
 193

9 
LOGO and the Development of  

Thinking Skil ls  

ROY D. PEA 

D. MIDIAN KURLAND 

JAN HAWKINGS 

ith the growing presence of computers in educational settings, 
questions about their importance and likely effects for children's 
learning have focal concern. Studies that draw conclusions about 

the impact of computers on children's development and thinking are 
beginning to emerge. It is important that we take a critical look at the 
contexts in which these studies are being carried out and at the 
assumptions that underlie them. Understanding the effects of any 
learning experience is a complex, multileveled enterprise. Ideally, 
studying how and what children learn in school contexts should allow 
for revisionary cycles in which variations in the, important features of 
learning experiences and methods of measurement can be explored and 
improvements made. Too often this is not done. 

For the past several years we have been carrying out a series of 
studies conducted to understand in detail one system for using 
computers with children that has received great attention in the 
educational community: Teaching children to program through 
LOGO. The LOGO programming language is designed to be easily 
accessible to children (Abelson & DiSessa, 1981), and experience with 
LOGO is associated with general problem-solving abilities as well as 
with specific skills -in programming (Byte, 1982; Coburn et al , 1982; 
Papert, 1980). Our research was  

 
AUTHORS' NOTE: We would like to thank the Spencer Foundation and the National Institute of Education 
(Contract 400-83-0016) for supporting our research and the writing of this chapter. The opinions expressed 
do not necessarily reflect the position or policy of these institutions, and no official endorsement should be 
inferred. Our colleagues at the Center for Children and Technology have contributed to these studies in the 
past several years, and we appreciate their help and support. Of course our unnamed teachers and the LOGO 
students deserve the lion's share of gratitude for their efforts throughout the research enterprise

W 



 
 
 
Roy O. Pea et al. 

 194

designed to answer questions about the cognitive and social impact of 
LOGO in elementary school classrooms. One major strand of this work is 
summarized in this chapter: whether learning to program affects the 
development of other cognitive skills An interwoven theme will be how 
our, assumptions and understandings concerning the nature of 
programming and its necessary cognitive requirements changed as we 
became increasingly familiar with the programming "culture" emerging in 
the classrooms we were studying. 

We began with a basic framework for conducting our work. LOGO was 
a well-designed smbol system for programming. Many claims had been 
made about the power and uniqueness of this system as an environment in 
which children could explore through discovery learning, and develop 
problem-solving skills that would spontaneously transfer beyond the 
practices of programming (Papert, 1980). Since this learning environment 
was being made available on a mass scale, it was important to examine 
these claims in the contexts of general use-elementary school classrooms. 
Our intent was to investigate the effects of LOGO learning on cognitive 
skills (Pea & Kurland, 1984b), but we had the documenting problem of 
documenting the co-creation of LOGO learning practices in classrooms by 
teachers and children in which cognitive skills were to be used. In the 
LOGO discovery learning environment, how did children encounter new 
information? What were the problems that engaged them? flow was 
LOGO integrated into the work of the classroom'? 

In the next section we briefly review some of the key findings from one 
dine of our research-the question of whether problem-solving skills were 
gained- through LOGO programming that transferred beyond – 
programming practices. However, our main purpose will be to reflect on 
how these studies enabled us to look more closely at the distinction 
between the cognitive skills that can be practiced through some uses of , 
formally elegant symbol systems such as LOGO and the ways that these 
systems evoke particular practices in classrooms. 
 

RESEARCH SETTING 

The studies took place over a _two-year period in one third/fourth-
grade and one fifth/sixth-grade classroom in a private school in New York 
City. The children in the studies represented a variety of ethnic and 
socioeconomic backgrounds and  a range of achievement levels. Many of 
the children were, however, above national norms in school achievement 
and came from upper-middle-class and professional families. Each 



 
 

CHILDREN AND MICROCOMPUTERS 

 195

classroom had six microcomputers during the 1981-1982 school year. In 
each class, children were learning LOGO.  

The teachers received intensive training in LOGO They had regular - 
contact with members of the research staff as well as members of the team 
who developed LOGO throughout tile two years of the study. The 
computer programming activities during the first year were intended by the 
teachers to be largely child initiated, so as to encourage the child-centered 
Piagetian learning "without curriculum” advocated for LOGO (Papert, 
1980). While teachers in the first .year of the study gave tile children some 
simple instruction in LOGO during the first several weeks and 
occasionally held group sessions to introduce new aspects of LOGO 
during the year, their self-defined rule was principally that of constructively 
responding to students' questions and problems as they arose. Students 
primary activities were the creation and development of their own 
computer programming projects. 

Teachers scheduled computer use for students in their classrooms so 
that everyone would have equal access-about two 45-minute work periods 
per week. There were additional optional times for computer use 
throughout the day-before school and during lunch periods-when 
computers were available on a first-come, first-served basis. Logs kept at 
each computer over the course of the year showed that, on the average, the 
children spent about 30 hours programming in LOGO, although several 
spent as many as 60 hours. 

