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Not for the first time we are at a turning point in intellectual history. The

appearances of new computational forms and literacies are pervading the social

and economic lives of individuals and nations alike. Yet nowhere is this upheaval

correspondingly represented in educational systems, in classrooms, or in school

curricula. As far as mathematics is concerned, the massive changes to

mathematics that characterize the late twentieth century—in terms of the way it is

done, and what counts as mathematics—are almost invisible in the classrooms of

our schools and, to only a slightly lesser extent, our universities.

The real changes are not technical: they are cultural. Understanding them (and

why some things change quickly and others change slowly) is a question of the

social relations among people, not among things. Nevertheless, there are

important ways in which computational technologies are different from those that
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preceded them, and in trying to assess the actual and potential contribution of

these technologies to education, it will help to view them in a historical light.

The notation systems we use to present and re-present our thoughts to ourselves

and to others, to create and communicate records across space and time, and to

support reasoning and computation, constitute a central part of any civilization’s

infrastructure. As with infrastructure in general, it functions best when it is taken

for granted, invisible, when it simply ‘works.’ This paper is being prepared as the

UK ground transportation system has, due to a number of additive causes, almost

totally failed, and when the electricity production and distribution system of

California is likewise in disarray. When the infrastructure either fails or undergoes

changes, the disruptions can be major. Further, they tend to propagate, so that one

change causes another in tightly interconnected systems—when the electricity

goes out, lots of other things go out too. The same is true on the positive

side—when a new technological infrastructure appears, such as the Internet, many

things change, often in unpredictable ways as sequences of new opportunity

spaces open up and old ones close down. Entire industries are born, old ways of

doing things change, sometimes in fundamental ways—how people participate in

the economy changes, the physically-based means for defining and controlling

ownership of intellectual property are challenged, and indeed, the means by which

innovation itself is fostered changes. Lastly, these kinds of infrastructural changes

are typically not the result of systematic planning or central control. They emerge

in unpredictable ways from the mix of existing circumstances.

These general questions of representational infrastructures, may seem far removed

from the apparently more mundane task of learning mathematics; but the central

challenge of mathematical learning for educators is surely the design of learnable

systems. Such systems depend for their learnability (or lack of it) on the

particularities and interconnectedness of the representational systems in which

they are expressed. These, as we stated at the outset, are undergoing rapid change.

In order to understand these changes more fully, we wish to examine the longer-

term sweep of representational infrastructure change across several important

examples in order to provide a long-term perspective on the content choices and
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trends embodied in school mathematics. And as we shall see, mathematics enjoys

a particularly interesting role in this story.

The Earliest Quantitative Notation Systems

Most representational infrastructures develop in response to the social needs of

one or more groups, where the needs might be very broad and involve the whole

society, as was the case with the development of writing, or they may serve a

smaller subgroup such as mathematicians and scientists, who needed to express

and reason with general quantitative relationships and hence developed what we

now know as the algebraic system. Indeed, the earliest, pre-phonetic written

language co-evolved with mathematics in the cradle of western civilization some

6–8 thousand years ago to record physical quantities through a gradual process of

semiotically abstracting the physical referents into systems of schematic

representations of those referents (Kaput & Shaffer, in press).

The systematicity initially took the form of separating inscriptions denoting

object-types from inscriptions denoting their properties (identity of owner, size,

color, vintage, etc.), and, gradually over hundreds of years, the numerosity

property. Inscriptions denoting numerosity gradually condensed, from a repetition

model where four instances of an item were represented by four tokens for that

type of item, then four tallies adjacent to a single token for that type of item, to a

modifier model employing symbols denoting numerosity, that is, a symbol for

“four,” replacing the tally marks. This last step required the co-evolution of the

concept of counting number, mainly through the work of those specialists who

were the scribes responsible for producing the records. There is little indication

that such early numbering systems were used for computation other than

incrementing and decrementing.

Distinct from, but certainly not unrelated to the notational system, was the

physical system in which it was instantiated: primarily clay, which afforded the

means to impress tokens of objects (sheepskins, jars of olive oil, etc.) first onto

clay envelopes containing the tokens and then tablets, when the tokens came to be

regarded as redundant (Schmandt-Besserat 1978, 1992). The medium was

temporarily inscriptable, and then hardened to provide stability that enabled the
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inscriptions to act as records, indeed, somewhat mobile records. In this way,

evolutionary limitations of human biological memory were finally overcome

through the use of “extracortical” records (Donald, 1991).

The Evolution of Notation Systems Supporting Quantitative
Computation

We now examine the evolution of a second representational infrastructure. In the

several millennia that followed, and across several different societies where

urbanization and commerce developed, various number systems evolved to

support ever better and more compact ways of expressing quantities and abstract

numbers, particularly to express the large numbers required for calendar purposes

and for tracking quantities in the city-states and empires—Babylonian, Egyptian,

and eventually Roman. Importantly for our purposes, while they typically

embodied grouping structures, they tended not to be rigorously positional and

tended not to be fully hierarchical. The most tightly structured and efficient

system was the Babylonian (semi) sexigesimal (base 60) system. It employed a

mix of additive and multiplicative methods of representing numbers as there were

no common symbols for smaller numbers, (as with the Hindu-Arabic numerals). It

did, however, use position to denote powers of 60. Hence a number would be

represented as an array of symbols for units, tens, and powers of 60 (using

cuneiform, or wedge-based signs). As is widely appreciated, this system

supported a rich practical mathematics that served many aspects of society for

more than two millennia, although with the lack of a zero for a placeholder (in its

later years a placeholder system did develop), it did not support efficient

multiplication or division. Further, the lack of compact numerals for the first nine

numbers meant that it was considerably less efficient for writing numbers in the

hundreds and thousands than our current system, and even less efficient,

relatively, for larger numbers. Of course, the contemporaneous writing systems

were likewise ideographic and difficult to learn and hence the tool of

specialists—scribes (Walker, 1987). The later Roman system was less structured

and less multiplicative in its organization, and hence even less efficient for

multiplication and division.
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How did these systems survive in supporting the quite extensive calculational

tasks they were called upon to serve? The answer is clear: only a very small

minority of the respective societies were needed to do such calculations, and these

scribes were specially trained in the art of manipulating the symbol systems. In

this respect, the role of the physical medium (e.g. the marks made on clay and so

on) were crucial in supporting the prodigious amounts of human processing

power that would otherwise be engaged. While the structural features of the

notational system were not particularly tuned to calculational ends (anyone who

has ever tried to do long division with Roman numerals will testify to this) the

combination of the physical instantiation of symbols, together with human

processing power on the part of a few, was sufficient to sustain powerful empires

over hundreds and thousands of years. Furthermore, the existing static record-

keeping capacity could be used to record methods, results (especially in the case

of the Babylonians, who made wide use of tables of all sorts to record quantitative

information and mathematical relationships, make astronomical predictions, and

so on), and even instructional materials by which expertise could be extended

across generations (Kline 1953).

