Results

Dichotomous Rasch Model

Instructions

____________________________________________________________________________________

1. Each variable must be coded as 0 or 1 with the type of numeric-continuous in jamovi.

2. Person Analysis will be displayed in the datasheet.

3. The result tables are estimated by Marginal Maximum Likelihood estimation(MMLE).

4. The rationale of snowIRT module is described in the documentation.

5. Feature requests and bug reports can be made on my GitHub.

____________________________________________________________________________________

Model Fit
 Person Reliability
scale-0.260
[3]

 

Item Statistics
 ProportionMeasureS.E.MeasureInfitOutfit
Item10.05002.9440.3241.0001.000
Item20.08502.3760.2541.0001.000
Item30.07502.5120.2681.0001.000
Item40.6600-0.6630.1491.0001.000
Item50.13501.8570.2071.0001.000
Item60.21001.3250.1741.0001.000
Item70.36500.5540.1471.0001.000
Item80.30000.8470.1541.0001.000
Item90.27000.9950.1591.0001.000
Item100.20001.3860.1771.0001.000
Note. Infit= Information-weighted mean square statistic; Outfit= Outlier-sensitive means square statistic.
[3]

 

Wright Map

[4]

Expected Score Curve

Item1

Item2

Item3

Item4

Item5

Item6

Item7

Item8

Item9

Item10

Item Infit plot

Item Outfit plot

[5]

Mixed Model

Model Info
Info 
Get startedSelect the dependent variable
Get startedSelect at least one cluster variable
Get startedSelect at least one term in Random Effects
[6]

 

Model Results

Fixed Effect Omnibus tests
 FNum dfDen dfp
 

 

Fixed Effects Parameter Estimates
NamesEffectEstimateSELowerUpperdftp
 

 

Random Components
GroupsNameSDVarianceICC
 

 

References

[1] The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).

[3] Robitzsch,A., Kiefer, T., & Wu, M. (2020). TAM: Test Analysis Modules. (Version 4.1.4)[R package]. Retrieved from https://CRAN.R-project.org/package=TAM.

[4] Martinkova, P., & Drabinova, A. (2018). ShinyItemAnalysis: for teaching psychometrics and to enforce routine analysis of educational tests. (Version 1.4.2)[R package]. Retrieved from https://CRAN.R-project.org/package=ShinyItemAnalysis.

[5] Seol, H. (2023). snowIRT: Item Response Theory for jamovi. (Version 4.8.8)[jamovi module]. URL https://github.com/hyunsooseol/snowIRT.

[6] Gallucci, M. (2019). GAMLj: General analyses for linear models. [jamovi module]. Retrieved from https://gamlj.github.io/.