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11.1 INTRODUCTION

WHEN PHYSICAL SYSTEMS experience perturbations, it is common
for them to respond by emitting waves. For example, a sound wave in a
gas like the atmosphere is produced by a change in pressure at the
source of the wave, whether it is a hi-fi speaker system or a dynamite
blast. The pressure perturbation then travels through the atmosphere.
By knowing the properties of the atmosphere, one can predict the speed
at which the signal will propagate, the local speed of sound: ¢, = (yp/p),
where v is the ratio of the specific heat at constant pressure to the
specific heat at constant volume in the gas, p is the gas pressure, and p
is the gas density. An electromagnetic wave in a vacuum or in a dielec-
tric medium can be established by driving a time-varying current in an
antenna. Here, too, it is possible to predict the speed at which the
signal will propagate, provided that one can characterize the medium.
Conversely, various properties of a system can be probed by measuring
the properties of waves found within it, such as frequency, wavelength,
and polarization. For example, in the relation fA = constant, between the
frequency f and the wavelength A of an electromagnetic wave in an
isotropic medium, the value of the constant provides information on
the dielectric properties of the system. The wave polarization (for an
electromagnetic wave specified by the direction of the varying electric
field of the wave) is related to the wave’s propagation direction. For an
electromagnetic wave in a vacuum, the plane of the electric and mag-
netic perturbations is always normal to the direction of propagation.
Sound waves, on the other hand, are polarized along the direction of
propagation, the polarization direction being that of the gradient of
fluctuating pressure. For a closed system, the oscillations normally are
combinations of standing waves whose frequencies are governed by the
size of the system, as well as by its material properties.

In a plasma, as in a gas, we might expect to find waves that are
similar to sound waves, but a plasma is composed principally of charged
particles that carry currents. Thus, its electromagnetic properties are of
paramount importance, but plasma density and pressure are also rele-
vant. As a consequence, plasma waves differ from both sound waves
and electromagnetic waves.
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TABLE 11.1. Ranges of Periods and Frequencies in Different Pulsation Classes

Pc-1 Pc-2 Pc-3 Pc-4 Pc-5 Pi-1 Pi-2

T(s) 0.2-5 5-10 10-45 45-150 150-600 1-40 40-150
f 02-5Hz 0.1-0.2Hz 22-100mHz 7-22mHz 2-7mHz 0.025-1Hz 2-25mHz

In this chapter, we discuss the nature of the lowest-frequency waves
that occur in plasmas. A “low” frequency must be lower than the natural
frequencies of the plasma, such as the plasma frequency f, and the ion
gyrofrequency f; that were introduced in Chapter 2. Such waves are
referred to as ultra-low-frequency waves. Higher-frequency waves will
be treated in Chapter 12. We shall show that the combination of mechan-
ical forces (present because of the gaslike properties of the plasma)
and electromagnetic forces (present because the particles are charged)
creates unique types of waves: magnetohydrodynamic (MHD) waves.
We shall point out how they differ from the waves found in neutral
dielectric media.

The equations for conducting fluids, basically expressions of New-
ton’s laws of motion and Maxwell’s equations (Maxwell, 1873), were
known to physicists for more than half a century before it was recog-
nized that electromagnetic waves can propagate in conducting fluids
even though they cannot propagate in rigid conductors. The MHD wave
solutions were eventually derived by Hannes Alfvén (1942), but direct
confirmation of the existence of the waves was difficult to obtain, as
they decay rapidly in most laboratory situations. One can show that the
decay rate can be small only if the spatial scale of the system is suffi-
ciently large. Thus it was that the study of Alfvén’s predicted waves
became principally the task of space physicists.

The first observations of ultra-low-frequency (ULF) fluctuations (with
periods ranging from seconds to minutes) of magnetic fields were made
on the ground (Stewart, 1861), almost a century before their links to
plasmas in near-earth space were established. Early studies of the mag-
netic pulsations measured by ground-based observers noted that waves
could be grouped into classes that appeared to differ in fundamental
ways. Some were continuous pulsations, quasi-sinusoidal in form, and
each with a well-defined spectral peak. These were called Pc pulsations,
and they were broken into subgroups on the basis of their periods
(starting with Pc-1 in the 0.2-5-Hz band and ending with Pc-5 in the 1.7-
6.7-mHz band). Other pulsations in the same frequency band contained
power at many different frequencies. Such waves were called Pi for
irregular pulsations. The names assigned to different frequency bands
(Jacobs et al., 1964) are shown in Table 11.1. Typical magnetic-pulsation
signatures are illustrated in Figure 11.1, which includes both ground-
based observations from a chain of stations at different latitudes and



FIG. 11.1 Examples of
approximately 1-min waves in
the magnetosphere (upper
panels) and on the ground
(lower panels) at stations whose
latitudes are indicated to the
right.
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simultaneous measurements from a spacecraft in the near-equatorial
magnetosphere.

Dungey (1954a,b) was the first to suggest that MHD waves in the
outer atmosphere were the sources of the oscillating or pulsating mag-
netic fields observed on the surface. In particular, the distinct periods of
Pc pulsations suggested a resonant process, and Dungey proposed that
the pulsations were caused by waves standing along magnetic-field lines
and reflected at the ionospheres at the two ends. That idea has been
further developed and is generally supported by studies of both ground-
based and spacecraft data. We shall return to it after developing the
theory and deriving some of the properties of MHD waves in a conduct-
ing fluid.

11.2 BASIC EQUATIONS

MHD waves are found as solutions to the equations introduced in Chap-
ter 2 to express the conservation laws and Maxwell’s equations. They
are repeated here for convenience. Equation (2.29b) guarantees that
mass is conserved as the fluid moves:

ap

ey +V-pu=0 (continuity equation) (1D
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Momentum conservation is assured by equation (2.32), in which we set
F,=0 and assume neither sources nor losses:
g

p(%'tf+u-Vu)=—vp+ij (11.2)

Maxwell’s equations in the low-frequency limit [equations (2.35),
(2.36b), and (2.37)] will be needed. These equations are

%—?= —VXE (Faraday’s law) (11.3)

VXB=pu,j (Ampére’s law) (11.4)
and the requirement that B be divergenceless:

V-B=0 (11:5)
We add Ohm’s law in the form [equation (2.46)]

E+uxB=0 (11.6)

and an equation that states that the specific entropy (entropy per unit
volume) is conserved in the convecting magnetized plasma:

d ey
(5+u'V)(;ﬁ)—0 a1.7)

Here, as in earlier chapters, p is the pressure, p is the mass density, u is
the flow velocity, j is the electric-current density, B is the magnetic field
(magnetic induction), w, is the magnetic permeability of free space, E is
the electric field, and vy is the ratio of the specific heat at constant
pressure to the specific heat at constant volume; vy is frequently referred
to as the polytropic index.

