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Flux variability in the radiation belts

» Solar cycle: years / Solar rotation: 27 days
+ Storm recovery: days / Storm main phase: hours
- SSC: minutes

Years
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Storms and RBs

Realization that
some storms are “more equal than others”

Radius Jan 1- Feb 25, 1997 April 30- May 25, 1999 Feb 14-23 1998
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Reeves et al., 2003

G. Orwell, 1945
G. Reeves, 2003: 276 moderate/intense storms, 1989-2000



L-shell

Daily Minimum Dst (nT)
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Geospace Magnetic Storms and Radiation Belts

Polar 1.2-2.4 MeV flux, 1997
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Net Radiation Belt Enhancements
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Other Radiation Belt Changes

-200
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Day of Year, 1997

Reeves, SW2007



Correlation with magnetic storms

Relativistic electron flux

does not always increase
during magnetic stormes.

Reeves et al. [2003] showed that:
- 53% cause increase

- 19% cause decrease

- 28% produce no net change

Final flux levels are the balance result
between acceleration, transport and losses.
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Long-duration (>20 days) elevated levels of ultra-relativistic (>5 MeV)
electrons starting with the September 2017 storm
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Radiation belt formation

Which mechanism(s) can
efficiently accelerate
charged particles, leading

enhanced fluxes of MeV

diation belt particles?




Radiation belt formation

The most obvious driver,

the magnetospheric
substorm,

_ appears to be insufficient.
pical substorms seldom
ly accelerate electrons

to energies much above
~300 keV
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Relativistic Electrons: Energization

High solar wind speeds
( > 500 km/s) and
southward B,

Substorm-generated
seed population
(extending to
hundreds of keV)

Physical processes
— radial transport
— In-situ acceleration
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Radiation belt formation

Observations have led to the view that
an enhancement in magnetospheric
activity (e.g., substorms)

- driven by southward IMF -

is a key first step

in the acceleration of magnetospheric
electrons to high energies.



Radiation belt formation

A second step is found to be
a period of intense wave activity
which often is closely related

to high values of V¢,
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Sunspot
Numbers

SAMPEX and Van Allen Probes — 23+ years!
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Radiation belt formation

A pre-requisite of relativistic (MeV)

electron enhancement is

an interval of southward IMF
along with a period of

high solar-wind speed

(Vow 2 500 km/s).



REPT A& B 1.8 MeV Electrons
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REPT A& B 4.2 MeV Electrons
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REPT A& B 4.2 MeV Electrons
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Sunspot Number

Zoom:

Default

ISES Solar Cycle Sunspot Number Progression

Numbering On/Off

Mar 2014
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Sunspot Number

ISES Solar Cycle Sunspot Number Progression

Zoom: Default All Numbering On/Off
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Correlation with magnetic storms
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Effects of intense magnetic storms
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Correlation with magnetic storms

SAMPEX: ELO/Electrons, 2—6 MeV
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Correlation with magnetic storms
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The storms, the substorms and the waves

e ULF: Pc5 and EMIC waves

« VLF: Whistler-mode chorus waves



Energy
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Interaction of various waves
(in various ways)

Takahashi and Miyoshi, 2016

with various particle populations

during storms/substorms
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ULF Pc5 waves result from:

» solar wind pressure

 magnetopause shear flow instabilities (K-
H)

* mirror/drift-bounce instabilities

* anisotropies in the ring current

RC O* ions, in particular, provide a source of
free energy to drive Pc5 waves
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