The second year differed from tile first in that both teachers decided to 
take a more directive role in guiding their students' explorations of LOGO 
(see Hawkins, 1984b, for a more detailed description of the teachers' 
changing views of the role of programming in their classrooms). The 
teacher of the younger class gave weekly group lessons to introduce key 
computational concepts and techniques, and to demonstrate how they 
function in computer programs. The older students were also given more 
group lessons and were required to complete specific assignments 
centering on LOGO concepts and programming methods, such as 
preplanning. In both classrooms, the focus of the work remained  the 
development of individual programming projects 

In these classrooms, we carried out a number of studies concerning 
both cognitive and social questions. The studies we will focus upon here 
concerned the effects learning to program had on students' planning skills. 
Before examining more closely why we chose planning as one of our key 
topics, we will briefly discuss the relationship of computer programming to 
the development of general thinking skills such as planning. 



 
 
 
Roy O. Pea et al. 

 196

The current  claims about effects of learning to program on thinking 
have been must extensively stated by Papert and Feurzeig (for example,  
Feurzeig, Papert, Bloom, Grant, & Solomon, 1969; Feurzeig, Horwitz & 
Nickerson 1981; Goldstein & Papert, 1977; Papert, 1972a, 1972b, 1980; 
Papert, Watt, DiSessa, & Weir, 1979). Such claims are not unique it) 
LOGO but have been alleged for programming in general (Minsky, 1970; 
Nickerson,  1982). 

Two key catalysts appear to have contributed to the belief that 
programming may spontaneously discipline thinking. The first is from 
artificial intelligence, where constructing programs that model the 
complexities  of human cognition is viewed as a way of understanding that 
behavior 1 he contention is that in explicitly teaching the computer to do 
something, you learn more about your own thinking. By analogy (Papert, 
1972a), programming students would learn about problem solving 
processes by the necessarily explicit nature of programming, as they 
articulate assumption s and precisely specify steps to their problem solving 
approach. The second influence is the widespread assimilation of 
constructivist epistemologies of learning, most familiar through Piaget's 
work. Papert (1972a, 1980) has been an outspoken advocate of the 
Piagetian account of knowledge acquisition through self-guided problem-
solving experiences, and has extensively influenced conceptions of the 
benefits of learning to program through "learning without curriculum" in 
"a process that takes place without deliberate or organized teaching" (1980, 
p.8; also pp. 27, 31). (It should be noted that Piaget never advocated the 
elimination of organized teaching in schools.) 

ON PLANNING 

One of the claims made about the positive effects of programming on 
thinking  has been in the area of planning (Feurzeig et al., 1981). From 
framework it is believed that programming experience will result in greater 
facility with the art of "heuristics," explicit approaches to problems useful 
for solving problems in any domain, such as planning, finding a related 
problem, or solving the problem by decomposing it into parts. 

Planning was selected as our principal reference topic because both 
rational analysis of programming and observations of adult programmers 
show that planning is manifested in programming in important ways. At 
the outset of our studies, there was little evidence of how 



 
 

CHILDREN AND MICROCOMPUTERS 

 197

this symbol system was learned by children in classroom settings. Since 
there was no information about practice in this "culture," we developed 
our transfer measures based on a rational analysis of the cognitive 
requirements of writing computer programs and from examination of the 
problem - solving activities of expert programmers in settings other than 
classrooms.  

Examination of expert performance reveals that once a programming 
problem is formulated, the programmer often maps out a program plan or 
design that will then be written in programming code. Expert 
programmers spend a good deal of their time in planning program design 
(Brooks, 1982), and have many planning strategies, available, such as 
problem decomposition, subgoal generation, retrieval of known solutions, 
modification of similar code from related programs, evaluative analysis and 
debugging of  program components (for example, see Pea & Kurland, 
1983). Does the effectiveness of planning become more apparent to a 
person learning to program? Does the development of planning skills for 
more general use as thinking tools become more likely when a person 
learns to program? And, fundamentally does  programming by its inherent 
nature entail planning as an unavoidable constituent process? These were 
the questions we set out initially to examine. 

PLANNING AND PROGRAMMING 

The core of computer programming is that set of activities involved in 
developing a reusable product consisting of a series of written instructions 
to make a computer accomplish some task. As in the case of theories of 
problem solving in general, cognitive studies of programming reveal a set 
of distinctive mental activities  that occur as computer programs are 
developed  These activities are involved throughout the development of a 
program, whether the programmer is novice or expert, because they 
constitute recursive phases of the problem-solving process in any general 
theory of problem solving (see Heller & Greeno,1979; Newell & 
Simon,1972; Polya, 1957). They may be summarized as follows: (1) 
understanding/ defining the programming problem; (2) planning or 
designing a programming solution; (3) writing programming code that 
implements the plan; and (4) comprehension of the written program and 
program debugging. We discuss each of these  cognitive subtasks in detail 
elsewhere (see Pea & Kurland, 1983, 1984b). 