Another big representational transformation had roots several centuries earlier, in

the 8th to 11th centuries, preceding Fibonacci’s importation of the Hindu-Arabic

numerals into Europe in the early 13th century. More efficient methods of

computing developed, based on systematic use of specially-marked physical

“counting tables” on which physical tokens were manipulated. In this way, the

technology of the counting tables externalized some of the knowledge and

transformational skill which would otherwise have existed only in the minds of

individuals: the physical instantiation of these skills directly supported, not only

the limited processing capacity of human brains, but the affordance of the

notational system for achieving results.

These results of computations were recorded first in Roman numerals, but then

gradually more often in Hindu-Arabic numerals. These methods are typically

referred to as “abacus” style computations based on the Greek word for slab, on

which the procedures took place. At the same time, and then more intensely

during the 13 th century, new and more efficient ways of computing evolved based
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on manipulation of the readily inscriptable Hindu-Arabic numerals in the

positional and hierarchical number system that Fibonacci had described. These

were referred to as “algorithm” style computations based on a Latinized version

of the name Abu Ja’far Muhammed ibn Musa al-Khwarizmi, a mathematician

from Baghdad who wrote an arithmetic book describing some of the early

computational schemes using Hindu-Arabic numerals.

It is instructive to see the prominence of commercial needs of the day in his

description of algebra:

... what is easiest and most useful in arithmetic, such as

men constantly require in cases of inheritance, legacies,

partition, lawsuits, and trade, and in all their dealings

with one another, or where the measuring of lands, the

digging of canals, geometrical computations, and other

objects of various sorts and kinds are concerned.

F Rosen (trs.), Muhammad ibn Musa Al-Khwarizmi :

Algebra (London, 1831)

Clearly, al-Khwarizmi conceived algebra as a way of solving pressing practical

problems of the Islamic Empire. Similarly, in response to burgeoning commerce

in the 14th and 15th centuries in northern Italy and elsewhere, the algorithms were

refined and gradually displaced the abacus methods, although not without

controversy2. The efficiency payoff of a positional and exponentially hierarchical

system was enormous because it allowed a person to compute simply by writing

and rewriting the small set of ten symbols according to certain rules (the

algorithms) and, on the basis of the quantitative coherence of the notation system,

be assured of a correct answer based on the rules alone. Computational skill

became encoded in syntactically defined rules on a symbol system.

                                                

2 In fact there was some resistance to writing abacus results in Hindu-Arabic numerals on the

grounds that they could be easily altered, e.g., changing a “6” to an “8” by adding a mark to the

top part of the “6,” or a “9” could be made from a “1” and so on.
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The algorithmic methods were put forward (anonymously) in what amounts to the

first arithmetic text, the Treviso, named after the city outside Venice where it was

published in 1478, less than 40 years after Gutenberg’s introduction of moveable

type (itself a response to the pressing need to find a way of salvaging religious

texts which contained mistakes, without destroying the entire work). These

algorithms, exploiting the physical positional structure of the notation system and

the paper medium, are essentially the same forms for addition, subtraction,

multiplication and division that have dominated school mathematics to the 20th

century. In the book (translated and appearing in Swetz, 1987) they were

illustrated within the contexts of commerce and currency exchange, and were

passed along from generation to generation as a body of practical knowledge in

what amounted to professional schools for “reckoners”—the accountants of the

time.

Interestingly, the Treviso was written in the vernacular, as opposed to Latin, and

thus was one of the first printed mathematics books intended to serve a “non-

academic” public—or at least that public who needed to know these special

techniques. The new representational infrastructure helped democratize access to

what had previously been the province of a small intellectual elite, since up to that

time numerical computations beyond addition and simple subtraction were a

scholarly pursuit undertaken at the universities. Recall the oft-cited anecdote from

Dantzig (1954):

It appears that a [German] merchant had a son whom he desired to

give an advanced commercial education. He appealed to a prominent

professor of a university for advice as to where he should send his son.

The reply was that if the mathematical curriculum of the young man

was to be confined to adding and subtracting, he perhaps could obtain

the instruction in a German university; but the art of multiplying and

dividing, he continued, had been greatly developed in Italy, which, in

his opinion, was the only country where such advanced instruction

could be obtained.
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Indeed, the question of inclusion of these same algorithms in school mathematics,

to support basic shopkeeper arithmetic, currency exchange, and other simple

arithmetic tasks, continued to be the subject of vigorous debate through the 20th

century and even into the 21st. Of course, in the intervening five centuries, the

practical role of arithmetic has broadened with the increasing complexity of

modern life, especially in the workplace, and it has assumed a cornerstone

position in school mathematics. Indeed, the skills of arithmetic are seen, in almost

all developed societies, not only as essential for the efficient operation of

economies, but as an entitlement of an educated individual. We shall return to this

issue below, but for the moment, it is worth delineating two separate skills that

arithmetic teaching in the twentieth century came to serve: the one concerned with

obtaining answers quickly and correctly, and the other as a backdrop against

which the process of executing algorithms could be performed, number

relationships learned, and manipulative methods practiced. While execution was

the preserve of the human mind, this distinction hardly arose, but as we shall see

it becomes more central in this computational era.

The Evolution of Algebraic Notations

We now examine a third example of a representational infrastructure. Algebra

began in the times of the Egyptians in the second millennium BC, as evidenced in

the famous Ahmes Papyrus, by using available writing systems to express

quantitative relationships, especially to “solve equations”—to determine unknown

quantities based on given quantitative relationships. This is the so-called

“rhetorical algebra” that continued to Diophantus’ time in the 4th century of the

Christian era, when the process of abbreviation of natural language statements and

the introduction of special symbols began to accelerate. Algebra written in this

way is normally referred to as “syncopated algebra.” By today’s standards,

achievement to that point was primitive, with little generalization of methods

across cases and little theory to support generalization. Indeed, approximately two

millennia produced solutions to what we would now refer to as linear, quadratic,

and certain cubic equations (of course they were not written as equations), often

based in contrived and stylized concrete situations, and not much more. Indeed, it

appears that, in the absence of a systematic symbol system, the stylized situation
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provided a kind of semi-abstract conceptual scaffolding for the quantitative

reasoning that constituted the methods. The accumulated skill was encoded in

illustrative examples rather than in syntactically defined rules for actions on a

symbol system.

