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INTRODUCTION 

In the past three decades, technological environments have been created that offer 
novel ways of carrying out geometrical activities in mathematics education. This 
chapter reviews research investigating the impact of these various technologies on 
the learning and teaching of geometry. The chapter begins by providing a general 
overview of the various theoretical approaches, on which such research is based. 
The second section focuses on specific technologies. The third section synthesizes 
results from research and organizes them within four categories: The nature of 
geometry mediated by technology, technology and the learning of geometry, the 
design of tasks, the use of geometry technology by teachers. The final section 
concludes the chapter by linking the results of past research to perspectives for the 
future. This review of research is based on research that developed in the 
International Group for the Psychology of Mathematics Education (PME) and/or 
was published in international journals on mathematics education or on computers 
in mathematics education. 

GENERAL THEORETICAL ISSUES 

This section addresses the theoretical approaches underlying various research 
studies on technology for the teaching and learning of geometry. It attempts to 
explain the development of technology by analyzing the background of this 
development: The epistemological nature of geometry, the problems with which 
the teaching of geometry was faced in the past decades, and the cognitive processes 
involved in geometry problem solving. We present various theoretical approaches 
that have been used in research for analyzing the impact of technology on learning 
and the interactions between students and technology. More recently, researchers 
have paid greater attention to the integration of technology into teaching and 
consequently different theoretical approaches have been employed. 
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Epistemological perspective 

The teaching of geometry can be understood only if geometry is considered as an 
activity with at least two aspects: On the one hand, it is the study of concepts and 
logical relations, which historically came from an extensive analysis of space, but 
later became a field of investigation and discussion of axiomatic foundations 
detached from any spatial experience. On the other hand, geometry refers to spatial 
concepts, procedures and relations used within society for various purposes, such 
as architecture, building, structuring settlements, villages, cities, designing 
packages of goods for storage and other purposes and activities (Strässer, 1996). 
Since ancient Greece, the dual nature of geometry has often been claimed and 
discussed: Was and is geometry dealing with what our senses perceive or with 
intellectual ideas? It was also stressed even by one of the founders of an axiomatic 
approach of geometry, namely Hilbert who claimed the coexistence of two 
tendencies, one toward abstraction and another toward intuitive understanding 
(Hilbert & Cohn Vossen, 1952, in the Preface). 

Teaching and learning geometry 

The teaching of geometry has always been an object of discussion in the past forty 
years and susceptible to dramatic changes with respect to the place given to the 
duality of empirical/theoretical. Particularly in several countries, it was deeply 
affected by the so-called reform of Modern Mathematics that mainly emphasized 
the formal part of geometry while avoiding recourse to diagrams. The argument 
was that geometry was especially difficult for students because of the use of 
diagrams; the combination of empirical evidence provided by diagrams and the 
teachers’ demand to resort only to deductive thinking confused students. 
 The empirical/theoretical duality led to a problematic role of geometry in 
compulsory education curricula. Some educational researchers nevertheless viewed 
the origin of the problem in the absence of exploiting graphical representational 
registers associated with Geometry as part of the repertoire for expressing 
mathematical meanings, a shortcoming especially significant in geometry where 
they could be uniquely relevant. Freudenthal (1973) was one of the first researchers 
to raise the problem. He was followed by a growing number of voices, which pled 
for reintroducing diagrams in geometry teaching that eventually took place in the 
end of the seventies and beginning of the eighties. Even with this important role of 
graphical representations in the teaching of geometry, a conceptual analysis of this 
role was not yet carried out at that time. It is only at the end of the eighties and 
beginning of the nineties, that several theoretical approaches merged. 
 Duval (1988, 1998, 2000) distinguished three kinds of cognitive processes 
involved in a geometric activity: Visualization processes, construction processes by 
tools, and reasoning. Each of these processes fulfils a specific epistemological 
function but they are closely connected and “their synergy is cognitively necessary 
for proficiency in geometry” (Duval, 1998, p. 38). Duval also analyzed the role of 
visualization in the solution processes of a geometry problem and distinguished 
several approaches to a diagram in geometry: An immediate perceptual approach 
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that may be an obstacle for the geometric interpretation of the diagram, an 
operative approach that is used for identifying sub-configurations useful for 
solving the problem and a discursive approach that is related to the statement 
describing the givens of the problem. 
Another psychological approach that was almost simultaneously developed by 
Fischbein (1993; see also Mariotti, 1995), considers geometrical concepts as made 
of two components that cannot be dissociated: The figural one and the conceptual 
one, similar to two sides of a coin. This intrinsic link between figural and 
conceptual is not at all spontaneous and must be grounded in a long construction 
process by students. 
 The teaching of geometry is based on the use of two registers, the register of 
diagrams and the register of language. Language is a means of describing 
geometrical objects and relations using specific terminology while diagrams in 2D 
geometry play an ambiguous role. On the one hand they refer to theoretical objects 
whereas on the other hand they offer graphical –spatial properties, which can give 
rise to a perceptual activity from the individual (Parzysz, 1988; Strässer, 1991; 
Laborde, 1998). This ambiguous role of diagrams is completely implicit in the 
traditional teaching of geometry in which theoretical properties are assimilated into 
graphical ones (Berthelot & Salin, 1998). It is as if it were possible to read the 
properties of the theoretical object, which is represented by the diagram, by only 
looking at the diagram. One of the consequences is that students often assume that 
it is possible to construct a geometrical diagram using only visual cues, or to 
deduce a property empirically by checking on the diagram, as shown by several 
researchers (Chazan, 1993). When students are asked by the teacher to construct a 
diagram, the teacher expects them to use theoretical knowledge whereas students 
very often stay at the graphical level and try to satisfy only visual constraints. 
 The construction of the dual nature of geometrical concepts may be ignored by 
the teaching of geometry. This type of teaching obscures the distinction between 
the spatial and theoretical. Contrasting with this teaching practice, on the basis of 
their investigations, researchers and educators stressed the importance of the role 
of visualization in a geometry activity: Solving a geometry problem goes beyond 
the visual recognition of spatial relations. It is commonly assumed that the teaching 
of geometry should contribute to the learning of: (1) The distinction between 
spatial graphical relations and theoretical geometrical relations, (2) The movement 
between theoretical objects and their spatial representation, (3) The recognition of 
geometrical relations in a diagram, (4) The ability to imagine all possible diagrams 
attached to a geometrical object. The second kind of ability is particularly critical 
in the solving processes of students faced with geometry problems requiring 
exploration in which a cycle of interpreting, conjecturing, and proving may take 
place because of this flexibility between spatial representations and theoretical 
knowledge. Such assumptions about the teaching and learning of geometry have 
led some researchers to focus on the role of graphical representations provided by 
computer environments. 
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Use and role of technology for learning geometry 