One may raise the objection that it is possible to bypass planning  in 
program development; that is, one may first make an initial reading of the 
problem and then compose code at the keyboard to achieve the task. 



 
 
 
Roy O. Pea et al. 

 198

Although such planning-in-action is certainly possible to produce some 
programs, it seemed likely that such a plan-in-action :night create pro 
blems for the inexperienced programmer. While expert programmers can 
draw on their knowledge of a vast range of plans when creating programs 
(Atwood & Jeffries, i980; Soloway, Ehrlich, Bonar, Greenspan 1982), the 
novice programmer has neither the sophisticated understanding of 
programming code nor the experience of devising succe ssful 
programming schemas necessary for engaging in planning-in-action. 

What are we to make of these observations in terms of defining 
planning as a distinct cognitive subtask in programming? Is it optional? 
The answer to this question -certainly has consequences for thinking. 
about the cognitive outcomes of programming. However, in the absence  
of any actual observations of how novices, especially children (and  
particularly children engaged in a discovery learning approach), create 
programs it seemed reasonable to base our predictions about what the 
potential effects of programming for planning would be on a formal model 
of programming's, entailments built on this adult model of expert  
programming. 

ASSESSING PLANNING SKILLS 

We were guided in the design of our studies by key features of planning 
processes (see Pea, 1982; Pea & Hawkins, 1984, for further details). 
Specifically, we felt the tasks should (1) represent situations that are 
congruent with what is known about plan construction, especially when 
planning is likely to occur, and (2) externalize the planning process to allow 
observers to see and record processes of plan construction. 

With respect to the former the planning context should (a) be one 
where a child might be expected to see planning as appropriate and 
valuable; (b) be complex enough so that the means for achieving a goal are 
not immediately transparent and the possibility of alternative plans !s : 
recognized; and (c) involve a domain where children have a Sufficient 
knowledge base so that action sequences can be planned and consequences 
of actions anticipated. 

With respect to the second point above, the task should reveal (a) 
whether alternatives are considered; (b) whether the planner tests alter 
natives by simulating their execution; (c) what kinds of revisions or 
debuggings of a plan are made; and (d) what different types and levels of 
planning  decisions are made. 



 
 

CHILDREN AND MICROCOMPUTERS 

 199

Planning is appropriately characterized as a revisionary process. As a 
consequence of considering alternatives, effective planners revise their 
plans. They work between top-down planning strategies, -which create a 
plan from successively refining the  a sequence of subgoals for 
achievement in sequence, and bottom - up ,planning strategies, which note 
the emergent properties of the plan or the planning environment and add 
data-driven decisions to the plan throughout its creation (Haves-Roth & 
Hayes - Roth, 1979; Pea, 1982). 

We decided that a classroom chore-scheduling task, analogous to a 
planning scenario used by Hayes-Roth and Hayes-Roth (1979), met this 
series of requirements for a planning task. Nonetheless, it constituted a 
"far" transfer measure because it had very few surface ace similarities to 
programming for instance, it did not involve a computer. We found from 
classroom observations that all children had to carry out certain classroom 
chores on a regular basis (washing the blackboards, watering the plants, 
and the like;. The task was made novel by requiring children to organize a 
plan that would allow one person to accomplish all the chores. We 
designed a classroom map as an external representational model to support 
and expose planning processes. 

A transparent Plexiglas map of a fictitious classroom was developed for 
the task (see Figure 9.1). Children were to devise a plan to carry out six 
major chores. The chores could be accomplished with a minimum of 39 
distinct chore acts. Some of the acts are subgoals, because hey are 
instrumentally necessary to accomplish others (that is, the watercan is 
needed to water plants; the sponge is necessary for washing tables and 
black boards). Finding the optimal sequencing of these chore acts is thus a 
challenging task. 

STUDYING PLANNING SKILLS:  

THE FAR TRANSFER TASK  

OF YEAR ONE 

In the first year we videotaped children from the programming 
classrooms individually (six boys and six girls) and a matched set of same - 
age controls as they worked in thisplanning environment. Each child was 
told that the goal was to make up a plan to do a lot of classroom chores. 
The child was asked to devise the shortest spatial path (for doing the 
chores, and that he or she could make up as many plans as were needed to 
arrive at the shortest plan. The child was instructed to think out loud while 
planning, and to use a pointer to show the path taken to do the chores. 
The child was given a pencil and paper to make notes (rarely used), and a 
list of the six chores to keep track of what she 



 
 
 
Roy O. Pea et al. 

 200

or he was doing. The same task and procedure was administered early in 
the school year, just as the students were beginning to learn LOGO, and 
again four months later. 

