
Turtle Tracks documentation

</TBODY>
Turtle Tracks documentation
Copyright ©1997-1998 Daniel Azuma. All rights reserved worldwide.

This is the current working draft of the documentation for Turtle Tracks. It is intended as a reference manual, and not an introduction to Logo or a primer for first-time programmers.

Note: Significant sections of this document are not yet completed.

Table of contents
4About Turtle Tracks

4Running Turtle Tracks

7Running the graphical environment

7The Turtle Tracks implementation of Logo

7Language concepts

12Parsing, operators and precedence

12Key features

12Runtime environment

14Standard Commands

14Data structures

14Constructors

17Selectors

19Queries

21String Manipulation

22Flow Control

23Executor Structures

26Mapping Structures

28Conditional Structures

29Loop Structures

32Threads

37Error Handling

39Jump Commands

41Input/output

41Reading and writing

44Opening streams

46Stream Management

49File system management

50Mathematical Operations

51Logical operations

52Bitwise operations

54Comparison operations

56Numeric operations

60Trigonometric operations

64Workspace Management

65General workspace control

67Procedure operations

72Variable operations

75Property list operations

78Advanced operations

81Turtle Graphics Commands

81Window Management

84Turtle Motion

86Turtle Position Queries

87Turtle State

90Color palette operations

92Appendix

92Differences between Turtle Tracks and UCBLogo

Daniel Azuma (dazuma@kagi.com)
Last updated 3 February 1999 </TBODY>

About Turtle Tracks

Turtle Tracks is a modern Logo interpreter and runtime environment written entirely in Java. It is not a direct port of an existing interpreter, but written from the ground up specifically for Java, and designed to take advantage of the strengths of Java as a language and environment. Turtle Tracks is platform-independent and Internet-ready, and supports numerous advanced features such as multithreading and networking. Unlike similar projects such as Bongo, Turtle Tracks is true Logo and supports the same Logo syntax and the same primitives as other Logo implementations. It also supports plug-in primitive sets and should, in the future, allow integration with outside Java code as a scripting language.

Note: this section of the manual not yet completed.

Daniel Azuma (dazuma@kagi.com)
Last updated 25 July 1997

Running Turtle Tracks

Turtle Tracks can be run in several different forms: with a text-based command line interface, a graphical window interface, or a custom-built interface; with or without turtle graphics, or with or without other extensions to the primitive set. These forms are chosen by selecting a plug-in interface class, and a set of plug-in primitive groups. Shortcuts are provided for some of the more common configurations

Installation

The Turtle Tracks distribution includes a Java zip file called "turtletracks.zip". This zip file contains the entire Turtle Tracks program, including the language engine, the standard primitive group plug-ins, user interface plug-ins for a command line interface and a graphical window-based interface, and several tools for running the application.

This zip file should be installed in your classpath. Normally, it should not be expanded, but should instead be installed directly as a zip file. Consult the documentation for your Java runtime environment for details on how to set up your class path.

Command line interface quick start

Once the zip file has been installed, you can initiate a Logo session using the operating system's command line by invoking the helper class "virtuoso.logo.app.Cli". Under some operating systems and Java runtime environments, you accomplish this by typing the command:

java virtuoso.logo.app.Cli

Consult your Java documentation for details specific to your Java implementation.

The virtuoso.logo.app.Cli helper class launches Turtle Tracks using a standard command line based user interface, and including all the standard primitive groups. However, it does not automatically include the turtle graphics primitive group, because command line based systems sometimes do not provide windowing capability. If you wish, you can manually load the turtle graphics system by issuing the Logo command:

LOADPRIMITIVES "virtuoso.logo.lib.TurtlePrimitives

The command line system also does not support an editor window. Any attempts to invoke the EDIT command will result in an error.

Mac OS Runtime for Java 2.0 currently does not support command line input. Do not attempt to run virtuoso.logo.app.Cli under Mac OS Runtime for Java 2.0.

Graphical interface quick start

You can initiate a Logo session using a graphical window-based interface by invoking the helper class "virtuoso.logo.app.Gui". Under some operating systems and Java runtime environments, you accomplish this by typing the command:

java virtuoso.logo.app.Gui

Consult your Java documentation for details specific to your Java implementation.

The virtuoso.logo.app.Gui helper class launches Turtle Tracks using a graphical window-based interface, and including all the standard primitive groups, plus the turtle graphics primitives. The graphical interface also supports editing through the EDIT command, or through menu commands. See Using the graphical environment for more details on running the graphical version of Turtle Tracks.

If you are running Mac OS Runtime for Java, you can also download a standalone double-clickable application that automatically runs the graphical interface. This installation requires no classpath modification, because all the Java code for the program is embedded within the application itself.

Using virtuoso.logo.app.Run

Turtle Tracks also provides a general tool for specifying custom-built sets of primitives, custom plug-in user interfaces, and other advanced options. This tool can be used by invoking the class virtuoso.logo.app.Run. The general form for this is as follows:

java virtuoso.logo.app.Run [switches]

Using the switches, you can specify exactly which plug-ins to use. For example, to run the command-line interface with only the core standard primitives and classloading primitives (but no networking, files, threads, or the like), you could invoke:

java virtuoso.logo.app.Run -c virtuoso.logo.app.CliConsole -p virtuoso.logo.lib.StandardPrimitives virutoso.logo.lib.LoaderPrimitives

Here is a list of the different switches that can be used:

· -c consoleclass
Specifies a console (user interface) class to use. The -c switch should be followed immediately by a fully-qualified class name. If no -c switch is present, Run chooses virtuoso.logo.app.CliConsole by default. If multiple -c switches are used, Run chooses the last console specified.

· -p primitiveclass [primitiveclass2...]
Specifies a primitive group class to use. The -p switch should be followed immediately by any number of fully-qualified class names. All primitive groups specified are added to the interpreter's primitive set.

· -std
Specifies all the standard primitive classes: virtuoso.logo.lib.StandardPrimitives, virtuoso.logo.lib.FilePrimitives, virtuoso.logo.lib.NetworkPrimitives, virtuoso.logo.lib.ThreadPrimitives, virtuoso.logo.lib.ShellPrimitives, virtuoso.logo.lib.LoaderPrimitives and virtuoso.logo.lib.LibraryPrimitives
-std is essentially shorthand for invoking -p followed by all the above class names.

The virtuoso.logo.app.Cli and virtuoso.logo.app.Gui classes described above are shortcuts for some common configurations. Cli is exactly the same as:

java virtuoso.logo.app.Run -c virtuoso.logo.app.CliConsole -std

Gui is exactly the same as:

java virtuoso.logo.app.Run -c virtuoso.logo.app.GuiConsole -std -p virtuoso.logo.lib.TurtlePrimitives

Daniel Azuma (dazuma@kagi.com)
Last updated 11 December 1997

Running the graphical environment

See also: Running Turtle Tracks

Note: this section of the manual not yet completed.

Daniel Azuma (dazuma@kagi.com)
Last updated 11 December 1997

The Turtle Tracks implementation of Logo

· Language concepts

· Parsing, operators and precedence

· Key features

· Runtime environment

Turtle Tracks is a unique implementation of Logo, built entirely using the Java language and platform. This chapter describes the Logo language specification and key language concepts, and the details of the Turtle Tracks implementation of Logo, including tokenizing and parsing, command semantics, and the runtime model.

	Language concepts

Lisp background

Logo is a derivative and distant cousin of the Lisp programming language. Like Lisp, it employs no static type checking., and its data structures consist of string atoms and typeless lists. Logo programs are structured as collections of functions which interact with call-by-value semantics. State is represented in the form of symbols that can be bound to functions, immutable data, and several other elements of the environment. All data is referenced through pointer semantics, and a garbage collector reclaims unused space.

Unlike most languages in the Lisp family, however, Logo uses dynamic scoping, and Logo functions are not first-class. Because of this, Logo is often considered a hybrid functional/imperative language. Logo also includes a large library of primitive functions, including more powerful list-manipulation functions than are typically offered by implementations of Common Lisp or Scheme. In addition, Logo syntax differs from most variants of Lisp in several key areas. First, list boundaries are denoted by square brackets instead of parens, and do not delimit separate function calls. Also, Logo syntax supports several infix operators for use in mathematical expressions. Some implementations of Logo, including Turtle Tracks, add additional features such as exception handling, threads, streams, and property lists.

Data structures

Two types of logo data structures exist: words and lists. A word, analogous to an atom in other Lisp derivatives, is represented by a single string. A list is an ordered collection of other Logo data structures, which can include words and other lists. Primitive functions exist for list manipulation, including accessing the elements on both ends of a list.

A Logo word is represented by a string, delimited by white space or by square brackets. Delimiting characters or certain escape characters may be represented using backslashes. In addition, a special character, the vertical bar, may be used to escape an entire sequence of characters. Here are a few examples of Logo words:

· MAKE

· "Hello!!!

· This\ is| a long string...|\|| |
(represents the string "This is a long string...| ") what is then the meaning of the back and the vertical slashes?
A Logo list is a collection of data, separated by white space, and enclosed in square brackets. Here are a few examples of lists

· [Hello world]
(represents a list of two elements)

· [[This is a list] within a list]
(represents a list of four elements, the first of which is another list)

· [|This list| |has only two elements|]
(represents a list of two elements, both of which are words)

· []
(represents the empty list)

Names

A name is a triple consisting of an identifying word, a value (which may be a word or a list), and a scope. Names may be bound and unbound using primitives in the Logo language. The scope of a name is defined by the syntactic manner in which it is bound, and the runtime environment in which it is bound. The value corresponding to a name may be retrieved using Logo primitives.

Scope in Logo is dynamic. That is, a stack is kept at runtime, each element of which contains one level of scope. When a name is bound, unbound, or accessed, its identifier is searched for starting from the top scope in the stack, and working down towards the bottom scope in the stack, which is called the global scope. The first instance of the identifier found in this manner is used. The global scope is always present; higher scopes, called local scopes, are added and removed by function invocations.

Functions

A function is a mapping from an ordered list of pieces of data, called arguments, to a single piece of data, called the return value or result. When a function is invoked, it gains and keeps control of the machine until it has completed calculating the return value.

Two orthogonal classifications of functions exist. The first is normal versus macro. These differ in their behavior with respect to "stop" exceptions, which direct function termination and report return values. The other classification is named versus anonymous. Named functions are defined as those that are parts of procedures, where a procedure is a pair consisting of an identifying name and a function. Functions which are not named functions are called anonymous functions, also sometimes called "lambda expressions."

Associated with each function is a nonnegative integer value, the default number of arguments. This number is used when a function is in a command list, to assist in parsing its arguments.

Commands

A command is an object which performs some computation when it is invoked, possibly producing side effects, and generates a return value. A command may be a data constant, or a procedure with its arguments. A word constant command is represented by a word consisting of a quote (") followed by the representation of the data itself. If the word is numeric, the quote may be omitted. A list constant command is simply represented by the list representation. A procedure command is represented by a left paren, followed by the procedure's name, followed by its arguments in order, followed by a right paren. If, however, the function is being passed its default number of arguments, then both parens may be (and usually are) omitted.

The semantics of the invocation of a command are as follows: If the command is a constant, then its return value is the value of that constant. If the command is a procedure, then its arguments are evaluated by first invoking those commands. The return values thereof are then given to the procedure's function as its arguments, and control of the machine is given to the function. The return value of the command is the return value generated by the function after it halts. If the function does not generate a return value, then the command does not generate a return value.

Command lists

A command list, sometimes called an executable list, is a list containing an ordered series of commands. The following are examples of command lists:

· ["hello]
(One command: a word constant.)

· [print "hello]
(One command: a named function followed by one argument: a word constant.)

· [print "hello [hello world]]
(Two commands: a named function with one argument, and a list constant. The named function, print, has a default number of arguments value of 1.)

· [(print "hello [hello world])]
(One command: a named function with two arguments.)

· [print sqrt 30]
(One command: a function with one argument: a function with a word constant as an argument.)

· [print sqrt 30 make "a "b]
(Two commands, both functions. The first function has a default number of arguments of 1; the second has a default number of arguments of 2.)

· []
(The empty command list: no commands.)

The semantics of the execution of a command list are as follows: all commands in the list are invoked in order. The return value of the command list is the return value of the first command that generates a return value. If no command in the list generates a return value, the command list generates no return value. If more than one command generates a return value, the semantics of the command list are to raise an "error" exception upon the generation of the second return value.

Lambda lists

A lambda list is a list describing an anonymous function. It contains a formal argument list and a command list. The formal argument list must be a list of words, which are interpreted as name identifiers. There are two classifications of lambda lists: normal lambda lists and macro lambda lists. A normal lambda list contains two elements: the first being the formal argument list, and the second being the command list. A macro lambda list contains at least one element: the first being the formal argument list, and the rest of the elements comprising the command list.

Here are examples of lambda lists:

· [[x][output :x*:x]]
(Normal lambda list with one formal argument.)

· [[x] :x*:x]
(Macro lambda list with one formal argument.)

· [[]]
(Empty macro lambda list with no arguments.)

The semantics of the invocation of a lambda list are as follows: First, a new scope is created on top of the scope stack. Next, the formal argument names are bound in this new scope to the arguments passed into the function. Then, the command list is executed, and a return value is generated. Once the command list has completed execution, either by finishing the invocation of all its commands or by having an exception thrown out of it, the new scope is removed. Lambda lists are often invoked by the execution of the primitive APPLY, but may be invoked in other ways.

The means by which a return value is generated depends on the type of function-- i.e. the type of lambda list. If the lambda list is a macro lambda list, then the return value is the return value of the command list. If, however, the lambda list is a normal lambda list, then the return value is the value associated with any "stop" exception thrown out of the command list. If the command list does not throw a "stop" exception, or it throws a "stop" exception without an associated value, then no return value is generated. "Stop" exceptions are generally thrown by the invocation of the primitives STOP or OUTPUT.

Procedures

Two types of procedures exist: user-defined procedures and primitives. A primitive is a procedure that is implemented in Java and cannot be generated, modified or removed from within the Logo runtime environment (with certain exceptions). A user-defined procedure consists of an identifying word, a list of formal argument names, and a text string describing the procedure. This text string is parsed into a command list upon invocation of the procedure. User-defined procedures can be modified and manipulated from within the Logo runtime environment, through primitives such as DEFINE and TEXT, and the special forms TO and TOMACRO.

The semantics of invoking a user-defined procedure are the same as the semantics of invoking a lambda list. A scope is created, and the formal arguments are bound, the command list is executed, a return value is optionally generated, and the scope is destroyed. User-defined procedures may also be classified into normal and macro procedures, with semantic differences analogous to the corresponding lambda lists.

Exceptions

An exception is a pair consisting of an identifying word called the id, and an optional piece of data called the value. Two operations on exceptions are possible: throwing and catching.

Exception semantics are as follows: An exception is thrown by a command. The exception propogates up the evaluation tree until it is caught, or until the execution has reached the top level. When an exception is caught, it is prevented from propogating further, and its parts may optionally be processed.

