2studio.exe

© 2020 Renesas Electronics Corporation. All rights reserved. Page 415

LAB 1 – ACTIVITY 1 – STEP 5

© 2020 Renesas Electronics Corporation. All rights reserved. Page 416

LAB 1 – ACTIVITY 1 – LEARN YOUR CONFIGURATION!

 From e2studio | Help | About - get the version of e2studio: 7.5.1

 In C:\Renesas\Synergy\e2studio_v7.5.1_ssp_v1.7.5 the folder name indicates the version of the SSP: 1.7.5

 In C:\Renesas\Synergy\e2studio_v7.5.1_ssp_v1.7.5\toolchains\gcc_arm see the version of the GCC tools: 7.2.1.2017

 From the microcontroller chip on the development board: S7G27H3CFC

© 2020 Renesas Electronics Corporation. All rights reserved. Page 417

LAB1 – SYNERGY PLATFORM

Activity 2 – Setup the SK-S7G2 board

1. Verify the position of the jumpers on the board.

2. Connect the micro-USB cable to the

DEBUG_USB port on the board and to your PC.

3. Verify the setup of the board and e2Studio by

running a sample demo (Blinky).

source: Renesas.com

© 2020 Renesas Electronics Corporation. All rights reserved. Page 418

SK-S7G2 BOARD FEATURES

1. Uses a 176-pin LQFP MCU

240 MHz S7G2 Cortex-M4 based microcontroller.

2. All pins of the MCU are accessible via header pins

(access to CAN, SPI, UART, I2C).

3. Resistive touch TFT colour LCD (320 x 240 pixels).

4. Capacitive touch slider.

5. Connectors:

1. USB Host - High speed

2. USB Device - Full speed.

3. Ethernet 10/100

4. 2 PMOD type 2A

5. audio connector

6. CAN, RS-232/RS-485

7. Arduino shields compatible connector

6. Wireless connectivity: on-board Bluetooth Low Energy (BLE) device

7. QSPI flash memory (8 MBytes).

8. USB - JTAG (on-board Segger JLink).

9. 3 user leds and 2 push buttons.

10. WiFi connectivity using add-on boards (e.g. AE-CLOUD1).

SK-S7G2 board block diagram

source: Renesas Starter Kit SK-S7G2 User’s Manual

© 2020 Renesas Electronics Corporation. All rights reserved. Page 419

LAB 1 – ACTIVITY 2 – STEP 1

Verify the position of the jumpers on the board:

pin 1 is marked by a triangle next to the connector

J9 (double row of pins is numbered as: 2 4 6

1 3 5

Suggested reading: Renesas Synergy Starter Kit SK-S7G2 User’s Manual (r12um0004eu0100)

(https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r12um0004eu0100_synergy_sk_s7g2.pdf)

this manual has detailed explanation on the board functionality, schematics and configuration

J1

J2

J8

J9 J
1

5

J
1

3

J31

Jumper Position

J1 1-2: normal boot

J2 open (reset released)

J8 1-2: signals a GPIO pin that RS-232

should be selected instead of RS-485

J9 1-3 and 2-4: use RS-232 driver

J13 1-2: output 3V3 to PMODA connector

J15 1-2: output 3V3 to PMODB connector

J31 closed - used for current

measurement to MCU

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r12um0004eu0100_synergy_sk_s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 420

LAB 1 – ACTIVITY 2 – STEP 2

Connect the micro-USB cable to the

DEBUG_USB port on the board and to your PC.

LED 4 should light up to indicate that the board

powered up.

source: Renesas Starter Kit SK-S7G2 User’s Manual
DEBUG_USB port

LED 4

© 2020 Renesas Electronics Corporation. All rights reserved. Page 421

LAB 1 – ACTIVITY 2 – STEP 3

1. Run e2studio

(StartMenu | Renesas Synergy v1.7.5 | e2 studio

7.5.1)

if the welcome screen shows up then click on

Workbench.

2. File | New | Synergy C/C++ Project

Renesas Synergy C Executable Project

Project name: Blinky

© 2020 Renesas Electronics Corporation. All rights reserved. Page 422

LAB 1 – ACTIVITY 2 – STEP 3

3. Select board: S7G2 SK

Select the MCU that is used in your board

Select the toolchain version that was installed

during Activity 1 of this Lab

Select J-Link ARM as the debugger interface

© 2020 Renesas Electronics Corporation. All rights reserved. Page 423

LAB 1 – ACTIVITY 2 – STEP 3

4. Select Blinky as the Template

Finish (press Finish button)

accept the suggested perspective

© 2020 Renesas Electronics Corporation. All rights reserved. Page 424

LAB 1 – ACTIVITY 2 – STEP 3

5. On the Project Explorer

right click on the Blinky project

Build Project
(should compile without errors or warnings).

6. Right click again on Blinky project

Debug As | Debug Configurations...

7. On the Debug Configurations Window

expand Renesas GDB Hardware Debugging

select Blinky Debug.

Debug (press Debug button)

if offered to upgrade the J-Link firmware, accept

if offered to change perspective, accept.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 425

LAB 1 – ACTIVITY 2 – STEP 3

8. The debug perspective should be

presented at this time

(see on upper right)

9. Press Resume () and the code

is executed up to the start of the

main function - green line

10. Press Resume again and the code

executes: three leds blink near the

LCD of the board.

You succeeded in the installation

of e2studio!

© 2020 Renesas Electronics Corporation. All rights reserved. Page 426

LAB1 – SYNERGY PLATFORM

Activity 3 – Overview of the Synergy Platform

1. How platform is defined in this context

2. What is included in the Synergy Platform

3. Effect on the development process

© 2020 Renesas Electronics Corporation. All rights reserved. Page 427

LAB1 – ACTIVITY 3

Concept of the Synergy Platform

In this context, Platform is defined as a complete set of hardware and software components that can be easily combined

to form the foundation upon which a solution is built. Furthermore, the Platform also provides the infrastructure for

development (development tools, example of end-product design, technology building-block examples, web accessible

repository of tools and software).

© 2020 Renesas Electronics Corporation. All rights reserved. Page 428

LAB1 – ACTIVITY 3

What is included in the Synergy Platform?

1. A family of Microcontrollers (S1, S3, S5, S7)

2. SSP (Synergy Software Package)

complete package of qualified software

3. Development tools

(e.g. the e2studio ISDE)

4. Development Boards (e.g. SK-S7G2)

5. Product examples

6. Application examples

7. Synergy Gallery

(web accessible repository)
source: Renesas, Synergy Platform Architecture

© 2020 Renesas Electronics Corporation. All rights reserved. Page 429

LAB1 – ACTIVITY 3

source: Renesas, Synergy Platform Architecture

© 2020 Renesas Electronics Corporation. All rights reserved. Page 430

LAB1 – SYNERGY PLATFORM

Activity 4 – Overview of e2studio

1. Understanding the organization of e2studio

2. Common tasks in e2studio

© 2020 Renesas Electronics Corporation. All rights reserved. Page 431

LAB1 – ACTIVITY 4

The e2studio ISDE

(Integrated Solutions Development Environment)

Features:

1. Built on the Eclipse Framework

2. Compiler/Linker - GNU or IAR

3. Editor (with syntax highlighting and auto-

complete)

4. Configuration tools (pin, clock, interrupt, ...)

5. SSP module selector and configurator

6. RTOS awareness, execution profiler, tracing

7. JTAG debugger interface (J-Link)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 432

LAB1 – ACTIVITY 4

Eclipse is a framework upon which

many open source development

environments are built.

Some important concepts of eclipse

are:

 The workbench window

(identified by an orange border)

 Several areas in the workbench, in

this example the areas are

identified in red

 In each area, several parts can be

superimposed, selectable by a tab

© 2020 Renesas Electronics Corporation. All rights reserved. Page 433

LAB1 – ACTIVITY 4

A part is either an editor or a view.

An editor area (shown here) may have many

open files, selectable by a tab (in red). In this

example the file startup_S7G2.c is shown on the

editor panel.

The eclipse editor uses syntax highlighting,

hence, comments are in green, types are in

magenta, function names in bold, header blocks

are in blue, ...

© 2020 Renesas Electronics Corporation. All rights reserved. Page 434

LAB1 – ACTIVITY 4

A view is used mainly to present information.

The project explorer view presents the files that

compose the Blinky project.

The outline view presents the elements (variable,

constants, functions, ...) that compose the file that is

open in the currently active editor pane (in this

example the startup_S7G2.c file of the previous slide).

Each view may have its own menu. Accessible by the

icon identified in a red box.

