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ULF Pc5 waves result from:

» solar wind pressure

 magnetopause shear flow instabilities (K-
H)

* mirror/drift-bounce instabilities

* anisotropies in the ring current

RC O* ions, in particular, provide a source of
free energy to drive Pc5 waves



Geospace Storms and Radiation Belts
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() Broadband ULF Pc5 Wave Power for e- Flux Enhancments
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ULF waves

Irregular pulsations
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Continuous pulsations
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Ultralow Frequency Waves as an Intermediary for Solar Wind
Energy Input Into the Radiation Belts

Marina Georgiou
& I.A. Daglis, I.J. Rae, E. Zesta, D.G. Sibeck, I.R. Mann, G. Balasis, K. Tsinganos

https://doi.org/10.1029/2018JA025355
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Woaves synergy and RB acceleration

RBSP for u = 900 MeV/G
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Pc5 and Chorus synergy in March 2013 storm
Enhancement of relativistic electrons, Katsavrias+, ANGEO2015



Woaves synergy and RB acceleration
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a) Concept Schematics

Earth radii
o

From Horne [2007]

Woaves synergy and RB acceleration
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Chorus
characteristics

* Found outside
plasmasphere on
dawn-side

e Due to unstable,
drifting plasmasheet
electrons

e Multi-scale structure
in space and time

hhmm
2008 Oct 15

Li et al. [2012], Fig. 1
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Chorus and Magnetic Storms

Chorus emissions are enhanced
during geomagnetic storms, because
they are driven by ring current
electrons

The waves are strongest on the
dawn-side at 4-9 Earth radii, as can
be seen from this statistical survey
using data from 7 satellites
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Chorus and Magnetic Storms

AE ) 300 nT

* Chorus waves accelerate electrons
to relativistic energies

Sun

mER M 06:00

* We use global maps such as these in
computer models to produce space
weather forecasts
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What drives strong and weak diffusion?
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Woave penetration

is dependent on the

position of the
plasmapause

There are many different waves,
which drive weak and strong
diffusion depending on storm levels



Storm i1nfluence on RB dynamics

Plasmapause location changes dramatically during
magnetic storms.

In this way, storms influence indirectly, yet
decisively, the earthward penetration of waves and
therefore their effectiveness in the heart of the

outer belt.



Synergy of waves in acceleration

(i) inward radial diffusion by Pc5 waves
plus subsequent

(ii) local acceleration by lower band chorus



Zhao, H., Baker, D. N., Li, X., Jaynes, A. N., & Kanekal, S.
The effects of geomagnetic storms and solar wind conditions on
the ultrarelativistic electron flux enhancements. JGR 2019

SEA of 8/ storms
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of 5.2 MeV e

Storms with Enhancement

¢ High solar wind speed (ULF
wave generation)

¢ Sustained IMF Bs (storms)

¢ Higher AE (substorms - chorus,
seed electrons)

¢ Higher ASY-H (ULF wave
generation)
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Synergy of waves in acceleration

(i) inward radial diffusion by Pc5 waves

driven by solar wind speed/pressure and/or ring
current

(ii) local acceleration by lower band chorus

driven by substorm-injected electrons
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