There are three types of exceptions: error exceptions, stop exceptions, and user-defined exceptions. Error exceptions are usually thrown by commands when they encounter an unexpected condition such as a runtime type error. If they are not caught, they typically cause execution to terminate with an error message. Stop exceptions are thrown by the STOP and OUTPUT primitive. A stop exception is caught automatically once it attempts to propogate out of a normal (non-macro) function. Stop and error exceptions are usually not explicitly caught by a Logo program. The third type, user-defined exceptions, are thrown by the THROW primitive and are usually caught explicitly by the program using the TRY or CATCH primitives.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/implement.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/implement.html" \l "top"
Top

	Parsing, operators and precedence

This section of the manual not completed.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/implement.html - topPRIVATE "TYPE=PICT;ALT=*"Top

	Key features

This section of the manual not completed.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/implement.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/implement.html" \l "top"
Top

	Runtime environment

The Turtle Tracks environment is unique because it was designed from the ground up to run atop the Java runtime environment. Because of this, it supports some features and abilities that are uncommon among more traditional Logo implementations, and it also suffers a few drawbacks related to its dependence on Java. In addition, several key differences exist between Turtle Tracks and traditional Logo runtimes.

Threaded operation

All operations in Turtle Tracks are run in Java threads. In particular, when a direct command is entered from the console, a new thread named ".MAIN" is created for it, even if the command itself does not involve threading. This provides a high degree of flexibility and responsiveness in the user interface and allows instant and clean interruption of running command lists. However, because of this, some aspects of the operation of Turtle Tracks may be slightly dependent on the thread implemenetation of the Java runtime and/or the underlying operating system. Some runtimes may limit the number of threads that may be run simultaneously, and some runtimes may exhibit various levels of decreased interactivity while a Logo command is being run due to idiosyncracies in thread time sharing. A few Java runtimes may contain bugs that cause instability at high levels of thread activity. Consult the technical documentation for your Java VM for further details.

Runtime linking

Java programs are linked at runtime instead of at compile time like most language systems. This dynamic linking opens the door for powerful extension features, and Turtle Tracks takes advantage of this by providing a plug-in primitive group architecture. In addition to the standard set of primitives provided, external primitive sets can be loaded and linked in or unloaded at will using the LOADPRIMITIVES and UNLOADPRIMITIVES commands, providing a powerful opportunity for customization. An API, described in the Turtle Tracks Java Programmers Guide (not yet available), allows Java programmers to create custom primitive sets for use with Turtle Tracks, and even supports embedding the entire Turtle Tracks engine within an external Java program.

Dynamic memory allocation

Most traditional implementations of Logo preallocate a fixed number of "nodes" for use as list nodes. Turtle Tracks instead uses a dynamic memory allocation model based on Java's memory model and garbage collection system. Words and lists may be of any arbitrary length, and the number of available nodes is limited only by the system resources allocated to the Java VM. This was done to improve cross-platform capability on Java VMs that may provide different amounts of system resources to the running program, to improve flexibility in word lengths, and to provide maximum garbage collection performance by using the native garbage collection facilities of the Java VM. Because of this, the traditionial NODES primitive is meaningless and not implemented. Turtle Tracks does, however, provide a GC primitive which invokes the garbage collector of the host Java VM.

Lists and arrays combined

Turtle Tracks lists are actually implemented as arrays. Because array copies are native methods in Java, manipulating the beginning of a long array is usually as fast or nearly as fast as manipulating the beginning of a long list. Thus, to simplify the language implementation, lists are implemented as arrays, and arrays are not included as a separate data type. This also has several beneficial side effects, among them being that the ITEM primitive is of constant order when given a list as the parameter.

Note: this section of the manual not yet completed.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/implement.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/implement.html" \l "top"
Top

Daniel Azuma (dazuma@kagi.com)
Last updated 6 December 1997

Standard Commands

Data structures

· Constructors

· Selectors

· Queries

· String Manipulation

Unless otherwise indicated, all these primitives are in virtuoso.logo.lib.StandardPrimitives.

	Constructors

Logo data structures are in the form of words and lists. These commands are some common ways of creating these data structures.

WORD expr1 expr2
(WORD expr1 ...)

WORD concatenates the given arguments, which should be words, into a single word and returns the result. If an argument is a list, WORD throws an error.

Example:
? PRINT WORD "abra "cadabra
abracadabra

LIST expr1 expr2
(LIST expr1 ...)

LIST creates a new list in which the given arguments are the members. The arguments can be either words or lists.

Example:
? PRINT LIST "abra "cadabra
abra cadabra
? PRINT (LIST "This "is [a list])
This is [a list]

SENTENCE expr1 expr2
SE expr1 expr2
(SENTENCE expr1 ...)
(SE expr1 ...)

SENTENCE creates a new list by concatenating the arguments. If an argument is a word, it becomes a member of the new list. If an argument is a list, its members become members of the new list.

Example:
? PRINT SENTENCE "abra "cadabra
abra cadabra
? PRINT (SENTENCE "This "is [a sentence])
This is a sentence
? PRINT (SENTENCE "This "is [[yet another] sentence])
This is [yet another] sentence

FPUT expr list

FPUT creates a new list in which the first argument is the first element, and the members of the second argument are the remaining elements. If the second argument is not a list, FPUT throws an error.

Example:
? PRINT FPUT "Logo [is a cool language]
Logo is a cool language
? PRINT FPUT [Logo] [is a [cool] language]
[Logo] is a [cool] language

LPUT expr list

LPUT creates a new list in which the first argument is the last element, and the members of the second argument are the remaining elements. If the second argument is not a list, LPUT throws an error.

Example:
? PRINT LPUT "Logo [Cool people program in]
Cool people program in Logo
? PRINT LPUT [Turtle Tracks] [Cool people program using]
Cool people program using [Turtle Tracks]

PARSE word

PARSE parses the given word as a list and returns the new list. If the given expression is not a word, or if it is badly formatted, PARSE throws an error.

Example:
? MAKE "x PARSE "|Hello world, [This is][a list]|
? SHOW :x
[Hello world, [This is] [a list]]
? PRINT LENGTH :x
4

	PRIVATE
virtuoso.logo.lib.LibraryPrimitives

QSORT list lambda

QSORT sorts the given list using the QuickSort algorithm, and using the second argument as a comparison function. The second argument should be a function which returns "TRUE if its first argument should be placed before its second argument, or "FALSE otherwise. The lambda may either be a lambda list or a procedure or primitive name. Typically, it should be one of the primitive names "BEFOREP or "LESSP. If the first argument to QSORT is not a list, or its second argument is not a lambda that takes two arguments, QSORT throws an error.

Example:
? SHOW QSORT [Turtle Tracks includes powerful list primitives] "BEFOREP
[includes list powerful primitives Tracks Turtle]
? SHOW QSORT [3 1 4 1 5 9] "LESSP
[1 1 3 4 5 9]
? SHOW QSORT [3 1 4 1 5 9] "GREATERP
[9 5 4 3 1 1]
? SHOW QSORT [1 2 4 8 16 32] "BEFOREP
[1 16 2 32 4 8]

	PRIVATE
virtuoso.logo.lib.LibraryPrimitives

GENSYM

GENSYM generates and returns a unique symbol of the form ".n" where n is a unique positive integer.

Example:
? PRINT GENSYM
.1
? PRINT GENSYM
.2

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_data.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_data.html" \l "top"
Top

	Selectors

Logo provides a number of list manipulation commands, with which you can parse and extract parts of words and lists.

FIRST expr

FIRST returns the first element of the given argument, if it is a list, or the first character, if it is a word. If the list or word is empty, FIRST will throw an error.

Example:
? PRINT FIRST "turtle
t
? PRINT FIRST [[The first element] is a list]
The first element

LAST expr

LAST returns the last element of the given argument, if it is a list, or the first character, if it is a word. If the argument is empty, LAST will throw an error.

Example:
? PRINT LAST "turtle
e
? PRINT LAST [Logo is fun]
fun

BUTFIRST expr
BF expr

BUTFIRST returns the the given argument with FIRST removed. If the argument is empty, BUTFIRST will throw an error. BUTFIRST can be abbreviated BF.

Example:
? PRINT BUTFIRST "turtle
urtle
? PRINT BUTFIRST [[The first element] is a list]
is a list

BUTLAST expr
BL expr

BUTLAST returns the the given argument with LAST removed. If the argument is empty, BUTLAST will throw an error. BUTLAST can be abbreviated BL.

Example:
? PRINT BUTLAST "turtle
turtl
? PRINT BUTLAST [Logo is fun]
Logo is

ITEM num expr

ITEM returns the num'th element of the second argument. Num must be an integer. If the second argument is a list, ITEM returns the num'th element of the list. If the second argument is a word, ITEM returns the num'th character of the word. If num is not an integer, or if num is less than 1 or greater than the number of elements in the second argument, ITEM will throw an error.

Example:
? PRINT ITEM 3 "turtle
r
? PRINT ITEM 4 [Turtle Tracks has many advanced features]
many

	PRIVATE
virtuoso.logo.lib.LibraryPrimitives

PICK expr

PICK chooses and returns a random element of the given argument. If the argument is a list, PICK returns a randomly-chosen element of the list. If the argument is a word, PICK returns a randomly-chosen character of the word. If the argument is the empty list or the empty word, PICK will throw an error.

Example:
? PRINT PICK "turtle
u
? PRINT PICK "turtle
t
? PRINT PICK [Turtle Tracks has many advanced features]
advanced

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_data.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_data.html" \l "top"
Top

	Queries

Using these commands, you can gather information about logo data structures.

LENGTH expr

LENGTH returns the length of the given argument. If the argument is a word, LENGTH returns the number of characters it contains. If the argument is a list, LENGTH returns the number of elements it contains.

Example:
? PRINT LENGTH "abracadabra
11
? PRINT LENGTH [[The first element] is a list]
4

EMPTYP expr

EMPTYP returns "TRUE if the argument is the empty word or the empty list, or "FALSE if it is not.

Example:
? PRINT EMPTYP "
TRUE
? PRINT EMPTYP []
TRUE
? PRINT EMPTYP (LIST ")
FALSE

WORD? expr
WORDP expr

WORD? returns "TRUE if the argument is a word, or "FALSE if it is a list.

Example:
? PRINT WORD? "abracadabra
TRUE
? PRINT WORD? [abracadabra]
FALSE

LIST? expr
LISTP expr

LIST? returns "TRUE if the argument is a list, or "FALSE if it is a word.

Example:
? PRINT LIST? [abracadabra]
TRUE
? PRINT LIST? "abracadabra
FALSE

NUMBER? expr
NUMBERP expr

NUMBER? returns "TRUE if the argument is a number, or "FALSE if it is a list or a non-numeric word.

Example:
? PRINT NUMBER? 3.5
TRUE
? PRINT NUMBER? "three
FALSE
? PRINT NUMBER? [3.5]
FALSE

MEMBER? expr list
MEMBERP expr list

MEMBER? returns "TRUE if the first argument is a member of the second argument, or "FALSE if it is not. If the second argument is not a list, MEMBER? will throw an error.

Example:
? PRINT MEMBER? "Logo [Anyone can program in Logo]
TRUE
? PRINT MEMBER? "Logo [Anyone can program in [Logo]]
FALSE

IGNORE expr

IGNORE takes one argument and does nothing with it. This can be useful if a primitive or procedure you must call returns some output that you don't need.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_data.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_data.html" \l "top"
Top

	String Manipulation

Using these commands, you can manipulate words as strings.

BEFORE? word1 word2
BEFOREP word1 word2

BEFORE? returns "TRUE if the first argument comes before the second in lexical order. Case is ignored, so "apple comes before "BANANA. If either argument is not a word, BEFORE? throws an error.

Example:
? PRINT BEFORE? "apple "BANANA
TRUE
? PRINT BEFORE? 3 10
FALSE

ASCII char

ASCII returns the ascii value of the given character as an integer. If the input is a list, or if it is a word whose length is not 1, ASCII will throw an error.

Example:
? PRINT ASCII "a
97
? PRINT ASCII "A
65

CHAR integer

CHAR returns a character whose ascii value is the given integer. If the input is not an integer, CHAR will throw an error.

Example:
? PRINT CHAR 113
q

UPPERCASE word

UPPERCASE returns the given argument with all letters converted to upper case. If the argument is not a word, UPPERCASE throws an error.

Example:
? PRINT UPPERCASE "Hello123
HELLO123

LOWERCASE word

LOWERCASE returns the given argument with all letters converted to lower case. If the argument is not a word, LOWERCASE throws an error.

Example:
? PRINT LOWERCASE "Hello123
hello123

Daniel Azuma (dazuma@kagi.com)
Last updated 3 February 1999

Flow Control

· Executor Structures

· Mapping Structures

· Conditional Structures

· Loop Structures

· Threads

· Error Handling

· Jumps

Unless otherwise indicated, all these primitives are in virtuoso.logo.lib.StandardPrimitives.

	Executor Structures

Executors take a list as an argument, interpret it as a command list or a lambda list, and execute it.

RUN cmdlist

RUN parses the given list as a sequence of Logo commands, and executes them. If the command list evaluates to a value, RUN returns that value, otherwise it returns nothing. If the argument is not a list, if the list cannot be parsed as a valid sequence of Logo commands, or if an error occurs while running the list, RUN throws an error.

Example:
? RUN [PRINT 4+5]
9
? PRINT RUN [4+5]
9

RUNRESULT cmdlist

RUNRESULT parses the given list as a sequence of Logo commands, and executes them. If the command list returns a value, RUNRESULT returns a list with that value as the single element, otherwise it returns the empty list. If the argument is not a list, if the list cannot be parsed as a valid sequence of Logo commands, or if an error occurs while running the list, RUNRESULT throws an error.

Example:
? SHOW RUNRESULT [4+5]
[9]
? SHOW RUNRESULT [PRINT 4+5]
9
[]

APPLY lambda argslist

APPLY parses the given list as a lambda list, and executes it, creating a local scope and binding the formal arguments with the values given in the argslist. It returns the result of the invocation, or nothing if the lambda returns nothing. If the first argument is a normal lambda list, it executes it as a normal procedure-- that is, you must use the OUTPUT command to return a value, or the STOP command to exit in the middle without returning a value. If the first argument is a macro lambda list, it executes as a macro procedure-- that is, it evaluates directly, and if you call STOP or OUTPUT, it will exit the enclosing procedure. If the first argument is a word, it is interpreted as a procedure name, and that procedure is invoked. The second argument should be a list, whose elements are treated as the arguments to the function invocation. If the second argument is not a list, or the number of elements in the list given does not match the number of formal arguments in the lambda, APPLY throws an error.