The contribution of technology in the teaching and learning of geometry is now 
mainly perceived as strongly linked with dynamically manipulable interactive 
graphical representations. However, the first appearance of digital media for the 
learning of Geometry, the Logo-based Turtle Geometry (Abelson & diSessa, 1981) 
came at a time when this functionality was not yet available. In the absence of 
dynamic manipulation, the graphical representational register was not given central 
attention. The main priority was the newly realized potential affordances of 
dynamic text editing, programming, and constructionism for mathematical 
meaning making (Papert, 1980; Noss & Hoyles, 1996). Graphical representations 
were part of the picture but appeared to be third in line of importance, after 
symbolic and turtle–associated, body-syntonic representations (Papert, 1980). In 
the mid-nineties, Papert and his team put forward the notion of constructionism in 
mathematical learning to signify that special aspect of constructivist learning which 
involved the activity of dynamic construction (Kafai & Resnick, 1996). 
 In the last thirty years, research has been mainly devoted to two kinds of 
technology providing graphical representations: 
– Logo driven Turtle Geometry (T.G.) and its intrinsically linked philosophy of 

micro-world, 
– Dynamic geometry environments (“DGE” –with varying and generally growing 

degrees of interactivity and direct manipulation). 
 Both kinds of technology are attached to a theoretical perspective on learning. 
Logo T.G. and its decedents were clearly answering to a precise view of the nature 
of learning attached to the idea of a micro-world. The main underlying principle 
was to provide programmability as a means for expressing and exploring 
mathematical ideas and the joint use of three representational registers: Symbolic 
programming, graphics, and a notional connection with body movement. Taking 
advantage of the huge progress of the graphic interface of computers, dynamic 
geometry environments arrived later on the scene; the first DGEs appeared in the 
eighties. The main underlying learning principle was to provide a family of 
diagrams as representing a set of geometrical objects and relations instead of a 
single static diagram. One of the motivations was to help students see the general 
aspects of a static diagram. 
 A constructivist perspective in a broad sense is generally adopted in research on 
the role and use of technology in the teaching of geometry: Learning is not taken as 
a simple process of the incorporation of prescribed and given knowledge, but rather 
as the individual’s (re)construction of geometry. The interactions taking place 
between the learner and the machine are viewed as impacting this reconstruction. 
However, it is important to mention that additional theoretical perspectives have 
been used and/or developed taking into account: The structure of knowledge to be 
(re)constructed, and the environment of the learner –in particular, the social 
interactions in which learning takes place as well as institutional constraints 
coming from the institution “responsible” for learning (e.g. the school embedded 
within the larger school system). 
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 Growing attention to the epistemology of the mathematical content whose 
learning is at stake has also developed over time. In the first years of technology in 
school learning was mainly considered as emerging only from the interactions 
between the student and the machine, rather than between the students and 
appropriate tasks to be done with the machine. The focus moved onto the teaching 
environment, and in particular to the role of the teacher and the social interactions 
he/she could organize in the classroom as well as the social norms developing in 
the context of the classroom. The following paragraphs present the general theories 
underpinning this move. 
 According to an important hypothesis generally shared among researchers in 
particular in PME, when interacting with technology for solving mathematical 
tasks, students’ actions and strategies are shaped by technology. Noss and Hoyles 
proposed the Using, Discriminating, Generalizing and Synthesizing (U.D.G.S.) 
model to describe the conceptualization process of students interacting with 
technology (Hoyles & Noss, 1987). Students start by using the technology and 
progressively discriminate the mathematical relations and concepts underpinning 
the behaviour of the tools. This is followed by generalizations, which are local to 
the situations from which they emerged. Finally they move on to synthesizing their 
generalizations with different contexts and representational registers outside the 
specific technology used. Noss and Hoyles introduced the concept of “situated 
abstraction” to account for the constructions of the learner. Situated abstractions 
are invariants that are shaped by the specific situation in which the learner forges 
them. Although these invariants are situated, they simultaneously contain the seed 
of the general that could be valid in other contexts. 
 The instrumental perspective, developed independently by psychologists in the 
mid-nineties (Vérillon & Rabardel, 1995) shares the same idea of the role of the 
tool on the constructs of the user. It was also recently adopted by researchers in 
mathematics education to understand the strategies used by students when 
beginning to use software programs for solving mathematical tasks. A tool is not 
transparent. It affects the way the user solves the tasks and thinks. The instrument, 
according to the terms of Vérillon and Rabardel, denotes this psychological 
construct of the user: 

The instrument does not exist in itself, it becomes an instrument when the 
subject has been able to appropriate it for himself and has integrated it with 
his activity. 

 The subject develops procedures and rules of actions when using the artefact 
and so constructs instrumentation schemes and simultaneously a representation of 
the properties of the tool (according to what Vérillon and Rabardel call 
instrumentalisation schemes). The first studies about instrumentation processes 
addressed the use of the CAS by students (Guin & Trouche, 1999). They were 
mainly focusing on the difficulties of students using technology and on the detours 
they sometimes follow in order to perform an activity with technology (Artigue, 
2002). Today, research pays more attention to the mathematical knowledge 
involved in instrumental knowledge. Because technology used in mathematics 
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embarks mathematics, mathematical knowledge is intrinsically linked to the 
knowledge about how to use the tool. Developing instrumental knowledge may 
also involve developing mathematical knowledge (Artigue, 2002; Lagrange, 1999; 
Laborde, 2003). 
 Two theoretical approaches were developed according to which learning with 
the use of technology develops. In the first one, tools, and in particular 
technologies, offer opportunities for learning. The subject is faced with constraints 
imposed by the artefact and new possibilities of actions, to identify, to understand 
and with which to cope. In terms of the theory of didactic situations (Brousseau, 
1997), the tool is part of the “milieu”. In the second approach, following a 
Vygotskian perspective, operations carried out with technology may be subject to 
an internalization process with the guidance of the teacher and interpersonal 
exchanges within the class in the form of collective discussions (Bartolini Bussi, 
1998; Mariotti & Bartolini Bussi, 1998). The interventions of the teacher are 
essential for making possible the construction of a correspondence between 
mathematical knowledge and knowledge constructed from the interactions with the 
computer environment. According to the instrumentation theory, the meaning 
constructed by the student when using the artifact may differ from what is intended 
by the teacher. Consequently, the interventions of the teacher are critical to let the 
meanings evolve towards culturally shared meanings of mathematical knowledge. 
 The page limitation of a chapter does not offer the opportunity of doing justice 
to all theoretical approaches underpinning research studies. In particular, the Van 
Hiele theory dedicated to geometry learning was not mentioned although it has 
been used in a small number of studies, essentially as a tool for assessing the 
impact of technology on the possible progress in the hierarchy of levels according 
to which students conceptualize geometrical figures. 

RESEARCH ON SPECIFIC TECHNOLOGIES 

This section emphasizes aspects of research related to specific features of various 
technologies. Two main kinds of technology are distinguished: The Logo-driven 
Turtle Geometry technology and related microworlds and the Dynamic Geometry 
environments. Students’ learning of particular geometry topics, use of diagrams in 
problem solving, proving, and justifying were investigated by taking into account 
the role of technology in those processes. 

