Μάθημα : Ανάλυση Αγωνιστικής Απόδοσης στις Αθλοπαιδιές (2024-25)
Κωδικός : PHED739
-
Θεματικές Ενότητες
-
1. Περιγραφή της Ανάλυσης Αγωνιστικής Απόδοσης (ΑΑΑ)
-
2. Δεδομένα Αθλητικής Απόδοσης και Πληροφορία
-
3. Συλλογή δεδομένων στην Ανάλυση Αθλητικής Απόδοσης. Τεχνολογίες της Πληροφορίας και Επικοινωνίας (Τ.Π.Ε.) στον Αθλητισμό
-
4. Χειροκίνητα συστήματα σημειογραφικής ανάλυσης
-
5. Χειροκίνητα συστήματα σημειογραφικής ανάλυσης II
-
6. Κλίμακες μέτρησης-Αξιοπιστία παρατηρητή – Μέθοδοι υπολογισμού αξιοπιστίας
-
7. Παρουσίαση Λογισμικού για συστηματικές μελέτες παρατήρησης
-
8. Δημιουργία Προφίλ Αγωνιστικής Απόδοσης
-
9. Διαχείριση αθλητικών δεδομένων κατηγορικών μεταβλητών
-
10.Διαχείριση αθλητικών δεδομένων, Αναλογίες 2 δειγμάτων, Τυπική κανονική κατανομή, Z-scores
-
11. Οπτικοποίηση δεδομένων μέσω εφαρμογών υπολογιστικών φύλλων
-
1. Περιγραφή της Ανάλυσης Αγωνιστικής Απόδοσης (ΑΑΑ)
11. Οπτικοποίηση δεδομένων μέσω εφαρμογών υπολογιστικών φύλλων
Τhe funny side of statistics
Aν ο όρος «Greek statistics» σας φέρνει στο μυαλό κάτι δυσάρεστο, υπάρχει και μια άλλη ερμηνεία για τη στατιστική. Πρόκειται για μια επιστήμη που μπορεί να βοηθήσει σε κάθε λογής προβλήματα και μπορεί να έχει και μια αστεία πλευρά. Στη διάλεξή του, ο καθηγητής Δημήτρης Καρλής δείχνει την άλλη, πιο ευχάριστη όψη της επιστήμης της στατιστικής. Παρουσιάζει ευτράπελες χρήσεις της, υπενθυμίζοντας πόσο σημαντική είναι σε καθημερινά προβλήματα που ενδεχομένως παραγνωρίζουμε. Επίσης, θέτει όλα τα καίρια ερωτήματα που μπλέκονται στο μυαλό ενός στατιστικού:
• Τι έψαχνε ο στατιστικός στον σκουπιδοτενεκέ;
• Πόσο διαφέρουν οι στίχοι του Τερλέγκα από αυτούς του Πλιάτσικα;
• Πόσες μονάδες σελφίτιδας μπορεί κανείς να αντέξει;
• Ποιος είναι ο ρόλος του συντελεστή σκορποχωρίου στη ζωή μας;
• Είναι τα κατάλοιπα σουρεαλιστικά;
Όλα τα παραπάνω μπορεί να βρίσκουν απάντηση, μπορεί και όχι...