There are hundreds of views available in the submenu

of Window | ShowView.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 435

LAB1 – ACTIVITY 4

Parts (editors and views) can be freely rearranged and

grouped to fit the user needs.

A given organization of parts is called a perspective.

Some are predefined, but the user can create his own

perspectives.

Perspectives are selected by buttons on the upper right

(C/C++ perspective identified in red). Each perspective

is conceived to fit a given activity, such as source file

editing, synergy platform configuration, debugging, ...

Choose Window | Perspective | Reset Perspective...

to restore a perspective back to its default organization.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 436

LAB1 – ACTIVITY 4

A project consists of a set of inputs files

(source files and configuration files) as well

as the output files generated during the

compile/link process.

A project is presented in the Project

Explorer window in the form of a tree with

files and folders.

The user can create folders to better

organize the files of a project

A project generates a single binary

executable or a library.

Several configurations of a project may be

stored for easy access. Such as: a

configuration that generates debug info vs

one that does not.

Here shown is the Blinky project in its

Debug configuration.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 437

LAB1 – ACTIVITY 4

A workspace is a set of projects.

Typically, projects in the same workspace share common features such

as libraries and hardware platforms.

For instance, you can create a single workspace for all projects of this

Embedded Systems course, since they all will be running on the SK-

S7G2 board and may share libraries.

On the file system a workspace corresponds to a folder and each of its

projects is a folder therein.

(figure shows two projects in the same workspace)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 438

LAB1 – ACTIVITY 4

The Synergy Configuration

perspective.

Select this perspective when

using the Synergy

Configuration Tool to configure

the SSP, define pin functions,

create threads, ...

© 2020 Renesas Electronics Corporation. All rights reserved. Page 439

LAB1 – ACTIVITY 4

SSP Configuration Tool

(Synergy Configuration)

The user selects the desired

configuration of a module of the

SSP (in this example the clock)

using a graphical tool.

Generate Project Content will

produce the corresponding C

code.

source: Renesas Synergy ISDE Tour

© 2020 Renesas Electronics Corporation. All rights reserved. Page 440

LAB1 – ACTIVITY 4

Another example of the usage of the

Synergy Configuration Tool

The graphical tool is used to define the

function of each pin.

Configuration errors (e.g. pin conflicts) are

identified and can be corrected.

Again, Generate Project Content will generate

the corresponding C code.

source: Renesas Synergy ISDE Tour

© 2020 Renesas Electronics Corporation. All rights reserved. Page 441

LAB1 – ACTIVITY 4

Use the Synergy

Configuration tool to chose

HAL modules, to create

threads and configure

them.

HAL =

Hardware Abstraction Layer

see Embedded Systems Architecture

starting on slide arch

source: Renesas Synergy ISDE Tour

© 2020 Renesas Electronics Corporation. All rights reserved. Page 442

LAB1 – ACTIVITY 4

To start a debug session use the debug icon.

A debug configuration window is used to setup the

debug configuration

© 2020 Renesas Electronics Corporation. All rights reserved. Page 443

LAB1 – ACTIVITY 4

When entering a debug

session,

the current perspective

changes to Debug.

Several debug buttons become

available.

debug perspective

source (also for some other figures in this section):

e2 studio Integrated Development Environment User's Manual: Getting Started Guide
r20ut2771ej0400_e2_start_s.pdf

https://www.renesas.com/us/en/doc/products/tool/doc/006/r20ut2771ej0400_e2_start_s.pdf

https://www.renesas.com/us/en/doc/products/tool/doc/006/r20ut2771ej0400_e2_start_s.pdf
https://www.renesas.com/us/en/doc/products/tool/doc/006/r20ut2771ej0400_e2_start_s.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 444

LAB1 – SYNERGY PLATFORM

Activity 5 – Overview of the SSP

1. Synergy Software Package

2. How to use the SSP

© 2020 Renesas Electronics Corporation. All rights reserved. Page 445

LAB1 – ACTIVITY 5 – STEP 1

The Synergy Software Package (SSP) internal

structure is presented inside the red box; the grey

and purple boxes contextualize its usage.

Renesas Synergy MCUs have an ARM

Cortex core and several peripherals.

Development boards and Starter Kits are

available to support development and

training.

The Hardware Abstraction Layer provides

an abstraction of the internal peripherals

of the MCU: timer, communication

interfaces, gpio, ADC, DAC, ...

The device drivers that compose the HAL

are independent of the RTOS.

Unified interfaces provide portability.
The Application Framework provides

commonly used system services and

frameworks. It provides a unified interface

to higher level functionality, such as: touch

screen, audio, block media, ...

The ThreadX RTOS, and the aggregated

FileX, USBX, GUIX, NetX are part of the

SSP providing multitasking,

communication, file system and user

interface.

BSP - Board Support Package

is the part of SSP that provides an

abstraction to the functionality

implemented on a board, outside the

MCU. Such as: leds, push-buttons, ...

source: Renesas

© 2020 Renesas Electronics Corporation. All rights reserved. Page 446

LAB1 – ACTIVITY 5 – STEP 1

The Synergy Software Package (SSP)

internal structure is further detailed here:

source: Renesas SSP v 1.7.5 documentation

© 2020 Renesas Electronics Corporation. All rights reserved. Page 447

LAB1 – ACTIVITY 5 – STEP 1

The Synergy Software Package (SSP) is downloadable from the

Renesas website (see Lab 1, Activity 1, Step 5).

It is installed in C:\Renesas\Synergy\e2studio_v7.5.1_ssp_v1.7.5.

The ISDE e2studio will access the SSP directly from there.

The HTML documentation for SSP is installed in

C:\Renesas\Synergy\e2studio_v7.5.1_ssp_v1.7.5\SSP_Documentation.

By opening in a browser the file

ssp-user-manual-html-v1.00-sspv1.7.5.html

the doxygen generated documentation is presented.

SSP documentation is also available in pdf from the Renesas website

source: Renesas Synergy ISDE Tour

© 2020 Renesas Electronics Corporation. All rights reserved. Page 448

LAB1 – ACTIVITY 5 – STEP 2

Using the Synergy Software Package

(SSP)

The SSP is made available as a large set of

source files that implement its functionality.

The SSP is also highly configurable to the

application needs.

The task of configuring the SSP is

significantly simplified by the use of the

Synergy Configuration Tool available in

e2studio.

This tool provides a graphical interface for

the programmer to select the proper

configuration. Once selected, the button

Generate Project Contents will generate the

appropriate C files that match the selected

configuration.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 449

LAB2 – SAMPLE C PROGRAM

Objectives:

 In Lab 2, the student will develop a simple game. The game’s objective is simply to respond as fast as possible to a visual

stimulus. A led goes on after a random time and the player has to press a button. The current response time is presented.

 The main objective of this Lab is to guide the student through a proposed development process that should be used in

the following labs.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 450

LAB2 – SAMPLE C PROGRAM

Learning Objectives:

 Project planning

 Problem definition, specification, hardware platform study, software framework study, design

 Project generation

 SSP Configuration

 Threads configuration

 Source code editing

 Compile/Link

 Debug

© 2020 Renesas Electronics Corporation. All rights reserved. Page 451

LAB2 – SAMPLE C PROGRAM

Activities:

1. Plan the phases of the development process

2. Problem definition

3. Specification

4. Hardware platform study

5. Software framework study

6. Design

7. Use the Wizard to generate a Synergy C Project

8. Configure the SSP

9. Use the Editor

10. Compile and link the project

11. Debug on the SK-S7G2 board further reading for this Lab:

e2 studio Integrated Development Environment User's Manual: Getting Started Guide
r20ut2771ej0400_e2_start_s.pdf

https://www.renesas.com/us/en/doc/products/tool/doc/006/r20ut2771ej0400_e2_start_s.pdf
(it is also the source of some figures of this section)

https://www.renesas.com/us/en/doc/products/tool/doc/006/r20ut2771ej0400_e2_start_s.pdf
https://www.renesas.com/us/en/doc/products/tool/doc/006/r20ut2771ej0400_e2_start_s.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 452

LAB2 – ACTIVITY 1

Activity 1 – Plan the phases of the development process

In Lab2, the student is faced with a simple problem to be implemented in C, using many of the functionalities made

available in e2studio. The objectives in this lab are not limited to understanding the functionality of the tool, but also to

follow a planned approach to a software development activity.

1. Problem definition: the problem statement should clearly define the scope of the problem.

2. Specification: a clear and precise set of statements that define the functionality of the resulting software as well as its

non-functional characteristics (performance, ...)