Example:
? MAKE "dist [[x y] [OUTPUT SQRT :x*:x+:y*:y]]
? PRINT APPLY :dist [3 4]
5
? MAKE "baddist [[x y] [SQRT :x*:x+:y*:y]]
? PRINT APPLY :baddist [3 4]
I don't know what to do with 5
... while executing APPLY
? MAKE "macrodist [[x y] SQRT :x*:x+:y*:y]
? PRINT APPLY :macrodist [3 4]
5
? MAKE "badmacrodist [[x y] OUTPUT SQRT :x*:x+:y*:y]
? PRINT APPLY :badmacrodist [3 4]
Can use STOP or OUTPUT only inside a procedure

APPLYRESULT lambda argslist

APPLYRESULT parses the first argument as a lambda list, and executes it, creating a local scope and binding the formal arguments with the values given in the argslist. It returns a list containing the result of the invocation as the single element, or the empty list if the lambda returns nothing. If the first argument is a normal lambda list, it executes it as a normal procedure-- that is, you must use the OUTPUT command to return a value, or the STOP command to exit in the middle without returning a value. If the first argument is a macro lambda list, it executes as a macro procedure-- that is, it evaluates directly, and if you call STOP or OUTPUT, it will exit the enclosing procedure. If the first argument is a word, it is interpreted as a procedure name, and that procedure is invoked. The second argument should be a list, whose elements are treated as the arguments to the function invocation. If the second argument is not a list, or the number of elements in the list given does not match the number of formal arguments in the lambda, APPLYRESULT throws an error.

Example:
? MAKE "dist [[x y] [OUTPUT SQRT :x*:x+:y*:y]]
? SHOW APPLYRESULT :dist [3 4]
[5]
? MAKE "dist2 [[x y] [PRINT SQRT :x*:x+:y*:y]]
? SHOW APPLYRESULT :dist2 [3 4]
5
[]
? SHOW APPLYRESULT "product [1 2 3 4 5]
[120]

INVOKE lambda arg
(INVOKE lambda arg1 arg2 ...)

INVOKE parses the given list as a lambda list, and executes it, creating a local scope and binding the formal arguments with the values given. It returns the result of the invocation, or nothing if the lambda returns nothing. If the first argument is a normal lambda list, it executes it as a normal procedure-- that is, you must use the OUTPUT command to return a value, or the STOP command to exit in the middle without returning a value. If the first argument is a macro lambda list, it executes as a macro procedure-- that is, it evaluates directly, and if you call STOP or OUTPUT, it will exit the enclosing procedure. If the first argument is a word, it is interpreted as a procedure name, and that procedure is invoked. If the number of arguments given does not match the number of formal arguments in the lambda, INVOKE throws an error.

Example:
? MAKE "dist [[x y] [OUTPUT SQRT :x*:x+:y*:y]]
? PRINT (INVOKE :dist 3 4)
5
? MAKE "baddist [[x y] [SQRT :x*:x+:y*:y]]
? PRINT INVOKE :baddist [3 4]
I don't know what to do with 5
... while executing INVOKE
? MAKE "macrodist [[x y] SQRT :x*:x+:y*:y]
? PRINT INVOKE :macrodist [3 4]
5
? MAKE "badmacrodist [[x y] OUTPUT SQRT :x*:x+:y*:y]
? PRINT INVOKE :badmacrodist [3 4]
Can use STOP or OUTPUT only inside a procedure

INVOKERESULT lambda arg
(INVOKERESULT lambda arg1 arg2 ...)

INVOKERESULT parses the first argument as a lambda list, and executes it, creating a local scope and binding the formal arguments with the values given. It returns a list containing the result of the invocation as the single element, or the empty list if the lambda returns nothing. If the first argument is a normal lambda list, it executes it as a normal procedure-- that is, you must use the OUTPUT command to return a value, or the STOP command to exit in the middle without returning a value. If the first argument is a macro lambda list, it executes as a macro procedure-- that is, it evaluates directly, and if you call STOP or OUTPUT, it will exit the enclosing procedure. If the first argument is a word, it is interpreted as a procedure name, and that procedure is invoked. If the number of arguments given does not match the number of formal arguments in the lambda, INVOKERESULT throws an error.

Example:
? MAKE "dist [[x y] [OUTPUT SQRT :x*:x+:y*:y]]
? SHOW (INVOKERESULT :dist 3 4)
[5]
? MAKE "dist2 [[x y] [PRINT SQRT :x*:x+:y*:y]]
? SHOW (INVOKERESULT :dist2 3 4)
5
[]
? SHOW (INVOKERESULT "product 1 2 3 4 5)
[120]

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_flow.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_flow.html" \l "top"
Top

	Mapping Structures

	PRIVATE
virtuoso.logo.lib.LibraryPrimitives

MAP lambda argslist
(MAP lambda argslist1 argslist2 ...)

MAP parses the first argument as a lambda list, and executes it for each of the arguments given in the argument lists, creating a local scope and binding the formal arguments with the values given. It returns a list containing results of the invocation on each of the elements of the argument lists. If the first argument is a normal lambda list, it executes it as a normal procedure-- that is, you must use the OUTPUT command to return a value, or the STOP command to exit in the middle without returning a value. If the first argument is a macro lambda list, it executes as a macro procedure-- that is, it evaluates directly, and if you call STOP or OUTPUT, it will exit the enclosing procedure. If the first argument is a word, it is interpreted as a procedure name, and that procedure is invoked. If an invocation of the lambda does not return a value, that invocation is ignored during construction of the return list (i.e. the list returned from MAP is shorter.) If the number of argument lists given does not match the number of formal arguments in the lambda, the argument lists are not all of the same length, or the first argument is a procedure name that is not defined, MAP throws an error.

Example:
? SHOW MAP [[x] [OUTPUT 2*:x]] [3 -5 1]
[6 -10 2]
? SHOW (MAP [[x y] SQRT :x*:x+:y*:y] [3 5 1] [4 12 1])
[5 13 1.4142135623730951]
? SHOW MAP "uppercase [Logo is FUN]
[LOGO IS FUN]
? SHOW (MAP [[x] if number? :x [:x]] [43 six 3.4 [55] -4.5e2])
[43 3.4 -450]

	PRIVATE
virtuoso.logo.lib.LibraryPrimitives

FOREACH argslist lambda
(FOREACH argslist1 argslist2 ... lambda)

FOREACH parses the last argument as a lambda list, and executes it for each of the arguments given in the argument lists, creating a local scope and binding the formal arguments with the values given. It does not return anything. If the first argument is a normal lambda list, it executes it as a normal procedure-- that is, you must use the OUTPUT command to return a value, or the STOP command to exit in the middle without returning a value. If the first argument is a macro lambda list, it executes as a macro procedure-- that is, it evaluates directly, and if you call STOP or OUTPUT, it will exit the enclosing procedure. If the first argument is a word, it is interpreted as a procedure name, and that procedure is invoked. If the number of argument lists given does not match the number of formal arguments in the lambda, the argument lists are not all of the same length, the last argument is a procedure name that is not defined, or the function returns a value, FOREACH throws an error.

Example:
? FOREACH [3 -5 1] [[x] [PRINT 2*:x]]
6
-10
2
? FOREACH SHELL [ls] "print
animals.logo
logotelnet.logo
mandel.logo
threads.logo
torus.logo
Note: The above output was generated on a unix-based platform. The exact behavior of the SHELL primitive is undefined and platform-dependent.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_flow.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_flow.html" \l "top"
Top

	Conditional Structures

Conditionals conditionally execute a runnable list. Like RUN, conditionals typically return the value of the list expression that was executed, or no value if the expression doesn't evaluate to a value.

IF expr cmdlist

IF first evaluates the given expression. If it evaluates to "TRUE, the given list is then parsed as a sequence of Logo commands and executed, otherwise the given list is ignored. IF never returns a value, even if the command list is executed and evaluates to a value. If expr does not evaluate to "TRUE or "FALSE, a non-list is given as an input, or if the list cannot be parsed as a valid sequence of Logo commands, or if an error occurs while running the list, IF throws an error.

Example:
? IF 1=1 [PRINT "Yes]
Yes
? IF 1=2 [PRINT "Whoops]

IFELSE expr cmdlist1 cmdlist2
(IF expr cmdlist1 cmdlist2)

IFELSE first evaluates the given expression. If it evaluates to "TRUE, list1 is then parsed as a sequence of Logo commands and executed, otherwise list2 is executed. If the executed list evaluates to a value, then IFELSE returns that value. If expr does not evaluate to "TRUE or "FALSE, a non-list is given as an input, or if the list cannot be parsed as a valid sequence of Logo commands, or if an error occurs while running the list, IFELSE throws an error. Note that IF can also behave in the same way as IFELSE by enclosing it in parentheses.

Example:
? IFELSE 1=1 [PRINT "Yes] [PRINT "Whoops]
Yes
? IFELSE 1=2 [PRINT "Whoops] [PRINT "No]
No
? PRINT IFELSE 1=2 [1+1] [2+2]
4

TEST expr

TEST sets the current test value, which is used in subsequent IFTRUE and IFFALSE commands. If the given expression evaluates to "TRUE then the test value is set to true. If the given expression evaluates to "FALSE then the test value is set to false. If the given expression does not evaluate to "TRUE or "FALSE then TEST throws an error.

IFTRUE cmdlist
IFT cmdlist

If the current test value set by TEST is true, the given list is parsed as a sequence of Logo commands and executed, otherwise the given list is ignored. IFTRUE never returns a value, even if the command list is executed and evaluates to a value. If there is no current test value, a non-list is given as an input, or if the list cannot be parsed as a valid sequence of Logo commands, or if an error occurs while running the list, IFTRUE throws an error.

Example:
? RUN [TEST 1+1=2 IFTRUE [PRINT "Yes]]
Yes

IFFALSE cmdlist
IFF cmdlist

If the current test value set by TEST is false, the given list is parsed as a sequence of Logo commands and executed, otherwise the given list is ignored. IFFALSE never returns a value, even if the command list is executed and evaluates to a value. If there is no current test value, a non-list is given as an input, or if the list cannot be parsed as a valid sequence of Logo commands, or if an error occurs while running the list, IFFALSE throws an error.

Example:
? RUN [TEST 1+1=3 IFFALSE [PRINT "No] IFTRUE [PRINT "Whoops]]
No

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_flow.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_flow.html" \l "top"
Top

	Loop Structures

Loop primitives can execute a set of commands repeatedly.

REPEAT integer cmdlist

The given list is parsed as a sequence of Logo commands and executed the number of times specified by the given integer. REPEAT never returns a value, even if the command list evaluates to a value. If the first input is not a valid integer, a non-list is given as the second input, the list cannot be parsed as a valid sequence of Logo commands, or if an error occurs while running the list, REPEAT throws an error.

Example:
? REPEAT 3 [PRINT "Hello]
Hello
Hello
Hello

REPCOUNT

REPCOUNT evaluates to the current iteration number in the innermost repeat loop. If invoked while not inside a repeat loop, REPCOUNT returns -1.

Example:
? REPEAT 2 [REPEAT 3 [PRINT REPCOUNT]]
1
2
3
1
2
3
? MAKE "x 1 WHILE [:x<3] [PRINT REPCOUNT MAKE "x :x+1]
-1
-1
-1

	PRIVATE
virtuoso.logo.lib.LibraryPrimitives

WHILE condlist cmdlist

The given condlist is parsed as a sequence of Logo commands. It must evaluate to a boolean value. As long as the condlist evaluates to true, the given cmdlist is parsed as a sequence of Logo commands and repeatedly executed. The cmdlist should not evaluate to a value. The condlist is evaluated first, so it is possible that the cmdlist will never execute. WHILE never returns a value. If either list cannot be parsed as a valid sequence of Logo commands, or if an error occurs while running either list, WHILE throws an error.

Example:
? MAKE "x 1 WHILE [:x<10] [PRINT :x MAKE "x :x*2]
1
2
4
8
? MAKE "x 1 WHILE [:x>10] [PRINT :x MAKE "x :x*2]

	PRIVATE
virtuoso.logo.lib.LibraryPrimitives

UNTIL condlist cmdlist

The given condlist is parsed as a sequence of Logo commands. It must evaluate to a boolean value. Until the condlist evaluates to true, the given cmdlist is parsed as a sequence of Logo commands and repeatedly executed. The cmdlist should not evaluate to a value. The condlist is evaluated first, so it is possible that the cmdlist will never execute. UNTIL never returns a value. If either list cannot be parsed as a valid sequence of Logo commands, or if an error occurs while running either list, UNTIL throws an error.

Example:
? MAKE "x 1 UNTIL [:x<10] [PRINT :x MAKE "x :x*2]
? MAKE "x 1 UNTIL [:x>10] [PRINT :x MAKE "x :x*2]
1
2
4
8

	PRIVATE
virtuoso.logo.lib.LibraryPrimitives

DO.WHILE cmdlist condlist

The given condlist is parsed as a sequence of Logo commands. It must evaluate to a boolean value. As long as the condlist evaluates to true, the given cmdlist is parsed as a sequence of Logo commands and repeatedly executed. The cmdlist should not evaluate to a value. The cmdlist is evaluated first, so it will always execute at least once. DO.WHILE never returns a value. If either list cannot be parsed as a valid sequence of Logo commands, or if an error occurs while running either list, DO.WHILE throws an error.

Example:
? MAKE "x 1 DO.WHILE [PRINT :x MAKE "x :x*2] [:x>10]
1
? MAKE "x 1 DO.WHILE [PRINT :x MAKE "x :x*2] [:x<10]
1
2
4
8

	PRIVATE
virtuoso.logo.lib.LibraryPrimitives

DO.UNTIL cmdlist condlist

The given condlist is parsed as a sequence of Logo commands. It must evaluate to a boolean value. Until the condlist evaluates to true, the given cmdlist is parsed as a sequence of Logo commands and repeatedly executed. The cmdlist should not evaluate to a value. The cmdlist is evaluated first, so it will always execute at least once. DO.UNTIL never returns a value. If either list cannot be parsed as a valid sequence of Logo commands, or if an error occurs while running either list, DO.UNTIL throws an error.

Example:
? MAKE "x 1 DO.UNTIL [PRINT :x MAKE "x :x*2] [:x>10]
1
2
4
8
? MAKE "x 1 DO.UNTIL [PRINT :x MAKE "x :x*2] [:x<10]
1

	PRIVATE
virtuoso.logo.lib.LibraryPrimitives

FOR controllist cmdlist

The given control list should be of the form [varname start end step]. A new symbol level is created on the stack, and the given varname is declared local and set to start. As long as the variable has not gone past end, the given cmdlist is run, and then the variable is changed by step. If there are only three elements in the control list, the step is assumed to be 1. The cmdlist should not evaluate to a value. Going "past" end means, more precisely, var>end if step>0, or var<end if step<0. Note that a new symbol level is created within the loop, so any variables declared local within the loop will not exist outside the scope of the loop. FOR never returns a value. If the control list is invalid, the cmdlist list cannot be parsed as a valid sequence of Logo commands, or if an error occurs while running it, FOR throws an error.

Example:
? FOR [i 1 10 2] [print :i]
1
3
5
7
9
? FOR [i 1 10 -2] [print :i]

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_flow.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_flow.html" \l "top"
Top

	Threads

Turtle Tracks provides a simple yet powerful set of multitasking tools using threads. These threads share the same global names, procedures, property lists and open streams, but have separate call stacks and current I/O settings. Turtle Tracks threads are pre-emptive and time-sliced; however, all workspace manipulation primitives and i/o functions are guaranteed to be atomic. In addition, a small library of synchronization primitives is provided.