Football Analytics:
Προβλήματα, μέθοδοι και διασκεδαστική στατιστική
- Ποια ήταν η καλύτερη εποχή του ελληνικού πρωταθλήματος ποδοσφαίρου;
- Ήταν ο Ρονάλντο ο καλύτερος ποδοσφαιριστής της Ρεάλ Μαδρίτης τη σεζόν 2015-16;
- Δίκαια έλαβε ο Ερίκ Καντονά τον χαρακτηρισμό «βασιλιάς της Μάντσεστερ Γιουνάιτεντ»;
- Θα κέρδιζε πέρσι το πρωτάθλημα ο ΠΑΟΚ αν δεν είχαμε διακοπή και τιμωρία σε δύο αγώνες;
- Ποιος είπε ότι το ποδόσφαιρο δεν είναι αριθμοί;
- Υπάρχει πραγματικά διασκεδαστική στατιστική;
Στη διάλεξή του, ο καθηγητής στατιστικής Γιάννης Ντζούφρας αποπειράται να απαντήσει στα παραπάνω ερωτήματα με δεδομένα και αριθμούς και παράλληλα μας εντάσσει στον υπέροχο κόσμο των analytics. Το ποδόσφαιρο είναι το πιο δημοφιλές και κερδοφόρο άθλημα στο κόσμο. Αποτελεί πηγή διασκέδασης, ψυχαγωγίας αλλά και ίντριγκας. Ο κύριος λόγος για τον οποίο το ποδόσφαιρο ιντριγκάρει τους θεατές περισσότερο απ’ ό,τι άλλα αθλήματα είναι η αβεβαιότητα του αποτελέσματος. Τρανταχτά παραδείγματα τέτοιας αβεβαιότητας αποτελούν η κατάκτηση του ευρωπαϊκού πρωταθλήματος Euro 2004 από την Ελλάδα και η νίκη της Γερμανίας επί της Βραζιλίας με σκορ 7-1 στον ημιτελικό του Μουντιάλ 2014. Επίσης, το ποδόσφαιρο δημιουργεί μία τεράστια πηγή δεδομένων.
Ο καθηγητής Ντζούφρας συζητά τα ενδιαφέροντα μαθηματικά προβλήματα που εμφανίζονται στο ποδόσφαιρο, παρουσιάζει διάφορες απλοποιημένες τεχνικές και στατιστικές μεθόδους επίλυσης και αναδεικνύει τα πιο διασκεδαστικά αποτελέσματα. Μας εισαγάγει στις έννοιες των μοντέλων πρόβλεψης, της ανάλυσης επίδοσης και αξιολόγησης παικτών και παρουσιάζει προβλήματα σχετικά με στρατηγικές βελτιστοποίησης της προπόνησης, μεθόδους βέλτιστου και δίκαιου προγραμματισμού του πρωταθλήματος και συζητά θέματα αγωνιστικής ισορροπίας σε διάφορα πρωταθλήματα.
Τελικά, το ποδόσφαιρο είναι επιστήμη!
Από το εκπαιδευτικό υλικό της ΘΕ11 (εδώ) επιλέξτε το αρχείο "ΘΕ_11_Data_for_Graphs" και μεταφορτώστε το αρχείο excel στον υπολογιστή σας.
Επιλέξτε το φύλλο εργασίας (ΦΕ) Data_handball_Graphs και μελετήστε τις μεταβλητές στην 1η γραμμή του ΦΕ.
Στη συνέχεια δημιουργήστε:
- Γράφημα γραμμών με τις μεταβλητές Goals_for and Goals_againstA για τις 16 ομάδες (δες ΦΕ "Γραμμών".
- Γράφημα σωρευμένης ράβδου για τις μεταβλητές Win_games, Deue_games, Lost_games, για τις 16 ομάδες (χρησιμοποιήστε τη λογική των traffic lights signs). Δες ΦΕ " Σωρευμένη ράβδος"
- Δημιουργήστε radar graph για τις μεταβλητές cp_6mC, co_wing, cp_9m, cp_7m για τις 16 ομάδες. Δες ΦΕ "Radar1"
- Δημιουργήσετ radar graph για τις ομάδες Croatia and France για τις μεταβλητές cp_6mC, co_wing, cp_9m, cp_7m, cp_fb, cp_br_thr. Δες ΦΕ "Radar2".
Σε κάθε γράφημα να υπάρχει:
- Τίτλος γραφήματος
- Υπόμνημα
- Τίτλοι αξόνων
- Ετικέτες δεδομένων, όπου κρίνετε απαραίτητο.
Τέλος αποθηκεύστε τα γραφήματα σε νέα ΦΕ ονομάζοντας τα "Επώνυμό_ σας_ 1-4".
Αποθηκεύστε το αρχείο ονομάζοντας το "Επώνυμό_σας_Γραφήματα" και μεταφορτώστε το στην η-τάξη ως απάντηση στην εργασία.
ΥΓ.Τα ΦΕ που περιεχουν τα ήδη έτοιμα γραφήματα έχουν χρήση βοηθητικού/εποπτικού υλικού. Σε οποιαδήποτε φάση της δραστηριότητας σας μπορείτε να τα διαγράψετε.