As the derivative acting on the expression in parentheses on the right
in (11.7) is just the time rate of change in a frame that follows the plasma
as it flows through the system, the equation requires that the plasma
obey an adiabatic equation of state. In most space plasmas, v is 3.

We can express the current in terms of the magnetic field, and the
electric field in terms of u and B, by using (11.4) and (11.6). Equation
(11.2) becomes

ad
p(£+u'Vu)=——Vp+(VxB)XB/p,o (11.8)

Suppose that the variations in a system are only in the x-direction and
that B =Bz. Then the right-hand side of (11.8) can be written as

A(ap B aB)
—Xx|—+— —
ax g 0x

and the x-component of the momentum equation takes the form
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(aux 6u1)__ ] i
P\ 5 +ux6x ——ax[P (B2uy)] (119

As discussed in relation to equation (2.48), the quantity B*2u, is the
magnetic pressure. The fluid momentum responds to gradients of both
the magnetic and thermal pressures.

The set of equations (11.1)—(11.7) or the modified forms that follow
must be simultaneously satisfied. Plasma structures that remain at rest
in the moving fluid compose a particularly simple subset of solutions of
this collection of equations. Such spatially varying plasma properties
appear as time variations to an observer not moving with the flow. Using
the density p as an example, one finds that if p=p(x) in the plasma rest
frame, it depends on space and time in the form

p(x, t)=p<x—f dt’ u(x, t’)) (11.10)

in the observer’s frame. Here, #, is the time when the fluid element is at
x=0. This form automatically satisfies equations (11.1) and (11.7), as
the sum of the two derivatives vanishes independently of the form of
p(x) in the plasma rest frame. The additional equations are satisfied if u,
p, and B are constant. This solution is referred to as an entropy “wave.”
The reference to entropy reflects the fact that if p varies at constant
pressure, then the specific entropy p/p” varies.

There is another nonpropagating solution with k perpendicular to B
for which the total pressure p + B*/2u, is constant across planar surfaces
that convect with the flow. In order to satisfy all of the required equa-
tions, the component of B normal to the surface must vanish, and
the normal component of u must not change across the surface. The
components of both B and u tangential to the surface may vary. This
solution is the limit of the slow mode for k L B. In the nonlinear regime,
the entropy wave relates to the contact discontinuity, and the slow-
mode wave relates to the tangential discontinuity.

11.3 EQUATIONS FOR LINEAR WAVES

The preceding section described a convecting perturbation of arbitrary
amplitude that satisfies the set of equations. This section describes a set
of waves that propagate relative to the fluid. For simplicity, we assume
that the perturbations carried by the waves are small.

Let us assume that the plasma is initially at rest, which means that
there are neither flows nor electric fields, and also assume that no
currents are flowing. The wave perturbations introduce finite but small
E, u, and j. The magnetic field, mass density, and pressure also change,
so that
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gisBtb, . p—>ptlp, poptip

All of the perturbed quantities, b, dp, ép, u, E= —uX B, and j=V xb/
,are assumed to be small enough that only terms linear in any of them
need be retained. This means that squares or high powers and cross

products will be dropped. The perturbed quantities then must satisfy
the equations

9 -u=0 (11.1)
at

Ju / '
p.a7=—vap+(V><b)pr.0 (11.8")
%?:Vx(uxB) (11.37)

We must have V-b=0 to satisfy equation (11.5). If this condition holds
initially, the divergence of (11.3") [(38/31)(V - b=0)] shows that the condi-
tion is automatically satisfied at all times.

The adiabatic requirement also becomes an initial condition, because

adp _vYp adp 288p
TR T

becomes

o)

at\c;0p

and the constant value of the ratio of &p to dp is set by the initial
conditions. Substitution of &p in terms of dp leaves us with seven un-
knowns that describe the wave perturbations: dp, u, and b, and seven
equations: (11.1"), (11.8"), and (11.3'), once again counting each compo-

nent of a vector equation separately. In the following sections, we shall
solve for the wave properties, making various simplifying assumptions.

11.4 WAVES IN COLD PLASMAS

The simplest system in which MHD waves exist is a cold magnetized
plasma. The concept of “cold” needs to be defined, because the tempera-
ture need not be zero. All that is meant is that the plasma pressure
[which is given by equation (2.33)] is unimportant. Equation (11.9)
shows that if the ratio of the plasma pressure to the magnetic pressure is
small [i.e., B<1, where B is defined in equation (2.49)], then the plasma
pressure is not important.

In describing the properties of waves, it is convenient to introduce
the exponential notation

e*=cos x+isinx (11.11)
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Expressing the solution of a differential equation in complex €Xponentia|
form simplifies the derivation, because the derivative of an €xponentig|
is just a multiple of the original exponential. However, any equatiop
written in terms of the complex exponential must be satisfied separately
by the terms proportional to / and the terms independent of i, and
this requirement is equivalent to solving the equation in terms of sineg
and cosines.