3. Study of the hardware platform: one must have a clear understanding of the features of the MCU and of the board that

will be used in this development

4. Software framework study: some of the functionality needed for the solution is available in the form of software

components in the SSP, these must be identified and understood

5. Design: identification of the SW components that need to be developed, their interfaces, algorithms and interfaces to

other software components.

6. Tool usage: project generation, SSP configuration, source code editing, compilation, linkage, debug

© 2020 Renesas Electronics Corporation. All rights reserved. Page 453

LAB2 – ACTIVITY 2

Activity 2 – Problem Definition

Game objective: to respond as fast as possible to a visual stimulus

Game operation: once the game is turned on, after 1 second an LED is turned on, the player must respond by pressing a

button.

Game cycle repeats indefinitely.

Game presents the player response time.

Basic solution: response times are saved in variables and can be visualized in the debugger

© 2020 Renesas Electronics Corporation. All rights reserved. Page 454

LAB2 – ACTIVITY 3

Activity 3 – Specification

S1 - The ResponseTimeGame console shall provide an LED, a push-button and an LCD.

S2 - The operation of the ResponseTimeGame, after power up, is:

1. wait for 1 second

2. turn on LED

3. start measuring time

4. wait for player to press the push-button

5. stop measuring time, save measure as current response time

6. turn off LED

7. a variable should hold the current response time

8. go to step 1

S3 - discard response time measurements above 3 seconds

© 2020 Renesas Electronics Corporation. All rights reserved. Page 455

LAB2 – ACTIVITY 4

Activity 4 – Study the Hardware platform (SK-S7G2 board and S7G2 MCU)

The first manual to be studied is the Starter Kit SK-S7G2 User’s Manual.pdf

Relevant information in this manual concerning the current project is:

 Block diagram

 LEDs

 push-button

 LCD

https://www.renesas.com/en-us/doc/products/renesas-synergy/doc/r12um0004eu0100_synergy_sk_s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 456

LAB2 – ACTIVITY 4

Relevant blocks of the SK-S7G2 board

are marked in red

source: Starter Kit SK-S7G2 User’s Manual

© 2020 Renesas Electronics Corporation. All rights reserved. Page 457

LAB2 – ACTIVITY 4

There are two push-buttons on the SK-S7G2: S4 and S5.

They are directly connected to GPIO pins: P0.6 and P0.5

respectively. There is no debounce circuit between the

push-buttons and the MCU pins.

P0.6 (P006) can generate interrupts at IRQ11.

P0.5 (P005) can generate interrupts at IRQ10

source: Starter Kit SK-S7G2 User’s Manual

© 2020 Renesas Electronics Corporation. All rights reserved. Page 458

LAB2 – ACTIVITY 4

There are three LEDs on the SK-S7G2 that are

controllable by GPIO pins: LED1 (green), LED2

(red), and LED3 (yellow).

They are connected to GPIO pins P6.0, P6.1 and

P6.2 respectively.

The LEDs turn on when a logic level 0 is written to

the pin and they turn off writing a logic level 1.

source: Starter Kit SK-S7G2 User’s Manual

© 2020 Renesas Electronics Corporation. All rights reserved. Page 459

LAB2 – ACTIVITY 4

Activity 4 – Study the Hardware platform (SK-S7G2 board and S7G2 MCU)

The next manual to be studied is the Renesas S7 Series Microcontrollers User’s Manual.pdf

Relevant information in this manual concerning the current project is:

 Overview

 CPU

 Clock Generation

 Event Link Controller

 I/O Ports

 Timers

https://www.renesas.com/en-us/doc/products/renesas-synergy/doc/r01um0001eu0120-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 460

LAB2 – ACTIVITY 4

S7G2 microcontroller’s block diagram

with indication of blocks of interest.

Since the user’s manual of the S7G2

has more than 2000 pages, it is

important to keep focus on what is

relevant to this project.

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 461

LAB2 – ACTIVITY 4

The S7G2 microcontroller’s clock

generation circuit is very flexible and

can provide several different clock

frequencies to different parts of the

MCU. Following limits must be

observed:

Flash clock (FCLOCK) - 60 MHz

Core clock (ICLOCK) - 240 MHz

PCLKA - 120 MHz

PCLKB - 60 MHz

PCLKC - 60 MHz

PCLKD - 120 MHz
source: Renesas S7 Series Microcontrollers User’s Manual

Fig 9.1 (partial)

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 462

LAB2 – ACTIVITY 4

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 463

LAB2 – ACTIVITY 4

The ELC (Event Link Controller)

connects events generated by

peripheral modules to other

peripheral modules. This direct

communication among modules does

not require intervention from the

CPU.

The ELC is not required in this

project, however, it is a compulsory

module in the configuration of the

SSP.

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 464

LAB2 – ACTIVITY 4

The block diagram of a GPIO pin.

Among the configurable features of a pin are:

 Input or output,

 Enable a pull-up on input,

 Output drive capability: low, medium, high

 Use pin for analog function (ADC or DAC);

 Use pin for peripheral function (e.g. SPI);

 Some inputs are 5V tolerant;

 Pins can generate interrupt on edges of input

signal. source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 465

LAB2 – ACTIVITY 4

The block diagram of GPT

(General PWM Timer).

GPT characteristics:

 32-bit counter

 Counts up or down

 Can generate interrupts

 Can start an ADC conversion

 Counts PCLKD pulses

 Periodic or single-shot

 14 channels, each is a 32-bit counter source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 466

LAB2 – ACTIVITY 4

The 14 timer channels are grouped into:

 4x EH – enhanced high resolution

 4x E – enhanced

 6x – conventional

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 467

LAB2 – ACTIVITY 5

Activity 5 – Software Framework Study

Study the Renesas Synergy Software Package v1.7.5 (link) available in the Synergy Gallery; specifically Section 4.2.21

about the HAL GPT (General PWM Timer).

https://synergygallery.renesas.com/media/products/1/384/en-US/r11um0140eu0106-synergy-ssp-v175.pdf

Also, study the Module Guide for the GPT HAL (link).

https://www.renesas.com/us/en/doc/products/renesas-synergy/apn/r11an0091eu0101-synergy-gpt-hal-mod-guide.pdf

https://synergygallery.renesas.com/media/products/1/384/en-US/r11um0140eu0106-synergy-ssp-v175.pdf
https://synergygallery.renesas.com/media/products/1/384/en-US/r11um0140eu0106-synergy-ssp-v175.pdf
https://www.renesas.com/en-us/doc/products/renesas-synergy/apn/r11an0091eu0101-synergy-gpt-hal-mod-guide.pdf
https://www.renesas.com/us/en/doc/products/renesas-synergy/apn/r11an0091eu0101-synergy-gpt-hal-mod-guide.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 468

LAB2 – ACTIVITY 6

Activity 6 – Design

(identification of the SW components that need to be developed, their interfaces, algorithms and interfaces to other

software components)

Components of the SSP to be used:

 Timer Driver on r_gpt. This component uses one of the 14 channels of the General PWM Timer. We selected channel 8

for no particular reason.

 External IRQ Driver on r_icu. This component manages the interrupt generated by one of the GPIO lines. Here we select

IRQ 11 because on the SK-S7G2 board, the S5 push-button is connected to the IRQ11 pin.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 469

LAB2 – ACTIVITY 6

Timer Driver

on r_gpt

© 2020 Renesas Electronics Corporation. All rights reserved. Page 470

LAB2 – ACTIVITY 6

External IRQ Driver

on r_icu

© 2020 Renesas Electronics Corporation. All rights reserved. Page 471

LAB2 – ACTIVITY 6

Algorithm:

1. Initialize the components for the Timer Driver and the External IRQ Driver by calling their open API functions. This also

starts the timer on its 1 second period as configured in the Synergy Configuration Tool.

2. Turn off the LEDs

3. Wait for the timer to expire. Its callback function informs via a flag (shared volatile global variable).

4. Reprogram the timer for 3 seconds and restart count (API functions reset, periodSet, restart).

5. Wait for the push-button to be pressed. Again, its callback function informs via another flag.

6. Get the current count of the timer (API functions counterGet) and save this value to a variable (this variable will be

examined with the debugger).

This algorithm is to be implemented by modifying the function hal_entry, adding two callback functions and the required

global variables.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 472

LAB2 – ACTIVITIES 7 TO 11

Based on the previous study:

 After creating a new Synergy C project (lab2) based on the Blinky template, on the Threads tab of Synergy Configuration,

add a Timer Driver (on r_gpt) and configure its properties to: channel 8, single shot, period of 1 second, callback cb0,

interrupt priority 4.