Then, in a slow, millennium-long struggle involving the co-evolution of

underlying concepts of number (see especially Klein, 1968), algebraic symbolism

gradually freed itself from written language in order to support techniques that

increasingly depended on working with the symbols themselves according to

systematic rules of substitution and transformation—rather than the quantitative

relations for which they stood. Just as the symbolism for numbers evolved to yield

support for rule-based operations on inscriptions taken to denote numbers, so the

symbolism for quantitative relations likewise developed. Bruner (1973) refers to

this as an “opaque” use of the symbols rather than “transparent” use: the former

implies attention to actions on the inscriptions, while the latter implies that actions

are guided by reasoning about the entities to which the inscriptions are assumed to

refer.

In effect, algebraic symbolism gradually freed itself from the (highly functional)

ambiguities and general expressiveness of natural language. The newly developed

and systematic semiotic structures embodied hard-won understandings of general

mathematical relations and, by the 17th century, functions. This symbol system

also embodied forms of generality, (particularly through the use of symbols for

variables), and the dual use of operation symbols (so symbols such as “+” could

be applied to symbols for variables ranging over sets of numbers as well as for the

numbers themselves). Hence general statements of quantitative relations could be

expressed efficiently.

However, the more important aspects of the new representational infrastructure

are those that involved the rules, the syntax, for guiding operations on these

expressions of generality. These emerged in the 17th century as the symbolism

became more compact and standardized in the intense attempts to mathematize

the natural world that reached such triumphant fruition in the “calculus” of

Newton and Leibniz. In the words of Bochner (1966):
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Not only was this algebra a characteristic of the century, but a certain

feature of it, namely the “symbolization” inherent to it, became a

profoundly distinguishing mark of all mathematics to follow. ...

(T)his feature of algebra has become an attribute of the essence of

mathematics, of its foundations, and of the nature of its abstractness

on the uppermost level of the “ideation” à la Plato (pp. 38–39).

Beyond this first aspect of algebra, its role in the expression of abstraction and

generalization, he also pointed out the critical new ingredient:

... that various types of ‘equalities,’ ‘equivalences,’ ‘congruences,’

‘homeomorphisms,’ etc. between objects of mathematics must be

discerned, and strictly adhered to. However this is not enough. In

mathematics there is the second requirement that one must know how

to ‘operate’ with mathematical objects, that is, to produce new objects

out of given ones (p. 313).

Indeed, Mahoney (1980) points out that this development made possible an

entirely new mode of thought “characterized by the use of an operant symbolism,

that is, a symbolism that not only abbreviates words but represents the workings

of the combinatory operations, or, in other words, a symbolism with which one

operates” (p. 142).

This second aspect of algebra, the syntactically guided transformation of symbols

while holding in abeyance their potential interpretation, flowered in the 18th

century, particularly in the hands of such masters as Euler. At the same time, this

referral of interpretation led to the further separation of algebraic and natural

language writing and hence the separation from the phonetic aspects of writing

that connect with the many powerful narrative and acoustic memory features of

natural language. Indeed, as is well known from such examples as the “Students-

Professors Problem” (Clement, 1982; Kaput & Sims-Knight, 1983), the algebraic

system can be in partial conflict with features of natural language.

Thus, over an extremely long period, a new special-purpose operational

representational infrastructure was developed that reached beyond the operational
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infrastructure for arithmetic. However, in contrast with the arithmetic system, it

was built by and for a small and specialized intellectual elite in whose hands,

quite literally, it extended the power of human understanding far beyond what

was imaginable without it. In the hands of an extremely small community over the

next 250 years, the expressive and operational aspects of this narrowly-scoped

representational infrastructure made possible a science and technology that

irreversibly changed the world, as well as of our views of it and of our place in it.

Calculus and the Idea of “a Calculus”

Our last example of representational infrastructure evolution involves Calculus.

The notion of an automatic computing machine to carry out numeric calculations,

as we have seen, is very old. Leibniz, however, wanted to go further and be able

to compute logical consequences of assumptions through an appropriate symbol

system. He understood, perhaps more clearly than anyone before him, not only

that choice of notation system was critically important to what one could achieve

with the system, but also and more specifically, that a well-chosen syntax for

operations on the notation system could support ease of symbolic computation.

Hence, as reflected in correspondence with contemporaries, especially Huygens

(Edwards, 1979), he was very careful in the design of a notation to represent his

findings regarding how a function was related to what we now call its derivative

or integral. His goal was that his new notation would support a “calculus” for

computing such new functions in the general sense that the word “calculus” was

used in those times3. His nicely compact and mnemonic notation also allowed a

direct expression of the relations between derivatives and integrals, relations

expressed in the Fundamental Theorem of Calculus.

Indeed, diSessa (2000), reminds us that Leibniz’ notation, which dominated the

way calculus was used more than 300 years later, was at least as important as the

insights that it encoded. After all, these ideas were also created by Newton. But

                                                

3 As a way of computing (derived, of course, from the Roman word for pebble, since pebbles were

used for computation, ironically, because the Roman numeral system was so inefficient).
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Newton’s brilliant insights and methods have come to be learned and used for

generations in Leibniz’ notation, and the reluctance of his British followers to

adopt Leibniz’ notation was likely a significant factor in the century-long lag of

British mathematics behind that of the Continent (Boyer, 1959; Edwards, 1979).

diSessa points out that Leibniz’ notation became “infrastructural (p. 11)—in the

same sense that we have been using the phrase “representational infrastructure” in

this chapter. Incidentally, it is pointed out by diSessa that the achievement of

infrastructural status for Leibniz’s notation was in no small part due to the fact

that it was easier to teach.

So once again, as in the case of arithmetic and then algebra, the development of a

compact, efficient notation system turned out to be a critical factor in what

followed.

Computational Media and the Separation of outcome from Process

The foregoing provides a brief overview of the structural changes in the semiotics

of mathematical expression over time, leading to the emergence of complex and

strongly supportive systems which sustain and expand the possibilities of human

calculation and manipulation—at least for the few who were inducted into its use.

We will argue that there are two key developments in a computational era: first

that human participation is no longer required for the execution of a process and

second, access to the symbolism is no longer restricted to a privileged minority.