For a plane wave propagating in the x-direction, with wavelength )
and frequency f, the oscillating quantities can be taken as proportional to

oikx p—iwt — pitks—wi) (11.12)

where k=2z/A and w=2nf. If the proportionality factors are complex,
the different perturbed quantities may have arbitrary relative phase, §,
where tan § is the ratio of the imaginary part to the real part of the
amplitude factor. The solution is, in any case, oscillatory. At a fixed
spatial location, the solution oscillates in time with frequency f, and at a
fixed time, the solution oscillates spatially with a wavelength A. Notice
that in the second form of (11.12) the argument of the exponential is
constant if x = x,+ (w/k)z. This means that the solutions are constant at a
position that moves along the x-axis with a velocity dx/dt= w/k, that s,
at the wave phase velocity [equation (2.50a)]:

Vo= wlk (11.13)

We use equations (11.1'), (11.8'), and (11.3’), writing them in the
forms that apply to the cold-plasma limit (p=0). In doing so, we shall
also assume that the background magnetic field and the plasma density
are constant (i.e., dp/ax=0, oB/ox=0, dp/dt=0, and dB/ot=0) and that
the wave is moving along the x-direction, meaning that only the deriva-
tives in x and 7 need be retained:

adp  du,
?-Fpa— (11.14)
ou a(b-B/u,) (Bx)ab
s > i L pl ) ik )
" at ” dax Mo/ 0x (0
db ou (du
el b i .16
at B"ax (ax B) ot

The assumed exponential dependence on x and ¢ of the wave properties
(ép, u, and b) implies that time and x derivatives can be replaced by —iw
and — ik, respectively. Then these equations become

i(wbp—kpu,) =0 (11.14")
ilwpu— k(X(b-B) — B b)/p1,] =0 (11.15")
ilwb+ k(B u—uB)]=0 (11.16")

The equations are now just a set of algebraic equations, which are easy
to deal with. One need only eliminate variables by substitution. Without
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Joss of generality, we can assume that B lies in the x—z plane, and we
pave already assumed that k =k%, and so B=(B cos 6, 0, B sin ). Here
gis the angle between B and k. By elimination, we can obtain

[(w/k)? — vAsin®6]u, + v;sin 6 cos 6 u, =0 (11.17a)
[(wlk)*—vicos*6lu, =0 (11.17b)
[(wlk)*— vicos®6lu, + visin 6 cos 6 u, =0 (11.17¢)

va= B o)t

The coefficients in (11.17) are squares of velocities, with w/k the wave
phase velocity and v, the Alfvén velocity [see equation (2.51)]. Equa-
tions (11.17a—c) are homogeneous equations that have solutions only if
the determinant of their coefficients vanishes. This requirement gives an
equation for v, =w/k that is called a dispersion relation. The roots of
the dispersion relation give the values of the phase velocity for MHD
waves in the cold plasma:

(wlk)*= v} cos® 0 (11.18a)
(wlk)?*=v2 (11.18b)

Dispersion relations such as (11.18a) and (11.18b) impose relations be-
tween the frequency and the vector wave number that must be satisfied
in order for a wave to exist in the plasma. The requirements that electro-
magnetic waves in free space propagate at the speed of light (w/k=c, or
the equivalent form in terms of frequency and wavelength) or that sound
waves in a neutral gas propagate at the speed of sound (w/k=c,) are
familiar examples of dispersion relations. Equations (11.18a) and
(11.18b) show that the dispersion relations of waves in magnetized plas-
mas depend on the magnitude of the magnetic field, the density of the
plasma, and, under some conditions, the direction of wave propagation.
Except for =0, the two equations cannot both be satisfied for the same
k and w, and so the dispersion relation implies two independent solu-
tions.

It is important to remember that a solution is valid only if all three of
the equations (11.17a—c) are satisfied. Consider first the wave that satis-
fies the dispersion relation (11.18a), referred to as the shear Alfvén
wave. By substituting (11.18a) into (11.17a—c), we see that (11.17b) is
satisfied for any value of «,, but (11.17a) and (1 1.17¢) are satisfied only
if u,=u,=0. Thus the shear Alfvén wave propagates with the phase
velocity v,cos 6 and sets the fluid into motion in the direction perpendic-
ular to the plane containing the propagation vector k and the background
field. Other parameters of the wave, such as its electric and magnetic
perturbations, can be expressed in terms of u, by using (11.6), (11.16"),
and so forth, and setting ., =0 and «,=0. Equation (11.14") shows that
this type of wave does not change the density of the fluid (because
u,=0). The relative orientations of the perturbation vectors in this type
of wave are illustrated in Figure 11.2a. Because the perturbation of the
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FIG.11.2. Schematic of wave polarizations
for (a) the Alfvén wave and (b) the fast
compressional wave. Displacements of the field
lines (thick curves) at maximum displacement for
(c) the Alfvén wave and (d) the fast compressional
wave. The thin lines represent the unperturbed
field. Plasma-pressure and magnetic-pressure
perturbations versus time for (e) the slow
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magnetic field is perpendicular to the background field, the field magni-
tude is constant (to linear order in the perturbation field) even in the
presence of the wave:

|[B+b[>*~B*+2B-b=hB?

As the foregoing identity implies that the magnetic pressure (which is
the only relevant pressure in a cold plasma) is constant, the wave is
noncompressional.

The second dispersion relation (11.18b) automatically satisfies
(11.17a) and (11.17¢c) for any value of u, and u,, but the only way to
satisfy (11.17b) is to set u,=0. This means that a second type of wave
can exist, one that sets the fluid into motion within the plane containing
k and B. As u, does not vanish, (11.14') implies that this type of wave
changes the fluid density. As well, nonvanishing perturbations of the
field magnitude are produced. This can be seen as follows:

[B+b|*> = B>+ 2B-b=B>+2ku B*»
where (11.15’) and (11.16") have been used to obtain the final form. As

u, does not vanish, the magnitude of the field and the magnetic pressure
will fluctuate when the wave is present. That is why this type of wave is
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often referred to as a compressional wave. Figure 11.2b shows the
polarization of the wave schematically. The wave energy propagates
along the direction of the Poynting flux vector:

S= —1- EXb
Mo

This direction is along =B in the shear Alfvén wave, but at an arbitrary
angle (parallel to k) relative to B in the compressional wave. This is an
important aspect that distinguishes the two wave modes. Figures 11.2¢
and 11.2d show schematics of the displaced field lines in shear Alfvén
waves and fast waves, respectively. In the shear Alfvén waves, the
perturbations are all perpendicular to B, and the distance between the
perturbed field lines is constant. In the fast wave, the perturbations are
oblique to B, and the oblique phase fronts result in varying separations
between the perturbed field lines.

If the wave propagates in directions other than along the background
magnetic field (i.e., if §#0), the phase velocity (11.18b) is larger than
(11.18a). For this reason, the compressional mode is also referred to as
the fast mode.