Research on logo-driven turtle geometry 

Logo is a programming language intended to bring to the field of mathematics 
education the philosophy of programming to express meaning and to tinker with 
difficult problems which characterized its older sister, the LISP AI language 
(Sinclair & Moon, 1991). This intention was part of a broader, powerful and 
forerunning idea at the time, to make this kind of activity with technology 
accessible to young children. It originated from Papert in the late 1960s and 
became well known in the mathematics education community as a result of his 
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‘Mindstorms’ book (Papert, 1980). From a mathematical learning theory point of 
view, Papert’s main intention was to move beyond Piaget’s paradigm, which 
focused on the shortcomings of children’s thinking in relation to adult formal 
thinking, by asking the question of what mathematical thinking children can do in 
situations where they can explore with mathematically rich computational tools 
such as Logo. 
 The connection between Logo and Geometry is through a specific subset of the 
former, which was termed “Turtle Geometry” (T.G.). T.G. is a computational 
environment where the user gives commands to a computational entity called ‘the 
turtle’ which has a position and a heading. Position changes create a linear 
graphical output on the screen and the turtle icon changes its position and heading 
as an immediate result of such commands. Turtle commands are Logo primitives 
and consequently, Logo programs can be written which drive the turtle to construct 
geometrical figures. Abelson and diSessa (1981) gave the mathematical 
foundations of Turtle Geometry and agreed with Papert that its geometrical nature 
was based on a different geometrical system to those usually associated with the 
learning of geometry in school curricula, i.e. the Euclidean or analytic (e.g. 
Cartesian): T.G. is based on differential (intrinsic) Geometry. Most T.G. related 
research, however, is based on the figural products created by the turtle, on the 
connections students make between the formal programming/mathematical code 
and the graphical output and on how children link experiences of their body 
movements to the behaviour of the turtle, termed ‘body-syntonicity’ by Papert in 
1980. 
 Various Logo T.G. have been developed across the world and one can say that 
there are presently more than 100 such digital environments. The ones which gave 
rise to investigations in mathematics education including those in the PME group, 
listed alphabetically, include: Boxer (a programmable computational medium with 
the Logo-like language ‘Boxer’ including T.G., diSessa & Lay, 1986), Elica Logo 
(including 3d T.G., Boychev, 1999), Imagine Logo (Kalas, 2001), Microworlds Pro 
(Silverman, 1999), NetLogo (a parallel Logo programming language with a very 
large number of turtles, Wilensky, 1999), E-slate-based Turtleworlds (based on 
USB Logo but including dynamic variation tools offering dynamic manipulation of 
procedure variable values, Kynigos, 2001) and USB Berkeley Logo (Harvey, 
2005). 

Logo based micro-worlds. A central aspect of learning with Logo is the activity 
of mathematical exploration with micro-worlds. The term was originally borrowed 
from artificial intelligence (A.I.). Its meaning evolved within the mathematics 
education community and was shaped by Papert. He described it as a self-
contained world where students can “learn to transfer habits of exploration from 
their personal lives to the formal domain of scientific construction” (Papert, 1980, 
p. 177). 
 Micro-worlds are computational environments embedding a coherent set of 
mathematical concepts and relations designed so that with an appropriate set of 
tasks and pedagogy, students can engage in exploration and construction activity 
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rich in the generation of mathematical meaning. T.G. itself has been considered as 
a micro-world within Logo but later research involved learning with the use of 
micro-worlds embedding a much narrower set of mathematical concepts, escorted 
by more focused theories on learning and pedagogy (Noss & Hoyles, 1996; 
Edwards, 1988; Clements & Sarama, 1997; Sarama & Clements, 2002). 
 In PME research, a number of studies involved the design and use of 
geometrical micro-worlds. Hoyles and Noss (1987) used a parallelogram micro-
world in developing their U.D.G.S. theory. This consisted of permutations of 
specially designed Logo procedures with independent variable values for turns and 
position changes, so that students would investigate relations between angular and 
linear features so that the procedure would construct a parallelogram. Their focus 
was on the process of students’ formalization of intuitive descriptions (Hoyles & 
Noss, 1988). Edwards built a transformation geometry micro-world addressing the 
issue of the representational aspect of micro-worlds (Edwards, 1988, 1990) and 
then later used a micro-world generating star figures to study the process by which 
the students discriminated the underlying mathematical properties (Edwards, 
1994). Kynigos took a more transversal approach by building a series of micro-
worlds to study how students make links between Differential (intrinsic), Euclidean 
and Cartesian systems (Kynigos, 1988, 1989, 1991). Hoyles, Noss and Sutherland 
(1989) studied how students come up against pre-conceptions of additive or 
doubling strategies when working with a ration and proportion micro-world and 
were then joined by Sutherland in evaluating what students gained with respect to 
the strategies they applied in their investigations (Hoyles, Noss & Sutherland, 
1991). 

Learning processes at the core of research. T.G. appeared at a time when the 
‘problem solving’ movement was thriving, at least in the U.S., and its exploratory 
nature along with the somewhat obscure connection with school curricula 
facilitated the views that T.G. was a tool for building learning strategies. In 
particular, learning how to learn. The geometrical concepts were there, but in the 
background of many researchers’ attention. 
 In PME research, there was thus an emphasis on generative, focused theory-
building methodologies. Many researchers perceived learning with Logo as a new 
kind of learning process, with the consequence that the paradigm of qualitative, 
illuminative research methods (i.e. adopting the role of ‘naïve observer’ for the 
researcher) seemed appropriate (Hoyles & Noss, 1987). The main research 
emphasis seemed to be ‘what kind of learning goes on’ rather than ‘what kind of 
geometrical learning’. The focus was on student learning processes and some 
aspects of this process emerging from Logo geometry environments were recorded. 
Such aspects included: 
– 12 year old students’ use of a drawing cognitive scheme and their resistance to 

dissociate from the procedural visible aspects of their Logo work (Hillel, Kieran 
& Gurtner, 1989); 
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– 12 year old students’ initial use of an intrinsic schema and their progressive 
dissociation to a composite schema including the use of absolute positioning on 
the plane (Kynigos, 1989); 

– Students’ process of using geometrical ideas, then discriminating the ones that 
matter for the task at hand, followed by generalization and then synthesis with 
other contexts (U.D.G.S., Hoyles & Noss, 1987); 

– Students’ situated abstractions, i.e. abstractions derived directly from the 
specific context of defining and changing geometrical figures and objects 
(Hoyles & Noss, 1988 –the construct was rigorously elaborated later in Noss & 
Hoyles, 1996). 