 Modify the file hal_entry.c to:

 Turn off all three LEDs, a LED is turned off by writing IOPORT_LEVEL_HIGH to the GPIO pin.

 Call the GPT API function open(g_timer0.p_ctrl,g_timer0.p_cfg) to configure and start the timer. The two

parameters of this function are created by the Synergy Configuration tool when the button “Generate Project Content” is

pressed.

 Create a callback function named cb0. This function must inform the hal_entry function that the timer expired by

setting a flag. This flag must be a volatile global variable. Reminder: volatile informs the compiler that its value changes

outside the control of the hal_entry function.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 473

LAB2 – ACTIVITIES 7 TO 11

Modify the file hal_entry.c to (cont.):

 In function hal_entry, wait for the flag to change value, meaning 1 second has passed;

 Turn LEDs on;

 Reset the timer (API function reset);

 Set a new period of 3 seconds (API function periodSet);

 Start the timer again (API function start);

 Make sure the timer is operating by making successive calls to API function counterGet;

 Test if the program is operating correctly up to this point.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 474

LAB2 – ACTIVITIES 7 TO 11

 In the Synergy Configuration tab, add an input driver of type external IRQ driver on r_icu. Configure its properties to:

channel 11, callback function switch_callback, interrupt priority 5. Recall that, from the study of the board manual, we

learned that push-button S4 is connected to IRQ 11.

 Modify the file hal_entry.c to:

 In the hal_entry function, call the open API function of the g_external_irq0 to configure this component;

 Create a callback function named switch_callback. This function also informs the hal_entry function that the

timer expired by setting another volatile flag;

 In the hal_entry function, wait for this flag to change then get the number of ticks from the counter up to this point.

Save it to a variable;

 Put a breakpoint right after the variable is updated and play the game.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 475

LAB3 – ASSEMBLY PROGRAMMING AND ATPCS

Objectives:

 Develop an assembly routine that is callable from a C program. The assembly routine must follow the ATPCS standard.

 The function to be implemented in assembly generates the histogram of an 8-bit grayscale image.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 476

LAB3 – ASSEMBLY PROGRAMMING AND ATPCS

Learning Objectives:

 Apply the embedded software development process presented in Lab 2

 Define the interface between the C program (caller) and the Assembly function (callee)

 Plan the data structures to be used

 Devise an algorithm to generate a histogram

 Implement, Test, Debug

© 2020 Renesas Electronics Corporation. All rights reserved. Page 477

LAB3 – ASSEMBLY PROGRAMMING AND ATPCS

Activities:

1. Understanding the Problem Domain

2. Problem definition

3. Designing the Data Structures

4. Parameter passing and return of the result

5. Algorithm

6. Implementation

7. Test cases

© 2020 Renesas Electronics Corporation. All rights reserved. Page 478

LAB3 – ACTIVITY 1

Activity 1 – Understanding the Problem Domain

 A raster image or bitmap is composed of dots, or pixels, lay out as a matrix. On a grayscale image, each pixel is

represented by a number indicating the level of lighting of that pixel.

 On an 8-bit grayscale image, each pixel is represented by an 8-bit value. Hence, there are 256 levels of gray, ranging

from 0 (black) to 255 (white).

 Shown below is a 3 x 3 8-bit grayscale image (9 pixels in total)

and the corresponding 9-pixel image.

0 16 32

64 96 128

160 224 255

© 2020 Renesas Electronics Corporation. All rights reserved. Page 479

LAB3 – ACTIVITY 1

Activity 1 – Understanding the Problem Domain

A histogram is a graphical representation of the tonal distribution of an image. On the horizontal axis there are the possible

values that a pixel can have (0-255 in this example) and the vertical axis presents the quantities of pixels with a given

luminosity level.

An image with N pixels were half of them are white and half of them are black would have a histogram like this:

Histograms are very useful in digital image processing, to determine

thresholds, to adjust brightness and contrast, to identify problems,

and many more.

To construct a histogram, all pixels of an image have to be processed,

hence, it is desirable to have efficient algorithms and implementations

for better performance.

N/2

pixel

count

pixel

value

0 128 255

© 2020 Renesas Electronics Corporation. All rights reserved. Page 480

LAB3 – ACTIVITY 2

Activity 2 – Problem Definition 1/2

Develop a function, to be implemented in assembly, that constructs the histogram of an

8-bit grayscale bitmap image.

Input parameters:

 Image width - number of pixels across the image.

 Image height - height of image in pixels

 Starting address - address of the first pixel in memory. Each pixel occupies one byte. The image is represented by a

matrix were image[0][0] is the upper left pixel of the image. The matrix is stored by rows, hence, the next address holds

image[0][1] (next pixel on the upper row).

 Histogram - address of a 256-position vector holding 16-bit unsigned integers that hold the pixel counts. The histogram

has invalid data when the function is called.

Output: 16-bit unsigned integer indicating the total number of pixels processed.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 481

LAB3 – ACTIVITY 2

Activity 2 – Problem Definition 2/2

Restrictions:

The total number of pixels in the image (i.e. width x height) must be less than 64K (65,536)

Error codes:

Function returns 0 to indicate an error (e.g. image too large)

Function prototype

uint16_t EightBitHistogram(uint16_t width, uint16_t height, uint8_t * p_image, uint16_t *

p_histogram);

© 2020 Renesas Electronics Corporation. All rights reserved. Page 482

LAB3 – ACTIVITY 3

Activity 3 – Designing the Data Structures

The two important data structures for this problem are the matrix that holds the bitmap and the vector that stores the

histogram.

The bitmap matrix has its number of columns equal to the width of the image and its number of rows equal to the height of

the image. Each element stored in the matrix is an 8-bit unsigned integer (uint8_t) that represents the gray level of the

corresponding pixel, 0 being black and 255 being white.

The histogram vector has size 256, hence, its

indexes run from 0 to 255. The ith element of the

vector stores the count of pixels at value i.

histogram[i] = number of pixels whose value is i.

Hence, adding up all elements of the vector must

result in a number equal to width x height.

For a 2-pixel high by 3-pixel wide

image the matrix would be:
uint8_t bitmap[2][3] = {

{64,96,128},

{160,224,255}};

© 2020 Renesas Electronics Corporation. All rights reserved. Page 483

LAB3 – ACTIVITY 4

Activity 4 – Parameter passing and return of the result

Considering that the function prototype is:

uint16_t EightBitHistogram(uint16_t width, uint16_t height, uint16_t * p_image, uint8_t *

p_histogram);

By ATPCS the parameters are in registers R0 to R3:

width - in R0 (upper half of R0 is 0)

height - in R1 (upper half of R1 is 0)

p_image - in R2

p_histogram - in R3

The result is passed by R0 (upper half is 0)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 484

LAB3 – ACTIVITY 5

Activity 5 – Algorithm

One possible solution design is presented here using the

UML 2.5 Activity diagram notation.

If the implementation requires registers other than R0..R3

and R12 then there is the need to push these registers at

the start and restore them at the end.

Note that the histogram is constructed in a very efficient

way by simply using the value of each pixel as an index

to the position in the histogram that must be incremented.

image_size = width * height

image_size
 64K

return 0

 // clear histogram
 for i = 0..255

 histogram[i] = 0;

// calculate histogram
for i = 0 .. image_size-1

 ++histogram[image[i]];

return

image_size

© 2020 Renesas Electronics Corporation. All rights reserved. Page 485

LAB3 – ACTIVITY 6

Activity 6 – Implementation

A possible organization of the source files is:

 hal_entry.c this is the C program that calls the assembly function

hal_entry is executed after initialization;

it calls EightBitHistogram

then presents the results on the virtual console.

 histogram.asm this is the assembly source file where

EightBitHistogram is defined.

 images.c holds the matrices with the test images.

Tips on how to use the Renesas Virtual Console are in slide: LAB 5 - Activity 3

© 2020 Renesas Electronics Corporation. All rights reserved. Page 486

LAB3 – ACTIVITY 6

Activity 6 – Implementation

The assembly source file requires

assembler directives at the start,

as shown here.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 487

LAB3 – ACTIVITY 7

Activity 7 – Test Cases

Two test cases are provided. The first is matrix image0 that has only

3 lines and 4 columns. Such a small test case is important to debug

the implementation on a step-by-step execution.

Shown here is the contents of image0 and the corresponding

histogram.

#define WIDTH0 4

#define HEIGTH0 3

const uint8_t image0[HEIGTH0][WIDTH0] = {

{ 20, 16, 16, 18},

{255, 255, 0, 0},

{ 32, 32, 32, 32}

};

© 2020 Renesas Electronics Corporation. All rights reserved. Page 488

LAB3 – ACTIVITY 7

Activity 7 – Test Cases

The second test case is the test image presented here. Its pixels are

encoded in the matrix image1. Its size is 160 x 120 pixels.