An additional property of interest in a wave analysis is what is re-
ferred to as the group velocity, v,. It describes the velocity of energy or
information transfer by a physically realistic wave packet that is not
strictly monochromatic and may contain a spread of wave vectors. Such
a wave packet can be described as a superposition of monochromatic
waves using Fourier analysis. Examples have been worked out by Jack-
son (1962) for the case of electromagnetic waves in dielectric media, but
the approach applies to plasma waves as well. The analysis shows that
if the spreads about the mean are sufficiently small, an expansion

w=w,+k—-k) Vo

can be introduced. The pulse then retains its shape and propagates with
the (vector) velocity v, =V, [see equation (2.50b)]. Note that this is a
vector velocity, which is found by expressing w as a function of the
vector k and taking derivatives with respect to its components. For the
two types of waves we have discussed, we find

V=V B (for the shear Alfvén wave) (11.19a)

v,=v,k  (for the fast-mode wave) (11.19b)
where B and k are unit vectors along B and k. These equations tell us
that the fast-mode wave can carry energy and information in any direc-
tion, whereas the energy and information content of a shear Alfvén
wave are strictly guided along the background field, even if phase fronts
are oriented arbitrarily.
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11.5 WAVES IN WARM PLASMAS

In a warm plasma, the plasma-pressure terms cannot be dropped frop,
the equations (i.e., B is no longer small compared with unity). The
pressure-gradient term must be considered in the momentum equation,
and (11.7) is also needed. For small-amplitude perturbations, the linear.
analysis approach is once again appropriate. We end up with a set of
equations analogous to (11.17), and the requirement that the determinant
of the coefficients vanish gives a dispersion relation

(@? —cos%0 k*v3)[w* — w*k*(c2 +v3) + cos?8 k*v3ic2]1=0 (11.20)
which has three solutions:

w?=vicos? k? (11.20a)

W2 =3{c2+v2 £ [(2+v2)* — 4c2 v} cos?O]E} (11.20b)

Comparing the dispersion relations (11.18) and (11.20), we find that the
finite temperature of the plasma has introduced an additional wave mode
and changed the properties of the fast mode previously discussed. The
shear Alfvén mode appears again as the solution of (11.20a). Its phase
velocity still depends only on the Alfvén velocity. All of its properties
(e.g., polarization perpendicular to both B and k, and no change of
density or field magnitude) remain the same as in the cold-plasma case.
The roots of (11.20b) depend not only on the Alfvén velocity but also
on the sound speed. These roots apply to compressional wave modes
(i.e., waves that do change the density and the field magnitude). The
two solutions are referred to as the fast (positive sign) and the slow
(negative sign) waves and are also called magnetoacoustic wave modes.
The electric, magnetic, and current polarizations of the fast and slow
waves are shown in Figure 11.2. However, when the thermal pressure
varies along B, the flow velocity can have a parallel component, and u
will not be perpendicular to B. The thermal-pressure perturbations that
are a feature of waves in a warm plasma are in phase with the magnetic-
pressure perturbations in the fast wave, but are out of phase with them
in the slow wave. Figures 11.2e and 11.2f show schematically the phase
relations of the field and pressure perturbations in fast and slow waves.
The fast mode is produced when the total pressure of the plasma (the
sum of particle pressure and field pressure) changes locally in the sys-
tem. For example, if the solar-wind pressure on the dayside of the
magnetosphere increases suddenly, a gradient of total pressure, positive
toward the dayside boundary, will develop. The pressure perturbation
serves as a source of compressional waves [see equation (11.8"), where
the pressure-gradient term is a source of plasma motion]. The waves
have p and p, in phase and are therefore fast-mode waves. As they
radiate away from the boundary source, they carry away the excess
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pressure. Ultimately, these waves are able to reduce total pressure
gradients. This wave mode propagates almost isotropically.

A convenient way in which to represent the phase velocity of a wave
is in a polar plot, referred to as a Friedrichs diagram, with one axis
aligned with the background field. The angle relative to that axis is the
angle between k and B, and the distance from the origin represents that
phase velocity. This type of plot is given for the case ¢?<v3 in Figure
11.3a. For the fast wave, both the phase velocity and the group velocity
are largest for propagation perpendicular to B. For the slow wave and
the intermediate wave, the phase velocity vanishes for k L B.

The group velocity can also be represented in a polar plot, this time
with the angle relative to the B-direction representing the angle between
B and the group velocity; the length of the vector represents the magni-
tude of the group velocity. The plot is shown in Figure 11.3b for the
case ¢2<v}. The fast-mode group velocity is finite in all directions and
largest perpendicular to B. As pointed out in the discussion of Poynting

FIG. 11.3. Friedrichs
diagrams for (a) the phase
velocity and (b) the group
velocity for vo=2c, and (c) the
phase velocity and (d) the group
velocity for v, =#c,. Wave
modes are fast (F), intermediate
(1), and slow (S).
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flux, these waves can carry energy in any direction, as v, remains finite
at all angles. The intermediate wave has a group velocity that is along
+B, with amplitude v, for all k, and so it appears as a pair of points qp
the plot. This is consistent with the directions of S in Figure 11.2. The
slow-mode group velocity is ¢, for k along B. As the angle betweep
and B increases, the group velocity increases slightly and rotates a bjt
away from B. As the angle continues to increase, the group velocity
decreases and aligns more closely with B. This accounts for the peculiar
quasi-triangular curves in Figure 11.3b. Independent of k, the slow-
mode group velocity remains nearly aligned with B. It carries energy
only over a relatively narrow range of angles and is referred to ag
“field-guided.”

The slow-mode wave is different from the fast-mode wave in severa]
ways. For the slow mode, total pressure (i.e., the sum of particle pres-
sure and magnetic pressure) is approximately constant across the back-
ground field. As described earlier, slow waves carry energy predomi-
nantly along the background field. Field-aligned gradients of the total
pressure drive slow-mode waves. In particular, when the sound speed is
much smaller than the Alfvén speed, the slow mode propagates along B
at the sound speed and reduces plasma-pressure gradients. Figures 11.3¢c
and 11.3d show the phase and group velocities, respectively, for the case
c2>vZ. Qualitatively, the features of wave propagation are unchanged
relative to the previous case, but for field-aligned propagation, the slow
and intermediate modes adopt the Alfvén speed.

If fast- and slow-mode waves reduce pressure gradients, what does
the shear Alfvén wave do? It acts to reduce the bending of the magnetic
field. Plasma flow across the field can increase the bending of the field.
The associated field perturbations will create currents that act to reduce
the additional curvature of the field line. The closure of the currents that
flow through the plasma is, in part, along the magnetic field, so that the
shear Alfvén wave introduces field-aligned currents. Figure 11.2 shows
that the perturbation current in the Alfvén wave (but not in the two
compressional waves) has a nonvanishing component along B.