 In other studies, the focus was on the nature of interactions between students 
and the computer that included the use of: Multiple representations, feedback, and 
editing and constructing (Hoyles et al., 1991; Edwards, 1990; Kynigos & 
Psycharis, 2003). Also, in a number of studies the focus was on the issues related 
to the design of mathematically focused computational environments (micro-
worlds) and discussion on their affordances (Hoyles et al., 1989; Edwards, 1988; 
Kynigos & Psycharis, 2003; Sacristán, 2001). Finally, there were some studies 
adopting a different strand which at the time was considered as a more mainstream 
approach to research, using standardized tests or experimental methods. In two 
cases for example, the focus was on using the Van Hiele levels to test students’ 
abilities to identify geometrical figures (Olive & Lankenau, 1987; Scally, 1987). 
For a much larger study in this framework, see also Clements & Battista (1992). 
 Research on geometrical thinking with T.G. was highly influenced by two 
phenomena which that were related to the time in which the technology appeared. 
One was the power of the newly-born idea of deep structural access of ordinary 
people (even children) to a technology which was up to that point only used by 
computer scientists (see diSessa, 2000; Eisenberg, 1995 for an elaboration of the 
idea in later times, and Kynigos, 2004; diSessa, 1997 for this idea applied to 
teachers). This led to an emphasis on the learning process which was perceived as 
new in nature and was enhanced by the problem solving movement which focused 
on learning strategies rather than mathematical content at hand. It also led to a 
connection between research on geometrical learning with technology and the 
itinerary of Logo related learning research in general which in itself has been 
subject to big changes in different parts of the world (Kynigos, 2002; Papert, 
2002). The second influence came from the constructivist learning movement, 
which in the mathematics education community appeared in the early eighties and 
initially adopted a rather individualist perspective on learning. Research on 
geometrical learning with T.G. did address geometrical concepts, communication 
between students, the design of tasks and the influence of the teacher. However, 
although these aspects were part of several research studies including PME 
research, they were not in focus, nor were they part of a more general research 
attention to these issues which came later along with the advent of DGE. 
technology. 
 Moreover, T.G. research focused on the idea of meaningful formalism (diSessa, 
2000; Kynigos & Psycharis, 2003; Hoyles & Noss, 1988). With respect to 
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mathematical formalism there is a strong view that, although it may be a powerful 
representational register for mathematicians, it can be rather meaningless for 
students (Dubinsky, 2000), i.e. an imposed code to tackle meaningless routines. 
Furthermore, the advent of DGE has provided access to mathematical ideas by 
allowing the bypassing of formal representation and access to dynamic graphing 
which is particularly important for the learning of geometry. This does not however 
necessarily mean that formalism can only be useful to established mathematicians 
who can convey abstract mathematical meaning through its use. Just as digital 
technology provides means to by-pass formalism, it may also provide the means to 
transform the way formalism is put to use by students. Technologies affording 
programmability and symbolic expression in conjunction with the representational 
repertoires of DGE could thus be considered in geometrical learning research set 
within developing theoretical frameworks (Clements & Sarama, 1995; Clements & 
Battista 1994; Sherin, 2002; Kynigos & Psycharis, 2003; Kynigos & Argyris, 
2004). 

Research on Dynamic Geometry Environments (DGE) 

In DGE, diagrams result from sequences of primitives expressed in geometrical 
terms chosen by the user. When an element of such a diagram is dragged with the 
mouse, the diagram is modified while all the geometric relations used in its 
construction are preserved. These artificial realities can be compared to entities of 
the real world. It is as if diagrams react to the manipulations of the user by 
following the laws of geometry, just like material objects react by following the 
laws of physics. A crucial feature of these realities is their quasi-independence 
from the user once they have been created. When the user drags one element of the 
diagram, it is modified according to the geometry of its constructions rather than 
according to the wishes of the user. This is not the case in paper-and-pencil 
diagrams that can be slightly distorted by students in order to meet their 
expectations. In addition to the drag mode, dynamic geometry environments offer 
specific features such as macro-constructions, trace, and locus, which differ from 
paper and pencil tools (Strässer, 2002). 
 Computer diagrams are also external objects whose behaviour and feedback 
requires interpretation by the students. Geometry is one means, among others, of 
interpreting this behaviour. In the design of DGE, spatial invariants in the moving 
diagrams represent geometrical invariants and these geometry micro-worlds may 
offer a strong link between spatial graphical and geometrical aspects. Inspired by 
the theory of variation in the tradition of phenomenographic research approach, 
Leung (2003) suggests the idea of simultaneity is a promising agent to help bridge 
the gap between experimental and theoretical Mathematics, or the transition 
between the processes of conjecturing and formalizing. Simultaneity is intrinsically 
related to discernment in the theory of variation: 

In DGE, it is possible to define a way of seeing (discernment) in terms of 
actually seeing invariant critical features (a visual demarcation or focusing) 
under a continuous variation of certain components of a configuration. 
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 Various DGEs have been developed across the world and one can say that there 
are presently around 70 such environments. However most of them are clones of 
original DGEs, which are no more than ten. The DGEs which gave rise to 
investigations in mathematics education and especially in the PME group, listed 
alphabetically, include: Cabri-géomètre (Laborde, Baulac & Bellemain, 1988; 
Laborde & Bellemain, 1995; Laborde, 1999), GEOLOG (Holland, 2002), 
Geometer’s Sketchpad (Jackiw, 1991), Geometry Inventor (Brock, Cappo, 
Carmon, Erdös, Kamay, Kaplan & Rosi, 2003), Geometric Supposer (Schwartz, 
Yerushalmy & Shternberg, 1985, 2000), and Thales (Kadunz & Kautschitsch, 
1993). 

Dynamic Geometry Environments and the move from the spatial to the theoretical 
construction tasks 

Several researchers investigated how students solve construction tasks in DGEs. 
Since the construction must be preserved by the drag mode, a construction by eye 
or by manual adjustment fails. Students must do the construction by using 
geometrical objects and relations offered by the environment (perpendicular, 
parallel, circle, ...). It has often been reported that beginners have difficulty in 
constructing diagrams in a DGE that is resistant to the drag mode (i.e. preserves 
relationships upon dragging) and resort to construction strategies by eye (e.g., 
Noss, Hoyles, Healy & Hoelzl, 1994). An indicator of the difficulty students 
experience in relating the spatial to the theoretical is also given by their difficulties 
in interpreting the behaviours of a diagram or of elements of a diagram under the 
drag mode. Soury-Lavergne (1998) shows how the immobility of a point in Cabri-
geometry was not related to its geometrical independence from the dragged points. 
For the student there were two separate worlds, the mechanical world of the 
computer diagram (in our terms, the spatial) and the theoretical (or geometrical). 
 The distinction that we made between spatial-graphical and geometrical is 
expressed in various terms in several papers: For example, in Noss et al. (1994) 
this distinction is called empirical/theoretical. 

The notion of dependency and functional relationship 

Geometrical objects, which are linked by geometrical relationships, can be viewed 
as dependent. The drag mode can be used to externalize this theoretical 
dependency in the diagram. If students have not constructed a relation between the 
spatial-graphical level and the theoretical level, they may not recognize or 
understand the dependency relationship in a DGE. As a consequence, it is not 
surprising that several papers (mainly from the United Kingdom) focus on the 
construction of this notion of dependency by students interacting with a DGE 
(Hoyles, 1998; Jones, 1996; Pratt & Ainley, 1996). Several functionalities in a 
DGE (Jones, 1996) can serve as tools for externalizing the notion of dependency. 
Among these functionalities are the following: The drag mode, in which a 
dependent point cannot be dragged directly; the delete function (when an object is 
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deleted all dependent objects are also deleted and a warning message is displayed), 
and the redefinition of an object (redefining an object in Cabri is changing its 
dependency relations with other objects). 
 All papers mention that the notion of dependency is difficult for students and 
not understood initially. By interacting with a DGE and a teacher students may 
construct this notion of dependency, as expressed by two pairs of pupils in Pratt 
and Ainley (1996): “They are all real shapes because you can move them without 
deforming the shape”, and “The initial objects are the ones on which everything 
else depends”. It is also clear from these papers that such a constructed notion of 
dependency is situated in the context of the DGE. It contains some generality but in 
terms of the context or of the tool (an example of what Hoyles and Noss call 
“situated abstraction”). “So because it depends on it, it moves” (a student in Jones, 
1996). However simply considering that two objects are dependent because one 
moves when the other one moves does not mean that students are able to analyze 
the dependency existing among objects. 