In order to elaborate on the points, we will need just a little more historical

perspective, before we focus our attention on the digital media themselves. As

recounted in Shaffer & Kaput (1999), the development of computational media

required three elements: the existence of discrete notations without fixed

reference fields (that is, the idea of formalism), the creation of syntactically

coherent rules of transformation on such notations, and a physical medium in

which to instantiate these transformations outside the human cortex and apart

from human physical actions. Hence in the 20th century a profound shift has

occurred, from operable notation systems requiring a suitably trained human

partner for execution of the operations, to systems that run autonomously of a

human partner.
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On Changing Representational Infrastructures

Our starting point is the assertion that the extent to which a medium becomes

infrastructural is the extent to which it passes as unnoticed. This is fine, until one

needs to be aware of the structural facets of the medium, in order to learn either

how to express oneself within it, or understand what might be expressed within it

(or both). From the point of view of the learner, this can be confusing. For

example, Leibniz’ notation is a 2nd order notation built on top of algebra because it

guides actions on expressions built in algebraic notation (a fact that confuses

many students even today who do not distinguish between “taking the derivative”

and simplifying the result—after all, they are both ways of transforming strings of

symbols into new strings of symbols). Since the ideas, constructions and

techniques of Calculus are written in the language of algebra, knowledge of

Calculus has historically depended on knowledge of algebra. This in turn means

that this knowledge has historically been the province of a small intellectual

elite—despite the fact that the key underlying ideas concerning rates,

accumulations, and the relations between them are far more general than the

narrow algebraic representations of them in most curricula (Kaput, 1994).

Representational forms are often transparent to the expert. Musicians do not

‘think’ about musical notation as they play an instrument, any more than expert

mathematicians have to (except when they are constructing a new notation or

definition). But when one is learning or constructing something new, one needs to

think explicitly about the representational system itself—we require, in other

words, that the representational system is simultaneously transparent and opaque.

This ‘coordinated transparency’ (Hancock, 1995) represents a synthesis of

meaning and mechanism, a situation (desirable but not always easily achievable)

in which fluency with and within the medium can temporarily be replaced by a

conscious awareness of its (usually invisible) internal structures. Grammar

checking (human rather than computational) is a good example.

As noted above, the development of algebraic representational forms which

generated fluency among the cognoscenti, took place within the semiotic

constraints of static, inert media, and largely without regard to learnability

outside the community of intellectual elite involved. Over the past several

Nikoleta
Underline
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centuries this community’s intellectual tools, methods and products (the

foundations of the science and technology upon which we depend) were not only

institutionalized as the structure and core content of school and university

curricula in most industrialized countries and taken as the epistemological essence

of mathematics (Bochner, 1966; Mahoney, 1980), but in most countries became

the yardstick against which academic success was defined. Thus the close

relationship of knowledge and its culturally-shared preferred representations,

precisely the coupling that has produced such a powerful synergy for developing

scientific ideas since the Renaissance, became an obstacle to learning, and even a

barrier which prevented whole classes from accessing the ideas which the

representations were so finely tuned to express.

While the execution of processes was necessarily subsumed within the individual

mind, decoupling knowledge from its preferred representation was difficult.4 But

as we have seen, this situation has now changed. The emergence of a virtual

culture has had far-reaching implications for what it is that people need to know,

as well as how they can express that knowledge. We may, in fact, have to

reevaluate what knowledge itself is, now that knowledge and the means to act on

it can reside inside circuits that are fired by electrons rather than neurons. Key

among these implications is the recognition that algorithms, and their instantiation

in computer programs, are now a ubiquitous form of knowledge, and that

they—or at least the outcomes of their execution—are fundamental to the

working and recreational experiences of all individuals within the developed

world.

Many individuals and social groups have suffered a massive deskilling of their

working lives precisely because of this devolution of executive power to the

machine. But not all. Indeed many occupations (or at least parts of them) have

                                                

4 But not impossible: indeed, a considerable amount of mathematical education research has tried

to study—and encourage—the ways in which people form conceptual images of mathematical

ideas independently of—and sometimes in conflict with—the preferred algebraic or formal

representation.
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becoming more challenging and enriching because of the introduction of digital

technologies. What is common, however, is that the relationship between

computational systems and individuals has become much more intimate than was

ever envisaged. In part, this is a simple maturation of the technology—three of the

more obvious and striking aspects are its miniaturization, the power of graphical

displays and, of course, its connectivity (in 1982, the idea of communication as a

central functionality of computers was the preserve of only a few experts in

universities).

These technical facets of computer systems and the ways we use them, have

reshaped our relationship with them. On the one hand, they have reduced even

further the necessity for ‘users’ to make sense of how computational systems do

what they do. The intimacy that, for example, a painter has with her brush—or

perhaps much more relevant analogy, the relationship between a musician and her

instrument—is rarely (currently) possible with the computer, despite the close

proximity and personal relationship which many people have with their machines,

especially hand-held ones.

An accepted (but, as we shall see, fundamentally false) pedagogical corollary is

that since mathematics is now performed by the computer, there is no need for

‘users’ to know any mathematics themselves (for a well-publicized but

disappointing set of arguments propounding this belief, see Brammall and White,

2000). Like most conventional wisdoms, this argument contains a grain (but only

a grain) of truth. Purely computational abilities beyond the trivial, for example,

are increasingly anachronistic. Low level programming is increasingly redundant

for users, as the tools available for configuring systems become increasingly high-

level. Taken together, one might be forgiven for believing that the devolution of

executive power to the computer removes the necessity for human expression

altogether (or at least, for all but those who program them).

In one sense this is true. Precomputational infrastructures certainly make it

necessary that individuals pay attention to calculation: and generations of

'successful' students can testify to the fact that calculational ability can be

sufficient (e.g. for passing examinations) even at the expense of understanding
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how the symbols work. In fact, quite generally, the need to think creatively about

representational forms arises less obviously in settings where things work

transparently (cogs, levers, pulleys have their own phenomenology). Now the

devolution of processing power to the computer has generated the need for a new

intellectual infrastructure; people need to represent for themselves how things

work, what makes systems fail and what would be needed to correct them. This

kind of knowledge is increasingly important; it is knowledge that potentially

unlocks the mathematics that is wrapped invisibly into the systems we now use,

and yet understand so little of. Increasingly, we need—to put it bluntly—to make

sense of mechanism.

Yet the need to make sense of mechanism is not fundamentally new. Indeed, the

syntax of the numerical, algebraic and calculus representation systems can be

regarded as mechanisms, and the bulk of mathematics schooling has been devoted

to teaching and learning that form of mechanism. However, there is a further

complexity to the present situation. It is true that fewer and fewer people need to

program computers, at least in the usual sense of the term ‘program’. But more

and more people need to know something of how the machines and the systems

(social, professional, financial, physical) operate—not just the few who are

responsible for building them. We cannot adduce evidence for this assertion here

(for a convincing selection of papers on this theme, see Hoyles, Morgan &

Woodhouse, 1999).