This discussion of MHD waves in warm plasmas links closely with
the earlier discussion of shocks in Chapter 5. The shock develops when
the information required to slow and divert a flow cannot propagate
upstream fast enough. The pileup of waves unable to propagate up-
stream leads to nonlinear conditions that establish shocks in the flow.
The shock front found farthest upstream of an obstacle is linked to the
fast magnetoacoustic wave, the wave that propagates fastest, and in all
directions, and serves to reduce pressure gradients and to slow and
divert the flow. The intermediate wave propagates more slowly and
nonisotropically. It serves to rotate the field. Only under special condi-
tions can it develop into a shock. Most rotations observed in space
plasmas appear to be unrelated to shocks. Slow-mode waves, because
of their nonisotropic propagation, can play at most a limited role in
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reducing pressure gradients, but slow shocks have been observed in
space plasmas.

11.6 IONOSPHERIC BOUNDARY CONDITIONS

The frequencies of ULF waves that can be excited in a plasma depend
not only on the wave modes but also on the boundary conditions.
For the magnetosphere, the boundaries are the magnetopause and the
ionosphere. Here we consider the conditions that must be satisfied at
the ionospheric boundary of a flux tube. The ionosphere both reflects
and transmits to the ground the ULF signals incident from above. We
treat the ionosphere in a qualitative manner by representing it as a thin
conducting sheet. The ionosphere lies above a neutral atmosphere that
is in turn bounded by the earth. Figure 11.4 shows schematically a
dipolar magnetosphere containing plasma (shown by stippling). In this
figure, the high-latitude ionosphere forms boundaries at the ends of
(most) field lines. The near-equatorial ionosphere serves as an inner
boundary, and the magnetopause as an outer boundary. In Figure 11.4b,
the field lines have been straightened to form a “box model” of the
magnetosphere. If the conductivity of the ionosphere is very high, both
the electric field and the wave displacement must vanish at the iono-
spheric ends of the field lines (as well as on the left side of the box). This
means that any wave incident on the ionosphere will be reflected back
toward the other ionosphere. (At lower conductivities, the waves are
only partially reflected.) Like waves on a string, the Alfvén waves can
satisfy the reflection condition only for certain selected wavelengths. If
the length of the field line between the two ionospheres is [, the allowed
wavelengths along the field direction A are

A= 2l/n
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FIG. 11.4. Schematic (q,
b) of the dipole field and its
relation to a box model of the
magnetosphere. Dipole field
lines are straightened and
bounded by the off-equatorial
ionosphere at the top and
bottom. Perturbations (c, d) of
field and plasma in a shear
Alfvén wave and in a fast
compressional wave. The
density of shading illustrates
increases and decreases in the
plasma density.



FIG. 11.5. Standing

oscillations in a dipole field. Top:

Schematic illustrations of the
field displacements in a
fundamental and second
harmonic of the field-line
resonances. Dashed lines are
the displaced field lines. Bottom:
Plots of the perturbation electric
and magnetic fields versus
distance along the field line
from one ionosphere to the
other.
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where n is an integer. Recalling that for a shear Alfvén wave with k=
k, cos 6=2m/); representing the component of k along the background
field,

o= VAk" e VAZ'TT//\”

it follows that the allowed frequencies of these waves standing on field
lines are

f=nv,/(2l) = nBIQ2IV pep)

Thus, only certain resonant frequencies can be established. These fre-
quencies are controlled by the length of the field lines between the
ionospheres, the strength of the magnetic field, and the plasma density.
If the field geometry is known, it is possible to infer the plasma density
by measuring the frequencies of shear Alfvén waves present in a mag-
netic cavity bounded by the northern and southern ionospheres. This is
just the point that Dungey (1954a,b) made in his early papers on waves
in the magnetosphere. Figures 11.4c and 11.4d show how field and
plasma might be deformed if standing Alfvén waves or compressional
waves, respectively, perturbed the magnetosphere. For the former, the
density remains constant. For the latter, the density changes as the flux-
tube volume changes. The structures of the wave perturbations along
the magnetic-field line are illustrated for the two lowest harmonics in
Figure 11.5. The upper part of the diagram illustrates the displacement
of the flux tube in a dipolar field for the fundamental (n=1) and second
harmonic (n=2) of the standing waves. The lower diagrams show how
the electric (E) and magnetic (b) perturbations vary with distance along
the background field. Even and odd modes are identified by the symme-
try of the transverse magnetic perturbations about the equator, where
E=0, u, =0, and field lines do not move.

(11.21)
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11.7 MHD WAVES IN A DIPOLAR MAGNETIC
FIELD

The foregoing discussion has concentrated on waves in a uniform back-
ground magnetic field. A model of the background magnetic field that is
slightly more complicated, but considerably more realistic for a plane-
tary magnetosphere, is a dipole field. For a cold plasma in a dipole field,
the MHD waves are very similar to those discussed for a uniform
plasma.

Consider first a perturbation that compresses the system at the last
field line on the right in the model illustrated in Figure 11.4a. The motion
may not be uniform along the field, and so the boundary field lines will
bend and will move closer to the shell of field lines just inside the
boundary, thereby increasing the magnetic pressure. The pressure per-
turbation propagates into the system, producing changes in the compo-
nents of the field in the » and § directions (the coordinate system is
shown in Figure 11.6). This type of perturbation can be identified as a
fast-mode wave.

A perturbation that sets an entire shell of plasma into azimuthal
motion creates a wave perturbation in the ¢ direction (Figure 11.6) that
bends the field without changing its magnitude. Such a wave is a shear
Alfvén wave.

Under most circumstances, the two wave modes are coupled, mean-
ing that it may not be possible to set up a compressional wave without
setting up a shear Alfvén wave somewhere in the system. If the com-
pressional wave is monochromatic (i.e., has a single frequency, say
fras)» the coupling will be strongest on a field line for which fg, 1s a
resonant frequency, which means that it matches the frequency of a
shear Alfvén wave that can stand on that field line. This is not unex-
pected, because any oscillating system responds strongly to a driving
force that contains a signal at its natural or resonant frequencies. Both
the Alfvén wave and the driving compressional wave have local maxima
at the resonant field line.