The use of drag mode. Certainly, the drag mode is a key element of DGEs. The 
mathematical counterpart of the drag mode is variation. Experts can immediately 
recognize variation in the dragging of elements of a diagram. But the learners 
being more at a spatial graphical level may just view the drag mode as a mode 
moving and changing the shape of a diagram, or as a mechanical motion of solid 
objects. 
 From the beginning of the use of Dynamic Geometry Environments, it has been 
observed that the students did not spontaneously use the drag mode. Bellemain and 
Capponi (1992) claim that a new contract must be negotiated in the classroom and 
that it takes time for students to enter this contract. They mention that all but one 
pair of students called the teacher to check that their diagram was correct. It has 
also been observed that when students use the drag mode, they do not use it on a 
wide zone but on a small surface as if they were afraid to destroy their construction 
(Rolet, 1996). Sinclair (2003) observed that 12th graders, although initially 
intrigued by the ability to drag points, usually stopped dragging after a short time 
and concentrated on interpreting a static figure. Some of them inadvertently created 
a special case by dragging, then generalized from this static but unsuitable figure. 
Talmon and Yerushalmy (2004) asked ninth grade students and mathematics 
education graduate students to predict the dynamic behaviour of points that were 
part of a geometric construction they had executed using a DGE (The Geometer’s 
Sketchpad 3 and The Geometric Supposer for Windows) according to a given 
procedure, and to explain their predictions. The study reveals that users often grasp 
a reverse hierarchy in which dragging an object affects its parent. The authors 
suggest that this reversed hierarchy may be caused by terms and knowledge built 
into paper-and-pencil geometry. All these observations can be interpreted in terms 
of instrumentation theory: The instrumental genesis of the drag mode is a long 
process, and students construct several schemes of utilization that are influenced by 
former tools and may differ from the expected use by the designers of the 
environments. As already claimed by Strässer (1992), dragging offers a mediation 
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between drawing and figure and can only be used as such at the cost of an explicit 
introduction and analysis organized by the teacher. 

Dragging for conjecturing in an exploratory approach 

Investigations about the way dragging is used by students in solving problems was 
carried out by Italian researchers (Arzarello, Micheletti, Olivero & Robutti, 1998; 
Arzarello, 2000; Olivero, 2002). By means of a very fine analysis of the use of 
dragging, these researchers established a categorization of different kinds of 
dragging, in particular (Olivero, 2002, p.98): 
– Wandering dragging is moving the points on the screen randomly in order to 

discover configurations, 
– Guided dragging is done with the intention to obtain a particular shape, 
– Lieu muet dragging is moving a point with the constraint of keeping a particular 

property satisfied at the initial state, the variable point follows a hidden path 
even without being aware of this. 

 Olivero observed that “wandering dragging” and especially “guided dragging” 
were mainly used by students whereas “lieu muet dragging” was only sometimes 
used and not by all students. An example of “lieu muet dragging” is provided by a 
girl, Tiziana, investigating at what conditions the quadrilateral HKLM built by the 
perpendicular bisectors of the sides of a quadrilateral ABCD is a point (Figure 1). 
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Figure 1. Quadrilateral HKML. 

 Working together, Tiziana and Bartolomeo used wandering dragging to discover 
that HKLM is a point when ABCD is a rectangle (Figure 2). Bartolomeo wanted to 
drag the vertices of ABCD in order to obtain a specific quadrilateral HKLM, a 
parallelogram, a rhombus, a trapezium (guided dragging). Tiziana did not share 
this approach and tried to drag point B of the rectangle in order to keep HKLM as a 
point (an example of lieu muet dragging). 
 Other researchers stressed the key role of dragging in forming a mathematical 
conjecture (Healy, 2000; Hölzl, 2001; Hollebrands, 2002; Leung & Lopez-Real, 
2000) and even proving by contradiction (Leung & Lopez-Real, 2002). Hölzl 
(2001) distinguished two ways of using the mediating functions of the drag mode, 
a test mode on the one hand, and a search mode on the other. All his observations 
led him to conclude that the second use of the drag mode is not a short term affair 
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but results from a “learning process that is characterized by different layers of 
conceptions”. 
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Figure 2. HKML reduced to a point. 

Dragging for adjusting in construction tasks 

As mentioned above, students encounter difficulties in using DGE to construct 
“robust” diagrams, which keep their properties in the drag mode. However it was 
observed that students refined their successive constructions partly made by 
adjusting (see for instance Jones, 1998, pp. 79-82). Students elaborate a sequence 
of successive constructions involving more and more geometrical properties. A 
construction obtained by adjustment enables the students to recognize properties 
and to mobilize them in a further construction giving less room to visual adjusting. 
Constructions done by adjusting are not only part of the solving process but they 
scaffold the path to a definite robust construction. They play an important role in 
moving from a purely visual solution using adjustments to a solution entirely based 
on theoretical solutions but achieved by dragging. These constructions are 
culturally not accepted. Since the time of the Greeks, geometry rejected 
constructions based on motion and restricted the allowed constructions to those 
created with straight edge and compass. Hölzl (1996) also observed what he called 
a “drag and link approach” in students’ strategies for solving construction tasks in 
Cabri. Students relax one condition to do the construction and then drag to satisfy 
the last condition. They obtain a diagram visually correct and want to secure it by 
using the redefinition facility of Cabri. However most of the time it does not work 
because of hidden dependencies. 

Robust versus soft constructions 

Later Healy (2000) introduced the distinction ‘soft versus robust constructions’ to 
give account of constructions that students could change by dragging in order to 
satisfy a condition. She discovered through observation that, rather than 
constructions preserved under dragging, students preferred to investigate 
constructions, “in which one of the chosen properties is purposely constructed by 
eye, allowing the locus of permissible figures to be built up in an empirical manner 
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under the control of the student”. Healy introduced in that paper the distinction 
“soft/robust” and decided to call the latter constructions soft constructions and the 
former ones robust constructions. She illustrated the distinction between robust and 
soft approaches by means of the example of two pairs of students investigating 
whether the conditions, two congruent sides and a congruent angle, determined one 
triangle or not. Students using a soft construction immediately found a point for 
which the third side was not congruent and rejected the condition Side-Side-Angle. 
Healy (2000) comments how the two kinds of construction are complementary: 
The general emerges in the exploration of soft constructions and can be checked by 
using robust constructions as in the case of Tiziana reported above. The cycle ‘soft 
then robust’ seems to be a driving force behind students’ generalization processes. 