We share a vision of a mathematics curriculum that assumes mathematical

understanding should be built around the construction and interpretation of

quantitative and semi-quantitative models, where students explore mathematical

technologies and analyze methods in contexts that show how they can be used and

why they work in the way they do. We can also refer the interested reader to a

series of papers, which have studied the mathematics of professional practices in a

number of areas (aviation pilots, nurses, bank employees, and most recently,

engineers). (See, for example, Noss and Hoyles (1996), Pozzi, Noss, and Hoyles

(1998), Noss, Pozzi, and Hoyles (1999), Hoyles, Noss, and Pozzi S. (2001).
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We restrict ourselves to two observations. First, at critical moments of their

professional practice, people try to make sense out of complex situations by

building mental models, or, if they do not have access to the raw material of

model-building, by circumventing them. Circumvention (ignoring inconvenient

data) can be a dangerous strategy. To gain access to underlying models, to make

them visible, is to focus on the quantities that matter, and on the relationships

among them. In order to gain such a sense of mechanism, one needs interpretative

knowledge about, for example, graphs, about parameters and variables, about

continuity, and a broad range of representational abilities that are different from,

but no less important than, calculational and manipulational skills we have

inculcated in young people until now.

The second observation concerns the complexity of interaction between

professional and mathematical practices. It is true that more and more

professional practice devolves calculational expertise to the computer. But it is

not true (or if it is, it is dangerously so) that the computers can be left to make

judgment (one of our examples concerns a life-and-death decision on a pediatric

ward—see Noss, 1998). Judgment in the presence of intimate computational

power requires new kinds of representational knowledge: distinguishing between

what the computer is and is not doing; what can be easily modified in the model

and what cannot; what has been incorporated into the model and why; and what

kinds of model have been instantiated. As examples, we may consider the

difference between parallel and serial computational models, how different kinds

of knowledge are encoded with them, and what kinds of interpretation they allow;

and, not least, the communicative value of representational knowledge, in terms of

sharing knowledge with others who interact with other parts of the same system,

or other, linked systems.

The new element in the situation is, of course, that the systems that control our

lives are now built on mathematical principles. This is a major—perhaps the

major—property of the virtual culture. The devolution of execution to the

machines means more than this: not only do the machines now do mathematical

execution, it implies that any consequential appreciation of what the machines do

must itself be based on mathematical principles. If an individual does not have the
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means formally to relate his or her intellectual model of the mathematical

principles with those inside the machine, then appreciation of the model must

necessarily be partial.

Of course, this does not mean that such models need to be expressed in the same

languages as used inside the machine. Quite the reverse. It means that we have to

find ways to help people to capture the dynamics of the system, so they can

follow the consequences of particular actions while maintaining a realistic sense

of the structures of relationships between them. We now turn to some examples

which begin to address the issues raised, and then show how students can be

stimulated to explore mathematical mechanisms and in so doing rebuild the

synergy of knowledge and representation.5

A New Representational Infrastructure for Cartesian Graphs Coupled
with Embedded Derivatives and Integrals Linked to Phenomena

Over the past two decades, the character string approaches to the mathematics of

change and variation have been extended to include and to link to tabular and

graphical approaches, yielding the “the Big Three” representation systems,

algebra, tables, and graphs frequently advocated in mathematics education.

However, almost all functions in school mathematics continue to be defined and

identified as character-string algebraic objects, especially as closed form

definitions of functions—built into the technology via keyboard hardware. In the

SimCalc Project, we have identified five representational innovations, all of

which require a computational medium for their realization but which do not

require the algebraic infrastructure for their use and comprehension. The aim in

introducing these facilities is to put phenomena at the center of the representation

                                                

5 The former provides a putative enhancement of experiential phenomena, and thus a richer base

for intuitive knowledge. This is hardly unique to digital technologies: when mechanized transport

was first invented, people for the first time, found it ‘obvious’ that centrifugal force was

something to do with changing direction (the fact that it feels like centrifugal force rather than

centripetal acceleration just shows that intuitions don’t always give the whole picture!).
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experience, so children can see the results, in observable phenomena, of their

actions on representations of the phenomenon, and vice versa. These are:

♦ The definition and direct manipulation of graphically defined and editable

functions, especially piecewise-defined functions, with or without algebraic

descriptions. Included is “snap-to-grid” control, whereby the allowed values

can be constrained as needed (to integers, for example) allowing a new

balance between complexity and computational tractability. This facility

means that students can model interesting change situations while avoiding

degeneracy of constant rates of change, and postponing (but not ignoring!) the

messiness and conceptual challenges of continuous change.

♦ Direct, hot-linked connections between functions and their derivatives or

integrals. Traditionally, connections between descriptions of rates of change

(e.g., velocities) and accumulations (positions) are mediated through the

algebraic symbol system as sequential procedures employing derivative and

integral formulas, which is the main reason that Calculus sits at the end of a

long sequence of curricular prerequisites

♦ Direct connections between these new representations and simulations to

allow immediate construction and execution of variation phenomena.

♦ Importing physical motion-data (via MBL/CBL) and reenacting it in

simulations, and exporting function-generated data to define LBM (Line

Becomes Motion) to drive physical phenomena (including cars on tracks).

We also employ hybrid physical/cybernetic devices embodying dynamical

systems, whose inner workings are visible and open to examination and control,

and whose quantitative behavior is symbolized with real-time graphs generated on

a computer screen.

We will risk real danger by providing grayscale snapshots of colorful, dynamic,

interactive lessons, especially by superimposing multiple problems and solutions

on the same graphs. We will provide some basic activities to illustrate concretely,

albeit thinly, how this new representational infrastructure can work. First note that
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the various graphs appearing in the figures below are created piecewise simply by

clicking, dragging and/or stretching segments, although in other activities it is

also possible to specify the graphs algebraically, or by importing data, or by

(partially constrained) drawing. (A similar set appears in Kaput, 2000.)

Variation, Area, Average, Approximation, Slope, Continuity, and Smoothness for

Jerky Elevators: Suppose we are given a staircase velocity function (see Figure 1),

which drives the motion of the left-hand elevator to its left (these are color-coded

in the software). The following kinds of lesson snippets are usually preceded by

context-rich work that involves moving elevators around to accomplish various

tasks, such as delivering pizzas to various floors, etc.

(1) How will the elevator move if driven by Plot #1 (the piece-wise downward

staircase velocity function in Figure 1), and where will it end its trip? (It

starts on the 0th floor.)