FIG. 11.6. |lllustration of
the unit vectors in a local dipole
coordinate system at different
latitudes.
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FI1G. 11.7. Representa-
tions of wave perturbations
throughout the dayside
magnetosphere produced by
(a) Kelvin-Helmholtz waves on
the surface and (b) a compres-
sion of the nose of the
magnetosphere.
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(a) " » Magnetopause

(b)

.. Magnetopause

Resonant L-Shell

O Damping Region

Kelvin-Helmholtz Non-uniform
waves on boundary compression
Resonances at Resonances at
discrete frequencies cavity resonant
of boundary waves frequencies

(Note that this model explains
peak amplitudes near noon)

Theories have been developed to describe how wave disturbances at
the magnetopause boundary pump energy into the magnetospheric cay-
ity and deposit it near magnetic shells where the conditions for the
transverse resonances are satisfied (Southwood, 1974; Chen and Hase-
gawa, 1974; Kivelson and Southwood, 1986). A schematic illustration of
this process, the field-line resonance theory of magnetospheric ULF
waves, is shown in Figure 11.7a, where the waves are shown as wiggly
lines moving away from local noon. The line thickness represents wave
amplitude, which decreases inward but peaks locally at the resonant L
shell. Eddy motions are induced within the magnetosphere by wave
perturbations. The eddy flows reverse sense across amplitude extrema.
Wave magnetic perturbations are proportional to flow perturbations,
and this means that wave polarization also varies with location in the
equatorial plane of the magnetosphere. As the wave must carry energy
across the magnetic field, the wave mode coupling the boundary to the
resonant field lines must be a compressional mode. The model assumes
that the waves on the magnetopause are surface waves whose amplitude
decays away from the surface. The polarization patterns shown can be
mapped down to the ionosphere along magnetic-field lines. For Pc-
5 waves (periods of 2.5-10 mir), distributions of wave polarizations
consistent with this model have been reported from ground observations
(Samson and Rostoker, 1972). ULF waves have also beenginvestigated
by spacecraft using instrumentation to measure electric ai.d magnetic
fields and plasma flow velocities, and the theoretical picture of resonant
field lines given here has received ample confirmation (Perraut et al.,
1978; Takahashi and McPherron, 1982; Takahashi, McPherron, and
Hughes, 1984).

Recent work has focused on the response of the magnetosphere to
impulsive perturbations on the boundary, such as those produced when
the solar-wind dynamic pressure incident on the magnetopause changes
abruptly. In connection with the response of the magnetosphere to an
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impulsive source, the idea of the magnetosphere as a resonant cavity
has recently been receiving renewed attention (Figure 11.7b). If the
near-equatorial ionosphere and the magnetopause can serve to reflect
signals propagating across the field, much as the northern- and southern-
hemisphere ionospheres serve to confine signals propagating along the
field, the compressional wave frequencies will be quantized just as the
shear Alfvén frequencies are quantized. Figure 11.8 shows characteristic
wave amplitudes that would be established following an interval of
transient impulsive disturbance in a box model of a magnetosphere with
reflecting boundaries at the equatorial ionosphere and the magneto-
pause. The amplitude of the field-aligned component b_, oscillates within
an envelope of decreasing field strength. The b, component (azimuthal in
a realistic magnetosphere) is vanishingly small except in the immediate
vicinity of the resonant field lines, at which the compressional and
transverse frequencies match. The b, component (radial in a realistic
magnetosphere) shares qualitative features of the structures of b, and
b,, with smaller amplitude.

The transient response that develops immediately following the im-
pulsive disturbance of the boundary is itself of interest. Figure 11.9
shows an example of the types of signals that can be observed at the
ground immediately following an impulsive disturbance in the solar
wind. A sudden increase of solar-wind density, evident in the left-hand
panels, sets up waves within the magnetosphere. A chain of ground
stations recorded waves that were most intense and long-lasting near the
middle of the chain. MHD wave theory for the magnetospheric cavity
can provide an interpretation of these observations. The right-hand
panel of Figure 11.9 shows schematically that cavity resonances produce
waves of different characters on different field lines, with peak power
and long duration at intermediate latitudes.
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FIG. 11.8. The amplitude
(solid traces) and phase (long
dashes) of a global-mode wave
versus equatorial distance in a
box model of the magneto-
sphere with a spatially varying
Alfvén speed (short dashes); z is
field-aligned; x is the direction
of the gradient of the Alfvén
velocity. (From Zhu and
Kivelson, 1989.)
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11.8 SOURCES OF WAVE ENERGY

In describing the properties of ULF waves, we have not addressed the
questions of wave generation. Diverse processes can excite waves, and
several different driving mechanisms are important in generating the
waves observed in the magnetosphere or the solar wind. Any process
that modifies the equilibrium of the plasma and the field can serve as an
energy source for waves. As for most magnetospheric phenomena, the
energy comes principally from the solar wind, but other energy sources
in the ionosphere or internal to the magnetosphere can be important.

The departure from equilibrium that drives the waves is often related
to large-scale convective flows. In particular, the shear in the flow
across the magnetopause can produce surface waves, of the sort men-
tioned in the preceding section, through what is called the Kelvin-
Helmholtz instability. The process is closely related to the one that
produces waves on the surface of a lake when a strong wind is blowing.
These surface waves compress the magnetosphere, and the perturba-
tions generate compressional waves that decay or propagate across field
lines. Field-line resonances, described in the preceding section, couple
the energy of compressional waves into shear Alfvén waves. Other
compressional perturbations of the magnetopause can serve as sources
of wave energy. Examples are the displacements of the magnetopause
that occur when a solar-wind shock passes by, or those that are pro-
duced by time-varying dayside reconnection. Waves in the solar wind
can be convected through the bow shock and under certain circum-
stances can introduce wave power into the magnetosphere.

Steady convective flows need not generate waves, but time-varying
flows typically drive MHD waves. The time-varying convective flows
can be generated within the magnetosphere (e.g., at the time of substorm
onset), or they can be generated in the ionosphere (e.g., in regions
locally heated by precipitation of energetic particles). In either case,
when the motion of one end of a flux tube changes, waves grow and
bounce back and forth along the flux tube until the entire flux tube
begins to move as a whole.