	PRIVATE
virtuoso.logo.lib.ThreadPrimitives

THREAD cmdlist
(THREAD lambda argslist)

THREAD executes the given command list or lambda in a new thread. It generates a unique id for the new thread, and the new thread runs concurrently with the current thread. THREAD does not return a value. If the command input is a lambda list or a procedure or primitive name, then the arguments are given to the thread as local variables in the toplevel scope. If the given command input is not a command list, a well-formed lambda list, or a procedure or primitive name, or the given argslist is not a list, THREAD throws an error. If an error occurs while parsing or executing the command list, THREAD returns normally and an error is thrown within the new thread.

Example:
? THREAD [PRINT 1 PRINT 2] PRINT "a PRINT "b
a
1
b
2
? (THREAD [[x][REPEAT :x [PRINT REPCOUNT]]] [3]) REPEAT 3 [PRINT 10*REPCOUNT]
10
1
20
2
30
3
Note: Because thread scheduling is non-deterministic, the above examples show only one possibile output

	PRIVATE
virtuoso.logo.lib.ThreadPrimitives

THREADRUN cmdlist
(THREADRUN threadid cmdlist)

THREADRUN executes the given command list in a new thread. If a threadid is specified, THREADRUN gives the new thread that id; otherwise THREADRUN generates a unqiue threadid for the thread. In either case, THREADRUN does not return any value. The new thread runs concurrently with the current thread. If the given command input is not a command list or the given threadid is not a word, THREADRUN throws an error. If an error occurs while parsing or executing the command list, THREADRUN returns normally and an error is thrown within the new thread.

Example:
? THREADRUN [PRINT 1 PRINT 2] PRINT "a PRINT "b
a
1
b
2
Note: Because thread scheduling is non-deterministic, the above example shows only one possibile output

	PRIVATE
virtuoso.logo.lib.ThreadPrimitives

THREADRUNID cmdlist
(THREADRUNID threadid cmdlist)

THREADRUNID executes the given command list in a new thread. If a threadid is specified, THREADRUNID gives the new thread that id; otherwise THREADRUNID generates a unqiue threadid for the thread. In either case, THREADRUNID returns the id of the new thread. The new thread runs concurrently with the current thread. If the given command input is not a command list or the given threadid is not a word, THREADRUN throws an error. If an error occurs while parsing or executing the command list, THREADRUN returns normally and an error is thrown within the new thread.

Example:
? PRINT THREADRUNID [PRINT 1 PRINT 2] PRINT "a PRINT "b
__t1
a
1
b
2
? PRINT (THREADRUNID "my.thread [PRINT 1 PRINT 2]) PRINT "a PRINT "b
my.thread
a
1
b
2
Note: Because thread scheduling is non-deterministic, the above examples show only one possibile output

	PRIVATE
virtuoso.logo.lib.ThreadPrimitives

THREADAPPLY lambda argslist
(THREADAPPLY threadid lambda argslist)

THREADAPPLY executes the given lambda in a new thread. If a threadid is specified, THREADAPPLY gives the new thread that id; otherwise, THREADAPPLY generates a unqiue threadid for the thread. In either case, THREADAPPLY returns nothing. The new thread runs concurrently with the current thread. The arguments are given to the thread as local variables in the toplevel scope. If the given command input is not a well-formed lambda list or a procedure or primitive name, the given argslist is not a list, or the given threadid is not a word, THREADAPPLY throws an error. If an error occurs while parsing or executing the lambda, THREADAPPLY returns normally and an error is thrown within the new thread.

Example:
? THREADAPPLY [[x][REPEAT :x [PRINT REPCOUNT]]] [3] REPEAT 3 [PRINT 10*REPCOUNT]
10
1
20
2
30
3
Note: Because thread scheduling is non-deterministic, the above examples show only one possibile output

	PRIVATE
virtuoso.logo.lib.ThreadPrimitives

THREADAPPLYID lambda argslist
(THREADAPPLYID threadid lambda argslist)

THREADAPPLYID executes the given lambda in a new thread. If a threadid is specified, THREADAPPLYID gives the new thread that id; otherwise, THREADAPPLYID generates a unqiue threadid for the thread. In either case, THREADAPPLYID returns the id of the new thread. The new thread runs concurrently with the current thread. The arguments are given to the thread as local variables in the toplevel scope. If the given command input is not a well-formed lambda list or a procedure or primitive name, the given argslist is not a list, or the given threadid is not a word, THREADAPPLYID throws an error. If an error occurs while parsing or executing the lambda, THREADAPPLYID returns normally and an error is thrown within the new thread.

Example:
? PRINT THREADAPPLYID [[x][REPEAT :x [PRINT REPCOUNT]]] [3] REPEAT 3 [PRINT 10*REPCOUNT]
__t1
10
1
20
2
30
3
? PRINT (THREADAPPLYID "my.thread [[x][REPEAT :x [PRINT REPCOUNT]]] [3]) REPEAT 3 [PRINT 10*REPCOUNT]
my.thread
10
1
20
2
30
3
Note: Because thread scheduling is non-deterministic, the above examples show only one possibile output

	PRIVATE
virtuoso.logo.lib.ThreadPrimitives

THREADTERMINATE threadid

THREADTERMINATE stops the thread with the given id, by throuwing a .SUDDENSTOPTHREAD exception within the thread. If no running thread has the given id, THREADTERMINATE does nothing. If the given threadid is not a word, THREADTERMINATE throws an error. Note that the .SUDDENSTOPTHREAD exception may be caught by the thread being terminated, if it needs to perform any clean-up. If this is done, the thread MUST rethrow the exception.

Example:
? MAKE "id THREADRUNID [PRINT 1 PRINT 2] PRINT "a THREADTERMINATE :id PRINT "b
a
1
b
Note: Because thread scheduling is non-deterministic, the above example shows only one possibile output

	PRIVATE
virtuoso.logo.lib.ThreadPrimitives

CURRENTTHREAD

CURRENTTHREAD returns the threadid of the currently running thread. The main thread is given the name ".MAIN" by the Logo runtime system.

Example:
? (THREADRUN "inside.id [PRINT SENTENCE "inside CURRENTTHREAD]) PRINT SENTENCE "outside CURRENTTHREAD
outside .MAIN
inside inside.id
Note: Because thread scheduling is non-deterministic, the above example shows only one possibile output

	PRIVATE
virtuoso.logo.lib.ThreadPrimitives

CRITICAL criticalid cmdlist

CRITICAL runs the given runnable list in a critical section with the given name. Only one thread at a time can be running a critical section with a particular name. When CRITICAL is encountered, if another thread is already running a CRITICAL section with that name, CRITICAL will block until the other thread has finished running its list. If the given critical section id is not a word, or the second argument cannot be parsed as a runnable list, CRITICAL throws an error.

Example:
? THREADRUN [CRITICAL "my.critical [PRINT 1 PRINT 2]] CRITICAL "my.critical [PRINT "a PRINT "b]
a
b
1
2
Note: Because thread scheduling is non-deterministic, the above example shows only one possibile output

	PRIVATE
virtuoso.logo.lib.ThreadPrimitives

BARRIER barrierid integer

BARRIER defines a barrier with the given name and thread count. BARRIER blocks until the given number of threads have called BARRIER with that name. Once a barrier becomes unblocked, the count is reset to zero; therefore, a barrier can be re-used. If the given barrierid is not a word, the given thread count is not an integer, or the given thread count does not match the thread counts given by other concurrent calls to BARRIER with the same barrier id, then BARRIER throws an error.

Example:
? (THREADRUN "thread1 [PRINT 1 PRINT 2 PRINT 3 BARRIER "my.barrier 2]) PRINT "a BARRIER "my.barrier 2 PRINT "b
a
1
2
3
b
Note: Because thread scheduling is non-deterministic, the above example shows only one possibile output

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_flow.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_flow.html" \l "top"
Top

	Error Handling

Logo provides error handling similar to C++ or Tcl exceptions.

THROW tag
(THROW tag value)

THROW causes an exception with the given tag word to be thrown. If a value is specified, that value is thrown with the exception, and can be retrieved by an enclosing CATCH or TRY command. If the given tag is not a word, THROW instead throws an error.

Example:
? PRINT "before THROW "my.error PRINT "after
before
Uncaught: my.error
? PRINT "before (THROW "my.error "val) PRINT "after
before
Uncaught: my.error with value val
? CATCH "my.error [PRINT "before THROW "my.error PRINT "after]
before

CATCH tag cmdlist

CATCH executes the given command list. If an exception of the same id as the given tag is thrown while executing the command list, CATCH will "catch" the exception, and it will not propogate any further out. If the given tag is a word, it is interpreted as a single tag word. If it is a list, the elements of the list are interpreted as the tag words to catch. If the given tag is the empty list [], it is treated as a wildcard and will catch any exception. If the command list evaluates to a value and does not throw an exception, then CATCH will return that value. If an exception is thrown with an accompanying value, CATCH returns that value. If the command list does not evaluate to a value, or an exception is thrown without an accompanying value, CATCH returns nothing. If a non-list is given as the command list input, or if the tag list contains non-word elements, CATCH throws an error. If the input is a list but cannot be parsed as a valid sequence of Logo commands, CATCH will behave as if an error were thrown out of the command list.

Example:
? CATCH "my.error [PRINT "before THROW "my.error PRINT "after]
before
? CATCH "my.error [PRINT "before THROW "my.error2 PRINT "after]
before
Uncaught: my.error2
? CATCH [my.error my.error2] [PRINT "before THROW "my.error2 PRINT "after]
before
? PRINT SENTENCE [Caught error:] CATCH "ERROR [PRINT]
Caught error: Not enough inputs...

TRY cmdlist tag catchcmdlist
(TRY cmdlist tag1 catchcmdlist1 ...)

TRY executes the given command list. If an exception of the same id as any of the given tags is thrown, TRY will "catch" the exception, and it will not propogate any further out. If the given tag is a word, it is interpreted as a single tag word. If it is a list, the elements of the list are interpreted as the tag words to catch. If the given tag is the empty list [], it is treated as a wildcard and will catch any exception. Furthermore, TRY will excute the catchcmdlist associated with the caught tag. The catchcmdlist may be a command list or a lambda. If it is a lambda, it must take two arguments, which are bound to the caught exception and the associated value.

If the command list evaluates to a value and does not throw an exception, then TRY will return that value. If an exception is thrown and caught, and the command list associated with the caught exception evaluates to a value (or if it is a non-macro lambda and outputs a value), TRY returns that value. If no command list executed evaluates to a value, TRY returns nothing. If a non-list is given as the command list input, or if the given tag list contains non-word members, TRY throws an error. If the input is a list but cannot be parsed as a valid sequence of Logo commands, TRY will behave as if an error were thrown out of the command list. The version of TRY enclosed by parens may include any number of tags to catch. Each ta

g, however, must be accompanied by a command list-- that is, TRY must take an odd number of inputs. If an even number of inputs is given to TRY, it will throw an error.

Example:
? TRY [PRINT "before THROW "my.error PRINT "after] "my.error [PRINT "caught]
before
caught
? TRY [PRINT "before THROW "my.error2 PRINT "after] "my.error [PRINT "caught]
before
Uncaught: my.error2
? TRY [PRINT "before THROW "my.error2 PRINT "after] [my.error my.error2] [PRINT "caught]
before
caught
? PRINT SENTENCE [Caught error:] TRY [PRINT] "ERROR [[x y][OUTPUT [My error]]]
Caught error: My error
? TRY [THROW "my.error] [] [[x y] [PRINT SENTENCE "Caught :x]]
Caught my.error
? TRY [(THROW "my.error [error value])] [] [[x y] [PRINT (SENTENCE "Caught :x [with value] :y)]]
Caught my.error with value error value

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_flow.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_flow.html" \l "top"
Top

	Jump Commands

Jump commands cause an immediate jump to some point outside the current scope. Jump commands are actually implemented as throws; thus each jump has an equivalent THROW command associated with it. Because of this, jumps may also be caught to prevent their normal completion.

TOPLEVEL
THROW "TOPLEVEL

TOPLEVEL causes all interpreter activity to cease, and control to be given back to the Logo console. This includes all running threads. First, the current thread is terminated by propogating the exception to the top of the thread. Once the current thread has been stopped, all other threads are killed. If a TOPLEVEL is caught and does not propogate to the top of the current thread, any other running threads are left intact.

	PRIVATE
virtuoso.logo.lib.ThreadPrimitives

STOPTHREAD
THROW "STOPTHREAD

STOPTHREAD terminates the current thread by propogating the exception to the top of the thread. No other threads are affected. If the current thread is the only running thread, then control is returned to the Logo console.

OUTPUT expr
(THROW "STOP expr)

OUTPUT causes the innermost executing procedure to stop execution and produce as a return value the given expression. Note that the associated THROW tag is "STOP.

STOP
THROW "STOP

STOP causes the innermost executing procedure to stop execution and not generate a return value.

GOODBYE
BYE
THROW "GOODBYE

GOODBYE exits the Logo runtime environment. This includes shutting down all running threads and closing down any user interface elements. First, the current thread is terminated by propogating the exception to the top of the thread. Once the current thread has been stopped, all other threads are killed. If a GOODBYE is caught and does not propogate to the top of the current thread, the other running threads are left intact and the runtime environment is not terminated.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_flow.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_flow.html" \l "top"
Top

Daniel Azuma (dazuma@kagi.com)
Last updated 3 February 1999

Input/output

· Reading and writing

· Opening streams

· Stream management

· File system management

Unless otherwise indicated, all these primitives are in virtuoso.logo.lib.StandardPrimitives.

	Reading and writing

Readers and writers are commands that interact with the current read and write streams. These streams typically connect with the Logo console, but may be directed to files, network sockets, or URLs.

PRINT expr
PR expr
(PRINT expr1 ...)
(PR expr1 ...)

PRINT sends a string representation of the argument to the current writer, followed by an end-of-line. If the argument is a list, the outermost enclosing brackets are not output. If more than one argument is given, PRINT prints them on the same line, separated by spaces. If the current writer is the console, PRINT displays the argument on the console. PRINT also flushes the output buffer. If the current writer cannot be written to, PRINT throws an error.

Example:
? PRINT "hello PRINT [hello world]
hello
hello world
? (PRINT "hello [hello world])
hello hello world

PRINT1 expr
TYPE expr
(PRINT1 expr1 ...)
(TYPE expr1 ...)

PRINT1 sends a string representation of the argument to the current writer, but does NOT follow it with an end-of-line. If the argument is a list, the outermost enclosing brackets are not output. If more than one argument is given, PRINT1 prints them on the same line, without any separator. If the current writer is the console, PRINT1 displays the argument on the console. PRINT1 flushes the output buffer if the current writer is the console, but does not flush the output buffer if the current writer is a file or network socket. If the current writer cannot be written to, PRINT1 throws an error.

Example:
? PRINT1 "hello PRINT1 [hello world]
hellohello world
? (PRINT1 "hello [hello world])
hellohello world

SHOW expr
(SHOW expr1 ...)