We were interested in examining three aspects of children's plans: (1) 
the plans considered as products; (2) the plan revisions children made in  
terms of the features that contributed to plan improvement; and (3) the 
planning process, especially in terms of the types and levels of abstracted  
tion or component decisions. On the basis of what programming was 
assumed to be, these areas were selected because we felt they were the 
ones most likely to differentiate between the programming and 
nonprogramming students. Complete descriptions of the analyses and 
results are available elsewhere (Pea & Kurland, 1984a). Here we will simply 
review the major findings. 
PRODUCT ANALYSIS 

The sequence of chore acts for each plan was recorded, and the distance 
calculated that would be traversed if the plan were to be 



 
 

CHILDREN AND MICROCOMPUTERS 

 201

executed. Route efficiency for a plan was a function of the distance 
covered in executing the plan relative to the optimal distance for doing the 
chores. There were no significant differences in the mean number of plans 
attempted between children of different ages or between programming and 
nonprogramming groups. 

Route efficiency score significantly increased with age. from first to last 
plan within session and across age groups. The LOGO programming 
group, however, did not differ from controls for any plan constructed at 
the beginning of the school year or at the end of a school year of LOGO 
programming. Finally, each age group, regardless of programming 
experience improved in efficiency from first to last plan.  

Our next question concerned how plan improvements were made. For 
the most part, we were able to characterize the children's substantive 
revisions of structure to improve their plans as resulting from "seeing" the 
chores differently over time. (for e ;ample; see Bamberger & Schon, 1982; 
DiSessa, 1983; Heller & Greeno, 1979). 

More specifically, the initial formulation of our task as the carrying out 
of a set of named chores ("cleaning tables," "washing blackboards," 
"pushing in chairs") is a frame or set for problem understanding that must 
be broken for the task to be accomplished effectively. Performing each 
named task, in whatever order, is not an effective plan. Each chore must 
be decomposed into its component acts, and the parts must then be 
reconstructed and sequenced into an effective all-encompassing plan. 'The 
child's understanding of part-whole relations for the task is thus 
transformed during plan revision. To move toward the optimal solution of 
this planning problem a child must reconfigure the chore "chunks" in 
terms of their spatial distribution on the classroom map. Major break-
throughs in plan structuring occur through discovering spatial clusters--
from a list of named chores to a list of spatial clusters of chore acts. 

Children's plans were analyzed in terms of these plan features. More 
efficient organization of chore acts into clusters was highly correlated to 
shorter plan distance for first and last plans in both sessions. 

The mean plan cluster score significantly improved for each age group 
across plans and sessions, but LOGO programmers did not differ from the 
control groups on any of these comparisons. The children reorganized 
their plans into more efficient clusters during the revision process whether 
or not they had programmed. 
PROCESS ANALYSES 

We also wished to compare planning processes across children and 
plans. In creating their plans, did our LOGO programmers engage in 



 
 
 
Roy O. Pea et al. 

 202

more advanced decision - making process than the nonprogrammers, even 
though their plans were not more efficient? We examined the process of 
plan construction by categorizing each segment of the children's think - 
aloud protocols in terms of the type of planning decision being made and 
its level of abstraction (as in Goldin & Hayes-Roth 1980; Hayes - Roth & 
Hayes - Roth 1979). 

For the process analysis, we asked whether the organization of the 
planning  process in terms of the types, levels, and sequences of planning 
decisions was different for the programmers than for the nonprogrammers  
with respect to the following: (1) frequencies of different types of planning 
decisions; (2) decision choice flexibility; and (3) relationships between the 
amount of "executive" and "metaplanning" activity during the planning 
process and decision-choice flexibility. 

In brief, the LOGO - programming group did not differ from the 
control, groups on any of the comparisons for types of planning decisions. 
Nonetheless, we found interesting differences in when and by whom such 
higher-level decisions were made. Children made significantly more high-
level decisions in their first plans than in their last in  session 1, and older 
children produced more high-level decisions than did younger children. 
There were no age effects for the second session,,' 

As a further index of planning processes, we determined the flexibility 
of a child's decision making during the planning process in two ways:  (1) 
by looking at the number of transitions a child made between types of ! 
decision making while creating the plan, and (2) by looking at the number 
of transitions made between levels of decision making, irrespective  of the 
decision type. For both sessions, the mean number of type transitions per 
plan is highly correlated with the mean number of level transitions per 
plan. The programmers did not differ from the nonprogrammers on these 
indices of decision-choice flexibility. 
RELATIONSHIP OF PRODUCT  

TO PROCESS MEASURES 

We also looked at how decision-making processes were related to the 
effectiveness of the plan as a product, and found that none of the process 
and product measures were significantly related. We also tested for a 
relationship between the frequency of high-level planning decisions and 
mean cluster scores. The nonsignificant relationships indicate that children 
revise their plans to accomplish the acts more efficiently without 
necessarily using (verbally explicit) metaplanning resources. Only fur the 
last plan of the younger children in the first session are these variables 
significantly correlated. 



 
 

CHILDREN AND MICROCOMPUTERS 

 203

DISCUSSION  

On the face of it, these results suggest that a school year of LOGO 
programming did not have a measurable influence on the planning. abilities 
of these students. While an average of 30 hours of programming is small 
compared with what professional programmers or college computer  
majors devote to such work, it is a significant amount of time by 
elementary school standards. 