Convection is not the only source of wave energy. Waves can grow
when the velocity-space distribution of the plasma is not in an equilib-
rium configuration, either because it is anisotropic or because the parti-
cle energy distribution is anomalous. Unstable velocity-space distribu-
tions develop in the ring-current region when particles are injected by
enhanced convection during substorms and storms. Then it is possible
to find groups of particles that are in resonance with the waves; particles
that can bounce and drift in phase with ULF waves, in some cases
causing the wave power to grow. An example of particles in resonance
with waves nominally in the Pc-3 to Pc-5 band is shown in Figure 11.10,
which again uses the box model. Electric-field intensity is shown by the
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FIG. 11.10. Schemdtic
of two bouncing particles with
different equatorial pitch angles
and therefore different mirror
fields drifting relative to a ULF
wave that stands between the
northern and southern
ionospheres in a box model of
the magnetosphere. The plus
and minus signs represent the
sign of a wave electric field, and
their density indicates the
amplitude of that field. The
particle along the solid
trajectory will experience
greater acceleration or
deceleration as it spends time in
field regions of very strong
perturbation.
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density of symbols. The loci of the guiding centers of bouncing, drifting
particles are shown as diagonal lines. The orbits have been chosen so
that the particles drift through exactly one wavelength in each full
bounce; they are resonant with the wave. The lines remain in regions of
negative E and the ions on these paths will lose energy. Ions on the
dashed-line orbit will gain energy, as they always experience E>0.
Nonresonant particles will move through both positive and negative E
and therefore will not change energy, as viewed over multiple bounces.

The higher-frequency wave classes of Table 11.1 (Pc-1, some Pc-2
waves, and Pi-1) arise from a local interaction with ions in motion along
the field. Particles can resonate with higher-frequency waves that, in the
particle rest frame, match their gyrofrequency. This means that the
particle gyrofrequency must equal the wave frequency Doppler-shifted
to account for the velocity of the particle’s motion along the field. Waves
produced in this way are also found upstream of the bow shock, where
ions that have been reflected back upstream from the bow shock pro-
duce ion-cyclotron instabilities in the solar wind. Resonances that fall
into the Pc-1 and Pc-2 classes are ion-cyclotron resonances, which will
be discussed in connection with other “kinetic” wave processes in Chap-
ter 12,

11.9 [INSTABILITIES

In Section 11.3, we linearized the equations that govern the plasma and
fields, thereby obtaining wave solutions whose average amplitudes are
constant in time. This implies that even over many wave cycles, the
plasma neither loses energy to the waves nor gains energy from the
waves. If, on the other hand, energy and momentum are transferred,
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either from the waves to the plasma or from the plasma to the waves,
the average wave amplitude will change with time.

wave growth requires a source of free energy in the plasma. Plasma
conditions that lead to nonlinear growth are referred to as instabilities.
The plasma conditions that can lead to wave growth include beams, in
which directed particle fluxes are superimposed on a plasma at rest,
anisotropic distributions of particle pitch angles, and nonequilibrium
spatial distributions of plasma. Thus, the departures from equilibrium
that can lead to wave growth can be present either in the phase-space or
in the configuration-space distribution.

If waves described by the time dependence of equation (11.12) are to
grow, @ must have a positive imaginary part (i.e., @ =w,+iy, where
both @, and y are real, and y>0). Equation (11.12) shows that for
positive vy, the amplitude grows exponentially with time. Therefore, vy is
called the growth rate. Notice that if vy is negative, the wave decays.

An exponentially growing wave satisfies the linear approximation
only for times short compared with 1/y; at longer times, the waves
become nonlinear, and the mathematical formulation that we have pre-
sented in this chapter is no longer applicable.

Some of the instabilities that can develop in a uniform background
magnetic field are closely related to the linear waves introduced in this
chapter. We shall identify only one example, the mirror instability.
This instability of an anisotropic plasma requires that the perpendicular
plasma pressure exceed the parallel pressure. The condition for wave
growth of the mirror instability is

1+B,(1-B,/B)<0

where B, (B)) is the ratio of p, (p)) to the magnetic pressure. If this
inequality is satisfied, the uniform field develops bubbles of low field
strength separated by regions of enhanced field strength. Where the field
is stronger than the unperturbed field, the particle mirror points shift in
such a way that the plasma density decreases. Where the field is weaker
than the unperturbed field, the plasma density increases. This field con-
figuration reduces the anisotropy of the plasma and lowers the energy of
the system.

The mirror instability is a purely growing wave with w,=0. Notice
that the phase relations between plasma and magnetic pressure are the
same as in the slow mode, but this is a nonpropagating wave.

Wave instabilities make an important contribution to the configuration
and transport properties of a magnetosphere. For example, changes in
the curvature of the field can be produced by instabilities referred to
as ballooning and firehose instabilities. Plasma stirring or even steady
transport can, under appropriate circumstances, be produced by the
interchange instability. In all cases, the perturbations grow because the
plasma distribution is not in a minimum-energy state, and the nonlinear
waves act to bring it closer to a minimum-energy configuration.
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11.10 WAVES IN PLANETARY MAGNETOSPHERES
AND ELSEWHERE

Although the discussion has focused on MHD waves present in the
terrestrial magnetosphere, such waves are present wherever magnetizeq
plasmas are subject to forces that introduce perturbations on appropri-
ately long time scales (i.e., long with respect to the ion gyroperiod).
Time-varying patterns of magnetic structure or of plasma flow are not
normally imposed over the entire system simultaneously. Thus, non-
equilibrium pressure gradients or flow patterns develop, and ULF waveg
can act to restore equilibrium. For example, if plasma is set into motion
on one part of a magnetic-flux tube, the plasma elsewhere on the flux
tube must respond to the changes. This requires signals to propagate
along the flux tube. Signals that carry field-aligned current from one part
of the flux tube (such as the equatorial magnetosphere or the solar
corona) to another (say the ionosphere or the solar photosphere) are
essential for getting the entire flux tube to move as an entity. Such
signals must be carried by shear Alfvén waves.

MHD waves are observed in the solar wind; special forms of such
waves are observed upstream of planetary bow shocks. The characteris-
tic wave periods change linearly with the magnitude of the solar-wind
magnetic field. The solar-wind flow convects these waves toward the
magnetosphere, and they introduce wave power into the magnetospheric
cavity. By monitoring the power in Pc-3 and Pc-4 waves (periods from
tens of seconds to minutes) on the ground, the magnitude of the inter-
planetary magnetic field can be estimated.