Proving and justifying processes. There is a continuing discussion about the 
question whether the “authority” of the computer leads to a greater resistance to 
proving on the part of the learner or if adequately chosen and presented proof 
problems within a computer “milieu” further the need for proofs by the learner (not 
only) of geometry. Among arguments in favour of the use of DGE, the need in 
DGE to carry out explicit construction methods based on theoretical properties 
could lead to consider them as good environments for introducing formal proof. 
Among arguments given about students’ not seeing the need to construct proofs 
due to the authority of the computer, the facility of computer programs to provide 
measurements is often mentioned. The role of measurement in DGE was 
investigated in proving activities (Kakihana, Shimizu & Nohda, 1996; Vadcard, 
1999; Flanagan, 2001; Hollebrands, 2002). Studies generally conclude that 
measurement is not restricted to empirical arguments but is also used in deductive 
arguments. The study of proving processes carried out in DGE shed light on the 
explanatory power of proof. Whereas proof is often considered as a means of 
deciding about the truth of statements, it becomes a means of explanation of 
phenomena observed on the computer screen that are striking or surprising (De 
Villiers, 1991; Chazan, 1993; Hanna, 1998). The greater integration of DGE into 
teaching allows for opportunities to design instructional activities, even sometimes 
over a long-term period aimed at introducing or fostering deductive reasoning and 
proof (Sánchez & Sacristán, 2003). Four papers show the diversity and novelty of 
ways offered by DGE to promote understanding of the need for and the roles of 
proof: 
– Students must give explanations for the fact that a drawing remains a specified 

quadrilateral in the drag mode (Jones, 2000), 
– A teaching experiment is designed to enable students to produce deductive 

justifications of the correctness of their constructions. In a fine analysis the 
growing of the quality of the justifications is documented. The teacher plays a 
critical role in guiding the discussion and ensuring that the justification rules are 
correct (Marrades & Gutiérrez, 2000), 

– By means of an adequate sequence of tasks in a DGE, the need for proof is 
created through a cognitive conflict that generates in students an intellectual 
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curiosity about why an unexpected property is true (Hadas, Hershkowitz & 
Schwarz, 2000) 

– A system of axioms and theorems is constructed by students themselves as a 
system of commands introduced in the software, which has no geometric 
relations implemented at the beginning of the teaching sequence. Proof is the 
means for justifying that the new command will provide the expected outcome 
(Mariotti, 2000). 

 In two papers (Marrades & Gutiérrez, and Mariotti) proof fulfils a twofold role: 
Establishing the validity of a construction for each individual and convincing the 
other students to accept the construction process. 

GENERAL TRENDS OF RESEARCH ON THE USE OF TECHNOLOGY FOR 
TEACHING AND LEARNING GEOMETRY 

Research on the use of technology in geometry learning and teaching is 
multifaceted and based on several theoretical frameworks presented earlier in this 
chapter. The geometrical topics studied by researchers are very heterogeneous. 
Topics include basic traditional Euclidean concepts such as triangles, quadrilaterals 
(in particular parallelograms Hoyles and Noss, 1987, 1988), geometric 
transformations (Edwards, 1988, 1990; Gallou-Dumiel, 1989; Jahn, 2000; 
Bellemain & Capponi, 1992; Hollebrands, 2003), polyhedra (Pallascio, 1987), 
angles (Zack, 1988; Parmentier, 1989; Magina & Hoyles, 1991; Kieran, 1986) 
measurements of areas, and ratio and proportion (Hoyles et al., 1989; Hoyles et al., 
1991). Other topics are less typical like fractals as chaos-game investigation 
(Sereno, 1994), as a context to study infinity (Sacristán, 2001), curvature (Kynigos 
& Psycharis, 2003), inscribed star figures (Edwards, 1994), or in precalculus the 
variations of functions (Arcavi & Hadas, 2000; Falcade, Laborde & Mariotti, 2004; 
Furinghetti, Morselli & Paola, 2005). Some transversal topics were also addressed 
like construction activity and of course proof that is a recurring theme in research. 
Traditional Euclidean concepts have received more attention by researchers than 
other concepts such as geometric transformations. There is a scarcity of research on 
using technology in the teaching and learning of loci (Jahn, 2002) and little on 
students’ use of the macro facility available with many DGE (Jones, 2002; Kadunz, 
2002). Research on multiple linked representations often mentioned in algebra or 
calculus have appeared only recently, even though several DGE offer the 
possibility of constructing graphical representations dynamically linked with 
geometric diagrams. 
 In most countries technology is not yet fully adopted by teachers. As a 
consequence there is very little research that has been done on geometry curricula 
that start from scratch with technology. Pratt and Ainley (1996) investigated how 
primary school children in England without explicit geometric teaching create their 
own geometric constructions with Logo and Cabri. Most research investigated the 
impact of technology on geometry learning for students already introduced to 
geometrical concepts. An example of introducing a formal approach by means of a 
DGE is given in Mariotti (2001) who reports on a long term teaching which taking 
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advantage of the flexibility of Cabri-geometry started the teaching with an empty 
menu and introduced a command only after it was discussed, according to specific 
statements selected as axioms. Then, in the sequence of the activities, the other 
elements of the microworld were added, according to new constructions and in 
parallel with corresponding theorems. Inspired by the multidimensional analysis of 
Lagrange, Artigue, Laborde and Trouche (2003), the research trends are presented 
below according to the following four dimensions: (1) Epistemological and 
semiotic dimension: The nature of geometry mediated by technology, (2) Cognitive 
dimension: Technology supporting learning, (3) Situational dimension: The role of 
the design of the tasks on learning, and (4) Teacher dimension: The role of the 
teacher. 

Nature of geometry mediated by technology 

The objects offered by technology on the computer or calculator screen are 
representations of theoretical objects, which behave by following a computerized 
(hopefully mathematical) model underlying the software program. The 
representation process may introduce some differences between the theoretical 
behaviour and the actual behaviour on the computer screen. Based on the analogy 
with the process of didactical transposition, this transformation of knowledge due 
to its technological mediation is called “computational transposition” (Balacheff, 
1993, in French: “transposition informatique”). For example, drawing a “circle” in 
Logo involves a differential (intrinsic) perception of curve, i.e. the construction of 
a polygon with a large number of sides (more than 30) and a small (e.g. 1 degree) 
constant turtle turn from side to side. Goldenberg and Cuoco (1998) have pointed 
to some differences between Euclidean Geometry and DGE Geometry. For 
example, the behaviour of a point on a segment is a direct result of a design 
decision and is taken as a postulate upon which other DGE theorems are based. 
Such a postulate does not exist in Euclidean Geometry. Do students make 
distinctions between behaviour that results as a consequence of the tool design and 
behaviour that is a direct result of mathematics? Scher (2001) found that students 
in fact did not make those types of distinctions and rather they considered the 
behaviours of each type to be of equal importance. Ways to address this dilemma 
include the careful design of tasks and the milieu that is not restricted to 
technology and a focus on the critical role of the teacher (§3.4). 