(2) Does there exist a constant velocity function for the 2nd elevator (just to the

right of the 1 st) that gets to the same final floor at exactly the same time as

the 1st? If so, build it. (Plot #2—the one-piece constant velocity function)

(3) Make a linear velocity function for the 3rd elevator that provides a

smoothly decreasing velocity approximating the motion of the 1st

(staircase) elevator. Before running it, predict how far apart the 1st and 3rd

elevators will finish their trips. (Plot #3—the linear decreasing velocity

function)

(4) For the staircase velocity function (Plot #1) in Figure 1, what is the

corresponding position graph, and what is its slope at 3.5 seconds? (Plot

#4—the piece-wise increasing position function)

(5) While the average-velocity function for the staircase has exactly the same

area under it as the staircase, what is an easy way to draw its

corresponding position graph? (Plot #5—the linear increasing position

function)
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(6) What is the key difference between the position graph for the staircase and

the position graph of the 3rd velocity function? (Plot #6—the quadratic

position function)

Figure 1. Lesson-snippets.

Question (1) involves interpreting variation via a variable velocity function whose

integral, to determine the final position, can be determined with whole number

arithmetic. Such step-wise varying rate-functions are intensively used in SimCalc

instructional materials to build the notion of area as accumulation. Such functions

also raise issues of continuity, acceleration, and physical realizability of

simulations that are explored in depth using MBL and LBM technologies. Of

course they also occur in economic situations with great frequency—tax rates, pay

rates, telephone rates, etc.

Question (2) introduces the key idea of average, which, via our ability to use

snap-to-grid to control the available number system also enables examination of

when the average “exists” and whether it must inevitably equal the value of the

varying function at some point in its domain. In traditional instruction, most

students only experience continuously changing rates and hence never really
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confront the issue since the average always hits the continuously varying

intermediate values.

Question (3) points up the reversal of the usual relationship between step

functions and continuous ones (usually, the former are used to approximate the

latter), and highlights the integration of fraction and signed number arithmetic in

the MCV. Position graphs and linearly changing velocity are developed over

many lessons in many ways, including the differences between physical motion

(including force-acceleration issues), and economic functions, so the glimpse here

may be misleading in its abruptness.

Question (4) introduces the idea of slope as height of velocity segment, and is part

of an extensive study of slope as rate of change.

Question (5) illustrates the power of a “2nd opinion” since the position description

of the average velocity motion is merely a straight line joining the start and end of

the position graph. These two ways of describing change-phenomena are treated

as complementary throughout SimCalc instructional materials.

Question (6) deals with smoothness, and is part of an extended introduction to

quadratic functions as accumulations of linear ones that weaves back to issues of

acceleration and physical motion, and their physical realizability. An

accompanying set of investigations examine non-physical motion, e.g., price or

other money rates that change discontinuously such as tax rates, phone rates,

royalty rates, etc.

Activities Linking Velocity & Position Descriptions of Motion in the Context of

Signed Numbers and Areas: The earlier parts of the next lesson, from which these

snippets are taken, involve students in creating graphs to move Clown and Dude

around, switching places at constant speed, coming together and then returning to

their original positions, and so on. (Only step-wise constant velocities have been

made available here, although other function types could have been used, and, in

fact are used in SimCalc materials.)
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Challenge: Clown and Dude are to switch their positions so that they pass by

each other to the left of the midpoint between them and stop at exactly the

same time. First, after marking off a line about 12 feet long, you and a

classmate walk their motions! Now make a position graph for Clown and a

velocity graph for Dude so that they can do this.

The student needs to construct graphs similar to Plot #1 (on the position graph)

and Plot #2 (on the velocity graph) in Figure 2. We have also shown the

respective corresponding velocity and position graphs, Plots #3 and #4, which can

be revealed and discussed later. Note that velocity and position graphs are hot-

linked, so changes in the height of a velocity segment are immediately reflected in

the slope of the corresponding position segment, and vice-versa. Importantly, the

activity requires interpretations of positive and negative velocities, and hence

provides meaningful work with signed number arithmetic, as well as the

representation of simultaneous position—paving the way for simultaneous

equations. Later activities involve a story-line where Dude is patrolling the area

(periodic motion) and Clown gets “interested” in Dude, follows him at a fixed

distance, “harasses” him, & eventually, they dance—where the student, of course,

is responsible for making the dance.
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Figure 2. You, and then Clown & Dude, cross to the left of the center

Extensions to MBL and LBM: The above representational innovations can be

combined with the principals illustrated by Questions #5 & #6, mentioned

earlier, to create opportunities to study the Math of Change & Variation. For

example, we can import and display motion data in the classic Micro Computer

Based Lab or Calculator Based Lab (MBL/CBL) ways, but in addition, we can

now attach this physically-based data to the objects in a simulation and replay

their motion, compare it with motions defined synthetically, so that a student

can perform and import a physical motion that can lead an entire group of

dancers whose motions are created synthetically. Further, a student can define

a motion using a mathematical function (position or velocity) in any of the

ways one might care to define a function and then “run” it physically in a

linked LBM miniature car on a track. The forms of learning supported by these

kinds of devices and activities, especially how they relate to one another and to

physical intuition, are under active investigation, and the study of this richly

populated space of interrelated inscriptions, and the new connections among
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physical, kinesthetic, cybernetic and notational phenomena, will continue for

years to come—and will be instantiated in increasingly networked contexts

(Kaput, 2000; Nemirovsky, Kaput, & Roschelle, 1998).

The result of using these systems, particularly in combination and over an

extended period of time, is a qualitative transformation in the mathematical

experience of change and variation. However, short term, in less than a minute,

using either rate or totals descriptions of the quantities involved, or even a mix

of them, a student as early as 6th–8th grade can construct and examine a variety

of interesting change phenomena that relate to direct experience of daily

phenomena. And in more extended investigations, newly intimate connections

among physical, linguistic, kinesthetic, cognitive, and symbolic experience

become possible.