SHOW sends a string representation of the argument to the current writer, followed by an end-of-line. If the argument is a list, SHOW, unlike PRINT, does output its outermost enclosing brackets. If more than one argument is given, SHOW prints them on the same line, separated by spaces. If the current writer is the console, SHOW displays the argument on the console. SHOW also flushes the output buffer. If the current writer cannot be written to, SHOW throws an error.

Example:
? SHOW "hello SHOW [hello world]
hello
[hello world]
? (SHOW "hello [hello world])
hello [hello world]

SHOW1 expr
(SHOW expr1 ...)

SHOW1 sends a string representation of the argument to the current writer, but does NOT follow it with an end-of-line. If the argument is a list, SHOW1, unlike PRINT1, does output its outermost enclosing brackets. If more than one argument is given, SHOW1 prints them on the same line, without any separator. If the current writer is the console, SHOW1 displays the argument on the console. SHOW1 flushes the output buffer if the current writer is the console, but does not flush the output buffer if the current writer is a file or network socket. If the current writer cannot be written to, SHOW1 throws an error.

Example:
? SHOW1 "hello SHOW1 [hello world]
hello[hello world]
? (SHOW1 "hello [hello world])
hello[hello world]

READLIST
RL

READLIST reads from the current reader until it encounters an end-of-line, and returns a list containing the line parsed as a list. If the current reader is the console, READLIST blocks until the user has typed a line and pressed the Enter key. If READLIST cannot read from the current reader, or the line cannot be parsed as a list, READLIST throws an error.

Example:
? SHOW READLIST
Hello, world!
[Hello, world!]

READWORD
RW

READWORD reads from the current reader until it encounters an end-of-line, and returns a word containing the line, not including the end-of-line character. The line is not parsed. If the current reader is the console, READWORD blocks until the user has typed a line and pressed the Enter key. If READWORD cannot read from the current reader, READWORD throws an error.

Example:
? PRINT READWORD
Hello, world! [[[
Hello, world! [[[
? PRINT LAST READWORD
This is one word
d

READCHARACTER
RC

READCHARACTER reads one byte from the current reader, and returns a word consisting of that byte. If the current reader is the console, READCHARACTER's exact behavior is not defined. Under some consoles, it may not return until the user has typed an entire line and pressed the Enter key. If READCHARACTER cannot read from the current reader, READCHARACTER throws an error.

Example:
? PRINT READCHARACTER
Hello, world!
H
Note: the behavior shown above may not apply to some consoles.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_io.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_io.html" \l "top"
Top

	Opening streams

Turtle Tracks supports stream-based reading from and writing to files in the local file system and network sockets.

	PRIVATE
virtuoso.logo.lib.FilePrimitives

OPENREAD filename
(OPENREAD filename streamid)

OPENREAD opens the specified file name for reading only. A stream created using OPENREAD cannot be made the current writer. The file position is initially set at the beginning of the file. The one-input version of OPENREAD returns a unique streamid for the file. The two-input version of OPENREAD returns nothing. If the filename or the streamid is not a word, the specified file does not exist, the file cannot be read, or if local files cannot be opened for security reasons, OPENREAD will throw an error.

	PRIVATE
virtuoso.logo.lib.FilePrimitives

OPENWRITE filename
(OPENWRITE filename streamid)

OPENWRITE opens the specified file name for writing only. A stream created using OPENWRITE cannot be made the current reader. If the file already exists, it will first be truncated. The one-input version of OPENWRITE returns a unique streamid for the file. The two-input version of OPENWRITE returns nothing. If the filename or the streamid is not a word, the file exists and cannot be overwritten, or if local files cannot be opened for security reasons, OPENWRITE will throw an error.

	PRIVATE
virtuoso.logo.lib.FilePrimitives

OPENRANDOM filename
(OPENRANDOM filename streamid)

OPENRANDOM opens the specified file name for random-access reading and writing. The one-input version of OPENRANDOM returns a unique streamid for the file. The two-input version of OPENRANDOM returns nothing. If the filename or the streamid is not a word, the file exists and cannot be written to, or if local files cannot be opened for security reasons, OPENRANDOM will throw an error.

	PRIVATE
virtuoso.logo.lib.NetworkPrimitives

OPENURL url
(OPENURL url streamid)

OPENURL opens the specified universal resource locator (url) for reading only. A stream created using OPENURL cannot be made the current writer. The one-input version of OPENURL returns a unique streamid for the file. The two-input version of OPENURL returns nothing. If the url or the streamid is not a word or the specified url cannot be reached over the network, OPENURL will throw an error.

	PRIVATE
virtuoso.logo.lib.NetworkPrimitives

OPENSOCKET hostname port
(OPENSOCKET hostname port streamid)

OPENSOCKET opens a socket to the specified hostname and port for reading and writing. A server must be running on the specified host and port. A stream created using OPENSOCKET can be made a reader, a writer, or both. The two-input version of OPENSOCKET returns a unique streamid for the file. The three-input version of OPENSOCKET returns nothing. If the hostname or the streamid is not a word, the port is not an integer, the specified host and port cannot be reached over the network, or no server is running on the specified host and port, OPENSOCKET will throw an error.

	PRIVATE
virtuoso.logo.lib.NetworkPrimitives

SERVERSOCKET port connectfunc idleinterval idlefunc

SERVERSOCKET runs a server on the specified port of the local host. It listens continuously for connection requests. When a connection is made, a stream is created for that connection, and the connectfunc is executed, with the name of the stream as the single argument. Once the function has completed executing, SERVERSOCKET resumes listening. The idlefunc argument is called periodically while SERVERSOCKET is running. idleinterval gives the time in milliseconds between calls to idlefunc. An idleinterval of 0 disables invocation of the idlefunc. idlefunc takes no arguments and should return a boolean value specifying whether to continue running. If idlefunc returns true, SERVERSOCKET continues listening; otherwise it halts. Typically, the connectfunc function should spawn a thread to handle the new connection. Each of the two function arguments may be a lambda list, a procedure name or a primitive name. If the specified port or the specified idleinterval are not integers, the specifed functions are not well-formed or do not specify a defined procedure or primitive, or an error occurs while reparsing either lambda for execution, then SERVERSOCKET returns an error. If an error is thrown out of either function during its execution, then SERVERSOCKET exits and throws that error.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_io.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_io.html" \l "top"
Top

	Stream Management

Several commands are also provided for general stream management, and to manage the current reader and writer.

SETREAD streamid

SETREAD makes the specified stream the current reader. If the empty list is specified as the streamid, SETREAD sets the Logo console to be the current reader. You can also use the console's streamid, which is ".CONSOLE". SETREAD does not return a value. If the given streamid is not a word or the empty list, or if it doesn't specify a valid stream, SETREAD throws an error.

SETWRITE streamid

SETWRITE makes the specified stream the current writer. If the empty list is specified as the streamid, SETWRITE sets the Logo console to be the current writer. You can also use the console's streamid, which is ".CONSOLE". SETWRITE does not return a value. If the given streamid is not a word or the empty list, or if it doesn't specify a valid stream, SETWRITE throws an error.

READER

READER returns the streamid of the current reader. If the current reader is the console, READER returns the streamid of the console, which is ".CONSOLE".

WRITER

WRITER returns the streamid of the current writer. If the current writer is the console, WRITER returns the streamid of the console, which is ".CONSOLE".

CLOSE streamid

CLOSE closes the specified stream. Any further attempts to access a closed stream will result in an error. CLOSE does not return a value. If the given streamid is not a word, if it specifies the console, or if it doesn't specify a valid stream, CLOSE throws an error.

	PRIVATE
virtuoso.logo.lib.LibraryPrimitives

CLOSEALL

CLOSEALL closes all open streams except for the console.

STREAMNAME streamid

STREAMNAME returns the filename associated with the specified stream. If the stream is a file, STREAMNAME returns its name. If the stream is a URL, STREAMNAME returns the URL. If the stream is a socket, STREAMNAME returns a three-element list consisting of the local port, the remote host, and the remote port. If the streamid is the console, STREAMNAME returns the class name of the console. If the argument is not a word, or does not specify an open stream, then STREAMNAME throws an error.

STREAMKIND streamid

STREAMKIND returns the type of the specified stream, which is one of the following values: "READFILE, "WRITEFILE, "SOCKET, "URL, "CONSOLE, "CLOSED, or "UNKNOWN. If the given streamid does not specify a valid stream, STREAMKIND will return "CLOSED. If the given streamid is not a word, STREAMKIND throws an error.

STREAMISRANDOM streamid

STREAMISRANDOM returns a boolean value denoting whether the specified stream is random-access (that is, whether it supports STREAMPOS, SETSTREAMPOS and STREAMLENGTH). If the given streamid does not specify a valid stream or the stream is closed, STREAMISRANDOM throws an error.

STREAMPOS streamid

STREAMPOS returns the current position of the read/write head in the specified stream. If the given streamid does not specify a valid stream, the stream is closed, or the stream does not support random-access operations, STREAMPOS throws an error.

SETSTREAMPOS streamid pos

SETSTREAMPOS sets the current position of the read/write head in the specified stream to the specified value. If the given streamid does not specify a valid stream, the stream is closed, the stream does not support random-access operations, or the second argument is not a positive integer, STREAMPOS throws an error.

STREAMLENGTH streamid

STREAMLENGTH returns the length of the specified stream. If the given streamid does not specify a valid stream, the stream is closed, or the stream does not support random-access operations, STREAMLENGTH throws an error.

EOF? streamid
EOFP streamid

EOF? returns whether the end-of-stream has been reached. If the given streamid specifies the console, EOF? will always return "FALSE. If the given streamid is not a word, or it does not specify a valid stream, EOF? throws an error.

KEY? streamid
KEYP streamid

KEY? returns whether a character is available on the stream and can be read without blocking. If the given streamid is not a word, or it does not specify a valid stream, KEY? throws an error.

ALLOPEN

ALLOPEN returns a list whose members are the streamids of all open streams. The console is not included.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_io.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_io.html" \l "top"
Top

	File system management

Turtle Tracks supports a few basic primitives for navigating directories within the file system. For more sophisticated file system access, use the extra plug-in virtuoso.logo.lib.ExtFilePrimitives.

	PRIVATE
virtuoso.logo.lib.FilePrimitives

PWD

PWD returns a word containing the path name of the current working directory.

	PRIVATE
virtuoso.logo.lib.FilePrimitives

CWD path

CWD changes the current working directory to the specified path, which may be an absolute path or a path relative to the current directory. If the path does not specify a valid directory, CWD throws an error.

	PRIVATE
virtuoso.logo.lib.FilePrimitives

CWDUP

CWDUP changes the current working directory to the parent of the current directory. If the current working directory is the root of the file system, CWDUP throws an error. On unix systems, CWDUP is functionally identical to CWD "..

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_io.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_io.html" \l "top"
Top

Daniel Azuma (dazuma@kagi.com)
Last updated 03 February 1999

Mathematical Operations

· Logical operations

· Bitwise operations

· Numeric comparison operations

· Arithmetic operations

· Trigonometric operations

Unless otherwise indicated, all these primitives are in virtuoso.logo.lib.StandardPrimitives.

	Logical operations

These are the logical operations supported by Turtle Tracks.

TRUE

TRUE returns the boolean value true.

Example:
? IFELSE TRUE [PRINT "true] [PRINT "false]
TRUE

FALSE

FALSE returns the boolean value false.

Example:
? IFELSE FALSE [PRINT "true] [PRINT "false]
FALSE

NOT expr

NOT returns the logical opposite of the argument. If the argument is not a boolean value, NOT throws an error.

Example:
? IFELSE NOT FALSE [PRINT "true] [PRINT "false]
TRUE

ALLOF expr1 expr2
AND expr1 expr2
(ALLOF expr1 ...)
(AND expr1 ...)

ALLOF returns true if all its arguments are true, or false if any of its arguments are false. If any argument is not a boolean value, ALLOF throws an error.

Example:
? PRINT ALLOF TRUE TRUE
TRUE
? PRINT (ALLOF TRUE FALSE TRUE)
FALSE

ANYOF expr1 expr2
OR expr1 expr2
(ANYOF expr1 ...)
(OR expr1 ...)

ANYOF returns true if any of its arguments are true, or false if all of its arguments are false. If any argument is not a boolean value, ANYOF throws an error.

Example:
? PRINT ANYOF TRUE FALSE
TRUE
? PRINT (ANYOF FALSE FALSE FALSE)
FALSE

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_math.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_math.html" \l "top"
Top

	Bitwise operations

These are the bitwise operations supported by Turtle Tracks.

BITNOT expr

BITNOT returns the bitwise not of the argument. If the argument is not an integer, BITNOT throws an error.

Example:
? PRINT BITNOT 1
-2

BITAND expr1 expr2
(BITAND expr1 ...)

BITAND returns the bitwise and of the arguments. If an argument is not an integer, BITAND throws an error.

Example:
? PRINT BITAND 14 7 ;binary 1110 and 0111 yields binary 0110
6
? PRINT (BITAND 14 7 9) ;and of 1110, 0111 and 1001 yields 0000
0

BITOR expr1 expr2
(BITOR expr1 ...)

BITOR returns the bitwise or of the arguments. If an argument is not an integer, BITOR throws an error.

Example:
? PRINT BITOR 12 6 ;binary 1100 and 0110 yields binary 1110
14
? PRINT (BITOR 12 6 33) ;or of 1100, 0110 and 100001 yields 101111
47

BITXOR expr1 expr2
(BITXOR expr1 ...)

BITXOR returns the bitwise exclusive or of the arguments. If an argument is not an integer, BITXOR throws an error.

Example:
? PRINT BITXOR 12 6 ;binary 1100 and 0110 yields binary 1010
10
? PRINT (BITXOR 12 6 4) ;xor of 1100, 0110 and 0100 yields 1110
14

LSHIFT num1 num2

LSHIFT shifts the bits of the first number left by the second number. To shift right, pass a negative number as the second argument. 0's shifted into all vacated digits. If an argument is not an integer, LSHIFT throws an error.

Example:
? PRINT LSHIFT 13 1
26
? PRINT LSHIFT 27 -2
6
? PRINT LSHIFT -7 -1
2147483644

ASHIFT num1 num2

ASHIFT shifts the bits of the first number left by the second number. To shift right, pass a negative number as the second argument. ASHIFT preserves the sign of the number. That is, if the number is being shifted to the right, and the high-order bit of the original number is a 1, then 1's are shifted into the left end. If the high-order bit of the original number is a 0, then 0's are shifted into the left end. If an argument is not an integer, ASHIFT throws an error.

Example:
? PRINT ASHIFT 13 1
26
? PRINT ASHIFT 27 -2
6
? PRINT ASHIFT -7 -1
-4

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_math.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_math.html" \l "top"
Top

	Comparison operations

These are the numeric comparison operations supported by Turtle Tracks.

EQUAL? expr1 expr2
EQUALP expr1 expr2
expr1 = expr2

EQUAL? returns true if and only if the arguments are equal. If both arguments are numbers, EQUAL? returns numeric equality, otherwise, it returns string equality or list equality.