The failure of the programming students to show any advantage over 
nonprogrammers on the classroom planning task could have been 
attributed to any one of a number of possible sources. A prime concern 
was that our basic assumptions about programming, based on a formal 
analysis of its properties and expert programmer data, were inadequate for 
capturing what transpired in the classroom. Based on parallel ethnographic 
studies in LOGO classrooms (Hawkins, 1983, 1984b), we were beginning 
to understand that the actual classroom practice of LOGO had developed 
in ways that made programming activity quite different -from what had 
been anticipated. For example, particular pieces of students' knowledge 
about specific programming concepts appeared to be tightly wedded to the 
specific contexts in which they were learned, unlike the knowledge of 
expert programmers. Programming constructs for the students had local 
functional meaning that they did not tend to generalize, even to other 
closely related programming problems. Although the planning task had 
features that made it formally similar to the characterization of planning in 
programming that was available in the literature an programming, the 
surface structure of the task was quite different from the way programming 
was actually done in the classrooms. Students may have failed to recognize 
the task as an opportunity  to apply insights from programming. 

Therefore, in the second -year of the study we set out to create a new 
version of the planning task that resembled programming on its surface as 
well as in its deep structural features. Thus, for example, the new task, 
while not requiring any previous programming experience (therefore 
making it suitable for the control groups of students), consisted of a 
computer-based microworld environment similar to the programming 
environments with which the students were familiar, and provided on-line 

feedback on the success of planning efforts analogous to the feedback 
programmers get from executing their programs in the process of creating 
them. 

In addition, most children appeared to do little preplanning in their 
programming work. Planning as a component of programming was 
introduced to the students, but not insisted upon, and possible program- 



 
 
 
Roy O. Pea et al. 

 204

planning aids (such as worksheets) were not explicitly provided. 
Students tended to write and revise their code in terms of the immediate 
effects that commands and sequences of commands produced. 

The nature of the LOGO programming environment changed during 
the second school year. At the end of the first year, teachers expressed 
disappointment with the quality of students' programming work, and 
decided to provide more structure to the learning environments for the 
second year. In addition to conducting "lessons" and group discussions on 
specific topics, teachers worked with children to develop more suitable 
individual projects, and at the beginning of the year provided some 
program-planning aids for the children. These aids, however, were seldom 
used. Students preferred to write programs interactively at the keyboard. 

STUDYING PLANNING SKILLS IN A  

NEAR TRANSFER PROGRAMMING MICROWORLD 

In the beginning of the second year, the original planning task was 
administered to new groups of students in the two programming 
classrooms and to two same-age control groups. We found again that 
students' last plans were better than their first plans, and that there were no 
differences between the programming and nonprogramming groups at the 
beginning of the school year. 

Near the end of the year, the new planning task was given. This revised 
task incorporated new design features that made the task bear a far closer 
resemblance to programming as it was practiced in these classrooms than 
did the Plexiglas map task. The new task consisted of f our components: 
(1) a colored diagram of a classroom; (2) a set of goal cards, each depicting 
one of the six chores (such as wiping off the tables and watering the plant); 
(3) a microcomputer program that enabled students to design and check 
their plans with the support of the experimenter; and (4) a graphics 
interface that enabled students to see their plans enacted in a realistic 
representation of the classroom (see Figure 9.2). 

The computer program created a graphics robot programming and 
testing environment within which children could develop their plans. The 
children could "program" a robot using a simple, Englishlike programming 
language, and then see their plan carried out. 

The commands in the robot programming language consisted of a set of 
six actions (WALK TO, PICK UP, PUT DOWN, WIPE OFF, WATER, 
STRAIGHTEN   UP), and the names for ail the objects in the 



 
 

CHILDREN AND MICROCOMPUTERS 

 205

 

 
classroom. Each action-object pairing constituted a move in the plan. As 
the student talked through a plan while looking at the classroom diagram 
and goal cards, the experimenter keyed each move into the computer, 
which listed it for the student to see. If the student gave a command that 
could not be carried out at that point in the plan (for example, telling the 
robot to wipe off the table before telling it to go to pick up the sponge), 
the computer program immediately rejected the move and provided a 
precise context-specific error message on the screen (for example, I'M 
NOT CARRYING THE SPONGE). If a student indicated that his or her 
plan was done when there were actually one or more chores still remaining, 
the program provided a message to this effect, and a list of the outstanding 
chores appeared on the screen. A message always displayed on the screen 
informed students that they could at any time ask to see the list of 
remaining chores or review their plan by having it listed on the screen. 
Together, these features ensured that all the students would develop 
runnable, albeit not necessarily optimal, plans, 

The second part of the new classroom chore-scheduling task was a 
graphics interface designed to provide feedback to the student on the 



 
 
 
Roy O. Pea et al. 