♦ Preliminary Reflections on the New Representational Infrastructure

A key aspect of the above representational infrastructure is revealed when we

compare how the knowledge and skill embodied in the system relates to the

knowledge and skill embodied in the usual curriculum leading to and including

Calculus. At the heart of the Calculus is the Fundamental Theorem of Calculus,

the bidirectional relationship between the rate of change and the accumulation of

varying quantities. This core relationship is built into the infrastructure at the

ground level. Recall that the hierarchical placeholder representation system for

arithmetic and the rules built upon it embody an enormously efficient structure for

representing quantities (especially when extended to rational numbers) which in

turn supports an extremely efficient calculation system for use by those who

master the rules built upon it. This is true of the highly refined algebraic system as

well. Similarly, this new system embodies the enormously powerful idea of the

Fundamental Theorem in an extremely efficient graphically manipulable structure

that confers upon those who master it an extraordinary ability to relate rates of

change of variable quantities and their accumulation. In a deep sense, the new

system amounts to the same kind of consolidation into a manipulable

representational infrastructure an important set of achievements of the prior

culture that occurred with arithmetic and algebra.
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Developing a sense of mechanism

In this, penultimate section, we focus on a corpus of work which is emerging from

the Playground project (see www.ioe.ac.uk/playground). Like the SimCalc

examples above, our interest focuses on new ways to express mathematical

relationships, bringing children into contact with mathematized descriptions of

their realities at ages much younger than we would normally countenance with

static technologies. Unlike the SimCalc example, which typically involves

students beginning at ages 11-12 (although it is also used at the university level),

we are trying to explore what might be gained by very young children (aged

between 4 and 8) building their own executable representations of

relationships—in effect, we are redefining the idea of programming.

The rationale for programming has a long and distinguished history, stretching

back some thirty years or more (see, for example, Feurzeig, 1969). We have no

intention of rehearsing the argument here (see Noss & Hoyles, 1996 for a history

and rationale for programming in the context of mathematical learning). What is

new is that programming has begun to change its character, having been

expressed in various forms—as text (still the dominant form) as icons, and now,

as we shall see, as animated code. We believe that this last change of expressive

form marks a significant shift in what is possible for young children.

Our central focus is to open possibilities for children to design, construct and

share their own video games. We are designing computational environments for

children to build and modify games using the formalization of rules as creative

tools in the constructive process. We call these environments ‘Playgrounds’. We

are working with two new and evolving programming systems, ToonTalk—an

animated programming language (Kahn, 1999)—and Imagine a concurrent

object-oriented variant of the Logo programming language (Blaho et al, 1999:

note, at this point, the language was named “OpenLogo”). Each of our two

Playgrounds represents a layer we have built on top of these platforms,

incorporating elements that allow multiple entry points into the ideas of

formalizing rules. In this paper we concentrate on our work with ToonTalk.
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Our objective has a strong epistemological rationale. The challenge is to find

ways for very young children to use non-textual means to express and explore the

knowledge which underpins the genre of video games: what it means for objects

to collide, how 2-dimensional motion of an object (or a mouse, or a joystick) can

be thought about, the construction of animation, and the hundreds of little pieces

of knowledge which go to make up the workings of video games. We see this as

an instantiation of a much broader class of knowledge, which, quite simply, we

call developing a sense of mechanism.

Our choice of video games builds on established work by, for example, Kafai

(1995) in that it has chosen a domain which seems to be naturally attractive for

many children. We have no ulterior pedagogical or epistemological motive: we do

not ask the children with whom we work to design games for any purpose other

than their own amusement. Testing our intuitive belief that games themselves

form a sufficiently-rich backdrop against which to explore mathematical

relationships forms part of our studies with children, and forms a central element

of our design brief.

ToonTalk is a world in which animations themselves are the source code of the

language; that is, programs are created by directly manipulating animated

characters, and programming is by example (see Cypher, 1993). A full description

can be found in Kahn, 1999). ToonTalk is constructed around the metaphor of a

city, populated by houses (in which programs or methods are built), trucks are

dispatched to build new houses (new processes spawned), robots are trained (for

new programs or methods), and birds fly to their nests (message passing). A

helicopters allows the user to navigate around the city, or to hover above it

watching trucks move around (as an aside, and to emphasize that ToonTalk is a

Turing equivalent language, it is both instructive and surprising to watch a city

recursively grow and shrink as a quicksort is being executed).

Robots are trained to carry out tasks inside houses (defining the body of a

method). A user trains a robot by entering its “thought bubble” and controlling it

to work on concrete values (see Figure 3). The robot remembers the actions in a

manner that can easily be abstracted to apply in other contexts by later removing
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detail from the robot’s thought bubble (see Figure 4). Message passing between

methods (robots) is represented as a bird taking a message to her nest, and

changing a tuple is achieved by taking items out of compartments of a box and

dropping in new ones.

Figure 3. A robot is trained to add one value to another
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Figure 4. Relaxing constraints by removing details.

It is quite difficult in text and static graphics to convey the feel of programming

with ToonTalk. The metaphor of moving around in a city is pervasive, and the

sense of object-oriented programming in an environment by direct manipulation,

is a novel experience for those of us who believed that symbolic formalism of

programming made interaction on a textual level inevitable.

The nature of the platform is paramount. Our choice of ToonTalk implied that any

layers we built above it had to mesh with the metaphors of the platform. Our aim

was to design a permeable abstraction barrier between ready made pieces of open

code with multi-modal representations (we call these ‘behaviors’: some examples

will be given below) and the ToonTalk language itself lying underneath. This

stands in marked contrast to some modern programming languages such as Java

and C++ which by default enforce these abstraction barriers and do not allow

programmers using predefined objects to discover their underlying

implementation. But the crucial dimension, which dictated the design of the

playground layer, was that of openness. At any level of granularity, an element

should be decomposable into smaller pieces down to the lowest level of the
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animated ToonTalk programming language. Indeed as we began to see children

decomposing the games and sharing their parts across sites and countries it

became clearer that we were working in a design paradigm akin to component

software architecture (CSA). While some (but not all) of the component

community are concerned to a greater or lesser extent with the adaptability of

their components, for us it central. We are concerned with designing software for

investigating mechanism; individual components therefore need to have intuitive

windows to their workings and a means for modification. (For more information

on the role of behaviors in playgrounds, see Hoyles, Noss and Adamson,

submitted paper).

In the design of an environment where the opening of mechanisms is the primary

objective, it is not only desirable that pieces are easily opened but that they afford

access to their workings through an intuitive interface. In traditional CSA, the

user interacts with the interface model provided by the architecture but not the

implementation of individual components. In our open component model, we

require both. Users should be able to work at several levels simultaneously; a)

composing components where necessary as wholes relying solely on the interface

for component manipulation and b) opening a component to reveal the source

code whenever modification or inspection of the component is desired. To

facilitate this, we need to ensure that components interoperate at a technical level

but also that manipulation at interface and implementation levels is made intuitive

by a high degree of semantic interoperability. In other words, if users are to use,

share and manipulate components in the construction of larger pieces of software,

consistency of interface and multiple ways of accessing the functionality become

important criteria in their design.