Example:
? PRINT EQUAL? "abra "abra
TRUE
? PRINT EQUAL? "abra "cadabra
FALSE
? PRINT EQUAL? 2.5 -2.5
FALSE
? PRINT EQUAL? 2 2.0
TRUE

GREATER? expr1 expr2
GREATERP expr1 expr2
expr1 > expr2

GREATER? returns true if and only if expr is numerically greater than expr2. If an argument is not a number, GREATER? throws an error.

Example:
? PRINT GREATER? 2.5 -2.5
TRUE
? PRINT GREATER? 2 2.0
FALSE

LESS? expr1 expr2
LESSP expr1 expr2
expr1 < expr2

LESS? returns true if and only if expr is numerically less than expr2. If an argument is not a number, LESS? throws an error.

Example:
? PRINT LESS? 2.5 -2.5
FALSE
? PRINT LESS? 2 2.0
FALSE

GREATEREQUAL? expr1 expr2
GREATEREQUALP expr1 expr2
expr1 >= expr2

GREATEREQUAL? returns true if and only if expr is numerically greater than or equal to expr2. If an argument is not a GREATEREQUAL, GREATER? throws an error.

Example:
? PRINT GREATEREQUAL? 2.5 -2.5
TRUE
? PRINT GREATEREQUAL? 2 2.0
TRUE

LESSEQUAL? expr1 expr2
LESSEQUALP expr1 expr2
expr1 <= expr2

LESSEQUAL? returns true if and only if expr is numerically less than or equal to expr2. If an argument is not a number, LESSEQUAL? throws an error.

Example:
? PRINT LESSEQUAL? 2.5 -2.5
FALSE
? PRINT LESSEQUAL? 2 2.0
TRUE

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_math.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_math.html" \l "top"
Top

	Numeric operations

Turtle Tracks includes a full set of arithmetic functions.

INTEGER expr

INTEGER returns the integer portion of the argument. If the argument is not a number, INTEGER throws an error.

Example:
? PRINT INTEGER 11.6
11
? PRINT INTEGER -2.9
-2

ROUND expr

ROUND rounds the argument to the nearest integer. If the argument is not a number, ROUND throws an error.

Example:
? PRINT ROUND 11.6
12
? PRINT ROUND -2.9
-3

ABS expr

ABS returns the absolute value of the argument. If the argument is not a number, ABS throws an error.

Example:
? PRINT ABS 11.6
11.6
? PRINT ABS -2.9
2.9

MINUS expr
- expr

MINUS returns the negation of the argument. If the argument is not a number, MINUS throws an error. Note that there is a precedence difference between MINUS and -.

Example:
? PRINT MINUS 11.6
-11.6
? PRINT MINUS -2.9
2.9
? PRINT MINUS 3+4
-7
? PRINT -3+4
1

SUM expr1 expr2
expr1 + expr2

SUM returns the sum of the arguments. If an argument is not a number, SUM throws an error.

Example:
? PRINT SUM 5 2
7
? PRINT SUM 8.8 -2.2
6.6

DIFFERENCE expr1 expr2
expr1 - expr2

DIFFERENCE returns the difference of the arguments. If an argument is not a number, DIFFERENCE throws an error.

Example:
? PRINT DIFFERENCE 5 2
3
? PRINT DIFFERENCE 8.8 -2.2
11

PRODUCT expr1 expr2
expr1 * expr2

PRODUCT returns the product of the arguments. If an argument is not a number, PRODUCT throws an error.

Example:
? PRINT PRODUCT 5 2
10
? PRINT PRODUCT 8.8 -2.2
-19.36

QUOTIENT expr1 expr2
expr1 / expr2

QUOTIENT divides expr1 by expr2 and returns the quotient. The quotient is a floating-point number if expr1 is not evenly divisible by expr2. If an argument is not a number, or if expr2 is 0, QUOTIENT throws an error.

Example:
? PRINT QUOTIENT 5 2
2.5
? PRINT QUOTIENT 8.8 -2.2
-4

REMAINDER expr1 expr2

REMAINDER divides expr1 by expr2 using integer division. The remainder is returned. The quotient is ignored. If an argument is a non-integer value, it is first rounded to the nearest integer. If an argument is not a number, or if expr2 is 0, REMAINDER throws an error.

Example:
? PRINT REMAINDER 5 2
1
? PRINT REMAINDER 8.8 -2.2
1

SQRT expr

SQRT returns the square root of the argument. If the argument is not a number, or if it is a negative number, SQRT throws an error.

Example:
? PRINT SQRT 2
1.4142135623730951

POWER expr1 expr2

POWER returns expr1 raised to the power of expr2. If an argument is not a number, or both arguments are zero, or expr1 is negative and expr2 is not an integer, POWER throws an error.

Example:
? PRINT POWER -2 15
-32768
? PRINT POWER 2 -0.5
0.7071067811865476

EXP expr

EXP returns the constant e raised to the power of the argument. If the argument is not a number, EXP throws an error.

Example:
? PRINT EXP 1
2.718281828459045

LOG expr

LOG returns the natrual logarithm (log to the base e) of the argument. If the argument is not a number, or if it is a non-positive number, LOG throws an error.

Example:
? PRINT LOG EXP 3
3

RANDOM integer

RANDOM returns a pseudo-random integer between 0 and the given argument minus 1, inclusive. If the argument is not a positive integer, RANDOM throws an error.

RANDOMIZE
RERANDOM
(RANDOMIZE integer)
(RERANDOM integer)

RANDOMIZE sets the seed for sequence of pseudo-random numbers to be returned by subsequent calls to RANDOM. Every time Turtle Tracks is started up, the seed is set to 0; therefore, if you restart Turtle Tracks, the same sequence of numbers will be generated. Use RANDOMIZE to set a seed at "random" depending on the value of the system time stamp. The version of RANDOMIZE with an argument uses the argument as a seed. If the argument is not an integer, RANDOMIZE throws an error.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_math.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_math.html" \l "top"
Top

	Trigonometric operations

Turtle Tracks includes a full set of trigonometric functions.

SIN expr

SIN returns the sine of the argument (given in degrees). If the argument is not a number, SIN throws an error.

Example:
? PRINT SIN 135
0.7071067811865481

COS expr

COS returns the cosine of the argument (given in degrees). If the argument is not a number, COS throws an error.

Example:
? PRINT COS 135
-0.7071067811865481

TAN expr

TAN returns the tangent of the argument (given in degrees). If the argument is not a number, or if the input value is too close to an odd multiple of 90, TAN throws an error.

Example:
? PRINT TAN 135
-1

RADSIN expr

RADSIN returns the sine of the argument (given in radians). If the argument is not a number, RADSIN throws an error.

Example:
? PRINT RADSIN 3
0.1411200080598671

RADCOS expr

RADCOS returns the cosine of the argument (given in radians). If the argument is not a number, RADCOS throws an error.

Example:
? PRINT RADCOS 3
-0.9899924966004455

RADTAN expr

RADTAN returns the tangent of the argument (given in radians). If the argument is not a number, or if the argument is too close to an odd multiple of pi/2, RADTAN throws an error.

Example:
? PRINT RADTAN 3
-0.1425465430742777

ARCSIN expr

ARCSIN returns the inverse sine of the argument, in degrees. The returned value will be between -90 and 90. If the argument is not a number, or if it is greater than 1.0 or less than -1.0, ARCSIN throws an error.

Example:
? PRINT ARCSIN 1
90

ARCCOS expr

ARCCOS returns the inverse cosine of the argument, in degrees. The returned value will be between 0 and 180. If the argument is not a number, or if it is greater than 1.0 or less than -1.0, ARCCOS throws an error.

Example:
? PRINT ARCCOS 1
0

ARCTAN expr

ARCTAN returns the inverse tangent of the argument, in degrees. The returned value will be between -90 and 90. If the argument is not a number, ARCTAN throws an error.

Example:
? PRINT ARCTAN 100
89.4270613023166

ARCTAN2 expry exprx

ARCTAN2 returns the inverse tangent of expry/exprx, in degrees, by finding the angle formed by the points (x,y), the origin, and (1,0). The returned value will be between -180 and 180. ARCTAN2 0 0 is defined as 0. If any of the arguments is not a number, ARCTAN2 throws an error.

Example:
? PRINT ARCTAN2 1 1
45
? PRINT ARCTAN2 -1 -1
-135
? PRINT ARCTAN2 1 0
90

RADARCSIN expr

RADARCSIN returns the inverse sine of the argument, in radians. The returned value will be between -pi/2 and pi/2. If the argument is not a number, or if it is greater than 1.0 or less than -1.0, RADARCSIN throws an error.

Example:
? PRINT RADARCSIN 1
1.5707963267948966

RADARCCOS expr

RADARCCOS returns the inverse cosine of the argument, in radians. The returned value will be between 0 and pi. If the argument is not a number, or if it is greater than 1.0 or less than -1.0, RADARCCOS throws an error.

Example:
? PRINT RADARCCOS 1
0.0

RADARCTAN expr

RADARCTAN returns the inverse tangent of the argument, in radians. The returned value will be between -pi/2 and pi/2. If the argument is not a number, RADARCTAN throws an error.

Example:
? PRINT RADARCTAN 100
1.5607966601082313

RADARCTAN2 expry exprx

RADARCTAN2 returns the inverse tangent of expry/exprx, in radians, by finding the angle formed by the points (x,y), the origin, and (1,0). The returned value will be between -pi and pi. RADARCTAN2 0 0 is defined to be 0. If any of the arguments is not a number, RADARCTAN2 throws an error.

Example:
? PRINT RADARCTAN2 1 1
0.7853981633974483
? PRINT RADARCTAN2 -1 -1
-2.356194490192345
? PRINT RADARCTAN2 1 0
1.5707963267948966

PI

PI returns an approximation of the value pi. In Turtle Tracks, this value is equal to 3.14159265358979323846.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_math.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_math.html" \l "top"
Top

Daniel Azuma (dazuma@kagi.com)
Last updated 03 February 1999

Workspace Management

· General workspace control

· Procedure operations

· Variable operations

· Property list operations

Unless otherwise indicated, all these primitives are in virtuoso.logo.lib.StandardPrimitives.

	General workspace control

These are general commands allowing the user to manage the workspace.

CONTENTS

A content list is a three-element list. The first element is a list of the names of procedures, the second element is a list of the names of global variables, and the third element is a list of the names of property lists. Content lists are used in several general workspace-related commands. CONTENTS returns a content list that includes all procedures, variables and property lists currently in the workspace.

Example:
? DEFINE "foo [[] [PRINT [in foo]]]
? MAKE "var1 "hello
? MAKE "var2 "goodbye
? PRINT CONTENTS
[[foo] [var1 var2] []]

ERASE contentlist

ERASE erases the procedures, global variables, and property lists specified by the given content list. If any of the specified objects does not exist, or if the given input is not a valid content list, ERASE throws an error.

Example:
? DEFINE "foo [[] [PRINT [in foo]]]
? MAKE "var1 "hello
? MAKE "var2 "goodbye
? PRINT CONTENTS
[[foo] [var1 var2] []]
? ERASE [[][var1][]]
? PRINT CONTENTS
[[foo] [var2] []]

	PRIVATE
virtuoso.logo.lib.LibraryPrimitives

ERALL

ERALL erases the entire contents of the workspace, including all procedures, variables and content lists. It is an abbreviation for ERASE CONTENTS.

Example:
? DEFINE "foo [[] [PRINT [in foo]]]
? MAKE "var1 "hello
? MAKE "var2 "goodbye
? PRINT CONTENTS
[[foo] [var1 var2] []]
? ERALL
? PRINT CONTENTS
[[] [] []]

PRINTOUT contentlist
PO contentlist

PRINTOUT dumps the text of the procedures, global variables, and property lists specified by the given content list to the current writer. If any of the specified objects does not exist, or if the given input is not a valid content list, PRINTOUT throws an error.

Example:
? DEFINE "foo [[] [PRINT [in foo]]]
? MAKE "var1 "hello
? MAKE "var2 "goodbye
? PRINTOUT [[foo] [var2] []]
MAKE "var2 "goodbye
TO foo
PRINT [in foo]
END

	PRIVATE
virtuoso.logo.lib.LibraryPrimitives

POALL

POALL dumps the entire contents of the workspace, including all procedures, variables and content lists, to the current writer. It is an abbreviation for PRINTOUT CONTENTS.

Example:
? DEFINE "foo [[] [PRINT [in foo]]]
? MAKE "var1 "hello
? MAKE "var2 "goodbye
? POALL
MAKE "var1 "hello
MAKE "var2 "goodbye
TO foo
PRINT [in foo]
END

	PRIVATE
virtuoso.logo.lib.FilePrimitives

LOAD filename

LOAD attempts to load previously saved contents from the given filename. Any existing procedures, variables, or properties with the same name as those loaded are replaced. If the given input is not a valid file name, or the specified file cannot be read or is badly formatted, LOAD throws an error.

	PRIVATE
virtuoso.logo.lib.NetworkPrimitives

LOADURL url

LOADURL attempts to load previously saved contents from the given URL. Any existing procedures, variables, or properties with the same name as those loaded are replaced. If the given input is not a valid URL, the specified URL cannot be reached, or the contents of the URL are badly formatted, LOADURL throws an error.

	PRIVATE
virtuoso.logo.lib.FilePrimitives

SAVE filename

SAVE attempts to save the current contents of the workspace to the given filename. If the file already exists, it is overwritten. If the given input is not a valid file name, or the specified file cannot be written to, SAVE throws an error. SAVE is basically a shorthand for opening the file for writing, setting it as the current writer, executing a POALL, closing the file, and restoring the old writer.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_work.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_work.html" \l "top"
Top

	Procedure operations

These commands manipulate the procedure list.

DEFINE name lambda

DEFINE defines a procedure with the given name. The second argument must be a lambda list. If it is a normal lambda list, then DEFINE generates a normal procedure. If it is a macro lambda list, then DEFINE generates a macro procedure. DEFINE does not return a value. If the given name is not a word, or if it is a primitive, or if the given parameter list or procedure body is invalid, DEFINE throws an error.

Example:
? DEFINE "factorial [[x] [OUTPUT IFELSE :x<1 [1] [:x*factorial :x-1]]]
? PRINT factorial 10
3628800
? DEFINE "macrofactorial [[x] IFELSE :x<1 [1] [:x*macrofactorial :x-1]]
? PRINT macrofactorial 10
3628800

TEXT name

TEXT returns lambda list describing the procedure with the given name. If the procedure is a normal procedure, TEXT returns a normal lambda list. If the procedure is a macro procedure, TEXT returns a macro lambda list. If the given name is not a word or not an existing procedure, TEXT throws an error.

Example:
? DEFINE "factorial [[x] [OUTPUT IFELSE :x<1 [1] [:x*factorial :x-1]]]
? SHOW TEXT "factorial
[[x] [OUTPUT IFELSE :x<1 [1] [:x*factorial :x-1]]]

TO name :param1 ...

