Results

Dichotomous Rasch Model

Instructions

____________________________________________________________________________________

1. Each variable must be coded as 0 or 1 with the type of numeric-continuous in jamovi.

2. The results of Save will be displayed in the datasheet.

3. The result tables are estimated by Marginal Maximum Likelihood estimation(MMLE).

4. The rationale of snowIRT module is described in the documentation.

5. Feature requests and bug reports can be made on my GitHub.

____________________________________________________________________________________

Model Fit
 Person Reliability
scale.
[3]

 

Item Statistics
 Proportion
 

 

[3]

Wright Map

[4]

Dichotomous Rasch Model

Instructions

____________________________________________________________________________________

1. Each variable must be coded as 0 or 1 with the type of numeric-continuous in jamovi.

2. The results of Save will be displayed in the datasheet.

3. The result tables are estimated by Marginal Maximum Likelihood estimation(MMLE).

4. The rationale of snowIRT module is described in the documentation.

5. Feature requests and bug reports can be made on my GitHub.

____________________________________________________________________________________

Model Fit
 Person ReliabilityMADaQ3p
scale0.8460.07481.000
Note. MADaQ3= Mean of absolute values of centered Q_3 statistic with p value obtained by Holm adjustment; Ho= the data fit the Rasch model.
[3]

 

Q3 Correlation Matrix
 BACEDFGHIJ
B         
A-0.094        
C-0.1630.016       
E-0.133-0.132-0.133      
D-0.011-0.011-0.011-0.023     
F-0.006-0.001-0.002-0.004-0.009    
G-0.284-0.203-0.104-0.171-0.157-0.007   
H-0.040-0.021-0.022-0.047-0.117-0.052-0.001  
I0.1440.028-0.221-0.178-0.034-0.005-0.255-0.065 
J-0.266-0.024-0.012-0.001-0.186-0.033-0.037-0.001-0.046
[3]

 

Item Statistics
 ProportionMeasureS.E.MeasureInfitOutfit
B0.6133-1.0120.3550.9020.712
A0.8133-3.2040.4230.7840.663
C0.7867-2.8590.4080.8870.761
E0.6933-1.8010.3720.9090.620
D0.17333.3980.4260.9380.518
F0.01337.3261.0590.9820.166
G0.5467-0.3970.3471.1251.241
H0.20003.0480.4100.7100.321
I0.6933-1.8010.3720.7490.450
J0.37331.1830.3560.7260.429
Note. Infit= Information-weighted mean square statistic; Outfit= Outlier-sensitive means square statistic.
[3]

 

Wright Map

[4]

[5]

Reliability Analysis

Scale Reliability Statistics
 Cronbach's α
scale0.879
[6]

 

Correlation Heatmap

Rasch Model

'from' must be a finite number

Instructions

_____________________________________________________________________________________________

1. The standard Rasch model is performed by Jonint Maximum Liklihood(JML).

2. Specify the number of 'Step' and model 'Type' in the 'Analysis option'.

3. Step is defined as number of category-1.

4. The results of Save will be displayed in the datasheet.

5. Feature requests and bug reports can be made on my GitHub

_____________________________________________________________________________________________

Item Analysis

Model Information
Class
.
[7]

 

Item Statistics
 Item meanMeasureInfitOutfit
 
[7]

 

Wright Map

[4]

References

[1] The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).

[3] Robitzsch,A., Kiefer, T., & Wu, M. (2020). TAM: Test Analysis Modules. [R package]. Retrieved from https://CRAN.R-project.org/package=TAM.

[4] Martinkova, P., & Drabinova, A. (2018). ShinyItemAnalysis: for teaching psychometrics and to enforce routine analysis of educational tests. [R package]. Retrieved from https://CRAN.R-project.org/package=ShinyItemAnalysis.

[5] Seol, H. (2022). snowIRT: Item Response Theory for jamovi. [jamovi module]. Retrieved from https://github.com/hyunsooseol/snowIRT.

[6] Revelle, W. (2019). psych: Procedures for Psychological, Psychometric, and Personality Research. [R package]. Retrieved from https://cran.r-project.org/package=psych.

[7] Willse, J. (2014). mixRasch: Mixture Rasch Models with JMLE. [R package]. Retrieved from https://CRAN.R-project.org/package=mixRasch.

[8] Seol, H. (2022). snowRMM: Rasch Mixture Model for jamovi. [jamovi module]. Retrieved from https://github.com/hyunsooseol/snowRMM.