♦ An Illustration: The Space Behaviors Game

We start with a game based loosely on the space invaders genre of shooting

games. The player controls a space ship that can fire white bullets in four

directions. If a white bullet hits an invader, it blows up, but if an invader hits the

spaceship, the spaceship is destroyed. The aim is to destroy the three ‘invaders’

before they hit you!



31

Figure 5. The original ‘space behaviors’ game.

The two boys in our case study wanted to change the appearance of the spaceship.

Working at the surface level of changing the appearance of objects is relatively

simple. Objects and behaviors are interoperable, so they simply had to select their

new object and transfer all the behaviors across by placing the old object on the

back of the new one. They chose a Pokémon character called Pikachu as their new

representation of the space ship. Pikachu is associated with lightning so the boys

wanted it to shoot bolts of lightning rather than white bullets. Turning over

Pikachu to reveal its robots and behaviors, they could immediately identify the

firing mechanism through its visual representation (see Figure 6). The specific

representation here is quite subtle, as the actual white bullets are not immediately

visible. A modular visually represented architecture is required to give the clues

for further inspection (see Figure 7)

The orange

space invader

The green

space invader

The blue space

invader

The spaceship

The white bullets fired

by the spaceship



32

Figure 6. The behaviors on the spaceship.

At each level, the level below is visible. In Figure 7, the firing behavior is shown

is successive stages of exposure.

Figure 7a. The complete firing mechanism

with four firing components.

Figure 7b. The firing up component only.
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Figure 8. Successive revelation of the ToonTalk code

Taking apart the behavior down to the lowest level reveals the white bullet. We

are hardly in a position to claim that the boys fully understood the meaning of all

the inputs to the firing robot or how the robot actually worked, but they could

simply home in the bullet. They knew that its functionality had to be taken over

by lightning. The boys removed the bullet picture and put it on the back of a

lightning picture and did this four times—one for each direction. Having modified

the input to these four behaviors in this way and put them all back together on the

back of Pikachu, the boys were ready to try out their modified game.



34

Figure 9. The game after changes made at the surface level and input level.

But would it work? The boys thought so, but, as it turned out, they were wrong.

The changes to the spaceship worked as expected and Pikachu could fire lightning

in four directions, but now the boys noticed that the ‘invaders’ appeared to be

indestructible. They were not sure why and guessed that it was because the

destroy behavior had somehow gone missing from the back of the invaders. So

they decided to check this out and took off the blue ‘invader’ from the scene and

turned it over to investigate its behaviors.

Pikachu now fires

out lightnings

Pikachu replaces

the spaceship.
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Figure 10. The back of the blue invader.

They recognized the relevant behavior by first noticing the explosion icon and the

written rule, “I disappear when I touch a white bullet”. They removed this

behavior from the back of the invader so they could study the next level and look

at the actual code (see Fig. 11). They would now ‘see’ the concrete representation

of the condition for the robot, i.e. that it would perform its action (destroy object)

when hit by a white bullet.
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Figure 11: The exposed ToonTalk code showing the white bullet condition.

Seeing how the rule worked helped the boys debug what had gone wrong: the

lightning picture had to appear in the place of the white bullet. Again, without

having to appreciate how all the pieces of the mechanism worked, the boys could

make this replacement and so achieve their rule change (see Figures 11 and 12).

The white bullet condition in

the robot’s thought bubble.
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Figure 12. The code after changing the condition to lightning

It might be that some readers will be wondering what this has to do with

mathematics. Our reply is that it is about rules expressed formally and their

implications, and that—as we have argued earlier—this is a central aspect of what

it means to think mathematically in the computational era. At a more detailed

level, this claim breaks down into two subclaims. First, it is about children

learning that there are rules that have implications for what is modeled and what

is observed and these rules are something over which they have some control.

Second, these rules embody and are built upon a previously-constructed

representational infrastructure that offers extraordinary power to those who

master it. Over the two years of the Playground project we have collected

numerous examples of children taking apart a scene and exploring how it worked,

why it worked and how it could be changed. Often, a teacher was involved: in

fact, a key aspect of the claim is that such an approach was more teachable than

other programming environments, as the things that mattered are visible and

easily manipulable and the granularity of the pieces customized by the teacher for

The condition now

changed to lightning



38

the learner. As with the SimCalc infrastructure, increasing learnability and

expressive power for all students are fundamental goals.

Conclusions

In this chapter we have attempted to show how in the evolution of

representational infrastructures and associated artifacts and technologies have,

over long periods of time, gradually externalized aspects of knowledge and

transformational skill that previously existed only in the minds and practices of a

privileged elite. We have sought to show how changes in representational

infrastructure are intimately linked to learnability and the democratization of

intellectual power. We have illustrated this point by reference to the development

of number and algebraic notation, calculus, SimCalc graphs and ideas of open,

manipulable mechanism. In each example the physical instantiation of these

notations directly enlarged the limited processing power of human minds as well

as affording experience of new domains of knowledge to solve new problems

among populations who previously had no access to that knowledge and

intellectual capacity. Computational media have provided a next step in the

evolution of powerful, expressive systems for mathematics.

We have endeavored to illustrate our major contention: that mathematicians and

mathematics educators need to turn their attention to defining these newly

empowering representational infrastructures for children. In the past, beginning

with writing itself (Kaput, 2000) more powerful representational infrastructures

have been a source of intellectual and mathematical power, but at a cost of

learnability and hence access. Hence they tended to remain the province of an

elite minority who were inducted into their use. New computational media offer

the opportunity to create democratizing infrastructures which will redefine school

knowledge (for a fuller discussion of these issues, see Noss and Hoyles, 1996).

Viewed optimistically, these will exploit the processing power of the new media

while at the same time ensuring that students maintain an intuitive feel of the

central knowledge elements at work and how they relate to each other. Yet if the

power and potential of computers is to be exploited in school mathematics,

attention must be paid to this level of representational infrastructure. A
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companion need is to develop sustained curricula and modes of teaching and

learning that incorporate and exploit these new representations and that encourage

students to develop their meta-representational abilities (diSessa, 2000) so they

become fluent with new systems of expression as they arise, to create and modify

such systems themselves, and to make wise choices among them as these systems

proliferate in the coming decades.

Thus we wish to challenge our community to focus attention on the design and

use of representational infrastructures that intimately link to students’ personal

experience. This is a necessary step if we are to move away from a 19th century

school mathematics concentrating on isolated skills based on static

representational systems in a tightly-defined curriculum (with only a minority

able to engage in independent problem solving). Our contention is that knowledge

produced in static, inert media can become learnable in new ways, and new

representational infrastructures and systems of knowledge become possible,

serving both the learnability of previously constructed knowledge and the

construction of new knowledge.
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