TO enters an interactive mode in which you can define a normal procedure from the console command line. The first input must be a directly quoted procedure name, but should not be preceded by a quote. Subsequent inputs should be preceded by colons and are interpreted as argument names. Once TO is called, it prompts the user for commands, which are then added to the procedure definition. At the end of the procedure, the user must type END by itself on one line to exit the interactive mode. TO can only be called directly from the console. It cannot be embedded within a command list or called from a procedure.

Example:
? TO factorial :x
> OUTPUT IFELSE :x<1 [1] [:x*factorial :x-1]
> END
? SHOW TEXT "factorial
[[x] [OUTPUT IFELSE :x<1 [1] [:x*factorial :x-1]]]

TOMACRO name :param1 ...

TOMACRO enters an interactive mode in which you can define a macro procedure from the console command line. It is identical to TO, except that it creates a macro procedure instead of a normal procedure.

Example:
? TOMACRO macrofactorial :x
> IFELSE :x<1 [1] [:x*macrofactorial :x-1]
> END
? SHOW TEXT "macrofactorial
[[x] IFELSE :x<1 [1] [:x*macrofactorial :x-1]]

PROCEDURE? name
PROCEDUREP name

PROCEDURE? returns "TRUE if the given name is the name of a procedure, either primitive or user-defined. Otherwise, it returns "FALSE. If the argument is not a word, PROCEDURE? throws an error.

Example:
? DEFINE "foo [[] [PRINT [in foo]]]
? DEFINE "foomacro [[] PRINT [in foo]]
? PRINT PROCEDURE? "foo
TRUE
? PRINT PROCEDURE? "foomacro
TRUE
? PRINT PROCEDURE? "make
TRUE
? PRINT PROCEDURE? "abracadabra
FALSE

PRIMITIVE? name
PRIMITIVEP name

PRIMITIVE? returns "TRUE if the given name is the name of a primitive. Otherwise, it returns "FALSE. If the argument is not a word, PRIMITIVE? throws an error.

Example:
? DEFINE "foo [[] [PRINT [in foo]]]
? DEFINE "foomacro [[] PRINT [in foo]]
? PRINT PRIMITIVE? "foo
FALSE
? PRINT PRIMITIVE? "foomacro
FALSE
? PRINT PRIMITIVE? "make
TRUE
? PRINT PRIMITIVE? "abracadabra
FALSE

DEFINED? name
DEFINEDP name

DEFINED? returns "TRUE if the given name is the name of a user-defined procedure, either a normal procedure or a macro procedure. Otherwise, it returns "FALSE. If the argument is not a word, DEFINED? throws an error.

Example:
? DEFINE "foo [[] [PRINT [in foo]]]
? DEFINE "foomacro [[] PRINT [in foo]]
? PRINT DEFINED? "foo
TRUE
? PRINT DEFINED? "foomacro
TRUE
? PRINT DEFINED? "make
FALSE
? PRINT DEFINED? "abracadabra
FALSE

MACRO? name
MACROP name

MACRO? returns "TRUE if the given name is the name of a user-defined macro procedure. Otherwise, it returns "FALSE. If the argument is not a word, MACRO? throws an error.

Example:
? DEFINE "foo [[] [PRINT [in foo]]]
? DEFINE "foomacro [[] PRINT [in foo]]
? PRINT MACRO? "foo
FALSE
? PRINT MACRO? "foomacro
TRUE
? PRINT MACRO? "make
FALSE
? PRINT MACRO? "abracadabra
FALSE

PROCEDURES

PROCEDURES returns a content list that includes all procedures currently in the workspace, but no variables or property lists.

Example:
? DEFINE "foo [[] [PRINT [in foo]]]
? MAKE "var1 "hello
? MAKE "var2 "goodbye
? PRINT PROCEDURES
[[foo] [] []]

EDIT name

EDIT attempts to open the procedure with the given name in the Logo procedure editor, if available. If the procedure already exists, it is opened. If the procedure does not exist, a new procedure with that name is created and opened. If no Logo editor is available in the current environment, or if the given name is not a valid procedure name, EDIT throws an error.

ERASEPROCEDURE names
ERP names

ERASEPROCEDURE erases the procedures with the given names. If the given input is a word, it is interpreted as a single procedure name. If the given input is a list, it is interpreted as a list of procedure names. If any given name is not a valid procedure name, or if no such procedure exists, ERASEPROCEDURE throws an error.

Example:
? DEFINE "foo [[] [PRINT [in foo]]]
? SHOW TEXT "foo
[[] [PRINT [in foo]]]
? ERASEPROCEDURE "foo
? SHOW TEXT "foo
I don't know how to foo

PRINTOUTPROCEDURE names
POP names

PRINTOUTPROCEDURE dumps the contents of the procedures with the given names to the current writer. If the given input is a word, it is interpreted as a single procedure name. If the given input is a list, it is interpreted as a list of procedure names. If any given name is not a valid procedure name, or if no such procedure exists, PRINTOUTPROCEDURE throws an error.

Example:
? DEFINE "foo [[x] [PRINT SENTENCE [foo called with] :x]]
? PRINTOUTPROCEDURE "foo
TO foo :x
PRINT SENTENCE [foo called with] :x
END

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_work.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_work.html" \l "top"
Top

	Variable operations

Using Logo, you can define both global scope and local scope variables in order to store state.

MAKE name expr

MAKE sets the variable identified by the given name to the value returned by the given expression. If the given name has been declared as a local scope variable by the LOCAL command, MAKE sets the local variable; otherwise, it sets the global variable. If the specified variable already exists, it is overwritten. If the given name is not a valid variable name, MAKE throws an error.

Example:
? MAKE "foo [Logo is easy to use]
? PRINT :foo
Logo is easy to use

	PRIVATE
virtuoso.logo.lib.LibraryPrimitives

NAME expr name

NAME sets the variable identified by the given name to the value returned by the given expression. If the given name has been declared as a local scope variable by the LOCAL command, NAME sets the local variable; otherwise, it sets the global variable. If the specified variable already exists, it is overwritten. If the given name is not a valid variable name, NAME throws an error.

Example:
? NAME [Logo is easy to use] "foo
? PRINT :foo
Logo is easy to use

THING name
:name

THING returns the value of the variable specified by the given name. If the given name has been declared as a local scope variable by the LOCAL command, THING returns the value of the local variable; otherwise, it uses the global variable. If the given name is not a valid variable name, or the specified variable does not exist, THING throws an error. THING is usually abbreviated by prefixing the variable name with a colon.

Example:
? MAKE "foo [Logo is easy to use]
? PRINT THING "foo
Logo is easy to use
? PRINT :foo
Logo is easy to use

NAME? name
NAMEP name

NAME? returns a boolean value indicating whether a variable with the given name has been declared, in either the local or the global scope. If the given name is not a valid variable name, NAME? throws an error.

Example:
? MAKE "foo "hi
? IFELSE NAME? "foo [PRINT "defined] [PRINT "undefined]
defined
? ERASENAME "foo
? IFELSE NAME? "foo [PRINT "defined] [PRINT "undefined]
undefined

LOCAL namelist

LOCAL declares one or more variable names as local to the current procedure. Any accesses to those variables through MAKE or THING in the current procedure will affect the local variable, and not any global variable of the same name. Parameter names for the procedure are automatically declared as local. If LOCAL is given a single word, that word is declared as a local variable name. If LOCAL is given a list, the members of the list are declared as local variable names. If LOCAL is invoked at the top level, the given names are declared local within the scope of the current thread. If any given name is not a valid variable name, LOCAL throws an error.

Example:
? DEFINE "foo [[] [LOCAL "x MAKE "x "inside PRINT :x]]
? MAKE "x "outside
? PRINT :x
outside
? foo
inside
? PRINT :x
outside

	PRIVATE
virtuoso.logo.lib.LibraryPrimitives

LOCALMAKE name expr

LOCALMAKE declares the given variable as local to the current procedure, and initializes it at the same time. It is equivalent to calling LOCAL name followed by MAKE name expr.

NAMES

NAMES returns a content list that includes all global variables currently in the workspace, but no procedures or property lists.

Example:
? DEFINE "foo [[] [PRINT [in foo]]]
? MAKE "var1 "hello
? MAKE "var2 "goodbye
? PRINT NAMES
[[] [var1 var2] []]

ERASENAME names
ERN names

ERASENAME deletes the global variables specified by the given names. If the given input is a word, it is interpreted as a single variable name. If the given input is a list, it is interpreted as a list of variable names. ERASENAME affects both global and all local variables of the given name. If any given name is not a valid variable name, or any specified global variable does not exist, ERASENAME throws an error.

Example:
? MAKE "foo [Logo is easy to use]
? PRINT :foo
Logo is easy to use
? ERASENAME "foo
? PRINT :foo
Unknown name: foo

PRINTOUTNAME names
PON names

PRINTOUTNAME dumps the contents of the global variables specified by the given names to the current writer. If the given input is a word, it is interpreted as a single variable name. If the given input is a list, it is interpreted as a list of variable names. PRINTOUTNAME includes only global variables. If a local variable with a given name has been declared as a local scope variable by the LOCAL command, PRINTOUTNAME does not include it. If any given name is not a valid variable name, or any specified global variable does not exist, PRINTOUTNAME throws an error.

Example:
? MAKE "var "hello
? PRINTOUTNAME "var
MAKE "var1 "hello

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_work.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_work.html" \l "top"
Top

	Property list operations

Property lists, sometimes called association lists, provide a fast lookup method for related named data. Within each property list, you can have any number of properties, each with a key and a value.

Turtle Tracks also includes a special property list named ".SYSTEM" with which you can view, and sometimes edit, system preferences. This special property list is called the "system property list". You cannot add properties to or remove properties from the system property list, you cannot erase or print out the system property list, and the system property list will not appear when you call PLISTS.

System properties

	PRIVATE
Key
	Type
	Read/writable
	Description

	JAVA.VERSION
	word
	R
	Returns the Java virtual machine version currently being run

	LOGO.AUTOIGNORE
	boolean
	R,W
	If "TRUE, suppresses "You don't say what to do with..." errors. If "FALSE, throws those errors. Default is "FALSE.

	LOGO.CASESENSITIVE
	boolean
	R,W
	If "TRUE, string comparisons are done case sensitive. If "FALSE, string comparisons are not case sensitive. Default is "FALSE.

	LOGO.OVERRIDEPRIMITIVES
	boolean
	R,W
	If "TRUE, allows TO, TOMACRO and DEFINE to create procedures that override primtive names. If "FALSE, an attempt to override a primitive name will result in an error. Default is "FALSE.

	LOGO.VERSION
	word
	R
	Returns the Turtle Tracks version currently being run

	OS.ARCH
	word
	R
	Returns the type of architecture of the machine currently being run on.

	OS.NAME
	word
	R
	Returns the name of the operating system currently being run

PPROP plistname propname expr

PPROP sets the specified property of the specified list to the specified value. If the specified property list does not yet exist, it is created. If the specified property of the specified list already exists, it is overwritten. If the given property list name or property name is not a valid name, PPROP throws an error. If you attempt to edit a nonexistent or non-writeable system property, PPROP does nothing but does not throw an error.

Example:
? PPROP "my.plist "language "Logo
? PRINT GPROP "my.plist "language
Logo

GPROP plistname propname

GPROP returns the value of the specified property of the specified list. If the specified property list or property does not exist, or if you attempt to access a nonexistent or non-readable system property, GPROP returns the empty list. If the given property list name or property name is not a valid name, GPROP throws an error.

Example:
? PPROP "my.plist "language "Logo
? PRINT GPROP "my.plist "language
Logo

REMPROP plistname propname

REMPROP removes the specified property of the specified list. If the specified property was the last property in the specified list, the list is also deleted. If the given property list name or property name is not a valid name, or the specified property list or property does not exist, REMPROP throws an error. If you attempt to remove a system property, REMPROP does nothing but does not throw an error.

Example:
? PPROP "my.plist "language "Logo
? PRINT GPROP "my.plist "language
Logo
? REMPROP "my.plist "language
? PRINT GPROP "my.plist "language
Unknown property list: my.plist

ERASEPLIST plistnames
ERPL plistnames

ERASEPLIST completely deletes the specified lists. If the given input is a word, it is interpreted as a single property list name. If the given input is a list, it is interpreted as a list of property list names. If any given property list name is not a valid name, ERASEPLIST throws an error. If, however, any specified property list does not exist, ERASEPLIST does not throw an error.

Example:
? PPROP "my.plist "language "Logo
? PRINT GPROP "my.plist "language
Logo
? ERASEPLIST "my.plist
? PRINT GPROP "my.plist "language
Unknown property list: my.plist

PRINTOUTPLIST plistnames
POPL plistnames

PRINTOUTPLIST dumps the contents of the specified lists to the current writer. If the given input is a word, it is interpreted as a single property list name. If the given input is a list, it is interpreted as a list of property list names. If any given property list name is not a valid name, or any specified property list does not exist, PRINTOUTPLIST throws an error. PRINTOUTPLIST cannot printout the system property list, and will throw an error if it is attempted.

Example:
? PPROP "my.plist "language "Logo
? PPROP "my.plist "os "MacOS
? PRINTOUTPLIST "my.plist
PPROP "my.plist "language "Logo
PPROP "my.plist "os "MacOS

PLISTS

PLISTS returns a content list that includes all property lists currently in the workspace, but no procedures or variables. It does not include the system property list.

Example:
? DEFINE "foo [[] [PRINT [in foo]]]
? PPROP "my.plist "language "Logo
? PPROP "my.plist "os "MacOS
? PRINT PLISTS
[[] [] [my.plist]]

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_work.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/std_work.html" \l "top"
Top

Daniel Azuma (dazuma@kagi.com)
Last updated 18 December 1997

Advanced operations

These are a few advanced command primitives that may sometimes be useful for special-purpose applications.

	PRIVATE
virtuoso.logo.lib.StandardPrimitives

WAIT integer

WAIT causes the current thread to pause for the given amount of time, measured in milliseconds. If the argument is not a nonnegative integer, WAIT throws an error.

	PRIVATE
virtuoso.logo.lib.StandardPrimitives

GC

GC forces a run of the garbage collector. Normally, garbage collection happens automatically when needed, but you may occasionally want to explicitly run it, in preparation for a performance-critical task for example. GC does not return a value.

	PRIVATE
virtuoso.logo.lib.ShellPrimitives

EXEC list
(EXEC list plist)

EXEC causes the execution of a command in the operating system. The given list should contain the command to be executed. You can optionally specify a property list that contains runtime environment variables to be used by the operating system command. EXEC does not return until the command has completed running. While the process is running, its standard input stream is directed from the current reader, its standard output and error streams are directed to the current writer. EXEC returns the result code returned by the command. Under a unix-like system, this code is typically 0 for successful completion, or a negative value for an error condition. Note that the actual behavior of EXEC is not defined and may depend on details of the underlying operating system and the Java implementation. For example, if the underlying operating system does not support process input and output streams, EXEC will not allow interaction of the current reader and writer with the process, but will instead simply block until the process has completed execution. If the given command is not a list or is not a valid operating system command, or if the given property list name does not exist, EXEC throws an error.