The corresponding histogram is presented below:

© 2020 Renesas Electronics Corporation. All rights reserved. Page 489

LAB4 – TIMER DEVICE DRIVER

Objectives:

Use a GPT (General PWM Timer) to generate a 100 Hz rectangular waveform with a 25% duty cycle. The SSP components

for the GPT are NOT to be used. Here, the student is to exercise the direct interaction with the GPT hardware.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 490

LAB4 – TIMER DEVICE DRIVER

Learning Objectives:

 Study a hardware peripheral with the objective to develop its device driver

 Identify the relevant registers of a peripheral for a given application

 Design an algorithm of a device driver

 Evaluate alternatives of means to interact with the registers of hardware peripheral

© 2020 Renesas Electronics Corporation. All rights reserved. Page 491

LAB4 – TIMER DEVICE DRIVER

Activities:

1. Study the GPT (General PWM Timer of the S7G2 MCU)

2. Determine the sequence that the GPT registers must be programmed and the respective values

3. Design an algorithm to achieve the purpose

4. Implement and test

further reading for this Lab:

Renesas Synergy Software Package v1.7.5 User’s Manual

r11um0140eu0106-synergy-ssp-v175

GPT HAL Module Guide

r11an0091eu0101-synergy-gpt-hal-mod-guide.pdf

https://synergygallery.renesas.com/media/products/1/384/en-US/r11um0140eu0106-synergy-ssp-v175.pdf
https://www.renesas.com/en-us/doc/products/renesas-synergy/apn/r11an0091eu0101-synergy-gpt-hal-mod-guide.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 492

LAB4 – ACTIVITY 1

Activities:

 S7G2 microcontroller’s block

diagram with indication of blocks of

interest.

 Since the user’s manual of the S7G2

has more than 2000 pages, it is

important to keep focus on what is

relevant to this project.

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 493

LAB4 – ACTIVITY 1

The block diagram of GPT

(General PWM Timer).

 GPT characteristics:

 32-bit counter

 counts up or down

 can generate interrupts

 can start an ADC conversion

 counts PCLKD pulses

 periodic or single-shot

 14 channels, each is a 32-bit counter
source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 494

LAB4 – ACTIVITY 1

The 14 timer channels are grouped

into:

 4x EH – enhanced high resolution

 4x E – enhanced

 6x – conventional

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 495

LAB4 – ACTIVITY 1

source: Renesas S7 Series Microcontrollers User’s Manual

Registers of the GPT

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 496

LAB4 – ACTIVITY 2

Some registers outside GPT must be configured first:

 PWPR must be set to 0 and then to 0x40 to write-enable the register P107PFS

(PWPR is a byte-wide register at 0x4004085C).

 P107PFS must have its field PMR set to 1 and its field PSEL set to 00011b to enable the output signal GTIOCA to be

available on P107. Hence, P107 is no longer a GPIO pin but it became a pin connected to the GPT channel 8 peripheral.

(P107PFS is a word-wide register at 0x4004085C).

 bit-6 of MSTPCRD must be reset to 0 to enable GPT channel 8, otherwise it remains in low power state, hence, not

operational

(MSTPCRD is a word-wide register at 0x40047008);

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 497

LAB4 – ACTIVITY 2

GTWP - General PWM Timer Write-Protection Register

Most registers of the GPT are protected against accidental modification, these can only be written to after write-enabled by

GTWP. After reset the registers are write-enabled.

To write-enable, GTWP must be written with (0xA5 << 8 | 0)

The affected registers are: GTSSR, GTPSR, GTCSR, GTUPSR, GTDNSR, GTICASR, GTIBCSR, GTCR, GTUDDTYC,

GTIOR, GTINTAD,GTST, GTBER, GTITC, GTCNT, GTCCRA, GTCCRB, GTCCRC, GTCCRD, GTCCRE, GTCCRF, GTPR,

GTPBR, GTPDBR, GTADTRA, GTADTBRA, GTADTDBRA, GTADTRB, GTADTBRB, GTADTDBRB, GTDTCR, GTDVU,

GTDVD, GTDBU, GTDBD, GTSOS, GTSOTR

Since the default value of GTWP is write-enable, there is no need to change this register.

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 498

LAB4 – ACTIVITY 2

GTSTR - General PWM Timer Software Start Register

One bit for each channel.

Write 1 to start that channel.

Write 0 has no effect.

Bit i controls channel i

A channel may be started by GTCR as well.

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 499

LAB4 – ACTIVITY 2

GTUDDTYC - General PWM Timer Count Direction and Duty Setting Register

bit 0 - UD - set to count UP

bits 17,16 - OADTY - 00 = GTIOCA duty cycle depends on compare match

other bits must remain 0

GTUDDTYC is a word-wide register at 0x40078830.

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 500

LAB4 – ACTIVITY 2

GTIOR - General PWM Timer I/O Control Register

bits 4..0 - 11001b - Initial output is high, low output at GTCCRA compare match,

high output at cycle end.

bit 8 - OAE - set to 1 to enable the GTIOCA pin output

other bits must remain at 0.

GTIOR is a word-wide register at 0x40078834.

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 501

LAB4 – ACTIVITY 2

GTCCRA - General PWM Timer Compare Capture Register A

Holds the number of PCLKD ticks at the moment when the PWM signal changes to low, this is, after 25% of the cycle,

considering that the cycle starts at high (configured in GTIOR) and remains high for the first 25% of the cycle.

When PCLKD is configured for 120 MHz, and the desired PWM cycle is 10 ms, 25% corresponds to 7.5ms. It is required

300,000 PCLKD cycles for the high time and 1,200,000 PCLKD cycles for the PWM cycle. Since the counting starts at zero,

the actual value programmed to GTCCRA is 299,999 (or 0x493DF).

GTCCRA is a word-wide register at 0x4007884C.

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 502

LAB4 – ACTIVITY 2

GTPR - General PWM Timer Cycle Setting Register

Considering the calculation presented for GTCCRA, GTPR must be configured with the value 1.200,000 -1 (or 0x124F7F).

GTPR is a word-wide register at 0x40078864.

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 503

LAB4 – ACTIVITY 2

GTCR - General PWM Timer Control Register

Bits 0 - CST - 1 means count in progress

Bits 18..16 - MD - 000 means saw-wave PWM

Bits 26..24 - TPCS - Timer Prescaler - 000 means PCLKD/1

GTCR is a word-wide register at 0x4007882C.

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 504

LAB4 – ACTIVITY 3

Algorithm

1. Program PWPR to write-enable P107PFS. Write 0 then 0x40 to PWPR.

2. Program P107PFS to put P107 into GTIOCA mode. PSEL = 3, PMR =1

3. Program MSTPCRD bit 6 to enable the power to GPT channel 8. MSTPD6 = 0.

4. Program GTUDDTYC so that the timer counts up and GTIOCA duty cycle depends on compare match to GTCCRA.

GTUDDTYC = 1.

5. Program GTIOR so that the cycle starts high and changes to low when a match to GTCCRA occurs. Also, enable

GTIOCA output. GTIOR = 0x119.

6. Program GTCCRA to 25% of the cycle (300,000 -1).

7. Program GTPR to the cycle period (1,200,000-1).

8. Start the timer in saw-wave mode with PCLKD/1.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 505

LAB4 – ACTIVITY 4

Verify the operation of the PWM.

Connect a scope to pin P107 (labeled P17 on the

board) and verify that a 100 Hz rectangular

waveform with a 25% duty cycle is present.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 506

LAB5 – SERIAL COMMUNICATIONS

Objectives:

In the Serial Communications lab, the objective is to utilize the software components of the SSP to build a simple

application to transmit and receive via an UART. The actual communication signals are monitored with a scope.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 507

LAB5 – SERIAL COMMUNICATIONS

Learning Objectives:

 Selecting software components in the SSP

 Planning a solution

 SSP Configuration

 Threads configuration

 Implementation/Test/Debug

 Checking serial comm signals with a scope

© 2020 Renesas Electronics Corporation. All rights reserved. Page 508

LAB5 – SERIAL COMMUNICATIONS

Activities:

1. Problem definition

2. Hardware platform study

3. Software framework study

4. Configure the SSP

5. Build/Test/Debug

6. Check signals with scope
further reading for this Lab:

Renesas Synergy Software Package v1.7.5 User’s Manual

r11um0140eu0106-synergy-ssp-v175

UART Communications Framework Module Guide

r11an0192eu0100-synergy-uart-comms-fw-mod-guide.pdf

https://synergygallery.renesas.com/media/products/1/384/en-US/r11um0140eu0106-synergy-ssp-v175.pdf
https://www.renesas.com/en-us/doc/products/renesas-synergy/apn/r11an0192eu0100-synergy-uart-comms-fw-mod-guide.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 509

LAB5 – ACTIVITY 1

Activity 1 – Problem Definition

Transmit the string “Lab5: Serial Comm over RS-232” using the SCI3 TX channel of S7G2

Receive bytes over the RX channel of the same SCI3 port.