The study of MHD waves in planetary magnetospheres is not yet
complete, but one example will serve to illustrate the value of studying
them. Figure 11.11 presents Voyager 2 data from Jupiter. Plotted are
the perturbations of magnetic and particle pressures measured by the
spacecraft instruments. The fluctuations are proportional to the fluctua-
tions of the field-aligned component of the magnetic field. As the particle
detector is not able to determine the mass of the ions that are detected,
there is an uncertainty in the particle pressure. In this plot it has been
assumed that the ions are protons. However, heavy ions like sulfur and
oxygen are also known to be present in the Jovian magnetosphere. If
the pressure were calculated assuming singly charged oxygen ions, the
particle-pressure fluctuations would be larger by a factor of 10. Notice
the anticorrelated changes between the two perturbation pressures. Re-
calling that the slow mode maintains the total pressure approximately
constant and therefore corresponds to perturbations with anticorrelated
particle and field pressures, it is natural to expect that these fluctuations
represent a slow-mode type of disturbance. Yet, although these two
fluctuating pressures are strongly anticorrelated, their sum is not con-
stant. The amplitude of the particle-pressure fluctuations is about one-
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third that of the magnetic-pressure fluctuations. However, if the pres-
sure were recalculated assuming that the plasma contains about 30 per-
cent singly ionized oxygen ions, the total pressure fluctuations would
become negligibly small. That possibly was the best available method
for determining the composition of the intermediate-energy plasma pop-
ulation in the Jovian magnetosphere with measurements available from
the Voyager 1 and 2 spacecraft, but new data from the Ulysses flyby
(February 1992) and ultimately from the Galileo spacecraft (1995) will
provide direct composition measurements. Then we shall be able to
evaluate the accuracy of our estimates based on an understanding of the
properties of ULF waves.

ADDITIONAL READING

Below are listed some good review articles on ULF waves:

Southwood, D. J., and W. J. Hughes. 1983. Theory of hydromagnetic waves in the
magnetosphere. Space Sci. Rev. 35:301.

Hughes, W. J. 1983. Hydromagnetic waves in the magnetosphere. In Solar Terres-
trial Physics, ed. R. L. Carovillano and J. M. Forbes (p. 453). Dordrecht: Reidel.

Pilipenko, V. A. 1990. ULF waves on the ground and in space. J. Atmos. Terr.
Phys. 52:1193.

Samson, J. C. 1991. Geomagnetic pulsations and plasma waves in the Earth’s
magnetosphere. In Geomagnetism, vol. 4 (p. 481). New York: Academic Press.

PROBLEMS

11.1. In regions of low plasma 8 in a dipole field, which represents much
of the dayside magnetosphere, the cold-plasma approximation is appro-

priate.
(a) Use your knowledge of the properties of a dipole magnetic field
(Beg ® L3, length of field line proportional to L, volume of flux tube
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FIG. 11.11. Example of
MHD waves observed in the
Jovian magnetosphere by
Khurana and Kivelson (1989).
The particle and field pressures
are in antiphase, as in slow-
mode or mirror-mode waves.
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(b)

(c)

(d)

11.2.

L=5,

proportional to L*, equation of field line r = LRcos?)) to explain why
the fundamental excitations of field lines at large L occur at lower
frequencies than do the fundamental excitations of field lines at sma
L. Assume that the density is uniform (1 electron per 1 cm?) through.
out the dipolar region of the magnetosphere and that at 6.6 R, the
fundamental frequency is 14 mHz. Make a rough plot showing how
the fundamental frequency varies with L.

Actually, the magnetospheric-plasma density often varies inversely
with the flux-tube volume over large parts of the outer magneto-
sphere. Make a rough plot of the fundamental frequency of field-line
excitations normalized to 14 mHz at 6.6R in a dipole field assuming
this type of variation for the density.

Although the density variation used in part (b) is a good approxima-
tion, the magnetospheric density actually drops by a factor of 100 or
more across the plasmapause. Allow for a plasmapause at L =4, and
assume that the density jumps by 100 inside the plasmapause. Again
provide a rough plot of the fundamental frequency versus L.

Where on the surface of the earth would you expect to find pulsations
of 50 mHz for the assumed conditions of part (c)?

Suppose that a standing Alfvén wave is established on a field line at
where the magnetosphere is approximately cylindrically symmetric.

The ambient particle population is taken to include both energetic and cold
plasma. Near the equator, the density is p in Kilograms per cubic meter.
Locally near the equator the uniform-field approximation is valid; the ambi-
ent field is By/L> and is oriented along the z-direction. The standing wave is
a superposition of waves with k parallel and antiparallel to 2.

(a)

Assume that the magnetic perturbation b is radial. Determine the
wave electric-field and the fluid-velocity perturbations as functions
of b, p, and L. Pay attention to the vector character of the perturba-
tions to determine their directions. Identify the direction of plasma
displacement.

(b) The wave oscillations displace the plasma. The rate of displacement

(c)

is slow enough that the plasma responds adiabatically. Show why
this is true, using nominal dipole field values.

Explain why you must consider the variations of particle flux with
both L and W (particle energy) if you wish to determine how the
particle flux measured at a spacecraft is modulated by a wave.

(d) Assume that only cold electrons and ions are present (W=0). Show

11.3

that the magnitude of the density variations takes the form

5 b(dn/oL)
R e
ReoV pop

(a) Plasma boundaries in the magnetosphere sometimes are described as

standing fronts that can be thought of as waves propagating against a
flow. Consider the high-latitude magnetopause in the noon—midnight
meridian of the magnetotail for a strictly southward-oriented inter-
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planetary magnetic field. Sketch the change of the field across the
boundary. Carefully consider the changes that must occur across the
boundary. What MHD wave mode produces these changes?

(b) Waves are detected in the solar wind as well as in the magnetosphere.
Assume that the solar-wind magnetic field is oriented along the spiral
angle. Wave perturbations with magnetic polarization perpendicular
to the ecliptic plane are observed. What MHD wave mode is relevant
to such perturbations?

(c) Waves generated at the magnetopause can be observed behind the
earth’s bow shock. Only one of the MHD wave modes can travel
from the magnetopause to the nose of the bow shock. Which wave
mode is it, and how do you reach this conclusion?