 206

adequacy of his or her plan. There were four types of feedback: (1) a 
readout oft he total time the student's just-completed plan would take if 
carried out in action; (2) a representation of a classroom displayed on a 
high-resolution screen, on which a step-by-step enactment of the student's 
plan could be carried out under the student's control; (3) a step-by-step 
readout of each move the student had entered and the time it took tile 
robot, to carry out each move; and (4) a hard-copy printout of ! he 
student's plan that Could be referred to during subsequent planning 
attempts. 

In individual sessions children were told to imagine that they had a 
robot who could understand and carry out commands to perform 
classroom duties Their task was to devise a plan for the robot to clean up a 
classroom in the least possible amount of time, covering the shortest 
possible Spatial path. Students were told that they would create three plans, 
in which they would be able to improve on their previous plans (Pea & 
Kurland, 1984a, for further details of the procedure). A clock inside the 
computer was used to record the intervals between the student's moves 
("thinking time"). This enabled us to determine how reflective each student 
was while creating each plan, and where in the planning process the 
students spent time thinking. 

Students were given as much time as they needed to think about what to 
do and to call out each individual move. The experimenter typed each 
move into the computer, where it was either accepted and added to the 
plan fist or immediately rejected and the student told what was wrong. T 
he computer did all the monitoring and error checking, and gave tile only 
feedback the child received. When all the chores were completed and the 
robot was directed out of the classroom door, the program calculated and 
then displayed how long the just-entered plan would take. 

In order to determine t the effects of feedback from actual plan execu-
tion on revisions in later plans, two different task conditions were used. 
Half o1 the students went on to do a second and then a third plan 
immediately upon completion Of their first one. The other half of the 
students saw a representation of the classroom on the graphics screen after 
they had completed each plan. Simultaneously, the first move of the plan 
was printed on the text screen. 'The student was given a hand-held button 
that, each time it was pressed, took the program through the plan one 
move at a time. A line corresponding to each move was drawn to indicate 
tire path the robot would follow in carrying Out the plan accompanied by 
tile name of the move on the text screen (such as WATER THE PLANT) 
A time counter was displayed indicating the total time needed by the robot 
to carry out the plan up to the current move. The student's plan was 
printed out so that, when devising subsequent 



 
 

CHILDREN AND MICROCOMPUTERS 

 207

plans, he or she could see exactly what had been done on the earlier 
attemts. 

We hypothesized that students with programming  might differ from 
their nonprogramming peers in four major respects: 

(1)Programmers should be better planners overall Therefore, lengths of 
plans for the programming students should be less than those for 
nonprogrammers. 

(2)Programmers should make more and better use of the feedback avail-
able, since programming teaches the utility of debugging partially correct 
procedures. This means that programmers should ask more often to see 
a listing of their plans (review plan) and refer more often to the list of 
remaining chores (check list) than nonprogrammers. In addition, in the 
programming group, differences on these dimensions between students 
in the feedback and no-feedback conditions should be greater than in 
the nonprogramming group. 

(3)Programmers, relative to nonprogrammers, should spend more time  
early in their first plan thinking over alternative plans (that is, signifi-
cantly more pauses and longer mean thinking tune in the first third of 
the first plan). On subsequent plans, their thinking time should become 
more evenly distributed across the plan as they concentrate on 
debugging different parts of it. 

(4) Programmers should seek to improve or debug their first plan through 
successive refinements in subsequent plans s, rather than trying a 
different approach each time. This means that, relative to the 
nonprogrammers, the degree of similarity between successive plans for 
programmers should increase across plans. 

Older students produced better (that is, shorter) plans overall than did 
younger students. In addition, first plans were significantly different from 
both second and third plans, but the second and third plans did not differ 
significantly from each other. Even the best group did not produce 
optimal plans with respect to execution time. There were no differences 
between the programming and nonprogramming groups in the time their 
plans would take to carry out. In addition, there was no difference in their 
use of the available feedback aids such as checking over their; sequence of 
moves or requesting to see a listing of the remaining chores. Students 
rarely used these features of the task environment, even though there was a 
message on the screen at all times indicating its availability. In audition, the 
group of students who executed their plans between each attempt tended 
not to spend much time watching the plan enactments nor did they refer 
to the printed copy of earlier plans when creating a new plan. Plans were 
created without much attention to the details. 



 
 
 
Roy O. Pea et al. 