Present the received chars on the virtual comm console of e2studio

Non-functional requirements:

make use of the SSP components for UART communication

© 2020 Renesas Electronics Corporation. All rights reserved. Page 510

LAB5 – ACTIVITY 2

Activity 2 - Hardware Platform Study (SK-S7G2 board and S7G2 MCU)

Information obtained from the Starter Kit SK-S7G2 User’s Manual.pdf

 Block diagram

 RS-232 interface and related jumpers

https://www.renesas.com/en-us/doc/products/renesas-synergy/doc/r12um0004eu0100_synergy_sk_s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 511

LAB5 – ACTIVITY 2

relevant blocks of the SK-S7G2 board

are marked in red

source: Starter Kit SK-S7G2 User’s Manual

https://www.renesas.com/en-us/doc/products/renesas-synergy/doc/r12um0004eu0100_synergy_sk_s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 512

LAB5 – ACTIVITY 2

source: Starter Kit SK-S7G2 User’s Manual

U7 converts TTL signals to RS-232, these

signals are available on J7, pins 5 (TX) and

6 (RX).

J9 must have jumpers on 1-3 and 2-4 so that

the board is configured for RS-232.

The UART_RXD and UART_TXD signals

are connected to P7_6 and P7_7 of the

MCU.

https://www.renesas.com/en-us/doc/products/renesas-synergy/doc/r12um0004eu0100_synergy_sk_s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 513

LAB5 – ACTIVITY 2

P7_6 and P7_7 are RX and TX for

SCI 3 of the MCU

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 514

LAB5 – ACTIVITY 2

One of the operating modes of an SCI is asynchronous communications (UART).

Among the possible interrupt sources of the SCI are end of transmission and char received (receive data full).

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 515

LAB5 – ACTIVITY 3 – STUDY

These are the services available in

the UART Framework of the SSP.

source: UART Communications Framework Module Guide

r11an0192eu0100-synergy-uart-comms-fw-mod-guide.pdf

https://www.renesas.com/en-us/doc/products/renesas-synergy/apn/r11an0192eu0100-synergy-uart-comms-fw-mod-guide.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 516

LAB5 – ACTIVITY 3

How to use the Renesas Debug Virtual Console so that printf() messages appear onto a console of e2studio?

 follow instructions from the Renesas Knowledge Base link

 basically:

 #include <stdio.h>

 call initialise_monitor_handles(); during thread inicialization

 confirm that --specs=rdimon.specs is part of the linker flags

 open a Renesas Debug Virtual Console during debugging and pin it (so that it is always visible).

https://en-support.renesas.com/knowledgeBase/16977402

© 2020 Renesas Electronics Corporation. All rights reserved. Page 517

LAB5 – ACTIVITY 4 – CONFIGURATION

1. Create new Synergy C project, use

Blinky with ThreadX as template.

Build and run to verify it is operational.

2. In the Synergy Configuration tab,

add to the Blinky Thread a

Connectivity Framework called

sf_uart_comms

3. Configure g_uart0 to Channel 3 and

all four interrupt priorities to Priority 3

4. Verify that the Pins for SCI3 are

P707 (TXD) and P706 (RXD)

© 2020 Renesas Electronics Corporation. All rights reserved. Page 518

LAB5 – ACTIVITY 4

The Module Guide has

important configuration

information for each SSP

component

click to access Module Guide

© 2020 Renesas Electronics Corporation. All rights reserved. Page 519

LAB5 – ACTIVITY 4

5. In blinky_thread_entry.c make the changes required for the Renesas Debug Virtual Console

6. Modify blinky_thread_entry to include the appropriate calls to the API of g_sf_comms0:

write to send the string and read to receive it.

7. Use printf() to show the transmitted and received strings in the virtual console

© 2020 Renesas Electronics Corporation. All rights reserved. Page 520

LAB5 – ACTIVITIES 5 AND 6

Code running

Virtual Console in operation

© 2020 Renesas Electronics Corporation. All rights reserved. Page 521

LAB5 – ACTIVITIES 5 AND 6

8. With a scope examine the transmitted signal on J9-pin 3

The first transmitted char is shown

between the two cursor lines. Takes

1.04ms to transmit 10 bits: start, 8 data

bits and the stop bit.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 522

LAB5 – ACTIVITIES 5 AND 6

9. With a scope examine the transmitted signal on J7-pin 5

On this pin the signal is at RS-232

levels. Logic 1 is represented by -6V

and Logic 0 is represented by +6V.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 523

LAB5 – ACTIVITIES 5 AND 6

10. Place a jumper on pins 5 and 6 of J7 so that the transmitted signal is received back.

11. The Virtual Console must present the same strings being transmitted and received

12. Include a counter in the transmitted string to verify that every transmitted message is different from the previous

© 2020 Renesas Electronics Corporation. All rights reserved. Page 524

LAB6 – DISPLAY AND TOUCH

Objectives:

Perform the process of creating a two screen Graphical User Interface making use of the graphical LCD and Touch Screen

available on the SK-S7G2 board.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 525

LAB6 – DISPLAY AND TOUCH

Activities:

1. Study the physical connection of the LCD and Touch Screen to the MCU

2. Study the SSP API for graphical interfaces and input via touch screen

3. Perform the experiment described in the Renesas Application Note: GUIX “Hello World” for the SK-S7G2.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 526

ADDITIONAL READING FOR LAB6

 Renesas Synergy Starter Kit SK-S7G2 User’s Manual (r12um0004eu0100) (https://www.renesas.com/en-

eu/doc/products/renesas-synergy/doc/r12um0004eu0100_synergy_sk_s7g2.pdf)

 Renesas S7 Series Microcontrollers User’s Manual

 Renesas Synergy Software Package v1.7.5 Manual (link) available in the Synergy Gallery

(https://synergygallery.renesas.com/media/products/1/384/en-US/r11um0140eu0106-synergy-ssp-v175.pdf)

 Renesas Application Note R12AN0021EU0118 (link)

(https://www.renesas.com/us/en/doc/products/renesas-synergy/apn/r12an0021eu0118-synergy-sk-s7g2-pk-s5d9-guix-

hello-world.pdf)

 Sample Software for GUIX “Hello World” from:

https://www.renesas.com/us/en/doc/products/renesas-synergy/apn/r12an0021eu0119-synergy-sk-s7g2-pk-s5d9-guix-

hello-world.pdf

https://www.renesas.com/us/en/software/D6003641.html

https://www.renesas.com/en-eu/doc/products/renesas-synergy/doc/r12um0004eu0100_synergy_sk_s7g2.pdf
https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf
https://synergygallery.renesas.com/media/products/1/384/en-US/r11um0140eu0106-synergy-ssp-v175.pdf
https://synergygallery.renesas.com/media/products/1/384/en-US/r11um0140eu0106-synergy-ssp-v175.pdf
https://www.renesas.com/us/en/doc/products/renesas-synergy/apn/r12an0021eu0118-synergy-sk-s7g2-pk-s5d9-guix-hello-world.pdf
https://www.renesas.com/us/en/doc/products/renesas-synergy/apn/r12an0021eu0118-synergy-sk-s7g2-pk-s5d9-guix-hello-world.pdf
https://www.renesas.com/us/en/doc/products/renesas-synergy/apn/r12an0021eu0119-synergy-sk-s7g2-pk-s5d9-guix-hello-world.pdf
https://www.renesas.com/us/en/software/D6003641.html

© 2020 Renesas Electronics Corporation. All rights reserved. Page 527

LAB6 – ACTIVITY 1

S7G2 microcontroller’s block diagram

with indication of blocks of interest.

Since the user’s manual of the S7G2

has more than 2000 pages, it is

important to keep focus on what is

relevant to this project.