Technology and the learning of geometry 

Software environments like Logo T.G. or DGE are considered as favouring 
learning as they require actions from the students to achieve a goal and in the 
process, students “learn by coordinating and reflecting upon the form of their 
interactions” (Hoyles, 1995, p. 202). Hoyles and Noss developed the concept of 
“situated abstraction” to account for the development of the conceptual framework 
developed by students in such interactions with a computer environment: Situated 
abstractions are both general and situated in the environment in which they 
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develop. The development of situated abstractions in the eyes of Noss and Hoyles 
is certainly related to the exploratory nature of the environments. Logo T.G. or 
DGE allow students to explore screen constructions and offer a way of accessing 
the mathematical characteristics of the underlying geometry. In such processes, 
software tools become extensions of the own thinking of the students (Mason, 
1992). The ‘computational scaffolding’ (i.e. the support system available in the 
setting (Hoyles ibid.)) contributes to the process of constructing situated 
abstractions. 

The software tools exploited by the students provide them with the hooks 
they need on which to hang their developing ideas. 

 The examples given above on the use of the drag mode and on soft constructions 
illustrate very well the idea of ‘computational scaffolding’ (see §2.2.2). The 
concept of situated abstraction nevertheless also points to the importance of the 
necessity of a transfer from the computer environment to the world outside the 
computer (Olive & Lankenau, 1987; Zack, 1988; Parmentier, 1989; Scally, 1987). 
 The exploratory nature of these environments amplifies the search processes of 
students solving a task and brings under a spotlight their understandings. Hoyles 
contends that the software constrains students’ actions in novel ways and forces the 
researcher or the teacher to notice a student’s point of view, which could have not 
been noticed in a paper and pencil environment. It offers a “window” on the 
students’ conceptions and learning (Noss & Hoyles, 1996). The constraints and 
new possibilities with regard to paper and pencil technology are often considered 
as shaping the students’ strategies and thus their ways of thinking. They can 
encourage new ways of conceptualizing mathematical ideas. By means of several 
examples, Resnick (1995) shows how Star Logo used with 5000 turtles leads to 
solving classical geometric problems with a statistical approach, giving a new 
meaning to geometrical configurations. 

The design of tasks 

Some researchers also stress that the choice of the tasks in relation to the 
affordances of the technological geometry environment may be critical for the 
development of the students’ understandings. A relevant combination of tools 
made available to students and of problem situations is generally considered as a 
good “milieu” (in the sense of the theory of didactic situations) for the emergence 
of new knowledge (see for example Kordaki & Potari, 2002 about the use of a 
micro-world for area measurement offering several tools and feedback). 
 Arzarello, Olivero, Paola and Robutti (2002) argue that task design and teacher 
moderation play very important parts in encouraging students to press on beyond 
perceptual impression and empirical verification in DGE. Pratt and Davison (2003) 
conclude from an investigation on the use of the Interactive White Board (IWB) 
with a dynamic geometry software that the visual and kinaesthetic affordances of 
the IWB are insufficient to encourage the fusion of conceptual and visual aspects 
of children’s figural concepts when these affordances are embodied in tasks that 
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simply focus on the visual transformation of geometric figures. They claim that the 
kinaesthetic affordances of the IWB need to be embodied in tasks based on the 
utilities of contrasting definitions that draw attention to the conceptual aspect. 
Sinclair (2003) draws the same type of conclusion about the use of pre-constructed 
dynamic diagrams: The design of the accompanying material has the potential to 
support or impede the development of exploration strategies and geometric 
thinking skills. 
 The role of technology in students’ solving processes is multiple: The tools 
offered by the environment allow students’ strategies that are not possible in paper 
and pencil environment, the meaning of the task is provided by the environment, 
the environment offers feedback to the students’ actions. 
 Laborde (2001) distinguishes four kinds of tasks used by teachers with DGE: 
– Tasks in which the environment facilitates the material actions but does not 

change the task for the students, for example, producing figures and measuring 
their elements. 

– Tasks in which the environment facilitates students’ exploration and analysis, 
for example, identifying relations within a figure through dragging 

– Tasks that have a paper and pencil counterpart but can be solved differently in 
the environment, for example a construction task may be solved in DGE by 
using a geometric transformation or the sum of vectors. 

– Tasks that cannot be posed without the mediation of the environment, for 
example, reconstructing a dynamic diagram through experimenting with it to 
identify its properties. 

 In the first two types, tasks are facilitated, rather than changed, by the mediation 
of DGE. In the last two types, tasks are changed in some way by the mediation of 
DGE, either because the solving strategies differ from what they usually were, or 
because they simply are not possible outside DGE. In the example of the last type, 
the meaning of the task comes from the possibility of dragging. 
 The second type of task may be used as a research tool for investigating 
students’ ideas. It acts as a window on students’ conceptions and understandings, 
as visible in Arzarello et al.’s (2002) research reported above. The last two types 
may be used in teaching as a tool for fostering learning. For example, DGE may 
foster the use of geometric transformations as construction tools for providing 
geometric relationships between objects (third type of tasks). The last type may 
also be the source of a different perspective on mathematics. The task of 
identifying properties in a dynamic diagram requires a back-and-forth process 
made of guesses based on visualization and checks on the diagram possibly 
involving deductions drawn from what has been observed. The nature of 
mathematical activity is changed and becomes a modelling activity –what may 
deeply differ from the kind of mathematics the teacher wants to develop. 

The role of feedback 

Technology offers feedback to the actions of the user. The role of feedback was 
stressed by research on micro-worlds. It was also stressed by research on DGE, 
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when students check their constructions through the drag mode or check their 
conjectures using various tools (e.g., measuring and constructing). Such feedback 
can be used to create the need for searching for another solution in case provided 
feedback gives evidence of the incorrectness or inadequacy of the solution. In the 
sequence of tasks (mentioned above; designed by Hadas et al., 2000), a cognitive 
conflict was created because students developed expectations, which turned out to 
be wrong when they checked them in the dynamic geometry environment. This 
interplay of conjectures and checks, of certainty and uncertainty was made possible 
by the explorative power and checking facilities offered by the DG environment. 
 Feedback can be the source of refinements in students’ answers. Leron and 
Hazzan (1998) describe a strategy by successive refinements provoked by feedback 
generated by the software. Hillel, Kieran and Gurtner (1989) reported similar 
results with middle-school students working in a Logo computer environment. 
Within a Logo programming environment, students enter commands and then they 
can visually observe and interpret the results of the code and make modifications to 
their commands. Edwards (1992) found students working with a computer micro-
world for geometric transformations, who refined their understanding of 
transformations based on the visual feedback they received from the computer as 
they engaged in a matching game. The software incorporating knowledge and 
reacting in a way consistent with theory impacts on the student’s learning 
trajectory in the solving process. Here, one can recognize the philosophy 
underpinning the notion of micro-world discussed in §2.1.1. 