 208

When the pause data (indicating thinking time) were examined, there 
were again no differences between the programming and the 
nonprogramming groups. Students paused to think more during the first 
plan than during their second or third, but the amount of time spent 
thinking ;n their second and third plans did not differ. When thinking time 
was broken down into thirds (beginning, middle, and end of the plan), it 
was found that more thinking time occurred in the beginning third of a 
plan than into the middle or end third. Thus, while the pattern of thinking 
time for the programmers conformed to what we had hypothesized, it did 
not differ as predicted from the pattern for nonprogrammers 

Finally, we examined the amount of overlap from plan to plan (plan 
similarity). The successive plans for all groups teed- fo overlap from plan 
to plan by 35 percent to 55 percent. Yet again there was no difference 
between the programming and nonprogramming students or   between the 
students with and without benefit of feedback. Thus there was no evidence 
that the programmers were more likely to follow a model of plan 
debugging by successive refinement than nonprogrammers Additional 
analyses indicate that students who modified previous plans, leaving larger 
portions intact, did not develop appreciably better plans than students who 
varied their approaches from plan to plan. 
DISCCUSSION  

On the basis of these results we concluded that students who had spent 
a year programming did not differ on various developmental comparisons 
of the effectiveness of their plans and their processes of planning from 
same-age controls who had not learned to program. The results from this 
study are particularly striking because the computerized "near" transfer 
planning task was designed to have a strong resemblance to programming, 
including feedback in different representational media (picture of plan in 
execution, list of moves in plan, and so on), which, because of their 
planning experience, programmers might have used to greater advantage. 
The programming groups clearly  did not use the cognitive abilities alleged 
to be developed through experience with LOGO in these tasks designed to 
tap them. 

 What were we to conclude from these findings? That there does not 
appear to be automatic improvement of planning skills from learning 
LOGO programming appeared clear, but why? Two major categories of 
potential explanations come to mind. 

The first category concerns the design of the transfer tasks. There could 
be objections to the tasks we used and our resultant data. Perhaps these 
tasks do not tap planning skills. However, the tasks had greater. 



 
 

CHILDREN AND MICROCOMPUTERS 

 209

surface validity, and the route efficiency measures in particular were 
developmentally sensitive. The developmental gap between actual 
performance and optimal performance could have been influenced by the 
greater development of planning abilities through programming Yet 
whether or not a student programmed did not account far the variability 
we found in planning task performances. 

Another objection to our planning tasks was that they are not close 
enough to programming tasks for the transfer of planning skills from the 
programming domain. But according to claims made about the general 
value of programming for thinking, transfer at the concepts and practices 
of planning to other problem-solving situations should occur spontaneously  
not because of resemblances of the target task to the programming 
domain. 

The second category of explanations concerns the nature of LOGO 
programming. Here we may distinguish among four different kinds of 
arguments. First, there are problems with the LOGO programming 
environment (not the instructional environment) as a vehicle for learning 
these generalizable cognitive skills. Second, the quality of learning about 
and developing such planning skills with the LOGO discovery learning 
pedagogy is insufficient for the development of generalizable planning 
skills. Third, perhaps the amount of time students spent in the LOGO 
pedagogical environment was not sufficient for us to see the effects on 
planning of LOGO programming experience. 

On the basis of the two studies, we could not tease apart these first 
three alternatives. However, as we were simultaneously learning more and 
more about what the students were actually doing in the classrooms - what 
the practices of programming actually were- a fourth, and fundamentally 
different, interpretation of these studies became apparent. 

To understand this interpretation it is useful to reflect on a sot of issues 
similar to those we were pursuing in programming-those that relate to the 
cognitive consequences of literacy The acquisition of literacy, like 
programming today, has long been claimed to promote the development of 
intellectual skills (Ong, 1982). Prominent historians and psychologists have 
argued that written language has many important properties that 
distinguish it from oral language, and that the use of written language leads 
to the development of highly general thinking abilities, such as logical 
reasoning and abstract thinking. 

But studies bearing on this claim have traditionally been done in 
societies such as Senegal or Mexico, where literacy and schooling were 
confounded. Perhaps schooling is responsible for these changes in 
thinking, rather than the use of written language per se. In an extensive 
five-year research program, Scribner and Cole (1981) examined the 
cognitive effects of literacy  independently of schooling. The society 



 
 
 
Roy O. Pea et al. 

 210

studied -was the Vai, an African people who do not transmit literacy in the 
`Jai •written language through formal schooling. Their reading and writing 
are practiced and learned through the activities of daily life. The Vai 
invented their written language a mere 150 years ago, and have continued 
to pass literacy on to their children without schools. 

Like most psychologists, Scribner and Cole brought with them 
standardized psychological testing instruments and stimuli for experiments 
on concept formation and verbal reasoning. But as Scribner and Core 
looked over their results from several years of work, they could see no 
general cognitive effects of being literate in the Vai script. For example, the 
literate Vai were no better than the nonliterate Vai in categorization skills 
or syllogistic reasoning. 

Before continuing with their initial research strategy with a refined set of 
tasks, Scribner and Cole realized that there was a radically different way to 
think about their project, in terms of specific effects. They had begun by 
looking for general effects of literacy. But after several years of survey and 
ethnographic observations, they had also come to understand the tasks 
that Vai literates encounter in their everyday practices of literacy. The Vai 
use their written language primarily for letter writing,  and for recording 
lists and making technical farming plans. New tasks were designed for 
assessing literacy effects that were based on those particular skills required 
by the literacy practices they observed. 