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 528

LAB6 – ACTIVITY 1

Relevant blocks of the SK-S7G2 board

are marked in red

source: Starter Kit SK-S7G2 User’s Manual

© 2020 Renesas Electronics Corporation. All rights reserved. Page 529

LAB6 – ACTIVITY 1

The LCD is connected

directly to the

LCD Interface of the MCU

source: Starter Kit SK-S7G2 User’s Manual

© 2020 Renesas Electronics Corporation. All rights reserved. Page 530

LAB6 – ACTIVITY 1

The LCD uses an Ilitek driver connected to an SCI (Serial

Communications Interface) of the MCU. The serial

communication is configured to 4-wire 8 bits.

source: Starter Kit SK-S7G2 User’s Manual

© 2020 Renesas Electronics Corporation. All rights reserved. Page 531

LAB6 – ACTIVITY 1

The Touch Screen is connected to the MCU via an I2C interface.

source: Starter Kit SK-S7G2 User’s Manual

© 2020 Renesas Electronics Corporation. All rights reserved. Page 532

LAB6 – ACTIVITY 1

The GLCD (Graphics LCD

Controller) of the MCU is

configurable to many different

LCDs. Its physical interface may

be up to 24 data bits plus several

synchronization and clock signals.

source: Renesas S7 Series Microcontrollers User’s Manual

https://www.renesas.com/us/en/doc/products/renesas-synergy/doc/r01um0001eu0140-synergy-s7g2.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 533

LAB6 – ACTIVITY 2

The Renesas Synergy Software Package v1.7.5 Manual (link), available in the Synergy Gallery, describes the API for:

 The Graphics Display, on section 4.2.14

 The Touch Panel, on section 4.1.19

https://synergygallery.renesas.com/media/products/1/384/en-US/r11um0140eu0106-synergy-ssp-v175.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 534

LAB6 – ACTIVITY 3

 Download the zip file available at:

https://www.renesas.com/us/en/software/D6004128.html

this zip includes the pdf with the application note R12AN0021EU0118 and the source files for the corresponding lab

experiment.

The pdf is also available at: link

The sample code may be also obtained by accessing page:

https://www.renesas.com/us/en/products/synergy/hardware/microcontrollers.html#productinfo

and searching for r12an0021

 The aim here is to go through the 48 pages describing in detail how to build a very simple Graphical User Interface.

 This lab requires the GUIX Studio, a tool that was installed as part of Lab1.

https://www.renesas.com/us/en/software/D6004128.html
https://www.renesas.com/us/en/doc/products/renesas-synergy/apn/r12an0021eu0118-synergy-sk-s7g2-pk-s5d9-guix-hello-world.pdf
https://www.renesas.com/us/en/products/synergy/hardware/microcontrollers.html#productinfo

© 2020 Renesas Electronics Corporation. All rights reserved. Page 535

LAB7 – RTOS

Objectives:

Create a simple multithreaded application that uses mutex and message queue. Make use of RTOS-aware debugging.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 536

LAB7 – RTOS

The diagram (next slide) presents the desired application.

 Thread Sender1 - sends messages to RX_Thread via queue0, workload is simulated by 40 ticks delay and green led on.

 Thread Sender2 - sends messages to RX_Thread via queue0, workload is simulated by 60 ticks delay and yellow led on.

 Thread RX_Thread - receives messages from both sender threads

 mutex0 - prevents simultaneous execution of Sender 1 and Sender 2 (while LEDs are on)

 red led - indicates one of the sender threads is blocked on the mutex

© 2020 Renesas Electronics Corporation. All rights reserved. Page 537

LAB7 – RTOS

Diagram presenting the architecture

of Lab 7 (UML class diagram

notation).

© 2020 Renesas Electronics Corporation. All rights reserved. Page 538

LAB7 – RTOS

Adding additional threads and

ThreadX object (Mutex and Queue)

using the Synergy Configuration tab.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 539

LAB7 – RTOS

The Partner OS | RTOS

Resources view allows the

visualization of the state of

the threads and of the

objects (Queue and Mutex).

© 2020 Renesas Electronics Corporation. All rights reserved. Page 540

LAB7 – RTOS

Observe that due to the Mutex, it never happens that the green LED and the yellow LED are on at the same time.

If, however, you disable (comment out) the calls to the Mutex, then the behavior is quite different.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 541

LAB8 – USB DEVICE

Objectives:

In Lab 8, the student will be presented to an e2 Studio project which uses the USBX and related components of the SSP to

implement an USB Device.

The SK-S7G2 board is configured by this application to respond to USB requests as a Communication Device. That means,

the OS installed in a PC, to which the SK-S7G2 board is connected, will handle the device as a virtual COM port, allowing a

terminal application running on the PC to send and receive bytes to/from the device.

To do this lab you will need the following materials:

 SK-S7G2 kit with the USB Micro-B debug cable.

 An extra USB Micro-B cable to connect the kit to a PC.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 542

LAB8 – USB DEVICE

Activities:

1. Tool setup and new project creation.

2. Setup of Synergy Configuration to use the Communications Framework on USB.

3. Low-level function prototyping.

4. Application requirements, coding and testing.

5. Challenge: multi-threaded version.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 543

LAB8 – ACTIVITY 1

Activity 1 – Tool setup and new project creation

1. Ensure that the e2 Studio and the SSP are properly installed. If necessary, (re)run the activities 1 to 5 of Lab 1 to do so.

2. Create a new Renesas Synergy Project for the SK-S7G2 board and name it "Lab8_USB“.

 This project can be based on the “Blinky” template project

© 2020 Renesas Electronics Corporation. All rights reserved. Page 544

LAB8 – ACTIVITY 2

Activity 2 – Setup of Synergy

Configuration to use the

Communications Framework on

USB

1. Create a new Thread using the

Synergy Configuration and add

the Communications

Framework on

sf_el_ux_comms (New Stack

 Framework  Connectivity).

2. Rename the thread to

"Lab8_Thread".

Source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 545

LAB8 – ACTIVITY 2

3. Click on "Add USBX Port DCD"

and select the "USBX Port

DCD on sf_el_ux for USBFS".

This will select the Full-Speed

Device Controller Driver for the

R7FS7G27H3A01CFC

Renesas ARM Cortex-M4 MCU

Device Controller.

See Section 10, “USB Logical

View”, to review the exact role of

each of the component blocks

included by Synergy Configuration.

Source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 546

LAB8 – ACTIVITY 2

4. Set the USBX Port DCD

Property “Full Speed Interrupt

Priority" to a priority level

compatible with Cortex-M4 (e.

g. Priority 3).

Source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 547

LAB8 – ACTIVITY 2

5. Build the project. Verify that the

files Lab8_Thread.c and

Lab8_Thread.h were created

into the src/synergy_gen folder.

These files contain the

initialization for the

Communications Framework

and the other common HAL

modules.

Source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 548

LAB8 – ACTIVITY 3

Activity 3 – Low-level function prototyping

Our Lab8 application will make use of the SK_S7G2

onboard LEDs and communication port via USB.

The next step for this lab consists on prototyping the

low-level functions to control the LEDs and USB and

doing basic tests before dealing with the application

requirements and full coding.

Source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 549

LAB8 – ACTIVITY 3

1. Create a function to turn the LEDs on/off at

Lab8_Thread_entry.c.

Hints:

The hardware mapping for each LED can be

done in two ways:

a) The GPIO pin for each LED can be

explicitly mapped to constants. Refer to

Lab 2, Activity 4, to learn how to discover

which of the GPIO pins are mapped to the

LEDs on the SK-S7G2 board. Constant

definitions for the GPIO can be found in

the r_ioport_api.h file.

Source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 550

LAB8 – ACTIVITY 3

b) The BSP function R_BSP_LedsGet ()

(defined in bsp_common_leds.c) can be

called to fill an instance of bps_leds_t with

the LED information.

Source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 551

LAB8 – ACTIVITY 3

 The g_ioport instance of the I/O port driver

(included as a HAL component into the

Synergy Configuration) should be used to

command the GPIO pins concerning the

LEDs.

Reference the p_api field to access the API

and then the pinWrite() function to write to

the LED pin.

Source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 552

LAB8 – ACTIVITY 3

 The g_ioport instance of the I/O port driver

(included as a HAL component into the

Synergy Configuration) should be used to

command the GPIO pins concerning the

LEDs.

Reference the p_api field to access the API

and then the pinWrite() function to write to

the LED pin.

Source: Authors

Source: Renesas Synergy Software Package v1.7

© 2020 Renesas Electronics Corporation. All rights reserved. Page 553

LAB8 – ACTIVITY 3

2. Insert at Lab8_Thread_entry() the

API calls to send and receive data

through the Communications port.