The use of geometry technology by teachers  

Since the very beginning, research carried out on the use of technology focused on 
the students and their solving processes in technology based tasks. Some 
researchers pointed out, that interactions with technology, even in carefully 
designed tasks, could not lead to learning by themselves and stressed the need for 
teacher interventions (about the notion of angle in Hoyles & Sutherland, 1990, 
about the notion of reflection in Gallou-Dumiel, 1989). In the mid-nineties, the 
way teachers integrated technology into their teaching practice started to become 
an object of investigation. Noss and Hoyles (1996, ch. 8) related the teacher 
practice to their attitude with regard to technology and learning in a case study of 
some teachers following a university case about the use of micro-worlds in 
mathematics. 
 After several years, it appeared that an analysis of the use of technology in 
classrooms cannot be carried out without taking into account the complexity of 
teaching and learning situations and the multiplicity of factors related to the use of 
technology in the classrooms. Teachers are key elements in this complexity. What 
changed in recent years is the focus on the teacher practice in ordinary classrooms 
using technology. 
 Ruthven, Hennessy and Deaney (2005) report on a multiple-case study of 
“archetypical current practice” in using DGE in secondary mathematics education 
in England. The authors (p. 155) found that 
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the prime purpose of DGE use by teachers was evidencing geometric 
properties through dragging figures. Most commonly, this involved dragging 
to examine multiple examples or special cases. 

 But teachers very seldom used dragging to analyze dynamic variation. The 
authors also found most striking, “the common emphasis on mediating geometrical 
properties through numerical measures, with little direct geometrical analysis of 
situations in order to explain numerical patterns and theorize geometrical 
properties”. This probably results from (a long before DGE prevailing) didactical 
norm anchored in the teacher practice in the UK. The teachers adapt the available 
tools to this norm. The authors also report how teachers may reduce the 
exploratory dimension of DGE in order to control students’ exploration and to 
avoid students meeting situations that could obscure the underlying rule or could 
require explanations going beyond the narrow scope of the lesson, like for example 
explanations about rounding measurements in a lesson about inscribed angle in a 
circle. 
 The study of teacher practice when using technology revealed that teachers must 
cope with all the complexity of the management of a classroom: Instead of 
following textbooks the teacher must design worksheets (Monaghan, 2004), they 
must adapt the management of several kinds of time in their classroom and the 
relationship between, on the one hand old and new knowledge, and on the other 
hand paper and pencil techniques and Cabri techniques (Assude, 2005). Monaghan 
(ibid.) also showed how technology could affect the emergent goals of the teacher 
during the lesson. 
 According to a Vygotskian approach, some researchers investigated semiotic 
mediation processes organized by teachers making use of technology for mediating 
mathematical knowledge through the use of DGE. External operations are carried 
out by students faced with tasks completed in the environment and the teacher 
contributes to an internalization process by organizing social interactions and 
collective discussions in the classroom in which s/he intervenes in order to 
transform the meaning of what has been done on the computer into a meaning that 
could be related to the “official” mathematical meaning (see Mariotti, 2000, about 
the notion of geometric construction, and Mariotti, Laborde & Falcade, 2003, about 
the notion of graph of function with a DGE). 

FROM THE PAST TOWARDS THE FUTURE 

Geometry is often characterized by its recourse to diagrams and its special 
relationship with reasoning and proof, a specificity that we interpreted at the 
beginning of this chapter as due to the two-folded nature of geometry: Geometry 
resorts both to visualization and theory. The introduction of technology for the 
teaching and learning of geometry influenced both aspects of geometry in different 
ways, somehow complementing each other. According to the classification 
proposed by Hoyles and Noss (2003), Logo and micro-worlds belong to the 
“programming and micro-worlds” category whereas DGE belong to the 
“expressive tools” category. Logo somehow introduced the idea of micro-world 
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and exploratory environment that goes beyond only geometry. Several researchers 
also consider Logo as a tool to forge links between students’ actions and the 
corresponding symbolic representations they develop. Students must express 
actions in a symbolic language to produce diagrams on the computer screen. In 
dynamic geometry, students’ actions deal directly with tools producing geometric 
objects and relations or consist in manipulating dynamic diagrams: Students move 
from action and visualization to a theoretical analysis of diagrams and possibly to 
the expression of conjectures and reasoning. It must be mentioned that some 
dynamic geometry environments may also be considered as micro-worlds. 
Conversely, T.G. micro-worlds can be used as expressive tools. 
 Research on the use of technology in geometry not only offered a window on 
students’ mathematical conceptions of notions such as angle, quadrilaterals, 
transformations, but also showed that technology contributes to the construction of 
other views of these concepts. Research gave evidence of changes and progress in 
students conceptualization due to geometrical activities (such as construction 
activities or proof activities) making use of technology with the design of adequate 
tasks and pedagogical organization. Technology revealed how much the tools 
shape the mathematical activity and led researchers to revisit the epistemology of 
geometry. 
 Even if the various technologies differ in the access to geometrical concepts, 
some invariants can be drawn from the research studies and their development over 
time. The focus initially was on the learner and his/her interactions with 
technology, giving rise to theoretical reflections about learning processes in 
mathematics by means of technology. The focus moved to the design of adequate 
tasks in order to meet some learning aims and then to the role of the teacher. The 
integration of technology into the everyday teacher practice became the object of 
investigation. Finally, the role of the features of software and technology design 
were also questioned and investigated in order to better understand how the 
appropriation of the technological environment by students could interfere with the 
learning of mathematics and how the teacher organizes students’ work for 
managing this interaction between appropriation of the tool and learning. By 
focusing on everyday teacher practice, the constraints of the teaching institutions 
come to the foreground in the analysis of the integration of technology: How does 
the teacher manage the use of technology in taking into account the curriculum, 
and the time constraints? Technology is also still developing at a high pace: At the 
moment, the integration of symbolic programming with DGE, the development of 
special software for spatial Geometry software in the sense of 3D-software and the 
integration of Geometry software (especially DGE) with Computer Algebra 
Systems (CAS) seem to be most noteworthy. Additional research issues could deal 
with the integration of algebra and geometry allowed by technology. The fast 
evolution of interfaces calls for two main research strands: 
– From the perspective of learning how do the students’ instrumentation processes 

develop and what are their links with growth of mathematical knowledge? An 
object of investigation could especially be the impact of the novel kind of 3D 
dynamic and direct manipulation, in particular from an embodied cognition 
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approach focusing, for example, on the role of gestures in mathematical 
construction of knowledge. One can incidentally wonder why the impact of 
technology extensively used outside school (such as the gaming technology) has 
only very recently started to become an object of investigation in the research in 
mathematic education community; 

– From the perspective of teaching, the integration processes of technologies by 
teachers into their everyday practice could be extended to new technologies. 
Such studies seem to be particularly relevant in this time of massive entry of a 
new generation of teachers. Teacher preparation offers a research domain on 
such issues of high social importance. 

 Since geometry teaching has been changing so frequently in most countries in 
the past decades and differs from one country to another one, future research could 
address the question whether technology would lead to the tendency of smoothing 
the differences among geometry curricula across the world. 
 Studying the role of technology in the teaching and learning geometry led 
research in mathematics education to take into account and question all the 
complexity of teaching and learning processes. There is a dialectical link between 
the development of theories and research on the use of technology in geometry and 
generally speaking in mathematics teaching. Technology gave the opportunity of 
making use of available theoretical approaches, but also acted as a catalyst for the 
growth of new theoretical approaches and concepts in research in mathematics 
education. This is why we believe that research on the use of technology in 
geometry teaching needs more contributors. 
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