Results from these studies demonstrated dramatic cognitive effects of 
literacy, but they were more local in nature. For example, letter writing, a 
common Vai literacy practice, requires more explicit rendering of meaning 
than that called for in face-to-face talk. A communication task where the 
rules of a novel board game had to be explained to someone unfamiliar 
with it revealed that performances of Vai literates was vastly superior to 
those of nonliterates on either version of this task. 

Our results concerning the learning of programming can be examined 
from a similar framework (Pea, 1984b). But for programming languages 
unlike written language, we do not have the benefit of known historical 
and cultural changes that appear to result in part from centuries of use of 
the written language. In the absence of evidence about actual programming 
practices in these classrooms, we were guided by the rationale that 
"programming intelligence" and the kinds of programming activities 
carried out by adults would affect children too. 

In addition to examining carefully the formal properties of 
programming and the planning tasks, we can also take a functional or - 
activity-based approach to understanding our results. We can consider 
"programming" not as a given, the features of which we know by virtue of 
how adults do it at its best, but as a set of practices that emerge .in a complex 
goal directed cultural framework  (Not readable) 



 
 

CHILDREN AND MICROCOMPUTERS 

 211

(...) and complex an activity matrix as literacy. Just as one may use one's 
literacy in Vai society to make laundry lists rather than to analyze and 
reflect upon the logical structures of written arguments, so one may 
achieve much more modest activities in programming than dialectics 
concerning the processes of general problem solving, planning, precise 
thinking, debugging, and the discovery of powerful ideas. One may, in 
particular, write linear brute-force code for drawing simple pictures. 

From a functional perspective we may see that powerful ideas are no 
more attributes inherent "in" LOGO than powerful ideas are inherent "in'' 
written language. Each may be put to a broad range of uses. What one 
does with LOGO, or written language, or any symbol system is an  open 
matter. The Vai have not spontaneously gotten into the logical features or 
written language, philosophy, and textual analysis that written language 
allows. Likewise, most of our students in these as well as others of our 
studies from grade school up through high school-have not spontaneously 
gotten into the programming practices (such as structured planful 
approaches to procedure composition, use of conditional or recursive 
structures or careful documentation and debugging) that LOGO allows. 

For the Vai, one could imagine introducing new logical and analytic uses 
of their written language. Similarly, one could imagine introducing to 
children the LOGO programming practices many educators have taken for 
granted will emerge In either case, we would argue that without some 
functional significance to the activities for those who are learning the new 
practices, there is unlikely to be successful, transferable  learning. 

It is our hunch that wherever we see children using LOGO in the ways 
its designers hoped, and learning new thinking and problem-solving skills, 
it is because someone has provided guidance, support, and ideas  for how 
the language could be used The teachers in our studies began to work out 
such a supportive approach. They found this to be a complex enterprise 
because they found they had to think through the problems of what 
Should be known about the system, and the sequence appropriate to 
comprehension. They also found that helping children to fund functional 
goals for their LOGO work was problematic throughout the two years 

There are many consequences of this general account of what is 
involved in thinking about LOGO as potential vehicle for promoting 
thinking and problem-solving skills. A functional approach to 
programming recognizes that we need to create a culture in which students, 
peers, and teachers talk about thinking skills and display them aloud for 
others to share and learn from, and that builds bridges to thinking about 
other domains of schooling 



 
 
 
Roy O. Pea et al. 

 212

programming projects, would come to play functional roles, not because of 
some abstract inherent characteristics of programming, but because of 
characteristics of the context in which programming gets embedded 
Dialogue and inquiry about thinking and learning processes would became 
more frequent, and the development of general problem-solving skills so 
important in an information age would be a more common achievement of 
students. 

Where are we left, then? It is encouraging that there are so many 
positive energies in education today. The enthusiasm for LOGO as a 
Vehicle of cognitive change is an exhilarating part of the new processes of 
education one can see emerging. But we must first recognize that we are 
visitors in a strange world at the fringe of creating a culture of education 
that takes for granted the usefulness of the problem-solving tools provided 
by computers, and the kind of thinking and learning skills that the domain 
of programming makes so amenable to using, refining, and talking about 
together. 

Learning thinking skills and how to plan well is not intrinsically 
guaranteed by the LOGO programming environment; it must be 
supported by teachers who, tacitly or explicitly, know how to foster the 
development of such skills through a judicious use of examples, student 
projects, and direct instruction. But the LOGO instructional environment 
that Papert (1980) currently offers to educators is devoid of curriculum, 
and lacks an account of how the technology can be used as a tool to 
stimulate students' thinking about such powerful ideas such as planning 
and problem decomposition. Teachers are told not to teach, but are not 
told what to substitute for teaching. Thinking-skills curricula are beginning 
to appear, but teachers cannot be expected to create them spontaneously, 
any more than students can be expected to induce lessons about the power 
of planning methods from self-generated product-oriented programming 
projects. 