Hints:

 use the instance g_sf_comms0 of the

Communications Framework

component that is configured in the

Synergy Configuration Tool

Source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 554

LAB8 – ACTIVITY 3

Reference the p_api field and then the

functions read() and write() to receive

and send data to the PC, respectively.

The first parameter for the read() and

write() functions is a pointer to a

sf_comms_ctrl_t structure, which is a

device control block previously initialized

for communication. This pointer can be

obtained from the p_ctrl member of the

g_sf_comms0 instance

Source: Authors

Source: Renesas Synergy Software Package v1.7

© 2020 Renesas Electronics Corporation. All rights reserved. Page 555

LAB8 – ACTIVITY 3

The last parameter for the read() and

write() functions defines the timeout for

the read and write operations. To

command a transmission and wait as

long as necessary for the driver access to

be scheduled, use TX_WAIT_FOREVER.

In case of reception, use TX_NO_WAIT

to return immediately regardless of the

number of received bytes.

Source: Authors

Source: Renesas Synergy Software Package v1.7

© 2020 Renesas Electronics Corporation. All rights reserved. Page 556

LAB8 – ACTIVITY 3

3. Start a debug session. Refer to Lab 1, Activity 4 for details on debugging.

4. Connect the SK-S7G2 board to the PC via USB interface (connector J5). This will allow the OS installed on the PC to

enumerate the board as an USB Communication Device.

 If the installed OS is Windows 10, the Device Manager will show a new “Communication Device” under “Ports (COM &

LPT)”, after the proper USB enumeration and driver installation that follows the first execution of debugging

application.

 In this case, there is a driver issue that may prevent the USB COM port to be opened by a terminal application on the

PC. To fix it, select the driver for the enumerated COM port, right-click on "Update driver", search for drivers installed

on the computer, uncheck the “Show compatible hardware” option and select SEGGER JLink CDC UART Port.

5. Open a Terminal Application on the PC and connect it to the enumerated COM port.

6. Test the LED control and USB communications prototype functions.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 557

LAB8 – ACTIVITY 4

Activity 4 – Application requirements, coding and testing

Use the prototyped low-level functions, implemented to control the LEDs and access the USB communications port, to

implement an application logic that performs the following operations:

1. Turn on the LEDs in a binary pattern given by a counter (0 to 7 – 0b000 to 0b111)

2. Increment the counter and sleep for an interval of N ticks (hint: use tx_thread_sleep(N)).

3. For every increment of the counter, send the current counter value to the terminal application running on PC via the USB

communications port.

4. Repeat steps 1 to 3 in 16 iterations.

5. Check if the user has typed and sent a character from the PC via the terminal application connected to the USB

communications port. If so, test the character and increase or decrease the number N of ticks of the sleep interval,

depending on the typed character.

6. Repeat this process (steps 1 to 5) in an infinite loop.

Test the application and check the resulting behavior.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 558

LAB8 – ACTIVITY 4

HINTS:

If an error condition occur, such as arriving on error_callback function, or on a call to

BSP_CFG_HANDLE_UNRECOVERABLE_ERROR (0); or if nothings shows up on the terminal, then:

 both micro-USB ports of the S7G2 must be connected to the PC,

one for debugging and the other for USB communications

 check is the COM port was correctly enumerated by the PC and if the driver in use is actually the SEGGER JLink CDC

Uart.

 check if the terminal is configured for 115K baud and 8N1 frame format

 reset the terminal, possibly closing and reopening the terminal application

© 2020 Renesas Electronics Corporation. All rights reserved. Page 559

LAB8 – ACTIVITY 4

Example of output on a

terminal emulator.

In this example, when the

second USB cable was

connected and the software

executed on the S7G2,

Windows identified the board

as COM5.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 560

LAB8 – ACTIVITY 5

Activity 5 – Challenge: multi-threaded version

Modify the application structure to separate the logic into two different threads:

 Thread #1  increments the counter and sends its current value via the USB Communications port.

 Remove the limit of 16 iterations, allowing the counter to increase limited only by the size of the counter variable.

 Thread #2  waits for user input and changes the sleep interval (counting period).

The sleep interval will be able to be changed while the counter is still running.

Hint: the g_sf_comms0 instance is defined in one of the threads (depending on Synergy Configuration). To access this

instance in the other thread, use the #include preprocessor directive to include the header file of the thread where the

instance has been created and initialized.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 561

LAB8 – ACTIVITY 5

Activity 5 – Challenge: multi-threaded version

© 2020 Renesas Electronics Corporation. All rights reserved. Page 562

LAB9 – IOT

Objectives:

In Lab 9, the student will be presented to an e2 Studio project that makes use of the Renesas Synergy Wi-Fi Framework to

implement an example of IoT (Internet-Of-Things) application.

The SK-S7G2 board is configured to act as an IoT node that reads some sensors (internal CPU temperature) and writes to

an actuator (a LED). The commands to read / write are sent to the node by a Remote Client application running on a PC or

a smartphone, by means of the network infrastructure (LAN) to which both the IoT node and the Remote Client are

connected.

To do this lab you will need the following materials / resources:

 SK-S7G2 kit with the USB Micro-B debug cable

 A GT202 Wi-Fi module with a PMOD plug-in

 A Local Area Network (LAN) with an accessible (i. e. known SSID and password) Wi-Fi AP/Router

© 2020 Renesas Electronics Corporation. All rights reserved. Page 563

LAB9 – IOT

Activities:

1. Hardware setup.

2. Follow Renesas application note R12AN0055EU0106 to build a thermostat application.

3. Based on Renesas application note R12AN0034EU0105, modify this project to include WiFi and access the

temperature sensor and the LEDs from a web page.

Note: LAN SSID and password shall be set in the file src\wifi_app_thread_entry.c

© 2020 Renesas Electronics Corporation. All rights reserved. Page 564

LAB9 – ACTIVITY 1

Activity 1 – Hardware Setup:

1. Connect the GT202 Module to SK-S7G2 PMOD B

interface.

2. Make sure that jumper J15 is at 3V3 position

provides the correct voltage level (3.3V) to the

module.

Caution! If J15 is not properly configured, the Wi-Fi

module can be damaged!

Source: Synergy Wi-Fi Application Project for SK-S7G2

r11an0082eu0101-synergy-wifi-framework-app-note.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 565

LAB9 – ACTIVITY 2

Activity 2 –

1. The application note R12AN0055EU0106 is provided as part of the lab files for this course in pdf format. Follow the

instructions therein.

Note: this AN is applicable to four different boards. Make sure to target it to the SK-S7G2.

© 2020 Renesas Electronics Corporation. All rights reserved. Page 566

LAB9 – ACTIVITY 3

Activity 3 –

1. The application note R12AN0034EU0105 is provided as part of the lab files for this course in pdf format. Based on its

contents, modify your project to include a WiFi framework and the functionality of remote accessing a sensor and an

actuator (LEDs).

© 2020 Renesas Electronics Corporation. All rights reserved. Page 567

LAB9

The Wi-Fi Framework is designed as a

layered architecture that is integrated to other

SSP components as shown in the figure.

Notice that it can provide a low-level network

layer to NetX protocol stack, as well as be

directly accessed by an application via its APIs

(including on-chip stack implementations).

The IoT Example Project makes use of the

NetX Protocol Stack, as shown in the next

slides.

Source: Renesas Synergy

Software Package v1.7 Manual

(link)

https://synergygallery.renesas.com/media/products/1/373/en-US/r11um0140eu0100-synergy-ssp-v170.pdf

© 2020 Renesas Electronics Corporation. All rights reserved. Page 568

LAB9

Build and run the application. Verify that

the SK-S7G2 kit shows information on

the display. If the kit is successfully

connected to the Wi-Fi AP, the IP address

leased by the DHCP server can be

identified in the settings | Network menu

entry.

The temperature sensor and the LEDs

are configured as a “sensor” and an

“actuator” that can be accessed /

controlled by the Remote Client via Wi-Fi

interface.

Source: Authors

settings

© 2020 Renesas Electronics Corporation. All rights reserved. Page 569

LAB9

The IoT Node can be remotely accessed

by the Remote Client, via HTTP, by

browsing its IP address.

Use the web page to control the IoT

"actuator" (the LED) and check the status

of the "sensor" (thermostat).

The web page also shows date/time as

provided by the IoT Node.

Source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved. Page 570

LAB9

The HTTP server thread configured into

the WiFI Application Project

(http_server_thread_entry.c) sends the

contents defined in http_server.c as an

HTML page to the web browser.

Try editing the HTML contents in

http_server.c, rebuilding and running the

project, and check the results.

Source: Authors

© 2020 Renesas Electronics Corporation. All rights reserved.

Renesas.com