Example:
? MAKE "result EXEC [date]
Wed Jul 23 11:24:12 PDT 1997
? PRINT :result
0
Note: The above output was run on a unix system. Behavior of EXEC may differ for other operating system environments.

	PRIVATE
virtuoso.logo.lib.ShellPrimitives

SHELL list
(SHELL list plist)

SHELL causes the execution of a command in the operating system. The given list should contain the command to be executed. You can optionally specify a property list that contains runtime environment variables to be used by the operating system command. SHELL returns a list containing any output sent by the command to standard out. While the process is running, its standard error stream is directed to the current writer. SHELL does not provide any provision for directing a stream to the process's input. SHELL blocks until the command has completed running. Note that the actual behavior of SHELL is not defined and may depend on details of the underlying operating system and the Java implementation. For example, if the underlying operating system does not support process input and output streams, SHELL will simply block until the process has completed execution, and will return the empty list. If the given command is not a list or is not a valid operating system command, or if the given property list name does not exist, SHELL throws an error.

Example:
? MAKE "result SHELL [date]
? PRINT :result
Wed Jul 23 11:24:12 PDT 1997
Note: The above output was run on a unix system. Behavior of SHELL may differ for other operating system environments.

	PRIVATE
virtuoso.logo.lib.ShellPrimitives

EXECASYNC list
(EXECASYNC list plist)

EXECASYNC causes the execution of a command in the operating system. The given list should contain the command to be executed. You can optionally specify a property list that contains runtime environment variables to be used by the operating system command. EXECASYNC returns immediately and allows the process to execute asynchronously. It does not return a value. Note that the actual behavior of EXECASYNC is not defined and may depend on details of the underlying operating system and the Java implementation. For example, some systems may not allow asynchronous spawning of processes. If the given command is not a list or is not a valid operating system command, or if the given property list name does not exist, EXECASYNC throws an error.

Example:
? EXECASYNC [netscape]
? IGNORE EXEC SENTENCE [ps -u] SHELL [whoami]
PID TTY TIME CMD
21640 pts/0 0:00 zwgc
22280 pts/0 0:07 java
21635 pts/0 0:01 tcsh
22290 pts/0 0:09 netscape
22302 pts/0 0:00 ps
Note: The above output was run on a unix system. Behavior of EXECASYNC may differ for other operating system environments.

	PRIVATE
virtuoso.logo.lib.LoaderPrimitives

LOADPRIMITIVES classname

LOADPRIMITIVES loads the primitive group specified by the given Java class name. The primitives contained within that primitive group can henceforth be invoked within your Logo environment. If the given classname is already loaded, LOADPRIMITIVES does nothing. If the given classname is not the name of a valid Java class that implements virtuoso.logo.PrimitiveGroup, LOADPRIMITIVES throws an error.

	PRIVATE
virtuoso.logo.lib.LoaderPrimitives

UNLOADPRIMITIVES classname

UNLOADPRIMITIVES unloads the primitive group specified by the given Java class name. The primitives contained within that primitive group will be removed from your Logo environment. If the given name is not the class name of a loaded primitive group, UNLOADPRIMITIVES does nothing. If a list is given as the argument, UNLOADPRIMITIVES throws an error.

Daniel Azuma (dazuma@kagi.com)
Last updated 11 December 1997

Turtle Graphics Commands

· Window Management

· Turtle Motion

· Turtle Position Queries

· Turtle State

· Color Palette Operations

Turtle Tracks includes a full set of turtle graphics primitives, which are part of the primitive group virtuoso.logo.lib.TurtlePrimitives. These commands may not be available for some console types.

	Window Management

These commands manage the drawing window.

DRAW
(DRAW xmax ymax)

DRAW opens the drawing window for subsequent turtle graphics commands. If the drawing window is already open, DRAW clears and resets it. If xmax and ymax parameters are given to DRAW, they specify the size of the window, in that x-coordinates range from -xmax to xmax-1 and y-coordinates range from -ymax to ymax-1. Thus, the window opened will have a width of 2*xmax and a height of 2*ymax. If DRAW is called without parameters, xmax and ymax default to 160 and 120, respectively. If a graphics window cannot be opened, or if xmax or ymax are not integer values, DRAW throws an error.

NODRAW

NODRAW closes any open turtle graphics window. If no window is open, NODRAW has no effect.

XSIZE

XSIZE returns the current xmax value for the graphics window. X-coordinates range from -XSIZE to XSIZE-1. Therefore, the width of the window is 2*XSIZE.

YSIZE

YSIZE returns the current ymax value for the graphics window. Y-coordinates range from -YSIZE to YSIZE-1. Therefore, the height of the window is 2*YSIZE.

CLEAN
CS

CLEAN fills the entire graphics window with the current background color. The current turtle position and state are not affected.

CLEARSCREEN
CS

CLEARSCREEN moves the turtle to the home position, and fills the entire graphics window with the current background color.

WRAP

WRAP sets the current window border behavior to "wrap." If the turtle moves past an edge of the window, it will "wrap around", or reappear on the other side.

WINDOW

WINDOW sets the current window border behavior to "window." If the turtle moves past an edge of the window, it will disappear until it is moved back into view.

FENCE

FENCE sets the current window border behavior to "fence." Any call that attempts to move the turtle past the edge of the window will throw an error. If the mode was "window" and the turtle is already past the edge of the window, FENCE will throw an error.

REFRESHINTERVAL value

REFRESHINTERVAL sets the refresh interval in milliseconds. That is, if set to 1000, REFRESHINTERVAL will cause the turtle screen to refresh at most once per second during drawing operations. Setting an interval of 0 causes all drawing to happen immediately. If a negative interval is specified, no drawing will happen automatically, and the REFRESH command should be used to cause the screen to update. The window will, however, always update in response to window manager events, regardless of the setting of REFRESHINTERVAL. If the argument is not an integer, REFRESHINTERVAL throws an error.

REFRESH

REFRESH forces an update of the turtle graphics window. This is typically used in conjunction with a negative REFRESHINTERVAL value, to cause the image to be redisplayed at specific times during the drawing process.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/lib_turtle2d.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/lib_turtle2d.html" \l "top"
Top

	Turtle Motion

These commands can be used to move the turtle.

FORWARD number
FD number

FORWARD moves the turtle forward the given number of pixels in the current heading direction. If the pen is currently down, the turtle will draw a line along its path. If the given input is not a number, FORWARD will throw an error.

BACK number
BK number

BACK moves the turtle the given number of pixels in the direction opposite from the current heading direction. The heading of the turtle is not changed. If the pen is currently down, the turtle will draw a line along its path. If the given input is not a number, BACK will throw an error.

RIGHT number
RT number

RIGHT changes the turtle's heading by the specified number of degrees to clockwise. The turtle's position is not changed. If the given input is not a number, RIGHT will throw an error.

LEFT number
LT number

LEFT changes the turtle's heading by the specified number of degrees to clockwise. The turtle's position is not changed. If the given input is not a number, LEFT will throw an error.

SETX number

SETX moves the turtle such that its y-position remains the same but its x-position is the given value. The heading of the turtle is not changed. If the pen is currently down, the turtle will draw a line along its path. If the given input is not a number, SETX will throw an error.

SETY number

SETY moves the turtle such that its x-position remains the same but its y-position is the given value. The heading of the turtle is not changed. If the pen is currently down, the turtle will draw a line along its path. If the given input is not a number, SETY will throw an error.

SETXY xcor ycor

SETXY moves the turtle such that its x-position and y-position become the given values. The heading of the turtle is not changed. If the pen is currently down, the turtle will draw a line along its path. If the given inputs are not numbers, SETXY will throw an error.

SETPOS poslist

SETPOS moves the turtle to the coordinates specified by the input position list. The input must be a two-element list, the first element being the x-coordinate and the second being the y-coordinate. The heading of the turtle is not changed. If the pen is currently down, the turtle will draw a line along its path. If the given input is not a list or does not contain exactly two numeric elements, SETPOS will throw an error.

SETHEADING number

SETHEADING sets the heading of the turtle to the given value, in degrees. A heading of 0 points straight up, and positive values run clockwise. The position of the turtle is not changed. If the given input is not a number, SETHEADING will throw an error.

HOME

HOME moves the turtle to the origin. It has the same effect as SETXY 0 0. The heading of the turtle is not changed. If the pen is currently down, the turtle will draw a line along its path.

LABEL expr

LABEL draws the specified expression on the screen as text, starting from the current turtle position, in the same form as it would appear if it were PRINTed.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/lib_turtle2d.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/lib_turtle2d.html" \l "top"
Top

	Turtle Position Queries

These commands can be used to get information about the turtle's position and heading.

XCOR

XCOR returns the current x-coordinate of the turtle.

YCOR

YCOR returns the current x-coordinate of the turtle.

POS

POS returns the current position of the turtle in the form of a two-element list, where the first element is the x-coordinate and the second element is the y-coordinate.

HEADING

HEADING returns the current heading of the turtle, in degrees. A heading of 0 points straight up, and positive values run clockwise.

DISTANCETOXY xcor ycor

DISTANCETOXY returns the distance from the current turtle position to the given coordinates. The position and heading of the turtle are not changed. If the given inputs are not numbers, DISTANCETOXY will throw an error.

DISTANCETO poslist

DISTANCETO returns the distance from the current turtle position to the given coordinates. The input must be a two-element list, the first element being the x-coordinate and the second being the y-coordinate. The position and heading of the turtle are not changed. If the given input is not a list or does not contain exactly two numeric elements, DISTANCETO will throw an error.

TOWARDSXY xcor ycor

TOWARDSXY returns the heading pointing from the turtle position to the given coordinates, in degrees. A heading of 0 points straight up, and positive values run clockwise. The position and heading of the turtle are not changed. If the given inputs are not numbers, TOWARDSXY will throw an error.

TOWARDS poslist

TOWARDS returns the heading pointing from the turtle position to the given coordinates, in degrees. The input must be a two-element list, the first element being the x-coordinate and the second being the y-coordinate. A heading of 0 points straight up, and positive values run clockwise. The position and heading of the turtle are not changed. If the given input is not a list or does not contain exactly two numeric elements, TOWARDS will throw an error.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/lib_turtle2d.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/lib_turtle2d.html" \l "top"
Top

	Turtle State

These commands manipulate other state information.

SHOWTURTLE
ST

SHOWTURTLE shows the turtle if it is currently hidden. If the turtle is already shown, SHOWTURTLE has no effect.

HIDETURTLE
HT

HIDETURTLE hides the turtle if it is currently shown. If the turtle is already hidden, HIDETURTLE has no effect.

PENDOWN
PD

PENDOWN activates the drawing pen. Any subsequent move commands will cause the turtle to draw lines in the current pen color.

PENUP
PU

PENUP deactivates the drawing pen. The turtle will not perform any drawing during subsequent move commands.

PENERASE
PE

PENERASE sets the drawing pen to erase. Any subsequent move commands will cause the turtle to draw lines in the current background color.

SETPENCOLOR color
SETPC color

SETPENCOLOR sets the color of the drawing pen. The color may be in the format of a three-element list in which the elements are the RGB values, each between 0 and 255. It may also be a word specifying a color from the palette. If the input is a list with more or less than three elements or elements that are not integers between 0 and 255, or if the input is a word that does not correspond to an entry in the color palette, SETPENCOLOR throws an error.

SETBACKGROUND color
SETBG color

SETBACKGROUND sets the color of the background, also the color of the eraser. The color may be in the format of a three-element list in which the elements are the RGB values, each between 0 and 255. It may also be a word specifying a color from the palette. If the input is a list with more or less than three elements or elements that are not integers between 0 and 255, or if the input is a word that does not correspond to an entry in the color palette, SETBACKGROUND throws an error.

GETPENCOLOR
GETPC

GETPENCOLOR returns the color of the pen, in the form of a three-element list representing the RGB color. Each value in the list will be an integer between 0 and 255.

GETBACKGROUND
GETBG

GETBACKGROUND returns the color of the background, also the color of the eraser, in the form of a three-element list representing the RGB color. Each value in the list will be an integer between 0 and 255.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/lib_turtle2d.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/lib_turtle2d.html" \l "top"
Top

	Color palette operations

These commands manipulate the color palette, which are values that can be used in SETPENCOLOR and SETBACKGROUND. The default color palette consists of standard system color numbers, and a selection of color names. Colors may be added to or removed from the palette. The default palette, set up when Turtle Tracks starts, is as follows:

	System color numbers
	Turtle Tracks color names

	Color number
	Color
	RGB Value
	Color name
	RGB Value

	0
	black
	[0 0 0]
	"BLACK
	[0 0 0]

	1
	blue
	[0 0 255]
	"BLUE
	[0 0 255]

	2
	green
	[0 255 0]
	"CYAN
	[0 255 255]

	3
	cyan
	[0 255 255]
	"DARKGRAY
	[64 64 64]

	4
	red
	[255 0 0]
	"GRAY
	[128 128 128]

	5
	magenta
	[255 0 255]
	"GREEN
	[0 255 0]

	6
	yellow
	[255 255 0]
	"LIGHTGRAY
	[192 192 192]

	7
	white
	[255 255 255]
	"MAGENTA
	[255 0 255]

	"ORANGE
	[255 200 0]

	"PINK
	[255 175 175]

	"RED
	[255 0 0]

	"WHITE
	[255 255 255]

	"YELLOW
	[255 255 0]

SETPALETTE name rgblist

SETPALETTE associates the given color name with the given rgblist. It will then be possible to use the name to specify pen color or background color. If the first argument is not a word, or the second argument is not a list with three integer elements between 0 and 255, SETPALETTE throws an error.

UNSETPALETTE name

UNSETPALETTE disassociates the given color name, removing it from the palette. If no color with the given name exists, UNSETPALETTE does nothing. If the argument is not a word, UNSETPALETTE throws an error.

RESETPALETTE

RESETPALETTE sets the color palette to its default.

PALETTE name

PALETTE returns the rgblist associated with the given color name. If the specified color name is not found in the color palette, PALETTE returns the empty list. If the argument is not a word, PALETTE throws an error.

PALETTE? name
PALETTEP name

PALETTE? returns "TRUE if the given name is in the color palette, or "FALSE if not. If the argument is not a word, PALETTE? throws an error.

http://www.ugcs.caltech.edu/~dazuma/turtle/docs/lib_turtle2d.html - topPRIVATE "TYPE=PICT;ALT=*"

HYPERLINK "http://www.ugcs.caltech.edu/~dazuma/turtle/docs/lib_turtle2d.html" \l "top"
Top

Daniel Azuma (dazuma@kagi.com)
Last updated 3 October 1999

Appendix

Differences between Turtle Tracks and UCBLogo

Turtle Tracks was designed to closely match the UCBLogo implementation developed by Brian Harvey at the University of California at Berkeley. Many Logo programs written for UCBLogo will run in Turtle Tracks without modification; however several key differences do exist. This chapter describes some of those differences and how to get around them.

This section of the manual not yet written.

Daniel Azuma (dazuma@kagi.com)
Last updated 11 December 1997

1
92

